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ABSTRACT 
 
 
 

COMPARISON OF PARAMETRIC MODELS FOR  
CONCEPTUAL DURATION ESTIMATION  

OF BUILDING PROJECTS 
 

 

Helvacı, Aziz 

M.S., Department of Civil Engineering 

 Supervisor: Assist. Prof. Dr. Rifat Sönmez 

 

August 2008, 85 pages 

 

 

 

Estimation of construction durations is a very crucial part of project planning, as 

several key decisions are based on the estimated durations. In general, 

construction durations are estimated by using planning and scheduling 

techniques such as Gannt or bar chart, the Critical Path Method (CPM), and the 

Program Evaluation and Review Technique (PERT). However, these techniques 

usually require detailed design information for estimation of activity durations 

and determination of the sequencing of the activities. In some cases, pre-design 

duration estimates may be performed by using these techniques, however, 

accuracy of these estimates mainly depends on the experience of the planning 

engineer.  

 

In this study, it is aimed to develop and compare alternative methods for 

conceptual duration estimation of building constructions with basic data 

information available at the early stages of projects. Five parametric duration 

estimation models are developed with the data of 17 building projects which 
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were constructed by a contractor in United States. Regression analysis and 

artificial neural networks are used in the development of these five duration 

estimation models. A parametric cost estimation model is developed using 

regression analysis for cost estimations to be used in calculating the prediction 

performances of cost based duration estimation models. Finally, prediction 

performances of all parametric duration estimation models are determined and 

compared. The models provided reasonably accurate estimates for construction 

durations. The results also indicated that construction durations can be predicted 

accurately without making an estimate for the project cost. 

 

 

Keywords: Construction Duration, Regression, Artificial Neural Networks, 

Conceptual Estimation 
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ÖZ 
 
 
 

BİNA PROJELERİNDE KEŞİF ÖNCESİ SÜRE TAHMİNİ İÇİN 
PARAMETRİK MODELLERİN KARŞILAŞTIRILMASI 

 

 

Helvacı, Aziz 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

 Tez Yöneticisi: Yrd. Doç. Dr. Rifat Sönmez 

 

Ağustos 2008, 85 sayfa 

 

 

 

Proje başarısı için gerekli bazı kararlar süre tahminlerine dayanılarak 

verildiğinden, inşaat sürelerinin tahmini proje planlamasının çok önemli bir 

parçasıdır. İnşaat süreleri genelde çubuk diyagramları, CPM ve PERT gibi 

planlama ve programlama teknikleriyle tahmin edilmektedir. Ancak bu teknikler 

aktivite sürelerinin tahmini ve aktivitelerin sıra ilişkilerinin belirlenmesi için 

çoğunlukla detaylı mühendislik ve mimari proje bilgilerine gerek duyarlar. Bazı 

durumlarda, bu teknikler kullanılarak dizayn öncesi süre tahminleri yapılabilir, 

ancak bu tahminlerin kesinliği çoğunlukla planlama mühendisinin tecrübesine 

bağlı olmaktadır.  

 

Bu çalışmada, projelerin ilk aşamalarında elde edilebilir temel verilerle bina 

inşaatları için alternatif keşif öncesi süre tahmin yöntemlerinin geliştirilmesi ve 

karşılaştırılması amaçlandı. Bir yüklenici tarafından Amerika Birleşik 

Devletlerin’de inşa edilmiş 17 bina projesinin verileriyle beş tane parametrik 

süre tahmin modeli geliştirildi. Bu beş süre tahmin modelinin geliştirilmesinde 
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regrasyon analizi ve yapay sinir ağları kullanıldı. Maliyet üzerine kurulan süre 

tahmin modellerinin tahmin performanslarının hesaplanmasında kullanılacak 

olan maliyet tahminleri için regrasyon analizi ile parametrik bir maliyet tahmin 

modeli geliştirildi. Sonunda, bütün parametrik süre tahmin modellerinin tahmin 

performansları belirlendi ve karşılaştırıldı. Modeller inşaat süreleri için makul 

derecede doğru tahminler sağladı. Sonuçlar ayrıca inşaat sürelerinin proje 

maliyetleri için tahmin yapılmadan da kestirilebileceğini gösterdi. 

 
 

Anahtar Kelimeler: İnşaat Süresi, Regrasyon, Yapay Sinir Ağları, Keşif Öncesi 

Tahmin 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 MOTIVATION 

 

Construction duration is identified as one of the most important criteria along 

with cost and quality for measuring the overall success of construction projects. 

Therefore, completion of projects within the planned time is very critical for 

achieving successful projects. However, projects may not be completed in 

durations that they are initially estimated. Consequently, contractors may loose 

money and reputation. Construction delay, which is a common problem in the 

sector, may occur due to some factors such as poor productivity, variation of 

orders, unforeseen weather conditions or simply due to underestimated 

construction duration. From the contractors’ point of view, underestimation of 

construction duration leads to reorganization and reallocation of resources which 

was not planned initially. On the other hand, overestimation of construction 

duration can also be as bad as underestimation of construction duration. It may 

lead to spending extra money on the allocation of extra resources which is 

unnecessary, in fact. Hence, a reliable estimation of construction duration is very 

important and critical for contractors. 

 

In practice, construction durations are generally decided on the basis of client’s 

deadline or are estimated by making use of planning and scheduling techniques 

such as bar charts, the critical path method (CPM) and the program evaluation 

and review technique (PERT). Ng et al. (2001) stated that “Many contractors 

simply assume that the contract duration set by the client is realistic and prepare 

their bids accordingly”. However, this is risky and may increase contractor’s cost 



 2 

if the project can not be completed in time. On the other hand, contractors may 

not want to use scheduling techniques (Bar chart, CPM and PERT) in order to 

avoid spending large amounts of time and money on the detailed estimation of 

construction duration (Ng et al, 2001). These scheduling techniques usually 

require detailed analysis of all activities to complete the project. Planner should 

identify the completion times of each activity and their sequencing. However, 

this is possible mostly when the detailed design information and specifications 

are available. Planner may also use alternative techniques to estimate the 

duration of construction with limited data available at the early stages. 

Nevertheless, this is a subjective method and the reliability of the estimation 

depends on the estimator’s individual experience on similar projects and 

judgment to interpret the new project. In order to minimize this subjectivity, 

there is a need to develop a systematic and quantitative methodology for 

estimation of duration at the early stages of the project. 

 

Conceptual duration estimate can be defined as the forecast of construction 

project’s duration based only on general information available at the early stages 

of the project. In conceptual estimates, methodologies are usually developed 

with historical information. Historical information may include basic elements of 

the projects defined as parameters. Then, methodology developed to forecast the 

construction duration becomes parametric method. The parametric method uses 

project characteristics to form a model to forecast project duration. The model is 

developed by establishing relationships between the parameters and the project 

duration. Several methods can be used to develop the model such as artificial 

neural network (ANN) and linear regression. The model may be simple with 

having only one parameter, or it may be complex with multiple parameters. 

 

The importance of the construction duration estimation, shortcomings of the 

current practices relating to conceptual construction duration estimation, the 

desire to develop inexpensive, quick and reasonably accurate estimation 

methodology and the limited research in the area of conceptual duration 

estimation are the main motivations of this study. 
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1.2 OBJECTIVES 

 

A detailed estimate based on material quantities can not be made at the early 

stages of the construction project, because detailed design information and 

specifications are not available during the early phases. Alternative 

methodologies are required to estimate the duration of the project during these 

early phases. 

 

The main objective of this study is to develop and compare reasonably accurate 

and practical methodologies for conceptual duration estimation of building 

projects. Based on the main objective, the following sub-objectives are 

identified: 

 

• To develop a parametric model for conceptual cost estimation since cost 

estimates are also required in the assessment of prediction performances 

of the time-cost models. 

 

• To test the time-cost model proposed by Bromilow (1974). 

 

• To develop time-cost models (models where cost is used to estimate the 

duration of the projects). 

 

• To develop parametric models for conceptual duration estimation. 

 

• To compare all the models developed in terms of their predictive 

abilities. 

 

 

1.3 SCOPE 

 

The scope of this research is limited to the development and comparison of 

parametric estimating models for conceptual duration estimation of building 
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construction projects. The data used in the model developments and validations 

are based on the historical project data collected from the 17 continuing care 

retirement community (CCRC) projects. All these 17 CCRC building projects 

are constructed by the same contractor in the United States. Regression analysis 

and artificial neural networks are used to develop the parametric duration 

estimation models by establishing the relationships between the building 

parameters and the building duration. 

  

 

1.4 RESEARCH ORGANIZATION 

 

This study is organized into five chapters: 

 

• Chapter I - Introduction - This chapter includes the importance of the 

subject, applications in the current practice, brief overview of the 

conceptual estimates, objectives and scope of the study. 

 

• Chapter II – Literature Review – This chapter presents the research 

background. It focuses on the factors affecting construction project 

duration, time-cost models and other parametric models for construction 

duration estimations. 

 

• Chapter III – Methodology – This chapter presents the data used in this 

study. Brief information about the analysis techniques and parametric 

model development are also presented.  

 

• Chapter IV – Data Analysis and Results – This chapter focuses on the 

data analysis performed in this study. The developments and the 

determination of prediction performances of the estimation models are 

clearly presented. 
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• Chapter V – Conclusions and Recommendations – A summary, 

conclusions and recommendations are discussed in this chapter.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

Construction duration is considered to be one of the most important criteria for 

construction project’s success along with the cost and quality. Therefore, several 

studies have been made related to construction project duration. However, few 

studies focused on formulating construction duration predictive models at the 

early stages of the construction projects. Previous studies related to identification 

of important factors influencing construction duration are summarized in this 

literature review.  

 

 

2.1  TIME-COST MODELS 

 

Bromilow (1974) modeled the relationship between duration and cost of building 

projects in Australia, and formulated this relationship in the form: 

  

T=KC
B

   [2.1] 

 

where; 

 

T = duration of construction period from possession of site to practical 

completion measured in working days; 

 

C = final cost in millions of Australian Dollar (AD) adjusted to a cost index; 

 



 7 

K = a constant describing the general level of duration performance for a million 

of AD project; and 

 

B = a constant describing how the duration performance is affected by project 

size as measured by value. 

 

329 building projects which were constructed in Australia during the period 

between June 1964 and June 1967 were analyzed. K was found to have a value 

of 350 working days and B had a value of 0,30.  

 

Bromilow et al. (1980) re-studied the relationship between the cost and duration 

of building projects in order to determine whether equation 2.1 holds or not. This 

time 408 building projects completed between 1970 and 1976 in Australia were 

analyzed. The results showed that the relationship established by equation 2.1 

still holds. 

 

Several authors used Bromilow’s time-cost (BTC) model and validated the 

relationship with different sets of data (e.g. Chan, 2001). Some authors made 

comparisons with classifying the data into set of factors and analyzing them to 

see the effect of each factor on construction duration (e.g. Kaka and Price, 1991). 

Some of them tried to improve the model by introducing other factors to the 

model or by suggesting an alternative function for the proposed equation (e.g. 

Ng et al, 2001). 

 

Albert P.C. Chan (1999) attempted to validate BTC model for the 110 building 

projects in Hong Kong. In order to validate the BTC model by regression 

analysis, equation 2.1 is rewritten in the natural logarithmic form as: 

 

lnT = lnK + B lnC  [2.2] 

 

Regression results and constants found are shown in Table 2.1. 
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Table 2.1   Regression results of BTC model (Chan, 1999) 

  

  

All 
Projects 

Public 
Projects 

Private 
Projects 

ln K 2,182 2,221 2,078 

K 152,082 166,257 119,569 

B 0,292 0,281 0,337 

R 0,922 0,954 0,854 

R
2
 0,850 0,911 0,729 

Adjusted R
2
 0,846 0,906 0,715 

 

 

 

According to the regression analysis results shown in Table 2.1, relationship 

between time and cost can be expressed by the following equations for all 

building projects, for public projects and for private projects in Hong Kong: 

 

All building projects: 

Tall = 152C
0.29  [2.3] 

 

Public projects: 

Tpublic = 166C
0.28   [2.4] 

 

Private projects: 

Tprivate = 120C
0.34  [2.5] 

 

Chan (1999) pointed out that equations 2.3, 2.4 and 2.5 can be used to predict 

construction durations of buildings by project managers and clients. On the other 

hand, Chan (1999) compared publicly funded projects with privately funded 

projects in terms of their construction duration performances. BTC model 

represented by equation 2.1
 
verifies T=K when C=1. Hence, K value gives the 

expected construction duration in days for a project of 1 million Hong Kong 

Dollars when C=1. Chan classified the data for publicly funded projects and 

privately funded projects, and compared them in terms of their expected 
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construction durations for a project of 1 million Hong Kong Dollars. Privately 

funded projects had shorter completion time (120 days) then publicly funded 

projects (166 days). This can be explained by private sector’s more concern on 

time criteria than public sector to start the business and to get returns on their 

investments as mentioned by Kaka and Price (1991). 

 

Albert P.C. Chan (2001) similarly validated BTC model, but this time for 51 

public building projects in Malaysia. Relationship explained by BTC model was 

rewritten as shown in equation 2.2, and the data was analyzed by using simple 

linear regression technique.  

 

 

 

Table 2.2   Regression results of BTC model (Chan, 2001) 

ln K     5,596 

K     269,4 

B     0,315 

R     0,638 

R
2
     0,407 

Adjusted R
2
     0,395 

 

 

 

According to the regression analysis results shown in Table 2.2, the time and 

cost relationship for public building projects in Malaysia may be represented by 

the following equation: 

 

T = 269C
0.32  [2.6] 

 

Chan (2001) suggested the equation 2.6 to be used as an alternative and objective 

method for estimating construction durations of public buildings in Malaysia.  
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Ng et al. (2001) tested the BTC model with a new set of data compiled from 

building projects completed between 1991 and 1998 in Australia. The data was 

partitioned into subgroups according to the client sector, the method of 

contractor selection, the type of project and the type of contractual arrangements. 

Equation 2.2 was given in the form of 

 

y = α0 + α1x   [2.7] 

 

letting y = ln T, x = ln C, α0 = ln K and α1= B to simplify the linear regression 

equation. Results obtained by the regression analysis of the partitioned data are 

shown in Table 2.3. 

 

 

 

Table 2.3   Regression results (Ng, 2001) s: significant, ns: not significant 

    

    

# of 
project 

α1 R R2 R2(adj)  α0 

 All 93 0,3105 0,767 0,588 0,583 ns 

Sector Public 31 0,3276 0,8242 0,679 0,668 ns 
  Private 62 0,3007 0,7346 0,540 0,532 ns 

Contractor 
selection 

Selective 
tender 

59 0,2882 0,714 0,510 0,501 ns 

  Open tender 15 0,3289 0,884 0,782 0,765 ns 
  Negotiation 19 0,3879 0,895 0,800 0,788 ns 

Recreational 9 0,2529 0,792 0,627 0,574 ns Project 
type Industrial 26 0,3617 0,900 0,810 0,802 ns 
 Educational 15 0,4238 0,702 0,493 0,454 ns 
  Residential 11 0,1563 0,486 0,236 0,151 ns 
  Other 32 0,3299 0,849 0,720 0,711 ns 
Contract Lump sum 61 0,3239 0,780 0,609 0,602 ns 

  
Design & 
construct 

16 0,2108 0,676 0,457 0,418 s 

  
  

Construction 
management 

8 0,3607 0,980 0,960 0,954 ns 

  Other 8 0,4333 0,785 0,616 0,561 ns 
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This study revealed that client sector, contractor selection method and type of 

contractual arrangements do not affect construction duration significantly. The 

finding that the client sector does not affect construction duration significantly 

contradicted with the study of Chan (1999) made for buildings in Hong Kong. 

On the other hand, significant differences were found between project types 

(industrial projects vs. educational and residential projects). Two separate 

models, one for industrial projects and one for non-industrial projects were 

analyzed and it was shown that smaller industrial projects take less time to 

complete than the smaller educational and residential projects. Also, functions 

(i.e. C, C
2, √C, 1/C) alternative to Bromilow’s log-log model were tested as 

independent variables (no changes made for dependent variable lnT); however, 

none of them found to be better than lnC as shown in Table 2.4. 

 

 

 

Table 2.4   R2 (adjusted) results (Ng, 2001) 

Independent 
variable 

R2 (adjusted) 

C 0,180 

C
2
 0,064 

√C 0,375 

lnC 0,583 

log10C 0,583 

1/C 0,473 

 

 

 

Ng et al. (2001) also compared the K constants observed in previous studies for 

buildings in Australia. Results of the study indicated improvement in the 

construction speed over the last 40 years. 

  

Similarly, Ogunsemi and Jagboro (2006) tried to formulate a time prediction 

model in the form expressed by equation 2.1 for 87 building projects completed 
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in Nigeria. In order to analyze the data by linear regression, equation 2.1 was 

rewritten in the form of equation 2.2. Summary of regression results for BTC 

model was shown in Table 2.5.  

 

 

 

Table 2.5  Regression results of BTC model (Ogunsemi and Jagboro, 2006) 

Parameters All Projects Public Private 

lnK 4,138 4,001 4,230 

K 63 55 69 

B 0,262 0,255 0,312 

R 0,453 0,443 0,567 

R2 0,205 0,196 0,322 

R2 (adjusted) 0,193 0,177 0,293 

 

 

 

According to results shown in Table 2.5, construction duration prediction models 

for all projects, public projects and private projects in Nigeria can be written as 

follows: 

 

All projects: 

T = 63C
0.262 [2.8] 

 

Public projects: 

T = 55C
0.255   [2.9] 

 

Private projects: 

T = 69C
0.312  [2.10] 

 

However, Ogunsemi and Jagboro (2006) stated that equations 2.8, 2.9 and 2.10 

can not be used, since coefficient of determination (R2) values of each equation 
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were very low. Hence, it can be concluded that the BTC model was not valid for 

Nigeria. So, Ogunsemi and Jagboro (2006) suggested a piecewise linear model 

with breakpoint (BPT) for the analysis of 87 Nigerian building projects’ data. 

Piecewise linear model with breakpoint was expressed as a type of nonlinear 

model which is linearized by introducing a breakpoint between two linear 

models. As an example; a simple model consisting of two variables was given by 

 

T = a0 + a1C (C ≤ BPT) + a2C (C > BPT)                                                       [2.11] 

 

where (C ≤ BPT) and (C > BPT) denote logical conditions that evaluate to 0 if 

false, and 1 if true. This implies that the model becomes 

 

T = a0 + a1C if (C ≤ BPT)  [2.12] 

 

or 

 

T = a0 + a2C if (C > BPT)                                                                            [2.13] 

 

Analysis of data revealed that piecewise model with a breakpoint can be used to 

explain the relationship with a high predictive ability. R2 values of 0.7656, 

0.7762 and 0.8306 were found for all projects, public projects and private 

projects respectively. And the resulting models were expressed as follows: 

 

For all projects: 

T = 118.563 + 0.401C (C≤408) or T = 603.427 + 0.610C (C>408)               [2.14] 

 

For public projects: 

T = 98.010 + 0.357C (C≤353) or T = 567.967 + 0.283C (C>353)                 [2.15] 

 

For private projects: 

T = 168.895 + 0.491C (C≤557) or T = 709.66 + 0.884C (C>557)                 [2.16] 
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Ogunsemi and Jagboro (2006) believed that use of these models will provide an 

alternative assessment for comparison of traditional construction duration 

estimation methods in Nigeria. 

 

Although the time-cost model proposed by Bromilow was accepted as reliable 

and practical by many researchers, it fails to consider factors other than cost 

when establishing the construction duration (Walker, 1995). Reliability of using 

contract cost to predict the construction duration is another problem, since it may 

be considerably different than the actual cost which can only be known after the 

project is finished.  

 

 

2.2  FACTORS AFFECTING CONSTRUCTION DURATION 

 

The construction project duration is a function of many variables. The first 

problem that may be encountered during parametric model development is the 

identification and selection of variables that may be used in forecasting the 

construction durations for building projects. Then, the second problem is the 

determination of the relationships between the variables and the project duration. 

 

Kaka and Price (1991) identified the factors affecting construction durations by 

making use of Bromilow’s time-cost relationship. Firstly, they investigated the 

validity of Bromilow’s time-cost relationship for 661 building projects and 140 

road projects in United Kingdom. Similar empirical relationships were achieved 

for both types. Then, they classified the data according to type of client (public, 

private), type of project (building, civil engineering), type of tender (open 

competition, selected competition, negotiated competition) and form of tender 

(fixed price tender, fixed adjusted tender). Regression analysis was performed to 

see the effects of these factors on the duration. It was concluded that the form of 

tender, type of client and type of project influenced the duration while the type of 

tender has no effect on the duration. Construction durations of projects with 

adjusted price contracts generally took longer than projects with fixed price 
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contracts. This is reasonable since adjusted price contracts were usually chosen 

for projects which are expected to take relatively long time to eliminate the 

inflation risk. On the other hand, construction durations of public buildings were 

shown to be longer than that of private buildings. This can be explained by the 

implications of private clients related to construction time in order to get returns 

on their investments as soon as possible. It was also shown that construction 

durations of building projects took generally longer than that for civil 

engineering projects of similar value. The logic behind this is the involvement of 

high transportation costs of heavy plant and equipment in civil engineering 

projects compared to building projects.  

 

Kumaraswamy and Chan (1995) illustrated the factors affecting construction 

duration (See Figure 1). They stated that illustrated factors are based on the 

general international literature, observed common construction practice, and the 

survey results. These factors include both qualitative and quantitative 

contributors. The construction duration can be regarded as a function of all these 

factors.  
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Figure 2.1  Factors affecting construction project duration (Kumaraswamy 
and Chan, 1995) 
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According to Kumaraswamy and Chan (1995), reliability of construction 

duration estimates depends on the skill and experience of the planning engineer. 

They proposed to formulate and test empirical time-cost models, time-floor area 

models, and time-number of floors models in order to minimize the subjective 

effect of planning engineer on construction duration estimates. They argued that, 

the duration of construction duration can be predicted by putting the significant 

characteristic variables into the proposed models. Firstly, they chose to test 

Bromilow’s time-cost model as a first approximation for predicting duration, 

since the BTC model includes only cost out of the factors listed in Figure 1. BTC 

model was found significant within the each category of 111 projects’ data 

completed in Hong Kong. Then, they proposed that gross floor area (GFA) can 

be replaced with the cost (C) in BTC model which is explained by equation 2.1. 

GFA was hypothesized to be the principal contributor to the building cost. The 

new model which is described as: 

 

T=LA
M

  [2.17] 

 

where; 

 

A = GFA in m2  

 

L, M = The coefficients corresponding to the constants K and B in the equation 

2.1 

 

was found to be more fundamental and GFA was confirmed to be a significant 

quantitative factor affecting construction duration. 

 

In the second phase of the study Kumaraswamy and Chan (1995) investigated 

the relationship between the duration and the number of floors of a building. 

This time the following model was proposed: 

 

T=FS
G 

  [2.18] 
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where; 

 

S = the number of floors of a building with one single block only 

 

F, G = the coefficients corresponding to the constants K and B in the equation 

2.1.  

 

Number of floors was found to be useful, however, it was confirmed that number 

of floors was not as significant as cost and GFA for construction duration. 

Therefore, the model  

 

T=KC
B

A
M

   [2.19] 

 

was derived to develop an equation relating the construction cost and GFA of a 

building with the construction duration by multiple regression method. The 

model represented by equation 2.19 was tested and confirmed to be significant. 

The authors claimed that use of all three models explained by the equations 2.17, 

2.18 and 2.19 is possible. However, use of model including both the construction 

cost and the floor area (eqn. 2.19) appeared to be better when the variables are 

known at the feasibility stage. In addition to the three project macro variables 

considered (construction cost, GFA and number of floors), Kumaraswamy and 

Chan (1995) found out that the micro factors that affect productivity (plant 

utilization level and the efficiency of site laborers) also influences the 

construction duration significantly. The investigation through a case study on 

construction site of a new building demonstrated that productivity is a significant 

parameter influencing the construction duration. “The case study included field 

investigations into 

 

(1) Plant utilization levels such as tower cranes and truckmixers; 

 

(2) A comparison of the average productivity of different concrete placing 

methods such as pump and crane and skip; 
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(3) The activity analysis profiles of construction workers such as formwork 

riggers, steel bar benders, steel-fixers and concreters on site”. 

 

The field study revealed that such factors relating to productivity affect 

construction durations significantly. Kumaraswamy and Chan (1995) ended up 

their study noting that factors such as project complexity, quality level required, 

management style, overall organizational structure of project team, 

communications between parties and type of contract should also be taken into 

account, since they also influence the construction durations.
 

 

 

2.3  OTHER PARAMETRIC MODELS  

 

Some authors suggested new approaches to identify factors influencing duration 

and to formulate construction duration predictive models alternative to time-cost 

models reviewed previously. Multiple linear regression (MLR) technique was 

applied generally (e.g. Nkado, 1992; Kumaraswamy and Chan, 1999). Bhokha 

and Ogunlana (1999) used artificial neural network (ANN) to forecast 

construction duration of buildings.  

 

Nkado (1992) has shown that by using multiple linear regression analysis, 

durations of activity groups including substructure, superstructure, cladding, 

finishes, services and their sequential start-start lag times can be predicted from 

12 variables:  

 

(1) End use (function) of project (office, retail, other). 

 

(2) Type of structural frame (concrete, steel, other). 

 

(3) Location (London, elsewhere). 
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(4) Accessibility to site (poor, not poor). 

 

(5) Type of cladding (prefabricated panels, curtain wall, brick). 

 

(6) Is atrium featured? (yes, no) 

 

(7) Intensity of services (low, medium, heavy) 

 

(8) Number of floors excluding basement floor. 

 

(9) Height from ground to eaves levels (m). 

 

(10) Area of ground floor (m2). 

 

(11) Gross floor area (GFA) (m2). 

 

(12) Approximate volume of excavation (m3). 

 

Work content of activity groups can be summarized as follows: 

 

• Substructure: All activities necessary to complete the ground works up to 

and including the ground floor slab, foundations, underslab drainage, 

basement, etc. 

 

• Superstructure: All activities necessary to erect the load-bearing frame, 

including structural roof members. 

 

• Cladding: All activities necessary to render the building watertight and 

weathertight, including external walls, roofing, windows and external 

doors. 
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• Finishes: All activities necessary to decorate the works including internal 

non-loadbearing partitions. 

 

• Services: All activities necessary to erect the mechanical and electrical 

work including plumbing. 

 

The data of 29 privately funded commercial building projects were used in the 

study. The results of regression analysis for the five activity groups and four 

sequential lag times were summarized in Table 2.6. 

 

 

 

Table 2.6   Summary of regression analysis (Nkado, 1992) 

Work package R2  R2 (Adj.) Mean Standard 
error 

SUBSTRUCTURE 0,92 0,9 23,8 3,4 

SUPERSRTUCTURE 0,79 0,77 25,7 8,1 

CLADDING 0,87 0,83 28,5 5,1 

FINISHES 0,77 0,67 39,5 12,2 

SERVICES 0,86 0,81 38,7 8,5 

        Lag times 
        

B 0,74 0,72 11,6 4,8 

C 0,77 0,7 8,5 4,1 

D 0,84 0,78 4,8 4,8 

E 0,87 0,84 2,0 2,4 

 

 

 

Out of 45 variables which were entered into the regression equations, 29 

variables appeared in the accepted equations. Based on the frequencies of 

occurrence in the regression analysis, the eight most prominent and possibly 

most important variables for estimating construction times were the gross floor 

area, height, type of cladding, number of floors, location, predominant frame 
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(steel or concrete), storey-height and approximate volume of building. Accuracy 

of the model was tested by comparing the model’s predictions with estimates 

produced by nine construction planners for three office building projects which 

were not used in developing the model. Nkado (1992) suggested the model can 

be used for estimating construction durations and producing outline construction 

plan of buildings in the early design stages, as the models provided reasonably 

accurate results.  

 

After the two phased study (1995) which aimed to find the significant factors 

contributing to construction duration, Kumaraswamy and Chan (1999) developed 

construction duration prediction model in the fourth phase of their study. The 

data for 56 standard ‘Harmony’ type domestic blocks in Hong Kong were used 

for analysis. ‘Harmony’ type block is an average quality public housing block 

ranging from 30 to 40 storeys and containing about 16 residential units on each 

floor. Kumaraswamy and Chan (1999) separated the primary work packages in 

the building process. The primary work packages were classified as site set-up, 

piling, pile caps/raft, superstructure, electrical & mechanical services, finishes 

and external works, similarly as they were classified in a study conducted by 

Nkado (1992). Pile caps/raft was described as the “activities necessary to 

construct either the pile caps in the case of pile foundations or the raft 

foundation, including the ground floor slab”. Although site set-up and external 

works were classified as primary work packages, durations for them were not 

included in the analysis since they were not critical in determining the overall 

construction duration. 94 variables entered into the regression model. 84 of them 

were identified through questionnaire survey, and the remaining 10 were derived 

by authors to be used in regression analysis. The results of regression analysis 

for the durations of work packages, their sequential lag times, and the estimated 

overall construction duration stipulated in the contract were summarized in Table 

2.7.  
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Table 2.7  Summary of regression analysis results (Kumaraswamy and 

Chan, 1999) 

Work package R2  R2 (Adj.) 
Mean 

(months) 

Standard 
deviation 
(months) 

PILING 0,8935 0,8612 4,97 0,93 

PILE CAPS/RAFT 0,7576 0,7155 3,83 0,87 

SUPERSTRUCTURE 0,8453 0,8354 17,40 2,65 

SERVICES 0,7990 0,7522 23,63 3,44 

FINISHES 0,8038 0,7788 18,93 2,82 

LAG2 0,9043 0,8892 4,76 0,88 

LAG3 0,8936 0,8777 3,78 0,96 

LAG4 0,7571 0,7307 1,64 2,01 

LAG5 0,8652 0,8479 4,36 1,68 

ESTIMATED TIME 0,8731 0,8572 33,21 2,93 

 

 

 

According to frequencies of occurrence in the regression models, the seven most 

significant variables in forecasting construction duration were found as: 

 

(1) Area of external cladding 

 

(2) Height of building 

 

(3) Ratio of total GFA to the number of storeys 

 

(4) Type of foundations 

 

(5) Information flows between architect/engineer and contractor 

 

(6) Presence/absence of precast façades 
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(7) Type of scheme (rental/purchase) 

 

Reliability of the model was tested for the data of nine similar public housing 

projects which were not included in the derivation of the model, since they were 

still under construction. Although high percentage error values were obtained for 

durations of 5 work packages and 4 lag times, overall durations were predicted 

with ±7% accuracy compared to planners’ estimates. 

  

Then, Albert P.C. Chan and Daniel W.M. Chan (2004) focused on a prediction 

model for actual overall construction duration (direct construction duration 

prediction, i.e. work packages and their lag times was not taken into account) by 

applying MLR analysis with the same data of 56 standard ‘Harmony’ type 

residential buildings in Hong Kong. A stepwise selection method with a 

significance level of 5% was used to select statistically significant variables to be 

incorporated into the model. Data variables were added and deleted one at a time 

and, the regression model was re-run, noting at each step the changes in the 

coefficient of determination (R2) value and in essence the significance level of 

variables. Only those variables with a significance level (p-value) of less than 

5% were retained for inclusion in the final regression model equations. The final 

equation for actual overall construction duration of 56 standard ‘Harmony’ type 

public building with a coefficient of variation (R2) value 0,7769 was found to be:  

 

loge ACT-TIME = 3,0264 + 0,1236 log ACT-COST + TYPESCH ( - 0.0544 for 

purchase; 0 for rental) + FAÇADE (0 for with facades; 0,0666 for without 

facades) + 1,3E-06 VOLTOTAL – 0,0003 GFA/NOSTOREY [2.20] 

 

with five critical variables which were: 

 

(1) actual total construction cost in HK$M 

 

(2) type of housing scheme (rental or purchase) 
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(3) presence or absence of precast facades 

 

(4) total volume of building in m3 

 

(5) the ratio of GFA in m2 to number of floors.  

 

The validity of the model was tested by comparing the actual values with 

predicted values. Mean absolute percentage error (MAPE) method was used to 

test the reliability of the model. MAPE was defined as: 

 

MAPE = ∑
=

−n

i i

ii

n 1 duration) (actual

duration) actual(duration) (predicted1
×100                      [2.21] 

 

 

The MAPE value of 3.97% confirmed the reliability of the model. Thus, Chan 

and Chan (2004) suggested the model for predicting the overall construction 

durations of similar projects. 

 

More recently, Love et al. (2005) proposed a new model using multiple 

regression technique of weighted least squares for 126 projects including 

building projects, factories, warehouses, and airports completed in Australia. 

Four different project types were used in this study. These were: 

 

(1) New build 

 

(2) Refurbishment/renovation 

 

(3) Fit out  

 

(4) New build/refurbishment 
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The new model which generated to forecast construction duration of projects was 

in the following form: 

 

log(T) = 3.178 + 0.274 log(GFA) + 0.142 log(Floor)                                    [2.22] 

 

GFA and number of floors were suggested as the factors influencing construction 

duration. Love et al. (2006) stated that “In practice, the GFA and number of floor 

levels are known before a project commences. Therefore, project managers, cost 

planners, estimators, and the like can use this model to predict project time 

before a project commences so that they can better plan their projects and so that 

clients can arrange their funding requirements”. On the other hand, cost was 

indicated to be poor predictor for construction duration since it could not be 

known before the project is completed. However, Love et al. (2006) suggested 

use of traditional BTC model as well for comparison with equation 2.22’s 

prediction to obtain a more reasonable judgment. 

 

Apart from the studies which were mainly based on regression techniques, 

Bhokha and Ogunlana (1999) proposed use of ANN to forecast the construction 

duration of buildings at the predesign stage. In a study conducted by Bhokha and 

Ogunlana (1999), buildings which were higher than 23 m and with a functional 

area not less than 10000 m2 were taken into consideration. The data of 136 

building projects which were constructed in Greater Bangkok were used. The 

samples were divided into two parts for training and testing. Eleven independent 

variables were used as inputs. The eleven inputs which were selected to be used 

in ANN model were: 

 

(1) building function (two nodes) 

 

(2) structural system (two nodes) 

 

(3) functional area (one node) 
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(4) height index (one node) 

 

(5) complexity of foundation works (one node) 

 

(6) exterior finishing (two nodes) 

 

(7) decorating quality (one node) 

 

(8) site accessibility (one node). 

 

Out of these 11 variables, only the functional area was a real-value variable. The 

remaining ten were binary. For example, the two nodes for building function 

could have the values (1, 0) for residential construction; (0, 1) for an office; (1, 

1) for a building with dual functions; and (0, 0) for other buildings. Variables 

and building features were shown in Table 2.8. 

 

Although it was stated by the authors that there was no exact rule for 

determining the optimum number of hidden nodes, six hidden nodes were found 

to be the most satisfactory number for the network by trial-and-error. The output 

variable of the neural network was construction duration as intended. Validation 

of the model using the 68 test samples verified that results obtained by the final 

network for duration forecasting are satisfactory with an average error of 18,2%. 

On the other hand, average error for the 136 projects was 13,6%.  
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Table 2.8  Inputs and building features (Bhokha and Ogunlana, 1999)  

Description  Input node Building feature 

  Residence only 

1 Office only 

2 Dual (residence+office) 
Building function 

 Others 

Cast-in-place RC 

RC frame + PC slab 
Structural system 
  
  

3 
4 
 Others 

Functional area (×106 m2) 5   

# of floor >25 Height index 
  

6 
# of floor ≤25 

Complex Foundation index 
  

7 
Simple 

Brick/cement block 

Curtain wall/glass 
Exterior finishing (walls) 
  
  

8 
9 
 Others 

Excellent  Decorating quality  
  

10 
Normal 

Difficult  Accessibility to site 
  

11 
Easy 
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Literature review revealed that although several studies have focused on 

determination of construction durations for building projects, only a few of them 

concentrated on the estimation of construction durations at the early design 

stages of the project. The time-cost model proposed by Bromilow (1974) formed 

a basis for many studies conducted in different parts of world. It enabled many 

authors to identify important factors affecting construction duration and to 

estimate construction duration from cost. The model may be practical and easy, 

since it only uses contract final sum in determining the duration. However, 

reliable estimation of cost is required if this model is to be used at the predesign 

stage. The other studies conducted for estimation of construction durations in the 

early stages made use of MLR and ANN as summarized. Understanding of these 

techniques contributed to the development of the models and comparison of 

results of this study.  
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 DESCRIPTION OF THE DATA 

 

Development of parametric duration estimation models depends on the 

availability of the historical data. Data of building characteristics and the 

associated durations must be collected and analyzed to identify the significant 

variables influencing construction duration and to establish the relationship for 

parametric model development. 

 

The historical project data used in this study consists of 17 building projects 

constructed by a contractor in the United States. The project data is collected 

from continuing care retirement community (CCRC) projects built in 14 

different states from 1975 to 1995. A CCRC can be defined as an establishment 

which provides housing and health care services to people of retirement age. A 

CCRC generally includes residential, health center and commons buildings. 

Some CCRCs may also have structured parking (Sonmez, 2004). 

 

In this study, adjusted cost data is used. Variability in the project cost due to the 

location differences and the time differences are quantified with city cost index 

and historical cost index, respectively (Waier et al. 1996). Reliability of using 

these detailed cost data is ensured since the detailed cost data used in the 

contracts were very close to the actual costs. On the other hand, data of actual 

durations are used in this study. Table 3.1 lists the projects and the actual 

durations of the projects.  
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Table 3.1 Projects and durations 

NO PROJECT 
NAME 

DURATION 
(in months) 

1 Project 1 21 

2 Project 2 12 

3 Project 3 16 

4 Project 4 14 

5 Project 5 13 

6 Project 6 16 

7 Project 7 14 

8 Project 8 16 

9 Project 9 18 

10 Project 10 10 

11 Project 11 18 

12 Project 12 20 

13 Project 13 17 

14 Project 14 17 

15 Project 15 16 

16 Project 16 20 

17 Project 17 14 
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The other project characteristics data that will be used for data analysis are as 

follows: 

 

1) Total building area (Area) 

 

2) Number of floors (NoF) 

 

3) Area per unit (Area/unit) 

 

4) Combined percent area of commons and health center (Per(C+H)) 

 

5) Percent area of structured parking (Per(P)) 

 

6) Type of structural frame of the building (steel (St), masonry (Mas), 

reinforced concrete (RC), precast (Pre), wood (W)) 

 

Total building area is obtained by adding the building areas of residential, health 

center, commons and structured parking facilities. The area per unit is calculated 

by dividing the total building area by the total numbers of all residential units 

including studios, one-bedroom, two-bedroom and three-bedroom apartment 

units. The combined percent area of commons and health center is determined by 

dividing the sum of commons and health center area by the total building area. 

Similarly, percent area of structured parking is determined by dividing the 

structured parking area by the total building area. The values of the variables are 

tabulated in Table 3.2. For the types of structural frames, the “1” means that type 

of structural method is used. All these variables that will be used in developing 

the parametric estimation models and their abbreviations are shown in Table 3.3. 
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Table 3.3 Variables and their abbreviations 

Variable Abbreviation 

Total building area Area 

Number of floors NoF 

Area per unit Area/Unit 

Combined percent area of commons and health 
center 

Per(C+H) 

Percent area of structured parking Per(P) 

Steel  St 

Masonry Mas 

Reinforced Concrete RC 

Precast Pre 

Wood W 

 

 

 

 

3.2 DESCRIPTION OF ANALYSIS TECHNIQUES 

 

In this study, the techniques of regression analysis and artificial neural networks 

are used to develop parametric estimation models. Regression analyses are 

performed utilizing the Microsoft Office Excel 2003. Artificial neural network 

models are developed by using BrainMaker Professional 3.10. 

 

 

3.2.1 Regression Analysis 

 

Regression Analysis is a statistical tool for investigating the functional 

relationship between a dependent variable and one or more independent 
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variables. Different types of regression models can be developed including a 

simple linear, a multiple linear or a nonlinear polynomial regression. The basic 

formulation for multiple regression analysis is: 

 

Y = α0 + α1 X1 + ……. + αn Xn  [3.1] 

 

where: 

 

Y = dependent variable 

α0 = constant 

α1 = partial regression coefficient for X1  

X1 = independent variable 1 

αn = partial regression coefficient for Xn  

Xn = independent variable n 

n = number of variable 

 

The partial regression coefficient (α) measures the amount of change in the 

dependent variable for one unit change in the independent variable. All the 

partial regression coefficient values is determined by the method of least squares 

which ensures that the selection of the coefficients in the resulting model 

produces the smallest sum of squared differences between the actual and 

modeled values of the dependent variable. 

 

The overall objectives of regression analysis can be summarized as follows: 

 

1) To determine whether a relationship exists between the variables or not 

 

2) To describe the relationship in terms of a mathematical equation 

 

3) To evaluate the accuracy of prediction achieved by the regression 

equation 
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4) To evaluate the relative importance of independent variables in terms of 

their contribution to variation in the dependent variable 

 

 

3.2.2 Artificial Neural Networks  

 

Artificial neural network (ANN) is a branch of artificial intelligence in which the 

main structure is based on the biological nervous system. It can exhibit a 

surprising number of the human brain’s characteristics. For example, it can learn 

from experience and generalize from previous examples to new problems. ANN 

can provide meaningful answers even when the data to be processed include 

errors or are incomplete, and can process information extremely rapidly when 

applied to solve real world problems (Smith, 1993). 

 

ANN consists of many computational elements called nodes. The nodes are 

arranged in layers. A typical network arrangement consists of an input layer, an 

output layer and a hidden layer or a number of hidden layers. An ANN with 

three layers is shown in Figure 3.1.  

 

ANN can be prepared by following five basic steps: 

 

1) Defining the problem by deciding what information to use and what the 

network will do 

 

2) Architecture determination 

 

3) Learning process determination 

 

4) Training the network 

 

5) Testing the trained network 
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Figure 3.1   An artificial neural network with three layers 

 

 

 

Input nodes receive the values of the input variables which then propagate 

through the network layer by layer. During training, the input layer broadcast a 

pattern to all the hidden nodes. The system is then asked to calculate an output 

value in a feed-forward way. The hidden nodes broadcast their results to all 

output nodes. Each output node then calculates a weighted sum and passes it to 

the output node to generate a result. The result is compared with the target value, 

which the trainer has established at the beginning of a training session. The 

difference yields the system output error. At this stage the system has to decide 

whether further learning is required or not. This is achieved by comparing the 

obtained total difference with a specified acceptable error given by the system 

developer. If the decision is to continue, the output nodes calculate the 

derivatives of the error with respect to the weights and the result is sent back 

Nodes 

Connection weights 

Connection wires 
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through the system to all the hidden nodes. Each hidden node calculates the 

weighted sum of the error. Then, each hidden-layer node and output-layer node 

change their weights to compensate for the corrections. Once the weights have 

been changed, the feed-forward computation starts again. New output values are 

obtained and the cycle continues until a desired result is obtained. At this stage 

training of the system is complete and the testing phase can start. The system can 

be used to predict the outcome of an input not previously seen by the ANN 

(Boussabaine, 1996). 

 

 

3.2.3   BrainMaker Professional Basics 

 

BrainMaker Professional 3.10 is used to develop neural network models. 

BrainMaker reads three kinds of neural network files. These are definition files, 

fact files and network files.  

 

A definition file describes everything about the network to BrainMaker, such as 

the number of neurons (nodes) in each layer and the type of data being used. 

BrainMaker uses the definition file to create the neural network. The default 

extension for the definition file is .Def.  

 

A fact file gets the data into BrainMaker. There are fact files for training, testing 

and running. The default extension for the training fact file is .Fct, for testing it is 

.Tst, and for running it is .In. 

 

A network file is created by BrainMaker during training using the data in the 

training fact file and the instructions in the definition file. The network file 

contains the actual connection information as well as training parameter 

information. The default extension for a network file is .Net.  

 

NetMaker, which is included in the BrainMaker Professional 3.10 software, can 

create the BrainMaker files. However, NetMaker is not a word processor or 
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spreadsheet. So, data file should be prepared with another program such as 

Lotus, Excel, or an ASCII editor. Then, NetMaker can read the data file and 

create BrainMaker files.  

 

The data should be arranged as rows and columns of numbers or symbols. The 

first row should be words representing the column headings. Each column is a 

separate category of input and output information. Columns for reference use, 

such as the date of the fact or the case number of the fact, can also be included. 

Reference columns are labeled annotations in NetMaker. Annotations may be 

displayed in BrainMaker along with each fact, and written to output files. They 

are very useful in keeping track of the data during all phases of design. Each row 

in the data file should contain one fact and every fact should contain a value in 

every column. There is no such thing as a null value in neural networks 

(BrainMaker Professional User’s Guide and Referance Manual, 1993).  

  

 

3.3 DEVELOPMENT OF PARAMETRIC MODELS 

 

Parametric method in conceptual duration estimation involves the identification 

of the significant building parameters and development of the parametric model. 

Parametric model defines a dependent variable as a function of one or more 

independent variables. It can be used to understand the relative importance of the 

parameters included in the model. Since the model is developed with relevant 

historical project data, the success of the model depends on the ability of the 

model to establish appropriate relationship between the independent and 

dependent variables. In this way, the parametric model developed can also be 

used to estimate the duration of a future project. 

 

In this study, five duration estimation models and a cost model will be 

developed. Three of models will be developed with the historical cost, and 

duration data shown in Table 3.1. The other two duration estimation models will 

be developed by analyzing the duration data and data of other project 
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characteristics shown in Table 3.2. Since the construction costs of building 

projects can not be known at the early stages, duration estimation models 

developed with the historical cost data can not be used for estimating the 

duration of a new project. Therefore, a parametric cost estimation model will be 

developed with the available data. Cost estimates obtained from this model will 

also be used in determination of the prediction performances of time-cost 

models. The six models developed, the data used and the analysis technique 

utilized in the development of these models are summarized in Table 3.4 as 

follows: 

 

 

 

Table 3.4   Models Developed 

MODEL 
NAME 

HISTORICAL DATA  ANALYSIS TECHNIQUE 

COST 
MODEL 

cost data – project 
characteristics data (Table 
3.2) 

Multiple Linear Regression 

MODEL 1 
duration data (Table 3.1) - 
cost data  

Simple Linear Regression 

MODEL 2 
duration data (Table 3.1) - 
cost data  

Simple Linear Regression 

MODEL 3 
duration data (Table 3.1) - 
cost data  

Artificial Neural Network 

MODEL 4 
duration data (Table 3.1) - 
project characteristics data 
(Table 3.2) 

Multiple Linear Regression 

MODEL 5 
duration data (Table 3.1) - 
project characteristics data 
(Table 3.2) 

Artificial Neural Network 
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While “model 1”, “model 2” will be developed by simple linear regression 

analysis,  “model 3” will be developed by artificial neural network technique 

with only cost parameter having been used to estimate the construction duration 

of building projects. For “cost model”, “model 4” and “model 5” which have 

multiple variables, parsimonious models will be developed to determine the best 

relationship between the dependent variable and the most significant variables. A 

parsimonious model can be defined as a model that fits the data adequately 

without using any unnecessary parameters (Sonmez, 2004). All of the 

independent variables will be considered at first and a backward elimination 

procedure will be used to select and eliminate the insignificant variables one at a 

time. In regression models (cost model and model 4), elimination of insignificant 

variables will be established by using the significance level (P-value) and 

coefficient of determination (R2). The P-value indicates the significance of the 

variables included in the model.  The R2 indicates how much variation in the 

dependent variable is explained by a group of independent variables. In neural 

network models, insignificant variables will be eliminated by sensitivity analysis. 

This analysis determines the sensitivities of each input parameter with output 

results observed by varying each parameter incrementally while holding the 

values of remaining parameters constant.  

 

 

3.4   PREDICTION PERFORMANCE TEST 

 

Prediction performance test will be conducted by calculating the mean absolute 

percentage error (MAPE) method and prediction performances will be compared 

for “cost model”, “model 1”, model 2”, “model 3”, “model 4” and “model 5”. 

Cross-validation technique will be used to assess the prediction performances of 

the models. The procedure can be summarized as follows: 

 

1) The data of 17 CCRC projects will be divided into five groups. The first 

three groups will consist of three project data and the remaining two 

groups will consist of four project data. The projects in the groups will be 
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selected randomly but they will not be changed in the prediction 

performance calculations of different models for consistency. 

 

2) Data of first group including three projects will be selected as the test 

sample and the regression or neural network model will be developed 

again with the remaining data. 

 

3) The new model will be used to calculate the predictions for the test 

sample which are not used in developing the model. For time-cost 

models, predicted cost values of test sample observed from the cost 

model will be used to predict durations instead of detailed cost values. 

 

4) Steps 2 and 3 will be repeated for the data of second, third, fourth and 

fifth group as well. 

 

5) MAPE will be calculated after predictions for all 17 projects are 

completed. 

  

Test groups explained in “step 1” and the projects involved in these groups are 

shown in Table 3.5.  
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Table 3.5 Test groups and projects involved 

Test Groups Projects 

Project 5 

Project 12 Group 1 

Project 15 

Project 6 

Project 8 Group 2 

Project 11 

Project 14 

Project 16 Group 3 

Project 17 

 Project 1 

Project 3 
Group 4 

Project 4  

 Project 10 

 Project 2 

Project 7 
Group 5 

Project 9 

  Project 13 
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CHAPTER 4 

 

DATA ANALYSIS AND RESULTS 

 

4.1 COST MODEL 

 

As it has been stated previously, construction cost of a project can not be known 

unless the detailed estimation with the quantities is made. However, detailed cost 

estimation may not be possible since the detailed design information and 

specifications may not available at the early stages of the project. On the other 

hand, a quick and reasonably accurate cost estimation model is required in order 

to estimate the construction cost of a new project and use this estimated cost to 

estimate construction duration of the project by using the time-cost models 

developed in this study. Also, use of estimated costs in the determination of 

prediction performances of time-cost models will be proper instead of use of 

detailed costs available, since the duration estimations will be employed with 

cost estimates obtained from this cost model. In view of the fact that developing 

duration estimation models of building projects at the early stages of project is 

the main objective of this study, only this cost estimation model is developed in 

this study. 

 

 

4.1.1   Data Analysis 

 

The technique of multiple regression analysis is employed to determine the 

mathematical function that establishes the relationship between the building 

parameters shown in Table 3.2 and the cost of the building. To measure the 

amount of change in cost for one unit change in the type of structural frame, the 
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“1” values representing the structural frame type of the project is multiplied by 

the total area of the project as shown in Table 4.1.  

 

The form of the first regression model (RM1) including all the variables shown 

in Table 4.1 was as follows: 

 

Y = α0 + α1 X1 + α2 X2 + α3 X3 + α4 X4 + α5 X5 + α6 X6 + α7 X7 + α8 X8 + α9 X9 

+ α10 X10  [4.1] 

 

where             Y  = detailed cost (C) 

  α0 = regression constant 

 α1,2,3,…10 = partial regression coefficient of X1,2,3,…,10 

 X1 = Area 

 X2 = NoF 

 X3 = Area/unit 

 X4 = Per(C+H) 

  X5 = Per(P) 

 X6 = St multiplied by the area 

 X7 = Mas multiplied by the area  

 X8 = RC multiplied by the area  

 X9 = Pre multiplied by the area 

  X10 = W multiplied by the area 

 

As explained in part 3.3, elimination of insignificant variables in regression 

models is established by using the significance level (P-value) and coefficient of 

determination (R2) to achieve parsimonious model. The highest P-value 0,980 

for the regression coefficient corresponding to the Per(C+H) indicated that 

inclusion of Per(C+H) in the RM1 may not be required since it probably does not 

have a significant contribution to the RM1. Therefore, it is dropped from the 

regression model.  
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Since Per(C+H) which has the highest P-value is dropped from the RM1, the 

new regression model (RM2) included nine independent variables. Then, 

analysis of RM2 revealed that coefficient for the Area/unit has the highest P-

value of 0,913. Therefore, the variable Area/unit is dropped from the RM2. The 

application of this procedure has been continued until all the partial coefficients 

corresponding to variables with significance level of higher than 10% are 

dropped from the regression models, one by one at each time. Summary of the 

regression results including R2 values and the highest P-values for partial 

coefficients together with the corresponding variables for each model are shown 

in Table 4.2. It is noted that, decrease in the values of R2 was very small as 

variables dropped. The R2 value of 0,973 for the final regression model indicated 

that the majority of variability in cost is explained by the remaining five 

independent variables. 

 

 

 

Table 4.2   Summary of regression results for cost models 

Model 
Independent variables in the 

regression equation 
R2 

Variable 
corresponding 

to the 
coefficient with 
highest P-value 

P-value of 
the 

coefficient 

RM1 
Area, NoF, Area/unit, 
Per(C+H), Per(P), St, Mas, 
RC, Pre, W 

0,981 Per(C+H) 0,980 

RM2 
Area, NoF, Area/unit, Per(P), 
St, Mas, RC, Pre, W 

0,981 Area/unit 0,913 

RM3 
Area, NoF, Per(P),St, Mas, 
RC, Pre, W 

0,981 Per(P) 0,785 

RM4 
Area, NoF, St, Mas, RC, Pre, 
W 

0,981 Mas 0,177 

RM5 Area, NoF, St, RC, Pre, W 0,977 W 0,235 

RM6 Area, NoF, St, RC, Pre 0,973 Pre 0,085 
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Since the significance level of the partial regression coefficient of variables in 

the equation has been selected to be 10%, only those variables with a P-value of 

less than 10% are retained in the final regression model equation (RM6). The 

independent variables retained in RM6, partial coefficients and the P-values of 

the coefficients corresponding to these variables are demonstrated in Table 4.3. 

 

 

 

Table 4.3   P-values for regression model RM6 

Independent variable Partial coefficients  P-value of the coefficient 

Area 821 0,000 

NoF 921565 0,075 

St 166 0,001 

RC -112 0,030 

Pre -66 0,085 

 

 

 

Regression constant for RM6 is found to be -3014070. Then, the final regression 

equation from which the construction cost can be estimated is written as follows:  

 

C = -3014070 + 821×Area + 921565×NoF + 166×St - 112×RC - 66×Pre      [4.2] 

 

 

4.1.2 Prediction Performance Test  

 

The validity of the final model is assessed in terms of predictive accuracy. That 

is, the predicted cost values are compared with the detailed cost values to verify 

the predictive efficiency of the cost model. Mean absolute percentage error 

(MAPE) is used to assess the forecasting performance of the model. Percentage 

Error (PE) and MAPE for the final cost model are defined as follows: 
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PE = 
cost detailed

cost detailedcost predicted −
× 100                                                        [4.3] 

 

MAPE = ∑
=

17

1 17

PE

i

i

 [4.4]  

 

Steps described in Part 3.4 are followed. The PEs and MAPE are shown in Table 

4.4.  
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Table 4.4 PEs and MAPE for cost model 

Project No PE PE   

1 8,6 8,6 

2 12,8 12,8 

3 0,8 0,8 

4 12,0 12,0 

5 8,9 8,9 

6 -15,1 15,1 

7 19,4 19,4 

8 -18,4 18,4 

9 -2,2 2,2 

10 6,7 6,7 

11 3,4 3,4 

12 -11,1 11,1 

13 -10,1 10,1 

14 5,7 5,7 

15 1,4 1,4 

16 -14,7 14,7 

17 -0,3 0,3 

  MAPE 8,9 
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4.2   MODEL 1 

 

Literature review revealed that the time-cost model proposed by Bromilow 

(1974) is widely used by many researchers with different sets of data. In this part 

of the study, the Bromilow’s time-cost (BTC) model will be used as a basis to 

develop a formulation to estimate construction duration of a project from cost 

and to verify whether such a relationship holds true or not for the data of 17 

CCRC building projects. Formulations discussed in the literature review will be 

written in this part again. 

 

 

4.2.1   Data Analysis 

 

The equation proposed by Bromilow was 

 

T=KC
B

  [4.5] 

 

where; 

 

T = duration of construction period from possession of site to practical 

completion measured in working days; 

 

C = final project value in millions of AD adjusted to a cost index; 

 

K = a constant describing the general level of duration performance for a million 

of AD project; and 

 

B = a constant describing how the duration performance is affected by project 

size as measured by value. 
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A simple linear regression technique is used to analyze the data. The nonlinear 

model represented by equation 4.5 is rewritten in the natural logarithmic form for 

statistical verification of the time cost relationship as: 

 

ln(T) = ln(K) + B ln(C)  [4.6] 

 

By letting Y = ln(T),  X = ln(C), α0 = ln(K) and α1 = B; simple linear regression 

equation is obtained. Cost and duration data is used in the analysis. Firstly, cost 

data is expressed in thousand United States Dollars (USDs). Then, duration data 

is expressed in days by multiplying month values with 30. After that, ln values of 

cost and duration is analyzed as X and Y in the regression equation with 95% 

confidence level. Regression results are summarized in Table 4.5. 

 

 

 

Table 4.5 Regression results of Model 1 

α0 3,0622 

α1 0,3170 

Multiple R 0,77  

R2 0,59  

Adjusted R2 0,56  

 

 

 

 

ln(K) is represented by α0 in the simple linear regression equation. On the other 

hand, the constant B is represented by α1. Significance levels (P-values) 

observed for regression constant (α0) and regression coefficient of ln(C) were 

0,00035 and 0,00031, respectively. Therefore, significance of regression constant 

and independent variable ln(C) is verified and they are included in the final 
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model. Then, it is concluded that the time-cost relationship for the 17 CCRC 

building can be expressed as follows: 

 

T = 21C0,32  [4.7] 

 

 

4.2.2   Prediction Performance Test 

 

To evaluate the performance of duration predictions, steps developed in Part 3.4 

are used. Predicted cost values observed from the cost model are used to predict 

durations of each projects in the test groups. In all of the five new models which 

are developed with the data excluding one test group each time, duration (T) data 

is expressed in terms of days and cost (C) data is expressed in terms of thousands 

USD. Therefore, durations are estimated in terms of days. Then, these estimates 

are divided by 30 to obtain values in months. Percentage Error (PE) for the 

comparison of actual durations and predicted durations is defined as follows: 

 

PE = 
duration actual

duration actualduration predicted −
 [4.8] 

 

MAPE is calculated by the equation 4.4. Actual durations and predicted 

durations are compared in Table 4.6.  
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Table 4.6 Actual duration vs. predicted duration (Model 1) 

Project 
No 

Actual Duration 
(in months) 

Predicted Duration 
(in months) 

PE 

  

1 21 17,3 -17,7 17,7 

2 12 16,0 33,0 33,0 

3 16 14,7 -8,2 8,2 

4 14 14,6 4,4 4,4 

5 13 13,8 6,1 6,1 

6 16 13,8 -13,8 13,8 

7 14 18,5 32,3 32,3 

8 16 11,7 -26,6 26,6 

9 18 16,7 -7,2 7,2 

10 10 11,7 16,9 16,9 

11 18 19,2 6,8 6,8 

12 20 18,0 -10,2 10,2 

13 17 16,6 -2,3 2,3 

14 17 17,4 2,1 2,1 

15 16 16,0 -0,1 0,1 

16 20 18,1 -9,7 9,7 

17 14 17,7 26,6 26,6 

      MAPE 13,2 
 

 

 

 

 

 

 

 

PE
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4.3   MODEL 2 

 

Model 2 is developed in order to establish the linear relationship between the 

cost and duration of building projects by using simple linear regression analysis. 

The cost and duration data of 17 CCRC projects is analyzed and a linear 

regression model is established to predict the construction project duration from 

cost. 

 

 

4.3.1   Data Analysis 

 

In order to determine the model that establishes the relationship between the 

duration and the cost, simple linear regression analysis is employed. Firstly, a 

simple linear equation is written as follows:  

 

Y = α0 + α1 X   [4.9] 

 

Where; 

  

Y  = actual duration (T) 

 

α0 = regression constant 

 

α1 = partial regression coefficient of detailed cost (C) 

 

X  = detailed cost (C) 

 

Regression results obtained by the analysis of cost and duration data are 

summarized in Table 4.7. 
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Table 4.7 Regression results of Model 2 

α0 10,46614 

α1 2,91E-07 

Multiple R 0,74  

R2 0,55  

Adjusted R2 0,52  

 

 

 

Regression analysis results revealed that regression constant (α0) and regression 

coefficient of cost (α1) were significant with P-values 1,66E-06 and 0,00064 for 

α0 and α1, respectively. The resulting linear equation was in the following form: 

 

T = 10,47 + 2,91E-07 C                                                                                  [4.10] 

 

 

4.3.2 Prediction Performance Test 

 

Steps described for prediction performance assessment in Part 3.4 are followed 

again. Five new models similar to equation 4.10 are developed excluding the test 

samples. Then, predicted cost values obtained from the cost model are used in 

the duration models to predict the durations of each project in the test groups. 

Actual durations, predicted durations and prediction performance measures are 

given in Table 4.8. 
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Table 4.8 Actual duration vs. predicted duration (Model 2) 

Project 
No 

Actual Duration 
(in months) 

Predicted Duration 
(in months) 

PE PE   

1 21 17,5 -16,6 16,6 

2 12 15,7 30,5 30,5 

3 16 14,6 -8,8 8,8 

4 14 14,5 3,7 3,7 

5 13 13,9 6,6 6,6 

6 16 13,6 -15,3 15,3 

7 14 18,5 32,3 32,3 

8 16 12,0 -25,2 25,2 

9 18 16,4 -8,9 8,9 

10 10 12,7 26,6 26,6 

11 18 20,2 12,2 12,2 

12 20 18,2 -8,8 8,8 

13 17 16,3 -4,1 4,1 

14 17 17,3 1,7 1,7 

15 16 15,8 -1,1 1,1 

16 20 18,2 -9,2 9,2 

17 14 17,7 26,7 26,7 

      MAPE 14,0 
 

 

 

 

 

 

 

 



 58 

4.4   MODEL 3   

 
 
A neural network with a back-propagation algorithm is utilized to capture the 

relationship between the construction cost and duration of building projects in 

this model.  

 

 

4.4.1   Neural Network Models 

 

Two feed-forward artificial neural networks are developed (Figure 3.1). In the 

neural network models, the input layer consisted of one variable which was 

construction cost. Similarly, the output layer consisted of construction duration. 

Hidden layer included 3 nodes in Model 3a and 6 nodes in Model 3b. Since there 

is no exact rule for determining the optimum number of hidden nodes, 3 (# of 

input variables + # of output variables + 1) and 6 nodes are used to determine the 

number of nodes. 

 

Similar to other time-cost models which are developed by regression analysis, 

the cost and duration data of 17 CCRC projects are used to develop a model with 

artificial neural network technique. The steps are summarized as follows: 

 

1) The data is prepared in Microsoft Excel including the project numbers, 

construction costs and durations of each project. Then, the data 

information is saved as Microsoft Excel Worksheet 3.0 which is 

transferred to the NetMaker. 

 

2) NetMaker is executed and ‘Manipulate Data’ option in NetMaker is 

selected to open the data information saved in Excel 3.0 format. The 

column including the project numbers is labeled as annotation, the 

column including the construction cost data is labeled as input, and the 

column including the duration data is labeled as pattern (output). Then, 
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BrainMaker files including training fact file, testing file and definition 

file are created. 

 

3) By default, NetMaker chooses a number of projects and incorporates the 

data information of them into testing file. Data information of projects 

which are chosen randomly to be used in testing file is not included in the 

training fact file created by NetMaker. However, it is aimed to develop a 

neural network model in which all the cost and duration data of 17 CCRC 

building projects are taken into consideration in this study. Testing of the 

model will be then performed separately through prediction performance 

test. Therefore, training fact file and testing file are opened with 

Microsoft Excel and data information included in the testing file is added 

to training fact file. 

 

4) Definition file is opened in the BrainMaker. Firstly, number of hidden 

nodes is assigned from the ‘Connections’ menu. Then, automatic 

heuristic learn rate is chosen for learning rate tuning at ‘Learning Setup’ 

window in the ‘Parameters’ menu. Default values are used for training 

control flow. Finally, the network is trained by choosing ‘Train Network’ 

from the ‘Operate’ menu.  

 

After the training operation is completed, network model can be used to predict 

the durations from cost. Resulting model can be saved as a network file which is 

created by BrainMaker. Two different network models are developed as 

described. Same procedure is followed in developing the two models. The only 

difference was the number of hidden nodes.  

 

 

4.4.2   Prediction Performance Test 

 

Prediction performance tests are performed with the procedure described in Part 

3.4 for both Model 3a and Model 3b. Cost and duration data regarding the 
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projects involved in each test group is eliminated from training fact file created 

by NetMaker. The eliminated data is added to testing file. As described in step 3 

of part 4.4.1, NetMaker chooses a number of projects and incorporates the data 

information of them into testing file. Since data information of these projects is 

not included in the training fact file, they are added to training fact file again 

manually. After the data information to be included in the training fact file and 

testing file is arranged properly, procedure described in step 4 of Part 4.1.1 is 

performed through BrainMaker. Since there are five test groups, five new test 

models are developed with BrainMaker for each network model 3a and network 

model 3b. BrainMaker can write the predicted durations of all projects in a test 

group as an output file, once the test model is developed. This can be 

accomplished if running facts are read from testing file and the trained network 

is run. However, this method is not utilized to predict durations since detailed 

cost information is included in the testing files. Predicted cost values should be 

used to predict the construction durations. Therefore, predicted cost values 

regarding the projects in each test group are used to predict the durations in new 

models developed for that test groups. Cost values are inputted manually and 

predicted duration values corresponding to these cost values are read from the 

display screen. Slightly smaller MAPE value is obtained for Model 3b as 

comparison made with the MAPE value of Model 3a. So, Model 3b will be used 

as the final neural network model. Prediction performance test results of Model 3 

are shown in Table 4.9.  
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Table 4.9 Actual duration vs. predicted duration (Model 3) 

Project 
No 

Actual Duration 
(in months) 

Predicted Duration 
(in months) 

PE PE  

1 21 17,4 -17,0 17,0 

2 12 16,7 38,8 38,8 

3 16 14,5 -9,5 9,5 

4 14 14,5 3,2 3,2 

5 13 13,9 6,6 6,6 

6 16 13,3 -16,6 16,6 

7 14 18,6 32,7 32,7 

8 16 11,9 -25,6 25,6 

9 18 17,3 -3,6 3,6 

10 10 13,9 39,5 39,5 

11 18 19,3 7,0 7,0 

12 20 18,1 -9,5 9,5 

13 17 17,3 1,6 1,6 

14 17 17,5 3,2 3,2 

15 16 15,9 -0,5 0,5 

16 20 18,3 -8,7 8,7 

17 14 17,9 28,1 28,1 

      MAPE 14,8 
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4.5   MODEL 4 

 

This model is developed to predict the construction duration of building projects 

by using multiple linear regression technique and the parameters (excluding cost) 

that are impacting the duration. 

 

 

4.5.1   Data Analysis 

 

The technique of multiple linear regression analysis is utilized to determine the 

relationship between the building parameters shown in Table 4.1 and the 

construction duration of the building.  

 

The first regression model (RM1) including all the variables shown in Table 4.1 

is described by the following equation: 

 

Y = α0 + α1 X1 + α2 X2 + α3 X3 + α4 X4 + α5 X5 + α6 X6 + α7 X7 + α8 X8 + α9 X9 

+ α10 X10  [4.10] 

 

where;  

 

Y  = actual duration (T) 

 

α0 = regression constant 

 

α1,2,3,…10 = partial regression coefficient of X1,2,3,…,10 

  

X1 = Area 

  

X2 = NoF 
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X3 = Area/unit 

  

X4 = Per(C+H) 

  

X5 = Per(P) 

   

X6 = St multiplied by the area 

  

X7 = Mas multiplied by the area  

  

X8 = RC multiplied by the area  

  

X9 = Pre multiplied by the area 

  

X10 = W multiplied by the area 

 

Equation 4.10 is very similar to equation 4.1 which is formed for the cost model 

described in part 4.1. The only difference is the dependent variable ‘Y’. The 

procedure performed in the data analysis of cost model is followed to develop 

parametric duration estimation model as well. Elimination of insignificant 

variables in regression models is again established by using the significance level 

(P-value) and coefficient of determination (R2) to achieve parsimonious model. 

The relationship between the duration and real value independent variables are 

also determined by correlation coefficient. The equation for the correlation 

coefficient was as follows (x and y are the sample means): 

 

CORREL(X,Y) = 

∑ ∑

∑

= =
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Correlation between duration and Area, NoF, Area/unit, Per(C+H), Per(P) were 

0,67, 0,49, 0,30, 0,12, 0,29, respectively. Regression results and the independent 

variables eliminated from the regression models are summarized in Table 4.10. 

 

 

 

Table 4.10 Summary of regression results for duration models 

Model 
Independent variables in the 

regression equation 
R2 

Variable 
corresponding 

to the 
coefficient with 
highest P-value 

P-value of 
the 

coefficient 

RM1 
Area, NoF, Area/unit, 
Per(C+H), Per(P), St, Mas, 
RC, Pre, W 

0,721 St 0,790 

RM2 
Area, NoF, Area/unit, 
Per(C+H), Per(P), Mas, 
RC, Pre, W 

0,717 Per(C+H) 0,763 

RM3 
Area, NoF, Area/unit, 
Per(P), Mas, RC, Pre, W 

0,713 RC 0,647 

RM4 
Area, NoF, Area/unit, 
Per(P), Mas, Pre, W 

0,705 Area 0,548 

RM5 
NoF, Area/unit, Per(P), 
Mas, Pre, W 

0,692 Pre 0,553 

RM6 
NoF, Area/unit, Per(P), 
Mas, W 

0,681 Per(P) 0,242 

RM7 NoF, Area/unit, Mas, W 0,636 Area/unit 0,359 

 

 

 

Firstly, the independent variable St is eliminated from RM1. Regression model 2 

(RM2) is developed with the remaining nine independent variables including 

Area, NoF, Area/unit, Per(C+H), Per(P), Mas, RC, Pre and W. Then, the 

independent variable Per(C+H) is eliminated from RM2. This elimination of 

independent variables is continued until all the P-values of partial regression 

coefficients corresponding to independent variables included in the regression 
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model were below 10%. The independent variables retained in RM8, regression 

coefficients and the P-values of the coefficients corresponding to these variables 

are demonstrated in Table 4.11. 

 

 

 

Table 4.11 P-values for regression model RM8 

Independent variable Partial coefficients  P-value of the coefficient 

NoF 2,313 0,002 

Mas 9,93E-05 0,039 

W 1,52E-04 0,031 

 

 

 

Regression constant (α0) for RM8 is found to be 4,935. Then, the resulting linear 

equation for estimating construction project duration from independent variables 

NoF, Mas and W is defined as follows: 

 

T = 4,935 + 2,313×NoF + 9,93E-05×Mas + 1,52E-04×W  [4.12] 

 

 

4.5.2 Prediction Performance Test  

 

The validity of the regression model is assessed in terms of predictive accuracy. 

Similarly, prediction performance test is performed with the steps described in 

Part 3.4. Five new models are developed without including the data of NoF, Mas 

and W which were selected in the test sample. Then; values of NoF, Mas and W 

in the test sample are used in the regression models to predict the construction 

durations. The prediction performance test results are shown in Table 4.12.  
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Table 4.12 Actual duration vs. predicted duration (Model 4) 

Project 
No 

Actual Duration 
(in months) 

Predicted Duration 
(in months) 

PE PE   

1 21 18,2 -13,6 13,6 

2 12 14,7 22,4 22,4 

3 16 15,3 -4,1 4,1 

4 14 12,9 -8,1 8,1 

5 13 14,0 7,5 7,5 

6 16 14,1 -12,0 12,0 

7 14 15,1 8,1 8,1 

8 16 14,3 -10,4 10,4 

9 18 14,9 -17,3 17,3 

10 10 13,3 32,8 32,8 

11 18 19,2 6,8 6,8 

12 20 18,5 -7,3 7,3 

13 17 15,2 -10,6 10,6 

14 17 19,5 15,0 15,0 

15 16 14,5 -9,5 9,5 

16 20 24,1 20,7 20,7 

17 14 21,5 53,3 53,3 

      MAPE 15,3 
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4.6   MODEL 5 

 

Neural network models using back-propagation algorithm are utilized to capture 

the relationships between the construction duration and the parameters given in 

Table 3.2. The main advantage of the neural network models is their capability to 

capture the non-linear relations as well as linear relations. Twenty network 

models are developed, and prediction performances of each model are assessed. 

 

 

4.6.1 Neural Network Models 

 

The first two network models are developed by including all of the independent 

variables given by Table 3.2 as inputs. Ten independent variables including 

Area, NoF, Area/unit, Per(C+H), Per(P), St, Mas, RC, Pre, and W are 

represented by ten nodes in the input layer. Construction duration is represented 

by one node in the output layer. Hidden layer included 12 nodes in one model 

(NM1a) and 6 nodes in the other model (NM1b). The numbers of input variables 

used in developing the models are decreased by sensitivity analysis. The number 

of hidden nodes are changed accordingly. There is no exact rule for determining 

the optimum number of hidden nodes. Two different numbers of hidden nodes 

are used for the models developed with same input variables with the purpose of 

comparing prediction performances of each model. The following equations are 

used to determine the number of hidden nodes to be used in the network models: 

 

Number of hidden nodes (a) = number of inputs + number of outputs + 1 [4.13] 

 

Number of hidden nodes (b) = 
( )

2

(a) nodeshidden  ofNumber 
 [4.14] 

 

The results given by equation 4.14 are rounded to the upper value. Number of 

outputs is always ‘1’ since construction duration is the only output in all of the 



 68 

network models. Network models, number of input variables and the number of 

hidden nodes used are listed in Table 4.13. 

 

 

 

 Table 4.13 Number of hidden nodes used in network models 

Number of hidden nodes 
Network Model Number of input 

nodes a b 

NM1 10 12 6 

NM2 9 11 6 

NM3 8 10 5 

NM4 7 9 5 

NM5 6 8 4 

NM6 5 7 4 

NM7 4 6 3 

NM8 3 5 3 

NM9 2 4 2 

NM10 1 3 2 

 

 

 

The procedure performed in developing the first two models (NM1a and NM1b) 

are summarized as follows: 

 

1) The data given by Table 3.2 is listed in a Microsoft Excel file. Then, the 

data information is saved as Microsoft Excel Worksheet 3.0 which is 

recognizable by the NetMaker. 

 

2) NetMaker is opened and ‘Manipulate Data’ option is selected to open the 

data information saved in Excel 3.0 format. The column including the 

project numbers is labeled as annotation, the column including the 

construction duration data is labeled as pattern (output). All the 
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remaining columns including the data information of ten independent 

variables are labeled as input. Then, BrainMaker files including training 

fact file, testing file and definition file are created. 

 

3) Training fact file and testing file are opened with Microsoft Excel and 

data information incorporated into the testing file is added back to the 

training fact file through copy-paste option offered by Microsoft Excel. 

Thus, inclusion of all 17 CCRC projects’ data into the training fact file is 

achieved. 

 

4) Definition file created by NetMaker is opened with BrainMaker after the 

procedures described in the first three steps are performed. With the 

BrainMaker, number of hidden nodes is assigned from the ‘Connections’ 

menu. Then, automatic heuristic learn rate is chosen for at ‘Learning 

Setup’ window in the ‘Parameters’ menu. Default values are used for 

training control flow. Finally, the network is trained by choosing ‘Train 

Network’ from the ‘Operate’ menu and the developed model is saved as 

network file by BrainMaker.  

 

The only difference encountered in the application of procedure described above 

for developing the NM1a and NM1b was the number of hidden nodes assigned. 

The NM1a is developed with 12 hidden nodes. On the other hand, the NM1b is 

developed with 6 hidden nodes. The resulting models saved as network file can 

be used to predict the durations. 

 

Same procedure summarized above in the four steps are followed to develop the 

network models NM2, NM3, NM4, NM5, NM6, NM7, NM8, NM9 and NM10.  

 

As described, the first neural network model (NM1) developed to predict 

construction duration of building projects included all of the independent 

variables. Then, the subsequent network models are developed by eliminating 

the least sensitive independent variable from the preceding network model. The 
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least sensitive variable in the network model is identified by sensitivity analysis. 

Influence of each variable on the behavior of the selected network is evaluated 

by varying the value of each variable incrementally while keeping the values of 

remaining variables constant and observing the output durations. Increment 

values for the real-value variables including Area, NoF, Area/unit, Per(C+H) and 

Per(P) are calculated by dividing the difference of maximum and minimum 

values of each variable with 20. So, 20 increments are made for each real-value 

variables during sensitivity analysis. Values of variables corresponding to types 

of structural frames are not varied incrementally. Only ‘0’ and ‘1’ is tested to see 

the effect of structural frame types on the duration of building project while 

values of real-value variables are kept constant to their averages. RC is chosen to 

be the reference frame. Thus, as value of one of the real-value variable is varied, 

the values of the remaining four real-value variables are kept constant to their 

averages, and only value for RC is inputted as ‘1’ while values for other 

structural frame types are inputted as ‘0’. All the input values, either increments 

for real-value variables or ‘0’ and ‘1’ values for variables corresponding to 

structural frame types, are inserted as inputs manually. Consequently, resulting 

duration outputs are read from the BrainMaker’s display screen. Sensitivities of 

real-value variables are calculated with the maximum and minimum durations 

which are chosen from the twenty one output duration results observed for each 

increments corresponding to each variable. Two output duration results were 

observed for each structural frame type. One of them is observed for input ‘0’ 

and the other is observed for input ‘1’. Therefore, sensitivities of structural frame 

types are calculated by using these two output duration values. The following 

equation is used for calculating sensitivity (S): 

 

S = 
duration)output  (minimum

duration)output  minimum(duration)output  (maximum −
 × 100          [4.15] 

 

Sensitivities of independent variables for each network model are shown in 

Table 4.14.  
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It should be noted that; out of the two network models including same variables 

but developed with different number of hidden nodes, the one which offers a 

better prediction performance is chosen for sensitivity analysis. 

 

 

4.6.2   Prediction Performance Test 

 

Prediction performances of network models are also tested through MAPE 

described by equation 4.4. Since there were five test groups (See Table 3.5), five 

new test models are developed for each twenty network models. The procedure 

followed for the development of test models was similar to the procedure 

performed for the network models developed with the data of all projects. The 

main difference was the forming of testing file and training fact file which are 

created by NetMaker. As mentioned, NetMaker automatically chooses a number 

of projects and incorporates the data of them into testing file. Data of projects 

which are chosen randomly to be used in testing file is not included in the 

training fact file created by NetMaker. Training fact file and testing file which 

were created with the data of 17 building projects for test models are opened 

with Microsoft Excel. Firstly, data information of projects incorporated into the 

testing file is cut from the testing file, and pasted to the training fact file. Then, 

data information of projects involved in one of the test groups is cut from 

training fact file and pasted to the testing file. For example, data information of 

project 5, project 12 and project 15 are included in the testing files of first test 

models of any network model. After the cut-paste operation, empty rows in the 

training fact file are deleted and both the training fact file and testing file are 

saved. Then, BrainMaker is opened with definition file of the test model and 

number of hidden nodes corresponding to the network model to be tested is 

assigned. Automatic heuristic learn rate is adjusted and the data information of 

projects included in the training fact file is trained. Thus, development of the test 

model is finalized and saved as a network file which is created by BrainMaker. 
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Durations of projects included in a test group are predicted from the test model 

developed without using the data of projects corresponding to that test group. 

Predicted values of 17 projects are obtained by collecting the predicted durations 

of each project, one by one, from the five test models. This collection of 

predicted durations of 17 projects from the test models is repeated for each 

twenty network models similarly. Since the data of independent variables 

included in the testing file of test models is used to predict the durations, 

predicted durations of projects in a test group are obtained by an output file 

which is created by BrainMaker with the application of following procedure:  

 

1) Test model which was saved as a network file is opened by BrainMaker. 

 

2) From the ‘File’ menu, ‘Select Fact Files’ is chosen. 

 

3) In the ‘Fact Files’ screen displayed, ‘Read Running Facts’ option is 

selected. Then, name of the testing file including the projects of which 

predicted durations are to be observed is printed into the dialog box. 

Thus, reading of running facts from the corresponding test file is 

achieved. 

 

4) From the ‘File’ menu, ‘Write Facts to File’ is chosen. ‘Open File’ is 

selected after the name of the output file is chosen. 

 

5) From the ‘Operate’ menu, ‘Run Trained Network’ is chosen.  

 

6) Finally, output file is opened with Microsoft Excel and predicted duration 

values are read.  

 

Smallest MAPE value (15,2%) is observed for NM10a. Therefore, NM10a is 

considered to be the best parametric network model and is consequently chosen 

to represent Model 6. Network models, independent variables used in the models 

and MAPEs calculated for each of the twenty model are shown in Table 4.15.  
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Table 4.15 MAPE results for twenty network models developed 

Prediction Performances 
Model 

Independent variables in the 
network model 

MAPE a MAPE b 

NM1 
Area, NoF, Area/unit, Per(C+H), 
Per(P), St, Mas, RC, Pre, W 

20,7 19,3 

NM2 
Area, NoF, Per(C+H), Per(P), St, 
Mas, RC, Pre, W 

21,6 19,0 

NM3 
Area, NoF, Per(C+H), Per(P), St, 
RC, Pre, W 

28,8 31,1 

NM4 
Area, NoF, Per(C+H), Per(P), St, 
RC, W 

18,5 22,5 

NM5 
Area, Per(C+H), Per(P), St, RC, 
W 

20,9 26,6 

NM6 Area, Per(C+H), Per(P), St, W 20,1 19,6 

NM7 Area, Per(C+H), Per(P), St 26,5 22,0 

NM8 Area, Per(C+H), Per(P) 19,2 16,2 

NM9 Area, Per(P) 18,8 20,9 

NM10 Area 15,2 15,4 

 

 

 

Actual durations, predicted durations and prediction performance measures 

observed for NM10a are listed in Table 4.16. 
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Table 4.16 Actual duration vs. predicted duration (Model 5) 

Project 
No 

Actual Duration 
(in months) 

Predicted Duration 
(in months) 

PE PE   

1 21 17,3 -17,8 17,8 

2 12 16,6 38,7 38,7 

3 16 14,6 -8,8 8,8 

4 14 14,7 4,9 4,9 

5 13 13,9 7,0 7,0 

6 16 13,3 -16,9 16,9 

7 14 17,9 28,0 28,0 

8 16 12,5 -22,1 22,1 

9 18 17,3 -4,0 4,0 

10 10 13,9 39,1 39,1 

11 18 20,4 13,2 13,2 

12 20 17,9 -10,6 10,6 

13 17 18,0 6,1 6,1 

14 17 17,0 -0,1 0,1 

15 16 15,2 -4,8 4,8 

16 20 18,4 -7,8 7,8 

17 14 17,9 28,0 28,0 

      MAPE 15,2 
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4.7   DISCUSSION OF RESULTS 

 

In this chapter, data analyses performed for cost model, model 1, model 2, model 

3, model 4 and model 5 are described in detail and results are presented. In this 

section, the predictive accuracy of the models is compared along with the 

discussion of the results.  

 

� Cost Model - Regression analysis performed with the data of 17 

continuing care retirement community (CCRC) building projects revealed 

that construction cost values of these buildings can be predicted with an 

accuracy range of ± 20%. The independent variables included in the final 

cost model were Area, NoF, St, RC and Pre. The R2 value of 0,973 for the 

final regression model indicated that the majority of variability in the 

construction cost is explained by these five independent variables. 

Inclusion of area into the regression model as a significant variable was 

not unexpected since area affects construction cost significantly. The 

minus signs observed for the partial coefficients of RC and Pre indicated 

that contributions of these variables to the cost explained by this cost 

model are negative. The sign observed for the partial coefficient of St 

was positive. This is reasonable since steel structures are generally 

expected to be more expensive than reinforced concrete and precast 

structure, especially for the buildings with a few number of floors.  

 

� Model 1 – Analysis of 17 CCRC building projects confirmed that the 

time and cost have a relationship in the form of ‘T=KCB’. The final 

model expressed by T=21C0,32 had a prediction performance of 13,2%. 

Durations are estimated within a range of ± 33% accuracy.  

 

� Model 2 – Linear model established by simple regression analysis had a 

prediction performance of 14%. Duration estimations are varied within 

an accuracy range of ± 33%.  
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� Model 3 – The average absolute accuracy which is defined by MAPE was 

14,8% for this network model. Duration estimations observed from this 

model are varied within an accuracy range of ± 40%. 

 

� Model 4 – The independent variables included in the final regression 

model were NoF, Mas and W. Unexpectedly, it was found that the area 

variable did not have a significant influence on project duration. One of 

the reasons behind this could be due to the fact that some of the relations 

between the area and duration may have been included by the interaction 

variables (including area), that were used to model the structure type. On 

the other hand, inclusions of variable masonry and variable wood with 

partial coefficients of positive sign indicated that buildings constructed 

with masonry and wood take longer as compared to buildings with 

reinforced concrete, steel and precast. However, this can be explained by 

the longer durations required to complete villa type projects with wood as 

compared to building project of same serviceable area with reinforced 

concrete or steel. This regression model had a prediction performance of 

15,2%. Duration estimations are varied within an accuracy range of 

± 33% for 16 projects. 

 

� Model 5 – The independent variable that remained in the final network 

model through sensitivity analysis was ‘Area’. This outcome is 

reasonable since gross floor area is one of the most important factors that 

affect construction duration of building project. The best network model 

in terms of prediction performance was that final network with an 

absolute average accuracy of 15,2%. Duration estimations observed from 

this network model are varied within an accuracy range of ± 40%. 

Duration estimates observed from this model for each project were very 

similar with the estimates observed from network model 3 which is 

developed with cost parameter only. This can be attributed to the 

significant correlation between the area and cost.  
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Prediction performances for all conceptual duration estimation models are shown 

in Table 4.17. 

 

 

 

Table 4.17   Prediction performances of duration models 

Model Explanation Analysis Technique MAPE 

Model 1 BTC Model Simple Linear Regression 13,2 

Model 2 Time-Cost Model Simple Linear Regression 14,0 

Model 3 Time-Cost Model Artificial Neural Network 14,8 

Model 4 Parametric Model Multiple Linear Regression 15,3 

Model 5 Parametric Model Artificial Neural Network 15,2 

 

 

 

Paired t-test is performed in order to test whether the differences between 

MAPEs of duration estimation models are significant or not. For the first test, 

predictions corresponding to Model 1 and Model 4 are paired and compared. For 

the second test, predictions corresponding to Model 2 and Model 4 are paired 

and compared. The hypothesis that there is no difference in the MAPEs of these 

paired models is tested for α=0.05. Ott (1988) defined t by the following 

equation: 

 

t = 
ns

Dd

d

o

/

−
   [4.16] 

 

where d and sd are the sample mean and standard deviation of the n differences, 

and Do is the difference between MAPEs of the paired models. “n” is the number 

of observations which is 17 for both paired test models. 
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Calculations are performed automatically through Microsoft Excel and shown in 

Table 4.18 and Table 4.19. 

 

 

 

Table 4.18   t-Test: Paired Model 1-Model 4 for means 

 Model 1 Model 4 

Mean 13,1674 15,2730 

Variance 113,6709 146,8806 

t Stat -0,7007  

t Critical one-tail 1,7459  

 

 

 

For df = n-1 = 16 and α=0.05, the critical t-value for a one-tailed test is 1,7459. 

Since the observed value of t, -0,7007, is smaller than the critical t-value for a 

one-tailed test, the hypothesis that there is no difference in MAPEs of Model 1 

and Model 4 is not rejected.  

 

 

 

Table 4.19 t-Test: Paired Model 2-Model 4 for means 

 Model 2 Model 4 

Mean 14,0135 15,2730 

Variance 109,1400 146,8806 

t Stat -0,4452  

t Critical one-tail 1,7459  
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Similarly, the observed value of t, -0,4452, is smaller than the critical t-value for 

a one-tailed test. Therefore, the hypothesis that there is no difference in MAPEs 

of Model 2 and Model 4 is also not rejected. Thus, it is claimed by the results of 

paired t-test that the differences between MAPEs of duration estimation models 

are not significant. 
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CHAPTER 5 

 

CONCLUSIONS  

 

The main objective of this study was to develop reasonably accurate and 

practical methodologies for conceptual duration estimation of building projects 

through regression and artificial neural network techniques. Within this context, 

five different modeling approaches were used to predict the construction 

durations at the early stages of the projects. The first model consisted of a power 

regression model that expressed the duration in terms of cost. The second model 

also expressed the duration in terms of cost but was a linear regression model. In 

the third model, neural networks were used to capture the relation between the 

duration and cost. In the fourth and fifth models, cost was not used as an 

independent variable, but other parameters were used to predict the construction 

durations. Fourth model was a linear regression model and fifth model was a 

neural network model. Based on the model results, the following conclusions are 

identified: 

 

� This study has shown that the models developed provide alternative 

methodologies for estimating the construction durations of buildings at 

the early stages of the projects. All the models can be used to predict 

durations with reasonable accuracy. The models developed in this study 

provide an alternative to the current duration estimation practice which is 

largely based on the individual experience of the estimator. 

 

� No significant differences were observed between the time-cost models 

and the parametric models in terms of predictive accuracy. All the 

models provided reasonably accurate duration estimates. Predictive 
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performances of time-cost models were slightly better than the prediction 

performances of the parametric models. However, use of parametric 

models can also be encouraged for duration estimations since parametric 

models remove the necessity of cost estimation required for time-cost 

models. 

 

� In this study, regression analysis and artificial neural network techniques 

were utilized for the developments of parametric estimation models. The 

findings also revealed that there are no significant differences in the 

prediction accuracy of the regression and neural network models. 

Therefore, it can be concluded that linear regression analysis provides an 

adequate and pragmatic methodology for duration estimation of 

construction projects.  

 

� The data used in the development of parametric duration estimation 

models was limited to the historical project data of 17 CCRC buildings. 

Sample size of 17 can be regarded as sufficient to develop duration 

estimation models since most of the contractors do not have large sets of 

historical data available. Thus, constructors can develop their own 

estimation models with the methodologies presented in this study. 

Consequently, contractors can evaluate whether the contract periods 

stipulated by the clients are reasonable or not, without performing 

detailed scheduling. 

 

� This study showed that by using the data 17 building projects, an 

accuracy of 13-15% can be achieved for conceptual estimation of 

construction durations. 

 

Following recommendations are offered for future studies: 

 

� The estimation models were developed using a sample of 17 CCRC 

buildings. Therefore, further testing is recommended with the data from 
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more building projects of similar type to improve the reliability the 

models.  

 

� The parametric model performances can also be improved by considering 

other factors that may influence the duration of building projects such as 

project environment, productivity of the workforce and quality level 

required. However, it should be noted that factors which may influence 

the duration should be quantified at the early stages of the project. 

 

� The methods presented in this study can be used to develop for other type 

of projects such as; industrial, process, highway, etc. 
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