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ABSTRACT 

HARDWARE IMPLEMENTATION OF AN ACTIVE 
FEATURE TRACKER FOR SURVEILLANCE 

APPLICATIONS 
 

 

 

Solmaz, Berkan 

M.Sc., Department of Electrical and Electronics Engineering 

       Supervisor: Prof. Dr. Akar, Gözde Bozdağı 

 

July 2008, 88 pages 

 

The integration of image sensors and high performance processors into 

embedded systems enabled the development of intelligent vision 

systems. In this thesis, we developed an active autonomous system to 

be used for surveillance applications. The proposed system detects a 

single moving object in the field of view automatically and tracks it in a 

wide area by controlling the pan-tilt-zoom features of the camera. The 

system can also go to an alarm state to warn the user.  

The processing unit of the system is a Texas Instruments DM642 

Evaluation Module which is a low-cost high performance video & 

imaging development platform designed to develop and evaluate video 

based applications. 
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ÖZ 

GÖZETLEME UYGULAMALARI İÇİN BİR AKTİF 
ÖZNİTELİK İZLEYİCİNİN DONANIM 

GERÇEKLEŞTİRİMİ 
 

Solmaz, Berkan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar 

 

Temmuz 2008, 88 sayfa 

 

Görsel algılayıcılar ve yüksek performanslı işlemcilerin bir araya 

getirilmesi akıllı görme sistemlerinin geliştirilmesine olanak sağlamıştır. 

Bu tezde, gözetleme uygulamalarında kullanmak üzere aktif, özerk bir 

sistem geliştirilmiştir. Önerilen sistem, kameranın bakış açısı içinde 

bulunan hareketli bir nesneyi otomatik olarak algılamakta ve nesneyi 

kameranın yatay-eğim-optik kaydırma özellikleriyle geniş bir alanda 

takip etmektedir. Ayrıca sistem bir alarm durumuna geçerek kullanıcıyı 

da uyarabilmektedir. 

Sistemin işleme birimi düşük maliyetli, yüksek performanslı video ve 

görüntüleme uygulamaları geliştirme ve değerlendirme platformu olan 

Texas Instruments'a ait DM642 Değerlendirme Modülüdür. 
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Anahtar Sözcükler: İzleme, Arkaplan Modelleme, Öznitelik, Sayısal 

İşaret İşlemci, Yatay-Eğim-Optik Kaydırmalı Kamera, Gözetleme. 
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CHAPTER 1                                  

INTRODUCTION 

1.1 Background 

Surveillance involves monitoring the movements of people or objects. 

In past, a complete surveillance system consisted of a camera, a 

monitor and a video recorder. This system did not have the ability to 

process the acquired signals or analyze the scene. In more advanced 

surveillance and vision systems, the cameras operate as simple sensors 

and the captured video is processed in a central processing unit which 

is generally a personal computer. However, the whole video stream 

needs to be transmitted to the processing unit by a high-cost and 

distance limited connection. Therefore, it is more feasible to integrate 

the processing unit and the camera within a stand-alone system and to 

run the video/image processing algorithms on this system. Integration 

of image sensors and high performance processors into embedded 

systems enabled the development of capable stand-alone systems. 

 

The active feature tracker that is presented in this thesis is an 

intelligent vision system that performs not only video capturing but also 

processing and extracting information from video stream without the 

need for an external processing unit. It can also interface with other 

devices to report the results and events to the users. 

 

The presented system has all of the essential components for 

video/image processing and also some additional components. These 

features can are: 
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-Pan-tilt-zoom camera for capturing analog video 

-Video decoder for digitizing analog video 

-Digital signal processor (DM642) 

-Code Memory and Data memory (Ram, Flash)  

-Communication interface (RS-232) 

-General Purpose I/O lines 

-Illumination devices (LEDs) 

-Video encoder for video output 

 

The implemented system is appropriate for many tasks. As well as 

being used for active feature tracking for surveillance in this thesis, the 

hardware of this system can be programmed to execute various types 

of image/video processing routines. Therefore conventional PC based or 

central processing unit based systems will be unnecessary. This system 

can also compete with personal computers in terms of functionalities. 

The compactness and stand-alone operation of this type of vision 

systems make integration and mounting easier. This also results in a 

decrease in costs, for instance no switching cabinets are required for 

the cameras. This type of systems is more reliable and can work for 

long time without being restarted. Nevertheless, this type of systems 

do not have sophisticated user interface like PC based systems. 

 

The presented stand-alone system, including a high performance digital 

signal processor, can be a perfect choice for applications of distributed 

vision and for applications where multiple independent and 

asynchronous cameras are required. For instance, many of these 

systems can be distributed along a production line or at multiple 

inspection or surveillance points. 

 

In recent years, due to the increasing demand for intelligent 

surveillance systems, there are various applications being developed. 

Haritaoglu [1] et al. proposed a surveillance system that identifies 
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shopping groups by detecting and tracking people while they wait in a 

checkout line or service counter. Hampapur et al. [2] developed a 

system to perform 3D head detection in a room by using multiple 

cameras. 

 

Although the presented system has many advantages, performing 

high-level image analysis algorithms on embedded systems requires 

high processing power and it is the most critical task for the 

development of embedded vision systems. 

1.2 Problem Definition and Motivation 

Video surveillance systems of today generally consist of closed-circuit 

TV systems. These systems accomplish a loopback of images to a 

monitor for people who try to examine events. However, the people 

viewing the images on monitors cannot be so consistent and may lose 

their concentration in time. With the increasing technology, video 

surveillance systems started evolving from traditional closed-circuit TV 

systems to intelligent stand-alone security systems which can operate 

more consistently and less dependent on people. High processing 

power of the new digital signal processors enabled more functional 

systems to be developed. These systems have many more features 

when compared to the traditional systems which can only capture video 

signals and record them. They automatically analyze the video stream 

and perform actions such as warning the security guards in case of an 

important event. 

 

This thesis describes the hardware implementation of an intelligent 

system with pan-tilt-zoom features for surveillance applications. The 

hardware of the system consists of a Texas Instruments DM642 Digital 

Video Processing board and a pan-tilt-zoom camera. The presented 

system detects a single moving object in the field of view automatically 

and tracks it in a wide area by controlling the pan-tilt-zoom features of 
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the camera. The system can also go to an alarm state to warn the user 

if necessary. 

1.3 Organization of the Thesis 

The organization of the thesis is as follows: 

 

In Chapter 2, the theoretical bases of background modeling, feature 

extraction and tracking, which are necessary for moving object 

detection, are given. Major approaches are discussed by presenting 

their strengths and weaknesses. 

 

Chapter 3 illustrates the hardware of the presented system by stating 

the most critical parts of the hardware and points out their general 

specifications. 

 

In Chapter 4, the whole system implementation and integration are 

described. The hardware used for the development and the developed 

software are explained in details. The testing and verification steps are 

also addressed. 

 

In Chapter 5, the setup of experiments for the system and the results 

obtained from the execution of the developed software on PC and on 

DSP using sample or real-time video sequences are given. 

 

Finally, Chapter 6 provides the conclusions for the overall study with 

mentioning open points for possible future studies. 
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CHAPTER 2                                              

MOVING OBJECT DETECTION 

2.1 Background Modeling 

Background modeling is a fundamental task for many vision systems. 

The aim is to detect the background scene in a suitable way, detect the 

changes in the scene and separate the background and foreground 

objects carefully. The more accurate the background model, the more 

accurate the detection of foreground objects. The most critical part in 

background modeling is to build an adaptive model for the background, 

as in most scenes where the background shows a varying behavior in 

time and space. Especially natural scenes result in many difficulties on 

background modeling since they are usually dynamic and including 

illumination changes that may result from cloud cover and as well as 

variations that result from moving background objects such as tree 

leaves, rain, snow and sea waves. A robust background modeling 

algorithm should also deal with cases when new objects are introduced 

into the background or when a background object is removed from the 

scene. Furthermore variation due to blocking of the light source in 

indoor videos or the shadows of the moving objects can cause 

problems. Even in a static scene, frame to frame changes may occur 

due to noise and uncertain camera movements. An efficient 

background model needs to overcome these problems. 

 

In security applications, many objectives such as object tracking and 

action analysis are dependent on background modeling. Therefore, it is 

the first task of the proposed system in the thesis. There are various 
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background models that have been introduced with various 

characteristics. Popular approaches will be explained in following 

sections. 

2.1.1 Background Subtraction and Temporal Smoothing  

Background subtraction is a basic and common method for 

discriminating a moving object from the background scene. The 

captured frames are   subtracted from the estimated background image 

and the result is thresholded to generate the objects of interest. 

 

Most of the real-time security systems use this method in order to 

detect the regions of the image that have changed. The simplest way of 

acquiring the background image is to set a prior frame as the reference 

frame when there is no foreground object in the scene. Then using 

pixel-by-pixel frame difference between the reference frame and the 

captured frames allows us to find the foreground objects in the 

captured frames. Thresholding the difference results in a binary 

foreground image that consists of two gray levels; 0 (black) indicates 

the background pixels and 1 (white) indicates the foreground pixels. 

The foreground image is given by: 

 

                          




<−

>−
=

ThryxBtyxI

ThryxBtyxI
tyxF

),(),,(,0

),(),,(,1
),,(                   (2.1) 

 

F(x,y,t) and I(x,y,t) represent the intensity vectors for the pixels of 

foreground image and captured frame at (x,y) location at time t 

respectively. B(x,y) is the intensity vector for the pixel at location (x,y) 

of background image and Thr is the threshold value. 

 

This method is useful when the background is totally static. However, it 

has so many errors when the background is not relatively static. For 
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instance, when the illumination level changes depending on the 

weather, position of clouds and sun or when the sun light lessens, it 

affects the performance. Another problem of this method is that the 

present foreground objects while setting the reference frame remain as 

permanent background objects. Moreover slight camera movements 

also result in errors in detecting the background. Leaves of a tree when 

there is wind results in errors. A flickering monitor or TV screen is also 

a problem for this method. 

 

An improved method for determining background image, which is 

known as Temporal Smoothing, is accomplished by averaging the 

captured frames over time in order to have a better estimate. The 

background estimate can be found by: 

 

                                   ∑ =
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where I(x,y,t) is the intensity vector for the pixel at (x,y) location at 

time t and B(x,y,t) is actually the mean color of the pixel at (x,y) at 

time t. In order to reduce the required memory and the required 

number of multiplications and additions, the formula can be computed 

incrementally as: 
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Temporal smoothing performs well in scenes where objects move 

continuously and the background is visible for a significant portion of 

the time. However it fails when the foreground objects move slowly 

since those objects will be assigned significantly into the averaged 

background.  In addition, when the scene is occupied by many 

foreground objects, the background becomes less visible. Therefore, 

this method has errors forgetting the background image. This 
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technique has a particularly long recovery time for the background 

when a new static object is inserted to the scene or when a background 

object is removed from the scene. A change in the illumination level 

over time is another problem of this method. This problem can be 

solved by using a moving window average of frames or using an 

exponential forgetting. The weights of past frames decrease 

exponentially and their effect on the background image reduces. Using 

this approach, the background image can be obtained by: 

 

                       ),,(*)1,,(*)1(),,( tyxIatyxBatyxB +−−=                  (2.4) 

 

where 1/α is the forgetting factor and α is the learning rate. In this way 

the memory requirements are also reduced. In simple average case, 

the memory requirement is frame size times the number of all frames, 

whereas in moving average case the required memory is the just the 

frame size. This approach also cannot adapt to the scenes with tree 

leaves, snow, rain or slowly moving objects. 

 

Temporal smoothing may be performed in various ways. For example, 

Karmann and von Brandt [3] use a Kalman filter and the Wallflower 

algorithm [4] uses a Wiener filter instead of exponential smoothing. 

 

Heikkila and Olli [5] applied two corrections to the method: 

-If a pixel is observed in the foreground for more than a number of 

frames in a specified number of last frames, then it is modified to be in 

the background by setting: 

 

                                     ),,(),,( tyxItyxB =                                  (2.5) 

 

With this modification the method can adapt to the sudden illumination 

changes and to the insertion of new static objects. 
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-If the intensity of a pixel changes frequently, it is masked out from 

being in the foreground. This modification is helpful in conditions when 

there are object that cause fluctuations in the illumination level of 

environment such as flickering monitors, tree leaves in wind or sea 

waves. 

 

Moving average approach can also be modified in order not to take into 

account the foreground pixels while estimating the background by 

performing: 

 



 −+

=+
FGinistyxIiftyxB

BGinistyxIiftyxBatyxIa
tyxB

),,(),,,(

),,(),,,(*)1(),,(*
)1,,(  (2.6) 

 

After background subtraction, morphological operations are applied to 

the foreground. Generally, a 3x3 mask is used for dilation and erosion 

operations. Then, the foreground object is segmented by connected 

component analysis. The same procedure is also applied in the 

methods Single Gaussian Distribution Model (Section 2.1.2). 

 

While background subtraction and temporal smoothing methods are 

useful in well-defined and short-time tracking applications without 

significant changes in the scene, they may have many errors that 

accumulate over time in more complex scenes. These methods cannot 

cope with complex backgrounds, and have a single, predetermined 

threshold for the entire scene. 

2.1.2 Single Gaussian Distribution Method 

As mentioned in the previous sections, the background scene is 

generally not static and changes over time due to variation in 

illumination levels. Therefore the background model needs to be 

estimated and updated properly in time by analyzing the frame 

sequence. Pixels of the background model can be represented by 
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intensity vectors that consist of numerical values for all color channels. 

However, the most popular approaches for background modeling are 

based on probabilistic models. 

  

In many methods, pixels of background models are represented by 

distributions in order to express the variable behavior of the 

background. The goal of these sophisticated and adaptive methods is to 

estimate the probability density function of every pixel of the frames 

and to compute the probabilities for every pixel to be a part of the 

background scene. These probability density functions can be estimated 

in many ways.  

 

The most popular and a simple method is to describe the intensity 

values of each pixel in a video sequence with a single Gaussian 

distribution. Therefore the mean and variance of Gaussian distributions 

are updated over time. Many background modeling algorithms rely on 

this method. The decision of a pixel to be in background or in 

foreground is done by analyzing the deviation of the intensity of the 

pixel from the estimated mean value. This is the most important 

advantage of these methods when compared to the basic methods 

where the thresholds are constant. The sensitivity of these methods is 

dependent on the pixel that is analyzed. After thresholding operation, a 

binary image is obtained as in the previous methods. 

 

In Pfinder system of Wren et al.’s [6], which is a good example of single 

distribution background models, the background scene is represented 

by using a single Gaussian distribution per pixel. The distributions are 

initialized by estimating the mean and variance parameters of the 

background pixels independently when there are no foreground objects 

in the scene. Then these parameters of the background distributions 

are updated using a simple adaptive filter by: 
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where α is the learning rate and It is the captured frame at time t. It 

can be represented by the vector of intensities [ΦY, ΦU, ΦV]
 T in YUV 

color space. Then the log likelihood is quantified in order to specify the 

foreground and background pixels as: 
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A pixel is identified as in the foreground if the log likelihood is smaller 

than a specified value. The last step is to find the connected 

components as it is in many methods. For grayscale images, rather 

than using the log likelihood function, a pixel is specified as foreground 

or background by testing with a threshold value which is taken as a 

constant times the variance of that pixel. 

 

                                         ThresholdI >− µ                              (2.10) 

 

This system is reported to work effectively in indoor scenes where 

there are not many variations in the background, but it cannot cope 

with multimodal backgrounds. While the intensity values of pixels in a 

background with slow changes can be properly described by recursively 

updating the parameters of these single distribution models, these 

models will have difficulties in estimating complex and varying 

background scenes. When there are actions such as change in 

illumination levels or slight movement and variation of background 

objects in the scene, one distribution will not be enough to represent 

the behavior of a single pixel over time. Therefore multimodal 
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background models, namely mixture of distributions, will need to be 

used in case of moving backgrounds. 

2.1.3 Mixture of Gaussians Method 

Stauffer and Grimson [7] proposed a method which suggests that the 

samples of a pixel observed over time in many scenes can be described 

by more than one process. Therefore, the intensity of each pixel is 

modeled by a mixture of weighted Gaussian distributions instead of 

modeling with one particular type of distribution which is usually a 

single Gaussian distribution. The weight of a Gaussian distribution is 

dependent on the permanence of that distribution to be the dominant 

color in the scene. This method makes it possible to handle natural 

backgrounds which are generally multimodal and not static. 

 

While the simpler methods and Single Gaussian Distribution Model that 

are previously discussed are more appropriate for particular tasks and 

for modeling simpler background scenes, Mixture of Gaussians method 

has better performance for modeling more complex and time-varying 

background scenes and works efficiently in many cases. This successful 

background model can cope with daily variations in lightning, repetitive 

motions in the scene, and also insertion of objects to the scene or 

removal of objects from the scene.  The model avoids the slow moving 

foreground objects being identified as background objects since the 

moving objects have a larger color variance than the background. The 

method also adapts quickly in case of appearing ghosts or fast 

changing illumination.  

 

The proposed system in this thesis uses Mixture of Gaussians modeling 

method with deterministic thresholding for background modeling. In 

this method, every pixel in the scene is modeled by a mixture of 

Gaussian distributions. The two main tasks that this method deals with 

are updating the weights and parameters of each Gaussian distribution 
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with respect to the captured frames and specifying the Gaussian 

distributions that represent the background. A pixel is considered as in 

the foreground if its intensity does not fit any of the Gaussians which 

represent the background. This method has superior performance and 

adapts to changes in conditions if the parameters are set in a suitable 

way. 

 

The learning constant α and the proportion of data that need to be used 

for describing background T are the two important parameters to be 

specified in this method.  

 

For each captured frame, the parameters of the Gaussian distributions 

are updated, and the Gaussian distributions are evaluated to identify 

which ones most likely represent the background scene. If the pixel 

values do not match any of the background distributions they are 

identified as foreground pixels and these are grouped using connected 

components. Finally, the connected components will be tracked from 

frame to frame using a tracking algorithm. 

 

The values of a pixel over time are called a pixel process. A pixel 

process consists of scalars for grayscale images and vectors for color 

images. The history of a pixel is given by all its values up to a time t 

as: 

 

                          }{ { }tiforiyxIXXX
t

≤≤= 1),,(,,, 0021 K             (2.11) 

 

where I(x0,y0,i) represents the pixel value of the captured image 

sequence at location (x0, y0) and at time i. Some pixel processes that 

are taken by Grimson et al.’s work [7] are illustrated in Figure 2.1 using 

(R, G) scatter plots. 
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               (a)                         (b)                          (c) 

 
Figure 2.1: Scatter plots of pixels obtained on the images over time [7] 
 

 

In the first row of Figure 2.1, one frame per each of the used scenes 

are illustrated. In the other rows there are the scatter plots. For (a) two 

scatter plots of the same pixel in different time periods are given. If we 

observe the plot we can see that the values of the pixel change in time. 

Such a scenario may happen due to shadowing effect. In such a case, a 

system with a single predetermined threshold would fail. In case (b) 

the pixel has a bi-modal character which means that it has two 

different values over time. This is caused by the variation of color on 

the surface of water. In case (c), another pixel with bi-modal character 

is analyzed which results from the flickering of monitor in the scene. It 

is observed in the (R, G) scatter plots that an adaptive system with 

deterministic thresholding which can handle multi-modal 

representations is desired for these cases. 
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With a totally static background and static lightning, the pixels have 

constant values. Under the assumption of independent Gaussian noise 

in the pixel values, the pixel processes can be described by single 

Gaussian distributions. However the scenes generally have variations in 

illumination and moving objects, so the Gaussian should adapt to those 

changes. In case of an inserted static object in the background, the 

corresponding pixels will be identified as in the foreground for a long 

time period which will result in accumulated errors in background 

modeling. Therefore, recent observations need to have higher 

significance in estimating the parameters of Gaussians. Moving objects 

in the scene also cause variations. Even if the moving object has a 

consistent color, it causes a variance more than a static object in the 

scene. 

 

The recent history of each pixel, {X1, X2, ..., Xt}, is modeled by a 

mixture of Gaussian distributions, where Xt is the current pixel value 

vector that consists of red, green, blue component intensities. 
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The probability of observing the current pixel value is 

 

                                 ),,(*)(
1 ,,,∑ =

Σ=
K

i titittit XwXP µη                    (2.13) 

 

where K is the number of Gaussian distributions in the mixture which is 

specified according to the available memory and computational power 

of the system, wi,t is an estimate of the weight of the ith Gaussian in the 

mixture at time t, µi,t and ∑i,t are respectively the mean value and the 

covariance matrix of the ith Gaussian in the mixture at time t, and η is a 

Gaussian probability density function. η, µi,t and ∑i,t are given 

respectively by: 
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Under the assumption that the color components are independent with 

equal inner variances, the covariance matrix is assumed to be in the 

diagonal matrix form for computational simplicity as in Eq. 2.17. This 

assumption allows us to avoid a costly matrix inversion at the expense 

of some accuracy. 

 

                                             Iiti

2

, σ=Σ                                     (2.17) 

 

The distribution of a pixel value is modeled by a mixture of Gaussian 

distributions. The most recent value of a pixel is described by one of 

the Gaussians in the mixture and is used for updating the model. 

Considering the pixel process to be stationary, expectation 

maximization (EM) algorithm can be used for maximizing the likelihood 

of observed data. However, pixel processes vary in time in natural 

scenes. Therefore, an approximate method which uses only the newest 

sample and integrates the new data by standard learning rules is used. 

 

Instead of implementing an EM on a window of recent data for each 

pixel of a frame, a computationally simpler online K-means 

approximation is implemented in the method. Each pixel value, Xt is 

tried to be matched to one of K Gaussian distributions. A matching to a 

Gaussian is done if the pixel value is within a distance of 2.5 standard 

deviations from the mean of that distribution. This per pixel per 
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distribution threshold is very efficient when the different regions have 

different lighting. Analyzing the case (a) of Figure 2.1, it is observed 

that the noise in shaded regions is less significant than the noise in 

lighted regions. Using a uniform threshold often results in objects 

disappearing when they enter shaded regions. 

 

In case of no matches between a new pixel value and the existing 

distributions, the distribution with the smallest likelihood with respect 

to the new pixel value is discarded and a new distribution with a mean 

set as this new pixel value, with a variance set as a high predetermined 

constant, and with a small weight is created instead of the discarded 

one. Therefore, random short term variations in the scene do not form 

a dominant distribution in the model.  

 

The update for the weights of distributions is done by: 

 

                                     tititi aMwaw ,1,, )1( +−= −                           (2.18) 

 

In the formula, α is the learning rate typically taken between 0.3 and 

0.7 and 1/α specifies the speed of change of the parameters of 

distribution. Mi,t is a parameter that is taken 1 for the matching 

distribution and 0 for the others. Thus the weight of the matching 

distribution increases whereas the weights of other distributions 

decrease. After all weights are updated, they are renormalized. wi,t  is 

actually a causal low-pass filtered average of the posterior probability 

that pixel values have matched the ith model given observations from 

time 1 to t. 

 

The update procedure is different for matching and non matching 

distributions. With each captured frame, the mean value µ and the 

variance σ2 parameters of only the distribution that matches the new 
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pixel value are updated by using a same type of causal low-pass filter 

except the use of matching observation Xt in the estimation: 
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The mean value µ and the variance σ2 parameters for unmatched 

distributions are not updated. In this method, when a color becomes a 

part of the background, the other distributions are not totally 

discarded. The background color remains in the mixture until it has the 

Kth most likelihood of being the dominant color and a new color is 

observed. Thus, when an object, which is stationary for a time period 

to be a part of the background, moves, the distribution of the original 

background scene still exists in the mixture with same mean and 

variance parameters, but with a smaller weight. So, the original 

distribution can quickly re-incorporate into the background. 

 

The parameters of the mixture model change as the background 

processes change. The Gaussian distributions which have the most 

supporting evidence in time and the least variance are most likely the 

background processes. For instance, a static and consistent object in 

the scene causes higher supporting evidence which can be taken as the 

weight of that distribution and a lower variance than an object which 

occludes the background object. The occluding object does not match 

any distribution at first and results in a new distribution to be created 

or an existing one to have a larger variance. The variances of the 

moving objects are generally larger than the background scene while 

they keep on moving.  

 

After estimating the parameters of the mixture, a good idea to decide 

on which processes model the background more effectively is to sort 
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the distributions in a list according to the fitness value ω/σ which 

increases with the more supporting evidence of a distribution and a 

lower variance. So the most likely background distributions remain on 

top of the list while the less probable or transient background 

distributions move towards the bottom of the list and are replaced by 

new distributions. Then the first B distributions of the sorted mixture 

are selected to model the background where B is given by: 

 

                                    ( )TwB
b

k kb >= ∑ =1
minarg                          (2.22) 

 

where T is a threshold that specifies the minimum fraction of data to be 

used for representing the background.  T is set in accordance to a 

trade-off. A small T leads to a small B and to a unimodal background 

model which requires less computational power. However the model 

cannot handle repetitive background movements such as the leaves of 

a tree in wind or similar phenomena.  With a large T, the multimodal 

background scenes can be handled robustly but would require more 

computational power.  

 

The final decision is to identify the foreground pixels in the scene. A 

pixel is said to match a distribution if its value Xt does not deviate more 

than a constant times the variance of that distribution. If the pixel 

value Xt matches one of the best B distributions which are the 

background distributions, it is identified in the background. Else it is 

identified as a foreground pixel. The background image for visualizing 

the status of the model can be obtained by taking the mean value of 

the most probable distribution for each pixel. 

 

After the foreground pixels are identified in each frame, they are 

subjected to some post-processing operations. First, these pixels are 

morphologically filtered for noise reduction and for filling the gaps and 

holes in the contours. Then the pixels are segmented to form regions 
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by using a connected components algorithm. This operation is critical in 

determining the whole objects which will be necessary later for tracking 

and behavior identification. Then minimum area filtering is done to 

discard too small parts. After these standard post-processing 

operations, an updated foreground image is obtained by union of 

interiors of the contours of foreground regions. 

 

P. KaewTraKulPong and R. Bowden [8] have improved the original 

method of Grimson et al. [7]. The presented system in this thesis uses 

this improved algorithm for background modeling. The original method 

has the problem of slow learning at the beginning. By modifying the 

update equations, they obtained a faster and a more accurate 

adaptation to changing environments. For example, if a foreground 

object is visible at the instance of initialization, there will be a Gaussian 

distribution with unity weight to represent the object. After the object 

moves and the background color is visible in the scene, it takes log(1-a)T 

frames for the background color to be identified as a background color 

for the model and log(1-a)0.5 frames for it to be the dominant color for 

the model even if the same background color is visible in all period. In 

addition, ρ is too small and results in too slow adaptations in mean and 

covariance matrices parameters which cause problems in proper 

operation in time. Cutting out the likelihood term from ρ is a solution 

for this problem. P. KaewTraKulPong and R. Bowden [8] start 

estimation of the Gaussian mixture model by expected sufficient 

statistics update equations and then use L-recent window version after 

the first L samples are processed. At the beginning, the expected 

sufficient statistics update equations estimate accurately till all L 

samples are obtained. Then L-recent window update equations give 

priority over recent data so that the changes in the scene can be 

handled. The update equations for online expectation maximization 

algorithms by expected sufficient statistics and for the L-recent window 

are shown respectively as follows: 
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Sufficient Statistics: 
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L-recent Window: 
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In summary, Mixture of Gaussians background model is superior to 

other background models for its efficiency and analytical form. This 

method can handle the scenes with lighting changes by adapting the 

parameters of the Gaussians and also the multi-modal scenes caused 

by shadows, moving branches, monitors, and other troublesome 

features. The method has advantages such as quick recovering when 

background reappears and an automatic pixel-wise threshold. These 

factors make this popular and effective method an essential part of our 

system. A drawback of this method is the assumption of independence 

of the neighboring pixels and reliance on only the difference between 

current pixel value and its past values. With the increasing processing 



22 

 

power of systems this method will be run with a better performance 

using larger images and larger number of Gaussian distributions in the 

mixture. Using a full covariance matrix will also raise the performance. 

Adding prediction to each Gaussian in the mixture may also result in 

better adaptation for this method. 

2.1.4 Eigen-Backgrounds Method 

As described in the previous sections, most of the background modeling 

methods identify moving objects by comparing the captured images 

with an obtained reference frame that represents the static structure of 

the scene. The reference frame continuously adapts to the various 

lighting conditions in order to detect the moving objects effectively. The 

popular method of Mixture of Gaussians builds and updates a 

multimodal representation of the background for each pixel. However it 

fails to take into account the substantial degree of correlation between 

neighboring pixels. 

 

In the method of Oliver and Pentland [9], an eigenspace that models 

the background scene is built adaptively. The eigenspace model 

describes the change of pixel values in the scene due to variations in 

lightning. The eigenspace model is built by collecting a training set of N 

sample images { Ii for i=1,…,N }, computing the mean background 

image µ by simply averaging or adaptively and the covariance matrix 

Cb. The covariance matrix Cb can be diagonalized by eigenvalue 

decomposition: 

 

                                               T

bbbb
CL φφ=                                (2.29) 

 

where Фb is the eigenvector matrix of the covariance and Lb is the 

diagonal eigenvalue matrix. By Principal Component Analysis the 

dimensionality of the space is reduced by keeping the M eigenvectors 
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(eigen-backgrounds) with the M largest eigenvalues to obtain ФM 

matrix.  

 

After the eigen-background images are obtained and stored in the 

matrix ФM and the mean background image µ is found, each input 

image Ii is projected in the subspace spanned by the eigen-background 

images as: 

 

                                               
iMi

XB φ=                                   (2.30) 

 

where Xi = Ii − µ is the mean normalized image vector.  

 

Since the subspace only represents the static parts of the scene, by 

comparing the input image and the projected image and by 

thresholding the difference between them, the foreground objects that 

are visible in the scene are identified: 

 

                                           ThrBID iii >−=                            (2.31) 

 

where Di denotes the difference and Thr denotes the threshold. 

 

Under the assumption that the moving objects are not visible in the 

same location of the scene in N observations and they are relatively 

small, they will not contribute significantly to the model. The static 

parts of the scene which are generally the background elements are 

described efficiently as a combination of eigenbasis vectors by the 

eigenspace model whereas the parts with moving objects cannot be 

effectively described by the model. Thus, the eigenspace can robustly 

model the probability distribution function for the background scene, 

but not for the parts with moving objects. 
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By adaptively performing eigen-background subtraction, changes in 

illuminations can be handled effectively. This method has less 

computational load than Mixture of Gaussians method. However, 

Mixture of Gaussians method has superior performance with its 

multimodal behavior.  

 

J. Rymel, J. Renno et al. [10] proposed an adaptive method based on 

the eigen-Background model by extending the work of Oliver and 

Pentland [9]. This method continuously learns the covariation within a 

sequence of captured frames by using Principal Component Analysis to 

generate the eigen background. The eigen-background model is built 

and adapted online evolving the parameters and dimensionality rather 

than acquiring the necessary training set. As new frames are captured, 

a reference frame is obtained using a subsample of the captured 

frames. This is an extension to the original method of eigen-

backgrounds. 

 

During initialization, with every captured frame the dimension of the 

subspace is incremented. Incrementing the dimensionality is required 

in order to have an accurate model to describe the captured frames. 

This task is performed continuously until the dimension reach to a 

specified optimal number since there is not enough data for the model 

to be effective during initialization. Selecting a larger number results in 

more robustness but requires more computations. 

 

In Rymel et al.’s method [10] the frames are divided into grid of 

neighborhoods and the statistical variations within each of them are 

learned continuously in order to obtain a stochastic representation of 

the background. As new frames are captured, the statistical model for 

the neighborhoods is updated. Detection is achieved by thresholding 

gray level differences against estimates of the gray level variance at 

each pixel. 
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Since the Eigen-Background method of Rymel et al. benefits from 

covariability of pixel intensities and estimates the background efficiently 

with few subsamples, it has the advantages of the requirement for less 

processing power and less memory during execution. This is 

accomplished by online incrementation of the subspace dimension and 

the adaption of subspace during eigen analysis algorithm. However, the 

previously described state-of-the-art method, Mixture of Gaussians, 

has the multimodal characteristic and can handle the background 

scenes with various types of changes and also rapid variations of light 

accurately. 

2.1.5 Comparison of Background Modeling Methods 

The performance evaluation of the background modeling methods is 

accomplished by comparing the background estimate outputs with the 

manually derived ground truth. A rectangular bounding box covering 

the true foreground pixels is positioned manually. The percentages of 

successfully identified foreground and background pixels are 

represented by the terms detection rate and the specificity 

respectively. The performance measure is obtained by multiplying 

these two percentages. 

 

There are many publicly available benchmarking data that are 

disseminated for evaluation of surveillance systems. Two of them, PETS 

and DIRC Datasets, which have different scene conditions, are used in 

Rymel [10] et al.’s work for benchmarking the background models 

described in the thesis: 
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Figure 2.2: PETS and DIRC datasets 

 

 

The first dataset is PETS 2001. This dataset is created with a stationary 

camera located at a high altitude point with a steep look-down angle. 

In the scene there exist a few small and distant objects and a few 

occlusions occur. The other data used is the in-house DIRC dataset 

which also has RGB color format. There are constant variations in 

illumination in time. 

 

In Figure 2.3, which is taken by Rymel et al.’s work [10], the 

performances of Pentland's Eigen-Background Model, Grimson's GMM 

method and Rymel's method for a frame set of PETS dataset are 

illustrated. Ignoring the parts of the plots where metric is zero which 

occur when there is no object in the scene, it can be analyzed that the 

Pentland's method has worse performance than the other two methods 

because it cannot adapt to changes in scene. The method of Rymel and 

the method of Grimson can handle changes in the scene since they 

have adaptive behavior. 
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Figure 2.3: Performance results of each method [10] 

 

 

A better evaluation of the performance is accomplished by using both 

datasets and averaging the results. In Table 2.1, which is given in 

Rymel et al.’s work [10], four previously discussed background 

modeling methods are evaluated. The evaluated methods are Temporal 

Averaging, Wren's Single Gaussian Distribution method [6], Grimson's 

Mixture of Gaussians method [7] and Rymel's Eigen-Background 

method [10]. 

 

 

Table 2.1: Performance of discussed background modeling methods 
[10] 

                  Background Modeling Methods 

      

   Dataset 

  Temporal 

 Smoothing 

    Wren’s 

     SGM 

  Grimson’s 

     MGM 

   Rymel’s 

  Eigen-BG 

PETS Dataset       0.11       0.13       0.28       0.22 

DIRC Dataset       0.15       0.18       0.33       0.31 
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Analyzing Figure 2.3 and Table 2.1, it is observed that the method of 

Rymel and the method of Stauffer and Grimson have far more 

performance than the other two methods. Rymel's method is more 

efficient in memory usage; however Stauffer and Grimson's state-of-

the-art method, Mixture of Gaussians, has a better performance. This 

method is the only one with the multi-modal ability within the analyzed 

methods which allows it to handle many variations in the scene. 

 

There are also some other methods of background modeling where a 

statistical representation of the background is built. These models are 

called non-parametric methods. These methods estimate the 

probability distribution function directly from the samples without any 

assumptions to any distribution such as a Gaussian distribution since 

For instance, a Gaussian assumption for pixel intensity distribution may 

not always hold. The non-parametric methods avoid having to use a 

limited model and estimating its parameters. A popular method is non-

parametric method of background modeling by Parzen Density 

Estimation [11]. In this method, a kernel estimator is used for each 

pixel. The disadvantage of non-parametric methods is the high 

computational load; therefore it is not practical to use them in a real-

time embedded system. 

2.2 Detection Algorithm 

 The mid-step between Background Modeling and Tracking tasks is the 

Detection task. The presented system assumes a single object in the 

scene; therefore the object is identified by foreground image directly. 

Multiple object detection is a more challenging problem and it is out-of-

scope of this thesis. So we do not give a detailed survey on object 

detection in this thesis.  

 

In order to detect the moving object in the scene, the foreground scene 

which is obtained by MGM method is analyzed. The proposed system 
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can detect only a single moving object. For automatically detection of 

the object, the region of interest on the scene is obtained and re-

initialized when necessary during operation. 

2.2.1 Finding Region of Interest 

The system simply detects the foreground blob in the captured frames 

and applies size filtering for the detected object. The object size should 

not be very large or too small. The system continues to perform 

background modeling and checks the location and size of the blob until 

the object is totally visible in the field of view of camera (See Figure 

2.4). Then the location of the object is selected as the region of interest 

for finding the features to be tracked. 

 

 

 
Figure 2.4: Features are not extracted until the whole object is visible 
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2.3 Object Tracking 

Object tracking, which is performed after background modeling and 

object detection, is one of the most critical tasks of the proposed 

system in this thesis. Tracking is the process of finding the location of 

an object or several objects in an image sequence over time. 

 

A successful tracking method needs to be robust, fast and accurate 

enough to handle cases in which an object is moving rapidly or even 

when the capturing rate is low. The tracking algorithms generally track 

a moving object in the scene by identifying the tracked object in 

consecutive frames using its characteristics. There are four main 

approaches for object tracking that use different characteristics of the 

objects: region-based, active-contour-based, model-based and feature-

based. There can be also hybrid approaches that integrate some of 

these main approaches. All of these approaches have advantages and 

disadvantages when compared to each other. In this thesis, a single 

object, which is identified using background and foreground 

segmentation, is tracked using the feature-based approach which will 

be described in detail in Section 2.3.4. 

2.3.1 Region-Based Tracking 

In Region-Based approach, tracking is performed according to the 

variation of the image regions corresponding to moving objects in the 

scene.  The regions or blobs (binary large object) are formed by 

connecting group of pixels as the background is modeled and the 

foreground pixels are identified. Then the regions are detected in 

following captured frames. 

 

Region-Based approach has problems with handling scenes with 

occlusions, the intersecting objects in the scene are grouped as a large 
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blob in foreground scene. Therefore, this approach cannot handle 

complex and crowded scenes. 

  

In order to perform tracking of people accurately in case of occlusions, 

McKenna [12] used an adaptive background subtraction method and 

three levels of abstraction to identify regions, people and groups during 

tracking. They identified a person with multiple blobs taking into 

account the geometrical structure of the human body. A group of 

people is identified by observing many individual persons together. In 

this method the blobs can merge and split. 

 

Sindhu and T. Morris [13] used a region based method that tracks 

objects well in case of occlusions and low resolution, noisy scenes. 

 

Zhao et al. [14], taking into account the similarity of the appearance of 

people in successive frames, stated that appearance information is 

more robust than model information. Therefore, by grouping body parts 

and building an appearance model for the body parts, they analyzed 

the similarity of these parts in captured frames. In addition, they 

performed head detection for all captured frames and torso detection 

when head detection failed to accurately analyze the scene. By using 

many distinctive characteristics and adaptively weighting them they 

obtained a reliable system. As they use multiple characteristics of the 

person, model and track them separately, their method can handle 

scenes with occlusions by tracking more significant characteristics. 

Furthermore, the motion of a certain body part is more stable when 

compared with whole body of a person.  

 

In the literature there are also many methods of Region-Based tracking 

that use Kalman filtering [15], [16], [17], [18].  
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Region Based Tracking has the disadvantage of computational 

complexity as in these methods a window is matched with all candidate 

windows in captured frames. The other problem is that the intersecting 

objects in the scene are grouped as a large blob in the foreground in 

scenes with occlusions. It cannot reliably handle occlusion between 

objects [19]. Therefore this approach cannot handle complex and 

crowded scenes [20]. Furthermore, since these algorithms generally 

deal with identifying and tracking people, this approach is not suitable 

for the system proposed in this thesis. It needs to track both people 

and objects. In addition, these algorithms run on scenes with stationary 

camera which will require camera compensation, an extra task for the 

system. 

2.3.2 Active-Contour-Based Tracking 

In Active-Contour-Based approach, the dual of Region-Based approach, 

the outlines of objects, the bounding contours, are used for identifying 

and tracking the objects. The bounding contours are updated 

dynamically as new frames are captured [21], [22], [23], [24], [25]. In 

these methods the aim is to extract the shapes of objects and to 

describe the objects more simply and more efficiently than the region-

based methods. 

 

Sun and Haynor et al. [26] proposed an algorithm to automatically 

detect the deformations on an object and to adjust the object contour 

to match the real object boundary without breaking the object into 

several pieces while tracking. 

 

The objects are identified and tracked using VSnakes algorithm in [27]. 

Rather than using the energy of the contour, a differential active 

contour energy that reflects the succeeding contour configurations is 

used. In [28] motion information is used in order to remove 

background clutter by the proposed tracking system which is based on 
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active contours. After finding an approximation for the position of the 

tracked object, the active contour position is found by minimizing the 

energy function according to the predicted position of the object and 

the edge map near the predicted object contour. In [29] a deformable 

model that combines point tracking and edge tracking information is 

described. 

 

Active-contour based tracking describe the objects more simply, more 

efficiently and with lower computational complexity than the region-

based tracking [25]. On the other hand, this approach is very sensitive 

to initialization of tracking which makes it difficult to automatically start 

tracking. Furthermore, the inability to identify and track partially 

occluded objects remains also in this approach as in the Region-based 

approach. The tracking could be done even in case of partial occlusion 

if a separate contour could be initialized for each object. Another 

disadvantage of this approach is that the tracking precision is limited at 

the contour level [20]. 

2.3.3 Model-Based Tracking 

In Model-based approach, 2D or 3D projected object models are 

developed offline using prior knowledge of the object, usually with 

computer vision techniques or manual measurement. Afterwards the 

object is tracked by matching these projected object models to the 

image data [25]. This property allows the recovering of trajectories and 

models with high accuracy for a small number of objects, and even to 

address the problem of partial occlusion. Model-based algorithm 

performs well under occlusion but has a drawback of high 

computational cost.  

 

Model-based approach is also used for human body tracking which is 

known as analysis by synthesis. Algorithm is used in a predict-match-

update style. As in the object tracking, pose of the model for the next 
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frame is predicted according to prior knowledge and tracking history. 

Then the human body is tracked by matching the projected object to 

the image data. The difference for the human-body tracking is the 

knowledge of the general body model and the motion constraints of the 

human.  

 

A sub approach for this algorithm is looking for an object in a frame 

which conforms to some sort a model of what is to be tracked. This 

method can be efficient depending on the complexity of the model to 

be tracked and how easily it is to search for this model in the frame. 

This approach is also efficient in cluttered scenes where isolating 

individual objects can be difficult. An example of this is in the system 

developed by Tweed and Calway [30] for tracking birds flying in large 

flocks. Another disadvantage of this approach is that it can track only a 

predetermined class of object. 

2.3.4 Feature-Based Tracking 

Among the many discussed approaches for tracking in video, the 

Feature-Based approach is the main one to be robust to partial 

occlusions. In this approach, the objects are tracked by extracting their 

features such as intensity, color, edges or corners and by finding the 

correspondence between these features in successive frames rather 

than tracking the objects as whole. 

 

In the literature, there are various feature-based algorithms proposed 

which can be classified into three groups depending on the 

characteristics of the used features as: global feature-based 

algorithms, local feature-based algorithms and dependence-graph-

based algorithms. 

 

Global feature-based algorithms use features such as areas, centroids, 

perimeters or colors. Polana and Nelson [31] used centroids as the 
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features. The system they proposed tracks a person by following the 

centroid of the moving pixels. The tracking algorithm smoothly tracks 

the person even in case of occlusions. 

 

In local feature-based algorithms, features such as segments, curve 

segments, and corners are used. In Beymer et al.’s work [32]; the 

most salient features are selected depending on the nature of the scene 

in order to have good performance in many conditions. 

 

Dependence-graph-based algorithms use variety of distances and 

geometric relations between features. In Fan and Medioni et al.’s work 

[33], objects are described in terms of their surfaces. The surface of an 

object is described by segmenting it into surface patches and the 

complete description consists of the description of each patch 

separately, and their interrelationships. Dependence graph-based 

algorithms are not suitable for use in real-time tracking because 

searching and matching of graphs involves too many computations and 

consumes too much time. 

 

Algorithms that belong to these three groups can also be combined. 

Jang et al. [34] dynamically built an active template that characterizes 

regional and structural features of an object depending on color, edge, 

shape, and texture information. The tracking of the moving object is 

accomplished by using motion estimation or Kalman filtering in order to 

minimize an energy function during feature matching. 

 

Feature-based algorithms are generally fast enough which makes them 

suitable for real-time tracking and tracking of multiple objects. A 

distinct advantage of feature-based tracking algorithms is the 

robustness to partial occlusions. The partial occlusion can be handled 

by some methods such as using local features or by analyzing motion 

of object, etc. In case of partial occlusion, some of the features of the 
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moving object remain visible, so it may be tracked by selecting the 

most salient features according to the scene parameters. This approach 

can be used in many illumination and scene conditions. However, these 

algorithms are sensitive to image variations and they cannot recover 

3D pose of objects. 

 

One of the most developed algorithms of Feature-based tracking 

approach is the Kanade-Lucas-Tomasi (KLT) Feature Tracker. Lucas 

and Kanade [35] proposed a method for image registration which uses 

special intensity gradients of images to perform matching for use in 

stereo vision systems. Then, based on [35], Tomasi and Kanade [36] 

presented a feature tracker using sum of squared intensity differences 

over the windows. 

 

The proposed system in this thesis uses Pyramidal Implementation of 

the Lucas Kanade Feature Tracker [37] as the tracking algorithm for 

features which are actually the corners (Feature selection is described 

in detail in Section 2.3.6). It is a very popular, robust, and fast 

algorithm making it a proper choice for use in real-time applications or 

on an embedded system. This algorithm can find the correspondences 

of features in sub-pixel accuracy. The pyramidal structure, making 

calculations in different resolutions, enables handling of large pixel 

motion. This algorithm has adequate performance of tracking objects in 

a scene with moving camera. The details of the algorithm are described 

in Section 2.3.5. 

2.3.5 Pyramidal Lucas Kanade Feature Tracker 

Lucas Kanade Feature Tracker is used in feature tracking and is based 

on optical flow algorithm. The goal of this tracking algorithm is to find 

the location of a pixel on the latter frame, while knowing the 

coordinates of the same pixel on the initial frame. 
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In this approach, the object is assumed to move within a limited range 

between the frames, so rapid motions are hard to track. Let I and J be 

successive frames, u=(ux, uy) be the image point on the first frame, 

d=(dx, dy) be the displacement vector of the point to be tracked, and 

image neighborhood size be )12( +
x

w  pixels horizontally and )12( +yw  

pixels vertically. Then the image velocity d as being the vector that 

minimizes the residual function epsilon is defined as follows: 
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xw  and yw  numbers are assumed to be integers up to 7, so the 

maximum displacement is assumed to be 15 pixels. However, the 

pyramidal approach handles more displacements that can be caused by 

rapid movements. The pyramids are formed by filtering and sub-

sampling the images in a recursive manner starting from the 0th level, 

which is the original level, to the coarsest level. Then, the displacement 

vectors are found iteratively in upward from the coarsest level to the 

original level. At each level, displacement vector is calculated by 

maximizing a correlation measure over a small window. The pixels at 

the image borders are handled by mirroring and using replicas of the 

rows and columns of the images instead of the out-of-border parts 

which are not defined. 

2.3.5.1 Pyramidal Feature Tracking 

For L = 0, …., mL  define [ ]L

y

L

x

L uuu = , the corresponding coordinates 

of the point u on the pyramidal images L
I . Then Lu  is computed from 

as: 
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At each resolution level, past results are used as initial guesses. Let the 

initial guess be [ ]TL

y

L

x

L
ggg = . Then, in order to compute the optical 

flow at level L, it is necessary to find the residual pixel displacement 

vector Ld  that minimizes the new image matching error function Lε  

as: 

             (2.34) 

Observe that the search window has a constant size at each level. 

Since the initial guess vector Lg  is used to pre-translate the image 

patch, the residual flow vector Ld  comes out to be small and easy to 

be computed through a standard Lucas Kanade step. After Ld  is 

calculated, the result is propagated to the next level L-1 by passing the 

new initial guess 1−Lg : 

 

                                           )(21 LLL dgg +=−                             (2.35) 

 

The next level optical flow residual vector 1−Ld  is computed in the same 

way. This procedure goes on until the highest resolution is reached. At 

first the initial guess for level Lm is zero since no initial guess is 

available at the deepest level of the pyramid: 

 

                                             [ ]TLmg 00=                                (2.36) 

 

Solution vector d is found after the final optical flow calculation: 

 

                                             00 dgd +=                                   (2.37) 

 

or d can be expressed as the sum of the residual optical vectors Ld : 
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2.3.5.2 Tracking features close to the boundary of the images 

Points that are close to the boundaries of the frame need to be 

processed since some part of their integration window lies outside of 

the frame. For an integration window having size )12( +
x

w x )12( +yw , 

forbidden band of width 
x

w  and yw  occurs around the image. In the 

pyramidal implementation, this corresponds to an effective forbidden 

band having width 
x

Lmw2  and height yLmw2 . The size of this forbidden 

band has significant for large values of Lm. For example, for Lm=3, 

width value becomes 8wx. Notice that x
w  takes integer values up to 7, 

which makes the size of the forbidden band 56 pixels around the 

image. This problem can be solved by calculating the summations in 

the equations only for the valid portion of the image neighborhood 

which are within the frame, i.e. for valid entries of ),(),,( yxIyxI yx  and 

),( yxI
k

δ . 

2.3.5.3 Declaring a Feature as Lost 

There are two cases in the algorithm that declare a feature as lost: 

1. A feature is declared as lost when the feature point falls out of image 

boundaries. If the point [ ]Tyx ppp = (the center of the neighborhood) 

falls outside of the image L
I , or if its corresponding tracked point 

[ ]11 −− ++++ k

y

L

yy

k

x

L

xx vgpvgp  falls outside of the image LJ , it is 

reasonable to declare the point as lost, and not to continue to track it. 

2. A feature is declared as lost when the image patch around the 

feature point varies too much between the successive frames I and J. 

This condition usually occurs due to occlusion.  
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2.3.6 Extracting and Handling Features 

After the region of interest is defined, the features on this region are 

extracted for use in tracking. Harris corner detector is used in the 

proposed system. Using Harris detector ensures that the spatial 

gradient matrix, which is used in Lucas Kanade Tracker 

Implementation, has two eigenvalues and therefore it is invertible. This 

is one of the reasons for using Harris corner detector. Minimum 

eigenvalue method can also be used. In this method, a pixel is selected 

if eigenvalues of spatial gradient matrix are larger than a threshold. As 

even the smaller eigenvalue is larger than a threshold, the spatial 

gradient matrix is also well conditioned.  

 

Harris corner detector is a popular detector which is resistant to 

rotation, illumination changes and noise [38]. However it is not 

resistant to scaling, since a corner may be observed as an edge when 

magnified or a smooth edge can be identified as a corner when it is 

seen in a smaller scale. When zooming is performed in order to keep 

the object size same on the video frames as it moves, the scaling effect 

will be less significant. 

 

Around a corner, there is a large intensity change in all directions. The 

local autocorrelation function of the signal, which is given by Equation 

2.39, is used for measuring the local intensity changes in different 

directions. 
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Ix and Iy are the partial derivatives of the image and (x, y) are the 

points in a Gaussian window wR centered on (x, y) in the region R. The 

eigenvalue of the autocorrelation function on the direction of intensity 
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change is large. Therefore, for a corner both eigenvalues are large. A 

corner response function is defined by: 

  

                                        2

2121 )( λλλλ +−= kM                           (2.40) 

 

where λ1 and λ2 are eigenvalues of autocorrelation function and k is a 

constant that can be used to vary the number of detected corners. The 

result of this function is large for a corner, negative for an edge and 

small for a flat region. Using a threshold the local maximas of this 

function is used to identify the corners. Finally, the corners which are 

located very close to some other stronger corners are discarded. 

 

 

 

 
Figure 2.5: Harris Corner Detector 

 

 

After the strong features are identified on the region of interest, they 

are tested for consistency by the system. In addition to the analysis of 

features by Lucas Kanade algorithm, with every captured frame, the 

motions of features are analyzed for consistency. The motion of each 

feature is compared with the motion of mean location of the features. If 

the displacements of a feature and the mean of features are not in the 

same direction and if there is a large difference between them, the 

feature is eliminated. During tracking as the number of valid features 

becomes less than a specified number, the system stops the movement 
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of the camera, re-initializes the background model, finds the 

foreground object, finds the new features and continues tracking. 

Frame difference is used for the re-initialization purpose during tracking 

since it is fast and simple whereas updating the Gaussian model is not 

practical while the object is moving in the scene and the system can 

miss the moving object while waiting for the background model to be 

re-initialized. By using re-initialization, the tracking operation can 

continue for larger time periods. Another advantage of handling 

features is that at the first initialization of features, some of them may 

be located in the background. With this operation, those features that 

are on the background are also discarded. Another modification on 

features is that the features which are located far away from the mean 

location of the pixels are discarded and not used in tracking. The last 

modification is that if the number of features reduces so rapidly to zero 

which can occur when the object is totally occluded or when the object 

leaves the field of view, the tracking operation is stopped. These 

modifications lead to more stable tracking. 
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CHAPTER 3                                         

HARDWARE OF THE SYSTEM 

 

 The hardware of the system proposed in this thesis consists of a digital 

image/video processing board, Texas Instruments DM642 Evaluation 

Module (EVM) and an analog pan-tilt-zoom camera. In this application, 

the digital video processing board accomplishes a video loopback and 

analysis task. It acquires the analog video which is captured by the 

analog camera, processes it, and outputs the modified video to the 

monitor. In order to track the moving object in a wide operation range, 

the board controls the pan, tilt and zoom properties of the camera. The 

control commands are sent by the serial port. There are many camera 

control protocols which are dependent on the model of the camera 

being used. These protocols provide a two-way communication 

between the processing unit and the connected cameras. 

 

 

 

 
Figure 3.1: Texas Instruments DM642 Evaluation Module 
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The main processing unit of the system is Texas Instruments DM642 

EVM which is a low-cost, high performance video imaging development 

platform designed to jump-start application development and 

evaluation of multi-format digital applications. 

  

The other important unit of the system is the pan-tilt-zoom camera 

which is used to capture composite video and track the detected 

objects as well. The main features and functions of the video 

processing board and the camera are explained in detail in Sections 3.1 

and 3.2 respectively. 

3.1 Overview of TI DM642 Evaluation Module 

The most important part of DM642 EVM is the TMS320DM642 digital 

signal processor (DSP). Digital signal processors have an important role 

in a wide range of video and imaging applications such as computer 

vision, medical imaging, security, digital cameras, and a large number 

of consumer applications driven by digital video processing. The 

importance of multimedia technology applications is recognized by 

microprocessor designers. As a result of this fact, the number of 

special-purpose multimedia processors is becoming more popular.  

 

Multimedia applications can be generally characterized by requirements 

for processing flexibility, complicated algorithms and high data rates for 

both input and output. Very Long Instruction Word (VLIW) architecture 

is one of the processor architectures to overcome these difficult 

requirements of multimedia applications. VLIW processors can exploit 

instruction level parallelism (ILP) in programs [39]. TMS320DM642 is 

one of the devices that is based on VLIW architecture and seems to be 

a good choice for real-time applications. 

 

DM642 DSP is based on the C64x CPU, which is part of the C6000 DSP 

family of TI. The DM642 integrates a number of peripherals to address 



45 

 

the development of video and imaging applications, including three 

configurable video ports capable of glueless video input, video output, 

or transport stream input. These video ports can support BT.656 video 

I/O, HDTV Y/C I/O at up to 10-bits per component [40]. The details of 

the architecture of DM642 are given in the following sections [41].  

 

DM642 core is based on the key features such as VLIW architecture, 2-

level memory/cache hierarchy, and EDMA engine that are very 

important for computationally intensive video and image applications.  

Figure 3.2 shows the block diagram of the processor. 

 

 

 

 
Figure 3.2: DM642 DSP Block Diagram [41] 
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On DM642 devices, the CPU interfaces directly to dedicated level-one 

program (L1P) and data (L1D) caches of 16Kbytes each. These caches 

operate at the full speed of CPU access. A second level unified L2 

program/data memory provides flexible storage. One configuration for 

L2 is entirely mapped SRAM. The other configurations have both SRAM 

and a 4-way set associative cache of various sizes. Mapped SRAM can 

be used for streaming video data and critical sections of code such as 

interrupt service routines. Cache is useful for most of the program and 

data structures. Figure 3.3 shows L1 cache for DM642 and Figure 3.4 

shows the partitioning of 256Kbytes of internal memory into L2 

cache/ram in different configurations. 

 

 

 
Figure 3.3: DM642 L1 Cache [41]. 

 

 

 

 
Figure 3.4: Partitioning internal memory into L2 cache/ram 

 

 

The C64xx family of DSPs has a large byte addressable address space. 

Program code and data can be placed anywhere in the unified address 
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space. Addresses are always 32-bits wide. Portions of internal memory 

can be remapped in software as L2 cache rather than fixed RAM. 

 

There are two methods for transferring data from one part of the 

memory to another: using CPU and using DMA. 

 

If a DMA is used then the CPU only needs to configure the DMA. While 

the transfer is taking place, the CPU is free to perform other 

operations. The EDMA controller handles all data transfers between the 

level-two (L2) cache/memory controller and the device peripherals on 

the DM642 DSP. These data transfers include cache servicing, user-

programmed data transfers, and host accesses. The EDMA provides the 

ability to transfer data with zero overhead. It is clear that the EDMA 

and CPU operations can be independent. However, if the CPU and 

EDMA both try to access the same memory location, arbitration will be 

performed by the program memory controller. This should also be 

taken into account that the following conditions may limit the 

performance: 

  

1. EDMA stalls when there are multiple transfer requests on the same 

priority level. 

2. EDMA accesses to L2 SRAM with lower priority than the CPU. 

 

DM642 DSP is based on the C64x CPU which includes special 

instructions to increase the performance of video and imaging 

processing. With these properties DM642 meets the needs of video and 

imaging application development. Also, the RISC-like instruction set 

and extensive use of pipelining in C64x allow many instructions to be 

scheduled and executed in parallel. A high performance two-level cache 

design allows the CPU to operate at the maximum rate and the 

existence of EDMA provides us to transfer data with zero overhead. 
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The video port peripheral of DM642 can operate as a video capture 

port, video display port, or transport stream interface (TSI) capture 

port. The EVM captures both composite and S-video signals and can 

display composite, S-video, and RGB signals. In this thesis work, the 

captured and displayed signals are both composite. 

 

 

 

 
Figure 3.5: Video Port Block Diagram  
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DM642 EVM has two multichannel buffered serial ports (McBSPs) 

interface to a variety of standards. McBSPs are synchronous serial 

ports.  These multi-channel ports in combination with the flexible 

asynchronous interface provide a glueless connection to a variety of 

products such as the PTZ camera used in this thesis. 

 

Furthermore, DM642 EVM has 32 MB SDRAM external memory, LEDs, 

GPIOs, PCI, JTAG, audio, ethernet and daughter card interfaces, which 

can be used in a variety of applications.  

3.2 Pan-Tilt-Zoom Camera 

In the proposed system, the composite video capturing is performed by 

using an analog camera. The camera, with integrated pan-tilt-zoom 

capabilities, can track an object in a wider range which is desired for 

our purpose. The model used in this work is Sony’s EVI-D100/P which 

is a CCD camera combined with a high-speed and quiet pan-tilt. The 

range of pan and tilt functions are ±100 degrees and ±25 degrees 

respectively. 

 

 

 
Figure 3.6: Sony EVI-D100P Video Camera 

  

 

The camera has also features such as auto focus, auto white balance, 

and automatic exposure to provide fast and stable operation and serial 

control interface and remote commander to enable camera control. 
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VISCA is the protocol that is supported by the camera. VISCA provides 

a two-way communication which enables the EVM to send commands, 

receive inquiries and get responses about the status of the actions of 

camera. The interface to the protocol is RS232C with 9600 bps, 8 bits 

data, 1 start bit, 1 stop bit and non parity. A VISCA command data 

packet consists of a 1-byte header, maximum 14 bytes of data and a 

terminator byte of 0xFF. Each command data packet has a 

corresponding response data packet. 

 

 

 

 
Figure 3.7: VISCA Packet Structure 

 

 

Implementing this communication protocol allows the control of many 

features of the camera including pan-tilt-zoom functions. There are 

many camera control protocols that are dependent on the model used. 

PELCO-D is the most popular camera protocol which is used by many 

manufacturers. A packet of this protocol contains 7 bytes with the 

given format [44]: 
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Table 3.1: PELCO Packet Structure 
 
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 

Sync 

Byte 

Camera 

Address 

Command 

1 

Command 

2 

Data 

1 

Data 

2 

Checksum 

    Byte 

 

 

There are also many other protocols which are not as popular as 

PELCO-D. They are mostly developed by the manufacturers (only such 

as Canon Samsung, LG, Bosch, Honeywell, etc) for use in their 

products and some of these protocols are not publicly available. 
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CHAPTER 4                                               

SYSTEM IMPLEMENTATION 

 

The hardware used for the implementation of the proposed system and 

the details of the generated software is presented in this chapter.  

4.1 Hardware Setup 

The final presented system mainly consists of DM642 EVM and the 

analog pan-tilt-zoom camera. However, there are other devices that 

are also used for debugging and development tasks. All devices that 

are used together and their connections are described in this section. 

The whole system for the development includes: DM642 EVM, the PTZ 

camera, XDS560 emulator of Texas Instruments, PC with TI Code 

Composer Studio (CCS) and a PAL monitor or TV. 

 

 
Figure 4.1: Used Hardware for Debugging and Development 
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Texas Instruments XDS560 is the emulator that is used for debugging 

tasks while developing the presented system. XDS560 is a PCI-based 

emulator which is designed to operate as a universal card in a PCI 

expansion slot of the host PC. The XDS560 supports the full range of 

standard emulation and debugging capabilities, such as software and 

real-time hardware breakpoint, single-step execution, loading, 

inspecting and modification of all registers and memory and 

benchmarking of execution time of clock cycles [42]. These features 

are provided with Texas Instruments' Code Composer Studio (CCS) 

software which is installed in the PC. This software allows compiling, 

loading, debugging and executing the written codes on the EVM. It also 

offers the ability to have plug-in applications that both control and 

visualize emulation data coming from the target device via the XDS560 

emulator [43]. XDS560 on the host PC communicates through the JTAG 

interface to the target DSP, DM642, with its embedded emulation 

components.  

 

For observing the processed video signal, a PAL monitor is used in the 

setup. The composite video output of DM642 EVM is used for 

transmitting the video signal to the monitor or TV. 

 

DM642 EVM and the analog pan-tilt-zoom camera have two 

connections. The first one is the transmission of PAL video signal to 

composite video input of EVM642. The second connection is the serial 

communication of the camera and the McBSP of EVM for camera control 

by using VISCA protocol (Section 3.2).  

 

The hardware used in the thesis was tested with many tools. The 

VISCA-RS232C connection was tested and verified with a serial port 

monitoring software. The JTAG and PCI connections were tested using 

diagnostic tools of Texas Instruments. Finally, after all devices are 
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connected, all hardware peripherals were tested and verified by 

preparing test codes. 

4.2 Software Development 

Up to this section, the methods of background modeling, feature 

extraction and tracking and hardware components of the system are 

introduced. In this section, the architecture of software of the 

presented system and the implementation details are described. 

 

The software development part consists of two phases. The first phase 

is to write the code in C++ programming language on PC in Microsoft 

Visual Studio Environment and test the algorithms and whole code. In 

the second phase, the written code is ported to embedded platform of 

DM642, which is the DSP of the system, using Code Composer Studio 

(CCS) Integrated Development Environment (IDE). The second phase 

requires some extra coding and work for initializing the DM642 board, 

creating tasks and communication between tasks, setting up video 

encoder and video decoder for video capture and display, and serial 

port for camera control and finally setting up user interface. There are 

also difficulties such as: many libraries or functions are not available in 

embedded platform, the memory sources are limited and debugging is 

more time consuming.  

 

As previously described in Section 4.1, at the hardware level the 

emulator XDS560 located in host PC communicates with the DM642 

EVM through JTAG port. Similarly, at the software level the software 

CCS which is installed in host PC communicates with DSP/BIOS 

operating system on the target board. DSP/BIOS system handles the 

algorithms, tasks and drivers which are executed on the board. In the 

presented system, the code developed in Windows environment is built 

on DSP/BIOS by generating threads and ordering them properly. There 

are five tasks on DSP/BIOS for this system: tsk_idle, tskCapture, 
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tskControl, tskProcess and tskDisplay. These tasks can communicate 

with each other using SCOM module of CCS. This module organizes the 

execution of tasks in a proper order. 

 

tsk_idle is the default task of the processor. Therefore, it is not an 

executed task. 

 

tskCapture is the task for capturing video signal from the video 

decoder. In this task, the decoder is configured for capturing composite 

(PAL) video signal, a capture channel and the SCOM links for receiving 

and sending are created and allocations are done during initialization. 

After initialization, the task continuously checks the message from 

other tasks and when it receives the message, it sends the captured 

frame to the SCOM queue for processing by EDMA and receives an 

empty buffer for use in the next loop. 

 

tskControl is the task that is used for user control. The task 

continuously checks for user commands. Code Composer Studio allows 

adding menu items and creating user interface to set some parameters 

of the DSP and to control the code. This can be done by creating 

General Extension Language (GEL) files. The operation mode of the 

system is selected by the prepared GEL file. 

 

tskProcess is the most important task of the code since the algorithms 

are executed within this task. In the initialization part of this task, all 

variables and buffers that are used in the algorithms are allocated. The 

peripherals and the McBSP are initialized by Chip Support Library (CSL) 

of CCS for DM642. CSL provides a C-language interface for configuring 

and controlling on-chip peripherals. The camera is initialized and 

connected by commands of VISCA protocol. 
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Figure 4.2: Block Diagram of tskProcess 

 

 

This task at each loop, gets an input buffer from the capture task, 

processes it and sends back to the display task after processing. The 

processing function uses down-sampled images since the memory for 

the embedded system is limited. The EVM has only 32 MB of RAM. In 

addition, for faster operation YUV color format, which is the default 

color format of video peripherals, is used. These color components are 

less correlated than RGB and thus the assumptions of independence in 

MGM are also valid in the model.  

 

The processing function initiates the MGM method which is explained in 

Section 2.1.3 when the camera is stationary. The model is updated 

with each received frame. At a glance, the algorithm is mainly in the 

form: 

 

 
Figure 4.3: Main Parts of MGM algorithm 
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The parameter K, which is the number of Gaussians, is chosen as 2 

depending on the available memory of the EVM. Again, as new frames 

are received, the foreground scene is identified as described in Section 

2.2.1. When a desired foreground object is detected on the scene, the 

features on the object are extracted as told in Section 2.3.6. Then, the 

tracker which is given in 2.3.5 starts to operate. For any feature of the 

object on the first frame, which is denoted by u, the Pyramidal LK 

tracking algorithm estimates the corresponding location v on the next 

frame J. The implementation is as follows:  

 

Build pyramid representations of I and J: 

mLL

LI ,...,0}{ =  and mLL

LJ ,...,0}{ =                                                    (4.1) 

Initialization of pyramidal guess: 
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for L = Lm down to 0 with step of -1 
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 Initialization of iterative L-K:   
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 for k = 1 to K with step of 1 (or until kn < accuracy threshold) 

  Image difference:  
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  Image mismatch vector:   
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  Optical flow (Lucas-Kanade):  

k

k

bG −−
=

1η                (4.10) 

  Guess for next iteration:   

kkk

vv η+=
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               (4.11) 

 end of for-loop on k 

 Final optical flow at level L:   

KL
vd =                         (4.12) 

 Guess for next level L-1:   
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end of for-loop on L 

Final optical flow vector:    

00 dgd +=                                  (4.14) 

Location of point on J:     

duv +=                                  (4.15) 

 

As the next step, the system sends control commands to the camera 

for panning, tilting and zooming operations. The aim is to have the 

position of the mean of features of the moving object in the center part 

of the video and not to miss it. The panning and tilting speeds of the 

camera are set by using a linear equation depending on the location of 

the mean of the features with respect to the center of the field of view. 

The camera moves faster when the object is far away from the center 

and it moves slower when the object is closer to the center of field of 
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view. The panning and tilting speeds are calculated independently 

according to the horizontal and vertical spatial distances. If the mean of 

features is within a limited distance to the center of field of view, the 

camera stops. The zooming action is also independent of pan and tilt 

actions. The maximal distances between the features on the object are 

calculated. Whenever the object moves away from the camera, this 

distance decreases and the system sends zoom-in commands to the 

camera. On the contrary, when the object comes closer to the camera, 

the distance increases and the system sends zoom-out commands to 

the camera. As a result, the object can be seen easily on the monitor 

with a rectangle around it and the user will be warned about that 

object. Then, the system goes to initial state for further observations in 

the scene. Since the system operates in many conditions, sometimes 

there exist errors in the operation, however by some operations such 

as thresholding the size of an object or setting a limit for the size of an 

object, these errors are reduced. 

 

The presented system initiates and continuously updates the MGM 

background model when the camera is stationary before tracking 

starts. During tracking, the camera moves and background modeling is 

not performed since a faster operation is desired and the model will 

have many errors with a moving camera. For re-initialization of the 

foreground regions and the ROI during tracking, the camera stops at an 

instance and frame difference is applied in order to have a fast 

response to the moving object as using frame difference is simple and 

fast. Then tracking is performed until the next re-initialization. 
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Figure 4.4: Flow Diagram of main body of the code 
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tskDisplay is responsible for PAL video output. The display channel and 

video encoder are controlled by this task. The task initializes by setting 

the video output parameters, allocating variables and buffers, and 

creating SCOM links for sending and receiving. After initialization, the 

task continuously checks for processed buffers. When a processed 

buffer is ready, it is copied to the display buffer by using EDMA and 

sent to the display channel.  

4.3 Testing and Verification 

While embedding the code written in C++ programming language to 

DM642 EVM platform, there exist many challenges. At first, the code 

needs to be error-free, especially without memory leakage, in order to 

be run on the real-time system for a long time. Some parts of the code 

cannot be directly ported to DSP platform since CCS does not support 

some libraries of Microsoft Visual C++ environment. After those parts 

are re-written and the code is totally ported to the embedded platform, 

it is tested by comparing the codes on both platforms. This system is 

real-time; therefore real-time debugging the code is not easy. 

Recorded video sequences are used as a reference for debugging. The 

recorded video sequences are stored in raw data format on the host PC 

and sent over JTAG connection to DM642 EVM for debugging by using 

CCS. The same data can be analyzed in Microsoft Visual Studio 

Environment as well for comparison. However, even with offline sample 

data the debugging of the whole system is not practical as it has a 

moving camera but the sample videos are relatively static. Many parts 

of the code are tested with real-time operation by connecting the full 

system hardware, generating a test environment and finding the 

parameters by trials. 
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CHAPTER 5                                    

PERFORMANCE EVALUATION 

5.1 Design of Setup and Test Environment 

For some of the applied tests, a remote controlled toy car is used in the 

laboratory for simulating a real vehicle is moving in a park area. The 

camera is located on the desk in a position to resemble a security 

camera which is mounted on a high altitude. The scenarios are applied 

easily by controlling the toy car.  

 

For the test of real-time operation on outdoor scenes, the system is 

located on two different locations to detect people or vehicles and the 

natural effects that are caused by wind, trees, sun and rain, which 

cause variations in illumination, are analyzed. In various conditions of 

illumination level and scene, the output video sequences are stored as 

they are useful for illustration.  

 

In an indoor scene, the effect of a monitor and florescent lights are 

observed to see the effect of flickering. For this test, toy car is used in 

the laboratory while a monitor is visible in the scene and the florescent 

lights are on. 

 

The effects of parameters in the algorithms are also tested using the 

toy car setup in the laboratory for selecting the optimal parameters in 

many conditions. The frames of the recorded video sequence are used 

by a test code as the captured frames in a way to have a periodic 



63 

 

motion on the scene. Then testing various parameters is accomplished 

by using the same sequence for each case. 

 

On DM642 EVM, the same algorithms are executed. However, the 

performance of algorithms is not as good as it is executed on PC. The 

DM642 EVM has a 720 MHz processor while the used PC has a 1.7 GHz 

Pentium processor. As the algorithms are run in a single fashion and 

not in parallel by the DSP, the frame rate is lower. The code on DSP 

has a 6 FPS frame rate, whereas the PC with a 1.7 GHz processor can 

run the code with a 12 FPS frame rate. If a dual core DSP is used 

instead of DM642, the performance will be close to the performance of 

the code on PC. 

 

The screenshots and the results in various conditions are given in 

Section 5.2 with their explanations. 

5.2 Results in Various Conditions 

In the first applied test, two video sequences that are captured in two 

different illumination levels are used. The effects of critical parameters 

in both cases are analyzed. The first video has a scene with high 

illumination level (See Figure 5.1). 
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    (a) Frame 10                              (b) Frame 70 

 

           (c) Frame 90                                (d) Frame 155 

 

           (e) Frame 250                               (f) Frame 305 

 

 
Figure 5.1: The screenshots of scene at high illumination level 

 

 

In Figure 5.1, the screenshots taken at some critical times of the scene 

are illustrated. At Frame 10, there is no object in the scene. At Frame 

70, the object starts to enter the scene. At Frame 90, the object is 
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totally in the scene. Finally at Frame 305, the object completes its 

action on the scene. While testing the parameters of algorithms, a test 

code is written. The code starts processing frames from the first frame 

until the 90th frame. At this time, the blob is detected as the object, 

and tracking starts with extracting features on the object. The video 

sequence between the 90th and 305th frames is processed in a way to 

have an infinite loop of images by playing forward and reverse in this 

period. 

 

Similarly, in Figure 5.2, the screenshots of the scene which are taken at 

some critical times are given. There is no object in the scene in 10th 

frame.  In 165th frame, the object starts to enter the scene. The object 

is totally in the scene at 180th frame and it moves on the scene until 

the 570th frame. The same written code is applied for this case, too. At 

start, the code processes frames from the 0th frame until the 180th 

frame. The blob is detected as the object and the extracted features on 

this blob are tracked.  In order to have a periodic and long-time video 

sequence, the frames between the 180th and 570th frames are used as 

input for the algorithms. The algorithm continues to be executed as 

long as the tracking results are accurate. By applying different 

parameters of the algorithms, the best performance in both light 

conditions is tried to be obtained. 
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    (a) Frame 10                              (b) Frame 165 

 

    (c) Frame 180                             (d) Frame 240 

 

    (e) Frame 360                             (f) Frame 570 

 

 
Figure 5.2: The screenshots of scene at low illumination level 
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Totally ten parameters of the algorithms are varied to analyze the 

effect of them on the performance. These parameters are divided into 

four groups according to the algorithm they belong to: MGM, Harris 

Corner Detection, Pyramidal LK Tracking and Delay. The duration of 

successful tracking is the measure for comparison. These results are 

given in Table 5.1 and Table 5.2.  

 

 

Table 5.1: Effects of Parameters on Tracking Duration in High 
Illumination Level 

 
MGM Harris Corner 

Detection 

Pyramidal 

LK Tracking 

Delay Tracking 

Duration 

L 

1/a 

K T k M min. 

dist. 

k win 

size 

pyr 

level 

input 

rate 

# of 

frames 

200 2 0,7 6  0,01 10 0,040 10,10 3 1 3532 (17) 

200 2 0,7 6 0,01 10 0,040 5,5 3 1 1949 

200 2 0,7 6 0,01 10 0,040 15,15 3 1 5570 

200 2 0,7 6 0,01 10 0,040 10,10 1 1 3318 

200 2 0,7 6 0,01 10 0,040 10,10 5 1 4157 

200 2 0,7 6 0,01 10 0,040 10,10 3 2 4032 

200 2 0,7 6 0,01 10 0,040 10,10 3 3 2435 

200 2 0,7 6 0,01 10 0,040 10,10 3 4 343 

200 2 0,7 6 0,01 10 0,040 10,10 3 5 80 

100 2 0,7 6 0,01 10 0,040 10,10 3 1 3532 

500 2 0,7 6 0,01 10 0,040 10,10 3 1 3532 

200 2 0,7 6 0,01 10 0,001 10,10 3 1 3591(20) 

200 2 0,7 6 0,01 10 0,064 10,10 3 1 4164(16) 

200 2 0,7 6 0,01 10 0.200 10,10 3 1 3686(12) 

200 2 0,7 6 0,01 10 0.247 10,10 3 1 1709(10) 

200 2 0,7 6 0,01 10 0.248 10,10 3 1 567(5) 

200 2 0,7 6 0,01 10 0.249 10,10 3 1 213(2) 

200 2 0,7 6 0.05 10 0,040 10,10 3 1 2387(12) 

200 2 0,7 6 0,6 10 0,040 10,10 3 1 1955(3) 

200 2 0,7 6 0,1 10 0,040 10,10 3 1 2387(10) 

( ): denotes number of found corners 
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Table 5.1 (Continued) 

 
200 2 0,7 6 0.001 10 0,040 10,10 3 1 3532(25) 

200 2 0,7 6 0.00001 10 0,040 10,10 3 1 3532(31) 

200 2 0,7 2.5 0,01 10 0,040 10,10 3 1 0 

(wrong FG) 

200 2 0,7 0 0,01 10 0,040 10,10 3 1 0 

(all FG) 

200 2 0.95 6 0,01 10 0,040 10,10 3 1 3532 

200 2 0.8 6 0,01 10 0,040 10,10 3 1 3532 

200 2 0.6 6 0,01 10 0,040 10,10 3 1 3532 

200 1 0,7 6 0,01 10 0,040 10,10 3 1 68 

200 3 0,7 6 0,01 10 0,040 10,10 3 1 3532 

200 5 0,7 6 0,01 10 0,040 10,10 3 1 3532 

200 2 0,7 6 0,01 7 0,040 10,10 3 1 3439(29( 

200 2 0,7 6 0,01 20 0,040 10,10 3 1 2387(7) 

200 2 0,7 6 0,01 30 0,040 10,10 3 1 2010(3) 

( ): denotes number of found corners 

 

 

Table 5.2: Effects of Parameters on Tracking Duration in Low 
Illumination Level 

 
MGM Harris Corner 

Detection 

Pyramidal 

LK Tracking 

Delay Result 

L 

1/a 

K T k M min.

dist. 

k win. 

size 

pyr 

level 

input 

rate 

# of 

frames 

200 2 0,7 6 0,01 10 0,040 10,10 3 1 1556(4) 

200 2 0,7 6 0,01 10 0,040 3,3 3 1 518 

200 2 0,7 6 0,01 10 0,040 5,5 3 1 928 

200 2 0,7 6 0,01 10 0,040 15,15 3 1 1727 

200 2 0,7 6 0,01 10 0,040 20,20 3 1 2007 

200 2 0,7 6 0,01 10 0,040 30,30 3 1 2628 

200 2 0,7 6 0,01 10 0,040 10,10 1 1 1371 

200 2 0,7 6 0,01 10 0,040 10,10 5 1 1565 

200 2 0,7 6 0,01 10 0,040 10,10 3 2 769 

200 2 0,7 6 0,01 10 0,040 10,10 3 3 252 

( ): denotes number of found corners 
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Table 5.2 (Continued) 

 
200 2 0,7 6 0,01 10 0,040 10,10 3 4 181 

200 2 0,7 6 0,01 10 0,040 10,10 3 5 29 

100 2 0,7 6 0,01 10 0,040 10,10 3 1 1567 

500 2 0,7 6 0,01 10 0,040 10,10 3 1 1511 

200 2 0,7 6 0,01 10 0,001 10,10 3 1 1515(5) 

200 2 0,7 6 0,01 10 0,064 10,10 3 1 1515(5) 

200 2 0,7 6 0,01 10 0.200 10,10 3 1 1515(5) 

200 2 0,7 6 0,01 10 0.247 10,10 3 1 1216(3) 

200 2 0,7 6 0,01 10 0.248 10,10 3 1 381(2) 

200 2 0,7 6 0.05 10 0,040 10,10 3 1 1507(4) 

200 2 0,7 6 0,6 10 0,040 10,10 3 1 1(1) 

200 2 0,7 6 0,1 10 0,040 10,10 3 1 1506(3) 

200 2 0,7 6 0.001 10 0,040 10,10 3 1 1498(4) 

200 2 0,7 6 0.00001 10 0,040 10,10 3 1 1512(4) 

200 2 0,7 8 0,01 10 0,040 10,10 3 1 No FG 

200 2 0,7 4 0,01 10 0,040 10,10 3 1 1631 

200 2 0,7 2.5 0,01 10 0,040 10,10 3 1 wrong FG 

200 2 0,7 0 0,01 10 0,040 10,10 3 1 all FG 

200 2 0.95 6 0,01 10 0,040 10,10 3 1 1522 

200 2 0.8 6 0,01 10 0,040 10,10 3 1 1521 

200 2 0.6 6 0,01 10 0,040 10,10 3 1 1522 

200 1 0,7 6 0,01 10 0,040 10,10 3 1 767 

200 3 0,7 6 0,01 10 0,040 10,10 3 1 1548 

200 5 0,7 6 0,01 10 0,040 10,10 3 1 1518 

200 2 0,7 6 0,01 1 0,040 10,10 3 1 1280(23) 

200 2 0,7 6 0,01 5 0,040 10,10 3 1 1231(10) 

200 2 0,7 6 0,01 15 0,040 10,10 3 1 866(3) 

200 2 0,7 6 0,01 20 0,040 10,10 3 1 54(2) 

( ): denotes number of found corners 

 

L: number of windows in update equations of MGM [8] 

K: number of Gaussian distributions 
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T: the minimum fraction of data to be used for representing the BG 

k: number of standard deviations from the mean of the Gaussian 

M: corner response function 

min.dist.: minimum distance between corners 

k: Harris k 

win size: size of search window in each pyramidal level 

pyr levels: number of pyramidal levels 

input rate: a parameter in the code to vary the frame rate 

 

When Table 5.1 and Table 5.2 are analyzed, it can be seen that the size 

of search window in pyramidal algorithm has a significant effect on the 

tracking performance. Selecting a small size window leads to lower 

performance, whereas selecting a bigger sized window leads to higher 

performance. However, keeping the size of search window will require 

more calculations, therefore this will reduce frame rate in a real-time 

system. The frame rate has also an important effect on the 

performance. With a low frame rate, the displacements of the moving 

objects in the scene become larger; therefore tracking algorithm may 

miss these objects or it will require a larger search window to find the 

objects. 

 

Another parameter, number of pyramidal levels, has also effect on the 

performance. As the number of pyramidal levels increase, the tracking 

performance increases. Since the pyramidal structure makes 

calculations in different resolutions, it enables handling of large pixel 

motion, therefore the performance becomes better. However, the 

motion of pixels are limited, therefore too much increasing the 

pyramidal level number does not further increase performance. 

 

The number of extracted features, corners, is controlled by the 

parameters of Harris corner detector. If Harris constant, k, corner 

response function, M, or minimum allowed distance between corners is 
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decreased, the number of extracted corners raises. The increase in the 

number of corners, results in an increase in tracking duration up to a 

certain limit. After that limit, the highest quality features determine the 

duration of tracking, therefore there will not be a significant increase in 

the duration. 

 

Due to the effect of Mixture of Gaussians Model on foreground 

segmentation and feature extraction, the tracking duration changes in 

the tests. With more number of Gaussian distributions, the background 

model is more accurate. The performance increases up to K=2 in this 

test and having more number of Gaussians does not raise the 

performance. If the scene is more complex, more Gaussians will be 

more effective for foreground segmentation and may have a more 

significant effect on detection and tracking performance. In this 

experiment, it is seen that the performance of scene with low 

illumination is more sensitive to background modeling, because there is 

more blur and noise in the low illumination case. When the same 

parameters are applied to both scenes, it is observed that the 

segmented foreground regions in low illumination are very smaller in 

area when compared to the high illumination case. In the experiment, 

it is observed that by reducing the k parameter, which is the number of 

standard deviations from the mean of Gaussians, a larger foreground 

blob is obtained which results in more extracted features and a larger 

duration of tracking for the low illumination case. 

 

The input rate is the parameter to simulate the various frame rates. 

When input rate is selected as 1, the original frame rate of the system 

is observed since all frames are used in processing. When the value is 

set as 2, the frames are processed in a fashion to use one frame and to 

skip one frame as the frames are acquired. For input rate of 3, one 

frame is used in processing and two frames are discarded, therefore 

the frame rate will be observed as 1/3 of the original rate. It is similar 
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for case of 4 and 5. The larger value corresponds to a lower frame rate. 

It can be analyzed that as the frame rate decreases, the tracking 

performance decreases rapidly. 

  

 

 

 
Figure 5.3: Resistance to flickering effect 

 

 

In another test (Figure 5.3), the effect of flickering is observed in real-

time. In the first and second rows, some frames of input video 

sequence and the obtained corresponding foreground images are 

illustrated. It is observed in the figure that the monitor and the 

florescent lights in the scene do not cause errors in foreground 

segmentation using MGM. The car is successfully identified as 

foreground where as the monitor is identified as a background object. 
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Figure 5.4: The Natural Effects in an Outdoor Scene 

 

 

In Figure 5.4, the screenshots of real-time operation of the system in 

an outdoor scene is given. The motion of leaves in the windy air, the 

raindrops and the motion of trees do not result in an error in 

background modeling. Only the moving car is identified as the 

foreground object as desired. MGM, having multimodal character, 

handles most of the outdoor and indoor scenes effectively. 
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Figure 5.5: Tracking in Low Illumination 

 

 

Using the same parameters in all scene conditions may not be proper. 

The screenshots in Figure 5.5 show the tracking ability of the presented 

system in low light conditions using the parameters used in normal 

illumination level. The performance is not as good as the illumination 

case. The tests performed in the laboratory showed that tracking with 

moving camera is successfully performed for 410 frames in average. 

Using a camera which works better in low light conditions would give 

better results. 
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Figure 5.6: An Object with Similar Color of Background 

 

 

Another weakness of the system is the difficulty of handling an object 

with a color similar to background. In this case both the background 

modeling and the tracking algorithms cannot function efficiently. In the 

given figure, the object is detected in Frame 82; however the tracker 

misses the object in about 60 frames. 

 

 

 

 
Figure 5.7: Tracking in case of Occlusion 

 

 

Handling occlusions is another important problem. In Figure 5.7, two 

people who are walking down the path are occluded while they are 

walking down the stairs. Some of the features are left behind them. 
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The algorithm discards the features which are away from the mean of 

the features. However, in this case most of the features are left behind 

the people. Therefore, the algorithm cannot handle this case.  

 

 

 

 

 
Figure 5.8: Screenshots with their Foreground Images 

 

 

In the scenario of Figure 5.8, the tracked person is occluded by the tree 

leaves and since the feature points are lost during occlusion at 170th 

frame, the tracking stops. However, the system re-initializes the 
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background and finds the features using the 176th FG image and can 

continue tracking by the 177th frame. The system re-initializes the 

features and the model whenever it detects that it missed the object. 

 

 

 

 
Figure 5.9: Tracking a person when turning around 
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Figure 5.9 (Continued) 

 

 

In Figure 5.9, the effect of a person turning around himself while 

waiting is observed. At 26th frame, the person is detected and tracking 

starts. The person turns around himself in the scene. As the person 

rotates significantly in Frame 72, the feature points are missed. The 

system also handles this case by re-initializing the features using the 

foreground scene information. 

 

The screenshots and the applied tests show that the system works 

properly in many conditions. With some modifications, the performance 

may be enhanced further. In complex environments, the number of 

Gaussians parameter, K, can be increased. Generally, setting K 

between 3 and 5 performs accurately in many scenes. In case of low 

illumination, increasing the number of standard deviations from the 

mean of the Gaussian provides larger foreground blobs and better 

results. Kalman filtering for tracking the features can be used in the 

system. The coordinates of each feature in the following frames can be 

predicted by its dedicated Kalman filter and small occlusions can be 

handled. However, when the frame rate decreases, the linearity of 
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motion of features is more distorted because of sudden or complex 

movements. Thus, the performance of Kalman filter will not be very 

good. 
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CHAPTER 6                                    

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this thesis, an intelligent system for surveillance applications is 

presented and implemented. The hardware of the system consists of a 

Texas Instruments DM642 Digital Video Evaluation Module and a pan-

tilt-zoom camera. This system can execute tasks such as video 

capturing, video processing and event reporting. Processing part 

involves the automatically detection and tracking of a single moving 

object using pan-tilt-zoom abilities. 

 

For realizing the presented system, the theoretical bases for 

background modeling and tracking algorithms, which are necessary for 

moving object detection, were investigated. Main approaches were 

discussed by presenting their strengths and weaknesses. By 

considering its capability of handling various types of scenes, Adaptive 

Gaussian Mixture Background modeling method was used in the 

system. The popular and robust Pyramidal Implementation of Lucas-

Kanade Feature Tracker was used as the tracking algorithm of the 

system. The codes developed in Visual Studio Environment were ported 

to Texas Instruments Code Composer Studio Development 

Environment for execution on Texas Instruments DM642 DSP. To 

ensure proper operation, the whole system hardware, software and the 

ported algorithms were tested by using recorded video sequences, by 

applying real-time test scenarios or by creating test codes. Since it is 

difficult to test the whole system in an outdoor place, most of the tests 
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were performed in the laboratory during development. The results and 

the screenshots of experiments of the tested system were illustrated. 

 

Developing and executing video processing algorithms on an embedded 

system with limited processing power and memory is the most critical 

point in the development of embedded surveillance systems. The 

presented system in this thesis has a single core DSP of 720 MHz clock 

and 32 MB external memory. With this configuration, it can perform 

video processing and loopback with a rate of 6 FPS. 

6.2 Future Work 

The presented intelligent surveillance system detects only a single 

object in the scene. As a future work, multiple object detection can be 

implemented as an additional feature. By properly grouping the 

features, which is a challenging task, multiple objects can be tracked in 

the scene. However, tracking multiple objects at the same time will 

require more processing power. 

 

Another improvement of the system can be accomplished by using the 

movement information of the camera. As the system can obtain the 

direction of motion of the moving object and the camera, the 

background region, which will probably be occupied by the moving 

object, can be modeled before the object arrives. 

 

Higher level algorithms can be developed on this system in future. 

After successfully tracking the moving object from one frame to 

another, the problem of understanding the object behavior follows. The 

present system can be used for detecting behaviors of objects to 

identify the events on the scene. 

 

The presented system has many advantages when compared with 

traditional systems that work on PC. During this thesis work, the 
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developed algorithms were both tested on PC and the DSP. The 

performance on PC was better than the performance on DSP because of 

lower the frame rate on DSP. The system uses a single core DSP to 

execute the algorithms and a limited memory. As a future work, the 

algorithms can be run on multiple processors or on a multiple core DSP 

to have a higher frame rate and hence a higher performance. 

Furthermore, providing more external memory to the present system 

will allow more complex algorithms to be developed. 

 

In the presented system, the popular Harris corner detector is used 

since it is invariant to rotation, changes in illumination and noise. 

However, this feature detector is not invariant to scaling. Therefore, 

while using zoom abilities of the camera, some of the features may be 

lost. By using a feature detector which is insensitive to scaling, the 

zoom functions of the pan-tilt-zoom camera can be used more 

efficiently. Thus, in future studies, feature detectors such as Laplacian 

Harris can be implemented for use in the system. 
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