

HARDWARE IMPLEMENTATION OF AN ACTIVE FEATURE
TRACKER FOR SURVEILLANCE APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BERKAN SOLMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JULY 2008

Approval of the thesis:

HARDWARE IMPLEMENTATION OF AN ACTIVE FEATURE

TRACKER FOR SURVEILLANCE APPLICATIONS

submitted by BERKAN SOLMAZ in partial fulfillment of the

requirements for the degree of Master of Science in Electrical and

Electronics Engineering Department, Middle East Technical

University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen

Head of Department, Electrical and Electronics Engineering Dept.

Prof. Dr. Gözde Bozdağı Akar

Supervisor, Electrical and Electronics Engineering Dept.

Examining Committee Members:

Assoc. Prof. Dr. A. Aydın Alatan

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar

Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. İlkay Ulusoy

Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Çağatay Candan

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Yasemin Yardımcı Çetin

Informatics Institute, METU

Date: July 17, 2008

iii

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and
ethical conduct. I also declare that, as required by these rules
and conduct, I have fully cited and referenced all material and
results that are not original to this work.

Name, Last name : Berkan SOLMAZ

Signature :

iv

ABSTRACT

HARDWARE IMPLEMENTATION OF AN ACTIVE
FEATURE TRACKER FOR SURVEILLANCE

APPLICATIONS

Solmaz, Berkan

M.Sc., Department of Electrical and Electronics Engineering

 Supervisor: Prof. Dr. Akar, Gözde Bozdağı

July 2008, 88 pages

The integration of image sensors and high performance processors into

embedded systems enabled the development of intelligent vision

systems. In this thesis, we developed an active autonomous system to

be used for surveillance applications. The proposed system detects a

single moving object in the field of view automatically and tracks it in a

wide area by controlling the pan-tilt-zoom features of the camera. The

system can also go to an alarm state to warn the user.

The processing unit of the system is a Texas Instruments DM642

Evaluation Module which is a low-cost high performance video &

imaging development platform designed to develop and evaluate video

based applications.

v

Keywords: Tracking, Background Modeling, Features, Digital Signal

Processor, Pan-Tilt-Zoom Camera, Surveillance.

vi

ÖZ

GÖZETLEME UYGULAMALARI İÇİN BİR AKTİF
ÖZNİTELİK İZLEYİCİNİN DONANIM

GERÇEKLEŞTİRİMİ

Solmaz, Berkan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Temmuz 2008, 88 sayfa

Görsel algılayıcılar ve yüksek performanslı işlemcilerin bir araya

getirilmesi akıllı görme sistemlerinin geliştirilmesine olanak sağlamıştır.

Bu tezde, gözetleme uygulamalarında kullanmak üzere aktif, özerk bir

sistem geliştirilmiştir. Önerilen sistem, kameranın bakış açısı içinde

bulunan hareketli bir nesneyi otomatik olarak algılamakta ve nesneyi

kameranın yatay-eğim-optik kaydırma özellikleriyle geniş bir alanda

takip etmektedir. Ayrıca sistem bir alarm durumuna geçerek kullanıcıyı

da uyarabilmektedir.

Sistemin işleme birimi düşük maliyetli, yüksek performanslı video ve

görüntüleme uygulamaları geliştirme ve değerlendirme platformu olan

Texas Instruments'a ait DM642 Değerlendirme Modülüdür.

vii

Anahtar Sözcükler: İzleme, Arkaplan Modelleme, Öznitelik, Sayısal

İşaret İşlemci, Yatay-Eğim-Optik Kaydırmalı Kamera, Gözetleme.

viii

To my family

ix

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Prof. Dr. Gözde Bozdağı

Akar for her guidance, encouragement, support and patience

throughout the preparation of this thesis. I am grateful to Assist. Prof.

Dr. İlkay Ulusoy for her help and support during this thesis. Thanks to

Anıl Aksay, Yusuf Bediz and Ahmet Oğuz Öztürk for their encouraging

me in the development, for their valuable suggestions and support.

Thanks to Murat Deniz Aykın, Emrah Bala, Mehmet Oğuz Bici, Özlem

Pasin and all colleagues from Multi Media Research Group, for their

suggestions and availability to help me whenever it was necessary and

also for the pleasant working environment.

x

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. vi

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS .. x

LIST OF TABLES ... xii

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS ... xv

CHAPTERS

1. INTRODUCTION .. 1

1.1 Background ... 1

1.2 Problem Definition and Motivation 3

1.3 Organization of the Thesis .. 4

2. MOVING OBJECT DETECTION .. 5

2.1 Background Modeling .. 5

2.1.1 Background Subtraction and Temporal Smoothing .. 6

2.1.2 Single Gaussian Distribution Method..................... 9

2.1.3 Mixture of Gaussians Method 12

2.1.4 Eigen-Backgrounds Method 22

2.1.5 Comparison of Background Modeling Methods 25

2.2 Detection Algorithm .. 28

2.2.1 Finding Region of Interest 29

2.3 Object Tracking .. 30

xi

2.3.1 Region-Based Tracking..................................... 30

2.3.2 Active-Contour-Based Tracking.......................... 32

2.3.3 Model-Based Tracking 33

2.3.4 Feature-Based Tracking 34

2.3.5 Pyramidal Lucas Kanade Feature Tracker 36

2.3.6 Extracting and Handling Features 40

3. HARDWARE OF THE SYSTEM ... 43

3.1 Overview of TI DM642 Evaluation Module 44

3.2 Pan-Tilt-Zoom Camera .. 49

4. SYSTEM IMPLEMENTATION ... 52

4.1 Hardware Setup ... 52

4.2 Software Development .. 54

4.3 Testing and Verification ... 61

5. PERFORMANCE EVALUATION ... 62

5.1 Design of Setup and Test Environment 62

5.2 Results in Various Conditions .. 63

6. CONCLUSIONS AND FUTURE WORK ... 80

6.1 Conclusions ... 80

6.2 Future Work .. 81

REFERENCES ... 83

xii

LIST OF TABLES

TABLES

Table 2.1: Performance of discussed background modeling methods

[10] .. 27

Table 3.1: PELCO Packet Structure .. 51

Table 5.1: Effects of Parameters on Tracking Duration in High

Illumination Level .. 67

Table 5.2: Effects of Parameters on Tracking Duration in Low

Illumination Level .. 68

xiii

LIST OF FIGURES

FIGURES

Figure 2.1: Scatter plots of pixels obtained on the images over time [7]

 .. 14

Figure 2.2: PETS and DIRC datasets .. 26

Figure 2.3: Performance results of each method [10] 27

Figure 2.4: Features are not extracted until the whole object is visible

 .. 29

Figure 2.5: Harris Corner Detector ... 41

Figure 3.1: Texas Instruments DM642 Evaluation Module 43

Figure 3.2: DM642 DSP Block Diagram [41] 45

Figure 3.3: DM642 L1 Cache [41]. ... 46

Figure 3.4: Partitioning internal memory into L2 cache/ram 46

Figure 3.5: Video Port Block Diagram ... 48

Figure 3.6: Sony EVI-D100P Video Camera 49

Figure 3.7: VISCA Packet Structure ... 50

Figure 4.1: Used Hardware for Debugging and Development 52

Figure 4.2: Block Diagram of tskProcess 56

Figure 4.3: Main Parts of MGM algorithm 56

Figure 4.4: Flow Diagram of main body of the code 60

Figure 5.1: The screenshots of scene at high illumination level 64

Figure 5.2: The screenshots of scene at low illumination level 66

Figure 5.3: Resistance to flickering effect...................................... 72

Figure 5.4: The Natural Effects in an Outdoor Scene 73

Figure 5.5: Tracking in Low Illumination 74

Figure 5.6: An Object with Similar Color of Background 75

Figure 5.7: Tracking in case of Occlusion 75

xiv

Figure 5.8: Screenshots with their Foreground Images.................... 76

Figure 5.9: Tracking a person when turning around 77

xv

LIST OF ABBREVIATIONS

DSP Digital Signal Processor

BG Background

FG Foreground

SGM Single Gaussian Model

CCD Charge Coupled Device

EM Expectation Maximization

MGM Mixture of Gaussians Model

FPS Frame per Second

KLT Kanade-Lucas-Tomasi

ROI Region of Interest

PETS Performance evaluation of tracking and surveillance

PTZ Pan-Tilt-Zoom

CPU Central Processing Unit

RAM Random Access Memory

SRAM Static Random Access Memory

L1 Level 1

L2 Level 2

DMA Direct Memory Access

RISC Reduced Instruction Set Computer

EDMA Enhanced Direct Memory Access

Y/C Luminance and Chrominance

I/O Input/Output

VLIW Very Long Instruction Word

ILP Instruction Level Parallelism

TI Texas Instruments

EVM Evaluation Module

xvi

LED Light Emitting Diode

GPIO General Purpose Input Output

PCI Peripheral Component Interconnect

JTAG Joint Test Action Group

McBSP Multi-Channel Buffered Serial Port

VISCA Video System Control Architecture

CCS Code Composer Studio

PAL Phase Alternating Line

GEL General Extension Language

CSL Chip Support Library

1

CHAPTER 1

INTRODUCTION

1.1 Background

Surveillance involves monitoring the movements of people or objects.

In past, a complete surveillance system consisted of a camera, a

monitor and a video recorder. This system did not have the ability to

process the acquired signals or analyze the scene. In more advanced

surveillance and vision systems, the cameras operate as simple sensors

and the captured video is processed in a central processing unit which

is generally a personal computer. However, the whole video stream

needs to be transmitted to the processing unit by a high-cost and

distance limited connection. Therefore, it is more feasible to integrate

the processing unit and the camera within a stand-alone system and to

run the video/image processing algorithms on this system. Integration

of image sensors and high performance processors into embedded

systems enabled the development of capable stand-alone systems.

The active feature tracker that is presented in this thesis is an

intelligent vision system that performs not only video capturing but also

processing and extracting information from video stream without the

need for an external processing unit. It can also interface with other

devices to report the results and events to the users.

The presented system has all of the essential components for

video/image processing and also some additional components. These

features can are:

2

-Pan-tilt-zoom camera for capturing analog video

-Video decoder for digitizing analog video

-Digital signal processor (DM642)

-Code Memory and Data memory (Ram, Flash)

-Communication interface (RS-232)

-General Purpose I/O lines

-Illumination devices (LEDs)

-Video encoder for video output

The implemented system is appropriate for many tasks. As well as

being used for active feature tracking for surveillance in this thesis, the

hardware of this system can be programmed to execute various types

of image/video processing routines. Therefore conventional PC based or

central processing unit based systems will be unnecessary. This system

can also compete with personal computers in terms of functionalities.

The compactness and stand-alone operation of this type of vision

systems make integration and mounting easier. This also results in a

decrease in costs, for instance no switching cabinets are required for

the cameras. This type of systems is more reliable and can work for

long time without being restarted. Nevertheless, this type of systems

do not have sophisticated user interface like PC based systems.

The presented stand-alone system, including a high performance digital

signal processor, can be a perfect choice for applications of distributed

vision and for applications where multiple independent and

asynchronous cameras are required. For instance, many of these

systems can be distributed along a production line or at multiple

inspection or surveillance points.

In recent years, due to the increasing demand for intelligent

surveillance systems, there are various applications being developed.

Haritaoglu [1] et al. proposed a surveillance system that identifies

3

shopping groups by detecting and tracking people while they wait in a

checkout line or service counter. Hampapur et al. [2] developed a

system to perform 3D head detection in a room by using multiple

cameras.

Although the presented system has many advantages, performing

high-level image analysis algorithms on embedded systems requires

high processing power and it is the most critical task for the

development of embedded vision systems.

1.2 Problem Definition and Motivation

Video surveillance systems of today generally consist of closed-circuit

TV systems. These systems accomplish a loopback of images to a

monitor for people who try to examine events. However, the people

viewing the images on monitors cannot be so consistent and may lose

their concentration in time. With the increasing technology, video

surveillance systems started evolving from traditional closed-circuit TV

systems to intelligent stand-alone security systems which can operate

more consistently and less dependent on people. High processing

power of the new digital signal processors enabled more functional

systems to be developed. These systems have many more features

when compared to the traditional systems which can only capture video

signals and record them. They automatically analyze the video stream

and perform actions such as warning the security guards in case of an

important event.

This thesis describes the hardware implementation of an intelligent

system with pan-tilt-zoom features for surveillance applications. The

hardware of the system consists of a Texas Instruments DM642 Digital

Video Processing board and a pan-tilt-zoom camera. The presented

system detects a single moving object in the field of view automatically

and tracks it in a wide area by controlling the pan-tilt-zoom features of

4

the camera. The system can also go to an alarm state to warn the user

if necessary.

1.3 Organization of the Thesis

The organization of the thesis is as follows:

In Chapter 2, the theoretical bases of background modeling, feature

extraction and tracking, which are necessary for moving object

detection, are given. Major approaches are discussed by presenting

their strengths and weaknesses.

Chapter 3 illustrates the hardware of the presented system by stating

the most critical parts of the hardware and points out their general

specifications.

In Chapter 4, the whole system implementation and integration are

described. The hardware used for the development and the developed

software are explained in details. The testing and verification steps are

also addressed.

In Chapter 5, the setup of experiments for the system and the results

obtained from the execution of the developed software on PC and on

DSP using sample or real-time video sequences are given.

Finally, Chapter 6 provides the conclusions for the overall study with

mentioning open points for possible future studies.

5

CHAPTER 2

MOVING OBJECT DETECTION

2.1 Background Modeling

Background modeling is a fundamental task for many vision systems.

The aim is to detect the background scene in a suitable way, detect the

changes in the scene and separate the background and foreground

objects carefully. The more accurate the background model, the more

accurate the detection of foreground objects. The most critical part in

background modeling is to build an adaptive model for the background,

as in most scenes where the background shows a varying behavior in

time and space. Especially natural scenes result in many difficulties on

background modeling since they are usually dynamic and including

illumination changes that may result from cloud cover and as well as

variations that result from moving background objects such as tree

leaves, rain, snow and sea waves. A robust background modeling

algorithm should also deal with cases when new objects are introduced

into the background or when a background object is removed from the

scene. Furthermore variation due to blocking of the light source in

indoor videos or the shadows of the moving objects can cause

problems. Even in a static scene, frame to frame changes may occur

due to noise and uncertain camera movements. An efficient

background model needs to overcome these problems.

In security applications, many objectives such as object tracking and

action analysis are dependent on background modeling. Therefore, it is

the first task of the proposed system in the thesis. There are various

6

background models that have been introduced with various

characteristics. Popular approaches will be explained in following

sections.

2.1.1 Background Subtraction and Temporal Smoothing

Background subtraction is a basic and common method for

discriminating a moving object from the background scene. The

captured frames are subtracted from the estimated background image

and the result is thresholded to generate the objects of interest.

Most of the real-time security systems use this method in order to

detect the regions of the image that have changed. The simplest way of

acquiring the background image is to set a prior frame as the reference

frame when there is no foreground object in the scene. Then using

pixel-by-pixel frame difference between the reference frame and the

captured frames allows us to find the foreground objects in the

captured frames. Thresholding the difference results in a binary

foreground image that consists of two gray levels; 0 (black) indicates

the background pixels and 1 (white) indicates the foreground pixels.

The foreground image is given by:





<−

>−
=

ThryxBtyxI

ThryxBtyxI
tyxF

),(),,(,0

),(),,(,1
),,((2.1)

F(x,y,t) and I(x,y,t) represent the intensity vectors for the pixels of

foreground image and captured frame at (x,y) location at time t

respectively. B(x,y) is the intensity vector for the pixel at location (x,y)

of background image and Thr is the threshold value.

This method is useful when the background is totally static. However, it

has so many errors when the background is not relatively static. For

7

instance, when the illumination level changes depending on the

weather, position of clouds and sun or when the sun light lessens, it

affects the performance. Another problem of this method is that the

present foreground objects while setting the reference frame remain as

permanent background objects. Moreover slight camera movements

also result in errors in detecting the background. Leaves of a tree when

there is wind results in errors. A flickering monitor or TV screen is also

a problem for this method.

An improved method for determining background image, which is

known as Temporal Smoothing, is accomplished by averaging the

captured frames over time in order to have a better estimate. The

background estimate can be found by:

 ∑ =
=

t

t
tyxI

t
tyxB

1'
)',,(

1
),,((2.2)

where I(x,y,t) is the intensity vector for the pixel at (x,y) location at

time t and B(x,y,t) is actually the mean color of the pixel at (x,y) at

time t. In order to reduce the required memory and the required

number of multiplications and additions, the formula can be computed

incrementally as:

),,(
1

)1,,(
1

),,(tyxI
t

tyxB
t

t
tyxB +−

−
= (2.3)

Temporal smoothing performs well in scenes where objects move

continuously and the background is visible for a significant portion of

the time. However it fails when the foreground objects move slowly

since those objects will be assigned significantly into the averaged

background. In addition, when the scene is occupied by many

foreground objects, the background becomes less visible. Therefore,

this method has errors forgetting the background image. This

8

technique has a particularly long recovery time for the background

when a new static object is inserted to the scene or when a background

object is removed from the scene. A change in the illumination level

over time is another problem of this method. This problem can be

solved by using a moving window average of frames or using an

exponential forgetting. The weights of past frames decrease

exponentially and their effect on the background image reduces. Using

this approach, the background image can be obtained by:

),,(*)1,,(*)1(),,(tyxIatyxBatyxB +−−= (2.4)

where 1/α is the forgetting factor and α is the learning rate. In this way

the memory requirements are also reduced. In simple average case,

the memory requirement is frame size times the number of all frames,

whereas in moving average case the required memory is the just the

frame size. This approach also cannot adapt to the scenes with tree

leaves, snow, rain or slowly moving objects.

Temporal smoothing may be performed in various ways. For example,

Karmann and von Brandt [3] use a Kalman filter and the Wallflower

algorithm [4] uses a Wiener filter instead of exponential smoothing.

Heikkila and Olli [5] applied two corrections to the method:

-If a pixel is observed in the foreground for more than a number of

frames in a specified number of last frames, then it is modified to be in

the background by setting:

),,(),,(tyxItyxB = (2.5)

With this modification the method can adapt to the sudden illumination

changes and to the insertion of new static objects.

9

-If the intensity of a pixel changes frequently, it is masked out from

being in the foreground. This modification is helpful in conditions when

there are object that cause fluctuations in the illumination level of

environment such as flickering monitors, tree leaves in wind or sea

waves.

Moving average approach can also be modified in order not to take into

account the foreground pixels while estimating the background by

performing:



 −+

=+
FGinistyxIiftyxB

BGinistyxIiftyxBatyxIa
tyxB

),,(),,,(

),,(),,,(*)1(),,(*
)1,,((2.6)

After background subtraction, morphological operations are applied to

the foreground. Generally, a 3x3 mask is used for dilation and erosion

operations. Then, the foreground object is segmented by connected

component analysis. The same procedure is also applied in the

methods Single Gaussian Distribution Model (Section 2.1.2).

While background subtraction and temporal smoothing methods are

useful in well-defined and short-time tracking applications without

significant changes in the scene, they may have many errors that

accumulate over time in more complex scenes. These methods cannot

cope with complex backgrounds, and have a single, predetermined

threshold for the entire scene.

2.1.2 Single Gaussian Distribution Method

As mentioned in the previous sections, the background scene is

generally not static and changes over time due to variation in

illumination levels. Therefore the background model needs to be

estimated and updated properly in time by analyzing the frame

sequence. Pixels of the background model can be represented by

10

intensity vectors that consist of numerical values for all color channels.

However, the most popular approaches for background modeling are

based on probabilistic models.

In many methods, pixels of background models are represented by

distributions in order to express the variable behavior of the

background. The goal of these sophisticated and adaptive methods is to

estimate the probability density function of every pixel of the frames

and to compute the probabilities for every pixel to be a part of the

background scene. These probability density functions can be estimated

in many ways.

The most popular and a simple method is to describe the intensity

values of each pixel in a video sequence with a single Gaussian

distribution. Therefore the mean and variance of Gaussian distributions

are updated over time. Many background modeling algorithms rely on

this method. The decision of a pixel to be in background or in

foreground is done by analyzing the deviation of the intensity of the

pixel from the estimated mean value. This is the most important

advantage of these methods when compared to the basic methods

where the thresholds are constant. The sensitivity of these methods is

dependent on the pixel that is analyzed. After thresholding operation, a

binary image is obtained as in the previous methods.

In Pfinder system of Wren et al.’s [6], which is a good example of single

distribution background models, the background scene is represented

by using a single Gaussian distribution per pixel. The distributions are

initialized by estimating the mean and variance parameters of the

background pixels independently when there are no foreground objects

in the scene. Then these parameters of the background distributions

are updated using a simple adaptive filter by:

11

 1*)1(* −−+=
ttt

aIa µµ (2.7)

2

1

2

)1())((−−+−−= t
T

ttttt aIIa σµµσ (2.8)

where α is the learning rate and It is the captured frame at time t. It

can be represented by the vector of intensities [ΦY, ΦU, ΦV]
 T in YUV

color space. Then the log likelihood is quantified in order to specify the

foreground and background pixels as:

)2ln(
2

||ln
2

1
)()()(

2

1 212

πσµσµ
m

II tttt
T

ttt −−−−−= −
l (2.9)

A pixel is identified as in the foreground if the log likelihood is smaller

than a specified value. The last step is to find the connected

components as it is in many methods. For grayscale images, rather

than using the log likelihood function, a pixel is specified as foreground

or background by testing with a threshold value which is taken as a

constant times the variance of that pixel.

 ThresholdI >− µ (2.10)

This system is reported to work effectively in indoor scenes where

there are not many variations in the background, but it cannot cope

with multimodal backgrounds. While the intensity values of pixels in a

background with slow changes can be properly described by recursively

updating the parameters of these single distribution models, these

models will have difficulties in estimating complex and varying

background scenes. When there are actions such as change in

illumination levels or slight movement and variation of background

objects in the scene, one distribution will not be enough to represent

the behavior of a single pixel over time. Therefore multimodal

12

background models, namely mixture of distributions, will need to be

used in case of moving backgrounds.

2.1.3 Mixture of Gaussians Method

Stauffer and Grimson [7] proposed a method which suggests that the

samples of a pixel observed over time in many scenes can be described

by more than one process. Therefore, the intensity of each pixel is

modeled by a mixture of weighted Gaussian distributions instead of

modeling with one particular type of distribution which is usually a

single Gaussian distribution. The weight of a Gaussian distribution is

dependent on the permanence of that distribution to be the dominant

color in the scene. This method makes it possible to handle natural

backgrounds which are generally multimodal and not static.

While the simpler methods and Single Gaussian Distribution Model that

are previously discussed are more appropriate for particular tasks and

for modeling simpler background scenes, Mixture of Gaussians method

has better performance for modeling more complex and time-varying

background scenes and works efficiently in many cases. This successful

background model can cope with daily variations in lightning, repetitive

motions in the scene, and also insertion of objects to the scene or

removal of objects from the scene. The model avoids the slow moving

foreground objects being identified as background objects since the

moving objects have a larger color variance than the background. The

method also adapts quickly in case of appearing ghosts or fast

changing illumination.

The proposed system in this thesis uses Mixture of Gaussians modeling

method with deterministic thresholding for background modeling. In

this method, every pixel in the scene is modeled by a mixture of

Gaussian distributions. The two main tasks that this method deals with

are updating the weights and parameters of each Gaussian distribution

13

with respect to the captured frames and specifying the Gaussian

distributions that represent the background. A pixel is considered as in

the foreground if its intensity does not fit any of the Gaussians which

represent the background. This method has superior performance and

adapts to changes in conditions if the parameters are set in a suitable

way.

The learning constant α and the proportion of data that need to be used

for describing background T are the two important parameters to be

specified in this method.

For each captured frame, the parameters of the Gaussian distributions

are updated, and the Gaussian distributions are evaluated to identify

which ones most likely represent the background scene. If the pixel

values do not match any of the background distributions they are

identified as foreground pixels and these are grouped using connected

components. Finally, the connected components will be tracked from

frame to frame using a tracking algorithm.

The values of a pixel over time are called a pixel process. A pixel

process consists of scalars for grayscale images and vectors for color

images. The history of a pixel is given by all its values up to a time t

as:

 }{ { }tiforiyxIXXX
t

≤≤= 1),,(,,, 0021 K (2.11)

where I(x0,y0,i) represents the pixel value of the captured image

sequence at location (x0, y0) and at time i. Some pixel processes that

are taken by Grimson et al.’s work [7] are illustrated in Figure 2.1 using

(R, G) scatter plots.

14

 (a) (b) (c)

Figure 2.1: Scatter plots of pixels obtained on the images over time [7]

In the first row of Figure 2.1, one frame per each of the used scenes

are illustrated. In the other rows there are the scatter plots. For (a) two

scatter plots of the same pixel in different time periods are given. If we

observe the plot we can see that the values of the pixel change in time.

Such a scenario may happen due to shadowing effect. In such a case, a

system with a single predetermined threshold would fail. In case (b)

the pixel has a bi-modal character which means that it has two

different values over time. This is caused by the variation of color on

the surface of water. In case (c), another pixel with bi-modal character

is analyzed which results from the flickering of monitor in the scene. It

is observed in the (R, G) scatter plots that an adaptive system with

deterministic thresholding which can handle multi-modal

representations is desired for these cases.

15

With a totally static background and static lightning, the pixels have

constant values. Under the assumption of independent Gaussian noise

in the pixel values, the pixel processes can be described by single

Gaussian distributions. However the scenes generally have variations in

illumination and moving objects, so the Gaussian should adapt to those

changes. In case of an inserted static object in the background, the

corresponding pixels will be identified as in the foreground for a long

time period which will result in accumulated errors in background

modeling. Therefore, recent observations need to have higher

significance in estimating the parameters of Gaussians. Moving objects

in the scene also cause variations. Even if the moving object has a

consistent color, it causes a variance more than a static object in the

scene.

The recent history of each pixel, {X1, X2, ..., Xt}, is modeled by a

mixture of Gaussian distributions, where Xt is the current pixel value

vector that consists of red, green, blue component intensities.

),,(b

t

g

t

r

tt
xxxX = (2.12)

The probability of observing the current pixel value is

),,(*)(
1 ,,,∑ =

Σ=
K

i titittit XwXP µη (2.13)

where K is the number of Gaussian distributions in the mixture which is

specified according to the available memory and computational power

of the system, wi,t is an estimate of the weight of the ith Gaussian in the

mixture at time t, µi,t and ∑i,t are respectively the mean value and the

covariance matrix of the ith Gaussian in the mixture at time t, and η is a

Gaussian probability density function. η, µi,t and ∑i,t are given

respectively by:

16

)()(

2

1

2

1

2

1

)2(

1
),,(

tt
T

tt XX

nt eX
µµ

π

µη
−Σ−− −

Σ

=Σ (2.14)

),,(,,,,

b

ti

g

ti

r

titi µµµµ = (2.15)

















=Σ
2

2

2

,

00

00

00

b

g

r

ti

σ

σ

σ

 (2.16)

Under the assumption that the color components are independent with

equal inner variances, the covariance matrix is assumed to be in the

diagonal matrix form for computational simplicity as in Eq. 2.17. This

assumption allows us to avoid a costly matrix inversion at the expense

of some accuracy.

 Iiti

2

, σ=Σ (2.17)

The distribution of a pixel value is modeled by a mixture of Gaussian

distributions. The most recent value of a pixel is described by one of

the Gaussians in the mixture and is used for updating the model.

Considering the pixel process to be stationary, expectation

maximization (EM) algorithm can be used for maximizing the likelihood

of observed data. However, pixel processes vary in time in natural

scenes. Therefore, an approximate method which uses only the newest

sample and integrates the new data by standard learning rules is used.

Instead of implementing an EM on a window of recent data for each

pixel of a frame, a computationally simpler online K-means

approximation is implemented in the method. Each pixel value, Xt is

tried to be matched to one of K Gaussian distributions. A matching to a

Gaussian is done if the pixel value is within a distance of 2.5 standard

deviations from the mean of that distribution. This per pixel per

17

distribution threshold is very efficient when the different regions have

different lighting. Analyzing the case (a) of Figure 2.1, it is observed

that the noise in shaded regions is less significant than the noise in

lighted regions. Using a uniform threshold often results in objects

disappearing when they enter shaded regions.

In case of no matches between a new pixel value and the existing

distributions, the distribution with the smallest likelihood with respect

to the new pixel value is discarded and a new distribution with a mean

set as this new pixel value, with a variance set as a high predetermined

constant, and with a small weight is created instead of the discarded

one. Therefore, random short term variations in the scene do not form

a dominant distribution in the model.

The update for the weights of distributions is done by:

 tititi aMwaw ,1,,)1(+−= − (2.18)

In the formula, α is the learning rate typically taken between 0.3 and

0.7 and 1/α specifies the speed of change of the parameters of

distribution. Mi,t is a parameter that is taken 1 for the matching

distribution and 0 for the others. Thus the weight of the matching

distribution increases whereas the weights of other distributions

decrease. After all weights are updated, they are renormalized. wi,t is

actually a causal low-pass filtered average of the posterior probability

that pixel values have matched the ith model given observations from

time 1 to t.

The update procedure is different for matching and non matching

distributions. With each captured frame, the mean value µ and the

variance σ2 parameters of only the distribution that matches the new

18

pixel value are updated by using a same type of causal low-pass filter

except the use of matching observation Xt in the estimation:

ttt

Xρµρµ +−= −1)1((2.19)

)()()1(2

1

2

tt

T

tttt
XX µµρσρσ −−+−= − (2.20)

),|(
kkt

Xa σµηρ = (2.21)

The mean value µ and the variance σ2 parameters for unmatched

distributions are not updated. In this method, when a color becomes a

part of the background, the other distributions are not totally

discarded. The background color remains in the mixture until it has the

Kth most likelihood of being the dominant color and a new color is

observed. Thus, when an object, which is stationary for a time period

to be a part of the background, moves, the distribution of the original

background scene still exists in the mixture with same mean and

variance parameters, but with a smaller weight. So, the original

distribution can quickly re-incorporate into the background.

The parameters of the mixture model change as the background

processes change. The Gaussian distributions which have the most

supporting evidence in time and the least variance are most likely the

background processes. For instance, a static and consistent object in

the scene causes higher supporting evidence which can be taken as the

weight of that distribution and a lower variance than an object which

occludes the background object. The occluding object does not match

any distribution at first and results in a new distribution to be created

or an existing one to have a larger variance. The variances of the

moving objects are generally larger than the background scene while

they keep on moving.

After estimating the parameters of the mixture, a good idea to decide

on which processes model the background more effectively is to sort

19

the distributions in a list according to the fitness value ω/σ which

increases with the more supporting evidence of a distribution and a

lower variance. So the most likely background distributions remain on

top of the list while the less probable or transient background

distributions move towards the bottom of the list and are replaced by

new distributions. Then the first B distributions of the sorted mixture

are selected to model the background where B is given by:

 ()TwB
b

k kb >= ∑ =1
minarg (2.22)

where T is a threshold that specifies the minimum fraction of data to be

used for representing the background. T is set in accordance to a

trade-off. A small T leads to a small B and to a unimodal background

model which requires less computational power. However the model

cannot handle repetitive background movements such as the leaves of

a tree in wind or similar phenomena. With a large T, the multimodal

background scenes can be handled robustly but would require more

computational power.

The final decision is to identify the foreground pixels in the scene. A

pixel is said to match a distribution if its value Xt does not deviate more

than a constant times the variance of that distribution. If the pixel

value Xt matches one of the best B distributions which are the

background distributions, it is identified in the background. Else it is

identified as a foreground pixel. The background image for visualizing

the status of the model can be obtained by taking the mean value of

the most probable distribution for each pixel.

After the foreground pixels are identified in each frame, they are

subjected to some post-processing operations. First, these pixels are

morphologically filtered for noise reduction and for filling the gaps and

holes in the contours. Then the pixels are segmented to form regions

20

by using a connected components algorithm. This operation is critical in

determining the whole objects which will be necessary later for tracking

and behavior identification. Then minimum area filtering is done to

discard too small parts. After these standard post-processing

operations, an updated foreground image is obtained by union of

interiors of the contours of foreground regions.

P. KaewTraKulPong and R. Bowden [8] have improved the original

method of Grimson et al. [7]. The presented system in this thesis uses

this improved algorithm for background modeling. The original method

has the problem of slow learning at the beginning. By modifying the

update equations, they obtained a faster and a more accurate

adaptation to changing environments. For example, if a foreground

object is visible at the instance of initialization, there will be a Gaussian

distribution with unity weight to represent the object. After the object

moves and the background color is visible in the scene, it takes log(1-a)T

frames for the background color to be identified as a background color

for the model and log(1-a)0.5 frames for it to be the dominant color for

the model even if the same background color is visible in all period. In

addition, ρ is too small and results in too slow adaptations in mean and

covariance matrices parameters which cause problems in proper

operation in time. Cutting out the likelihood term from ρ is a solution

for this problem. P. KaewTraKulPong and R. Bowden [8] start

estimation of the Gaussian mixture model by expected sufficient

statistics update equations and then use L-recent window version after

the first L samples are processed. At the beginning, the expected

sufficient statistics update equations estimate accurately till all L

samples are obtained. Then L-recent window update equations give

priority over recent data so that the changes in the scene can be

handled. The update equations for online expectation maximization

algorithms by expected sufficient statistics and for the L-recent window

are shown respectively as follows:

21

Sufficient Statistics:

)ˆ)|((
1

1
ˆˆ

1

1 N

kNk

N

k

N

k
wxwp

N
ww −

+
+= +

∧
+ (2.23)

)ˆ(

)|(

)|(
ˆˆ

1
1

1

11 N

kN
N

i ik

NkN

k

N

k
x

xwp

xwp
µµµ −+= +

+

=

∧
+

∧

+

∑
 (2.24)

 ()N

k

TN

kN

N

kN
N

i ik

NkN

k

N

k
xx

xwp

xwp
Σ−−−+Σ=Σ ++

+

=

∧
+

∧

+

∑
ˆ)ˆ)(ˆ(

)|(

)|(ˆˆ
11

1

1

11 µµ (2.25)

L-recent Window:

)ˆ)|((
1

ˆˆ
1

1 N

kNk

N

k

N

k
wxwp

L
ww −+= +

∧
+ (2.26)














−+=

+
++

∧

+ N

kN

k

NNkN

k

N

k
w

xxwp

L
µµµ ˆ

ˆ

)|(1
ˆˆ

1

111 (2.27)














Σ−

−−
+Σ=Σ

+
+++

∧

+ N

kN

k

TN

kN

N

kNNkN

k

N

k
w

xxxwp

L
ˆ

ˆ

)ˆ)(ˆ)(|(1ˆˆ
1

1111 µµ
 (2.28)

In summary, Mixture of Gaussians background model is superior to

other background models for its efficiency and analytical form. This

method can handle the scenes with lighting changes by adapting the

parameters of the Gaussians and also the multi-modal scenes caused

by shadows, moving branches, monitors, and other troublesome

features. The method has advantages such as quick recovering when

background reappears and an automatic pixel-wise threshold. These

factors make this popular and effective method an essential part of our

system. A drawback of this method is the assumption of independence

of the neighboring pixels and reliance on only the difference between

current pixel value and its past values. With the increasing processing

22

power of systems this method will be run with a better performance

using larger images and larger number of Gaussian distributions in the

mixture. Using a full covariance matrix will also raise the performance.

Adding prediction to each Gaussian in the mixture may also result in

better adaptation for this method.

2.1.4 Eigen-Backgrounds Method

As described in the previous sections, most of the background modeling

methods identify moving objects by comparing the captured images

with an obtained reference frame that represents the static structure of

the scene. The reference frame continuously adapts to the various

lighting conditions in order to detect the moving objects effectively. The

popular method of Mixture of Gaussians builds and updates a

multimodal representation of the background for each pixel. However it

fails to take into account the substantial degree of correlation between

neighboring pixels.

In the method of Oliver and Pentland [9], an eigenspace that models

the background scene is built adaptively. The eigenspace model

describes the change of pixel values in the scene due to variations in

lightning. The eigenspace model is built by collecting a training set of N

sample images { Ii for i=1,…,N }, computing the mean background

image µ by simply averaging or adaptively and the covariance matrix

Cb. The covariance matrix Cb can be diagonalized by eigenvalue

decomposition:

 T

bbbb
CL φφ= (2.29)

where Фb is the eigenvector matrix of the covariance and Lb is the

diagonal eigenvalue matrix. By Principal Component Analysis the

dimensionality of the space is reduced by keeping the M eigenvectors

23

(eigen-backgrounds) with the M largest eigenvalues to obtain ФM

matrix.

After the eigen-background images are obtained and stored in the

matrix ФM and the mean background image µ is found, each input

image Ii is projected in the subspace spanned by the eigen-background

images as:

iMi

XB φ= (2.30)

where Xi = Ii − µ is the mean normalized image vector.

Since the subspace only represents the static parts of the scene, by

comparing the input image and the projected image and by

thresholding the difference between them, the foreground objects that

are visible in the scene are identified:

 ThrBID iii >−= (2.31)

where Di denotes the difference and Thr denotes the threshold.

Under the assumption that the moving objects are not visible in the

same location of the scene in N observations and they are relatively

small, they will not contribute significantly to the model. The static

parts of the scene which are generally the background elements are

described efficiently as a combination of eigenbasis vectors by the

eigenspace model whereas the parts with moving objects cannot be

effectively described by the model. Thus, the eigenspace can robustly

model the probability distribution function for the background scene,

but not for the parts with moving objects.

24

By adaptively performing eigen-background subtraction, changes in

illuminations can be handled effectively. This method has less

computational load than Mixture of Gaussians method. However,

Mixture of Gaussians method has superior performance with its

multimodal behavior.

J. Rymel, J. Renno et al. [10] proposed an adaptive method based on

the eigen-Background model by extending the work of Oliver and

Pentland [9]. This method continuously learns the covariation within a

sequence of captured frames by using Principal Component Analysis to

generate the eigen background. The eigen-background model is built

and adapted online evolving the parameters and dimensionality rather

than acquiring the necessary training set. As new frames are captured,

a reference frame is obtained using a subsample of the captured

frames. This is an extension to the original method of eigen-

backgrounds.

During initialization, with every captured frame the dimension of the

subspace is incremented. Incrementing the dimensionality is required

in order to have an accurate model to describe the captured frames.

This task is performed continuously until the dimension reach to a

specified optimal number since there is not enough data for the model

to be effective during initialization. Selecting a larger number results in

more robustness but requires more computations.

In Rymel et al.’s method [10] the frames are divided into grid of

neighborhoods and the statistical variations within each of them are

learned continuously in order to obtain a stochastic representation of

the background. As new frames are captured, the statistical model for

the neighborhoods is updated. Detection is achieved by thresholding

gray level differences against estimates of the gray level variance at

each pixel.

25

Since the Eigen-Background method of Rymel et al. benefits from

covariability of pixel intensities and estimates the background efficiently

with few subsamples, it has the advantages of the requirement for less

processing power and less memory during execution. This is

accomplished by online incrementation of the subspace dimension and

the adaption of subspace during eigen analysis algorithm. However, the

previously described state-of-the-art method, Mixture of Gaussians,

has the multimodal characteristic and can handle the background

scenes with various types of changes and also rapid variations of light

accurately.

2.1.5 Comparison of Background Modeling Methods

The performance evaluation of the background modeling methods is

accomplished by comparing the background estimate outputs with the

manually derived ground truth. A rectangular bounding box covering

the true foreground pixels is positioned manually. The percentages of

successfully identified foreground and background pixels are

represented by the terms detection rate and the specificity

respectively. The performance measure is obtained by multiplying

these two percentages.

There are many publicly available benchmarking data that are

disseminated for evaluation of surveillance systems. Two of them, PETS

and DIRC Datasets, which have different scene conditions, are used in

Rymel [10] et al.’s work for benchmarking the background models

described in the thesis:

26

Figure 2.2: PETS and DIRC datasets

The first dataset is PETS 2001. This dataset is created with a stationary

camera located at a high altitude point with a steep look-down angle.

In the scene there exist a few small and distant objects and a few

occlusions occur. The other data used is the in-house DIRC dataset

which also has RGB color format. There are constant variations in

illumination in time.

In Figure 2.3, which is taken by Rymel et al.’s work [10], the

performances of Pentland's Eigen-Background Model, Grimson's GMM

method and Rymel's method for a frame set of PETS dataset are

illustrated. Ignoring the parts of the plots where metric is zero which

occur when there is no object in the scene, it can be analyzed that the

Pentland's method has worse performance than the other two methods

because it cannot adapt to changes in scene. The method of Rymel and

the method of Grimson can handle changes in the scene since they

have adaptive behavior.

27

Figure 2.3: Performance results of each method [10]

A better evaluation of the performance is accomplished by using both

datasets and averaging the results. In Table 2.1, which is given in

Rymel et al.’s work [10], four previously discussed background

modeling methods are evaluated. The evaluated methods are Temporal

Averaging, Wren's Single Gaussian Distribution method [6], Grimson's

Mixture of Gaussians method [7] and Rymel's Eigen-Background

method [10].

Table 2.1: Performance of discussed background modeling methods
[10]

 Background Modeling Methods

 Dataset

 Temporal

 Smoothing

 Wren’s

 SGM

 Grimson’s

 MGM

 Rymel’s

 Eigen-BG

PETS Dataset 0.11 0.13 0.28 0.22

DIRC Dataset 0.15 0.18 0.33 0.31

28

Analyzing Figure 2.3 and Table 2.1, it is observed that the method of

Rymel and the method of Stauffer and Grimson have far more

performance than the other two methods. Rymel's method is more

efficient in memory usage; however Stauffer and Grimson's state-of-

the-art method, Mixture of Gaussians, has a better performance. This

method is the only one with the multi-modal ability within the analyzed

methods which allows it to handle many variations in the scene.

There are also some other methods of background modeling where a

statistical representation of the background is built. These models are

called non-parametric methods. These methods estimate the

probability distribution function directly from the samples without any

assumptions to any distribution such as a Gaussian distribution since

For instance, a Gaussian assumption for pixel intensity distribution may

not always hold. The non-parametric methods avoid having to use a

limited model and estimating its parameters. A popular method is non-

parametric method of background modeling by Parzen Density

Estimation [11]. In this method, a kernel estimator is used for each

pixel. The disadvantage of non-parametric methods is the high

computational load; therefore it is not practical to use them in a real-

time embedded system.

2.2 Detection Algorithm

 The mid-step between Background Modeling and Tracking tasks is the

Detection task. The presented system assumes a single object in the

scene; therefore the object is identified by foreground image directly.

Multiple object detection is a more challenging problem and it is out-of-

scope of this thesis. So we do not give a detailed survey on object

detection in this thesis.

In order to detect the moving object in the scene, the foreground scene

which is obtained by MGM method is analyzed. The proposed system

29

can detect only a single moving object. For automatically detection of

the object, the region of interest on the scene is obtained and re-

initialized when necessary during operation.

2.2.1 Finding Region of Interest

The system simply detects the foreground blob in the captured frames

and applies size filtering for the detected object. The object size should

not be very large or too small. The system continues to perform

background modeling and checks the location and size of the blob until

the object is totally visible in the field of view of camera (See Figure

2.4). Then the location of the object is selected as the region of interest

for finding the features to be tracked.

Figure 2.4: Features are not extracted until the whole object is visible

30

2.3 Object Tracking

Object tracking, which is performed after background modeling and

object detection, is one of the most critical tasks of the proposed

system in this thesis. Tracking is the process of finding the location of

an object or several objects in an image sequence over time.

A successful tracking method needs to be robust, fast and accurate

enough to handle cases in which an object is moving rapidly or even

when the capturing rate is low. The tracking algorithms generally track

a moving object in the scene by identifying the tracked object in

consecutive frames using its characteristics. There are four main

approaches for object tracking that use different characteristics of the

objects: region-based, active-contour-based, model-based and feature-

based. There can be also hybrid approaches that integrate some of

these main approaches. All of these approaches have advantages and

disadvantages when compared to each other. In this thesis, a single

object, which is identified using background and foreground

segmentation, is tracked using the feature-based approach which will

be described in detail in Section 2.3.4.

2.3.1 Region-Based Tracking

In Region-Based approach, tracking is performed according to the

variation of the image regions corresponding to moving objects in the

scene. The regions or blobs (binary large object) are formed by

connecting group of pixels as the background is modeled and the

foreground pixels are identified. Then the regions are detected in

following captured frames.

Region-Based approach has problems with handling scenes with

occlusions, the intersecting objects in the scene are grouped as a large

31

blob in foreground scene. Therefore, this approach cannot handle

complex and crowded scenes.

In order to perform tracking of people accurately in case of occlusions,

McKenna [12] used an adaptive background subtraction method and

three levels of abstraction to identify regions, people and groups during

tracking. They identified a person with multiple blobs taking into

account the geometrical structure of the human body. A group of

people is identified by observing many individual persons together. In

this method the blobs can merge and split.

Sindhu and T. Morris [13] used a region based method that tracks

objects well in case of occlusions and low resolution, noisy scenes.

Zhao et al. [14], taking into account the similarity of the appearance of

people in successive frames, stated that appearance information is

more robust than model information. Therefore, by grouping body parts

and building an appearance model for the body parts, they analyzed

the similarity of these parts in captured frames. In addition, they

performed head detection for all captured frames and torso detection

when head detection failed to accurately analyze the scene. By using

many distinctive characteristics and adaptively weighting them they

obtained a reliable system. As they use multiple characteristics of the

person, model and track them separately, their method can handle

scenes with occlusions by tracking more significant characteristics.

Furthermore, the motion of a certain body part is more stable when

compared with whole body of a person.

In the literature there are also many methods of Region-Based tracking

that use Kalman filtering [15], [16], [17], [18].

32

Region Based Tracking has the disadvantage of computational

complexity as in these methods a window is matched with all candidate

windows in captured frames. The other problem is that the intersecting

objects in the scene are grouped as a large blob in the foreground in

scenes with occlusions. It cannot reliably handle occlusion between

objects [19]. Therefore this approach cannot handle complex and

crowded scenes [20]. Furthermore, since these algorithms generally

deal with identifying and tracking people, this approach is not suitable

for the system proposed in this thesis. It needs to track both people

and objects. In addition, these algorithms run on scenes with stationary

camera which will require camera compensation, an extra task for the

system.

2.3.2 Active-Contour-Based Tracking

In Active-Contour-Based approach, the dual of Region-Based approach,

the outlines of objects, the bounding contours, are used for identifying

and tracking the objects. The bounding contours are updated

dynamically as new frames are captured [21], [22], [23], [24], [25]. In

these methods the aim is to extract the shapes of objects and to

describe the objects more simply and more efficiently than the region-

based methods.

Sun and Haynor et al. [26] proposed an algorithm to automatically

detect the deformations on an object and to adjust the object contour

to match the real object boundary without breaking the object into

several pieces while tracking.

The objects are identified and tracked using VSnakes algorithm in [27].

Rather than using the energy of the contour, a differential active

contour energy that reflects the succeeding contour configurations is

used. In [28] motion information is used in order to remove

background clutter by the proposed tracking system which is based on

33

active contours. After finding an approximation for the position of the

tracked object, the active contour position is found by minimizing the

energy function according to the predicted position of the object and

the edge map near the predicted object contour. In [29] a deformable

model that combines point tracking and edge tracking information is

described.

Active-contour based tracking describe the objects more simply, more

efficiently and with lower computational complexity than the region-

based tracking [25]. On the other hand, this approach is very sensitive

to initialization of tracking which makes it difficult to automatically start

tracking. Furthermore, the inability to identify and track partially

occluded objects remains also in this approach as in the Region-based

approach. The tracking could be done even in case of partial occlusion

if a separate contour could be initialized for each object. Another

disadvantage of this approach is that the tracking precision is limited at

the contour level [20].

2.3.3 Model-Based Tracking

In Model-based approach, 2D or 3D projected object models are

developed offline using prior knowledge of the object, usually with

computer vision techniques or manual measurement. Afterwards the

object is tracked by matching these projected object models to the

image data [25]. This property allows the recovering of trajectories and

models with high accuracy for a small number of objects, and even to

address the problem of partial occlusion. Model-based algorithm

performs well under occlusion but has a drawback of high

computational cost.

Model-based approach is also used for human body tracking which is

known as analysis by synthesis. Algorithm is used in a predict-match-

update style. As in the object tracking, pose of the model for the next

34

frame is predicted according to prior knowledge and tracking history.

Then the human body is tracked by matching the projected object to

the image data. The difference for the human-body tracking is the

knowledge of the general body model and the motion constraints of the

human.

A sub approach for this algorithm is looking for an object in a frame

which conforms to some sort a model of what is to be tracked. This

method can be efficient depending on the complexity of the model to

be tracked and how easily it is to search for this model in the frame.

This approach is also efficient in cluttered scenes where isolating

individual objects can be difficult. An example of this is in the system

developed by Tweed and Calway [30] for tracking birds flying in large

flocks. Another disadvantage of this approach is that it can track only a

predetermined class of object.

2.3.4 Feature-Based Tracking

Among the many discussed approaches for tracking in video, the

Feature-Based approach is the main one to be robust to partial

occlusions. In this approach, the objects are tracked by extracting their

features such as intensity, color, edges or corners and by finding the

correspondence between these features in successive frames rather

than tracking the objects as whole.

In the literature, there are various feature-based algorithms proposed

which can be classified into three groups depending on the

characteristics of the used features as: global feature-based

algorithms, local feature-based algorithms and dependence-graph-

based algorithms.

Global feature-based algorithms use features such as areas, centroids,

perimeters or colors. Polana and Nelson [31] used centroids as the

35

features. The system they proposed tracks a person by following the

centroid of the moving pixels. The tracking algorithm smoothly tracks

the person even in case of occlusions.

In local feature-based algorithms, features such as segments, curve

segments, and corners are used. In Beymer et al.’s work [32]; the

most salient features are selected depending on the nature of the scene

in order to have good performance in many conditions.

Dependence-graph-based algorithms use variety of distances and

geometric relations between features. In Fan and Medioni et al.’s work

[33], objects are described in terms of their surfaces. The surface of an

object is described by segmenting it into surface patches and the

complete description consists of the description of each patch

separately, and their interrelationships. Dependence graph-based

algorithms are not suitable for use in real-time tracking because

searching and matching of graphs involves too many computations and

consumes too much time.

Algorithms that belong to these three groups can also be combined.

Jang et al. [34] dynamically built an active template that characterizes

regional and structural features of an object depending on color, edge,

shape, and texture information. The tracking of the moving object is

accomplished by using motion estimation or Kalman filtering in order to

minimize an energy function during feature matching.

Feature-based algorithms are generally fast enough which makes them

suitable for real-time tracking and tracking of multiple objects. A

distinct advantage of feature-based tracking algorithms is the

robustness to partial occlusions. The partial occlusion can be handled

by some methods such as using local features or by analyzing motion

of object, etc. In case of partial occlusion, some of the features of the

36

moving object remain visible, so it may be tracked by selecting the

most salient features according to the scene parameters. This approach

can be used in many illumination and scene conditions. However, these

algorithms are sensitive to image variations and they cannot recover

3D pose of objects.

One of the most developed algorithms of Feature-based tracking

approach is the Kanade-Lucas-Tomasi (KLT) Feature Tracker. Lucas

and Kanade [35] proposed a method for image registration which uses

special intensity gradients of images to perform matching for use in

stereo vision systems. Then, based on [35], Tomasi and Kanade [36]

presented a feature tracker using sum of squared intensity differences

over the windows.

The proposed system in this thesis uses Pyramidal Implementation of

the Lucas Kanade Feature Tracker [37] as the tracking algorithm for

features which are actually the corners (Feature selection is described

in detail in Section 2.3.6). It is a very popular, robust, and fast

algorithm making it a proper choice for use in real-time applications or

on an embedded system. This algorithm can find the correspondences

of features in sub-pixel accuracy. The pyramidal structure, making

calculations in different resolutions, enables handling of large pixel

motion. This algorithm has adequate performance of tracking objects in

a scene with moving camera. The details of the algorithm are described

in Section 2.3.5.

2.3.5 Pyramidal Lucas Kanade Feature Tracker

Lucas Kanade Feature Tracker is used in feature tracking and is based

on optical flow algorithm. The goal of this tracking algorithm is to find

the location of a pixel on the latter frame, while knowing the

coordinates of the same pixel on the initial frame.

37

In this approach, the object is assumed to move within a limited range

between the frames, so rapid motions are hard to track. Let I and J be

successive frames, u=(ux, uy) be the image point on the first frame,

d=(dx, dy) be the displacement vector of the point to be tracked, and

image neighborhood size be)12(+
x

w pixels horizontally and)12(+yw

pixels vertically. Then the image velocity d as being the vector that

minimizes the residual function epsilon is defined as follows:

 ∑ ∑
+

−=

+

−=

++−==
xx

xx

yy

yy

wu

wux

wu

wuy

yxyx dydxJyxIddd 2)),(),((),()(εε (2.32)

xw and yw numbers are assumed to be integers up to 7, so the

maximum displacement is assumed to be 15 pixels. However, the

pyramidal approach handles more displacements that can be caused by

rapid movements. The pyramids are formed by filtering and sub-

sampling the images in a recursive manner starting from the 0th level,

which is the original level, to the coarsest level. Then, the displacement

vectors are found iteratively in upward from the coarsest level to the

original level. At each level, displacement vector is calculated by

maximizing a correlation measure over a small window. The pixels at

the image borders are handled by mirroring and using replicas of the

rows and columns of the images instead of the out-of-border parts

which are not defined.

2.3.5.1 Pyramidal Feature Tracking

For L = 0, …., mL define []L

y

L

x

L uuu = , the corresponding coordinates

of the point u on the pyramidal images L
I . Then Lu is computed from

as:

L

L u
u

2
= (2.33)

38

At each resolution level, past results are used as initial guesses. Let the

initial guess be []TL

y

L

x

L
ggg = . Then, in order to compute the optical

flow at level L, it is necessary to find the residual pixel displacement

vector Ld that minimizes the new image matching error function Lε

as:

 (2.34)

Observe that the search window has a constant size at each level.

Since the initial guess vector Lg is used to pre-translate the image

patch, the residual flow vector Ld comes out to be small and easy to

be computed through a standard Lucas Kanade step. After Ld is

calculated, the result is propagated to the next level L-1 by passing the

new initial guess 1−Lg :

)(21 LLL dgg +=− (2.35)

The next level optical flow residual vector 1−Ld is computed in the same

way. This procedure goes on until the highest resolution is reached. At

first the initial guess for level Lm is zero since no initial guess is

available at the deepest level of the pyramid:

 []TLmg 00= (2.36)

Solution vector d is found after the final optical flow calculation:

 00 dgd += (2.37)

or d can be expressed as the sum of the residual optical vectors Ld :

2
)),(),((),()(

L

y

L

y

L

x

L

x

LL

wu

wuy

wu

wux

L

y

L

x

LLL
dgydgxJyxIddd

y
L
y

y
L
y

x
L
x

x
L
x

++++−== ∑∑
+

−=

+

−=

εε

39

 ∑
=

=
mL

L

LL
dd

0

2 (2.38)

2.3.5.2 Tracking features close to the boundary of the images

Points that are close to the boundaries of the frame need to be

processed since some part of their integration window lies outside of

the frame. For an integration window having size)12(+
x

w x)12(+yw ,

forbidden band of width
x

w and yw occurs around the image. In the

pyramidal implementation, this corresponds to an effective forbidden

band having width
x

Lmw2 and height yLmw2 . The size of this forbidden

band has significant for large values of Lm. For example, for Lm=3,

width value becomes 8wx. Notice that x
w takes integer values up to 7,

which makes the size of the forbidden band 56 pixels around the

image. This problem can be solved by calculating the summations in

the equations only for the valid portion of the image neighborhood

which are within the frame, i.e. for valid entries of),(),,(yxIyxI yx and

),(yxI
k

δ .

2.3.5.3 Declaring a Feature as Lost

There are two cases in the algorithm that declare a feature as lost:

1. A feature is declared as lost when the feature point falls out of image

boundaries. If the point []Tyx ppp = (the center of the neighborhood)

falls outside of the image L
I , or if its corresponding tracked point

[]11 −− ++++ k

y

L

yy

k

x

L

xx vgpvgp falls outside of the image LJ , it is

reasonable to declare the point as lost, and not to continue to track it.

2. A feature is declared as lost when the image patch around the

feature point varies too much between the successive frames I and J.

This condition usually occurs due to occlusion.

40

2.3.6 Extracting and Handling Features

After the region of interest is defined, the features on this region are

extracted for use in tracking. Harris corner detector is used in the

proposed system. Using Harris detector ensures that the spatial

gradient matrix, which is used in Lucas Kanade Tracker

Implementation, has two eigenvalues and therefore it is invertible. This

is one of the reasons for using Harris corner detector. Minimum

eigenvalue method can also be used. In this method, a pixel is selected

if eigenvalues of spatial gradient matrix are larger than a threshold. As

even the smaller eigenvalue is larger than a threshold, the spatial

gradient matrix is also well conditioned.

Harris corner detector is a popular detector which is resistant to

rotation, illumination changes and noise [38]. However it is not

resistant to scaling, since a corner may be observed as an edge when

magnified or a smooth edge can be identified as a corner when it is

seen in a smaller scale. When zooming is performed in order to keep

the object size same on the video frames as it moves, the scaling effect

will be less significant.

Around a corner, there is a large intensity change in all directions. The

local autocorrelation function of the signal, which is given by Equation

2.39, is used for measuring the local intensity changes in different

directions.












=

∑∑
∑∑

R yRR yxR

R yxRR xR

IwIIw

IIwIw
yxC

2

2

),((2.39)

Ix and Iy are the partial derivatives of the image and (x, y) are the

points in a Gaussian window wR centered on (x, y) in the region R. The

eigenvalue of the autocorrelation function on the direction of intensity

41

change is large. Therefore, for a corner both eigenvalues are large. A

corner response function is defined by:

 2

2121)(λλλλ +−= kM (2.40)

where λ1 and λ2 are eigenvalues of autocorrelation function and k is a

constant that can be used to vary the number of detected corners. The

result of this function is large for a corner, negative for an edge and

small for a flat region. Using a threshold the local maximas of this

function is used to identify the corners. Finally, the corners which are

located very close to some other stronger corners are discarded.

Figure 2.5: Harris Corner Detector

After the strong features are identified on the region of interest, they

are tested for consistency by the system. In addition to the analysis of

features by Lucas Kanade algorithm, with every captured frame, the

motions of features are analyzed for consistency. The motion of each

feature is compared with the motion of mean location of the features. If

the displacements of a feature and the mean of features are not in the

same direction and if there is a large difference between them, the

feature is eliminated. During tracking as the number of valid features

becomes less than a specified number, the system stops the movement

42

of the camera, re-initializes the background model, finds the

foreground object, finds the new features and continues tracking.

Frame difference is used for the re-initialization purpose during tracking

since it is fast and simple whereas updating the Gaussian model is not

practical while the object is moving in the scene and the system can

miss the moving object while waiting for the background model to be

re-initialized. By using re-initialization, the tracking operation can

continue for larger time periods. Another advantage of handling

features is that at the first initialization of features, some of them may

be located in the background. With this operation, those features that

are on the background are also discarded. Another modification on

features is that the features which are located far away from the mean

location of the pixels are discarded and not used in tracking. The last

modification is that if the number of features reduces so rapidly to zero

which can occur when the object is totally occluded or when the object

leaves the field of view, the tracking operation is stopped. These

modifications lead to more stable tracking.

43

CHAPTER 3

HARDWARE OF THE SYSTEM

 The hardware of the system proposed in this thesis consists of a digital

image/video processing board, Texas Instruments DM642 Evaluation

Module (EVM) and an analog pan-tilt-zoom camera. In this application,

the digital video processing board accomplishes a video loopback and

analysis task. It acquires the analog video which is captured by the

analog camera, processes it, and outputs the modified video to the

monitor. In order to track the moving object in a wide operation range,

the board controls the pan, tilt and zoom properties of the camera. The

control commands are sent by the serial port. There are many camera

control protocols which are dependent on the model of the camera

being used. These protocols provide a two-way communication

between the processing unit and the connected cameras.

Figure 3.1: Texas Instruments DM642 Evaluation Module

44

The main processing unit of the system is Texas Instruments DM642

EVM which is a low-cost, high performance video imaging development

platform designed to jump-start application development and

evaluation of multi-format digital applications.

The other important unit of the system is the pan-tilt-zoom camera

which is used to capture composite video and track the detected

objects as well. The main features and functions of the video

processing board and the camera are explained in detail in Sections 3.1

and 3.2 respectively.

3.1 Overview of TI DM642 Evaluation Module

The most important part of DM642 EVM is the TMS320DM642 digital

signal processor (DSP). Digital signal processors have an important role

in a wide range of video and imaging applications such as computer

vision, medical imaging, security, digital cameras, and a large number

of consumer applications driven by digital video processing. The

importance of multimedia technology applications is recognized by

microprocessor designers. As a result of this fact, the number of

special-purpose multimedia processors is becoming more popular.

Multimedia applications can be generally characterized by requirements

for processing flexibility, complicated algorithms and high data rates for

both input and output. Very Long Instruction Word (VLIW) architecture

is one of the processor architectures to overcome these difficult

requirements of multimedia applications. VLIW processors can exploit

instruction level parallelism (ILP) in programs [39]. TMS320DM642 is

one of the devices that is based on VLIW architecture and seems to be

a good choice for real-time applications.

DM642 DSP is based on the C64x CPU, which is part of the C6000 DSP

family of TI. The DM642 integrates a number of peripherals to address

45

the development of video and imaging applications, including three

configurable video ports capable of glueless video input, video output,

or transport stream input. These video ports can support BT.656 video

I/O, HDTV Y/C I/O at up to 10-bits per component [40]. The details of

the architecture of DM642 are given in the following sections [41].

DM642 core is based on the key features such as VLIW architecture, 2-

level memory/cache hierarchy, and EDMA engine that are very

important for computationally intensive video and image applications.

Figure 3.2 shows the block diagram of the processor.

Figure 3.2: DM642 DSP Block Diagram [41]

46

On DM642 devices, the CPU interfaces directly to dedicated level-one

program (L1P) and data (L1D) caches of 16Kbytes each. These caches

operate at the full speed of CPU access. A second level unified L2

program/data memory provides flexible storage. One configuration for

L2 is entirely mapped SRAM. The other configurations have both SRAM

and a 4-way set associative cache of various sizes. Mapped SRAM can

be used for streaming video data and critical sections of code such as

interrupt service routines. Cache is useful for most of the program and

data structures. Figure 3.3 shows L1 cache for DM642 and Figure 3.4

shows the partitioning of 256Kbytes of internal memory into L2

cache/ram in different configurations.

Figure 3.3: DM642 L1 Cache [41].

Figure 3.4: Partitioning internal memory into L2 cache/ram

The C64xx family of DSPs has a large byte addressable address space.

Program code and data can be placed anywhere in the unified address

47

space. Addresses are always 32-bits wide. Portions of internal memory

can be remapped in software as L2 cache rather than fixed RAM.

There are two methods for transferring data from one part of the

memory to another: using CPU and using DMA.

If a DMA is used then the CPU only needs to configure the DMA. While

the transfer is taking place, the CPU is free to perform other

operations. The EDMA controller handles all data transfers between the

level-two (L2) cache/memory controller and the device peripherals on

the DM642 DSP. These data transfers include cache servicing, user-

programmed data transfers, and host accesses. The EDMA provides the

ability to transfer data with zero overhead. It is clear that the EDMA

and CPU operations can be independent. However, if the CPU and

EDMA both try to access the same memory location, arbitration will be

performed by the program memory controller. This should also be

taken into account that the following conditions may limit the

performance:

1. EDMA stalls when there are multiple transfer requests on the same

priority level.

2. EDMA accesses to L2 SRAM with lower priority than the CPU.

DM642 DSP is based on the C64x CPU which includes special

instructions to increase the performance of video and imaging

processing. With these properties DM642 meets the needs of video and

imaging application development. Also, the RISC-like instruction set

and extensive use of pipelining in C64x allow many instructions to be

scheduled and executed in parallel. A high performance two-level cache

design allows the CPU to operate at the maximum rate and the

existence of EDMA provides us to transfer data with zero overhead.

48

The video port peripheral of DM642 can operate as a video capture

port, video display port, or transport stream interface (TSI) capture

port. The EVM captures both composite and S-video signals and can

display composite, S-video, and RGB signals. In this thesis work, the

captured and displayed signals are both composite.

Figure 3.5: Video Port Block Diagram

49

DM642 EVM has two multichannel buffered serial ports (McBSPs)

interface to a variety of standards. McBSPs are synchronous serial

ports. These multi-channel ports in combination with the flexible

asynchronous interface provide a glueless connection to a variety of

products such as the PTZ camera used in this thesis.

Furthermore, DM642 EVM has 32 MB SDRAM external memory, LEDs,

GPIOs, PCI, JTAG, audio, ethernet and daughter card interfaces, which

can be used in a variety of applications.

3.2 Pan-Tilt-Zoom Camera

In the proposed system, the composite video capturing is performed by

using an analog camera. The camera, with integrated pan-tilt-zoom

capabilities, can track an object in a wider range which is desired for

our purpose. The model used in this work is Sony’s EVI-D100/P which

is a CCD camera combined with a high-speed and quiet pan-tilt. The

range of pan and tilt functions are ±100 degrees and ±25 degrees

respectively.

Figure 3.6: Sony EVI-D100P Video Camera

The camera has also features such as auto focus, auto white balance,

and automatic exposure to provide fast and stable operation and serial

control interface and remote commander to enable camera control.

50

VISCA is the protocol that is supported by the camera. VISCA provides

a two-way communication which enables the EVM to send commands,

receive inquiries and get responses about the status of the actions of

camera. The interface to the protocol is RS232C with 9600 bps, 8 bits

data, 1 start bit, 1 stop bit and non parity. A VISCA command data

packet consists of a 1-byte header, maximum 14 bytes of data and a

terminator byte of 0xFF. Each command data packet has a

corresponding response data packet.

Figure 3.7: VISCA Packet Structure

Implementing this communication protocol allows the control of many

features of the camera including pan-tilt-zoom functions. There are

many camera control protocols that are dependent on the model used.

PELCO-D is the most popular camera protocol which is used by many

manufacturers. A packet of this protocol contains 7 bytes with the

given format [44]:

51

Table 3.1: PELCO Packet Structure

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Sync

Byte

Camera

Address

Command

1

Command

2

Data

1

Data

2

Checksum

 Byte

There are also many other protocols which are not as popular as

PELCO-D. They are mostly developed by the manufacturers (only such

as Canon Samsung, LG, Bosch, Honeywell, etc) for use in their

products and some of these protocols are not publicly available.

52

CHAPTER 4

SYSTEM IMPLEMENTATION

The hardware used for the implementation of the proposed system and

the details of the generated software is presented in this chapter.

4.1 Hardware Setup

The final presented system mainly consists of DM642 EVM and the

analog pan-tilt-zoom camera. However, there are other devices that

are also used for debugging and development tasks. All devices that

are used together and their connections are described in this section.

The whole system for the development includes: DM642 EVM, the PTZ

camera, XDS560 emulator of Texas Instruments, PC with TI Code

Composer Studio (CCS) and a PAL monitor or TV.

Figure 4.1: Used Hardware for Debugging and Development

53

Texas Instruments XDS560 is the emulator that is used for debugging

tasks while developing the presented system. XDS560 is a PCI-based

emulator which is designed to operate as a universal card in a PCI

expansion slot of the host PC. The XDS560 supports the full range of

standard emulation and debugging capabilities, such as software and

real-time hardware breakpoint, single-step execution, loading,

inspecting and modification of all registers and memory and

benchmarking of execution time of clock cycles [42]. These features

are provided with Texas Instruments' Code Composer Studio (CCS)

software which is installed in the PC. This software allows compiling,

loading, debugging and executing the written codes on the EVM. It also

offers the ability to have plug-in applications that both control and

visualize emulation data coming from the target device via the XDS560

emulator [43]. XDS560 on the host PC communicates through the JTAG

interface to the target DSP, DM642, with its embedded emulation

components.

For observing the processed video signal, a PAL monitor is used in the

setup. The composite video output of DM642 EVM is used for

transmitting the video signal to the monitor or TV.

DM642 EVM and the analog pan-tilt-zoom camera have two

connections. The first one is the transmission of PAL video signal to

composite video input of EVM642. The second connection is the serial

communication of the camera and the McBSP of EVM for camera control

by using VISCA protocol (Section 3.2).

The hardware used in the thesis was tested with many tools. The

VISCA-RS232C connection was tested and verified with a serial port

monitoring software. The JTAG and PCI connections were tested using

diagnostic tools of Texas Instruments. Finally, after all devices are

54

connected, all hardware peripherals were tested and verified by

preparing test codes.

4.2 Software Development

Up to this section, the methods of background modeling, feature

extraction and tracking and hardware components of the system are

introduced. In this section, the architecture of software of the

presented system and the implementation details are described.

The software development part consists of two phases. The first phase

is to write the code in C++ programming language on PC in Microsoft

Visual Studio Environment and test the algorithms and whole code. In

the second phase, the written code is ported to embedded platform of

DM642, which is the DSP of the system, using Code Composer Studio

(CCS) Integrated Development Environment (IDE). The second phase

requires some extra coding and work for initializing the DM642 board,

creating tasks and communication between tasks, setting up video

encoder and video decoder for video capture and display, and serial

port for camera control and finally setting up user interface. There are

also difficulties such as: many libraries or functions are not available in

embedded platform, the memory sources are limited and debugging is

more time consuming.

As previously described in Section 4.1, at the hardware level the

emulator XDS560 located in host PC communicates with the DM642

EVM through JTAG port. Similarly, at the software level the software

CCS which is installed in host PC communicates with DSP/BIOS

operating system on the target board. DSP/BIOS system handles the

algorithms, tasks and drivers which are executed on the board. In the

presented system, the code developed in Windows environment is built

on DSP/BIOS by generating threads and ordering them properly. There

are five tasks on DSP/BIOS for this system: tsk_idle, tskCapture,

55

tskControl, tskProcess and tskDisplay. These tasks can communicate

with each other using SCOM module of CCS. This module organizes the

execution of tasks in a proper order.

tsk_idle is the default task of the processor. Therefore, it is not an

executed task.

tskCapture is the task for capturing video signal from the video

decoder. In this task, the decoder is configured for capturing composite

(PAL) video signal, a capture channel and the SCOM links for receiving

and sending are created and allocations are done during initialization.

After initialization, the task continuously checks the message from

other tasks and when it receives the message, it sends the captured

frame to the SCOM queue for processing by EDMA and receives an

empty buffer for use in the next loop.

tskControl is the task that is used for user control. The task

continuously checks for user commands. Code Composer Studio allows

adding menu items and creating user interface to set some parameters

of the DSP and to control the code. This can be done by creating

General Extension Language (GEL) files. The operation mode of the

system is selected by the prepared GEL file.

tskProcess is the most important task of the code since the algorithms

are executed within this task. In the initialization part of this task, all

variables and buffers that are used in the algorithms are allocated. The

peripherals and the McBSP are initialized by Chip Support Library (CSL)

of CCS for DM642. CSL provides a C-language interface for configuring

and controlling on-chip peripherals. The camera is initialized and

connected by commands of VISCA protocol.

56

Figure 4.2: Block Diagram of tskProcess

This task at each loop, gets an input buffer from the capture task,

processes it and sends back to the display task after processing. The

processing function uses down-sampled images since the memory for

the embedded system is limited. The EVM has only 32 MB of RAM. In

addition, for faster operation YUV color format, which is the default

color format of video peripherals, is used. These color components are

less correlated than RGB and thus the assumptions of independence in

MGM are also valid in the model.

The processing function initiates the MGM method which is explained in

Section 2.1.3 when the camera is stationary. The model is updated

with each received frame. At a glance, the algorithm is mainly in the

form:

Figure 4.3: Main Parts of MGM algorithm

57

The parameter K, which is the number of Gaussians, is chosen as 2

depending on the available memory of the EVM. Again, as new frames

are received, the foreground scene is identified as described in Section

2.2.1. When a desired foreground object is detected on the scene, the

features on the object are extracted as told in Section 2.3.6. Then, the

tracker which is given in 2.3.5 starts to operate. For any feature of the

object on the first frame, which is denoted by u, the Pyramidal LK

tracking algorithm estimates the corresponding location v on the next

frame J. The implementation is as follows:

Build pyramid representations of I and J:

mLL

LI ,...,0}{ = and mLL

LJ ,...,0}{ = (4.1)

Initialization of pyramidal guess:

[] []TL

x

L

x

L mmm ggg 00== (4.2)

for L = Lm down to 0 with step of -1

 Location of point u on image L
I :

[]
Lyx

L u
ppu

2
== (4.3)

 Derivative of L
I with respect to x:

2

),1(),1(
),(

yxIyxI
yxI

LL

x

−−+
= (4.4)

 Derivative of L
I with respect to y:

2

)1,()1,(
),(

−−+
=

yxIyxI
yxI

LL

y (4.5)

 Spatial gradient matrix:












= ∑∑

+

−=

+

−=),(),(),(

),(),(),(
2

2

yxIyxIyxI

yxIyxIyxI
G

yyx

yxx

wp

wpy

wp

wpx

yy

yy

xx

xx

 (4.6)

 Initialization of iterative L-K:

[]Tv 00
0

= (4.7)

58

 for k = 1 to K with step of 1 (or until kn < accuracy threshold)

 Image difference:

),(),(),(11 −− ++++−= k

y

L

y

k

x

L

x

LL

k vgyvgxJyxIyxIδ (4.8)

 Image mismatch vector:









= ∑∑

+

−=

+

−=),(),(

),(),(

yxIyxI

yxIyxI
b

yk

xk
wp

wpy

wp

wpx

k

yy

yy

xx

xx
δ

δ
 (4.9)

 Optical flow (Lucas-Kanade):

k

k

bG −−
=

1η (4.10)

 Guess for next iteration:

kkk

vv η+=
−1

 (4.11)

 end of for-loop on k

 Final optical flow at level L:

KL
vd = (4.12)

 Guess for next level L-1:

[])(2111 LLL

y

L

x

L dgggg +== −−− (4.13)

end of for-loop on L

Final optical flow vector:

00 dgd += (4.14)

Location of point on J:

duv += (4.15)

As the next step, the system sends control commands to the camera

for panning, tilting and zooming operations. The aim is to have the

position of the mean of features of the moving object in the center part

of the video and not to miss it. The panning and tilting speeds of the

camera are set by using a linear equation depending on the location of

the mean of the features with respect to the center of the field of view.

The camera moves faster when the object is far away from the center

and it moves slower when the object is closer to the center of field of

59

view. The panning and tilting speeds are calculated independently

according to the horizontal and vertical spatial distances. If the mean of

features is within a limited distance to the center of field of view, the

camera stops. The zooming action is also independent of pan and tilt

actions. The maximal distances between the features on the object are

calculated. Whenever the object moves away from the camera, this

distance decreases and the system sends zoom-in commands to the

camera. On the contrary, when the object comes closer to the camera,

the distance increases and the system sends zoom-out commands to

the camera. As a result, the object can be seen easily on the monitor

with a rectangle around it and the user will be warned about that

object. Then, the system goes to initial state for further observations in

the scene. Since the system operates in many conditions, sometimes

there exist errors in the operation, however by some operations such

as thresholding the size of an object or setting a limit for the size of an

object, these errors are reduced.

The presented system initiates and continuously updates the MGM

background model when the camera is stationary before tracking

starts. During tracking, the camera moves and background modeling is

not performed since a faster operation is desired and the model will

have many errors with a moving camera. For re-initialization of the

foreground regions and the ROI during tracking, the camera stops at an

instance and frame difference is applied in order to have a fast

response to the moving object as using frame difference is simple and

fast. Then tracking is performed until the next re-initialization.

60

Figure 4.4: Flow Diagram of main body of the code

61

tskDisplay is responsible for PAL video output. The display channel and

video encoder are controlled by this task. The task initializes by setting

the video output parameters, allocating variables and buffers, and

creating SCOM links for sending and receiving. After initialization, the

task continuously checks for processed buffers. When a processed

buffer is ready, it is copied to the display buffer by using EDMA and

sent to the display channel.

4.3 Testing and Verification

While embedding the code written in C++ programming language to

DM642 EVM platform, there exist many challenges. At first, the code

needs to be error-free, especially without memory leakage, in order to

be run on the real-time system for a long time. Some parts of the code

cannot be directly ported to DSP platform since CCS does not support

some libraries of Microsoft Visual C++ environment. After those parts

are re-written and the code is totally ported to the embedded platform,

it is tested by comparing the codes on both platforms. This system is

real-time; therefore real-time debugging the code is not easy.

Recorded video sequences are used as a reference for debugging. The

recorded video sequences are stored in raw data format on the host PC

and sent over JTAG connection to DM642 EVM for debugging by using

CCS. The same data can be analyzed in Microsoft Visual Studio

Environment as well for comparison. However, even with offline sample

data the debugging of the whole system is not practical as it has a

moving camera but the sample videos are relatively static. Many parts

of the code are tested with real-time operation by connecting the full

system hardware, generating a test environment and finding the

parameters by trials.

62

CHAPTER 5

PERFORMANCE EVALUATION

5.1 Design of Setup and Test Environment

For some of the applied tests, a remote controlled toy car is used in the

laboratory for simulating a real vehicle is moving in a park area. The

camera is located on the desk in a position to resemble a security

camera which is mounted on a high altitude. The scenarios are applied

easily by controlling the toy car.

For the test of real-time operation on outdoor scenes, the system is

located on two different locations to detect people or vehicles and the

natural effects that are caused by wind, trees, sun and rain, which

cause variations in illumination, are analyzed. In various conditions of

illumination level and scene, the output video sequences are stored as

they are useful for illustration.

In an indoor scene, the effect of a monitor and florescent lights are

observed to see the effect of flickering. For this test, toy car is used in

the laboratory while a monitor is visible in the scene and the florescent

lights are on.

The effects of parameters in the algorithms are also tested using the

toy car setup in the laboratory for selecting the optimal parameters in

many conditions. The frames of the recorded video sequence are used

by a test code as the captured frames in a way to have a periodic

63

motion on the scene. Then testing various parameters is accomplished

by using the same sequence for each case.

On DM642 EVM, the same algorithms are executed. However, the

performance of algorithms is not as good as it is executed on PC. The

DM642 EVM has a 720 MHz processor while the used PC has a 1.7 GHz

Pentium processor. As the algorithms are run in a single fashion and

not in parallel by the DSP, the frame rate is lower. The code on DSP

has a 6 FPS frame rate, whereas the PC with a 1.7 GHz processor can

run the code with a 12 FPS frame rate. If a dual core DSP is used

instead of DM642, the performance will be close to the performance of

the code on PC.

The screenshots and the results in various conditions are given in

Section 5.2 with their explanations.

5.2 Results in Various Conditions

In the first applied test, two video sequences that are captured in two

different illumination levels are used. The effects of critical parameters

in both cases are analyzed. The first video has a scene with high

illumination level (See Figure 5.1).

64

 (a) Frame 10 (b) Frame 70

 (c) Frame 90 (d) Frame 155

 (e) Frame 250 (f) Frame 305

Figure 5.1: The screenshots of scene at high illumination level

In Figure 5.1, the screenshots taken at some critical times of the scene

are illustrated. At Frame 10, there is no object in the scene. At Frame

70, the object starts to enter the scene. At Frame 90, the object is

65

totally in the scene. Finally at Frame 305, the object completes its

action on the scene. While testing the parameters of algorithms, a test

code is written. The code starts processing frames from the first frame

until the 90th frame. At this time, the blob is detected as the object,

and tracking starts with extracting features on the object. The video

sequence between the 90th and 305th frames is processed in a way to

have an infinite loop of images by playing forward and reverse in this

period.

Similarly, in Figure 5.2, the screenshots of the scene which are taken at

some critical times are given. There is no object in the scene in 10th

frame. In 165th frame, the object starts to enter the scene. The object

is totally in the scene at 180th frame and it moves on the scene until

the 570th frame. The same written code is applied for this case, too. At

start, the code processes frames from the 0th frame until the 180th

frame. The blob is detected as the object and the extracted features on

this blob are tracked. In order to have a periodic and long-time video

sequence, the frames between the 180th and 570th frames are used as

input for the algorithms. The algorithm continues to be executed as

long as the tracking results are accurate. By applying different

parameters of the algorithms, the best performance in both light

conditions is tried to be obtained.

66

 (a) Frame 10 (b) Frame 165

 (c) Frame 180 (d) Frame 240

 (e) Frame 360 (f) Frame 570

Figure 5.2: The screenshots of scene at low illumination level

67

Totally ten parameters of the algorithms are varied to analyze the

effect of them on the performance. These parameters are divided into

four groups according to the algorithm they belong to: MGM, Harris

Corner Detection, Pyramidal LK Tracking and Delay. The duration of

successful tracking is the measure for comparison. These results are

given in Table 5.1 and Table 5.2.

Table 5.1: Effects of Parameters on Tracking Duration in High
Illumination Level

MGM Harris Corner

Detection

Pyramidal

LK Tracking

Delay Tracking

Duration

L

1/a

K T k M min.

dist.

k win

size

pyr

level

input

rate

of

frames

200 2 0,7 6 0,01 10 0,040 10,10 3 1 3532 (17)

200 2 0,7 6 0,01 10 0,040 5,5 3 1 1949

200 2 0,7 6 0,01 10 0,040 15,15 3 1 5570

200 2 0,7 6 0,01 10 0,040 10,10 1 1 3318

200 2 0,7 6 0,01 10 0,040 10,10 5 1 4157

200 2 0,7 6 0,01 10 0,040 10,10 3 2 4032

200 2 0,7 6 0,01 10 0,040 10,10 3 3 2435

200 2 0,7 6 0,01 10 0,040 10,10 3 4 343

200 2 0,7 6 0,01 10 0,040 10,10 3 5 80

100 2 0,7 6 0,01 10 0,040 10,10 3 1 3532

500 2 0,7 6 0,01 10 0,040 10,10 3 1 3532

200 2 0,7 6 0,01 10 0,001 10,10 3 1 3591(20)

200 2 0,7 6 0,01 10 0,064 10,10 3 1 4164(16)

200 2 0,7 6 0,01 10 0.200 10,10 3 1 3686(12)

200 2 0,7 6 0,01 10 0.247 10,10 3 1 1709(10)

200 2 0,7 6 0,01 10 0.248 10,10 3 1 567(5)

200 2 0,7 6 0,01 10 0.249 10,10 3 1 213(2)

200 2 0,7 6 0.05 10 0,040 10,10 3 1 2387(12)

200 2 0,7 6 0,6 10 0,040 10,10 3 1 1955(3)

200 2 0,7 6 0,1 10 0,040 10,10 3 1 2387(10)

(): denotes number of found corners

68

Table 5.1 (Continued)

200 2 0,7 6 0.001 10 0,040 10,10 3 1 3532(25)

200 2 0,7 6 0.00001 10 0,040 10,10 3 1 3532(31)

200 2 0,7 2.5 0,01 10 0,040 10,10 3 1 0

(wrong FG)

200 2 0,7 0 0,01 10 0,040 10,10 3 1 0

(all FG)

200 2 0.95 6 0,01 10 0,040 10,10 3 1 3532

200 2 0.8 6 0,01 10 0,040 10,10 3 1 3532

200 2 0.6 6 0,01 10 0,040 10,10 3 1 3532

200 1 0,7 6 0,01 10 0,040 10,10 3 1 68

200 3 0,7 6 0,01 10 0,040 10,10 3 1 3532

200 5 0,7 6 0,01 10 0,040 10,10 3 1 3532

200 2 0,7 6 0,01 7 0,040 10,10 3 1 3439(29(

200 2 0,7 6 0,01 20 0,040 10,10 3 1 2387(7)

200 2 0,7 6 0,01 30 0,040 10,10 3 1 2010(3)

(): denotes number of found corners

Table 5.2: Effects of Parameters on Tracking Duration in Low
Illumination Level

MGM Harris Corner

Detection

Pyramidal

LK Tracking

Delay Result

L

1/a

K T k M min.

dist.

k win.

size

pyr

level

input

rate

of

frames

200 2 0,7 6 0,01 10 0,040 10,10 3 1 1556(4)

200 2 0,7 6 0,01 10 0,040 3,3 3 1 518

200 2 0,7 6 0,01 10 0,040 5,5 3 1 928

200 2 0,7 6 0,01 10 0,040 15,15 3 1 1727

200 2 0,7 6 0,01 10 0,040 20,20 3 1 2007

200 2 0,7 6 0,01 10 0,040 30,30 3 1 2628

200 2 0,7 6 0,01 10 0,040 10,10 1 1 1371

200 2 0,7 6 0,01 10 0,040 10,10 5 1 1565

200 2 0,7 6 0,01 10 0,040 10,10 3 2 769

200 2 0,7 6 0,01 10 0,040 10,10 3 3 252

(): denotes number of found corners

69

Table 5.2 (Continued)

200 2 0,7 6 0,01 10 0,040 10,10 3 4 181

200 2 0,7 6 0,01 10 0,040 10,10 3 5 29

100 2 0,7 6 0,01 10 0,040 10,10 3 1 1567

500 2 0,7 6 0,01 10 0,040 10,10 3 1 1511

200 2 0,7 6 0,01 10 0,001 10,10 3 1 1515(5)

200 2 0,7 6 0,01 10 0,064 10,10 3 1 1515(5)

200 2 0,7 6 0,01 10 0.200 10,10 3 1 1515(5)

200 2 0,7 6 0,01 10 0.247 10,10 3 1 1216(3)

200 2 0,7 6 0,01 10 0.248 10,10 3 1 381(2)

200 2 0,7 6 0.05 10 0,040 10,10 3 1 1507(4)

200 2 0,7 6 0,6 10 0,040 10,10 3 1 1(1)

200 2 0,7 6 0,1 10 0,040 10,10 3 1 1506(3)

200 2 0,7 6 0.001 10 0,040 10,10 3 1 1498(4)

200 2 0,7 6 0.00001 10 0,040 10,10 3 1 1512(4)

200 2 0,7 8 0,01 10 0,040 10,10 3 1 No FG

200 2 0,7 4 0,01 10 0,040 10,10 3 1 1631

200 2 0,7 2.5 0,01 10 0,040 10,10 3 1 wrong FG

200 2 0,7 0 0,01 10 0,040 10,10 3 1 all FG

200 2 0.95 6 0,01 10 0,040 10,10 3 1 1522

200 2 0.8 6 0,01 10 0,040 10,10 3 1 1521

200 2 0.6 6 0,01 10 0,040 10,10 3 1 1522

200 1 0,7 6 0,01 10 0,040 10,10 3 1 767

200 3 0,7 6 0,01 10 0,040 10,10 3 1 1548

200 5 0,7 6 0,01 10 0,040 10,10 3 1 1518

200 2 0,7 6 0,01 1 0,040 10,10 3 1 1280(23)

200 2 0,7 6 0,01 5 0,040 10,10 3 1 1231(10)

200 2 0,7 6 0,01 15 0,040 10,10 3 1 866(3)

200 2 0,7 6 0,01 20 0,040 10,10 3 1 54(2)

(): denotes number of found corners

L: number of windows in update equations of MGM [8]

K: number of Gaussian distributions

70

T: the minimum fraction of data to be used for representing the BG

k: number of standard deviations from the mean of the Gaussian

M: corner response function

min.dist.: minimum distance between corners

k: Harris k

win size: size of search window in each pyramidal level

pyr levels: number of pyramidal levels

input rate: a parameter in the code to vary the frame rate

When Table 5.1 and Table 5.2 are analyzed, it can be seen that the size

of search window in pyramidal algorithm has a significant effect on the

tracking performance. Selecting a small size window leads to lower

performance, whereas selecting a bigger sized window leads to higher

performance. However, keeping the size of search window will require

more calculations, therefore this will reduce frame rate in a real-time

system. The frame rate has also an important effect on the

performance. With a low frame rate, the displacements of the moving

objects in the scene become larger; therefore tracking algorithm may

miss these objects or it will require a larger search window to find the

objects.

Another parameter, number of pyramidal levels, has also effect on the

performance. As the number of pyramidal levels increase, the tracking

performance increases. Since the pyramidal structure makes

calculations in different resolutions, it enables handling of large pixel

motion, therefore the performance becomes better. However, the

motion of pixels are limited, therefore too much increasing the

pyramidal level number does not further increase performance.

The number of extracted features, corners, is controlled by the

parameters of Harris corner detector. If Harris constant, k, corner

response function, M, or minimum allowed distance between corners is

71

decreased, the number of extracted corners raises. The increase in the

number of corners, results in an increase in tracking duration up to a

certain limit. After that limit, the highest quality features determine the

duration of tracking, therefore there will not be a significant increase in

the duration.

Due to the effect of Mixture of Gaussians Model on foreground

segmentation and feature extraction, the tracking duration changes in

the tests. With more number of Gaussian distributions, the background

model is more accurate. The performance increases up to K=2 in this

test and having more number of Gaussians does not raise the

performance. If the scene is more complex, more Gaussians will be

more effective for foreground segmentation and may have a more

significant effect on detection and tracking performance. In this

experiment, it is seen that the performance of scene with low

illumination is more sensitive to background modeling, because there is

more blur and noise in the low illumination case. When the same

parameters are applied to both scenes, it is observed that the

segmented foreground regions in low illumination are very smaller in

area when compared to the high illumination case. In the experiment,

it is observed that by reducing the k parameter, which is the number of

standard deviations from the mean of Gaussians, a larger foreground

blob is obtained which results in more extracted features and a larger

duration of tracking for the low illumination case.

The input rate is the parameter to simulate the various frame rates.

When input rate is selected as 1, the original frame rate of the system

is observed since all frames are used in processing. When the value is

set as 2, the frames are processed in a fashion to use one frame and to

skip one frame as the frames are acquired. For input rate of 3, one

frame is used in processing and two frames are discarded, therefore

the frame rate will be observed as 1/3 of the original rate. It is similar

72

for case of 4 and 5. The larger value corresponds to a lower frame rate.

It can be analyzed that as the frame rate decreases, the tracking

performance decreases rapidly.

Figure 5.3: Resistance to flickering effect

In another test (Figure 5.3), the effect of flickering is observed in real-

time. In the first and second rows, some frames of input video

sequence and the obtained corresponding foreground images are

illustrated. It is observed in the figure that the monitor and the

florescent lights in the scene do not cause errors in foreground

segmentation using MGM. The car is successfully identified as

foreground where as the monitor is identified as a background object.

73

Figure 5.4: The Natural Effects in an Outdoor Scene

In Figure 5.4, the screenshots of real-time operation of the system in

an outdoor scene is given. The motion of leaves in the windy air, the

raindrops and the motion of trees do not result in an error in

background modeling. Only the moving car is identified as the

foreground object as desired. MGM, having multimodal character,

handles most of the outdoor and indoor scenes effectively.

74

Figure 5.5: Tracking in Low Illumination

Using the same parameters in all scene conditions may not be proper.

The screenshots in Figure 5.5 show the tracking ability of the presented

system in low light conditions using the parameters used in normal

illumination level. The performance is not as good as the illumination

case. The tests performed in the laboratory showed that tracking with

moving camera is successfully performed for 410 frames in average.

Using a camera which works better in low light conditions would give

better results.

75

Figure 5.6: An Object with Similar Color of Background

Another weakness of the system is the difficulty of handling an object

with a color similar to background. In this case both the background

modeling and the tracking algorithms cannot function efficiently. In the

given figure, the object is detected in Frame 82; however the tracker

misses the object in about 60 frames.

Figure 5.7: Tracking in case of Occlusion

Handling occlusions is another important problem. In Figure 5.7, two

people who are walking down the path are occluded while they are

walking down the stairs. Some of the features are left behind them.

76

The algorithm discards the features which are away from the mean of

the features. However, in this case most of the features are left behind

the people. Therefore, the algorithm cannot handle this case.

Figure 5.8: Screenshots with their Foreground Images

In the scenario of Figure 5.8, the tracked person is occluded by the tree

leaves and since the feature points are lost during occlusion at 170th

frame, the tracking stops. However, the system re-initializes the

77

background and finds the features using the 176th FG image and can

continue tracking by the 177th frame. The system re-initializes the

features and the model whenever it detects that it missed the object.

Figure 5.9: Tracking a person when turning around

78

Figure 5.9 (Continued)

In Figure 5.9, the effect of a person turning around himself while

waiting is observed. At 26th frame, the person is detected and tracking

starts. The person turns around himself in the scene. As the person

rotates significantly in Frame 72, the feature points are missed. The

system also handles this case by re-initializing the features using the

foreground scene information.

The screenshots and the applied tests show that the system works

properly in many conditions. With some modifications, the performance

may be enhanced further. In complex environments, the number of

Gaussians parameter, K, can be increased. Generally, setting K

between 3 and 5 performs accurately in many scenes. In case of low

illumination, increasing the number of standard deviations from the

mean of the Gaussian provides larger foreground blobs and better

results. Kalman filtering for tracking the features can be used in the

system. The coordinates of each feature in the following frames can be

predicted by its dedicated Kalman filter and small occlusions can be

handled. However, when the frame rate decreases, the linearity of

79

motion of features is more distorted because of sudden or complex

movements. Thus, the performance of Kalman filter will not be very

good.

80

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, an intelligent system for surveillance applications is

presented and implemented. The hardware of the system consists of a

Texas Instruments DM642 Digital Video Evaluation Module and a pan-

tilt-zoom camera. This system can execute tasks such as video

capturing, video processing and event reporting. Processing part

involves the automatically detection and tracking of a single moving

object using pan-tilt-zoom abilities.

For realizing the presented system, the theoretical bases for

background modeling and tracking algorithms, which are necessary for

moving object detection, were investigated. Main approaches were

discussed by presenting their strengths and weaknesses. By

considering its capability of handling various types of scenes, Adaptive

Gaussian Mixture Background modeling method was used in the

system. The popular and robust Pyramidal Implementation of Lucas-

Kanade Feature Tracker was used as the tracking algorithm of the

system. The codes developed in Visual Studio Environment were ported

to Texas Instruments Code Composer Studio Development

Environment for execution on Texas Instruments DM642 DSP. To

ensure proper operation, the whole system hardware, software and the

ported algorithms were tested by using recorded video sequences, by

applying real-time test scenarios or by creating test codes. Since it is

difficult to test the whole system in an outdoor place, most of the tests

81

were performed in the laboratory during development. The results and

the screenshots of experiments of the tested system were illustrated.

Developing and executing video processing algorithms on an embedded

system with limited processing power and memory is the most critical

point in the development of embedded surveillance systems. The

presented system in this thesis has a single core DSP of 720 MHz clock

and 32 MB external memory. With this configuration, it can perform

video processing and loopback with a rate of 6 FPS.

6.2 Future Work

The presented intelligent surveillance system detects only a single

object in the scene. As a future work, multiple object detection can be

implemented as an additional feature. By properly grouping the

features, which is a challenging task, multiple objects can be tracked in

the scene. However, tracking multiple objects at the same time will

require more processing power.

Another improvement of the system can be accomplished by using the

movement information of the camera. As the system can obtain the

direction of motion of the moving object and the camera, the

background region, which will probably be occupied by the moving

object, can be modeled before the object arrives.

Higher level algorithms can be developed on this system in future.

After successfully tracking the moving object from one frame to

another, the problem of understanding the object behavior follows. The

present system can be used for detecting behaviors of objects to

identify the events on the scene.

The presented system has many advantages when compared with

traditional systems that work on PC. During this thesis work, the

82

developed algorithms were both tested on PC and the DSP. The

performance on PC was better than the performance on DSP because of

lower the frame rate on DSP. The system uses a single core DSP to

execute the algorithms and a limited memory. As a future work, the

algorithms can be run on multiple processors or on a multiple core DSP

to have a higher frame rate and hence a higher performance.

Furthermore, providing more external memory to the present system

will allow more complex algorithms to be developed.

In the presented system, the popular Harris corner detector is used

since it is invariant to rotation, changes in illumination and noise.

However, this feature detector is not invariant to scaling. Therefore,

while using zoom abilities of the camera, some of the features may be

lost. By using a feature detector which is insensitive to scaling, the

zoom functions of the pan-tilt-zoom camera can be used more

efficiently. Thus, in future studies, feature detectors such as Laplacian

Harris can be implemented for use in the system.

83

REFERENCES

[1] Haritaoglu and Flickner, “Detection and Tracking of Shopping

Groups in Stores”, CVPR 2001.

[2] A. Hampapur et al., “Face Cataloger: Multi-Scale Imaging for

Relating Identity to Location”, IEEE International Conference on

Advanced Video and Signal Based Surveillance, Miami, FL, July 2003.

[3] K. Karmann and A. von Brandt, “Moving object recognition using

an adaptive background memory”, in Time-Varying Image Processing

and Moving Object Recognition II (V. Cappellini, ed.), pp. 289-296,

Elsevier, Science, 1990.

[4] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower:

Principles and practice of background maintenance”, in International

Conj on Computer Vision, (Kerkyra, Greece), pp. 255-26 1, 1999.

[5] D J. Heikkila and O. Silven, “A real-time system for monitoring of

cyclists and pedestrians”, in Second IEEE Workshop on Visual

Surveillance Fort Collins, Colorado, pp. 74-81. 1999.

[6] Wren, Christopher R., Ali Azarbayejani, Trevor Darrell, and Alex

Pentland. “Pfinder: Real-Time Tracking of the Human Body”, In IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol 19, no

7, pp. 780-785.6, July 1997.

84

[7] Stauffer C, Grimson W. E. L. “Adaptive background mixture

models for real-time tracking”, in Proceedings. 1999 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (Cat.

No PR00149). IEEE Comput. Soc. Part Vol. 2, 1999.

[8] P. Kaewtrakulpong, R. Bowden, “An improved adaptive

background mixture model for real-time tracking with shadow

detection”, in Proceedings of the Second European Workshop on

Advanced Video Based Surveillance Systems, Kingston, UK, pp. 149-

158, September 2001.

[9] N.M. Oliver, B. Rosario, and A.P. Pentland, “A Bayesian

Computer Vision System for Modeling Human Interactions”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no.

8, pp. 831–843, August 2000.

[10] J. Rymel, J. Renno, D. Greenhill, J. Orwell, G.A. Jones, "Adaptive

eigen-backgrounds for object detection”, Image Processing, 2004.

ICIP'04. 2004 International Conference on, vol.3, no.pp. 1847- 1850

Vol. 3, 24-27 October 2004.

[11] A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis.

“Background and Foreground Modeling Using Nonparametric Kernel

Density Estimation for Visual Surveillance”, Proceedings of the IEEE,

90(7):1151–1163, 2002.

[12] S. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler,

“Tracking groups of people”, Comp. Vis. Image Understanding, vol. 80,

no. 1, pp. 42–56, 2000.

[13] A.J. Sindhu and T. Morris, “Resolving Complex Occlusions of

Objects during Tracking using Region based Segmentations”, in

85

Proceeding Signal Processing, Pattern Recognition, and Applications,

2006.

[14] Jimin Liang, Yan Chen, Haihong Hu, Heng Zhao, “Appearance-

Based Gait Recognition Using Independent Component Analysis”, ICNC

(1) 2006: 371-380.

[15] D. Magee, “Tracking multiple vehicles using foreground,

background and motion models”, Image and Vision Computing,

22:143–155, 2004.

[16] S. Messelodi, C. M. Modena, and M. Zanin, “A computer vision

system for the detection and classification of vehicles at urban road

intersections”, Pattern Analysis & Applications, 8, 2005.

[17] C. Stauffer and E. Grimson, “Learning patterns of activity using

real-time tracking”, IEEE Transactions on Pattern Recognition and

Machine Intelligence, 22(8):747–757, August 2000.

[18] H. Veeraraghavan, O. Masoud, and N.P. Papanikolopoulos,

“Computer vision algorithms for intersection monitoring”, IEEE

Transactions on Intelligent Transportation Systems, 4(2):78–89, June

2003.

[19] Hu, W.; Tan, T.; Wang, L.; Maybank, S.; “A survey on visual

surveillance of object motion and behaviors”, Systems, Man and

Cybernetics, Part C, Volume 34, Issue 3, August 2004.

[20] Nicolas Saunier, Tarek Sayed, “A feature-based tracking

algorithm for vehicles in intersections”, IEEE Proceedings of the 3rd

Canadian Conference on Computer and Robot Vision (CRV’06) June

2006.

86

[21] A. Yilmaz, X. Li, M. Shah, “Contour-Based Object Tracking with

Occlusion Handling”, PAMI, vol. 26, no. 11, 2004.

[22] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based

object detection in images by components”, IEEE Trans. Pattern

Recognition, Machine Intelligence, vol. 23, pp. 349–361, April 2001.

[23] A. Galata, N. Johnson, and D. Hogg, “Learning variable-length

Markov models of behavior”, Comput. Vis. Image Understanding, vol.

81, no. 3, pp. 398–413, 2001.

[24] Y. Wu and T. S. Huang, “A co-inference approach to robust visual

tracking”, in Proc. Int. Conf. Computer Vision, vol. II, pp. 26–33, 2001.

[25] M. A. Ali, S. Indupalli, and B. Boufama, “Tracking multiple people

for video surveillance”, in CRV’06 Workshop on Video Processing for

Security (VP4S-06), Quebec City, Quebec, Canada. June 7-9, 2006.

[26] Shijun Sun, David R. Haynor, Yongmin Kim, “VSnakes with local

affine deformations”, ICIP (2) 2002: 741-744.

[27] S. Fukui, T. Ishikawa, Y. Iwahori, H. Itou, “Extraction of Moving

Objects by Estimating Background Brightness”, The Journal of The

Institute of Image Electronics Engineers of Japan, Vol.33, No.3 pp.

350-357, 2004.

[28] L. Marcenaro, F. Obetti, C.S. Regazzoni, “Change detection

methods for automatic scene analysis by using mobile surveillance

cameras”, in Proc. 2000 International Conference on Image Processing,

vol. 1, pp. 244 – 247, 2000.

87

[29] J. Gao, A. G. Hauptmann, H. D. Wactlar, ”Combining Motion

Segmentation with Tracking for Activity Analysis”, The Sixth

International Conference on Automatic Face and Gesture Recognition

(FGR'04), pp. 699-704, Seoul, Korea, May 17-19, 2004.

[30] Tweed D. and Calway A., “Tracking Many Objects using

Subordinated CONDENSATION”, Proc. BMVC 02: 283-292, October

2002.

[31] R. Polana and R. Nelson, “Low level recognition of human

motion”, in Proc. IEEE Workshop Motion of Non-Rigid and Articulated

Objects, Austin, TX, pp. 77–82, 1994.

[32] B. Coifman, D. Beymer, P.McLauchlan, and J. Malik, “A real-time

computer vision system for vehicle tracking and traffic surveillance,”

Transportation Res.: Part C, vol. 6, no. 4, pp. 271–288, 1998.

[33] T. J. Fan, G. Medioni, and G. Nevatia, “Recognizing 3-D objects

using surface descriptions,” IEEE Trans. Pattern Recognit. Machine

Intell., vol. 11, pp. 1140–1157, November 1989.

[34] D.-S. Jang and H.-I. Choi, “Active models for tracking moving

objects,” Pattern Recognition”, vol. 33, no. 7, pp. 1135–1146, 2000.

[35] B. D. Lucas and T. Kanade. “An iterative image registration

technique with an application to stereo vision”, Proc. International Joint

Conference on Artificial Intelligence, pages 674–679, 1981.

[36] C. Tomasi and T. Kanade. “Detection and tracking of feature

points”, Carnegie Mellon University Technical Report CMU-CS-91-132,

Pittsburgh, PA, 1991.

88

[37] Jean-Yves-Bouget, “Pyramidal implementation of the Lucas

Kanade Feature Tracker”, included in Intel Open Source Computer

Vision Library (OpenCV) distribution.

[38] Konstantinos G. Derpanis. “The Harris Corner Detector”,

http://www.cse.yorku.ca/~kosta/CompVis_Notes/harris_detector.pdf,

last accessed date: 01 July 2008.

[39] Deependra Talla, Lizy K. John, Viktor Lapinskii, and Brian L.

Evans, "Evaluating Signal Processing and Multimedia Applications on

SIMD, VLIW and Superscalar Architectures", IEEE 2000.

[40] TI, “The TMS320DM642 Video Port Mini-Driver”, Literature

Number: SPRA918A, 2003.

[41] Vishal Markandey, Dipa Rao, Texas Instruments, “TMS320DM642

Technical Overview”, Application Report Literature Number: SPRU615,

September 2002.

[42] Texas Instruments XDS560 Class High Speed Emulators,

http://focus.ti.com/docs/toolsw/folders/print/xds560.html, last

accessed date: 01 July 2008.

[43] TI, “XDS560 Emulation Technology Brings Real-Time Debugging

Visibility to Next-Generation High-Speed Systems”, Literature Number:

SPRA823A, 2002.

[44] CommFront Communications,

http://www.232analyzer.com/RS232_Examples/CCTV/Pelco_D_Pelco_P

_Examples_Tutorial.htm, last accessed date: 01 July 2008.

