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ABSTRACT

ENERGY EFFICIENT COVERAGE AND CONNECTIVITY
PROBLEM IN WIRELESS SENSOR NETWORKS

BAYDOGAN, Mustafa Gokee
M.S., Department of Industrial Engineering
Supervisor: Prof. Dr. Nur Evin OZDEMIREL

July 2008, 104 pages

In this thesis, we study the energy efficient coverage and connectivity
problem in wireless sensor networks (WSNs). We try to locate heterogeneous
sensors and route data generated to a base station under two conflicting objectives:
minimization of network cost and maximization of network lifetime. We aim at
satisfying connectivity and coverage requirements as well as sensor node and link
capacity constraints. We propose mathematical formulations and use an exact
solution approach to find Pareto optimal solutions for the problem. We also develop
a multiobjective genetic algorithm to approximate the efficient frontier, as the exact
solution approach requires long computation times. We experiment with our genetic
algorithm on randomly generated problems to test how well the heuristic procedure
approximates the efficient frontier. Our results show that our genetic algorithm

approximates the efficient frontier well in reasonable computation times.

Keywords: Wireless sensor networks, heterogeneous sensors, energy efficiency
(lifetime), network cost, connectivity, coverage, node and link capacity, location,

routing, genetic algorithm, multiobjective optimization.
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KABLOSUZ DUYGAC AGLARINDA ENERJi VERIMLILIGI,
KAPSAMA VE BAGLANABILIRLIK PROBLEMI

BAYDOGAN, Mustafa Gokge
Yiiksek Lisans, Endiistri Miithendisligi Boliimii

Tez Yoneticisi: Prof. Dr. Nur Evin OZDEMIREL

Temmuz 2008, 104 sayfa

Bu tezde kablosuz duyga¢ aglarindaki enerji verimliligi, kapsama ve baglanabilirlik
problemi ele alinmistir. A§ maliyetinin minimizasyonu ve kapsama siiresinin
maksimizasyonu gibi birbiriyle celisen iki amac¢ dogrultusunda, farkli tiplerde
duygag yerlesimi ve iiretilen duygag verisinin ana istasyona iletilmesi planlanmistir.
Etkin ¢oziimleri tam olarak bulmak i¢in matematiksel formiilasyonlar dnerilmis ve
kesin ¢6zlim veren bir yaklagim kullanilmistir. Kesin ¢oziim veren yaklasim c¢ok
fazla uzun ¢6ziim zamani gerektirdiginden, etkin ¢oziimleri yaklasik olarak bulacak
cok amacl bir genetik algoritma gelistirilmistir. Genetik algoritmanin performansi
rassal olarak iiretilmis problemler iizerinde deneysel olarak test edilmistir. Sonuglar
genetik algoritmanin makul ¢6ziim siirelerinde etkin ¢oziimlere yaklasabildigini

gostermektedir.

Anahtar Kelimeler: Kablosuz duygag aglari, farkli duygag tipleri, enerji verimliligi,
ag maliyeti, baglanabilirlik, kapsama, digliim ve kanal kapasitesi, yerlesim,

rotalama, genetik algoritma, cok amacli optimizasyon
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CHAPTER 1

INTRODUCTION

The development of distributed networks that are capable of sensing, computation,
and wireless communication has emerged from recent advances in processor,
memory and radio technology. Today wireless sensor networks (WSN) have a wide
variety of applications such as battlefield surveillance, biological detection, home
security and inventory tracking. Therefore, the design of wireless sensor networks

has started to attract a great deal of research attention.

A wireless sensor network consists of sensor devices deployed in a region of
interest. Each sensor has processing and wireless communication capabilities, which
enable it to gather information about the monitoring area and to generate and
transmit the data to a base station. The base station aggregates and analyzes the data
received and decides whether there is an unusual event occurrence in the monitoring

arca.

In wireless sensor networks, the energy source provided for sensors is usually
battery power. Hence, sensors cannot operate for a long time without recharging. It
is undesirable or impossible to replace the battery power of all sensors since they
often work in remote or hostile area such as battlefields or disaster areas. However, a
long system lifetime is expected by most of the monitoring applications. The
lifetime of the network, which is measured by the time until the network no longer
provides an acceptable event detection ratio, directly affects network usefulness.
Therefore, conserving the energy resource and prolonging the system lifetime is an

important issue in the design of wireless sensor networks.

Given possible locations where heterogeneous sensors can be deployed and a base
station together with the available energy for each sensor type, we are interested in
the deployment of the sensors in an efficient manner. The data sensed should be

collected from all the sensors and transmitted to the base station such that total cost
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of sensors deployed is minimized and lifetime of the network is maximized. Sensor
deployment is a critical issue because it affects the cost, coverage (detection)
capability and energy efficiency (lifetime) of a wireless sensor network.
Connectivity is another issue as sensors should be able to communicate in order to

transmit the data to the base station.

The WSN design studies in the literature are generally limited with single objective
formulations. However, the problem of energy efficient coverage and connectivity
of WSN has a multiobjective nature. Taking these into account, we try to handle
two conflicting objectives, minimization of network cost and maximization of
lifetime, together. We try to make both location and routing decisions under these
two objectives. Connectivity and coverage requirements together with application
specific constraints are not taken into consideration explicitly in most of the studies.
Patel et al. (2004) emphasize that wireless channel capacity and finite sensor
capacities should be taken into consideration in order to prevent routing of the data
packets over highly congested links and paths since congestion increases the delay
and packet losses, which will increase the energy consumption because of
retransmission of the packets. Our study takes all of these aspects into account
simultaneously for WSN design. We try to investigate the tradeoff between cost and
lifetime objectives while deciding on sensor deployment and data routing. We
consider locating sensors at given possible locations resulting in an adhoc network
and try to model the data communication under the connectivity, coverage, node

capacity and link capacity constraints.

We propose mathematical formulations and use an exact solution approach to find
the Pareto optimal solutions for the energy efficient coverage and connectivity
problem in wireless sensor networks. The exact solution approach is based on
solving the mathematical models iteratively with different objective levels. This
approach requires a high computational effort. Therefore, we propose a
multiobjective genetic algorithm to approximate the efficient frontier in reasonable
computation times. Our approach is similar to NSGA-II (nondominated sorting GA)
proposed by Deb et al. (2002). However, we have some modifications which address

our problem specifics.
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The rest of the thesis is organized as follows. In Chapter 2, we discuss the related
literature. Chapter 3 defines the single objective problems and their formulations as
well as the exact bicriteria solution approach. Chapter 4 reports the results of the
exact solution approach. Then, we describe the multiobjective genetic algorithm to
approximate the efficient frontier in Chapter 5. Chapter 6 provides the
computational results of the genetic algorithm. We conclude in Chapter 7 by

pointing our main findings and suggestions for future research.
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CHAPTER 2

LITERATURE REVIEW

2.1 Properties of Wireless Sensor Networks

Design space of the wireless sensor networks is very large since applications and
systems differ much with varying requirements and characteristics. Taking this fact
into account, Romer and Mattern (2004) try to point out the design issues in wireless
sensor network design. A similar discussion is also made by Akyildiz et al. (2002).
They conclude that determination of hardware and software requirements is
problematic in a multidisciplinary research area such as wireless sensor networks.
Interaction between users, application domain experts, hardware designers and
software developers is needed for an efficient design. Analyzing the projects that
had been conducted, they conclude that sensor network design space and its various
dimensions should be characterized. They complete their analysis with the following

dimensions.
Deployment

Deployment of the sensors may take different forms. Sensor nodes can be located at
predetermined locations or they can be dispersed randomly, e.g. dropping from
aircraft on to a disaster area. This can be a one time activity (sensor nodes are
deployed only once) or a continuous process (after first batch is deployed, additional
nodes are deployed to replace failed ones or to improve coverage during
monitoring). Type of deployment affects the decisions that will change the

performance of the network.
Mobility

The initial location of the sensor nodes can change because of several factors.

Sensor nodes can be carried by mobile devices or they may have capability to move
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themselves. In addition to these, environmental factors, like wind or water flow, can
change the initial position of the sensor nodes. Mobility has an important impact on
the network dynamics and hence influences the networking protocols and algorithms
proposed for the design of the sensor network. Sensor nodes can be mobile or

immobile considering the equipment and requirements of the sensor network.
Cost, Size, Resources, and Energy

Size of the sensors changes depending on the actual needs of the application; it
varies from the size of a shoebox to a microscopically small particle. Costs of the
sensors can vary widely considering their properties. Powerful nodes can be required
for small sized networks and these cost hundreds of Euros whereas the cost can be
only a few cents for very simple sensors. Energy availability and resources for
computing, storage and communication are directly related to the size and the cost of

the sensor.
Heterogeneity

Nodes may differ in the type and number of attached sensors; some computationally
powerful nodes may collect, process and route data from many more limited sensing
nodes; some nodes may act as gateways to long range data communication
networks. Heterogeneity is important since it affects the management of the whole

system.
Communication modality

Common modality is radio waves since they do not require free line of sight, and
communication over medium ranges can be implemented with relatively small
antennas. Light beams and sound are also used for communication in different

applications.
Infrastructure
There are two common forms for infrastructure of the wireless sensor network

design which are infrastructure based or ad hoc. In infrastructure based networks,
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nodes can communicate with only a base station. In ad hoc form, nodes can
communicate with each other so that they can send data to the base station (or sink)
over other nodes. Deployment of the former has higher cost therefore ad hoc

networks are generally preferred.
Network Topology

There are several network topologies like star, tree and mesh considering the design
of a sensor network. Topology is very crucial since network characteristics like
capacity, latency, and robustness are directly affected by the choice of topology.
Moreover, important decisions such as routing and processing of the data sensed

should be made according to the network topology.
Coverage

Coverage is about the sensing capability of the wireless sensor network. Therefore it
is related with the sensing ranges of the sensor nodes used for monitoring. In a
monitoring area, only some regions may be of interest or some specific locations
need to be sensed by the sensor nodes. In some cases, area of interest may have to be
completely covered by sensors. There are different coverage models discussed by
Gosh and Das (2006). These are blanket coverage, barrier coverage and sweep
coverage. In barrier coverage, a static arrangement of the sensor nodes which
minimizes the probability of undetected penetration is tried be achieved. In blanket
coverage, the aim is to arrange the sensor nodes so that total detection area is
maximized. Sweep coverage is the dynamic arrangement addressing a balance
between maximizing the detection rate and minimizing the number of missed

detections per unit area.
Connectivity

The nodes of the sensor network have to be connected in order to forward the
sensing information to a base station or a sink node. A network is said to be
connected if each sensor can communicate with at least one other sensor and there
exists at least one node that can communicate with a sink node. Communication

ranges of the sensors are important for the design of a connected network, as they
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determine the connectivity. In general, two sensors are connected if the distance

between the two is less than the minimum of their communication ranges.
Network Size

Size of the network is determined by the size of the area of interest, the number of
nodes, sensor characteristics and sensing requirements such as coverage and

connectivity.
Lifetime

Lifetime of the network is determined by the properties of the sensor nodes. It can
change from hours to years for different applications. Energy efficiency is an
important issue for network lifetime. Sources of energy consumption are discussed

in detail by Heinzelman et al. (2000).
Quality of Service Requirements

Quality of service aspects to be considered are real time constraints (degree of
coverage, required time for reporting data etc.), robustness, resistance and other

issues.

2.2 Design Issues in Wireless Sensor Networks

Studies in the literature generally concentrate on the deployment of the sensor
nodes. The problem of deployment in wireless sensor networks emerged as the base
station location problem for cellular phone networks in early 1990s, as stated in
Jourdan and Weck (2004). The problem was to find the optimal location of base
stations (transmitters) in order to cover subscribers. This problem is different in
some aspects from the wireless sensor network (WSN) planning problems. Sensor
nodes in WSNs can also transmit the data to other nodes in addition to their own
sensing tasks, therefore sensor nodes need to communicate with each other
(connectivity). Base station location problems are similar to facility location
network design problems, where location of each facility needs to be determined and

the network connecting the facilities must be optimized. In WSN design it is
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important to consider sensor deployment and network design together since location
of the sensors determines the network topology. In this type of problems, sensors are
manually deployed across the monitoring area. Random sensor deployment is
generally preferred for military applications or inhospitable areas where deployment
cannot be done manually as stated in Cardei and Wu (2006). The sensors are

deployed over the monitoring area without human, e.g. by dropping from aircraft.

Data routing is another decision in WSN design. Obviously, connectivity is a
requirement for data routing. In some of the studies, little or no attention is paid to
the communication requirement between sensors. Some of the studies assume that
connectivity is achieved if communication range of the sensor is sufficiently larger
than the sensing range as in Meguerdichian and Potkonjak (2003). This assumption
is not realistic since area to be covered can be disjoint, some physical obstacles like
mountains and buildings can block communication. In the literature there are
different objectives considered in the optimization of data routing, which are also
discussed by Fabregat et al. (2004). Several routing techniques and protocols are
addressed by Karaki and Kamal (2004). Algorithms for connectivity are discussed in
Watfa (2007).

Another important concept for WSNs is energy efficiency. Sensor nodes are often
tiny devices equipped with one or more sensors, one Or more transceivers,
processing and storage resources. Akyildiz et al. (2002) state that sensors have a
small and finite source of energy, and they are limited in computational capacity and
memory, therefore it is important to take wireless channel bandwidth limitations and
sensors’ processing capacities into consideration while minimizing the energy
consumed in communication. This is directly related with efficient routing of the

data.

Taking all of these into account, we categorize the related studies according to
decisions considered. To start with deployment, sensor nodes may be deployed
manually or randomly. If the sensor nodes are deployed randomly, there is not a
location decision to make. Most of the studies considering given or random

deployment deal with energy efficiency problems. Data routing is another decision
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that must be taken into account. In the literature there are some studies that
determine the data flow between sensor nodes. Hence, studies are also categorized
as “no routing” and “routing” according to determination of data flows between
sensor nodes. These studies are summarized in Table 2.1 and briefly discussed

below.
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Given or Random Deployment - No Routing

Potkonjak and Slijepcevic (2001) consider energy efficiency problem for
stochastically placed sensor network. They introduce a heuristic that selects
mutually exclusive sets of sensor nodes, where members of each set together
completely cover the monitoring area. Significant energy savings is achieved by

allowing only one of the sets to be active at any time.

The study of Cardei et al. (2005) is very similar to Potkonjak and Slijepcevic (2001).
In this study, the objective is to maintaining coverage of the targets as long as
possible. Their approach is based on finding maximum number of sets as in
Potkonjak and Slijepcevic (2001). The difference is that a sensor node can be
included in different sets for different time intervals. Their approach is to schedule
the node activation times so that lifetime of the network is maximized. They
proposed an integer programming formulation for finding the schedule and a greedy

approach using LP relaxation of this integer program.

Zou and Chakrabarty (2005) address the problem of selecting a subset of randomly
deployed nodes that are active for both sensing and communication. They propose
an integer programming model for minimizing the number of sensors activated
subject to the coverage constraint. However, connectivity is not considered in this
model. They propose a node selection algorithm based on connected dominating set.
The active nodes form a connected dominating set and act as a backbone for both
sensing and communication. Energy saving is achieved by reducing the number of

active nodes.

Cardei and Wu (2006) provide a survey on contributions addressing energy efficient
coverage problems in static wireless sensor networks. They describe coverage
formulations for different network requirements such as connectivity and minimum

energy together with assumptions and solution approaches.
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Given or Random Deployment - Routing

Heinzelman et al. (2000) propose a clustering based routing protocol (LEACH) that
minimizes total energy usage by distributing the load to all nodes at different points
in time. The objective is to provide a low energy, ad hoc, distributed protocol for

given location of sensor nodes.

Srinivasan et al. (2004) focus on an ad hoc network with a set of sources,
communication with their destinations using multiple routes. They present a
formulation which maximizes lifetime of the network and uses penalty function
approach for system constraints. Capacity of the sensor nodes is also taken into

consideration in this study.

Xue et al. (2005) address the problem of maximizing the lifetime of the sensor
network, given energy constraint on each sensor. Using linear programming, they
formulate the problem as a multicommodity flow problem and propose a fast

approximate algorithm.

Carle and Simplot-Ryl (2004) propose a method for energy efficient routing based

on neighborhood graphs and classical spanning tree algorithms.

Fabregat et al. (2005) consider the multi-objective approaches proposed for
optimization of multicast flows. Moreover, they propose a multi-objective
evolutionary algorithm inspired by the Strength Pareto Evolutionary Algorithm
(SPEA). Mathematical formulations are provided for load balancing techniques and

studies considering different conflicting objectives are classified and discussed.

Zussman and Segall (2003) focus on the energy efficient routing problem in disaster
networks. The problem is formulated as a routing problem in which the objective is
to maximize the lifetime until the first battery drains out. They propose a nonlinear
programming model which tries to maximize the minimum lifetime of the sensor
nodes subject to flow conservation and processing capacity constraints. An
equivalent linear programming formulation is also proposed and tried to be solved
by iterative algorithms to find the optimal solution to the problem for distributed

implementations.
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In Patel et al. (2004), a minimum cost capacity constrained routing protocol is
proposed, which minimizes the total energy consumed in routing while guaranteeing
that total load on each sensor node and on each wireless link does not exceed its
capacity. They consider an integer programming model in order to find optimal data
routing for maximizing lifetime with given sensor locations. In the model, variables
corresponding to data flow amounts are considered to be integer, but they discuss
the impact of relaxing integrality of the data flow amounts on the lifetime of the
network. They propose a heuristic approach based on minimum cost flow algorithms

to solve the integer flow version of this problem.

When deployment decision is considered, there are some studies where the sensor
nodes can be located anywhere over the monitoring area which implies “location on
continuous space”. Another alternative is to locate the sensors at previously defined
locations across the monitoring area which means “location at given possible
locations”. Some studies focus only on the location decision whereas others
simultaneously consider location and routing decisions. Summary of the former

studies is provided in Table 2.2 whereas the latter ones are summarized in Table 2.3.
Deployment Decision - Only Location

Chakrabarty et al. (2002) address the grid coverage strategies for effective
surveillance and target location in distributed sensor networks. Monitoring area is
divided into grids and they are referred to as targets to be detected at any time. An
integer linear programming model is proposed for minimizing total cost of sensors
for complete coverage of the monitoring area. Large problems are tried to be solved

by a divide-and-conquer approach.

Ke et al. (2007) try to solve the sensor deployment problem by dividing sensor field
into grids consisting of squares or equilateral triangles. Using this format, they find
the minimum number of sensors required to be deployed on grid points in order to
construct a wireless sensor network that fully covers the chosen critical grids.
Connectivity is also considered in this paper. They conclude that the critical grid

coverage problem is NP-Complete.
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Deployment Decision - Location and Routing
Continuous Space

Jourdan and Weck (2004) work on the optimization of wireless sensor network
layouts. A multiobjective genetic algorithm for sensor deployment problem is
proposed where two competing objectives are total sensor coverage and lifetime of
the sensor network. It is assumed that the number of sensors to be deployed is given
and each gene in a chromosome represents the coordinates of each sensor. Routing
of the data is done by using Dijkstra’s shortest path algorithm. They also investigate
the influence of the ratio between sensing range and communication range on the
optimal layout with the best coverage. They state that if this ratio is lower that ',
layout is formed of polygons and crowded whereas hub-and-spoke type layouts

become optimal in the opposite case.

Wang et al. (2007) discuss relay node deployment in WSNs. They develop a
formulation in which the number and position of sensing points are known. Three
types of devices, sensor nodes (SN), relay nodes (RN) and base stations (BS) can be
installed at chosen points. Given sensor node locations, they concentrate on
connectivity oriented deployment. They state their problems as follows: Given a
specific sensing task, determine the number and positions of heterogonous devices
so that total network cost is minimized while the constraints of lifetime and
connectivity are satisfied. Basic optimization problem is to find a minimum number
of RNs and their positions so that each SN can reach at least one RN in a single hop.
They solve this problem by considering it as a minimum set covering problem. In
the second case, they assume that RNs have a limited energy and fixed transmission
range. They pose a two phase RN deployment approach. In the first phase, minimum
number of RNs are placed to ensure the connectivity of SNs. In the second phase,
additional relay nodes are placed to provide the connectivity of the previously
placed RNs to the sink node. For the second phase they present three heuristics
based on load balancing considering the capacity of RNs and distance to the sink. In
the first algorithm, starting from the RN farthest from a BS, data is routed to closest
existing the RN. When existing neighboring RNs cannot handle the traffic load, a
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new RN is added. In the second algorithm, two different approaches are proposed. In
the first one, starting from the RN farthest from the sink node, the workload is
distributed to RN’s adjacent neighbors, by first filling up the capacity of the node
nearest to BS. In the second approach, workload of a given RN is distributed starting
from the one with the maximum residual capacity. In the last algorithm, when a new
RN is added, the workload is distributed to other RNs and the newly added node
whereas it is only distributed to newly added RN in the previous algorithms.
Moreover the location of a new RN is chosen as close to the BS as possible. They
evaluate the performance of the proposed algorithms on grid networks and random
networks. They conclude that the last algorithm performs best considering their
metrics which are the number of RNs added, energy cost and average capacity

utilization.

Hou et al. (2005) address the problem of energy provisioning and relay node
deployment for a two-tiered wireless sensor network. For some applications, even
under optimal flow routing, it may not be able to meet the mission requirements. In
such cases energy provisioning may solve the problem of the network lifetime. They
propose a mixed integer nonlinear programming model to solve the joint problem of
energy provisioning and relay node deployment. In addition to flow decisions,
decision of deployment of relay nodes over the monitoring area is also considered.
The deployment is done in the continuous manner meaning that a relay can be
located at any location on the monitoring area. A decision variable is introduced for
energy provisioning so that the energy of a certain number of relay or sensor nodes
can be increased during monitoring. Total energy available is known and the aim is
to distribute this energy to the nodes in order to increase the lifetime. The model is
solved using BARON for small instances, but it is not computationally efficient for
larger problems. A two phase heuristic algorithm is proposed. In the first phase,
locations of the relay nodes are found by a heuristic algorithm. In the second phase
an LP is solved for the energy provisioning problem since the energy provisioning

problem turns out to be an LP with given locations of relay nodes.

Pan et al. (2003) consider a two-tiered wireless sensor network consisting of sensor

clusters deployed around strategic locations. The aim is to locate base stations in a
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continuous manner over the monitoring area. The authors propose approaches to
maximize network lifetime, by arranging the location of the base station and
relaying between sensor nodes and base station. After locating base station, flow

assignments are determined.

Krause et al. (2006) focus on a unified approach for deploying sensor nodes. They
try to optimize location of sensor nodes using expert knowledge obtained by initial
deployment. They propose a polynomial time algorithm which deploys sensors at
informative and cost effective locations. They introduce a temperature measurement
example where the quantity of information is taken as the expected amount of

temperature change that can not be sensed.
Given possible locations

Zongheng et al. (2004) address the problem of constructing a minimum size
connected network with K -coverage. This means selecting a set of sensors such that
each point is covered by at least K different sensors and sensors are connected. The
idea is to keep the minimum set of sensors active to provide the necessary coverage
and connectivity, resulting in an energy conservation technique. They propose a
greedy algorithm considering the number of times each point is covered by the same
sensors in the selected set. The greedy algorithm returns a connected set. A

distributed version of the algorithm provides larger size solutions.

Patel et al. (2005) consider a wireless sensor network with sensor nodes capable of
sensing and communication, relay nodes capable of communication, and base
stations responsible for collecting data generated by sensor nodes. They consider the
problem of placing sensor nodes, relay nodes and base stations in the monitoring
area such that each point of interest in the monitoring area is covered by a subset of
sensors of desired cardinality (K -coverage), the resulting sensor network is
connected and the sensor network has sufficient bandwidth. Several deployment
strategies are proposed to determine optimal deployment of sensor nodes, relay
nodes, and base stations for guaranteed coverage, connectivity, bandwidth and
robustness. Different objectives are considered such as minimizing the number of

sensor nodes deployed, minimizing the total cost, minimizing the energy
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consumption, maximizing the network lifetime and maximizing the network
utilization. The problems for reliable as well as probabilistic detection models are
formulated as integer linear programs. In addition to deployment decision, data
routing is also considered. Capacity of the nodes is also taken into account.
Problems are solved using CPLEX by introducing an upper bound on the number of
base stations and relay nodes to be deployed. Solution characteristics, deployment

properties are discussed in this study.

Quintao et al. (2007) address the problem of activating the minimal number of nodes
for maintaining coverage and connectivity with network lifetime consideration.
They state that this problem is known as the coverage and connectivity problem in
wireless sensor networks and can be modeled as a mixed integer linear
programming. They propose a mathematical model but try to solve it by a two phase
heuristic solution method because the exact solution requires high computational
effort. They pose the problem as follows: given a monitoring area, a set of demand
points, a set of sensor nodes and a sink node, assure that at least n sensor nodes
cover each demand point in the monitoring area, there is a path between these nodes
and the sink node, and battery energy of the activated sensor nodes is not depleted.
Connectivity is taken into consideration as stated in the second part of the problem
but data routing is not considered. It is assumed that energy consumption for

receiving and transmitting is independent of the data amount.

Quintao et al. (2007) decompose the problem into two subproblems. The first
problem, finding the minimal number of nodes needed to cover all demand points, is
solved by a genetic algorithm . In the second phase the best solution found in the
first phase is modified to ensure the connectivity between active nodes. In the
genetic algorithm, binary encoding is used to represent the activated nodes. Fitness
is taken as the number of uncovered points together with total cost of the paths from
all nodes to the sink node. They try to consider both energy efficiency and coverage.
Using solutions obtained from the genetic algorithm, they apply Prim’s minimum
spanning tree algorithm. The condition for connectivity is taken as follows: two
nodes can communicate with each other if distance between them is shorter than the

maximum communication range of the nodes, which is not generally the case for
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WSN applications. Given this condition, some active nodes may be disconnected
from the tree constructed. Dijkstra’s shortest path algorithm is applied starting from
each disconnected node; and some inactive nodes on the path found are also
activated. They compare their results with optimal results obtained by solving the
mathematical model using CPLEX. The deviation of their heuristic approach from
optimal is nearly 20% with better run times. Important issues like sensor capacities

and data routing are not considered in this study.

Cheng et al. (2004) formulate a constrained nonlinear programming problem to
determine both locations of the sensor nodes and data flow between the nodes
considering two objectives: maximize network lifetime and minimize total
application cost. A heuristic approach is proposed to solve this nonlinear program
with single objective. They claim that for a given time horizon, both objectives can

be considered by minimizing the total power consumption.

Pandey et al. (2007) consider the problem of placing the minimum number of relay
nodes to handle the traffic of previously deployed sensor nodes. The problem is
formulated as an optimization problem and three different approaches are proposed
to solve the problem. In the first one, the problem is modeled as a binary integer
linear programming model without connectivity constraints, and the solution is
modified by a greedy Steiner tree algorithm to have a connected network. A greedy
deployment algorithm based on clustering and a genetic algorithm are also proposed.
The constraint violations are penalized in the fitness calculation. They have also

considered hybridizing these algorithms.

Chang and Chang (2008) propose efficient node deployment, topology control and
scheduling mechanism to prolong the sensor network lifetime, balance power
consumption of sensor nodes, and avoid collision. Topology is first constructed
based on grid based WSNs. Then, two different sensor node deployment schemes
trying to balance the power consumption of sensor nodes are applied. Finally, a

scheduling protocol is used to avoid packet collision.

Ferentinos and Tsiligiridis (2006) focus on a multi-objective optimization method

for self-organizing, adaptive wireless sensor network design and energy
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management. They propose a genetic algorithm with a fitness function incorporating
different objectives of the network optimization problem. The decision is the status
of the sensor nodes deployed (active or inactive) and the signal range of the active
sensors (high or low). Their GA tries to optimize sensor activation and range
selection from the set of distributed sensor nodes on the given grid layout of the
monitoring area. Although this seems to be a problem where sensor locations are
given, activation decision and range selection are analogous to deployment of two
types of sensors. They also consider the dynamic version of the problem. In the
dynamic case, sensor nodes activated in GA solution work for some time and then
battery energy of the sensor nodes are updated. Then a new GA run provides a new

solution which will work for some given period.

2.3 Discussion

The studies in the literature and their characteristics are summarized in Table 2.4
according to the decisions, objectives and constraints they consider. About half of
the studies take both location and routing decisions into consideration. Network
cost, lifetime (or energy efficiency) and coverage may be objective or constraint.
For example, it is possible to maximize lifetime or coverage subject to the number
of sensors available (or cost). One may also minimize cost subject to coverage or
energy (battery life) constraints. The studies are generally limited with single
objective formulations. However the problem of energy efficient coverage and
connectivity of WSN has a multiobjective nature. Several objectives are discussed
in Fabregat et al. (2005) and Patel et al. (2005). Taking these into account, we try to
handle two conflicting objectives, minimization of network cost and maximization
of lifetime, together. We try to make both location and routing decisions under

these two objectives.

Connectivity and coverage requirements together with application specific
constraints are not taken into consideration explicitly in most of the studies. In Patel
et al. (2004), it is emphasized that wireless channel capacity and finite sensor
capacities should be taken into consideration in order to prevent routing of the data

packets over highly congested links and paths since congestion increases the delay
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and packet losses, which will increase the energy consumption because of
retransmission of the packets. Moreover most studies deal with homogeneous
wireless sensor network design. In our study, we consider heterogeneous wireless
sensor network design by taking application specific constraints such as

connectivity, coverage, node capacity and link capacity into account.

Our study takes all of these aspects into account simultaneously for WSN design.
As stated by Cheng et al. (2004), analyzing the impact of data sampling,
aggregation techniques and node deployment on network lifetime and power
consumption is a challenging research direction in a more general network with
nonuniform data. We try to investigate the tradeoff between cost and lifetime
objectives while deciding on sensor deployment and data routing. We use a
probabilistic coverage model for the detection of the targets. We consider locating
sensors at given possible locations resulting in an ad hoc network and try to model
the data communication under the connectivity, coverage, node capacity and link

capacity constraints.

35



Apmis QO

(9007) SIPLISI[IS |, puk SOUNUAId|

(o] (@] o)

(8007) Suey) pue Suey)

(L007) T8 12 Aopueq

(+007) 'Te 12 Buay)

(L00?) "8 32 OBIUINQ)

o

el le) e
SIy > [>
SIdI>I>[>]>]>

0 /0 (5007) 18 1 [91ed

4 (4002) Te 1 BuoyEUOZ

Q

Q|0

(9007) Te 1 asnery|

(£007) T8 12 ueq

(S007) "1e 30 noy

(L00T) 'Te 10 Suep

D>
DIDIDD]>] >

Q10|10 O

(£00T) Y99\ pue uepinor

O] 10] 10] 16] O] 1 O] | &] @] (O] (O] 1] 1&] &) | &)

(L007) Te 10 o

DPIDIDD]1>]1>]1>

00|00

(2007) ‘T¢ 19 AMeqenyey)

(#007) T8 39 [1ed

Q|0

(£007) 1[e39S pue uewssnz

J/0 (S007) 'Te 10 1832198,

(£007) 14g-101dwIg pue apIe)

(5007) 1B 19 9nY

($007) ‘T8 12 UBSBAIULIS

>
SI>I>]>|>]>]>

el je) je]le)

(0007) ‘I8 32 UBRW[ZUIDH

O] 1©) 10) 16} 1©] LO] L&) 1 &]

: a (S007) KMeqED[RY) pUE NOZ

s 0 o (S002) & 10 1opIe))

0 0 " (1007) o1a90da(1[S pue yeluospod

Ayi0  Movdpvy  Aovdv)  a8vioao)  Ananoouuo))  (Aousdwdiffo 350D A2y} Bupnoy  uoypIoT ApmS
yury 2PON AB.10u2)
ounafiT

(D) spureaysuod ao/pue (Q) s9anRIlqO SUOISIA(

Apmis Ino pue InJeIS)I| Y} UI SAPNIS 9} JO SONSLIOORIRYD JY) JO ATewrwung g 9[qe,

36



CHAPTER 3

PROBLEM FORMULATION

The problem of energy efficient coverage and connectivity in wireless sensor

networks is formulated mathematically. After stating our assumptions and

introducing the notation of the mathematical model, we propose two formulations.

We then modify these formulations to obtain the Pareto optimal solutions for the

bicriteria problem.

3.1 Assumptions

Before going into detail of the formulations, the assumptions made about the system

are stated as follows.

1.

A wireless sensor network can have different types of sensor (or relay) nodes
and a base station.

Base station or sink is responsible for gathering the data generated at the sensor
nodes and it has sufficient power supply.

Relay nodes are responsible of transmitting data from one to another. They do
not sense, therefore they do not generate data to be routed.

Sensor nodes can have different sensing, communication and process
characteristics (capacities).

Sensor nodes are deployed in an ad hoc basis and they are immobile.

The data is transmitted from one node to another over a wireless channel. MAC
(Medium Access Control) protocol determines the mean rate at which a sensor
node can transmit data to its neighbor. This rate is the channel or link capacity.
All sensor types have the same battery energy. (This assumption is relaxed in the

genetic algorithm)
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8. Possible sensor locations are fixed and known. For convenience, the monitoring
area is divided into grids and possible locations at which sensor nodes can be
located are taken as these grids.

9. Targets to be sensed are located at random points over the monitoring area,

3.2 Notation

Indices:
i, Location index, i, j=1,...,n.
k Sensor type index, k =1,...,s, s+1 is the relay.

p Point (target) index, p=1,...,m.

Parameters:

dist; Euclidean distance between locations i and ;.

c, Cost of locating a sensor of type & .

ST, Sensing range of a sensor of type k.

cr, Communication range of a sensor of type k.

cap, Capacity of a sensor of type k.

d Rate of data generated at point p .

pry, Probability of sensing point p with a sensor of type k located at location i.
h Coverage probability threshold for sensing point p .

eg, Energy required to generate unit data (sense) with a sensor of type & .

et Energy required to transmit unit data from location i to location ;.

er, Energy required to receive unit data from location i to location ;.
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cap, Capacity of wireless communication link (7, j).

e, Battery energy of a sensor of type & .

M A very large value.

Sets:

NC,, Set of (location, sensor type) pairs that can communicate with a sensor of

type k located at location i.

A4, Set of points p that are in the sensing range of a sensor of type £ located at

location i.

B Set of (location, sensor type) pairs that can sense point p .

Decision variables:
1, if asensor k is located at location i
* 10, otherwise '
Jwm  Rate of data flow from a sensor of type k& located at location i to a sensor of

type m located at location ;.

/ Lifetime of the network.

q Inverse of the network lifetime to be used in linearization.

3.3 Single criterion formulations

We consider two objectives for the energy efficient coverage and connectivity
problem, one of which is to minimize the total sensor cost located and the other is to
maximize the network lifetime under system constraints. Before going into detail of
the single objective formulations, coverage and connectivity definitions are

discussed below.

Connectivity of the network is defined by the communication ranges and locations
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of individual sensors. In a sensor network, sensor (and relay) nodes must
communicate in order to transmit the data gathered to a destination which is
generally a base station. A sensor at location i can communicate with another
sensor at location j if each sensor is in the communication range of the other. This
means that the Euclidean distance between these sensors must be less than or equal
to the minimum of the communication ranges of both sensors, as stated by Gosh and
Das (2006). In Figure 3.1 (a) the sensor at location i is not within the
communication range of the sensor at location j, therefore the two sensors cannot
communicate (are not connected). The sensor with larger communication radius
must also fall within the communication range of the other so that the sensors can

communicate. Figure 3.1 (b) illustrates a case where the two sensors are connected.

o

Figure 3.1 (a) Disconnected and (b) connected sensors located at locations i and j

Coverage is a measure of quality of sensing. The main aim in WSNs is to monitor
the physical space as well as possible to sense any target. In our problem, the aim is
to sense each target point in the physical space of interest with at least some
threshold probability. Hence, coverage is defined as the probability that a target at

point p is sensed (detected) by a sensor at location i. The detection probability is

related with the strength of the sensor signal and the distance between the sensor and
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the target. As in Zou and Chakrabarty (2005), the following function is used for

representing the confidence level in the received sensing signal.

-, dist; . .
e MM if dist, <,
p ikp = .
0, otherwise

The parameter [, depends on the sensor characteristics and yields different

probabilities for different sensor types at the same location. Note that the longer the
distance is, the lower the confidence level or the probability of detection is. Points
beyond the sensing range of the sensor are considered too noisy and the sensor
cannot detect the targets at larger distances. A point can fall in the sensing range of

several sensors. The probability of detection of a target at point p is then calculated

as follows.

pr,=1- T pr, )"

(i,k)eB

Overall coverage of point p, pr,, is taken as the complement of the probability that

point p is not sensed (detected) by any of the sensors that can sense point p , which

means point p is covered jointly by its neighboring sensors.

Overall coverage of each point p must be greater than a threshold #,. This

threshold can be interpreted as the importance of the target located or the event
occurring at that point. Hence, in our probabilistic coverage model, the coverage

constraint can be defined as follows.

1- H(l—pi;kp)x‘* th

(i,k)eB[,

This is a nonlinear inequality but we can obtain a linear inequality by taking the

logarithm of both sides.

2111(1 — pry,)x; <In(1—h,)

(i,k)eB,
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Cost minimization

After introducing the above definitions, we present our first single criterion
formulation for the problem of minimizing total sensor placement cost denoted as

PC1 (Problem with Cost objective, version 1).

Problem PC1
n s+l

Min ZZCkxik (1)
i=1 k=1
s+1

st D ox, <1, Vi (2)
k=1

s+1

Z sz/m_z mek ZdexikaVi 3)

k=1 (j,m)eNC, k=1 (j,m)eNC, k=1 ped,
n s+l
Zfl‘k sink — Zz zdp lk (4)
l eNCk i=1 k=1 pedy
fim < Mo, Vi, k,(j,m)e NC, (5)
f;'kjm SM Jm’ v.] m, ( k)ENC]m (6)
s+1 s+1
Z thk/m + Z ijmtk —anpk zk 2 VZ (7)
/meNCk kl /meNCA k=1
s+ s+l
22 S Scapys Vi (8)
k=1 m=1
. In(l= pr,)x, <In(l-h,), Vp ©)
(i,k)eB,
x, €{0,1}, Vi, k (10)
fum €Z 4 Yi,k,(j,m)e NC, (11)
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Objective function (1) represents the total cost of locating sensors and relays.
Constraint set (2) ensures that at most one type of sensor is placed at each location.
Set (3) provides data flow conservation at each sensor node located. Set (4)
guarantees that all data packets are sent to the sink node. Constraint sets (5) and (6)
guarantees that data flow can be realized between two sensors only if they are
located at the given locations. Set (7) ensures that data processing capacity of the
sensor node is not exceeded. Set (8) is the channel capacity constraint which restricts
the amount of data packets to be transmitted over a link. Set (9) provides that
coverage thresholds are met. Set (10) represents the binary location decision and

(11) ensures that flow values are integer.

Although our formulation assumes point or target coverage, area coverage can be
approximated by choosing points to be sensed such that they represent the
monitoring area uniformly. The grid structure representing possible sensor locations
can be used for this purpose, provided that the distance between grid points is less
than the minimum sensing range given in the problem. Therefore, the formulation

given above is capable of handling area coverage as well.

PC1 resembles the location and flow allocation problems known in the operations

research literature with one exception. Each target or point p to be sensed generates

data at a constant rate, d o similar to the demand in the location and flow allocation
problems. However, every sensor close enough to sense point p receives d, and

tries to transmit it to the base station. That is, the same data is generated over and
over again by multiple sensors that can sense the same point. Therefore, the total
flow in the WSN is in general not constant but increases as the number of sensors
increases. This is why relays are needed in WSNs. Relay nodes do not sense (do not
generate new flow) but only relay data from one sensor to another. They provide

connectivity without increasing the total flow, thereby preventing infeasibility.
Lifetime maximization

Network lifetime is another consideration. Lifetime is highly dependent on the

power supply of the sensors. There are various means of power supply such as
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battery and solar panel. Sensors are assumed to use batteries as power supplies in
our study. A sensor consumes energy for generating data from targets, receiving
from other sensors and transmitting to the other sensors. We adopt the
communication power consumption model used by Heinzelman et al. (2000). The
energy required for generating and receiving data is constant per unit data; however
it is not constant for transmission. In the adaptive transmission power model, energy
required for transmitting unit data increases with distance. In order to send the data
to a sensor over longer distances, an acceptable signal to noise ratio should be
achieved by consuming more energy. Energy consumed in transmitting a bit from

location i to j is given as
=0+ A xdist]

where ¢ is a distance independent constant parameter and A is a coefficient

associated with the distance dependent term. dist,is the distance between two

locations and m is the path loss index.

Considering these definitions, maximization of lifetime problem denoted as PL1

(Problem with Lifetime objective, version 1) can be formulated as follows.

Problem PL1
max [ (12)
s+1 s+1 s+1
s.L. Z Zetyf,gml+z Ze Foil +D. D d jeg.x, I<Zek Xy, Vi (13)
1 (j,m)eNC, k=1 (j,m)eNC,, k=1 ped;
(2)-(11)

Objective function (12) maximizes the lifetime of the network. Constraint set (13)
ensures that battery energy of a sensor is not exceeded. The first term of the
constraint represents the total energy consumed in transmission, the second term
stands for the total energy consumed while receiving, and the last term is the total
energy consumed by the sensor for generating the data during the lifetime of the

network.
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The constraint on total energy consumption of a sensor node is nonlinear since it
involves the product of lifetime and location or flow variables. In order to linearize

this constraint, both sides are divided by / and the constraint turns out to be

s+1 s+1 b+l

Z zety.flk/nz+z Ze f/m[k+z Zd eg Xy < Zek Xik (14)

ijNC kl /meNC k=1 ped;

This is not enough to linearize the constraint, since there is a nonlinear term left on
. . 1 )
the right hand side of (14). Let ¢ :; and assume that battery energy e, is the same

for all sensor types and equals e. Then we can replace the right hand side with eq

since we know that at most one of the binary variables can be equal to one. Since we

have used ¢ :; for linearization purposes, the problem of lifetime maximization

turns out to be minimization of ¢ . The linearized problem is as follows.

Problem PL1
min ¢ (15)
s+1 s+1
s.t. Z Zet,,f,k,m +Z Ze mik +Z deegkxik <egq, Vi (16)
j m ENC k=1 j m eNC k=1 pedy
(2)-(11)

The assumption of equal battery energy for all sensor types is not reasonable since
different sensors can have different battery energy levels in a heterogeneous
network. Locating sensors with higher battery energy level at the locations closer to
the sink and using low energy ones for the farther areas is more reasonable
considering the problem characteristics. However, in order to solve the problem
exactly, we have to linearize the constraint with this assumption. If the network is

heterogeneous in terms of energy levels, we can set e as the minimum of e,’s

which yields a conservative solution. Note that we relax this assumption in our

genetic algorithm.
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Relaxing integrality of flow variables

In our formulations flow variables representing the number of data packets
transmitted per unit time are positive integers. Relaxing integrality of flow variables
will naturally result in a longer lifetime. The effect of this relaxation is also
discussed by Patel et al. (2004). The important point is that the difference between
the lifetimes computed using integer and continuous flow variables should not be

significantly high.

Patel et al. (2004) conclude that the tradeoff between inaccuracy of lifetime and
increased complexity due to integrality should be examined carefully. The decision
of using integer or continuous flow variables should be made after a detailed
analysis of node capacities and implementation issues. They also mention a
technique known as data scaling to find the optimal lifetime to any desired degree of
accuracy when integrality of flow variables is relaxed. Patel et al. (2004) state that
detailed information for data scaling is provided by Ahuja et al. (1993). The main
point is that, when the flow variables have a large order of magnitude, the error in

lifetime due to relaxation becomes negligible.

Based on the discussion by Patel et al. (2004), we relax the integrality of flow
variables in both PC1 and PL1 in order to reduce the number of integer variables

and therefore the solution time.
3.4 Formulations for Bicriteria Solution

Maximization of lifetime and minimization of total sensor cost are conflicting
objectives as can be seen from the formulations. Lifetime of the network can be
increased by deploying more sensors so that workload and energy consumption per
sensor can be reduced. This will obviously increase the total sensor cost. There will
probably be more than one efficient (nondominated) solution for this problem
because of its bicriteria nature. These efficient solutions are called Pareto optimal

solutions and they can be found by the e-constraint approach proposed by Haimes et

al. (1971). We give the definition of the domination as follows: A solution (zi,z'z)
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dominates (z;,z;) if z, <z and z, > z, or z, <z, and z, > z, where z, is the cost

objective and z, is the lifetime objective.

In this approach, one of the criteria is taken as a constraint and some parts of the
criteria space are restricted with the help of this constraint. In order to generate all
efficient solutions for our problem, PL1 can be solved with the cost constraint. Also,

the lifetime objective is augmented with a small positive coefficient, p, times the

value of the total cost to exclude weakly efficient but inefficient solutions. This
version of the lifetime formulation is called PL2. Optimal lifetime can be found by

solving PL2 iteratively with different cost levels. Formulation of PL2 is as follows.

Problem PL2

n s+l

min g+ pZchxik (17)

i=1 k=1

n s+l

st D D ex, <g (18)

i=1 k=1

(2) - (11), (16)

where ¢, is an upper bound on the total sensor cost in iteration ¢ and p>0 is

sufficiently small. Constraint (18) ensures that the total sensor cost does not exceed

the given upper bound ¢,. Suppose that we find a lifetime / for a certain total cost
level C,. It is possible that the lifetime cannot be improved and is still / when a
larger cost level C, is introduced. In such a case, even if we set the upper bound for
costto &, =C,, the left hand side of (18) will take a value equal to C, with the help

of the augmentation in objective function (17).

Assuming integer values for c,, we have a finite number of levels for ¢,. The
minimum value that &, can take can be found by simply solving PC1. In order to
find the maximum value for &,, a new problem called PC2 must be defined to

minimize cost under the lifetime constraint.
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Problem PC2

n s+l

min > > cx, (1)

i=l k=l

s+1 s+1

s.t. Z zet,,f,k,m +Z Zerﬂfﬂmk +Z Zd € Xy S € giyen> Vi (19)

ijNC,\ kl jmeNCk k=1 pedy

(2)- (1)

Constraint set (19) guarantees that all sensors located must operate for some given

lifetime . Let q,,, be the objective value found by solving PLI. It

qgiven
corresponds to the maximum possible lifetime regardless of any cost considerations.

Then, the maximum value of & for PL2 can be found by solving PC2 with this
q given - The objective value of PC2 solved with the maximum lifetime of PL1 gives

the maximum value that ¢, can take.

Efficient solutions can then be found by the algorithm given in Figure 3.2.

(minimum cost)

min

Step 1. Solve PC1, let the resulting objective value be cost

Step 2.1. Solve PLI, let the resulting objective value be ¢ _ . (maximum
lifetime)

Step 2.2. Solve PC2 by letting the bound on lifetime be q,,,, = gy, let the
resulting objective be cost,_

Step 3. Solve PL2 for small incremental cost values between cost, and
cost . to find Pareto optimal solutions

Figure 3.2 Algorithm for finding efficient solutions by e-constraint approach

Another method to solve bicriteria problems is the two phase method proposed by

Ulungu and Teghem (1994). They use this approach to solve the bicriteria knapsack
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problems. In this method, the idea is to find the supported efficient solutions by
solving a single objective problem with appropriate weight vectors in the first phase.
When we find the solutions with highest cost and lifetime and lowest cost and
lifetime, we can formulate a single objective problem consisting of both objectives
with appropriate weights. The solutions that can be found by solving this single
objective problem are called supported efficient solutions. In the second phase, the
unsupported efficient solutions are found by problem specific methods such as using
bounds and reduced costs. We have also considered this approach but not
implemented it, since it needs iterative use of the single objective method which
does not guarantee to find all efficient solutions and requires problem specific

approaches to find all efficient solutions.
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CHAPTER 4

EXACT SOLUTION RESULTS OF THE BICRITERIA
PROBLEM

4.1 Problem Generation

There are no benchmark problem instances in the literature in accordance with the
system characteristics and assumptions we use. Hence, we determine the instance
characteristics considering the problem settings discussed in the literature. Some of
the properties such as sensor characteristics and energy consumption parameters are
determined by analyzing the studies in the literature. Monitoring area properties are

determined by doing some preliminary analysis on the problem parameters.

There are two problem categories considered according to the grid representation of
the monitoring area. A monitoring area of size 10 m x 10 m is represented by 5 x 5
= 25 locations in the first category. We divide the same area into 41 locations in the
second category. For both problem sizes, we assume that a single base station is
located at the upper right corner of the monitoring area. Hence 24 and 40 possible
locations are left for locating the sensor or relay nodes in two problem categories
respectively. The problem categories will be referred to as PS24, PS40. The grid

locations are illustrated in Figure 4.1.
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Figure 4.1 Possible grid location structures

Sensor and relay properties are taken as in Table 4.1. The communication range of
the base station is taken as 6 m. We disperse 50 targets to be sensed across the
monitoring area where coordinates of the targets are generated randomly. Each
target has a random coverage threshold uniformly distributed between 0.7 and 1.
The rate of data generated from each target is a random integer between 1 Kbps and

3 Kbps. The channel capacity of each wireless link is 150 Kbps.

Table 4.1 Sensor and relay properties for the loose capacity (LC) case

Sensor type k =1 | Sensor type &k =2 | Relay & =3
cap 100 Kbps 200 Kbps 150 Kbps
ST, 2m 3m 0m
cr, 3m Sm 3m
¢, 1 2 1
B 0.15 0.1 -

Considering the targets, the total data generation rate in the network will be 100

Kbps on the average, assuming that each target is covered by only one sensor. We
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know that some targets will be covered by multiple sensors because of the coverage
threshold requirements, and this will increase the total data volume received by the
base station. Selection of sensor characteristics, channel capacity and data
generation rates results in instances whose channel and node capacity constraints are
loose. However, we adopt most of these properties from Patel et al. (2005). We also
consider the tight capacity constrained case by setting the sensor properties as in
Table 4.2 and the channel capacity as 40 Kbps for the same set of problems. The
problem types are categorized as tight capacity (7C), and loose capacity (LC). We
expect that the LC problem instances will take longer to solve than the TC instances,

as there will be more alternative feasible solutions in the former case.

Table 4.2 Sensor and relay properties for the tight capacity (TC) case

Sensor type k =1 | Sensor type &k =2 | Relay & =3
cap , 40 Kbps 80 Kbps 40 Kbps
ST, 2m 3m 0m
cr, 3m Sm 3m
¢, 1 2 1
B 0.15 0.1 -

The energy consumption model parameters are as in Table 4.3.

Table 4.3 Energy consumption model parameters

egy 10 8 EnergyUnits
ety (10 +0.1x dist )x 10~* EnergyUnits
er; 10 ~* EnergyUnits

e 10 ° EnergyUnits

52




We generate 30 different problem instances. These instances differ from each other
in terms of random target characteristics. Coordinates of the targets and the

generation rate of each target are different for each instance.

4.2 Results for Small Problems

We summarize CPU time information in Table 4.4 and solution characteristics in
Table 4.5. We were able to find the Pareto optimal solutions for all 30 PS24
instances (with both loose and tight capacity constraints) within reasonable CPU
time. PS24-LC instances take about 20 minutes on the average and the maximum
CPU time for these problem instances is 80 minutes. The average time for PS24-TC

is about one minute and maximum time is under 3 minutes.

CPU times are acceptable for PS40-TC case. It is about 3.5 hours on the average and
it takes over 11 hours for the problem instance with maximum CPU time. However,
PS40-LC instances take too long. Therefore, we were able to obtain exact Pareto
optimal solutions for only 10 instances. Finding these solutions takes about 28 hours
on the average and as long as 265 hours for one of the 10 instances. For the
remaining 20 instances, we use an approximation. We set a 10% optimality gap and
a time limit of three hours for each cost level in the e-constraint approach.
Therefore, the best solution found for each cost level is reported when 10% gap is
reached or three hours of CPU time is exceeded, whichever occurs first. This
approach may yield dominated solutions. After elimination of dominated solutions,
we take the remaining ones as the approximation of the Pareto optimal front. The

results for these instances are also included in Table 4.4 and Table 4.5.
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Table 4.4 CPU times for small problems

| CPU time (s) |
1 0
Problem Cpnstramt # of Ave Min Max Avg %
size tightness  problems gap
PS24 LC 30 1118 86 4694 -
TC 30 70 4 167 -
PS40 Lc® 10 100088 15137 953945 -
LC® 20 85983 50870 144746 15.23
TC 30 12865 1544 40449 -
(1)Results across 10 instances that are solved exactly.
(2)Results across 20 instances that are solved approximately.
Table 4.5 Solution characteristics for small problems
| # of Pareto optimal solutions |
Problem  Constraint # of . Avg of cost Avg of
. . Avg Min Max lifetime
size tightness  problems range
range
PS24 Lc® 10 9.20 6 12 142-23.0 6.3-14.6
LC® 20 10.60 8 14 143-244  62-15.6
TC 30 7.47 4 12 19.1-256  9.9-13.7
PS40 Lc® 10 13.60 11 17 13.5-26.1  55-18.1
Lc® 20 13.00 9 18 13.8-264  59-19.1
TC 30 11.60 7 16 179-29.0 9.4-18.0

(1) Results across 10 instances that are solved exactly for both PS24 and PS40 cases.
(2) Results across 20 instances that are solved exactly for PS24 case but solved approximately

for PS40.

When the solution characteristics in Table 4.5 are examined, the number of Pareto

optimal solutions increases as the number of possible locations increases. For both

constraint tightness levels, the average number of Pareto optimal solutions found for

PS24 instances is about 60% of that found for PS40 instances since the same

monitoring area is represented by more possible locations in the latter case. This

provides more alternatives and possibility of locating sensors in a more precise

manner. We plot Pareto fronts of sample LC and TC problem instances in Figure 4.2

to illustrate the effect of the problem size.
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Figure 4.2 Pareto fronts for different problem sizes

For the ranges of cost and lifetime observed in the fronts, similar trends are observed
at both loose and tight capacity levels. Minimum cost levels decrease with
increasing problem size as given in Table 4.5. The reason is that we have more
alternatives for placing the sensors and we can satisfy the given requirements with
fewer sensors with more precise sensor locations. Minimum lifetime also decreases
with decreasing number of sensors. Maximum lifetime and maximum cost increase
with increasing problem size because of the same reason. Increased number of
possible locations makes deployment of more sensors possible in the monitoring
area to achieve longer lifetimes. Hence, lifetime increases with increasing cost, as

expected.

When the capacity constraints are tight, the number of Pareto optimal solutions
decreases compared to the loose capacity case for both problem sizes. The reason is
the restriction of the solution space. Cost increases with tight capacity since more
sensors should be deployed in order to satisfy the capacity requirements. The reason
for the decrease in the maximum lifetime is the transmission of data to the base
station over long ranges. Data load of the nodes that can directly communicate with
the base station is generally high. In tight capacity case, farther nodes cannot
transmit to the nodes closer to the base station because of capacity limitations.
Instead, they have to transmit directly to the base station although the distance

between them is large. This increases the energy consumption and which decreases

55



the maximum lifetime. On the other hand, the minimum lifetime is longer in the
tight capacity case compared to the loose capacity case, again because more sensors
are deployed. We plot Pareto fronts of a sample problem instance with 24 and 40

locations in Figure 4.3 to show the effect of constraint tightness.
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Figure 4.3 Pareto fronts for tight and loose capacity cases

Following are some important characteristics of the solutions in the Pareto front

common to all problem categories.

e Higher lifetimes are obtained by placing more relays around the base station.
The nodes close to the base station are overloaded with forwarded data
which decreases the lifetime of these nodes. Relays located in this area help
reduce the load and energy consumption per node, thereby increasing the

network lifetime.

e Multiple sensors may be needed to meet the coverage threshold requirement
of a target. However, it is important to sense each target with no more than
sufficient number of sensors. If a target is sensed by more sensors than
required to meet its coverage threshold, multiple sensors sense the same data
generated from the target and transmit it over and over again to the base

station. This will increase the data volume to be transmitted across the
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network, which decreases the lifetime. It would be better to have disjoint
sensor nodes in the sense that their coverage regions do not overlap, but this
might violate coverage thresholds and connectivity requirements. On the
other hand, if the sensors are close to each other, the energy required for
transmission decreases, which is in conflict with having disjoint sensor

nodes.

Distance of the sensors to the base station is important since energy required
for transmission increases as this distance increases. It is better to place the

nodes as close to the base station as possible.
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CHAPTER 5

GENETIC ALGORITHM FOR THE BICRITERIA PROBLEM

In the previous chapters Pareto optimal solutions for the bicriteria problem are found
using the e-constraint approach. As stated in Deb (2001), classical search and
optimization methods such as e-constraint find a single Pareto optimal solution in
each iteration. Finding the entire frontier requires repetitive use of a single objective
optimization method, and the computation time is usually unacceptably long.
Therefore, a population based metaheuristic approach is more suitable for
multiobjective problems. In evolutionary algorithms, we use a population of
solutions in every generation, and we find and maintain multiple good solutions for
the next generations. Making use of appropriate mechanisms, we can emphasize
nondominated solutions in the population and preserve a diverse set of multiple

nondominated solutions.

5.1 Basic Approach

There are two decisions to be made as given in our formulations for this problem.
The first one is to locate sensors and the second one is to determine the data flow
between pairs of sensors. Handling both decisions in a single representation is a
fairly complicated task for a genetic algorithm. Therefore, the algorithm is built on
the idea that sensor locations are determined through evolution, and data flows are
determined by solving the mathematical model with given sensor locations. In
addition to two different decisions, constraints that may cause infeasibility during
the search process should also be handled effectively. Actually, constraint handling
is a major concern for the genetic algorithm proposed to solve this problem. We

develop special mechanisms to handle the infeasibilities in the search process.
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Deb (2001) states that the idea of nondominated sorting is first proposed by
Goldberg in 1989 and implemented by Srinivas and Deb in 1994. We illustrate the

nondominated sorting in Figure 5.1 for the bicriteria case.
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Figure 5.1 Solutions classified into different nondominated fronts

As can be seen from Figure 5.1, the population is classified= into eight fronts. Front
1 contains solutions that are not dominated by any other solutions. Solutions in the
second front are found by temporarily disregarding the solutions in the first front.
Second front are not dominated by any of the solutions in lesser fronts. This
procedure is repeated until all population members are classified. This classification
is crucial in fitness assignment. Our GA 1is similar to NSGA-II (nondominated
sorting GA) proposed by Deb (2002). We have some modifications which address

our problem specifics.
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Taking the mathematical formulation into account, there can be four different types

of constraint violation. These are connectivity violation, node capacity violation,

channel (link) capacity violation and coverage violation. We use the amount of

violation of each type in handling the constraints.

Connectivity violation: This is taken as the total amount of violation of flow
balance constraints (3) and (4). For each sensor node that cannot send data
to the other nodes, the flow balance constraint will be violated for the
amount of data to be transmitted. The sum of these violation amounts is

taken as the connectivity violation.

Node capacity violation: This is the total violation amount of constraint set
(7). For all located sensors, the sum of capacity violations is taken as the

node capacity violation.

Channel capacity violation: The sum of violations for constraint set (8)

represents the link capacity violation.

Coverage violation: This is the violation amount of constraint set (9) in the
formulation. The coverage violation is summed up over all targets to be

sensed.

In addition to the cost and lifetime objectives, the overall constraint violation is also

considered as a third objective to be minimized. The aggregation of different

violations to obtain an overall violation will be discussed in Section 5.3.

5.2 Solution representation

Given n possible locations, a solution is represented by a chromosome composed of

n genes each of which represents the sensor type assigned to location i. The

representation is schematized in Figure 5.2.

2 3 i i+1 n—2 n—1 n

Figure 5.2 Representation of a solution
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In Figure 5.2, a sensor of type 1 is assigned to location 2, a sensor of type 2 is
assigned to location 3, and a relay (type 3) is placed at location i+1. A gene value
of zero means that the respective location is empty. Using this representation, total
sensor cost and total coverage violation can be calculated with simple algorithms,
but determination of data flow to find the lifetime is not straightforward. In order to
determine the data flow, we solve the maximization of lifetime problem with the
locations given in the chromosome. When locations are known, maximization of
lifetime problem turns out to be a linear program (LP). However, this brings the
complexity that an LP must be solved for each offspring to determine the data flow
and lifetime. On the other hand, all violation amounts can be obtained by adding

slack variables to respective constraints when solving these LPs.

5.3 Fitness calculation

We need to sort the population by taking three objectives into account including the
constraint violation. In order to calculate the lifetime objective and violations,
maximization of lifetime problem with given sensor locations, PL3, is solved.

Before giving the formulation of PL3, we introduce some additional variables.

S, Flow balance constraint (connectivity) violation amount for a sensor located

l

at location 7.

K, Sensor capacity violation amount for a sensor located at location i .

L, Channel capacity violation amount for the link between locations i and ; .
T, Coverage violation amount for point p .

Problem PL3

i=1 i=1 p=1

min q+M(§S_I+Z”:K+Zn:§L_U+iiJ (20)
i=1 i=1
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s+1

s.t. Z f,,gm— Z o =S =2, > d x; , Vi (21)

k=1 (j,m)eNCy, k=1 (j,m)eNCy, k=1 pedy
n_ s+l
Zf;k sink sink = ZZ zdpxik (22)
k eNCsmk i=1 k=1 pedy
fkjm - Jm s VZ k (]’ )E NCik (23 )
s+1 s+1
Z Zf;kjm + Z Zf/mtk K < anpk lk 2 VZ (24)
/m eNC k=1 /m NC
s+l s+l
Zfok/m —L; <cap;, Vi, j (25)
k=1 m=1
( ;Bma pri)x, ~T, <In(l=h,), Vp (26)
s+1 s+1
z z]\[ityf;lgm + ; zNi Jjmik + ; zAd egk ik — ekq VZ (27)
(j.m)eNCy, (j,m)eNCy PEAy
fim 2 0,Vi,k,(j,m)e NC, (28)

As can be seen from the formulation, additional variables are used to compute the
constraint violations. The sum of the normalized violations multiplied by a
sufficiently large value is added to the objective function in order to guarantee
obtaining the minimum possible constraint violation values. We normalize the
violations amounts using the maximum possible violation amounts for the
corresponding constraints. Note that we can relax the equal battery energy

assumption and use e, instead of e in constraint (27), as this does not cause

nonlinearity any longer.

The algorithm for computing fitness of an individual is given in Figure 5.3.
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Algorithm compute fitness
Begin
Calculate total sensor cost for sensors located in the chromosome

Solve PL3 with given sensor locations to find the lifetime, flow variables, and
violations for connectivity, sensor capacity, link capacity, and coverage
constraints

End

Figure 5.3 Algorithm for computing fitness

The algorithm in Figure 5.3 yields the raw violation amounts. For an individual in
GA, the overall violation to be used as the third objective is found by summing the
normalized violation amounts for all types of violation. Normalization is based on

the maximum and minimum violations in the population. For instance, we find the

normalized coverage violation of individual z in generation ¢, NT,", as follows.

Let T, be the coverage violation of point p for individual z in generation . Let

N be the population size. Then,
T =27,
p=1

T = min{l},z =1,.., N}

z

T™ =max{T;",z=1,...N}

TZ _Tmin
N]'vtz — t t :
]vtmax _7’Vtm11'1

Normalized violations for connectivity ( NS, ), node capacity ( NK;) and channel

capacity ( NL;) are calculated in a similar manner. We then take the weighted sum
of four violations as the overall violation, which becomes the third objective to be
minimized. Initially the violations are equally weighted, but weights for violations
change throughout the generations according to the average violations of the

population members. We provide the weight update procedure in Figure 5.4 where
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WS,, WK,, WL, and WT, are the respective weights of connectivity, node capacity,

link capacity and coverage violations in generation ¢. Weight update is carried out at

the end of every new generation using the procedure given in Figure 5.4.

If a certain type of violation has a larger share in the population average of overall
violation, then it has a larger weight and it is emphasized more in computing the
violation of an individual. We incorporate the previous generation’s violation
information with the current one while determining the weights as part of this

adaptive procedure.

Algorithm update weights of violations

Begin

P N - N . N
Calculate NS, =— D NS7,  NK.= iz NKZ,  NL=— D NL;,
N z=1 N N z=1

z=1

N 1 N
Tt:_ T'Z
N N;N,

Let sum = NS; + NS + NK, + NK -1 + NL: + NLii + NT, + NT .-y
Set WS, = (ﬁ, +ﬁ,71) sum
WK, = (ﬁ; +WH) sum
WL, = (ﬁt +ﬁ;_1) sum
WT, = (ﬁt +ﬁt—1) sum
End

Figure 5.4 Algorithm for updating weights of violations

5.4 Initial population generation

Initial population is generated in two stages. Relays are located after deployment of
sensor nodes since relay locations are highly dependent on sensor locations. The
algorithm for initial population generation is given in Figure 5.5 where we use the

additional notation below.
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N Population size

gpr,, Probability of locating a sensor of type k& at location i

T Set of points p whose coverage thresholds are not met and B, # J for

individual z

In generating individual z, for each point p whose coverage threshold is not met,

we use the (location i, sensor type k) combinations that can sense p, B,. We start
with point p that can be sensed by the least number of such combinations. We find
the amount of data flow that each combination can handle by itself. If the
combination can satisfy the coverage threshold, we add the data amount of p, d, to

In(l-pr,)
m which

p

the numerator of H,, . If this is not the case, we multiply &, by

stands for the fraction of the coverage threshold of point p met by combination
(i,k). We find the amount of data sensed per unit cost, H, , by dividing the total
data amount by the cost of the sensor. We then normalize H, values for each
(i,k) € B, and set the probability of placing a sensor of type & at location i, gpry,

as this normalized value. After a sensor is placed, we update set T after updating

set B, for all peT, and coverage threshold requirements using the current
assignments. 7, is recomputed using the updated B ,’s . We repeat the same process

to locate sensors until there are no points leftin 7, .
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Algorithm generate initial population

Begin
For each individual z =1,...,2N
Compute B, forall p=1,...,m

LetT, includeall p=1,....m
While 7, # &
Find point p e 7, with minimum | B, |

For each(i,k) e B,

Let H, =

End for
For each (i,k) € B,
ik

8Pty = zHik

(i,k)eB

P

End for
Select an (i,k) € B, with probability gpr; and locate a sensor of type k

at location i

Update B, forall p €T, considering the newly located sensor
Compute T, using the updated B, ’s

End while
End for
Sort 2N individuals in ascending order of coverage violation

Take the first N individuals as P,
For each individual z € P,

Locate relays
End for
End

Figure 5.5 Algorithm for initial population generation
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This procedure provides that (i,k) € B, with the higher amount of data sensed per

unit cost has a higher probability of assignment, which is reasonable for both
minimizing the total cost and maximizing the lifetime. When the amount of data that
a sensor can handle by itself is high, we expect that each point will be sensed by
fewer sensors and the amount of oversensing of the points will be low. Sensing a
point with more than the required number of sensors (oversensing) increases the
total amount of data flow to be transmitted. If the total amount of data flow increases
in the network, network lifetime will decrease. We expect to avoid this with the

above procedure.

In applying this procedure, we restrict the solution space for location decision by

locating sensors according to the point coordinates. We take into account all (7,k)

combinations that can cover points but leave others out, therefore the locations that

cannot sense any point are not assigned.

After determining the sensor locations, we deploy relays considering the sensors
located and the amount of data sensed. The algorithm for locating relays is given in

Figure 5.7, which can be explained with the help of Figure 5.6.

A Sink (S)
9‘N§ L 2 3 L 2
. \\ -

0 “I 2 C :": 4 é 6 ‘7 8 é 10
Figure 5.6 Sample monitoring area for locating relays
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We know that the data amount to be transmitted is higher for the nodes that are
closer to the base station. In order to balance the data flow for these nodes, relays
should be placed at the appropriate locations. Therefore, location of the base station
becomes important in locating relays. We take the location of the base station into
account using a line of sight approach as can be seen in Figure 5.6. We draw line
SB to the potential location i or B from the base station. Two perpendicular lines,
whose bisector is SB, represent the “line of sight” of location i. L, is the set of
(/,k) combinations that fall in the line of sight of i. The probability of locating a
relay at location i is computed by dividing the total data generated by the previously
located sensors that are in the line of sight of location i by the total data generated
in the monitoring area. If location 7 is closer to the base station, it has more sensors
and more data generated in its line of sight, and probability of placing relay at i is

higher.

Algorithm locate relays
Begin
For each location i
If no sensor is located at location i (denoted as B in Figure 5.6)

Let SB be the bisector of two rays, B4 and BC, where angle ABC is
90°

Let L. be the set of (location j, sensor type k) combinations that fall in
the area covered by ABC and the limits of the monitoring area

2. 2.4,

(f,k )EL,' DPEA;

8Prs = p

2.4,
p=l1

Locate a relay at location i with gpr,

End if
End for
End

Figure 5.7 Algorithm for locating relays
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We generate 2N individuals in total and select N of them as the initial population.
The selection is made according to the coverage violation amounts of the individuals
since we can compute only the coverage violation with the given solution
representation. Solving PL3 in order to determine the other violations would require
high computation time. Therefore, we introduce a procedure to start the search with

the individuals having less coverage violation.
5.5 Parent Selection and Replacement

Tournament selection is used for selecting parents from the current population P, as

shown in Figure 5.8. In the selection procedure, among the two individuals we
favor the one that is in the better nondominated front. If two randomly selected
individuals are in the same front, we select the one with less overall violation in
order to guide the search towards the feasible solutions. If the tie cannot be broken
considering the fronts and the violations, we use a selection rule based on
nondomination. We simply select the individual that is dominated by fewer
solutions. When an individual is dominated by fewer solutions, it is likely to be in a
less crowded region of the search space. This selection rule gives more chance to
such individuals to become parents, thereby increasing the diversity of search. If the

tie cannot be broken in this selection, we select one of the individual randomly.

Parent selection is repeated until C acceptable offspring are generated. Set R, is
formed as the union of parent population P, and offspring population Q,. To form

t

the population for the next generation, P

t+1°

the N + C solutions in R, are sorted by
using the fast nondominated sorting algorithm due to Deb (2000). R, is sorted into
fronts F i for j=123,... Then, the algorithm given in Figure 5.9 is applied for

parent replacement.
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Algorithm select parents
Begin
Repeat

Select two individuals from P randomly with replacement

If they are in different fronts
Select the one that is in the better front
Else
If their overall violations are different
Select the one with less overall violation
Else
Select the one that is dominated by fewer individuals
End if
End if
Until two parents are selected
End

Figure 5.8 Algorithm for parent selection

According to the algorithm, P, is formed by selecting N individuals from the

better fronts. If adding all individuals from the last of these fronts causes the
population to have more than N members, only a subset is selected. In NSGA-II,
the crowding measure is used for this selection. Our algorithm does not have an
explicit crowding mechanism. Instead we select from the last front those individuals
that are dominated by fewer solutions in the better fronts. With this rule similar to
the one we use for parent selection, we favor individuals in less crowded regions in
an attempt to preserve diversity. If the ties considering the number of solutions

dominating the individuals cannot be broken, we select individuals randomly.
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Algorithm form new population
Begin

Set P, = ¢

Set j=1

While | B, [+|F, <N

Set ])t+l = ])t+l o ij
Set j=j+1
End while

Select N—| F,, | individuals from F; that are dominated by fewer individuals in

P.,,insert themin P_,
End
Figure 5.9 Algorithm for replacement
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Figure 5.10 Sample population at the end of generation ¢
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The selection rule from the last front is illustrated in Figure 5.10. Suppose there are

30 individuals in R, and N =15. We select seven individuals from the first front

and five individuals from the second front in the population and |R | =12. We have

+1
five solutions in the third front, therefore we have to choose three of them in order to

have |P, |:15. We discard the individuals circled in Figure 5.10 since they are

+1
dominated by a larger number of individuals than the others. The region of search
space that contains discarded individuals is already represented by individuals in the

better fronts.
5.6 Crossover and Mutation

The classical crossover operators are considered for generating offspring in the GA.
These are one point, two point and uniform crossover operators (Michalewicz and
Fogel, 2004). Uniform crossover is eliminated after analyzing the results of

preliminary runs since using it does not yield good results.

We aim to repair and improve solutions with the mutation operator. Mutation is

applied to each offspring with a given probability, pr, . The algorithm for mutation
is given in Figure 5.11. It makes use of the sets 7. and B, that are also used in

initial population generation. In the first stage of the mutation, we try to improve the
solution in terms of the coverage violation. This is similar to the first phase of our
initial population generation scheme. The difference is that we do not consider the
amount of data to be sensed or the cost of sensors. We assign equal probability to
each (i,k) combination that can sense point p in mutation. Consequently, we next
have an improvement phase which removes the redundant sensors. An individual
may have redundant sensor assignments, which can be removed without increasing
the coverage violation of the individual. While removing the redundant sensors, we
start from the farthest sensor to the base station and continue with the removal
attempts by considering the distance of the sensor to the base station. If there are

multiple sensors with the same distance to the base station, one of them is selected
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randomly. The aim is to improve the network lifetime by locating sensors closer to
the base station. Lifetime is also improved by eliminating oversensing of the targets,
which will decrease the data amount to be transmitted to the base station. The
algorithm also works for the cost objective since cost is decreased by removing the

Sensors.

Algorithm mutation
Begin
If individual z has coverage violation

Update set B, forall p=1,...,m

Compute 7,
While 7, # &
Find point p € 7, with minimum | B, |
For each(i,k) € B,
8Py = ‘ Bp‘
End for

Select an (i,k) € B, with probability gpr, and locate a sensor of type &

at location i

Update B, forall p €T, considering the newly located sensor
Compute 7, using the updated B, ’s

End while
End if
Sort locations in descending order of Euclidean distance to the base station
For each location i with sensor of type & in the ordered set
Remove sensor £ if the total coverage violation does not increase
End for
Locate relays
End

Figure 5.11 Algorithm for mutation
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In the second stage, we place relay nodes as we do in the initial population
generation algorithm. We use the same relay location procedure in the mutation.
After locating additional relay nodes, we intend to remove the redundant relays from
the individual using the procedure described in Figure 5.12. If a relay does not have
outgoing data flow, we can remove it since it does not bring any contribution to the
lifetime objective. We can decrease the total network cost by this removal. To
determine the redundant relays to be removed, we need to solve PL3. As will be
explained in the next section, not every offspring is accepted in our GA and we do
not want to spend PL3 computation time for an individual that will eventually be
discarded. Therefore, we postpone the removal phase of the mutation until after the

individual passed the acceptance test and PL3 is solved to compute its fitness.

Algorithm remove redundant relays
Begin
For each location i with relay
If total outgoing data flow from the relay at location i is zero
Remove relay
End if
End for
End

Figure 5.12 Algorithm for removing redundant relays

5.7 The Main Algorithm

The outline of our algorithm, which is similar to NSGA-II (Deb, 2002) is presented
in Figure 5.13. The algorithm runs for a certain number of generations, G,
determined by preliminary experiments. We start by generating the initial
population. Note that removal of redundant relays is also applied to the initial
population after computing fitness. In every generation, we select parents and

generate offspring using the crossover and mutation operators until the total number

74




of acceptable offspring reaches C. Coverage violation is easily calculated for each
offspring generated. If coverage violation of the offspring is larger than a factor of
the average coverage violation of the population or if the offspring is stillborn, then
the offspring is discarded. (If an offspring has the same assignments as a current
population member or previously generated offspring, it becomes stillborn.)
Otherwise, the offspring is accepted and PL3 is solved for the offspring. The
purpose of discarding an offspring based on a coverage violation condition is to
decrease the number of LPs solved. The accepted offspring are promising in terms
of coverage violation, and solving PL3 only for these offspring significantly reduces
the number of LPs to be solved and the computation time. Pilot runs encourage
using this filtering procedure. For example, a sample GA run with 40 grids takes
600.47 seconds, and 568.26 seconds of this time is spent for solving LPs. Time for
solving LPs constitutes about 95% of the total algorithm time. Therefore filtering
promising offspring becomes crucial, otherwise we can achieve the same solution
quality in longer run times. The factor (1—5¢/G) used in filtering is a decreasing
function of b when G is fixed. When the parameter b e [0,1] is larger, the
acceptance criterion becomes tighter. The coverage violation criterion also becomes
tighter with increasing iteration count ¢ so that solutions with less and less coverage
violation are accepted towards the end of the run. There is a tradeoff between run
time and solution quality in this case. The condition added can affect the diversity
of the solutions negatively, however we can search for better solutions in the time

gained by such a procedure.

After a certain number of offspring is generated, we sort the union of the parent and

offspring population, R, , and we select N of them for the next generation, P

t+1°

At the end of the run, we eliminate the infeasible solutions and apply nondominated

sorting to the feasible solutions in the final R, . We take the solutions in the first front

as the approximation of the Pareto optimal front.
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Algorithm main
Begin
Generate initial population, F,
Compute fitness for each individual in F}
Remove redundant relays for each individual in £
Apply nondominated sorting to £, to find F, j=1.2,...

Set =0
Repeat
Set O, =¢
Repeat
Select parents from P by binary tournament selection
Perform crossover to generate two offspring
For each offspring
Apply mutation to offspring with probability pr,

If coverage violation of offspring < (1 — bt/ G) x average coverage violation

of current population, and if offspring is not stillborn
Compute fitness of offspring
Remove redundant relays
Insert offspring in O,
End if
End for
Until |Q, |2 C

Set R, =P UQ,
For each individual in R,

Normalize constraint violations
Calculate overall violation
End for

Apply nondominated sorting to R, to find F;, j=1.2,...

Form new population, P,

Update weights of violations using members of P _,

Sett=t+1
Until t =G
Discard infeasible individuals, apply nondominated sorting to feasible individuals

Take the individuals in the first front
End

Figure 5.13 Main algorithm
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CHAPTER 6

EXPERIMENTATION

We design an experiment to test the performance of our genetic algorithm and to
investigate the effects of parameters on the performance of the algorithm. The
algorithm is tested on the same randomly generated problem instances described in
Section 4.1 for which Pareto optimal solutions are found except some of the PS40-
LC instances. In addition to these problems, we also test our algorithm on larger

problem instances.

We first discuss the parameter settings. Then, we present the performance measures.

Finally we analyze the results of our experiments.

6.1 Algorithm Parameters and Experimental Settings

The parameters of our algorithm together with the experimental settings are
summarized in Table 6.1. The levels for the parameters are determined after the

analysis of pilot run results and Pareto optimal frontiers.

Two levels for the population size, N, are decided by analyzing the number of

solutions found in the Pareto optimal frontier for PS24 and PS40 instances.

The number of fitness computations, which is equal to the total number of
acceptable offspring generated, is the second parameter. It is the product of the
number of generations and the number of acceptable offspring generated in each
generation, GxC. We have tried different levels for C during the pilot runs,
however we have observed that setting it equal to N as in NSGA-II gives better
results. Therefore, we take C = N. Hence, the number of fitness computations is

determined by the number of generations once the population size is set.
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Offspring are generated using crossover and mutation operators in each generation.
We consider two crossover operators for our experiments. These are one point and

two point crossover operators as given in Section 5.6.

We apply mutation to each offspring with a mutation probability. We set levels for

the mutation probability, pr, , as given in Table 6.1 based on the results of the pilot

runs.

Another parameter, b, is used in determining the maximum acceptable coverage
violation for an offspring as a factor of the average population coverage violation.

We have tried different levels for » such as 1 and 1/2, but we have seen that the

results are not as good as when b is equal to zero. We have observed that restricting
the search by discarding more offspring causes premature convergence and reduces
the solution quality. Therefore, we set b equal to zero after pilot runs, which means
that an offspring is accepted when its coverage violation is less than the average

coverage violation of the population.

Table 6.1 Algorithm parameters

PS24-LC and PS24-TC PS40-LC and PS40-TC
Parameter Level 1 Level 2 Level 1 Level 2 Level 3
N 100 200 200 400 -
GxC 5000 10000 10000 16000 20000
CcT one point two point two point
Py 0.1 0.2 0.2 0.3 -
b 0 0

For PS24 we solve 30 problems with all 16 combinations of the parameters. Based

on these results, we restrict the combinations for PS40.
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6.2 Performance Measures

We use three performance measures to test our algorithm. The first measure is the
proximity indicator, PI. In this measure, we compute the normalized Tchebychev
distance between each solution found by the GA and the closest Pareto optimal
solution found by the e-constraint approach. Distance calculation for a GA solution
is illustrated in Figure 6.1. Suppose that Z“! and Z"™*° denote the sets of GA and
Pareto optimal solutions. For each solution s € Z%, we find the closest solution

t € Z" . Let the normalized distance (deviation) between s and ¢ for cost and

lifetime objectives be nd’, and nd'

st

respectively. Then PI is calculated by equation

(29).

c I
PI SGA_y pPuras = ‘ZlGA SEZZ;;A (nd st ‘; nd st) (29)

This measure provides information about closeness of the GA solutions to the Pareto

optimal front.

The second measure is the reverse proximity indicator, RPL. In this measure, we start
from a Pareto optimal solution and find the closest representative solution found by
GA. This involves the symmetric case of PI calculation. Let solution s € Z be the
closest solution to the Pareto optimal solution ¢ € Z"““ . Then, RPI is calculated by

equation (30). RPI calculation is also illustrated in Figure 6.1.

1 (nd; +ndfs)

zPareto _y 764 ‘ 7 Pareto

RPI

(30)

te ZPareto 2

This measure provides information about closeness of the GA solutions to the Pareto

optimal front as well as the diversity of the GA solutions along the front.

Last measure is the hypervolume indicator, HI, which also measures both closeness
and diversity of the GA solutions. We find the area bounded by the maximum cost

and minimum lifetime (nadir point) for the Pareto optimal solutions and the GA
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solutions. The area calculated for GA solutions is illustrated in Figure 6.1. Let

A and A4, be the areas calculated for Pareto optimal solutions and GA

Pareto

solutions. Then HI is calculated by equation (31).

A

A —
HI — Pareto GA 3 1
— (1)

Pareto

20~ O Exact 7

18

Y

Kd]

st

16

14+ s

12+

Network lifetime

Sensor cost

Figure 6.1 Sample GA and Pareto optimal solutions

6.3 Computational Results for Small Problems

Our algorithm is coded using C programming language and we conduct our
experiments on a personal computer with 1GB DDR2 RAM and Intel Core2 Duo
2.33 Ghz processor. We use CPLEX 10.1 to find the Pareto optimal solutions by the

g-constraint approach and to solve PL3 in the genetic algorithm.
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Fine Tuning the GA for PS24 Instances

We start experimentation with the PS24 instances. According to the levels of the
parameters provided in Table 6.1, there are 2x2x2x2 =16 combinations. Results
of GA runs for all PS24 instances with loose (LC) and tight (TC) capacity
constraints are summarized in Table 6.2. We use RPI as our primary performance
measure in evaluating the performance of GA since it gives an idea about both
convergence and diversity. Therefore, we also provide RPI information for the
initial population in order to figure out the progress throughout the evolution. For
most PS24-TC instances, the initial population has no feasible solutions, therefore
we cannot calculate RPI and the other performance measures for these instances. We
provide the number of instances where the initial population has at least one feasible
solution. Our algorithm cannot find any feasible solutions for some PS24-TC
instances at the end of the evolution. We also provide the number of instances for
which the algorithm ends with some feasible solutions. The average number of
solutions GA finds as well as the average number of GA solutions that are the same
as Pareto optimal solutions (GA=Exact) are also given. We report the CPU times in

the last column.
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We also plot the interaction effects of the parameters on RPI given in Figures 6.2

and 6.3 for PS24-L.C and PS24-TC instances.
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Figure 6.2 Interaction effect plots for final RPI for PS24-LC instances
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Figure 6.3 Interaction effect plots for final RPI for PS24-TC instances
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Numerical results and interaction plots show that better results are obtained for
population size of 200 and 10000 fitness computations. Two point crossover
generally outperforms one point crossover. It seems that increasing the mutation
probability provides better solutions. It increases the effectiveness of one point
crossover significantly for PS24-LC as can be seen from Figure 6.2. A higher

mutation probability of 0.2 results in better RPI in general.

In Figure 6.4, population averages of PI, RPI and HI are plotted against the number
of fitness computations to show their progress throughout the generations. The
values are the averages over 30 instances of PS24-LC. It seems that convergence is
achieved after 8000 fitness computations, and 10000 fitness computations are
sufficient for these instances. We cannot provide this information for PS24-TC since
the number of instances having feasible solutions is too small during the initial

stages of evolution.
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Figure 6.4 Progress of PI, RPI and HI over generations for PS24-LC

(N =200, pr, =0.2, two point crossover)
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Hence, the best parameter settings for PS24 are a population size of N =200,
GxC=10000 fitness computations, two point crossover, and a mutation

probability of pr, =0.2.

Fine Tuning the GA for PS40 Instances

We next experiment with the problems of size 40. As the problem size gets larger,
we consider larger values for the population size (200 and 400) and the number of
fitness computations (10000, 16000 and 20000). Considering the results for PS24
instances, we observe that two point crossover provides better solutions than one
point crossover in general. Hence, only the two point crossover is used in the
remaining experiments. For PS24 instances, we see that larger mutation probability
generally provides better results. Therefore, we set two levels for the mutation
probability as 0.2 and 0.3. We have 10 instances that are solved exactly for PS40-LC
and 30 instances for PS40-TC, hence we experiment with our algorithm considering

these instances.

The results for all PS40 instances are given in Table 6.3. The information provided
in this table is found across 10 problem instances for PS40-LC and 30 problem
instances for PS40-TC.

We again plot the interaction effects of the parameters on RPI in Figures 6.5 and 6.6
for PS40-LC and PC40-TC instances. According to these plots, the best settings for
PS40-LC are a population size of N =400, G xC =20000 fitness computations,
and a mutation probability of pr, =0.2. Increasing the mutation probability does
not affect the performance significantly for PS40-LC. However, for PS40-TC,

pr,, = 0.3 seems to yield better results.
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Figure 6.5 Interaction effect plots for final RPI for PS40-LC instances
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Figure 6.6 Interaction effect plots for final RPI for PS40-TC instances

The progress of the performance measures over generations is presented in Figure
6.7 for PS40-LC instances. It seems that convergence is achieved after 18000 fitness

computations, and 20000 fitness computations are indeed sufficient for these
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instances. However, we have seen that 20000 fitness computations are not sufficient
for PS40-TC instances. We have increased this number to 24000 to achieve

convergence as seen in Figure 6.8.
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Figure 6.7 Progress of PI, RPI and HI over generations for PS40-LC

(N =400, pr, =0.2, two point crossover)

0.9 -

0.8 -

0.7 -

0.6 -
2
=
]
E 0.5 —a—PI
g —e—RPI
g 04 —a—HI
£
D
= 0.3 A

0.2 -

0.1 1

0 T T T T T
0 5000 10000 15000 20000 25000

Fitness computations
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Hence, the best settings for PS40-TC are a population size of N =400,

G xC =24000 fitness computations, and a mutation probability of pr, =0.3.

Comparison of GA with e-Constraint Approach

A comparison of the GA with the e-constraint approach is given in Table 6.4.

Table 6.4 Comparison of e-constraint approach and GA with the best setting

N =200, GxC =10000, pr, =0.2for PS24
N =400, GxC =20000, pr, =0.2for PS40-LC
N =400, GxC =24000, pr, =0.3for PS40-TC

GA performance measures Number of solutions CPU time (s)
Problem Constraint # of feasible

size  tightness problems RPI PI HI g-constraint GA GA=Exact ¢-constraint GA
PS24 LC 30/30 0.0317 0.0220 0.0558 10.20 9.27 3.70 1118 110
TC 29/30 0.0761 0.0574 0.1734 7.47 6.57 1.93 70 110

PS40 Lc® 10/10 0.0464 0.0489 0.1164 13.60 12.80 1.30 100088 798
Lc®? 20/20 - - 13.00 1420 - 85983 821

TC 30/30 0.0744 0.0780 0.1957 11.60 11.10 1.13 12865 797

) Results across 10 instances that are solved exactly by the ¢-constraint approach.
@ Results across 20 instances that are solved approximately by the £-constraint approach.

The average number of Pareto optimal solutions of PS24-LC instances is 10.2 with
an average CPU time of 1118 seconds. CPU time for PS24-TC instances is 70
seconds where the average number of Pareto optimal solutions is 7.47. With the best
settings, our GA finds an average of 9.27 and 6.57 solutions per instance for PS24-
LC and PS24-TC, respectively. The average solution time is 110 seconds for both
cases. This means that, for PS24-LC, the number of feasible GA solutions is 91% of
the number of Pareto optimal solutions, and these are found in one tenth of the exact
solution time. The same figure is 88% for PS24-TC, however the GA solution time
is slightly longer than the exact solution time. GA can find 3.70 of 10.2 (36%)
Pareto optimal solutions for PS24-LC, and 1.93 of 7.47 (26%) solutions for PS24-
TC. PI, RPI and HI measures are also larger for PS24-TC than those for PS24-LC.

Therefore, we conclude that GA performs worse when the capacity constraints are

89



tight, in terms of both the solution quality and the CPU time. Moreover, it can be
seen from Table 6.4 that the problem of infeasibility for PS24-TC instances can be

solved by increasing the number of possible locations.

We illustrate GA and Pareto optimal fronts in Figures 6.9 and 6.10 for sample
instances of PS24-LC and PS24-TC. In both figures, (a) represents an instance with

better performance measures and (b) with worse.
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Figure 6.10 Plots of fronts for sample PS24-TC instances

90



When we examine the PS40-LC results given in Table 6.4, we see that PI, RPI and
HI measures are larger (worse) compared to PS24-LC, but smaller (better) compared
to PS24-TC for the 10 problems with exact solutions. These measures cannot be
calculated for the 20 problems solved approximately, because some of the
approximate e-constraint solutions are dominated by GA solutions. When we
consider all 30 instances of PS40-LC, the average number of frontier solutions
found by GA is relatively closer to that found by e-constraint approach. However,
GA can find only 1.30 of 13.6 (10%) Pareto optimal solutions for the first 10
problems. The GA CPU times, on the other hand, are about 100 times shorter than

the e-constraint CPU times.

As in the case of PS24, the solution quality of GA is worse for PS40-TC than it is
for PS40-LC. The CPU time of GA is only 15 times shorter than the e-constraint
CPU time. In general, problems with tight capacity constraints prove to be harder for

the GA and easier for the e-constraint approach.

GA and Pareto optimal fronts are shown in Figures 6.11 and 6.12 for sample

instances of PS40-LC and PS40-TC.
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Figure 6.11 Plots of fronts for sample PS40-LC instances
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Figure 6.12 Plots of fronts for sample PS40-TC instances

Finally, we compare GA and approximate e-constraint results for PS40-LC in Table
6.5 and in Figures 6.13 and 6.14. For the first 10 problem instances with known
Pareto optimal fronts, we can calculate PI, RPI and HI for the GA and the
approximate e-constraint solutions. Approximate e-constraint measures are still
better than GA measures for these instances. Also, approximate g-constraint can find
5.90 of 13.6 (43%) Pareto optimal solutions, whereas this figure is only 10% for the
GA. However, the approximation has much longer CPU times than GA. For the
remaining 20 problems, although GA finds more solutions in the front, the
hypervolume measure of GA is smaller (worse) than that of the approximate
approach. Sample front plots are given in Figures 6.13 and 6.14 for some PS40-LC
and PS40-TC instances.

Table 6.5 Comparison of GA with approximate e-constraint approach

# of Pareto optimal solutions
# of CPU time
Algorithm (A) instances RPI PI HI Hypervolume (A) (A)=Exact (s)
GA 10 0.0464  0.0489  0.1164 - 12.80 1.30 798
Approximate 10 0.0253 0.0122  0.0442 - 10.90 5.90 54268
GA 20 - - - 0.6034 14.20 - 821
Approximate 20 - - - 0.6667 13.00 - 85983
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6.4 Computational Results for Large Problems

We also test our algorithm on larger problem instances. We combine four problem
instances to obtain a monitoring area of size 20 m x 20 m represented by 10 x 10 =
100 locations. After combining the instances, we have totally 200 targets dispersed
on the monitoring area. The sensor and link capacities and battery energy are

doubled compared to the loose capacity case since total demand increases
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significantly as total number of targets increases. We generate three different PS99
instances in terms of target characteristics (coordinates, coverage thresholds,

demand rates).

We know that the number of Pareto optimal solutions depends on the number of
possible locations close to the base station. The amount of data to be transmitted
close to the base station increases as the sensors become closer to the base station as
discussed in Chapter 5. Hence, the number of Pareto optimal solutions is highly
dependent on the number of possible locations around the base station. When the
number of possible locations around the base station is limited, the number of sensor
types that can communicate with the base station decreases. This decreases the
number of Pareto optimal solutions significantly. Therefore, we increase the number
of possible locations as in Figure 6.15 around the base station to obtain problem

instances with 112 possible locations.
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Figure 6.15 Possible grid location structure for PS111

Exact solution for PS99 and PS111 instances cannot be found because of the

problem size. However, we find the maximum and minimum sensor costs by solving
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single objective problems in order to be able to estimate maximum possible number
of solutions in the Pareto optimal front. We also run the GA to approximate the
Pareto optimal front. We set the parameters of GA as N =800, GxC =40000,

pr, =0.2 by considering the results of PS24 and PS40 instances. We summarize

the results in Table 6.6.

Table 6.6 Summary of the results for PS99 and PS111 instances

GA

Problem Instance Range of Exact # of CPU
size no cost CPU time (s)* solutions time (s)

PS99 1 57-78 50599 13 7675

2 42 - 67 23955 17 7225

3 55-74 24879 12 7447

PS111 1 56 - 94 72368 36 10502
2 41 - 87 30595 36 11864

3 53-91 32671 30 9534

* CPU time to find the minimum and maximum cost by solving the single objective

formulation

For PS111 instances maximum possible number of Pareto optimal solutions is
significantly larger than that of PS99 instances as in Table 6.6. The number of
feasible GA solutions for PS99 is about 60% of the maximum possible number of
Pareto optimal solutions and these are found in reasonable CPU times compared to
the total CPU times for finding the minimum and maximum cost levels. For PS111
instances, the number of feasible GA solutions is about 80% of the maximum
possible number of Pareto optimal solutions and these are also found in reasonable
CPU times compared to the total CPU times for finding the minimum and maximum
cost levels. We also plot the nondominated solutions for PS99 and PS111 instances

in Figure 6.16.
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Network lifetime
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Figure 6.16 Plots of approximate fronts for sample PS99 and PS111 instances
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CHAPTER 7

CONCLUSION

In this thesis, we study the problem of energy efficient coverage and connectivity
problem in wireless sensor networks. We formulate two single objective problems
for minimization of total sensor cost and maximization of network lifetime. Our
formulations satisfy connectivity, coverage and capacity constraints. We use the &-
constraint approach for solving the bicriteria problem exactly which depends on
iterative solution of single objective problems. This approach requires long CPU
times to generate the Pareto optimal solutions. CPU time increases significantly with

this approach when the problem size increases.

We also propose a multiobjective genetic algorithm for solving the problem. Our
GA is similar to NSGA-II of Deb (2002). Constraint handling is one of the
challenging issues in our GA. We develop mechanisms to overcome the problem of
infeasibility. We show that the GA approximates the efficient frontier well in
reasonable time in most of our test problems, for which nondominated solutions are
generated by the help of the exact solution approach. Furthermore, we provide the

computational results for large sized problems.

Our experimentation with problems of size 24 and 40 having loose or tight capacity

constraints lead to the following conclusions.

e Our performance measures, which consider convergence of GA solutions to
the Pareto optimal front and diversity of solutions along the front, worsen
(approximately doubled) as the problem size increases from 24 to 40 when

capacity constraints are loose.

e Problems with tight capacity constraints are harder to solve for the GA
compared to the loose capacity problems, whereas they are easier for the e-

constraint approach. Performance measures for tight capacity are about twice
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as large as those for loose capacity. However, the problem size has less

effect on the performance measures when the capacity constraints are tight.

e When the capacity constraints are loose, the GA solves problems of size 24
in one tenth of the e-constraint CPU times. For problems of size 40, GA CPU

time is about 100 times shorter than g-constraint time.

e For the tight capacity case, GA CPU times are slightly longer than e-
constraint times with 24 possible locations, but they are 15 times shorter with

40 possible locations.

e For problems with 99 and 111 possible locations, the GA converges to a

solution in about 160 minutes.

As a future research topic, one can modify e-constraint approach to find Pareto
optimal solutions by using some method as in the second phase of the two phase
method. For example, the information from solutions of the previous iterations can
be used in the current iteration. Efficient sensor deployments can be introduced in

each iteration in order to reduce the problem complexity.

We can use the results of LP3 to increase efficiency of our GA. Sensitivity analysis
results obtained by solving LP3 provides valuable information. For instance,
capacity constraint of a deployed sensor may have a negative shadow price, and then
we may think of deploying a sensor with a higher capacity in order to increase the
lifetime. We may also use this idea as part of mutation or recombination operator

during the search.

Considering multiobjective nature of the problem, focusing on a selected region by
incorporating decision maker’s preferences may be a good idea. The e-constraint
approach can be modified easily for this purpose. One may try to develop

mechanisms to guide the search to the preferred regions for GA.

Instead of taking coverage as a constraint, one may consider it as a third objective to
be maximized. Maximizing the area to be covered would clearly be in conflict with

minimizing cost and maximizing lifetime. Different objectives such as minimization
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of total delay, total hop count or average path length can also be taken into
consideration in the design of WSNs. According to the requirements of the
application, our formulation and genetic algorithm can be modified for different

objectives.

Special network requirements such as K -coverage or K -connectivity can be
considered in our formulations. Integration of these properties requires additional
constraints in the formulations. We should introduce additional mechanisms to

handle these requirements in GA.

Finally, locating sensors in continuous space can be studied with similar objectives
and constraints. This may require substantial changes in formulations and the GA

starting with the solution representation.
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