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ABSTRACT 

ENERGY EFFICIENT COVERAGE AND CONNECTIVITY 

PROBLEM IN WIRELESS SENSOR NETWORKS 

BAYDOĞAN, Mustafa Gökçe 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Nur Evin ÖZDEMİREL 

 

July 2008, 104 pages 

In this thesis, we study the energy efficient coverage and connectivity 

problem in wireless sensor networks (WSNs). We try to locate heterogeneous 

sensors and route data generated to a base station under two conflicting objectives: 

minimization of network cost and maximization of network lifetime. We aim at 

satisfying connectivity and coverage requirements as well as sensor node and link 

capacity constraints. We propose mathematical formulations and use an exact 

solution approach to find Pareto optimal solutions for the problem. We also develop 

a multiobjective genetic algorithm to approximate the efficient frontier, as the exact 

solution approach requires long computation times. We experiment with our genetic 

algorithm on randomly generated problems to test how well the heuristic procedure 

approximates the efficient frontier. Our results show that our genetic algorithm 

approximates the efficient frontier well in reasonable computation times. 

Keywords: Wireless sensor networks, heterogeneous sensors, energy efficiency 

(lifetime), network cost, connectivity, coverage, node and link capacity, location, 

routing, genetic algorithm, multiobjective optimization. 
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ÖZ 

KABLOSUZ DUYGAÇ AĞLARINDA ENERJİ VERİMLİLİĞİ, 

KAPSAMA VE BAĞLANABİLİRLİK PROBLEMİ 

 

BAYDOĞAN, Mustafa Gökçe 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Nur Evin ÖZDEMİREL 

 

Temmuz 2008, 104 sayfa 

Bu tezde kablosuz duygaç ağlarındaki enerji verimliliği, kapsama ve bağlanabilirlik 

problemi ele alınmıştır. Ağ maliyetinin minimizasyonu ve kapsama süresinin 

maksimizasyonu gibi birbiriyle çelişen iki amaç doğrultusunda, farklı tiplerde 

duygaç yerleşimi ve üretilen duygaç verisinin ana istasyona iletilmesi planlanmıştır. 

Etkin çözümleri tam olarak bulmak için matematiksel formülasyonlar önerilmiş ve 

kesin çözüm veren bir yaklaşım kullanılmıştır. Kesin çözüm veren yaklaşım çok 

fazla uzun çözüm zamanı gerektirdiğinden, etkin çözümleri yaklaşık olarak bulacak 

çok amaçlı bir genetik algoritma geliştirilmiştir. Genetik algoritmanın performansı 

rassal olarak üretilmiş problemler üzerinde deneysel olarak test edilmiştir. Sonuçlar 

genetik algoritmanın makul çözüm sürelerinde etkin çözümlere yaklaşabildiğini 

göstermektedir. 

Anahtar Kelimeler: Kablosuz duygaç ağları, farklı duygaç tipleri, enerji verimliliği, 

ağ maliyeti, bağlanabilirlik, kapsama, düğüm ve kanal kapasitesi, yerleşim, 

rotalama, genetik algoritma, çok amaçlı optimizasyon 
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CHAPTER 1 

1 INTRODUCTION 

The development of distributed networks that are capable of sensing, computation, 

and wireless communication has emerged from recent advances in processor, 

memory and radio technology. Today wireless sensor networks (WSN) have a wide 

variety of applications such as battlefield surveillance, biological detection, home 

security and inventory tracking. Therefore, the design of wireless sensor networks 

has started to attract a great deal of research attention. 

A wireless sensor network consists of sensor devices deployed in a region of 

interest. Each sensor has processing and wireless communication capabilities, which 

enable it to gather information about the monitoring area and to generate and 

transmit the data to a base station. The base station aggregates and analyzes the data 

received and decides whether there is an unusual event occurrence in the monitoring 

area. 

In wireless sensor networks, the energy source provided for sensors is usually 

battery power. Hence, sensors cannot operate for a long time without recharging. It 

is undesirable or impossible to replace the battery power of all sensors since they 

often work in remote or hostile area such as battlefields or disaster areas. However, a 

long system lifetime is expected by most of the monitoring applications. The 

lifetime of the network, which is measured by the time until the network no longer 

provides an acceptable event detection ratio, directly affects network usefulness. 

Therefore, conserving the energy resource and prolonging the system lifetime is an 

important issue in the design of wireless sensor networks. 

Given possible locations where heterogeneous sensors can be deployed and a base 

station together with the available energy for each sensor type, we are interested in 

the deployment of the sensors in an efficient manner. The data sensed should be 

collected from all the sensors and transmitted to the base station such that total cost 
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of sensors deployed is minimized and lifetime of the network is maximized. Sensor 

deployment is a critical issue because it affects the cost, coverage (detection) 

capability and energy efficiency (lifetime) of a wireless sensor network. 

Connectivity is another issue as sensors should be able to communicate in order to 

transmit the data to the base station. 

The WSN design studies in the literature are generally limited with single objective 

formulations. However, the problem of energy efficient coverage and connectivity 

of WSN has a multiobjective nature. Taking these into account, we try to handle 

two conflicting objectives, minimization of network cost and maximization of 

lifetime, together. We try to make both location and routing decisions under these 

two objectives. Connectivity and coverage requirements together with application 

specific constraints are not taken into consideration explicitly in most of the studies. 

Patel et al. (2004) emphasize that wireless channel capacity and finite sensor 

capacities should be taken into consideration in order to prevent routing of the data 

packets over highly congested links and paths since congestion increases the delay 

and packet losses, which will increase the energy consumption because of 

retransmission of the packets. Our study takes all of these aspects into account 

simultaneously for WSN design. We try to investigate the tradeoff between cost and 

lifetime objectives while deciding on sensor deployment and data routing. We 

consider locating sensors at given possible locations resulting in an adhoc network 

and try to model the data communication under the connectivity, coverage, node 

capacity and link capacity constraints. 

We propose mathematical formulations and use an exact solution approach to find 

the Pareto optimal solutions for the energy efficient coverage and connectivity 

problem in wireless sensor networks. The exact solution approach is based on 

solving the mathematical models iteratively with different objective levels. This 

approach requires a high computational effort. Therefore, we propose a 

multiobjective genetic algorithm to approximate the efficient frontier in reasonable 

computation times. Our approach is similar to NSGA-II (nondominated sorting GA) 

proposed by Deb et al. (2002). However, we have some modifications which address 

our problem specifics.  
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The rest of the thesis is organized as follows. In Chapter 2, we discuss the related 

literature. Chapter 3 defines the single objective problems and their formulations as 

well as the exact bicriteria solution approach. Chapter 4 reports the results of the 

exact solution approach. Then, we describe the multiobjective genetic algorithm to 

approximate the efficient frontier in Chapter 5. Chapter 6 provides the 

computational results of the genetic algorithm. We conclude in Chapter 7 by 

pointing our main findings and suggestions for future research. 

 



16 

CHAPTER 2 

2 LITERATURE REVIEW  

2.1 Properties of Wireless Sensor Networks 

Design space of the wireless sensor networks is very large since applications and 

systems differ much with varying requirements and characteristics. Taking this fact 

into account, Römer and Mattern (2004) try to point out the design issues in wireless 

sensor network design. A similar discussion is also made by Akyildiz et al. (2002). 

They conclude that determination of hardware and software requirements is 

problematic in a multidisciplinary research area such as wireless sensor networks. 

Interaction between users, application domain experts, hardware designers and 

software developers is needed for an efficient design. Analyzing the projects that 

had been conducted, they conclude that sensor network design space and its various 

dimensions should be characterized. They complete their analysis with the following 

dimensions. 

Deployment 

Deployment of the sensors may take different forms. Sensor nodes can be located at 

predetermined locations or they can be dispersed randomly, e.g. dropping from 

aircraft on to a disaster area. This can be a one time activity (sensor nodes are 

deployed only once) or a continuous process (after first batch is deployed, additional 

nodes are deployed to replace failed ones or to improve coverage during 

monitoring). Type of deployment affects the decisions that will change the 

performance of the network. 

Mobility 

The initial location of the sensor nodes can change because of several factors. 

Sensor nodes can be carried by mobile devices or they may have capability to move 
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themselves. In addition to these, environmental factors, like wind or water flow, can 

change the initial position of the sensor nodes. Mobility has an important impact on 

the network dynamics and hence influences the networking protocols and algorithms 

proposed for the design of the sensor network. Sensor nodes can be mobile or 

immobile considering the equipment and requirements of the sensor network.  

Cost, Size, Resources, and Energy 

Size of the sensors changes depending on the actual needs of the application; it 

varies from the size of a shoebox to a microscopically small particle. Costs of the 

sensors can vary widely considering their properties. Powerful nodes can be required 

for small sized networks and these cost hundreds of Euros whereas the cost can be 

only a few cents for very simple sensors. Energy availability and resources for 

computing, storage and communication are directly related to the size and the cost of 

the sensor.   

Heterogeneity 

Nodes may differ in the type and number of attached sensors; some computationally 

powerful nodes may collect, process and route data from many more limited sensing 

nodes; some nodes may act as gateways to long range data communication 

networks. Heterogeneity is important since it affects the management of the whole 

system.  

Communication modality 

Common modality is radio waves since they do not require free line of sight, and 

communication over medium ranges can be implemented with relatively small 

antennas. Light beams and sound are also used for communication in different 

applications.  

Infrastructure 

There are two common forms for infrastructure of the wireless sensor network 

design which are infrastructure based or ad hoc. In infrastructure based networks, 
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nodes can communicate with only a base station. In ad hoc form, nodes can 

communicate with each other so that they can send data to the base station (or sink) 

over other nodes. Deployment of the former has higher cost therefore ad hoc 

networks are generally preferred. 

Network Topology 

There are several network topologies like star, tree and mesh considering the design 

of a sensor network. Topology is very crucial since network characteristics like 

capacity, latency, and robustness are directly affected by the choice of topology. 

Moreover, important decisions such as routing and processing of the data sensed 

should be made according to the network topology. 

Coverage 

Coverage is about the sensing capability of the wireless sensor network. Therefore it 

is related with the sensing ranges of the sensor nodes used for monitoring. In a 

monitoring area, only some regions may be of interest or some specific locations 

need to be sensed by the sensor nodes. In some cases, area of interest may have to be 

completely covered by sensors. There are different coverage models discussed by 

Gosh and Das (2006). These are blanket coverage, barrier coverage and sweep 

coverage. In barrier coverage, a static arrangement of the sensor nodes which 

minimizes the probability of undetected penetration is tried be achieved. In blanket 

coverage, the aim is to arrange the sensor nodes so that total detection area is 

maximized. Sweep coverage is the dynamic arrangement addressing a balance 

between maximizing the detection rate and minimizing the number of missed 

detections per unit area. 

Connectivity 

The nodes of the sensor network have to be connected in order to forward the 

sensing information to a base station or a sink node. A network is said to be 

connected if each sensor can communicate with at least one other sensor and there 

exists at least one node that can communicate with a sink node. Communication 

ranges of the sensors are important for the design of a connected network, as they 
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determine the connectivity. In general, two sensors are connected if the distance 

between the two is less than the minimum of their communication ranges. 

Network Size 

Size of the network is determined by the size of the area of interest, the number of 

nodes, sensor characteristics and sensing requirements such as coverage and 

connectivity. 

Lifetime 

Lifetime of the network is determined by the properties of the sensor nodes. It can 

change from hours to years for different applications. Energy efficiency is an 

important issue for network lifetime. Sources of energy consumption are discussed 

in detail by Heinzelman et al. (2000).  

Quality of Service Requirements 

Quality of service aspects to be considered are real time constraints (degree of 

coverage, required time for reporting data etc.), robustness, resistance and other 

issues. 

2.2 Design Issues in Wireless Sensor Networks 

Studies in the literature generally concentrate on the deployment of the sensor 

nodes. The problem of deployment in wireless sensor networks emerged as the base 

station location problem for cellular phone networks in early 1990s, as stated in 

Jourdan and Weck (2004). The problem was to find the optimal location of base 

stations (transmitters) in order to cover subscribers. This problem is different in 

some aspects from the wireless sensor network (WSN) planning problems. Sensor 

nodes in WSNs can also transmit the data to other nodes in addition to their own 

sensing tasks, therefore sensor nodes need to communicate with each other 

(connectivity).  Base station location problems are similar to facility location 

network design problems, where location of each facility needs to be determined and 

the network connecting the facilities must be optimized. In WSN design it is 
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important to consider sensor deployment and network design together since location 

of the sensors determines the network topology. In this type of problems, sensors are 

manually deployed across the monitoring area. Random sensor deployment is 

generally preferred for military applications or inhospitable areas where deployment 

cannot be done manually as stated in Cardei and Wu (2006). The sensors are 

deployed over the monitoring area without human, e.g. by dropping from aircraft.  

Data routing is another decision in WSN design. Obviously, connectivity is a 

requirement for data routing. In some of the studies, little or no attention is paid to 

the communication requirement between sensors. Some of the studies assume that 

connectivity is achieved if communication range of the sensor is sufficiently larger 

than the sensing range as in Meguerdichian and Potkonjak (2003). This assumption 

is not realistic since area to be covered can be disjoint, some physical obstacles like 

mountains and buildings can block communication.  In the literature there are 

different objectives considered in the optimization of data routing, which are also 

discussed by Fabregat et al. (2004). Several routing techniques and protocols are 

addressed by Karaki and Kamal (2004). Algorithms for connectivity are discussed in 

Watfa (2007).  

Another important concept for WSNs is energy efficiency. Sensor nodes are often 

tiny devices equipped with one or more sensors, one or more transceivers, 

processing and storage resources. Akyildiz et al. (2002) state that sensors have a 

small and finite source of energy, and they are limited in computational capacity and 

memory, therefore it is important to take wireless channel bandwidth limitations and 

sensors’ processing capacities into consideration while minimizing the energy 

consumed in communication. This is directly related with efficient routing of the 

data.  

Taking all of these into account, we categorize the related studies according to 

decisions considered. To start with deployment, sensor nodes may be deployed 

manually or randomly. If the sensor nodes are deployed randomly, there is not a 

location decision to make. Most of the studies considering given or random 

deployment deal with energy efficiency problems. Data routing is another decision 
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that must be taken into account. In the literature there are some studies that 

determine the data flow between sensor nodes. Hence, studies are also categorized 

as “no routing” and “routing” according to determination of data flows between 

sensor nodes. These studies are summarized in Table 2.1 and briefly discussed 

below. 
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Given or Random Deployment - No Routing 

Potkonjak and Slijepcevic (2001) consider energy efficiency problem for 

stochastically placed sensor network. They introduce a heuristic that selects 

mutually exclusive sets of sensor nodes, where members of each set together 

completely cover the monitoring area. Significant energy savings is achieved by 

allowing only one of the sets to be active at any time. 

The study of Cardei et al. (2005) is very similar to Potkonjak and Slijepcevic (2001). 

In this study, the objective is to maintaining coverage of the targets as long as 

possible. Their approach is based on finding maximum number of sets as in 

Potkonjak and Slijepcevic (2001). The difference is that a sensor node can be 

included in different sets for different time intervals. Their approach is to schedule 

the node activation times so that lifetime of the network is maximized. They 

proposed an integer programming formulation for finding the schedule and a greedy 

approach using LP relaxation of this integer program.  

Zou and Chakrabarty (2005) address the problem of selecting a subset of randomly 

deployed nodes that are active for both sensing and communication. They propose 

an integer programming model for minimizing the number of sensors activated 

subject to the coverage constraint. However, connectivity is not considered in this 

model. They propose a node selection algorithm based on connected dominating set. 

The active nodes form a connected dominating set and act as a backbone for both 

sensing and communication. Energy saving is achieved by reducing the number of 

active nodes.  

Cardei and Wu (2006) provide a survey on contributions addressing energy efficient 

coverage problems in static wireless sensor networks. They describe coverage 

formulations for different network requirements such as connectivity and minimum 

energy together with assumptions and solution approaches. 
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Given or Random Deployment - Routing 

Heinzelman et al. (2000) propose a clustering based routing protocol (LEACH) that 

minimizes total energy usage by distributing the load to all nodes at different points 

in time.  The objective is to provide a low energy, ad hoc, distributed protocol for 

given location of sensor nodes. 

Srinivasan et al. (2004) focus on an ad hoc network with a set of sources, 

communication with their destinations using multiple routes. They present a 

formulation which maximizes lifetime of the network and uses penalty function 

approach for system constraints. Capacity of the sensor nodes is also taken into 

consideration in this study. 

Xue et al. (2005) address the problem of maximizing the lifetime of the sensor 

network, given energy constraint on each sensor. Using linear programming, they 

formulate the problem as a multicommodity flow problem and propose a fast 

approximate algorithm.  

Carle and Simplot-Ryl (2004) propose a method for energy efficient routing based 

on neighborhood graphs and classical spanning tree algorithms. 

Fabregat et al. (2005) consider the multi-objective approaches proposed for 

optimization of multicast flows. Moreover, they propose a multi-objective 

evolutionary algorithm inspired by the Strength Pareto Evolutionary Algorithm 

(SPEA).  Mathematical formulations are provided for load balancing techniques and 

studies considering different conflicting objectives are classified and discussed. 

Zussman and Segall (2003) focus on the energy efficient routing problem in disaster 

networks. The problem is formulated as a routing problem in which the objective is 

to maximize the lifetime until the first battery drains out. They propose a nonlinear 

programming model which tries to maximize the minimum lifetime of the sensor 

nodes subject to flow conservation and processing capacity constraints. An 

equivalent linear programming formulation is also proposed and tried to be solved 

by iterative algorithms to find the optimal solution to the problem for distributed 

implementations.  
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In Patel et al. (2004), a minimum cost capacity constrained routing protocol is 

proposed, which minimizes the total energy consumed in routing while guaranteeing 

that total load on each sensor node and on each wireless link does not exceed its 

capacity. They consider an integer programming model in order to find optimal data 

routing for maximizing lifetime with given sensor locations. In the model, variables 

corresponding to data flow amounts are considered to be integer, but they discuss 

the impact of relaxing integrality of the data flow amounts on the lifetime of the 

network. They propose a heuristic approach based on minimum cost flow algorithms 

to solve the integer flow version of this problem. 

When deployment decision is considered, there are some studies where the sensor 

nodes can be located anywhere over the monitoring area which implies “location on 

continuous space”. Another alternative is to locate the sensors at previously defined 

locations across the monitoring area which means “location at given possible 

locations”.  Some studies focus only on the location decision whereas others 

simultaneously consider location and routing decisions. Summary of the former 

studies is provided in Table 2.2 whereas the latter ones are summarized in Table 2.3. 

Deployment Decision - Only Location 

Chakrabarty et al. (2002) address the grid coverage strategies for effective 

surveillance and target location in distributed sensor networks. Monitoring area is 

divided into grids and they are referred to as targets to be detected at any time. An 

integer linear programming model is proposed for minimizing total cost of sensors 

for complete coverage of the monitoring area. Large problems are tried to be solved 

by a divide-and-conquer approach. 

Ke et al. (2007) try to solve the sensor deployment problem by dividing sensor field 

into grids consisting of squares or equilateral triangles. Using this format, they find 

the minimum number of sensors required to be deployed on grid points in order to 

construct a wireless sensor network that fully covers the chosen critical grids. 

Connectivity is also considered in this paper. They conclude that the critical grid 

coverage problem is NP-Complete.  
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Deployment Decision - Location and Routing 

Continuous Space 

Jourdan and Weck (2004) work on the optimization of wireless sensor network 

layouts. A multiobjective genetic algorithm for sensor deployment problem is 

proposed where two competing objectives are total sensor coverage and lifetime of 

the sensor network. It is assumed that the number of sensors to be deployed is given 

and each gene in a chromosome represents the coordinates of each sensor. Routing 

of the data is done by using Dijkstra’s shortest path algorithm. They also investigate 

the influence of the ratio between sensing range and communication range on the 

optimal layout with the best coverage. They state that if this ratio is lower that ½, 

layout is formed of polygons and crowded whereas hub-and-spoke type layouts 

become optimal in the opposite case. 

Wang et al. (2007) discuss relay node deployment in WSNs. They develop a 

formulation in which the number and position of sensing points are known. Three 

types of devices, sensor nodes (SN), relay nodes (RN) and base stations (BS) can be 

installed at chosen points. Given sensor node locations, they concentrate on 

connectivity oriented deployment. They state their problems as follows: Given a 

specific sensing task, determine the number and positions of heterogonous devices 

so that total network cost is minimized while the constraints of lifetime and 

connectivity are satisfied. Basic optimization problem is to find a minimum number 

of RNs and their positions so that each SN can reach at least one RN in a single hop. 

They solve this problem by considering it as a minimum set covering problem. In 

the second case, they assume that RNs have a limited energy and fixed transmission 

range. They pose a two phase RN deployment approach. In the first phase, minimum 

number of RNs are placed to ensure the connectivity of SNs. In the second phase, 

additional relay nodes are placed to provide the connectivity of the previously 

placed RNs to the sink node. For the second phase they present three heuristics 

based on load balancing considering the capacity of RNs and distance to the sink. In 

the first algorithm, starting from the RN farthest from a BS, data is routed to closest 

existing the RN. When existing neighboring RNs cannot handle the traffic load, a 
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new RN is added. In the second algorithm, two different approaches are proposed. In 

the first one, starting from the RN farthest from the sink node, the workload is 

distributed to RN’s adjacent neighbors, by first filling up the capacity of the node 

nearest to BS. In the second approach, workload of a given RN is distributed starting 

from the one with the maximum residual capacity. In the last algorithm, when a new 

RN is added, the workload is distributed to other RNs and the newly added node 

whereas it is only distributed to newly added RN in the previous algorithms. 

Moreover the location of a new RN is chosen as close to the BS as possible. They 

evaluate the performance of the proposed algorithms on grid networks and random 

networks. They conclude that the last algorithm performs best considering their 

metrics which are the number of RNs added, energy cost and average capacity 

utilization. 

Hou et al. (2005) address the problem of energy provisioning and relay node 

deployment for a two-tiered wireless sensor network. For some applications, even 

under optimal flow routing, it may not be able to meet the mission requirements. In 

such cases energy provisioning may solve the problem of the network lifetime. They 

propose a mixed integer nonlinear programming model to solve the joint problem of 

energy provisioning and relay node deployment. In addition to flow decisions, 

decision of deployment of relay nodes over the monitoring area is also considered. 

The deployment is done in the continuous manner meaning that a relay can be 

located at any location on the monitoring area. A decision variable is introduced for 

energy provisioning so that the energy of a certain number of relay or sensor nodes 

can be increased during monitoring. Total energy available is known and the aim is 

to distribute this energy to the nodes in order to increase the lifetime. The model is 

solved using BARON for small instances, but it is not computationally efficient for 

larger problems. A two phase heuristic algorithm is proposed. In the first phase, 

locations of the relay nodes are found by a heuristic algorithm. In the second phase 

an LP is solved for the energy provisioning problem since the energy provisioning 

problem turns out to be an LP with given locations of relay nodes. 

Pan et al. (2003) consider a two-tiered wireless sensor network consisting of sensor 

clusters deployed around strategic locations. The aim is to locate base stations in a 
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continuous manner over the monitoring area.  The authors propose approaches to 

maximize network lifetime, by arranging the location of the base station and 

relaying between sensor nodes and base station. After locating base station, flow 

assignments are determined. 

Krause et al. (2006) focus on a unified approach for deploying sensor nodes. They 

try to optimize location of sensor nodes using expert knowledge obtained by initial 

deployment. They propose a polynomial time algorithm which deploys sensors at 

informative and cost effective locations. They introduce a temperature measurement 

example where the quantity of information is taken as the expected amount of 

temperature change that can not be sensed. 

Given possible locations 

Zongheng et al. (2004) address the problem of constructing a minimum size 

connected network with K -coverage. This means selecting a set of sensors such that 

each point is covered by at least K  different sensors and sensors are connected. The 

idea is to keep the minimum set of sensors active to provide the necessary coverage 

and connectivity, resulting in an energy conservation technique. They propose a 

greedy algorithm considering the number of times each point is covered by the same 

sensors in the selected set. The greedy algorithm returns a connected set.  A 

distributed version of the algorithm provides larger size solutions. 

Patel et al. (2005) consider a wireless sensor network with sensor nodes capable of 

sensing and communication, relay nodes capable of communication, and base 

stations responsible for collecting data generated by sensor nodes. They consider the 

problem of placing sensor nodes, relay nodes and base stations in the monitoring 

area such that each point of interest in the monitoring area is covered by a subset of 

sensors of desired cardinality (K -coverage), the resulting sensor network is 

connected and the sensor network has sufficient bandwidth. Several deployment 

strategies are proposed to determine optimal deployment of sensor nodes, relay 

nodes, and base stations for guaranteed coverage, connectivity, bandwidth and 

robustness. Different objectives are considered such as minimizing the number of 

sensor nodes deployed, minimizing the total cost, minimizing the energy 
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consumption, maximizing the network lifetime and maximizing the network 

utilization. The problems for reliable as well as probabilistic detection models are 

formulated as integer linear programs. In addition to deployment decision, data 

routing is also considered. Capacity of the nodes is also taken into account. 

Problems are solved using CPLEX by introducing an upper bound on the number of 

base stations and relay nodes to be deployed. Solution characteristics, deployment 

properties are discussed in this study. 

Quintao et al. (2007) address the problem of activating the minimal number of nodes 

for maintaining coverage and connectivity with network lifetime consideration. 

They state that this problem is known as the coverage and connectivity problem in 

wireless sensor networks and can be modeled as a mixed integer linear 

programming. They propose a mathematical model but try to solve it by a two phase 

heuristic solution method because the exact solution requires high computational 

effort. They pose the problem as follows: given a monitoring area, a set of demand 

points, a set of sensor nodes and a sink node, assure that at least n sensor nodes 

cover each demand point in the monitoring area, there is a path between these nodes 

and the sink node, and battery energy of the activated sensor nodes is not depleted. 

Connectivity is taken into consideration as stated in the second part of the problem 

but data routing is not considered. It is assumed that energy consumption for 

receiving and transmitting is independent of the data amount.  

Quintao et al. (2007) decompose the problem into two subproblems. The first 

problem, finding the minimal number of nodes needed to cover all demand points, is 

solved by a genetic algorithm . In the second phase the best solution found in the 

first phase is modified to ensure the connectivity between active nodes. In the 

genetic algorithm, binary encoding is used to represent the activated nodes. Fitness 

is taken as the number of uncovered points together with total cost of the paths from 

all nodes to the sink node. They try to consider both energy efficiency and coverage. 

Using solutions obtained from the genetic algorithm, they apply Prim’s minimum 

spanning tree algorithm. The condition for connectivity is taken as follows: two 

nodes can communicate with each other if distance between them is shorter than the 

maximum communication range of the nodes, which is not generally the case for 
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WSN applications. Given this condition, some active nodes may be disconnected 

from the tree constructed. Dijkstra’s shortest path algorithm is applied starting from 

each disconnected node; and some inactive nodes on the path found are also 

activated. They compare their results with optimal results obtained by solving the 

mathematical model using CPLEX. The deviation of their heuristic approach from 

optimal is nearly 20% with better run times. Important issues like sensor capacities 

and data routing are not considered in this study. 

Cheng et al. (2004) formulate a constrained nonlinear programming problem to 

determine both locations of the sensor nodes and data flow between the nodes 

considering two objectives: maximize network lifetime and minimize total 

application cost. A heuristic approach is proposed to solve this nonlinear program 

with single objective. They claim  that for a given time horizon, both objectives can 

be considered by minimizing the total power consumption.  

Pandey et al. (2007) consider the problem of placing the minimum number of relay 

nodes to handle the traffic of previously deployed sensor nodes. The problem is 

formulated as an optimization problem and three different approaches are proposed 

to solve the problem. In the first one, the problem is modeled as a binary integer 

linear programming model without connectivity constraints, and the solution is 

modified by a greedy Steiner tree algorithm to have a connected network. A greedy 

deployment algorithm based on clustering and a genetic algorithm are also proposed. 

The constraint violations are penalized in the fitness calculation. They have also 

considered hybridizing these algorithms.  

Chang and Chang (2008) propose efficient node deployment, topology control and 

scheduling mechanism to prolong the sensor network lifetime, balance power 

consumption of sensor nodes, and avoid collision. Topology is first constructed 

based on grid based WSNs. Then, two different sensor node deployment schemes 

trying to balance the power consumption of sensor nodes are applied. Finally, a 

scheduling protocol is used to avoid packet collision.  

Ferentinos and Tsiligiridis (2006) focus on a multi-objective optimization method 

for self-organizing, adaptive wireless sensor network design and energy 
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management. They propose a genetic algorithm with a fitness function incorporating 

different objectives of the network optimization problem. The decision is the status 

of the sensor nodes deployed (active or inactive) and the signal range of the active 

sensors (high or low). Their GA tries to optimize sensor activation and range 

selection from the set of distributed sensor nodes on the given grid layout of the 

monitoring area. Although this seems to be a problem where sensor locations are 

given, activation decision and range selection are analogous to deployment of two 

types of sensors. They also consider the dynamic version of the problem. In the 

dynamic case, sensor nodes activated in GA solution work for some time and then 

battery energy of the sensor nodes are updated. Then a new GA run provides a new 

solution which will work for some given period.  

2.3 Discussion 

The studies in the literature and their characteristics are summarized in Table 2.4 

according to the decisions, objectives and constraints they consider. About half of 

the studies take both location and routing decisions into consideration. Network 

cost, lifetime (or energy efficiency) and coverage may be objective or constraint. 

For example, it is possible to maximize lifetime or coverage subject to the number 

of sensors available (or cost). One may also minimize cost subject to coverage or 

energy (battery life) constraints. The studies are generally limited with single 

objective formulations. However the problem of energy efficient coverage and 

connectivity of WSN has a multiobjective nature. Several objectives are discussed 

in Fabregat et al. (2005) and Patel et al. (2005). Taking these into account, we try to 

handle two conflicting objectives, minimization of network cost and maximization 

of lifetime, together. We try to make both location and routing decisions under 

these two objectives. 

Connectivity and coverage requirements together with application specific 

constraints are not taken into consideration explicitly in most of the studies. In Patel 

et al. (2004), it is emphasized that wireless channel capacity and finite sensor 

capacities should be taken into consideration in order to prevent routing of the data 

packets over highly congested links and paths since congestion increases the delay 
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and packet losses, which will increase the energy consumption because of 

retransmission of the packets. Moreover most studies deal with homogeneous 

wireless sensor network design. In our study, we consider heterogeneous wireless 

sensor network design by taking application specific constraints such as 

connectivity, coverage, node capacity and link capacity into account.  

Our study takes all of these aspects into account simultaneously for WSN design. 

As stated by Cheng et al. (2004), analyzing the impact of data sampling, 

aggregation techniques and node deployment on network lifetime and power 

consumption is a challenging research direction in a more general network with 

nonuniform data. We try to investigate the tradeoff between cost and lifetime 

objectives while deciding on sensor deployment and data routing. We use a 

probabilistic coverage model for the detection of the targets. We consider locating 

sensors at given possible locations resulting in an ad hoc network and  try to model 

the data communication under the connectivity, coverage, node capacity and link 

capacity constraints. 
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CHAPTER 3 

3  PROBLEM FORMULATION 

The problem of energy efficient coverage and connectivity in wireless sensor 

networks is formulated mathematically. After stating our assumptions and 

introducing the notation of the mathematical model, we propose two formulations. 

We then modify these formulations to obtain the Pareto optimal solutions for the 

bicriteria problem. 

3.1 Assumptions 

Before going into detail of the formulations, the assumptions made about the system 

are stated as follows. 

1. A wireless sensor network can have different types of sensor (or relay) nodes 

and a base station. 

2. Base station or sink is responsible for gathering the data generated at the sensor 

nodes and it has sufficient power supply. 

3. Relay nodes are responsible of transmitting data from one to another. They do 

not sense, therefore they do not generate data to be routed. 

4. Sensor nodes can have different sensing, communication and process 

characteristics (capacities). 

5. Sensor nodes are deployed in an ad hoc basis and they are immobile. 

6. The data is transmitted from one node to another over a wireless channel. MAC 

(Medium Access Control) protocol determines the mean rate at which a sensor 

node can transmit data to its neighbor. This rate is the channel or link capacity.  

7. All sensor types have the same battery energy. (This assumption is relaxed in the 

genetic algorithm) 
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8. Possible sensor locations are fixed and known. For convenience, the monitoring 

area is divided into grids and possible locations at which sensor nodes can be 

located are taken as these grids. 

9. Targets to be sensed are located at random points over the monitoring area, 

 

3.2 Notation 

Indices: 

ji,  Location index, nji ,,1, K= . 

k  Sensor type index, sk ,,1K= , 1+s  is the relay. 

p  Point (target) index, mp ,,1K= . 

 

Parameters: 

ijdist  Euclidean distance between locations i  and j . 

kc  Cost of locating a sensor of type k . 

ksr  Sensing range of a sensor of type k . 

kcr  Communication range of a sensor of type k . 

kcap  Capacity of a sensor of type k . 

pd  Rate of data generated at point p . 

ikppr  Probability of sensing point p  with a sensor of type k  located at location i . 

ph  Coverage probability threshold for sensing point p . 

keg  Energy required to generate unit data (sense) with a sensor of type k . 

ijet  Energy required to transmit unit data from location i  to location j . 

ijer  Energy required to receive unit data from location i  to location j . 
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ijcap  Capacity of wireless communication link ),( ji . 

ke  Battery energy of a sensor of type k . 

M  A very large value. 

 

Sets: 

ikNC  Set of (location, sensor type) pairs that can communicate with a sensor of 

type k located at location i . 

ikA  Set of points p  that are in the sensing range of a sensor of type k  located at 

location i . 

pB  Set of (location, sensor type) pairs that can sense point p . 

 

Decision variables: 





=
otherwise    ,0

location at  located is sensor  a if     ,1 ik
xik . 

ikjmf  Rate of data flow from a sensor of type k located at location i  to a sensor of 

type m  located at location j . 

l  Lifetime of the network. 

q  Inverse of the network lifetime to be used in linearization. 

3.3 Single criterion formulations 

We consider two objectives for the energy efficient coverage and connectivity 

problem, one of which is to minimize the total sensor cost located and the other is to 

maximize the network lifetime under system constraints. Before going into detail of 

the single objective formulations, coverage and connectivity definitions are 

discussed below. 

Connectivity of the network is defined by the communication ranges and locations 
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of individual sensors. In a sensor network, sensor (and relay) nodes must 

communicate in order to transmit the data gathered to a destination which is 

generally a base station. A sensor at location i  can communicate with another 

sensor at location j  if each sensor is in the communication range of the other. This 

means that the Euclidean distance between these sensors must be less than or equal 

to the minimum of the communication ranges of both sensors, as stated by Gosh and 

Das (2006). In Figure 3.1 (a) the sensor at location i  is not within the 

communication range of the sensor at location j , therefore the two sensors cannot 

communicate (are not connected). The sensor with larger communication radius 

must also fall within the communication range of the other so that the sensors can 

communicate. Figure 3.1 (b) illustrates a case where the two sensors are connected. 

 

 

Figure 3.1  (a) Disconnected and (b) connected sensors located at locations i  and j  

 

Coverage is a measure of quality of sensing. The main aim in WSNs is to monitor 

the physical space as well as possible to sense any target. In our problem, the aim is 

to sense each target point in the physical space of interest with at least some 

threshold probability. Hence, coverage is defined as the probability that a target at 

point p  is sensed (detected) by a sensor at location i . The detection probability is 

related with the strength of the sensor signal and the distance between the sensor and 
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the target. As in Zou and Chakrabarty (2005), the following function is used for 

representing the confidence level in the received sensing signal. 





 ≤

=
−

otherwise                 ,0

dist if       , ip k

dist

ikp

sre
pr

ipkβ

   

The parameter kβ  depends on the sensor characteristics and yields different 

probabilities for different sensor types at the same location. Note that the longer the 

distance is, the lower the confidence level or the probability of detection is. Points 

beyond the sensing range of the sensor are considered too noisy and the sensor 

cannot detect the targets at larger distances. A point can fall in the sensing range of 

several sensors. The probability of detection of a target at point p  is then calculated 

as follows. 

 ( )
( )
∏

∈

−−=
p

ik

Bki

x

ikpp prpr
,

11  

Overall coverage of point p , ppr , is taken as the complement of the probability that 

point p  is not sensed (detected) by any of the sensors that can sense point p , which 

means point p  is covered jointly by its neighboring sensors.  

Overall coverage of each point p  must be greater than a threshold ph . This 

threshold can be interpreted as the importance of the target located or the event 

occurring at that point. Hence, in our probabilistic coverage model, the coverage 

constraint can be defined as follows. 

( )
( )

p

Bki

x

ikp hpr
p

ik ≥−− ∏
∈,

11  

This is a nonlinear inequality but we can obtain a linear inequality by taking the 

logarithm of both sides. 

∑
∈

−≤−
pBki

pikikp hxpr
),(

)1ln()1ln(  
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Cost minimization 

After introducing the above definitions, we present our first single criterion 

formulation for the problem of minimizing total sensor placement cost denoted as 

PC1 (Problem with Cost objective, version 1).  

Problem PC1 

Min     ∑∑
=

+

=

n

i

s

k

ikk xc
1

1

1

 (1) 

s.t. 1
1

1

≤∑
+

=

s

k

ikx , i∀  (2) 

 
( ) ( )

∑ ∑∑ ∑∑ ∑
+

= ∈

+

= ∈

+

= ∈

=−
1

1

1

1 ,

1

1 ,

s

k Ap

ikp

s

k NCmj

jmik

s

k NCmj

ikjm

ikikik

xdff , i∀  (3) 

 
( )

∑∑ ∑∑
=

+

= ∈∈

=
n

i

s

k Ap

ikp

NCki

ik

ik

xdf
1

1

1,
sink,

sink

 (4) 

 ikikjm Mxf ≤ , ( ) ikNCmjki ∈∀ ,,,  (5) 

 jmikjm Mxf ≤ , ( ) jmNCkimj ∈∀ ,,,  (6)

 

( ) ( )
∑∑ ∑∑ ∑
+

=

+

= ∈

+

= ∈

≤+
1

1

1

1 ,

1

1 ,

s

k

ikk

s

k NCmj

jmik

s

k NCmj

ikjm xcapff
ikik

, i∀  (7) 

 ij

s

k

s

m

ikjm capf ≤∑∑
+

=

+

=

1

1

1

1

, ji,∀  (8) 

 ∑
∈

−≤−
pBki

pikikp hxpr
),(

)1ln()1ln( , p∀  (9) 

 }1,0{∈ikx , ki,∀  (10) 

 +∈Zf ikjm , ( ) ikNCmjki ∈∀ ,,,  (11) 
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Objective function (1) represents the total cost of locating sensors and relays. 

Constraint set (2) ensures that at most one type of sensor is placed at each location. 

Set (3) provides data flow conservation at each sensor node located. Set (4) 

guarantees that all data packets are sent to the sink node. Constraint sets (5) and (6) 

guarantees that data flow can be realized between two sensors only if they are 

located at the given locations. Set (7) ensures that data processing capacity of the 

sensor node is not exceeded. Set (8) is the channel capacity constraint which restricts 

the amount of data packets to be transmitted over a link. Set (9) provides that 

coverage thresholds are met. Set (10) represents the binary location decision and 

(11) ensures that flow values are integer. 

Although our formulation assumes point or target coverage, area coverage can be 

approximated by choosing points to be sensed such that they represent the 

monitoring area uniformly. The grid structure representing possible sensor locations 

can be used for this purpose, provided that the distance between grid points is less 

than the minimum sensing range given in the problem. Therefore, the formulation 

given above is capable of handling area coverage as well. 

PC1 resembles the location and flow allocation problems known in the operations 

research literature with one exception. Each target or point p  to be sensed generates 

data at a constant rate, pd , similar to the demand in the location and flow allocation 

problems. However, every sensor close enough to sense point p  receives pd  and 

tries to transmit it to the base station. That is, the same data is generated over and 

over again by multiple sensors that can sense the same point. Therefore, the total 

flow in the WSN is in general not constant but increases as the number of sensors 

increases. This is why relays are needed in WSNs. Relay nodes do not sense (do not 

generate new flow) but only relay data from one sensor to another. They provide 

connectivity without increasing the total flow, thereby preventing infeasibility. 

Lifetime maximization 

Network lifetime is another consideration. Lifetime is highly dependent on the 

power supply of the sensors. There are various means of power supply such as 
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battery and solar panel. Sensors are assumed to use batteries as power supplies in 

our study. A sensor consumes energy for generating data from targets, receiving 

from other sensors and transmitting to the other sensors. We adopt the 

communication power consumption model used by Heinzelman et al. (2000). The 

energy required for generating and receiving data is constant per unit data; however 

it is not constant for transmission. In the adaptive transmission power model, energy 

required for transmitting unit data increases with distance. In order to send the data 

to a sensor over longer distances, an acceptable signal to noise ratio should be 

achieved by consuming more energy. Energy consumed in transmitting a bit from 

location i  to j  is given as 

m

ijij distet ×+= λδ  

where δ  is a distance independent constant parameter and λ  is a coefficient 

associated with the distance dependent term. ijdist is the distance between two 

locations and m  is the path loss index.  

Considering these definitions, maximization of lifetime problem denoted as PL1 

(Problem with Lifetime objective, version 1) can be formulated as follows. 

Problem PL1 

max l  (12) 

s.t. 
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(2) - (11) 

Objective function (12) maximizes the lifetime of the network. Constraint set (13) 

ensures that battery energy of a sensor is not exceeded. The first term of the 

constraint represents the total energy consumed in transmission, the second term 

stands for the total energy consumed while receiving, and the last term is the total 

energy consumed by the sensor for generating the data during the lifetime of the 

network.  
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The constraint on total energy consumption of a sensor node is nonlinear since it 

involves the product of lifetime and location or flow variables. In order to linearize 

this constraint, both sides are divided by l  and the constraint turns out to be 

( ) ( )
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                 (14) 

This is not enough to linearize the constraint, since there is a nonlinear term left on 

the right hand side of (14). Let 
1

q
l

=   and assume that battery energy ke  is the same 

for all sensor types and equals e . Then we can replace the right hand side with  eq  

since we know that at most one of the binary variables can be equal to one. Since we 

have used 
1

q
l

=  for linearization purposes, the problem of lifetime maximization 

turns out to be minimization of q . The linearized problem is as follows. 

Problem PL1 

min q  (15) 

s.t. 
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 (2) - (11) 

The assumption of equal battery energy for all sensor types is not reasonable since 

different sensors can have different battery energy levels in a heterogeneous 

network. Locating sensors with higher battery energy level at the locations closer to 

the sink and using low energy ones for the farther areas is more reasonable 

considering the problem characteristics. However, in order to solve the problem 

exactly, we have to linearize the constraint with this assumption. If the network is 

heterogeneous in terms of energy levels, we can set e  as the minimum of ke ’s 

which yields a conservative solution.  Note that we relax this assumption in our 

genetic algorithm. 
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Relaxing integrality of flow variables 

In our formulations flow variables representing the number of data packets 

transmitted per unit time are positive integers. Relaxing integrality of flow variables 

will naturally result in a longer lifetime. The effect of this relaxation is also 

discussed by Patel et al. (2004). The important point is that the difference between 

the lifetimes computed using integer and continuous flow variables should not be 

significantly high. 

Patel et al. (2004) conclude that the tradeoff between inaccuracy of lifetime and 

increased complexity due to integrality should be examined carefully. The decision 

of using integer or continuous flow variables should be made after a detailed 

analysis of node capacities and implementation issues. They also mention a 

technique known as data scaling to find the optimal lifetime to any desired degree of 

accuracy when integrality of flow variables is relaxed. Patel et al. (2004) state that 

detailed information for data scaling is provided by Ahuja et al. (1993). The main 

point is that, when the flow variables have a large order of magnitude, the error in 

lifetime due to relaxation becomes negligible. 

Based on the discussion by Patel et al. (2004), we relax the integrality of flow 

variables in both PC1 and PL1 in order to reduce the number of integer variables 

and therefore the solution time. 

3.4 Formulations for Bicriteria Solution 

Maximization of lifetime and minimization of total sensor cost are conflicting 

objectives as can be seen from the formulations. Lifetime of the network can be 

increased by deploying more sensors so that workload and energy consumption per 

sensor can be reduced. This will obviously increase the total sensor cost. There will 

probably be more than one efficient (nondominated) solution for this problem 

because of its bicriteria nature. These efficient solutions are called Pareto optimal 

solutions and they can be found by the ε-constraint approach proposed by Haimes et 

al. (1971). We give the definition of the domination as follows: A solution ( )'2'
1 , zz  
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dominates ( )''2''
1 , zz  if ''

1
'
1 zz <  and ''

2
'
2 zz ≥  or ''

1
'
1 zz ≤  and ''

2
'
2 zz >  where 1z  is the cost 

objective and 2z  is the lifetime objective. 

 In this approach, one of the criteria is taken as a constraint and some parts of the 

criteria space are restricted with the help of this constraint. In order to generate all 

efficient solutions for our problem, PL1 can be solved with the cost constraint. Also, 

the lifetime objective is augmented with a small positive coefficient, ρ , times the 

value of the total cost to exclude weakly efficient but inefficient solutions. This 

version of the lifetime formulation is called PL2. Optimal lifetime can be found by 

solving PL2 iteratively with different cost levels. Formulation of PL2 is as follows. 

Problem PL2 
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 (2) - (11), (16) 

where tε  is an upper bound on the total sensor cost in iteration t  and 0ρ >  is 

sufficiently small. Constraint (18) ensures that the total sensor cost does not exceed 

the given upper bound tε . Suppose that we find a lifetime l  for a certain total cost 

level 1C . It is possible that the lifetime cannot be improved and is still l  when a 

larger cost level 2C  is introduced. In such a case, even if we set the upper bound for 

cost to  2Ct =ε , the left hand side of (18) will take a value equal to 1C  with the help 

of the augmentation in objective function  (17).  

Assuming integer values for kc , we have a finite number of levels for tε . The 

minimum value that tε  can take can be found by simply solving PC1. In order to 

find the maximum value for tε , a new problem called PC2 must be defined to 

minimize cost under the lifetime constraint. 
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Problem PC2 
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 (2) - (11) 

Constraint set (19) guarantees that all sensors located must operate for some given 

lifetime 
givenq

1
. Let givenq  be the objective value found by solving PL1. It 

corresponds to the maximum possible lifetime regardless of any cost considerations. 

Then, the maximum value of tε  for PL2 can be found by solving PC2 with this 

givenq . The objective value of PC2 solved with the maximum lifetime of PL1 gives 

the maximum value that tε  can take. 

Efficient solutions can then be found by the algorithm given in Figure 3.2. 

 

Step 1. Solve PC1, let the resulting objective value be mincost  (minimum cost) 

Step 2.1. Solve PL1, let the resulting objective value be minq  (maximum   
lifetime) 

Step 2.2. Solve PC2 by letting the bound on lifetime be minqqgiven = , let the 

resulting objective be maxcost  

Step 3. Solve PL2 for small incremental cost values between mincost  and 

maxcost  to find Pareto optimal solutions 

Figure 3.2 Algorithm for finding efficient solutions by ε-constraint approach 

 

Another method to solve bicriteria problems is the two phase method proposed by 

Ulungu and Teghem (1994). They use this approach to solve the bicriteria knapsack 
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problems. In this method, the idea is to find the supported efficient solutions by 

solving a single objective problem with appropriate weight vectors in the first phase. 

When we find the solutions with highest cost and lifetime and lowest cost and 

lifetime, we can formulate a single objective problem consisting of both objectives 

with appropriate weights. The solutions that can be found by solving this single 

objective problem are called supported efficient solutions. In the second phase, the 

unsupported efficient solutions are found by problem specific methods such as using 

bounds and reduced costs. We have also considered this approach but not 

implemented it, since it needs iterative use of the single objective method which 

does not guarantee to find all efficient solutions and requires problem specific 

approaches to find all efficient solutions. 
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CHAPTER 4 

4 EXACT SOLUTION RESULTS OF THE BICRITERIA 

PROBLEM 

4.1 Problem Generation 

There are no benchmark problem instances in the literature in accordance with the 

system characteristics and assumptions we use. Hence, we determine the instance 

characteristics considering the problem settings discussed in the literature. Some of 

the properties such as sensor characteristics and energy consumption parameters are 

determined by analyzing the studies in the literature. Monitoring area properties are 

determined by doing some preliminary analysis on the problem parameters.  

There are two problem categories considered according to the grid representation of 

the monitoring area. A monitoring area of size 10 m ×  10 m is represented by 5 ×  5 

=  25 locations in the first category. We divide the same area into 41 locations in the 

second category. For both problem sizes, we assume that a single base station is 

located at the upper right corner of the monitoring area. Hence 24 and 40 possible 

locations are left for locating the sensor or relay nodes in two problem categories 

respectively. The problem categories will be referred to as PS24, PS40. The grid 

locations are illustrated in Figure 4.1. 
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Figure 4.1 Possible grid location structures 

 

Sensor and relay properties are taken as in Table 4.1. The communication range of 

the base station is taken as 6 m. We disperse 50 targets to be sensed across the 

monitoring area where coordinates of the targets are generated randomly. Each 

target has a random coverage threshold uniformly distributed between 0.7 and 1. 

The rate of data generated from each target is a random integer between 1 Kbps and 

3 Kbps. The channel capacity of each wireless link is 150 Kbps.   

 

Table 4.1 Sensor and relay properties for the loose capacity (LC) case 

 Sensor type  Sensor type  Relay

100 Kbps 200 Kbps 150 Kbps
2 m 3 m 0 m
3 m 5 m 3 m
1 2 1

0.15 0.1 -

kcap

ksr

kcr

kc

kβ

1=k 2=k 3=k

 

 

Considering the targets, the total data generation rate in the network will be 100 

Kbps on the average, assuming that each target is covered by only one sensor. We 
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know that some targets will be covered by multiple sensors because of the coverage 

threshold requirements, and this will increase the total data volume received by the 

base station. Selection of sensor characteristics, channel capacity and data 

generation rates results in instances whose channel and node capacity constraints are 

loose. However, we adopt most of these properties from Patel et al. (2005). We also 

consider the tight capacity constrained case by setting the sensor properties as in 

Table 4.2 and the channel capacity as 40 Kbps for the same set of problems. The 

problem types are categorized as tight capacity (TC), and loose capacity (LC). We 

expect that the LC problem instances will take longer to solve than the TC instances, 

as there will be more alternative feasible solutions in the former case. 

 

Table 4.2 Sensor and relay properties for the tight capacity (TC) case 

 Sensor type  Sensor type  Relay

40 Kbps 80 Kbps 40 Kbps
2 m 3 m 0 m
3 m 5 m 3 m
1 2 1

0.15 0.1 -

kcap

ksr

kcr

kc

kβ

1=k 2=k 3=k

 

 

The energy consumption model parameters are as in Table 4.3. 

 

Table 4.3 Energy consumption model parameters 

        EnergyUnits

                                      EnergyUnits

        EnergyUnits

        EnergyUnits

ijet

ijer

e

810 −

510 −

( ) 8101.010 −××+ ijdist

keg

810 −
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We generate 30 different problem instances. These instances differ from each other 

in terms of random target characteristics. Coordinates of the targets and the 

generation rate of each target are different for each instance. 

4.2 Results for Small Problems 

We summarize CPU time information in Table 4.4 and solution characteristics in 

Table 4.5. We were able to find the Pareto optimal solutions for all 30 PS24 

instances (with both loose and tight capacity constraints) within reasonable CPU 

time. PS24-LC instances take about 20 minutes on the average and the maximum 

CPU time for these problem instances is 80 minutes. The average time for PS24-TC 

is about one minute and maximum time is under 3 minutes. 

CPU times are acceptable for PS40-TC case. It is about 3.5 hours on the average and 

it takes over 11 hours for the problem instance with maximum CPU time. However, 

PS40-LC instances take too long. Therefore, we were able to obtain exact Pareto 

optimal solutions for only 10 instances. Finding these solutions takes about 28 hours 

on the average and as long as 265 hours for one of the 10 instances. For the 

remaining 20 instances, we use an approximation. We set a 10% optimality gap and 

a time limit of three hours for each cost level in the ε-constraint approach. 

Therefore, the best solution found for each cost level is reported when 10% gap is 

reached or three hours of CPU time is exceeded, whichever occurs first. This 

approach may yield dominated solutions. After elimination of dominated solutions, 

we take the remaining ones as the approximation of the Pareto optimal front. The 

results for these instances are also included in Table 4.4 and Table 4.5. 
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Table 4.4 CPU times for small problems 

   CPU time (s)  

Problem 
size 

Constraint 
tightness 

# of 
problems 

Avg Min Max 
Avg %  
gap 

PS24 LC 30 1118 86 4694 - 

 TC 30 70 4 167 - 

PS40   LC(1) 10 100088 15137 953945 - 

   LC(2) 20 85983 50870 144746 15.23 

 TC 30 12865 1544 40449 - 

 
(1) Results across 10 instances that are solved exactly. 
(2) Results across 20 instances that are solved approximately. 

 

Table 4.5 Solution characteristics for small problems 

     # of Pareto optimal solutions   

Problem 
size 

Constraint 
tightness 

# of 
problems 

Avg Min Max 
Avg of cost 

range 

Avg of 
lifetime 
range 

PS24  LC(1) 10 9.20 6 12 14.2 - 23.0 6.3 - 14.6 
   LC(2) 20 10.60 8 14 14.3 - 24.4 6.2 - 15.6 
  TC 30 7.47 4 12 19.1 - 25.6 9.9 - 13.7 

PS40  LC(1) 10 13.60 11 17 13.5 - 26.1 5.5 - 18.1 
   LC(2) 20 13.00 9 18 13.8 - 26.4 5.9 - 19.1 
  TC 30 11.60 7 16 17.9 - 29.0 9.4 - 18.0 

    
(1)  Results across 10 instances that are solved exactly for both PS24 and PS40 cases. 
(2)  Results across 20 instances that are solved exactly for PS24 case but solved approximately 
for PS40. 

 

When the solution characteristics in Table 4.5 are examined, the number of Pareto 

optimal solutions increases as the number of possible locations increases. For both 

constraint tightness levels, the average number of Pareto optimal solutions found for 

PS24 instances is about 60% of that found for PS40 instances since the same 

monitoring area is represented by more possible locations in the latter case. This 

provides more alternatives and possibility of locating sensors in a more precise 

manner. We plot Pareto fronts of sample LC and TC problem instances in Figure 4.2 

to illustrate the effect of the problem size. 
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Figure 4.2 Pareto fronts for different problem sizes 

 

For the ranges of cost and lifetime observed in the fronts, similar trends are observed 

at both loose and tight capacity levels. Minimum cost levels decrease with 

increasing problem size as given in Table 4.5.  The reason is that we have more 

alternatives for placing the sensors and we can satisfy the given requirements with 

fewer sensors with more precise sensor locations. Minimum lifetime also decreases 

with decreasing number of sensors. Maximum lifetime and maximum cost increase 

with increasing problem size because of the same reason. Increased number of 

possible locations makes deployment of more sensors possible in the monitoring 

area to achieve longer lifetimes. Hence, lifetime increases with increasing cost, as 

expected. 

When the capacity constraints are tight, the number of Pareto optimal solutions 

decreases compared to the loose capacity case for both problem sizes. The reason is 

the restriction of the solution space. Cost increases with tight capacity since more 

sensors should be deployed in order to satisfy the capacity requirements. The reason 

for the decrease in the maximum lifetime is the transmission of data to the base 

station over long ranges. Data load of the nodes that can directly communicate with 

the base station is generally high. In tight capacity case, farther nodes cannot 

transmit to the nodes closer to the base station because of capacity limitations. 

Instead, they have to transmit directly to the base station although the distance 

between them is large. This increases the energy consumption and which decreases 
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the maximum lifetime. On the other hand, the minimum lifetime is longer in the 

tight capacity case compared to the loose capacity case, again because more sensors 

are deployed. We plot Pareto fronts of a sample problem instance with 24 and 40 

locations in Figure 4.3 to show the effect of constraint tightness. 
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Figure 4.3 Pareto fronts for tight and loose capacity cases 

 

Following are some important characteristics of the solutions in the Pareto front 

common to all problem categories. 

• Higher lifetimes are obtained by placing more relays around the base station. 

The nodes close to the base station are overloaded with forwarded data 

which decreases the lifetime of these nodes. Relays located in this area help 

reduce the load and energy consumption per node, thereby increasing the 

network lifetime. 

• Multiple sensors may be needed to meet the coverage threshold requirement 

of a target. However, it is important to sense each target with no more than 

sufficient number of sensors. If a target is sensed by more sensors than 

required to meet its coverage threshold, multiple sensors sense the same data 

generated from the target and transmit it over and over again to the base 

station. This will increase the data volume to be transmitted across the 
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network, which decreases the lifetime. It would be better to have disjoint 

sensor nodes in the sense that their coverage regions do not overlap, but this 

might violate coverage thresholds and connectivity requirements. On the 

other hand, if the sensors are close to each other, the energy required for 

transmission decreases, which is in conflict with having disjoint sensor 

nodes. 

• Distance of the sensors to the base station is important since energy required 

for transmission increases as this distance increases. It is better to place the 

nodes as close to the base station as possible.  
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CHAPTER 5 

5 GENETIC ALGORITHM FOR THE BICRITERIA PROBLEM 

In the previous chapters Pareto optimal solutions for the bicriteria problem are found 

using the ε-constraint approach.  As stated in Deb (2001), classical search and 

optimization methods such as ε-constraint find a single Pareto optimal solution in 

each iteration. Finding the entire frontier requires repetitive use of a single objective 

optimization method, and the computation time is usually unacceptably long. 

Therefore, a population based metaheuristic approach is more suitable for 

multiobjective problems. In evolutionary algorithms, we use a population of 

solutions in every generation, and we find and maintain multiple good solutions for 

the next generations. Making use of appropriate mechanisms, we can emphasize 

nondominated solutions in the population and preserve a diverse set of multiple 

nondominated solutions.  

5.1 Basic Approach 

There are two decisions to be made as given in our formulations for this problem. 

The first one is to locate sensors and the second one is to determine the data flow 

between pairs of sensors. Handling both decisions in a single representation is a 

fairly complicated task for a genetic algorithm. Therefore, the algorithm is built on 

the idea that sensor locations are determined through evolution, and data flows are 

determined by solving the mathematical model with given sensor locations. In 

addition to two different decisions, constraints that may cause infeasibility during 

the search process should also be handled effectively. Actually, constraint handling 

is a major concern for the genetic algorithm proposed to solve this problem. We 

develop special mechanisms to handle the infeasibilities in the search process.  
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Deb (2001) states that the idea of nondominated sorting is first proposed by 

Goldberg in 1989 and implemented by Srinivas and Deb in 1994. We illustrate the 

nondominated sorting in Figure 5.1 for the bicriteria case. 

  

Figure 5.1 Solutions classified into different nondominated fronts 

 

As can be seen from Figure 5.1, the population is classified= into eight fronts. Front 

1 contains solutions that are not dominated by any other solutions. Solutions in the 

second front are found by temporarily disregarding the solutions in the first front. 

Second front are not dominated by any of the solutions in lesser fronts. This 

procedure is repeated until all population members are classified. This classification 

is crucial in fitness assignment. Our GA is similar to NSGA-II (nondominated 

sorting GA) proposed by Deb (2002). We have some modifications which address 

our problem specifics. 

front 2 front 3 

front 4 

front 5 

front 6 
front 7 

front 8 

front 1 
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Taking the mathematical formulation into account, there can be four different types 

of constraint violation. These are connectivity violation, node capacity violation, 

channel (link) capacity violation and coverage violation. We use the amount of 

violation of each type in handling the constraints. 

• Connectivity violation: This is taken as the total amount of violation of flow 

balance constraints (3) and (4).  For each sensor node that cannot send data 

to the other nodes, the flow balance constraint will be violated for the 

amount of data to be transmitted. The sum of these violation amounts is 

taken as the connectivity violation. 

• Node capacity violation: This is the total violation amount of constraint set 

(7). For all located sensors, the sum of capacity violations is taken as the 

node capacity violation. 

• Channel capacity violation: The sum of violations for constraint set (8) 

represents the link capacity violation. 

• Coverage violation: This is the violation amount of constraint set (9) in the 

formulation. The coverage violation is summed up over all targets to be 

sensed. 

In addition to the cost and lifetime objectives, the overall constraint violation is also 

considered as a third objective to be minimized. The aggregation of different 

violations to obtain an overall violation will be discussed in Section 5.3. 

5.2 Solution representation 

Given n  possible locations, a solution is represented by a chromosome composed of 

n  genes each of which represents the sensor type assigned to location i . The 

representation is schematized in Figure 5.2. 

       

0 1 2 ------- 1 3 ------- 0 3 0
i 1+i n1 1−n2−n2 3

 

Figure 5.2 Representation of a solution 
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In Figure 5.2, a sensor of type 1 is assigned to location 2 , a sensor of type 2  is 

assigned to location 3 , and a relay (type 3 ) is placed at location 1+i . A gene value 

of zero means that the respective location is empty.   Using this representation, total 

sensor cost and total coverage violation can be calculated with simple algorithms, 

but determination of data flow to find the lifetime is not straightforward. In order to 

determine the data flow, we solve the maximization of lifetime problem with the 

locations given in the chromosome. When locations are known, maximization of 

lifetime problem turns out to be a linear program (LP). However, this brings the 

complexity that an LP must be solved for each offspring to determine the data flow 

and lifetime. On the other hand, all violation amounts can be obtained by adding 

slack variables to respective constraints when solving these LPs. 

5.3 Fitness calculation 

We need to sort the population by taking three objectives into account including the 

constraint violation. In order to calculate the lifetime objective and violations, 

maximization of lifetime problem with given sensor locations, PL3, is solved. 

Before giving the formulation of PL3, we introduce some additional variables. 

iS  Flow balance constraint (connectivity) violation amount for a sensor located 

at location i . 

iK  Sensor capacity violation amount for a sensor located at location i . 

ijL  Channel capacity violation amount for the link between locations i  and j  . 

pT  Coverage violation amount for point p . 

 

Problem PL3 

min 

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As can be seen from the formulation, additional variables are used to compute the 

constraint violations. The sum of the normalized violations multiplied by a 

sufficiently large value is added to the objective function in order to guarantee 

obtaining the minimum possible constraint violation values. We normalize the 

violations amounts using the maximum possible violation amounts for the 

corresponding constraints. Note that we can relax the equal battery energy 

assumption and use ke  instead of e  in constraint (27), as this does not cause 

nonlinearity any longer.  

The algorithm for computing fitness of an individual is given in Figure 5.3. 
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Algorithm compute fitness 

Begin 

Calculate total sensor cost for sensors located in the chromosome 

Solve PL3 with given sensor locations to find the lifetime, flow variables, and 
violations for connectivity, sensor capacity, link capacity, and coverage 
constraints 

End 

Figure 5.3 Algorithm for computing fitness 

 

The algorithm in Figure 5.3 yields the raw violation amounts. For an individual in 

GA, the overall violation to be used as the third objective is found by summing the 

normalized violation amounts for all types of violation. Normalization is based on 

the maximum and minimum violations in the population. For instance, we find the 

normalized coverage violation of individual z  in generation t , z

tNT , as follows. 

Let z

ptT  be the coverage violation of point p for individual z  in generation t . Let 

N  be the population size. Then,  

∑
=

=
m

p

z
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z

t TT
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{ }NzTT z
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t ,...,1,minmin ==  
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t ,...,1,maxmax ==  

minmax
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z

tz

t
TT

TT
NT

−

−
=  

Normalized violations for connectivity ( z

tNS ), node capacity ( z

tNK ) and channel 

capacity ( z

tNL ) are calculated in a similar manner. We then take the weighted sum 

of four violations as the overall violation, which becomes the third objective to be 

minimized. Initially the violations are equally weighted, but weights for violations 

change throughout the generations according to the average violations of the 

population members. We provide the weight update procedure in Figure 5.4 where 
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tWS , tWK , tWL  and tWT  are the respective weights of connectivity, node capacity, 

link capacity and coverage violations in generation t . Weight update is carried out at 

the end of every new generation using the procedure given in Figure 5.4. 

If a certain type of violation has a larger share in the population average of overall 

violation, then it has a larger weight and it is emphasized more in computing the 

violation of an individual. We incorporate the previous generation’s violation 

information with the current one while determining the weights as part of this 

adaptive procedure. 

 

Algorithm update weights of violations 

Begin 

Calculate ∑
=

=
N

z

z

tt NS
N

NS
1

1
, ∑

=

=
N

z

z

tt NK
N

NK
1

1
, ∑

=

=
N

z

z

tt NL
N

NL
1

1
, 

∑
=

=
N

z

z

tt NT
N

NT
1

1
 

Let 1111 −−−− +++++++= tttttttt NTNTNLNLNKNKNSNSsum  

      Set ( ) sumNSNSWS ttt 1−+=  

            ( ) sumNKNKWK ttt 1−+=  

            ( ) sumNLNLWL ttt 1−+=  

            ( ) sumNTNTWT ttt 1−+=  

End 

Figure 5.4 Algorithm for updating weights of violations 

5.4 Initial population generation 

Initial population is generated in two stages. Relays are located after deployment of 

sensor nodes since relay locations are highly dependent on sensor locations. The 

algorithm for initial population generation is given in Figure 5.5 where we use the 

additional notation below. 
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N  Population size 

ikgpr  Probability of locating a sensor of type k  at location i  

zT      Set of points p  whose coverage thresholds are not met and ∅≠pB  for 

individual z  

 

In generating individual z, for each point p  whose coverage threshold is not met, 

we use the (location i , sensor type k ) combinations that can sense p , pB . We start 

with point p  that can be sensed by the least number of such combinations.  We find 

the amount of data flow that each combination can handle by itself. If the 

combination can satisfy the coverage threshold, we add the data amount of p , pd  to 

the numerator of ikH . If this is not the case, we multiply pd  by 
( )
( )

p

ikp

h

pr

−

−

1ln

1ln
 which 

stands for the fraction of the coverage threshold of point p  met by combination 

),( ki . We find the amount of data sensed per unit cost, ikH ,  by dividing the total 

data amount by the cost of the sensor. We then normalize ikH  values for each 

pBki ∈),(  and set the probability of placing a sensor of type k  at location i , ikgpr , 

as this normalized value. After a sensor is placed, we update set zT  after updating 

set pB  for all zTp∈  and coverage threshold requirements using the current 

assignments. zT  is recomputed using the updated pB ’s . We repeat the same process 

to locate sensors until there are no points left in zT .  
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Algorithm generate initial population 

Begin 

For each individual Nz 2,...,1=  

Compute pB  for all mp ,...,1=  

Let zT  include all mp ,...,1=  

 While ∅≠zT  

 Find point zTp∈ with minimum || pB  

For each pBki ∈),(  

Let 

( )
( )
k

p

Ap p

ikp

ik
c

d
h

pr

H
ik

 1 ,
1ln

1ln
min∑

∈











−

−

=  

End for 

For each pBki ∈),(  

( )
∑
∈

=

pBki

ik

ik

ik
H

H
gpr

,

 

End for 

Select an pBki ∈),(  with probability ikgpr  and locate a sensor of type k  

at location i  

Update pB  for all zTp∈  considering the newly located sensor 

Compute zT  using the updated pB ’s 

End while 

End for 

Sort N2  individuals in ascending order of coverage violation 

Take the first N  individuals as oP  

For each individual oPz∈  

Locate relays 

      End for 

End 

Figure 5.5 Algorithm for initial population generation 
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This procedure provides that pBki ∈),(  with the higher amount of data sensed per 

unit cost has a higher probability of assignment, which is reasonable for both 

minimizing the total cost and maximizing the lifetime. When the amount of data that 

a sensor can handle by itself is high, we expect that each point will be sensed by 

fewer sensors and the amount of oversensing of the points will be low. Sensing a 

point with more than the required number of sensors (oversensing) increases the 

total amount of data flow to be transmitted. If the total amount of data flow increases 

in the network, network lifetime will decrease. We expect to avoid this with the 

above procedure. 

In applying this procedure, we restrict the solution space for location decision by 

locating sensors according to the point coordinates. We take into account all ),( ki  

combinations that can cover points but leave others out, therefore the locations that 

cannot sense any point are not assigned. 

After determining the sensor locations, we deploy relays considering the sensors 

located and the amount of data sensed. The algorithm for locating relays is given in 

Figure 5.7, which can be explained with the help of Figure 5.6. 
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Figure 5.6 Sample monitoring area for locating relays 
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We know that the data amount to be transmitted is higher for the nodes that are 

closer to the base station. In order to balance the data flow for these nodes, relays 

should be placed at the appropriate locations. Therefore, location of the base station 

becomes important in locating relays. We take the location of the base station into 

account using a line of sight approach as can be seen in Figure 5.6. We draw  line 

SB  to the potential location i  or B  from the base station. Two perpendicular lines, 

whose bisector is SB , represent the “line of sight” of location i . iL  is the set of 

),( kj  combinations that fall in the line of sight of i . The probability of locating a 

relay at location i  is computed by dividing the total data generated by the previously 

located sensors that are in the line of sight of location i  by the total data generated 

in the monitoring area. If location i  is closer to the base station, it has more sensors 

and more data generated in its line of sight, and probability of placing relay at i  is 

higher. 

 

Algorithm locate relays 

Begin 

For each location i  

 If no sensor is located at location i  (denoted as B  in Figure 5.6) 

 Let SB  be the bisector of two rays, BA  and BC ,  where angle ABC  is  
°90  

Let iL  be the set of (location j , sensor type k ) combinations that fall in 

the area covered by ABC  and the limits of the monitoring area 

( )

∑

∑ ∑

=

∈ ∈
=

m

p

p

Lkj Ap

p

i

d

d

gpr
i jk

1

,

3  

Locate a relay at location i  with 3igpr  

 End if 

End for  

End  

Figure 5.7 Algorithm for locating relays 
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We generate N2  individuals in total and select N  of them as the initial population. 

The selection is made according to the coverage violation amounts of the individuals 

since we can compute only the coverage violation with the given solution 

representation. Solving PL3 in order to determine the other violations would require 

high computation time. Therefore, we introduce a procedure to start the search with 

the individuals having less coverage violation.  

5.5  Parent Selection and Replacement 

Tournament selection is used for selecting parents from the current population tP  as 

shown in Figure 5.8.  In the selection procedure, among the two individuals we 

favor the one that is in the better nondominated front. If two randomly selected 

individuals are in the same front, we select the one with less overall violation in 

order to guide the search towards the feasible solutions. If the tie cannot be broken 

considering the fronts and the violations, we use a selection rule based on 

nondomination. We simply select the individual that is dominated by fewer 

solutions. When an individual is dominated by fewer solutions, it is likely to be in a 

less crowded region of the search space. This selection rule gives more chance to 

such individuals to become parents, thereby increasing the diversity of search. If the 

tie cannot be broken in this selection, we select one of the individual randomly. 

Parent selection is repeated until C acceptable offspring are generated. Set tR  is 

formed as the union of parent population tP  and offspring population tQ . To form 

the population for the next generation, 1+tP , the CN +  solutions in tR  are sorted by 

using the fast nondominated sorting algorithm due to Deb (2000). tR  is sorted into 

fronts jF  for ,...3,2,1=j . Then, the algorithm given in Figure 5.9 is applied for 

parent replacement. 
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Algorithm select parents 

Begin 

Repeat 

Select two individuals from tP  randomly with replacement 

If they are in different fronts 

Select the one that is in the better front 

Else 

 If their overall violations are different 

 Select the one with less overall violation 

 Else 

 Select the one that is dominated by fewer individuals 

 End if 

End if 

Until two parents are selected 

End 

Figure 5.8 Algorithm for parent selection 

 

According to the algorithm, 1+tP  is formed by selecting N  individuals from the 

better fronts. If adding all individuals from the last of these fronts causes the 

population to have more than N  members, only a subset is selected. In NSGA-II, 

the crowding measure is used for this selection. Our algorithm does not have an 

explicit crowding mechanism. Instead we select from the last front those individuals 

that are dominated by fewer solutions in the better fronts. With this rule similar to 

the one we use for parent selection, we favor individuals in less crowded regions in 

an attempt to preserve diversity. If the ties considering the number of solutions 

dominating the individuals cannot be broken, we select individuals randomly. 
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Algorithm form new population 

Begin 

Set φ=+1tP  

Set 1=j  

While NFP jt ≤++ |||| 1  

Set jtt FPP ∪= ++ 11  

Set 1+= jj  

End while 

Select || 1+− tPN  individuals from jF  that are dominated by fewer individuals in 

1+iP , insert them in 1+iP  

End 

Figure 5.9 Algorithm for replacement 

 

 

Figure 5.10 Sample population at the end of generation t  

 

Discarded solutions 
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The selection rule from the last front is illustrated in Figure 5.10. Suppose there are 

30 individuals in tR  and 15=N . We select seven individuals from the first front 

and five individuals from the second front in the population and 121 =+tP . We have 

five solutions in the third front, therefore we have to choose three of them in order to 

have 151 =+tP . We discard the individuals circled in Figure 5.10 since they are 

dominated by a larger number of individuals than the others. The region of search 

space that contains discarded individuals is already represented by individuals in the 

better fronts. 

5.6  Crossover and Mutation 

The classical crossover operators are considered for generating offspring in the GA. 

These are one point, two point and uniform crossover operators (Michalewicz and 

Fogel, 2004). Uniform crossover is eliminated after analyzing the results of 

preliminary runs since using it does not yield good results. 

We aim to repair and improve solutions with the mutation operator. Mutation is 

applied to each offspring with a given probability, mpr . The algorithm for mutation 

is given in Figure 5.11.  It makes use of the sets zT  and pB  that are also used in 

initial population generation. In the first stage of the mutation, we try to improve the 

solution in terms of the coverage violation. This is similar to the first phase of our 

initial population generation scheme. The difference is that we do not consider the 

amount of data to be sensed or the cost of sensors. We assign equal probability to 

each ( )ki,  combination that can sense point p  in mutation. Consequently, we next 

have an improvement phase which removes the redundant sensors. An individual 

may have redundant sensor assignments, which can be removed without increasing 

the coverage violation of the individual. While removing the redundant sensors, we 

start from the farthest sensor to the base station and continue with the removal 

attempts by considering the distance of the sensor to the base station. If there are 

multiple sensors with the same distance to the base station, one of them is selected 
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randomly. The aim is to improve the network lifetime by locating sensors closer to 

the base station. Lifetime is also improved by eliminating oversensing of the targets, 

which will decrease the data amount to be transmitted to the base station. The 

algorithm also works for the cost objective since cost is decreased by removing the 

sensors.  

 

Algorithm mutation 

Begin 

If individual z  has coverage violation 

Update set pB for all mp ,...,1=  

Compute zT   

 While ∅≠zT  

 Find point zTp∈ with minimum || pB  

For each pBki ∈),(  

p

ik
B

gpr
1

=  

End for 

Select an pBki ∈),(  with probability ikgpr  and locate a sensor of type k  

at location i  

Update pB  for all zTp∈  considering the newly located sensor 

Compute zT  using the updated pB ’s 

End while 

End if 

Sort locations in descending order of Euclidean distance to the base station 

For each location i  with sensor of type k  in the ordered set 

    Remove sensor k  if the total coverage violation does not increase 

End for 

Locate relays 

End 

Figure 5.11 Algorithm for mutation 
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In the second stage, we place relay nodes as we do in the initial population 

generation algorithm. We use the same relay location procedure in the mutation. 

After locating additional relay nodes, we intend to remove the redundant relays from 

the individual using the procedure described in Figure 5.12. If a relay does not have 

outgoing data flow, we can remove it since it does not bring any contribution to the 

lifetime objective. We can decrease the total network cost by this removal. To 

determine the redundant relays to be removed, we need to solve PL3. As will be 

explained in the next section, not every offspring is accepted in our GA and we do 

not want to spend PL3 computation time for an individual that will eventually be 

discarded. Therefore, we postpone the removal phase of the mutation until after the 

individual passed the acceptance test and PL3 is solved to compute its fitness. 

 

Algorithm remove redundant relays 

Begin 

For each location i  with relay 

If total outgoing data flow from the relay at location i  is zero 

 Remove relay 

End if 

End for 

End 

Figure 5.12 Algorithm for removing redundant relays 

 

5.7 The Main Algorithm 

The outline of our algorithm, which is similar to NSGA-II (Deb, 2002) is presented 

in Figure 5.13. The algorithm runs for a certain number of generations, G , 

determined by preliminary experiments. We start by generating the initial 

population. Note that removal of redundant relays is also applied to the initial 

population after computing fitness. In every generation, we select parents and 

generate offspring using the crossover and mutation operators until the total number 
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of acceptable offspring reaches C . Coverage violation is easily calculated for each 

offspring generated. If coverage violation of the offspring is larger than a factor of 

the average coverage violation of the population or if the offspring is stillborn, then 

the offspring is discarded. (If an offspring has the same assignments as a current 

population member or previously generated offspring, it becomes stillborn.) 

Otherwise, the offspring is accepted and PL3 is solved for the offspring. The 

purpose of discarding an offspring based on a coverage violation condition is to 

decrease the number of LPs solved. The accepted offspring are promising in terms 

of coverage violation, and solving PL3 only for these offspring significantly reduces 

the number of LPs to be solved and the computation time. Pilot runs encourage 

using this filtering procedure. For example, a sample GA run with 40 grids takes 

600.47 seconds, and 568.26 seconds of this time is spent for solving LPs. Time for 

solving LPs constitutes about 95% of the total algorithm time. Therefore filtering 

promising offspring becomes crucial, otherwise we can achieve the same solution 

quality in longer run times. The factor )/1( Gbt−  used in filtering is a decreasing 

function of bt  when G  is fixed. When the parameter [ ]1,0∈b  is larger, the 

acceptance criterion becomes tighter. The coverage violation criterion also becomes 

tighter with increasing iteration count t  so that solutions with less and less coverage 

violation are accepted towards the end of the run.  There is a tradeoff between run 

time and solution quality in this case.  The condition added can affect the diversity 

of the solutions negatively, however we can search for better solutions in the time 

gained by such a procedure.  

After a certain number of offspring is generated, we sort the union of the parent and 

offspring population, tR , and we select N  of them for the next generation, 1+tP .  

At the end of the run, we eliminate the infeasible solutions and apply nondominated 

sorting to the feasible solutions in the final tR . We take the solutions in the first front 

as the approximation of the Pareto optimal front. 
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Algorithm main 

Begin 

Generate initial population, 0P  

Compute fitness for each individual in 0P  

Remove redundant relays for each individual in 0P  

Apply nondominated sorting to 0P  to find jF , K,2,1=j  

Set 0=t  

Repeat 

Set φ=tQ  

Repeat 

Select parents from tP  by binary tournament selection 

Perform crossover to generate two offspring 

For each offspring 

Apply mutation to offspring with probability mpr  

If coverage violation of offspring ×−≤ )/1( Gbt average coverage violation 

of current population, and if offspring is not stillborn 

Compute fitness of offspring 

Remove redundant relays 

Insert offspring in tQ  

End if 

End for 

Until CQt ≥||  

Set ttt QPR ∪=  

For each individual in tR  

Normalize constraint violations 

Calculate overall violation 

End for 

Apply nondominated sorting to tR  to find jF , K,2,1=j  

Form new population, 1+tP  

Update weights of violations using members of 1+tP  

Set 1+= tt  

Until Gt =  

Discard infeasible individuals, apply nondominated sorting to feasible individuals 

Take the individuals in the first front 

End 

Figure 5.13 Main algorithm 
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CHAPTER 6 

6 EXPERIMENTATION 

We design an experiment to test the performance of our genetic algorithm and to 

investigate the effects of parameters on the performance of the algorithm. The 

algorithm is tested on the same randomly generated problem instances described in 

Section 4.1 for which Pareto optimal solutions are found except some of the PS40-

LC instances. In addition to these problems, we also test our algorithm on larger 

problem instances.  

We first discuss the parameter settings. Then, we present the performance measures. 

Finally we analyze the results of our experiments. 

6.1 Algorithm Parameters and Experimental Settings 

The parameters of our algorithm together with the experimental settings are 

summarized in Table 6.1. The levels for the parameters are determined after the 

analysis of pilot run results and Pareto optimal frontiers.  

Two levels for the population size, N , are decided by analyzing the number of 

solutions found in the Pareto optimal frontier for PS24 and PS40 instances.  

The number of fitness computations, which is equal to the total number of 

acceptable offspring generated, is the second parameter. It is the product of the 

number of generations and the number of acceptable offspring generated in each 

generation, CG × . We have tried different levels for C  during the pilot runs, 

however we have observed that setting it equal to N  as in NSGA-II gives better 

results. Therefore, we take NC = . Hence, the number of fitness computations is 

determined by the number of generations once the population size is set. 
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Offspring are generated using crossover and mutation operators in each generation. 

We consider two crossover operators for our experiments. These are one point and 

two point crossover operators as given in Section 5.6. 

We apply mutation to each offspring with a mutation probability. We set levels for 

the mutation probability, mpr , as given in Table 6.1 based on the results of the pilot 

runs. 

Another parameter, b , is used in determining the maximum acceptable coverage 

violation for an offspring as a factor of the average population coverage violation. 

We have tried different levels for b  such as 1 and 21 , but we have seen that the 

results are not as good as when b  is equal to zero. We have observed that restricting 

the search by discarding more offspring causes premature convergence and reduces 

the solution quality. Therefore, we set b  equal to zero after pilot runs, which means 

that an offspring is accepted when its coverage violation is less than the average 

coverage violation of the population. 

 

Table 6.1 Algorithm parameters 

Parameter Level 1 Level 2 Level 1 Level 2 Level 3
100 200 200 400 -
5000 10000 10000 16000 20000

one point two point
0.1 0.2 0.2 0.3 -

PS24-LC and PS24-TC

0 0

two point

PS40-LC and PS40-TC

N

CG ×

b

CT

mpr

 

 

For PS24 we solve 30 problems with all 16 combinations of the parameters. Based 

on these results, we restrict the combinations for PS40. 
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6.2 Performance Measures 

We use three performance measures to test our algorithm. The first measure is the 

proximity indicator, PI. In this measure, we compute the normalized Tchebychev 

distance between each solution found by the GA and the closest Pareto optimal 

solution found by the ε-constraint approach. Distance calculation for a GA solution 

is illustrated in Figure 6.1. Suppose that GAZ  and ParetoZ  denote the sets of GA and 

Pareto optimal solutions. For each solution GAZs∈ , we find the closest solution 

ParetoZt ∈ . Let the normalized distance (deviation) between s  and t  for cost and 

lifetime objectives be c

stnd  and l

stnd , respectively. Then PI is calculated by equation 

(29). 

( )
∑
∈

→

+
=
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ParetoGA
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GAZZ

ndnd

Z 2

1
PI      (29) 

This measure provides information about closeness of the GA solutions to the Pareto 

optimal front.  

The second measure is the reverse proximity indicator, RPI. In this measure, we start 

from a Pareto optimal solution and find the closest representative solution found by 

GA. This involves the symmetric case of PI calculation. Let solution GAZs∈  be the 

closest solution to the Pareto optimal solution ParetoZt ∈ . Then, RPI is calculated by 

equation (30).  RPI calculation is also illustrated in Figure 6.1. 
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Z 2

1
RPI      (30) 

This measure provides information about closeness of the GA solutions to the Pareto 

optimal front as well as the diversity of the GA solutions along the front. 

Last measure is the hypervolume indicator, HI, which also measures both closeness 

and diversity of the GA solutions. We find the area bounded by the maximum cost 

and minimum lifetime (nadir point) for the Pareto optimal solutions and the GA 
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solutions. The area calculated for GA solutions is illustrated in Figure 6.1. Let 

ParetoA  and GAA  be the areas calculated for Pareto optimal solutions and GA 

solutions. Then HI is calculated by equation (31).  

Pareto

GAPareto

A

AA −
=HI          (31) 
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Figure 6.1 Sample GA and Pareto optimal solutions 

 

6.3 Computational Results for Small Problems 

Our algorithm is coded using C programming language and we conduct our 

experiments on a personal computer with 1GB DDR2 RAM and Intel Core2 Duo 

2.33 Ghz processor. We use CPLEX 10.1 to find the Pareto optimal solutions by the 

ε-constraint approach and to solve PL3 in the genetic algorithm.  
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Fine Tuning the GA for PS24 Instances 

We start experimentation with the PS24 instances. According to the levels of the 

parameters provided in Table 6.1, there are 162222 =××× combinations. Results 

of GA runs for all PS24 instances with loose (LC) and tight (TC) capacity 

constraints are summarized in Table 6.2. We use RPI as our primary performance 

measure in evaluating the performance of GA since it gives an idea about both 

convergence and diversity. Therefore, we also provide RPI information for the 

initial population in order to figure out the progress throughout the evolution. For 

most PS24-TC instances, the initial population has no feasible solutions, therefore 

we cannot calculate RPI and the other performance measures for these instances. We 

provide the number of instances where the initial population has at least one feasible 

solution. Our algorithm cannot find any feasible solutions for some PS24-TC 

instances at the end of the evolution. We also provide the number of instances for 

which the algorithm ends with some feasible solutions. The average number of 

solutions GA finds as well as the average number of GA solutions that are the same 

as Pareto optimal solutions (GA=Exact) are also given. We report the CPU times in 

the last column. 
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We also plot the interaction effects of the parameters on RPI given in Figures 6.2 

and 6.3 for PS24-LC and PS24-TC instances. 

Population size

Crossover type

Mutation prob.

Fitness Computations

100005000 two pointone point 0.20.1

0.050

0.045

0.040

0.050

0.045

0.040

0.050

0.045

0.040

Population size

100

200

Fitness

Computations

5000

10000

Crossover type

one point

two point

  

Figure 6.2 Interaction effect plots for final RPI for PS24-LC instances 
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Figure 6.3 Interaction effect plots for final RPI for PS24-TC instances 
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Numerical results and interaction plots show that better results are obtained for 

population size of 200 and 10000 fitness computations. Two point crossover 

generally outperforms one point crossover. It seems that increasing the mutation 

probability provides better solutions. It increases the effectiveness of one point 

crossover significantly for PS24-LC as can be seen from Figure 6.2. A higher 

mutation probability of 0.2 results in better RPI in general.  

In Figure 6.4, population averages of PI, RPI and HI are plotted against the number 

of fitness computations to show their progress throughout the generations. The 

values are the averages over 30 instances of PS24-LC. It seems that convergence is 

achieved after 8000 fitness computations, and 10000 fitness computations are 

sufficient for these instances. We cannot provide this information for PS24-TC since 

the number of instances having feasible solutions is too small during the initial 

stages of evolution.  
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Figure 6.4 Progress of PI, RPI and HI over generations for PS24-LC 

( 200=N , 2.0=mpr , two point crossover) 
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Hence, the best parameter settings for PS24 are a population size of 200=N , 

10000=×CG  fitness computations, two point crossover, and a mutation 

probability of 2.0=mpr . 

Fine Tuning the GA for PS40 Instances 

We next experiment with the problems of size 40. As the problem size gets larger, 

we consider larger values for the population size (200 and 400) and the number of 

fitness computations (10000, 16000 and 20000). Considering the results for PS24 

instances, we observe that two point crossover provides better solutions than one 

point crossover in general. Hence, only the two point crossover is used in the 

remaining experiments. For PS24 instances, we see that larger mutation probability 

generally provides better results. Therefore, we set two levels for the mutation 

probability as 0.2 and 0.3. We have 10 instances that are solved exactly for PS40-LC 

and 30 instances for PS40-TC, hence we experiment with our algorithm considering 

these instances. 

The results for all PS40 instances are given in Table 6.3. The information provided 

in this table is found across 10 problem instances for PS40-LC and 30 problem 

instances for PS40-TC.  

We again plot the interaction effects of the parameters on RPI in Figures 6.5 and 6.6 

for PS40-LC and PC40-TC instances. According to these plots, the best settings for 

PS40-LC are a population size of 400=N , 20000=×CG  fitness computations, 

and a mutation probability of 2.0=mpr . Increasing the mutation probability does 

not affect the performance significantly for PS40-LC. However, for PS40-TC, 

3.0=mpr  seems to yield better results. 
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Figure 6.5 Interaction effect plots for final RPI for PS40-LC instances 

Population size

Fitness Computations

Mutation Prob.

200001600010000 0.30.2

0.105

0.095

0.085

0.105

0.095

0.085

Population size

200

400

Fitness

20000

Computations

10000
16000

 

Figure 6.6 Interaction effect plots for final RPI for PS40-TC instances 

 

The progress of the performance measures over generations is presented in Figure 

6.7 for PS40-LC instances. It seems that convergence is achieved after 18000 fitness 

computations, and 20000 fitness computations are indeed sufficient for these 
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instances. However, we have seen that 20000 fitness computations are not sufficient 

for PS40-TC instances. We have increased this number to 24000 to achieve 

convergence as seen in Figure 6.8. 
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Figure 6.7  Progress of PI, RPI and HI over generations for PS40-LC 

( 400=N , 2.0=mpr , two point crossover) 
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Figure 6.8 Progress of PI, RPI and HI over generations for PS40-TC 

( 400=N , 3.0=mpr , two point crossover) 
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Hence, the best settings for PS40-TC are a population size of 400=N , 

24000=×CG  fitness computations, and a mutation probability of 3.0=mpr . 

Comparison of GA with ε-Constraint Approach 

A comparison of the GA with the ε-constraint approach is given in Table 6.4. 

 

Table 6.4 Comparison of ε-constraint approach and GA with the best setting 

200=N , 10000=×CG , 2.0=mpr for PS24 

400=N , 20000=×CG , 2.0=mpr for PS40-LC 

400=N , 24000=×CG , 3.0=mpr for PS40-TC 

Problem 
size

Constraint 
tightness

# of feasible 
problems RPI PI HI ε -constraint GA GA=Exact ε -constraint GA

PS24 LC 30/30 0.0317 0.0220 0.0558 10.20 9.27 3.70 1118 110
TC 29/30 0.0761 0.0574 0.1734 7.47 6.57 1.93 70 110

PS40    LC(1)
10/10 0.0464 0.0489 0.1164 13.60 12.80 1.30 100088 798

   LC(2) 20/20 - - - 13.00 14.20 - 85983 821
TC 30/30 0.0744 0.0780 0.1957 11.60 11.10 1.13 12865 797

(2) Results across 20 instances that are solved approximately by the ε -constraint approach.

GA performance measures Number of solutions CPU time (s)

(1) Results across 10 instances that are solved exactly by the ε -constraint approach.

 

 

The average number of Pareto optimal solutions of PS24-LC instances is 10.2 with 

an average CPU time of 1118 seconds. CPU time for PS24-TC instances is 70 

seconds where the average number of Pareto optimal solutions is 7.47. With the best 

settings, our GA finds an average of 9.27 and 6.57 solutions per instance for PS24-

LC and PS24-TC, respectively. The average solution time is 110 seconds for both 

cases. This means that, for PS24-LC, the number of feasible GA solutions is 91% of 

the number of Pareto optimal solutions, and these are found in one tenth of the exact 

solution time. The same figure is 88% for PS24-TC, however the GA solution time 

is slightly longer than the exact solution time. GA can find 3.70 of 10.2 (36%) 

Pareto optimal solutions for PS24-LC, and 1.93 of 7.47 (26%) solutions for PS24-

TC. PI, RPI and HI measures are also larger for PS24-TC than those for PS24-LC. 

Therefore, we conclude that GA performs worse when the capacity constraints are 
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tight, in terms of both the solution quality and the CPU time. Moreover, it can be 

seen from Table 6.4 that the problem of infeasibility for PS24-TC instances can be 

solved by increasing the number of possible locations. 

We illustrate GA and Pareto optimal fronts in Figures 6.9 and 6.10 for sample 

instances of PS24-LC and PS24-TC. In both figures, (a) represents an instance with 

better performance measures and (b) with worse. 
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        (a) Instance 19            (b) Instance 10 
        RPI=0.0096 PI=0.0031 HI=0.0098            RPI=0.0686 PI=0.0308 HI=0.0919 

Figure 6.9 Plots of fronts for sample PS24-LC instances 
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        (a) Instance 4            (b) Instance 27 
        RPI=0.0087 PI=0.0087 HI=0.0307            RPI=0.1938 PI=0.1792 HI=0.3295 

Figure 6.10 Plots of fronts for sample PS24-TC instances 
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When we examine the PS40-LC results given in Table 6.4, we see that PI, RPI and 

HI measures are larger (worse) compared to PS24-LC, but smaller (better) compared 

to PS24-TC for the 10 problems with exact solutions. These measures cannot be 

calculated for the 20 problems solved approximately, because some of the 

approximate ε-constraint solutions are dominated by GA solutions. When we 

consider all 30 instances of PS40-LC, the average number of frontier solutions 

found by GA is relatively closer to that found by ε-constraint approach. However, 

GA can find only 1.30 of 13.6 (10%) Pareto optimal solutions for the first 10 

problems. The GA CPU times, on the other hand, are about 100 times shorter than 

the ε-constraint CPU times. 

As in the case of PS24, the solution quality of GA is worse for PS40-TC than it is 

for PS40-LC. The CPU time of GA is only 15 times shorter than the ε-constraint 

CPU time. In general, problems with tight capacity constraints prove to be harder for 

the GA and easier for the ε-constraint approach. 

GA and Pareto optimal fronts are shown in Figures 6.11 and 6.12 for sample 

instances of PS40-LC and PS40-TC. 
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        (a) Instance 15            (b) Instance 18 
        RPI=0.0290 PI=0.0261 HI=0.0590            RPI=0.0749 PI=0.0874 HI=0.1440 

Figure 6.11 Plots of fronts for sample PS40-LC instances 
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        (a) Instance 29            (b) Instance 23 
        RPI=0.0266 PI=0.0295 HI=0.0544            RPI=0.2059 PI=0.2260 HI=0.4304 

Figure 6.12 Plots of fronts for sample PS40-TC instances 

 

Finally, we compare GA and approximate ε-constraint results for PS40-LC in Table 

6.5 and in Figures 6.13 and 6.14. For the first 10 problem instances with known 

Pareto optimal fronts, we can calculate PI, RPI and HI for the GA and the 

approximate ε-constraint solutions. Approximate ε-constraint measures are still 

better than GA measures for these instances. Also, approximate ε-constraint can find 

5.90 of 13.6 (43%) Pareto optimal solutions, whereas this figure is only 10% for the 

GA. However, the approximation has much longer CPU times than GA. For the 

remaining 20 problems, although GA finds more solutions in the front, the 

hypervolume measure of GA is smaller (worse) than that of the approximate 

approach. Sample front plots are given in Figures 6.13 and 6.14 for some PS40-LC 

and PS40-TC instances. 

 

Table 6.5 Comparison of GA with approximate ε-constraint approach 

Algorithm (A)
# of 

instances RPI PI HI Hypervolume (A) (A)=Exact
 CPU time 

(s)

GA 10 0.0464 0.0489 0.1164 - 12.80 1.30 798
Approximate 10 0.0253 0.0122 0.0442 - 10.90 5.90 54268

GA 20 - - - 0.6034 14.20 - 821
Approximate 20 - - - 0.6667 13.00 - 85983

# of Pareto optimal solutions
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        (a) Instance 4            (b) Instance 27 

Figure 6.13 Plots of approximate and GA fronts for sample PS40-LC instances 

 

12 14 16 18 20 22 24
5

10

15

20

Sensor cost

N
et
w
or
k 
lif
et
im

e

 

 

Exact

Approximate

 
12 14 16 18 20 22

6

8

10

12

14

16

18

Sensor cost

N
et
w
or
k 
lif
et
im

e

 

 

Exact

Approximate

 
          (a) Instance 18            (b) Instance 20 
         RPI=0.0038 PI=0 HI=0            RPI=0.0422 PI=0.0233 HI=0.0746 

Figure 6.14 Plots of exact and approximate fronts for sample PS40-LC instances 

 

6.4 Computational Results for Large Problems 

We also test our algorithm on larger problem instances. We combine four problem 

instances to obtain a monitoring area of size 20 m ×  20 m represented by 10 ×  10 =  

100 locations. After combining the instances, we have totally 200 targets dispersed 

on the monitoring area. The sensor and link capacities and battery energy are 

doubled compared to the loose capacity case since total demand increases 
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significantly as total number of targets increases. We generate three different PS99 

instances in terms of target characteristics (coordinates, coverage thresholds, 

demand rates). 

We know that the number of Pareto optimal solutions depends on the number of 

possible locations close to the base station. The amount of data to be transmitted 

close to the base station increases as the sensors become closer to the base station as 

discussed in Chapter 5. Hence, the number of Pareto optimal solutions is highly 

dependent on the number of possible locations around the base station. When the 

number of possible locations around the base station is limited, the number of sensor 

types that can communicate with the base station decreases. This decreases the 

number of Pareto optimal solutions significantly. Therefore, we increase the number 

of possible locations as in Figure 6.15 around the base station to obtain problem 

instances with 112 possible locations. 
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Figure 6.15 Possible grid location structure for PS111 

 

Exact solution for PS99 and PS111 instances cannot be found because of the 

problem size. However, we find the maximum and minimum sensor costs by solving 
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single objective problems in order to be able to estimate maximum possible number 

of solutions in the Pareto optimal front. We also run the GA to approximate the 

Pareto optimal front. We set the parameters of GA as 800=N , 40000=×CG , 

2.0=mpr  by considering the results of PS24 and PS40 instances. We summarize 

the results in Table 6.6. 

 

Table 6.6 Summary of the results for PS99 and PS111 instances 

      GA 

Problem 
size 

Instance 
no 

Range of 
cost 

 Exact  
CPU time (s)*  

# of 
solutions 

CPU 
time (s) 

PS99 1 57 - 78 50599 13 7675 

  2 42 - 67 23955 17 7225 

  3 55 - 74 24879 12 7447 

PS111 1 56 - 94 72368 36 10502 

  2 41 - 87 30595 36 11864 

  3 53 - 91 32671 30 9534 
* CPU time to find the minimum and maximum cost by solving the single objective 
formulation 

  

For PS111 instances maximum possible number of Pareto optimal solutions is 

significantly larger than that of PS99 instances as in Table 6.6. The number of 

feasible GA solutions for PS99 is about 60% of the maximum possible number of 

Pareto optimal solutions and these are found in reasonable CPU times compared to 

the total CPU times for finding the minimum and maximum cost levels. For PS111 

instances, the number of feasible GA solutions is about 80% of the maximum 

possible number of Pareto optimal solutions and these are also found in reasonable 

CPU times compared to the total CPU times for finding the minimum and maximum 

cost levels. We also plot the nondominated solutions for PS99 and PS111 instances 

in Figure 6.16. 
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Figure 6.16 Plots of approximate fronts for sample PS99 and PS111 instances 
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CHAPTER 7 

7  CONCLUSION 

In this thesis, we study the problem of energy efficient coverage and connectivity 

problem in wireless sensor networks. We formulate two single objective problems 

for minimization of total sensor cost and maximization of network lifetime. Our 

formulations satisfy connectivity, coverage and capacity constraints. We use the ε-

constraint approach for solving the bicriteria problem exactly which depends on 

iterative solution of single objective problems.  This approach requires long CPU 

times to generate the Pareto optimal solutions. CPU time increases significantly with 

this approach when the problem size increases.  

We also propose a multiobjective genetic algorithm for solving the problem. Our 

GA is similar to NSGA-II of Deb (2002). Constraint handling is one of the 

challenging issues in our GA. We develop mechanisms to overcome the problem of 

infeasibility. We show that the GA approximates the efficient frontier well in 

reasonable time in most of our test problems, for which nondominated solutions are 

generated by the help of the exact solution approach. Furthermore, we provide the 

computational results for large sized problems.  

Our experimentation with problems of size 24 and 40 having loose or tight capacity 

constraints lead to the following conclusions. 

• Our performance measures, which consider convergence of GA solutions to 

the Pareto optimal front and diversity of solutions along the front, worsen 

(approximately doubled) as the problem size increases from 24 to 40 when 

capacity constraints are loose. 

• Problems with tight capacity constraints are harder to solve for the GA 

compared to the loose capacity problems, whereas they are easier for the ε-

constraint approach. Performance measures for tight capacity are about twice 
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as large as those for loose capacity. However, the problem size has less 

effect on the performance measures when the capacity constraints are tight. 

• When the capacity constraints are loose, the GA solves problems of size 24 

in one tenth of the ε-constraint CPU times. For problems of size 40, GA CPU 

time is about 100 times shorter than ε-constraint time. 

• For the tight capacity case, GA CPU times are slightly longer than ε-

constraint times with 24 possible locations, but they are 15 times shorter with 

40 possible locations. 

• For problems with 99 and 111 possible locations, the GA converges to a 

solution in about 160 minutes. 

As a future research topic, one can modify ε-constraint approach to find Pareto 

optimal solutions by using some method as in the second phase of the two phase 

method.  For example, the information from solutions of  the previous iterations can 

be used in the current iteration.  Efficient sensor deployments can be introduced in 

each iteration in order to reduce the problem complexity. 

We can use the results of LP3 to increase efficiency of our GA. Sensitivity analysis 

results obtained by solving LP3 provides valuable information. For instance, 

capacity constraint of a deployed sensor may have a negative shadow price, and then 

we may think of deploying a sensor with a higher capacity in order to increase the 

lifetime. We may also use this idea as part of mutation or recombination operator 

during the search.  

Considering multiobjective nature of the problem, focusing on a selected region by 

incorporating decision maker’s preferences may be a good idea. The ε-constraint 

approach can be modified easily for this purpose. One may try to develop 

mechanisms to guide the search to the preferred regions for GA. 

Instead of taking coverage as a constraint, one may consider it as a third objective to 

be maximized. Maximizing the area to be covered would clearly be in conflict with 

minimizing cost and maximizing lifetime. Different objectives such as minimization 
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of total delay, total hop count or average path length can also be taken into 

consideration in the design of WSNs. According to the requirements of the 

application, our formulation and genetic algorithm can be modified for different 

objectives.  

Special network requirements such as K -coverage or K -connectivity can be 

considered in our formulations. Integration of these properties requires additional 

constraints in the formulations. We should introduce additional mechanisms to 

handle these requirements in GA. 

Finally, locating sensors in continuous space can be studied with similar objectives 

and constraints. This may require substantial changes in formulations and the GA 

starting with the solution representation. 
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