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ABSTRACT 

 

 

LINEAR PREDICTION FOR SINGLE SNAPSHOT MULTIPLE TARGET 
DOPPLER ESTIMATION UNDER POSSIBLY MOVING RADAR CLUTTER 

 
 

Öztan, Baha Baran 

M.S., Department of Electrical and Electronics Engineering 

         Supervisor : Prof. Dr. Yalçın Tanık 

 
 

July 2008, 104 pages 

 

 

We have devised a processor for pulsed Doppler radars for multi-target detection in 

same folded range under land and moving clutter. To this end, we have investigated 

the estimation of parameters, i.e., frequencies, amplitudes, and phases, of complex 

exponentials that model target echoes under radar clutter characterized by antenna 

scanning modulation with observation limited to single snapshot, i.e., one burst. The 

Maximum Likelihood method of estimation is presented together with the bounds on 

estimates, i.e., Cramér-Rao bounds. We have analyzed linear prediction, together 

with its efficient implementation invented by Tufts & Kumaresan, and compared its 

performance to other high resolution frequency estimation algorithms all modified to 

run under clutter. The essential part of the work is that line spectra estimation 

techniques model the clutter process also as a complex exponential. In addition, 

linear prediction combined with linear time–invariant maximum Signal to 

Interference Ratio (SIR) processor is analyzed. A technique to determine the model 

order, which is required by the frequency estimation algorithms, is presented that 

does not distinguish between targets and clutter. Clutter region concept is introduced 

to identify targets from clutter. The possibility to use these algorithms for target 
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classification is briefly explained after providing a literature survey on helicopter 

echoes. 

 

Keywords: Linear Prediction, Radar Clutter, Single Snapshot, Frequency Estimation. 
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ÖZ 

 

 

DOĞRUSAL ÖNGÖRÜNÜN TEK GÖZLEM VE HAREKETLİ OLABİLEN 
RADAR KARGAŞASI ALTINDA BİRDEN FAZLA HEDEFİN DOPPLER 

KESTİRİMİ İÇİN KULLANILMASI 
 
 

Öztan, Baha Baran 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

        Tez Yöneticisi : Prof. Dr. Yalçın Tanık 

 
 

Temmuz 2008, 104 sayfa 

 

 

Darbeli Doppler radarlarında aynı katlanmış menzildeki birden çok hedefi, kara 

kargaşası ve hareketli kargaşa altında tespit edecek bir yapı geliştirilmiştir. Bu 

kapsamda radar tarafından tespit edilen hedefleri modelleyen birden fazla karmaşık 

üstel işaretin frekans, genlik ve fazlarının kestirimi, bir darbe grubunu kapsayan tek 

gözlem altında ve anten taraması kiplenimi ile şekillenen radar kargaşası varlığında 

incelenmiştir. En büyük olabilirlik kestirimi yöntemi belirtilmiş ve frekans ile genlik 

ve fazdan oluşan karmaşık çarpan için Cramér-Rao yansız kestirim değişinti alt 

sınırları çıkartılmıştır. Doğrusal öngörü yöntemi, Tufts & Kumaresan tarafından 

geliştirilen verimli uygulanışı ile birlikte, diğer yüksek çözünürlüklü frekans 

kestirimi yöntemleri ile karşılaştırılarak ve radar kargaşası için gerekli değişikliler 

yapılarak analiz edilmiştir. Çalışmamızın önemli özelliği, kullanılan yüksek 

çözünürlüklü çizgisel spektrum kestirim yöntemlerinin radar kargaşasını da bir 

karmaşık üstel işlev olarak modellemesidir. Doğrusal öngörü yönteminden önce 

uygulanabilecek sinyalin kargaşa ve gürültüden oluşan toplam enterferansa olan güç 

oranını (SIR) en yüksek değere çıkartan doğrusal zamanda değişmez filtrenin 

başarımı ortaya konmuştur. Algoritmalara girdi olarak verilen model derecesini 
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bulmak için hedef ve kargaşa ayrımı yapmayan bir teknik geliştirilmiştir. Kargaşa 

bölgesi kavramı, hedefleri kargaşadan ayırmak için oluşturulmuştur. İncelenen 

algoritmaların hedef sınıflandırma probleminde kullanımı, helikopter ekosu ile ilgili 

literatür incelemesi verildikten sonra kısaca aktarılmıştır. 

 

Anahtar Kelimeler: Doğrusal Öngörü, Radar Kargaşası, Tek Gözlem, Frekans 

Kestirimi. 
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CHAPTER 1 
 
 

INTRODUCTION 

 

 

Radar research mainly attracts researchers from the electromagnetics and 

signal processing areas. Algorithm development for achieving certain tasks is one of 

the main roles of the signal processing and communications oriented researchers. 

Determination of targets, their number, radial velocity and if possible, their types 

under strong radar clutter, received echoes from the natural environment land, sea, 

and weather, have been the major concern of radar designers. Conventional methods 

like MAXimum Signal to Interference Ratio (MAXSIR) and Moving Target 

Indicator (MTI) processors, which are in fact clutter suppression filters followed by 

Discrete Fourier Transformation (DFT), are developed with the aim of clutter 

elimination, but they suffer from limited resolution capability when used on the radar 

echo containing multiple targets in the same folded range. This is detailed in Chapter 

3 where one can find the literature survey on the conventional radar processors.  

In this work, we will study the applicability of Linear Prediction and high 

resolution frequency estimation methods to the specified problem for land based 

radars. The aforementioned methods were originally developed to run under Additive 

White Gaussian Noise (AWGN). The main difference between the usual use of these 

algorithms and their use in radar problem is the presence of clutter in the radar echo 

in contrast to operation under AWGN. The clutter elimination is curial for the 

success of radars and whether these algorithms can also model clutter and how to 

supply these algorithms the total number of targets and clutter components are the 

questions to be answered. Consequently, the high resolution frequency estimation 

algorithms need certain modifications to be used for the multi-target Doppler tone 

detection under radar clutter. Although separate works investigating the use of some 

of the high resolution algorithms for different kinds of radars can be found in the 
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literature, they deserve a unified treatment, possibly including modifications, with all 

versions of the selected frequency estimation algorithms concerned. Yet there 

remains the task of distinguishing targets from clutter since the algorithms to be used 

will treat the clutter and the targets in the same fashion not knowing their origin. This 

thesis is conducted to find feasible answers to the aforementioned problems. 

In this thesis work, we have thoroughly analyzed the use of Linear Prediction, 

together with its efficient implementation invented by Tufts & Kumaresan [1], and 

some other high resolution frequency estimation methods, namely, various versions 

of MUltiple SIgnal Classification (MUSIC) and Estimation of Signal Parameters via 

Rotational Invariance Techniques (ESPRIT) in radar processing, where the data is 

corrupted with possibly multiple sources of clutter. 

The core of the work is that line spectra estimation techniques can be used to 

model the clutter as a sum of complex exponential terms, just as they model the 

targets.  

We will be analyzing the estimation of parameters, i.e., frequencies, 

amplitudes, and phases, of complex exponentials that model target echoes under 

radar land and possibly moving clutter characterized by the antenna scanning 

modulation effect. The observation will be limited to a single snapshot, i.e., one burst. 

Optimal method of estimation, which is the Maximum Likelihood technique, will be 

presented in its various forms together with the bounds on estimates, i.e., Cramér-

Rao bounds. These bounds will serve as the ultimate performances of the algorithms 

we will test.  

A technique to determine the model order required by all of the high 

resolution frequency estimation methods will be presented that does not distinguish 

between the targets and the clutter. The proposed clutter region concept is then used 

to identify the targets from the clutter.  

In addition, linear predictor combined with Linear Time–Invariant (LTI) 

maximum Signal to Interference Ratio ( SIR ) filter is investigated.  

Lastly, a literature survey on helicopter echoes and detection is provided to 

access the possibility to use Linear Prediction (LP) for target classification. 
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We have published our preliminary works in [2]. The literature survey on 

various parts of the work in relation to the radar problem will be presented after the 

explanation of the corresponding parts. 

We present the signal model in Chapter 2; conventional radar processors will 

be presented followed by the optimum nonrandom parameter estimation technique of 

Maximum Likelihood and derived Cramér-Rao bounds in Chapter 3. Chapter 4 

focuses on linear prediction and Tufts-Kumaresan algorithm together with their use 

in radars. Chapter 5 deals with the modification of selected line spectra estimation 

algorithms to be used in radars and a different implementation of Maximum 

Likelihood technique that needs to be preceded by a high resolution frequency 

estimation algorithm. Determination of amplitudes and phases of targets will be 

discussed in Chapter 6, where a brief comparison of the algorithms is also presented. 

The clutter region concept first introduced in Chapter 4 will be further elaborated 

together with the model order determination procedure in Chapter 7. We will develop 

the LTI MAXSIR filter that can precede a high resolution spectra estimation 

algorithm under scenarios containing land clutter in Chapter 8. In Chapter 9, we 

present the performances of the algorithms through Monte-Carlo simulations. In 

Chapter 10, the concepts developed are extended to moving clutter problem, where 

the only difference assumed is the center frequency shift of the clutter. Target 

classification based on LP and other high resolution frequency estimation algorithms 

is also included in this chapter. 

1.1. Nomenclature 

In this section notations and some of the conventions used throughout the 

thesis will be given. 

A  denotes a matrix,  denotes a vector,  denotes the a :, jA thj  column of 

matrix ,  denotes the element at the  row and A ,k jΑ thk thj  column of matrix  and 

 denotes the 

A

ja thj  element of vector a . { }E i  is the expectation operator. Some of 

the upper-right corner signs and their meanings are as follows: 
* : conjugation, 
' : derivative, 
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T : transpose, 
H : hermitian, and 
# : pseudoinverse operator. 

 “Signal” can both mean the complete signal model explained in the following 

chapter, or, the part modeling the targets, which will be clear from the context. 

 Throughout this thesis work it is assumed that eigenvalues of all matrices are 

ordered in decreasing order. 
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CHAPTER 2 
 
 

SIGNAL MODEL 

 

 

In this chapter the model of the radar echo that will be used in target detection 

and high resolution velocity estimation will be explained in detail. 

Let ( )cx t  be the complex valued continuous time base-band signal received 

from the targets and the environment. x  consists of uniformly spaced samples of 

( )cx t  at a sampling rate equal to the pulse repetition interval ( )PRI

PRI

. They are called 

slow time samples in radar literature [3].  denotes, in mod , the time between 

the pulse is transmitted, reflected from a certain range of interest, and received by the 

radar, i.e., round trip delay time in mod .  is the number of radar pulses, 

whose echoes contain the same number of targets that are in the same folded range 

when considered in mod ( . Here, c  denotes the speed of light. Then, the 

observation vector  can be expressed as: 

ot

PRI N

)

1

/ 2cPRI

x

 
( )

[ ]0 1

, 0, ,c o m

T
N

x t mPRI x m N

x x −

+ = = −

=x

…

"
. (2.1) 

One can observe that total observation time x  spans is 

 obsT N PRI= × . (2.2) 

The resolution of a pulsed Doppler radar is given by [3] 

 
2
cR
β

Δ =  (2.3) 

where β  is the bandwidth of the radar waveform. Samples obtained from radar 

measurements can be grouped in a matrix [3]. Each row of this matrix consists of the 

vector  corresponding to a certain  and consecutive rows have  values 

differing by 

Tx ot ot

1 β . The elements of each row are called slow time samples and they 
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are separated by PRI . The samples along a column are named as fast time samples, 

which are the samples of the echo of a single radar pulse. We will be focusing on the 

processing that needs to be done for each  separately and thus focus on a single 

row of the explained matrix. 

ot

Doppler shift or Doppler frequency is the frequency deviation in the received 

echo signal caused by the radial velocity of the observed target and is given by [3], 

[4] 

 2 radial

Rada

v
D

rTX

F
λ

=  (2.4) 

where  is the radial velocity difference between the radar and the target 

(positive for approaching targets, negative for receding ones), and 

radialv

RadarTXλ  is the 

transmitted wavelength. One can unambiguously observe a Doppler frequency 

interval of 1 PRI ) [3], which is called the pulse repetition frequency ( . This 

means that one can observe 

PRF

DF  in mod .  PRF

When M  target echoes are present in the data vector x , it has the following 

explicit form 

 :,a
1

M
i ii=

= +∑x V n  (2.5) 

where [3] 

 ( )1
:, 1 ii

Tj Nj
i e e ωω −⎡ ⎤= ⎣ ⎦V  (2.6) "

and 

 [ ]0 1
T

Nn n −=n "  (2.7) 

where  models the effects of noise and various forms of clutter.  is the complex 

coefficient, or equivalently complex multiplier, that contains the magnitude and 

phase of the  target and 

n ia

thi iω  can be expressed as 

 2i fiω π=  (2.8) 

where 

 2 radial
i

Rada

PRIv

rTX

f
λ

=  (2.9) 
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Note that, in equation (2.9),  is given in modradialv 2
RadarTX

PRI
λ⎛⎜
⎝ ⎠

⎞⎟ . Our aim is to 

decide on M and to estimate  and ia if  for each target. 

ia  has a random phase which is uniformly distributed in [ )0, 2π . ia  is 

another random variable with a proper distribution. Note that, with this notation we 

have implicitly assumed that  attains the same value from pulse-to-pulse and can 

change from scan-to-scan. This corresponds to Swerling models of 1 or 3 depending 

on the distribution of 

ia

2
ia  one uses to model target echoes [3]. 

In our work, the phases of the targets are modeled by taking them as 

independent identically distributed random variables with ia∠ , phase of , being a 

uniformly distributed random variable in 

ia

[ )0, 2π . ia  is considered as an unknown 

parameter (nonrandom, i.e., its probability distribution is not known). The necessary 

derivations will include the cases of ia∠  being nonrandom and being random 

although the latter is used in the simulations to obtain numerical results. 

One can obtain the results for various values of , 1, ,ia i M= …  to obtain the 

conditional probability density function of a desired quantity z , which can be a 

frequency or complex multiplier estimate, as ( )1 Mp z a a"  and the generalization 

to the random magnitude case is trivial with the integral 

 ( ) ( ) ( )1 1 1d dM M Mp z p z a a p a a a a= ∫ " " "  (2.10) 

where ( 1 M )p a a"  is the probability density function one decides to use for the 

magnitudes of the targets and ( )p z  is the probability density function of the desired 

quantity  under this condition. z

In summary, throughout this work, the assumed probability density function 

of  in polar coordinates is ia

 ( ) (1
2ia

i
)ip r r

a
δ

π
= − a . (2.11) 

The normalized frequency of a target if  is also taken as a nonrandom 

parameter. 
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 Noise and clutter together can be treated as a colored noise and n  is the 

corresponding vector modeling complex Gaussian white noise with identically 

distributed real and imaginary parts and the clutter components. Clutter components 

can be of two types: land clutter and moving (weather etc.) clutter. The composite 

clutter is assumed to be of complex circularly symmetric Gaussian distribution. This 

makes sense since radar echoes from individual resolution volumes are the 

superposition of scattered echoes by a large number of particles, forming a Gaussian 

random process [5]. The governing equations for n  are 

 { }E =n 0  (2.12) 

 
2

2
2

n LC
WN NxN

WN

σσ
σ

⎛ ⎞
= +⎜

⎝ ⎠
R I RC

⎟  (2.13) 

where 

 { }*
,

n
k l k lE=R n n . (2.14) 

2
WNσ  and 2

LCσ  are the powers of the white noise and land clutter components, 

respectively.  is the total clutter autocorrelation matrix and includes land clutter 

and optionally moving clutter components (normalized matrices  and 

CR
LCR MCR , 

respectively). 

 
2

2
C LC MMC

LC

σ
σ

= +R R R C  (2.15) 

where 2
MCσ  is the power of the moving clutter. Elements of  are obtained 

considering antenna scanning modulation effect 

LCR

[6], [4]. Due to angular motion of 

the antenna in a mechanically scanned system, the radar does not receive echoes 

from the identical patches of scatterers from consecutive pulses. This causes 

degradation of the pulse-to-pulse clutter correlation. This effect can also be explained 

in the following way. Due to finite time on clutter scatterers, the clutter spectrum 

widens, i.e., loss of correlation is observed. The longer the time on clutter patch, the 

less will be the spread in the clutter spectrum.  

If the two-way antenna power pattern is approximated as a Gaussian pattern, 

one obtains a Gaussian shaped clutter power spectrum [6] with the autocorrelation 
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matrix entries found using the fact that Fourier Transformation of a Gaussian 

function is also Gaussian and given by 

  
( )( )22

, exp
2

wLC
k l

k l PRIσ⎡ ⎤−
⎢ ⎥= −
⎢ ⎥⎣ ⎦

R  (2.16) 

where wσ  is the standard deviation of the clutter power spectrum and given by [6] 

 
( )

12

22
272 ln 2

WHP
w

θ
σ

α

−
°⎡ ⎤

⎢ ⎥=
⎢ ⎥
⎣ ⎦

. (2.17) 

In equation (2.17),  is the two way half power beamwidth of the radar antenna 

and 

2WHPθ °

α  is the rotation rate of the radar antenna in units revolutions
minute  and  

will be used to denote the value of 

rpm

α . 
MCR  is obtained through the equations 

 ( )HMC MC LC MC=R D R D  (2.18) 

 ( )2 1
, , 1, ,cj f kMC

k k e kπ −= =D … N  (2.19) 

where MCD  is a diagonal matrix and cf  is the moving clutter center frequency. 

The equations (2.15), (2.18), and (2.19) are valid up to one moving clutter 

source. For cases containing more than one moving clutter source the extension is 

trivial. Until Chapter 10, it will be assumed that the only source of clutter is land 

clutter. 

 As a final remark on the received signal model, note that clutter, noise, and 

target components of the received signal are all taken as independent.  

We will choose our  definition in a way such that it reflects the effect of 

 and thus in comparison with previous works, one may need to be careful about 

different conventions. SN  for each target is defined as the SN  when the other 

target is not present and is given by 

SNR

R

N

R

 
2

210 log i
i

WN

a N
SNR

σ

⎛ ⎞
= ⎜

⎜
⎝ ⎠

⎟
⎟

. (2.20) 
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  will refer to land clutter to white noise power ratio, i.e., CNR 2 2 to LC WNσ σ , 

and MCCR  to moving clutter to land clutter power ratio, i.e., 2 2 to MC LCσ σ . 

 In some equations although the autocorrelation matrix may appear as defined 

in this chapter, it may refer to a submatrix of the one defined in this chapter. It will 

have an appropriate size, which will become clear from the equations. 

 For figures presented, please consult section 9.1. for further details on used 

parameters. 
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CHAPTER 3 
 
 

RADAR DETECTORS, DOPPLER PROCESSORS AND 

OPTIMAL APPROACH 

 

 

3.1. Conventional Radar Processors 

Optimum Doppler processor in terms of Signal to Clutter plus Noise Ratio 

( ) or equivalently SI  maximization is the Hsiao filter, or MAXSIR filter, 

when the Doppler frequency of the target is known a-priori 

SCNR R

[7]-[9]. The explicit form 

of the filter is given by 

 ( ) 1

:,
n

i

−
=w R V  (3.1) 

where  is defined in equation nR (2.14) and V  in equation (2.6). This formula uses 

both clutter statistics, thus a proper filter shape is designed accordingly, and at the 

same time performs coherent integration of the target signal. In practice, a bank of 

filters is necessary, together with a technique to estimate . This bank of filters can 

be implemented with windowed DFT operation.  

nR

 In Figure 1 we have plotted an instance of the spectrum of the observed data, 

following the MAXSIR processing. The scenario used consists of two targets having 

frequencies [ ] [ ]1 2 0.2813 0.3563f f =  with 24SNR dB=  and . The 

instance in 

45CNR dB=

Figure 1 clearly shows that resolution capability of MAXSIR operation 

for two targets is limited although it is successful at clutter suppression. Zero-

padding is used in obtaining the figure to approximate Discrete Time Fourier 

Transform (DTFT). Although quadratic interpolation for fine frequency estimation 

[3] can be employed, this is suitable for single target cases. 
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Figure 1 Resolution capability of windowed MAXSIR operation 

 

 

 

A sub-optimal alternative is to use Moving Target Indicator (MTI) followed 

by windowed DFT [3], [7], [9]. MTI pulse cancellers are high pass filters whose 

coefficients are obtained from the binomial series. Through weighted subtraction and 

addition of the echoes from consecutive samples, one aims to achieve clutter 

suppression since land clutter has a Doppler around zero and multiple pulse canceller 

filters have a notch at zero frequency. On the other hand, target components with 

nonzero Doppler frequency will be observed at the filter output with possible 

attenuation in their magnitudes. The pass-band narrows for larger filter orders. In 

MTI processors one loses both from not using the actual clutter correlation and being 

only matched to the DFT frequencies.  

 The results of three different MTI processors are presented in section 9.2. In 

the double pulse canceller, consecutive pulses are canceled and useable number of 
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output samples is one less than the number of input samples. This version is named 

as HWMTI_11, where HW letters are added for Hamming Windowing after MTI 

operation. Another version presented combines three samples with the coefficients 1, 

-2, and 1 and called HWMTI_121. In this version, useable number of output samples 

is two less than the number of input samples. In the third alternative, we use all the 

output samples and use a combination of two and three pulse canceller. The input 

vector is processed by the matrix 

 . (3.2) 

1 1 0 0
1 2 1 0 0
0 0
0 0 0
0 0 1 2 1
0 0 1 NxN

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

" "
"

% % %
% % %

"
" "

0

1

⎥

This last version is named as HWMTI. 

3.2. Maximum Likelihood (ML) Technique 

The generally accepted best procedure of frequency estimation is based on the 

Maximum Likelihood (ML) method. If an unbiased estimator that attains the 

Cramér-Rao bound (to be defined in the next section) exists, it is ML. For large , 

ML estimator has asymptotic properties of being unbiased, efficient, and Gaussian 

distributed 

N

[10]. 

Let us derive the ML equations for our problem of targets in radar clutter. 

Assuming that  is perfectly known, the conditional probability density function of 

 is 

nR

x [10] 

 ( ) { }( ) { }( )( )1 1
1| , , , , , exp

det
H

M M N np a a E Eω ω
π

= − − −x x
R

… " x Q x x  (3.3) 

where 

 ( ) 1n −
=Q R  (3.4) 

and 

 { } { }:,1

M
i ii

E a E
=

= +∑x V n . (3.5) 
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The ML estimates of ’s and ia iω ’s can be obtained through the maximization 

of equation (3.3), or equivalently 

 { }( ) { }( )
1 1, , , , ,

min
M M

H

a a
E

ω ω
− −x x Q x x

… …
E . (3.6) 

Note that with expression (3.6), we have converted our cost function from p  to 

 and maximization to minimization. ( )ln p−

The problem considered here is referred to as deterministic maximum 

likelihood [11] in contrast to the case where the complex multipliers of the complex 

exponentials are treated not as parameters, but as random variables. The latter 

approach is called stochastic maximum likelihood [11]. 

Theorem [12]: Let ( )( )*ln ,p z z  be a real-valued function of the complex 

vectors  and . The vector pointing in the direction of the maximum rate of 

change of 

z *z

( )( )*ln z z,p  is ( )( )*
*ln ,p∇

z
z z . 

The scalar version of the complex gradient is given by [11] 

 ( )( ) ( ) ( )
*

* ln ln1ln ,
2z

real imaginary

p p
p z z j

z z
⎛ ⎞∂ ∂

∇ = +⎜⎜ ∂ ∂⎝ ⎠
⎟⎟  (3.7) 

where  

 real imaginaryz z jz= + . (3.8) 

When one uses the given definition of derivatives in solving the minimization 

expression (3.6), the following governing equations are obtained from the 

minimization with respect to ’s ka

 :, :, :,1
0, 1, ,MH H

k k l ll
a k

=
− + = = M∑V Qx V Q V …  (3.9) 

and from the minimization with respect to pω ’s 

 { } { }* ' '
:, :, :,1

2 Re 2 Re 0, 1, ,M H H
i p i p p pi

a a a p M
=

− = =∑ V QV x QV …  (3.10) 

where 

 ( ) ( )1'
:, 0 1p

Tj
p je j N eω − pj N ω⎡ ⎤= −⎣ ⎦V " . (3.11) 

Although the general model can be developed assuming a nonzero mean for 

the clutter and noise (together treated as a colored noise), in the subsequent parts we 
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will assume a zero mean since generally there is no reason to assume a nonzero mean 

for the colored noise part of a radar observation. 

 One can observe that the ML estimates for ’s and ia iω ’s are unbiased by 

taking the expected values of both sides of the equations (3.9) and (3.10). In other 

words, expected values of estimates are found to be equal to their actual values. 

Now, let us examine if there occurs any change in equations (3.9) and (3.10), 

for the situation involving random target phases. There will be no change since for 

any given parameter vector φ , one will do the maximization of the following 

function 

 
( ) ( ) ( )
( ) ( ) (

|

ln ln | ln

p p p

p p

=

= +

x,φ x φ φ

x,φ x φ φ)p
 (3.12) 

and  

 ( )ln p∇ =⎡ ⎤⎣ ⎦φ φ 0  (3.13) 

for uniform distribution on φ . 

Note that ML equations (3.9) and (3.10) are such that given iω ’s, ’s can be 

solved. Thus one can do the minimization only with respect to 

ia

iω ’s. Defining 

 [ ]1
T

Ma a=a "  (3.14) 

the minimization problem (3.6) can be expressed as 

 ( )1
2

1

2

, , ,
min -

Mf f a
Q x Va

"
 (3.15) 

where 

 :,k k=V v . (3.16) 

The minimization with respect to  is obtained by a

 ( )1
2

#
=a Q V Q x1

2 . (3.17) 

Substituting (3.17) in equation (3.15), we obtain 

 ( )( ) ( )( )1 1 1 1
2 2 2 2

1

#

, ,
min

M

H

ω ω
− −x V Q V Q x Q x V Q V Q x

…

#
. (3.18) 

Similar derivations can be found in literature [13], [14], [11]. 
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 The downside of ML method is that it requires a global optimization 

procedure in order not to stick to a local minimum. It requires an initial condition in 

the vicinity of the global optimum. 

3.3. Cramér-Rao Bound 

Cramér-Rao (CR) expressions which form the lower bound for variances of 

unbiased estimates [15] can be obtained for the observation x  (nonrandom case) as 

follows [11], [15]: One defines and calculates the expressions 

 16

) { }( ) { }(H
E E⎡ ⎤= ∇ − − −⎣ ⎦θs x x Q x x  (3.19) 

 [ ] *
1 ,

TT
M i i ia ω⎡ ⎤= = ⎣ ⎦θ g g g"  (3.20) 

 { }HE=J ss . (3.21) 

J  is the Fisher information matrix with the entries given by 

 , :, :, , , 1,3, , 2H
k l k l k l M 1= =J V QV … −  (3.22) 

 ( ){ }* ' '
, :, :,2Re , , 2,4, , 2

H

k l k l l ka a k l M=J V QV …=

M…

 (3.23) 

 . (3.24) ' *
, :, :, , , 1,3, , 2 1, 2, 4, , 2H

k l l k l kl lka k M l= = = − =J V QV J J …

For the random case the following changes are to be observed in the above 

equations, which are obtained by taking expectations over the random and 

uncorrelated phases  and ka∠ la∠  for k l≠  

 ( )2 ' '
, :, :,2 , 2, 4,

H

k k k k ka k= =J V QV …, 2M  (3.25) 

 , 0, , , 2, 4, , 2k l k l k l M= ≠ =J …  (3.26) 

 . (3.27) , ,0, 0, 1,3, , 2 1, 2,4, , 2k l l k k M l= = = − =J J … M…

Cramér-Rao lower bounds for unbiased estimates are obtained via 

 ( ) 1
2 1,2 1var , 1, 2, ,k k ka k−

− −≥ =J … M  (3.28) 

 ( ) 1
2 ,2var , 1, 2, ,p p p p Mω −≥ =J … . (3.29) 

Alternatively, square root of the bounds can be used to obtain lower bound on 

standard deviations. 



 
 

CHAPTER 4 
 
 

LINEAR PREDICTION AND THE TUFTS–

KUMARESAN METHOD 

 

 

4.1. Motivation 

Maximum Likelihood (ML) estimation of the frequencies is effective yet 

requires a difficult multidimensional search. Consequently, one resorts to 

suboptimum, but practical algorithms. 

Radar clutter can be modeled quite accurately as a relatively low order 

autoregressive (AR) process [16], a process generated by filtering white noise with 

an all-pole filter [12], so it can be modeled by the zeros of or, if required, canceled 

by a FIR filter. This is not only true for land clutter, but also for weather and bird 

clutter [16]. 

First we will investigate the hypothetical case of known xR  defined by 

 2
:, :,1

Mx H
k k kk

a
=

= n+∑R V V R  (4.1) 

which is the autocorrelation of the data vector x  under uniform and uncorrelated 

target phases. Note that for nonrandom case, xR  is not stationary. We will not 

investigate it in our work. In this chapter, Linear Prediction (LP) and its relation to 

AR processes will be shown. Then Tufts-Kumaresan method (TK) [17], [1], [18], 

which is a practical implementation of LP when xR  is not known, will be 

investigated. After the explanation of the specified topics, literature survey on their 

use in radar problem will be given. It is believed that after the topics have been 

covered, it will be easier to follow the literature survey. 
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4.2. Linear Prediction 

The aim of Linear Prediction is to minimize the prediction error variance 2
eσ  

by linearly combining the L  samples of the sequence [ ]x n  to estimate another 

sample of it [11], [12]. This is summarized in Figure 2. 

 

 

 

 

[ ]x n  

 

Figure 2 Linear prediction block diagram 

 

 

 

Forward LP (FLP) corresponds to using  samples to predict the next sample, 

while backward LP (BLP) corresponds to using  samples to predict the next earlier 

sample 

L

L

[11] as shown in Figure 3. 

 

 

 

 
 

Figure 3 Forward and backward linear prediction 

AR 
filter 

[ ]e n[ ]w n   

FIR 
LTI 
filter [ ]x̂ n−  

( )H z  

1 1 , 1 1, , , , ,o L L L Nx x x x x x− + −… …
Backward LP

 

Forward LP

 18



The main equation for FLP is 

 [ ] [ ]*
1

ˆ L
kk

x n g x n
=

k= − −∑  (4.2) 

where  are the coefficients of the prediction-error filter  (PEF) 

shown in 

*
11, , , Lg … *g ( )H z

Figure 2. The coefficients can be found by satisfying the orthogonality 

principle which states that [11] 

 [ ] [ ]{ }* 0, 1, ,E x n i e n i L− = = … . (4.3) 

Using this principle the equations obtained, under the assumption that [ ]x n  is Wide 

Sense Stationary (WSS), are 

 ( ) ( )*1
1 LIdeal Ideal k

kk
H z z−

=
= +∑ g  (4.4) 

where 

 . (4.5) ( ) ( )(
#

(1: ),(1: ) 1, 2: 1

TIdeal x x
L L L+

⎡ ⎤= −⎢ ⎥⎣ ⎦
g R R )

These equations are Ideal  in the sense that perfect knowledge of xR  is assumed. It 

is well known that [11] if [ ]x n  is an AR process generated by passing white noise 

[ ]w n  through the filter  

 
( )

1

1 1
1 L k

kk
D z b z−

=

=
+∑

 (4.6) 

then 

 ( )*Ideal
ig ib= . (4.7) 

In other words, as long as a linear predictor has order L  larger than or equal to that 

of the AR process, which is ,  P

 0,Ideal
ig L i P= ≥ >  (4.8) 

and 
 ( ) ( )H z D z=  (4.9) 

as shown in Figure 4. 
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AR Model 
of order  

Linear predictor 
of order  [ ]x n  P L P≥

[ ]w n [ ]e n  ( ) ( )D z1
( )D z

H z =   

 

Figure 4 Relationship between linear prediction and AR processes 

 

 

 

This means that parameters of any AR model can be found by LP. It is also true that 

when PEF is inverted and driven by white noise, the resulting random process will 

have the same statistical characteristics as [ ]x n . Consequently, as long as clutter can 

be considered as an AR process, LP with finite order  can be used to model it. L

As for the BLP, the main equation is 

 [ ]*
1

ˆ[ ] L
kk

x n L c x n L k
=

− = − − +∑  (4.10) 

with the orthogonality condition given by [11] 

 [ ] [ ]{ }* 0, 1, ,bE x n L i e n L i L− + − = = …  (4.11) 

where 

 [ ] [ ] [ ]ˆbe n L x n L x n L− = − − − . (4.12) 

In BLP, 2
beσ  is minimized. 

It has been shown that [11] 

 *Ideal
i ci=g . (4.13) 

BLP can be associated with an anticausal AR model. 

4.2.1. Further Remarks on Linear Prediction 

In LP, although it is possible to obtain filters recursively for increasing values 

of  L [11], we will concentrate on the fixed order case.  

Other important properties of LP may be listed as follows [11], [12]: 
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1. If a fixed, but reasonably high order PEF is used, [ ]e n  will have 

approximately constant variance terms that are orthogonal to each other. This 

means that [ ]e n  is white noise. Thus PEF is a whitening filter. 

2. For FLP, ( )H z  is causal and minimum phase, which means that it is a causal 

stable filter with a causal stable inverse. In other words, all of its zeros are 

inside the unit circle. 

3. For BLP, ( )H z  is an anticausal and maximum phase polynomial. 

4.3. Modified Tufts-Kumaresan Method 

4.3.1. Overview of Tufts-Kumaresan Method 

A practical way of implementing LP, when xR  needs to be estimated from an 

extremely limited number of observations is due to the methods developed by Tufts 

and Kumaresan (TK) [17], [1], [18] for detecting complex exponentials in AWGN.  

Tufts & Kumaresan’s method (TK method) brings performance improvement 

to LP based frequency estimation methods at low  by using the prior knowledge 

about the rank 

SNR

M  of the signal correlation matrix. TK method estimates are 

comparable to ML estimates and its performance is close to Cramér-Rao (CR) bound, 

even when the data consists of closely spaced frequencies. Also, the value of  at 

which the accuracy of the frequency estimates departs drastically from the CR bound, 

the threshold SN  value, is brought much closer to that of ML by the use of TK 

method. 

SNR

R

Estimated correlation matrix is replaced by an estimated signal matrix in the 

AWGN case. For the pulsed Doppler radar problem, the estimated correlation matrix 

is replaced by an estimated signal and clutter correlation matrix, which is a necessary 

modification to the TK method under scenarios containing clutter in addition to the 

AWGN. This means filtering out some portion of the noise. Equivalently, the 

forward-backward (FB) data matrix A  can be approximated by a lower rank M
�

 

matrix where the FB data matrix  is given by  A

 21



 

1 2 0

1 1

2 3
* * *
1 2
* * *
2 3 1

* * *
1 1

L L

L L

N N N L

L

L

N L N L N

x x x
x x x

x x x
x x x
x x x

x x x

− −

−

− − − −

+

− − + −

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A

"
"

# # #
"
"
"

# # #
"

 (4.14) 

and tends to be full rank in the noisy case. Let  be the reduced rank FB data matrix 

corresponding to the actual FB data matrix A  and  be the reduced rank version of 

the estimated correlation matrix 

A�

R�

ˆ xR  of the signal, clutter, and noise. The relations 

between the specified matrices are as follows: 

 
ˆ x H

H

=

=

R A A

R A A� ��
. (4.15) 

This procedure is called principal components approximation [11], a method of 

preserving signal subspace only. 

4.3.2. Tufts-Kumaresan Algorithm Details 

 The TK algorithm has the following structure. Basically, the solution of 

equation 

 = −Ag b  (4.16) 

is sought, where 

  (4.17) * * *
1 1 0 1

T

L L N N Lx x x x x x+ − −⎡ ⎤= ⎣ ⎦b " " 1−

is the data vector and 

 [ ]1
T

Lg g=g "  (4.18) 

is the impulse response of the prediction filter of order . Equation L (4.16) is solved 

for g  in the least squares sense; i.e., one minimizes 

 2− −b Ag . (4.19) 

The transfer function of the prediction-error filter ( )H z  is given by 

 ( ) 1
1 L k

kk
H z g z−

=
= +∑ . (4.20) 
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 For deterministic signals not corrupted by noise, the degree L  of the 

prediction-error filter polynomial ( )H z  should satisfy [18] 

 round
2
MM L N

⎛ ⎞⎛ ⎞
≤ ≤ −⎜ ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

��
⎟⎟  (4.21) 

in order to have M
�

 zeros associated with signal and clutter when using the FBTK 

method (TK method with the FB data matrix), where M
�

 equals M  plus the number 

of zeros required to model clutter. Besides L M−
�

 extraneous zeros, zeros at 

positions 

  (4.22) 2 , 1, ,ij fe iπ =
�

… M

are observed when used on a data consisting of undamped complex exponentials, 

which is consistent with our signal model as explained in the next paragraph. 

Targets can be modeled by complex exponentials and as can be seen from the 

above explanation, TK is suitable in this aspect. Since clutter is an AR process, we 

expect it to be modeled by one or more, M M−
�

, complex exponentials just as the 

targets. We have observed that if the radar antenna is not rotating, i.e., working 

condition is zero , it is modeled by one complex exponential, and, increasing the 

 and/or CNR  results in more poles being required in the AR model. Although a 

table of number of poles needed to model the clutter can be obtained depending on 

the operating conditions, it is not necessary as we will explain in Chapter 7. An 

algorithm will be developed to decide on 

rpm

rpm

M
�

 and then the targets will be identified 

based on clutter regions. Under these circumstances, TK is suitable in radar signal 

modeling as a whole, since it is one of the most successful high resolution frequency 

estimation techniques. 

For the FTK or BTK methods, the condition becomes [18] 

 ( )M L N M≤ ≤ −
� �

 (4.23) 

and one uses the upper or the lower half of the matrix  in the calculations, thus the 

name FTK or BTK, respectively. 

A

If the prediction filter coefficients are selected to have minimum Euclidean 

norm and the first coefficient is taken to be unity, the L M−
�

 extraneous zeros of the 
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filter polynomial are approximately uniformly distributed inside the unit circle [18], 

[11]. To observe this fact, one can factor ( )H z  as 

 ( ) ( ) ( )2H z H z= 1H z  (4.24) 

where  has ( )1H z M
�

( )z

 zeros modeling the signal and the clutter; and  has 

 zeros, which are the extraneous zeros. The polynomial  can be 

associated with a prediction-error filter operating on the data-sequence defined by the 

coefficients of  and yielding the error sequence, which are the coefficients of 

. Minimizing the Euclidean norm of 

( )2H z

( )zL M−
�

(H z

2H

1H

) ( )H z , while keeping its first coefficient 

at unity in order to prevent a zero solution, is identical to minimizing the error energy 

in the autocorrelation method of linear prediction. It is a known fact that the 

prediction-error filter is minimum phase [11] and its zeros have magnitude less than 

unity, thus proving that  extraneous zeros of L M−
�

( )H z  fall in the unit circle. 

The above observation is necessary to identify the two groups of zeros: those 

related to signal and clutter, and the extraneous or spurious zeros. By using the 

Moore-Penrose pseudoinverse [19] of A  in calculating g , we satisfy the minimum 

Euclidean norm condition on g . 

However, when the data is noisy, the extraneous zeros can lie closer to or 

outside the unit circle. Rank reduction alleviates this problem by effective SN  

enhancement. The best lower rank of 

R

M
�

 approximation (in term of Frobenius norm) 

to a given matrix can be found based on Singular Value Decomposition (SVD), by 

setting all but M
�

 of its largest singular values to zero [17], [1]. 

The solution to equation (4.16), satisfying the two constraints, is 

( )#≈ = −g g A� b�  (4.25) 

where  is the reduced rank pseudoinverse of A . To find an explicit form of 

equation 

#A�

(4.25), we start by finding the SVD of  A

( )HA AS V A=A U  (4.26)  

where the columns of  are eigenvectors of AU HAA , the columns of  are 

eigenvectors of , and the singular values on the diagonal of  are the square 

AV
HA A AS
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roots of the nonzero eigenvalues of both HAA

#A

 and . Once the SVD of A  is 

obtained, its Moore-Penrose pseudoinverse  is given by  where 

 is obtained from  by replacing each nonzero diagonal entry by its reciprocal. 

Using only 

HA A

( ) ( )TA A A
IV S U

H

A
IS AS

M
�

 singular values instead of the matrix  to achieve rank reduction, A
IS g  

in equation (4.25) is obtained as 

( )
 :,

1

H

S
:,

A A
iV

,

M i
Ai
i i

=
≈ = −∑

U b
g g

�

� . (4.27) 

g�  does not minimize the prediction-error energy, but is an approximation of 

the noiseless situation. 

 Lastly, the angle (in radians) between each of the M
�

 zeros of  closest 

to the unit circle and the positive real axis in the complex plane when divided by 

( )H z

2π  

gives the frequency estimates. The target frequency estimates if ’s are found after 

eliminating M M−
�

( )H z

 of the obtained frequency estimates that model the clutter and 

thus fall in one of the clutter regions to be defined. A pictorial representation of the 

zeros of  is given in Figure 5 where 9,L M 2 and 4M= = =
�

. 

TK method modified with truncation control, i.e., rank reduction to values 

other than M
�

, selecting more zeros closer to the unit circle than a threshold and 

eliminating them from their magnitude is investigated in [20], [21]. 
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Figure 5 Zeros of prediction-error filter 

 

 

 

4.3.3. FBTK, FTK vs. BTK in Modeling Clutter 

In FTK, zeros are in their actual positions [22]. If the zeros of clutter tend to 

fall outside the unit circle, this would make them easily separable from the 

extraneous zeros. For the BTK case, they fall at positions 
*
kse−  [22] and need to be 

reflected inside the unit circle to positions kse ’s to find the actual frequency 

components. This method would be suitable for processes that actually have zeros 

inside the unit circle so that its zeros would be separable from the extraneous ones by 

the BTK modeling. However, we have observed that radar clutter component with 

the specified model in Chapter 2 does not exhibit a behavior suitable to either FTK or 

BTK modeling.  
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4.3.4. FBTK Noise Reduced Data Vector Version 

We have devised a version of FBTK by also reducing the effect of noise in 

the data vector (4.17). We form the concatenation of the data matrix and the data 

vector as 

 [ ]b A  (4.28) 

and retaining M
�

 of the singular values of this matrix, re-obtain the noise reduced 

versions of b  and  from the corresponding positions of the same size, but rank 

reduced concatenated matrix. All the other steps are the same with the FBTK 

algorithm after this step. The performance and necessity of this modification are 

discussed during the simulations under the algorithm name ‘FBTK, NRDV,’ where 

NRDV stands for noise reduced data vector. 

A

4.4. Distinguishing Clutter and Targets: the Concept of Clutter Region 

In works found in the literature, land clutter is distinguished from its velocity 

being nearest to zero [5]. However, we cannot distinguish it from the large power of 

its singular value, since depending on CNR  this condition may not be true. For a 

given set of radar parameters, we performed simulations to specify clutter regions, 

one for each source of clutter. If a frequency estimate falls in a clutter region, it is 

identified as a clutter component resulting in separation of the frequencies of targets 

and clutter. 

With this technique, clutter spread observed in its power spectrum is not 

always modeled by a single DC term, but it can be modeled by more than one 

prediction-error filter zeros falling in the clutter region near location at zero 

frequency with a certain width, i.e., land clutter region, or around any other 

frequency with the same width for moving clutter case. Further explanation will be 

provided in Chapter 7. 

4.5. Linear Predictor as a Radar Processor 

When using LP in a radar detector a filter bank is unnecessary, since the 

processor is not designed based on specific target frequencies. In other words, a 

single LP processor is sufficient. It can be designed as a linear prediction-error filter 

by using the a priori knowledge on clutter. When there is a target its output is 
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expected to consist of a target component plus suppressed clutter. However, we point 

out that although LP can be used to filter the radar echo in order to get rid of clutter 

followed by target detection, it is also possible and requires less computation to 

include both the targets and the clutter, possibly both land and moving weather 

clutter, in its design. In this way we can achieve clutter filtering (including weather 

clutter), multiple target detection and high resolution velocity estimation with a 

single processor. Also using LP in a way to estimate other samples than the next or 

the previous sample is studied [8]. 

LP in slow time samples can be used as an efficient tool to estimate Doppler 

frequencies, in addition to some other methods, but not in its FB version and for 

mean Doppler frequency estimation of weather radar signal in the presence of single 

clutter source which is the ground clutter in [5] with L  fixed at 2 and the estimated 

frequency further from zero corresponding to weather clutter and that near zero 

frequency corresponding to ground clutter. In this work the frequency range not 

affected by clutter is reported to be [ ]0.2,0.8  with RMSE ≤ 0.04. After separating the 

target and the clutter, LP is used to c utter in ancel cl

ilter can be seen to have some 

similar

[23]. It is used to model both the 

ship echo and Bragg lines in [24]. The Bragg lines are the scattering from surface 

waves which have wavelength equal to one half of the radar wavelength and move 

directly away or towards the receiving radar. A sea clutter whitening preprocessing is 

also developed based on multiple bursts in [24]. 

Our approach of using LP as a clutter f

ities with [24]. However, there are major differences such as Coherent 

Integration Time’s (CIT) required. For the given work, under favorable conditions 

CITs of 2s. are reported for ships and under normal conditions for aircrafts, whereas 

our observation time for a typical 10PRF KHz=  is in the order of ms. One reason 

for this difference may be the fact th  the similar processor to a different 

scenario where Bragg scattering of the ocean surface is not the major source of 

clutter. Continuing with the differences observed in our work, our radar is a land 

based one with multiple clutter sources due to weather clutter and can perform target 

discrimination. We analyzed its performance depending on the various parameters 

used and compared with other high resolution spectrum estimation algorithms. We 

also use a different method to find the number of frequencies, which is explained in 

at we applied
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Chapter 7, since Akaike Information Criterion (AIC) [25] used in [24] is not a 

suitable method for short data lengths [12] and non-Gaussian data, which is the case 

for our observations under the assumption of random target phases. We intentionally 

did not assume a distribution for the target magnitude in order to be able to 

generalize results to arbitrary distributions after obtaining results at different 

amplitude values of complex multipliers. 



 
 

CHAPTER 5 
 
 

OTHER HIGH RESOLUTION LINE SPECTRA 

ESTIMATION TECHNIQUES 

 

 

 In this chapter DTFT, MUSIC and ESPRIT algorithms as applied to target 

detection in radar clutter will be studied. A literature survey on the use of MUSIC in 

radar problem will be provided after the descriptions of the algorithm. Lastly, it will 

be made clear why ML algorithm requires the output of one of the defined high 

resolution frequency estimation algorithms in order to function properly. 

5.1. Can Pure DFT Be an Alternative? 

The DTFT of a sample vector x  defined in equation (2.5) (obtained by zero-

padded DFT) is shown in Figure 6. Although two targets at frequencies 

[ ] [ ]1 2 0.2813 0.3563f f =  under strong clutter are present, even the presence of 

two targets cannot be detected As a result, one can conclude that without clutter 

suppression or pre-whitening a promising result cannot be obtained with Fourier 

Transformation approach to frequency estimation. We have also observed, as 

explained in section 3.1., that MAXSIR or MTI type methods that suppress clutter do 

not provide the required resolution to differentiate two targets. 

Although, when noise is not present, three samples are enough to distinguish 

a complex exponential from another including phase and magnitude, especially if the 

samples do not cover an integer number of periods of the Doppler tone from a target 

in a pulsed Doppler radar (periodic extension of this waveform determines the signal 

being processed [26]), DFT suffers from the sidelobes of complex exponentials 

burying nearby complex exponential peaks. In other words, spectral lines widen in 

frequency domain [3]. In this case larger DFT lengths with zero-padding do not help. 

With DFT, frequency resolution is inversely proportional to the number of data 
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points, although the best resolution achievable from the discrete samples as observed 

via DTFT is limited by the inverse of the observation time [26]. As a result, one can 

conclude that the resolution of the DFT processing is limited when the frequencies of 

the sinusoids are more closely spaced than the reciprocal of the observation time [1], 

in case of multiple targets. 
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Figure 6 DTFT analysis of input data 

 

 

 

As DFT cannot be used to perform multiple target detection it cannot be a 

feasible alternative to TK. Modern high resolution spectral estimation techniques are 

used under high  conditions for a better frequency resolution compared to DFT 

when the number of samples is small. As TK is a high resolution frequency 

SNR

 31



estimation technique suitable for signals possessing line components like target 

echoes, other well known algorithms such as MUSIC [12], [11] and ESPRIT [11] 

with their various suggested versions that we will review are also applicable. These 

algorithms are not originally developed for radar scenarios under clutter, but they are 

basically designed for data corrupted in AWGN. To use them for modeling clutter, 

we will make the necessary modifications as we did for TK and analyze their 

performance in comparison with TK’s. One can say that line component estimation 

techniques are not suitable for an arbitrary clutter plus noise covariance matrix. Only 

when clutter can be modeled as a group of targets, the above mentioned algorithms 

are suitable. 

5.2. MUSIC Algorithm 

In this section original MUSIC algorithm will be explained followed by its 

implementation under single snapshot observation and the necessary modifications 

needed in order to apply it to our problem of detection multiple targets under radar 

clutter. The last sub-section will also detail various versions of the MUSIC algorithm 

applied to our problem.  

5.2.1. Basic MUSIC Algorithm 

In this sub-section the observation x  will be assumed to be free of clutter to 

explain the basic version of the MUSIC algorithm. If the eigenvalues of the actual 

correlation matrix of the data x  containing M  complex exponentials of unknown 

amplitude, phase, and frequency, xR , are arranged in decreasing order, largest M  of 

them will correspond to signal subspace with the rest belonging to the noise subspace 

[12], [11]. For a Hermitian matrix xR , its eigenvectors will be orthogonal resulting 

in the above defined subspaces to be orthogonal [12]. Thus, one over the magnitude 

square of DTFT of the noise subspace eigenvectors will have peaks at the 

frequencies of the complex exponential signals present in x . Equivalently, noise 

subspace eigenfilters formed by the z-Transformation of the eigenvectors 

corresponding to the noise will have M  of its roots lying on the unit circle at the 

frequencies of the complex exponential signals [12]. The frequency estimates can be 

obtained from the angles of these roots. However, other zeros of this polynomial can 

 32



also be located near the unit circle making it hard to distinguish them from signal 

zeros. Also, when an estimate of xR , ˆ xR , is used, signal zeros may not remain on 

the unit circle. These effects are reduced and spurious roots are moved away from the 

unit circle by means of averaging used in the algorithm called MUltiple SIgnal 

Classification (MUSIC). 

Let  denote the noise subspace eigenvectors of an 

estimated autocorrelation matrix 

:, , 1,x
k k M= +E …, L

ˆ xR  of the data with size L . These are 

distinguished from signal subspace eigenvectors by having the smallest L M

L×

−  

eigenvalues. One then forms the polynomial 

 ( ) ( ) ( )( )**1l M= +

k
l k z− −=

1
l lD z E z E z=

,+

L∑

:,1

L x
k=

 (5.1) 

where 

 ( ) ( )1 , 1,E z l M L=∑ E … . (5.2) 

The last step is to choose 2M  roots of the polynomial in equation (5.1) that are 

closest to the unit circle and, eliminating double roots, select M  of them whose 

angles (in radians) will provide the frequency estimates. 

We have focused on the root-MUSIC algorithm since otherwise there is the 

task of peak detection to find the signal frequencies from one over equation (5.2) 

evaluated at 2j fz e π= . 

Note that TK and MUSIC involve nonlinear operations and their performance 

analysis is not simple, so simulation will be used as a tool to evaluate the 

performances. 

5.2.2. Estimation of the Autocorrelation Matrix from Single Snapshot 

Observation 

 Usually ˆ xR  is estimated from multiple observations. The use of MUSIC 

technique under cases involving single snapshot is justified in [27]. 

 The main rationale behind estimating the autocorrelation matrix of the 

observation from a single burst of observation is to partition the data into pieces to 

create more virtual instances of the observation instead of directly using Hxx  as the 
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estimated autocorrelation matrix. The partitioning of the data can be done in one 

direction or in both directions as will be explained next. 

 Defining 

 

1 0

1

1

L

cov
N L L

N N L

x x

x x

x x

−

−

− −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X

"
# % #

"
# % #

"

, (5.3) 

one can form the expression for a possible estimate of the autocorrelation matrix of 

the observation as 

 ( )ˆ Hx,cov cov covX X=R . (5.4) 

For this autocorrelation matrix estimate, partitions of the data are formed in a single 

direction. MUSIC algorithm resulting from such an autocorrelation estimate will be 

called simply MUSIC algorithm, in contrast to the ‘MUSIC, FB’ resulting from 

using 
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 (5.5) 

to estimate the autocorrelation matrix of the observation as 

 ( ) ( ),ˆ Hx mod mod mod=R X X  (5.6) 

where pieces of the data are used in both directions to obtained the autocorrelation 

matrix estimate. 
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5.2.3. MUSIC Algorithm as Applied to Our Problem 

For the basic MUSIC algorithm explained in sub-section 5.2.1, there was no 

clutter, hence no clutter region, but only AWGN. 

We perform the eigendecomposition of ˆ xR  (either ,ˆ x covR , ,ˆ x modR ). If ,ˆ x modR  

is used there will be the letters ‘FB’ in naming of the algorithms. Two cases will be 

investigated: performing whitening with the matrix when it is known, or, omitting 

this step. The first case is further classified into two: Clutter can be counted as targets 

after whitening or only target frequencies can be sought.  

nR

First let us explain the whitened version of MUSIC [28], [11]: We define the 

generalized eigenvalue problem to be satisfied by the noise subspace (if clutter still 

needs to be associated with target subspace after whitening it will be named as ‘M, 

W (Clutter Counted as Target)’ or ‘M, WFB (Clutter Counted as Target)’ otherwise 

just ‘M, W’ or ‘M, WFB’): 

 :, :,
ˆ x x x n

k kλ=R E R Ex
k . (5.7) 

Here :,
x
kE  is orthogonal to signal subspace and our aim is to find these vectors. A 

method to accomplish this task is by performing Cholesky decomposition of  as nR

 . (5.8) n H=R C C

Next one performs the operation 
 ,ˆ x whitened H x 1ˆ− −=R C R C . (5.9) 

The eigendecomposition of equation (5.9) is given by 

 , , , ,ˆ x whitened x whitened x whitened x whitened=R V V D  (5.10) 

where ,x whitenedV  has the eigenvectors of ,ˆ x whitenedR  as its columns and ,x whitenedD  is a 

diagonal matrix of eigenvalues. Comparing equation (5.11), which is written by 

inserting equation (5.9) into equation (5.10) and multiplying both sides by HC  form 

right, 

 1 , 1 , ,ˆ x x whitened n x whitened x whitened− −=R C V R C V D  (5.11) 

with equation (5.7), one can obtain 

 1 ,
:, :,
x x whitened
k k

−=E C V  (5.12) 

and form the polynomial 

 ,+ . (5.13) ( ) ( )11 ,
,1

, 1,L kx whitened
l k lk

E z z l M L− −−
=

= =∑ C V � …
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M M=
��  

 otherw

If is used, we have the ‘(Clutter Counted as Targ

algorith

et)’ version of the 

m, ise M M=� is used after whitening. 

As a final step, one forms and chooses 2M�  roots of the polynomial 

 ( ) ( ) ( )( )*1
1L

l ll M
D z E z z= +

= ∑ �  
*

E (5.14) 

at are closest to the unit circle and, eliminating doubleth  roots, selects M�  of them 

whose angles (in radians) will provide the frequency estimates. For the ‘(Clutter 

Counted as Target)’ case we have the clutter region concept, otherwise this concept 

is not used after whitening. For all M�  groupings of 2M�  frequency estimates, we 

have calculated the minimum of the distances between all possible two pairs of M�  

frequency estimates in mod 1. We have selected M�  of the roots such that they ha  

the maximum of the calculated minimum distance. As a result, we eliminate 

frequencies that are originating from the same frequency and do not count them 

twice. 

ve

Non-whitened MUSIC uses the same algorithm as above, with the only 

change that  in equation nR

d 

(5.8) is taken as I  having the same size assuming clutter 

as targets an M M=
�� . An instance of the MUSIC spectrum for the non-whitened 

case for two targets at frequencies [ ] [ ]1 2 0.2813 0.3563f f =  is given in Figure 7, 

which is obtained by evaluating o 4)ne ove e equation (5.1r th  at 2j fz e π= . The 

presence of two peaks near the target frequencies reveals the resolution capability of 

MUSIC and its applicability to our problem. 
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Figure 7 MUSIC spectrum 

 

 

 

5.3. Use of MUSIC Technique in the Literature 

In the literature, MUSIC is used in a vast range of applications that include 

modeling vessel wall motion and blood flow components in ultrasound flow 

measurements [29]. It has been suggested to estimate Doppler frequency as part of a 

signal processing unit of a radar in [30]. It is used in sea clutter suppressed version 

by eliminating largest singular values of the Hankel matrix formed from the data in 

[31]; in pre-whitened version employed in HF Surface Wave Radar in [28]. Its FB 

version is analyzed in [32].  
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5.4. Total Least Squares ESPRIT Algorithm 

5.4.1. Basic Total Least Squares ESPRIT Algorithm 

 The essence of the basic ESPRIT algorithm [11] will be explained in this sub-

section.  

Firstly, one obtains the M  signal subspace eigenvectors of ˆ xR  and forms the 

matrix  by placing them as the columns. Assume there is a hypothetical matrix V  

having the sought complex exponential signals placed at its columns. Since the 

columns of matrices B  and  span the same subspace, a nonsingular transformation 

can be defined between them: 

B
�

V
�

 =B V
�

ϒ . (5.15) 

One can observe that due to the special nature of matix , V
�

  (5.16) ( ) ( )2: ,: 1: 1 ,:end end−=V V Φ
� �

can be written where  is a diagonal matrix with entries: Φ

 ,
kj

k k e ω=Φ . (5.17) 

Using equation (5.16) in equation (5.15), the following equations can be obtained 

  (5.18) ( ) ( )

( ) ( )

1: 1 ,: 1: 1 ,:

2: ,: 1: 1 ,:

end end

end end

−

−

=

=

B V

B V Φ

�

�
ϒ

ϒ

−

)

that can be combined to get 

 ( ) (1: 1 ,: 2: ,:end end− =B Ψ B  (5.19) 

where  

 1−=Ψ Φϒ ϒ . (5.20) 

Equation (5.19) can be solved in total least squares sense [11] to obtain Ψ . The 

angles of the eigenvectors of Ψ  will yield the signal frequency estimates as can be 

seen from equations (5.20) and (5.17). 

5.4.2. Total Least Squares ESPRIT Algorithm as Applied to Our Problem  

Similar to the MUSIC algorithm, two versions of the Estimation of Signal 

Parameters via Rotational Invariance Techniques (ESPRIT) algorithm [11] will be 

investigated: One that employs pre-whitening with its two versions and the other one 
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that treats clutter components as targets and assumes operation under AWGN. 

Autocorrelation matrix of the data vector can be estimated in two different ways as 

pointed out in MUSIC algorithm, resulting in ESPRIT or ‘ESPRIT, FB’. There is no 

difference between these two versions except the mentioned step.  

Let us now explain the algorithm. First we need to obtain the eigenvectors of 

ˆ xR
nR

 corresponding to non-noise subspace. Similar to MUSIC algorithm, when matrix 

 is used in the calculations instead of the matrix I , clutter can be counted still in 

the signal subspace, ‘(Clutter Counted as Target)’ version that requires clutter region 

definition, or can be included in the noise subspace with no need for clutter region. 

We define the whitening transformation 

 ( )
1

2n
−

=y R x . (5.21) 

One needs the signal subspace eigenvectors and eigenvalues in the whitened domain 

in order to obtain the corresponding eigenvectors of ˆ xR . Defining { }ˆ y HE=R yy ,  

  (5.22) ˆ y y y y=R V V D

is the equation satisfied in whitened interference domain. Multiplying both sides of 

equation (5.22) from the left by ( )
1

2nR  after inserting ( ) ( )
1 1

2 2ˆ ˆy n n
x

− −

=R R R R  in 

equation (5.22), one obtains 

 ( ) ( )
,

1: , 1:
ˆ , ,x g x n g x g x

L L=R V R V D  (5.23) 

where  

 ( )
1

2,

,

g x n y

g x y

−

=

=

V R

D D

V . (5.24) 

As a result, eigenvectors of ˆ xR  related to the target, and possibly, clutter subspace 

are 

 ( ) ( ) ( )
,

1: , 1: :, 1:
n g

L L
x
M

=B R V � . (5.25) 

Here M�  can be M  or M
�

, similar to the case in MUSIC method, depending on the 

algorithm. Since the columns of B  and  span the same subspace V
�

 =B V
�

ϒ  (5.26) 
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can be written, where V  is a hypothetical matrix that contains target, and possibly 

clutter echoes depending on the version of the algorithm, expressed in complex 

exponentials and placed at the columns of this matrix. 

�

Lastly, one finds the TLS solution of equation (5.19) which is given as [11] 

 ( ) ( ) ( )1: 1 ,: 2: ,:

HB B B
end end−

⎡ ⎤ =⎣ ⎦B B U S V  (5.27) 

 ( ) ( ) ( ) ( )( ) 1

1: , 1: 1: , 1:
B B

M M end M end M end

−

+ + +
= −Ψ V V� � � � . (5.28) 

The frequency estimates are then obtained as 

 ( )HΨ Ψ Ψ=Ψ V D V  (5.29) 

 . (5.30) , , 1, ,k k k kω Ψ= ∠ =D �… M

Note that although we have taken into account the non-white autocorrelation 

of clutter plus noise, it will be seen in section 9.2. that as in the case of MUSIC it 

gives more reliable results to run the algorithm for M
�

, rather than for M  and then 

use frequency elimination based on clutter region for obtaining target frequencies. 

 Another alternative way of implementing ESPRIT can be based on assuming 

 as matrix I  and doing the same derivations. One then obtains total number of nR

M
�

 target and clutter frequencies by selecting M M=
�� . 

5.5. High Resolution Methods Combined with ML 

Estimates obtained from high resolution line component estimations 

techniques can be improved in an optimal sense. Since the likelihood function 

possesses lots of valleys, one needs a good initial guess of the optimal point for 

convergence to the global optimum if not using a difficult multidimensional search. 

Otherwise, the ML algorithm will stuck to a local optimum point. The aim of the TK, 

MUSIC or ESPRIT can be to form the aforementioned initial point [11], if further 

reduction of variance and unbiasedness is desired. 

Log-Likelihood function (defined in equation (3.6)) as a function of 1f  and 

2f  is plotted in Figure 8 by finding the optimal complex coefficients for each 

frequency using equation (3.17) under the presence of two targets having frequencies 

[ ] [ ]1 2 0.2813 0.3563f f = . Likelihood function, whose minimum is sought, has 
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two minima differing by the order of the frequencies and a line in between where the 

function value is dramatically large. This is the result of taking two frequencies the 

same, i.e., assuming that the number of targets is one. If high resolution techniques 

result in poor estimates of parameters, it is improbable for the ML to improve these 

estimates without employing a global optimization procedure due to the presence of 

valleys and surface being not convex or concave. 

 

 

 

 
 

Figure 8 Log-likelihood function for a sample data for CNR=50dB
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CHAPTER 6 
 
 

DETERMINATION OF AMPLITUDES AND PHASES 

 

 

Finding complex amplitudes after the frequency estimates are obtained can be 

realized via two different techniques: Least Squares Estimation or Maximum 

Likelihood technique. Their application to radar observations corrupted with clutter 

will be explained in this chapter followed by a brief comparison of high resolution 

line spectra estimation algorithms. 

6.1. Least Squares Estimator 

This method uses the fact that radar clutter can be modeled as a sum of 

complex exponentials. Obtaining frequency estimates, one can form the matrix  

with entries 

F

[10] 

 ( )( ), exp 1 , 1, , , 1, ,k p pj k k N pω= − = =F
�

… … M  (6.1) 

as an intermediate step for obtaining the amplitudes and phases as follows: 

 ( ) 1

1
T H H

Ma a
−

=⎡ ⎤⎣ ⎦ F F F x�" . (6.2) 

Note that we have obtained M
�

 complex coefficients although only M  of 

them are associated with targets as seen in equation (2.5). Using the fact that clutter 

is contained in a clutter region with a known mean (D.C. frequency for land clutter), 

one can distinguish the M  complex exponentials of the targets. If the version of the 

high resolution frequency estimation algorithm yields only target frequencies, a 

complex exponential signal with a frequency of zero should be associated with land 

clutter and M
�

 in equations (6.1) and (6.2) should be selected as 1M + . 

In cases where clutter is modeled with complex exponentials differing very 

little in frequency, inverse operation in (6.2) can be replaced by pseudoinverse. 
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6.2. Maximum Likelihood Derivative Equations 

Here, we make the assumption that  is known and after frequencies of the 

targets have been determined use equations 

nR

(3.9), which are repeated here for 

convenience, 
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M :, :, :,1
0, 1, ,MH H

k k l ll
a k

=
− + = =∑V Qx V Q V …  (6.3) 

to find the amplitudes and phases of the targets. 

6.3. Comparison of Techniques 

Methods can be classified based on the use of noise autocorrelation matrix: It 

can be the actual one or the estimated one. ML, whitened versions of MUSIC, 

HWMAXSIR, and versions of ESPRIT that require are somewhat ideal in the 

sense that actual version of this matrix is supplied to the algorithms although there 

would be estimation errors in practice. Other algorithms do not require this matrix. If 

one uses ML derivative equations to obtain complex coefficients in the model, it is 

again assumed that actual  is known. On the other hand, the least squares 

estimator does not use . 

nR

nR
nR

Computational complexity of the algorithms can be accessed by comparing 

the required operations detailed in the explanation of the algorithms and the time the 

desired processor spends to perform these tasks. A careful study of this issue has not 

been performed yet. 



 
 

CHAPTER 7 
 
 

CLUTTER REGIONS AND DETERMINATION OF THE 

NUMBER OF SIGNAL PLUS CLUTTER ZEROS 

 

 

The number of complex exponentials that comprise targets and the clutter can 

be determined by various methods: observing the sharp fall in the magnitudes of the 

eigenvalues of the estimated autocorrelation matrix of observation, ˆ xR , or in the 

magnitudes of the singular values of matrix A  defined in equation (4.14) [1], which 

fails when the frequencies to be estimated are close to each other; using CFAR 

hypothesis tests employing multiple thresholds on the noise subspace energy found 

by the sum of squares of  the corresponding singular values [33]; applying Akaike 

Information Criterion (AIC), Minimum Description Length (MDL) criterion [25] etc.  

It is also possible that the number of targets M  is provided by another block 

of the system and one focuses on the high precision velocity estimation of the targets 

that are in the same folded range. For this case, M M−
�

 can be changed depending 

on  and  which dictate clutter spreading, or it can be chosen as the 

maximum value under the specified operational conditions. We have observed that at 

zero rpm , the clutter is modeled just like a single target for all CNR . However, as 

 increases for different CNR  levels, clutter can be thought of as a group of 

targets having similar Doppler frequencies. On the other hand, targets at all rpm ’s 

and ’s are modeled by one zero. When the largest possible 

CNR

SNR

rpm

rpm

M M−
�

 value is 

chosen, this covers possible lower values since the estimates beyond the actual 

number of signal plus clutter estimates will have very small magnitudes. In this 

method, with the assumption that number of signals, equivalently the number of 

targets in the same folded range, is provided, zeros falling in the clutter region are 

eliminated and if the remaining number of zeros is larger than the number of signal 
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zeros, additional zeros starting with smallest magnitude and outside the clutter region 

are eliminated. The lastly defined zero could have been caused from the interactions 

of the clutter and noise with the targets. However, we will not be using the procedure 

defined in this paragraph, since we propose a better one that does not require the 

knowledge of M . 

Our motivation for the remaining of the chapter will be to develop the model 

order selection algorithm; show that it functions successfully and allows us to select 

the total number of targets plus clutter components. Any further increase in the 

model order corresponds to adding components due to AWGN. Also, the 

determination of the width of the clutter region is outlined. 

We have used a method that depends on the estimated magnitudes of the 

detected complex exponential signals. For a radar system, number of pulses , , 

and the filter order L  to be used are generally predetermined and depending on the 

measured 

N rpm

2
WNσ  and , we vary the threshold which one should compare the 

estimated magnitudes to, in order to achieve a fixed probability of false alarm 

CNR

( )FAP , 

which is defined outside the clutter region. It is the probability of occurrence of one 

or more detections when there are no targets present and in radar systems it is tried to 

be kept fixed. Under constant , two conditional probabilities measured outside the 

clutter regions are of interest: Given that there are 

FAP

M  targets, the probability that at 

least one detection occurs ( )DP , called probability of detection, and under the same 

condition the probability that the exact number of target detections ( )M  are made 

, called probability of correct number of detections. In Chapter 9, the events 

contributing to  are considered in obtaining the estimate variances and means. The 

aim of any method should be to maximize 

( CP )

CP

DP  and/or  under constant . CP FAP

Let us now explain the details of the algorithm that makes a threshold 

comparison of the estimated magnitudes: Starting from an estimate of M
�

 being 1 

and increasing it up to , one makes threshold comparison for estimated amplitudes 

to find the total number of targets and clutter components. We stop when there is an 

amplitude estimate below the threshold for the first time and decrease the assumed 

number of complex exponentials of that try by 1 to find 

L

M
�

. Note that the maximum 
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number of targets allowed in the data, the maximum M  value, is limited such that 

M L≤
�

 should be satisfied. We do not start the test by assuming M
�

 to be  in order 

to achieve noise reduction at each step. 

L

A set of design graphs for our selected parameters are presented in Figure 9 - 

Figure 18. In Figure 9- Figure 14, there are no targets and CN  is varied. For R Figure 

15 - Figure 18, there are two targets with frequencies [ ] [ ]1 2f f 0.2813 0.3563=  

are present and their SNR  is changed at 50CNR dB= . Let us now detail how these 

figures are obtained:  

1. FBTK algorithm is used (any other algorithm can also be used) and run 

with the assumption of the specified number of complex exponentials M
�

 indicated 

in Figure 9 - Figure 18. In fact, it will be clear that the assumed M
�

 values in Figure 

9 - Figure 18 are greater than the actual M
�

 values by 1.  

2. Each simulation yields frequency and associated amplitude estimates. The 

number of these pairs is equal to the assumed number of complex exponentials. 

3. These pairs resulting from each simulation run are sorted based on 

amplitude estimates. Thus, frequency estimates are ordered in such a way that their 

associated amplitude estimates follow a sorted order. 

4. Sorted results of all simulations, when combined, form groups of estimates. 

Each of these groups of frequency or amplitude estimates is plotted with another 

sorting through the simulations. This sorting is done separately for amplitude and 

frequency estimates. Thus, the link between the frequency and amplitude estimates 

of a single simulation run is destroyed, but the aforementioned grouping establishes a 

link among the highest amplitude estimates of all simulations; a different link among 

the frequency estimates associated with the highest amplitude estimates; a different 

one among the lowest amplitude estimates of all simulations; a different one among 

the frequency estimates associated with the lowest amplitude estimates, and so on. 

Interpretation of Figure 9 - Figure 18 is as follows: 

1. In these figures, parts of the graphs where slope is low indicate that there is 

a large probability of observing the output read from the y-axis. Conversely, parts of 

the graphs where slope is high indicate that there is a very small probability of 

observing the output read from the y-axis. 
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2. When the assumed number of complex exponentials exceeds M
�

, the 

estimate having the complex multiplier with the smallest amplitude will separate out. 

The frequency estimate for this complex multiplier will be approximately uniformly 

distributed in ( ]0.5,0.5−  excluding the neighborhood of target frequencies as 

observed in Figure 9 - Figure 18. This denotes the step where FBTK algorithm is run 

with 1M +
�

 and thus M
�

1

 is found. In the number of complex exponential 

determination algorithm one can reduce the computational load by not starting the 

iterations from M =
�

, but from a value consistent with the given CN . R

3. The clutter region can be found by determining the width of the region 

around the frequency of 0 (note that frequencies repeat themselves in mod 1) by 

observing where frequency estimates are concentrated on the y-axis. It can be 

observed from the increasing number of frequency estimate graphs indicating 

frequency values near 0 and increasing number of amplitude graphs indicating large 

amplitude values in Figure 9 - Figure 18 that as CN  is increased, clutter needs to be 

modeled by increasing number of complex exponentials, but is confined in an 

interval called the clutter region. The determination of the clutter region’s width is 

clearly shown in 

R

Figure 14. Note that clutter region width is not a parameter to be 

selected after fixing the system parameters. One should use the corresponding value 

for it. 

4. As a final remark on Figure 9 - Figure 18, these graphs cannot be used to 

evaluate , FAP DP , or  since all these probabilities are defined outside the clutter 

windows, or equivalently regions, and the aforementioned figures are used to 

determine the width of the clutter window and show the rationale behind model order 

detection algorithm. 

CP

The dependence of threshold value on CNR  is expected to be a weak one 

since  which is tried to be kept fixed is defined outside the clutter region and it 

will be shown that clutter region width can be selected to be the same for all CNR  

values. Once , , and L  are selected, one can determine the clutter region 

width, which models the spread of clutter frequencies around a mean value, from 

design figures obtained for all possible operational values of the clutter power. 

FAP

N rpm
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Figure 9 Complex multiplier estimates of FBTK when no targets are present, CNR=25dB 
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Figure 10 Frequency estimates of FBTK when no targets are present, CNR=25dB 
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Figure 11 Complex multiplier estimates of FBTK when no targets are present, CNR=50dB 
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Figure 12 Frequency estimates of FBTK when no targets are present, CNR=50dB 
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Figure 13 Complex multiplier estimates of FBTK when no targets are present, CNR=100dB 
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Figure 14 Frequency estimates of FBTK when no targets are present with a zoomed in view 

provided to show the determination of the clutter region width, CNR=100dB  
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Figure 15 Complex multiplier estimates of FBTK, CNR=50dB, SNR=24dB 
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Figure 16 Frequency estimates of FBTK, CNR=50dB, SNR=24dB 
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Figure 17 Complex multiplier estimates of FBTK, CNR=50dB, infinite SNR case 
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Figure 18 Frequency estimates of FBTK, CNR=50dB, infinite SNR case 

 

 

 

We have observed that a logic that also uses the information about the 

closeness of the zeros to the unit circle is not very reliable since as the assumed M
�

 

value increases during the hypothesis tests, more zeros move towards the unit circle, 

making it impossible to estimate the actual M
�

 value. However; it has been observed 

for the method that uses a threshold based on magnitudes that for 95% of the time, at 

the last iteration, where 1M +
�

 is tried, the ( )st
1+M

�
 zero is well separated from the 

first M
�

 zeros nearer to the unit circle.  

The correlation between the two procedures, namely, the observation that 

frequency components with large magnitudes are located closer to the unit circle, can 

be used to determine a joint number of target detector logic as a future work. 

Magnitude elimination method and closeness of zeros to the unit circle differ since a 
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second or third clutter zero can be the one farthest from the unit circle among the 

selected zeros, while it results in a large magnitude since very closely spaced 

complex exponentials result in high amplitude levels when least squares method is 

used in amplitude determination.  

Procedure to decide on M  and M
�

 is not repeated for each high resolution 

line component estimation technique, but the results obtained from using FBTK are 

used in other algorithms. This is to ensure same level of noise reduction in all 

algorithms and compare their effectiveness under given M
�

. 
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CHAPTER 8 
 
 

LTI MAXSIR FILTER DESIGN FOR LAND CLUTTER 

 

 

In this chapter, we will investigate possibilities on whether there exists pre-

processing algorithms that can improve the performance of FBTK algorithm. 

When one pre-whitens the data through the transformation 

 ( )
1

2n −
=y R x , (8.1) 

y  with its  samples cannot be processed directly with the FBTK algorithm to 

obtain the frequencies of the targets because the complex exponential model of x  is 

not preserved with this transformation. 

N

We will derive the optimal linear time-invariant (LTI) filter in terms of 

 maximization when the Doppler frequency of the target is known to lie in a 

certain interval and show that its presence cannot improve the estimation results 

obtained by LP. We have chosen an LTI filter so that the input frequency 

components will be observed at the output with possibly amplitude and phase 

distortion. Since one cannot do much when the target is in the clutter region, the 

interval in which the frequencies of targets should lie will be chosen as uniform 

distribution outside the land clutter region. 

SCNR

In order to satisfy the WSS condition, one can use only  number of 

samples at the output of the designed filter u , i.e., the transient samples at both ends 

should be discarded and only the samples resulting from parts of x  and  fully 

overlapping should be used. Let us assume that phases of complex multipliers of 

targets are uncorrelated and uniformly distributed in 

1N K− +

u

( ],π π− . Also, complex 

exponential frequencies iω ’s modeling targets are taken to be uniformly distributed 

in , ,π ππ π
β β

⎛ ⎞ ⎛−
− ∪⎜ ⎟ ⎜ ⎥
⎝ ⎠ ⎝

⎤

⎦
. We define the optimum filter  as u
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 [ ]0
T

Ku u −=u " 1  (8.2) 

and, considering equations (2.5) and (3.14), s  as 

 [ ]0
T

Ns s −= =Va s " 1 . (8.3) 

Output signal energy from the filter is 

 { }
( ) (

1

21 1

1 0, , ,

1 1 *
0 0

1

M

N K
k i ki K k

K K
k m Mk m

E u s

N K u u f m k

ω ω

− −

−= − =

− −

= =
= − + −

∑ ∑

∑ ∑
a…

)
 (8.4) 

where 

 ( ) ( )
( )( ) ( )

,

sin sin
constant M,M

m k m k
f m k

m kβ

ππ
β

β

⎛ ⎞
− − −⎜ ⎟

⎝− =
−

⎠  (8.5) 

while the output clutter energy is 

 

{ }
{

( )

21 1

1 0

1 1 1 * *
1 0 0

1 1 1 *
1 0 0

N K
k i ki K k

N K K
k m i k i mi K k m

N K K n
k mi K k m

E u n

E u u

u u R m k

− −

−= − =

− − −

− −= − = =

− − −

= − = =

=

= −

∑ ∑

∑ ∑ ∑
∑ ∑ ∑

}n n  (8.6) 

where  is the autocorrelation sequence of the colored noise. ( )nR i

Passing to the vector-matrix notation, the problem becomes the maximization 

of the Lagrangian 

 ( ) ( ),H M H n cβ λΛ = − −u u F u u R u  (8.7) 

where 

 ( ),
, ,

M
m k Mf m kβ

β= −F . (8.8) 

The solution can be obtained as follows: 

 ( )
( )( )

*

,

1 ,

1 ,

M n

n M

n M

β

β

β

λ

λ

λ

−

−

∇ Λ =

− =

− =

− =

u
0

F u R u 0

R F u u

R F I u

0

0

. (8.9) 

From the last equation it is clear that optimal u  is an eigenvector of  ( ) 1n β−
R F , 

where it is evident that the constant in equation (8.5) is of no importance and thus 
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dependence of ,M βF  on M  is dropped. Since SCNR is λ  and has to be real, one 

chooses the eigenvector of ( ) 1n β−
R F  corresponding to the largest real eigenvalue. 

 After finding the frequencies of the targets by using LTI MAXSIR filtering 

followed by any one of the line spectra estimation algorithms, one still needs to use 

the data prior to LTI MAXSIR filtering to obtain the amplitudes and phases of the 

targets by using one of the two methods mentioned in Chapter 6. 

K  tap filter, due to the fact that signal is modeled outside the clutter region, 

converges to a conventional pulse canceller as seen in Figure 19. The results of 

preceding FBTK with the LTI MAXSIR filter developed in this chapter will be 

shown in section 9.6. 
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Figure 19 LTI MAXSIR filters of different orders 

  



 
 

CHAPTER 9 
 
 

SIMULATION RESULTS 

 

 

In this chapter we present the results pertaining to performances of the 

various algorithms discussed so far. The results have been obtained using Monte-

Carlo simulations. 

9.1. Simulation Parameters 

Unless otherwise stated, the default simulation parameters are as follows: 
4

230, 1.2728 , 10 , 16, 9, 45 , 2, 24 ,WHPrpm PRI s N L CNR dB M SNR dBθ ° ° −= = = = = = = =

[ ] [ ]1 2 0.2813 0.3563 , 5 , 0.7688 and number of simulations=cf f MCCR dB f= = − =
2
WN10000. In the simulations the noise power σ  is kept fixed at 1. SNR  or CNR  is 

varied to obtain the necessary graphs. Both of the targets are assumed to have the 

same fixed SNR , thus same fixed amplitude, throughout the simulations and phases 

of the targets are uniformly distributed in [ )0, 2π  and random phase values are used 

in each simulation. 

Moving clutter will be considered in Chapter 10, so the results in this chapter 

include only the land clutter. The results are expected to be the same for moving 

clutter since the only difference in their models (see Chapter 2) is that land clutter is 

centered at zero frequency. 

 Clutter region width does not depend on CN  or R 2
WNσ  and as can be 

interpreted from design graphs suited to our selected parameters and depicted in 

Figure 9 - Figure 18, where all possible clutter powers of interest are considered, 

taking its width to be ±0.07 around its center is considered to be a good choice for 

the selected parameters. 

Table 1 gives the number of detections of the FBTK method that are outside 

the clutter region, and thus identified as targets, for various SNR  levels. 2M =  is 
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assumed except for the row having zero amplitudes for the two targets and depicting 

 case. For the 10000 simulations performed for each  level, the 

amplitudes of the two targets are taken to be the same. 

0M = SNR

,  and FA D CP P P  values defined for detections occurring outside the clutter 

region can be obtained from Table 1. , which is defined for the no target case, can 

be obtained from the associated row by 

FAP

41 10−− × (the entry of the column associated 

with zero number of detected targets), where 410−  is one over the number of 

simulations.  is  and the corresponding threshold on amplitudes is 1 when FAP × 45 10−

2
WNσ  is selected as 1. Simulations can be performed to obtain the threshold levels for 

all 2
WNσ  and  values so as to satisfy fixed  although  is expected to 

have a small effect on the determination of the threshold. 

CNR FAP CNR

DP  is obtained similarly, 

but only the rows obtained under the presence of targets can be used, since otherwise 

DP  is not defined. For an SNR  level of , 24dB DP  is .  is also defined 

under the presence of targets, and since 

0.9512 CP

2M =  is taken, it is found by  times the 

entry of the column associated with two detected targets.  for an  level of 

 is 0.9006. 

4

R

10−

SNCP

24dB

 

 

 
Table 1 Distribution of number of detections for various SNR levels, CNR=45dB 

 
  Number of Detected Targets 

Amplitude SNR, dB (see equation (2.20)) 0 1 2 3 4 5 or more

0 No Targets 9995 3 2 0 0 0 

1 12 3825 4527 1648 0 0 0 

2 18 914 683 8395 4 4 0 

4 24 488 501 9006 3 2 0 

8 30 129 233 9633 3 2 0 

16 36 74 25 9898 2 1 0 

32 42 17 0 9981 1 1 0 
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 For the simulation results ˆ ˆ,i i i i ,f f a a− − which are biases or mean 

separations, ( )var ,if  which is standard deviation (stdev), and 2ˆ ,i ia a−  which 

is the root mean square (RMS) value of separation, will be presented; where i  

operator stands for averaging over the simulations. Estimated frequencies and actual 

ones are associated in such a way that the total difference between the associated 

pairs is minimized. If this is equal, the one with the smaller difference between the 

associated pair differences is selected. 

9.2. Selection of the Superior Algorithms 

Extended simulations have been performed only for the algorithms that 

yielded lower standard deviations and biases for their estimates. For this purpose 

Table 2 is prepared. ‘C # TD’ stands for correct number of target detections. ‘Cov’ or 

‘W’ indication means that the algorithm uses the matrix  instead of matrix I  as 

explained in previous chapters also listed in 

nR

Table 2. 

The number of target plus clutter zeros are determined by the FBTK method, 

so no  or M M
�

 values are provided as inputs to any algorithm. However, any other 

algorithm can also be used instead of FBTK method for the determination of model 

order. Consequently for the selected case, the results of the algorithms other than 

FBTK are considered valid only when they are provided with the number of target 

plus clutter zeros that causes correct decision for the FBTK method. This is done in 

order to observe the performance of the model order detector and the line spectra 

estimation algorithms separately since a different block for the determination of the 

number of targets plus clutter can be employed. It can be seen that it is not the class 

of the algorithm like TK, MUSIC, and ESPRIT, but the version of it, i.e., ‘FB,’ ‘W,’ 

etc., that determines the correct number of decisions as seen in Table 2. 
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Table 2 Performance of all the algorithms for the selected operating condition 

 
  f1 stdev f1 bias f2 stdev f2 bias C # TD

FTK (see section 4.3.) 2,41E-02 1,67E-03 1,61E-02 -1,01E-03 2810 

BTK 1,28E-02 8,42E-04 1,89E-02 -1,09E-03 2802 

FBTK 2,73E-03 3,08E-05 2,80E-03 -2,33E-04 9017 

FBTK, NRDV 2,74E-03 -4,13E-05 2,82E-03 9,70E-05 9014 

FBTK + ML (see sections 3.2., 4.3.) 2,29E-03 -7,77E-05 2,28E-03 2,75E-05 9017 

M (see sub-sections 5.2.2., 5.2.3.) 4,27E-03 1,37E-04 1,37E-02 -6,08E-04 3567 

M, FB 3,25E-03 -1,28E-04 3,15E-03 1,33E-04 9010 

M, W 7,38E-03 -2,50E-05 1,97E-02 -1,22E-03 8617 

M, WFB 8,47E-03 -2,08E-05 1,72E-02 -8,04E-04 7721 

M, W (Clutter Counted as Target) 4,33E-02 2,74E-01 1,48E-01 1,16E-01 9017 

M, WFB (Clutter Counted as Target) 1,25E-01 7,72E-02 3,21E-02 8,50E-03 9017 

Esp (see sub-section 5.4.2.) 4,77E-03 -1,99E-04 4,58E-03 2,12E-05 5576 

Esp, FB 3,16E-03 -9,80E-05 3,16E-03 1,04E-04 9016 

Esp, Cov 2,93E-02 1,85E-03 3,79E-02 -5,78E-03 1056 

Esp, Cov FB 3,96E-02 2,84E-03 3,74E-02 -5,69E-03 2963 

Esp, Cov (Clutter Counted as Target) 3,21E-02 2,66E-01 1,47E-02 8,35E-03 9017 

Esp, Cov FB (Clutter Counted as Target) 6,61E-02 2,40E-01 3,64E-02 2,10E-02 9017 

HWMAXSIR (see section 3.1.) 3,04E-02 -7,21E-03 9,49E-03 -1,73E-02 9017 

HWMTI 2,88E-02 -1,22E-02 0,00E+00 -1,88E-02 9017 

HWMTI_11 1,62E-02 1,04E-02 3,14E-02 6,45E-04 9016 

HWMTI_121 3,03E-02 -1,84E-02 2,89E-02 -1,57E-02 9017 

CR Bound, ML (see sections 3.2., 3.3.) 8,17E-04 0,00E+00 8,12E-04 0,00E+00  

 

 

 

Standard deviation and mean estimates are obtained from variable number of 

simulations. We do so because discarding some samples in calculations is not 

meaningful although this results in variable confidence intervals. We shall note that 

confidence intervals decrease with the number of considered simulations [34] - [36], 

i.e., those that yield correct number of target detections. For the results that are 
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presented, ten thousand simulations are made and only those that yield correct 

number of target estimations are used in obtaining the figures. 

We have used the MATLAB function fminunc, which solves unconstrained 

optimization problems by finding the minimum of the cost functions, without 

providing Gradient or Hessian information (see Appendix A) except for the cases of 

low  or closely spaced complex exponential frequencies. The results are just 

indicative of the fact that estimates can be improved with ML processing. 

SNR

Only five of the algorithms presented in Table 2 will be considered for further 

analysis because they yield the lower biases and standard deviations. Namely, they 

are FBTK, ‘FBTK, NRDV,’ ‘FBTK + ML,’ ‘M, FB,’ and ‘Esp, FB’. We can observe 

that ‘W’ or ‘Cov’ versions of the algorithms require to run with M
�

 rather than M  

and employ the clutter region concept for better estimates. However, we can 

conclude from the simulations that these versions of the algorithms are inferior to the 

versions that do not use the actual clutter plus noise autocorrelation matrix and 

consider the clutter as additional number of targets and formulate the problem in 

white noise. 

Considering the computational complexities of the selected algorithms, 

although not conclusive in any sense, time consumption of the algorithms can be 

ordered from lowest to highest as ‘Esp, FB,’ FBTK, ‘FBTK, NRDV,’ and ‘M, FB’. 

9.3. Analysis of Linear Prediction and FBTK Algorithm 

 Linear prediction uses the autocorrelation matrix of the clutter plus noise, not 

the actual observation vector. Thus, we call it Ideal LP. As a result, the estimates will 

not have any variation, but only a bias. As can be seen from Figure 20, this bias 

decreases with the order  of L ( )IdealH z  in equation (4.4). This bias may result from 

the zeros of targets, clutter, and noise affecting each other’s position. 
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Figure 20 Bias of linear prediction when clutter plus noise autocorrelation is known 

 

 

 

Standard deviation and bias of the estimates obtained by the FBTK method 

under varying  of equation L (4.20) are shown in Figure 21 and Figure 22. The 

reason why we selected  as 9 is clear from the figures. This value is different from 

the proposed value of 

L

3N 4  in [1]. The same value of  is used in the other 

algorithms as well in selecting the size of the estimated autocorrelation matrix of the 

observation vector (equations 

L

(5.4) and (5.6)). 

Increased order L  of the prediction filter improves the resolution capability 

of the filter; however, too large values for L  results in L M−
�

ˆ

 redundant zeros to 

fluctuate in their locations and move towards the unit circle resulting in spurious 

zeros. This results from the observation that elements of xR  are formed from less 

number of samples.  
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Figure 21 Standard deviation of FBTK frequency estimates for different filter orders,  L
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Figure 22 Bias of FBTK frequency estimates for different filter orders,  L
 

 

 

 The standard deviations of the FBTK frequency estimates decrease with the 

increased number of samples N  as can be seen in Figure 23 and Figure 24. If the 

magnitude of the complex multipliers of targets are kept fixed during the simulations 

and  is allowed to increase with  as given in equation SNR N (2.20), with increasing 

 one gets frequency estimates with lower standard deviations that are closer to the 

CR bound curve. However, if SNR  is kept fixed by lowering the magnitude of the 

complex multipliers of targets as N  increases, the standard deviation of the 

estimates does not approach to the CR bound curve. 

N
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Figure 23 Standard deviation of FBTK frequency estimates in comparison to CR bound for 

increasing number of samples (SNR increases with increasing number of samples) 
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Figure 24 Standard deviation of FBTK frequency estimates in comparison to CR bound for 

increasing number of samples (SNR is kept fixed) 

 

 

 

We have also considered the case where we increased the order L , together 

with the number of samples  and allowed  to increase with N . Note from N SNR

Figure 25 and Figure 26 that this mode of operation degrades the quality of the 

estimates as well as increasing the computational load since computational load 

increases with the order. As a consequence, if one is provided with a larger number 

of samples, the order L  should be kept fixed in order to obtain estimates with 

standard deviations close to CR bound. 
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Figure 25 Standard deviation of FBTK frequency estimates as a function of number of samples 

(Prediction order increases with number of samples as 9, 18, 36, 72). 
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Figure 26 Standard deviation of FBTK frequency estimates as a function of number of samples 

(Prediction order increases with number of samples as 9, 25, 57, 121). 

 

 

 

9.4. Effect of SNR for the Selected Algorithms 

 The effects of target SN  on the quality of the estimates are depicted in R

Figure 27 - Figure 31. Depicted in the figures are standard deviations and biases of 

frequency estimates, RMS value of biases for complex coefficients found via 

techniques presented in Chapter 6 and biases for complex coefficient estimates. 

Although all of the selected algorithms yield similar performance results, the 

superiority of the FBTK algorithm in comparison to other algorithms, excluding the 

obvious improvement achieved with subsequent ML processing, is evident from the 

figures. Other observations one can make from the figures are that the estimates can 
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be considered unbiased and there is no improvement achieved with the ‘FBTK, 

NRDV’ algorithm.  

CR bounds shown in the figures have been derived under the assumption of 

unbiased estimates and the figures showing the bias of the estimates are given to 

verify this assumption. 
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Figure 27 Standard deviation of the first target’s frequency estimate of selected methods with 

SNR 
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Figure 28 Bias of the first target’s frequency estimate of selected methods with SNR 
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Figure 29 RMS value of separation of the first target’s estimated and actual complex multiplier 

with SNR for selected methods (Least squares method) 
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Figure 30 RMS value of separation of the first target’s estimated and actual complex multiplier 

with SNR for selected methods (Maximum likelihood method) 
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Figure 31 Bias of the first target’s estimated and actual complex multiplier with SNR for 

selected methods (Maximum likelihood method) 

 

 

 

9.5. Frequency Resolution for the Selected Algorithms 

In order to evaluate the resolution capability of the algorithms, we have kept 

2f  fixed and changed 1f : The frequency of the first target is moved towards the 

other target and then towards the land clutter region. The results in Figure 32 - Figure 

36 show that the quality of the estimates is affected from a nearby clutter source or a 

nearby target in a similar fashion. We can observe this from the increase of the 

standard deviations and biases of the estimates at the two ends of the graphs. 

However, CR bound increases only when 1f  is moved towards the land clutter region. 

Thus the closeness of 1f  an  2d f  affects the performances of the examined algorithms, 

whereas the CR bound is mostly determined by the distance from the clutter region. 
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Figure 32 Standard deviation of frequency estimate of selected methods with change in Doppler

equency of the first target 
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Figure 33 Bias of frequency estimate of selected methods with change in Doppler frequency of

e first target 
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Figure 34 RMS value of separation of estimated and actual complex multiplier with change in

oppler frequency of the first target for selected methods (Least squares method) 
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Figure 35 RMS value of separation of estimated and actual complex multiplier with change in

oppler frequency of the first target for selected methods (Maximum likelihood method) 
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Figure 36 Bias of separation of estimated and actual complex multiplier with change in Doppler 

frequency of the first target for selected methods (Maximum likelihood method) 

 

 

 

9.6. LTI MAXSIR Filter and FBTK Method 

In this section, the performance of the system consisting of a MAXSIR filter 

(an LTI filter optimized for maximum SC ; see Chapter 8) followed by a FBTK 

block under land clutter will be evaluated. 

NR

Figure 37 shows that due to reduced number of useable samples, the LTI 

MAXSIR filter with 1
Nβ =  ( β  could also be chosen same as the clutter region 

width) deteriorates the performance of FBTK algorithm. In the figure, ‘decreasing 

order’ means that the difference between the useable number of samples and order  

is kept fixed, i.e.,  is decreased with the increase in the order of the LTI MAXSIR 

filter. 

L

L
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Figure 37 Standard deviation of the first target’s frequency estimate of FBTK method preceded 

by LTI MAXSIR filter 

 

 

 

9.7. Concluding Comments on Simulation Results 

 We have not performed simulations for different values of , 

but as  increases or  decreases, due to reduced correlation of clutter as can 

be seen from equations 

2 and WHPrpm θ °

rpm 2WHPθ °

(2.16) and (2.17), we expect spreading in the power spectrum 

of clutter. Larger clutter regions need to be defined and the range of detectable target 

frequencies will decrease. 

 Simulation results agree with our assertion that line spectra estimation 

methods can be applied in radar problem for high resolution Doppler estimation of 

multiple targets in the same folded range. 
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CHAPTER 10 
 
 

FURTHER APPLICATIONS OF HIGH RESOLUTION 

LINE SPECTRAL ANALYSIS METHODS IN RADARS 

 

 

 In this chapter, we provide two further applications of the high resolution line 

spectral analysis tools; namely the moving clutter problem, and detection of 

helicopters and distinguishing them from fixed-wing targets with radars under strong 

clutter. 

10.1. Moving Clutter 

For target detection under moving clutter, we assume that an initial mean 

frequency where the moving clutter region is centered is provided. This is possible 

since for clutter detections, the same frequency values are reported consistently from 

burst to burst. Also clutter splits into many range cells and observed in neighboring 

beams. These make it possible for an outer block to supply the moving clutter center 

frequency which will be updated by our algorithm, by the mean value of the newly 

estimated moving clutter frequencies, which are identified by being in the moving 

clutter region. That means, around the moving clutter we define another window 

having a width equal to that of land clutter’s window. This is called the moving 

clutter region and we update its location by the mean of the newly estimated moving 

clutter frequencies. Input to our algorithm is the initial center of this window and the 

output is the new center of the window.  

A sample output of FBTK algorithm showing the zeros of the prediction-error 

filter  for , whose angles will yield the frequency estimates is given in ( )H z 9L =

Figure 38. In the figure both land and moving clutter are present in addition to two 

targets at frequencies [ ] [ ]1 2 0.2813 0.3563f f =  and the moving clutter center 
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frequency cf  is taken as 0.7688. The moving clutter zeros will fall into the 

aforementioned moving clutter window and the mean frequency of these two zeros 

will be the new moving clutter window center. 
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Figure 38 Zeros of prediction-error filter when two sources of clutter are present 

 

 

 

10.2. Target Discrimination 

The proposed processor can be utilized to aid distinguishing between fixed-

wing and rotary-wing targets in addition to its usefulness in scenarios containing 

moving clutter. Appendix B contains the literature survey on rotary-wing targets in 

comparison with fixed-wing targets. Based on this knowledge, we will consider how 
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high resolution line spectra estimation algorithms can be employed for target 

classification purposes after presenting the mathematical model for helicopters 

(rotary-wing targets). 

10.2.1. Modeling Helicopter Echo 

The hub echo is assumed to be zero mean, Gaussian distributed, and 

independent from the rest of the signal model components. If  target is a helicopter, 

its hub’s autocorrelation matrix is given by 

thi

 ( )
2

2 2
, 2 sincij fhel hub hub

k l
body

fe
PRF

πσ
σ

⎛= ⎜
⎝ ⎠

R k l ⎞− ⎟  (10.1) 

which is used to model the helicopter hub echo h  after defining the eigenvectors and 

eigenvalues of  as helR

 ( )Hhel hel hel hel=R V D V . (10.2) 

 ( )
1

2hel hel=h V D w  (10.3) 

where  is an  element column vector of complex white Gaussian noise.  w N

In obtaining the CR bound for the rotary-wing target case, one just needs to 

add the appropriate matrices  to  and use the resultant matrix as the new  

in equations 

helR nR nR

(3.22) - (3.27). 

10.2.2. Proposed Classification Method 

Line component estimation methods may be affected by the presence of the 

hub echo, so, further investigation is required for this point. If we assume that the 

effect is negligible and subtract the estimated body echoes from the received signal, 

one can observe that helicopter and fixed-wing targets separate out. One can check 

for the presence of a helicopter from the presence or absence of spreading. The 

remaining power around the body frequency of a rotary-wing target after subtraction 

may be either modeling the hub echo or may be present due to the imperfect 

cancellation of the actual and estimated echoes, which is again due to the presence of 

hub echo. In any case, classification capability of line component frequency 

estimation methods seems promising to further investigate. 
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CHAPTER 11 
 
 

CONCLUSION AND FUTURE WORKS 

 

 

A radar detector and Doppler processor block based on linear prediction, 

capable of operating under multiple-target and more than one source of clutter 

scenarios has been investigated. A model order detector has been suggested with its 

performance observed through simulations. Various simulation results on linear 

prediction parameters and comparison of linear prediction, MUSIC, and ESPRIT 

were given with results compared to the derived Cramér-Rao bounds. The effect of 

using LTI  maximizing filter prior to linear prediction was analyzed. How to use 

the specified radar processor for target classification has been briefly explained. 

SIR

The main result of this work is that linear prediction and high resolution line 

spectra algorithms should be used in their forward-backward and nonwhitened 

versions treating each source of clutter as a group of targets with close Doppler 

frequencies. Other key results are: 

1. Estimates obtained from the high resolution line spectra estimation 

algorithms can be further improved with subsequent Maximum Likelihood 

processing in order to obtain lower standard deviations and biases for the estimates. 

2. Frequency estimates found by linear prediction cannot be improved with 

preprocessing the data with a whitening filter or an MAXSIR filter. 

3. There is an optimum order L  for the prediction-error filter used in Tufts-

Kumaresan method, which is different than 3 4N  found in the literature [1]. 

4. If one increases the number of samples N  available to process, the order 

 of the prediction-error filter should be chosen accordingly. An initial increase in 

 may lower standard deviations of the estimates; however, further increase may 

deteriorate the quality of the estimates. 

L

L
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5. All the frequency estimation algorithms examined show similar results 

under varying , although Tufts-Kumaresan method produces the best estimates. SNR

6. High resolution line spectra estimation algorithms are affected from a 

nearby clutter source or a target with a close frequency in the same way. This is 

observed in the increase of the standard deviations and biases of the estimates. 

However; Cramér-Rao bound increases only when there is a nearby clutter source. 

7. For the model we used, it is expected that results obtained using land 

clutter will not change if one has data corrupted with moving clutter since the only 

difference in their models is the center frequency of the clutter. 

8. It is expected that multiple clutter sources would be treated similarly by the 

high resolution line spectra estimation algorithms since these algorithms do not 

differentiate between clutter and the targets. It is the duty of the clutter region to 

perform the necessary separation of targets and the clutter. 

9. The proposed model order detector based on making threshold comparison 

of the estimated amplitudes is successful at providing the total number of targets plus 

clutter components. 

10. A model order detector based on the closeness of the zeros of the 

prediction-error filter to the unit circle does not provide promising results although it 

will be probably beneficial to develop a model order determiner that takes as inputs 

to it both the amplitude of the estimates and the closeness of the corresponding zeros 

of the prediction-error filter to the unit circle. 

11. Clutter region concept works well in separating targets from clutter. In 

fact, with this concept we achieve a form of whitening since clutter components 

which cause the noise part of the observation vector x  to be colored is eliminated 

with this operation. 

As a future work, the number of target plus clutter components detection 

procedure can be improved and a recently published modification on TK method 

[37] can be adapted. Research can be conducted on the applicability of the 

algorithms under clutter conditions that are modeled differently. Also target 

classification procedure can be detailed and the computational complexity of the 

algorithms can be investigated. Lastly, we anticipate that performance evaluation of 
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the algorithms on actual radar data can provide numerous insights and the methods 

can be improved accordingly. 
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APPENDIX A 
 
 

IMPLEMENTATION OF MAXIMUM LIKELIHOOD 

TECHNIQUE 

 

 

Equations (3.9) and (3.10) can be solved using the steepest descent method 

[38] in which case the specified equations without equating to zero provide the 

necessary gradient information. If one uses an algorithm that requires real variables, 

entries of the gradient are given by 
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In the steepest descent algorithm, estimates for any generic variable z  is updated as 
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where μ  is a properly chosen step size parameter that should guarantee convergence.  

Another possibility may be to use Newton–Raphson method [39] with the 

update equation 
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which requires the Hessian matrix  in addition to gradient information ( )ln pH ( )ln p∇ . 

 is the matrix of second-order partial derivatives of the cost function ( )ln pH ( )ln p  (−  

sign is omitted for short notation) with the (  element given by )th,i j [12] 
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The necessary equations corresponding to our model required to form the Hessian 

matrix are 
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If one requires the corresponding equations for algorithms accepting real variables, 

they are given as 
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What we have used in solving the minimization problem (3.6) is the 

MATLAB function fminunc with gradient and Hessian information provided by us. 

Another alternative we tried is to minimize equation (3.18) without providing 

gradient or Hessian information to the same MATLAB function. One can refer to 

MATLAB help for further details. 
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APPENDIX B 
 
 

LITERATURE ON HELICOPTER ECHO AND 

DETECTION AND CLASSIFICATION 

 

 

In this part, a summary of the references [40] - [55] will be presented. If  

and time-on-target (  values are appropriately selected, helicopter radar echo 

possesses some characteristic features. Additionally, PRF , which is the data 

sampling rate for a pulse Doppler radar, must be high enough (10s of kHz) for 

representing the helicopter echo without aliasing (an unambiguous velocity of at least 

500 m/s is necessary). Helicopter backscattering results from several reflectors 

including fuselage, main rotor blades, tail rotor, rotor hub, and reflections caused by 

the interaction & interference of these components etc. 

SNR

)N PRIi

B.1. Body (Fuselage, Skin) 

Fuselage echo resembles that of a fixed-wing aircraft with radar cross-section 

( RCS ) of a few square meters (Note that RCS  changes with radar frequency and 

target orientation). Since rotary-wing targets have other components contributing to 

the echo signal, spectral width of their echoes are expected to be larger than those of 

fixed-wing targets. Fuselage echo may overlap with the spectrum of clutter in the 

case of hovering; otherwise, it has a Doppler frequency depending on radial velocity 

relative to the radar. The effect of undesired ground clutter is not present when the 

helicopter is not a hovering one. 

B.2. Main Rotor 

The main rotor consists of several blades rotating at a rate of 200 ~ 350 rpm. 

The rotation speed of the main rotor remains nearly constant during the flight and the 

maximum velocity of the tips of the main rotor blades varies only slightly between 
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different types of helicopters (blade end linear velocity is about 180 – 230 m/s). The 

approaching tip of the main rotor blade has the highest velocity component, whereas 

it is the opposite for the receding tip of the main rotor blade. 

The echo of the periodically rotating blades of the main rotor consists of 

successive intense temporal flashes (caused when consecutive rotor blades are 

perpendicular to the direction of radar beam yielding the maximum RCS ) with 

evenly distributed two-sided Doppler signature around the fuselage line (both 

amplitude and phase modulation are caused in radar echo). For even number of rotor 

blades, the spectrum will be symmetrical since the backscattered signals of coming 

and going blades will be simultaneous. For the odd number case with short 

integration times the spectrum is slightly asymmetrical. Flash duration depends on 

the length of the blades, rotor rate, and radar wavelength, while the flash interval 

depends on the rotor rate and the rotor blade number. Power reflected by the blades 

is typically less than 1% of the total reflected power. 

At X-band 230m/s rotor tip speed results in approximately 15 kHz of Doppler 

shift, indicating a minimum  sampling rate of 30 kHz. Maximum forward flight 

speeds of helicopters are limited approximately to 100 m/s due to retreating blade 

stall. Consequently, maximum Doppler shift of an advancing blade tip of a helicopter 

in forward flight can increase up to 22 kHz necessitating a minimum radar PRF  of 

44 kHz.  

PRF

Since echo components of main and tail rotors are distributed over a broad 

spectral range, for the cases when Doppler filter bank is employed, one may 

sometimes observe that output signals from majority of the individual filters (> 75%) 

are above the threshold. Neglecting those corresponding to the fuselage, outputs that 

are above the threshold exhibit very little amplitude spread indicating presence of a 

helicopter. 

Rotor blade echo consisting of very short spikes is not very promising for a 

surveillance radar since it may go unnoticed as common time-on-target values are 

much smaller than spike repetition rate. In other words integration time long enough 

for registering two or more successive main rotor flashes is required. As a rule of 

thumb 100s of ms to a second of observation time is required to detect the rotor blade 

flashes successfully. Helicopter classification can be based on an estimate of the 
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quotient of the number of rotor blades and their length; however, this requires high 

 or Signal to Clutter Ratio ( SC ).  SNR R

B.3. Tail Rotor 

The tail rotor has smaller diameter and higher rotation rate (50 – 110 rps). Its 

echo also consists of spikes, but the spikes are smaller and more frequent. The echo 

of the tail rotor remains often invisible because of being hidden by the fuselage. If 

horizontal polarization is used in transmission and reception, effect of modulation 

caused by the vertically rotating tail rotor can be neglected in the received signal. 

B.4. Hub 

Hub is the mechanical joint that serves many functions in addition to 

connecting the blades to the engine shaft: power transfer, blade attack angle steering, 

and damping of blade vibrations to name a few. The origin of the triangular shaped 

spectral area centered on the fuselage line component is the hub. At X-band it 

occupies a ±2 kHz bandwidth (considering 99% power). The RCS  of the hub is in 

the range of 0.25 m2, lower than the fuselage echo by 5 – 20 dB. Taking hub return 

power equal to one tenth of target skin return is a feasible approach. Since the RCS  

of the hub of a helicopter is very small, a technique based on using the echoes of hub 

is feasible for a helicopter target in close range which is actually what we are 

interested in. Hub detection is also suitable for the scenarios with relatively short 

time-on-target values (10s of ms). In fact spectral signature of the rotor hub has a 

higher probability of occurrence than the blade flash.  

Analyzed portion of the signal should contain no spikes, namely, the rotor 

flashes, as it would interfere with the detection of a helicopter based on its hub 

spectrum.  

In determining the radar echo strength the transmitted power is multiplied by 

the square of the radar antenna pattern for mechanically scanned antennas in the time 

domain. This is equivalent to convolution operation in the frequency domain which, 

therefore, widens the fuselage spectrum covering the weak hub echo. The use of 

further time windowing lowers the frequency resolution more. Taking into account 

the typical width of the hub spectrum for different wavelengths, the Fourier analysis 
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technique can only be used when time-on-target is sufficiently long (tens of 

milliseconds for an S-band radar), (frequency resolution=k/observation time=k/time-

on-target, k is chosen depending on the window function used). 

Extraction of the fuselage echo from the received signal makes hub detection 

easier, since with this operation hub could be detected in frequency domain as a 

spectral power density increase in the area around the fuselage Doppler frequency. 

Also at this step signal power test could also be sufficient. The same fuselage echo 

extraction procedure can also be applied for schemes utilizing blade flashes. 

Comparison of ideal rotary-wing (helicopter) and fixed-wing target spectra is 

given in Figure 39 and Figure 40. 

 

 

 

 
 

Figure 39 Helicopter spectrum (For the hovering or zero radial velocity case, fbody=0, otherwise 

fbody≠0) 
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Figure 40 Fixed-wing spectrum (For targets with zero radial velocity fbody=0, otherwise fbody≠0) 

 

 

 

B.5. Some of the Other Available Techniques 

STAP scheme detection, time-frequency analysis, maximizing hub to 

remaining signal plus noise components power ratio, Neyman–Pearson criterion 

combined with principal vector usage approximation for detection based on hub and 

matched subspace approach to CFAR detection of hovering helicopters had been 

proposed in the literature. Time-frequency records, aspect angle analysis & distance 

profiles of helicopters and database comparisons could also be utilized for 

classification purposes.  

Joint utilization of radar and infrared sensor is one of the feasible ways to get 

additional information from the target. However, one should keep in mind that 

information from various sensors differs in its reliability. Acoustic signal based 

helicopter signal extraction is also an alternative. 

Besides the methods presented, it is discussed in the literature that basing the 

decision on multiple bursts may lower false target reports. 
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