
A VIRTUAL HUMAN ANIMATION TOOL USING MOTION CAPTURE DATA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SELĐM NAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF MEDICAL INFORMATICS

JULY 2008

Approval of the Graduate School of Informatics

 Prof. Dr. Nazife Baykal

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Assoc. Prof. Dr. Erkan Mumcuoğlu

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Yasemin Yardımcı

 Supervisor

Examining Committee Members

Assoc. Prof. Dr. Erkan Mumcuoğlu (METU, MIN) _____________________

Prof. Dr. Yasemin Yardımcı (METU, IS) _____________________

Assist. Prof. Dr. Tolga Can (METU, CENG) _____________________

Assist. Prof. Dr. Didem Gökçay (METU, MIN) _____________________

Assist. Prof. Dr. Alptekin Temizel (METU, WBL) _____________________

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this wok.

Name, Last name : Selim Nar

Signature : _________________

 iv

ABSTRACT

A VIRTUAL HUMAN ANIMATION TOOL USING MOTION
CAPTURE DATA

NAR, Selim

M.S., Department of Medical Informatics

Supervisor: Prof. Dr. Yasemin YARDIMCI

July 2008, 100 pages

In this study, we developed an animation tool to animate 3D virtual characters. The tool offers

facilities to integrate motion capture data with a 3D character mesh and animate the mesh by using

Skeleton Subsurface Deformation and Dual Quaternion Skinning Methods. It is a compact tool, so it is

possible to distribute, install and use the tool with ease.

This tool can be used to illustrate medical kinematic gait data for educational purposes. For

validation, we obtained medical motion capture data from two separate sources and animated a 3D

mesh model by using this data. The animations are presented to physicians for evaluation. The results

show that the tool is sufficient in displaying obvious gait patterns of the patients.

The tool provides interactivity for inspecting the movements of patient from different angles and

distances. We animate anonymous virtual characters which provide anonymity of the patient.

Keywords: Virtual Human Animation, Motion Capture, Medical Animation, Human Gait

 v

ÖZ

HAREKET YAKALAMA VERĐSĐ KULLANARAK SANAL
ĐNSAN CANLANDIRMA ARACI

NAR, Selim

Yüksek Lisans, Tıp Bilişimi

Tez Yöneticisi: Prof. Dr. Yasemin YARDIMCI

Temmuz 2008, 100 sayfa

Bu çalışmada, üç boyutlu sanal karakterleri canlandırmak için bir animasyon aracı geliştirdik.

Araç, hareket yakalama verisini ve 3B karakter modellerini entegre edebilecek, dahası "Skeleton

Subspace Deformation" ve "Dual Quaternion Skinning" metotlarını kullanarak sanal karakterleri

canlandırabilecek olanakları sunmaktadır. Aracın küçük ve etkili bir araç olarak geliştirilmesi,

dağıtılması, kurulması ve kullanılmasında kolaylık sağlamaktadır.

Araç, eğitimsel amaçlar için medikal kinematik yürüyüş verisinin görselleştirilmesinde

kullanılabilir. Doğrulama amacıyla, iki ayrı kaynaktan medikal hareket yakalama verisi elde edip, bu

veri üzerinden 3B bir sanal karakteri canlandırdık. Bu animasyonlar yürüme

uzmanı olan doktorlara ölçme ve değerlendirme amacı ile gösterildi. Sonuçlar, aracın hastalara ait

bariz yürüme bozukluklarını göstermede yeterli olduğunu ortaya koydu.

Geliştirilen araç, hasta hareketlerinin farklı açı ve mesafelerden etkileşimli olarak incelenmesine

olanak vermektedir. Animasyonlarda, 3B anonim karakterlerin kullanımı hasta mahremiyetini

sağlamaktadır.

Anahtar Kelimeler: Sanal Đnsan Canlandırma (Animasyonu), Hareket Yakalama, Tıpta

animasyon, Đnsan Yürüyüşü

 vi

ACKNOWLEDGMENTS

I express sincere appreciation to Prof. Dr. Yasemin Yardımcı for her guidance and insight

throughout the research. Thanks go to our faculty secretary Sibel Gülnar and my colleague Berna

Bakır for their spiritual support. The suggestions and comments of Assoc. Prof. Dr. Güneş Yavuzer

and Assoc. Prof. Dr. Haydar Gök are gratefully acknowledged.

 vii

TABLE OF CONTENTS

ABSTRACT.. iv
ÖZ .. v
ACKNOWLEDGMENTS... vi
TABLE OF CONTENTS... vii
LIST OF TABLES .. ix
LIST OF FIGURES.. x
LIST OF ABBREVIATIONS .. xii
CHAPTER
1. INTRODUCTION.. 1

1.1 Overview ... 1
1.2 Deformation Methods.. 2
1.2.1 Geometric Deformation Methods ... 3

1.2.2 Physical Deformation Methods ... 4
1.3 Character Animation Methods and Skeleton Animation ... 7

1.3.1 Geometric Methods and Skeleton Subspace Deformation... 7
1.3.1.1 Skeleton Subspace Deformation .. 8
1.3.1.2 Other Geometric Methods.. 9

1.3.2 Example-Based Methods and Shape Interpolation .. 15
1.3.3 Physical-Based Methods.. 17

2. REPRESENTATIONS: QUATERNIONS AND DUAL-QUATERNIONS 23
2.1 Overview ... 23
2.2 Orientation Representations .. 23
2.3 Quaternions ... 25
2.4 Dual Quaternions... 27

2.4.1 Properties of Dual Quaternions.. 28
2.4.2 Rotation with Dual Quaternions .. 29
2.4.3 Translation with Dual Quaternions.. 31
2.4.4 Dual Quaternions Representing Both Rotation and Translation.. 33
2.4.5 Behaviors of Dual Quaternion Transformations .. 35

3. SKELETON ANIMATION WITH SKELETON SUBSPACE DEFORMATION AND DUAL-
QUATERNIONS SKINNING ... 37

3.1 Overview ... 37
3.2 Articulated Skeleton Structure... 37
3.3 Skeleton Subspace Deformation.. 40
3.4 Dual-Quaternions Skinning ... 46

4. ANIMATING THE SKIN AND ANIMATION DATA .. 51
4.1 Overview ... 51
4.2 Key-Framing and Frame interpolation .. 52
4.3 Animation Data ... 54
4.4 Motion Capture.. 55
4.5 Motion Capture Systems ... 56

5. FEATURES OF THE ANIMATION TOOL ... 58
5.1 Overview ... 58
5.2 Interaction with Objects in our Animation Tool.. 58

 viii

5.2.1 Mouse Selection in the 3D Scene ... 60
5.2.2 Mouse Drag Action.. 60

5.3 Animation Infrastructure of the Tool... 62
5.3.1 Animation Using Input Files.. 63
5.3.2 Deformation by User Input .. 63

5.4 Moving Over the Scene ... 64
5.5 Calculating Bone Weights ... 65

5.5.1 Calculating Vertex Bone Distances ... 66
5.5.2 Bone Weight Calculation Algorithm ... 67

5.6 Reading and Animating Raw Mocap File ... 67
5.6.1 Calculating Bone Transformations .. 68
5.6.2 Outcomes of our Bone Transformation Calculation .. 69
5.6.3 Alternative Solution for Bone Transformation Calculation... 70

5.7 Calculating Skin Offset Transformations .. 71
6. RESULTS, CONCLUSIONS AND FUTURE DIRECTIONS .. 73

6.1 Outcomes of the Animation Tool .. 73
6.1.1 Motion Capture Process... 74
6.1.2 Acquiring Bone Transformation in MotionBuilder ... 74
6.1.3 Final Outcomes.. 75

6.2 Validation of the Tool ... 77
6.2.1 Brief Information about the Human Gait ... 77
6.2.2 Validation Methodology.. 79

6.3 Discussions.. 88
6.4 Conclusion... 88
6.5 Future Directions ... 89

6.5.1 Improvements for Motion Capture Data.. 89
6.5.2 Improving Existing Algorithms and Integrating New Ones .. 90
6.5.3 Improving User Interface... 90
6.5.4 Platform Independency.. 91
6.5.5 Performance Issues .. 91
6.5.6 Web-Based Animation Tool .. 91

REFERENCES... 92
APPENDICES

A: DEFINITIONS OF GAIT DISORDERS.. 96
A.1 Multiple Sclerosis (MS)... 96
A.2 Polio... 96
A.3 Cerebral palsy .. 96
A.4 Osteoarthritis.. 97

B: PROGRAM CODES .. 98
B.1 OpenGL Mouse Selection Code with C++ .. 98
B.2 Mouse Drag Code with C++ .. 99
B.3 Calculation of Line Plane Intersection with C++... 99
B.4 Calculation of Rotation Quaternion between Two Vectors with Matlab Script................. 100

 ix

LIST OF TABLES

Table 1 Quaternion component multiplication... 26
Table 2 Animation key frames of bone defined by quaternion rotation, scaling and translation 53
Table 3 Descriptions of Joint Angles ... 79
Table 4 The answers of PMs for each video .. 80
Table 5 Ratings of all joints on sagittal and coronal plane for video A ... 81
Table 6 Ratings of all joints on sagittal and coronal plane for video B.. 81
Table 7 Ratings of all joints on sagittal and coronal plane for video C.. 81

 x

LIST OF FIGURES

Figure 1 A mapping for twist along y axis ... 3
Figure 2 FFD applied to an 3D object.. 4
Figure 3 A cubic spline curve which is defined by CP P1, P2, P3, and P4 .. 4
Figure 4 A mass-spring model. Each mass node put force on its neighbor nodes and all of the system 5
Figure 5 A plane which is deformed by wires method... 10
Figure 6 Bending and twisting ... 11
Figure 7 Spline Coordinate System - Frenet-frames ... 11
Figure 8 A bone curve derived from two standard bones... 12
Figure 9 SSD (left) and log-matrix (right) comparison.. 13
Figure 10 Linearized Hill-type model. (a) Force-length relation, (b) Force-velocity relation 18
Figure 11 (a) 1D Mass-spring model applied on human skeleton, (b) Spring-mass, (c) Spring-mass-
damper (Courtesy of (Aubel & Thalmann, 2000)) .. 19
Figure 12 (a) Smooth skinning, (b) Anatomic deformation and (c) Underlying musculature.............. 20
Figure 13 Behavior of the various muscle models with flexion at the elbow joint and resulting
skinning (Courtesy of (Ferdi, et al., 1997)) .. 21
Figure 14 (a) Skeleton and surface, (b) Skeleton and muscles, (c) Skin .. 21
Figure 15 Ellipsoid musculature model with different poses ... 22
Figure 16 Halfway interpolation of (a) and (c) results in (b) ... 24
Figure 17 Euler’s angle .. 24
Figure 18 A point rotated around an axis by angle α ... 25
Figure 19 Rotation of a triangular prism around an axis in 3D space .. 30
Figure 20 In (a) there is only translation and in (b) rotation around the axis is added to same
translation... 32
Figure 21 (a) shows rotation only and (b) shows both translation and rotation 35
Figure 22 (a) and (b) shows the same screw movement from different angles 35
Figure 23 (a) and (b) shows the effects of both translation, rotation and axis change 36
Figure 24 A sample bone hierarchy ... 38
Figure 25 Step by step evaluation of the recursive skeleton formation.. 39
Figure 26 Skeletal configuration in the third recursion step with new bone lengths............................ 40
Figure 27 Use of SOT .. 41
Figure 28 Weighted Blending .. 43
Figure 29 Collapsing Defect .. 44
Figure 30 Collapsing defect when upper arm twisted 180 degrees .. 45
Figure 31 A collapse is observed as leg twists 180 degrees ... 45
Figure 32 QLERP vs. SLERP .. 48
Figure 33 Note the volume loss and collapses in SSD (a) and compared to DQS (b).......................... 50
Figure 34 Structure of an Animation Production ... 52
Figure 35 Optical mocap data used in games such as Devil May Cry (a) and Heavenly Swords (b) .. 56
Figure 36 Summary of steps from motion capture to validation. ... 59
Figure 37 Viewing frustum .. 61
Figure 38 A drag event along x axis on elbow joint from (a) to (b)... 62
Figure 39 (a) is a walking animation sequence and (b) is a jogging animation sequence 62
Figure 40 By using direct user input, model is deformed from its left upper arm and and left forearm.
Initial model is displayed in (a) and manually deformed one is in (b) ... 64

 xi

Figure 41 Same scene is displayed from different camera views (a) and (b) 65
Figure 42 Skeleton is aligned in T-Pose to the transparent model in T-Pose....................................... 65
Figure 43 Same scene is displayed from different camera views (a) and (b) 66
Figure 44 from given joint positions in (a) each bone is transformed back to its local frame, joint111 is
transformed to is local coordinate in (e)... 69
Figure 45 Rotation is applied to (a) spine joint translated the skeleton to pose (b).............................. 70
Figure 46 Outcomes of our bone transformation calculation algorithm... 70
Figure 47 The affect of SOT .. 71
Figure 48 A screenshot from the marker tracking tool developed in Koç University. 74
Figure 49 An actor is shaped and oriented to be aligned with the markers as much as possible.
Displayed from different views (MotionBuilder)... 75
Figure 50 When rotated from (a) to (b), upper arm causes defects at the side of the chest because of
the our weight assignment algorithm ... 76
Figure 51 Outcome of the mug Alzheimer animation is shown for different moments 76
Figure 52 Outcome of the multiple sclerosis (MS) animation is shown for different moments........... 77
Figure 53 Anatomical planes of the human body... 78
Figure 54 (a) Lower body joints and (b) hip rotation axes ... 78
Figure 55 Human Gait Cycle ... 79
Figure 56 MotionBuilder skeleton scaling transformation by mouse is shown in (a) and rotation shown
in (b)... 90

 xii

LIST OF ABBREVIATIONS

CGI : Computer Generated Image.

CAD : Computer Aided Design

CAGD : Computer Aided Geometric Design

FFD : Free Form Deformation

NURBS : Non-Uniform Rational B-Splines

CP : Control Point

2D : Two Dimensional

3D : Three Dimensional

FEM : Finite Element Methods

Mocap : Motion Capture

Mocap Lab : Motion Capture Laboratory

SSD : Skeleton Subspace Deformation

PSD : Pose space deformation

LOD : Level of Detail

RBF : Radial Basis Function

SIM : Shape interpolation methods

SVD : Singular Value Decomposition

PCA : Principal Component Analysis

MWE : Multi-weight Enveloping

SWE : Single-weight Enveloping

GDM : Geometric Deformation Methods

LBS : Linear Blend Skinning

MPS : Matrix-palette Skinning

B-spline : Bezier Spline Curve

SBS : Spherical Blend Skinning

SLERP : Spherical Linear Interpolation

QLERP : Quaternions Linear Interpolation

DQS : Dual Quaternion Skinning

DQ : Dual Quaternions

ScLERP : Screw Linear Interpolation

DLB : Dual Quaternion Linear Blending

DIB : Dual quaternion Iterative Blending

 xiii

API : Application Programming Interface

SOT : Skin Offset Transformation

 1

CHAPTER 1

INTRODUCTION

1.1 Overview

Human body animation has always played a major role in Computer Graphics. It is one of the

musts to generate a virtual human. Achieving a fully realistic human body animation is an open

research area since body is an extremely complex design which is hard to model and implement.

Unfortunately, in computer graphics realism is not the only issue. Some applications of computer

graphics require interactive speed. Because of this, researchers must also put computational

complexity into consideration while developing a new algorithm. This also applies to human body

animation.

Despite all of these problems, virtual humans are more common in our daily lives. We see them

in movies, commercials, documentary films, etc. We play as one of them in computer games,

experiment with them in simulation softwares. Medicine is another field where virtual humans are

used. Since, it is easier to comprehend some concepts with illustrations and simulations, use of virtual

humans became a necessity for training or sharing knowledge in medicine. Nowadays, a surgeon is

able to experiment and train within a virtual simulation environment with a virtual human using force

back devices. There are several highly detailed pre-rendered videos of human animation for

illustrative purposes. Every body has a chance to witness a baby moving in the uterus on television,

thanks to Computer Generated Image (CGI). Human movement is a subject of biomechanics.

Orthopedists, neurologists, and even psychologists who we will refer as gait analysts in our thesis

make use of visual inspection on human movement for diagnosing a disease or disorder. Such data can

be acquired by using a motion capture system. Software companies and researchers work on

developing software packages and expert systems which can capture and convert the motion capture

data into more interpretable forms, charts, summaries, reports etc. These packages are indeed very

beneficial for analysis of human movement for diagnosis. Still, physicians, not software packages play

the vital role in diagnosis. And it must be emphasized that most physicians still prefer analyzing

human movement via visual inspection then analyzing via use of charts and reports. This shows that

visual movement data gathered from patients still can be more valuable in its raw that its processed

 2

form. Besides, visual human movement data is also being used in training and teaching. Medical

Students still learn about diseases and disorders by watching videos and looking at still pictures. A

physician must be well aware of the movement pattern that is caused by a disorder to make a

successful diagnosis. Indeed, some of the software packages we mentioned can also provide

illustrations by animating a skeletal structure retrieved from motion capture data, but just animating a

skeletal structure seems unrealistic and unfamiliar to human eye.

For all of these reasons, virtual humans can be used to illustrate visual human movements in

addition to a skeletal structure. Videos and pictures captured from patients and pre-rendered videos of

human animations are useful for the same reasons. But they lack interactivity and also suffer from

large storage space and transmission bandwidth they require. By using real-time animations, it is

possible to inspect the movements of patient from different angles and distances. Hence, it would be

wise to provide physicians with a compact and handy tool using a virtual human to illustrate

movement data in real-time. That tool would use motion capture data with 3D human models. It will

also be beneficial considering disk space because such files are generally small compared to video and

image files. Besides, anonymous virtual characters are advantageous for protecting the privacy of the

patient.

In the light of these facts, we propose a tool to visualize medical human motion data by using

virtual human. This tool will demonstrate virtual humans in interactive rates. Physicians and medical

students will be able to inspect movements of patient from any angle and distance they prefer. The

storage to represent this kind of medical data will also be reduced significantly. To animate virtual

humans, we examined many deformation methods. Most of these methods are developed and used for

especially 3D human models. We have also briefly examined other well known deformation methods

to see whether they can be of any help in our case. Most of the deformation methods used for virtual

human animation is classified as skeleton (bone) animation. First, we briefly review the deformation

methods other than skeleton animation. Then, we will talk about character and skeleton animation

methods.

1.2 Deformation Methods

Areas such as computer drawing and computer aided design, make use of deformation methods to

create and modify surfaces, solids, and curves. Some deformation methods are used to simulate fabric

draping and folding (Gibson & Mirtich, 1997). Other deformation methods segment images and fit

curved surfaces to noisy images (Gibson & Mirtich, 1997). Computer graphics and animation make

great use of deformation methods, particularly for facial expressions, character animation, and cloth

animation. Even, simulation of training and surgical systems requires physically based, non-linear,

and complex deformation of tissues which is able to execute in interactive speeds (Gibson & Mirtich,

1997).

We can categorize deformation methods by the techniques they use, two main groups: These are

Geometric (Non-physical) and Physical deformation methods. We will give brief information about

some well known Geometric and Physical deformation methods. Geometric deformation methods

 3

(GDM) are generally computationally efficient whereas physical methods aren’t. GDMs do not

depend on explicit physical rules; their success mostly depends on the skill of designer. Since,

physical methods apply deformations based on rules and mathematical models; they can generally be

modified via available parameters. Thus, physical approaches limit the flexibility of designer, though

they simplify the task.

1.2.1 Geometric Deformation Methods

In this section, we look at some well known GDMs such as Free Form Deformation (FFD) and

splines which are used for general purposes. Most of skeleton deformation methods for character

animation are also GDMs. We will give the details about these methods in skeleton animation section.

In one of the earliest works, (Burtnyk & Wein, 1976) incorporated bilinear interpolation to

deform 2D objects. Later on, a work related to FFD was done by Barr (1984). Barr studied the effect

of mappings between 3D spaces and how hierarchical arrangement of these mappings affects surfaces.

For instance, an object twists along x axis when the mapping below is applied

where
33: RRf → :

Figure 1 A mapping for twist along y axis
(Courtesy of (Gjerde))

Similar deformations can be achieved by applying other mappings or their combination them. Even

though, Barr’s method was a powerful design tool, it was not intuitive. It has limited deformation

types and it was too hard to make regional deformations.

FFD credited to Sederberg (1986) was a generalized approach to Barr’s method and it became

really popular. Initially an object is placed in a lattice of grid points. This grid can be any standard

geometry such as a rectangular prism or sphere. As the grid that encloses the object is distorted by

modifying its grid nodes, object inside distorts in the same way. When a grid node is moved,

interpolation is applied to find vertex locations of the object inside the distorted grid. FFD extends

Burtnyk and Wein’s method by using higher order interpolation such as cubic interpolation in 3D

space. Since, it is easier and intuitive to manipulate grid points than manipulating the objects vertices,

this methods proves to be very powerful and useful. In Figure 2, FFD is applied to a 3D object.

()





































−
=

11000

0cossin0

0sincos0

0001

z

y

x

xx

xx

v

v

v

vv

vv
pf

 4

Figure 2 FFD applied to an 3D object
(Courtesy of (Digital Human Research Center))

Another well known geometric deformation method is splines which are widely used in CAGD.

Bezier curves are developed by Pierre Bézier in the 1970’s because of the need for numerically

specifying curves and surfaces. Designers needed intuitive ways while modifying deformable objects

in Computer Aided Geometric Design (CAGD). After the introduction of Bezier curves, many other

set of curves are developed such as double-quadratic curves, Bezier splines (B-spline), rational B-

splines, NURBS, etc. In all of these representations, a curve or surface is defined by a set of points

which are called control points (CP). A designer can easily modify a curve by moving its CPs, adding

new ones, deleting existing ones or changing their weights.

Figure 3 A cubic spline curve which is defined by CP P1, P2, P3, and P4

Since, these methods are computationally efficient, they allow object editing in real time. The

designer is also granted a great control over the shape with many CPs. On the other side, to make a

precise modification can be quite troublesome due to the number of CPs. Parent (1977) and Allen,

Wyvil and Witten (1989) proposed methods which moves neighbor CPs of a modified CP along itself

based on a proximity criteria. Bartels and Beatty (1989) came up with a way to manipulate the shape

of the curve by directly moving the points on a B-spline curve itself instead of editing CPs.

1.2.2 Physical Deformation Methods

In this section, we look at some well known physical methods such as mass-spring methods,

continuum and finite element methods and approximate continuum models, low and degree freedom

methods. “A Survey of Deformable Modeling in Computer Graphics” by Gibson and Mirtich (1997)

is a valuable resource about physical deformation models. There are also other physical deformation

methods for character animation such as multi-layered human body model. We will give the details

about these methods in skeleton animation section.

 5

Mass-spring method is one of the important physical deformation models. Object is modeled as a

lattice structure whose nodes behave as point masses that are connected to each other by springs. Most

of the time linear spring forces are used, but tissues such as human skin which exhibit inelastic

behavior use non-linear springs.

Figure 4 A mass-spring model. Each mass node put force on its neighbor nodes and all of the
system

As seen in Figure 4, each mass node in the lattice behaves as a force source for other mass nodes.

Their behavior of motion conforms to Newton’s Second Law

i

j

ijiiii fgxxm ++−= ∑&&& γ

where im is the mass of node i ,
3ℜ∈ix is the position of mass node i , and terms on the right-

hand side are forces affecting the mass node. The first term ii x&γ− is the damping force depending

on the velocity. ∑ j ijg is the sum of force applied by spring on mass i where each ijg is

parameterized by ijk and jm . if is the combination of external forces on the mass i such as

gravity, collision force applied by another object or user applied force. Motion of entire system is

basically decided by the motion of all mass nodes forming the lattice. Since im is known, it is

possible to calculate acceleration of i th mass ix&& at time t . In Mass-spring models, ordinary

differential equations are integrated through time. By using a step by step procedure, nonlinear

ordinary differential equations are converted into a sequence of linear algebraic systems.

Among the first implementations of mass-spring methods was about cloth animation which

belong to Terzopoulos, Platt, Barr and Fleischer (1987). Another main application of mass-spring

method is facial animation. Terzopoulos and Waters (1990) applied a dynamic spring model. They

modeled a mesh grid composed of three distinct layers of facial tissue. These layers are the dermis,

subcutaneous fatty tissue and the muscle layer. For each layer, different spring constants were used.

This face model used 6500 springs, and still it can be animated in real-time. Provot (1995) also made

use of spring models for cloth animation. Provot take into account the non-elastic behaviors of woven

fabrics took.

 6

Dynamics of mass-spring models are relatively simple compared to other physical deformation

methods. They can be used at interactive times. They can be easily modeled to parallel computing.

But, it has also some disadvantages. It is not an easy task to assign proper material properties such as

spring constants to achieve a realistic mass-spring model. As, certain constraints are not naturally

implemented in the model; one has to find a means to integrate them. For example, there is no direct

way of volume preservation; it can be implemented by applying some nonintuitive external forces on

the mass nodes. And some examples of mass-spring models exhibit stiffness problems due to large

spring constants which are used to model nearly rigid objects. Stiffness problem can be observed as

poor stability and requires the numerical integrator to take small time steps, since large spring

constants causes the right hand side of the equation become small.

Continuum deformation method is another widely used method. A deformable object is based on

equilibrium of the object’s material properties and external forces. A deformation can be realized by a

function of external forces and material properties of the object. An object is considered to be at

equilibrium, when it reaches the minimum potential energy. The total potential energy of the

deformable object is defined by the difference of total strain energy of the object and the work done

by external loads on the object. Hence:

W−Λ=∏

where ∏ is the minimum potential energy. We can define strain energy as energy stored in the body

by deformations. The work done can be due to three sources: forces applied to discrete points, forces

applied over all the objects such as gravity and forces over only the surface of the object such as

pressure.

By expressing both Λ and W in terms of object deformation, the shape of the object in

equilibrium can be achieved. When Λ and W are represented by a function of material displacement

over the object, the system minimum energy state which is the equilibrium can be found by

determining the value where derivative of ∏ with respect to material displacement function is equal

to zero. If a closed-form analytical solution can not be found, Finite Element Model (FEM) can be

used to find a approximate solution of partial differential equations.

In FEM, object is divided into a set of elements and approximate solution of continuous

equilibrium equation of each element is calculated. To achieve continuity between elements, these

approximations must conform to constraints at the node points and the element boundaries. Further

information about this method can be found in (Gibson & Mirtich, 1997).

FEM exhibits more realistic deformations relative to mass-spring models, but it requires high

computational power which makes it difficult to apply in real-time systems. Traditional FEM is

generally applied to metals or similar materials which has very limited deformations. It will fail with

materials such as human skin which can deform more compared to metals (Gibson & Mirtich, 1997).

 7

1.3 Character Animation Methods and Skeleton Animation

Even though most of the deformation methods can be applied to character animation, there are

particular methods developed for this specific purpose. Character animation methods are various and

application dependent. There is a trade off between realism, speed and compactness. For instance,

priority for computer games is speed where models need to be rendered in real-time. Collision

detection and artificial intelligence must be also handled at the same time. Realism is of secondary

importance in the case of computer games. This also applies for war simulations. In most of

simulations, realism is important, but this more to do with environment physics than the quality of

animation. On the other hand, animators who prepare animations for films need to achieve visual

realism. Since, movies do not require any interactivity, film animation are all prerendered. However,

short render times will boost the speed of film production. There are also web-based animations. Since

data will be distributed through internet, data compactness is an issue in these applications. Web-

based animations take advantage of LOD algorithms and progressive transmission. We can give

avatars as an instance for web-based applications of virtual human animation.

Quality of animation is not simply determined by the quality of deformation method. If an

animator tries to make realistic human walking animation, virtual human must move in the same way

as the real one. In films or movies, to animate a virtual human, motion data of a real human is

captured in a motion capture laboratory (mocap lab), and then this mocap data is applied to virtual

human animation. Quality of animation is determined by the positions of markers and cameras, the

number of markers and the quality of software and system used. This goes same for computer games,

but in computer games generally lower resolution mocap data is used where there are only a few

numbers of markers relative to the ones used for film animations. Motion can also be prepared by an

expert animator via use of animation tools such as Maya, 3D Studio Max, etc. We will give more

detail about mocap data in Section 4.4 and 4.5.

We mentioned that there are various kinds of deformation methods for virtual character

animation. Merry, Marais & Gain (2006); Collins & Hilton (2001) and Kavan, Collins, Zára &

O'Sullivan (2007) make categorizations about these deformation methods. We will categorize these

methods according to the techniques they use. We separate them as geometric, example-based and

physical-based deformation methods. Most of these methods are driven by an underlying skeletal

structure. We will explain each category. But, we will put more emphasis on geometric skeleton

animation methods because the two deformation methods we implemented are both geometric

deformation methods. We did not implement any example-based methods, but they are a great portion

of character animation methods. Thus, we will also give detailed information about them.

1.3.1 Geometric Methods and Skeleton Subspace Deformation

Interactive applications generally make use of geometric skeleton deformation methods for their

simplicity and efficiency. In this section we will give information about well known GDMs which are

specifically developed for virtual character animation. Common points of all GDMs are their speed

and simplicity. The most well known and oldest geometric skeleton animation method is Skeleton

 8

Subspace Deformation (SSD). Due to its high speed and simplicity, it is the most preferred GDM

method even today. But, SSD suffers from some well known defects such as collapsing elbow,

twisting elbow and candy wrapper. Lately, new GDMs which are free of these defects are proposed.

All new methods attack the problems of SSD and take it as a reference in their benchmark tests.

Hence, it is wise to give basics about SSD before discussing other methods.

1.3.1.1 Skeleton Subspace Deformation

SSD is an unpublished method but, it is subsumed in other published articles (Magnenat-

Thalmann, Laperri, re, & Thalmann, 1988). SSD is given multiple names such as Single-Weight

Enveloping (SWE), Smooth Skinning, Matrix-palette Skinning (MPS) and Linear Blend Skinning

(LBS). In SSD, deformation is driven by an articulated structure. In analogy to real world, the

hierarchical articulated structure is called the skeleton and the surface model is called the skin. The

skeleton is actually a virtual one and does not exist in the real animation. The skeleton consists of

links, called bones, which are connected by joints. The bones are in general considered to be rigid and

have fixed length. Every bone is represented in a local coordinate frame called the bone coordinate

system.

A character is modeled in a rest pose. Rest pose of humanoid characters are generally T-shaped

where whole body is straight and arms are opened in both sides perpendicular to body. Hence, the

pose is also called T-pose. Some may call it dress pose or binding pose as well. The skeletal structure

is placed inside the character model and bones are aligned along body limbs in its rest pose. The

bone’s root joint is the origin of the bone local coordinate system and bone itself lies along an axis of

local coordinate system.

Each vertex v is then assigned a set of influencing joints together with a weight factor

corresponding to each influencing joint. When a bone moves, the movement is applied to the assigned

vertices. Deforming the character into a different pose involves transforming each bone along with its

influenced vertices. A vertex can be influenced by multiple bones. The deformed vertex v is a

weighted sum of the movements determined from each bone through by the blending function:

∑
−

=

−=
1

0

1
,Re

n

k

kstkk vMMwv

where influence of each bone k on a vertex v is rated by a weight kw whose value lies in the

interval [0, 1]. Total sum of all weights per vertex must be normalized to 1.0. kM is the local

transformation of bone k for new skeleton pose.
1

,Re
−

kstM transforms vertex v to the local

coordinate of bone k in the rest pose. A new pose of a model is created by defining a new skeleton

pose.

Most interactive applications still prefer SSD because it still outperforms other GDMs in

simplicity and speed. Besides, SSD only exposes the defects in extreme cases. Hence, we have

 9

implemented SSD for our virtual human animation. More insight into the SSD algorithm will be given

in Section 3.3.

1.3.1.2 Other Geometric Methods

There have been many alternatives or enhancements to SSD. These methods try to prevent most

known defect of SSD while trying to achieve speed and simplicity. Some of them also contribute to

deformations such as muscle effects. When a man flexes his arm muscles, a growth in the mass of fore

arm can be observed. So contributing muscle bulge effect to the deformation increases the reality and

quality of animation. An important portion of these methods GDMs which are capable of performing

muscle bulge and similar effects are curve bone models. Curve bone methods emphasize the fact that

SSD defects are side affects of linearity. So, non-linear nature of curve bones can prevent SSD defects

(Forstmann & Ohya, 2006). Other important set of GDMs are modified versions of SSD. These

methods especially aim to operate with input data similar to SSD to keep modifications minimal for

existing applications using SSD as much as possible.

Singh and Fiume (1998) introduced means to deform models via curves. They called it Wires.

Though Wires was a generic model deformation method, it became a basis for studies on curve based

bone deformations. Wires method make use of two curves which are reference curve R and wire

curve W and three scalar values s , r , f . s is the scale factor. r is the max influence distance.

And f is the scalar valued influence function. Any curve C can be parameterized by variable

[]1,0∈u where ()0C and ()1C are the starting and ending point of C respectively and any point

on curve is denoted by)(uC . At the beginning of the deformation, each point P which are to

deform are permanently mapped to a point on R such that the set of points mapped on R is defined

as
[]

() []








∈−=ℜ∈=
∈

1,0,)(|)(min
1,0

3
R

u

RRR pPuRppRP . In this definition Rp is a variable just like

u which defines the one dimensional position on the reference curve R .

The corresponding point of P on curve R is)(RpR which is closest to P . Similarly, a point

)(RpW on wire curve W is mapped to P meaning that defined algorithms to how to map model

points to the points on the reference curve R . They keep the reference curve R constant where

deformation is driven by the modification of wire curve W . f is a monotonically decreasing density

function to determine the influence of the curve on each model point depending on the influence

distance PpR r −)(and the max influence distance r .

 10

Figure 5 A plane which is deformed by wires method
(Courtesy of (McKinley))

If a point P is out of influence distance, then it is not affected by the wire curve. Before deformation

steps are stated, Figure 5 should be examined. Total deformation on the model point is done by

scaling, rotation and translation in order. We must state that all of these three transformations are

directly affected by the influence function f . First, point P is scaled along the direction vector

())(rpRP − . Scaling is directly proportional to scaling factor s . From its scaled position point is

rotated about the point)(rpR and around axis)(')(' rR pRpW × where)(' RpW and

)(' rpR are tangent of curve W and R at point)(RpW and)(rpR respectively. Finally, the

translation vector () fpRpW rR *)()(− is added to previous rotated point. Further analysis and

the case of multiple wires are available in the article (Singh & Fiume, 1998).

Forstmann and Ohya (2006) proposed a work similar to Singh and Fiume (1998) to come up with

an arc-spline based bone deformation method. For faster calculation, they exploit the spline’s Frenet-

frames. Frenet-frames Spline based bone methods deliver high quality deformation relative to SSD

(Matrix Skinning). The real problem with SSD is that weighted summation of local transformation

matrixes can result in a combined singular matrix. As we will mention in next section, it is possible to

cope with the problems born out of singular matrices by incorporating extra bones. Since extra bones

require extra calculation, sampling rate reduces. Spline-based bones act like infinitely many bones, so

that extra-bone usage becomes unnecessary. In Figure 6, a bending and twisting comparison is given

between SSD and spline-deform.

 11

Figure 6 Bending and twisting
(Courtesy of (Forstmann & Ohya))

In their study, splines were defined by three 3D points. For spline deformation, a complete coordinate

system around the spline, the Frenet-frame, must be created. For each point on the curve, one can

define a coordinate system which has three orthogonal basis vectors. The origin is the point on the

curve itself. In Figure 7, coordinate systems (Frenet-frame) for some sample point on the spline are

shown. Spline is defined by three points which can form a plane. In Figure 7, you can see a triangular

shape which is formed by the three spline control points.

Figure 7 Spline Coordinate System - Frenet-frames
(Courtesy of (Forstmann & Ohya))

Triangle is the plane we mentioned. First axis of Frenet-frame for each point on curve is that plane

normal. Second axis is the derivative of spline function at that point. And the third axis is the cross

product of the first and second axis, which points upwards in Figure 7. Each point of the character

model is mapped to a point on the curve with a recursive space subdivision algorithm. Hence, each

point of the model is related with a Frenet-frame of the curve. Subsequently, a combined (rotation,

scaling, translation, etc.) transformation between the Frenet-frame of initial curve and the Frenet-

frame of deformed curve is calculated. Weights for multiple splines are assigned by a painting tool

which can be found in various 3D authoring tool. Finally, the combined transformation is applied to

the model point related to the Frenet-frame. The transformation is applied in proportion with the

spline weight. In their approach, a maximum of three spline-curves can influence a vertex of the

 12

animated character. And this is sufficient for skinned animation. Their optimized implementation with

OpenGL-shading language demonstrates very promising results in real-time.

Forstmann, Ohya, Krohn-Grimberghe and McDougall (2007) introduced enhanced and optimized

version of Forstmann and Ohya’s work. They incorporated reusable deformation-styles into B-spline

based bone animation. Deformation-styles can be used to create complex material behaviors of metal,

cloth or muscles. A pre-designed style can be applied to an arbitrary number of joints simultaneously.

Once, the Frenet-frame of a model point is created, the model point is mapped to the coordinate

system of the related Frenet-frame. Every deformation such as spline and style deformation is done in

Frenet-frame. There are Style 1 and Style 2 deformations. Style 1 deformation is done by a radial

scale function. The function deforms a point in the Frenet-frame due to the pose, intensity values of

textures. Basically, an intensity value from the 2D texture is found for a model point. According to

this intensity value and given pose, model point in the Frenet-frame is scaled. Style 1 can deal with

cloth like effects. Style 2 uses values of 2D curves instead of intensity textures. Style 2 deformation is

driven by two scaling functions. These are frontal and lateral scaling functions. Frontal and lateral

scale functions scales points along blue and red axes which are shown Figure 7 respectively. Style 2

deformation deals with bulging effects. Style 1, Style 2 and spline deformations are applied in order.

And then, points in the Frenet-frame are mapped back to model coordinate space. Forstmann et al.

achieved a very efficient GPU based implementation of the spline-based skinned skeletal animation

system, which outperforms the GPU based implementation described in (Forstmann & Ohya, 2006)

by factor three for the basic spline skinning without deformation-styles.

Another work about curve bone skinning is due to (Xiaosong, Arun, & Jian, 2006). They used B-

spline curve bones along with the rigid joint-based skeleton structure for the skin shape deformation.

Deformation follows the tangent of the curve bone and curve points, so it results in higher sampling

rates. Hence, collapsing skin and other undesirable skin deformation problems are avoided. The curve

bone retains the advantages of SSD. It is easy to use and allows full control over the animation

process. It also possible to achieve realistic muscle and fat bulge effects. Similar to earlier studies,

three CPs are used to define curve bones. Curve bones are created according to the existing rigid

skeleton structure. In the case where a joint is shared by only two bones, a CP is placed on each bone

according to the angle between the bones and the joint itself is used as the third CP as shown in Figure

8.

Figure 8 A bone curve derived from two standard bones

 13

Cases such as a joint is shared by three or four bones are handled with conformable approaches.

Deformation is similar to Forstmann and Ohya (2006). Each point on the curve has a local frame

similar to Frenet-frame. Since B-splines with three CPs are used, local frames can be interpolated

from three CPs. To prevent skin moving out from underneath skeleton, origins of these local frames

must be projected onto the bone. Twisting rigid curve can not directly affect curve bone. Hence, two

extra attributes, twist angle and twist distribution are defined to cope with this problem. Deformation

occurs similar to earlier spline based method. Curves which bulge skin like a muscle are also defined

and related to rigid bones. So, muscle bulge effects can be implicitly manipulated through rigid bones.

In their work Magnenat-Thalmann, Cordier, Seo and Papagianakis (2004) describe techniques by

which dressed human characters are modeled and simulated in real-time. The method is also capable

of operating with the SSD input. A matrix logarithm method which was proposed by Alexa (2002)

was used to deform human models. It is shortly called as log-matrix. Alexa proposed a new operator

such that
αα TT =⊗ where α is a scalar value and T is a matrix. On that mathematical basis, he

showed that the transformation matrices with no negative real eigenvalues can be defined by scalar

multiples and a commutative addition of transformations. These operations allow the linear

combination of transformations. Hence, one can create weighted combination of transformations,

interpolate between transformations and construct or use arbitrary transformations in a structure

similar to a basis of a vector space. By combining the matrix operator ⊗ he proposed with basic

matrix logarithm knowledge, Alexa came up with the equation which can be used for linear

combination of an arbitrary number of transformations iT with weights iw :

()
e i ii Tw

ii

i

Tw ∑=⊗⊕
log

This technique has been originally demonstrated for key frame interpolation in animation But,

Thalmann et al. took advantage of it by replacing it with standard SSD blending equation. Alexa’s

equation requires the evaluation of the logarithm and exponential of matrices. Hence, its computation

takes longer time than the classical SSD. Classical matrix blending leads to degenerated matrix as the

relative rotation of two blender matrices approaches to π. Thus, volume loss and collapse effects occur

on the joint adjacent parts of the limps. Alexa’s blending technique cope with these kinds of defects.

But, it comes with its own defects because it picks a longer trajectory than necessary when

interpolating rotations. A comparison of the log-matrix and SSD is given in Figure 9. Note the

collapse at the hip.

Figure 9 SSD (left) and log-matrix (right) comparison
(Courtesy of (Thalmann et al))

 14

Another method which can operate with SSD input is proposed by Kavan and Ladislav and Zara

(2005). They called it Spherical blend skinning (SBS). In their work, Ladislav and Zara emphasized

that skeleton deformations indeed have a spherical nature not linear. In SBS, transformations are

considered to consist of a translation and rotation. To change the interpolation domain, SBS divides

transformation into translation and rotation matrices and then convert rotation matrixes into

quaternion representation. Quaternion representation is a four dimensional representation for rotations.

We will give detailed information about quaternions in Section 3.3. The key point is to change the

interpolation domain. The transition to non-linear interpolation domain is composed of two steps:

determination of the center of rotation, and interpolation of multiple quaternions. The choice of the

center of rotation has a considerable influence on the result of interpolation. Hence, singular value

decomposition (SVD) algorithm is used to find the optimal rotation center. To make real-time

execution possible, SVD is computed only for clusters of vertices instead of complete model.

However, this introduces discontinuities in the deformed skin between individual clusters. In the case

of two quaternions, second step is simple. But, for more than two quaternions, it gets quite difficult to

interpolate. The linear interpolation of translation matrices is straightforward. But, quaternion

interpolation must be handled delicately. An already established interpolation of two rotations is

known as spherical linear interpolation (SLERP). SLERP is substantially slower then the simple linear

interpolation used in SSD. To decrease time complexity, Ladislav and Zara proposed an approximate

but faster linear interpolation of two quaternions and called it quaternions linear interpolation

(QLERP). They come up with a blending equation to calculate deformed vertex 'v

() c

tr

ji

n

i

ic rCwrvQ ∑
=

+−
1

where ()Q is QLERP function, cr is rotation center, v is rest pose vertex and
tr

jiC is translation

matrix. First term is quaternion interpolation and second term is just for translation matrix blending

just as SSD. We already mentioned that SVD is computed only for clusters of vertices. Tough the

trick enables real-time performance, time complexity is still significantly high. Besides, using cluster

centers may cause discontinuities of the deformed skin. But, SBS still proved to be useful to prevent

well known SSD defects.

Dual quaternion skinning (DQS) is the latest and probably the most powerful method which

operates with SSD inputs. Main goal of DQS is also to overcome SSD defects. Ladislav, Steven, Zara,

and Carol (2007) extends SBS further more so that it makes use of dual quaternions (DQ) instead of

quaternions. As we will explain in more detail later on, a DQ is an eight dimensional vector and is

capable of representing both rotations and translations. Similar to SBS, bone transformations are

assumed to be rigid (no scale or shear). DQs are also capable of representing translations. Hence, it is

possible to define a rotation around a point with DQs and avoid rotation center problem of the SBS.

For this method to work, all rotation and translation matrix representations are converted to DQs.

Similar to SSD where transformations are multiplied with joint weights, DQs are also multiplied with

 15

related joint weights and blended. The blending equation is called dual quaternion linear blending

(DLB). DLB interpolate two rigid transformations along the shortest path, which means that a

diversion is sometimes taken instead of a direct, straight rotation. Such diversions cause undesirable

results in animation. DQS enables a valid rigid transformation where no collapse effects and volume

loss occurs. In this study, we also implemented DQS beside SSD. So, we will give very detailed

information about the DQS algorithm and its implementation in subsequent chapters.

1.3.2 Example-Based Methods and Shape Interpolation

Example-Based Methods (EBM) use many examples of shapes to achieve animation. Shape

interpolation methods (SIM) are a large subset of EBMs. These examples can be the manual work of

an artist, result of a realistic physical-based method such as FEM or a data from 3D scanning device.

SIM is a popular approach for especially facial expressions. It is also called shape blending or

multi-target morphing. When applied to human body animation, SIM can be also driven by an

underlying skeleton. It interpolates between many key shapes for deformation. These key shapes can

be derived poses of one original shape, or they can be totally different shapes. For shape interpolation

to work, vertices on the key shapes must be registered to each other. Registering shapes with each

other is also a research area. Deformation occurs as these registered vertices are interpolated with a

weighted summation. Key shapes are denoted by kS where k is the index of key shapes.

Interpolation is defined by the below blending:

∑ = 0k kk Sw

Another version of this technique take a base shape denoted by oS , and then use the difference of

other key shapes with oS when blending them. This function is shown below:

∑ =
−+

0 00)(
k kk SSwS

Basic shape interpolation methods suffer from some problems. Especially, deformation of limbs

is quite inconsistent. When a limp is bent via a skeleton, the rigidity of the body can not be preserved.

When shape interpolation is intended for facial animation, it has even some serious drawbacks. First

of all, interpolation can not be smooth all the time. This occurs because motion path itself is only

piecewise linear. This requires the animator to use key shapes between each four or five frames.

Compared to SSD and other geometric skeleton animation methods, most recent EBMs are

capable of achieving more realistic results. But, their run-time efficiency is worse than that of SSD.

Another important drawback is that for a successful animation, EBMs require a large database of high

quality poses of shapes which is registered to a particular state of skeletal pose. We will investigate

the EBMs proposed by Lewis, Cordner and Fong (2000); Sloan, Rose and Cohen (2001) and Kry,

James and Pai (2002).

Pose Space Deformation (PSD) is an EBM proposed by Lewis et al. (2000). PSD is a

generalization and improvement over both shape interpolation and skeleton deformation methods.

First of all, a base pose shape is determined by the rigid transformation of a body frame driven by the

 16

underlying skeleton. PSD uniformly represents several types of deformations in a given pose space as

control vertex displacements (denoted byδ) between a key pose shape and the base pose shape

which is in the local coordinate frame of object. The difference of control vertices are calculated for

every key shape and entered to pose space database. The key pose shape we mentioned is something

like a muscle bulge of an arm prepared by the animator. Poses in the pose space can be defined by an

underlying skeleton or it can be even defined by an abstract system of controls. This means that

abstract deformation controls are basis for pose space and span it. The level (such as no bulge, middle

bulge, or full bulge) of the muscle bulge can be an instance to the abstract control and so, it is a

dimension and basis for pose space. For a given particular pose in the pose space, an interpolation

method is used to find the interpolated difference vector by using the abstract control levels as input

parameter. To give an example, a 0.5 level of bulge control will result with approximately a half

muscle bulge displacement vectors according to interpolation function. Consequently, vectors in the

pose space will be input parameters for the interpolation function. Displacement vectors calculated by

interpolation function are added to the base pose shape for the final deformation.

The PSD algorithm necessitates efficient and well adjusted scattered data interpolation in high

dimensional spaces. In their study, Lewis et al. used Radial Basis Function (RBF) to interpolate

scattered data. A RBF generates a real value that depends on the distance of the given vector to the

origin. Their choice of RBF is Gaussian which provide a “falloff” denoted by σ . It indicates the

width of Gaussian in the PSD algorithm.

Real-time deformation is possible at decent resolutions because PSD synthesis cost is slightly

more than the cost of classic shape interpolation. But, just like any other EBMs, this method is in need

of a pose database. Some of the methods given below operate on some common basis, so

understanding PSD will make it easier to understand them.

Shape by example is a method implemented by Sloan et al. (2001). Their method permits

designer to define “adjectives” that describes example shapes. Each adjective becomes a basis for the

space that they call “abstract space”. Subsequent to describing abstract space, each example shape is

given an annotation. Goal of method is to generate shape)(pX given vector p in the abstract space.

The thi key shape is represented by vector ip in abstract space and its shape is)(ipX . Given

ipp = , coefficient of thi key shape in the interpolation function will be 1 where others are 0. So,

ipp = will generate the thi key shape)(ipX . In their study, Sloan et al. used radial basis

functions plus a hyperplane. Incorporating the hyperplane enables extrapolation which results in

smoother interpolation. They claimed that they proposed a more efficient formulation which is fast

enough for interactive (re)parameterization and runtime blending. It is also possible to map the

implementation to graphics hardware.

Kry et al. (2002) proposed a method called Eigenskin. Similar to Lewis’s method, Eigenskin

made use of differences of key shapes which they called pose corrections. They used Principal

Component Analysis (PCA) to calculate minimum-error eigendisplacement basis. This

 17

eigendisplacement basis was enough to represent this potentially large set of pose corrections. Since a

vertex is not affected by every joint of skeleton, they preferred to apply PCA locally to avoid large

number of important basis vectors. Interpolation was realized by the Gaussian RBF. Storing of a small

number eigendisplacement basis leads to significant memory optimization and results in a better

graphics hardware implementation.

Wang and Phillips (2002) took a different approach that is called Multi-weight Enveloping

(MWE). MVE extends SSD so that it uses multiple weights. In MVE, each vertex has one weight for

each coefficient of respective influencing joint's transformation matrix whereas in SSD, each vertex

makes use of one weight per influencing joint. These weights are found by solving a linear least

squares problem using a set of example shapes as input. Large number of weights can give rise to rank

deficient (singularity) matrices in the least-squares solutions. Thought, it is possible, large number of

weights will also complicate usage of graphics hardware.

Mohr and Gleicher (2003) developed another method which incorporates pseudo-bones to

overcome some defects of SSD. This method first determines vertex influencing joints from the set of

examples, and then uses a bilinear least-squares solver to fit an SSD model. A pseudo-bone is indeed

related with a real bone. In the case where angle α between lower arm and upper arm decreases,

biceps muscle bulges. To simulate the same effect, a perpendicular pseudo-bone is placed on the

upper-arm. As angle α reduces, the pseudo-bone translates from upper-arm bone to bulge the skin.

Method is also capable of handling collapse defects. After being trained with a set of examples, it is

just another skeleton model with extra bones which operates as SSD. However the number of bone

influences per vertex increases, which reduces rendering performance and may make hardware

acceleration infeasible.

James and Twigg (2005) come out with an original method which is called Skinning mesh

animations. They automatically identify statistically relevant bones by using nonparametric mean shift

clustering of high-dimensional mesh rotation sequences. Subsequently, robust least squares methods

are used to determine bone transformations, bone-vertex influence sets, and vertex weight values. As

usual, efficient hardware rendering is supported. Besides, rest pose editing and deformable collision

detection are also available.

1.3.3 Physical-Based Methods

Human body is a complex structure composed of rigid and non-rigid components, where

especially non-rigid parts are hard to simulate. Geometric based-models are computationally efficient

and simple but unfortunately results are not realistic most of the time. Physical-based models offer

more realistic simulation because of its embrace physical-laws applied to the human model based

either on anatomy or hand-crafted by artist (Aubel & Thalmann, 2001). Since the skinning algorithms

try to achieve realistic motion and human body shape (representation and deformation), physical-

based algorithms is one good choice as it provides more versatile simulation for rigid-body (skeleton)

kinematics, and non-rigid soft-tissue deformations (muscle, fat, skin) (Porcher-Nedel). Physical-based

models play important role especially when animated human bodies undergo contact and collision

 18

with the surrounding environment. Physical-based models employ biomechanical or mechanical

(elastic, fluid etc.) models which defines a continuous system in space and time that are used in

various engineering disciplines (Aubel & Thalmann, 2000, 2001; Michael, Patrick, Joe, & Karan,

2005). Continuous problem is first discretized which leads large system of simultaneous ordinary

differential equations. These discrete ordinary differential equations are solved in time-steps by

numerically integrating using appropriate numerical solvers (explicit, semi-implicit, fully-implicit,

and quasistatic). Two key aspects are here computational complexity and the stability of the system.

You can increase time-step for gaining efficiency but system may become unstable due to large time-

steps (Joseph, Eftychios, Geoffrey, & Ronald, 2005). System may compose of different material types

with different characteristics (elasticity, viscosity, mass and damping factor), where for human body

these materials refer to bones, muscle, fat, and skin etc. This variety (200 bones connected with many

joints surrounded by non-rigid soft tissues) is hard to understand for modeling it and it also causes

complexity which leads to more computationally complex models (Ferdi, Richard, Wayne, &

Stephen, 1997). Since modeling human body in an exact way is not feasible, assumptions and

approximations are needed. Assumptions such as mass less and purely force-based muscles o constant

mechanical characteristics along the certain tissue can be made. Normally characteristic of tissue

varies between individuals due to some factors (age, sex, etc) and it also varies by location within the

individual. Example approximations are Hill-type muscle model, b-spline solids, modal analysis, and

muscle strands which are used in biomechanics and also mass-spring(-damper) systems (MSD) and

finite element methods (FEM) (Aubel & Thalmann, 2001).

Hill-type muscle model assumes the length of tendon remains constant as the muscle is stretched.

Total muscle force cpm fff += where pf is parallel and cf is contractile element, Here,

))1)(exp(,0max(ekekkf dcsp
&+−= where sk and ck are elastic coefficients, dk is damping

coefficient and 00)(llle −=& is strain of the muscle, l is the length and 0l is the slack-length,

)()(lFlaFf vlc = where 10 ≤≤ a is the

Figure 10 Linearized Hill-type model. (a) Force-length relation, (b) Force-velocity relation

activation level of the muscle, lF is force-length and vF is force-velocity. These expressions can be

linearized for simplicity as seen in Figure 10.

In one of the first physical-based model, muscle is embedded in the Free Form Deformation

(FFD) lattice and muscle deformation is achieved via deforming this lattice. Spring-mass model is the

 19

key idea of this FFD model where lattice points are connected with springs. System is expanded with

additional diagonal springs to keep geometric configuration stable. Later on Thalmann extends this

model with angular springs, action line, and muscle shape concepts. In Figure 11.a, 1D spring-mass

system is used for modeling human arm movement but different spring-mass model topologies like

2D are possible. Parameters of ellipsoid are obtained using spring-mass system and muscle is

deformed accordingly (Aubel & Thalmann, 2000, 2001).

(a) (b) (c)
Figure 11 (a) 1D Mass-spring model applied on human skeleton, (b) Spring-mass, (c) Spring-

mass-damper (Courtesy of (Aubel & Thalmann, 2000))

Basics of mass-spring model are explained below:

xkF ∆−= � xkxm ∆−=&& �
0

0)(

x

xx
Kxm

−
=&&

where Young’s modulus
ε

σ
=K ,

A

F
=σ is stress, and

0l

l∆
=ε is strain

The above system is unrealistic since it does not take into account the resistance to motion due to

friction in the spring or air resistance. Hence once it started its motion it will continue moving forever.

Damping can be introduced to incorporate all resistances into account.

x
x

xx
Kxm &&& γ−

−
=

0

0)(

where x&γ is the damping factor.

Mass-spring(-damper) models requires little computation, simple to understand, and realistic for

small deformations but need careful design of topology, not accurate physical model for tissue

properties, and defining string parameter may be difficult. The stiffer the spring, the smaller time step

is used for numerical solver which can be problematic for bone structures. Collision is another aspect

which must be taken into account using efficient algorithms.

Shape of tissue has potential energy and work done by motion transfers energy to tissue, hence

new tissue shape when energy is transferred can be found as tissue deformation. FEM can be used for

such purpose by defining the problem as (a) relating potential energy to displacement of tissue from

rest position (strain energy), (b) relating work done as a function of tissue displacement and (c)

computing the tissue shape when system is at equilibrium. It can be defined by shape elements (via

 20

triangulation), shape function, or energy function. FEM allows modeling of complex soft tissue

deformations and non-linear tissue properties more accurately, and employment of desired mechanical

model. Major drawback of FEM is its high computational complexity therefore FEM is not suitable

for real time applications (Joseph, et al., 2005). Hybrid methods are proposed for accurate and

efficient systems

Recently anatomy-based models which based on anatomic concepts and motion observation gain

popularity for human body simulations. Internal structures are modeled to capture important effects

such as muscle bulges (i.e. biceps, Figure 12) that result from joint articulation. Generally these

anatomic structures are animated using physics-based models which provide increased realism with

the compromise of increased complexity (Ferdi, et al., 1997).

(a) (b) (c)

Figure 12 (a) Smooth skinning, (b) Anatomic deformation and (c) Underlying musculature
(Courtesy of (Michael, et al., 2005))

Modeling of a human body using anatomical concepts employs kinematic models, physical-based

models, and behavioral models. Human body contains over 200 bones that allow muscle attachment

definition, which is approximately half of the body, and rigid skeleton that determines the general

shape of human body. Among the anatomical systems that determine the outer shape, the musculature

is the most complex one. Muscles are arranged side by side and in layers on top of bones and other

muscles. It determines the shape of outer surface which is skin. Muscle can be divided into three

major types; skeletal muscles, cardiac muscles, and smooth muscles. Muscle produces a force over a

bone since it is attached to bones at least two joint points where it may be fixed or movable (insertion)

type (Ferdi, et al., 1997; Nedel & Thalmann, 1998). This compound and complex system can create

various movements as seen in Figure 13 such as;

(a) rotation around one axis,

(b) compound rotation around two or three axis,

(c) translation in one to three dimensions,

(d) rotations combined with translations,

(e) axis sliding during rotation.

 21

Figure 13 Behavior of the various muscle models with flexion at the elbow joint and resulting
skinning (Courtesy of (Ferdi, et al., 1997))

These allowable motions within physical constraints lead to high level of mobility hence complex

motion control system is needed. Isolation of body parts can be assumed for simplification but in

reality human body works in synergy which means such simplifications may sacrifice realistic

animation. Shoulder, spine, forearm, and head are typical examples which accuracy is sacrificed for

simplicity. Using flexible surface near joint is poor approximation due to large set of possible

deformations which occurs in its vicinity. (Ferdi, et al., 1997) Anatomy-based models generally use

layered approaches where human body is divided into three major layers (Figure 14);

(a) skeleton - rigid body,

(b) intermediate layer – muscle, fat and various soft tissues,

(c) skin – outer surface.

(a) (b) (c)
Figure 14 (a) Skeleton and surface, (b) Skeleton and muscles, (c) Skin

(Courtesy of (Michael, et al., 2005))

Stick figure models, surface models, and volume models are the other alternatives which can be

used separately or within layered approach. Usually ellipsoids are (Figure 15) used for volume models

 22

since they resembles musculature well and easy to represent and manipulate mathematically.

Metaballs or implicit functions are used in combination with applied musculature model to triangulate

and render skin (Aubel & Thalmann, 2001).

Figure 15 Ellipsoid musculature model with different poses
(Courtesy of (Ferdi, et al., 1997))

Each one of these models can be used to model muscles, fatty tissue and skin. Between the skin

and fascia or between deep organs fatty tissue slides relatively freely over the fascia whereas skin

clings tightly to the fat. Fatty tissues are non-linearly viscoelastic, do not resist much to tension, and

are considered incompressible. Skin is non-homogenous, anisotropic, non-linear viscoelastic, and

nearly incompressible material. Age, obesity and exposure are some factor to determine its

mechanical properties. Skin is outer layer and unlike the fat layer it shows preventive characteristics

for protecting internal structures by resisting to stress (Nedel & Thalmann, 1998).

 23

CHAPTER 2

REPRESENTATIONS: QUATERNIONS AND DUAL-

QUATERNIONS

2.1 Overview

We have already given brief information about transformation matrices such as rotation,

translation and scaling matrix in the previous chapter. Especially, GDMs rely on rotation and

translation data. Though working solely with translations is not so problematic, incorporating

rotations can be quite a burden. Our main goal is to achieve a virtual human animation. So, one must

find a convenient way to represent the configuration of the skeleton in a particular time frame. Wrong

choice of representation can lead to many orientation and key frame interpolation problems in the

animation process. In this chapter, we will give brief information about the well known orientation

representations, their advantages and disadvantages. Between these representations, we will lay

emphasis on quaternion which is a prerequisite for DQ. Consequently, we will give detailed

information about DQ which is used in our implementation.

2.2 Orientation Representations

Orientation representations are at the heart of computer animation. It is quite an old subject.

Preliminary representations suffered from some problems such as gimbal lock and erroneous

interpolation of transformations. Later on, more convenient ways are proposed to represent the

arbitrary orientation of an object in 3D space. More detailed information about these orientation

representations can be found in Parent (2002).

Matrix representation is one primitive orientation representation. In 3D space an orientation can

be represented by a 3x3 matrix. In Figure 16, two matrices and a halfway interpolation of them are

shown. Matrix in Figure 16.a represents a 60o rotation around y axis and Figure 16.c represents a -60o

rotation around y axis. Figure 16.b is the interpolated one.

 24

(a) (b) (c)
Figure 16 Halfway interpolation of (a) and (c) results in (b)

Halfway interpolation of 60o and -60o is 0o rotation. Thus, matrix in Figure 16.b must be a zero matrix

with no rotation effect. That shows us that matrix representation has serious problems while

interpolating between animation key frames.

Another problematic representation is fixed angle representation. A 3D vector whose components

are rotation angles about global axes (global coordinate) in fixed order is defined for orientation.

Thus, (30, 45, -60) represents an object that rotates about x axis 30o, y axis 45o and z axis -60o

respectively. This representation exposes the infamous gimbal lock problem. Consider the case where

a 3D vector (0, 0, 1) is rotated by the fixed angle vector (90, 60, -30). 90o of rotation about transform

the vertex to position (0, 1, 0). Since, result lies along the y axis, second rotation of 60o will have

definitely no effect on vector position. Besides, when the vector (0, 0, 1) is exposed to the fixed angle

rotation (90, 0, -90) or (0, -90, 0), new vector position will be (1, 0, 0) in both cases. It is clear that in

such cases, degree of freedom reduces to two and a rotation can not be defined uniquely. This is the

main reason which causes the gimbal lock. Gimbal lock is yet another reason for undesired

interpolation. Also note that the order of axis selection affects the result of a rotation. So it is not

possible to represent all rotations in the 3D space with just three parameters.

Figure 17 Euler’s angle

Euler’s angle representation is a very similar representation to fixed angle representation. Just like

fixed angle, rotations are represented by three rotation angles. Euler’s angle representation rotates the

object in its own local coordinates. These local axes are known as Yaw, Roll and Pitch which are

shown in Figure 17. In Parent (2002), it is proven that Euler’s angle representation ()ryp ,, is in

reverse order in fixed angle representation ()pyr ,, . Thus, they exactly depict same properties.

















0.766000.6428-

010

0.642800.7660

















0.766000.6428

010

0.6428-00.7660

















0.766000

010

000.7660

 25

Axis-angle representation evolves from Euler's rotation theorem. Euler’s theorem shows that any

two orientation given for an object, one can be derived from the other by a pure rotation about a single

axis. Angle-axis representation is composed of two parts: the rotation angle α and 3D vector a

representing the axis which the object rotates about. Vector a can be shown as ()zyx aaa ,, . Hence,

axis-angle is a four dimensional representation denoted by ()a,α or ()
zyx aaa ,,,α . Figure 18 shows

how a point is rotated around an axis by angle of α .

Figure 18 A point rotated around an axis by angle α

Axis-angle representation prevents gimbal lock. Besides, it is really a very intuitive way of

representing an orientation.

2.3 Quaternions

Quaternions were first described by the Irish mathematician Sir William Rowan Hamilton in

1843. Indeed quaternion representation and axis-angle representation are very similar. Both are

represented by four dimensional vectors. Quaternion also implicitly represents the rotation of a rigid

object about an axis. Quaternion representation is not as intuitive as axis-angle representation. But, it

provides better means of key frame interpolation and doesn’t suffer from the problems that we

mentioned just like axis-angle representation. The definition of a quaternion can be given as ()ms, or

()zyxs ,,, where m is a 3D vector. In reality, quaternions are like imaginary numbers with the real

scalar part s and imaginary vector m . Thus, it can be also written as zkyjxis +++ . This is

similar to 2D rotations being represented by standard imaginary number and quaternion operations are

similar to operations of standard imaginary numbers. There are conversion methods between

quaternions, axis-angle and rotation matrix. Common operations such as addition, inner product etc.

ban be defined over quaternions. Derivations and proofs about quaternions can be also found in

(Eberly, 2006). Given the definitions of 1q and 2q :

kzjyixsq 11111 +++= or ()111 ,msq =

kzjyixsq 22222 +++= or ()222 ,msq =

Addition operation is defined as

 26

() () () () ()kzzjyyixxssmmssqq 21212121212121 , +++++++=++=+ ,

dot (inner) product operation as

21212121 mmssqqqq •+⋅==•

and quaternion multiplication operation as

()211221212121 , mmmsmsmmssqq ×+⋅+⋅•−⋅=⋅ (Equation 2. 1)

where × indicates the cross, . is scalar and • is dot product. Quaternion multiplication is not

commutative, but it is associative. And multiplication identity element is defined as ()()0,0,0,1 . One

can also perform the multiplication in the imaginary number domain by using the definition

zkyjxisq +++= and Table 1.

Table 1 Quaternion component multiplication

 1 I j k

1 1 I j k

I i -1 k -j

J j -k -1 i

K k J -i -1

Each quaternion has a conjugate
∗q and an inverse (except zero quaternion) defined by

()msq −=∗ ,
 and (Equation 2. 2)

∗− ⋅









= q

q
q

2

1 1
 where qqqqzyxsq ⋅=⋅=+++= ∗∗22222

Rotations are defined by unit quaternions. Unit quaternions satisfy 1=q . Since multiplication

of two unit quaternions will be a unit quaternion, N rotations can combined into one unit quaternion

Rc as:

RNRRRR qqqqc K321 ⋅⋅=

It is also possible to rotate a vector directly by using quaternion multiplication. To do this, we

must define 3D vector),,(ZYX vvvv = that we want to rotate in quaternion definition as

() kvjvivvq ZYXV +++== 0,0 . And, the rotated vector)',','(' ZYX vvvv = can be defined as

() kvjvivvq ZYXV '''0',0' +++== . Note that, in quaternion rotation equation
1−

Rq can be

replaced by
∗
Rq , since

∗− = RR qq 1
 is true for 1=Rq (unit quaternion). So, rotation of Vq by

quaternion Rq can be calculated as

 27

∗− ⋅⋅=⋅⋅= RvRRvRV qqqqqqq
1' (Equation 2.3)

And, two rotations can be applied to the vertex v in quaternion math such as

() () () ()1111' −−−− ⋅⋅⋅⋅=⋅⋅⋅⋅= RRvRRRRvRRV pqqqppqqqpq

1' −⋅⋅=⇒⋅= RvRvRRR cqcqqpc (Equation 2.4)

where Rq and Rp are rotation quaternions and Rc is the combined rotation quaternion. The equation

implies that vector v is first rotated by rotation represented by Rq and then Rp . Principal purpose of

quaternions are interpolating and combining rotations successfully. In that sense, one can convert a

combined and interpolated quaternion to a 4x4 affine rotation matrix to use with a 3D graphics API.

Now that we have some basic knowledge about quaternion mathematics, it is time that we look

into conversion from axis-angle to quaternion. To convert an axis-angle ()ZYX aaa ,,,α into

quaternion ()zyxs ,,, , we apply the formula:

() ()

()kajaia

aaazyxsq

ZYX

ZYX

++⋅







+







=









⋅















==

2
sin

2
cos

,,
2

sin,
2

cos,,,

αα

αα

 (Equation 2.5)

Thus, quaternion q defines a rotation about axis a (denoted by ()ZYX aaa ,,) with an angle α . If

axis a is a unit vector, then outcome quaternion will also be unit. From the definition we can infer

that qq −= since, rotating α degrees around axis a is equal to rotating α− degrees around axis

a− . Proof can found in (Parent, 2002).

One of the most important issues is how to interpolate quaternions. An established interpolation

function called SLERP is used for that purpose. It is a slow interpolation function. Function

parameters are t , 1q and 2q which are respectively interpolation step, quaternion one and quaternion

two. SLERP is a spherical interpolation, so it is much appropriate for interpolating rotations. Function

is especially used for key frame interpolation. We will give more detail about SLERP in Section 4.2.

Another important issue is to convert the quaternions to the valid hand coordinate system. If

rotations are given for the right-handed coordinate system, then they can be converted to left-handed

coordinate system just by taking the conjugate.

2.4 Dual Quaternions

DQs are proposed by William Kingdon Clifford in 1873. Clifford called it biquaternion at that

time. DQs are an extension of quaternions. It is important for us to understand them, since Dual

quaternion skinning which we implemented operates with DQ mathematics. Additional information

about them can be found in (Kavan, 2007) and ("Maths - Dual Quaternions,"). They represent both

 28

rotations and translations whose composition is known as rigid transformation. They are represented

by eight dimensional vectors:

()εεεε zyxszyxs ,,,,,,, (Equation 2.6)

or by four dimensional vectors with dual elements such as:

() ()zyxsms ˆ,ˆ,ˆ,ˆˆ,ˆ =

where ()zyxs ,,, is non-dual part and ()εεεε zyxs ,,, is the dual part. DQs can be considered as

quaternions whose elements are dual numbers such as ŝ that is denoted by εεsss +=ˆ . If we gather

dual and non-dual elements together, we can form two separate quaternions. So, a DQ is indeed

composed of two quaternions. One quaternion is the non-dual part q , other is the dual part εq . q is

the quaternion vector ()zyxs ,,, and εq is the quaternion vector ()εεεε zyxs ,,, . q̂ can be

written as εεqqq +=ˆ where ε is the dual unit satisfying condition 02 =ε . Thus, we can expand

a DQ as

)(ˆ kzjyixszkyjxisqqq εεεεε εε +++++++=+=

2.4.1 Properties of Dual Quaternions

If we define two dual DQs 1q̂ and 2q̂ :

111ˆ εεqqq += , 222ˆ εεqqq +=

then, DQ multiplication can be defined as

() () ()122121221121 ˆˆ
εεεε εεε qqqqqqqqqqqq +⋅+⋅=+⋅+=⋅

where the term 021
2 =⋅⋅ εεε qq because of the definition 02 =ε . And, all other terms can be

multiplied as any other quaternion just like (Equation 2. 1) in previous section.

The dual conjugate (analogous to complex conjugate) q̂ is denoted by s

εεqqq −=ˆ (Equation 2.7)

This conjugate operator can lead to the definition of inverse of
1ˆ −q which is

2

1 1

ˆˆ

ˆ

ˆ

1
ˆ

q

q

qqq

q

q
q εε−=

⋅
==−

when 0≠q . A dual number without a non-dual part (0=q) is called purely dual number and it has

no inverse.

Let’s analytically solve
1ˆˆ −⋅ qq to verify that stated

1ˆ −q is really the inverse of q̂ ,

 29

() 1
1

ˆˆ
222

1 ==+−=







−⋅+=⋅ −

q

q

q

q

q

q

q

q

q

q

q
qqqq εεε

ε εεεε

A second conjugation operator is defined for DQs. It is the classical quaternion conjugation and is

denoted by
∗∗∗ += εεqqq̂ where conjugation of dual and non-dual quaternion parts is (2.2).

Combining this two conjugation operator will lead to the formulization of DQ transformations on 3D

points. Use of both conjugation on q̂ can be denoted as
∗q̂ . By the definitions (2.2), (2.6) and (2.7),

()εεεε zyxszyxsq ,,,,,,,ˆ −−−−=∗
 (Equation 2.8)

By using the second conjugate operator, we can define the DQ norm as

q

qq
qqqqqq

εε+=== ∗∗ ˆˆˆˆˆ

DQ norm conforms to the multiplicative property 2121 ˆˆˆˆ qqqq ⋅= . A DQ which satisfies the

conditions 1ˆ =q and 0=εqq is a unit DQ.

DQs naturally inherit some properties of regular quaternions. Just like regular quaternions,

qq ˆˆ −= represent the same transformation. Unless it is considered during DQ interpolation, this may

lead to unsightly animation.

2.4.2 Rotation with Dual Quaternions

DQ transformation formula is defined as a series of DQ multiplication which similar to

quaternion transformation formula (2.3). DQ transformation formula is

() ()∗∗∗ ⋅⋅=⋅⋅=⋅⋅= RVRRVRRVRV qqqqqqqqqq ˆˆˆˆˆˆˆˆˆ'ˆ (Equation 2.9)

Since, DQ multiplication is associative, computing ()VR qq ˆˆ ⋅ or ()∗⋅ RV qq ˆˆ as first is irrelevant.

Given that 0=εq , a DQ represents only a 3D rotation (qq =ˆ). Such DQs can be used to define

rotation of a 3D vector),,(ZYX vvvv = . v can be defined as a DQ in the

()kvjvivq ZYXV +++= ε1ˆ form. Then, rotation of v by Rq̂ can be denoted by the equation

(2.9) where 'ˆ
Vq represents the DQ from of transformed vector)',','(' ZYX vvvv = and can be

expressed as ()kvjvivq ZYXV '''1'ˆ ++⋅+= ε . If 0=εq then, by definitions (2.8) and (2.2) it is

true that
∗∗ = qq̂ is satisfied and

∗∗ ⋅⋅=⋅⋅ qqqqqq VV
ˆˆˆˆ can be expanded to

()() () ∗∗∗ ⋅++⋅⋅+⋅=⋅++⋅+⋅= qkvjvivqqqqkvjvivqq ZYXZYXV εε1'ˆ

() () ∗⋅++⋅⋅+=+++ qkvjvivqkvjviv ZYXZYX εε 1'''1

() () ∗⋅++⋅=++ qkvjvivqkvjviv ZYXZYX '''

 30

which leads to the quaternion multiplication equation (2.3) for rotation denoted by

∗⋅⋅= RVRV qqqq ' . In Figure 19, rotation of a triangular prism around an axis is shown. Numbers

indicate the time frames of animation. “1” and “9” label the initial and final positions of the object

respectively. Note that, dashed lines darken as the time frame index increases.

1

9

2

8

3

7

4

6

5

Figure 19 Rotation of a triangular prism around an axis in 3D space

Example 2.1: Since we have gone through the operations about DQs representing rotations, we

can give a numerical example.

We have a 3D position vector)0,1,1(=v . What we want is to rotate v °180 around the axis

)10,10,10(=a .

Step1: Convert all representations to DQ representation

Convert v to DQ: representation ()kjiqV 0111)0,1,1,0,0,0,0,1(ˆ ++⋅+== ε

Convert axis-angle to DQ: We have a data in axis-angle representation)10,10,10,180(° which

means °180 rotation around)10,10,10(=a . So, we must form a rotation DQ Rq
)

 whose non-dual

part is a standard rotation unit quaternion Rq and dual part 0=εq . To do so we must convert the

axis-angle representation data)10,10,10,180(° to Rq . Since we want our DQ to be unit DQ, we

better make use ua which is unit vector of a . Unit form of a is ()0.5774 0.5774, 0.5774,=ua .

Axis-angle can be converted to a quaternion by the formula (2.5)

()kjiqR 0.57740.57740.5774
2

180
sin

2

180
cos ++⋅








+







=

) 0.5774 0.5774, 0,0.5774,(0.5774k0.5774j0.5774i =++== RR qq
)

from definitions (2.8) and (2.2),

) 0.5774- 0.5774,- 0,-0.5774,(0.5774k-0.5774j-0.5774i =−==
∗∗

RR qq
)

Step2: Using DQ transformation formula (2.9), calculate the solution

 31

Now, we have everything we need to calculate the 'Vq which is the rotated DQ form of 'v from

the formula (2.9). Quaternion multiplications can be done by using operator definition (2.1) or Table

1.

() ∗∗ ⋅⋅=⋅⋅= RVRRVRV qqqqqqq ˆˆˆˆˆˆ'ˆ

() ()()kjiqq VR 01110.5774k0.5774j0.5774iˆˆ +++⋅++=⋅ ε

()jiqq VR 0.5774-0.57741.1547-0.5774k j 0.5774 0.5774iˆˆ +++++=⋅ ε

() ()()
()0.5774k-0.5774j-0.5774i

0.5774-0.57741.1547-0.5774k j 0.5774 0.5774iˆˆˆ

−⋅

+++++=⋅⋅ ∗ jiqqq RVR ε

()1.3333k0.3333j 0.3333i1'ˆ +++= εVq

Since result DQ is in form ()kvjvivq ZYXV '''1'ˆ ++⋅+= ε , we can extract the result position vector

()',','' ZYX vvvv = as

()333,1.33330.3333,0.3'=v

Note: Since ua is a unit vector, Rq is a unit quaternion satisfying condition

() ()() 1sincos
2

2

22
=⋅+= aqR αα

2.4.3 Translation with Dual Quaternions

DQs also represent translation. A DQ defined as ()ktjtitq ZYXT +++=
2

1ˆ
ε

 corresponds to

the translation vector ()ZYX tttt ,,= . As defined before vq̂ is the DQ representation of position

vector v and 'ˆ
vq is the DQ representation of translated vector),,(' ZZYYXX tvtvtvv +++= .

So, the translation t on the vector v can be computed by
∗⋅⋅= TVTv qqqq ˆˆˆ'ˆ . Fortunately, by the

definition (2.8) we have TT qq ˆˆ =∗
. So that, we can expand the translation equation to

() ()() ()







+++⋅+++⋅








+++

=⋅⋅=

ktjtitkvjvivktjtit

qqqq

ZYXZYXZYX

TVTV

2
11

2
1

ˆˆˆ'ˆ

ε
ε

ε

() () ()()ktvjtvitvqqqq ZZYYXXTVTV ++++++=⋅⋅=⇒ ε1ˆˆˆ'ˆ

Figure 20-a shows a simple dual quaternion translation. Nine triangular prisms are connected with

dashed lines to an axis in Figure 20-a. A translation is not related to any axis, but that axis will just be

used as a reference to make a comparison between Figure 20-a and Figure 20-b in Section 2.4.3

 32

9
8

7
6

5
4

3
2

1

5

4

6

3

7

2

1

8

9

(a) (b)
Figure 20 In (a) there is only translation and in (b) rotation around the axis is added to same
translation

Example 2.2: We will make a translation example by using DQs similar to Example 2.1. Steps

are same.

We have a 3D position vector)5,12,8(−−=v . What we want is to translate v by ()9,9,5=t

using translation DQ.

Step1: Convert all representations to DQ representation

Convert v to ()kjiqV 51281)5,12,8,0,0,0,0,1(ˆ −+−⋅+=−−= ε

Convert translation t to () ()kjikjiqT 5.45.45.21995
2

1ˆ +++=+++= ε
ε

.

by definitions (2.8), () ()kjikjiqT 5.45.45.21995
2

1 +++=+++=
∗

ε
ε)

Step2: Using DQ transformation formula (2.9), calculate the solution

() ∗∗ ⋅⋅=⋅⋅= TVTTVTV qqqqqqq ˆˆˆˆˆˆ'ˆ

()() ()()kjiqq VT 51281.5k4.5j42.5i1ˆˆ −+−+⋅+++=⋅ εε

()0.5k.5j165.5i- 1ˆˆ −++=⋅ εVR qq

() ()() ()().5k4.5j42.5i10.5k.5j165.5i- 1ˆˆˆ +++⋅−++=⋅⋅ ∗ εεTVT qqq

()4kj12 3i-1'ˆ +++= εVq

so the result is ()4k,j12, 3i-'=v

Note: If ()kjiqV 51281ˆ −+−+= ε was multiplied by ()kjiqT 9951ˆ +++= , the result

would be the same. But, using half of the a translation as DQ such as ()ktjtitq ZYXT +++=
2

1ˆ
ε

on formula (2.9) makes it possible to combine translations and rotations

 33

2.4.4 Dual Quaternions Representing Both Rotation and Translation

Transformation represented by DQs can be combined into one DQ similar to the quaternion

combination (2.4). Assuming p
)

 and q
)

 are two transformation DQs and vq is the a position DQ,

their combined transformation c can applied to vq just as

() () () ()∗∗∗∗ ⋅⋅⋅⋅=⋅⋅⋅⋅= pqqqppqqqpq vvV

)))))))))
' (Equation 2.10)

∗⋅⋅=⇒⋅= cqcqqpc vv

)))))
'

It is vital to understand that which transformation will be applied to vq first. From the associative

rule and parenthesis in (2.10), we infer that vq will be first multiplied by q
)

 from left and
∗q

)
 from

right to generate a new position. This new position will then be multiplied by p
)

 from left and
∗p

)

from right to generate final position 'Vq
)

. This proves that most inner transformation of the equation is

applied first with an inside to outside manner. So, the first transformation is q
)

 and the second one is

p
)

.

Up to now, we have separately defined how translation and rotation operations can be done. To

complete the work, we have to define an equation that will combine both translation and rotation. We

already know that multiplying unit DQs will always result in another unit DQ. So, we will multiply a

unit rotation DQ and a unit translation DQ. A unit rotation DQ is RR qq =ˆ and a unit translation DQ

is

()ktjtitq ZYXT +++=
2

1ˆ
ε

. (Equation 2.11)

and their composition is

() () RZYXRRZYXRT qktjtitqqktjtitqq ⋅+++=⋅







+++=⋅

22
1ˆˆ

εε
 (2.12)

It can be proved from the equation (2.12) that any unit DQ εεqqq +=ˆ can be separated to its

translation and rotation components.

() RZYXR qktjtitqqqq ⋅+++=+=
2

ˆ
ε

ε ε

Rotation is represented by the non-dual part Rqq = . And, with a little quaternion math it can proved

that Tq̂ (2.11) can be represented as
∗⋅⋅ qqε2 by the derivation

() () ∗∗ ⋅⋅++=⋅⋅⇒⋅++= RRZYXRRZYX qqktjtitqqqktjtitq εε

ε
ε 2

2

()ktjtitqq ZYX ++=⋅⋅⇒ ∗
ε2

 34

where
1−∗ = RR qq for quaternions.

In Figure 20-a (in Section 2.4.3), we have shown a translation. The triangular prism was

translating away from the reference axis. In Figure 20-b, a rotation around that reference axis is also

combined into the same transformation. Note that while prisms are rotating around the reference axis,

they also move away from it.

Example 2.3: We will make a combined transformation example with both translation and a

rotation around an axis.

We have a 3D position vector)5,2,3(=v . What we want is to translate v by ()5,2,1 −=t

then rotate it °180 around axis)10,10,10(=a by using combined transformation DQ.

Step1: Convert all representations to DQ representation

Convert axis-angle)10,10,10,180(° to rotation DQ

()kjiqR 0.57740.57740.5774
2

180
sin

2

180
cos ++⋅








+







=

) 0.5774 0.5774, 0,0.5774,(0.5774k0.5774j0.5774i =++== RR qq
)

Convert v to ()kjiqV 5231)5,2,3,0,0,0,0,1(ˆ ++⋅+== ε

Convert translation t to () ()jjikjiqT 5.215.01521
2

1ˆ −++=−+++= ε
ε

.

Step2: Using DQ multiplication combine rotation and translation DQs into c
)

() ()()jjiqqc TR 5.215.010.5774k0.5774j0.5774iˆˆ −++⋅++=⋅= ε
)

()0.2887k1.7321j2.0207i-0.57740.5774k0.5774j0.5774i +++++= εc
)

()0.2887k1.7321j2.0207i-0.5774-0.5774k0.5774j0.5774i +++−−−=∗ εc
)

Step3: Using DQ transformation formula (2.9), calculate the solution

() ∗∗ ⋅⋅=⋅⋅= cqccqcq VVV

))))
ˆˆ'ˆ

()()
()()kji

qc V

5231

0.2887k1.7321j2.0207i-0.57740.5774k0.5774j0.5774iˆ

++⋅+⋅

+++++=⋅

ε

ε
)

()0.2887k-0.5774j0.2887i-5.1962-0.5774k0.5774j0.5774iˆ ++++=⋅ εVqc
)

() ()()
()()0.2887k1.7321j2.0207i-0.5774-0.5774k0.5774j0.5774i

0.2887k-0.5774j0.2887i-5.1962-0.5774k0.5774j0.5774iˆ

+++−−−⋅

++++=⋅⋅ ∗

ε

εcqc V

))

()5.3333k1.3333j 1.3333i1'ˆ +++= εVq

The result is ()333,5.33331.3333,1.3'=v

 35

2.4.5 Behaviors of Dual Quaternion Transformations

In this section, we will discuss the behaviors and affects of dual quaternion transformations by

giving some figures. In Section 2.4.3, we already show translation in Figure 21-a and in Figure 21-b

we add the rotation affect to it. In Figure 21-b we can not observe any screw affect since the prisms

only translate away from the axis. In Figure 21-b, the screw movement occurs just by adding a

translation along the reference axis to the rotation shown in Figure 21-a.

 In Figure 22, another screw movement is shown from different view points. DQs in form of

(2.12) can make screw movement. Screw movement can not achieved by any other representation we

mention in this chapter.

A three way of transformation is shown in Figure 23 from two different views. Prisms are

translating, rotating and being affected by axis change. Note that in Figure 23-a, prisms move in

manner that they form a shape similar to an ellipse. This is due to the axis change. Prism is fallowing

the reference axis since it is rotating around the axis.

1

9

2

8

3

7

4

6

5

9

1

8

2

3

7

4

6

5

(a) (b)
Figure 21 (a) shows rotation only and (b) shows both translation and rotation

9

1

8

2

7

3

6

4

5

9

8

1

2

7

3

6

4

5

(a) (b)
Figure 22 (a) and (b) shows the same screw movement from different angles

 36

3

4

2

5

1

9

6

8

7

7

8

6

9

1

5

2

4

3

(a) (b)
Figure 23 (a) and (b) shows the effects of both translation, rotation and axis change

Apparently, DQ is a quite capable representation. In Section 4.4, we will explain how it can be

used in virtual 3D character animation and discuss why it doesn’t suffer from some defects of SSD

such as elbow collapse.

 37

CHAPTER 3

SKELETON ANIMATION WITH SKELETON SUBSPACE

DEFORMATION AND DUAL-QUATERNIONS SKINNING

3.1 Overview

In this chapter, we will give the implementation details about both SSD and DQS. Our tool makes

use of these two GMs. To create an animation of a virtual character, one must compose and display

separate deformed states of a human character model into a logical sequence. But, we will only focus

on how we can create one state of deformed character model at a particular time t in the animation

sequence. In the end, this is what a GM does to deform a mesh model according to the particular

skeletal configuration at time t . We will first give information about the skeletal structure, the mesh

model structure and the data that binds them. Then, we will explain how SSD and DQS operate on

such data by explaining each step of algorithms and give pseudo codes if necessary

3.2 Articulated Skeleton Structure

All geometric deformation methods use control points or similar approaches to deform a model

(3D mesh model). This approach has many advantages over the ease of use during shape deformation.

First of all, it will be much easier and intuitive for a designer to deform the whole model through very

few control inputs compared to the all vertices of model. Skeleton is an articulated structure to drive

the deformation of a model to serve the common purpose. It abstracts the details of the model

deformation from the animation controller whether it is a human designer or automated computer

procedure. Another great advantage of using skeleton is to reduce the data representation to define the

model deformation.

A skeleton is a structure composed of bones which have mass, volume and many other physical

attributes. These bones are attached to each other by joints which are composed of ligaments, cartilage

tissue, etc. Anatomical and physical methods make use these to some extent. But, all of these issues

are irrelevant when it comes to GMs. A skeleton is only a virtual articulated structure which is

composed of virtual bones and joints, and defines a direct deformation on the related mesh model

 38

without conforming physical rules. In most of the applications such as games, they are not even

supposed to be rendered in the scene. In the cases where bones are presented, they are generally

represented by basic geometric shapes (triangular prisms, cylinders, etc) that align between two joint

positions. Bones are expected, but not obliged, to be fixed length. There are parent-child relations

defined for both bones and joints. The most top level joint of the joint hierarchy is known to be root

joint.

In GM case, a skeleton is basically defined by the local transformation of each bone. The position

of a joint is directly determined by its own local transformation and local transformations of its

parents and ancestors. So, the local transformation of root joint will affect the whole skeleton. As an

example, we will show how a skeletal pose in 2D space can be defined by only translations and

rotations. First of all, we define a skeleton with its joint and bone names and its hierarchy in Figure

24.

Figure 24 A sample bone hierarchy

The bone structure will be formed by a recursion defined by the pseudo code:

Function CalculateBoneVertexPosition(currentBone, combinedTransformation)

begin

positionZero = [0 0 0 1];

combinedTransformation =

combinedTransformation * currentBone:localTransformation;

currentBonePosition = combinedTransformation * zeroVec;

 for each childBone of currentBone

CalculateBoneVertexPosition(childBone, combinedTransformation);

end

The recursion begins with the root bone (bone1) which is the top level bone of skeletal structure. So,

the initial input of currentBone is bone1. Identity transformation must be used for the initial

combinedTransformation input parameter. In each step of recursion,

currentBone:localTransformation is combined with the input parameter combinedTransformation.

The combined transformation will define the bone in the current recursion step. The joint positions at

the end of the bones are calculated by transforming zero vertex with combinedTransformation. This

concept is to be comprehended well because it is in the heart of SSD and DQS.

root_joint joint1 joint11 joint111

joint12 joint121

bone1 bone11 bone111

bone121 bone12

 39

-5 0 5

-10

-5

0

a

x-axis

y
-a

x
is

root joint

-5 0 5

-10

-5

0

b

x-axis

y
-a

x
is joint1

-5 0 5

-10

-5

0

c

x-axis

y
-a

x
is

joint11

-5 0 5

-10

-5

0

d

x-axis

y
-a

x
is

joint111

-5 0 5

-10

-5

0

e

x-axis

y
-a

x
is

joint12

-5 0 5

-10

-5

0

f

x-axis

y
-a

x
is

joint121

Figure 25 Step by step evaluation of the recursive skeleton formation

Figure 25 shows a 2D example of recursive construction steps of a skeletal configuration. Here,

the skeleton is created solely by translations and rotations. The local transformation is a combination

of local translation and rotation. Note that translation vector is in format []T
x 0 which means all

bones are initially aligned on x axis and x denotes the bone length. In Figure 25.f, the skeleton is

totally formed. In that example, all bone translations (lengths) are same, and it is the vector []T05 .

Bone local rotations are defined as:

bone1 (root_joint → joint1):
o90-

bone11 (joint1 → joint11):
o45- bone12 (joint1 → joint12):

o45

bone111 (joint11 → joint111):
o45 bone121 (joint12 → joint121):

o45-

Given the local translations and rotations, we can show how the position of joint111 is determined in

Figure 25.d. In the d step, the recursion will lead to a combined transformation such as:

()
() ()ntranslatiobonerotationbonentranslatiobonerotationbone

ntranslatiobonerotationboneonansformaticombinedTr

:3:3:2:2

:1:1

∗∗∗

∗∗=

and position of 111bone is calculated by

ropositionZeonansformaticombinedTrPosjo ∗=111int

So, starting from ropositionZe (origin), joint111 is translated by []T05 , rotated by
o90- ,

translated by []T05 , rotated by
o45- , translated by []T05 and rotated by

o45 . In the end, all

 40

these steps transforms joint111 from origin ()0,0 to Posjo 111int ().53553.5355,-13- . If we

keep the rotations same and give each bone different lengths such as

bone1 (root_joint → joint1) []T04:

bone11 (joint1 → joint11) []T02:

bone111 (joint11 → joint111) []T06:

-5 0 5

-10

-5

0

x-axis

y
-a

x
is

joint111
x

y

Figure 26 Skeletal configuration in the third recursion step with new bone lengths

then joint111 would have been at position ().41421.4142,-11- just like in Figure 26.

Transformations other than rotations or translations can also be used for local transformation.

Note that every joint initially stands at the origin and its local translation represents the bone

originated by this very joint that aligns in x axis. There is no restriction about choice of axis. If each

bone should be align on a particular axis such as []T2121 , then the translation vector should

be defined as []T

22 to represent a bone with length of 2. Different kind of representations can

be used to define a skeleton as we will explain in DQS. T he same principle applies to 3D skeleton as

well

3.3 Skeleton Subspace Deformation

We have already given brief information about SSD in section 1.3.1.1. In this section, we will

explain SSD and its implementation in detail and make further analysis by giving examples and

figures. First of all, let us remind the SSD blending equation.

∑
−

=

−=
1

0

1
,Re

n

k

kstkk vMMwv

The most problematic term in the equation is possibly
1

,Re
−

kstM . We mentioned that
1

,Re
−

kstM

transforms vertex v to the local coordinate of bone k in the rest pose. We will call
1

,Re
−

kstM the skin

offset transformation (SOT). To simplify things, we will assume that the vertex v on the skin (2D

 41

mesh model) is influenced by only one bone with index k (no weights used). We will give a 2D

example with a skeleton and a skin vertex v to make clear how things work, about SOT. In Figure

27.a, a 2D skeleton in dress pose is presented. That pose of skeleton is used to bind each vertex of the

skin to related bones by determining bone influences on the vertex. The dress pose skeleton is formed

and positioned in such a way that it is enveloped by the skin.

-5 0 5
-16

-14

-12

-10

-8

-6

-4

-2

0

a- Dress Pose

joint 3

bone 3

V

x

y

offset V

-5 0 5
-16

-14

-12

-10

-8

-6

-4

-2

0

b- Arbitrary Pose

joint 3

bone 3

deformed V

x

y

Figure 27 Use of SOT

In our example, vertex v denoted by the green square in Figure 27.a represents a vertex on the

enveloping skin which is also in dress pose. And it is only influenced by bone 3 ()3=k . The dress

pose of the skeleton is defined by the transformations

bone1 (root_joint → joint1): []T05&60- o

bone2 (joint1 → joint2): []T05&30- o

bone3 (joint2 → joint3): []T05&22.5o

As described in previous section, the position of joint 3 ()13.9495- 4.4134, is calculated by using

()
() ()ntranslatiobonerotationbonentranslatiobonerotationbone

ntranslatiobonerotationboneonDressansformaticombinedTr

:3:3:2:2

:1:13

∗∗∗

∗∗=

ropositionZeonDressansformaticombinedTrPosjo ∗= 33int

Consequently, joint 3 can also be transformed back to the origin by using the inverse of the combined

transformation defined by

()
() ()1111

111
3

:1:1:2:2

:3:3
−−−−

−−−

∗∗∗

∗∗=

rotationbonentranslatiobonerotationbonentranslatiobone

rotationbonentranslatioboneonDressansformaticombinedTr

PosjoonDressansformaticombinedTrropositionZe 3int1
3 ∗= −

Here,
1

3
−

onDressansformaticombinedTr is the SOT of bone 3. In our example, skin vertices

influenced by bone 3 are rotated by
o22.5- , translated by []T05− , rotated by

o30 , translated by

[]T05− , rotated by
o60 and translated by []T05− in order to be transformed to local

 42

coordinate frame of bone 3. In Figure 27.a, the vertex v (),-13.5 2.5 is the dress pose (original)

position denoted by green rectangle and 3offsetPosV is the offset position which is computed by

transforming vertex v by 3SOT . 3offsetPosV is denoted by blue rectangle and it resides in the

local coordinate frame of bone 3. We calculate the value of 3offsetPosV ()1.5957- 1.1475,- by

the equation.

vonDressansformaticombinedTrvSOToffsetPosV ∗=∗= −1
333

Dress pose of a skeleton and skin pair is determined before the SSD animation and remains

unchanged during the animation. Therefore, SOTs of each bone can be precalculated and reused

during animation.

To deform a skin vertex, it is enough to find the combined transformation of the bone k in an

arbitrary skeleton configuration and apply it to the 3offsetPosV . In Figure 27.b, deformed position

of vertex v is represented by green rectangle for the arbitrary pose of skeleton. The arbitrary pose is

defined by the transformations

bone1 (root_joint → joint1): []T05&90- o

bone2 (joint1 → joint2): []T05&45- o

bone3 (joint2 → joint3): []T05&201 o

Given such skeleton configuration, the deformed position of v which is influenced by Bone 3 will be

transformed to its deformed position 3sVdeformedPo ().07400.2274,-11- along with Joint 3

()9.8296- 1.2941, .

333 offsetPosVyonArbitraransformaticombinedTrsVdeformedPo ∗=

Given the equation vSOToffsetPosV ∗= 33 , the relation between 3sVdeformedPo and v can

be defined as

vSOTyonArbitraransformaticombinedTrsVdeformedPo ∗∗= 333

If we convert our representation to standard SSD representation

kk yonArbitraransformaticombinedTrM = ,

kkst SOTM =−1
,Re ,

kk sVdeformedPov =ˆ

13 =w and 0=kw 3, ≠∀ kk

3
1

3,Re33

1

0

1
,Re v̂vMMwvMMwv st

n

k

kstkk === −
−

=

−∑ , for the given example

This time, we will observe the affect of multiple influencing bones by incorporating weights. We

will give an example similar to previous one, but this time dress pose skin vertex v will be influenced

 43

by both Bone 2 and Bone 3. Influences of bone 2 and bone 3 on v are 0.3332 =w and

0.6673 =w respectively. In Figure 28.a the skeleton in dress pose is bound to the skin vertex v

denoted by the black triangle.

-5 0 5

-15

-10

-5

0

a- Dress Pose

bone 2

bone 3

x

y

-5 0 5

-15

-10

-5

0

b- Arbitrary Pose

bone 2

bone 3

x

y

Figure 28 Weighted Blending

According to the dress pose of skeleton, SOTs of bone 2 and bone 3 are derived. Subsequently,

offset positions of v are calculated for bone 2 and bone 3 which are denoted by green and yellow

squares in Figure 28.a respectively. In Figure 28.b, offset positions denoted by green and yellow

squares are transformed to their deformed positions 2v̂ and 3v̂ by their respective bones. One can

infer that final deformed position v can be derived from the weighted interpolation of 2v̂ and 3v̂ by

looking at the expanded SSD equation

3322

1

0

1

0

1
,Re ˆˆˆ vwvwvwvMMwv

n

k

kk

n

k

kstkk +=== ∑∑
−

=

−

=

−

In Figure 28.b, v which is denoted by black square is on the line connecting 2v̂ and 3v̂ . Note that,

v and is closer to 3v̂ than 2v̂ . This is due to the ratio between distance from 2v̂ to v and distance

from 3v̂ to v are inversely proportional with the ratio between 2w and 3w . The relation can be

denoted by 2332 ˆˆ wwvvvv =−−

Now that we have more insight about SSD blending equation, we can move to implementation.

Since SSD deformation is driven by bone transformations, we use a recursive routine analogous to the

previous section to traverse the bones of the skeleton. This time, the pseudo code is a bit more

complicated.

Function CalculateDeformedVerticesOfBone (currentBone, combinedTransformation)

begin

combinedTransformation =

combinedTransformation * currentBone:localTransformation;

currentBoneTransformation =

combinedTransformation * currentBone:SOT;

 44

DeformInfluencedVerticesOfCurrentBone(currentBone, currentBoneTransformation)

 for each child bone, childBone, of currentBone;

CalculateDeformedVerticesOfBone (childBone, combinedTransformation);

end

Second pseudo code belongs to function DeformInfluencedVerticesOfCurrentBone and used to

deform the vertices influenced by the currentBone.

Function DeformInfluencedVerticesOfCurrentBone(currentBone,

currentBoneTransformation)

begin

for each influenced vertex of currentBone

begin

deformedVertex = deformedVertex + currentBoneWeight *

currentBoneTransformation * originalVertex

end

end

Each bone contains a reference list to the influenced dress pose vertices along with the respective

vertex weight list. In this pseudo code, kk vw ˆ is calculated for each influenced vertex v of bone k

and is added to the deformed vertex v . For this implementation to function correctly, all of the

deformed vertices must be initialized to zero vertex. To deform a whole skin:

Iterate over all deformed vertices and set each to zero vertex;

CalculateDeformedVerticesOfBone (rootBone, identityTransformation);

We used a generalized transformation representation, but in SSD algorithm every transformation is

represented by a matrix. In 3D case, transformations are 4x4 affine matrices and vertices are 4x1

vectors.

The linear blending of vertices causes some serious defects. Since SSD is widely used in virtual

human animation, these defects have names such as collapsing elbow, twisting elbow and candy

wrapper. We will explain the reasons of collapsing defect by giving two 2D examples in Figure 29

and Figure 30.

-5 0 5

-15

-10

-5

0

a- Dress Pose

x-axis

y
-a

x
is

bone 2

bone 3

-5 0 5

-15

-10

-5

0

b- 30 degrees

x-axis

y
-a

x
is bone 2

bone 3

-5 0 5

-15

-10

-5

0

c- 105 degrees

x-axis

y
-a

x
is bone 2

bone 3

-5 0 5

-15

-10

-5

0

d- 180 degrees

x-axis

y
-a

x
is bone 2

bone 3

Figure 29 Collapsing Defect

 45

Figure 29.a is the binding pose. The vertex weights are 0.52 =w and 0.53 =w According to

the conjecture, bone 3 is at
o0 in this state. In b, bone 3 adducts towards bone 2 with o30 which

causes the deformed vertex v to get a bit close to joint 2. In c, distance from v to joint 2 decreased

significantly because of the angle
o105 . And finally, they totally overlap in d when it comes to

o180 . Note that, bone 3 also overlaps with bone 2.

0 5 10 15
-5

0

5
a- Initial Pose

x-axis

y
-a

x
is

bone 1 bone 2

0 5 10 15
-5

0

5
b- Twisted 180 degrees

x-axis

y
-a

x
is bone 1 bone 2

180
twist

Figure 30 Collapsing defect when upper arm twisted 180 degrees

 Another example is twisting elbow defect in 3D space. In Figure 30.a, there is a 3D skeleton in

its initial pose. Bone 1 is analogous to lower arm and bone 2 is analogous to upper arm. In the initial

pose upper arm is not twisted at all, so the deformed vertices 1v̂ , 2v̂ and blended deformation vertex

v are all located on the same position denoted by black square in a. Bone 2 is twisted around its own

axis for
o180 in b. 1v̂ (green rectangle) keeps its previous position where 2v̂ (yellow rectangle)

rotates to the its symmetrical position about the joint connecting bone 1 and bone 2. Given the

weights 0.51 =w and 0.52 =w , v (black rectangle) is positioned on the joint, causing a collapse

affect. Same defect can be observed when legs are twisted
o180 which is shown in Figure 31

Figure 31 A collapse is observed as leg twists 180 degrees

 46

The examples that we gave lead to serious collapse defects and volume losses of skin. Linear

vertex or matrix blending causes erroneous outcomes. Researchers always try to come up with

methods to overcome the undesired affects of linear blending while keeping the simplicity of

deformation. So, it still remains an open research area.

3.4 Dual-Quaternions Skinning

In section 1.3.1.2, we already make an introduction to DQS. DQS make use of DQs to ensure a

rigid deformation where no collapse and volume loss defects of SSD is observed. In his study, Kavan

(2007) defined how an ideal transformation blending should be for a rigid skinning. He formalized

and summarized the properties of such blending algorithms. Consequently, he proposed the DQS

method which has these properties. While overcoming the SSD defects, DQS still retains its

simplicity and real-time efficiency. For the same reasons, it is also possible to successfully map the

implementation to graphics hardware.

Another great advantage of DQS is that it is easy to adopt an application using SSD to use DQS

method. Because, DQS is able to use the SSD input data. To do so, one must convert the input

representation to DQ representation. Most of these conversions may not pose any problem. In direct-x

(.x) files, for example, rotations are already represented as quaternions. And translations are

represented as 3x1 vectors. These representations can be easily converted to DQs. On the other hand,

conversion of some input representations may be troublesome or even impossible. SOTs in .x files are

represented as matrices composed of transformations which are not affine alongside the translations

and rotations. Hence, there is no possibility for exact conversion from the matrix representation to DQ

representation and data loss is inevitable. Before we begin with implementation details, we will go

through how to convert between representations. In the previous chapter, we have covered how to

create a DQ from an axis angle representation and translation vector. To continue with, we should take

a look at how we can decompose a 4x4 affine matrix into 3D rotation and translation components. We

assume that matrix only contains rotation and translation.










10T

TR VM

This is 4x4 affine matrix where
T0 is the transpose of 3x1 zero vector. RM is the 3x3 rotation

matrix. TV is the 3x1 translation vector. On this basis, RM is converted to quaternion to compose the

non-dual part of the DQ where TV is used for dual-part of the DQ. Eberly (2006) gives detailed

information about the relation of quaternions, axis-angle representation and rotation matrices.

Conversion methods and their derivations are also available in that source. Since all skin vertices are

transformed by matrix multiplication, conversion from DQs to matrices is crucial. Given the DQ

()εεεε zyxszyxs ,,,,,,, and a 4x4 matrix

 47



















1000
34333231

24232221

14131211

aaaa

aaaa

aaaa

the relation between two can be defined as rotation matrix RM

22
11 221 zya ⋅−⋅−= zsyxa ⋅⋅−⋅⋅= 2212 yszxa ⋅⋅+⋅⋅= 2213

zsyxa ⋅⋅+⋅⋅= 2221
22

22 221 zxa ⋅−⋅−= xszya ⋅⋅−⋅⋅= 2223

yszxa ⋅⋅−⋅⋅= 2231 xszya ⋅⋅+⋅⋅= 2232
22

33 221 yxa ⋅−⋅−=

and translation vector TV

()yzzysxxsa ⋅+⋅−⋅+⋅−⋅= εεεε214

()xzsyzxysa ⋅−⋅+⋅+⋅−⋅= εεεε224

()szxyyxzsa ⋅+⋅+⋅−⋅−⋅= εεεε234

After matrix is generated, it can used just like in the SSD implementation and it is also possible to use

matrices with existing graphics API. Of course, converting all vertices to a dual-quaternion and doing

quaternion multiplication and converting the results back to standard vectors is another option. But, it

is not as efficient as matrix multiplication, since graphic APIs are capable of fast matrix

multiplication.

Choice of blending function is very vital for the success of DQS. In his work, Kavan proposed,

analyzed and compared two blending and an interpolation function. First one is Screw Linear

Interpolation (ScLERP), which is the DQ version of famous SLERP. ScLERP interpolates two unit

DQs where SLERP interpolates two unit quaternions. Formulation and further explanation about

SLERP is given in Section 4.2. SLERP is introduced by Shoemake (1985). Problem with ScLERP is

that it is not convenient for blending more than two DQs. Second one is DLB, which is very similar to

QLERP. The relation between DLB and QLERP is similar to the relation between ScLERP and

SLERP. DLB linearly blends DQs where QLERP linearly blends quaternions. DLB can blend more

than two DQs, which is essential for the DQS algorithm. Since DLB and ScLERP works with DQs

which define screw motion, it would be hard to visualize their relation. So, we will present a visual

comparison by using SLERP and QLERP instead. We will use the word speed and term t (time),

because interpolation is originally a subject of computer animation domain. Note that, DQS normally

uses bone weights instead of t for interpolation or blending. In Figure 32, it is clearly shown that

SLERP is an accurate interpolation with constant speed of angular distance.

 48

Figure 32 QLERP vs. SLERP

Because, the ratio of arc traveled and the angle covered in interval t is constant. But, QLERP just

approximates this circular movement with a linear movement. Hence, QLERP exposes variable speed.

Let’s explain the subject with an example. Assume that we are trying to make a rotation about an axis

which is constant during the animation. We start the animation from °30 at time 0=t and end it at

°230 at time 200=t . SLERP interpolation ensures that at each time interval 1=∆t we get

closer °1 to °230 . But QLERP can not produce a constant degree of rotation at each time interval

1=∆t . ()tα indicates the degree that is rotated by QLERP and ()tβ is the angle is rotated by

SLERP at time t . Even so, QLERP approximates well enough and seems to suffice for the task. All

of these apply for DLB and ScLERP in the DQ case. Besides, DLB is faster than ScLERP in

computation. To improve the accuracy and provide constant speed, DLB is modified into Dual

quaternion Iterative Blending (DIB). DIB iteratively approximates ScLERP. Due to the desired

accuracy, it may take a few or more iterations to converge. Derived from DLB, DIB is capable of

blending more than two DQs. Moreover, it provides a constant speed just like ScLERP. But, iterative

procedure is time consuming. Since DLB has enough accuracy and low computational complexity, we

decided to use DLB instead of DIB in our implementation. DLB equation is denoted by

()
nn

nn

nB
qwqw

qwqw
qqwDLBq

ˆˆ

ˆˆ
ˆ,,ˆ;ˆ

11

11
1

⋅++⋅

⋅++⋅
==

K

K
K

where each w is the influencing bone weight for the vertex v and Bq̂ is a unit DQ. There is another

delicate issue about blending that needs attention. Negative of a DQ is equal to itself (qq ˆˆ −=) and

DLB is a linear blending function. Therefore, two DQs that normally strengthen the affect of a

transformation could negate each other. To prevent that from happening, other DQs in the blending

equation must be adjusted according to a reference DQ. The first DQ can be chosen as the reference

REFq̂ and then

if 0ˆˆ >qqREF then use q̂

if 0ˆˆ <qqREF then use q̂−

 49

where q̂ is one of DQs in the blending function other than REFq̂ . This idea is not a new one indeed,

the two quaternion in the SLERP are assumed to conform to the same condition 021 >qq . A

DQS implementation for MAYA software package proposes a technique on this ("Dual Quaternion

skinning in Maya,"). Choosing the DQ belonging to the bone with the highest influence on the given

vertex as the REFq̂ would offer better blending. We follow this technique in our implementation. The

most important subject about DQS blending is that it is result is just another DQ. Since DQs doesn’t

have any scaling effect, there won’t be any volume loss on the 3D object which is deformed by DQS

algorithm. The issue about SSD algorithm was that during weighted linear blending of rotation and

translation matrices, the result matrix can contain scaling affects especially at the vertices close to

joints.

We have everything needed to proceed to the implementation. In the initialization phase, list of

influencing bones for each vertex is created and sorted in decreasing influence order. If the given SOT

can not be converted to DQ (this is because combined transformations which only contain translations

and rotations can be exactly converted to DQ), use the translation DQ as the SOT that would translate

skin (original) vertices to their skin offset positions (local coordinate) for each influencing bone. As

we mentioned before, the bone SOTs in the direct-x files can not be converted to DQs. These steps

will be done once, but next steps will be repeated in each time frame. As the first step of deformation,

combined transformation of each bone must be calculated recursively as suggested in Section 4.2.

Transformations are first converted to DQ. Then DLB of influencing bones Bq̂ is calculated for each

vertex. These steps are done with the pseudo code

// Initialization phase only

Create influencing bone list and sort them for each vertex

If bone SOTs can not be converted to DQs

begin

Transform skin vertices to influencing bone local coordinate frames

end

M

// for each tine frame deformation call DoDQS function

Function CalculateLocalTransformationsDQ (currentBone, combinedTransformation)

begin

combinedTransformation =

combinedTransformation * currentBone:localTransformation;

 convert transformation of currentBone (bone with index k) to DQ, kq̂ ;

store kq̂ to use it in blending function;

 for each child bone, childBone, of currentBone

CalculateLocalTransformationsDQ (childBone, combinedTransformation);

 50

end

Function DoDQS ()

begin

for each skin vertex v

begin

// to calculate blended DQ Bq̂ call blending function

// where there are n influencing bones for vertex v , in our case we call DLB

()nB qqwDLBq ˆ,,ˆ;ˆ 1 K= ;

// convert Bq̂ to transformation matrix TM

)ˆ(2 BT qMatrixDQM = ;

// calculate deformed vertex v by multiplying original vertex v with TM

// deformedVertex = blendedTransformation * originalVertex;

vMv T ⋅=

end

end

Here, we give the comparisons of SSD and DQS from our tool. In Figure 33, you can see how

DQS overcome defects of SSD

(a) (b)

Figure 33 Note the volume loss and collapses in SSD (a) and compared to DQS (b)

 51

CHAPTER 4

ANIMATING THE SKIN AND ANIMATION DATA

4.1 Overview

Until now, we only focus on how to deform the skin for a given skeleton configuration. But, our

ultimate goal is to animate a virtual character. To animate literally means to “to give life to”.

Animating something is to move it or make it seem to move. Animation occurs when a series of still

images are displayed in rapid sequence. The presentation rate (frequency) of still images is called

frame rate or playback rate. The eye-brain complex of the observer assembles the sequence of still

images and perceives it as continuous movement. A single image instantly presented to a viewer will

leave an imprint of itself in the visual cortex for a short period of time which is called the positive

afterimage. This phenomenon is known as persistence of vision. Because of persistence of vision, a

sequence of closely related still images at a fast enough rate induces the sensation of continuous

imagery. Even so, it is not continuous; the afterimages fill in the gaps between the images. Unless

play back rate is fast enough, the image starts to flicker. Depending on conditions, the frame rate to

maintain the persistence of vision varies. This rate is referred to as the flicker rate. There is another

rate related to animation. This one is called sampling rate that is defined by the number of different

images displayed per second. Sampling rate determines how jerky and rough the motion is. Two well

known color formats, Phase Alternate Lines (PAL) and National Television Standards Committee

(NTSC) use frame rates 25 and 29.97 respectively. These frame rates are accepted to be enough to

prevent flicker Parent (2002). To accomplish smooth animation, the deformation method must operate

with minimum 25 frame sampling rate or even more. This requires a deformation model with low

computational complexity. Other important issues in animation are timeline, key-framing and frame

interpolation. We will discuss these topics in Section 5.2. After comprehending these, virtual character

animation will become more complete.

Another important subject about the animation is the animation data source. We will discuss what

kind of data is needed to animate a 3D virtual character and the methods to creating such data. We

will also explain what kind of data formats and sources we have used in our thesis study.

 52

4.2 Key-Framing and Frame interpolation

An animation has a hierarchical structure. Entire animation is called the production time line.

Production divides into major episodes with an associated staging area which is called a sequence. A

shot is a continuous camera (CGI uses virtual cameras) recording. And as we already know, frames

stand for the still images to be displayed successively in animation Parent (2002). Structure of the

animation is shown in Figure 34. Professional 3D animation packages such as MAYA, MotionBuilder

and 3D Studio Max conforms to this structure.

PRODUCTION TIME LINE

SEQUENCE A SEQUENCE B

Shot 1 Shot 2 Shot 1 Shot 2 Shot 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 34 Structure of an Animation Production

A special set of frames are called key frames (also known as extremes). Originally, in animation

process, master animators identifies and produce key frames to aid in confirmation of character

development and image quality. Consequently, associate and assistant animators produce the frames

between the keys; this is called tweening (in-betweening). In computer graphics, an animator

identifies the key frame and computer automatically does the tweening and generates intermediate

frames between two key-frames by using frame interpolation and physical rules if any defined.

In our tool we use only frame interpolation techniques to do the tweening, since we implement

only GMs. Key frame interpolation is generally done by using the time parameter t which conforms

to the condition 10 ≤≤ t . For 0=t and 1=t , current frame is exactly equal to the first and

second key frames respectively. As time increases from 0 to 1, generated still image becomes more

similar to second key frame image. Interpolation is applied to the parameters which defines the

generated image. For instance, transformations which define the bones of skeletons are interpolated in

our case. In Chapter 2, we investigate and discuss the representations. We mentioned that choice of

orientation have significant affect on the success of the interpolation and ultimately, success of

animation. We see that axis-angle or quaternion representation should be used for the better

interpolation. In the axis-angle representation, interpolation of the first key axis-angle ()11 ,aα and

second key axis-angle ()22 ,aα should done by interpolating the rotation angles 1α , 2α and the 3D

axis vectors 1a , 2a separately. To interpolate axis 1a and 2a , we first retrieve the angle between

1a and 2a by using















⋅

•
= −

21

211cos
aa

aa
φ

 53

Subsequently, orthogonal vector Oa is calculated by cross product of 1a and 2a (21 aaaO ×=).

At time step t , angle tφ between the axis 1a and 2a about vector Oa is found by applying linear

interpolation formula () 211 atatt ⋅+⋅−=φ . And finally interpolated axis is derived from

() 1atRa Bt ⋅⋅= φ . Parent (2002).

Interpolation of quaternions is not a linear, but a spherical one. We used SLERP to spherically

interpolate quaternions of key frames 1q and 2q at time step t . We obtain theta by using formula

()21
1cos qq •= −θ . When the condition 021 ≥• qq is satisfied, then interpolation along the

shortest rotation path is acquired. If 021 <• qq is the case, then 2q− should be used instead for

the shortest path. SLERP function is defined as

() ()()() ()() ()() ()() 2121 sin/sinsin/1sin,, qtqttqqSLERP ⋅⋅+⋅⋅−= θθθθ

Scaling and translation transformations are generally represented by 3D vectors. Linear

interpolation () 211 VtVtVI ⋅+⋅−= is enough to successfully interpolate these transformations.

Linear interpolation is first used for animation by Burtnyk and Wein (1971). For a successful

animation, one should avoid using matrix interpolation directly because it produces erroneous results.

If quaternion, scaling and translation data can be decomposed from the matrix without loss of data,

they should be interpolated instead of matrices.

In Table 2, an animation of a single bone is given with four key frames. Each key frame i is

defined by translation, rotation and scaling transformations.

Table 2 Animation key frames of bone defined by quaternion rotation, scaling and translation

i Time iT ms Quaternion iq Scaling iSc Translation iTr

1 0
1q 1Sc 1Tr

2 200
2q 2Sc 2Tr

3 400
3q 3Sc 3Tr

4 600
4q 4Sc 4Tr

Given the time 260=T ms , first i and second 1+i index of the key frames are found according

to the condition 1+<< ii TTT . Here, 400260200 << , so 2=i . Then interpolation step t is

calculated by formula

ii

i

TT

TT
t

−

−
=

+1

 where 10 ≤≤ t .

For 260=T , () () 3.0200400200260 =−−=t . Then, interpolated translation vector ITr

and scaling vector ISc are denoted by () 11 +⋅+⋅−= iiI TrtTrtTr and

() 11 +⋅+⋅−= iiI SctSctSc respectively. So, interpolated translation and scaling for time

 54

260=T is 32 3.07.0 TrTrTrI ⋅+⋅= and 32 3.07.0 ScScScI ⋅+⋅= . We can obtain Iq by

using SLERP

()()() ()() ()() ()() 32 sin/3.0sinsin/7.0sin qqq I ⋅⋅+⋅⋅= θθθθ

where ()32
1cos qq •= −θ . After we acquire interpolated transformations related to bone k , we

finally combine them to acquire local transformation of that bone. The combining order is important,

since combination of transformations is not commutative. It should be done in the order, translation,

rotation and scaling. If we represent the local transformation in matrix form as in SSD, it would be

NTRANSLATIOROTATIONSCALINGk MMMM ⋅⋅=

The only term calculated for each time T is the local transformations of the bones. Virtual

character is animated by calculating skeleton configuration in each animation frame and deforming

the skin via DM such as SSD or DQS.

4.3 Animation Data

SSD and DQS operate with bone transformation data. In the previous section, we explained how

transformation data such as rotation, scaling and translation can be used to animate a 3D virtual

character via key-framing and interpolation. There are various file formats which contains such

information. When we first started the implementation of our tool, we used the ‘.x’ (DirectX) file

format which is proposed by Microsoft and used in DirectX framework to get the animation data.

Indeed ‘.x’ files usually comes as a full package which contains information about animation, 3D

virtual character mesh data, skeleton hierarchy, bone weights, etc. For that reason, it came to have a

complex structure and it is a laborious to parse and use it. If you are using DirectX framework of

Microsoft on the other hand, you will be able to use their libraries to easily read ‘.x’ files.

Unfortunately, this wasn’t the case for us, since we make our implementation with OpenGL. As a

result, we have parsed the file all by ourselves. We made use of a web site (Coppens) to do so. Thanks

to Paul Coppens for his efforts for preparing a nice tutorial about parsing ‘.x’ files. Information on ‘.x’

files can be found in (Coppens).

For the tool we developed, it is of no importance whether bone transformation data is generated

with a professional 3D animation tool by an artist or captured in a motion capture laboratory (mocap

lab). One of our purposes is to demonstrate movement of a particular human in virtual environment

for medical purposes. So that, a physician would be able to inspect a patients movements for analysis

and diagnosis by the help of the tool we provide or students under medical education would use it to

inspect and learn the movement patterns which belongs to different kind of gait disorders. This is why

we should make use of mocap. We have investigated whether there was any available mocap data

about gait disorders, but we failed to find any. Then we have realized that we would have to retrieve

our own mocap data. For that reason, we make contact with our colleagues in Koç University. They

let us use their mocap lab to capture medical gait disorder data. It was a multi-camera mocap system

which is also known as optical mocap system. We will give more detail about motion capture systems

 55

in Section 4.5. To briefly explain it, we can say that an optical system records any moving object

which has reflective markers attached and tracks these markers to extract their 3D position data.

Unfortunately, 3D position data can’t be directly used in character animation. To do so, we have to

find some means to convert this data into the appropriate format which can be used by our animation

framework. We came up with a simple and intuitive method, but it didn’t produce satisfactory results.

We will give the details about our method of converting 3D marker position data into transformation

representation in Section 5.6.2. Successful mapping of 3D marker positions data to bone

transformations isn’t a straightforward process (Zordan & Van Der Horst, 2003). Since proposing

such an algorithm was not one of our purposes, we decide to use MotionBuilder 7.5 which is

professional animation software to extract bone transformation from marker data and export the

processed motion capture data as Biovision hierarchical (BVH) data file. BVH files contain skeleton

hierarchy and bone transformations at each time frame. Zordan and Van Der Horst (2003) proposed a

method for extracting bone transformations. Brief discussions about the approaches which

MotionBuilder and Zordan & Van Der Horst (2003) use will be made in Section 5.6.3. Further

explanations about BVH file format is given in (Meredith & Maddock, 2000).

4.4 Motion Capture

Mocap or Motion tracking is a digitally movement recording technique. In general sense, mocap

is the process of recording a live motion event through the placed markers (or sensors) on or near each

joint of the body. The recorded data is then converted into usable mathematical terms by tracking

these key points, regions or segments in space over time and combined to obtain a three dimensional

representation of the performance. Related software records angles, velocities, accelerations and

impulses, providing an accurate digital representation of the movement. Consequently, we can present

a live movement or performance with a virtual and digital performance by using this technology. The

captured object could be anything that makes some motion in the real world. Mocap started as a

photogrammetric analysis tool in biomechanics research in the 1970s and 1980s. Later on, it expanded

into education, training, sports, etc. As the technology matured, computer animation for cinema,

video, advertising and game production became as its widespread use. Mocap is very suitable to

achieve lifelike movement than manual animation. Besides, it saves time and money. Motion capture

technology is used in several productions such as Lord of the Rings, Polar Express and Happy Feet.

Most of the character animations in games such as Devil May Cry, Heavenly Sword and God of War

are captured in mocap labs as well. Figure 35 shows how games take advantage of mocap technology.

The examples given in Figure 35 are captured from optical mocap systems. As you can see the scale

of the markers can vary according to the goal.

 56

(a) (b)
Figure 35 Optical mocap data used in games such as Devil May Cry (a) and

Heavenly Swords (b)
(Courtesy of CAPCOM (a) and Ninja Theory (b))

4.5 Motion Capture Systems

There are different ways of capturing motion. Different systems use different input devices such

as markers, sensors, etc. As we stated before, markers (or sensors) are positioned on the key points

that best represent the motion of the subject’s different parts. How these input devices are placed on

subject also differ according to the mocap system used. It is possible to divide mocap systems into

three main categories such as

1) Optical Systems

2) Mechanical Systems

3) Electromagnetic (magnetic) Systems

Optical Systems: These are camera-based systems, where the cameras are the sensors and the

reflective markers are the sources. These kinds of systems use cameras that digitize different views of

the movement. By using computer vision and image processing algorithms, it is possible to extract the

2D positions of markers from each camera shot for a particular time of the movement. Since it is

possible to construct 3D position from at least two 2D position inputs, a mocap system can retrieve

3D positions of all markers by using images retrieved from multiple cameras. Affective field of view

where the movement can be captured and how successful the data can processed depends on the

number of cameras used and their resolutions. Of course there are other important factors such as

choice of markers, the configuration of the mocap lab, the quality of the tracking software, etc. Optical

systems were primarily developed for biomedical applications such as analysis of athletic performance

and sports injuries. Performers can act more freely because markers used in optical systems don’t

prevent movements of them. But, markers sometimes become unavailable to be tracked since they are

visually blocked camera recording. After recording complete, it takes time for the software to extract

3D positions from images. It is possible to record movements in larger spaces relative to other

systems.

Electromagnetic systems use static magnetic transmitter and magnetic receivers which are worn

by performers to record movement. Since each sensor can produce 6 degree of freedom output, fewer

sensors relative to optical systems are sufficient. Unless affected by external magnetic fields, positions

are accurate. Data acquisition is instant since no process is needed to be applied on sensor data.

 57

Sampling rate is insufficient for fluid and fast movements. Especially, older electromagnetic systems

require performers to wear uncomfortable apparatus such as cables which prevents freedom of

movement.

Last factor is the mechanical system. Performer has to attach exoskeleton like suit which is

composed of straight metal pieces to her/his body by hooking their back. As the performer moves, the

exoskeleton suit moves in the same way. The movement of exoskeleton is recorded. There are no

magnetic fields or obstacles to prevent successful recording. Since exoskeletons movements are

relative to its own coordinate system, there is no way to know the orientation or the position of the

performer.

It is also possible to design combinations of two or more of these technologies to reduce the

inherent limitations. New technologies are also becoming available, ultimately aiming to make a real-

time tracking of an unlimited number of key points or all the segments of the person with no space

limitations at the highest frequency possible with the smallest margin of error

 58

CHAPTER 5

FEATURES OF THE ANIMATION TOOL

5.1 Overview

 In this Chapter, we will give detailed information about the features of our animation tool. And

in Chapter 6, we will explain what we have done so far and what the outcomes were. In order to see

the big picture, we will briefly explain all of the steps in the whole process pipeline and show the

explanations, outputs and inputs of each step are given in Figure 36.

5.2 Interaction with Objects in our Animation Tool

Our animation tool renders 3D dimensional scenes and projects it as a 2D image to be displayed

on the monitor. The tool has some capabilities for mouse interaction and keyboard input. Mouse

interaction in 3D applications is not trivial as in most 2D applications. The details about how mouse

selection mechanism operates are given in Section 5.2.1. We can at least state that mouse operations

are directly affected by the multiple transformation which are applied to the objects and the scene.

Though mouse selection can be handled by OpenGL mechanisms, dragging a 3D object over the scene

requires more effort. This will be explained scene in Section 5.2.2. Mouse and keyboard handlers we

implemented make use of object oriented concepts such as polymorphism. Briefly, polymorphism

provides us the means to define separate mouse and keyboard handlers for various kinds of object

with different interaction needs with ease. There are two kinds of objects rendered in our scenes which

have different properties. These are skeleton objects and 3D mesh objects. They have separate mouse

handlers classes such as MeshMouseHandler and SkeletonMouseHandler classes which are extended

from AbstractMouseHandler class

 59

Figure 36 Summary of steps from motion capture to validation.

Step1-a: Retrieving Motion Capture
Data
- We used the multi-camera optical

motion capture lab at the Koç University to
get the medical gait disorder records
- By using the marker tracking software

developed at the Koç University, we
extracted 3D marker positions and stored
them in a file
Output: 3D marker positions of the mocap
data

File containing 3D marker positions

Step2: Extracting Bone Transformation From Marker Positions
- We extracted bone transformations using MotionBuilder and exported the results as

BVH file
- Inside of our tool, we also tried to implement a simple and intuitive algorithm to

calculate bone transformations. But results were not satisfactory since it requires a complex
constrained optimization algorithm (Zordan & Van Der Horst, 2003)
Output: Necessary Bone transformations and the skeleton hierarchy in the BVH file data

Step3: Animating Medical Mocap Data
- By using the BVH parser that we implemented, we import the mocap data into our

animation toolbox
- Then, we animated the 3D character model in our 3D viewer by using the hierarchy and

bone transformation imported from BVH file
- Our tool uses Skeleton Subspace Deformation and Dual Quaternion Skinning methods

for the animation. We have implemented an animation framework which is capable of key
frame interpolation. The transformations and skeleton hierarchies are fed into this framework
to obtain animation.
- We animated the mocap data of both Koç and Ankara University.

Output: 3D virtual character animation of medical motion capture data

BVH file containing skeleton hierarchy and bone transformations

Step1-b: Retrieving Motion
Capture Data
- We retrieved motion capture data

from the gait lab of Ankara
University Hospital. They provided us
with the C3D files which was
generated by Vicon systems. C3D
files contains the 3D marker positions

Output: 3D marker positions of the
mocap data

3D animation of the medical motion capture data

Step4: Validation of the tool
- For validation, we consult the gait analysts from the Ankara University Hospital. We

come up with a validation methodology.
- For validation, we used the mocap data from Ankara University. Animations and

corresponding videos of three patients are used for a series of test and observations.
- The results show that the tool is effective in presenting the gait of the patients. Errors in

the prior steps can degrade the quality of the animation.
- In the validation step, gait analysts noted that one of the animations partially failed to

demonstrate some patterns where other animations show most of the patterns successfully.

 60

5.2.1 Mouse Selection in the 3D Scene

There is a handy mouse selection mechanism that is called selection. This mechanism provides a

special rendering mode for selection. While in this rendering mode, OpenGL detects all the primitive

objects in the viewing frustum and put their identification numbers (names) in a buffer in an order so

that first object in the view towards the near plane of frustum (Figure 37) will be the first element of

the buffer. These IDs are assigned to each primitive by using API functions. One can make use of this

rendering mode so that rendering frustum will be determined by the mouse position. It is not a must to

select only the objects under the mouse pointer. By adjusting the center, width and height parameters

of the view, it is possible extend the mouse selection area to select primitive objects close to mouse.

These parameters are passed to an OpenGL API function. A sample code written in C++ from our tool

implementation is given in Appendix B.1 to explain how mechanism operates

As we already mentioned OpenGL fills the buffer with the hit records related to every single

primitive rendered in select mode (glRenderMode(GL_SELECT)). There is no requirement

about primitive objects having a unique name (ID). So, a group of primitives could be considered as

one object in the mouse selection process. Finally using the count of hits and the IDs in the buffer, it is

possible get appropriate response from the mouse event.

5.2.2 Mouse Drag Action

Dragging an object over the scene is another mouse interaction issue. This problem can not be

solved by only OpenGL selection mechanism. Imagine that you have selected an object which is at 3D

coordinates ()7,4,3 − and 2D screen coordinates ()28,50 , then you dragged the your mouse over

your screen to 2D screen coordinates ()20,65 . Unless a rule is defined there is no way to tell which

3D coordinate the object is dragged. First thing which must be considered is the viewing frustum.

Viewing frustum is the region of space that is displayed on the screen. Objects outside that box are out

of the view range and are not rendered on the screen. Viewing frustum is constrained by the near and

far planes. Think mouse pointer as a laser gun that fires a ray when you click on mouse button. This

ray penetrates first the near plane and then the far plane of the viewing frustum. This ray can be

represented by a line function in the viewing frustum in Figure 37. The position and orientation of this

line can be calculated from 2D coordinates of mouse pointer and the viewing frustum. Perspective

projection matrix shapes the volume of frustum and modelview matrix determines its position and

orientation.

 61

Figure 37 Viewing frustum

The model-view matrix determines how the vertices of OpenGL primitives are transformed to eye

coordinates and the projection matrix transforms these eye coordinates to clip coordinates. Projection

matrix, modelview matrix and the 2D screen position of mouse pointer determines the parameters of

the line function which we liken to a ray. The c++ implementation of calculating the parameters of the

line function coming from the mouse pointer and passing through the near and far planes is given in

Appendix B.2.

After the consequent calls to the functions which are to retrieve projection of mouse pointer on

near plane (retrieveProjectionofMousePointerOnNearPlane) and line function that is

calculated by using the inverse of view matrix

(retrieveLineFuntionDataFromInverseOfViewMatrix), line function parameters are

finally retrieved. Now we have a line function coming out from our mouse pointer composed of

infinitely many points. Now getting back to our example where an object is moved by dragging mouse

to ()20,65 coordinates, which 3D point should we choose out of infinitely many line points? To

make the dragging operation more usable and intuitive, we implement it such that an object could be

only dragged along one axis at a time. To do so we must define a plane function which is aligned

along the ‘x’ axis such as ‘xy’ or ‘xz’ plane. This plane should pass through the 3D point ()7,4,3 −

which was the position of the object before dragging operation. The point where we drag the object

should be chosen as the intersection point of the mouse ray and the plane we defined. From keyboard,

the user inputs ‘X’, ‘Y’ or ‘Z’ buttons to determine axis for dragging. The line and plane intersection

is calculated by the function given in Appendix B.3.

In Figure 38, a mouse drag event is shown where elbow joint is dragged from its initial position in

(a) to final position (b). Note that the selected joint changes its color.

 62

(a) (b)
Figure 38 A drag event along x axis on elbow joint from (a) to (b)

5.3 Animation Infrastructure of the Tool

In Section 4.2, we explained the animation basics and key-frame interpolation. Reading animation

data from BVH or DirectX files, our tool creates a data structure that contains animation key-frame

data. This data structure is composed of the instances of AnimationSet, Animation, TranslationKey,

RotateKey, ScaleKey class instances. On the top of this data structure stands AnimationSet. Each

AnimationSet structure contains a whole animation sequence data as seen in Figure 39. AnimationSet

contains Animation instances which are registered to each bone.

(a) (b)
Figure 39 (a) is a walking animation sequence and (b) is a jogging animation
sequence

Each Animation instance contains the transformations of the bone that it is registered through the

animation sequence. These transformations are contained under three distinct lists in Animation

instance. These are translation, rotation, and scaling lists composed of key-frame elements

TranslationKey, RotateKey, ScaleKey respectively. Each key in the list has a time value to be used as

the interpolation parameter. As we explained in Section 4.2, it is possible to calculate the

transformation by using these time values and key-frame transformations. Interpolation of

TranslationKey and ScaleKey elements are calculated by linear interpolation. To interpolate

 63

RotationKey, SLERP is used where each RotationKey is represented by quaternions. Finally,

interpolated transformation of these are combined into one to find the bone transformation at a

particular time t

5.3.1 Animation Using Input Files

During this thesis study, we parsed three kinds of file for animation. First one was ‘.x’ file format

of Microsoft’s DirectX graphics library. The second one was the ‘.bvh’ file format which is a widely

used format suggested by Biovision. The last one was an unformatted and raw data file which only

contains joint positions of a skeleton. We will give details about how second file format is handled in

Section 5.6.1.

There exist two kinds of ‘.x’ file format which are binary and ASCII. We only parse a ASCII ‘.x’

file. Even the ASCII format was quite complex. We parsed ‘.x’ file based on the tutorial given in

(Coppens). DirectX file format contains all the necessary information for a 3D animation. It contains

- Skeleton hierarchy and bone names

- SOT of each bone in matrix representation

- Vertex data of the mesh, normal of these vertices

- A reference to the texture file of the mesh, and related texture coordinates

- Bone weights of vertices

- And for animation, it contains the bone transformation at each key-frame and time of these key-

frames

Animating ‘.x’ files were really successful, every necessary data was provided and the data was

well prepared. For instance, bone weights were most likely calculated by using professional software.

Details about DirectX files can be found in (Coppens).

BVH was the file format which we used to display gait disorders. This file format contains only

- Skeleton hierarchy and bone names

- For animation, it contains the bone transformation at each key-frame and time of these key-

frames

Unlike ‘.x’ files BVH files doesn’t have any mesh, bone weight and SOT information. By using

the data of a BVH file, only a skeleton could be animated. In order to achieve a complete animation,

we decided to use the mesh data from the ‘x’ file. But, we still needed the bone weights and SOTs for

a 3D character model animation. So, we added features to calculate and assign bone weights to each

vertex. We will explain how bone weights are calculated in Section 5.5. We also added the feature to

calculate SOTs. Calculation of SOTs will be explained in Section 5.7.

5.3.2 Deformation by User Input

It is also possible to deform the mesh by direct user input. To do so, user must select a bone to

transform by using mouse. By using keyboard, user can rotate the selected bone around global x, y

and z axis. Unfortunately, this is not a comfortable way to transform a bone. Bone transformation

should be done by mouse input and selected bone should be rotated around its own local axis not

 64

around the global axis. Using bone local axis is a more intuitive way to deform the model. As user

rotates the bones of the skeleton, character model will deform in the same way. This event is shown in

Figure 40.

(a) (b)
Figure 40 By using direct user input, model is deformed from its left upper arm
and and left forearm. Initial model is displayed in (a) and manually deformed
one is in (b)

After skeleton bones are manually deformed by the user, these deformations propagate to the

animation sequences when the animation is played.

5.4 Moving Over the Scene

We implemented a camera class for our tool to move over the scene. The class operates on

quaternions. It has attributes such as HeadingDegree, PitchDegree and ForwardVelocity. PitchDegree

and HeadingDegree are used to define quaternions to rotate around x axis and y axis respectively. To

calculate the orientation of the camera, these two quaternions are multiplied. PitchDegree and

HeadingDegree can be modified by directional buttons of keyboard. The orientation of the camera

determines a direction which it looks towards. This direction vector can be used to move the camera.

Camera speeds up and slows down in that direction by using ‘W’ and ‘S’ buttons respectively. By

using the ForwardVelocity attribute and direction of camera, new position (translation) of camera is

calculated. Finally camera translation and orientation are used to calculate modelview matrix. Same

scene is shown from different camera orientation and positions in Figure 41.

 65

(a) (b)
Figure 41 Same scene is displayed from different camera views (a) and (b)

5.5 Calculating Bone Weights

As mentioned already, SSD and DQS deform character by using bone weights. When we first

animate the model in the DirectX file, bone weights for each vertex was available for the skeleton

hierarchy given in the ‘.x’ file. But, the medical mocap data we retrieved represented a different

skeleton hierarchy. To animate the model with a skeleton hierarchy, we had to calculate and assign

bone weights to vertices. Bone weights are inverse proportional with the distance between a bone and

a vertex. So, we calculate the Euclidian distances between the vertices and the bones. Assuming that a

bone is a line fragment which has no volume and thickness, we utilized the distance formula of a point

to a line. We will give the details of distance calculation in Section 5.5.1. Afterwards, these distances

are used to calculate weights which we will explain in Section 5.5.2. For this method to work,

skeleton must be placed in the 3D character model and well aligned with the model just like in Figure

42. Alpha blending can be activated to make model transparent by pressing ‘B’ button. Modifying

skeleton inside to an opaque model is not possible. Note that best weight assignment is done on the

character in the T-Pose.

Figure 42 Skeleton is aligned in T-Pose to the
transparent model in T-Pose

 66

5.5.1 Calculating Vertex Bone Distances

We assume that bones can be approximated by to be line functions. Line functions are infinitely

long, but our bones are not. They have a starting and ending point. While calculating distance d , this

fact should be considered. In Figure 43-a, distance of the vertex v to the bone can is equal to the

distance between v and its projection pv . Bone is a line segment between the start joint sp and end

joint ep . When pv is out of that interval, we must use the distance to the start or end point as shown

in Figure 43-b

(a) (b)

Figure 43 Same scene is displayed from different camera views (a) and (b)

There is a relation between vectors ()se pp − and ()vpe − . Such that

() () ()αcos⋅−⋅−=−•− vpppvppp eseese (5.1)

where α is the angle in between. From trigonometry

()αcos⋅−=− vpvp epe (5.2)

By using (6.1) and (6.2), we can derive the equation

() ()

se

ese

pe
pp

vppp
vp

−

−•−
=− (5.3)

Another geometric relation is already known















−

−
⋅−+=

se

es

peep
pp

pp
vppv (5.4)

From (5.3) and (5.4), we can derive the equation

() ()
()es

se

ese

ep pp
pp

vppp
pv −⋅

−

−•−
+=

2

where ep , sp and v are known variables. So, distance to bone can be defined as

()
()





−−

−≤−−−
=

otherwisevpvp

ppvpvpvv
d

se

sepspep

,min

,max

 67

5.5.2 Bone Weight Calculation Algorithm

In Section 5.5.1, we formulated how to find the distance of a vertex to a bone. By using distances,

we will propose an algorithm to calculate bone weights. We will calculate the weights that belong to

vertex v . Assume that v is influenced by three bones and distances of v to bone1, bone2 and bone3

are denoted by 1d , 2d and 3d , respectively. Similarly weights of bone1, bone2 and bone3 for v are

1w , 2w and 3w , respectively. All weights must be normalized so that 1321 =++ www . To

calculate 1w , 2w and 3w , we will follow these steps

1- Find and store the distance mind closest (most influencing) bone to v

()321min ,,min dddd =

2- Calculate intermediate weights 1w′ , 2w′ and 3w′ after choosing an appropriate base b ,

()min1 /1

1
dd

b
w =′

, ()min2 /2

1
dd

b
w =′

 and ()min3 /3

1
dd

b
w =′

3- Calculate normalized weights 1w , 2w and 3w from 1w′ , 2w′ and 3w′ . To do that, we must

find the sum of intermediate weights 321 wwwwsum
′+′+′=′ and

sumwww ′′= 11 , sumwww ′′= 22 and sumwww ′′= 33

The base b is selected so that smooth weight transitions around joint points are possible and far

vertices to the joints are only affected by one bone. We used 100=b

5.6 Reading and Animating Raw Mocap File

In Section 5.3.1, we mentioned that there was an unformatted and raw data file which only

contains 3D joint positions of a skeleton. The output of the software developed for optical motion

capture lab in the Koç University was the 3D marker positions. We made a Matlab implementation to

map these marker positions to a skeleton by converting them to joint positions of that skeleton. This

mapping was not a generic one; it was a case specific and ‘ad hoc heuristic’ solution. Output was a

simple text file which contains a 3D joint position of skeleton (three floating point values) on each

line. If there are n joint nodes, first n lines give the joint positions for first key-frame, second n

lines give joint positions for the second key-frame and so on. So there shall be nm× number of lines

in the text file representing an animation with m number of key-frames for a skeleton that has n

number of joints. This was our first attempt to animate a model by using the mocap data. We made a

literature survey to find a means to convert 3D joint or marker positions to bone transformations.

Papers we found about motion capture data did not give any details about this procedure. They just

mentioned that they somehow converted the raw mocap data to bone transformations for their own

purposes and avoided to explain the process about bone transformations. Assuming that it is a

straightforward procedure, we tried to come up with our own method. We find a simple solution

 68

which is inspired by the algorithm used for calculating skeleton transformations in the SSD and DQS

methods. We will give details about this algorithm in Section 5.5.1. We will give the results of our

algorithm and explain why it fails. Since we weren’t able to achieve a successful bone transformation

extraction by using our algorithm, we had to use commercial software to do so. We will give how we

finally extract the bone transformations in Section 5.5.3

5.6.1 Calculating Bone Transformations

In Section 4.2, we explained how bone transformations are combined and propagated to the child

bones. As a result of these combined bone transformations, joint positions could be calculated.

Calculating bone transformations is an inverse problem where bone transformations are calculated

from given joint positions. We will explain the algorithm using a 2D example. In Figure 44-a, all joint

positions are given. Our goal is to calculate the rotation and translation that each bone should go

through to reach these joint positions. We will assume that all bones are initially aligned along the x-

axis (reference axis). In Figure 44-a, we calculate the angle between x-axis and the joint1 by the

formula ()xjoint1yjoint1 ..arctan=α . We found that °−= 90α . Since we want to

transform 11intjo and other joints to their local coordinates, we will transform all of the joints by

using the inverse rotation °= 90α . After this transformation is applied to all joint positions, new

joint positions are shown in Figure 44-b. Since 1intjo is aligned with x-axis. We can translate the

joint1 to origin by using the ()0,1
joint1vT −==−

 which is the inverse of its translation vector

()0,joint1vT = . We register the transformation ()0,joint1vT = and rotation °−= 90α to

joint1 . Note that in Figure 44-c, applying inverse transformations of joint1 to all other joints

results in transforming of joint11 to its local coordinates. Same procedure will be applied for

joint11 and joint111 . The point here is to transform every bone to its local coordinates where its

local transformations can be calculated.

 69

-5 0 5

-12

-10

-8

-6

-4

-2

a

αααα=-90
°

root joint

joint1

joint11

joint111

2 4 6 8 10 12

-8

-6

-4

-2

0

2

4

b

root joint
joint1

joint11 joint111

0 5
-6

-4

-2

0

2

c

αααα=-45
°

joint1

joint11

joint111

0 5

-2

0

2

4

6
d

joint1

joint11

joint111

0 5
-2

0

2

4

6
e

αααα=45
°

joint11

joint111

0 5
-2

0

2

4

6
f

joint11

joint111

Figure 44 from given joint positions in (a) each bone is transformed back to its local
frame, joint111 is transformed to is local coordinate in (e)

To explain how algorithm operates in 3D space, we will give a Matlab code segment. Related

Matlab function to calculate the rotation quaternion between two vectors is given in Appendix B.4.

Same function is integrated in our C++ code. The function

dualQuaternionBetweenTwoVectors calculates the rotation DQ which rotates vec1 so

that it becomes vec2. Unit vectors are used as parameters. Since we use the reference axis as the x-

axis, vec1 is ()0,0,1 and vec2 is the unit vector defined as vectorbonevectorbone _/_

where vectorbone _ defines the bone in its local coordinates. Calculating the translation is done

just like in the given example. After the rotation is calculated by function

dualQuaternionBetweenTwoVectors, its inverse is used so that the joint position is rotated

onto x-axis. Afterwards translation vector Tv can be defined as ()0,0,_ vectorbonevT = .

5.6.2 Outcomes of our Bone Transformation Calculation

The output of this algorithm produces exact results when animating a skeleton, but animating a

3D character model produces unsatisfactory results. Algorithm is affected very much from body

orientation. There are other issues as well. Let’s explain it given an example using shoulder bone

defined between Clavicle and shoulder joints. Imagine that, a skeleton which is aligned along the y

axis is rotated around the y-axis from the spine bones. This produces a result shown in Figure 45.

Rotation is applied to spine joint transformed the skeleton (a) to pose (b).

 70

(a) (b)
Figure 45 Rotation is applied to (a) spine joint translated the
skeleton to pose (b)

Our algorithm can’t resolve the fact that it is indeed the spine joint that rotates α degrees around

the y-axis, instead the algorithm assumes that right shoulder rotates α degrees around the y-axis and

left shoulder rotates α− degrees around the y-axis. Shoulder bone is almost a fixed bone which is a

constraint for the skeleton. It seems that this problem could be solved by mapping joint positions to a

realistic skeleton model and developing a constrained optimization algorithm. The deformation result

is shown in Figure 46. Note the deformation at the shoulder regions, this is due to the reasons we

explained.

Figure 46 Outcomes of our bone
transformation calculation algorithm

5.6.3 Alternative Solution for Bone Transformation Calculation

To animate the medical mocap data, it was mandatory for us to find a way to extract the necessary

bone transformations. Since this was a difficult problem, we decide to use professional software to

extract the bone transformations. We decided to use MotionBuilder for this purpose. We converted the

raw marker position data files to FCAccess Analyzer Trace File (TRC) format which are formatted

marker position files to import and process the data in MotionBuilder. TRC (‘.trc’) file format is

proposed by Ancot Corporation. After a number of steps, we finally managed to extract the bone

transformations and export them as BVH (‘.bvh’) file.

 71

Algorithms and methods used in MotionBuilder are indeed undocumented, so there is no way to

tell exactly which approaches they are using to extract bone transformations. In their study, Zordan

and Van Der Horst (2003) stated that they believe systems such as MotionBuilder use inverse

kinematics (IK) based approaches. They claim that these approaches often leave indicative side

effects, such as knees and elbows that never fully extend. They said “These systems are often

unintuitive to control and lead to unexpected solutions due to ad hoc heuristics” (Zordan & Van Der

Horst, 2003, p. 245). In their study, they attached marker positions to associated skeleton joints with

virtual springs. By using a constrained optimization algorithm subject to the constraints such as

internal torques and external forces, they calculated the joint-angles that carry the system to the

equilibrium state.

5.7 Calculating Skin Offset Transformations

Another issue is the SOTs which is necessary for the SSD and DQS deformation. Before

animating the bone transformations in BVH file, we had to assign bone weights to vertices and SOTs

to bones. SOT is a transformation which transforms the bone and the related model vertices to the

bones local coordinates. In a BVH, a line beginning with ‘OFFSET’ contains the offset value of that

bone.

JOINT Neck

{

 OFFSET 0.00 18.65 0.00

 CHANNELS 3 Zrotation Xrotation Yrotation

In the example, the offset of Neck is ()0,65.18,0 . Offset is the displacement of the end joint of the

bone from the end joint of its parent bone in the dress pose. It can be used as a reference axis vector.

In Section 5.5.1, we highlighted that we used x-axis as the reference axis. At each key frame,

transformations should be calculated relative to the x-axis. It is the same for the offset vector of a

bone. By using the offset of each bone, dress pose of the skeleton can be defined.

Figure 47 The affect of SOT

 72

This pose is important since weight assignment and SOT calculation depend on dress pose. The

algorithm in Section 5.5.1 can be used to calculate the SOT of the bone. Note that, offset vector of the

bone shall be used instead of x-axis to extract SOTs. Figure 47 indicates affect of SOT of the bone on

the vertices which are influenced by that bone. Clearly, the vertices influenced by the left fore arm are

transformed to the origin when the SOT of the LeftForeArm bone is applied.

 73

CHAPTER 6

RESULTS, CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Outcomes of the Animation Tool

Our animation tool produces only visual outputs. One of our main goals is to produce a gait

animation with movement patterns as close to the video recordings as possible. In this section, we will

try to compare the outcomes of our animation tool with real video display. We will also show the

limitations of our results and explain the reasons. Before discussing the final outputs of the tool, we

shall discuss intermediate outputs of each step.

At the data acquisition step, we acquired medical gait data from two separate sources. At first, we

acquired data from the mocap lab of Koç University. We captured data of four different gait disorders.

Three of these were performed by us. These gait disorders were Alzheimer, Footdrop and Hemipad.

We found one real patient who had multiple sclerosis (MS) in its early phase. We will explain how we

acquired data from Koç University in Section 6.1.1.

Gait laboratory in Ankara University Hospital provided us more medical gait data. They use a

professional system, Vicon, for extracting 3D marker positions. By using another tool, they convert

these marker positions to rotations and store them in GCD file format. Instead of the GCD files we

preferred C3D format supported by MotionBuilder®. We obtained four sets of C3D data three of

which had accompanying gait video recordings.

The markers were only placed on lower part of the body, so in our animation upper part of the

body was static. Besides, two of the patients used walking assist apparatus which can not be seen in

our animations. One of the patients had polio

(poliomyelitis), two of them had Cerebral palsy (CP) and last one had Osteoarthritis (OA). We give

brief information about MS, polio, CP and OA in the Appendix A. Since marker positions are given in

C3D files, we did not have to repeat the steps in Section 6.1.1. We explained how we converted 3D

marker positions in C3D files to bone transformations in Section 6.1.2. After we obtained animations,

we come up with an evaluation methodology with the guidance of Dr. Güneş Yavuzer. We explained

our evaluation methodology in Section 6.2.

 74

6.1.1 Motion Capture Process

We acquired motion capture data from a multi-camera optic mocap laboratory at Koç University

in August 2007.. The lab was being used for another purpose which decreased the illumination and the

markers had poor reflectance properties. As a result, we experienced some problems while extracting

3D marker positions and had to manually enter some of the 2D positions of markers on mocap images

with the mouse. We attached 18 markers on our bodies during the motion capture. Manually tracking

even a small portion of these markers for a short while was a troublesome task due to high frame

rates.. A screenshot of the tracking tool is given in Figure 48.

Figure 48 A screenshot from the marker tracking tool developed in Koç University.

We used an eight camera optic mocap system. As it can be seen in second camera image, most of

the legs are out of view. Body of the performer also acts as an obstacle between the camera and some

markers which is a common problem of optical systems. Manually tracking markers was not only time

consuming but the quality of the data was also inferior for the same reasons. We could not completely

prevent the flicker of the markers. As it is obvious from Figure 48, the effective view of the cameras

was small. Problems we stated forced us to capture very short motions with insufficient number of

markers.

6.1.2 Acquiring Bone Transformation in MotionBuilder

We utilized mocap capabilities of MotionBuilder. We managed to learn it to a degree to convert

marker positions to bone transformations. Motion builder has an actor object which marker points are

mapped to. To do so, actor object must be shaped and oriented to be aligned with the markers as much

as possible as shown in Figure 49. After this step markers are mapped to some particular body parts of

the actor object. It is possible that better bone transformations could be achieved with more

 75

experienced users of MotionBuilder. The data acquired from Koç and Ankara University did not have

enough number of markers. With more markers, the output of MotionBuilder could be improved.

(a) (b) (c) (d)
Figure 49 An actor is shaped and oriented to be aligned
with the markers as much as possible. Displayed from
different views (MotionBuilder)

There are some straightforward steps after mocap data is mapped to actor. Since markers were

flickering, we had to smooth the data that was acquired from Koç University before exporting BVH

file which contains bone transformations. Smoothing successfully prevented flickers but it also

eliminated some fine details of the animation which was undesirable. Fortunately, mocap data

acquired from Ankara University Hospital did not have such problems since Vicon systems were used

in their laboratory.

6.1.3 Final Outcomes

We implemented a parser to read BVH files and loaded the 3D character mesh data from the

DirectX file. Afterwards, skeleton structure must be bound to the character mesh model as explained

in Section 5.5. As a result bone weights and SOTs are calculated. We observed that animations were

satisfactory enough to observe obvious gait patterns. But more complex and detailed gait patterns

could not be observed. We will give more detail about the performance of our tool in Section 6.2.2

where the validation methodology is explained. The limitations were mostly due to the problems such

as the insufficient number of markers, noise and flicker in the mocap data which we explained in

Sections 6.1.1 and 6.1.2. There are also some problems with our weight assignment. Professional

software packages such as Maya and 3D Studio Max provide tools for an artist to manually fine tune

the weights of the 3D character model. It was not easy to compete with the performance of such

software packages. Our weight assignment algorithm mostly causes problems at the shoulder and hip

regions. In Figure 50, defects originated from weight assignment are shown. The defect occurs

because of the location of mesh vertices at the side of the chest. Normally, these vertices should be

influenced only by spine bones. But our algorithm assigns more weights for the upper arm bone since

these vertices are closer to the upper arm bone not to the spine bone.

 76

(a) (b)
Figure 50 When rotated from (a) to (b), upper arm causes defects at
the side of the chest because of the our weight assignment algorithm

Since legs are long cylindrical shapes, they are less affected by the imperfection of our weight

assignment algorithm. Consequently, data acquired from Ankara University Hospital could be used

successfully.

With the current capabilities of the animation tool, it would be possible to animate relatively more

complex and detailed gait patterns if a better mocap data with more markers and less noise were

provided. We give animation outcome of our Alzheimer mocap data in Figure 51

(a) (b) (c)

Figure 51 Outcome of the mug Alzheimer animation is shown for
different moments

Animation outcome of MS mocap data is given in Figure 52

 77

Our tool produced successful animation when appropriate bone weights, detailed bone structure

and compatible proportions between mesh and skeleton were provided by the DirectX file. This

proves that SSD and DQS algorithms are indeed adequate to animate detailed gait patterns.

Another problem is about the proportions of the skeletal structure exported from MotionBuilder.

Joint transformations over the frames are calculated relative to the initial (dress pose) defined for the

skeleton in MotionBuilder. For that reason, especially modifying the bone lengths to fit the skeleton

inside the character mesh during the bind phase causes undesirable deformation results. Deformation

results could be improved by matching the proportions of 3D mesh model with dress pose skeleton.

Consequently, inconsistent proportions of mesh and skeleton leads to deformation defects while

binding mesh to skeleton. As a result, many trials are needed to match proportion, since skeleton was

modified in MotionBuilder not in our tool.

6.2 Validation of the Tool

In this section, we will have the developed tool evaluated by physicians. We will explain our

validation methodology in Section 6.2.2. Before we pass to our validation methodology, a brief

introduction to human gait is in order.

6.2.1 Brief Information about the Human Gait

In this section, we will give brief information about human gait such as anatomical planes of the

human body, joints of lower body and phases of gait cycle. This information could be useful for a

better understanding of our evaluation methodology.

There are three planes of human body. These are sagittal, coronal (frontal) and transverse (

horizontal) planes. These panes are shown in Figure 53.

(a) (b)
Figure 52 Outcome of the multiple sclerosis (MS) animation is shown for

different moments

 78

Figure 53 Anatomical planes of the human body

(Courtesy of (Associates, 1978))

Anatomical planes are important for gait analysts because they are used as references for joint

rotations. The joints of lower the body are pelvis, hip, knee, ankle joints which are shown in Figure

54.a. The rotation axes of hip are shown in Figure 54.b.

(a) (b)

Figure 54 (a) Lower body joints and (b) hip rotation axes

Joints of the lower body are pelvis, hip, knee and ankle. Although rotations of joints have various

names such as pelvic tilt and hip flexion, note that they represent a rotation on the sagittal plane. So

there is no common name for a rotation on a particular plane, it can vary from joint to joint. Table 3

depicts the rotations of each joint.

 79

Table 3 Descriptions of Joint Angles

Angle Anatomical Plane

Pelvic Tilt Sagittal

Pelvic Obliquity Coronal

Pelvic Rotation Transverse

Hip Flexion Sagittal

Hip Abduction Coronal

Hip Rotation Transverse

Knee Flexion Sagittal

Ankle Dorsiflexion – plantar flexion Sagittal

Ankle Rotation Transverse

Another important aspect of gait is its cycle. The cycle begins when one foot contacts the ground

and ends when same foot contacts the ground again. The cycle has two main phases, stance and swing

phase. During stance phase, the foot is always in contact with the ground. During swing phase the foot

swings as the name implies and it has no contact with the ground. In Figure 55, phases of left and

right leg show a full gait cycle. While right leg (darker one) is in swing phase, left leg (brighter one) is

in stance phase. Stance phase is composed of loading response (LS) which is also known as initial

contact, midstance (MSI), terminal stance (TSt) and preswing (PSw). Swing phase is composed of

initial swing (ISw), Midswing (MSw) and terminal swing (TSw). A special case is called double

support when one leg is in LS and other one is in PSw phase which means both feet contact the

ground.

Figure 55 Human Gait Cycle

6.2.2 Validation Methodology

To validate our 3D animation tool, we applied three methods. We used three gait videos of the

patients and animations of these videos. Each video was associated with an animation. There are some

points about the animations that must be emphasized. Since we did not have any markers placed on

the upper part of the body for these patients, upper part of our 3D model was static where only lower

 80

part of the model was animating. Besides, walk assist apparatus used by patients could not be seen in

the animations.

In our first method, we formed a Panel composed of three members. Each Panel Member (PM)

has different attributes.

1. Panel Member 1 (PM1): First PM was a physician who was a gait analyst. She was aware of

the facts about animations such as upper part of body being static and absence of walk assist

apparatus.

2. Panel Member 2 (PM2): Second one was a physician who was not gait analyst.

3. Panel Member 3 (PM3): Third one was not a physician and not specialized in gait analysis,

but she was aware the facts about animations.

We asked each PM to watch the videos and animations of patients. We arbitrarily named the

videos and the animations as A, B, C and 1, 2, 3, respectively. After a PM watched a video, he/she

watched all the animations in the order 1, 2 and 3. Then he/she matched the video with one of the

three animations. He/she repeated the process for all three videos and was free to change his/her prior

choices until the end. In Table 4, we gave the answers of PMs for each video. As it can be seen, first

PM who was most qualified mismatched video A with animation 3 and video C with animation 1, but

the correct matchings were between A-1, 2-B and 3-C. This indicates that the method needs to be

further investigated.

Table 4 The answers of PMs for each video

Videos PM1 PM2 PM3

A 3 1 1

B 2 2 2

C 1 3 3

The first panel member told that she was confused with the movements of the upper body which

she tried to deliberately disregard. This indicates that the upper body should either be animated

properly or should be omitted from the animations completely. As such the first method cannot be

used as a validation method. So we will refer the second and third methods as the first and second

validation methods.

In our first validation method, we asked another PM who was a physician and a gait analyst to

watch the videos and animations. We will refer to him as Panel Member 4 (PM4). This time he was

told about the correct matching between each animation and video. PM4 knew the facts about the

animation just like PM1. He was asked to analyze, compare and rate the rotations of each joint on both

coronal and sagittal planes. Each joint rotation was given points 1, 2 and 3 which stand for no

similarity, partial similarity and exact correspondence respectively. The ratings for video A, B and C

are given in Table 5, Table 6 and Table 7 respectively.

 81

Table 5 Ratings of all joints on sagittal and coronal plane for video A

Video A Sagittal Coronal
Pelvis 1 3
Hip 1 1
Knee 2 1
Ankle 3 2

Table 6 Ratings of all joints on sagittal and coronal plane for video B

Video B Sagittal Coronal
Pelvis 3 3
Hip 3 3
Knee 3 3
Ankle 3 3

Table 7 Ratings of all joints on sagittal and coronal plane for video C
Video C Sagittal Coronal
Pelvis 3 3
Hip 2 3
Knee 3 3
Ankle 3 3

In the second evaluation methodology, PM4 filled an observational gait analysis checklist which

was developed by the Professional Staff Association of Rancho Los Amigos Medical Center (1989).

Gait analyst indicates the presence of a gait defect by a (+) and its absence by a blank area. Only the

unshaded cells are relevant, since shaded regions represent phases of the gait cycle where the given

deficit can not be seen. For example, there is no possibility for the forward lean deficit to occur in

swing phase so associated cells are shaded. We listed the observational gait analysis checklists for all

videos and animations. Videos A, B and C corresponds to animations 1, 2 and 3 respectively.

 82

Department of Rehabilitation Sciences, University of Oklahoma Health Sciences Center

Observational Gait Analysis Checklist

Video A

STANCE

SWING

LR MSI TSt PSw ISw MSw TSw

 Trunk

forward lean

backward lean

lateral lean (R/L)

+

+

+

+

 Pelvis

no forward rotation (R/L)

no contralateral drop (R/L)

hiking (R/L)

 Hip

inadequate extension

+

+

+

circumduction/abduction

 Knee

excessive flexion

+

+

+

+

+

uncontrolled extension

inadequate flexion

 Ankle/Foot

foot slap

forefoot contact

foot flat contact

+

late heel off

+

contralateral vaulting

Adapted from Professional Staff Association of Rancho Los Amigos Medical Center. (1989).
Observational gait analysis handbook. Downey, CA: Author.

 83

Video B

STANCE

SWING

LR

MSI

TSt

PSw

ISw

MSw

TSw

 Trunk

forward lean

backward lean

lateral lean (R/L)

 Pelvis

no forward rotation (R/L)

no contralateral drop (R/L)

hiking (R/L)

 Hip

inadequate extension

+

+

+

circumduction/abduction

 Knee

excessive flexion

uncontrolled extension

inadequate flexion

+

+

+

 Ankle/Foot

foot slap

forefoot contact

foot flat contact

late heel off

+

contralateral vaulting

 84

Video C

STANCE

SWING

LR

MSI

TSt

PSw

ISw

MSw

TSw

 Trunk

forward lean

backward lean

lateral lean (R/L)

 Pelvis

no forward rotation (R/L)

no contralateral drop (R/L)

hiking (R/L)

 Hip

inadequate extension

circumduction/abduction

 Knee

excessive flexion

+

+

+

+

+

uncontrolled extension

inadequate flexion

 Ankle/Foot

foot slap

forefoot contact

foot flat contact

+

late heel off

+

contralateral vaulting

 85

Animation 1

STANCE

SWING

LR

MSI

TSt

PSw

ISw

MSw

TSw

 Trunk

forward lean

backward lean

+

+

+

+

lateral lean (R/L)

 Pelvis

no forward rotation (R/L)

no contralateral drop (R/L)

hiking (R/L)

 Hip

inadequate extension

+

+

+

circumduction/abduction

 Knee

excessive flexion L

+

+

uncontrolled extension R

+

+

inadequate flexion

 Ankle/Foot

foot slap

forefoot contact

foot flat contact

+

late heel off

+

contralateral vaulting

 86

Animation 2

STANCE

SWING

LR

MSI

TSt

PSw

ISw

MSw

TSw

 Trunk

forward lean

backward lean

+

+

+

lateral lean (R/L)

 Pelvis

no forward rotation (R/L)

no contralateral drop (R/L)

hiking (R/L)

 Hip

inadequate extension

circumduction/abduction

 Knee

excessive flexion - L

+

+

+

+

+

uncontrolled extension

inadequate flexion - R

+

+

+

 Ankle/Foot

foot slap

forefoot contact

foot flat contact - L

+

late heel off

+

contralateral vaulting

 87

Animation 3

STANCE

SWING

LR

MSI

TSt

PSw

ISw

MSw

TSw

 Trunk

forward lean

backward lean

lateral lean (R/L)

 Pelvis

no forward rotation (R/L)

no contralateral drop (R/L)

hiking (R/L)

 Hip

inadequate extension

+

+

+

circumduction/abduction

 Knee

excessive flexion

+

+

+

+

+

uncontrolled extension

inadequate flexion

 Ankle/Foot

foot slap

forefoot contact

+

foot flat contact

late heel off

contralateral vaulting

 88

6.3 Discussions

The results of the validation methods are very important since they represent the performance of

the animation tool. When we inspect Table 5, Table 6 and Table 7 for first validation methodology,

we can see that animations 2 and 3 are quite successful in representing the rotations of lower body

joints but animation 1 has problems. We believe this due to the incorrect initial mapping of the actor

of MotionBuilder to its markers. We will also call this mapping process binding of the actor with

markers. As we mentioned before, this mapping process has great influence on the success of

animation. Indeed first validation method only proves that model is sufficient in representing gait

patterns in rotation wise, which means that videos and their associated animations show very similar

rotational patterns.

At first glance, results of second validation methodology seem to contradict with the first one

since observation checklists of the animations and their associated videos have some mismatches for

all animations. This means that some of the deficits in a video can not be observed in its associated

animation or an originally non-existing deficit can be observed in animation. There are several reasons

for the mismatches. First of all, the deficits pertained to trunk cannot be represented correctly since

there are no markers attached on the upper body. Previously, we told that we bound the actor object

with the markers in MotionBuilder. The orientation of actor frames (bones) has great influence on the

deficits in the checklists. Considering the foot bone at the loading response (LR) phase, the incorrect

orientation of foot during the binding process can cause different deficits to occur. For example, foot

flat contact seems to occur if the foot frame of the actor makes higher dorsiflexion during binding the

actor foot with foot markers. On the contrary, forefoot contact seems to occur if the foot frame of the

actor makes more plantar flexion than usual. These kinds of deficits are directly affected by the initial

orientation of the actor object during actor-marker bind. On the other hand, bone rotations are relative

movements. Even if the initial orientation of the bone is incorrect, it will make approximate degree of

rotations during the animations, which usually produces similar rotation patterns.

6.4 Conclusion

In our thesis study, we developed a simple and handy 3D virtual character animation tool. The

tool uses bone transformations to generate animation. We decided to use OpenGL for development

because of its platform independency. It will be easier to adapt the tool to the platforms other than

Windows when it is required. We parsed and animated DirectX and BVH files. There are other BVH

animators around but these animators are only capable of animating stick skeleton models. Our tool

provides a simple mechanism to integrate the BVH motion capture animation data with a 3D character

mesh. It is designed to be a lightweight and free tool in order to be easily distributed, installed and

used.

We employed Alias MotionBuilder® to convert 3D sensor positions to bone transformations

which are inputs for the developed tool. The results show that the tool is effective in presenting the

gait of the patients. The minor discrepancy between the animation and the video is due to inaccurate

(manual) localization of the sensors on the 3D skeleton model.

 89

Professional software packages such as MotionBuilder, Maya, 3D Studio Max can also animate

3D character model by using motion capture files. But, these are quite expensive commercial software

packages. Since they have many capabilities, they are heavyweight products which have a steep

learning curve. Our tool can be convenient for just showing medical animations because of its being

compact and free of charge.

Our animation tool can also be distributed to medical institutions as well. There are many gait

disorders identified by inspecting the movements and gait of patients. For that purpose, gait analysts

use camera records to store the visual data of their patients. During medical education, they show their

students video recordings to explain gait patterns of gait disorders. As motion capturing and 3D

virtual character animation techniques evolve, it will become more effective using 3D animation

technologies instead of video recordings. It can also be possible to display the animation to students

from a web interface. In a medical video recording, there are lots of irrelevant and insignificant data

such as the image of the room where the patient walk or the texture of the cloth which patient wear

and so on. Besides, image based records are infamous for occupying too much disk storage.

Extracting significant and reduced data have always been a research area. 3D representation of the gait

data serves these purposes. Distributing, sharing and displaying video recordings have always been

disadvantageous for that reasons. Movement data in 3D transformation representation is very small

sized compared to the video recordings. Another advantage of using 3D technologies is the

interactivity they provide. It is possible to inspect the movements of the patient from different angles

and distances where a video recording is not available. Privacy of patients is yet another issue in

medical domain. Some patients require his/her data not to be exposed. Since an anonymous virtual

character is used to represent the movement of the patient, this ethical issue will be solved to a certain

degree. Besides, bone transformations can also be used for gait analysis.

Most of the implementation is made from scratch. This makes further improvements possible.

Using other binary libraries in the implementation can limit the possibilities to an extent that third

party libraries allow. The animation tool is yet a prototype which needs further improvements.

However, the outputs of our current implementation indicate the potential of the tool and of 3D

technologies for medical purposes.

6.5 Future Directions

This tool is just a prototype; hence many improvements can be done. A better animation is the

main concern for our study. As we stated in Section 6.1.3, quality of acquisition and processing of the

mocap data is very important. Another important issue is the ease of use. The interactivity must be

improved for that purpose. Though not essential, it is possible integrate new deformation algorithms

or make enhancement to existing ones.

6.5.1 Improvements for Motion Capture Data

Acquisition of the motion capture data is out of our scope, but processing the mocap data is an

issue that concerns us. An intelligent and capable joint transformation calculation algorithm shall be

 90

integrated within the tool. Such a solution will decouple the whole animation process from other

software packages such as MotionBuilder. In Section 6.1.3 we emphasized that it is hard to modify the

proportions of skeletal structure to fit the mesh model. Such problem occurs because skeletal structure

is created and modified in MotionBuilder where character mesh is bound to skeleton in our animation

tool. If the joint transformation calculation capability is integrated, it will be possible to overcome this

problem. Besides, such capability is necessary for the animation tool to become complete.

6.5.2 Improving Existing Algorithms and Integrating New Ones

A more flexible and intelligent weight calculation method is necessary to enhance both SSD and

DQS deformation. Not only the algorithm itself should be improved but also it should be possible for

the user to further modify the weights by using a user friendly interface. It is time consuming to align

the skeleton inside a character mesh. A new algorithm can be implemented to automatically place and

orient the skeleton inside the mesh.

6.5.3 Improving User Interface

Ease of use is very essential for any software. As many other prototypes, the interface of our

animation tool is yet to be improved. We have implemented the basics of mouse interaction but this

should be further improved. Interaction with the objects in the scene must become more comfortable.

We can give the current manual bone transformation process as an example. We use keyboard buttons

to rotate bones. In addition to rotations, scaling and translations must be driven by mouse inputs.

Manual transformations of bones should be done both relative to global axis and local coordinate axis

of the bone. Professional software packages such as MotionBuilder, Maya and 3D Studio Max use

mouse interaction interfaces similar to Figure 56

(a) (b)
Figure 56 MotionBuilder skeleton scaling transformation by mouse is shown in (a) and
rotation shown in (b)

Easily moving over the scene is another important feature, we provide it via use of keyboard where

mouse control is a better alternative.

 91

6.5.4 Platform Independency

One of the reasons why we chose OpenGL for development of our tool is that it is platform

independent. Our tool is somewhat dependent on Windows platform, since we developed the tool by

using Visual C++. One of our objectives was to use a platform independent Application Programming

Interface (API) such as The OpenGL Utility Toolkit (OpenGLUT) in our project to decouple

implementation from platform specific functions. For that purpose, we avoided using Microsoft

Foundation Class (MFC) library in our implementation.

6.5.5 Performance Issues

Speed is not a major concern of our implementation but further optimization can be useful. As we

explained in Section 5.3, at every time frame, bone transformations are interpolated and combined to

calculate the local transformation of the bone. Then these local transformations are combined

recursively to form the global transformations of bones. This is a time consuming process and is

executed before each frame is rendered. Assuming that we have a definite and constant time interval,

we can preprocess and calculate the global bone transformations for only once after animation data is

read and initialized. At each frame transformations would be ready to be applied to vertices. This also

makes it possible to use graphics adapter hardware. Most of the current graphics hardware has its own

processor which is called Graphical Processor Unit (GPU). Precalculated global bone transformations

could initially be sent to graphics hardware for once and by using fragment programming (GPU

programming), DQS and SSD algorithms could be run on GPU. GPU is able to run such algorithms

much faster then CPU does. This will also prevent the unnecessary CPU usage.

6.5.6 Web-Based Animation Tool

A more lightweight version of the animation tool can be implemented in Java to be used in web

pages. This version will be only capable of animating a character mesh which is already bound to a

skeleton. All necessary data will be available by streaming from a mocap and 3D character file server

and no editing capabilities will be included. This version of the program is very suitable to consult a

medical specialist about a patient’s gait patterns. Doctors will also be able inspect the mocap data of

their patients without having to go to the clinic or hospital. Such a tool can also be very useful for

education of medical students because medical gait data would be made available to students. In

addition, data would be delivered quickly to the client thanks to the compact size.

 92

REFERENCES

Alan, H. B. (1984). Global and local deformations of solid primitives. Paper presented at the
Proceedings of the 11th annual conference on Computer graphics and interactive techniques.

Alex, M., & Michael, G. (2003). Building efficient, accurate character skins from examples. Paper
presented at the ACM SIGGRAPH 2003 Papers.

Allen, J., Wyvil, B., & Witten, I. (1989). A method for direct manipulation of polygon meshes.
Proceedings of Computer Graphics International, 451-469.

Associates, W. (1978). Anthropometric Source Book Volume I: Anthropometry for Designers (NASA
RP-1024). Webb Associates, Yellow Springs, OH (NTIS No. N79-13711).

Aubel, A., & Thalmann, D. (2000). Realistic Deformation of Human Body Shapes. Computer

Animation and Simulation 2000: Proceedings of the Eurographics Workshop in Interlaken,

Switzerland, August 21-22, 2000, 125-135.

Aubel, A., & Thalmann, D. (2001). Efficient Muscle Shape Deformation. Paper presented at the
Proceedings of the IFIP TC5/WG5.10 DEFORM'2000 Workshop and AVATARS'2000
Workshop on Deformable Avatars.

Bartels, R., & Beatty, J. (1989). A technique for the direct manipulation of spline curves. Graphics

Interface, 89, 33-39.

Bruce, M., Patrick, M., & James, G. (2006). Animation space: A truly linear framework for character
animation. ACM Trans. Graph., 25(4), 1400-1423.

Burtnyk, N., & Wein, M. (1971). Computer Generated Key Frame Animation. Journal of the Society

of Motion Picture and Television Engineers, 80(3), 149-153.

Burtnyk, N., & Wein, M. (1976). Interactive skeleton techniques for enhancing motion dynamics in
key frame animation. Commun. ACM, 19(10), 564-569.

Cerebral palsy (n.d.) Retrieved April, 2008, from http://en.wikipedia.org/wiki/Cerebral_palsy

Collins, G., & Hilton, A. (2001). Models for character animation. Software Focus, 2(2), 44-51.

 93

Coppens, P. Loading and displaying .X files without DirectX. Retrieved April, 2007, from
http://www.gamedev.net/reference/programming/features/xfilepc/

Digital Human Research Center, A. (n.d.). Shape transformation technique. Retrieved December,
2007, from http://www.dh.aist.go.jp/research/centered/dressdummy/FFDexp.php.en

Doug, L. J., & Christopher, D. T. (2005). Skinning mesh animations. ACM Trans. Graph., 24(3), 399-
407.

Dual Quaternion skinning in Maya (n.d.) Retrieved August, 2007, from
http://mayadqskinning.sourceforge.net/manual.txt

Eberly, D. H. (2006). 3D Game Engine Design: A Practical Approach to Real-Time Computer

Graphics: Morgan Kaufmann.

Ferdi, S., Richard, E. P., Wayne, E. C., & Stephen, F. M. (1997). Anatomy-based modeling of the

human musculature. Paper presented at the Proceedings of the 24th annual conference on
Computer graphics and interactive techniques.

Forstmann, S., & Ohya, J. (2006). Fast skeletal animation by skinned arc-spline based deformation.
EG 2006 Short Papers, 1-–4.

Gait abnormalities in minimally impaired multiple sclerosis patients (n.d.) Retrieved April, 2008,
from http://msj.sagepub.com/cgi/content/abstract/5/5/363

Gibson, S. F. F., & Mirtich, B. (1997). A Survey of Deformable Modeling in Computer Graphics
November. Cambridge, MA, Mitsubishi Electric Research Lab

Gjerde, E. (n.d.). Origami Tessellations. Retrieved December, 2007, from
http://www.origamitessellations.com/category/math/page/2/

Joseph, T., Eftychios, S., Geoffrey, I., & Ronald, F. (2005). Robust quasistatic finite elements and

flesh simulation. Paper presented at the Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation.

Kavan, L. (2007). Real-time Skeletal Animation. Czech Technical University, Prague.

Ken, S. (1985). Animating rotation with quaternion curves. SIGGRAPH Comput. Graph., 19(3), 245-
254.

Ladislav, K., Steven, C., Ji, ra, & Carol, O. S. (2007). Skinning with dual quaternions. Paper presented
at the Proceedings of the 2007 symposium on Interactive 3D graphics and games.

Ladislav, K., Steven, C., Zara, J., & Carol, O. S. (2007). Skinning with dual quaternions. Paper
presented at the Proceedings of the 2007 symposium on Interactive 3D graphics and games.

Ladislav, K., & Zara, J. (2005). Spherical blend skinning: a real-time deformation of articulated

models. Paper presented at the Proceedings of the 2005 symposium on Interactive 3D
graphics and games.

 94

Lewis, J. P., Matt, C., & Nickson, F. (2000). Pose space deformation: a unified approach to shape

interpolation and skeleton-driven deformation. Paper presented at the Proceedings of the
27th annual conference on Computer graphics and interactive techniques.

Magnenat-Thalmann, N., Laperri, R., re, & Thalmann, D. (1988). Joint-dependent local deformations

for hand animation and object grasping. Paper presented at the Proceedings on Graphics
interface '88.

Marc, A. (2002). Linear combination of transformations. ACM Trans. Graph., 21(3), 380-387.

Maths - Dual Quaternions (n.d.) Retrieved August, 2007, from
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/other/dualQuaternion/

McKinley, M. (n.d.). Wire Tool. Retrieved December, 2007, from
http://www.getatutorial.com/tutorials/Maya/Modeling/Wire-Tool-in-maya_1067.html

Meredith, M., & Maddock, S. (2000). Motion Capture File Formats Explained. University of

Sheffield: Technical Report.

Michael, P., Patrick, C., Joe, L., & Karan, S. (2005). Outside-in anatomy based character rigging.
Paper presented at the Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium
on Computer animation.

Multiple sclerosis (n.d.) Retrieved April, 2008, from http://en.wikipedia.org/wiki/Multiple_sclerosis

Nadia Magnenat, T., Frederic, C., Hyewon, S., & George, P. (2004). Modeling of Bodies and Clothes

for Virtual Environments. Paper presented at the Proceedings of the 2004 International
Conference on Cyberworlds.

Nedel, L., & Thalmann, D. (1998). Modeling and Deformation of the Human Body using an

Anatomically-Based Approach. Paper presented at the Proceedings of the Computer
Animation.

Observational gait analysis (n.d.) Retrieved May, 2008, from
http://moon.ouhsc.edu/dthompso/gait/knmatics/oga.htm

Osteoarthritis (n.d.) Retrieved April, 2008, from http://en.wikipedia.org/wiki/Osteoarthritis

Parent, R. (2002). Computer Animation: Algorithms and Techniques: Morgan Kaufmann.

Paul, G. K., Doug, L. J., & Dinesh, K. P. (2002). EigenSkin: real time large deformation character

skinning in hardware. Paper presented at the Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation.

Peter-Pike, J. S., Charles F. Rose, III, & Michael, F. C. (2001). Shape by example. Paper presented at
the Proceedings of the 2001 symposium on Interactive 3D graphics.

Platt, J., Terzopoulos, D., Fleischer, K., & Barr, A. (1987). Elastically Deformable Models. Siggraph

Proceedings, 205-214.

 95

Poliomyelitis (n.d.) Retrieved April, 2008, from http://en.wikipedia.org/wiki/Polio

Porcher-Nedel, L. Anatomic modeling of human bodies using physically-based muscle simulation. Ph.
D. dissertation, Swiss Federal Institute of Technology, 1998.

Provot, X. (1995). Deformation constraints in a mass-spring model to describe rigid cloth behavior.
Graphics Interface, 95, 147–-154.

Richard, E. P. (1977). A system for sculpting 3-D data. Paper presented at the Proceedings of the 4th
annual conference on Computer graphics and interactive techniques.

Singh, K., & Fiume, E. (1998). Wires: a geometric deformation technique. Proceedings of the 25th

annual conference on Computer graphics and interactive techniques, 405-414.

Sven, F., Jun, O., Artus, K.-G., & Ryan, M. (2007). Deformation styles for spline-based skeletal

animation. Paper presented at the Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation.

Terzopoulos, D., & Waters, K. (1990). Physically-based facial modeling, analysis, and animation.
Journal of Visualization and Computer Animation, 1(2), 73-80.

Thomas, W. S., & Scott, R. P. (1986). Free-form deformation of solid geometric models. SIGGRAPH

Comput. Graph., 20(4), 151-160.

Xiaohuan Corina, W., & Cary, P. (2002). Multi-weight enveloping: least-squares approximation

techniques for skin animation. Paper presented at the Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation.

Xiaosong, Y., Arun, S., & Jian, J. Z. (2006). Curve skeleton skinning for human and creature
characters: Research Articles. Comput. Animat. Virtual Worlds, 17(3-4), 281-292.

Zordan, V. B., & Van Der Horst, N. C. (2003). Mapping optical motion capture data to skeletal

motion using a physical model. Paper presented at the Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation.

 96

APPENDICES

APPENDIX A: DEFINITIONS OF GAIT DISORDERS

A.1 Multiple Sclerosis (MS)

It is also known as “disseminated sclerosis” or “encephalomyelitis disseminate”. Immune system

attacks the central nervous system (CNS) which is an autoimmune case which leads to demyelination.

It may result with numerous physical and mental symptoms, where patient often ends up with physical

and cognitive disability ("Multiple sclerosis,").

Its potential negative effects on the gait pattern of the patient ("Gait abnormalities in minimally

impaired multiple sclerosis patients,") are

 1. Reduced Speed of Progression

 - Shorter Strides

 - Prolonged Double Support Phase

 2. Muscular Function

 - Premature Recruitment of Gastrocnemius

 - Late Relaxation of Tibialis Anterior during Stance Phase

A.2 Polio

Polio stands for poliomyelitis or infantile paralysis. It is an acute viral infectious disease which

can spread from person to person via the fecal-oral route, etc. In fewer than 1% of cases, the virus

enters and affects the central nervous system, infecting and destroying motor neurons. This results

with muscle weakness, reduced muscle tone or even muscle paralysis ("Poliomyelitis,").

Depending on the nerves involved, different types of paralysis may occur. Effects of the polio are

diverse. It can cause stiffness and muscle weakness at the legs or arms. The individual may even lose

the ability to use of one or both legs, arms ("Poliomyelitis,").

A.3 Cerebral palsy

Palsy is a medical term derived from the word paralysis. Cerebral palsy (CP) is a general term

which comprises a group of non-progressive and non-contagious conditions that cause physical

disability in human development. Damage to the young developing brain at the motor control centers

 97

is the cause of CP. It mostly occurs during pregnancy, seldom during childbirth or sometimes after

birth up to about age three ("Cerebral palsy,").

All CP types are characterized by abnormal motor development and coordination, reflexes,

muscle tone or posture such as slouching. Joint and bone deformities and contractures can also occur.

Spasticity, spasms, other involuntary movements are the classical symptoms. Unsteady gait, problems

with balance, and/or soft tissue findings such as decreased muscle mass can be the results. Toe

walking and scissor walking where the knees come in and cross are the most common indicators for

patients with CP. Similar to polio, symptoms are very diverse ("Cerebral palsy,").

A.4 Osteoarthritis

Osteoarthritis (OA) also known as degenerative arthritis, is a degenerative joint disease.

Destruction or decrease of synovial fluid and eventually erosion of the cartilage tissue at the joints

occurs as a result of low-grade inflammation. This causes decreased movement because of the pain.

Besides, regional muscle loss may occur, and ligaments may become more lax.

Chronic pain, causing loss of mobility and often stiffness are the main symptoms. Although there

are other symptoms, the prominent symptom associated with abnormal gait is the limited joint motion

("Osteoarthritis,").

 98

APPENDIX B: PROGRAM CODES

B.1 OpenGL Mouse Selection Code with C++
void AbstractMouseHandler::Selection(unsigned short mouse_x, unsigned short mouse_y)

{

// Create a selection buffer

 GLuint buffer[512];

// The number of objects will be stored in hits

 GLint hits;

// The Size Of The Viewport. [0] Is <x>, [1] Is <y>, [2] Is <length>, [3] Is

<width>

 GLint viewport[4];

 // This Sets The Array <viewport> To The Size And

// Location Of The Screen Relative To The Window

 glGetIntegerv(GL_VIEWPORT, viewport);

// Tell OpenGL to use the buffer to fill selected object IDs

 glSelectBuffer(512, buffer);

// Puts OpenGL In Selection Mode. Nothing Will Be Drawn to

// screen. Object ID's and Extents Are Stored In The Buffer.

 (void) glRenderMode(GL_SELECT);

// Initializes The Name Stack

 glInitNames();

// Push 0 (At Least One Entry) Onto The Stack

glPushName(0);

// Switch to Projection Matrix Mode

 glMatrixMode(GL_PROJECTION);

// Push The Projection Matrix so restore it later

 glPushMatrix();

// Resets The Matrix to Identity

 glLoadIdentity();

 // This Creates A Matrix That Will Zoom

// Up To A Small Portion Of The Screen, Where The Mouse Is.

gluPickMatrix((GLdouble) mouse_x, (GLdouble) (viewport[3]-mouse_y), 1.0f,

1.0f, viewport);

 // Apply The Perspective Matrix

gluPerspective(45.0f, (GLfloat) (viewport[2]-viewport[0])/(GLfloat)

(viewport[3]-viewport[1]), 0.1f, 10000.0f);

// switch to the Modelview Matrix

glMatrixMode(GL_MODELVIEW);

// Resets The Matrix to Identity

 glLoadIdentity();

// camera class sets the perspective matrix

// due to current camera orientation

 Cam->SetPrespective();

 glPushMatrix();

 // render objects under selection mode

 SelectionDraw();

// Select The Projection Matrix

 glMatrixMode(GL_PROJECTION);

// Pop The Projection Matrix

 99

 glPopMatrix();

// Select The Modelview Matrix

 glMatrixMode(GL_MODELVIEW);

// Switch To Render Mode, Find Out How Many objects are under // mouse

 hits=glRenderMode(GL_RENDER);

// at last OpenGL api filled the buffer, so process the

// results at will

 processHits(hits, buffer);

}

B.2 Mouse Drag Code with C++
// "linePoint": is the projection of mouse pointer on near plane and will be updated

// due to screen coordinates of mouse and current perspective projection matrix

void retrieveProjectionofMousePointerOnNearPlane(math3d::Vector *linePoint, GLint

mouse_x, GLint mouse_y)

{

GLint viewport[4];

glGetIntegerv(GL_VIEWPORT, viewport);

GLfloat half_height = 1.0f * tan(45.0f * 0.5f * TWOPI_OVER_360);

GLfloat aspect = (GLfloat) (viewport[2]-viewport[0])/(GLfloat) (viewport[3]-

viewport[1]);

GLfloat half_width = half_height * aspect;

GLfloat eye_screen_ratio_x = (2 * half_width) / ((GLfloat) (viewport[2]-

viewport[0]));

GLfloat eye_screen_ratio_y = (2 * half_height) / ((GLfloat) (viewport[3]-

viewport[1]));

linePoint->x = -half_width + ((GLfloat)mouse_x) * eye_screen_ratio_x;

linePoint->y = +half_height - ((GLfloat)mouse_y) * eye_screen_ratio_y;

linePoint->z = -1.0f;

}

// line function paramters should be adjusted due to current model view matrix

void retrieveLineFuntionDataFromInverseOfViewMatrix(math3d::Vector *linePoint,

math3d::Vector *lineVector, GLfloat *m)

{

GLfloat xp2 = linePoint->x*m[0] + linePoint->y*m[4] + linePoint->z*m[8] + m[12];

GLfloat yp2 = linePoint->x*m[1] + linePoint->y*m[5] + linePoint->z*m[9] + m[13];

GLfloat zp2 = linePoint->x*m[2] + linePoint->y*m[6] + linePoint->z*m[10] + m[14];

lineVector->x = xp2 - m[12];

lineVector->y = yp2 - m[13];

lineVector->z = zp2 - m[14];

linePoint->x = xp2;

linePoint->y = yp2;

linePoint->z = zp2;

}

B.3 Calculation of Line Plane Intersection with C++
// "linePoint": is a point on the mouse ray, "lineVector": is the direction of

// mouse ray, "planePoint": is a point on the plane of mouse ray. "planeNormal":

// is the normal of the plane

// returns: "glPoint": funtion returns the intersection point of the mouse ray

// and plane defined

math3d::Vector* retrieveLinePlaneIntersection(math3d::Vector *linePoint,

math3d::Vector *lineVector, math3d::Vector *planePoint, math3d::Vector *planeNormal)

{

math3d::Vector *intersectionPoint = new math3d::Vector();

GLfloat t =

 ((planePoint->x*planeNormal->x + planePoint->y*planeNormal->y + planePoint-

>z*planeNormal->z) -(linePoint->x*planeNormal->x + linePoint->y*planeNormal->y +

linePoint->z*planeNormal->z)) / (lineVector->x*planeNormal->x + lineVector -

y*planeNormal->y + lineVector->z*planeNormal->z);

// intersection of plane and line is

intersectionPoint->x = lineVector->x*t + linePoint->x;

 100

intersectionPoint->y = lineVector->y*t + linePoint->y;

intersectionPoint->z = lineVector->z*t + linePoint->z;

return intersectionPoint;

}

B.4 Calculation of Rotation Quaternion between Two Vectors with

Matlab Script
function [dq] = dualQuaternionBetweenTwoVectors(vec1, vec2)

 rotationAxisVec = cross(vec1, vec2);

 rotationAxisVec = rotationAxisVec / norm(rotationAxisVec);

 tetha = acos(dot(vec1, vec2) / (norm(vec1) * norm(vec2)));

 dq = [cos(tetha/2) sin(tetha/2)*rotationAxisVec 0 0 0 0];

end

