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ABSTRACT

APPROXIMATE ANALYSIS AND CONDITION ASSESMENT OF
REINFORCED CONCRETE T-BEAM BRIDGES USING ARTIFICIAL
NEURAL NETWORKS

Dumlup nar, Taha
M.Sc., Department of Civil Engineering

Supervisor  : Assist. Prof. Dr. @zhan Hasangebi

July 2008, 135 pages

In recent years, artificial neural networks (ANNBave been employed for
estimation and prediction purposes in many areasvdfstructural engineering. In
this thesis, multilayered feedforward backpropagatalgorithm is used for the
approximate analysis and calibration of RC T-beaitiges and modeling of bridge

ratings of these bridges.

Currently bridges are analyzed using a standard PpEddram. However, when a
large population of bridges is concerned, sucthasonhe considered in this project
(Pennsylvania T-beam bridge population), it is riagbical to carry out FEM

analysis of all bridges in the population due te fact that development and
analysis of every single bridge requires consideréime as well as effort. Rapid
and acceptably approximate analysis of bridges sdenbe possible using ANN
approach. First part of the study describes thdiagin of neural network (NN)

systems in developing the relationships betweedgeriparameters and bridge

responses. The NN models are trained using sorrengyadata that are obtained



from finite-element analyses and that contain lEigrameters as inputs and

critical responses as outputs.

In the second part, ANN systems are used for thiraton of the finite element
model of a typical RC T-beam bridge -the Manoa Rd2wbige from the
Pennsylvania’'s T-beam bridge population - basedfield test data. Manual
calibration of these models are extremely time aomeg and laborious. Therefore,
a neural network- based method is developed foy aad practical calibration of
these models. The ANN model is trained using saaiainhg data that are obtained
from finite-element analyses and that contain madal displacement parameters as
inputs and structural parameters as outputs. Alfertraining is completed, field-
measured data set is fed into the trained ANN mobleén, FE model is updated

with the predicted structural parameters from tiNAmodel.

In the final part, Neural Networks (NNs) are usedriodel the bridge ratings of RC

T-beam bridges based on bridge parameters. Bradgeriatings are calculated more
accurately by taking into account the actual geoynahd detailing of the T-beam

bridges. Then, ANN solution is developed to eastlynpute bridge load ratings.

Keywords: Artificial Neural Networks, T-Beam BridgieApproximate Analysis,
Calibration, Bridge Ratings.
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BETONARME T-K R KOPRULERN YAPAY SN RA LARINI
KULLANARAK YAKLA IK ANAL Z VE DURUM TESPT

Dumlup nar, Taha
Yiksek Lisansn aat Muhendislii Bolumu

Tez YoOneticisi . Assist. Prof. Dr. @zhan Hasancgebi

Temmuz 2008, 135 sayfa

Son yllarda, yapay sinir éar (YSA) in aat/yap mihendislinde etkili tahminler
yapmakta oldukga genbir alanda kullanImtr. Bu tezde de, ¢ok katmanl, ileri
beslemeli, geri yay n m algoritmal YSA mimarisi tbearme T-kiri koprulerin
yakla k analizinde, kalibrasyonunda ve bu koprilerin Kbpreytinglerinin

modellemesinde kullan Intr.

Gunimizde sonlu eleman metodu koprulerin analizipalyy nca kullan lan bir
yontemdir. Fakat bu ¢camada olduu gibi birgok képriden olan bir populasyon
di Gnuldd tnde (Pennsylvania T-kirkopri populasyonu) sonlu eleman yontemini
butin koprulerin analizinde kullanmak ia derecede zaman ve zahmet alagdan
pratik olmamaktadr. Buna remen hzl ve doru analiz yapmak yapay sinir
a lar yla mimkun gibi gorinmektedir. Bu cahann ilk ksm nda, yapay sinir
a lar (YSA) kullan larak kopru parametreleriyle kdpanaliz sonuglar aras nda bir

ili ki bulunmaya cal Im tr. YSA modelleri girdi olarak kopri parametrefeten

Vi



¢kt olarak da kopru analiz sonuglar ndan aln ve sonlu eleman metoduyla

uretilmi e itim setiyle e itilmi tir.

kinci ks mda, Yapay Sinir Alar (YSA) tipik betonarme T-kiri kdprulerin -
Pennsylvania T-kiri kbprilerinden Manoa Road Kdprisunin- analitik niode
arazi test sonuglarn dayal kalibrasyonunda kulitla tr. Bu modellerin
kalibrasyonu fazlas yla zaman al ¢ ve zahmetliBin. nedenle, bu modelleri kolay
ve pratik bir ekilde kalibre etmek icin YSA ya dayal bir yontegeli tirilmi tir.
YSA Modeli girdi olarak modal ve yer detirme parametrelerinden ¢ kt olarak da
yap sal parametrelerden oan ve sonlu eleman metoduyla Uretilrai itim setiyle
e itilmi tir. E itim bitikten sonra arazi test sonuglar Sinir l& na (SA)
sunulmutur. Analitik model Sinir Alar n n verdi i yap sal parametre tahminleriyle

gincellenmitir.

Son ksmda betonarme T-kirikdpri reytinglerinin yapay sinir &r (YSA)
kullan larak kopru parametrelerine dayal modellesm yapIm tr. Koépri
reytingleri koprinin gergcek geometrisini ve detaylahesaba katarak yeniden
hesaplanmtr. Sonra, sinir aarn kullanarak bu kopru reytingleri kolayca

hesaplanmas icin bir model geiiilmi tir.

Anahtar Kelimeler: Yapay Sinir Aar, T-Kiri Koépruler, Yakla k Analiz,
Kalibrasyon, Kopru Reytingleri.
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CHAPTER 1

INTRODUCTION

Over the past years, computers have become arrahtegrt of the day-to-day
activities in engineering studies and they havenhesed in various applications to
assist engineers in improving their works. Althowgimputers are utilized to model
a variety of engineering activities, the main foaissomputer applications is still
the areas in which a set of rules are establishied.use of computer in the some
areas of decision making process where there adefieed rules is very limited. In
recent years, Artificial Neural Networks (ANN) hasnerged as a promising
candidate in modeling some of the human activitiesany areas of science and
engineering. Unlike expert systems, ANN systemsaoneed any rules. They are
suitable particularly for problems that are too pder to be modeled and solved by
classical mathematics and traditional procedureg & the distinct characteristics
of the ANN s its ability to learn and generalizerh experience and examples to
produce meaningful solutions to problems evenefitiput data contains error or is
incomplete or even fuzzy. These characteristicBldNs make them a promising
tool for modeling some of the engineering problefRafig et al., 2001). Their
computing abilities have also been proven in theldé of civil/structural
engineering (Adeli, 2001). In this thesis, somehef possible applications of ANN
will be explored in conjunction with RC T-beam lg&s. In this framework, the
three objectives of the thesis are set as follow8) to achieve acceptably
approximate analysis of RC T-beam bridges usingraienetworks; (ii) to
investigate calibration of RC T-beam bridges usmegiral networks; and (iii) to
model the bridge load ratings of these bridgesdaseneural networks.



The thesis is organized in eight chapters. Chapfesents general information on
the purpose of the study. The scope and objecfigelzsequent chapters are briefly
explained. In Chapter 2, previous applications dfiINS in the literature are
reviewed in the fields of approximate structuralalgsis and structural
identification, which are also the major concerhghe thesis. Chapter 3 introduces
the fundamentals of Artificial Neural Networks (ANN First, inspiration of
Artificial Neural Networks from the biological nealrnetworks is explained. Then,
a popular network type, the feed-forward netwoskintroduced in detail and key
points that are important for understanding of rtheénplementations are
emphasized. One of the most popular learning algus, i.e. the backpropagation
algorithm, for feed-forward neural networks is @neted in the final section of the
chapter. In Chapter 4, development of FE model aypacal T-beam bridge of
Pennsylvania’s bridge population is described.tlyirgeneral information on the
bridge population is presented. Next, the finitene#nt modeling of a typical T-
beam bridge is explained using a bridge (seleataah the entire population) with

average structural and geometrical parameters.

Chapter 5 focuses on the approximate analysisngflesispan T-beam bridges in
Pennsylvania using Neural Networks. Pennsylvangtha third largest reinforced
concrete (RC) T-beam population with 2,440 T-beaiddes in the US and 1,899
of which are single span. Especially, when a lapgpulation of bridges is
concerned, a rapid and reliable estimate of acasgonse computations is essential
and possible using ANN approach. Available analysiethods and tools are
insufficient to cope with large population of brey Currently, FEM analysis
procedure is the most frequently used method iratfaysis of bridges. However, it
is impractical to carry out FEM analysis of alldges in the population due to the
fact that development and analysis of every sibgliége requires considerable time
as well as effort. Recent progress in neural comguechnology has provided an
ideal and reasonable method which enables to hel@edict actual response of a
bridge with a trivial computational effort. In thzhapter, the inherent structural
behavior of T-beam bridges is modeled using nengdlorks. It is realized that the

bridges in the Pennsylvania T-beam bridge populatiave a common set of



geometrical and structural parameters. Amongst thém governing ones are
identified and used as inputs to the networks maukite the behavior of T-beam
bridges. A group of bridge samples are randomlyegsed using different

combinations of these parameters within the raodgge®ssible variations to ensure
that the ANN model trained using these samplespeadict, within an acceptable
accuracy, the structural behavior exhibited by migjoof the bridges within the

population. In order to obtain the outputs of beidgmples, all bridges in the bridge
set are modeled using a standard FEM program amdyzaa for structural

responses. The bridge data acquired are dividedthinee sets; the training set, the
cross validation set and the test set. The traiseigis used to establish intrinsic
relationships between the bridge parameters amdnsss. The cross validation set
is used to avoid overfitting, which is the casepobr generalization. The test set is
used to evaluate the performance of the networkei@é network designs are
examined to determine one with a reasonable pedocen Once trained

successfully, the network can confidently be usedredict accurate output values
for new input data. The analysis results can beioed from the trained neural

network with a trivial computational time and etfand without a need to construct

and analyze a new model for each parameter set.

Chapter 6 discusses the calibration of the finiégnent model of the Manoa Road
Bridge, a typical T-beam bridge from the Pennsylaanbridge population, based
on field test data and neural networks. Calibratian be defined as the process of
modifying the input parameters to a model until tlput from the model matches
an observed set of data. Manual calibration of drbdridge models are extremely
time consuming and laborious. A neural network-edasiethod is developed here
for an efficient and practical calibration of thdsedges. Artificial neural network
(ANN) is trained to learn the pattern between théot and input data sets of an
analytical model in reverse direction. The trainisgmples consist of structural
parameters to be updated and their correspondingamand displacement
parameters obtained from the FE analyses. Modab&pdacement parameters are
used as the input data to train the network. Thpuis introduced in the training

session are the structural parameters. After thimimig of the ANN model, the



model calibration procedure begins with feeding snead modal and displacement
parameters (field-measured data set) into theeda®iNN model. The outputs of
the ANN model are the predicted structural paramseféhese predicted structural
parameters are then fed into the FE model to pmduset of calculated modal and
displacement parameters. A comparison between #haulated and measured
modal and displacement parameters is conductdtiefe two sets of parameters
differ significantly, then the ANN model is retramh. This procedure is repeated
until the calculated and measured responses ctarelall. Preparing input and
output data sets for such a neural network wouké & considerable amount of
time; nevertheless, once a neural network is ssbabstrained and a relationship
between the inputs and outputs is established,stvee system can be used
efficiently and quickly for calibration of the agtital model any time in future,

following the testing of actual bridge.

Chapter 7 discusses the modeling of bridge loadgsitof RC T-beam Bridges
based on Artificial Neural Networks (ANNSs). In tleeirrent load capacity rating
practice, an individual beam is taken out as a-lredy, idealized as simply-
supported, and the continuity of the bridge in titasverse direction is indirectly
accounted for by means of axle-load distributicctdes. It has been found that this
approach significantly underestimates the contidgiouof deck slab to lateral load
distribution for many bridge geometries. This cimition is properly simulated
when a properly constructed, geometric replica IDnkodel is used for analysis.
Hence, the load rating of the bridges obtained &iggiAASHTO and FEM-based
analysis methods are different. In this chapteidder load ratings are calculated
more accurately by taking into account the acteangetry and detailing of the T-
beam bridges. Then, Artificial Neural Network sadat of bridge load ratings is
obtained to easily compute the highest utilizatdpacity of any T-beam bridge
while still strictly conforming to the AASHTO staadts and provisions. The bridge
data acquired in the Chapter 5 is used to obtantthining set for the ANN
systems. The analysis results of FE models aneedilto obtain the bridge ratings
of these bridges. The training samples consisthef $ame bridge parameters

discussed in Chapter 5 and their corresponding Rialsked bridge ratings. The



training samples are used to establish intricatatiomships between the bridge
parameters and bridge ratings. Once the trainingutcessfully completed, the
developed ANN model can be used efficiently toieet the bridge ratings from

another set of bridge parameters within the rarigbeotraining set.

Finally, the conclusions of the study are giveChapter 8.



CHAPTER 2

LITERATURE SURVEY

In this chapter, previous applications of ANN irrustural engineering are
overviewed. The first article reporting the use péural networks in a
civil/structural engineering application was pubéd by Adeli and Yeh (1989).
Since then, a large number of articles have bedtighed on the topic, which is
summarized in a review article by Adeli (2001). Td¢teapter is organized in two
subsequent sections as; approximate structuralysisaktudies and structural

identification and model updating studies baseANNs.

2.1 Approximate Structural Analysis Studies

In 1997, Cattan and Mohammadi (Cattan and Mohamn887) used artificial

neural networks to investigate the relationshipvMeen the bridge rating and several
bridge parameters. In this study, railroad brid@yesn the Chicago metropolitan

area were used as database. A total of 405 raigésiin the Chicago metropolitan
area were selected from the entire population sthese bridges had complete
information for all the parameters. A statisticabbysis of bridge parameters was
conducted to determine the variability in each peater and the representation of
the entire bridge population. Based on statistan@lysis, the common 12 bridge
parameters, such as bridge type, substructure dguk type, span length, etc. were
selected to be used as inputs to the networks. Sstaontaining 405 rail bridges
was divided into two sets: training set and testBaining set contains 307 bridges
and was used to map the relationship between bratgeg and bridge parameters.
Test set contains 98 bridges and was used to egathe performance of the

network. Several network designs were examinedrieeaat one with a reasonable



performance. Finally, 45 nodes in input layer, thidden layers with 45 nodes
each, and 4 nodes in the output layer with theniegrcoefficient of 0.60 and the
momentum coefficient 0.85 was arrived as the onénigathe best performance.
The network was then used to predict ratings fueisd bridges outside the training
and test data sets. The overall performance ohéteork is 73.47%. This study
shows that neural network can be trained and usezkssfully in estimating ratings

of a bridge population.

Ozkaya and Pakdemirli (2002) investigated the appliity of ANN systems in
predicting the natural frequencies of suspensiafgbs based on common physical
parameters of the bridges. In the study, parameikfesting the frequencies are
determined as span length, moment of inertia oflthége cross-section, initial
horizontal component of cable tension, dead wesglthe bridge per unit length of
the span, cables’ cross-sectional area, moduledasficity of the bridge deck and
the cables. The first three natural frequenciesewealculated using Newton-
Raphson (N-R) method for different physical pararsetto prepare data set for
training of the network. In the network, these fpleysical parameters were used as
inputs and the first three natural frequencies weeglicted as outputs. The ANN
architecture used is a 5:12:12:3 multi-layer, fémdvard and back-propagation
architecture with momentum coefficient of 0.9 aredrhing rate of 0.7. A total of
493 examples in the data set were used to trainngtesork and error was
minimized to beneath the tolerable level. An add@il 15 test patterns were
generated using N-R method to test the ANN. Fortélse patterns, the maximum
error between the ANN results and N-R method ressltless than 1.02%. The
engineering importance of the study was demonsttayepredicting the frequencies
for the test values with a considerable low errgheaut spending much effort and

time.

Jenkins (1999) investigates the use of neural médsvior the structural re-analysis
of two-dimensional trusses. In the study, a sinple-layer configuration network
is used. The inputs describe the structure, gegmetaterial properties, applied

loads and supports, in the initial states. The wutpom the net will be the



displacements due to applied loads. The displactsrenthe outputs nodes are
processed using the geometrical and material ptiepesf the members to produce
forces at the structural joints. A back-propagat&gorithm is used to solve the
structural equilibrium equations at the joints atmén the member forces are
computed. The network is then applied to the lirmadt non-linear analysis. The
network is capable of carrying out the linear asslyand simple non-linear analysis
to a desired degree of accuracy. Further work ec®@menended by the writer in

application of the network to complex non-lineaalysis.

In 2002, Jenkins presents another study whichnisuaal network iterative method
for structural reanalysis. The network is a sinmpdek-propagation neural network
in which the weights under iterative updating atained and updating resumed as
each structural modification is made. The netwa& two layers, namely input and
output layers. Inputs in the network are the ajppleads at the joints. The outputs
are the displacements at the joints. The jointldgments are used to calculate the
forces at the joints. Considering the applied laadse equilibrium, the joint forces
should be zero for equilibrium. Computed forcegespnt error. A backpropagation
is used to reduce the error by adjusting the weighhis iterative process is
continued until the error is reduced to toleraldeel. This method is applied to
plane truss and space truss for illustration ohaégsis. Design change options such
as the insertion of additional joints, insertionngw member, additional load, etc.
are introduced into neural network based reanalysisalysis results for different
design states are presented in the paper. Therwotgluded that “the software
described is compact, easily portable, and suitdbleake advantage of the
continuous increase in the processing speed andonyerapacity of the modern

computer”.

In 2000, Consolazio presented a technique for emhgrfinite-element analysis
equation solvers for particular problem domaires, particular classes of structures
such as highway bridges. In the technique, asdificeural networks are merged
with a preconditioned conjugate gradient iterateguation-solving algorithm to

seed the initial solution vector and to preconditithe matrix System using



customizable and trainable neural networks. Th&hrigue is applied to the
particular domain of flat-slab highway bridge arsady Eighteen networks are
trained using the load-displacement data from F&lyais to encode the load (Fz,
Mx, My)-displacement (Tz, Rx, Ry) relationships fooncrete flat-slab highway
bridges. In the combined algorithm, neural networkse used to predict
approximate displacements under at each iteratiwhile overall iterative

preconditioned conjugate gradient process guidagergence to the exact solution.
This study showed that combining the Neural netwovwkith preconditioned

conjugate gradient is very effective for accelemtihe convergence of iterative

methods.

In 2005, Rogers developed the guidelines to creatgeural network that can
simulate the structural analysis in the optimizagiwocess to reduce the amount of
time that an optimization process takes to convéogan optimum design. These
guidelines were applied to optimize the shape bkam to minimize the weight
while satisfying the stress constraints. Severadhoek designs were trained using a
set of training sample consisting of the designatdes as inputs and values of the
constraints and objective function as outputs tivarat one with a reasonable
performance. Finally, combination of the selectiing training pairs based on
hypercube method and 46 nodes in hidden layer wasdf to yield better
approximation. Further studies on this network giesshow that it is possible to
reduce the overall time required for convergenaamfrl98 min (required by
reference optimization process) to 159 min. Theiltesndicate that by selecting
the right network parameters and properly constigcind training the NN model,
it is possible to reduce the amount of time it tale optimization process to

converge to an optimum design.

C W Tang et al (2003) investigate the use of thdi@al neural networks in
predicting the confinement efficiency of concerdliig loaded reinforced concrete
(RC) columns with rectilinear transverse steel. g purposes, a database of 55
square columns was retrieved from existing litamatun the study, a multilayer-

functional-link neural network (MFLN) which is a mification of the standard



backpropagation neural network was used to estithatenaximum axial stress and
strain of confined concrete. After a comprehenstedy, six major variables -
cylinder compressive strength of concrete, areasoatrete in the core, volumetric
ratio of transverse steel in concrete core, thdadi® between the laterally
supported longitudinal bars, spacing of transvestsel, and vyield strength of
transverse steel- were discovered to be effedtiveapturing the underlying
behavior of confined RC columns. In other word® thput layer of the neural
network consists of six processing units represgnthese six variables, and the
output layer includes two neurons representingih@&mum axial stress and strain
of confined concrete. Of 55 examples, 45 were usedraining of the 6-14-2
architecture network with various network paramet@nd the rest were used for
testing to find the best network. Results were carag with the several analytical
models such as Park et al. Model, Yong et al. Mo8keikh and Uzumeri Model.
The overall predictions from the neural network NNFimodel were found to be

better than analytical models.

Oreta and Kawashima (2003) explore the feasibitityusing artificial neural
networks (ANNS) to predict the confined compresstrength and corresponding
strain of circular reinforced columns. A total &8 8xamples for network training
were obtained from the past experiments. In thevowd, seven variables - the
unconfined compressive strength, core diameteyneonlheight, and yield strength
of lateral reinforcement, volumetric ratio of ledkreinforcement, tie spacing, and
longitudinal steel ratio - were used as input patams. Of 38 examples, twenty-
nine data pairs were used as training data andeth@ining nine data pairs were
used as test data. After examining several ardhites, 7-4-2 model with sigmoid
transfer function was found to have better perforcea The results were compared
with the analytical models. There is an averagieihce of between 1% and 3%
for the confined compressive strength and corredipgrstrain of circular concrete
columns. It was seen that only with a sufficiemtmoer of data, it is still possible to
develop ANNs which can completely model the compglgeractions among the

multiple variables.
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2.2 Structural Identification and Model Updating Studies

C. C. Chang et al (2000) proposed a model updatiethodology based on an
adaptive neural network (NN) model. This method \applied to the structure
model which is a scaled version of the Humen susparbridge in China. Modal
properties such as natural frequencies and modeeshaere used as inputs to a
neural network model to predict the structural peeters as outputs. Structural
parameters are the parameters such as the modudlesstcity, the mass density,
the cross sectional area, etc. that significantigca the modal parameters of the
structure. The neural network model has feedforveawthitecture. In this study, 16
nodes (first eight natural frequencies and corredpg mode shapes) in the input
layer, 39 and 16 nodes in the first and secondenidayer respectively and 8 nodes
(eight structural parameters) in the output layesrevused with a modified
backpropagation training algorithm with a dynamnlicaldjusted learning rate and a
jump factor to improve the convergence performantehe network training.
Network was trained using 33 examples obtained ftbenFE analysis and first
estimation of the structural parameters is obtalmgteeding the modal parameters
into trained NN model. The first predicted strualyyarameters are then fed into FE
model for the calculation of modal parameters. Hé tdifference between the
measured and predicted modal parameters does tistysdne given criterion,
training samples are adjusted and the procesp&ated. Retraining procedure is
repeated until a set of satisfactory result is ioketh This study showed that it is
possible to reduce the difference between the medsand the predicted

frequencies from a maximum of 17% to 7% for thstf@ight vertical modes.

Chen (2005) proposed a neural network-based mdtnatetermining the dynamic
characteristic parameters of structures from fisldasurement data. Structural
responses were used to train an ANN to determiadrédguencies, damping ratios
and modal shapes. The architecture of proposed AfgNel is single hidden layer
with 16 nodes. In the model, n (lags in the outpu®) and m (lags in the input) = 8.
The technique was employed to determine the dynarharacteristics of two

bridges. First one is the arch pylon of a cablgestabridge. In this bridge, ANN
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was trained using the Randomdec signatures toifgéhe dynamic characteristics
of the arch pylon such as the natural frequenamesjal damping ratios and modal
shapes of first five modes. The results are reddgransistent with the results of
the finite element analysis. Second bridge is aettspan highway bridge. In the
bridge, ANN was trained using the velocity respense identify the natural

frequencies, modal damping ratios and modal shapeix modes in transverse
direction. The results show a very good agreemadtit smbient vibration test

results.

Barai and Pandey (1995) presented vibration sigeatumalysis of steel bridge
structures based on artificial neural networks (ANDr the purpose of damage
identification. This strategy was applied to a ¢gbistructure idealized as a simply
supported steel truss bridge with a pinned jointoider to generate a structural
response, a moving load was simulated to travethenbridge structure and the
vibration signatures at various nodes of the bridgecture were obtained for
various position of the load. Vertical displacetseat several nodes at a certain
time interval were used as inputs to the networl atructural identification
parameters such as cross-sectional area of the ememdpresenting the stiffness in
damage state formed the outputs of the networkotal tof 16 examples were
generated using FEM program to train the netword additional five examples
were generated to test the network. After an exterstudy on number of hidden
layer , number of hidden units per layer, learnpagameter, momentum parameter
and error tolerance, 69-(21-21)-21 architecture wasnd to have better
performance with learning parameters of 0.9 , mdamanparameters of 0.7 and
error tolerance of 0.01. Based on this architectime average percent error in the
identification of stiffness of members was foundb® less than 4%. This study

shows that ANN has great potential in damage itleation.

In 2000, Yun and Bahng studied substructure idieatibn using neural networks.
In this study, neural network is used to estimdme stiffness parameters of a
complex structural system using the natural fregigsnand mode shapes as inputs

to the network. For the identification of a struetuthe structure is subdivided into
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several substructures to reduce the size of theéermysto concentrate the
identification at critical locations of the struodu Then, modal data on the
substructure of interest and corresponding subraialing factors (SSF) are
obtained to train the network. The first four modes used as input patterns to the
neural networks and the corresponding SSFs arenasiti as output. Finally,
trained networks are tested using the testing att® measure the generalization
performance of the neural networks. The proposedahenetwork-based method
was applied to a two-span truss and a multi-stir@ye. For two examples, the
average relative estimation errors for testing datawere found to be in the range
of 9%+15%, which shows the applicability of the mmets method for the

identification of large structural systems.

Fang et al. (2005) presented a structural damagetder method based on neural
network with learning rate improvement. In the studequency response functions
(FRFs) are used as input data to the back-promagatural network to estimate
the location and severity of damage as the outputstder to increase the training
effectiveness, efficiency and robustness withoutreasing the algorithm

complexity, a tunable steepest descent algorithBD(Twas used in determining an
optimal learning rate. The frequency response fanst(FRFs) of the intact and the
damaged state are directly used as input dataetol 8D based neural network.
Structural damage is designated as stiffness toese or multiple elements and the
network outputs are designed as the relative ssfiratio, that is, the ratio of the
stiffness of the damaged structure with respedhéostiffness at the intact state.
This method was applied to a cantilevered beanthénapplication, the beam is
equally divided into 20 elements and the elemenés rmmbered in sequence.
Structural damage causes stiffness loss in one utipte elements. The natural

frequencies and modal shapes of the intact and gkanstructures were recorded
and a total of 30 numerical stiffness loss case® wbtained to train the network. A
three-layer feedforward network with 78 input nqd&3 hidden nodes, and 5 output
nodes was used in training process. Then, theedametwork was tested using 4

unseen cases which gave maximum 17.7% error wisiokely high accuracy in
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predicting damage location and severity. This stualy showed that neural network

can assess damage conditions successfully.
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CHAPTER 3

ARTIFICIAL NEURAL NETWORKS

3.1 General

Artificial Intelligence (Al) is a very versatile dnpotential area in the field of
computing technology. It enables computer usevaiious fields to solve problems
which cannot be formulated using algorithmic apphes and which normally
requires human intelligence and expertise. AraficNeural Networks (ANNSs)

which is one of the best known manifestations ofhak today gained immense

credibility and acceptance in many professiondti§€Fausett, 1994).

An Artificial Neural Network (ANN) is an informatio processing paradigm that is
inspired by the way biological nervous systems esscinformation. The key
element of this paradigm is the novel structuretled information processing
system. It is composed of a large number of hightgrconnected processing
elements (neurons) working in unison to solve dmegroblems. ANNSs, like

people, learn by example. An ANN is configured dospecific application, such as
pattern recognition or data classification, throwgltearning process. Learning in
biological systems involves adjustments to the g§imaconnections that exist

between the neurons. This is true of ANNs as well.

Biologically inspired methods of computing are thmjor advancement in the
computing industry. Even simple animal brains aapable of functions that are
currently impossible for computers. While computers rote things well, like
keeping ledgers or performing complex math, theyeh@ouble recognizing even

simple patterns much less generalizing those patiel the past into actions of the
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future (Anderson and McNeill, 1992). What makeshsadlifference is neither due
to the processing ability of the computers nor tiutheir processing speed. Today's
processors are much complicated and have a spéeiihE® faster than neurons.
The difference is mainly because of the structaral operational trend. While the
instructions are executed sequentially in a comapdid and fast processor in a
conventional computer, the brain is a massivelyalpr interconnection of

relatively simple and slow processing elements (Ha2004).
3.2 From Biological to Artificial Neuron Model
3.2.1 Biological Neuron

Neurons are the basic computational unit in theveneslystem. It is estimated that
there are 1,3xI8 neurons in the human central nerve system andt dbdl'® of
them takes place in the brain. The power dissipatioe to firing of neurons is
estimated to be in the order of 10 watts. Whenegslabout 5x10nerve impulses
per second are being relayed back and forth bettieebrain and other parts of the

body and this rate is increased significantly whesake (Fischer, 1987).

dendrite

synapse

Figure 3.1 Typical Neuron (Hal c, 2004)

A typical neuron is shown in Figure 3.1. Most oé theural computation occurs in
the cell body (soma of the neuron) which includesrieuron’s nucleus. The signals
generated in soma are transmitted to other neuhmosgh an extension on the cell

body called axon or nerve fibres. Dendrites arettaarokind of extensions around
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the cell body like bushy three. They are respoasildm receiving the incoming
signals generated by other neurons. The axon &ratgal into several branches and
at the very end the axon enlarges and forms tefrbuigons. Terminal buttons are
placed in special structures called the synapseéshvéne the junctions transmitting
signals from one neuron to another. In terminatdng, the synaptic vesicles which
hold several thousand molecules of chemical trateraitake place. When a nerve
impulse arrives at the synapse, some of these chétmansmitters are discharged
into synaptic cleft. Synaptic cleft is the narroapgoetween the terminal button of
the neuron transmitting the signal and the membaoériee neuron receiving it. The
membrane of the post-synaptic cell gathers the @@ nransmitters, which cause
either decrease or increase in the efficiency ef ldtal sodium and potassium
pumps depending on the type of the chemicals reteaso the synaptic cleft. The
synapses, whose activation decreasing the effigieat the pumps cause
depolarization of the resting potential. On theeothand, the synapses increasing
the efficiency of pumps results in hyper-polariaati The first kind of synapses
which encourage depolarization is called excitatomg the others which discourage
it are called inhibitory synapses. If the decreiasthe polarization is adequate to

exceed a threshold, then the post-synaptic neunes(Hal c, 2004).

3.2.2 Artificial Neuron Model

As mentioned in the previous section, the trangomssf a signal from one neuron
to another through synapses is a complex chemigateps in which specific

transmitter substances are released from the sgsatla of the junction. The effect
is to raise or lower the electrical potential iresithe body of the receiving cell. If
this graded potential reaches a threshold, theomefires. It is this characteristic
that the artificial neuron model proposed by McGcifi and Pitts, (1943) attempt to
reproduce. The neuron model shown in Figure 3tBasone that is widely used in

artificial neural networks with some minor modificas on it.
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3 B

Figure 3.2 Artificial Neuron

The artificial neuron given in this figure hasinput, denoted as . Each
line connecting these inputs to the neuron is assig weight, which is denoted as
respectively. Weights in the artificial model capend to the synaptic
connections in biological neurons. The threshwldartificial neuron is usually
represented by and the activation corresponding to the gradeeényiatl is given

by the formula:

The inputs and the weights are real values. A mnegatlue for a weight indicates
an inhibitory connection while a positive value icates an excitatory one.
Although in biological neurons, has a negative value, it may be assigned a
positive value in artificial neuron models. Ifis positive, it is usually referred as
bias. For its mathematical convenience we will ¢sg sign in the activation
formula. Sometimes, the threshold is combined fmp&city into the summation
part by assuming an imaginary input and a connection weight

Hence the activation formula becomes:
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The output value of the neuron is a function ofaitsivation in an analogy to the

firing frequency of the biological neurons:

Furthermore the vector notation

is useful for expressing the activation for a neurdere, the*® element of the

input vectoru is  and the"#® element of the weight vector of w is. Both of

these vectors are of size. Notice thatw'u is the inner product of the vectons
andu, resulting in a scalar value. The inner produetnperation defined on equal
sized vectors. In the case these vectors havelemgth, the inner product is a

measure of similarity of these vectors.

Originally, the neuron output functiorf(a), in McCulloch-Pitts model was
proposed as threshold function, however, sigmoypetbolic tangent, and linear
functions formulated in Equations 3.5-3.7 are aisdely used output functions.

These functions are graphically represented inreigs.

T '
* + * +
.10 0* ’ (1 ’ 1
0 1 O +l
2 3456/ 7

where; sgr® is sigmoidfunction tanh(® is hyperbolic tangent function (Morshed

and Kaluarachchi, 1998), and puréiiris linear function.
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Figure 3.3 Transfer Functions of Artificial Neurofiafig, 2001)

3.3 Network Structure
3.3.1 Network of Neurons

Since a single artificial neuron is not able to lempent some boolean operations,
the problem is overcome by connecting the outpissbme neurons as input to the
others, so constituting a neural network. Suppositeg many artificial neurons
introduced in Section 3.2.2 are connected to fornetavork, there appears several
neurons in the system. Hence, indices are assignéte neurons to discriminate
them. Then, to express the activat@hneuron, the above formulas are modified as

follows:

where may be either the output of a neuron determined as
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or an external input determined as:

In some applications the threshold valgeis determined by the external inputs.
Due to the equation (3.8) sometimes it may be coewt to think that all the inputs
are connected to the network only through the tulesof some special neurons
called the input neurons. They are just conveyirgimput value connected to their

threshold as to their output with a linear output transfer function

For a neural network a state vectocan be defineih which the6”® component is
the output o8 neuron, that is g. Furthermore a weight matri/ can be defined,

in which the component g is the weight of the connection from neurbro

neurong Therefore the system can be represented as:

> ? @ > A

Here is the vector whos&® component is g andf is used to denote the vector

function such that the functiogis applied at thé”® component of the vector.

3.3.2 Network Architectures
In the previous sections, we discussed the praseati the basic processing unit in

an artificial neural network. This section focusms the pattern of connections

between the units and the propagation of data.eraer two well-known network
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architectures, namely feed-forward networks andimeat networks, which mainly

differ from each other in terms of pattern of coctiuns.

1 D\

1

L)

By

U

mput hidden  output input hidden output
layer layer layer Neurons neurons Neurons

Figure 3.4 a) Layered Feedforward Neural Networklbhlayered Recurrent
Neural Network

Feed-forward Networks (Figure 3.4 (a)) allows ttetadto travel one way
only; from input to output. Data flow is stricthedédforward. The data
processing can extend over multiple (layers of)tsunbut there is no
feedback connections i.e. connections extending foutputs of units to

inputs of units in the same layer or previous lay@rose and Smagt, 1996).

Recurrent Networks (Figure 3.4 (b)) allows the dadatravel in both

directions. Contrary to feed-forward networks, thegntain feedback
connections and the dynamical properties of thevowt are important. In

some cases, the activation values of the units ngode relaxation process
during which the network evolves to a stable stebere these activations
do not change anymore. In other applications, ttenge of the activation
values of the output neurons is significant, sunat the dynamical behavior
constitutes the output of the network (Pearimut8g0).
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3.4 Feed-forward Neural Network

The network consists of several layers of neurdiigufe 3.5). The input vector
distributes the inputs to the input layer. Theraasprocessing in input layer; rather
it can be conceived as a sensory layer, where e@titon receives a sole
component of the input vecttt. The last layer is the output layer which outghts
processed data. The output of each neuron indales lcorresponds to a component
of the output vectoK. The layers between the input and output onesedeered to
as hidden layers. Hidden layer(s) may have any mumrmabneurons; however they

should be chosen scrupulously to achieve someapatects in some cases.
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Figure 3.5 Single Hidden Layer Feedforward Neuraivddrks (Pandey and Barai,
1993)

Shown in Figure 3.5 is a straight feedforward netwehere each neuron in a layer

is connected to all the neurons of the previous megt layers by weighted
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connections. Except for the first sensory layee, dtputs of all neurons from the
previous layer are received as an input to eaclhhoneuEach neuron performs a
nonlinear transformation of the weighted sum ofitfteoming inputs to produce the

output of the neuron which is given to other nesronoutside the network.

3.4.1 ANN Definitions and Concepts

Thetraining process in the multilayer feedforward networks imes presenting to
the network a set of training data (examples) «timgj of a selected number of
known input and output pairs. During training tlystem adjusts the weights of the
internal connections to minimize errors between mieéwork output and target
output. However, it is not always advantageousowtioue training until the errors
reach a minimum level. This situation is referred ‘verfitting' in the
nomenclature of ANN, where the network learns theise’ presented in the
training data and not the required general pattéfinen this happens, the network
performs very well over the data set used for inginbut shows poor predictive
capabilities when supplied with data other thantth&ing patterns. This case can
be thought as “memorization” rather than “learnin@he of the simplest and most
widely used means of avoiding overfitting is to id& the training data into two
sets: a training set andvalidation set. Training set is used for computing the error
gradient and updating the network weights and bjesmed the validation set is used
at some interval for calculation of error. The ema the validation set is monitored
during the training process. The validation errdlt mormally decrease during the
initial phase of training, as does the trainingexedr. However, when the network
begins to overfit the data, the error on the vdildaset will typically begin to rise.
The network starts memorizing the training patteNhen the validation error
increases for a specified number of iterations, ttlaéning is stopped and the
weights and biases at the minimum of the validagoor are returned. Schematic
learning curves showing error on the training amdidation sets are shown in
Figure 3.6. To avoid overfitting, it is necessawystop the training at time where

performance on the validation set is optimal.
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Figure 3.6 The learning error and the validatiaweas a function of the time

After the training is completed, usually, the netkerror is minimized. The
network output shows similarities with the targetput. However, a set of unseen
patterns,test set must be selected and the network should be tested) these
patterns to make sure that the network training been satisfactorily completed

and the network is capable of generalization (R&@p1).

Two modes of training are present in neural netwvaining: supervisedand

unsupervisedearning.

In supervised learningthere is an external teacher, a training set ¢& @a an
observer who grades the performance, to contrdetdnging and incorporate global
information. Training requires examples whose tamsput is known. Therefore,
we must have a training set for which we alreadgvkrithe answer’ to our
questions to the network. While learning, weights adjusted according to the
input/output samples. Examples of supervised legrrlgorithms are the least
mean square (LMS) algorithm and its generalizatiomown as backpropagation
algorithm, and radial basis function network. (F&itjsL994).
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Unsupervised learnings sometimes referred to as self-organizing,le&aning to

classify without being taught. There is no exterteacher. Therefore, the system
must organize itself by external criteria and logdbrmation designed into the
network. Unsupervised learning involves no targaues, only the input samples
are available and the network classifies the inpatterns into different groups.

Kohonen network is an example of unsupervised iegr{Konar, 1999).

Initialization is required for the weights of the neural netwdk&fore training, the
network weights are initialized to small randomuesd. The random values are
usually drawn from a uniform distribution over ttange [-r,r] (usually in the range
of -1 to +1). Selection of initial weights influes® whether the network reaches a

global (or only a local) minimum of the error amalahquickly it converges.

Presenting the entire set of training pattern$éortetwork is called ampoch The
number of ‘epochs’, number of times that the whede of patterns is presented to
the network, affects the performance of the netwdhis number depends on many
factors such as number of training data, numbehidfien layers, number of

neurons in hidden layers and number of dependeéptibparameters.

Training a NN involves gradual reduction of theoerbetween NN output and the
target output. Generally, there are two differerddes of training NN, namely
batch mode andpattern mode. In a batch mode, when an epoch is compketed
single average error is calculated and the weightthe network are adjusted
according to that error. In a pattern mode, therasrcalculated after each pattern is
presented to the network, and network weights djested. Choosing between the

two modes is generally problem specific.

Data scalingis another essential step for network training. &ample, upper and
lower limits of output from a sigmoid transfer fdioon are generally 1 and O
respectively. Scaling of the inputs to the ranget] greatly improves the learning
speed, as these values fall in the region of thmaeid transfer function where the

output is most sensitive to variations of the ingaiues (Figure 3.3). It is therefore
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recommended to normalize the input and output defare presenting them to the

network.

Choosing a topology for the network is a diffictask. If the number of hidden
units is too small, than the network may not bdigeht to develop the required
internal representation of the problem and theeefoay not be able to perform the
necessary recognition task. On the other handeifninmber of hidden unit is too
large, then the network can overfit the data. Tperapriate selection dayersand
nodesis problem dependent and the optimum layout camrbged by trial and

error approach.

3.4.2 Learning in Feedforward Neural Networks

Although the method of storing and recalling infation in brain is not fully
understood, experimental research has enabled sodeestanding of how neurons
appear to gradually modify their characteristicsaassult of exposure to particular
stimuli. The most obvious changes have been obde¢oveccur in the electrical and
chemical properties of the synaptic junctions. &ample the quantity of chemical
transmitter released into the synaptic cleft igeased or reduced, or the response
of the postsynaptic neuron to receive transmittetecules is altered. The overall
effect is to modify the significance of nerve impes reaching that synaptic
junction on determining whether the accumulateduigpgo post-synaptic neuron
will exceed the threshold value and cause it te.fifhus learning appears to
effectively modify the weightings of the synapt@nnections that exist between the

neurons.

A single-layer network has severe restrictions, #relclass of tasks that can be
accomplished using this network is very limited e and Smagt, 1996). A multi
layer feed-forward network can overcome many retgbns, but did not present a
solution to the problem of how to adjust the wesglibm input to hidden (Minsky
and Papert, 1969). The tool that was missing irseéhearly days of multilayer

feedforward networks was what we now call backpgagian learning. The central
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idea behind this solution is that the errors fag timits of the hidden layer are
determined by back-propagating the errors of théswf the output layer (Krose
and Smagt, 1996).

Although usage of the tertvackpropagationappears to have evolved in 1985, the
basic idea of back-propagation was first describgdVerbos in his Ph.D. Thesis
(Werbos, 1974), in the context of a more generdlork. It was rediscovered by
Rumelhart et al. (1986), and popularized through publication of the seminal
book entitled “Parallel and Distributed Processiby’Rumelhart and McClelland
(1986). Parker (1985) derived a similar generabizatof the algorithm
independently. A roughly similar learning algorithmas also presented by LeCun
(1985).

3.4.3 The Backpropagation Algorithm

Back propagation neural networks are powerful tdolssearching regularities,
forecasting, and qualitative analysis. They ardedaback propagation networks
because of the learning algorithm they use, in tvlsio error moves from output
layer to the input one, i.e. in the direction opf@® that of signal spreading during

the normal network operation.

Backpropagation process is conducted by supenlesgding because the output of
the system delivered is compared to the exact salnebackpropagation algorithm
there are two main phases. The first phase isveafor pass, which is also called as
activation phase. In that phase, inputs are predess reach the output layer
through the network. After the error is computedseaond phase starts backward

through the network, which is also called as eb@ackpropagation.

Back-propagation can also be considered as a dea¢icn of the delta rule for
multi layer networks. The derivation of the genzed delta rule is included in the
Appendix A. Based on the network shown in Figuig e main steps involved for

implementing the algorithm are given as followsr{@ay and Barai, 1993).
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Stepl. Select a number of input nodé$, (output nodes?) and hidden nodes ()

and first training example §) .

»

J-

1

Step 2. Initialize the weights using random number getwr in the range

of-0,5t00,5
; Y K _
c Uk
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Step3. Compute the value df \ for the hidden nodes [see eqn ()]

[\ ,-\I.. opg(ﬁ:gD !

m1
E(_a
1

Step4. Calculate the activation valjie \ for the hidden nodes [egh ( )]. Here
the sigmoid function has been used. The parametés to shift the activation

function to the left and right along the horizordals depending upon its positive or
negative values, respectively. Similarly theis used to modify the shape of the

sigmoid.
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Step 7 Calculate th©rP, Qegqn{ ! )]

OP, Q By+ o,DBO \° Or ,P, Q 9

(learning parameter) and(momentum parameter) are usually selected from

experience.

. = target output and ,P = previous weight changes
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Step 8 Compute the new values of weights between theemdnd output layers

OR, Q OR, Q OrP, Q <

Step 9 Calculate th®©rP gQfor input to hidden weights

OPgQ [ \Bo+ oDB,DtOP, GBD Or ,PsQ -

Step 10Calculate the new values of the weights betwepatiand hidden layer

OPgQ OPgQ orP 8Q

The algorithm continues for all set until the aggrasystem error (ASE) [egn
(] 7 )] between the target output and computed outpwidse to the tolerance

specified.
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CHAPTER 4

ANALYTICAL MODELING OF A TYPICAL T-BEAM BRIDGE

4.1 Pennsylvania’s T- Beam Bridge Population

The total T-beam bridge population in the US is138, based on the NBI (2001).
With 2,440 T-beam bridges, Pennsylvania has the thrgest reinforced concrete
(RC) T-beam population after California and Kentpddowever, Pennsylvania has
the greatest number of structurally deficient aodcfionally obsolete T-beam
bridges in the US (NBI, 2001). The total numbesimigle span T-beam bridges in
PA is 1,899 and approximately 60% of this populai®older than 60 years, with a
maximum age of 101 years. Most of RC T-beam bridgee constructed mostly
between 1900’s and 1960’s by using a standardfsktsign drawings (Figure 4.1).
Therefore, these T-beam bridges share geometrydesign details, materials and

similar cast-in-place construction.

The Swan Road Bridge and Manoa Road Bridge showiigares 4.2 and 4.3 are
the two of these bridges, and are used for numestiadies in this thesis. Close-up
photographs in Figures 4.2 and 4.3 show the camditand any damage at critical
areas of these bridges.

Swan Road Bridge with 26-ft length (7.93 m) and 26width (7.93 m) was
constructed in 1937, has no skew and is suppornedl D-beams each of which has
a depth of 24 in (0.6096 m). Total steel area etémsion region is 12.50%(80.65
cn?) for all beams. T-beam web width, beam spacingngfe width) and deck
thickness are 15.75 in (0.4001 m), 61 in (1.5494 anyl 8.5 in (0.2159 m),
respectively. Bridge has end diaphragm beams abtumdaries and reinforced

concrete parapets on both sides through the roadway
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Figure 4.1 Example of a Population of Similar Bedg

The Manoa Road Bridge with 32ft length (9.75 m);f6®%idth (16.15 m) and 15
degree skew, was constructed in 1929, and is stggbby 11 T-beams. The depth
of beams is 28.5 in (0.7239 m) and total steel arehe tension region is 14.50%in
(93.55 cm). T-beam web width, beam spacing (flange widthj deck thickness
for Manoa Road Bridge are 16.5 in (0.4191 m), 64.6..5621 m) and 8.5 (0.2159
m) inches, respectively. The secondary structueshents, such as end diaphragm
beams at the boundaries and reinforced concretepeis; are also critical
components of the bridge. While the geometry of $an Road Bridge may be
considered typical, the Manoa Road Bridge repraesanparticular case of large

width. Both bridges feature just two traffic lanes.
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Figure 4.2 Swan Road Bridge: General and Closeiapy/

Figure 4.3 Manoa Road Bridge: General and Clos¥iews

4.2 Analytical Modeling of T-Beam Bridges

It is clear that developing a detailed FE modekath and every bridge of the T-

beam population will be impractical, as it requisesonsiderable time and expertise
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for development and interpretation. When a majonglspan bridge is considered,
this effort is very feasible and valuable. Herethe case of a population, a real
bridge with average structural and geometric pataraas selected from the entire

population for modeling.

A typical T-beam bridge is in fact an integratiohb@ams and slab along the span
of the bridge ending in rigid diaphragm beams. ®heotropically reinforced slab
is bounded by stiff edge girders monolithic withrggzets in addition to the
diaphragm beams. While the girders predominantyamit forces through uni-
axial shear-flexure, the orthogonal flexural reg®nof the slab as a plate, and the
axial membrane forces in the slab that arise duleetoestraining of the diaphragms
at the abutment interfaces are additional mechanidimat contribute to load

capacity.

The finite element libraries of modern general-ms structural analysis software
such as SAP 2000 offer various options for 3D FEletiog of a T-beam bridge.
Several options are illustrated in Figure 4.4. Whdll options may permit
representing the critical behavior mechanisms eflitidge, the first option based
on using solid elements for simulating concretéhatmicroscopic level and using
axial frame elements for simulating individual rfeirting bars on an individual

rebar basis offers great advantages in simulatatgrgbration and damage.

In order to verify the reliability in mixing the Bd and frame elements for

simulations, a single reinforced concrete T-beaomfran existing bridge was
modeled by 3D solid and beam elements and thetseaglre compared with the
engineering mechanics solution. Figure 4.5 shows tesponses for stress and
moment compared along the beam from the FE modél tae engineering

mechanics solution. The study verified that solidmeents for the concrete and
frame elements for the steel rebars can be comhattine nodes and used for finite
element modeling of reinforced concrete T-beanes @microscopic level, given the

dimensions for the solid and frame elements showig. 4.5.
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Figure 4.4 Finite Element Modeling Options (DIIT3003)

Figure 4.5 Verification AnalysjsSolid Modeling of Theam Section (DIITSI, 2003)
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4.2.1 Finite Element Model of the Swan Road Bridge

The Swan Road Bridge in Chester County (Figure W&y selected as a typical T-
beam bridge in PA in terms of its nominal desighritaites with 6 reinforced
concrete T-beams, and a deck thickness of 8.5indkiésr identifying the most
suitable modeling option, the analytical model banconstructed. A typical 3D FE
model that is constructed using solid elementsaamal frame elements availabile
the library of the SAP 2000 V9 software (2002) #orcomplete and accurate
modeling of thegeometry, detailing and material properties anesitiated in the
example in Figure 4.7. Such a fine microscaogiproach to 3D geometric -replica
analytical modeling is now practical and enablegpliekly simulating every
material point of the bridge for an accurate repméation of the geometry, the

actual behavior mechanisms and any existing detiom or damage.

Figure 4.6 Swan Road Bridge, Lancaster Co, PA +&ge Geometric and
Structural Parameters
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Figure 4.7 Finite Element Modeling of a T-beam Badvith Solid and Frame
Elements
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The nominal concrete cylinder stress is 3 ksi aglzhr yield stress is 33 ksi. The
model features 108,243 degrees of freedom, em@o3)940 solid elements and
7,636 frame elements. Both longitudinal and trarsvesteel reinforcing bars were
modeled on a one-to-one basis using frame elens@rmdsconnected to the solid
elements simulating perfect bond. The parapetslat@al end diaphragm were
modeled in detail. Boundary conditions are defisedh that all the center nodes on
the superstructure-substructure interface at odeoéthe bridge are modeled using
pin supports to simulate restraints due to the dgwehile the center nodes at the
other end are modeled with roller supports, allg\oth rotation and translation in
longitudinal and transverse directions, as showrkFigure 4.7. In addition, the
lateral earth pressure on the diaphragm beam caimdated using linear springs.

In order to investigate the mesh sensitivity, aosecmodel with a finer mesh was
also constructed. The second model incorporatedtad of 301,887 degrees of
freedom as opposed to the 108,243 degrees of ineeddhe first model, yet the
maximum difference in the deflections and stresse®ained within 0.7%.
Therefore, to increase the computational efficieti®ymodel with 108,243 degrees

of freedom was employed for the reported studies.
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CHAPTER 5

APPROXIMATE ANALYSIS OF T-BEAM BRIDGES USING NEURAL
NETWORKS

Using present-day computing resources and a falgment (FE) modeling
software, it is possible to routinely apply FE as& techniques to the evaluation of
complex structures systems. Accompanying the ussuoh modeling software,
however, is a substantial increase in the quawtitiime required to perform the
analysis. In addition, the preparation of such nedequires substantial amount of
effort. Engineers practicing in certain fields (ehgghway bridge engineering) often
find themselves repeatedly analyzing structures thth into fairly well-defined
categories or “problem domains”. Structures fallingp this problem domain will
exhibit certain common characteristics. Given there@asing use of modeling
software, the increasing size of FEA models rolyingenerated in everyday
practice, and the frequent need to analyze strestum well-defined problem
domains, it becomes desirable to conceive a syratdwgrein the analysis can be

accelerated by exploiting structural similaritieshin particular problem domains.

In this chapter, a technique for enhancing analgdidridge structures for a
particular problem domain is discussed. The styatgscribed herein consists of
restricting bridge structures to a particular pesbldomain, e.g., a particular type of
bridge population, and then using neural networtkspproximately encode the
basic structural behavior of that class of striegurThis strategy was applied to
single span RC T-beam bridge population in the Bgaania state. ANN systems
seem to be applicable to predicting structural @esps from bridge parameters.
They are capable of learning the relationship betwéridge parameters and
responses based on the existing data and genegatizis for other bridges not

included in the existing set. Firstly, a statistiaaalysis of bridge parameters is
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conducted to determine the variability in each paater and the degree to which
the entire bridge population can be representedn,Tbased on these parameters, a
group of bridge samples are randomly generatedjusfferent combinations of the
parameters within the ranges of possible variatitm®nsure that the ANN model
trained using these samples can predict, within aaneptable accuracy, the
structural behavior exhibited by majority of thedges within the population. In
order to obtain the outputs of bridge set, all geslin the set are modeled using a
standard FEM program and analyzed for structurgpomeses. The bridge data
acquired are divided into three sets; the trairsieg the cross validation set and the
test set. The training set is used to establisttiogl between bridge parameters and
structural responses. The cross validation sesésl uo avoid overfitting which is
the case of poor generalization. The test setas s evaluate the performance of
the network. Finally, several network designs aeaited and examined to arrive at
ones with good generalization capability. If a tielaship between bridge
parameters and bridge responses can be found, prestiction of a bridge’s
responses can readily be made just by evaluasnigput parameters with a trivial
computational time and effort and without a neeadastruct and analyze a new

model for each parameter set.

5.1 Statistical Analysis

There are a large number of parameters controthegstructural behavior of T-
beam bridges. Amongst these parameters are thelespgth, skew angle, width of
bridge (number of T-beams), beam depth, beam welthwbeam flange width
(beam spacing), slab thickness, reinforcement ldegaiboundary conditions and

existence of reinforced parapets or end diaphragms.

However, not all these parameters are independefrigoto the fact that the

majority of the T-beam bridges were constructesgisi standard set of drawings.
In the standard design drawings, the structuraildeand element dimensions are
dependent on the span length and width of the ésidgor example, when a bridge

with a certain plan geometry is selected, the bsiass, reinforcement and all other
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details are automatically established. This “meddtai dependency greatly

reduces the number of independent structural paeame

A statistical analysis is conducted here to deteentihe governing and independent
structural and geometrical parameters. It has beend that T-beam web width,
beam spacing (flange width) and deck thicknesscanstant for all bridges in the
population at values of around 16 in (0.4064 m), 80 (1.524 m) and
8.5 in (0.2159 m), respectively. Since the bridgese constructed from one set of
typical plans, all other parameters such as prapong and reinforcement detailing
were dependent on these parameters. The secondaciusal elements, such as
end diaphragm beams at the boundaries and reinfocoacrete parapets, are
critical components of the bridges contributingtte structural behavior. It is noted
that not all bridges in the population possessethgscondary components. The
boundary conditions (BC) of an actual bridge aterotomplicated. Therefore, they

can be idealized as pin roller supports in theywmimodels.

As a result of this study, the numbers of governimdgpendent bridge parameters
are reduced to six as follows: the span length skav angle, width of bridges,

beam depth and existence of reinforced parapetsmahdiaphragms.

5.2 Bridge Data

As mentioned in the previous section, the independgidge parameters are
established as the span length, skew angle, widtiridge (number of T-beam),
beam depth, and existence of reinforced parapet®ad diaphragms. NBI (1998)
data and PennDOT database are used to determinandpe of variation of each of
these parameters within the population. A summédrthe results of this study is

given as follows:

span length 20 ft (~6 m) — 55 ft (~17 m)
skew angle 0 — 45 degrees

number of beams5 - 11
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beam depth 19 in (~0.48 m) — 40 in (~1.02 m)
parapet ; exist or not exist

diaphragm ; exist or not exist

T-beam web width, beam spacing (flange width) aeckdhickness are assumed to
be constant equal to 15.5 in (0.3937 m), 60 in44./) and 8.5 in (0.2159 m),
respectively for all bridges in the sample set. @ther parameters are kept at their

nominal values and the boundary conditions ardimkghas pin roller supports.

According to Atalla and Inman (1998) the traininigtlee network with a random
generation of the bridge parameters within the eangf possible variations
produces the best results. In line with this steet, a total of 140 sample bridges
are randomly generated using the aforementionedjesiwmalues of bridge
parameters to generate a representative bridgacyunting for distinct structural
and geometrical features of the bridges in the [adjowm. . The dataset used for this
study is tabulated in Appendix B.1.

5.2.1 Loading Conditions

Live load is either the standard truck or lane Ingadtorresponding to HS20 truck.
For short spanned bridges, such as the ones coedigethis study, the governing
loading condition is usually the truckload. Therefoonly the live load due to truck
loads is simulated in order to generate the maxinabsolute member forces.
Determining the most critical member forces dutruck loads require a number of
sequential analyses such that after determininguhneber of the design lanes in the
bridge, various number of trucks are positionediti¢rent locations in the model.

Then, model is analyzed under these truck configams considering the multiple

presence factors for moment and shear. The momedtshears found in this way
needs to be compared against each other in or@stablish the maximum member

forces for the model.
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5.2.1.1 Number of Design Lanes and Multiple Presasfd.ive Load

The number of design lanes in a bridge is deterthinetaking the integer part of
the ratio w/3600, where w is the clear roadway vidt mm between curbs and/or
functional clear roadway width of the bridge is solered (Figure 5.1). In cases
where the traffic lanes are less than 3.6 m widenumber of design lanes shall be
equal to the number of traffic lanes, and the wiltithe design lane shall be taken
as the width of the traffic lane. Roadway widthsnfr 6 to 7.2 m are assumed to
have two design lanes, each equal to one-halfahgway width (AASHTO Section
3.6, 1999).

Figure 5.1 Application of Live Load to Lanes

According to AASHTO Specification, bridges in thepresentative set are
composed of one, two, and three lanes dependindpe@mumber of beams along

their width. These are presented in Table 5.1.
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Table 5.1 Number of design lane of bridges in g#gresentative sample set

Number of Beams | Width (mm)| Number of Lanes
5-beam 5151 1
6- beam 6675 2
7- beam 8199 2
8- beam 9723 2
9- beam 11247 3
10- beam 12771 3
11- beam 14295 3

The extreme live load force effect shall be detaadiby considering each possible
combination of number of loaded lanes multiplied dyorresponding multiple
presence factor to account for the probabilityinfudtaneous lane occupation of the
design truck. The following table gives the mukigresence factors). (AASHTO
Section 3.6, 1999).

Table 5.2 Multiple Presence Factors “m”

Number of Loaded Lanes | Multiple Presence Factors "rh

1 1,2
2 1

3 0,85
>3 0,65

5.2.1.2 Truck load generation

The next step is to define the loads. Mainly, thare two different vehicle loads
considered: a) truck loads, and b) lane loadsK&pee 5.2).
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The rating-truck “HS20-44" defined in AASHTO wasedlsin this study. An HS20-
44 truck is a virtual rating truck. It weighs aabof 320.3kN (72 kips, 36 short
tons; one short ton is equal to 2 kips and 0.9%)tcand is composed of three axles.
The first two axles are 4.27m (14ft) apart. Thetadise between the second and
third axles can vary between 4.27m (14ft) and 9.13@it). In this study, the rear
axle spacing was taken as 4.27m (14ft.) in ordem#aximize positive bending
moment in each span. The width of the truck is meslito be constant and equal to
1.8m (6ft.) for all axles. The first axle weight 35.6kN (8kips); the second and
third axles are 142.3kN (32kips) each. The terni 1BO0HS20-44" notation comes
from the summation of the first two axle weightsténms of short tons. The term
“44” represents the year 1944 that HS20-44 truckeewirst started to be used for
bridge design/rating.

AASHTO lane loads are composed of a uniformly dstied lane load of
9.34kN/m/lane (640Ibf/ft/lane) together with onetan 80.1kN/lane (18 kips/lane)
of concentrated load(s). Lane loading is intendedbé a governing case for
especially long bridges since uniformly distributeghicle traffic in a closed road or
traffic jam condition can be more critical thaniagte truck load. One 80.1kN (18
kips) concentrated point load per lane is used &ximize the positive bending
moment. This load is located along the bridge todpce the largest positive
moment. For members experiencing negative bendingh(as members close to
the piers), two concentrated loads of 80.1kN/lgk& Kips/lane) must be defined on
either side of the support to obtain the largegiatige bending moment. Each one
of the two 80.1kN (18 kips) loads on each lane &hde placed at a location to

maximize the negative bending moment.

Since bridges generated for the study fall into dlaess of short span bridges, the
governing loading condition is the truckload. Indets, each truck is represented
by 96 concentrated loads, sixteen of which reptesach tire (Figure 5.3).

Concentrated loads are spread over the nodesidfedeinents over which the tire
is acting. Truck configurations are positioned stitdt they create the maximum

member forces at defined sections in the modehaws in Figure 5.3.
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Figure 5.2 Loading Types for AASHTO (Turer, 2000)

Figure 5.3 Application of Truck Load for Criticaldvhent and Shear
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5.2.2 FE Modeling and Analysis

Finally, randomly generated 140 T-beam bridges ewestructed using solid
elements and frame elements available in the kooathe SAP 2000 V9 software
for a complete and accurate modeling of the geometetailing and material
properties as illustrated in Figure 4.7. Pin-roligpe supports are used in all the
models to simulate the nominal boundary conditigxisof the 3D FE models are
analyzed under various configurations of HS20-4#ks for critical moment and
shear (see Appendix B.1 for analysis results). rAfimalyzing the bridges, the
training data for neural network model has beereggad. As mentioned before,
the training data consists of input and output ahere the bridge parameters
identified in statistical analysis and used to p@terize the models are the inputs,

whereas the outputs are the maximum shear and ni@®esloping in bridges.

5.3 Neural Network Modeling

ANN learns from the existing patterns and then makerediction for the patterns
which are not considered during learning. Thereftlne success of a network is
measured by its generalization performance. Ifdliference between the actual
and computed output by ANN is within the acceptdblel, then the network can
be used for prediction in the similar domain whiekhibits certain common
characteristics with the existing patterns. Thedt®n performance of a network
usually depends on the network parameters andapeldgy chosen. The best
performance is generally achieved by extensiverpandc study on the different
network using trial and error approach. In eachl,typerformance of network is
evaluated. This process is repeated until thedrebitecture with the right network

parameters is arrived.

In this study, the Levenberg- Marquardt algoritfRag and Kumar, 2007) is used
for learning rule of ANN, and the sigmoid functieused for activation function.
Since, Levenberg- Marquardt requires less timeeguths to converge, it performs

more efficiently compared to other learning rulegich in turn makes it ideal for
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trial of different networks. In addition, while adst all learning rules lead to
somewhat satisfactory results, Levenberg- Marquiarttie one producing the best
results (Yetilmezsoy and Demirel, 2008). The ussigrihoid function requires that
the input and output data be scaled to the randéd. [ the present study, the input
and output data are scaled to a somewhat narroavererbetween 0.2 and 0.8,
resulting in a considerable improvement in leagnspeed due to increased
sensitivity of the sigmoid function within this rg@ As mentioned before, the
training data generated for the application coneistl40 input-output patterns
(pairs) and are divided into three sets, namely,ttaining set, the cross-validation
set and the test set. The training set containspHiterns and used to detect any
relationship between the bridge parameters andnsgs. The cross-validation set
contains 29 patterns and is used to avoid oveditgroblem. The test set consists
of 10 patterns and is used to evaluate the perfocenaf the networks. Based on
defined network parameters, the effect of the nunabdnidden layers and number
of processing elements in hidden layers as wetl asitput layer are observed using
several architectures with the help of Neuro Sohsi5 (www.neurosolutions.com)
which is general software developed for neural oekwapplications. After
completion of training of each network design, geeformance of the network is
tested using the test patterns that are not usedgdihe training. The performance
is measured by the average maximum error in thengeset. This process is
repeated for each network design. In this way, nratworks which are capable of
generalization at different levels are obtained.ohm them, the best network is

selected.

5.3.1 Development of the Network Models

Obtaining the best network is a lengthy processcwiiequires trial of different
network parameters in several architectures. Adterumber of trials, appropriate

values of the networks parameters are set as fellow

Number of training examples = 101

Number of cross-validation examples = 29
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Number of test examples = 10

Number of input layer neurons = 6

Number of output layer neuron(s) = 1 or 2

Type of back-propagation = Levenberg-Marquardt fa@pagation
Activation function = Sigmoid function

Normalization range = [0.2,0.8]

Learning rate = 0,01

Training mode = Batch mode

Termination rule = minimum cross validation errompaximum epoch

Several architectures are tested in conjunctiorh wite above set of network
parameters to find the one having the best predigierformance, that is, the best
generalization capability. A typical architectusedesignated as “input nodes (n) -
[hidden nodes per hidden layer (m)]-output nodgs. @por example, the notation

“6-(7-7)-2" (7-7) indicates that the network ar@uture consists of an input layer of

6 nodes, an output layer of 2 nodes, and two hidilgrs of 7 nodes each.

The following cases are created and studied wipeet to the choice of network

architecture as well as the selection of networtwu

Case 1: Network 6-(m-m)-2; m varies from 4 to 11

In case 1, the moment and shear are both consicdesedetwork output. The
architecture used has two hidden layers with m soper layer denoted as
6-(m-m)-2

Case 2: Network 6-(m-m)-1; m varies from 5to 11

For case 2, the moment and shear are separatebydeosd as network output.
Hence, the network architecture is denoted by G¥(¥t, in which the output node

is assigned to either moment or shear.
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Case 3: Network 6-(m)-2; m varies from 3 to 9

In case 3, both the moment and shear are consicdesedetwork output. The
architecture used has one hidden layer with m nddasted as 6-(m)-2

Case 4: Network 6-(m)-1; m varies from 3 to 9

For case 4, the moment and shear are separatedieoed as network output. The
network architecture is denoted by 6-(m)-1, in vahike output node is assigned to

either moment or shear.

In the current study, the network performance soaisted with the maximum error
in the moment and shear prediction of the networlafl the testing patterns. If the
maximum testing error appears to be below the abler level, then the

performance of network is considered satisfactory.

5.3.1.1 Observations

The results of the study on the network designs dimsved that ANN is quite
promising in predicting the maximum moment and shigveloping in the bridges
due to moving truck loads. Some of the typicaulisshave been given in Figures
5.4 through 5.7. The following observations are endwhsed on all examined

networks.

1. All the trained networks are able to predict thepanses for all the testing
patterns with a reasonable accuracy (Figure 5.4 @B)l Thus it can be
deduced that single span population of T-beam brithghavior can be

modeled through neural networks.
2. While minimum MSE (Mean Square Error) [egh9q )] is a measure of

learning performance, it does not guarantee thet Ipeediction rate

(generalization capability). As it is clear fromgkres 5.4 to 5.7 that the
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prediction performance of the 6-(m)-1 architectisrgenerally better than that
of other architectures for both moment and shemmafothe testing patterns,

even though some of them have lower MSE.

Error (%)

3 4 5 6 7 8 9 10 11 12

Hidden Nodes (m) (per hidden layer)

Figure 5.4 Maximum Testing Errors versus NumbeXodles in Hidden Layer(s)

for Moment
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Figure 5.5 Maximum Testing Errors versus NumbeXodles in Hidden Layer(s)
for Shear
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Figure 5.7 Minimum MSE versus Number of Nodes idddin Layer(s) for Shear

3. Levenberg- Marquardt learning rule and the sigmwahsfer function are

appropriate choices for a successful network agfdin in the current context.
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4. The learning and prediction performance of the nekwary depending on the
number of hidden layers and the number of nodabfenhidden and output
layers. A single hidden layer with an optimum n@mbf neurons is sufficient
for modeling of this problem. The use of singlepuitnode assigned to either
moment or shear improves the performance of thearks compared to the
cases where two output nodes are used for preglictioment and shear
together (Figures 5.4 and 5.5).

5.3.2 Best Neural Network Models

It is clear from Figures 5.6 and 5.7 that almosinatworks generate a reasonable
MSE value. However, as seen from the Figures 534525, the best performance in
predicting moment is shown by Case 4 with a severngssing elements, resulting
in 3.36% maximum average testing error for allitgspatterns. Similarly, the best
performance in predicting shear is again exhibigdCase 4, yet this time with a
five processing elements, resulting in 1.53% maximaverage testing error for all

testing patterns.

In Figures 5.8 and 5.9, the average MSE in trainvieggus epochs are plotted for
moment and shear, respectively. The MSE drops idadigt after 10 epochs for
moment and carries on running until minimum vaiokaterror which is reached at
38th epoch with a MSE error of 0,000231. For shier,error stabilizes at around
10 epochs and goes on running until minimum valisaérror which is reached at
79" epoch with a MSE error of 0,000794. To make she¢ the network training
has been satisfactorily completed and the netwsdapable of generalization, a set
of unseen patterns must be selected and the netsiadd be tested using these
patterns. For this purpose, a total of 10 tespiaierns are used to observe the
prediction performance of all the architecturessubered in the study.
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Figure 5.9 Learning Curves for 6-(5)-1 Shear Quiypetwork
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Figure 5.11 FEM output and Best Network (6-(5@Litput for Shear

Figures 5.10 and 5.11 show the FE analysis (dgswatputs and best network
outputs for all testing patterns. It is clear ttreg prediction of the best networks for
10 unseen patterns is quite satisfactory. As dssmibefore, the best network for

moment yields maximum error of 3.36%, while thetbhestwork for shear yields
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maximum error of 1.53% for these patterns underdidened network parameters.
This indicates that the networks trained successfestablish the relationship
between the bridge parameters and responses amgalate this relationship for
other bridges in the population with an acceptaddeuracy. In addition, the
coefficient of correlation (see Appendix A.2) beemeanalytical and predicted
outputs is 0.998 for moment and 0.956 for sheaticating that the learning and

generalization performance of the network is vesgady

5.4 Sensitivity Analysis

Sensitivity analysis is a method for extracting tause and effect relationship
between the inputs and outputs of the network. Bdsc idea is that each input
channel to the network is offset slightly and tleresponding change in the output
is reported. To ascertain the influence of the ingariables on output variables,
sensitivity analysis is also carried out. This itegstprocess provides a measure of
the relative importance among the inputs of theralenodel and illustrates how the
model output varies in response to variation ofiguut. The first input is varied
between its mean +/- a user-defined number of atandeviations while all other
inputs are fixed at their respective means. Thevowdt output is computed for a
user-defined number of steps above and below trenmnikhis process is repeated
for each input. In this study, the number of stadddeviations to add and subtract
from the mean of an input is 1 and the number @bsto use on each side of the
mean is 50. A report was generated which summatimesariation of each output
with respect to the variation in each input andspreed in Figure 5.12 for moment
and in Figure 5.14 for shear. In addition, a pleswreated for each input showing
the network output(s) over the range of the vanmguit. These plots are shown in
Figure 5.13 for moment and Figure 5.15 for shear.

It can be clearly seen from the Figure 5.12 and Hht the most important input

parameter for moment is the bridge length, while tmost important input

parameter for shear is skew angle. The least impbiiput for both is parapet.
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As it can be observed from Figure 5.13, momenteases with increasing span
length, beam depth and the number of beam, whiedreases with increasing
skew angle and existence of parapet and diaphra&gmilarly, Figure 5.15
illustrates that shear increases with increasiram $pngth, skew angle, beam depth,
the number of beam and presence of diaphragm whildecreases with the

existence of parapet.

5.5 Discussion

The principal objective of this chapter is to shihat artificial neural networks can
be trained to predict critical structural responeés population of bridges once
governing structural and geometrical parametersdengtified. Rapid and accurate
analysis is essential, especially when a large latipn of bridges is concerned, and
seems to be possible using ANN approach. Thisegfyavas applied to single span
T-beam bridge population in the Pennsylvania st&@mnmon governing bridge
parameters of the population were identified. Basedhese parameters, a total of
140 representative T-beam bridges was randomlyrgegteand modeled with the
help of a standard FEM program and analyzed unc&20-H4 trucks for critical
moment and shear. Bridge set consisting of bricgarpeters as inputs and bridge
responses as outputs was divided into three subibetstraining set, the cross
validation set and the test set. Based on thesesetinvestigated the relationship
between bridge parameters and bridge responsafferedt network designs. The
results indicate that by selecting the right inppdrameters and properly
constructing and training the ANN model, it is pbksto reduce the differences
between the FE analysis results and the ANN re$alt3.36% for moment and
1.53% for shear. In addition, the linear coeffitiehcorrelations very high between
analytical data and values predicted through newgtd and it is 0.998 for moment
and 0.956 for shear. These clearly show that theah@etwork methodology can
be used efficiently to model the structural behawabsingle span T-beam bridges.
The main advantage of neural networks is that tiayais outputs can be obtained
from the trained neural network within seconds withspending much effort and

time required in constructing and analyzing of gtkedl models. Sensitivity
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analyses with the trained neural net or duringning could provide valuable
additional information on the relative influencewairious parameters on the bridge
systems. From our results, it is obvious that nekw@re promising in analysis of

civil structures and should be investigated further

61



CHAPTER 6

CALIBRATION OF T-BEAM BRIDGES USING NEURAL NETWORKS

Structural identification is the process of devalgpand/or revising an analytical
model of a structure such that for a given senptits the model can simulate the
output response accurately. Structural paramet@naton, one area within the
field of structural identification uses optimizatido reconcile an analytical model
of a structure with full-scale test data. The resula set of estimated parameters
capable of simulating "actual" structural resporSeuctural identification is an
objective tool for condition assessment of struesurThe current application is
bridge condition assessment. By using structurantification and parameter
estimation as a means of determining the actutd gt@perties, performance, and
limit states of a structure it is possible to gam improved understanding of a
structure's capacity and typical performance dusegviceability. Thus, at any
point in time it would be possible to assess tlialygity of the structure using the
objective results obtained through structural idieation.

Today, analysis of very large structures with dethdiscretization is possible even
with personal computers. Models in each one ontimaerical, modal or geometric
spaces may contain any number of independent cwiedi, representing a structure
at different levels of discretization and detailoMover, numerical and geometric
model spaces may accommodate various types ofneamity as well as non-
stationarity. Yet there is a great need in civiieeering education, research and
practice for emphasis upon the difference betweerdeiing of an actual
constructed facility for condition assessment, @sosed to modeling a non-existing
one for design purposes. In particular, geometrad@s in the form of 3D FE

models are constructed to assist with identifying tritical regions and behavior
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mechanisms of a structure and to estimate thesdliwifitthe forces, strains, tilts,
displacements and accelerations that may be negdssaneasure. It is important
that the models are calibrated through system-ifigation procedures to permit
reliable simulations based on the data from a healbnitoring implementation.
The data needed for system identification of theucsire and subsequent
calibration of the FE model may be obtained frorpesiments conducted on the

structure.

This chapter discusses the calibration of the diitement model of the Manoa
Road Bridge, a typical T-beam bridge from the Pgivasia’s bridge population,
based on field test data and neural networks. Adteridge is constructed, it may
show significant variations in terms of its struety geometrical and material
properties. Therefore, a FE model should be updatedidering the modified
parameters of the structure. By this way, the @gbdaf the model to simulate actual
behavior is improved. This is called calibratiom dalibrate a FE model, first field
tests are conducted to collect experimental datd,next FE model is successively
changed until the analytical response it produceeetates well with experimental
data. Manual calibration of T-beam bridge modele atso extremely time
consuming and laborious. Therefore, a neural ndéémvoased solution strategy is
investigated here for easy and practical calibnatid these models. First a FE
model of the Monoa Road Bridge is developed using nhominal structural
parameters and material properties. Sensitivitydistu are conducted next to
determine the governing parameters affecting timauhyc and static response of the
bridge, as well as to determine the sensitivitygeanf each parameter. Afterwards,
a set of training patterns incorporating a seleciaghber of bridge parameters and
response are constituted by considering differeaities/combinations of these
parameters generated randomly within their semsit@nges. Neural network (NN)
is then trained to learn the relationship betwéenliridge parameters and response
in a reverse direction such that the inputs arétluge response and outputs are the
bridge parameters. After the training is completdee field-measured bridge
response is fed into the trained neural networkesysto predict the values of

structural parameters representing the as-is dondidf the bridge. Structural
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parameters are then updated in the FE model inwitie the predictions of ANN
and the analytical response of the bridge is obthemalyzing the bridge under the
predicted parameter set. A comparison betweerexperimental and analytical
response of the bridge is conducted. If these twts ®f parameters differ
significantly, then the ANN model is retrained. The-training procedure is

continued until the measured and calculated regsots correlate well.

6.1 Bridge Description

The Manoa Road Bridge is a reinforced concretecsira located in E. Karakung
Drive 26J07 in Pennsylvania. Its coordinates ar$898 N and 78°16%4 W and

is schematically shown in Figures 6.1. The typaraks section of deck is shown in
Figure 6.2. The Manoa Road Bridge is 32 ft (9.75long with a 15 degree skew,
was constructed in 1929. Itis 53 ft (16.55 m) waohel is supported by 11 T-beams,
carrying two-way traffic. Each beam has a widt6af5 in (1.5621 m) and depth of
28.5in (0.7239 m). T-beam web width and deck théds are 16.5 in (0.4191 m)
and 8.5 in (0.2159 m), respectively. Total steeban the tension region is 14.50
in? (93.55 cmM). Secondary elements, such as diaphragms andeismxist in the

structure.

Figure 6.1 Manoa Road Bridge
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Figure 6.2 Typical cross section of the bridge deck

6.2 Field Investigations

DI3 researchers (DIITSI, 2003) conducted extendiedd investigations and
experiments on Manoa Road Bridge. The experimersaidies included
instrumentation and controlled load testing of cielé bridges by stationary and
crawling trucks and, dynamic testing by impact gsan instrumented impact
hammer. Researchers also explored possible udesllofg Weight Deflectometer

(FWD) as a practical test method to quantify brglges-is stiffness.

In dynamic tests, acceleration of the differentinpobf the bridge due to an impact
is recorded to extract dynamic properties of thacstire (i.e. mode shapes, natural
frequencies). Impact and accelerometer location® wetermined prior to the test
based on preliminary dynamic analysis of the stmectin controlled static truck

load tests, two trucks were simultaneously pos#ttban the bridge. Truck positions
were determined prior to the test in conjunctiothviihe instrumentation plan. Each
predetermined location corresponds to a load aglsieh can also be simulated in

the FE model. Displacement data is separately decofor each load case.
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Figure 6.3 Dynamic Test Results of Manoa Road Rrid@lITSI, 2003)

Figure 6.4 Deflections of the Beam “F” From theléi€&est for Manoa Road Bridge
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In this study, the measured response of the Marmeal Bridge obtained from field

tests is used for the calibration of the analytroaldel of the bridge. The measured
response consists of the first three modes andaldtequencies of the bridge as
illustrated in Figure 6.3 as well as the verticadpthcements recorded at three

locations along the length of the center beam ssalized in Figure 6.4.
6.3 Bridge Modeling

SAP2000 is used to model and analyze the Manoa Radde. Accordingly, a 3-D
numerical model of the Manoa Road Bridge is dewvedbpsing the 0 version of
the software. The key dimensions and geometry idigbrmembers were extracted
from the plans. A typical 3D FE model that is consted using solid elements and
frame elements for a complete and accurate modefitite geometry, detailing and
material properties are illustrated in the examplBigure 4.7. Each reinforcing bar
and its bond with concrete are explicitly simulat€&glich a fine microscopic
approach to 3D geometric -replica analytical modgls now practical and enables
explicitly simulating every material point of theridge for an accurate
representation of the geometry, the actual behaviechanisms and any existing

deterioration or damage.

Figure 6.5 3-D Views of the Entire Bridge
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Figure 6.6 Top and Bottom Views of the Entire Bedgespectively

Figure 6.7 Reinforcement of the Entire Bridge

Figure 6.8 3-D Views of a Single T-Beam
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Various outlooks of the Manoa Road Bridge modehvékplicit modeling of all

main components are presented in Figures 6.5 to Th8 bridge was modeled
based on the geometries and material data fronuiétsdbawings. In the FE model,

axial frame elements were adopted for reinforcensrd solid elements were
adopted for concrete. The complete FE model ofethi&re bridge has a total of
40935 joints, 12161 frame elements, 31060 soligdnefds, resulting in 154419
degrees of freedom. Both longitudinal and transvesteel reinforcing bars were
modeled on a one-to-one basis using frame elens@rmdsconnected to the solid
elements simulating perfect bond. The parapetslat@al end diaphragm were
modeled in detail. Boundary conditions were defisadh that all the nodes on the
superstructure-substructure interface at the emdbheobridge are modeled using
linear springs. As observed during visual inspewsjocthere are effective lateral
restraints at the ends of the bridges due to gamssure and pavement thrust.
Therefore, the lateral earth pressure on the dégphrbeam is also simulated using
linear springs. Thickness of asphalt overlay ondbthe concrete deck is accounted
for by distributing the total mass of the asphaltlte joints on the surface of the

concrete deck.

6.4 Parametric Studies

Sensitivity studies are conducted to asses thergmgebridge parameters affecting
most the dynamic and static response of the streicas well as to determine the
sensitivity range of each parameter. These parasnate identified as the boundary
conditions, elasticity of concrete, lateral soiegsure and the thickness of asphalt.

Only the first 3 modes of vibration of the bridge aonsidered.

6.4.1 Boundary Conditions

The boundary conditions (BC) of an actual bridge aften complicated. Usually
they are idealized as fixed, hinged or roller suppm the analytical models. The

field tests by DI3 researchers revealed that bictand dowels between the stiff
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lateral diaphragm beams of the superstructure hadbeams on the abutments
create a very effective restraint, prohibiting asljppage and other movements.
Lateral soil pressure and pavement thrust furtbetribute to the restraint. In an
effort to simulate this restraint in the analyticabdel, boundary conditions of the
Manoa Road Bridge are simulated using linear springvertical and horizontal

(lateral and longitudinal) directions as describe#igure 6.9 (a and b). In addition,
the lateral earth pressure on the diaphragm beasmmislated using linear lateral

springs as shown in Figure 6.9 (c).

In order to examine the influence of vertical, korital and lateral springs on the
structural behavior of the bridge and determine s$easitive ranges of these
parameters, each spring stiffness was set to tixensoof ten and the first three
natural frequencies of the bridge were calculaket. the different spring stiffness
values, the calculated frequencies are plotteddnrEs 6.10, 6.11 and 6.12. It can
be seen that boundary conditions do have signfifieaffuences on the dynamic

characteristics of the Manoa Road Bridge.

Figure 6.9 a) Vertical springs, b) Horizontaliegs (lateral and longitudinal
springs), c) Lateral spring due to soil pressure
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As observed from Figure 6.10, the bridge respoassensitive to the variation of
the vertical spring stiffness value between 0 aditl lowever, the model produces
very large vertical displacements which are nosjids to observe in real structure
for the range of O to fOHence, the sensitive range of this parameteetisrchined

as [1G, 10°).
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Frequencies Vs Lateral Spring Stifness
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Figure 6.12 Frequencies versus Lateral Springrigts

Based on the Figure 6.11, the bridge responsenisits@ to the variation of the
horizontal spring stiffness value between 10 and. Mowever, very large
horizontal spring stiffness reduces the flexibiliof the model resulting in
frequencies far larger than the ones observectid fest. Hence, the sensitive range
of this parameter is set to be between [10]. 1Bimilarly, from Figure 6.12, the
bridge response is sensitive to the variation ef ldteral spring stiffness value
between 0 and f0Hence, the sensitive range of this parameterisrthined as

[0, 10].

While generating the training set for Neural Netk#rspring stiffness is expressed
only in powers (of 10) so that the parameters aitoumly distributed within their
sensitive ranges. For example, vertical sprindn&#s is varied from 2 to 5 in the

training set.
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6.4.2 Modulus of Elasticity of Concrete

The modulus of elasticity of concrete plays an ingnat role in the dynamic
characteristics of the RC T-Beam bridges. It cansh&l that any increase in
modulus of elasticity of concrete structures resift an increase in the natural
frequencies of the bridge due to the stiffenedcstme. Therefore, it was taken as
one of the parameters that significantly affectiiedal parameters of the structure.
Based on the field tests and the reduced elastied@giulus for concrete to account
for the deterioration, the range of variation oistiparameter is assumed to be
between 800-4000 ksi in analytical modeling and Adbdies.

6.4.3 Thickness of Asphalt

In the FE modeling of the Manoa Road Bridge, thespnce of the asphalt directly
affects the mass of the bridge and thus its dyngraperties. Therefore, thickness
of asphalt overlay on top of the concrete deck khalso be considered in the
modeling to completely reflect the dynamic charasties of the system under
study. When the asphalt thickness in PennsylvaR&sT-beam bridge population
is statistically analyzed using NBI Data, it hagibdound that it varies between O
and 12 inch. Accordingly, the range of variationtlus parameter is assumed to be

0-12 in the analytical model and ANN studies.

6.5 Mode shape verification

Modal analysis in structural dynamics is aimed ¢tedmine the natural frequencies
and mode shapes of a structure and evaluate jfensss under dynamic loading. In

most cases, only a small number of lowest vibratimmies dominate the responses
of an engineering structure. In the present stodfy the first three modes were

used. However, these three modes may not appeasathe under all parameter

values of the bridge. The modes may switch or Vargs in some cases new modes
may appear in a modal analysis of a bridge based wibration characteristics

governed by the assigned parameter set. For egarguV values of horizontal
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stiffness (i) introduce a new mode as the first mode of theesysshifting the

first three modes of the nominal model. Therefatrés essential to compare the
mode shapes of natural frequencies using the $edcilodal Assurance Criterion
(MAC) to ensure about the equivalence of modes éetvdifferent models. MAC,

a coefficient lying in a range between 0 and 1used to quantify the similarity
between two mode vectors (Equation 6.1). A zero MAdicates no correlation,

whereas 1 indicates the highest correlation (dentical vectors). It is important to
mention that it correlates the two modes basedhei shapes only, not on their
magnitudes. As an example, the MAC values for aehad the training set are
presented in Table 6.1. The values on the diagan@abnes, implying that the mode
shapes are the same, and of the same order. Ze1® ¢@ off diagonal terms show

that the mode shapes are orthogonal to each other.

y Al D

VWX
° yaly, 08D

(6.1)

where[} \ is the"#® mode shape obtained from the FE model BngDis the~**

mode shape identified from the measured accelesatio

Table 6.1 Comparison of Mode Shapes between Aralyand Experimental
Results

Experimental Modes

1 2 3 4 5 6

0,997 0,001 0,063 0,001 0,022 0,018
0,005 0,994 0,001 0,084 0,000 0,001
0,070 0,003 0,997 0,003 0,248 0,078
0,002 0,124 0,003 0,994 0,013 0,173
0,028 0,001 0,348 0,011 0,992 0,524
0,018 0,000 0,083 0,293 0,404 0,978
Max | 0,997 0,994 0,997 0,994 0,992 0,978

Analytical Modes
OO WINIPFP
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6.6 Neural Network Modeling

6.6.1 Training Patterns

Based on the results of sensitivity analyses, iaeameters have been identified as
having significant impact on the static and dynapmoperties of a T-beam bridge.
Assigning random values to these parameters witieir specified ranges, a total
of 121 FE model of the Manoa Road Bridge were eckaidividually with the aid
of SAP 2000 program to generate the necessaryrtgapatterns (see Appendix C
for the training data set). To obtain the statsponse (deflections) of the bridge
analytically, two dump trucks with tandem-axle lsauf 40 Kips—55 Kips per truck
are simulated in all the FE models in line withuadtfield tests. After performing
modal and static analysis of each model, first ehmatural frequencies were
recorded considering Modal Assurance Criterion (MAGd simulated deflections
were taken at three predefined locations alongntigzlle T-beam (Appendix C).
This set was reversed to train the ANN model dueverse nature of the problem.
Frequencies and deflections are used as the ighuke network, and the outputs

are the structural parameters to be updated iarthbytical model.

6.6.2 Neural Networks Model

The successful application of neural networks specific problem depends on two
factors, namely representation and learning. Choitean appropriate network
topology and training parameters are problem-depeindand are usually
determined by trial and error in the back-propagatearning algorithm. After a
number of trials in NeuroSolutions 5, appropriaadues of the network parameters

are set as follows:
Number of training examples = 121;

Number of input layer neurons = 3 for Model 1 anidi6Model 2

Number of output layer neurons = 5
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Type of back-propagation = Levenberg-Marquardt fa@pagation
Activation function = Sigmoid function

Normalization range = [0.2,0.8]

Learning rate = 0,01

Training mode = Batch mode

Based on the above network parameters, extengidly €tn one and two hidden
layers networks was carried out and it was foumd #hsingle hidden layer with an
optimum number of neurons is sufficient for modglof this problem.

Number of hidden layer = 1
The number of nodes in the hidden layer was vafiedh 4 to 15 in Neuro
Solutions 5 to determine the optimum number of sode the hidden layer.

Optimum number of nodes was found to be 9.

Number of hidden layer neurons = 9

The architecture of the network is shown in FigbuS.

Figure 6.13 ANN Model for Calibration of Manoa Roddge
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ANN Model

In the ANN model, the first three natural freque&scand three deflection values
taken along the middle beam of the bridge (Beafridgure 6.4) were used as inputs
to the network to predict the five output parameter be updated in analytical
model. The network was trained with the training generated through linear
analysis of analytical model and the desired ostfheve been reached at™0
epochs with average MSE value of 0.0124112. Ther emmeasurement indicates
that the error has been reduced to an acceptalde Tehe field-measured data set,
which consists of the first three natural freques@nd three deflection values, was
presented to the trained network to obtain the ipted values of the structural
parameters (Table 6.2). The second row in TaldesBows the predicted values of
the structural parameters. To validate the prexhicof ANN based calibration
procedure, the FE model of the Manoa Road Bridge wpalated with the predicted
values of the bridge parameters, and a modal dsawetatic analysis of the bridge
was carried out in SAP2000 under this parametertsedbtain the analytical
frequencies and deflections. The third row in Tabl@ shows the calculated

deflections and frequencies of the bridge.

Table 6.2 Calibration of Manoa Road Bridge (Lin@aalysis of the Model)
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The results indicate that by using this ANN modelis possible to reduce the
differences between the measured and the calculleggdencies to less than 10%
for the first three modes and to reduce the medsane the calculated deflections

to less than 31% for the deflections along thereéiitbeam.

Although computed natural frequencies of the 3-Dri@tel agree well with those
from field measured data, significant differencestbetween the computed and
the measured values of deflections. Therefore,tithi@ing set was re-generated
considering that concrete does not carry tensiane® In each model of the
training set, solids subjected to tension weregassl zero elasticity to prevent
concrete from carrying tensions. As a result, asialyesults of training patterns

have been generated through non-linear analysieanalytical model.

The same parameters (first three natural frequereiel three deflection values
taken along the middle beam) were again used agdsrp the network to predict

the five output parameters to be updated in amalythodel.

Table 6.3 Calibration of Manoa Road Bridge (Nordin@nalysis of the Model)
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Using the same network parameters and architedueeretwork was trained with
the training set generated through non-linear @iyt the analytical model. The
desired outputs were reached af' Bpochs with average MSE value of 0.0060617.
The error is relatively good compared the previons. The field-measured data
set, which consists of the frequencies and deflastiof the Manoa Road Bridge,
was fed into the trained neural network system litaio the predicted values of
bridge parameters (Table 6.3). The second row InleT6.3 shows the predicted
values of the bridge parameters. To validate thediption of ANN based
calibration procedure, the FE model of the ManoadrBridge was updated with
the predicted values of the bridge parameterspamddal as well as static analysis
of the bridge was carried out in SAP2000 under plEisameter set to obtain the
analytical frequencies and deflections. The thiodv rin Table 6.3 shows the
calculated frequencies and deflections of the leridg

A comparison of measured and calculated frequencdisates that they do differ
from each other only by 5.83 % for the first mod&,1 % for the second mode and
8.81 % for the third mode. A comparison of measwuard calculated deflections
caused by the truck loads indicates that the siiithe calibrated model based on
predicted bridge parameters may differ from the suead deflections by 0 to 12 %.
The differences are all within tolerable limits lidating a successful prediction of

the bridge parameters by neural networks.

6.7 Discussion

The purpose of this study was to demonstrate tipdicaiility of neural network
technique in prediction of the structural parangeterbe updated in calibration of
analytical models. Parametric sensitivity analyass first performed in order to
identify those parameters that significantly afféet dynamic and static properties
of the T-beam bridges. After the structural pararseare assessed, a set of training
samples are generated in such that these trainmg@les should cover all possible
combinations and ranges of parametric variatiorrisure that the ANN models

trained using these patterns can accurately remrebe structural behavior.
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Training patterns were processed by the networgstablish implicit relationship
between the inputs (modal parameters, deflectiamg) the outputs (structural
parameters). Several network designs were examaret 6-9-5 architecture with
defined network parameters was identified to haveasonable performance. The
network first trained with the training set geneththrough linear analysis of the
analytical model and desired outputs were reachddaepochs with an average
MSE value of 0.0124156. The maximum difference leetwthe measured and the
calculated frequencies for the first three modegeaped to be less than 10%.
Calculated and measured deflections differ fromhesther as much as 31%. Then,
the training set was re-generated considering ¢batrete does not carry tension
forces. The network was trained with this trainsef which has been generated
through non-linear analysis of the analytical modeld desired outputs were
reached at 1 epochs with an average MSE value of 0.0060617e Maximum
difference between the measured and the calcufetgdencies for the first three
modes is less than again 9%. However there is aifis@nt improvement in
deflections. The maximum difference between meakuaed the calculated
deflections along the central T-beam were reducad 81% to 12% indicating that
T-beam bridges should be calibrated by taking atoount the non-linear behavior

of concrete.

Due to possible errors, uncertainties and discr@parbetween the experiment and
the analytical model, a "100% match" should noteexed, hence it can concluded
that the calibration of the bridge is achieved ie point that computed natural
frequencies of the 3-D FE model agree well withsthérom field measured data.
For deflections, however, slight differences eXistween the computed and the

measured values.

This study show that, a neural network (NN) cantitaned to learn the pattern
between the output and input data sets of an acallyhodel in reverse direction.
Preparing input and output data sets for such aahenetwork would take
considerable amount of time; however, once a neoeflvork is successfully

trained, the same system can be used efficientdygaickly for calibration of other
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bridge models. The field-measured data set, wha$ the same format with the
selected analysis output parameters, can be fedti@ trained neural network
system obtaining the proper input parameter thatilshbe used in the analytical
model. Following the testing of a bridge, the pmoparameters to construct a
calibrated analytical model can be obtained fromtthined neural network within

seconds.
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CHAPTER 7

A RAPID CALCULATION OF LOAD RATING OF T-BEAM BRIDGE S
BASED ON FE MODEL AND NEURAL NETWORKS

Bridge load rating is a component of the inspecgiotess and is used to determine
the safe-load carrying capacity of the bridge. AA€Hrecommends the use of a
simple and practical method for rapid evaluatiorioafd rating capacity of T-beam
bridges. In this method, an individual beam is ta&at as a free-body, idealized as
simply-supported, and the continuity of the bridgethe transverse direction is
indirectly accounted for by means of axle-loadrdisttion factors. This approach is
found to significantly underestimate the deck slatpntributions to lateral load
distribution for many bridge geometries. A morewrate evaluation of load rating
capacities of T-beam bridges is possible throughoperly constructed, geometric
replica 3D FE model since the contribution of sialproperly simulated by the
model. Besides, the secondary components sucte astiributions of parapets and
diagrams can be accounted for. FE based methoduits @ reasonable and
advantageous method for load rating analysis afglesbridge. However, as far as
load rating analysis of a population of bridgescacerned, the method is not
practical, and computationally unmanageable dutécdevelopment of FE model
of each bridge in the population. In this chaptex,develop a method based on the
use of neural network and FE model together foidramd accurate load rating
analysis of a population of bridges. 104 T-beanddei models constructed in
Chapter 5 were used to generate necessary datthdotraining of ANN. The
maximum shear and moment (demand) developed uritferedt values of the
governing parameters set (the span length and akete, width of bridges, beam
depth and existence of reinforced parapets andiephragms) are recordedfter
calculating the capacity of each bridge model, Itz ratings are calculated with the

aid of a spreadsheet program using the capacitylannd of the bridge. The training
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data is prepared such that inputs are the bridgammters and outputs are the shear and
moment load rating. ANN is trained to learn thiktienshipin order to speed up the
accurate load rating of these bridges while dtiitdy conforming to the AASHTO

standards and provisions.

7.1 AASHTO Load Rating

The AASHTO contains simplified procedures to beduisethe analysis and design
of bridges. The analysis of a bridge superstructsireeduced to the analysis of

single member with the introduction of wheel loastribution factors (Figure 7.1).

Figure 7.1 AASHTO Modeling a T-beam Bridge with HEPruck Loading for
Load Rating

In order to load rate a bridge, AASHTO utilizesating factor. The rating factor
(RF) is a scaling number used as a multiplier efldading used in determining the
live load effects. According to AASHTO Manual foro@dition Evaluation of

Bridges (1994 and updated interims), each highwadgb is rated at two levels:

Inventory and Operating. The inventory rating legetresponds to the customary
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design level of stresses but reflects the exidbindge and material conditions with
regard to deterioration and loss of section. Ojregaating level generally describe
the maximum permissible live load to which the stiwe may be subjected.
Essentially, the inventory level represents theacdyp of a bridge for normal traffic,

whereas the operating level corresponds to an mced©Vversized load.

Figure 7.2 Rating Flowchart for Moment

AASHTO uses the following expression in determinitige load rating of a
structure. Figure 7.2 summarizes the AASHTO basetyb rating procedure.

X+W te,
Wt f te€t,
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where

RF

Rating Factor

C

Member Capacity

DL = Dead Load Effect

LL = Live Load Effect
A1 = Dead Load Factor
A, = Live Load Factor

I = Impact Factor

DF = Distribution Factor

The impact factor is a multiplier on live load inteed to account for the dynamic
effects of vehicles. To account for distributiontbé load to adjacent members by
the slab, AASHTO uses what is known as a distrutfactor (DF). The

distribution factor greatly affects a beam desigmating because it determines the
percentage of vehicular load (moment or shear) ithatt be carried by the beam.
Since their inception, these distribution factoasédnevolved or changed very little.

These distribution factors have been criticizedbeing overly conservative.

In the AASHTO 2007 LRFDBspecifications for the T-beam bridges, the distidru
factors are defined as a function of the spacipgndength, girder stiffness and slab
thickness (Equation 7.2, 7.3, 7.5 and 7.6). Intaamidi there are modification factors
for skewed bridges in the LRFD specifications (Boqua7.4 and 7.7).

Moment distribution factor for an interior beam lwitvo or more design lanes
loaded using Table S4.6.2.2.2b-1.



Moment distribution factor for an interior beam hvine design lane loaded using
Table S4.6.2.2.2b-1.

! T tllt_ -

According to S4.6.2.2.2e, a skew correction fadomoment may be applied for
bridge skews greater than 30 degrees.

Shear distribution factor for an interior beam witfo or more design lanes loaded
using Table S4.6.2.2.3a-1.

Calculate the shear distribution factor for anrimebeam with one design lane
loaded using Table S4.6.2.2.3a-1.

o€ =17 —T™ 71

According to S4.6.2.2.3c, a skew correction fatborsupport shear must be applied
to the distribution factor of all skewed bridge$ielvalue of the correction factor is
calculated using Table S4.6.2.2.3c-1
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The load ratings for 104 representative bridgesftbe AASHTO based analysis
results are given in Appendix D.1. Appendix D.2islrates an example for load
rating using AASHTO.

7.2 FE Based Load Rating

The additional reserve capacity and conservatistoad rating for T-beam bridges
are recognized by DI3 engineers and researchef$3DI2003). There are several
mechanisms that contribute to the load rating afdes. Identifying the individual
effects of those mechanisms is crucial for evatuatf the current rating process.
For instance, additional capacity is brought by e¢kistence of reinforced parapets
or end diaphragms. In addition, it is possible &flect some additional load
capacity by only proper 3D modeling and still coynpd with AASHTO rating
procedures. Figure 7.3 illustrates how two HS2@Kroads are defined for the 3D

FE models for load rating. Truck loads are defingétiout any distribution factors.

Following expression can be used in determiningRE& based load rating of a

structure. Rating calculation procedure by FE amiglis summarized in Figure 7.2.

79

where
RF-ev = FEM Based Rating Factor
C = Member Capacity

DLrem = FEM Based Dead Load Effect
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LLeem = FEM Based Live Load Effect
Al = Dead Load Factor
A> = Live Load Factor

Impact Factor

Due to having three dimensional FEM, no distribaitiactor (DF) is incorporated.

Figure 7.3 FE Modeling a T-beam Bridge with HS20¢k Loading for Load
Rating

FE based method is quite a reasonable and advansgeethod for load rating
analysis of a single bridge. However, as far adl Ieding analysis of a population
of bridges is concerned, the method is not prdctiemd computationally

unmanageable due to the development of FE modekawh bridge in the
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population. The load ratings for 104 representabwvelges from the FE model
analysis results are given in Appendix D.1. Apperiali2 illustrates an example for

load rating using FE model.

7.3 Network Modeling of FE Based Bridge Ratings

7.3.1 Bridge Data

The bridge data is prepared such that inputs arétidge parameters identified in
statistical analysis in Chapter 5 and outputs heeREM based bridge load ratings
(Inventory ratings, IR). As a result of statistieadalysis, the numbers of governing
independent bridge parameters are establish agtepan length and skew angle,
width of bridges, beam depth and existence of oeg®d parapets and end
diaphragms. These parameters are used as inphts network. The outputs are the
moment and shear load ratings obtained as discussprevious section. In this

study, the bridge data is used to establish intrirdationships between the bridge
parameters and corresponding load ratings to sppethe FE based load rating
analysis. Bridge data consisting of 104 T-beamdadis given in Appendix D.1.

Of these bridges, 75 have been assigned to traibthgs cross-validation and 10 as

test patterns in neural network modeling.

7.3.2 Neural Network Modeling

As mentioned before, the success of networks depenchetwork parameters and

the topology. Appropriate values of the networkgpmaeters are set as follows:

Number of training examples = 75

Number of cross-validation examples = 19

Number of test examples = 10

Number of input layer neurons = 6

Number of output layer neuron = 2

Type of back-propagation = Levenberg-Marquardt fa@pagation

Activation function = Sigmoid function
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Normalization range = [0.2,0.8]
Learning rate = 0,01
Training mode = Batch mode

Termination rule = minimum cross validation erromeaximum epoch

Several architectures are tested in conjunctiorh wite above set of network
parameters to find the one having the best predigierformance. This is a similar
process that is carried out in Chapter 5. A typiaihitecture is designated as
“‘input nodes (n) - [hidden nodes per hidden laye)yj{output nodes (p)”. Six bridge
parameters (the span length and skew angle, witlthridges, beam depth and
existence of reinforced parapets and end diaphradorsn the inputs of the
network and moment and shear load ratings are aemexi as network output. The
following cases are created and studied with réspedhe choice of network

architecture

Case 1: Network 6-(m)-2; m varies from 4 to 12

In case 1, the architecture has one hidden lay#rwinodes denoted as 6-(m)-2

Case 2: Network 6-(m-m)-2; m varies from 4 to 12

In case 2, the architecture has two hidden layéifs w nodes per layer denoted as
6-(m-m)-2

In the current study, the network performance soaisted with the maximum error
in load rating prediction of the network for alkthesting patterns. If the maximum
testing error appears to be below the tolerablellethen the performance of
network is considered satisfactory. The resultghef study on different network

designs are shown in Figure 7.4.
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Figure 7.4 Maximum Testing Errors versus Numbéxodles in Hidden Layer(s)

It can be seen from this figure that ANN is quiteful in predicting load ratings.
All the trained networks are able to predict thadoratings for all the testing
patterns with a reasonable accuracy. Predictivieopeance of the network may be
improved depending on the number of nodes in ttddm layer(s) and the number
of hidden layers. A single hidden layer with aniopim number of neurons is
sufficient for modeling of this problem. As seemwrfr the Figure 7.4, the best
performance in predicting load ratings is shown @gse 1 with a ten nodes,
resulting in 3.89% maximum average testing errar f@mment load ratings and

1.97% maximum average testing error for shear tatidgs for all testing patterns.

Best ANN Model

The predictive performance of the 6-10-2 architextus better than other

architectures. The neural network is presentedgarg 7.5.
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Figure 7.5 ANN Model for the Prediction of Invengdroad Ratings

D00cccce—atic

Figure 7.6 Avarage MSE versus Number of Epochd faining the Best Network

92



In figure 7.6, the average MSE in training versumber of iteration is plotted. The
average MSE drops drastically after 11 epochs amdies on running until
minimum validation error which is reached at 59ffoeh with a MSE error of
0.000495371. After training is completed, test s®tused to evaluate the
performance of the network. For this purpose, al wit 10 testing patterns are used
to observe the prediction performance. In testihg,network predicts load ratings
by generalizing what it has been trained for. Toma outputs (FEM based load
ratings) and the outputs from the networks of eagample are graphically

represented in Figure 7.7 and 7.8.

o (M1
 — '("# #

Figure 7.7 Desired Output (FEM based) and Actughatuof the Best Network for
Moment
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Figure 7.8 Desired Output (FEM based) and Actugauof the Best Network for
Shear

From Figure 7.7 and 7.8, it is clear that the prgains of the best networks for 10
unseen patterns is quite satisfactory, resultingp@ximum average testing error of
3.89% for moment load ratings and 1.97% for shead Iratings as mentioned
before. This indicates that the network has learthedrelation and generalizes to
other patters reasonably. In addition, the linesfficient of correlations very high
between actual data and values predicted througiraheetwork and it is 0.997 for
moment load rating and 0.996 for shear load ratmdjcating that proposed ANN

model shows very good agreement with actual britige.

The load ratings for 10 testing patterns from tlerfodel and the corresponding
AASHTO based analysis results as well as netwoekliption are given in Table

7.1. It is clear from the results that FEM baseadloatings are higher than the
AASHTO based rating, indicating that bridges iniméiye possess a greater load
capacity. It can also be seen from this table #igiN is quite successful in

predicting the load ratings from the bridge pararset
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Table 7.1 Moment and Shear Bridge Ratings for 1€lifig Patterns

MODEL INFORMATION AASHTO (LRFD) FEM ANN (FEM Based)
Sl2|ls|=|88l 5% é g é g é g
Slalz|&|2 |8 g @ S | & g 2
1 21 2 22 10 1 1 1,167 1,201 1,63p 1,549 1,611 1,957
2 25 21 21 11 0 1 0,566 0,968 1,01B 1,413 1,007 1,421
3 37 37 25 9 0 0 1,788 1,658 2,93 2,102 2,9%6 2,142
4 32 19 19 8 1 0 1,678 1,655 2,64 2,024 2,741 2,07
5 28 24 35 6 1 1 0,335 0,952 0,77B 1,483 0,792 1,424
6 30 25 37 7 1 1 1,226 1,217 1,83B 1,586 1,788 1,942
7 45 23 25 8 1 1 0,466 0,978 0,78]L 1,391 0,751 1,398
8 26 28 23 9 1 0 1,055 1,312 1,57p 1,656 1,620 1,478
9 41 28 25 10 1 0 0,499 0,950 0,677 1,341 0,7p0 1,359
10 32 15 28 11 1 1 1,584 1,485 2,31 1,742 2,3139 1,794

7.4 Discussion

The purpose of this chapter is to develop an ANNlehdo obtain the FEM based
bridge ratings of T-beam bridges from the commadde parameters so that the
load ratings of these bridges are calculated atelyrand practically. 104 T-beam
bridge models constructed in Chapter 5 are usepeterate necessary data for the
training of ANN. Bridge data is prepared such ihguts are the bridge parameters
and outputs are the FEM based shear and momentatiads. The bridge data is
divided into three sets, namely, “training” setydss-validation” set and “test” set.
Of these bridges, 75 have been assigned to traibthgs cross-validation and 10 as
test sets in ANN modeling. ANN is trained to predt&M based ratings from the
bridge parameters. Several network designs are iagdnto determine one with a
reasonable performance. The predictive performahtee 6-10-2 architecture with
defined network parameters was found to be bettan tothers. It produces

maximum average testing error of 3.89% for momeadlratings and 1.97% for
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shear load ratings in the test set, indicating that learning and generalization
performance of the ANN Model is very good. In aaldfif the linear coefficient of
correlations is 0.997 for moment load rating ar@P6.for shear load rating in the
ANN Model. This indicates that proposed ANN Modebw/s very good agreement
with FEM based load ratings. It is clear from tksults that FEM based ratings can
be easily and accurately obtained using ANN Modeilevstill strictly conforming
to the AASHTO standards and provisions. The propoA8IN model is quite

accurate, fast and practical.
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CHAPTER 8

CONCLUSIONS

In this work, approximate analysis of RC T-beandgeis, calibration of the T-beam
bridges and modeling of load ratings of these l@sdgre studied using neural
networks. Based on the results, the following casions can be drawn from the

study:

Approximate Analysis of RC T-Beam Bridges

The results indicate that by selecting the righuinparameters and properly
constructing and training the ANN models, it is gible to establish
intrinsic relationship between the bridge paransetand responses, and
interpolate this relationship for other bridges hwa maximum error of
3.36% for moment and 1.53% for shear. In additiba,linear coefficient of
correlations between analytical data and valuesligel through neural
nets is very high and it is 0.998 for moment ar#66.for shear, indicating

that proposed NN models show very good agreemehtagtual responses.

Sensitivity analyses with the trained neural neksoprovide valuable
additional information on the relative influence input parameters on the
bridge systems. The most important input parami&termoment is the
bridge length, while the most important input paeten for shear is skew
angle. The least important input for both is patajpe addition, moment
increases with increasing span length, beam dejtliree number of beam,
while it decreases with increasing skew angle aastence of parapet and

diaphragm. Shear increases with increasing spaytheskew angle, beam

97



depth, the number of beam and presence of diaphkelgiie it decreases

with the existence of parapet.

In addition to the accuracy of outputs and the edsese, neural networks
reduce the overall time required for implementatiby significant amount
when compared with FE methods. The bridge respocsesbe obtained
from the trained neural networks with a trivial qoumational time and effort
and without a need to construct and analyze a nedehfor each parameter

set.

Calibration of the T-Beam Bridges -Manoa Road Beidg

ANN model was first trained with the training setngrated through linear
analysis of analytical model. The results indicttat by using this ANN
model, it is possible to reduce the differencesvbeh the measured and the
calculated frequencies to less than 10% for the finree modes and to
reduce the measured and the calculated deflectioless than 31% for the
deflections along the central T-beam. Then, thees®NN Model was
trained with the training set generated by considethat concrete does not
carry tension forces. The maximum difference betwd®e measured and
the calculated frequencies for the first three nsodeless than again 9%.
However there is a significant improvement in deftens. The maximum
difference between measured and the calculateddtiefhs along the central
T-beam were reduced from 31% to 12% indicating fhdteam bridges
should be calibrated by taking into account the-inoear behavior of

concrete.

Due to possible errors, uncertainties and discr@panbetween the
experiment and the analytical model, a "100% mastiduld not expected,
hence it can concluded that the calibration oflihidge is achieved to the
point that computed natural frequencies of the B model agree well

with those from field measured data. For deflecjohowever, slight
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differences exist between the computed and the unedwvalues. Preparing
training set would take considerable amount of timevertheless, once a
neural network is successfully trained, the samstesy can be used
efficiently and quickly for calibration of the bgd model during the
lifetime of the structure, following testing of thetual bridge.

Modeling of Bridge Load Ratings of T-Beam Bridges

Since 3D FE models that precisely represent PAb®am bridge population
improve the load rating of these bridges, loadngstiare calculated again
more accurately by taking into account the actealngetry and detailing of
the T-beam bridges. Then, ANN systems are used ddemthe bridge

ratings based on the bridge parameters. The prdpdis&l Model produces

maximum average testing error of 3.89% for momeidde ratings and

1.97% for shear bridge ratings for the test pasteifhis shows that the
learning and generalization performance of the AMbddel is very good. In

addition, the linear coefficient of correlationsd€997 for moment bridge
ratings and 0.996 for shear bridge ratings, indigathat proposed ANN

Model shows very good agreement with FEM basedjermatings.

Using this ANN model, the highest utilizable cappaof any T-beam bridge

can be easily computed while still strictly confenm to the AASHTO

standards and provisions.

Avrtificial Neural Networks

The success of networks depends on network paresraeid the topology.

Levenberg- Marquardt learning rule and the signtegshsfer function are
appropriate choices for a successful network agfdio in the current

context.
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The learning and prediction performance of the pnektwary depending on
the number of hidden layers and the number of naddke hidden and
output layers. A single hidden layer with an optimnumber of neurons is

sufficient for modeling of these problems.

While minimum MSE is a measure of learning perfano® it does not

guarantee the best prediction rate (generalizatsgrability). To make sure
that the network training has been satisfactordgnpleted and the network
is capable of generalization, a set of unseen mpatiust be selected and

the network should be tested using these patterns.

The proposed models are quite accurate, fast audiqgal for use within the

range of bridge data used for training.
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APPENDIX A

LEARNING IN ARTIFICIAL NEURAL NETWORKS

A.1 Generalized Delta Rule Algorithm

The net input to a node in the layes given by (Figure 3.5)

and the output of nodewill be

Here is the activation function and in this study feWiog given sigmoidal

function has been used

4 fg zij zejk ]

Now the input to the nodes of layeris

106



and its respective outputs are

In the training process of neural networks, for thput pattern, 6,5 the
weights adjustment will take place in the linkstbé neural networks for desired

output .,, at the output nodes. After achieving this firdjustment the network
will pick up another pair of , and. ,,, and will again adjust weights for new pair.

Similar way the process will go on till all the unpoutput pairs get exhausted.
Finally network will have a single set of stabilizeveights satisfying all the input-

output pairs.

Usually the outputs,, will not be the same as desired output valygs For each

input-output pattern, the square of error can bergby

¢p = - pot po 11

and the average system error by

¢ e . p0+ po ]7

Avoiding the2 subscript in the egn (A6) for convenience, thenekpression will
be
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In a true gradient search for a minimum systemreyne has to compute the
derivative of the error functiof, with respect to any weight in the network and

then change the weights according to the rule

a¢
ro, + . ] <
where is learning parameter.
The partial derivativet¢¥a , can be given by using chain rule
ot ao¢ a 3
o [0} a [0} a [0} ] -
using eqn (A4)
o} o}
e - o 0 ]
[0} [0}
now | , can be given by
\ +a¢ ]
10 a o
therefore
r [0} : [0} ]
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The weights on each line should be changed by amuatmproportional to the
product of the term,, available to the unit receiving input along thaé and the
activation  along that line. The determination ppf is a recursive process. To
compute}, +a¢ # , the chain rule can be used to express in termsvof
factors. First the rate of change of error withpees to the output, and second the

rate of change of the output of the nodwith respect to input to that same node.
Therefore

2 % ] 1

for any output layer,r , will be given by

109



The application of the backpropagation algorithmoimes two phases. In the first
phase the input is presented and propagated forwaaugh the network to
compute the output value of each unit. In the backiwphase thg s for all the units

are computed. Once these two phases are complaecan compute for each

weight ther  s.

In summary here we add one more subs@ipd denote the pattern number, we

have

or if " are nodes of internal or hidden units then

The backpropagation is basically a gradient desedgbrithm. In multilayer
networks, the error surfaces will be complex widgvesal local minima. It is
possible that the gradient descent procedure meseach the global minimum, but

get trapped in one of the many local minima.

One way to increase the learning rate without legadd oscillation is to modify the

backpropagation algorithm by including the momenterm as below
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where/ is the presentation number and is the constant that determines the effect
of the previous weight changes on the current ime®f movement in the weight
space. This provides a kind of momentum in the ttespace that effectively filters
out the high frequency variations of the error @cefin the weight space.

A.2 Correlation Coefficient

The size of the mean square error (MSE) can be tese@termine how well the
network output fits the desired output, but it ddtesecessarily reflect whether the
two sets of data move in the same direction. Fstamce, by simply scaling the
network output, we can change the MSE without clranthe directionality of the
data. The correlation coefficientr)( solves this problem. By definition, the

correlation coefficient between a network outpaind a desired outputs:

Tg gt © 5+.0©

a g.gt.©a"g g+ ©

The correlation coefficient is confined to the rarjgl,1]. Whenr =1 there is a
perfect positive linear correlation betweeandt, that is, they covary, which means
that they vary by the same amount. Wihen-1, there is a perfectly linear negative
correlation betweer andt, that is, they vary in opposite ways (wheimcreasest
decreases by the same amount). Wher0D there is no correlation betweeandt,
i.e. the variables are called uncorrelated. Inteliate values describe partial
correlations. For example a correlation coefficiehD.88 means that the fit of the

model to the data is reasonably good.
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Table B.1 Generated Models and Corresponding ArsaRssults

APPENDIX B

BRIDGE DATA FOR APPROXIMATE ANALYSIS

MODEL INFORMATION

ANALYSIS OUTPUTS

Model Span Skew Beam Number of Parapet | Diaphragm FEM FEM

Length Angle Depth Beam Moment Shear

1 2€ 32 2€ 5 1 1 718,23 23,23¢

2 36 39 33 5 0 1 1427,633 26,588

3 32 12 4C 5 1 1 1134,55! 23,93¢

4 22 26 24 5 1 1 640,897 21,43

5 28 14 24 5 1 1 754,00! 21,23¢

6 24 15 31 5 1 1 739,897 21,868

7 2¢ 23 34 5 1 1 972,53 22,87

8 49 32 25 5 1 1 1113,118 23,075

9 48 2t 2¢ 5 1 1 1296,69° 23,89¢

10 40 28 31 5 1 0 1189,578 23,508

11 41 6 31 5 1 0 1195,406 21,58

12 20 10 31 5 0 1 743,601 20,672

13 47 7 23 5 0 1 1943,912 22,738

14 21 45 21 5 0 1 608,804 22,401

15 39 21 19 5 0 0 1500,546 22,39

16 20 27 38 5 0 0 753,835 21,135

17 41 6 31 5 0 0 1745,813 23,221

18 26 0 24 6 1 1 810,057 20,438

1¢ 28 28 32 6 1 1 1023, 7¢ 23,27

20 50 22 38 6 1 1 2289,972 25,314

21 23 31 3¢ 6 1 1 866,84. 22,60°

22 51 25 36 6 1 0 2148,386 24,249

23 28 27 2C 6 1 0 825,01t 20,75¢

24 29 0 23 6 1 0 985,28 19,907

25 54 28 22 6 0 1 2902,30! 24,55¢

26 54 4 29 6 0 1 3086,096 24,296

27 2t 12 31 6 0 1 1023,41- 22 4¢

28 37 1 19 6 0 0 1839,272 21,62

29 36 4 20 7 1 1 1117,098 21,187

3C 2€ 3€ 28 7 1 1 909,45t 24,13"

31 49 17 33 7 1 1 2109,775 25,351

32 35 3¢ 3¢ 7 1 0 1541,66( 26,96¢

33 27 35 21 7 1 0 875,648 23,081

34 52 11 18 7 1 0 1346,45! 20,62«

35 34 0 30 7 1 0 1397,282 22,821

3€ 21 35 1¢ 7 0 1 707,91 22,12¢

37 24 3 23 7 0 1 882,953 20,896

38 32 3¢ 27 7 0 1 1317,91! 26,32¢

39 55 39 20 7 0 1 2415,02 25,892

4C 42 2€ 3¢ 7 0 0 2138,32( 25,75.

41 50 8 25 7 0 0 2649,935 23,607

42 48 28 1¢ 8 1 1 1306,13 22,18:

43 24 44 33 8 1 1 827,929 24,388




Table B.1 (continued).

44 33 30 25 8 1 1 1150,534 24,13
45 33 10 25 8 1 0 1299,422 22,82
46 37 2 35 8 1 0 1677,228 24,028
47 36 21 19 8 1 0 1177,831 21,291
48 48 39 21 8 1 0 1451,435 22,644
49 47 31 32 8 1 0 1953,888 25,298
50 25 17 38 8 0 1 956,251 23,451
51 58 45 2C 8 0 1923,63! 26,17:

52 34 32 21 8 0 1 1321,827 24,238
53 48 15 38 8 0 2494,78! 26,22:

54 53 23 25 9 1 1 1951,25 23,955
58 4C 8 3€ 9 1 1735,08! 25,07«

56 38 40 22 9 1 1 1212,005 26,49
57 21 1C 3C 9 1 776,33: 21,4¢

58 31 14 25 9 1 1 1124,206 22,82
58 52 2 31 9 1 2380,56. 24,99¢

60 36 45 38 9 1 0 1480,588 27,727
61 3C 5 22 9 1 1125,14! 22,30¢

62 33 35 23 9 1 0 1151,799 24,614
63 28 31 38 9 0 1133,35: 24,70t

64 42 27 29 9 0 1 1829,805 26,196
65 49 32 21 9 0 1 2106,361 25,133
66 37 37 25 9 0 1430,88 25,22]

67 30 37 22 9 0 0 1078,143 24,468
68 27 18 38 9 0 1148,58I 23,85:

69 22 15 40 9 0 0 881,849 22,301
7C 37 26 25 1C 1 1342,86! 24,51:

71 31 24 25 10 1 1 1111,678 23,628
72 48 24 3€ 1C 1 2068,19¢ 26,70:

73 44 41 33 10 1 1 1710,487 28,277
74 21 2 22 1C 1 751,13 20,42

75 40 8 39 10 1 0 1904,678 25,63
7€ 3C 45 38 1C 1 1230,69! 26,42¢
77 38 38 38 10 1 0 1690,701 26,704
78 54 43 32 10 0 1 2301,866 28,344
79 40 22 39 10 0 1 1729,635 26,377
80 41 44 36 10 0 1 1629,005 28,442
81 49 1 33 10 0 1 2532,279 25,295
82 35 19 40 10 0 0 1638,345 25,532
83 31 11 24 10 0 0 1271,526 22,171
84 33 16 28 1C 0 1398,85° 23,35:

85 52 14 24 10 0 0 2535,614 24,077
86 28 4C 26 1C 0 1050,44: 24,58¢

87 51 45 31 10 0 0 2069,741 27,872
88 21 43 22 11 1 631,58 22,64:
89 38 38 31 11 1 1 1396,37 27,518
9C 51 7 27 11 1 2107,60: 24,50¢

91 54 25 23 11 1 0 2041,764 23,467
92 3C 5 32 11 1 1234,0° 23,08:

93 54 0 19 11 1 0 1888,665 22,205
94 32 41 32 11 1 0 1245,42: 26,47¢
95 46 19 37 11 1 0 2142,325 25,905
96 5C 31 26 11 0 1 2085,06: 26,1¢

97 35 26 32 11 0 0 1544,681 25,335
98 53 38 28 11 0 0 2207,44. 26,03

99 28 21 21 11 0 0 1016,031 22,29
100 46 34 31 11 0 0 1976,295 26,141
101 37 26 22 11 0 1 1378,852 24,062
102 28 28 19 11 1 1 903,853 23,266
103 26 3 25 8 0 0 966,723 21,02
104 35 22 19 8 0 0 1438,956 22,614
105 47 0 19 8 1 1 1351,672 21,544
106 41 32 31 8 0 1 1836,371 26,046
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Table B.1 (continued).

107 21 4 39 7 0 0 874,132 21,283
108 52 44 25 7 1 1 1557,353 26,437
109 24 5 24 6 0 0 942,194 20,753
110 49 19 28 6 0 0 2837,365 24,62
111 34 7 20 6 0 1 1586,351 22,023
112 35 4 35 6 1 0 1555,862 23,539
113 45 17 19 6 1 0 1111,021 18,842
114 31 21 25 11 1 1 1117,0¢ 23,52¢
115 25 21 21 11 0 1 877,846 22,527
11€ 3C 38 28 6 0 0 1289,76. 24,86:
117 32 14 40 7 0 0 1579,935 24,289
11¢ 42 24 32 8 0 1 1956,10( 25,40:
119 50 15 29 11 1 0 2241,165 25,602
12( 54 1C 20 8 1 1 1521,14: 22,25:
121 32 19 19 8 1 0 1081,079 21,809
12z 32 32 38 5 0 1 1293,8: 25,631
123 53 0 19 7 1 1 1357,467 20,659
124 41 44 3€ 1C 0 1 1629,00! 28,37¢
125 37 26 20 10 0 1 1390,765 23,593
12¢ 38 4C 4C 6 1 0 1701,65. 26,4
127 31 17 38 9 0 0 1359,581 24,062
128 42 20 33 8 1 1 1745,81 23,998
12¢ 48 14 2C 7 0 1 2471,70° 23,70:
130 28 19 38 5 1 0 951,964 23,059
131 48 17 27 11 0 0 2322,64! 24,91
132 42 26 25 9 0 0 1820,374 24,057
13t 22 26 23 6 0 1 849,23: 22,03¢
134 31 19 32 5 1 1 976,878 22,895
13t 28 24 38 6 1 1 1079,6¢ 23,20:
136 30 25 37 7 1 1 1217,701 24,6
137 45 23 25 8 1 1 1606,97° 23,71¢
138 26 28 23 9 1 0 930,698 23,055
13¢ 41 28 25 1C 1 0 1566,54: 24,37t
140 32 15 28 11 1 1 1256,158 23,935
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APPENDIX C

TRAINING SET OF MANOA ROAD BRIDGE

Table C.1 Generated Models and Analysis ResultMimmoa Road Bridge

ANALYSIS OUTPUTS MODEL INFORMATION
Model f f, f3 C.lFl (’:le (’:lFs E | tasphar | Ky (109 Kn (109 K (109
(Hz) | (H2) | (Hz) | (in) | (in) | (in) | (ksi) | (in) |(kips/ft) | (kips/ft) | (kips/ft)

1 20,0¢ | 21,4€ | 23,01 | 0,017 | 0,03¢ | 0,021 | 250C 5 4,7¢ 3 2,€
2 17,21 | 1858] 20,08 0,022 0,048 0,027 2000 4 285 851
3 1435| 154 | 1653 0,034 0,074 0,041 1100 7 4,48 834 13
4 21,2 | 22,8c | 24,4z | 0,01 | 0,032 | 0,01¢ | 300C 2 2,7¢ 1,2 3,9¢
5 1985 | 21,2 2269 0,018 0,036 0,021 3300 ] 3,7B 1 48 1,
6 18,41 | 195¢ | 20,8¢ | 0,02 | 0,04f | 0,028 | 220C 4 4,8t 1 2,4€
7 18,88 | 20,18] 21,69 0,019 0,044 0,024 2000 4,85 19 37
8 18,07 | 19,2¢ | 20,57 | 0,021 | 0,04¢ | 0,02¢ | 210C 3 3,€ 1,8 2,9t
9 13,01 | 14,01] 15,06 0,042 0,082 0,049 130 2,4 1,78 1.7
10 | 1456 | 1572] 16,92 0,033 0,067 0,089 1600 11 2,95 3 2, 1,85
11 14,3¢ | 156€ | 16,7z | 0,03 | 0,065 | 0,041 | 190C | 11 2 2,7 1,7€
12 21,11 | 2294] 24,87 0015 0,034 0,019 3000 11 395 953, 1,85
13 17,37 | 1844 | 19,6 | 0,02¢ | 0,05 | 0,02¢ | 200C 8 4,€ 1 1,8
14 | 1505] 16,55] 18,09 0,02 0,06 0,035 1800 2,4 285 1,6
15 | 21,24 | 22,77] 2448 0,005 0,035 0,019 2800 4,78 1,9 348
16 | 21,66 | 23555] 2551] 0,015 0,032 0,018 3400 10 3.9 3 3, 1,6
17 22,55 | 2424] 26,21 0,013 0,031 0,016 3000 4,3 39 395
18 24 | 25,7¢ | 27,7: | 0,01z | 0,027 | 0,01 | 390C 2 4,7¢ 2,8 2,9t
19 | 20,75] 22,22] 23,71 0,016 0,035 0,2 3100 1o 2,78 1 /48 3
20 | 19,78 | 21,18] 22,79 0,01 0,04 0,021 2300 g 3,96 1,85 3,78
21 18,15 | 19,36] 20,74 0,021 0,048 0,026 170 ) 3,3 378 33
22 15,62 | 16,78] 17,94 0,029 0,059 0,035 1800 2,48 27 23
23 | 17,41] 18,63] 20,15 0,026 005 0,037 1700 4.4 1,7 78 3
24 | 19,98 | 21,31] 22,75] 0,017 0,038 0,021 2700 ) 4,7 1 6 2,
25 21,1t | 22,71 | 24,42 | 0,01% | 0,03¢ | 0,01¢ | 280C 3 4,4€ 3,2 2,7
26 | 19,21 | 20,61] 22,16 0,01 0,04 0,022 2500 2,1 2 3,
27 20,26 | 21,99] 2381 0,017 0,037 002 2700 ] 3,9 395 1,9
28 | 17,16 18,23] 19,39 0,024 005 0,038 2100 ] 4 1 1,3
29 | 2233] 2455] 26,8| 0,014 0,03 0,017 3800 7 3,48 3,9 85 1
30 | 19,69 | 22,01] 2421 0,018 0,036 0,021 3300 10 3 3,7 1
31 19,41 | 202] 2089 0,019 0,039 0,024 2700 ] 2 2,7 3,
32 18,03 | 1921 20,5| 0,021 0,047 0,026 2100 : 3,86 1,3 285
33 | 21,09| 2256] 2424 0,015 0,036 0,019 2500 T 2,4 39 39
34 | 21,92 2356] 2542 0,014 0,033 0,017 3000 3,7 2 4
35 | 20,35 21,79] 2339 0,017 0,038 0,02 2500 { 3,9 295 33
36 15,71 | 16,82 | 18,0¢ | 0,02¢ | 0,06z | 0,032 | 130C | 11 5 3,9¢ 1,6
37 1545 | 16,64 17,89 0,029 0,063 0,085 1400 11 3.1 33 17
38 | 1835 1954] 2084 0,021 0,045 0,025 210 ) 5 1 2,7
39 | 12,84 1353] 1431 0,043 0,093 0,052 840 7 2,95 1,9 285
40 21,8 | 2367] 2558 0,014 0,031 0,017 3600 4 3,96 296 1
41 18,23 | 1957 21,03 0,02 0,048 0,024 2300 4,95 24 17
42 15,04 | 16,98 18,81 0,03 0,054 0,035 3400 p 2,3 1,3 9 1
43 | 1571 16,88] 1809 0,028 0,058 0,084 1800 1o 285 482, 2,3




Table C.1 (continued).

44 16,67 | 17,74| 19,01 0,025 0,057 0,08 1400 ] 5 2,3 3,7
45 18,15 | 20,34| 22,28 0,021 0,041 0,025 3300 2,6 2,95 1

46 14,73 | 1557 16,52 0,032 0,01 0,039 1200 [ 5 1 2,4
47 18,64 | 19,87 21,23 0,02 0,044 0,024 2200 § 4 1,7 95 2,
48 17,4 | 18,61 | 19,8¢ | 0,02z | 0,04¢ | 0,027 | 200C 0 2,48 1 3.,€

49 19,8 21,2 22,71 0,01 0,03p 0,021 2500 (i 4,3 2,8 6 2
50 12,19 | 13,11] 14,03 0,047y 0,099 0,0%7 840 ki 2,3 4 51,8
51 20,72 | 22,31| 2398 0,01 0,034 0,019 3500 4 3,7 2,3 1,9

52 17,04 | 18,14| 19,42] 0,024 0,055 0,029 1400 2 4,85 3,4 3,3

53 20,58 | 22,96| 2522 0,01 0,033 0,02 3600 1 2,95 3,80 1,48
54 16,54 | 17,58| 18,72l 0,02% 0,055 0,031 1700 11 3.7 1 78 2
55 18,13 | 19,43| 20,84 0,021 0,047 0,025 1900 ) 3,96 8 3,4 2,48
56 16,22 | 17,23| 18,35 0,02y 0,059 0,033 1400 2,7 1,4 3,9

57 16,87 | 17,93| 19,08 0,024 0,052 0,029 1900 10 3,95 1 2,3

58 17,12 | 18,25| 19,43 0,024 0,04 0,029 2100 4 2,1 1,9 95 2
58 13,2 14,2¢ | 15,3 | 0,03¢ | 0,08t | 0,04 90C 4 4,2 3,7¢ 1

60 2291 | 2462 2659 0,01 0,03 0,016 3100 S 3,78 3,1 3,7

61 13,67 | 14/43| 1536 0,03y 0,085 0,046 8d0 8 4,78 195 348

62 20,64 | 22,21 2399 0,015 0,034 0,019 3000 3,7B 1 3 3
63 13,8 14,62 15,5 0,037 0,078 0,044 1100 11 4,6 1,7 3 1
64 22,24 | 23,89| 2577 0,014 0,032 0,017 2900 7 3,7 3,6 3,7

65 23,36 | 25,09 27 0,013 0,028 0,015 3600 1 4,7 1 3,4
66 21,41 22,¢ 24,5: | 0,01 | 0,03¢ | 0,01¢ | 310C 12 4,48 1 3

67 19,24 | 2059| 22,03 0,019 0,04 0,023 2700 4 3,9 1 3
68 19,49 | 20,85| 22,38 0,01 0,042 0,022 2100 ) 4,1 3,6 3

69 18,65 | 20,24| 21,97 0,019 0,041 0,023 2400 3,8p 3,3 2

70 19,41 | 20,73| 22,18 0,01 0,042 0,022 2100 ) 2,9 3,78 3.3

71 19,6¢ | 21,06 | 22,6€ | 0,01¢ 0,04 0,022 | 230C 7 3,9¢ 1 3.7

72 16,72 | 18,48 20,3 0,024 0,046 0,028 3300 3 1 2
73 17,2¢ | 1851 | 19,7¢ | 0,02¢ | 0,04¢ | 0,02¢ | 220C 3 3,7¢ 2 0

74 17,62 | 18,75 20 0,022 0,04y 0,037 2400 10 3,78 1 0
75 21,57 | 23,18| 24,94 0,015 0,034 0,018 2800 3,78 8 3,7 3

76 21,98 | 2361 2543 0,014 0,032 0,017 3100 2 3,9 1 7 3,
77 18,89 | 20,19| 21,67 0,019 0,044 0,024 2000 3,48 3 6 3
78 20,9¢ | 23,17 | 25,37 | 0,01¢ | 0,03¢ | 0,01¢ | 340C 11 3,4¢ 3.¢

79 17,22 | 1853| 19,93 0,022 0,047 0,027 2300 3,78 2 1
8C 20,97 | 23,1z | 25,22 | 0,01¢ | 0,03: | 0,01¢ | 350C 1 3 3,7¢ 2

81 21,64 | 23,16| 24,64 0,015 0,032 0,018 3600 2,6 3 3
82 18,41 | 19,63| 20,92 0,02 0,044 0,025 2300 4 4,1 2 1
83 18,9¢ | 20,2¢ | 21,7¢ | 0,01¢ | 0,04« | 0,024 | 210C 4 3,4¢ 1,8 3,7¢

84 22,59 | 2427 2619 0,01 0,031 0,016 3200 2 4,48 2 ,78 3
85 21,24 | 22,7¢ | 2444 | 0,01¢ | 0,03< | 0,01¢ | 300C 8 3 1 3,7¢

86 21,26 | 22,53 23,7 0,014 0,034 0,019 2800 1 2,3 3.9 6 3
87 22,2% | 23,8¢ | 25,7¢ | 0,014 | 0,032 | 0,017 | 280C 6 4,€ 4 3,4¢

88 22,2¢ | 239z | 25,7¢ | 0,01« | 0,032 | 0,017 | 310C 5 4 2,7 3.7

89 18,44 | 19,95| 21,55 0,02, 0,046 0,024 2100 11 4.4 3.9 0

9C 20,0z | 21,3¢ 22,¢ 0,017 0,04 0,021 | 220C 8 2,7¢ 3.¢ 3,7¢

91 19,83 | 21,28| 2281 0,01 0,037 0,021 3200 11 3,78 2 0

92 20,7¢ | 22,62 | 24,5¢ | 0,01¢ | 0,03¢ | 0,01¢ | 300C 6 3,9¢ 3,7¢ 0

93 21,92 | 2362 2542 0,014 0,032 0,017 3300 ) 4,1 3 2
94 17,88 | 19,08| 20,33 0,022 0,046 0,026 2200 2 4,3 2 0
98 19,8¢ | 21,8¢ 23,¢ 0,017 | 0,03¢ | 0,021 | 320C 5 2,7¢ 3.,€ 2

96 21,96 | 24,07 26,24 0,014 0,031 0,017 3500 12 3,85 4 0

97 17.€ 20,0¢ | 22,0¢ | 0,021 | 0,04« | 0,02¢ | 270C 2 2, 3,€ 0

98 21,03 | 2255| 2433 0,01% 0,036 0,019 2400 4 4,48 4 6 3
98 17,7 | 19,6t | 21,51 | 0,022 | 0,04z | 0,02¢ | 360C 1C 3 2 0

100 20,55 | 22,02| 23,556 0,01 0,035 0,02 3100 [ 3 1 3,3
101 17,93 | 19,23| 20,67] 0,022 0,043 0,026 2900 4 3,48 1 0
10z 21,74 | 23,3¢ | 25,1% | 0,01¢ | 0,03¢ | 0,01¢ | 300C 8 3,8t 2 3.7
103 21,21 | 2285 2482 0,014 0,033 0,018 2800 4.4 3 7 3,
104 16,2¢ | 17,9¢ | 19,6¢ | 0,02¢ 0,0t 0,031 | 290C 12 2,¢ 2 0

105 12,68 | 14,88| 16,65 0,042 0,071 0,048 3200 2 1 0
10€ 19,32 | 20,7¢ | 22,3t | 0,01¢ | 0,03¢ | 0,02z | 270C 0 2,88 2, 3

107 19,89 | 21,28| 22,75 0,01y 0,039 0,021 2600 11 3 2,1 3 3
108 20,11 | 21,41 22,68 0,01y 0,036 0,021 3100 b 2,48 1,9 3,3
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Table C.1 (continued).

109 1534 | 17,14| 18,98 0,029 0,054 0,034 3100 12 2,7 1
110 1509 | 16,61 18,07 0,031 0,057 0,036 2600 | 2,3 2
111 20,16 | 21,53| 22,93 0,01y 0,037 0,021 2800 12 2,7 2,71
112 19,18 | 21,29| 23,23 0,019 0,037 0,023 3500 2,7 3

11: 16,1¢ | 17,82 | 19,4€ | 0,02% 0,0t 0,031 | 290C 7 2,6 2

114 20,89 | 22,38| 23,94 0,01 0,035 0,019 3000 2 3 2,7
115 19,08 | 20,37| 21,69 0,019 0,041 0,023 2600 2 2,7 1
116 16,52 | 18,43| 20,28 0,025 0,047 0,08 3400 3 2,6 2
117 17,09 18,8 20,58 0,024 0,045 0,028 3300 [ 2,95 1,7
118 18,38 | 19,78 21,25 0,021 0,042 0,025 2900 7 2,86 2
119 17,4 19,12 20,92 0,023 0,044 0,027 3400 S 2,9 1,7
120 16,52 | 18,43| 20,19 0,02% 0,04 0,08 2600 9 2,78 2,7
121 14,78 | 16,25| 17,57 0,032 0,057 0,038 2900 7 2 1,9
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APPENDIX D

BRIDGE RATING CALCULATION

D.1 Bridge Data for Load Rating

Table D.1 Generated Models and Corresponding Ladth@s

MODEL INFORMATION

RATING FACTORS

Moment Shear Shear
Model Liggtnh Erl:gelvg S:;m (’;lfug:e b;nr] Parapet | Diaphragm mn;i]lt_g)l RI RI RI
(FEM) | (AASHTO) | (FEM)
1 26 32 26 5 1 1 1,511 3,131 1,314 1,730
2 3€ 3¢ 33 5 0 1 1,08: 1,67¢ 1,271 1,65¢
3 32 12 40 5 1 1 1,628 3,163 1,764 2,211
4 22 2€ 24 5 1 1 1,68¢ 3,25¢ 1,401 1,812
5 29 14 24 5 1 1 1,042 2,583 1,251 1,779
6 24 15 31 5 1 1 2,073 3,870 1,682 2,088
7 2¢ 23 34 5 1 1 1,622 3,142 1,58¢ 2,081
8 49 32 25 5 1 1 0,229 1,423 0,868 1,599
9 48 2t 2¢ 5 1 1 0,33¢ 1,417 1,02( 1,674
10 40 28 31 5 1 0 0,723 1,961 1,187 1,810
11 41 6 31 5 1 0 0,671 1,89( 1,271 1,962
12 20 10 31 5 0 1 2,497 3,902 1,905 2,254
13 21 45 21 5 0 1 1,644 2,804 1,182 1,585
14 2C 27 38 5 0 0 3,08¢ 5,031 2,13: 2,56:
15 41 6 31 5 0 0 0,677 0,960 1,271 1,759
1€ 2€ 0 24 6 1 1 1,29¢ 2,397 1,40¢ 1,847
17 28 28 32 6 1 1 1,613 2,749 1,519 1,965
18 50 22 38 6 1 1 0,531 0,985 1,292 1,853
1¢ 23 31 3¢ 6 1 1 2,96¢ 4,431 1,97¢ 2,40¢
20 51 25 36 6 1 0 0,450 0,943 1,206 1,853
21 28 27 2C 6 1 0 0,851 1,762 1,057 1,632
22 29 0 23 6 1 0 0,980 1,758 1,284 1,809
23 3€ 4 2C 7 1 1 0,441 1,062 1,00z 1,48¢
24 26 36 28 7 1 1 1,683 2,628 1,371 1,716
25 49 17 33 7 1 1 0,440 0,829 1,176 1,623
2€ 35 3¢ 3¢ 7 1 0 1,43( 2,071 1,49¢ 1,851
27 27 35 21 7 1 0 1,042 1,751 1,074 1,462
28 52 11 1¢ 7 1 0 -0,02( 0,54¢ 0,75¢% 1,43¢
29 34 0 30 7 1 0 1,021 1,572 1,407 1,797
30 21 35 19 7 0 1 1,365 1,980 1,162 1,504
31 24 3 23 7 0 1 1,440 1,945 1,410 1,762
32 32 39 27 7 0 1 1,066 1,454 1,150 1,471
33 48 28 1¢ 8 1 1 0,041 0,552 0,70¢ 1,32¢
34 24 44 33 8 1 1 2,498 3,707 1,589 1,944
35 33 3C 2t 8 1 1 0,84( 1,522 1,10¢ 1,521
36 33 10 25 8 1 0 0,840 1,278 1,205 1,586
37 37 2 35 8 1 0 1,031 1,491 1,501 1,879
38 36 21 19 8 1 0 0,398 0,846 0,888 1,423
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Table D.1 (continued).

39 48 39 21 8 1 0 0,132 0,630 0,725 1,386
4C 47 31 32 8 1 0 0,49¢ 0,861 1,10¢ 1,58¢
41 25 17 38 8 0 1 2,399 3,685 1,921 2,247
42 34 32 21 8 0 1 0,604 0,815 0,937 1,324
43 26 3 25 8 0 0 1,371 1,924 1,428 1,82y
44 40 8 36 9 1 1 0,894 1,394 1,443 1,81y
45 38 40 22 9 1 1 0,482 1,044 0,863 1,211
46 21 10 30 9 1 1 2,298 3,530 1,800 2,108
47 31 14 25 9 1 1 0,96 1,54¢ 1,23¢ 1,61C
48 36 45 38 9 1 0 1,338 2,028 1,401 1,74p
49 30 5 22 9 1 0 0,852 1,241 1,192 1,507
50 33 35 23 9 1 0 0,769 1,285 1,010 1,37p
51 28 31 38 9 0 1 2,06¢ 2,97¢ 1,73% 2,092
52 42 27 29 9 0 1 0,568 0,737 1,095 1,44P
53 37 37 25 9 0 0 0,659 0,959 0,995 1,398
54 30 37 22 9 0 0 0,895 1,313 1,027 1,398
55 37 26 25 10 1 1 0,630 1,094 1,051 1,43f7
56 31 24 25 10 1 1 0,962 1,567 1,184 1,55)7
57 48 24 36 10 1 1 0,551 0,877 1,247, 1,63D
58 44 41 33 1C 1 1 0,65¢ 1,14« 1,121 1,467
59 40 8 39 10 1 0 0,993 1,376 1,541 1,888
60 30 45 38 10 1 0 1,937 2,715 1,569 1,919
61 38 38 38 10 1 0 1,149 1,644 1,402 1,794
62 40 22 39 10 0 1 0,993 1,477 1,477 1,851
63 41 44 36 1C 0 1 0,917 1,42¢ 1,241 1,587
64 31 11 24 10 0 0 0,906 1,154 1,211 1,623
65 33 16 28 1C 0 0 0,99¢( 1,30¢ 1,28¢ 1,69¢
66 29 40 26 10 0 0 1,245 1,844 1,185 1,568
67 51 45 31 10 0 0 0,350 0,515 0,956 1,34P
68 21 43 22 11 1 1 1,737 2,864 1,241 1,61p
69 38 38 31 11 1 1 0,868 1,483 1,170 1,487
7€ 3C 5 32 11 1 0 1,41¢ 2,03(C 1,567 1,92¢
71 32 41 32 11 1 0 1,353 2,017 1,317 1,651
72 46 18 37 11 1 0 0,652 0,89C 1,33C 1,714
73 35 26 32 11 0 0 1,041 1,409 1,328 1,704
74 28 21 21 11 0 0 0,920 1,274 1,128 1,500
75 46 34 31 11 0 0 0,504 0,64(¢ 1,07: 1,49C
76 28 28 19 11 1 1 0,782 1,290 1,013 1,343
77 38 22 18 8 0 0 0,43 0,507 0,89¢ 1,321
78 47 0 19 8 1 1 0,085 0,533 0,847 1,337
78 41 32 31 8 0 1 0,702 0,92: 1,15C 1,54¢
8C 52 44 25 7 1 1 0,15¢ 0,79: 0,77¢ 1,294
81 35 4 35 6 1 0 1,167 1,786 1,538 1,975
82 45 17 18 6 1 0 0,131 0,96( 0,79: 1,68¢
83 31 21 25 11 1 1 0,962 1,524 1,199 1,56
84 42 26 25 9 0 0 0,431 0,507 0,97¢ 1,412
85 30 39 28 6 0 0 1,281 1,667 1,238 1,62p
86 42 24 32 8 0 1 0,667 0,849 1,205 1,616
87 31 18 32 5 1 1 1,33: 2,82¢ 1,467 1,97
88 32 32 39 5 0 1 1,669 2,538 1,625 2,008
88 41 44 36 1C 0 1 0,917 1,42¢ 1,241 1,591
90 37 26 20 10 0 1 0,408 0,524 0,883 1,281
91 38 4C 4C 6 1 0 1,23¢ 1,89:¢ 1,45¢ 1,93¢
92 31 17 38 9 0 0 1,629 2,309 1,700 2,109
93 42 20 33 8 1 1 0,699 1,193 1,255 1,764
94 28 18 38 5 1 0 1,957 3,691 1,80¢ 2,241
95 25 21 21 11 0 1 1,167 1,635 1,201 1,52p
96 32 18 18 8 1 0 0,56¢ 1,01: 0,96¢ 1,41:
97 28 24 35 6 1 1 1,788 2,920 1,658 2,102
98 3C 25 37 7 1 1 1,67¢ 2,66( 1,65¢ 2,02¢
99 45 23 25 8 1 1 0,335 0,778 0,952 1,458
100 26 28 23 9 1 0 1,226 1,838 1,217 1,556
101 41 28 25 1C 1 0 0,46¢ 0,781 0,97¢ 1,391
102 32 15 28 11 1 1 1,055 1,574 1,312 1,65p
10: 37 26 22 11 0 1 0,49¢ 0,677 0,95(C 1,341
104 21 2 22 10 1 1 1,584 2,310 1,485 1,78P
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Figure D.1 FEM and AASHTO (LRFBased Bridge Ratings of Generated Models for Madmen
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D.2 AASHTO LRFD Based and FEM Based Rating Factor &lculation:

Example Model #1:

(0B

1) AASHTO Manual for Condition Evaluation of BridgeSecond Edition
1994,rev.2000

]]’iZ3 “«'u ﬂ_.,l( “(_.1) ’*(®.0.®,_.»)_ ==

Yie¥ae AAS 1 -~— AA (¢ u(—A 1> ALECE(-»-E(C -

*’_,*(_ . ,.’*A_,lg O.__

Truck: HS20

LOAD FACTOR RATING FOR MOMENT:

Note: Slab thickness and wearing surface thickaesstaken as 8.5” and 4.5”
respectively on every bridge
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EEEIEYEIT
T o—(®Ie, —( A
~-®  N»®-(—(®»C*(-0( —(—A A~
E 2+E(CAEA —A »
wo 2+N(C(—A -

2+9(.C..O& —(, ,(:—A »
Ay A>—A(->t E-O( A(A— A*e-—
As A>— ®»@-(—(A(*A— Are-—
1- »—b —(® . »
A 2+9(CAEAA— -

s “OI—A ——

T ﬂ(,(; _*,®.)1 —_—

Dead Load Moment Calculation:

N,D®ED,—( u(,, “»,, WE(—» N»®-(—(°

HO®  W(,D»,, AE(—» ®m®-(—( A*e-—

WOA™ (D>, AE(—» Aot @ Aren—

e po®  peOA

HO®  x>— N»m®-(—(D(*A—)U ByY(]-(, DE] (U

WOA™  xo— @(,->1 E-,®( D(A—) U B(,-»>1 - ~,®('(®—»]-(, U
E -- A 7- o=

Ay =-= Ao =1I=
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o Ao O8e1 8§50 P
VO S I ey n =71

N,D®AED,—( a»C(— WE(—» H(,, “»,,°
é.l.l” a»g()— ,/CE( —_ ,(’> D»,’ A.* + 04—

‘ ’*1) ‘l()l_A 1»', ')1 —>» ]]1123 ' —_

o/l
ap’ et /U ap” 90.95
Impact Factor Calculation:

a él(;*,®— -,®—»- ,®®»—")®( A—A ]]’i23 17!

-4 a==6.4/a4.~4/ %= = wwede¢ 9

Distribution Factor Calculation:
W —EE—»> 2,@—»- »- D-0O(D», » O%-A@®A+8 ==7
Calculate n, the modular ratio between the beantladeck.

n = HEo

= 3600/3600
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Calculate g the distance between the center of gravity obiéem and the deck.
g= NAv+ t/2
=8,75+8,5/2
=13in
Calculate K, the longitudinal stiffness parameter
k=n(l + Ae?)
= 1%[39918,32 + 781,25 (IR)
=171949,6%n

According to S4.6.2.2.2e, a skew correction faiomoment may be applied for
bridge skews greater than 30 degrees.

X §+4=-t" ———™ t _ Tt A Tee

x 0,947293

Moment distribution factor for an interior beam lwitvo or more design lanes
loaded using Table S4.6.2.2.2b-1.

€ §&==7- t-t
<

€  0,533491
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Moment distribution factor for an interior beam hvine design lane loaded using
Table S4.6.2.2.2b-1.

€ e==1 = "t - t§&—%_. &tN

€ 0,438546

Live Load Moment Calculation:
a“  “O("»,, »CO— A—A»E— -C*®@—*(- AA(P DO A*+ -—

MLL values are taken from the table given in thepApdix A.of the AASHTO
(2002) manual

NI

a

Impact and Distribution factors are to be incorpedao use the live load in rating

equation

208 @—»(, DO(D»,, CrCO— El , T EE— €50—~@—»

DF = Moment distribution factor for an interior lmeavith two or more design lanes

loaded using

auuoé é.““ t u’ t é

a4 - =

Moment Capacity Calculation (same for FEM based Rt Analysis):
E(—I—l é—|—|(®—-0( _D,E A,—A >

429 =
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Ean ) & 79
Eai - B 1=
Eeni 9-t Eeni =

B> E(-n ®@»—>»D —A((--(®—O( B,EA(HA-(E(--~ E(-

Ean 1=
, UC—A »m -(@—YED,- —( EP»®A -

] =—»>—b —(® ,-(, » —A( —0 »-(E» >
T @, (A
-®  ®»®-(—(®»C*(-O( —(—A A~

|-t

_ 1<1
=9-t-atEgy

N,D®ED,—(, ,,0& —(, ,(*—A -» —A((®—»°

SB,—> 97 — A @ (- 37 1-,0-—] > (PG —A( Er—»C OE(-
1<t 7

-1

iPet17

N,D®AED,—( a»C(— N,*® —I =»- —A( (®@—»>°

ac  »COr— ®*®—I A*+-—

™
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ax  xP—C,—(C»COo— ®,*®—I A*+-—

} =<
vC }t ve
vC 1 I-

Rating Calculation:

a«  &OL—»-1 «,—»t

W =

w 7

f Vg +W LV 55
[ ) —_—

W tV 5506

3¢ BOP—»- «,—nt

W =
W =
Vg +TW LV 55
ce - @ @ =
W LV 5500
fo - Ce -

FEM BASED RATING FOR MOMENT:
Dead Load Moment Calculation

Same moment due to dead load found by LRFD deabtinmanent calculations is
used.

au*  90.95
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Live Load Moment Calculation:

a“0’ea® a»Co— E(—» “O(“»,, — —A(®-—@@-B»> A*+-—

MLL values are taken from the table given in thepApdix A.of the AASHTO

(2002) manual
3
‘8a0a»C(>—Ou  0,269365
a“Oal0’éa a“t’éala»C(O—Op't a

a“oadea 779

Moment Capacity Calculation:

ax  xP—C,—(C»CO— ®,*®—I A*+-—

C(®,*®—I »/E>, El “«'u a»C— ®,*®—I ®,DRED» - A (

vC 1 I-

FEM Based Moment Rating Calculation:

a«  &OL—»-1 «,—»t

\Y; =
w 7

.. VgtW tV 5507
€¢V0f° 6 6060Y j

WtV 55060V |
3¢ BOP—»-I «,—nt
W =

W =

129

5



.. VgtW tV 5507
€¢VOQ° 6 6060Y i

W TV 55060V |

€CvOfe << €¢vOge ! <<-

LOAD FACTOR RATING FOR SHEAR:

+guaudei 1
_ ’—'—ICE* _*’®_)1 >
O —-& - >

JE 16—+ &*-(E,- (, »

Dead Load Shear Calculation:
N-—®,0 A D»®—» >(, —» E(,(—(-C>(,°
Yy N-—®,D A(- Dr»®,—» | —p@®( =-»C —A( m®CA( E(,->* =—

X should be taken as the larger=oftit ap. or d from the internal face of the
bearing. (AASHTO 5.8.3.2)

denotes the angle between the section normallendhear plane and is equal to

45 degrees
®» 9-t —e
=-tit —t ———— =
> S_t 9: i
:
=9<1
7<

y OG- —AM>(y ¥
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o, o, te” ™+ é

Distribution Factor Calculation:
vy p-_——-EﬁE—->>> =, ®—»- -»- DC)( b», - ,®®>(—A>®-A I+ ==7

According to S4.6.2.2.3c, a skew correction fatorsupport shear must be applied
to the distribution factor of all skewed bridge$ielvalue of the correction factor is
calculated using Table S4.6.2.2.3c-1

sm I
x o= tr EEEmop 5 A
<E
x  1,129099

Shear distribution factor for an interior beam witlo or more design lanes loaded
using Table S4.6.2.2.3a-1.

€ 5= v e et

€ 0,673235

Calculate the shear distribution factor for annisiebeam with one design lane
loaded using Table S4.6.2.2.3a-1.

€ F1 S=RtN € 0,632295
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Live Load Shear Calculation:
“ CA(- E(—»D-O(b», A*

VLL values are taken from the table given in thepApdix A of the AASHTO
(2002) manual

, 119

Impact and Distribution factors are to be incorpedao use the live load in rating

equation

“Oa “O(b», A(-A—A -C*®— >, - — EE—>»®—»- A*

5

Shear distribution factor for an interior beam witfo or more design lanes loaded
using Table S4.6.2.2.3a-1.
€ 0,673235

m:oé s t u’ t é

LOf =<1

Shear Capacity Calculation:
® CA(- ®*®—I » —A( ®»@®-(—( A-*
'A(,- ®,*®—I »= —--/E* A*
'A(- ®,*®—I »= EG— + E* -(E,- A+
— 25— P A(- ®,*®—I »1 —A( (®—»> A.*
£ xD—C,—(A(- ®,*®—I »= —A( (®—»> A*

— ®

£ =9t —
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ND®AED,®(~ ~°

ot tatrt;

IO = < —>—D -, »2—A(—-F* > —A( (®>»

1 —-/E* *®>1 »

Rating Calculation:

d«  BO(—»-I «,—n1
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Wt 5500

3¢ BOP—»-I «,—nt

W =

W =

o 6 TW U 45
Wt 5506

fo

¢ <

FEM BASED RATING FOR SHEAR:

Dead Load Shear Calculation:

Same shear due to dead load found by LRFD deadsloeat calculations is used.

Live Load Shear Calculation:
“Oreac ’A(,- ,E(—» “-O( “»,, — —A(®-—®,DB»®, AF 4+ o—

VLL values are taken from the table given in thepApdix A of the AASHTO
(2002) manual

. 119
BAA(-O)  0,496453
“Oadyea  “teadA(-Ou t &

“0a0'6a = =
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Shear Capacity Calculation

E xD—C—(A(- ®F@— Ax+-—

"C>(®,*®—I -»A>, El “nA(- ®,*®—I ®DREDp— [ (

FEM Based Shear Rating Calculation:

a«  &HOL—»-1 «,—»t

W =

w 7

covofe oW T esov;
w t

66000Y i

3¢ BOP—»-I «,—nt

woo=

wo o=

€¢vOge 6 *W T o50¥;
W T 56060V |

€evOfe 79

€¢vOge  <7-
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