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ABSTRACT

NONLINEAR VIBRATION OF MISTUNED BLADED DISK ASSEMBLIES

Orbay, Glinay
M.S., Department of Mechanical Engineering
Supervisor: Prof. Dr. H. Nevzat Ozgiiven

July 2008, 138 pages

High cycle fatigue (HCF) failure has been studied extensively over the last
two decades. Its impact on jet engines is severe enough that may result in
engine losses and even life losses. The main requirement for fatigue life
predictions is the stress caused by mechanical vibrations. One of the factors
which have major impact on the vibratory stresses of bladed disk
assemblies is a phenomenon called “mistuning” which is defined as the
vibration localization caused by the loss of cyclic periodicity which is a
consequence of inter-blade variations in structural properties. In this thesis,
component mode synthesis method (CMSM) is combined with nonlinear
forced response analysis in modal domain. Newton-Raphson and arc
length continuation procedures are implemented for the solution. The
component mode synthesis method introduces the capability of imposing
mistuning on the modal properties of each blade in the assembly. Forced
response analysis in modal domain reduces the problem size via mode
truncation. The main advantage of the proposed method is that it is capable
of calculating nonlinear forced response for all the degrees-of-freedom at

each blade with less computational effort. This makes it possible to make a

iv



stress analysis at resonance conditions. The case studies presented in this
thesis emphasize the importance of number of modes retained in the
reduced order model for both CMSM and nonlinear forced response
analysis. Furthermore, the results of the case studies have shown that both
nonlinearity and mistuning can cause shifts in resonance frequencies and
changes in resonance amplitudes. Despite the changes in resonance

conditions, the shape of the blade motion may not be affected.

Keywords: Blade Vibrations, Bladed Disk Vibrations, Mistuning in Bladed
Disk Assemblies, Nonlinear Vibrations, Component Mode Synthesis

Method.



Oz

DUZENSIZ KANATCIKLARA SAHIP DISKLERDE DOGRUSAL
OLMAYAN TITRESIMLER

Orbay, Gilinay
Yiiksek Lisans, Makine Miihendisligi Boliimii
Tez ydneticisi: Prof. Dr. H. Nevzat Ozgiiven

Temmuz 2008, 138 sayfa

Yiiksek ¢evrim nedeniyle olusan yorulma son yirmi yildir iizerinde yogun
bir sekilde calisilan bir konudur. Jet motorlar1 tizerindeki etkisi, motor
kayiplarina hatta can kayiplarina sebep olacak kadar fazladir. Yorulma
omriiniin  hesaplanmas: i¢in mekanik titresimler sonucu olusan
gerilmelerin bulunmasi gerekmektedir. Disk-kanatgik sistemlerinde
titresim kaynakli gerilmeleri en cok etkileyen faktorlerden biri de,
kanatgiklarin yapisal 6zellik farkliliklarindan 6tiirii ¢evrimsel periyodiklik
kaybolmas1 ve buna baglh olarak titresimin belli bolgelerde yogunlasmasi
olarak tanimlanan “dtiizensizlik”tir. Bu tezde, bilesen bi¢cim sentez metodu,
bi¢cim koordinatlar1 kullanarak, dogrusal olmayan system cevabi analizi ile
birlestirilmistir. Sayisal ¢oziimler i¢in Newton-Raphson ve yay uzunlugu
sureklilik metodu kullanilmistir. Bilesen bicim sentez metoduy,
diizensizligin kanat¢iklarin herbirinin bi¢im matrislerine uygulanabilmesini
saglamaktadir. Buna ek olarak, dogrusal olmayan sistem cevabinin bigim
koordinatlarinda hesaplanmasi, bigim sayisinin azaltilmasiyla problem

boyutunu azaltmaktadir. Onerilen ydntemin birinci avantaji, daha az
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hesaplamayla biitiin kanatgik serbestlik derecelerinde kuvvet cevabinin
bulunabilmesidir. Bu, rezonans durumunda, kanatc¢ik boyunca gerilmenin
hesaplanmasini miimkiin kilmaktadir. Yapilan vaka analizleri, mertebesi
diistirtilmiis modellerin elde edilmesinde kullanilan bi¢im sayilarinin, hem
bilesen bicim sentez metodunda hem de dogrusal olmayan sistem cevabi
analizinde 6nemli oldugunu gostermektedir. Ayrica, vaka analizi sonuglari;
diizensizlik ve dogrusal olmayan etkilerin rezonans frekanslarimi ve
titresim genliklerini Onemli Olgiide degistirdigini, ancak, kanatciklarin

titresim sekillerini fazla etkilemedigini gostermistir.
Anahtar kelimeler: Kanatcik Titresimleri, Disk-Kanatcik Titresimleri, Dik-

Kanatgik Sistemlerinde Diizensiklik, Dogrusal Olmayan Titresimler, Bilesen

Bicim Sentez Metodu.
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CHAPTER 1

INTRODUCTION

1.1 On Mistuning and High Cycle Fatigue

High cycle fatigue (HCF) failure has been studied extensively over the last
two decades. Nicholas [1] personally defines HCF as failures occurred
under a fatigue condition which “generally involves high frequencies, low
amplitudes, nominally elastic behavior, and large number of cycles”. Its
impact on jet engines is severe enough that may result in engine losses and
even life losses. The United States Air Forces (USAF) statistics showed that
nearly half of the engine failures are related to HCF. Consortiums have
been established to raise and invest funding on research and the results are

promising. The percentage of HCF related failures are decreasing.

On the commercial side, jet engine manufacturers tend to make the engines
lighter and more powerful to deliver high power to weight ratios. This, on
the other hand, requires limit safety values. Under these circumstances,
failure related to HCF is the main focus. Therefore, mechanical vibrations of
critical parts, such as compressor and turbine blades, should be predicted

with high confidence.

One of the factors which have major impact on vibration amplitudes on

bladed disk assemblies is a phenomenon called “mistuning”, “disorder” or



“vibration localization”. It is defined as the localization of strain energy of a
vibration mode to a single or a number of blades throughout the bladed
disk assembly due to the imperfections in materials and random variations
in manufacturing processes. Since it can also occur due to changes related

to operational wear, mistuning is inevitable in its nature.

On the other hand, some suggestions were made on benefits of mistuning.
Whitehead [2] showed that mistuning can be used in favor of integrity
when flutter is considered. There are ongoing debates on how mistuning
could be exploited to increase the integrity of bladed disk assemblies. Either
way, mistuning has to be studied extensively. In Chapter 2 mistuning will

be explained in detail.

1.2 Literature Review

The studies in the literature related to nonlinear dynamic response analysis
of mistuned bladed disk assemblies will be discussed in the upcoming
sections. These can be grouped as, studies regarding mistuning modeling
and studies regarding nonlinear dynamic response of bladed disk
assemblies although some of them include both aspects. Mistuning
modeling will be discussed in only considering modal domain methods for
which the intention is going to be explained in “the objective of the thesis
section.” On the other hand, among the myriad of studies about nonlinear
vibration of bladed disk assemblies only the most recent and most

commonly implemented works will be discussed.



1.2.1 Mistuning Modeling

Mistuning phenomenon has been studied extensively for over half a
century, especially for bladed disk assemblies. It is one of the main
parameters that affect vibration amplitudes, thus stress levels of rotating
turbomachinery components. Due to their cyclic symmetric property, slight
imperfections in structural properties and slight deviation on geometries of
blades will result in significant increase in vibration amplitudes. This
weakens the robustness, integrity and durability of the bladed disk
assemblies by increasing the probability of HCF related malfunction. On
these reasons, mistuning phenomenon has been the main focus for over a

half century.

The early models were based on dynamic analysis of continuous systems of
basic elements, namely beams and disks [2, 3]. Although the geometries
used in these models did not belong to real bladed disk assemblies, they
had sufficient resemblance and thus revealed important information on the
phenomenon itself. Ewins [3] formulated a bladed disk assembly by
coupling beam-like blades with an axisymmetric disc via receptance
coupling. He also developed an alternative method which yields the
normal modes of the assembly by constructing element matrices from
energy and Lagrange equations. He also demonstrated that the double
modes splitting phenomenon due to mistuning. Meanwhile, Whitehead [2]
developed a formulation in which the single degree-of-freedom blades in
the assembly are coupled aerodynamically. He came up with a simple
formula for the worst case of mistuning in terms of amplification factor

which is defined as the ratio of the mistuned vibration amplitude to the



tuned vibration amplitude. This formula suggests that the maximum
possible amplification factor is a function of the number of blades in the
assembly only. Later, he corrected his simple formula for mechanical
coupling of the blades through the rotor [4] and then he “amended” his
own formula for mechanical coupling and declared the validity of his first
formula [2] whilst introducing mode shapes for the worst case of mistuning
[5]. The formula he had developed is still used as a theoretical benchmark.
Lim et al. [6] used energy formulations to predict the amplification factor
bounds and came up with the same formula as Whitehead did using a
single degree-of-freedom per sector model. He analyzed 2 degrees-of-
freedom per sector and multiple degrees-of-freedom per sector models. He
also introduced a stress indicator factor and verified the maximum
amplification formula via Monte-Carlo simulations. In addition Feiner et al.
[7] developed a method which uses a single degree-of-freedom per sector
model. In this study, “the mistuned mode is represented as a sum of the
tuned modes, where the coefficients of the tuned modes in the modal

summation represent the amount of distortion present in the mode”.

With the developments in finite element (FE) methods, realistic geometries
have been analyzed to calculate forced responses. As the complexity of the
model increases the computational time needed increases too. Therefore
researchers aimed to exploit the cyclic symmetric property of bladed disk
assemblies. The element matrices of a cyclic symmetric structure can be
block diagonalized using Fourier matrix transformation [8]. This divides
the problem into a number of smaller subproblems. Solving them reduces
the computational time required significantly. Although these analyses

gave a good insight on the vibration of bladed disk assemblies, cyclic



symmetry analysis could not be used to look into mistuning. In order to
predict forced responses of mistuned bladed disk, mistuning can be
imposed on FE models. But these models usually have large numbers of
degrees-of-freedom requiring enormous amount of computational time for
forced response predictions. Thus, some studies focused on reduced order
models which would render dynamic analysis of mistuned bladed disk

assemblies affordable in computational time.

Ottarsson et al. [9] proposed to express the mode shapes of a mistuned
bladed disk assembly as a summation of cantilevered blade mode shapes
and tuned assembly mode shapes with zero density on the blades. Using
energy equations and Hamilton’s principle the problem is reduced into
modal coordinates. Then mistuning is imposed on the part of the modal
stiffness matrix which belongs to individual blades. Assuming the tuned
case, the method gave close results on natural frequencies but the results
can be improved by manually tuning the modal stiffness matrix of
cantilevered blades in an iterative manner. This method can be used to
carry out statistical studies thanks to its speed. But the modeshapes it yields
are not as accurate as those obtained with other methods in the literature
[10]. Bladh et al. [11] further developed this model to include shrouds into
the analysis. Later, Bladh et al. [12, 13] suggested using component mode
synthesis methods for the modal analysis of mistuned bladed disk
assemblies. They utilized Craig-Bampton method [14] to connect a number
of blades on a perfectly tuned disk. The Craig-Bampton method was chosen
“due to its robustness and excellent accuracy”. In this model mistuning can

be imposed on cantilevered natural frequencies of individual blades. Then



using the idea behind the study made by Yang et al. [15] a new reduced

order model is introduced which is faster and yet accurate.

In addition to modal domain methods, Yang and Griffin [16] suggested
coupling a tuned disk with mistuned blades via FRF coupling. A
transformation which expresses the blade-disk interface motion by a
number of translational and rotational rigid body modes is applied to
reduce the number of connection degrees-of-freedom. Yet, the FRF matrix
for each degree-of-freedom on the blade should be calculated for each point
in the frequency range. Afterward, Yang and Griffin [17] developed the
method called the subset of nominal modes (SNM) method which is also
based on the idea behind their past study [15]. The method assumes that
the mistuned mode shapes in a mode family (e.g. first bending) can be
expressed by the mode shapes which belong to the same family of modes of
the tuned assembly. Slight changes in natural frequencies of individual
blades will not result in significant changes in the blade shape but
localization throughout the assembly; therefore the assumption seems to be
true. Mathematically thinking, for a mode at which the majority of the
strain energy is localized on a single blade, the mode shape can be
expressed by summation of similar nominal modes having all numbers of
nodal diameters (i.e. zero to max nodal diameters) similar to logic behind
Fourier expansion. This method requires the knowledge of mode shapes of
the tuned assembly and mass and stiffness matrices of a single blade. Feiner
and Griffin [18] further improved the method to consider an isolated family
of modes and called it the fundamental mistuning model (FMM). With the
assumption that the natural frequencies in a single family of modes are

close, it is no longer needed to have mass and stiffness matrices of a blade.



Later, Feiner et al. [19, 20] further improved the FMM to calculate transient
response of mistuned bladed disk assemblies. FMM is then used to identify

individual blade mistuning from experimental measurements.

As an addition to FRF based methods, Petrov et al. [21] proposed using
Sherman-Morrison-Woodbury formula to write an exact relationship
between FRF’s of tuned and mistuned assembly. They introduced mass,
stiffness and damping type of mistuning elements which are considered as
a modification on the tuned system. The degrees-of-freedom are partitioned
as active and passive, the former including the points where mistuning is
applied and the response is to be calculated. For the method being based on
FRF updating, the linear mistuning elements should be applied at every
frequency point in the range of interest. Soon after, Petrov and Ewins [22]
utilized this method to calculate the worst mistuning patterns in bladed
disk assemblies. They formed an optimization problem in which the
mistuning pattern, which is the set of mistuning values for each blade in the
assembly, and excitation frequency are main variables. The mistuning
amount is constrained within a desired range. In this study, they also
developed “an effective method for calculation of the sensitivity coefficients
for maximum forced response with respect to blade mistuning.” Later
Petrov and Ewins [23] used this method to calculate nonlinear forced
response of a bladed disk assembly with shroud contacts in the presence of
natural frequency mistuning (although it is achieved by point mistuning)
and “scatter of contact interface characteristics”. The nonlinear aspect of
this study will be discussed in the upcoming sections. Recently, Nikolic et
al. [24] used the aforementioned method to develop “robust maximum

forced response reduction strategies”.



1.2.2 Nonlinear Dynamic Response of Bladed Disk Assemblies

The early work on nonlinear dynamic response of bladed disk assemblies
used simple models and simple nonlinear oscillators, therefore they will not

be discussed here. Only recent and commonly used methods will be briefly

described.

In 1990, Wagner and Griffin [25] studied tip shrouded bladed disk
assemblies for which the steady-state harmonic response amplitudes vary
from blade to blade due to differences in inter-blade gap values for “large
enough excitation”. They stated that single degree-of-freedom models
cannot represent the blade stresses adequately, therefore beam type models
should be used. They utilized harmonic balance method (HBM) to
approximate the behavior of gap nonlinearity in the system. Later, Yang
and Menq [26] formulated a friction element under variable normal load to
calculate the steady-state vibrations of tip shrouded blade disk assemblies.
They also used HBM to “impose the effective stiffness and damping of the
friction joint on the linear structure.” They also utilized Newton-Raphson
method to trace the multiple solutions over the frequency domain. Their
analysis on a two degree-of-freedom oscillator model demonstrated slip,
stuck and separation conditions of the contact interface clearly. In the same
year Yang and Menq published their work, Sanhtiirk et al. [27] proposed
using a microslip model, which is based on the Dahl’s friction model, and
approximated “an equivalent amplitude-dependent complex stiffness via
tirst order HBM.” Also a validation of the calculations with experimental
measurements was given besides “a sine-sweep excitation in time marching

analysis.” Later, Yang et al. [28] formulated a friction contact element under



variable normal load using first order HBM. Case studies presented in this
paper showed that the friction element gave accurate results when
compared with time integration solutions. In 2001 Chen and Mengq [29]
introduced a three-dimensional contact element. They determined the stick,
slip and separation analytically assuming that the contact interface
undergoes a three-dimensional periodic motion. They also combined the
friction element with numerical continuation solution procedures to predict
the response via multi-harmonic balance method (MHBM) and validated
their results with time integration solutions. Again in the same year,
Sanlitiirk et al. [30] used experimental recordings of hysteresis loops of
basic contact behavior for a given material and used it to calculate the
response of a bladed disk assembly with wedge type friction dampers.
With a given normal load on the damper-blade contact interface, assuming
three-dimensional motion of the damper the responses are compared with
experimental measurements. They came up with a conclusion that
including only translational degrees-of-freedom on the damper (i.e. only
translational motion on three axes) can answer the slight differences

between theoretical calculations and experiment measurements.

Cigeroglu and Ozgiiven [31] published a work on a two-slope linear
approximation of Dahl’s friction model. Later, Cigeroglu et al. [32]
developed a one-dimensional dynamic micro-slip element in which the
inertial effects of the damper is included. The steady-state solution of the
shear layer is determined by solving the nonlinear partial differential
equations analytically. Then the stick-slip regions are determined at
different normal load distributions and the hysteresis curves are calculated.

Cigeroglu et al. [33] further developed their model to include motion in two



dimensions with variable normal load. They proposed to use a new model
with HBM “to determine the forced response of frictionally constrained
structures.” As an application the response of a single blade which is
constrained by a contact interface at the ground is calculated. As an
implementation to real problems, Cigeroglu et al. [34] utilized their new
dynamic micro-slip friction model with a new wedge damper model to be
used in forced response analysis of bladed disk assemblies with wedge type
friction dampers. In contrast to the previous work of Sanlitiirk et al. [30], in
this model the wedge damper can “undergo three-dimensional translation
and three-dimensional rotation in addition to the elastic deformation.” The
damper is constrained only by its contacting faces with the neighboring

blade roots.

In parallel to the aforementioned studies, Petrov et al. [35] formulated a
multi-harmonic friction element under variable normal load conditions.
The MHBM is utilized for linearization of the nonlinearity to calculate the
equivalent forcing vector as well as the tangent stiffness matrix. Although
the stick-slip and separation instants are determined numerically due to
including multiple harmonic terms, the forcing vector and tangent stiffness
matrix are calculated analytically. This friction model is implemented in a
Newton-Raphson type solution procedure to trace for multiple solutions in
frequency domain. A case study on a realistic turbine model is presented in
the paper. Later, Petrov and Ewins [36] developed new generic models
which can describe the behavior of frictionally constrained contact
interfaces for the time domain analysis of bladed disk assemblies. These
models can include the effect of normal load variations with or without

separation. Friction contact parameters such as friction coefficient and
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contact stiffness coefficients can also be time-varying. A numerical analysis
is presented for time domain analysis of a shrouded bladed disk assembly.
Petrov and Ewins [23] continued their studies with a new method for
nonlinear multiharmonic vibration analysis of mistuned bladed disk
assemblies. In this study, their previous work on imposing mistuning via
exact relationships between tuned and mistuned receptance [21] is
combined with analytical formulations of friction contact elements [35] to
generate a complete method. The mistuning is imposed not only on natural
frequencies of individual blades via point mistuning elements but on
contact interface parameters such as gap or interference values, or friction
stiffness values. A numerical study on a high-pressure bladed turbine disk
is presented to demonstrate changes in FRF’s with changing contact
parameters. Afterward, they published another work on bladed disk
assemblies with dry friction but with both wedge and split type
underplatform dampers [37]. In this study, multiharmonic response is
calculated for the new damper models for which “inertia forces and the
effects of normal load variation on stick-slip transitions at the contact
interfaces” is considered. In addition to the studies mentioned hitherto,
Petrov [38] developed a new method to analyze the changes in response
amplitudes with variations in friction contact interface parameters via a
direct parametric approach. The problem is formulated as a function of
these parameters with the aid of previously developed analytical
formulations of friction contact interface element [35]. As an addition to this
study, the effect of aforementioned parameters on resonant amplitudes are
examined [39]. This is achieved by introducing another equation which
guarantees that the excitation frequency is approximately equal to the

resonant frequency.
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1.3 Objective

In this thesis, it is aimed to form a new method for nonlinear dynamic
analysis of mistuned bladed disk assemblies to be used for stress thus
fatigue life predictions. In order to do that, the studies on both mistuning
and nonlinear dynamic response of bladed disk assemblies have been

investigated in detail.

In the formation of the method, the following requirements are sought:

e The method should be computationally fast even with high
density meshes and yet it should yield accurate results both in
mistuned natural frequencies, modeshapes and FRFs.

e The method should avoid point type mistuning elements which
would eventually distort the blade shapes unless the number of
mistuning application points is large and the points are
homogeneously distributed. Mistuning could be directly applied
to cantilevered natural frequencies of individual blades.

e The method should be able to calculate nonlinear response for
various types of nonlinearities such as gaps, friction contact with

implemented numerical continuation procedures.
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1.4 Scope of the Thesis

The outline of the thesis is given below:

In Chapter 2, firstly background knowledge on mistuned bladed disk
assemblies is given. Then cyclic symmetry property, which is essential for
analysis of bladed disk assemblies, is briefly discussed. Then engine order

excitation and aliasing phenomenon are described.

In Chapter 3, the studies related to mistuning will be discussed in detail. All
the selected studies include modal domain methods to avoid using point
mistuning elements via FRF related techniques. Namely the fixed interface

coupling method and subset of nominal modes method will be described.

In Chapter 4, topics on nonlinear dynamic response will be discussed.
Firstly, the equation of motion of a nonlinear system will be presented, and
then linearization methods will be discussed. Then, two solution
procedures, namely fixed point iteration and Newton-Raphson methods,
will be described. Next, continuation methods will be introduced, and the
solution procedures in modal coordinates will be given. Finally nonlinear
element formulations will be given for macroslip friction and gap elements.

They will be validated via time integration results.

In Chapter 5, as a case study, a mid-shrouded bladed compressor disk is
given. The linear mistuned response will be calculated by both methods
mentioned and will be compared with direct FE approach. Then nonlinear

response will be calculated for different types and levels of nonlinearity.
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In the last chapter, conclusions on this study will be made. Suggestions on

future work and further developments will also be given in this chapter.

14



CHAPTER 2

BACKGROUND INFORMATION

21 Cyclic Symmetry

Due to their rotationally periodic nature, bladed disk assemblies, bladed
disks (blisk) and bladed rings (bling) can be represented by a single subpart
which is repeated at equally spaced angles around the rotation axis. This
property is called cyclic symmetry. In modal analysis terminology, the

primary subpart is called a sector.

The modal analysis of such structures can be carried out by exploiting the
cyclic symmetry. When the elementary matrices (i.e. mass and stiffness
matrices) are transformed into cylindrical coordinate system based on the
axis of cyclic symmetry, the resulting matrices are of block-circulant
symmetric type. Block-circulant symmetric matrices can be block
diagonalized into N number of submatrices, N being the number of

identical sectors, by using a Fourier transformation matrix whose elements

are defined by
1 2ZGne
E;, :We N (2.1)
as
(E"®I)C(E®I)=Bdiag[ Ay, A,.... Ay ] (2.2)
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where C is the block circulant matrix, I is the identity matrix, E;, is the

element in j” row and k* column, N is the number of sectors, i is unit
imaginary number, and A, is the submatrix of the " subproblem. r in this
notation is also called the index of “harmonics”, * denotes the Hermitian

transpose and ® denotes the Kronecker product. Here, Bdiag[e] denotes

the block diagonal matrix, the argument being the n" (n=1,2,...) diagonal
block. In vibration analysis of axisymmetric disks or cyclic symmetric
structures r can be referred to the number of “nodal diameters”. Here,
nodal diameter refers to the lines which lie on the diameter of the disc and
have zero displacements. Then the problem is divided into N number of
uncoupled problems. Since it is faster and more efficient to solve N
number of problems of a size instead of solving a single problem which is
N times of the same size, using cyclic symmetry has the advantage on
computational time. In modal analysis of bladed disk assemblies, since each
nodal diameter is considered once at a time, the eigenvalues are not as close
to each other as in the full size problem. As seen in Figure 2.1, as the nodal
diameter increases, the natural frequencies of a mode family converge to a
tinite value. Therefore, the natural frequencies of a bladed disk appear to be
in closely packed clusters unless the problem is treated by considering one
nodal diameter at a time. Numerically, solving for well distinct eigenvalues
instead of solving for clusters of close eigenvalues will yield more accurate

results and it will guarantee faster convergence [17].
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Figure 2.1 — Natural frequency vs. Nodal diameters chart for a bladed

disk assembly

In case of block circulant and symmetric matrices, some natural frequencies
appear in pairs. If the eigenvalue problem is solved in complex domain,
these double modes appear as complex conjugates. The physical
interpretation of these complex mode shapes of double modes can be made

by counter-rotating traveling wave modes [40].

In practice, sectors are not identical due to manufacturing tolerances,
material defects and changes in physical properties during operation.
Under such conditions, in some modes the elastic energy is localized in one
or more sectors of the whole structure. This phenomenon is called

mistuning, disorder or vibration localization. If a structure possesses
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mistuning, it is said to be “mistuned”. If its sectors are perfectly identical,
the structure is said to be “tuned”. These terms will be widely used in this

work.

Considering mistuning as small perturbations on physical properties of
each sector, the sectors will not be identical any more. Therefore the cyclic
symmetry is destroyed and the problem can no longer be divided into N

number of smaller problems. Hence, double modes are no longer expected.
For further information on circulant matrices, refer to reference [8].
2.2 Expansion of Mode Shapes

After the solutions to smaller eigenvalue problems are determined, the
solution for the whole structure is needed. The process of back
transformation from subproblems to the original problem is called the
“expansion of mode shapes”. The formulation of expansion differs
depending on whether the Fourier transformation matrix is applied as a

complex transformation matrix or its real equivalent [10].

If the transformation is made in complex domain, the following type of

formula is used:

6l g ]

where [¢: } is the complex eigenvector of the k nodal diameter modes and

[¢;,k] is the complex eigenvector for j* sector for k nodal diameter modes, i
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is the unit imaginary number, and N is the number of sectors in the

assembly.

In practice, many finite element analysis program vendors usually prefer to
carry out cyclic symmetry analysis in real domain. Even if the element
matrices are transformed by the complex Fourier transformation matrix the
solution of the eigenvalue problem has to be done by using real numbers.
Therefore, for simplicity and easy implementation, a duplicate of the
original sector is defined and necessary boundary conditions for cyclic
symmetry is imposed as follows

{x},’"} = {xzm } cos (mer )+ {xz’” } sin (ma )

{x;,’m} _ _{xz,m } sin (ma) + {x‘L"”” } cos(ma)

for each m nodal diameters where subscripts H and L denote the high and

(2.4)

low edges respectively, and superscripts s and c¢ denote sine and cosine
displacements respectively. In analysis in real domain, these sine and
cosine displacements are accounted for real and imaginary parts of the

mode shapes in analysis in complex domain.

If the transformation is made in real domain then the following formulae

are used:
)=
[¢;"] = \/%sin((j —l)ma)[(zﬁ’"’s ] + \/%cos((j —l)ma)[(zﬁ’”’”}

where superscript m denotes the number of nodal diameters. If the number

(2.5)

of blades is even, the highest nodal diameter modes do not appear in pairs

and the transformation becomes
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(8 ]=(-1)" L[Wm ] (2.6)

where superscript Nua« denotes the highest number of nodal diameters.
2.3 Engine Order Excitation and Aliasing

In forced response predictions, the response characteristics are determined
by not only the system dynamics but also the external forcing. It is a well
known fact that resonant conditions of vibration occur under specific
forcing frequencies (i.e. resonant frequencies) and forcing vector. To make a
mathematical explanation, the response formula in modal analysis should

be checked.

(x(0) = ZM (2.7)

= ol (1+iy) -’
where {x(w)} is the vector of complex displacement amplitudes, # is the
number of modes retained, {4} and @ are the mass normalized
eigenvector and natural frequency of the r* mode, {f} is the forcing vector
and y is the loss factor. Equation (2.7) shows that resonant conditions can
only occur when the denominator is so small unless the numerator nonzero
meaning that excitation frequency should be close to one of the natural

frequencies and the forcing vector multiplication with the mode shape

vector should be nonzero.

In turbomachinery, the external forcing is exerted by the fluid that flows
through. The fluctuations in fluid pressure gradients on the blades are the
source of the aerodynamic forcing. In modern turbomachinery, the flow of

the fluid is altered via stators and vanes to modify the pressure gradient in
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favor. Although they provide high speed flow in desired direction, they
also create low pressure regions at their rakes. Therefore when a blade
passes before a stator, it encounters a high and a low pressure region. Since
in one revolution of the engine shaft a single blade passes before all the
stators, the excitation frequency on that blade is considered to be the
multiplication of the number of stators and the engine rotation frequency.
This type of the excitation is called engine order (EO) excitation. As an
example, in presence of n number of stators, the excitation is said to be an

n-EO excitation.

In previous discussions, it was stated that the mode shapes of cyclic
symmetric structures possess sinusoidal distribution over the
circumference ideally. As the way the modeshapes of cyclic symmetric
structures are expanded, the forcing vector can also be expanded using a
forcing vector definition for a single sector. In ideal case, both mode shapes
and forcing vectors resemble sinusoidal functions over the circumference
therefore one can conduct that such vectors constructed via sinusoidal
functions would be orthogonal which means an n-EO excitation will excite
n nodal diameter modes but not (n+1) nodal diameter modes. But since
there are a finite number of sectors defined in an assembly, an n-EO
excitation can excite other nodal diameter modes. This occurs due to
aliasing. The nodal diameter modes which can be excited by an n-EO

excitation can be determined by the following formulae

Nnodal =kN —n fOI‘ k= 1,2,...
Nnodal = lN+n fOI’ l: 0, 1,
(2.8)
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where N is the number of sectors in the assembly. In practice, since the
mode shapes are inevitably mistuned they cannot be classified and
expanded as nodal diameter modes. Thus, the forcing and the mode shape
vectors are no longer orthogonal. Consequently, the numerator terms in the

summation of the equation (2.7) are always nonzero given nonzero forcing.
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CHAPTER 3

MISTUNING MODELING

3.1 Modal Coupling Techniques

The dynamic analysis of simple structures (constant cross-section beams,
plates, shells) can be made easily thanks to fundamental analytic
formulations which were developed decades ago. But as the complexity of
the structure increases, for a better understanding on the dynamics, the
structure is needed to be divided into smaller structures of which the
dynamics is easier to predict. But, whilst dividing system into
substructures, the accuracy on dynamic predictions of the whole structure

should be kept as much as possible.

In addition, the analysis of complex structures is computationally
expensive. Although the capacity of recent processors has increased
exponentially, which reduced the time required for computation, the
demand for accuracy and detailed models are always increasing. Therefore,

fast yet accurate methods are needed.

In modal analysis, the modal characteristics of a structure can be calculated
again by substucturing. The dynamics of a structure is expressed by modal
characteristics of its substructures. Such techniques that use modal data

with or without spatial data are called modal coupling techniques. They
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can be classified by how the substructures are analyzed as fixed interface
methods and free interface methods [41]. In this work, the implementation
of fixed interface method to the mistuned bladed disk assemblies will be

used [10].

3.1.1 Fixed Interface Modal Coupling Method

In modal analysis, one of the modal coupling methods is fixed interface
modal coupling method which is also known as Craig-Bampton Method
[14] or the component mode synthesis methods (CMSM). The method is
well known with its robustness and high accuracy. In this method, each
substructure is fixed at the interface degrees-of-freedom and a modal
analysis is performed. In addition, the substructure is reduced to interface
degrees-of-freedom using a static reduction (i.e. Guyan static reduction).
Then the dynamics of the system is expressed as a combination of modal
coordinates and the physical coordinates of the interface degrees-of-

freedom.

The accuracy of the system depends on how much truncation has been
made in the modal analysis of substructures. It should be noted that, as the
number of modes pertained for each structure is increased to the limit the

reduced system becomes the original system.

3.1.1.1 Formulation

Assuming that elementary matrices for all the spatial coordinates are

known, a general expression for the equation of motion of an undamped

24



system is given below. The equation is written in a form such that the
physical coordinates are partitioned as primary and secondary coordinates,
former being the interface degrees-of-freedom and latter being the interior

degrees-of-freedom.

et B Bt

where [M] and [K] are the mass and stiffness matrices, {x} and {/} are the
physical coordinate and forcing vectors, and subscripts s and p denote the
secondary and primary degrees-of-freedom, respectively. Then the
interface of the component, which is represented by primary coordinates, is

tixed and the equation (3.1) becomes

[M G+ K x0T =1{0) (32)
Then a modal analysis is carried out on the following equation assuming a
solution in the form

{xj={X}e™ (33)
and substituting it in equation (3.2) yields the eigenvalue problem (EVP)
[—a)z [M ]+ [KH {x,}={0} (3.4)
Solving equation (3.4) will yield the natural frequencies [a)f} and mass
normalized eigenvalues matrix [¢]. The physical displacements on the

secondary partition can be expressed as a summation of fixed interface

mode shapes as

{x}=[41{n (3.5)

Secondly, a static analysis is made to determine the displacements on
secondary coordinates when a single degree-of-freedom on the interface is

given unit displacement while other interface degrees-of-freedom are fixed.
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This analysis is made for each degree-of-freedom in the interface. These

analyses can be written into a single equation in the matrix form as

L) Ll

Solving for [y, ] will yield

[v.]=-[K.][K,] (3.7)

Using a truncated set of mode shapes and the resulting shapes of Guyan
static reduction, the displacement vector of the component is expressed by

a linear combination of both

{ng[[%]] [[V?]]ng}‘[T]{m 63

where [I'] is considered as a transformation matrix which transforms

reduced coordinates into the physical coordinates of the whole component.

Then the equation (3.8) is substituted into the equation of motion (3.1) and

pre-multiplied by [T I". It is assumed that no external force acts on the
secondary section.
mr{[ el m{{ }}+[T] Kl 1K)

17

(M) [M] w1 el e

Then the stiffness matrix of the reduced system becomes

7 (K | 1] [s]} " % Hiﬂ[[[i]] [[w;]]}

(3.10)

where
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(K, ]=Le]

[£,]-00

[%.]-10 o

[EPP} - [[KPP}_[KPS][K ]_1 [Kpﬂ

Then the mass matrix of the reduced system becomes

T __[¢S] [ S] ' [MSS] [MSPJ [¢s] [ S]

rruatn-| ) T [MPPJH[O] 4 »

[t W o
[#,,] [#,]

where

[ M, |=L1]

i, =[] v ]+ (8] [, ] o)

[l o] [, Jo T, Jiw o, ]

Considering a structure composed of two substructures which are to be
coupled, the reduced element matrices are assembled at the interface

degrees-of-freedom. The equation of motion of the whole structure

becomes
R L e 2
I:Mpml :' I:Mpp,l } + [M rp>2 :l [M .2 :l {jép} +
[0] (i, ] [ | [)

(3.14)

+| [0] [EPP,I]{EPP,Z] [0]
(0] [0] [6021]

[6031] [0] [0] {771] {f)
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where subscripts 1 and 2 denote the first and second components

respectively. The transformation of coordinates and force vectors are given

below.
A K O 2 B B PP
{x,} L= [0l  [1] [0] |{{x,} (3.15)

{xs,z} [0] [1//5,1] [[(ﬁuﬂ i}

{ﬁz,l} [¢S’1:| [WSJ] [o] ' {fsl}
if) = ol 1] [0] () (3.16)

(hat) |11 [wa] [[4a1]] {2
3.1.1.2 Formulation for Bladed Disk Assemblies

As an implementation of Craig-Bampton method, Bladh adopted the
formulations to bladed disk assemblies [10]. The assembly is divided into a
tuned disk and a number of blades. All the substructures are reduced into
modal coordinates and physical coordinates at blade disk interfaces. Bladh
also studied the secondary modal analysis techniques on the disk and
interface and on the interface only. The reduced order model is further
reduced via modal reduction. After a suitable reduced system is
determined, the mistuning is imposed as perturbations on the modal

stiffness matrix of each blade.
In this thesis implementation of the Craig-Bampton method to bladed

assemblies will be used without any secondary modal analyses. Here, a

complete formulation, which can be found in reference [10], is not given.
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The mass and stiffness matrices, [M dcb} and [E dcb], respectively, of the

reduced order model are given below:

[7] [, ] [0]
[M,]=|[#.] [#.,]J+Ne[i.,] [F]|ne[,.] (3.17)
[0 [le[i,]] F] [7]

1
—_
8.
~—~—
B
I
L |
S
e
L |
S

]
]
[0] [0] [1]®|(«}), ]

Here [] is the identity matrix, [0] is the zero matrix, [(a)2 ) d} is the modal

”

(3.18)

stiffness matrix of the disk, [(a)f )J is the modal stiffness matrix of a single
cantilevered blade, []\7 dcb] and [_dcb] are the reduced mass and stiffness

matrices, respectively, [15 ] is the transformation matrix from cyclic

coordinates to physical coordinates. Subscripts b, d and c represent the

blade, the disk and the connection degrees-of-freedom, respectively.

Note that the lower-right element of the stiffness matrix is a diagonal
matrix. It contains the modal stiffness values of each blade in the assembly,
which makes modal stiffness mistuning possible. In order to impose
mistuning, cantilevered blade modal stiffness values on the diagonal
elements of [/]®[A,] are perturbed as:

]?f?f{miifi(lwi)[(mf)bﬂ (3.19)

Then, the eigenvalue problem
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_ _ )
[K]-w*[#]] {{x,—}} = {0} (3.20)
m,

is solved for natural frequencies and mode shapes of the mistuned

assembly. Here, {n,} and {7,} are the vectors of modal displacements

related to disc and blade modes respectively, and {x;} is the vector of

physical displacements on the disk-blade interface.
3.2 Subset of Nominal Modes Method

Another method which exploits modal reduction in calculating modal
properties of mistuned bladed disk assemblies is the “subset of nominal
modes” method developed by Yang and Griffin [17]. The method is based
on their prior work on resolving modal interaction. One of the results of
that study is that “closely spaced modes in an altered system can be
approximated as a sum of the closely spaced nominal modes.” This can be
used to approximate the modes of a mistuned bladed assembly since the
modes of a typical bladed disk assembly are grouped into clusters of modes
which have similar blade motion with different number of nodal diameters
disk motion in a narrow frequency range. Therefore the natural frequencies
of a mistuned bladed disk assembly in a frequency range can be expressed
by the modes of the tuned assembly, which Yang calls the “nominal
system”, in the same frequency range. The mistuning is imposed on the
linear model as modification in mass and stiffness matrices. The structural
modification method used in this work was first introduced by Luk and

Mitchell [42] in 1982.
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Feiner et al. used the subset of nominal modes method to study a single
family of modes of mistuned bladed disk assemblies [18]. He further
developed the method so that the method does not need the element
matrices of the blades any more. The frequency deviations on blade alone
cantilevered modes are the only parameters defining mistuning. The other
input for the method is the nominal frequencies of the tuned bladed disk

assembly.

Feiner et al. implemented this study to identify the mistuning of a bladed
disk assembly by experimental data [19]. Given the nominal frequencies of
the tuned assembly with a finite number of measurements on mode shapes
and natural frequencies of mistuned modes, the method can predict the

amount of frequency deviations from nominal frequencies for each sector.

Here, only the formulation for subset of nominal modes method will be
given. Here, the effects of aerodynamic and gyroscopic forces will not be

included in the analysis.

Assuming a harmonic excitation and steady-state response, the equation of
motion of a mistuned bladed disk assembly can be written as
[[K]+[AK]+io[Cl-w* ((M]+[aM])]{x} = {F} (3.21)
Here, [K] and [M] are the stiffness and mass matrices of the tuned system,
[AK] and [AM] are the modification matrices on stiffness and mass
matrices, [C] is the viscous damping matrix, respectively. {x} is the vector
of vibration amplitudes, {F} is the vector of external forcing, @ is the

excitation frequency, and i is the unit imaginary number.
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The solution to the eigenvalue problem which is constructed for the

undamped nominal system
([K]-o*[M]){x} =10} (3.22)
will yield the eigenvector, {¢j°} , and the natural frequency square, ®?, for

the j” mode. The equation (3.21) is transformed into the modal domain

using the following coordinate transformation.

xh =[g]{n) (3.23)

where {7} is the modal displacement vector and

[¢]=[{a}{e:} {4} ] (3.24)

Then, the equation (3.21) becomes

[ ([w?]+[aR]) +iolCl- o (L11+[Ad]) {0} =[4] {F} (3.25)
where

[C1=[¢] [C][g]

[AK]=[4] [AK][4] (3.26)

[ar]=[g] [AM][g]
Assuming that only the modulus of elasticity of each blade is changed by a

portion, the modification matrix for the j* sector can be written as:

[AK]= Ba’zag[(l+5)[ ]] (3.27)

where

[K]{[K”] 0} (3.28)
0 0

Here, [K,] is the stiffness matrix of a tuned blade. Then, the modification

matrix in modal domain can be written as:

[AE]zii 1+6)[E, K. ][E,] (3.29)

i=l j=1

where
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(R ]=[¢] [K][g] (3.30)
which is calculated once. Here, [¢] is the mass normalized complex
eigenvector matrix which belongs to i nodal diameter modes, and * denotes

Hermitian conjugate. For different sets of mistuning, with [l% l.] ’s calculated

beforehand, the modification matrix, [AE], can be recalculated using

equation (3.29). Then, the eigenvalue problem
[([w?]+aR]) - L] {n} = {0} (331)
will yield the natural frequencies and mode shapes of the mistuned

assembly.

Please see reference [18] for a detailed formulation of fundamental model of

mistuning.
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CHAPTER 4

NONLINEAR DYNAMIC RESPONSE

41 Equation of Motion

The equation of motion of a structure under harmonic external forcing in

the presence of non-linearity can be written in the following form.

()} [+ K} L))+ {5} =) (1)
Here, [M], [K], [C] and [H] are the mass, stiffness, viscous damping and
structural damping matrices, {x}, {x} and {i} are the vectors of physical
displacements, velocities and accelerations, respectively. { f,, } is the vector
of non-linear internal forces and { /) is the vector of external forces. i is the

unit imaginary number.

Before looking into the solutions to nonlinear vibratory systems, solutions
to linear vibratory response should be examined. For the steady-state linear

vibratory response to sinusoidal in the form of
{f@®)} =Im({F}e) (4.2)
where {F} is the complex vector holding the amplitude and phase data, @

is the excitation frequency, the response is assumed to be in the following

form:

{x(©)} =Im({X} ™) (4.3)
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Then, substituting equations (4.2) and (4.3) into the equation (4.1) one can
obtain

|-’ [M]+io[Cl+[K]+i[H]|{x} = {F} (4.4)
In nonlinear systems, the response to a simple harmonic excitation at a
single frequency will not necessarily be a harmonic response at the same
frequency. The response will include other harmonics depending on the
nonlinearity in the system. These harmonics will be at frequencies which

are the multiples of the excitation frequency.

The general solution approach is based on the assumption that the
nonlinear forces can be represented as a sum of sinusoidal functions at
harmonics of the excitation frequency. Assuming an external forcing of the

form in equation (4.2), the nonlinear internal forces can be expressed as

U0} =i 35,0 @5)
m=0
where m is the harmonics index. Then considering the system as linear with

forcing at multiple harmonics, the response is expected to be at the same

harmonics and can be expressed as

{x(1)} = Im[z {X}me"""“’j (4.6)
m=0
Since there exists nonlinear forcing at multiple harmonics, the external

forcing can also be taken in a more general form including components at

other harmonics and can be expressed as

(0} = Im(i {F}mefmj (4.7)

Substituting equations (4.2), (4.5), (4.6) and (4.7) into equation (4.1) one can

write the following equations for each harmonic as
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[K]{X}o +{FNL}0 :{F}o

[—(ma))2 [M]+i(ma))[C]+[K]+i[H]]{X}m +{FNL}m _(F) (4.8)

m

It should be noted that the amplitudes of the nonlinear forcing depend on
the displacements of coordinates at which the nonlinear elements are
connected to. Nonlinearity can be expressed as a combination of multiple
harmonics using the describing functions method or the harmonic balance

method. They will be discussed in the upcoming sections.
4.2 Linearization Methods

In this part, describing functions method (DFM) and harmonic balance
method (HBM) will be discussed briefly. They are both based on Fourier
expansion formulae. The difference appears in the application of the
transformation integrals. In describing functions method, a single integral is
calculated in complex domain whereas in harmonic balance method two
separate integrals are calculated in real domain. These integrals are
equivalent to the real and imaginary parts of the single integral in

describing functions method.

4.2.1 Describing Functions Method

Describing functions method has been commonly utilized in control theory.
It linearizes the nonlinear elements to make it possible to be used in linear

frequency domain analyses. Knowing that the nonlinear elements are

functions of frequency and amplitude of the signal (vibration amplitude in
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physical systems), the nonlinear element can be assumed to behave linearly

at that frequency and amplitude.

The first implementation of describing functions method into vibratory
multi-degree-of-freedom physical systems was done by Tanrikulu et al.
[43]. In this study a number of different nonlinearity types have been
formulated using the method. Kuran and Ozgiiven extended this work to
include multiple harmonics solution although the main focus was on the

response computation using modal superposition [44].
4.2.1.1 Formulation

Considering a multi-degree-of-freedom nonlinear system, the equation of
motion will be of the form of equation (4.1). After assuming a solution of
the form (4.3), the equation of motion will be

|-’ [M]+io[Cl+[K]+i[H] |[{x}+{F,}={F] (4.9)
As Budak and Ozgiiven [45] suggested, one can write the nonlinear forcing

amplitudes vector as

{Fy.} =[alix} (4.10)

where [A] is the response dependent “nonlinearity matrix.” Then, the
equation of motion can be rewritten as

(-0’ [M]+io[Cl+[K]+i[H]+[Al]{X} ={F} (4.11)
Considering nonlinearity as discreet elements between specific degrees-of-
freedom, each nonlinear element can be treated separately. Assuming that a
nonlinear element exists between r* and ;" degrees-of-freedom, the

elements of the nonlinearity matrix can be written as
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A,,:V,,+Zv,j, r=12,..,n
-1 (4.12)

:jvtr
A, =-v,, r#j, r=12,...,n
where v, is the equivalent stiffness of the linearized nonlinear element

which can be calculated as

i 2z i
o [ n,(6)ed0 (4.13)

1
where Y, is the complex amplitude of displacements and #,(6) is the

nonlinear forcing between r* and j* degrees-of-freedom. It should be noted

that, the displacement between two degrees-of-freedom can be written as

v,(0)=1m(Y,¢") =7, sin(0+4,) (4.14)

The formulation is further extended to include multiple harmonics by
Kuran and Ozgiiven [44]. Assuming a solution in the form of equation (4.6),
the expression (4.10) can be rewritten as

{Fy.}, =lAliX}, (4.15)
where {F,,} is the amplitude vector, [A], is the nonlinearity matrix and

{X}, is the displacement vector for the m" harmonic. The nonlinear forcing

n.(0) between 1" and j degrees-of-freedom can be expressed by its
j ] g P y

harmonics as
N

n; (0)=3 (n,(0) (4.16)
m=0

where N is the highest number of harmonics retained. Then each element of

[A],, is calculated as follows.

I ) (4.17)



where

1 2z
(v, ZWL n, (0)d6
; . | (4.18)
(vrj) = (Y) .[0 n,j(ﬁ)e_”"ed@, form>1
m 7Z' }y .

Note that the m" harmonic component of the inter-coordinate displacement

is defined as

(%) =(x),-(¥),.r=j (4.19)

4.2.2 Harmonic Balance Method

Like the describing functions method, the harmonics balance method is
based on Fourier transformation integrals. Linear behavior assumption is
also made as it is the case in describing functions. In recent studies,
multiple harmonics formulation of HBM is commonly used to express
strong nonlinearities whereas for barely negligible nonlinearity a single

harmonic formulation is sufficient.

Considering the equation of motion of a nonlinear system in the form of
equation (4.9), the nonlinear forcing vector can be expressed by the
multiplication of a complex stiffness matrix, which is formed by the
equivalent stiffness values of linearized nonlinear elements, and
displacement vector. Assuming that a nonlinear element exists between 7
and ;" degrees-of-freedom, the equivalent stiffness is defined as

k, =k, +ik;, (4.20)

where
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k? = —7.[02” n,; (@) cos(0)do
r

2 (4.21)
k= ‘—7 jo “n, (0)sin(9)do

Here the nonlinear forcing is defined knowing that the inter-coordinate

displacement is of the form
¥,(O)=Re(Y,e" )=, cos(at+g,) (4.22)
Then, the equivalent stiffness matrix of the nonlinear elements, [K VL ] , can

be defined as follows.

n
K=k, +> ko r=12..n
j=l1

Jr (4.23)
KNL,I‘]':_k’.”]" I’i], ]/':1’2"“,”
where
R | :1.1
kr./' = kr_/‘ + lkr_/‘ (4.24)

The formulation can be extended for multiple harmonics solutions. It is
assumed that the m" harmonic of the nonlinear forcing between r* and j*
degrees-of-freedom can be expressed as the multiplication of an equivalent
stiffness and the m" harmonic component of the inter-coordinate
displacement. The real and imaginary components of the equivalent

stiffness for m™ harmonic can be written as

1 27
k) =—L ("0 ()cos(md)do,  form>1 (4.25)
T Jm ﬂ-(Y) 0 7
5 )m

! J.Mn,j (0)sin(mO)dao, form>1

(ké-)fm 0
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Then, the equivalent stiffness matrix of nonlinear elements for m

harmonic, [K, ] , can be defined as follows.

I (4.26)

(), =(ky), +i(ky), (4.27)

Note that the m" harmonic component of the inter-coordinate displacement

is defined as it is done in equation (4.19).
4.3 Solution Procedures

In the upcoming sections solution procedures for nonlinear vibratory
systems will be discussed. It should be noted that; these procedures are
applied with the assumption that all the nonlinearity can be linearized and

the solution to the linearized system is stable.
4.3.1 Fixed Point Iteration Method

A function f(x) is said to have a fixed point p if it satisfies the equation

p=rf(p) (4.28)

This point p can be determined by assuming an initial guess p, and a

sequence is formed by
P =1(p,) (4.29)

If the sequence is convergent, it converges to the fixed point p as
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p=limp, =lim f(p,) (4.30)
The convergence can be defined within a numerical tolerance by defining a

relative error being smaller that an error tolerance as

pn+1 _pn
Py

E = <&,

rel

(4.31)

Kuran and Ozgiiven [44] implemented fixed point iteration method in
forced response predictions of nonlinear vibratory systems by defining a
pseudo-receptance matrix which is a “response dependent” receptance

matrix and defined as
[0 )] =(~0 [M]+iw[C]+[K]+i[H]+[a(xD]) (4.32)

The fixed point for each frequency o in the range of interest is defined as
follows:

xy=[e({x})]{F} (4.33)
For large systems calculation of the pseudo-receptance matrix is
numerically costly, since it consists of a matrix inversion of a large matrix.
But if nonlinearity is local then the nonlinearity matrix would be highly
sparse. Its elements can be considered as modifications to the receptance
matrix of the corresponding linear system at the desired frequency. This
kind of modification is generally carried out via Ozgiiven’s method [46] or

Sherman-Morrison-Woodbury method [47, 48].

The iteration step is written as
Xha =[o(x1,) ]} (4.34)

and the relative error is defined as follows.
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X.i _ X.i

n+l

XJ'

Ey = max[ j, j=12,...N (4.35)

where N is the number of degrees-of-freedom.

In case of divergent or numerically unstable solutions relaxation on the
fixed point iteration is applied as

(XY =(1-DiX},,+ 21X},  0<A<l (4.36)
4.3.2 Newton-Raphson Method

Newton-Raphson method has proved itself to be one of the fastest methods
in optimization. Its quadratic convergence provides the speed to the
method given that the necessary initial conditions are set. In nonlinear
vibratory systems analysis, Newton-Raphson method has been
implemented by several researchers [26, 35, 49]. By introducing numerical
continuation techniques, this method can also be used to trace unstable
regions of frequency response functions of nonlinear systems in which
jump phenomenon is observed. This topic is going to be discussed in the

next section.
4.3.2.1 Formulation

The equation of motion of a nonlinear vibratory system in the form of
equation (4.9) can be solved by Newton-Raphson method assuming that an
estimate point close to the solution curve is known. The equation of motion

is rewritten as a residual vector as

{R({X},w)} = [—aﬁ [M]+io[C]+[K] +i[H]]{X} +{Fy }={F)} (4.37)
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The solution points form a hyper-curve defined by the equation

{R({X},0)] = {0} (4.38)

For an excitation frequency of @, given an estimate point near the solution

curve, the corrector step is applied at the (i+1)" iteration as follows.

1), =t | L

It is evident that the derivative of the residual vector {R({X },a))} with

{R({x},,0)} (4.39)

(X},

respect to the displacement amplitudes vector {X}, namely the Jacobian,

should be calculated either analytically or numerically. Knowing that the
system properties do not change (i.e. time invariant system), the Jacobian
can be written as

o{r({x},0)}

o{X}

[~ [M]+iw[C]+ K] i)+ L) (4.40)

Therefore only the Jacobian of the nonlinear forcing vector with respect to

displacement amplitudes is required.

For large systems in which nonlinearity is local, the Jacobian matrix of the
nonlinear forcing is highly sparse. Then, the Jacobian of residual vector can

be written as

( .o } |+io +i +6{FNL} )
[ o (e [Hﬂ EMX}} (4.41)
|t Xﬂ W ]
where
[Z(w)]= [az(a))]_1 =0’ [M]+io[C]+[K]+i[H] (4.42)
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Then, the Jacobian can be considered as a modification matrix on the

impedance matrix [Z(@)] or inverse of the receptance matrix [a(@)] . This
kind of modification is generally carried out via Ozgiiven’s method [46] or
Sherman-Morrison-Woodbury method [47, 48]. In such an approach,

benefits of modal reduction can still be retained.
4.3.2.2 First Order Predictor

The speed and accuracy of Newton-Raphson method can only be of
advantage when the estimate is close enough to the solution. Hence, a good
estimator should be employed. A first order predictor can be used for such

a purpose.

On the solution hyper-curve defined by equation (4.38), one can find a
tangent vector by taking a partial derivative of equation (4.38) with respect

to the excitation frequency :

a{R({X}Q,)} ) a{R({X}w)} o{x} +5{R({X}’a’)} — {0

oo o{X} oo oo &4)

Then, the tangent vector becomes

a{X} _ _{G{R(g{X}aa’)} ] o{R({x}.0)) (4.44)

0w {X} ow

Substituting the variables in equation (4.44) yields

iﬁf} - —{[Z(a))] R aa{{%} } 5 [Za ;“’)] o (4.45)

At a previous solution point converged by Newton-Raphson corrector

given in equation (4.39), the inverse of the matrix is already available.

Hence, the initial guess for the next solution can be sought at:
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L0 = {aéX}

]Aa) (4.46)
W lixy,

4.3.2.3 Arc Length Method

In the Newton-Raphson procedure discussed above, for each frequency
point in the range of interest, the solution is obtained by using the iteration
step given in equation (4.39). A solution can be converged given that the
initial guess is close enough to the solution and the iteration step is valid.
The validity of the iteration step depends on the existence of the inverse of
the Jacobian matrix. But in some systems, there exist multiple solutions for
some values of the main variable. Therefore, assuming that the solution
curve is continuous, the curve should turn and cross these multiple
solutions. These points on which the tangent is perfectly vertical are called
turning points and at these points the Jacobian in equation (4.39) is

singular, indicating that its inverse does not exist.

In vibratory mechanical systems, typical examples for such a phenomenon
are systems including cubic stiffness or systems in which motion between
contacting surfaces results in partial separation and contact. In Figure 4.1 a

typical shift behavior is demonstrated.

To be able to trace over the turning points the curve should be
parameterized by another variable. It can be done by selecting the arc
length as the additional parameter. Instead of seeking the next solution on

the next frequency point, the solution is sought on a hyper-sphere with a
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radius of s [50]. This constraint can be imposed by introducing another

equation for the k* solution point as follows.

{Aq}, {Aq}, = (4.47)
where

{AQ}k - {{q}k _{q}k—l} (4.48)
la}= {{ij}} (4.49)

-~ - partial contact

Response
T

1 1
Frequency

Figure 4.1 — Typical FRF for gap nonlinearity

Arranging terms in equation (4.47), a new equation can be defined as:

T
{e({x},..)} ={aq},” {Ag}, —s* = {0} (4.50)
Then the new corrector step can be rewritten as:

o{R({x}.0)] o{R({X}.0)) o
e oo (.ol

-1

q}, —
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=[2{aq}." | (4.52)

and

{Ag}, ={Aq}, —{Aq}, (4.53)

By introducing a new equation on the arc length, the corrector is forced to
converge to a solution on the hyper-sphere of radius s. At the same time,
the new Jacobian matrix is not singular at turning points. The first order
predictor can still be used with the assumption that, numerically, none of

the solution points is perfectly coincident with the turning points.

In the solution process, along the solution curve there may exist sharp turns
which may require careful attention. The value of step length at a solution
point may not allow following these sharp corners. This situation can be
anticipated by continuously checking the number of iterations at each
solution point as Crisfield [50] suggested. If the number of iterations at the
previous solution point is larger or smaller than a set value, which is not
necessarily an integer, the step length can be adjusted accordingly using the

following formula [50]:

Sk = Sk Con (4.54)

- iter

e
iter

Here, s, is the step length at k" solution point, s, ; and »,“] are step length

iter
nom

and the number of iterations at (k-1)" solution point, respectively, and n

is the nominal value of number of iterations. Even though with an adaptive
step length, at some points, the method may fail to converge due to the step

length being so large. At such a point, the method iterates to converge
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relentlessly, and special treatment is needed. To avoid such a case, where
convergence cannot be achieved due to large step length, after a limiting
number of iterations the step length is reduced and the solution procedure

is repeated at the same point.

4.4 Nonlinear Analysis in Modal Domain

Modal reduction is a well known technique which is inevitable and useful
at the same time. It is inevitable since each structure in reality has an
infinite number of modes all of which cannot be taken into consideration. It
is useful, because via modal reduction the number of equations to be solved

is reduced to the number of modes retained.

Kuran and Ozgﬁven [44] implemented modal reduction to the solution
procedure of nonlinear vibratory systems. They applied the modal
reduction to the equation of motion after calculating the nonlinearity
matrix. Regardless of the number of nonlinearity in the system, the number
of equations is reduced to the number of modes retained. This can be
implemented to other solution procedures such as Newton-Raphson

method.

Considering a nonlinear system whose equation of motion is of the form
(4.9), it can be transformed into the modal domain using the mass

normalized modes shapes matrix [¢] by using the following coordinate

transformation.

i =[glin} (4.55)
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where {7} is the vector of modal displacements. Then the equation of

motion becomes

|- [1]+io[Cl+[ o] J+i[ A ]|{n}+{Fu} ={F} (4.56)

where [/] is the identity matrix, [a)f] is the eigenvalue matrix and

[C]=] ¢]T Cllg]
(i ]=[¢] LH][g]
{ NL} FNL}
{

(4.57)

The Newton-Raphson solution procedure can be implemented to this
modal domain method by transforming the nonlinear forcing vector and its
Jacobian matrix into modal coordinates. Assuming that there exists n
number of nonlinear elements between several degrees-of-freedom of the
system, the nonlinear forcing vector can be written as the summation of the

forcing vectors of each nonlinear element as

{FNL}:i{FI\};L} (4.58)

k=1
Therefore, the nonlinear forcing vector transformed into the modal domain

will be

{FNL} - [¢]T {FNL} - [¢]T i{FA];L} (4.59)

k=1
Knowing that the nonlinear force of each element will act only to the
degrees-of-freedom which it is connected to, the forcing vector of each
nonlinear element is highly sparse. This vector for the k" element between

i and ;" degrees-of-freedom can be represented as

{FKIL}:[O'“O fuo 00 —fy O"’OJT (4.60)
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where only the i and j" columns are nonzero and they have the same force
value, f} , with opposite signs. Therefore equation (4.59) can be rewritten

as

i

where {¢i } is the i row of the mass normalized modal matrix.

Analogously, the derivative of nonlinear forcing vector with respect to the
displacements can be written. Knowing that the nonlinear force vector of k'
element is a function of the degrees-of-freedom it is connected to, let them
be i and ;" degrees-of-freedom, the Jacobian will have nonzero elements
only on the intersection of i and j* rows with i and j" columns. Therefore

the Jacobian can be written in modal domain as
I _Fu

G{FNL}Z":FQI Oy Oy Fﬁ} (4.62)

ofnp Gt | o o |[14)
i axi,_/. Gxi,_/ |
where
X, =X =X, (4.63)

45 Nonlinear Element Formulations

In this section, a number of basic nonlinear elements will be linearized
using either of the methods described in section 4.2. The linearized
expressions will be used to determine the equivalent nonlinear force vector

and its Jacobian expressions. Verification of the linearization will be carried
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out via a comparison of the results with time integration results. “ode45”

function of MATLAB is utilized for time integration solutions.
4.5.1 Cubic Stiffness Element

Considering a spring element which exerts a force of a magnitude
proportional to its extension to the third power, the force expression can be
written as:

F=kx’ (4.64)
where £, is the coefficient of cubic stiffness. Assuming the displacement of

the form:
x(0) = X cos(0) (4.65)
where X is the vibration amplitude. Using HBM the nonlinear forcing for

the first harmonics can be linearized as
1 2z 3 3 2
k =——0 j k. (X cos(6))’ cos(9)d0 ==k X
x X 90 4
| (4.66)
— 2z
k. =—— "k (X cos(6))’ sin(6)d6 =0
X 0

Rewriting the displacement expression with phase difference in terms of

sine and cosine functions in matrix form

B r | cos(8)
x(0)=1{X} {sin(&)} (4.67)
where
XC
{X}= {X} (4.68)

The forcing vector can also be written accordingly as follows:
T
0 k, 0 0
Fo)=try OO || Vg Jeo@ (4.69)
sin(#) 0 &k sin(#)
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where

{F} _3

3 2
N -

XX+ X]
Then the Jacobian of the forcing vector will be

OtFy 3, |3X2+X] XX,
alxy 4

47 XX 33X’ +X°
4.5.1.1 Verification via Time Domain Integration

For a single degree-of-freedom underdamped system which is grounded by
a cubic stiffness spring, the forced response is calculated via Newton-
Raphson method using the force vector and Jacobian expressions. The
results are compared with time integration results in Figure 4.2. Due to
multiple solution points, time integration is applied from low to high
frequencies and from high to low frequencies. The results are in good
agreement even if a slight difference exists in the resonance amplitude.
Time integration method also revealed a negligibly small peak in low
frequency region. Those differences can be explained by retaining the

fundamental harmonic only.
4.5.2 Macroslip Friction Element under Constant Normal Load
For a macroslip friction element, the force-displacement relationship is

shown in Figure 4.3 where k is the friction stiffness, X is the response

amplitude and N is the maximum friction force that can occur.
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Figure 4.2 — Cubic stiffness: forced response

F(x)

Figure 4.3 — Macroslip friction model

A displacement expression of the following form is considered:
x(0) = X cos(6) (4.71)
The angle which corresponds to the lower right corner of the force-

displacement diagram can be determined as

% :cos“(X_za)

(4.72)

where
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N
o=— 4.73
k (4.73)
Then the force expression, as a function of angle #, can be written as
kXcos(0)+ N—-kX 0Z0<y
-N w<l<rx
F()= (4.74)
kXcos(O)-N+kX rn<l0<rnm+y
N T+y <0<2r

As it was determined in reference [27], by introducing HBM expressions
and using trigonometric relations, the real and imaginary parts of the

equivalent stiffness can be determined as

k :LIZ”F(Q)cos(H)dH=£[l//—lsin(2l//)j

X 0 V4 2 (4.75)
k, :_—IIZEF(H)sin(H)d(9=4—N—X_5

X o X X

The displacement expression is rewritten with phase difference in complex
variables as

x(t) =X, cos(0)+ X sin(0)

_ Re((Xc —iX )ei{ut) (4.76)

Therefore the vibration amplitude will be

X={X’+x? (4.77)

Then, the forcing induced by the macroslip element can be written as

F(t)=F, cos(0)—F, sin(0)

A 478

=Re((F, —iF, )¢ ) *.78)
where

F =kX +kX, 479

F; :ers_lec ( ' )
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Recalling that £, is a function of  and £, is a function of 4, the Jacobian of
the nonlinear forcing vector [F, F;]T with respect to the response

amplitudes vector [X, X,] can be calculated as follows.

OF, _ok oy oX . . ok X

= .k, ) (4.80)
0X, Oy 0X 0X, oX 0X,
OF, Ok v OX y (0K X x vk, (4.81)
oX, owyoXxox, ° oxoXx, °
OF, Ok 0y OX \ Ok OX y (4.82)
0X, Oy 0X 0X, 0X 0X,
OF, Ok v OX y 4p - 25X x (4.83)
0X, owyoXoX, oX oX, °
where
O, _k —(1-cos(2y)) (4.84)
8w Vs

2

o __ 1_(1_Ej 20 (4.85)
oX X)) X
%, _ 4N (1_2()(—5)) (4.86)
oX nX X
o _X (4.87)
X, X
o _X (4.88)
8X X
4.5.2.1 Verification via Time Domain Integration

For a single degree-of-freedom underdamped system which is grounded
through a macroslip friction element, the forced response is calculated via
Newton-Raphson method using the force vector and Jacobian expressions.

The results are compared with time integration results in Figure 4.4. The
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results show a very good match at all frequencies, except at frequencies
around subharmonics. The HBM method cannot predict subharmonics

since only the fundamental harmonic was used in the analysis.

30
. Time
25F ] Integration 7
— HBM

Response

Frequency

Figure 4.4 — Macroslip friction forced response

4.5.3 Two-slope Macroslip Friction Element

The two-slope macroslip friction element developed by Cigeroglu et al.
[31], which approximates microslip friction element, can easily be
formulated using the force vector and Jacobian expressions for the
macroslip friction element. Using graphical construction [31], the two-slope
model shown in Figure 4.5 can be expressed as a sum of a macroslip

element and a linear spring as shown in Figure 4.6.
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F(x)
N,[7

Figure 4.5 — Two-slope microslip friction element

F(x) F(x)

-

Figure 4.6 — Graphical construction of two-slope microslip friction

element
Here, N should be equated to N,—k,(26-X) where § is defined in

equation (4.73). Then the force vector and its Jacobian expressions for the

two-slope microslip friction element becomes

{F;wo—slope} = {F:nacm} + k2 {X} (489)
6 EWO—SO e a F k O
{ lop } — { macro} + 2 (490)
o1X} olxt |0 &
where {F,,, .} and {F,,,,}| are the forcing vectors of two-slope macroslip
a F;M’O—S ope 6 F Y
and macroslip friction elements, {—lp} and M are their
olX} olX}

Jacobian matrices, respectively.
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Verification to two-slope macroslip model is not given since macroslip

element is already justified via time integration results.

4.5.4 Gap/Interference Element

The gaps between mating surfaces can be modeled by using a spring whose
one end is attached to one degree-of-freedom and the other end is g amount
of far from the ground at equilibrium. In contrast, for interference fits, at
equilibrium conditions one end of the spring is in contact with the ground
and it is prestretched by an amount of g. It should be noted that the element
can loose contact with the ground during motion. A gap element is
illustrated in Figure 4.7 where k is the normal stiffness between mating

surfaces.

x(t)

Figure 4.7 — Gap element

The force-displacement relationship for a gap element can be written as

follows.

k(x—g) x>g

Fv=|, (4.91)

otherwise

Here, it should be noted that the interference nonlinearity case can be
analyzed by setting negative gap values in a gap element. Therefore the

following formulations will be made for a gap element only.
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The spring gets in contact with the ground when the displacement is higher
than the gap value; otherwise the spring is separated from the ground
meaning that no force is exerted by the spring. Once the contact and
separation instants are known the linearization can be made by HBM. Here,
a multiharmonic solution is given. The fundamental harmonic solution can
be determined by setting the number of harmonics to one. It should be
noted that the contact periods can be calculated analytically if the

fundamental harmonic is retained.

Assuming a multiharmonic response of the form

cos(md) + X, ; sin(m0) (4.92)

m,c

x(O)=X,+ X,
m=1

and substituting it into the MHBM integrals by using equation (4.91), the

Fourier components of the forcing can be determined as:

Il

F, = jk (x(6)-g)do (4.93)
k 1
e, H
E, = j k(x(6)—g)cos(m)do (4.94)
k=1 7 g
1%
— | k(x(0) - g)sin(m@) do (4.95)
k=1 T gk
where n_, . is the number of contact periods, 8 and 6* are the contact

and separation angles of ki period respectively. Substituting equation (4.92)
into the MHBM equations and arranging terms into a matrix form will yield
Fi=[F, R R B By ]
Meontact 1 o, Meontact 1 HYI( (4-96)
D HAQRTACHS d@]{X}—kg[ —j{fe(e)}daJ
4 ket g

k=1
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where {X} is vector of response amplitudes, {f,(6)} is the vector of

Fourier expansion functions, { f, (9)} is the vector of Fourier transformation

functions and they are defined as follows.

xXi=[x, x, x, Xx,, Xx,, ] (4.97)
{fe(e)}=[l cos(8) sin(@) cos(26) sin(20) ]T (4.98)
[£(@)=[1/2 cos(8) sin(6) cos(26) sin(26) ...]' (4.99)

Taking derivative of equation (4.96) with respect to {X} will yield the

Jacobian matrix as:

o

otF} (e 1% '
Er j (f.(O)}{f.(0) a6 (4.100)

Hk

The integral terms can be determined analytically. For
(M (0)]=[{1,(O}{1.(0)} do (4.101)

the elements of the matrix are determined by the following formulae.
M, =6/2 (4.102)
|
M, ,; = —sin(i0)
20
1 .
M, ;. =——-cos(if)
2 i=1,2,..m (4.103)

M, = lsin(i@)
i

M, = —%COS(Z'H)
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t 1
M, . =—+—sin(2i0
2i,2i 2 4l ( )

M,y = —4%(1 +cos(2i0))

i=12,...m (4.104)
M, = —l_(l + cos(2it9))
’ 4i
1 . .
M2i+l,2i+l = E - 4_1 sin(2i0)
M2i,2j :2(1—_J)Sln((l—])0)+ 2(Z+]) Sln((l+])9)
Mzi’zj+1 = Z(i—_j)cos((i —j)<9) — 21 )) cos((i + j)H) z'.z_ll, 22,...,m
| j=L2,...m
M2i+l,2j = —mcos((i—j)ﬁ)-i- 2i+ ) COS((i+j)H) [#]
1 P 1 .
M2i+l,2j+1 = msm((l _])‘9)_ 2i+ ) Sm((l + ])9)
(4.105)
For
{P(o)}=[{f(0)}d0 (4.106)

the elements of the vector are determined by the following formulae.

B,=0/2 (4.107)

B, =sin(i0)
! | i=1,2,..m (4.108)
P, =——-cos(if)
l

4.5.4.1 Verification via Time Domain Integration

For a multi-degree-of-freedom underdamped system which is grounded
through a gap element, the forced response is calculated via HBM using the
force vector and Jacobian expressions. The results are compared with time

integration results in Figure 4.8. As expected from gap element,
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displacements over the gap value increased the amount of time that the
spring is in contact with the ground. This introduces more stiffness to the
system causing the response curve shift to higher frequencies. In addition,
it is obvious that the fundamental harmonic cannot represent the motion
accurately. With higher numbers of harmonics, the HBM solution

converges to the actual solution.

12 ‘ PREEN
+ Time Integration B
Lo — HBMlharm. T |
---HBM 3harm.

—HBM 5harm.

Response

2 L 1 L 1 1 L 1
3 4 5 6 7 8 9 10 11

Frequency

Figure 4.8 — Gap element forced response
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CHAPTER 5

CASE STUDIES

In this chapter, the capabilities of the method proposed in this thesis will be
demonstrated by several case studies. To begin with, geometry of a sample
bladed disk assembly, which is modeled to resemble a realistic rotor of
industrial turbomachinery, is introduced. Next, two different reduced order
models, namely the component mode synthesis method and subset of
nominal modes method, will be utilized to calculate natural frequencies
and mode shapes of the bladed disk assembly with different amounts of
mistuning. The effect of number of modes retained on the accuracy of the
methods will be discussed and the methods will be compared with each
other. Subsequently, using the modal data determined by component mode
synthesis method, the linear forced response of the bladed disk assembly
will be calculated for different mistuned cases as well as the tuned case.
Afterwards, again by using the modal data determined by component
mode synthesis method, the nonlinear forced response of both tuned and
mistuned assemblies will be calculated under different types of
nonlinearity, namely the macroslip friction and gap/interference
nonlinearity. Finally, the effect of both mistuning and nonlinearity on
resonant response amplitudes will be demonstrated by using modal

assurance criterion (MAC) calculations for both types of nonlinearity.
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5.1 36 Bladed Compressor Model

The implementation of the method discussed in previous chapters will be
demonstrated on a compressor rotor. The rotor has 36 blades and a nominal
drum diameter of 310mm. The blades are of mid-shroud type and they are
modeled with a twist angle to demonstrate a realistic compressor rotor. The
geometry of the compressor rotor is given in Figure 5.1 and the material is

selected as titanium-nickel alloy and its properties are given in

Table 5.1 — Material properties

Density 8400 kg/m3
Modulus of Elasticity 270 GPa
Poisson’s Ratio 0.3

The modal analysis of the tuned assembly is made by cyclic symmetry
analysis using a single sector of the assembly. The finite element model of
the sector has 1190 number of 4-noded tetrahedral elements with 415 nodes.
In the analysis, the boundary conditions are set such that the sector is
clamped at the inner radius and the shroud faces of each blade, which can

be seen in Figure 5.2, are free.

Figure 5.1 — Compressor with mid-shroud blades
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Shroud
contact
interface

Figure 5.2 — Mid-shrouded blade

In nonlinear forced response analysis, nonlinear elements will be connected
between the degrees-of-freedom of neighboring shroud interfaces. The
geometry of the sector is shown in Figure 5.3. The natural frequencies of the
tuned assembly are plotted with respect to the number of nodal diameters

in Figure 5.4.

4
e B
-
!
Figure 5.3 — Sector geometry

In Figure 5.4, each data series represents the natural frequencies of a mode
family. As the number of nodal diameters increase, the natural frequency of
a mode family seems to converge to a value. This results in clusters of close
natural frequencies. It should also be noted that, at some regions of the plot,
each family of mode seem to veer at some nodal diameters. These regions

are called “veering regions”. Considering the first family of modes, a
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veering region exists for 3 nodal diameters. All the analyses in the
upcoming sections will be focused on that veering region. Therefore, a 3EO
forcing will be applied at the tip of each blade in order to excite 3 nodal

diameter modes, and the tip response will be calculated for each blade in

the assembly.

Natural Frequency (Hz)

200 - /,/ X

N ,‘

0 — T T T

0 5 10 15
Nodal Diameters

Figure 5.4 — Natural frequencies vs. nodal diameters

For all the response calculations a code, which has been developed in
MATLAB?®, is used. Finite element work has been carried out in ANSYS®.

The MATLAB® source codes and ANSYS® macros are given in the

Appendix.
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5.2 Modal Analysis of the Mistuned Bladed Disk Assembly

In this section, the modal analysis of the mistuned assembly will be carried
out. Two different reduced order models, namely the Component Mode
Synthesis Method (CMSM) and the Subset of Nominal Modes Method
(SNMM), will be utilized and the results will be discussed in terms of
accuracy and computational efficiency. Since in both methods the system
matrices are taken from the same FE model, FE results will be used as

reference in relative error calculations.

5.2.1 Component Mode Synthesis Method

Using the CMSM formulation for mistuned bladed disk assemblies, the
natural frequencies of the tuned assembly will be calculated. To see the
effect of number of modes retained per substructures, different number of
blade and disk modes will be included in the model. Then, the natural
frequencies of the reduced order model will be compared with those
obtained from directly from the model itself. Direct FE approach involves

cyclic symmetry analysis.

The blade component has 199 nodes and 597 degrees-of-freedom. The blade
is connected to the disk through 17 nodes and 51 degrees-of-freedom. The
disk component possesses 233 nodes and 699 degrees-of-freedom. 6 nodes

which lie on the inner rim of the disk are fixed.

First, to study the effect of number of modes retained for the blades, three

different cases, in which 5, 10 and 20 modes are kept for each blade, will be
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analyzed. For the disk, 10 modes are kept for each nodal diameter. For the
case in which 5 modes are kept for each blade, since in the modal analysis
of the disk is made for 19 number of nodal diameters and the assembly has
36 blades, the resulting reduced order model has 2206 degrees-of-freedom
whereas the whole FE model has 39852 degrees-of-freedom. The first 200
natural frequencies obtained from the reduced order model are compared
with the direct FE analysis results in Figure 5.5. For the cases in which 10
and 20 modes are kept for the blade, the reduced order models have 2386
and 2746 degrees-of-freedom, respectively. For these cases, the same
comparison is shown in Figure 5.6 and Figure 5.6, respectively. From the
study of these figures, it can be seen that the percentage error is higher at
the veering regions. Another thing to be noticed is that, the accuracy of the

method does not improve continuously with increasing number of blade

modes.

300 4.00%

................. Direct FEM E‘E 3 500/

250 -+ Craig-Bampton "’4'(" o

k)
< || ----- Percentage Error /yll'::' - 3.00%
i ||':

< 200 e 5
5 //// :: ”:: i 2.50% g
c h ::l' 1 )]
) HEH o v
& 150 r 200% &
(0] n ':II ||'|' 'E
H " |.|: : $ n 3]
- i L sow £
Z 100 ey 2

Z n mn o F 1.00%

50 b h
I—/ N " ’ oon n :::“ - 0.50%
! (] po ey non u
MNL T s
0 2 v N 1 L\’Iﬂ L. Wia | — [ 0.00%
0 50 100 150 200

Mode number

Figure 5.5 - Natural frequency comparison: 5 modes per blade, 10 modes

per nodal diameter
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Figure 5.6 — Natural frequency comparison: 10 modes per blade, 10 modes
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Second, to study the effect of number of modes retained for the disk, three
different cases, in which 10, 20 and 30 modes are kept for each nodal
diameter, will be analyzed. For the blades, 5 modes are kept for each sector.
For the case in which 5 modes are kept for each nodal diameter, the first 200
natural frequencies obtained from the reduced order model are already
given in Figure 5.5. For the cases in which 20 and 30 modes are kept for
each nodal diameter, the reduced order models have 2576 and 2766
degrees-of-freedom, respectively. For these cases, the same comparison is
shown in Figure 5.8 and Figure 5.9, respectively. From the study of these
figures, it can be seen that, the accuracy of the method does not improve

continuously with increasing number of modes retained for the disk.

Lastly, 10 modes for each blade and 20 modes for each nodal diameter of
the disk are kept. The resulting reduced order model has 2576 degrees-of-
freedom. The first 200 natural frequencies obtained from the reduced order
model are again compared with the direct FE analysis results in Figure 5.10.
It can be seen that increasing both blade modes and disk modes improved

the accuracy of the reduced order model.

From the case studies presented in this section, it can be concluded that the
accuracy of CMSM depends on the number of modes retained for blades
and for the disk, since the entire interface degrees-of-freedom are inevitably
kept in the model and the number of them cannot be reduced. It is seen that
CMSM lacks accuracy at veering regions. For better accuracy, it is
suggested that the number of modes for both blades and the disk should be

increased.
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Figure 5.10 — Natural frequency comparison: 10 modes per blade, 20

modes per nodal diameter

5.2.2 Subset of Nominal Modes Method

In this section, the efficiency and accuracy of SNMM will be studied.
Natural frequencies of a mistuned bladed disk assembly will be calculated
via SNMM and the results will be compared with CMSM and direct FE
method results. For different amounts of mistuning the modal analysis will

be made using three methods.

In Figure 5.11 and Figure 5.12, natural frequency results of three methods
are given with the relative percentage error calculated with respect the
direct FE method results considering +1% and +5% mistuning, respectively.
CMSM and SNMM reduced order models have 2576 and 950 degrees-of-

freedom respectively whereas the FE model of the whole assembly has
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39852 degrees-of-freedom. For direct FE solution, the modulus of elasticity

of each blade in the assembly is mistuned.
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Figure 5.11 — Method comparison for +1% mistuning

It should be noted that, both two reduced order models yield results with
comparable accuracy. The relative error for both methods is within a range
of £0.2% therefore the results for both three methods are coincident in the
figure. To study the effect of modes retained in SNMM model, the number
of modes kept per nodal diameter is reduced to 6 and 10, and the results are
given in Figure 5.13 and Figure 5.14, respectively. The SNMM results are

also compared with CMSM and direct FE method results.
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Figure 5.13 — Method comparison for 5% mistuning - SNMM with 6

modes per ND

From the results of this section it can be concluded that, for low amounts of

mistuning, the SNMM method yields more accurate results with less
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degrees-of-freedom, but for higher amount of mistuning, the error for
SNMM increases. It is also shown that increasing the number of modes
retained per nodal diameter in SNMM improves accuracy of the results up
to a certain limit. The relative error at this limiting case is higher than the
relative error that will be obtained via CMSM. In a numerical point of view,
this may be the consequence of analyzing the whole mistuned bladed disk
assembly with direct FE method without exploiting cyclic symmetric
properties, whereas in SNMM the modes used are determined by cyclic

symmetric modal analysis.
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Figure 5.14 — Method comparison for +5% mistuning - SNMM with 10

5.3 Linear Response

modes per ND

The linear mistuned response of the sample bladed disk assembly will be

calculated with different amount of mistuning, which is applied at each
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blade with a random value in a range. The results will be compared with

the tuned responses and comments will be made on amplification factors.

The assembly is excited at the top side of each blade with an equivalent
force of 1 N in axial direction. Excitation in axial direction is chosen since in
the following section macroslip elements will be placed at shroud contact
interfaces whose motion is desired to be kept in axial direction. In Figure
5.15, the axial component of the response amplitudes of tips for all blades
are given as a function of frequency for the tuned assembly. As expected,
for the tuned assembly, the blades share the same response amplitudes for
all frequencies. Furthermore, by checking the resonant frequencies it is

concluded that only the 3 nodal diameter modes are excited.

Response (m)
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O|

0 20 40 60 80 100 120 140 160 180
Frequency (Hz)

Figure 5.15 — Tuned linear response of blade tips for all sectors

Then the eigenvalues of the blade modes are mistuned within a range of
+1%, and a similar analysis is carried out. In Figure 5.16, the response of the

tip in axial direction is given as a function of frequency. In contrast to the

77



response of the tuned assembly, new resonances appeared. It can be
concluded that the 3EO excitation can now excite all the modes instead of
exciting 3 nodal diameter modes only. This is consistent with the logic

discussed in section 2.3.
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Figure 5.16 — +1% mistuned, linear response of blade tips for all sectors

When the eigenvalues of the blade modes are given mistuning within a
range of +2% and +5%, the response of the tip in axial direction is obtained
as shown in Figure 5.17 and Figure 5.18, respectively. The natural
frequencies of the double modes are split more and the amplitudes of the
new resonances are increased. When the response amplitudes are studied,
it is noticed that the blades in the mistuned assembly do not reach the
resonant amplitudes at the same frequency. This is illustrated by zooming
at the first peak in Figure 5.18 and the zoomed view is given in Figure 5.19.
Knowing that, the amplitude of the most responding blade at its resonant
frequency is used to calculate the maximum amplification factor. Table 5.2

compares the tuned and mistuned responses.
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Table 5.2 - Maximum amplification factors at the resonant frequency

Mistuning (%) Maxi.mum tip Méxir.num
amplitude (m) amplification factor
0.03049 1.000
£l 0.03381 1.109
32 0.03636 1192
5 0.03861 1.266

Although it seems that amount of mistuning is correlated to the maximum
amplification factor, some studies in the literature have shown that the
maximum amplification factor has the largest value for a specific set of

mistuning, not for the largest mistuning.
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Figure 5.17 — #2% mistuned, linear response of blade tips for all sectors
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Figure 5.18 — 5% mistuned, linear response of blade tips for all sectors
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Figure 5.19 — #5% mistuned, linear response of blade tips for all sectors

(close-up)
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5.4 Nonlinear Response

In this section, the assembly with macroslip friction or gap elements located
between shroud contact interfaces will be analyzed using the modal
domain method presented in this study. The contact interfaces consist of 6
nodes. In the analysis, first 30 modes are included. The number of modes is
decided by trial error. It is selected as the smallest number of modes after
which the response will not be affected significantly. The main interest is
focused on the first resonant frequency encountered in tuned assembly. In
the analysis, only the fundamental harmonic is considered. Instead of
solving for 108 physical degrees-of-freedom, the solution for 30 modal

coordinates will be calculated.

5.4.1 Macroslip Friction Nonlinearity

The macroslip elements are placed between shroud contact interfaces. The
elements are assumed to be under constant normal load. Therefore any
relative motion between the contact interfaces in normal direction is
neglected. The relative motion between contact interfaces is assumed to be
in only x-direction. Therefore, the macroslip elements are connected to the

degrees-of-freedom along axial direction only.
The macroslip elements have a constant normal load of 10 N. The kinetic

friction coefficient is selected to be 0.3 and the nominal macroslip friction

stiffness values of the elements are taken as 10 kN/m.
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In Figure 5.20, tip response of each blade in the assembly is plotted against
frequency for the tuned nonlinear case. As expected, in a perfectly tuned
nonlinear system, the analysis will yield the same amplitude at all the
blades. Furthermore, the resonance amplitudes of the blades are reduced

compared with the tuned linear response, due to friction dampers.
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Figure 5.20 — Tuned, nonlinear response of blade tips for all sectors

In Figure 5.21, tip response of each blade in the assembly is plotted against
excitation frequency for the mistuned nonlinear case. The mistuning is
applied within a range of +5%. As expected, new resonances have observed
in the mistuned response. Mistuning also altered the resonance amplitudes

but they are still lower than those of the linear response.

Variations in contact parameters from sector to sector may also introduce a
kind of mistuning effect. In Figure 5.22 and Figure 5.23, the effect of contact
parameter variations are demonstrated. In the analysis, the blades are

perfectly tuned whereas the contact parameters, normal load and friction
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stiffness for a macroslip friction element, are varied within a range of 50%.
These figures show the tip response of all blades, with normal load

deviations and friction stiffness deviations, respectively.
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Figure 5.21 — Mistuned nonlinear response of blade tips for all sectors

As can be seen from Figure 5.22 , the effect of normal load variation
observed at higher amplitudes only. For constant friction stiffness, only the
normal load determines the stick-slip transition displacement; therefore the
effect of normal load variation cannot be seen for low vibration amplitudes.
In contrast, Figure 5.23 demonstrates that the effect of variations in friction
stiffness values can be seen at every frequency in the range. The similarity
between Figure 5.21 and Figure 5.23 suggests that both mistuning in
structural properties of blades and variations in contact parameters can

cause higher vibration amplitudes.

From the results of this section, it is concluded that macroslip nonlinearity

can cause changes in resonant frequencies and amplitudes. In addition,
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variation in macroslip friction element contact parameters has an effect
similar to mistuning is achieved. Therefore, in maximum amplification

factor predictions the effect of macroslip friction nonlinearity should be

considered.
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Figure 5.22 — Tuned, nonlinear response of blade tips for all sectors with

macroslip normal load variations
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Figure 5.23 — Tuned, nonlinear response of blade tips for all sectors with

macroslip friction stiffness variations
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5.4.2 Gap/Interference Nonlinearity

In this section, the effect of gap/interference nonlinearity on the forced
response will be demonstrated. Gap/interference elements are placed
between shroud contact interfaces and only the relative motion in normal
direction is considered. Nonlinear responses for both tuned and mistuned
assemblies with different amounts of gap/interference nonlinearity are
calculated and represented in Figure 5.24 and Figure 5.25. With the same
boundary conditions as in the macroslip friction nonlinearity case, the
blades are excited at the top edge but the direction of the force is selected to
be tangent to the disk circumference so that the relative normal motion
between shroud contact interfaces is obtained. The external forcing at each
blade tip has an equivalent value of 1 N. The normal stiffness of gap
elements is selected to be 10 kN/m. For gap and interference cases different
contact states, namely no separation, partial contact and no contact can be

encountered.
To demonstrate the effect of interference nonlinearity on forced response

when the assembly is mistuned, +5% mistuning is applied. The forced

response of tips of all blades is given in Figure 5.25.
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Figure 5.24 — Tuned response of blade tips for all sectors with different

amounts of gap/interference nonlinearity
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Figure 5.25 — Mistuned response of blade tips for all sectors with

interference nonlinearity (+5% mistuning)

In this section, the nonlinear forced response calculation capability of the

proposed method is illustrated by several case studies on tuned and
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mistuned bladed disk assemblies with gap/interface nonlinearity. It is
shown that gap/interface nonlinearity can result in both resonant frequency

and amplitudes changes.

5.5 Effect of Mistuning and Nonlinearity on Forced Response

In this section, it is aimed to study the effect of mistuning and nonlinearity
on the forced response characteristics of bladed disk assemblies. Several
cases with or without mistuning and nonlinearity will be analyzed and the
displacements on the most responding blade at the resonance will be

compared via modal assurance criterion (MAC).

First, the linear response of the sample bladed disk assembly is calculated
for both tuned and mistuned cases. Secondly, the nonlinear response is
calculated with or without macroslip friction elements attached between
shroud contact interfaces. For all the cases, 200 modes are kept in the
analysis. The response vectors for all cases are compared via MAC and they

are given in Table 5.3.

Table 5.3 - MAC comparison

Linear Linear Nonlinear Nonlinear
tuned mistuned tuned mistuned
Linear tuned 1 0.9982 0.9992 0.9970
Linear mistuned 1 0.9965 0.9970
Nonlinear tuned 1 0.9983
Nonlinear mistuned 1
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All the MAC values are higher than 0.99 which depicts that blade motion
for all the cases show high resemblance even though the resonance

frequencies and amplitudes are different as demonstrated in section 5.4.
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CHAPTER 6

DISCUSSIONS AND CONCLUSIONS

In this thesis, a new method is suggested to analyze the nonlinear forced
response of mistuned bladed disk assemblies in order to determine the
blade vibrations under resonance conditions. The response, which is
calculated in modal domain, is used to find the displacements in physical
domain which can be used to determine stress distributions. Under such
conditions, the stress distributions, which have major importance on the

fatigue life of blades in the assembly, can be used in the design process.

6.1 The Mathematical Model

The component mode synthesis method (CMSM) formulation for mistuned
bladed disk assemblies is utilized to determine the natural frequencies and
mode shapes of the linear assembly. The method is preferred since
distributed parameter mistuning (e.g., variations in modulus of elasticity
due to material imperfections) can be imposed on blade substructures. Such
an approach avoids using point mistuning elements which is the state-of-
the-art for nonlinear mistuned cases and can distort the mode shapes of
blades unless their numbers are high and they are well distributed along
the blade. The displacements on the blades are of top importance since they
lead to stress distribution information which is the main design parameter

for blades. The method is also preferred due to its accuracy and robustness.
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In nonlinear forced response analysis, Newton-Raphson method is used for
the solution of nonlinear equations. Thanks to the arc length
parameterization, the method is capable of tracing turning points.
Moreover, the robustness of the method is improved by introducing an
adaptive step length strategy. In addition, the Jacobian matrices required
for Newton-Raphson iteration step are determined analytically for different
types of nonlinearity such as gap/interference and macroslip elements. The
response is calculated in modal domain for multiple harmonics by a
transformation from physical coordinates into modal coordinates. Then, the

Newton-Raphson method is applied to the equation in modal domain.

The advantage of the method is that, transforming the problem into modal
coordinates, the size of the problem is reduced and the new size does not
depend on of the number of nonlinear elements. Therefore, the
computational speed can be considerably improved by modal truncation.
Another advantage of the method is that, it yields the nonlinear forced
response solution in modal domain. Consequently, the response can be
back transformed into physical coordinates making it possible to calculate
displacements along the blades under resonant conditions. The analysis can

be extended to make stress analysis by using the physical displacements.

6.2 Accuracy and Efficiency of the Method

Case studies presented in this thesis have clearly shown that the number of
modes retained in reduced order models is crucial. In CMSM, the accuracy

of the reduced order model depends on both number of modes retained per
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blade and number of modes retained per disk. If the model is not accurate
enough and the lack of accuracy is due to inadequate number of blade
modes, increasing the number of disk modes will not have significant effect
and vice versa. Meaning that, the number of modes should be adjusted for
both substructures at the same time. When compared with the subset of
nominal modes method (SNMM), CMSM proved to yield more accurate
results for higher amounts of mistuning. Although the relative error can be
improved by introducing more degrees-of-freedom in CMSM, it is not
possible to improve the accuracy beyond a limit in SNMM by introducing

more modes per nodal diameter.

In forced response analysis, the number of modes retained in the model is
important. It should be adequate to represent the motion correctly,
especially where nonlinear elements are attached. Therefore, it should be
selected so that increasing the number further for a frequency range of
interest will have negligible effect on the response. This number can be
decided by trial and error. Moreover, the number of harmonics is important
for the accuracy of forced response. In systems with strong nonlinearity,
subharmonic components become larger and their effect on resonance
amplitudes becomes significant. For this reason, the number of harmonics
included in the analysis should be selected so that further increase has no

significant effect on the forced response.

6.3 The Effects of Mistuning and Nonlinearity on the Forced Response

In this thesis, using the proposed method, the effects of mistuning and

nonlinearity on forced response characteristics of mistuned bladed disk
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assemblies have been investigated. A number of cases were analyzed and
response at each blade in the assembly was calculated. Besides, the
response patterns were compared for different cases including linear and

nonlinear response of tuned and mistuned assemblies.

Both mistuning and nonlinearity caused significant changes in resonance
conditions in terms of frequency and amplitude. For instance, due to
mistuning the double modes split and the resonance amplitudes are
increased. In another case, both macroslip friction and gap/interference
nonlinearity caused shifts in resonance frequency and changes in resonance
amplitudes. In contrast, the modal assurance criterion calculations have
shown that although mistuning and nonlinearity can alter the resonance

conditions, the blade shapes may not change significantly.

6.4 Suggestions for Future Work

In this thesis, some assumptions have been made on the application of
nonlinearity on the sample model in forced response analysis. Despite these
simplifying assumptions, the results have shown the importance of both
mistuning and nonlinearity on forced response. For instance, considering
gap/interference nonlinearity, in all calculations it was assumed that the
relative motion between mating surfaces is only in normal direction and its
tangential component is neglected. Whereas, for macroslip friction
nonlinearity, the relative motion is assumed to be only in tangential
direction and the normal load, which may vary with displacements in

normal direction, is assumed to be constant. Hence, a better nonlinear
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element, in which friction contact under variable normal load is considered,

will improve the accuracy of the results.

In general, the design of a structure is a process that depends on the stress
levels that can be encountered during operation. Therefore, stress
distributions is a better measure of structural integrity than the
displacements although they are strongly linked. In this thesis, the effects of
mistuning and nonlinearity on blade motion have been illustrated by MAC
comparison between the ideally tuned linear response, and the mistuned
and nonlinear cases. It has been observed that the blade motions were
similar. However, since slight localized variations in displacements can
result in severe changes in stress distributions, the stress levels should be
studied. In addition, a software can be developed that can calculate stress
distributions from displacements, including multiharmonic response, and
can depict the results in a graphical environment. Then, instead of
comparing the displacement patterns, stress levels can be used to study the

effect of mistuning and nonlinearity in forced response.
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APPENDIX A. CODE FOR NONLINEAR RESPONSE CALCULATION

function [ w , u ,

A0 00 dO o° dO o0 d° A° O A° O A O A I A I A I A AC O A° O A JO OO IO OO IO A° IO A A A A A A A I A I A A IO A° IO A IO A° IO IO I A I IO I A I AO O A° O d° O° JO o od°

oe

state] = UniSolveM( m , ¢ , k , loss

[w, ul] = UniSolve(m , ¢, k , loss , £ , OPTIONS

Universal non-linear solver
OPTIONS Structure

SolutionSpace:
1 : Solution procedure in Spatial Domain
m, ¢, k, f stays as they are.
2 : Solution procedure in Modal Domain
m, ¢, k, f become phi, cbar, wr, fbar.
(1 by default )

SolutionProcedure:
1 : Solution procedure using Path Following
2 : Solution procedure using Fixed Point Iteration
(1 by default )

ResponseType:
Valid for solution procedure in Modal Domain
1 : In Spatial Coords
2 : In Modal Coords
(1 by default )

Harmonics:
Number of harmonics to be included in the analysis
(1 by default )

FreqgRange:
[ wmin w_max ];

StepSize:
Valid for Path Following
( 1E-2 by default )

FregStep:
Valid for Fixed Point Iteration
( 1E3 by default )

SweepDir:
1 : Low to High frequencies
2 : High to Low Frequencies
(1 by default )

ErrorTolerance:
Global relative error tolerance
( 1E-8 by default

IterNorm:
Valid for Path Following
Number of iterations at normal circumstances
(1.2 by default )

IterMax:
Maximum number of iterations allowed
( 1E2 by default )

Relaxation:
Valid for Fixed Point Iteration
Relaxation parameter
(0.5 by default )

NormalFlow:
0 : Normal flow algorithm NOT used
1 : Normal flow algorithm IS used
(1 by default )

Nonlinear:
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o

List of non-linearity with type and parameters

oe

oe

ResponseDofs:
List of dofs at which the response is desired

oe

d_SolutionSpace = 1;
d_SolutionProcedure = 1;
d_ResponseType = 1;
d_Harmonics = 1;
d_StepSize = 1E-2;
d_FregStep = 1E3;
d_SweepDir = 1;
d_ErrorTolerance = 1E-8;
d_IterNorm = 1.2;
d_IterMax = 1E2;
d_Relaxation = 0.5;
d_NormalFlow = 1;

f halt = 0;
w = -1;
u = -1;

if nargin < 5
disp('Solver Stopped: Not enough arguments!');
f halt = 1;

end

o

% Preferences with predefined default values

if ( isfield( OPTIONS , 'SolutionSpace' ) )
SolutionSpace = OPTIONS.SolutionSpace;

if ( SolutionSpace ~= 1 && SolutionSpace ~= 2
disp('Solver Altered Preference: Invalid SolutionSpace, value changed to default!');
SolutionSpace = d_SolutionSpace;
end
else

SolutionSpace = d_SolutionSpace;
disp('Solver Altered Preference: Default value used for SolutionSpace!');
end

if ( isfield( OPTIONS , 'SolutionProcedure' ) )
SolutionProcedure = OPTIONS.SolutionProcedure;
if ( SolutionProcedure ~= 1 && SolutionProcedure ~= 2
disp('Solver Altered Preference: Invalid SolutionProcedure, value changed to
default!');
SolutionProcedure = d_SolutionProcedure;
end
else
SolutionProcedure = d_SolutionProcedure;
disp('Solver Altered Preference: Default value used for SolutionProcedure!');
end

if ( isfield( OPTIONS , 'ResponseType' ) )
ResponseType = OPTIONS.ResponseType;

if ( ResponseType ~= 1 && ResponseType ~= 2
disp('Solver Altered Preference: Invalid ResponseType, value changed to default!');
ResponseType = d_ResponseType;
end
else
ResponseType = d_ResponseType;
disp ('Solver Altered Preference: Default value used for ResponseType!');

end

if ( isfield( OPTIONS , 'Harmonics' ) )
Harmonics = OPTIONS.Harmonics;
if ( Harmonics <= 0 )
disp('Solver Altered Preference: Invalid Harmonics, value changed to default!');
Harmonics = d_Harmonics;
end
else
Harmonics = d_Harmonics;
disp('Solver Altered Preference: Default value used for ResponseType!');
end

if ( isfield( OPTIONS , 'StepSize' ) )
StepSize = OPTIONS.StepSize;
if ( StepSize <= 0 )
disp('Solver Altered Preference: Invalid StepSize, value changed to default!');
StepSize = d StepSize;
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end
else

StepSize = d StepSize;

disp('Solver Altered Preference: Default value used for StepSize!');
end

if ( isfield( OPTIONS , 'FreqgStep' ) )
n_FregStep = OPTIONS.FregStep;
if ( n_FregStep < 1)
disp('Solver Altered Preference: Invalid FreqgStep, value changed to default!');
n_FregStep = d_FregStep;
end
else
n_FregStep = d_FreqgStep;
disp('Solver Altered Preference: Default value used for FreqgStep!');
end

if ( isfield( OPTIONS , 'SweepDir' ) )
SweepDir = OPTIONS.SweepDir;
if ( SweepDir ~= 1 && SweepDir ~= 2
disp('Solver Altered Preference: Invalid SweepDir, value changed to default!');
SweepDir = d_SweepDir;
end
else
SweepDir = d_SweepDir;
disp('Solver Altered Preference: Default value used for SweepDir!');
end

if ( isfield( OPTIONS , 'ErrorTolerance' ) )
ErrorTolerance = OPTIONS.ErrorTolerance;
if ( ErrorTolerance <= 0 )
disp('Solver Altered Preference: Invalid ErrorTolerance, value changed to default!');
ErrorTolerance = d_ErrorTolerance;

end
else
ErrorTolerance = d_ErrorTolerance;
disp('Solver Altered Preference: Default value used for ErrorTolerance!');

end

if ( isfield( OPTIONS , 'IterNorm' ) )
IterNorm = OPTIONS.IterNorm;
if ( IterNorm <= 0
disp('Solver Altered Preference: Invalid IterNorm, value changed to default!');
IterNorm = d_IterNorm;
end
else
IterNorm = d_IterNorm;
disp('Solver Altered Preference: Default value used for IterNorm!');
end

if ( isfield( OPTIONS , 'IterMax' ) )
IterMax = OPTIONS.IterMax;
if ( IterMax <= 0 )
disp('Solver Altered Preference: Invalid IterMax, value changed to default!');
IterMax = d_IterMax;

end
else
IterMax = d_IterMax;
disp('Solver Altered Preference: Default value used for IterMax!');

end

if ( isfield( OPTIONS , 'Relaxation' ) )
Relaxation = OPTIONS.Relaxation;
if ( Relaxation <= 0 )
disp ('Solver Altered Preference: Invalid Relaxation, value changed to default!');
Relaxation = d_Relaxation;
end
else
Relaxation = d_Relaxation;
disp('Solver Altered Preference: Default value used for Relaxation!');
end

if ( isfield( OPTIONS , 'NormalFlow' ) )
f NormalFlow = OPTIONS.NormalFlow;
if ( £ NormalFlow <= 0 )
disp('Solver Altered Preference: Invalid NormalFlow, value changed to default!');
f NormalFlow = d NormalFlow;
end
else
f NormalFlow = d NormalFlow;
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disp('Solver Altered Preference: Default value used for NormalFlow!');
end

if ( isfield( OPTIONS , 'ResponseDofs' ) )
f ResponseDofs = 1;
ResponseDofs = OPTIONS.ResponseDofs;

else
f_ResponseDofs = 0;
end
f_square = 1;
if ( SolutionSpace == 1 )
% Element matrices should be square with same size
if ( size(m,1l) ~= size(m,2) )
disp('Solver Stopped: m matrix is not square!');
f halt = 1;
f square = 0;
end

if ( size(k,1) ~= size(k,2) )
disp('Solver Stopped: k matrix is not square!');

f halt = 1;
f square = 0;
end
if ( size(c,1l) ~= size(c,2) )
disp('Solver Stopped: ¢ matrix is not square!');
f halt = 1;
f square = 0;
end
if ( (f_square == 1) && (size(m,1) ~= size(k,1) || size(c,1) ~= size(k,1)) )
disp ('Solver Stopped: Matrix sizes mismatch!');
end
elseif ( SolutionSpace == )
if ( size(k,1l) ~= size(k,2) )
disp('Solver Stopped: wr matrix is not square!');
f halt = 1;
elseif ( size(m,2) ~= size(k,1) )
disp('Solver Stopped: Number of modes in phi and wr mismatch! Considering less
modes."');
if ( size(m,2) > size(k,1) )
m=m( : , l:size(k,1) );
else
k = k( l:size(m,2) , l:size(m,2) );
end
end
end

if ( isfield( OPTIONS , 'FregRange' ) )
FregRange = OPTIONS.FregRange;

if ( max(size(FregqRange)) == 2 && max(size (FregRange)) == )
disp('Solver Stopped: Frequency range is not wvalid!');
f halt = 1;
end
else
disp('Solver Stopped: Frequency range is not defined!');
f halt = 1;

end

if ( isfield( OPTIONS , 'Nonlinear' ) )
if ( size( OPTIONS.Nonlinear , 2 ) >= 6 )

f Nonlinear = 1;
Nonlinear_data = OPTIONS.Nonlinear;

else
disp('Solver Altered Preference: Invalid Nonlinear data, nonlinearity omitted!"');
f Nonlinear = 0;

end

else
f Nonlinear = 0;

end
if ( £ halt == )
return;

end

% SETTING SOLVER PARAMETERS

w min = min ( FregRange );
w_max = max ( FregRange );
w_step = (w max - w min) / n FregStep;
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s = StepSize;

n _dof = size(m,1);
n_eig = size(m,2);

n_harm = Harmonics;

n_terms = 2*n_harm + 1;
if ( f_Nonlinear

n_Nonlinear = size(Nonlinear_data,1l);
end

o

% SETTING UP ELEMENTARY MATRICES

if ( SolutionSpace == )
phi = m;
m = eye(n_eiqg);

end

k multp = eye( n_terms );
ch multp = zeros( n_terms );

m_multp = zeros( n_terms );
for ( n =1 : Harmonics
p = 2*n+l;
m multp(p-1l:p,p-1l:p) = n"n * eye(2);
ch multp(p-1,p) = -n;
ch multp(p,p-1) = n;
end

K = kron(k_multp,k);
M = kron(m multp,m);
C = kron(ch multp,c);

H = kron(ch_multp,loss*k);

F = zeros(n_eig*n_terms,l);
fc = real(f);

fs = -imag (f);
F(n_eig+l:2*n_eiqg) = fc;
F(2*n_eig+l:3*n_eiqg) = fs;

% PATH FOLLOWING PROCEDURE
if ( SolutionProcedure == )

r =1;
if ( SweepDir == )
w_act = w_min;
else
w_act = w_max;
end

r=1;
w = w_act;

Z=K+H-w'2*M+w?*C;

Y = inv(Z)*F; % Linear solution as initial guess
error = 1;
iter(r) = 0;

while ( error > ErrorTolerance )

F Elem = zeros(n_terms*n_eig,l);
Kf Elem = zeros(n_terms*n_eig);

if ( £ Nonlinear )
if ( SolutionSpace == )
process_nonlinear spatial;
else
process_nonlinear modal;
end
end

RO =2 * Y + F Elem - F;
dRdY inv = inv(Z+Kf Elem);
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Ytemp = Y - dRdY_inv * RO;
Ytemp size = Ytemp' * Ytemp;
error = sqrt( RO'*RO );

Y = Ytemp;
iter(r) = iter(r) + 1;
end
disp (sprintf ('Omega = $%$8.4f and sqrt|RO".RO| = %e with iter = %d',w,error,iter(r)))
dydw(:,r) = dRdY_inv * ( 2*w*M - C ) * Y ;
q(:,r) = [ Y ; wl;
r = r+l;
if ( SweepDir == 1
w = w_min + (r-1)*w_step;
else
w = w_max - (r-1l)*w_step;
end

Z =K+ H-w'2*M+w * C;

Y = inv (Z) *F; Linear solution as initial guess
error = 1;
iter(r) = 0;

while ( error > ErrorTolerance )

F Elem = zeros(n_terms*n eig,1);
Kf Elem = zeros(n_terms*n_eig);

if ( f Nonlinear )
if ( SolutionSpace == )
process_nonlinear_spatial;
else
process_nonlinear_modal;
end
end

RO =272 * Y + F Elem - F;
dRdY_inv = inv(Z+Kf_Elem) ;
Ytemp = Y - dRdY_inv * RO;
Ytemp_size = Ytemp' * Ytemp;
error = sqgrt( RO'*RO );

Y = Ytemp;
iter(r) = iter(r) + 1;
end
disp (sprintf ('Omega = %8.4f and sqrt|RO".RO| = %e with iter = %d',w,error,iter(r)))
dYdw(:,r) = dRdAY inv * ( 2*w*M - C ) * Y ;
q(:,r) = [ Y ; w];

while (w < w max && w > w_min)

s new = s * sqrt ( IterNorm / iter(r) );
if ( s_new < StepSize )
s = s_new;
else
s = StepSize;
end
dydw(:,r) = dRdY_inv * ( 2*w*M - C ) * Y ;
deltag = g(:,r) - q(:,r-1);
dg = [ dydw(:,r) ; 1 1;
dg = (s / sqgrt(dg'*dq)) *dq;

corr = deltaq'*dg;
if (corr < 0)

dg = -dqg;
end

g(:,r+l) = g(:,r) + dg;

Y = gq(l:n_eig*n terms,r+l);
w = g(n_eig*n terms+l,r+l);

N
I

K+H-w'2 *M+w*C;

106




F Elem = zeros(n_terms*n eig,1);
Kf Elem = zeros(n_terms*n_eigq);

if ( f Nonlinear )
if ( SolutionSpace == 1 )
process_nonlinear_spatial;
else
process_nonlinear_modal;
end
end

deltaq = dg;

RO = (2Z2) * Y+ F Elem - F;
g0 = deltaq'*deltag - s"2;

error = sqgrt( RO'*RO );
iter(r+l) = 0;
while (error > ErrorTolerance)
dg = -inv( [ Z+Kf Elem (-2*w*M + C)*Y ; 2*deltag' ] )*[RO ; g0];
g(:,r+l) = g(:,r+l) + dqg;
deltag = q(:,r+l) - g(:,r);

Y = gq(l:n_eig*n terms,r+l);
w = g(n_eig*n terms+l,r+l);

Z=K+H-w'2*M+w*C;

F_Elem = zeros(n_terms*n_eig,1);
Kf _Elem = zeros(n_terms*n_eig);

if ( f_Nonlinear
if ( SolutionSpace == )
process_nonlinear_spatial;
else
process_nonlinear_modal;
end
end

RO=(2Z) *Y+ F_Elem - F;
g0 = deltaqg'*deltag - s"2;

error = sqrt( RO'*RO );
iter (r+l) = iter(r+1) + 1;

end
dRdY inv = inv(Z+Kf Elem) ;
r=r + 1;

disp (sprintf ('Omega = %$8.4f and sqrt|RO".RO| = %e and |g0| = %e with iter =
%d',w,error,abs (g0),iter(r)))

end

o

% FIXED POINT ITERATION PROCEDURE

else
r =1;
if ( SweepDir == )
w = w_min;
else
W = w_max;
end

while ( w >= w min && w <= w_max )

Z =K+ H-w'2*M+w* C;

invZ = inv (Z);

if ( £ Nonlinear ) % if there exist nonlinearity
state Nonlinear(:,r) = zeros( n Nonlinear , 1 );
error = 1;
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if (r==1)

Y = invZ * F;
elseif (r == 2 );

Y = gq(l:n_terms*n eig,r-1);
elseif (r > 2 )

Y = 2*q(l:n_terms*n _eig,r-1) - g(l:n_terms*n eig,r-2);
end
iter = 0;
while ( error > ErrorTolerance )

F_Elem = zeros(n_terms*n_eig,l);
Kf Elem = zeros(n_terms*n_eig);

if ( SolutionSpace == 1 )
process_nonlinear_spatial;
else
process_nonlinear modal;
end

Ytemp = invZz * ( F - F Elem );
error_temp = 1;

for s=1:n _terms*n_eig
if ( Ytemp(s) ~= 0 )
error_temp = abs( (Ytemp(s)-Y(s))/Ytemp(s) );
if ( error temp < error
error = error_ temp;
end
end
end

Y = Ytemp * (l-Relaxation) + Y * Relaxation;

iter = iter + 1;
end
q(:,r) = [ Y i wl];
disp (sprintf ('Omega = %f and iter = %d',w,iter)

% Next step
r=1r + 1;
if ( SweepDir == )

w = w min + (r-1)*w_step;
else

w = w_max - (r-1)*w_step;
end

else

% Next step
r=r + 1;
if ( SweepDir == )

w = w_min + (r-1)*w_step;
else

w = w_max - (r-1l)*w_step;
end

disp (sprintf ('Omega = $f',w))
end

end
end

if ( £ Nonlinear

state = state_Nonlinear;
else

state = -1;
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end

w = g(n_terms*n_eig+l , :);

if ( SolutionSpace == 1

u = qg(l:n_terms*n _eig , :);
else

u = kron(eye(n_terms),phi) * g(l:n terms*n eig , :);
end

% Process Nonlinearity in Spatial Domain MULTIHARMONICS
for k=1:n_Nonlinear

dof 1 = Nonlinear data(k,1);
dof 2 = Nonlinear data(k,2);

type = Nonlinear data(k,3);
paraml = Nonlinear data(k,4);

param2 = Nonlinear data(k,5);
param3 = Nonlinear data(k,6);

if ( dof 1 == || dof 2 == )
if ( dof 1 == )
dof 1 = dof_2;
end

for n=1l:n_terms
DY (n,1) = Y((n-1)*n_eig+dof_1);
end

switch type
case 1 % Gap element
if ( n_harm == )
[ F Elem k , Kf Elem k , state ] = gap_elem(DY,paraml,param2) ;
else
[ F Elem k , Kf Elem k , state ] =
gap_elem multiharmonic (DY, paraml,param2) ;
end
state Nonlinear (k,r) = state;
case 2 % Macroslip friction element
[ F Elem k , Kf Elem k , state ] = frictionielem(DY,paraml,param2,param3);
state Nonlinear (k,r) = state;
case 3 % Macroslip Analytical - Non-Petrov
[ F Elem k , Kf Elem k , state ] =
friction elem macroslip (DY,paraml,param2,param3) ;

state Nonlinear (k,r) = state;
otherwise

F Elem k = zeros(n_terms,1);

state_Nonlinear (k,r) = -666;

end

for n=1:n_terms
F Elem( dof 1 + (n-1)*n_eig , 1) = F Elem( dof_1 + (n-1)*n_eig ) + F_Elem k(n);
end

for p=1l:n_terms
for t=1:n_terms
Kf Elem( (p-1)*n_eig + dof 1 , (t-1)*n_eig + dof 1 ) = Kf Elem( (p-1)*n_eig
dof 1 , (tfl)*n_eig + dof_ 1 ) + Kf Elem k(p,t);
end
end

else

for n=1:n_terms
DY(n,1) = Y((n-1)*n eigt+dof 1) - Y((n-1)*n_eig+dof 2);
end

switch type
case 1 % Gap element
if ( n_harm == 1
[ F Elem k , Kf Elem k , state ] = gap_elem(DY,paraml,param?) ;
else
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[ F Elem k , Kf Elem k , state ] =
gap_elem multiharmonic (DY, paraml,param2) ;

end
state Nonlinear (k,r) = state;
case 2 % Macroslip friction element
[ F Elem k , Kf Elem k , state ] = friction elem(DY,paraml,param2,param3) ;
state Nonlinear (k,r) = state;
otherwise
F_Elem k = Zeros(n_terms,l);
state_Nonlinear (k,r) = -666;

end

for n=1l:n_terms
F Elem( dof 1 + (n-1)*n_eig , 1) = F_Elem( dof 1 + (n-1)*n_eig ) + F_Elem k(n);
F Elem( dof 2 + (n-1)*n_eig , 1) = F_Elem( dof 2 + (n-1)*n_eig ) - F_Elem k(n);

for p=1l:n_terms
for t=1:n_terms
Kf Elem( (p-1)*n_eig + dof 1 , (t-1)*n_eig + dof 1 )
dof 1 , (t-1)*n_eig + dof 1 ) + Kf Elem k(p,t);
Kf Elem( (p-1)*n_eig + dof 2 , (t-1)*n_eig + dof 2 )
dof 2 , (t-1)*n_eig + dof 2 ) + Kf Elem k(p,t);
Kf Elem( (p-1)*n_eig + dof 1 , (t-1)*n_eig + dof 2 )

Kf Elem( (p-1)*n_eig

Kf Elem( (p-1)*n_eig

Kf Elem( (p-1)*n_eig

dof 1 , (t-1)*n_eig + dof 2 ) - Kf Elem k(p,t);
Kf Elem( (p-1)*n_eig + dof 2 , (t-1)*n eig + dof 1 ) = Kf Elem( (p-1)*n_eig
dof 2 , (t-1)*n_eig + dof 1 ) - Kf Elem k(p,t);
end
end
end
end

% Process Nonlinearity in Modal Domain MULTIHARMONICS
for k=1:n_Nonlinear

dof 1 = Nonlinear data(k,1);
dof 2 = Nonlinear data(k,2);

type = Nonlinear data(k,3);

paraml = Nonlinear data(k,4);
param2 = Nonlinear data(k,5);
param3 = Nonlinear data(k,6);

if ( dof 1 == 0 || dof 2 == )

if (dof 1 ==0
dof 1 = dof_2;
end

phi 1 = phi( dof 1 , : );

for n=1:n_terms
DY(n,1) = phi_ 1 * Y( (n-1)*n_eig+l : n*n_eig );
end

phi_ Elem = kron( eye(n_terms) , phi 1 );

switch type
case 1 % Gap element
if ( n_harm == )
[ F Elem k , Kf Elem k , state ] = gap_elem(DY,paraml,param?) ;
else
[ F Elem k , Kf Elem k , state ] =
gap_elem multiharmonic (DY, paraml,param2) ;
end
state Nonlinear (k,r) = state;
case 2 % Macroslip friction element
[ F Elem k , Kf Elem k , state ] = friction elem(DY,paraml,param2,param3) ;
state Nonlinear (k,r) = state;
otherwise
F_Elem k = Zeros(n_terms,l);
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state Nonlinear (k,r) = -666;
end

F Elem = F Elem + phi Elem' * F Elem k;
Kf Elem = Kf Elem + phi Elem' * Kf Elem k * phi Elem;
else

phi_1 = phi( dof 1, :);
phi_2 = phi( dof 2 , :);

for n=1l:n_terms
DY(n,1) = phi 1 * Y( (n-1)*n_eig+l : n*n_eig ) - phi 2 * Y( (n-1)*n_eig+l
n*n_eiqg );
end

phi_Elem = [ kron(eye(n_terms),phi 1) ; kron(eye(n_terms),phi_ 2) 1;

switch type
case 1 % Gap element
if ( n_harm == )
[ F Elem k , Kf Elem k , state ] = gap_elem(DY,paraml,param?) ;
else
[ F Elem k , Kf Elem k , state ] =
gap_elem multiharmonic (DY, paraml,param2) ;

end
state Nonlinear (k,r) = state;
case 2 % Macroslip friction element
[ F Elem k , Kf Elem k , state ] = friction elem(DY,paraml,param2,param3) ;
state Nonlinear (k,r) = state;
otherwise
F_Elem k = Zeros(n_terms,l);
state_Nonlinear (k,r) = -666;

end

F Elem = F_Elem + phi Elem' * [ F_Elem k ; -F_Elem k ];

Kf Elem = Kf Elem + phi_Elem' * [ Kf Elem_k -Kf Elem k ; -Kf Elem_k Kf Elem k ] *
phi_Elem;

end

end
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APPENDIX B. CODE FOR COMPONENT MODE SYNTHESIS METHOD

clear;
clc;

max_mode_blade = 5;
max_modeperND_disk = 30;

file disk mass = 'DISK MASS.MATRIX';

file disk stiffness = 'DISK STIFFNESS.MATRIX';
file_blade_mass = 'BLADE_MASS.MATRIX';

file blade_stiffness = 'BLADE_STIFFNESS.MATRIX';

file disk nodeno = 'DISK NODENO.TXT';

file disk nodecoord = 'DISK NODECOORD.TXT';
file disk fixedno = 'DISK_FIXEDNODENO.TXT';
file disk freq = 'DISK FREQ.TXT';

file disk modal = 'DISK MODAL.TXT';

file interfacenodeno = 'INTERFACENODENO.TXT';
file blade nodeno = 'BLADE NODENO.TXT';

file blade freq = 'BLADE FREQ.TXT';
file blade modal = 'BLADE MODAL.TXT';

=
aQ
=
Q
I

= ansys mat import ( file disk mass , file disk stiffness );
[ Kb , Mb ] = ansys mat import ( file blade mass , file blade stiffness );

node_list _disk = uint32 ( importdata( file disk nodeno ) );
node_coord _disk = importdata( file_ disk nodecoord );
node_list _disk fixed = uint32 ( importdata( file disk fixedno ) );
FREQ DISK = importdata ( file_ disk freq );

MODAL_DISK = importdata ( file_disk modal );

node_list interface = uint32 ( importdata( file_ interfacenodeno ) );

node_list blade = uint32 ( importdata( file blade_nodeno ) );
FREQ BLADE = importdata ( file blade freq );
MODAL_BLADE = importdata ( file blade modal );

n_node_disk = size( node_list_disk , 1 );

n_node blade = size ( node list blade , 1 );

n node disk fixed = size ( node list disk fixed , 1 );
n_node interface = size ( node list interface , 1 );
n_node blade = size ( node list blade , 1 );

n _mode blade = size ( FREQ BLADE , 1 );
n _mode disk = size ( FREQ DISK , 1 );

n ND disk = max ( FREQ DISK(:,1) );

K(:,2) )

n_modeperND disk = max ( FREQ DIS

% CORRECT ANSYS OUTPUT FORMAT

FREQ BLADE( : , 3 ) = FREQ BLADE( , 3 ) * 2%pi;

FREQ DISK( : , 3 ) = FREQ DISK( : , 3 ) * 2*pi;

if (n_mode_blade > max mode_blade)
FREQ BLADE = FREQ BLADE ( l:max_mode_blade , )
MODAL_BLADE = MODAL BLADE( : , l:max mode_blade );

n_mode_blade = max_mode_blade;
end

if (n_modeperND disk > max modeperND disk)

FREQ TEMP = zeros( n_ND disk * max modeperND disk , 3 );
MODAL _TEMP = zeros( size(MODAL DISK,1) , n _ND disk * max modeperND disk );

for n=1:n ND disk

FREQ TEMP( (n-1)*max modeperND disk+l : n*max modeperND disk , : ) = FREQ DISK( (n-—
1) *n_modeperND disk+1l : (n-1)*n modeperND disk + max modeperND disk , : );

MODAL TEMP( : , (n-1)*max modeperND disk+l : n*max modeperND disk ) = MODAL DISK( : ,
(n-1) *n_modeperND disk+l : (n-1)*n modeperND disk + max modeperND disk );
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end
n_modeperND disk = max modeperND disk;
FREQ DISK = FREQ TEMP;
MODAL_DISK = MODAL_ TEMP;
n _mode disk = size( FREQ DISK , 1 );
clear *_TEMP;

end

symm_axis = 1; % Cyclic symmetry axis: x-axis
e_tol = 1E-4; % Matching tolerance

gc = node_coord_disk;

gp = zeros(n_node_disk*3,1);

node list disk free = uint32( pop(node list disk,node list disk fixed) ); % All nodes on the
disk other than fixed nodes

node_list _disk free fixedinterface = uint32( pop(node_list disk free,node_list_interface) );

% All nodes on the disk other than fixed nodes and interface nodes
node list blade fixedinterface = uint32( pop(node list blade , node list interface) );

n _node fixed = size(node list disk fixed,1);

n _node interface = size(node list interface,1);

n _node disk free = size(node list disk free,1);

n_node_disk_free fixedinterface = size(node_list_disk_free_fixedinterface,1);
n_node blade fixedinterface = size(node list blade fixedinterface,1);

MODAL DISK LOW = MODAL DISK( 1l:n node disk*3 , : );
MODAL_DISK_HIGH = MODAL_DISK( n_node_ disk*3+1l:n_node disk*3*2 , : );

B R R R R R R R R R R

DISK

R R

o0 o

o

lamda_d = diag ( FREQ DISK(:,3)."2 );

o

% Transform the coordinate frame from cartesian to cylindrical

qc_free = zeros( n_node_disk free*3 , 1 );
for n=1:n_node_disk free

m = pick(node_list disk,node_list disk_free(n));

qc_free( (n-1)*3+1 : n*3 , 1 ) = qgc( (m-1)*3+1 : m*3 , 1 );
end

for n=1:n_node disk free

x(n) qgc_free ( (n-1)*3 + 1 );
y(n) = gc_free ( (n-1)*3 + 2 );
z(n) = qgc_free ( n*3 );

r(n) = sqrt( y(n)*2 + z(n)*2 );
teta(n) = atan2( z(n) , y(n) );
h(n) = x(n);

end

Sk ok ok ok ok ok ok ok ok ok X ok ok ok Kk ok ok Kk ok ok ok k ok ok K ok ok ok K ok ok ok Kk ok ok Kk ok ok ok ok ok ok Kk ok ok ok ok ok ok Kk ok ok Kk ok ok kK

rotation = @(rot_angle) [ 1 0 0 ; 0 cos(rot_angle) -sin(rot_angle) ; 0 sin(rot_angle)
cos (rot_angle) ];

% Matching Low and High edges by duplicate sector
n_matching = 0;

N

= round( 2*pi/(max (teta)-min(teta)) ) - 1;

while ( n_matching == )

N=N+ 1;

alfa = 2*pi / N;

T rot = rotation( alfa );

T rot _assm = kron( eye(n node disk free) , T rot );
gc_free rot = T rot assm * gc_free;

node_list _high = uint32(0);
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node list low = uint32(0);
for n=1:n node disk free
x rl = gc_free( (n-1)*3 + 1 );

y rl qc_free( (n-1)*3 + 2 );
z_rl = gc_free( n*3 );

for m=1:n_node_disk_free

x r2 = gc_free rot( (m-1)*3 + 1 );
y_r2 = gc_free rot( (m-1)*3 + 2 );
z r2 = gqc_free rot( m*3 );

delta = sqgrt( (x_r2-x rl)"2 + (y r2-y rl)"2 + (z_r2-z_rl)"2 );
if delta < e_tol
n_matching = n_matching + 1;
node_list_high(n_matching,1l) = node_list disk free(n);
node_list low(n_matching,1l) = node_list disk free(m);
end
end

end
end

P = round ( N/2 );

node_list disk interior = uint32( pop( node_list disk free fixedinterface , [ node_ list low ;
node list high ]) );
n_node_disk interior = size(node_list _disk interior,1);

Sk ok ok ok ok ok ok ok ok ok K ok ok ok Kk ok ok Kk ok ok sk k ok ok Kk ok ok ok ok ok ok ok ok ok Kk ok ok sk k ok ok Kk ok ok ok ok ok ok Kk ok ok ok ok ok kK ok

% Partition the element matrices

node_list_disk ordered = [ node_list_disk_interior ; node_list_interface ; node_list_low ;
node_list_high ];

n_node_disk ordered = size(node_list_disk ordered,1);

K _free = zeros(n_node_disk*3);
M free = zeros(n_node_disk*3);
phi_d = zeros(n_node_disk_ordered*3 , n_mode disk);

for n=1:n_node_disk_ordered
picked(n,1) = pick( node list disk , node list disk ordered(n) );
end

for n=1:n_node_disk_ordered
node x = picked(n);
phi d LOW( (n-1)*3+1 : n*3 , : ) = MODAL DISK LOW( (node x-1)*3+1 : node x*3 , : );
phi d HIGH( (n-1)*3+1 : n*3 , : ) = MODAL DISK HIGH( (node_ x-1)*3+1 : node x*3 , : );
for m=1:n node disk ordered
node_y = picked(m);

K_free( (n-1)*3+1 : n*3 , (m-1)*3+1 : m*3 ) = Kd( (node_x-1)*3+1 : node_x*3 ,
(node_y-1)*3+1 : node_y*3 );
M free( (n-1)*3+1 : n*3 , (m-1)*3+1 : m*3 ) = Md( (node_x-1)*3+1 : node_x*3 ,

(node_y-1)*3+1 : node_y*3 );

end
end

phi_d LOW D = phi d LOW ( 1l:n_node disk_interior*3 , : );

phi_d LOW R = phi _d LOW ( n_node_disk_interior*3+1
(n_node_disk_interior+n_node_interface)*3 , : );

phi_d LOW_a = phi d LOW ( (n_node_disk_interior+n_node_interface) *3+1
(n_node_disk_interior+n_node_interface+n_matching)*3 , : );

phi d HIGH D = phi d HIGH ( 1l:n node disk interior*3 , : );
phi_d_HIGH R = phi_d HIGH ( n_node_disk interior*3+1
(n_node disk interior+n node interface)*3 , : );

phi_d _HIGH a = phi_d HIGH ( (n_node_disk_interior+n_node_interface)*3+1
(n_node disk interior+n node interface+n matching)*3 , : );
phi d = [ phi d HIGH a ; phi d HIGH D ; phi d LOW a ; phi d LOW D ];

clear phi_d *;
clear MODAL DISK *;
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K DD = K free( l:n_node disk interior*3 , 1l:n node disk interior*3 );

K DR = K free( l:n _node disk interior*3 , n node disk interior*3+1
(n_node _disk interior+n node interface)*3 );

K Da = K free( l:n_node_disk interior*3 , (n_node_disk interior+n node_interface)*3+1
(n_node_disk_interior+n_node_interface+n_matching)*3 );

K Db = K free( 1:n node disk interior*3 ,
(n_node_disk_interior+n_node_interface+n_matching) *3+1
(n_node_disk_interior+n_node_interface+n_matching*2)*3 );

K_RR = K _free( n_node_disk interior*3+1 : (n_node_disk interior+n_node_interface)*3 ,
n_node_disk_interior*3+1 : (n_node_disk interior+n_node_interface)*3 );
K _Ra = K _free( n_node_disk interior*3+1 : (n_node_disk interior+n_node_interface) *3 ,

(n_node_disk_interior+n_node_interface) *3+1
(n_node_disk_interior+n_node_interface+n_matching)*3 );

K Rb = K free( n_node_disk interior*3+1 : (n_node_disk interior+n node_interface)*3 ,
(n_node_disk_interior+n_node_interface+n_matching) *3+1
(n_node_disk_interior+n_node_interface+n _matching*2)*3 );

K _aa = K_free( (n_node_disk_interior+n_node_interface)*3+1
(n_node_disk_interior+n_node_interface+n_matching)*3
(n_node_disk interior+n node interface) *3+1
(n_node_disk_interior+n_node_interface+n_matching)*3 );

K _ab = K_free( (n_node_disk_interior+n_node_interface)*3+1
(n_node_disk interior+n node_ interface+n matching) *3
(n_node_disk_interior+n_node_interface+n_matching) *3+1
(n_node_disk_interior+n_node_interface+n_matching*2)*3 );

K bb = K free( (n_node_disk_interior+n node_interface+n_matching) *3+1
(n_node_disk_interior+n_node_interface+n_matching*2) *3
(n_node disk interior+n node interface+n matching) *3+1
(n_node_disk_interior+n_node_interface+n_matching*2)*3 );

M DD = M free( l:n_node_disk_interior*3 , 1l:n_node_disk_interior*3 );

M DR = M free( l:n_node_disk_interior*3 , n_node_disk_interior*3+1
(n_node_disk_interior+n_node_interface) *3 );

M Da = M free( l:n_node_disk_interior*3 , (n_node_disk_interior+n_node_interface) *3+1
(n_node_disk_interior+n_node_interface+n_matching)*3 );

M Db = M free( l:n_node_disk_interior*3 ,
(n_node_disk_interior+n_node_interface+n_matching) *3+1
(n_node_disk_interior+n_node_interface+n matching*2)*3 );

M RR = M free( n_node_disk_interior*3+1 : (n_node_disk_interior+n_node_interface)*3 ,
n_node_disk interior*3+1 : (n_node disk interior+n_node_interface)*3 );
M Ra = M_free( n_node_disk interior*3+1 : (n_node_disk_interior+n_node_interface)*3 ,

(n_node_disk_interior+n_node_interface)*3+1
(n_node disk interior+n node interface+n matching)*3 );
M Rb = M_free( n_node_disk interior*3+1 : (n_node_disk_interior+n_node_interface)*3 ,
(n_node_disk_interior+n_node_interface+n_matching) *3+1
(n_node disk interior+n node interface+n matching*2)*3 );

M aa = M free( (n_node disk interior+n node interface)*3+1
(n_node_disk_interior+n_node_interface+n_matching) *3
(n_node disk interior+n node interface) *3+1
(n_node_disk_interior+n_node_interface+n_matching)*3 );

M ab = M free( (n_node disk interior+n node interface)*3+1
(n_node_disk_interior+n_node_interface+n_matching)*3 ,
(n_node_disk_interior+n_node_interface+n_matching) *3+1
(n_node_disk_interior+n_node_interface+n_matching*2)*3 );

M bb = M free( (n_node_disk_interior+n node_interface+n_matching) *3+1
(n_node_disk_interior+n_node_interface+n_matching*2)*3 ,
(n_node_disk_interior+n_node_interface+n_matching) *3+1
(n_node_disk_interior+n_node_interface+n _matching*2)*3 );

T = kron( eye(n_matching) , T_rot );
K Db = K Db * T;

K Rb = K Rb * T;

K ab = K ab * T;

K bb = T' * K bb * T;

I e e e

MU dc_d zeros ( n_mode disk , N*n node interface*3 );
MU cc_d = zeros( N*n_node interface*3 );
K cc_d = zeros( N*n_node interface*3 );

for ND = 1 : n ND disk
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h = ND-1; % number of nodal diameters (harmonics)
sine_h = sin(h*alfa);

cosine h = cos(h*alfa);

if (h==20)

phi dh = phi d( (n_node disk interior+n matching) *3+1

(n_node_disk_interior+n_matching)*3*2 , 1 : n_modeperND disk );
temp = (K_Da+K Db*cosine_h);
K d ss = [ (Kaa + (K_ab+K_ab')*cosine_h + K_bb) temp' ;
temp K_DD ];
K d SR = [ (K_Ra'+K Rb'*cosine h) ;
K DR 1;

K_d_RR = K_RR;

temp = (M Da+M Db*cosine h);
Mdss = [ (Maa + (M ab+M ab')*cosine h + M bb) temp' ;
temp M DD ];
M d SR = [ (M Ra'+M Rb'*cosine h) ;
M DR ];
M d RR = M RR;
psi_dh = -inv(K_d_SS)*K_d_SR;
MU dc d( 1 : n modeperND disk , 1 : n node interface*3 ) = phi dh'*( M d SS*psi dh +
M d SR);
MU cc d( 1 : n node interface*3 , 1 : n node interface*3 ) = psi dh'*( M d SS*psi dh
+ M d SR) + M d SR'*psi_dh + M d RR ;
K cc_d( 1 : n_node_interface*3 , 1 : n_node_interface*3 ) = K d RR + K_d_SR'*psi_dh;
elseif ( h == )
phi_dh = phi d( (n_node_disk_interior+n_matching) *3+1
(n_node_disk_interior+n_matching)*3*2 , h*n_modeperND disk+l : (h+1l)*n_modeperND disk );
temp = (K_Da+K Db*cosine_h);
K dss = [ (Kaa + (K ab+K ab')*cosine h + K _bb) temp' ;
temp K DD ];
K d SR = [ (K_Ra'+K Rb'*cosine h) ;
K DR ];
K d RR = K RR;
temp = (M Da+M Db*cosine h);
MdssS= [ (Maa + (M ab+tM ab')*cosine h + M bb) temp' ;
temp M DD ];
M d SR = [ (M _Ra'+tM Rb'*cosine_h) ;
M DR ];
M d RR = M RR;
Mtemp = [ M d SS M d SR ; M d SR' M dRR ];
Ktemp = [ K d SS K d SR ; K d SR' K d RR ];
psi_dh = -inv(K_d_SS) *K_d_SR;
MU _dc_d( h*n_modeperND disk+l : (h+1)*n_modeperND disk , (N-1)*n node_interface*3+1
N*n node interface*3 ) = phi dh'*( M d SS*psi dh + M d SR);
MU cc_d( (N-1)*n node interface*3+1 : N*n node interface*3 , (N-
1) *n_node_ interface*3+1 : N*n node interface*3 ) = psi dh'*( M d SS*psi dh + M d SR) +

M d SR'*psi _dh + M d_RR ;
K cc_d( (N-1)*n node interface*3+1 : N*n node interface*3 , (N-
1) *n_node_interface*3+1 : N*n node interface*3 ) = K d RR + K d SR'*psi dh;
else

phi_dh = phi d( : , h*n_modeperND disk+l : (h+l)*n_modeperND_disk );
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temp = (K Da+K Db*cosine h);

K d ssO = [ (K aa + (K ab+K ab')*cosine h + K bb) temp' ;
temp K DD ];

temp = K Db*sine h;

K d ssl = [ (K_ab—K_ab')*sine_h —temp' ;
temp zeros (n_node_disk_interior*3) ];

temp = K Rb'*sine_h;

temp2 = (K_Ra' + K Rb'*cosine_h);

K d SR = [ temp2 -temp;
K_DR zeros (n_node_disk_interior*3,n_node_interface*3);
temp temp2;
zeros (n_node_disk_interior*3,n_node_interface*3) K DR 1;

K d RR = [ K RR zeros(n_node_interface*3);

zeros (n_node_interface*3) K RR ];

KdsSS=[KdsSso Kd ssl;
K d SS1' K d SS0 1;

temp = (M Da+M Db*cosine h);
M d sSs0O = [ (M aa + (M _ab+M ab')*cosine h + M bb) temp' ;
temp M DD ];

temp = M Db*sine_ h;

M d_sSl = [ (M_ab—M_ab')*sine_h —temp' ;
temp zeros (n_node_disk_interior*3) ];

temp = M _Rb'*sine_h;

temp2 = (M_Ra' + M _Rb'*cosine_h);

M d SR = [ temp2 -temp;
M DR zeros (n_node_disk_interior*3,n_node_interface*3);
temp temp2;
zeros (n_node_disk_interior*3,n_node_interface*3) M DR ];

M d RR = [ M RR zeros(n_node_interface*3);

zeros (n_node_interface*3) M_RR ];

MdsSS=[Mdsso Md Ssl;
M d SS1' M d SS0 ];

psi_dh = -inv(K_d_SS)*K d SR;
MU dc_d( h*n modeperND disk+1l : (h+1l)*n modeperND disk , n node interface*3+ (h-
1)*n_node interface*3*2+1 : n node interface*3+h*n node interface*3*2 ) = phi dh'*(

M d SS*psi dh + M d SR);

MU cc_d( n_node interface*3+(h-1)*n node interface*3*2+1
n node interface*3+h*n node interface*3*2 , n node interface*3+(h-1)*n node interface*3*2+1
n_node_interface*3+h*n node_ interface*3*2 ) = psi dh'*( M d SS*psi_dh + M d SR) + M d SR'*psi_dh
+ M dRR ;

K_cc_d( n_node interface*3+(h-1)*n_node_ interface*3*2+1
n_node_interface*3+h*n_node_interface*3*2 , n_node_interface*3+(h-1)*n_node_interface*3*2+1
n_node_interface*3+h*n_node_interface*3*2 ) = K d RR + K d SR'*psi_dh;

end
end
clear temp*;

disp (sprintf ('Disk components are calculated!'))

R

BLADE

B )

oo de

o

lamda b = diag( FREQ BLADE (:,3)."2 );
node list blade ordered = [ node list blade fixedinterface ; node list interface ] ;
n _node blade ordered = size(node list blade ordered,1);

Kb free = zeros(n_node blade ordered*3);
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Mb free = zeros(n_node_blade ordered*3);
phi b = zeros(n _node blade ordered*3,n mode blade);

for n=1:n node blade ordered
picked(n,1) = pick( node list blade , node list blade ordered(n) );
end

for n=1:n _node_blade ordered
node_x = picked(n);
phi b( (n-1)*3+1 : n*3 , : ) = MODAL_BLADE( (node_x-1)*3+1 : node x*3 , : );
for m=1:n _node_blade ordered
node_y = picked(m);

Kb_free( (n-1)*3+1 : n*3 , (m-1)*3+1 : m*3 ) = Kb( (node_x-1)*3+1 : node_ x*3 ,
(node_y-1)*3+1 : node_y*3 );
Mb_free( (n-1)*3+1 : n*3 , (m-1)*3+1 : m*3 ) = Mb( (node_x-1)*3+1 : node_x*3 ,

(node_y-1)*3+1 : node_y*3 );

end
end

phi b = phi b ( 1:n node blade fixedinterface*3 , :);

K BB = Kb_free( l:n_node blade_ fixedinterface*3 , 1:n_node_blade_fixedinterface*3 );
K_BR = Kb_free( l:n_node blade fixedinterface*3 , n_node_blade_ fixedinterface*3+1 :
(n_node blade fixedinterface+n node interface)*3 );

K RR = Kb _free( n node blade fixedinterface*3+1
(n_node blade fixedinterface+n node interface)*3 , n node blade fixedinterface*3+1
(n_node_blade_fixedinterface+n_node_interface)*3 );

M BB = Mb_free( l:n_node_blade_fixedinterface*3 , 1l:n_node_blade_ fixedinterface*3 );
M BR = Mb_free( l:n_node_blade_ fixedinterface*3 , n_node_blade_ fixedinterface*3+1
(n_node_blade_fixedinterface+n_node_interface)*3 );

M RR = Mb_free( n_node_blade_ fixedinterface*3+1
(n_node_blade_fixedinterface+n_node_interface)*3 , n_node_blade_ fixedinterface*3+1
(n_node_blade_fixedinterface+n_node_interface)*3 );

psi_b = -inv(K_BB) *K_BR;

MU bc_b = phi b' * ( M BB*psi b + M BR );

MU cc_ b = psi b' * ( M BB*psi b + M BR ) + M BR'*psi_b + M RR;
K cc b = KRR + K BR'"*psi_b;

disp (sprintf ('Blade components are calculated!'))

R R )

ASSEMBLY

B

oo de

o

o

% Constructing Fourier expansion matrix F
F = zeros(N);
F(:,1) = ones(N,1)/sqrt(N);

for i = 1:n_ND disk-2
for j = 1:N

F( 3, 1+(i-1)*2+1 ) = sqrt(2/N)*cos( alfa*i*(j-1) );
F(Jj , 1+(i-1)*2+2 ) = sqgrt(2/N)*sin( alfa*i* (j-1) );
end
end
if ( mod(N,2) == 0 )
for j = 1:N
F(j,N) = (-1)"(j+1)/sqgrt(N);
end
end

Fcap = kron( F , eye(n_node_ interface*3) );

mist percentage = 0;
mist pattern = importdata( 'MistuningData.txt' );
mist pattern = mist pattern * mist percentage;

a M = [ eye(n mode disk) MU dc_d
zeros (n_mode disk,n mode blade*N) ;
MU dc_d' (MU_cc_d+kron (eye (N) ,MU _cc b)) temp' ;
zeros (n_mode blade*N,n mode disk) temp eye(n mode blade*N) ];
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a K= [ lamda d zeros (n_mode disk,n node interface*3*N)
zeros (n_mode disk,n mode blade*N);
zeros (n_node interface*3*N,n mode disk) (K_cc_d+kron (eye(N),K cc b))
zeros (n_node_interface*3*N,n mode blade*N) ;
zeros (n_mode blade*N,n mode disk) zeros (n_mode blade*N,n node interface*3*N)

kron(diag(l+mist pattern),lamda b) ];

clear K*;
clear M*;

toc;
disp (sprintf ('Assembly successful!'))

% Correct symmetry
K = (a_K/2 + a K'/2);
M= (aM/2 + aM/2);

[\

n_eig = 200;

% [V,D] = eig( a K, aM);

tic;

[V,D] = eigs( a K, aM, neig , 'SM' );

disp ('Eigenvalues and eigenvectors are extracted!')
toc;

wr sq = max ( real (D) );

[Dsorted,I] = sort(wr_sq);

for n=1:n_eig
wr_sqg_sorted(n) = wr_sg(I(n));
V_sorted(:,n) = V(:,I(n))

end

wr_sq = wr_sqg_sorted;
V = real( V_sorted );
clear a_*;

clear T_rot_assm;

clear temp;

save modalexport.mat
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APPENDIX C. CODE FOR SUBSET OF NOMINAL MODES METHOD

clear;
clc;

N = 36;
max_modeperND = 10;
mist percentage = 5;

file blade mass = 'BLADE MASS.MATRIX';

file blade stiffness = 'BLADE STIFFNESS.MATRIX';

file mistuning = 'MISTUNING DATA.TXT';

file tuned nodeno = 'TUNED_NODENO.TXT';

file tuned freq = 'TUNED FREQ.TXT';

file tuned modal = 'TUNED MODAL.TXT';

[ K, M ] = ansys mat import ( file blade mass , file blade stiffness );

node list = uint32 ( importdata( file tuned nodeno ) );
FREQ = importdata ( file_tuned freq );

MODAL = importdata ( file_tuned_modal );

c = importdata ( file mistuning ) * mist_percentage;

n_mode = size ( FREQ ,
n_ND = max ( FREQ(:,1)
n_modeperND = max ( FRE
n_dof = size ( K, 1)

)i

(:,2) )

eb = Q@(j, k) exp( i*(j-1)*(k-1)*2*pi/N ) / sqgrt(N);

clear file *;

% CORRECT ANSYS OUTPUT FORMAT

FREQ( : , 3 ) = FREQ( : , 3 ) * 2*pi;
% SET MAXIMUM NUMBER OF MODES/ND

if (n_modeperND > max modeperND)

FREQ TEMP = zeros( n ND * max modeperND , 3 );
MODAL TEMP = zeros( size(MODAL,1) , n ND * max modeperND );

n=1;
while n<=n_ND
FREQ_TEMP ( (n—l)*max_modeperND+l : n*max_modeperND , : ) = FREQ( (n-1) *n_modeperND+1
(n—l)*n_modeperND + max_modeperND , : );
if ( (n==n_ND) || (n==1) )
MODAL_TEMP( : , (n-1)*max_modeperND+1l : n*max _modeperND ) = MODAL( : , (n-
1) *n_modeperND+1 : (n-1)*n_modeperND + max modeperND ) / sqrt(2);
else
MODAL_TEMP( : , (n-1)*max_modeperND+1l : n*max _modeperND ) = MODAL( : , (n-
1) *n_modeperND+1 : (n-1)*n_modeperND + max_modeperND );
end
n=mn+1;
end

n_modeperND = max modeperND;
FREQ = FREQ TEMP;

MODAL = MODAL_TEMP;

n mode = size( FREQ , 1 );
clear *_TEMP;

end
o

% CALCULATING MATRIX MULTIPLICATIONS

clear 1i;
MODAL_COMPLEX = MODAL(l:n_dof , :) + i*MODAL(n_dof+l:2*n_dof , :);
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mod = zeros (n_ND);

j=1
while j <= n_ND
k= 73;
while k <= n ND
n=1;
while n<=N
mod (j, k) = mod(j, k
n=mn+ 1;
end
mod (k,J) = mod(j,k)"';
k =k + 1;
end
j=3+1;
end
dK zeros (n_mode,n_mode) ;
j=1
while j <= n_ND
k =1;

while k <= n_ND
dK( (j-1)*n_modeperND+1
MODAL COMPLEX (:, (j-1) *n_modeperND+1
k*n_modeperND) * mod(j,k);

dK( (k-1)*n_modeperND+1
(3-1) *n_modeperND+1
if (]
dK (

k)

dK( (j-1)*n_modeperND+1 j*n_modeperND ,
1) *n_modeperND+1 j*n_modeperND ,
end
k =k + 1;
end
J=3 + 1;
end
n_eig = 100;
lamda = FREQ(:,3)."2;
[v,D]=
wr_sq = max ( real (D) );
[Dsorted,I] = sort(wr_sq);

for n=1:n_eig
wr_sq_sorted(n)
V_sorted(:,n) =
end

Wr_
0, I

(I(n)

sq
(n));

V(

wr sq = wr sq sorted;
V = real( V_sorted );

j*n_modeperND ,

(3-1) *n_modeperND+1

eigs( diag(lamda)+dK , eye(n_mode)

+ eb(j,n) '*c(n

j*n_modeperND ,

j*n_modeperND) ' * K * MODAL COMPLEX (:, (k-1)*n_modeperND+1

k*n_modeperND ,

)i

(k-1) *n_modeperND+1
j*n_modeperND ,

(k-1) *n_modeperND+1
(k-1) *n_modeperND+1

, n_eig ,

) *eb (k,n) ;

(k-1) *n_modeperND+1

(3-1) *n_modeperND+1
k*n_modeperND )

(k-1) *n_modeperND+

k*n_modeperND ) '/2

'SM' )

k*n modeperND )/2 + dK(

k*n_modeperND ) =

j*n_modeperND ) =

1
7

1 : k*n _modeperND
(3-

;

dK (
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APPENDIX D. CODE FOR NONLINEAR ELEMENTS

function [

N NO*mu;
Xc = X(2);
Xs = X(3);
Xbar
Xcr

if (

state

= (

dkrdbeta

dkidx

dbetadX

dXdXr
dxXdxi

dkrdXr =

dkidXr
dkrdxi

dkidXi =

dFrdXr =

dFrdXi
dFidXr

dFidxi =

F= I

Kf = [

else

F
Kf

kx

state

end

0 ;

eye (3)
Kf(1,1) =

F , Kf , state] = friction_elem macroslip( X , NO , mu , kx )

sqrt (Xc"2+Xs"2) ;
N/kx;

Xbar > Xcr

2;

= -Xs;

(Xbar-2*Xcr) /Xbar;

acos ( ho

)i

(kx/pi) * (beta - 0.5*sin(2*beta));

(4*N) / (pi*Xbar) ) * (Xbar-Xcr) /Xbar;

kr*Xr - ki*Xi;
kr*Xi + ki*Xr;

kx* (1-cos (2*beta)) /pi;
4*N/ (pi*Xbar”2) -8*N* (Xbar-Xcr) / (pi*Xbar"3) ;

(-1/sgrt (1-ho”2) * (1-ho) /Xbar) ;
Xr/Xbar;
Xi/Xbar;

dkrdbeta*dbetadX*dXdXr;
dkidX*dXdXr;
dkrdbeta*dbetadX*dXdXi;
dkidX*dXdXi;

kr + Xr*dkrdXr - dkidXr*Xi;
Xr*dkrdXi - dkidXi*Xi - ki;
dkrdXr*Xi + dkidXr*Xr + ki;
dkrdXi*Xi + kr + dkidXi*Xr;
-Fi

Fr ; 1

0 00 ; 0 dFrdXr -dFrdXi ; 0 -dFidXr dFidXi ];

*X;

* kx;
0;

1;

function [

kb
ks

kx

N

Fl;

max ([kl,k2]
min ([kl,k2]

F , Kf , state] = friction elem twoslope microslip( X , F1 , k1 , k2

)i
) .

;

kb - ks;
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Xc = X(2);
Xs = X(3);
Xbar = sqrt(Xc"2+Xs"2);
Xcr = N/kx;

if ( Xbar > Xcr
state = 2;
Xr = Xc;
Xi = -Xs;
ho = (Xbar-2*Xcr) /Xbar;
beta = acos( ho );
kr = (kx/pi)* (beta - 0.5*sin(2*beta));
ki = ((4*N)/ (pi*Xbar))* (Xbar-Xcr) /Xbar;
Fr = kr*Xr - ki*Xi;
Fi = kr*Xi + ki*Xr;
dkrdbeta = kx* (1-cos (2*beta)) /pi;
dkidX = 4*N/ (pi*Xbar”2)-8*N* (Xbar-Xcr)/ (pi*Xbar”3);
dbetadX = -1/sqrt(1-ho”2)* (1-ho)/Xbar;
dXdXr = Xr/Xbar;
dXdXi = Xi/Xbar;
dkrdXr = dkrdbeta*dbetadX*dXdXr;
dkidXr = dkidX*dXdXr;
dkrdXi = dkrdbeta*dbetadX*dXdXi;
dkidXi = dkidX*dXdXi;
dFrdXr = kr + Xr*dkrdXr - dkidXr*Xi;
dFrdXi = Xr*dkrdXi - dkidXi*Xi - ki;
dFidXr = dkrdXr*xXi + dkidXr*Xr + ki;
dFidXi = dkrdXi*Xi + kr + dkidXi*Xr;
F=1[0,; Fr ; -Fi ] + ks * X;
KE = [ 000 ; 0 dFrdXr -dFrdXi ; 0 -dFidXr dFidXi ] + eye(3) * ks;
Kf(1,1) = 0;
else
F = kb * X;
Kf = eye(3) * kb;
Kf(1,1) = 0;
state = 1;
end
function [ F , Kf , state ] = gap_elem_singleharmonic( Y , ky , g )
$ [ F, Kf , state ] = gap_elem( Y , ky , g )

oo

oo

Friction element calculation procedure.
X: Tangential displacement components
Y: Normal displacement components

oo

oo

% kx: Tangential stiffness

% ky: Normal stiffness

% NO: Normal loading ( initial gap obtained by negative loading
% mu: Coefficient of friction

m=1;

len = 2*m+l1;

F = zeros(len,1);

Kf = zeros(len);

if ( ky == 0 )
state = -1;
return;
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end

NO = -g*ky;
YO = Y(1);
Yc = Y(2);
Ys = Y(3);

Ybar = sqrt( ¥Ys"2 + Yc"2 );
psi = atan2( Yc , Ys );

ratio_gap2Ybar = (g-Y0)/Ybar;
if ( ratio_gap2Ybar > 1)

% Full seperation
state = 0;

elseif ( ratio _gap2Ybar < -1

% Full contact

state = 2;
F =ky * Y;
F(1,1) = F(1,1) + NO;

Kf = ky * eye(len);
else

% Partial contact
state = 1;

phil = asin( ratio_gap2Ybar );
phi2 = pi - phil;

tetal = phil - psi;
teta2 = phi2 - psi;

if ( tetal < 0 )
tetal = tetal + 2*pi;
end

if ( teta2 < 0 )
teta2 = teta2 + 2*pi;

end
teta = sort( [ tetal ; teta2 ] );
y mid = Hminus( (teta(l)+teta(2))/2 , m )' * Y;

if (y mid < g)

teta = [ teta(2) (teta(l)+2*pi) 1;
end
W = 1/pi * (HmHp int(teta(2),m) - HmHp int(teta(l),m));
w = 1/pi * (Hp int(teta(2),m) - Hp int(teta(l),m));

F=N0*w+ ky *W * Y;
Kf = ky * W;

end

function [ F , Kf , state ] = gap elem( Y , ky , g )
Friction element calculation procedure.

o° e

o

Y: Normal displacement components
ky: Normal stiffness
g: Initial gap

oe

oe

len = length(Y);

F = zeros(len,1);
Kf = zeros(len);
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if ((ky == 0 )

state = -1;
return;
end
NO = -g*ky;
m = ( len-1 ) / 2; % number of harmonics

flag_print = 0;

% Calculating seperation instants
N = 2*m; % Number of brackets equal to twice the number of harmonics
% Bracketing
k = 0;
for i = 1:N
t(i) = (i-1)*2*pi/N;
y(i) = Hminus( t(i) , m )' * Y;
dy (1) dHminus ( t(i) , m )' * Y;
end
t(N+1) = t(1l)+2*pi;
y(N+1) = y(1);
dy (N+1) = dy(1);
s = NO + ky * y;
n root = 0;
for i = 1:N
if( sign(s(i))*sign(s(i+l)) < 0 )
n_root = n_root + 1;
t_sep(n_root) = root_bracket( @(taoc) NO + ky * Hminus( tao , m )' * Y , t(i) , t(i+l)
)i
elseif ( (sign(dy(i))*sign(dy(i+l)) < 0) && (sign(s(i))*sign(dy(i)) < 0) )
t_ext = root_bracket( @(tao) dHminus( taoc , m )' * Y , t£(i) , t(i+l) );
s_ext = NO + ky * Hminus( t_ext , m )' * Y;
if ( sign(s(i))*sign(s_ext) < 0 )
n_root = n_root + 1;
t_sep(n_root) = root_bracket( @(tao) NO + ky * Hminus( tao , m )' * Y , t(i) ,
t_ext );
n_root = n_root + 1;
t_sep(n_root) = root bracket( @(tao) NO + ky * Hminus( tao , m )' * Y , t ext ,
t(i+l) )
end
end
end
% Check if full seperated!
if ( (n_root == 0) && (s(i) < 0) )
state = 0;
if ( flag _print)
disp('Full seperation');
end
return;
% Check for no seperation!
elseif ( (n_root == 0) && (s(i) > 0) )
state = 2;
if ( flag_print )
disp (sprintf ('No seperation '));
end
F =%y *Y;
F(l) = F(1) + NO; % Modification

Kf = ky * eye(len);

else

% Partial contact

state = 1;

if ( flag print )

disp('Partial contact');

end
t sep = sort(t sep); % Seperation/Contact instants calculated!
contact _data = [ 0O
c = 0;

0

;

t_sep(n_root+l) = t sep(l)+2*pi;
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for i=1:n_root
t mid = (t _sep(i)+t sep(i+l))/2;
normal = NO + ky * Hminus( t mid, m )' * Y;
if ( normal > 0
c=c+ 1;

contact_data(c,:) = [ t_sep(i) t_sep(i+l) ];
end
end
% For each contact period in contact_data
for 1 = 1l:c
t_contact = contact_data(i,1);
t_separation = contact_data(i,2);
W= 1/pi * (HmHp_int (t_separation,m) - HmHp_ int (t_contact,m));
w = 1/pi * (Hp_int (t_separation,m) - Hp_int (t_contact,m));
F=F+NO *w+ ky *W * Y;
Kf = Kf + ky * W;
end

end
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APPENDIX E. ANSYS MACROS

MODAL DATA EXPORT

/PMACRO
/POST1
/OUTPUT, C:\MODALDATAEXPORT.TXT

*GET, Nnode, NODE, 0, COUNT
*GET,Min_node, NODE, 0, NUM, MIN
*GET,Max_node, NODE, 0, NUM, MAX

! Get node numbers
*DIM, NodeNumber, ARRAY, Nnode

Ndof = Nnode*3

n=1
*DO, k,Min node,Max node, 1

sel = NSEL (k)
*1F,sel,EQ, 1, THEN
NodeNumber (n) = k
n=mn+1

*ENDIF

*ENDDO

SET, FIRST

*GET, Nmodefirst,ACTIVE, 0, SET, SBST
*GET,Ncycfirst, ACTIVE, 0, SET, LSTP
SET, LAST

*GET, Nmodelast, ACTIVE, 0, SET, SBST
*GET,Ncyclast,ACTIVE, 0, SET, LSTP

Nmode = Nmodelast-Nmodefirst+l
Ncyclic = Ncyclast-Ncycfirst+1l
NTmode = Nmode*Ncyclic

*DIM, Freq, ARRAY, NTmode , 3
*DIM, Modal, ARRAY, Ndof, NTmode

n=1

*DO, cycno,Ncycfirst,Ncyclast, 1
*DO, modeno, Nmodefirst, Nmodelast, 1

SET, cycno, modeno

Freq(n,1l) = cycno
Freqg(n,2) = modeno

*GET, fff,ACTIVE, 0, SET, FREQ
Freq(n,3) = fff

*DO, k,1,Nnode, 1

nodeno = NodeNumber (k, 1)

Modal ( (k-1)*3+1 , n) = Ux(nodeno)
Modal ( (k-1)*3+2 , n) = Uy (nodeno)
Modal ( k*3 , n) = Uz (nodeno)
*ENDDO

n = n+l

*ENDDO

*ENDDO

*MWRITE, Freq, C:\FREQ.TXT
$I %I %20.13E

*MWRITE, Modal, C:\MODAL.TXT
(10000000000000000E22.13
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*MWRITE, NodeNumber, C:\NODENO.TXT

31

/OUTPUT

IMPOSE MISTUNING ON BLADE MODULUS OF ELASTICITY

/PREP7

N = 36

Modulus = 207000

Density = 8.4E-006

Poisson = 0.3

*DIM, Mistuning, ARRAY, N , 1

*VREAD, Mistuning(l), D:\HQ\FEM\Projects\Ansys\macros\MistuningData.txt
(1F32.0)

*DO, sector,1,N,1

MP, EX , 2*sector-1 , Modulus

MP, PRXY , 2*sector-1 , Poisson

MP, DENS , 2*sector-1 , Density

MP, EX , 2*sector , Modulus* (1+Mistuning (sector))
MP, PRXY , 2*sector , Poisson

MP, DENS , 2*sector , Density

*ENDDO
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1 SYNOPSIS

Mistuning phenomenon has been studied extensively for almost half a century, especially for bladed
disk assemblies. However, the studies hitherto focus on either linear models with distributed
parameter mistuning or nonlinear models with point mistuning. The former method is not realistic
under significant non-linear effects. Whereas the latter method lacks accuracy since discrete mistuning
elements distort the mode shapes unless their numbers are large. Therefore a model which includes
both nonlinearities and distributed parameter mistuning is required. In this study, a formulation for the
analysis of mistuned bladed disk assemblies under periodic loads in the presence of distributed
parameter mistuning and nonlinearity is given. The proposed method combines the component mode
synthesis based reduced order modeling approach with non-linear forced response analysis technique
in modal space. The calculations are carried out in modal domain which reduces the computational
effort considerably, especially for large size finite element (FE) models. The mistuning is imposed on
individual blade natural frequencies, which is more realistic compared to adding discrete mistuning
elements. A case study is presented to demonstrate the application of the method and the effect of
macro-slip friction type nonlinearity on the dynamic analysis of a mistuned bladed disk assembly. It is
concluded that considering non-linear effects in the dynamic analysis of mistuned bladed disks is
crucial when there exists significant non-linearity, such as gaps and friction dampers in the system. It
is believed that this is the first study in which non-linear dynamic analysis of bladed disk assemblies is
carried out with distributed parameter mistuning.

2 INTRODUCTION

Forced response predictions of bladed disk assemblies have been the main focus of researchers for the
last few decades. Due to their cyclic symmetric structure, slight differences in structural properties and
geometry of blades in bladed disk assemblies may cause significant increases in vibration amplitudes.
This weakens the robustness and durability of the structure. In order to predict such responses,
mistuning can be imposed on FE models. But these models usually have large numbers of degrees of
freedom (DOF) requiring enormous amount of computational time for response predictions. In
addition, FE analyses can no longer use a single sector of the assembly for the dynamic analysis of the
mistuned assembly, since mistuning destroys the cyclic symmetric property.

Studies hitherto can be grouped by the complexity of the models used, as several DOF per sector
models [1-4] and FE models [5-17]. Studies using FE approach aim to construct reduced order models
which provide faster results. In some studies, frequency response function (FRF) coupling or updating
techniques were employed on the modal analysis results of the tuned FE model. Yang and Griffin [14]
suggested coupling the tuned disk and mistuned blades via FRF coupling. A transformation which
expresses the blade-disk interface motion by a number of translational and rotational rigid body modes
is applied to reduce the number of connection DOF. Yet, the FRF matrix for each DOF on the blade
should be calculated for each point in the frequency range.
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Petrov et al. [17] proposed a frequency domain approach which is based on FRF updating. The
mistuned FRF is determined by applying linear mistuning such as stiffness and point mass as a
modification on a number of DOF of the FE model of a tuned assembly. In that study, keeping the
modal vector data for the DOF at which the modification is applied will be sufficient. Consequently, if
it is desired to apply distributed mistuning throughout the blade, each DOF in the blade should be
kept. Such an approach will be computationally expensive when fine meshes are used.

In another group of studies, reduced order models in modal domain were introduced [5-11]. Ottarsson
et al. [6] developed a model in which the mistuned mode shapes are represented as a combination of
disk mode shapes and cantilevered blade mode shapes. Method proves to yield accurate results when
the cantilevered blade natural frequencies are tuned to compensate the stiffening caused by the fixed
boundary conditions. Bladh et al. [7] extended the formulation for shrouded blade disk assemblies. On
the other hand, Yang and Griffin [11, 12] suggested reducing the mistuned system by using a subset of
nominal modes (SNM) of the tuned system. Mistuning is applied as linear modification matrices
which are transformed into the modal domain using the subset of selected modes. They also developed
a formulation for transient response calculations using the reduced order model [13]. Later, Bladh [10]
developed a formulation which combines a similar approach as SNM method with fixed interface
coupling method which is called Craig-Bampton method [22]. Using this formulation, mistuning is
applied on the cantilevered natural frequencies of the blades.

Non-linear response of bladed disk assemblies has been studied extensively in frequency domain [e.g.
see 24-28]. Recently, Petrov [18] developed formulations for typical non-linear elements and used
numerical path following methods to trace the solution in frequency domain where multi-harmonics
were included. The model is reduced using Craig-Bampton method and non-linear elements are
connected between statically condensed DOF. This reduction aims to represent the contact interface
motion more accurately under non-linear loads since it may not be accurate enough when expressed
by a combination of nominal modes of the system. On the other hand, Cigeroglu et al. [19]
implemented a new two-dimensional micro-slip friction model to a bladed disk.

The objective of this study is to address the question of how non-linearity and mistuning affect the
displacement and stress patterns in bladed disk assemblies. Proposed technique avoids using point
mistuning elements since in order to apply mistuning throughout the blade, a large number of DOF
should be kept in the model. Instead, it is suggest using a reduced order model. The mode shapes of
the mistuned bladed disk are calculated by Craig-Bampton method as formulated by Bladh [21]. The
non-linear periodic response is calculated in modal domain, by using the method suggested by Kuran
and Ozgiiven [20]. Numerical path following approach based on Newton method is applied in the
solution. The purpose of the proposed approach is to calculate non-lincar response of mistuned bladed
disk assemblies with mistuning applied on the individual blade natural frequencies. Since the response
is calculated in modal domain, the size of the problem is reduced to the number of modes retained
irrespective of the complexity of the FE model used.

3 THEORY
3.1 Reduced Order Model

It is a well known fact that mode shapes of a mistuned bladed disk assembly are closely related to the
natural frequencies of individual blades attached to the disk. As long as the mistuning pattern, which
is the set of deviations of natural frequencies of each blade from the ideally tuned case, is the same for
different mistuning cases, the mode shapes of the mistuned bladed disks in each case will be similar.
Therefore a formulation which is capable of mistuning individual blade natural frequencies rather than
adding point mistuning elements is to be preferred.
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In this study a component mode synthesis method, namely the Craig-Bampton method [22], is used
for model reduction. Bladh [21] employed the Craig-Bampton method for mistuned bladed disk
assemblies and obtained a reduced order model in which it is possible to impose mistuning on

cantilevered natural frequencies of each blade in the assembly. The mass and stiffness matrices, (M Cb]

and |K Cb], respectively, of the reduced order model are given below using the original notation used in
[21]:

7]
)= [a.T blmd]w]@ 1 [F]’ﬂf]mr] )
o] L8l 7] [7]

[o] [o]
[k~ ]= [0] ]t lelk.,] o] e)
[o] [o] [11®[A,]

Here [I ] is the identity matrix, [0] is the zero matrix, [7\ d] is the modal stiffness matrix of the disk,
[Ab] is the modal stiffness matrix of a single cantilevered blade, [,u] and [K]are the reduced mass and

stiffness matrices, respectively, [13' J is the transformation matrix from cyclic coordinates to physical

coordinates, and ® denotes the Kronecker product. Subscripts b, d and c represent the blade, the disk
and the connection DOF, respectively.

Note that the lower-right element of the stiffness matrix is a diagonal matrix. It contains the modal
stiffness values of each blade in the assembly, which makes modal stiffness mistuning possible. In
order to impose mistuning, cantilevered blade modal stiffness values on the diagonal elements of
[l ]® [A b] arc perturbed as:

Bdiag[ diag (1+8})[A, ]} 3)

n=L,...N | m=L,...m,

where Bdiag[O] denotes the block diagonal matrix, the argument being the n™ (n=1,2,...) diagonal
block. The details of the formulation are given in reference [21].

3.2 Non-linear Forced Response in Modal Domain

The equation of motion of a non-linear system can be expressed as:
[ Je+ [Clih+ [k e+ il R+ {3 = ) @)

where [M], [K], [C] and [H] are the mass, stiffness, viscous damping and structural damping
matrices,{x}, {x} and {x} are the vectors of physical displacements, velocities and accelerations,

respectively. { S L} is the vector of non-linear internal forces and { f } is the vector of external forces. i
is the unit imaginary number.

For a periodic excitation at fundamental frequency w, the response can be assumed as a summation of
harmonic responses at « and its harmonics as:

131



b= {x), e ®)

m=0

Then the non-linear internal force due to non-linear elements can also be written as:

{fAL } = i {F AL }mefmx ©)

m=0

Knowing that the aerodynamic forces on blades may not be expressed by a single harmonic function
only, the external forcing term can also be written as a summation of several harmonic functions as:

)= 2 tF e @

m=0

Substituting equations (5), (6) and (7) into the equation (4) we obtain:
(K1, + (7.}, = ) .
[ (may? M)+ iman[Cl+ [K]+i[H]\X}, +{F,,} ={F), form=1,2... ©)

m

Expressing the physical displacements as a linear combination of mode shapes as:

{xt, =[oln, (10)
and substituting equation (10) into equations (8) and (9) we obtain:

[k}, + 7, ), = {7, a
[ oy [1]+ima)|C |+ [ |+ & [p}, +{F,, |, = {F}, form=1,2... (12)
where

W, =lke,  [cl=WTlcly],  [E]=[TH]e],
{F}\T}m = [¢]T{FAI }m > {F}m :[¢]T {F}m

It should be noted that non-linear forces occur only at DOF where non-linear elements are connected
to, which will be referred to as “non-linear DOF”. Therefore, in order to transform the non-linear

forcing term {FA L }m into modal domain to obtain {F,, } , only the mode shapes of the non-lincar DOF
are required. Thus, the internal non-linear forcing vector can be rewritten as:

{F;\/L }m = [¢1\1L ]T {F NL,NL }m (13)

where {FAL’ AL} is the vector of internal non-linear forcing at non-linear DOF and [¢M] is the mode

shape matrix which belongs to the non-linear DOF. In the original formulation of Kuran and Ozgiiven
[20] the internal non-linear force vector is expressed as a matrix composed of describing functions
representing nonlinearity, multiplied by the response vector. Then the response of the system is
calculated by solving equations (11) and (12) iteratively. The details of the modal analysis of non-
linear systems can be found in reference [20].
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3.3 Numerical Solution with Path Following

In this study, the forced response of the system is calculated by using Newton solution procedure.
Arranging the terms in the equations (11) and (12) we obtain:

{R,({p}y )t =[w’ lip}, +{Fo )~ {F ), = 0} (14)
&, (p},.0) = (mo}[1]+ imo)Cl+ [+ {HIp}, + 7., ), - F, = 0} (15)

Combining the modal displacement vectors into a single vector as:

pi=lor o wp ] (16)

and collecting the functions into a single function, we obtain:

R(phoh=[Rpho) (Rpholf Rpho) -] (17)

Then a Newton solution procedure is applied to solve for the modal displacements. For cach
frequency, @, , iteration is applied as follows:

R({p) o, ) (18)

{P}'k 3

kT k

olp}

(P = {p} _[5{R({P}a 0’)}}1

where {p}'A is the modal solution vector at k™ frequency @, and at i" iteration, [
Jacobian matrix, and {R({p}'}(,a}k ]} is the function evaluated at {p}; and @, .

For non-linear systems, there may be multiple solutions for a single w. In such cases, there will be
some points on the solution curve at which the Jacobian matrix is singular [23]. Then a numerical

continuation procedure is required to trace the solution, which can be achieved by introducing a new
equation

{agl gl =7 (19)

that makes the Jacobian matrix non-singular where

agl =gk~ b} 20)
and
la}= {{2}} Q1)

Now here k represents a solution point on the curve. Equation (19) guarantees that the k™ solution lies
on a hyper-sphere centered at {q}H having a radius of s.
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Arranging the terms in equation (19) to define a new function

e} ol )= 1ag) {agl, —5* = 0} )

The Newton iteration becomes:

Hr(pho)) oR(pLo)]"
lah" =1a} olp fer {{R
E]

i)

TR e({pheo)  ee({p) o) g
D ow

{pli @k

where | . 6{p } A 0c is the new Jacobian matrix which is not singular.
(pho)  allpho)

a{pi ow

oiR({pro);  oR({p} o)}
p

During the solution procedure, first order estimators, which are calculated by using the Jacobian
inverse found at the previously converged solution, are used. The details of the numerical continuation
methods can be found in reference [23].

4 CASE STUDY

In this section a case study is presented to demonstrate the application of the analysis method
proposed. A bladed disk assembly which has 24 sectors with an angle of 15° per sector is used. The
isometric view of the FE model of a single sector is given in Figure 1. The model is formed by eight
node brick elements. The blades are of mid-shroud type. The disk is constrained at the nodes on the
inner rim.

Fig 1 - FE model of a single sector

To construct the reduced order model, 20 modes for each blade and 260 modes (20 modes for each
nodal diameter) for the disk is used. The resulting reduced order model has 1028 number of DOF. All
finite element work is done in ANSYS.

As an example to non-linearity in the system, the friction between shrouds of adjacent blades is
included into the analysis. The details of the formulation of the macro-slip friction element under
constant normal load are given in reference [18]. Note that the dry friction between contact surfaces
under changing normal loads can also be included into the analysis. The external forcing on the
system is taken only in the axial direction of the disk. 3 engine-order (EO) single harmonic forcing is
applied on all the nodes located at blade tips. The response is calculated using the first 20 modes.
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The linear response of the tuned assembly in tangential direction at the tip of the first blade is given in
Figure 2.

10

Response (m)

90 95 100 105 110 115 120 125 130
Frequency (rad/s)

Fig 2 - Linear response of the tuned assembly in axial direction

To study the effect of mistuning, random deviations in the range of + 5% are applied to the modal
stiffness values of individual blades. The linear response of the mistuned assembly at the same DOF
as above is given in Figure 3. Note that a number of new modes have appeared. This is due to the fact
that a 3EO excitation can cxcite only 3 nodal diameter (ND) modes of a tuned assembly, whereas in a
mistuned case this is not so, since the whole structure will loose its cyclic symmetry. Thercfore, a 3EO
excitation can excite all the modes in a mistuned assembly.
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Response (m)
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Frequency (rad/s)

Fig 3 - Linear response of the mistuned assembly in axial direction

In order to consider the non-linearity in the system due to the friction between shrouds of adjacent
blades, the relative motion between contact surfaces in normal direction is neglected and constant
normal load assumption is made. Macro-slip friction elements with normal load values between 1N
and 100N are used. Then both tuned and mistuned responses of the same blade are calculated. The
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mistuning pattern used in linear case is also employed here. The non-linear responses of tuned and
mistuned bladed disk assemblies are given in Figures 4 and 5, respectively.
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Fig 4 - Non-linear response of the tuned assembly in axial direction
for various normal load values
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Fig 5 - Non-linear response of the mistuned assembly in axial direction
for various normal load values

As demonstrated above, friction type nonlinearity can alter the forced response of both tuned and
mistuned bladed disk assemblies significantly both in peak magnitudes and resonant frequencies.

S CONCLUSION

In this study, a new approach is suggested for the dynamic analysis of bladed disk assemblies under
periodic loads in the presence of distributed parameter mistuning and nonlinearity. To the best of our
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knowledge, this is the first study which uses distributed parameter mistuning in non-linear dynamic
analysis. The method proposed combines the component mode synthesis based reduced order
modeling approach with non-linear forced response analysis technique in modal space. Mistuning is
imposed on individual blade natural frequencies of the reduced order model. Path following approach
based on Newton method is employed in numerical solutions.

In the case study presented, a mistuned bladed disk assembly with friction type non-linearity between
shrouds of adjacent blades is considered. Both linear and non-linear analyses of the system are carried
out, and the forced responses of a mistuned blade under periodic loads are calculated. In both analyses
several normal load values for macro-slip friction are employed. By comparing the linear and non-
linear forced responses obtained in the case study, it is demonstrated that non-linearity can change the
response of the system considerably.

Note that the current state-of-the-art suggests either adding point mistuning elements to FE model of
the system or using modal synthesis and perturbing individual blade natural frequencies for the
dynamic analysis of mistuned bladed disk assemblies. In the former method, in order to have realistic
models, fine meshing is required and mistuning should be applied on a large number of DOF. The
latter method has been applied only for linear systems. The method proposed in this study has the
advantage of making non-linear analysis while keeping the benefits of using modal synthesis and thus
applying distributed parameter mistuning. Making the non-linear solution in modal domain reduces
computational time drastically.
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