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ABSTRACT

AN ASSESSMENT OF WINKLER MODEL FOR SIMULATION OF
FOUNDATION UPLIFT

Taymus, Refik Burak
M.S., Department of Engineering Sciences
Supervisor: Assist. Prof. Dr. Mustafa Tolga Yilmaz
Co — Supervisor: Assoc. Prof. Dr. Murat Dicleli

July 2008, 53 pages

Foundation uplift is the partial separation of a shallow foundation from soil due
to excessive load eccentricity. Foundation uplift can significantly change the
seismic response of slender structures, and frames as well. In literature, different
support models for foundations are employed in order to simulate foundation
uplift in seismic analysis of structures. One of the most widely used models is the
Winkler model which assumes distributed tensionless springs beneath a shallow
foundation. In this study, two simple algorithms are developed in order to
compute static and dynamic response of foundations on tensionless supports. Any
formula given in literature for calculation of foundation impedance coefficients
can be easily introduced in these algorithms. Hence, the use of Winkler model is
critically evaluated through comparisons with the response of a foundation on
elastic halfspace. For that purpose, available impedance formulas given for a
shallow rectangular foundation on elastic halfspace are used. It is concluded that,
the coupling between vertical displacement and rocking of foundation is very

significant during uplift. Therefore, the accuracy of Winkler model in uplift
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simulation is limited, since the model cannot simulate vertical and rocking

response of a shallow foundation concurrently with a single spring coefficient.

Keywords : Foundation Uplift, Winkler Model, Tensionless Springs, Impedance,
Elastic Half-space.
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TEMEL KALKMASI SIMULASYONU ICIN WINKLER MODELININ BiR
DEGERLENDIRMESI

Taymus, Refik Burak
Yiiksek Lisans , Mithendislik Bilimleri Bolimiu
Tez Yoneticisi: Yrd. Dog¢. Dr. Mustafa Tolga Yilmaz
Ortak Tez Yoneticisi: Dog¢. Dr. Murat Dicleli

Temmuz 2008, 53 sayfa

Temel kalkmasi, asir yiik eksantrikligi nedeniyle ylizeysel bir temelin zeminle
temasinin kismen kaybolmasidir. Temel kalkmasi narin yapilarin ve ¢ercevelerin
sismik davranigini belirgin sekilde degistirebilir. Literatiirde, deprem yiiklerinin
diisliniildigti  yapisal  analizlerde  temel  kalkmasinin  benzetimini
gerceklestirebilmek icin, ¢ok sayida temel destegi modeli verilmistir. En yaygin
olarak kullanilan modellerden biri, ylizeysel bir temel altinda yayili gerilimsiz
yaylar oldugunu varsayan Winkler modelidir. Bu ¢calismada, gerilimsiz destekler
tizerindeki temellerin dinamik ve sismik tepkisini hesaplamak icin iki basit
algoritma gelistirilmistir. Temel empedans katsayilarinin hesab1 i¢in literatiirde
verilen herhangi bir formiil bu algoritmalar igerisine kolaylikla sokulabilir.
Boylece, Winkler modelinin kullanimi, Winkler temelinin tepkisinin elastik yari-
uzay iizerindeki temelin tepkisiyle karsilastirilmasi yoluyla elestirilmistir. Bu
dogrultuda, elastik yari-uzay iizerindeki s1g dikdortgen temel igin literatiirde
verilen empedans formiilleri kullanilmistir. Temelin dikey deplasman1 ve
devrilme agis1 arasindaki baglantinin kalkma esnasinda ¢ok Onemli oldugu

sonucuna varilmistir. Bu yiizden, kalkma simiilasyonundaki Winkler modelinin
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dogrulugu ¢ok simirhidir, ¢linkii model tek bir yay katsayisi ile s1g temelin diisey

ve devrilme tepkisini ayn1 zamanda taklit edemez.

Anahtar kelimeler : Temel Kalkmasi, Winkler Modeli, Gerilimsiz Yaylar,

Empedans, Elastik yari-uzay.

vii



ACKNOWLEDGEMENTS

I offer my thanks to my supervisor Assist. Prof. Dr. Mustafa Tolga Yilmaz for the
encouragement, help, support he gives to me and for his patience during this

study.

I also thank to my friends who everytime support me throughout this study,
especially Hakan Bayrak, Cengizhan Durucan, Serdar Carbas, Ferhat Erdal and
Erkan Dogan.

I would like to offer to thank my parents Mesut Taymus and Giilten Taymus, my
deary elder sister Elif Kirkkeseli and her husband Haluk Kirkkeseli. They have
been my biggest supporter in my bad days. I know that also after this time they

will continue to be so. I will try to deserve to them for my life.

viil



TABLE OF CONTENTS

ABSTRACT ...ttt et st iv
OZc ettt vi
ACKNOWLEDGEMENTS ...ttt viii
TABLE OF CONTENTS ...ttt X
LIST OF FIGURES ... .ottt e e X
LIST OF TABLES ..ottt xii
CHAPTERS

LINTRODUCTION.......ooiiiiiitiieetet ettt ettt st 1
1.1 The significance of foundation uplift in engineering practice ...................... 1
1.2, LALETAtUIE SUIVEY ...uvieeuiieeiieeeiiieeeieeeeireesteeesseeessseeensseeensseeesssaeenssessnssessnnnes 2
1.3 Objectives of the StUAY ...ccc.eeeiiiiiiiiie e 5
2.STATIC RESPONSE OF UPLIFTING FOUNDATION.........cccccoteviiniinienienen. 7
2.1 MEthOOIOZY ...eeeeeiiiiiieeiiiee ettt rte e st e e e e ibeeeeeas 7
2.1.1 Static impedance of an uplifting foundation ..............ccecceeeriieinniennneen. 7
2.1.2 Estimation of contact width during uplift ............ccecovevveiiiniieenneeee, 11
2.1.3 Tterative method for solution of static uplift problem ......................... 13

2.2 Static impedance coefficients for a shallow foundation..............c.ccccuveneee. 15
2.2.1 Foundation on WinkIer SPrings ..........cceecueerrveerrireeniieeensieeenieeenieeenaes 15
2.2.2 Foundation on elastic halfSpace ..........ccccceeeeieeerieeniieeeieeciie e 16

2.3 An assessment of efficiency of Winkler springs in static uplift analysis.... 18
2.3.1 Comparison of M-6 relationship for two support models ................... 19
2.3.2 Comparison of v-@ relationship for two support models..................... 24
3.CALCULATION OF DYNAMIC RESPONSE DURING UPLIFT ................. 26
3.1 INErOAUCTION ...ttt 26
3.2 MEthOdOIOZY ....eoeeuiiiiiiiiiiiieeee et e 27
3.3 Parametric ANAlYSES ......ceecuvieeiuieieiieeeieeeriee et e eireesireesteeesbeeesaaeeenaeeenenes 32
3.3.1 Response to Long Period EXCItation ...........cccovvveeriieeniieeniieenieeeee, 34
3.3.2 Response to Short Period EXCitation..........ccceeevveeeeieeniieeeiieeeieeeee 36
3.3.3 Response to Short Period, Large Amplitude Excitation ..................... 44

4. SUMMARY AND CONCLUSIONS.......coititinteenieneerieetesteieeee st 48
o BN 111101 1021 o SRS PUPPPPPPP 48
4.2, CONCIUSIONS ....enveiiiieiieeiieetee ettt ettt sttt et et e eneesene e 49
4.3, FUUTE STUAIES ... .eeiuiiiiieiieeite ettt 50
REFERENCES ...ttt 51

ix



LIST OF FIGURES

FIGURES

Figure 1.1. Uplift of a shallow foundation to bear excessive overturning moment
exerted by an inversed pendulum StUCTUTE. .......ccccuvieriiiieriiieiriieeiie e 1

Figure 1.2. Simple models employed for response calculations during foundation .
uplift: (a) Two-spring model, (b) Winkler model, (¢) S model...........c..ccccveeenneennne 3

Figure 1.3. M-0 response of a typical bridge pier on Winkler foundation under
severe seismic loading (Mergos and Kavashima, 2005) .........cccoceerviiiniiienniennnee. 5

Figure 2.1. Sign convention for in-plane loads acting on a rigid rectangular ...........
FOUNAALION. ...ttt e 8

Figure 2.2. Reduction in effective foundation width (B) due to loss of contact
with soil during uplift: shaded area is presumed to be in contact with soil. ........... 9

Figure 2.3. Determination of vertical displacement (v') and rotational
displacement (0") at the midpoint of the contact area after uplift in terms of v - 810

Figure 2.4. a) A rigid foundation resting on tensionless Winkler springs, b) Free

body diagram for Winkler model. ..........cccoeciiiriiieiiieeciieeeeee e 15
Figure 2.5. A shallow foundation (a) on elastic half-space, and (b) on discrete
elements that simulate the response of elastic half-space. .........cccccoevieeniieennieen. 17
Figure 2.6. M — @ relationship for a square foundation under static loading........ 20

Figure 2.7. Normalized secant rotational stiffness of a square foundation under
SEAtIC LOAAINE. ..veeeerieiiiie ettt s e st e et e et ee e abeeesaeeesaeeennneennns 21

Figure 2.8. The relative percent error of secant rotational of a foundation on

WINKIET SPIINES. ..eeeiuiiiiiiiieeiiie ettt ettt e et e s 23
Figure 2.9. Comparison of normalized M-6 relationships for a rectangular
(L/B=3) and a square foundation (L/B=1). ......ccccccveerrrrerrireriireeniieenieeeneeeenree s 24
Figure 2.10. v — @ relationship for a square foundation under static loading. ...... 25

Figure 3.1. The forces acting on an inversed pendulum structure on rectangular
FOUNALION. ....ceiiiiiiiiecic e e 27



Figure 3.2. Comparison of M-6 response in dynamic analysis with that in static
analysis for long period excitation by (a) employing equation 2.6, (b) employing
(e L1 () 110G T USSR 35

Figure 3.3. Comparison of u,, u and 4-60 histories for long period excitation........ 36
Figure 3.4. Comparison of M-6 response in dynamic analysis with that in static
analysis for short period excitation by (a) employing equation 2.6, (b) employing
(<Ta L E: L 1) 1 G T USSR 37
Figure 3.5. Variation of v with @ during short period excitation.................cc....... 38
Figure 3.6. Comparison of M-6 response in dynamic analysis with that in static
analysis for short period excitation and increased foundation damping by (a)

employing equation 2.6, (b) employing equation 3.1. ......cccceeevieriiieeniieeerieeeneen. 40

Figure 3.7. The deviation of dynamic response of a shallow foundation from its
static response during short period eXCItation. ............ceevveeerieeerieeenieeeiieeeiieenane 41

Figure 3.8. The work done by M and V during dynamic response to short period
[ (& 1215 [0) | RO OO TSP PP PORPPPRPRIO 42

Figure 3.9. The V-v response of shallow foundation to short period excitation
between time instants (a) 0 and 5 s, and (b) 0.211 and 0.312 S......ceeveeeeercnnnnnene.. 43

Figure 3.10. Comparison of M - 6 response in dynamic analysis with that in
static analysis for short period-large amplitude excitation (a) employing equation

2.6, (b) employing equation 3.1 ......ccccuiiiiiiiiiiiiiiee e 45

Figure 3.11. Variation of v with 6 during short period-large amplitude
[ (& L7215 o) | OO OSSP UT P RORPPPTOPRIO 46

Figure 3.12. Variation of contact width with 6 during short period-large
AMPLITUAE EXCILALION. ...eieiiiiieriiieeeiie ettt ettt ettt e et e e ibeeeineeeane 46

Figure 3.13. Comparison of u, u and h-6 histories for short period-large
AMPITUAE EXCILALION. 1..vvieeriiieeiieeeiieeeieeesieeeetee et e e eteeetaeesbeeesbeeessseeensseeensneennns 47

X1



LIST OF TABLES

TABLES

Table 2.1. Parameters employed in analyses to determine M- relationships......

Table 3.1. Parameters employed in dynamic analyses..............ccocevviviinnnnnnnn.

Xii



CHAPTER 1

INTRODUCTION

1.1 The significance of foundation uplift in engineering practice

Drained soils cannot resist tensile forces. Therefore, no suction (tensile stress)
can occur beneath shallow foundations resting on drained soils. Severe seismic or
wind loads, can induce large load eccentricity on shallow foundations, resulting
in temporary separation of the foundation from soil. Hence, foundation uplift is
the partial loss of contact between soil and foundation due to excessive vertical

load eccentricity acting on foundation (Figure 1.1).

Horizontal load

Soil

Massless foundation mat

Figure 1.1. Uplift of a shallow foundation to bear excessive overturning moment

exerted by an inversed pendulum structure.

Foundation uplift is particularly important for slender structures, such as towers,
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chimneys and bridge piers, since the reduction in contact area between the soil
and foundation can result in significant increase in support flexibility (Xu and
Spyrakos, 1996; Mergos and Kavashima, 2005). The reduced stiffness of the soil-
structure system may result in a significant increase in natural period of
oscillations if foundation uplift is excessive. Depending on the frequency content
of the ground motion, the shift in natural period during oscillations may induce
significant deviations from the computed response for which no foundation uplift
is presumed (Yim and Chopra, 1985; Roeder et al., 1996). Foundation uplift is
particularly important for short-period structures, since the natural period of soil-
structure system is more sensitive to foundation flexibility (Solomon et al., 1984;
Celep and Giiler, 1990; Psycharis, 1991). Furthermore, uplift can induce

significant vertical displacements on structural response (Song and Lee, 1993).

Foundation uplift can also significantly modulate the distribution and level of
damage on a frame (Huckelbridge and Clough, 1978; Roeder et al., 1996).
Determination of load capacity and stiffness of a foundation is particularly
important to find the structural elements that are most prone to damage, since
uplifting of shallow foundations can provide additional nonlinearity into
structural system. (Harden et al., 2006). Besides, seismic response of a shear wall

within a frame depends on uplift response of its foundation (Anderson, 2002).

Therefore, realistic modeling of uplift is important for accurate calculation of
structural response under seismic loading, when excessive load eccentricity is
induced on shallow foundations. This study aims to develop algorithms for

calculation of static and dynamic response of shallow foundations during uplift.

1.2. Literature Survey

Several simple models are employed in literature for practical modeling of
foundation uplifts on soils which are presumed to behave linearly elastic. The
simplest model is the one used by Yim and Chopra (1984) in order to investigate
the effect of foundation uplift on structural response. In this model the shallow

foundation is supported by a couple of spring and dashpot elements located on
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each edge of rigid foundation (Figure 1.2.a). The second one is Winkler
(foundation) model, in which distributed spring and dashpot elements bear loads
acting on a rigid foundation (Figure 1.2.b). The Winkler model is used by several
authors to simulate foundation uplift during seismic loading (e.g., Wolf and
Skrikerud, 1978; Celep and Giiler, 1990; Psycharis, 1991, 2007; Chen and Lai,
2002). Present a seismic design and analysis guidelines, such as ATC-40 and
FEMA-356 (ATC, 1996; ASCE, 2000), recommend using Winkler model to
calculate the stiffness of foundations during uplift (Harden et al., 2006). The third
model is the S model (Figure 1.2.c), which is an improvement on the first model
such that the response of Winkler model is simulated with best accuracy through
adjusting the distance between the two spring elements (Song and Lee, 1993).
However, the actual response of an elastic half-space can be significantly
different from that of Winkler model. That is why foundation impedance factors
presented by Gazetas (1991) is employed in seismic design practice, instead of
employing Winkler model, when foundation uplift is none of engineering

concern.

(a) (b) (c)

Figure 1.2. Simple models employed for response calculations during foundation

uplift: (a) Two-spring model, (b) Winkler model, (¢) S model.



Apart from the simplified models, the use of finite elements for modeling elastic
continuum is a computationally expensive but accurate alternative (Wolf, 1976;
McCallen and Romstad, 1994). A third approach to model uplifting of
foundations is to use conical models in order to compute the stiffness of
foundations and the dimensions of contact surface beneath the foundation (Wolf,
1976). The accuracy of the latter model is similar to that of finite element

approach, although its computational cost is lower.

Several methods are employed for integration of equation of motion in order to
compute the response of structures on uplifting foundations. Analytical solutions
for differential equations can be directly employed for very simple problems that
involve inversed pendulum structures resting on two-spring models (Song and
Lee, 1992; Oliveto et al., 2002). Rayleigh-Ritz method or Galerkin’s method can
also be introduced in order to obtain approximate solutions for such simple

models (Solomon et al., 1984; Celep and Giiler, 1990).

However, when more complicated structural and foundation models should be
introduced in analyses, numerical integration schemes such as Newmark’s
method (see Chopra, 2007, for complete description of the scheme) are useful.
The variation in instantaneous stiffness of foundation should be computed by an
external routine, which first estimates the dimensions of contact surface beneath
the foundation due to instantaneous loads exerted on foundation. Applications
with Newmark’s scheme with Winkler and conical models are presented in
literature (Wolf and Skrikerud, 1978; Wolf, 1976; and Mergos and Kavashima,
2005). Typical moment-rotation (M-0) response of a rectangular Winkler
foundation to seismic loading is shown in Figure 1.3. On the other hand, Runge-
Kutta method is a very accurate substitute for Newmark’s scheme for solution of

foundation uplift problems (Wang and Gould, 1993).
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Figure 1.3. M-0 response of a typical bridge pier on Winkler foundation under

severe seismic loading (Mergos and Kavashima, 2005)

1.3 Objectives of the Study

The primary objective of this study is to develop two algorithms, one to compute
static uplift response of a shallow foundation resting on linear soil, and one to
compute dynamic response of a single-degree-of-freedom (i.e., an inversed
pendulum) structure during foundation uplift. Both algorithms call external
routines for calculation of foundation stiffness (i.e., impedance) coefficients and
dynamic algorithm also calls damping ones, so that any impedance formulae
given for different soil behaviors and foundation geometries can be easily
introduced. This is necessary in order to introduce models that consider nonlinear
soil behavior, soil heterogeneity and foundation embedment, so that realistic
calculation of foundation displacements under severe seismic loading can be
possible. The second algorithm is based on Runge-Kutta method, therefore it is
straightforward to employ available computing libraries for the solution of uplift
problems. For simplicity, the horizontal displacement of foundation and the

effect of out-of-plane loading on nonlinear response of foundation are omitted.

The secondary objective of this study is to criticize Winkler model, which is

widely used in literature for the calculation of dynamic response of structures
5



during foundation uplift. Static moment-rotation (M-6) relationship of Winkler
model is compared with that of a foundation on elastic half-space, through
employing formulae for static stiffness of rectangular shallow foundations on
elastic half-space. Hence, the significance of coupling between vertical

displacement and rotation of foundations during uplift is critically evaluated.

There are four chapters in this thesis: Chapter 1 involves a brief literature survey
on analysis of foundation uplift during seismic excitation, and the scope of this
study. The algorithm developed to compute the static response of a shallow
foundation, and the limitations of Winkler model are presented in Chapter 2. In
Chapter 3, the second algorithm based on Runge-Kutta method is presented,
which is used for computing the dynamic response of an inversed pendulum
structure on Winkler foundation. The significance of vertical oscillations in
rocking of structure-foundation system is also discussed in Chapter 3. Finally,

Chapter 4 presents the summary of the study and its findings.



CHAPTER 2

STATIC RESPONSE OF UPLIFTING FOUNDATION

In order to assess the accuracy of Winkler model in simulation of foundation
uplift on elastic half-space, the response of a foundation resting on Winkler
support to static loading is compared with that on elastic half-space. The contact
width of rectangular rigid foundation is computed for both support models
consistently, as presented in the following. The resultant force acting on base of
an uplifting foundation is calculated through employing the formulas given for
the static stiffness of rectangular shallow foundation resting on elastic half-space.
Hence, the calculation method is applicable for all foundation impedance
formulas, irrespective of heterogeneity of supporting soil and foundation
geometry. In this study, only in-plane loading is considered, so that rectangular
foundation rotates only around its longitudinal axis. The methodology and the

results of analyses are presented in the following.

2.1 Methodology

The numerical procedure for determination of static response of foundation

permitted to uplift is presented in the following.

2.1.1 Static impedance of an uplifting foundation

Considering a rectangular shallow foundation of (in-plane) width B and
(out-of-plane) length L, the vertical displacement v and rotation € induced by
vertical load V and in-plane moment M (Figure 2.1) are calculated by employing

the following system of equations:



{A‘;}{KV((?’L) Ke((l)B,L)]{;} (2.1a)

or,

{A‘;} - [k(B,L))- {;} (2.1b)

where, K, and Ky are the static impedance coefficients of shallow foundation,
which are dependent on foundation dimensions as well as the stiffness of load
bearing soil, and [K(B,L)] is the stiffness matrix of rectangular foundation that is
in full contact with the supporting soil. Sign conventions for v and 6 are the same

as those given for V and M respectively (Figure 2.1).

Figure 2.1. Sign convention for in-plane loads acting on a rigid rectangular

foundation.

In case of foundation uplift, the section of rectangular foundation that is in
contact with soil can be considered as a shallow rectangular foundation of
width B’ (Figure 2.2). Therefore, substitution of B’ for B in equation 2.1 results in
static equilibrium equations for foundation during uplift:

8



.

00’

Figure 2.2. Reduction in effective foundation width (B) due to loss of contact

with soil during uplift: shaded area is presumed to be in contact with soil.

{1\‘;} ) {K (lg/’L) K, (g',L)]{;,’} (22.a)

or,

{1\‘;} - [k(B, L)) {;} (22.b)

where, V' and M' are the vertical load and moment acting on the center of
rectangular contact area, and v' and 6’ are the vertical displacement and rotation
of the center of rectangular contact area (point O~ in Figure 2.2). The relationship

between {v' '} and {v, 6} is given by (Figure 2.3).

{;} =[] {;} (23)

where, assuming small deflections (i.e., tan(d) = 6),



[A]= 1 sgn(e)‘(B_ZB’j (2.4)

Figure 2.3. Determination of vertical displacement (v') and rotational

displacement (0") at the midpoint of the contact area after uplift in terms of v - 6

Using general transformation rule (Cook et al., 1989), the relationship between
resultant forces acting at the center of the foundation (pt. O) and the center of

contact area (pt. O) is

o {2

Substitution of equations 2.2.b and 2.3 in equation 2.5 results in the equation of

static equilibrium for an uplifting foundation,

{;}:w-[K<B:L>1-[A1~{;} (262)
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or simply,

{A‘;} -[&(®.1)] {;} (2.6)

where [I? (B',L)} is the static impedance matrix of an uplifting foundation.

During uplift, the foundation impedance is dependent on the contact width B" and
foundation length L. On the other hand, B’ is dependent on foundation
displacements, v and 6, hence (2.6) constitutes a nonlinear system of equations.
The presumed relationship between the contact width and foundation

displacements is presented in the following.
2.1.2 Estimation of contact width during uplift

The width of contact between a shallow foundation and soil during uplift can be
computed by numerical models. The finite element method can be used to model
the elastic half-space so that the contact width can be computed. An efficient
approximate solution to the problem at hand is the use of cone models beneath
the foundation and to introduce Green’s function technique so that a
computationally cheaper approach is obtained (Wolf, 1976). The Winkler model
implicitly describes rules for calculation of contact width for a given vector
{v )", presuming that the distributed springs beneath the foundation do not
support tensile forces. The threshold overturning moment on foundation that
initiates separation of shallow foundation from presumably elastic soil can be
significantly different among different support models employed for uplift

analyses.

Normalization of reaction forces is necessary before any comparison between
different support models. Hence, M can be normalized by M, the ultimate (in-

plane) overturning moment that can be exerted on a rectangular foundation:

v VB (2.7)

ult
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Considering a rigid foundation resting on deformable medium, it is presumed that
the threshold moment for initiation of uplift, M, is proportional to M,;, such

that (Apostolou et al., 2006)

‘M

where, the dimensionless parameter a may depend on the shape of the foundation
and mechanical properties of deformable half-space. Particular values for a are
reported as 1/3 for circular foundations and 1/2 for strip foundations resting on
elastic half-space (Wolf, 1976). a is 1/3 for a rectangular foundation on Winkler
springs. Hence, in case of a strip foundation on Winkler springs, M, 1s
significantly lower than that on elastic half-space. Therefore, in this study, the
significance of parameter a in modeling uplift response of a shallow foundation
will be examined through comparisons of foundation response to static loading

when a=1/3 and 1/2.

Foundation rotation and vertical displacement at the initiation of uplift is
calculated through substitution of M,,;; for M in equation 2.1. Hence,

Substitution of equations 2.7 and 2.8 in 2.1 results in

|0|=0(-& (2.9.a)
2-Kg(B,L)
or, the foundation begins to separate from supporting media when
2
K,(B,L)-B~ B-|6
0@ K (B.L)-B" B-f (29b)
2  Kg(B,L) %

Recalling that there are no coupling terms in [K(B,L)] for degrees of freedom v
and 6 (equation 2.1), the threshold 6 for uplift is linearly related to v. However,

when 6 (or, M) exceeds the threshold for uplift, the contact width B’ should be
12



considered as the effective width of a shallow foundation. In that case, equation
2.9.b is not useful, since equation 2.1 is not valid. Thus, equation 2.2 should be
used for calculation of B'. Instead, a simpler approach to the solution of problem

at hand is to substitute B, v’ and ' in equation 2.9.b, for B, v and @ respectively:

’ /2 ’ 4
K,(B,L) (B B -0
0=2. K ),( ) _ ! (2.10)
2 Kg(B',L) v
Substitution of equation 2.3 in equation 2.10 results in
’ 4 ’ /2
B K,(B,L)-(B
. 61;, _a K (B.1)-(B) (2.11.a)
v+'( _ j|g| 2 Ko (B',L)
2
or,
Ky (B, L
_ o )2 a f_ﬁ.(L B] (2.11.b)
K,(B.L)-(B) 4 2\l 2

Hence, for a given vector {v' 0'}", B’ can be calculated by finding the root of
function given by equation 2.11. On the other hand, computation of {v 6}" for a
given load vector {V M}" requires solution of the nonlinear system of equations
2.6, since the terms in [I? (B’, L)] are dependent on {v H}T. Iterative method to

solve 2.6 is outlined in the following.
2.1.3 Iterative method for solution of static uplift problem

In order to compute the relationship between M and 6 for an uplifting foundation
under static loading, the vertical load V is kept constant, and the overturning
moment M acting on foundation is increased with small increments. Before the
initiation of foundation uplift, the linear system of equations given as

equation 2.1 is solved for computation of {v #}". In fact, since v and 6 are

13



uncoupled before uplift, it is necessary to compute only 6 for a given M. The

vertical displacement, v, is constant during the linear phase of static loading.

The foundation uplift will begin if 6 exceeds the root of the function given as
equation 2.9.b. In that case, equation 2.6.a should be used for determination of
foundation response, whereas B’ should satisfy equation 2.11.b. Hence fixed-

point iteration technique (Chapra and Canale, 2006) is employed, such that,

{A‘; } - [k} {;}M (2.12)

where, B'; is the contact width that corresponds to the i" solution vector
({v 0}"); , and is computed by finding the root of equation 2.11.b. However, in
order to overcome convergence problems that arise during iterations,

underrelaxation technique is introduced in order to estimate B';, such that

(Bi/)new — lB;"‘(l_l)Bl/_l (213 )

where, (B/)"" is used for computation of ({v 0} ")is1. It is observed that the
choice of A=0.5 is sufficient for convergence of iterations. Iterations are stopped

when approximate relative percent error (B/)'" is less than 0.1%.

Matlab R13 is used as the computation environment. Hence, the function fzero, is
used for finding the root of equation 2.11.b, with the constraint 0<B'<B. fzero
employs combinations of bisection, secant, and inverse quadratic interpolation
methods for finding roots. Gauss-Elimination method implemented in Matlab is
used for solving equations 2.1 and 2.12. Details of these methods are presented
by Chopra (2007). The static impedance of rectangular shallow foundation is

computed by employing the formulae given in the following sections.
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2.2 Static impedance coefficients for a shallow foundation

In the following, the static impedance coefficients for a rectangular shallow
foundation resting on Winkler springs and on elastic half-space are given. The
width of the foundation is B and length of foundation is L. The impedance
coefficients during uplift, K4(B L) and K,(B L), can be calculated by substitution
of B for B.

2.2.1 Foundation on Winkler springs

M
1
B B
2 2
(a)
B B
xX=— xX=——
| 2 N | 2
N | P . | "
v+x.0 v v-x.0
(b)

Figure 2.4. a) A rigid foundation resting on tensionless Winkler springs, b) Free

body diagram for Winkler model.
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Determination of static impedance of a rigid rectangular foundation resting on
(distributed) Winkler springs with coefficient &y is straightforward (Figure 2.4).

The moment equilibrium requires

M =L ky- Bf2(v+x-9)'x'dx— _(f (v—x-0)-x-dx (2.14.a)
0 -B/2

or,

M=K,(B,L)-6 (2.14b)

where,

KH(B,L):%-kO'B3'L (2.14.c)

is the rocking stiffness of Winkler foundation. Similarly, the load equilibrium

requires
0 B/2

V=Lk:| [ (v=x-6)-de+ [ (v+x-0)-dx (2.15.2)
-B/2 0

or,

V=K,(BL)v (2.15b)

where,

K,(B,L)=k,-B-L (2.15.¢c)

is the vertical stiffness of Winkler foundation.

2.2.2 Foundation on elastic halfspace

The response of an elastic halfspace bearing the dynamic loads acting on a
foundation can be analyzed by employing rigorous analytical or numerical
techniques. However, it is also possible to replace the halfspace beneath a

foundation with simple discrete elements, such that the discrete elements

16



accurately simulate the actual response of an elastic halfspace. These discrete
elements are generally composed of spring and dashpot elements with frequency
dependent coefficients, namely the impedance coefficients (Figure 2.5). The
static (i.e., zero-frequency excitation) impedance coefficients for a shallow
foundation resting on homogeneous elastic half-space are presented by Gazetas

(1991) as in the following:

Elastic half-space K,
(a) (b)

Figure 2.5. A shallow foundation (a) on elastic half-space, and (b) on discrete

elements that simulate the response of elastic half-space.

For an arbitrarily shaped shallow foundation resting on surface of an elastic half-

space, the rocking stiffness around longitudinal axis is

0.25
K, = ﬂl,ﬁ’f (ﬁj 2.4+0.5-(§j
1-v B L

where I, is the area moment of inertia of the foundation-soil contact around the
longitudinal axis, L is the length of foundation, B is the width of foundation, G

and o are respectively the shear modulus and Poisson’s ratio of the homogeneous
17



elastic half-space that supports the foundation (Gazetas, 1991). Substitution of

be:BS -L/12 for a rectangular foundation gives

0.75 0.25
koB.L)=-2 [ L.g.L] [E] [2440528 (2.16.a)
1-v {12 B L
or,
G-B*-L B
Kg(B,L)= 1—-(0.372+O.078-zj (2.16b)
i 4

The static vertical stiffness of an arbitrarily shaped foundation is formulated by

Gazetas (1991) as

K

v

= 26L(07341.545°7)

where, y = A,/ 4L2, and A, is the area of foundation-soil contact surface. Since
Ap=B-L for a rectangular foundation on surface of an elastic half-space, the

vertical stiffness of a rectangular shallow foundation is

0.75
G-L B
K,(B,L)=———"0.73+1.54| — 2.17
v(B.L) l—v( (Lj ] (=17)

Presuming that the formulas given by Gazetas provide very accurate
approximations of foundation stiffness on elastic half-space, the accuracy of
Winkler model is examined through comparisons with the response of elastic

halspace that is computed by employing equations 2.16 and 2.17.
2.3 An assessment of efficiency of Winkler springs in static uplift analysis

A comparison of equations 2.14 and 2.15 with 2.16 and 2.17 shows that the

Winkler model cannot simulate the rocking and vertical impedance of a shallow
18



foundation simultaneously. For instance, in case of a square foundation (B=L),
the impedance ratio Ky /(Kv-Bz) is 0.20 and 0.08 for a foundation resting on elastic
half-space and Winkler springs, respectively. Since v and 6 are coupled during
uplift, the consistence between two support models is questionable. Besides, the
discrepancy between two models can significantly increase during uplift, since Kp
is proportional to (B Y’ for Winkler model, but approximately proportional to (B )
for elastic half-space. In the following, the rocking stiffness of a square
foundation resting on Winkler support is compared with that on elastic half-

space.

2.3.1 Comparison of M-6 relationship for two support models

In order to compare the static moment-rotation (M-6) relationship for a
foundation resting on elastic half-space and that supported by Winkler springs,
the vertical load is kept constant (i.e., V=mg, where m is the mass of structure)
and overturning moment acting on foundation (M) is increased incrementally. It
is presumed that, M,,;; is the same for both models. Hence, two sets of analysis
with a=1/3 and a=1/2 are performed. A square foundation is considered in
analyses. Remaining parameters employed in analyses are presented in Table 2.1.
The coefficient of Winkler springs (ky) is calculated assuming either that the
rocking impedance coefficients determined for Winkler and elastic half-space
models are consistent, or that the vertical impedance coefficients are consistent.
Hence, for the first case, kgpp is computed assuming that equation 2.14 is
equivalent to 2.16. For the second case, ko, is computed assuming that equations

2.15 and 2.17 are equivalent.

Table 2.1. Parameters employed in analyses to determine M-6 relationships.

m (mass) B L h (height) G
1%
(ton) (m) | (m) (m) (kN / m?)
1000 10 | 10 20 100000 | 0.3
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The results of analyses are presented in Figure 2.5. The moment M is normalized
by VB, and rotations are normalized by VB/Ky (B,L), where Ky (B,L) is computed
by equation 2.16.b (i.e., impedance of foundation on elastic half-space). Hence,
for a foundation resting on elastic half-space, or that on Winkler springs with

ko = kop, the threshold normalized foundation rotation at the initiation of uplift is

equal to /2.
0.5r
0.4r
=
- 0.3F
(D]
N
=
E .‘¢’ _ . _
= R Elastic half-space (a=1/2)
c 0.2/ ~ k =k (0=1/2
'z /‘ ..... 0= oe(a_ )
s —-k =k, (0=172)
01 ,/' — Elastic half-space (0=1/3)
S k,=k, p (0=1/3)
[ ~-k,=k, (a=1/3)
O L L L |
0 0.5 1 1.5 2

Normalized 6

Figure 2.6. M — 0 relationship for a square foundation under static loading.

The results given in Figure 2.6 show that M- relationship for a foundation on
elastic support is similar for the cases a=1/2 and a=1/3. Unless experimental
findings for rectangular foundations on real soils, which behave nonlinearly,
show dissimilar values for ¢, the choice a=1/3 for a foundation presumably
resting on elastic half-space is appropriate for engineering purposes. Hence, the
assumption that a=1/3, which is implicit in Winkler model, does not result in
significant error in uplift calculations. However, M- relationships for Winkler

model and for elastic half-space models are remarkably different.
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— Elastic half-space (a=1/2)
...... ky=k,,(0=1/2)

—mk =k, (0=1/2)

— Elastic half-space (a=1/3)
..... k0=k00 (a=1/3)

~enk =k, (0=1/3)

Normalized Secant Stiffness

0 0.5 1 1.5 2
Normalized 9

Figure 2.7. Normalized secant rotational stiffness of a square foundation under

static loading.

The significance of the differences between two models is further investigated by
computing the variation of secant rotational stiffness (M/0) by 6. The secant
stiffness is the apparent stiffness of foundation under static loading, and during
steady-state response under harmonic loading, since it is a function of maximum
6. The secant stiffness is normalized by the initial rotational stiffness
(i.e., Ky(B,L)) of elastic half-space model (Figure 2.7). It is observed that the
secant rotational stiffness of foundation on Winkler springs is converging to that
of foundation on elastic half-space by increasing 6, irrespective of the choice for
ko. The rotational impedance of a shallow foundation resting on Winkler model

and that on elastic half-space is similar, in case kgp is employed in analyses.

When a=1/3 is assumed for elastic half-space model, a small increase in secant
rotational stiffness is observed at lower range of 6. For, a=1/2 no such an
artificial increase is observed. Therefore, a=1/3 is apparently lower than its real
value. Although it is possible to obtain a rigorous formula for a such that o does
not induce an artificial increase in rocking stiffness during the early stages of

uplift, the practical significance of this issue is limited, because the maximum
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value attained by normalized secant modulus is 1.08 in Figure 2.7, which implies
that the relative percent error is less than 8% for a given § and rapidly diminishes
by increasing #. Such a small magnitude of error will induce a negligible effect
on the dynamic response of a structure, since the period of an oscillator is

inversely proportional to square root of its stiffness.

ko=ko, is not a proper choice for foundation uplift analysis, since the initial
rotational stiffness is much lower than the actual value for a foundation on elastic
half-space. The discrepancy between M- curves of Winkler model and elastic
half-space model is also significant for larger values of §. Hence, it is apparent
that the main limitation of the Winkler model is that, it cannot simulate the
vertical displacements (i.e., settlement) and rotations of a foundation

simultaneously.

The relative percent error in secant rocking stiffness of a Winkler foundation is
presented in Figure 2.8. It is assumed that equations 2.16 and 2.17 provide
accurate estimates of impedance of a foundation on elastic half-space. Consistent
values of a are chosen for Winkler and elastic half-space models so that the
calculated error is free of the assumption made for M, It is observed that, the
relative percent error for secant rocking stiffness (M/0) is less than 20% in case

ko=kop 1s assumed for analysis. The error decreases by increasing o.
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Figure 2.8. The relative percent error of secant rotational of a foundation on

Winkler springs.

Finally, the significance of foundation geometry in determination of M-6 curve
for a foundation is investigated, since the preceding results are obtained by
computing the response of a square foundation (L/B=1). On the other hand,
equations 2.16 and 2.17 involve the term B/L, showing the dependency of
foundation impedance on its geometry. Although the Winkler model provides
foundation impedance coefficients that are proportional to L (equations 2.14 and
2.15), the coefficients for a foundation on elastic half-space are nonlinearly
related to L. The normalized M- relationship for a rectangular foundation
(L/B=3) is compared with that for a square foundation (I/B=1) in Figure 2.9. It is
observed that the effect of foundation geometry on normalized M-8 relationship
is negligible. Hence, although the ratio L/B' increases by 6 during uplift, the
change in the geometry of foundation (i.e., contact surface) does not result in an
additional source of deviation between Winkler and elastic half-space models.
The results obtained for a square foundation are also representative for

rectangular foundations.
23



0.5r

0.4r
E 0.3r
)
N
=
g
3 0.2r
Z
0.1-
— Elastic half-space (L/B =1, a=1/2)
— Elastic half-space (L/B =3, 0=1/2)
00 0.5 1 1.5 2

Normalized 6

Figure 2.9. Comparison of normalized M- relationships for a rectangular

(L/B=3) and a square foundation (L/B=1).

2.3.2 Comparison of v-6 relationship for two support models

It is apparent that the only limitation of Winkler model in uplift analysis is that it
cannot predict the vertical and rotational response of a foundation
simultaneously. This is also shown by comparing v-0 relationships of Winkler
and elastic half-space models in Figure 2.10. When it is presumed that ky = kg,
the vertical displacement of a Winkler foundation during uplift is significantly
different from that of a foundation on elastic half-space. On the other hand, when
it is presumed that ky = ks, the agreement between v-6 curves for Winkler and
elastic half-space models is very limited, and the discrepancy between two

models is very large in the early stages of loading.
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Figure 2.10. v — 6 relationship for a square foundation under static loading.
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CHAPTER 3

CALCULATION OF DYNAMIC RESPONSE DURING UPLIFT

3.1. Introduction

In this chapter, an algorithm to compute the dynamic response of an inversed
pendulum (i.e., a single-degree-of-freedom) structure resting on an uplifting
foundation is developed. The algorithm uses Runge-Kutta (RK) method for
numerical solution of system of ordinary differential equations. The horizontal
reaction force acting on foundation is omitted. Energy dissipation on foundation-
soil interface through wave emission to deeper soils is simulated by viscous
dampers (i.e., dashpots). Considering dashpot elements connected to pt O (center
of rigid foundation) parallel to springs with coefficients K, and Ky in Figure 2.1,
the damping coefficients are C, and Cy for vertical oscillation and rocking motion
respectively. A simple inversed pendulum structure on foundation is considered
in analyses, which has only one structural degree of freedom. The structural
stiffness and damping coefficients are K; and C; respectively. The mass of the

structure, m, is lumped at height /4 from the foundation (Figure 3.1).

First, the expressions for first derivatives of variables to be introduced in the RK
algorithm are derived by employing the dynamic equilibrium equations for the
system shown in Figure 3.1. Then, solution for a given set of parameters is
obtained by calling the function ODE23 in Matlab, which employs a second and a
third order RK method to obtain numerical solutions to ordinary differential
equations. The M- relationship computed by the RK method is compared with
that obtained by the iterative procedure given for static loading in Chapter 2.
Only horizontal excitation of structure is considered. Foundation impedance

coefficients, K,, Ky, C,, and Cy, are computed by employing Winkler model that
26



involves distributed dashpot elements with coefficient cy.

Figure 3.1. The forces acting on an inversed pendulum structure on rectangular

foundation.

3.2 Methodology

The damping force should be added to equation 2.1 in order to obtain equilibrium

equations for a shallow foundation under dynamic loading

{Ax;} {KV((I)B,L) KH((;’L)H;}{CV(?L) c,,(?e,L)H;} 31

or,
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{A‘;} - [k(B,L)]- {;}+ [C(B,L)) {;} (3.1b)

where, C, and Cy are the coefficients of dashpots that react vertical and angular
velocity of foundation. The number of dots on a variable represents the order of
derivative with respect to time. Following the steps presented in section 2.1, the

equilibrium equations after initiation of uplift are

{Avl’}{m(g’i) Kg(g’,L)}'{ZZ}{C"(?’U Ce(g/,L)}.{i} (322)

or,

{A‘;} =[k(B",L)] {;} +[c(B, L)].{i} (3.2.b)

where B' is width of contact area between foundation and soil. Substitution of
equations 3.2.b and 2.3 in equation 3.1 results in the following system of

equations:
{A‘;} =[A]" -[k(B",L)]-[A]- {;} +[AT -[e(®.L)]-[A] {;} (332)

or,

{;} _[k(.L)] {;} e {;} (33)

The vertical force (V) and overturning moment (M) exerted on foundation by

inversed pendulum structure are given as

V=m-g—m & (3.4.a)
28



since inversed pendulum structure is presumed to be axially rigid, and

M=K, hu+C, h- (34b)
where, m is the mass of structure lumped at height 4 from foundation, K; and C;
are the stiffness and damping coefficients of the inversed pendulum structure,
respectively, and u is the structural distortion (Figure 3.1). The relationship
between total horizontal displacement of lumped mass (i), structural distortion
(u), and rocking of foundation () is

u,=u+h-60 (3.5)
Substitution of equation 3.5 in 3.4.b gives

M=K, -u h+C, & h-K, -h*-6-C, -h* & (3.6)

Then, substitution of equations 3.6 and 3.4.a in 3.3.b results in the following

{_Z%—[D]'{;} - {P} (3.7.2)

where,

_ 0 O
[pl=[c (B’,L)]{O c hz} (37.b)
and

e{eoby o -

Equation 3.7.a is employed for formulation of & and &, such that
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- : (3.8)

(39)

where Dj; represents the element of [D] located on the i row and jth column, and
P; represents the i element of {P}. Hence, in order to compute & and &
variables u, and % should be known at any calculation step. The numerical

solutions for the latter variables are obtained by employing RK method: The

horizontal equilibrium of forces acting on mass m (Figure 3.1) requires that

m-&&+C e K u=-m-&& (3.10)
where, & is the horizontal ground acceleration. Hence, substitution of equation
3.51n 3.10 results in

C K. -h C.-h
=Sy -5 & S g4 fn ﬁ,% (3.11)

m m m

Hence, the system of ordinary differential equations can be written as follows:

Integration of 3.11 by RK algorithm provides solution for #. It is obvious that,

calculation of & by equation 3.8 should precede the use of equation 3.11.

In summary, equations 3.8, 3.9, and 3.11 are used for calculation of first

derivatives of 6, ¥, and . In turn, ¥ and & are integrated in order to compute

v and u,. The structural distortion, u, is computed employing equation 3.5.

Hence, the variables for which time-histories are computed are given in the

T . .. . .
vector {u, v 6 & & . The vector of first derivatives of the variables is

30



. T . . .
given as {1& & & 8 @ . Assuming that the structure is at rest prior to

horizontal excitation, the initial conditions are given as
u, v 0 & &) ={0 -5 _ 0 0 0 3.12
Z & & { K G.0) (3.12)

The initial condition for v is equal to the static settlement of foundation under

weight of structure.

Winkler model is used for computations. The static impedance coefficients
(Kp and K,) are computed by employing equations 2.14 and 2.15. Similar to the

expressions for Ky and K, it is straightforward to show that

Cg(B,L)zé-co-B3-L (3.13)
and,
C,(B,Ly=c,-B-L (3.14)

Where, ¢ is damping coefficients for Winkler springs.

Uplift initiates when equation 2.9 is satisfied. Hence, for the calculation of
contact width, it is assumed that the stress distribution beneath the foundation
under dynamic loading is the same as the distribution under static loading for a
given foundation displacement vector {v #}'. The limitations of the
approximation of contact width, which is proposed by Wolf (1976), are
investigated in the following section. Therefore, the contact width should be
computed by finding the root of equation 2.11. In fact, considering tensionless

Winkler springs beneath foundation (i.e., a=1/3), equation 2.11 reduces to
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B =—+— (3.15)

At the initiation of uplift, B’=B, after substitution of equations 2.14 and 2.15,

equation 2.9 (or, 3.15) reduces to

v B
= _Z 3.16

02 ( )
In literature, the above expression for the threshold rotation of a foundation uplift
is also derived, by formulating the rotation necessary for inducing tensile forces
on the leftmost (or, rightmost) Winkler spring (Psycharis, 2007). In dynamic
response calculations, presented in the following section, equations 3.15 and 3.16

are used for calculation of contact width of foundation.

3.3 Parametric Analyses

In this section, parametric analyses are performed in order to investigate the
efficiency of the algorithm in calculation of structural response when significant

uplifting of foundation occurs. The parameters pertinent to stiffness and damping

properties of the system shown in Figure 3.1 are given on Table 3.1.

Table 3.1. Parameters employed in dynamic analyses.

m B L h ko CO Ks CS
(ton) | (m) | (m) | (m) | (kKN/m’) | (kN-s/m’) | (kN/m) | (kN-s/m)
1000 | 10 | 10 20 77100 247 195000 1396

Here, the mass m, foundation width B, foundation length L, and the height of the

structure h are arbitrarily selected. Hence, the period and damping ratio of
inversed pendulum structure are 27-\/m/K; =0.45 s and C, / 2JK;-m=5 %
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respectively. By employing equations 2.14 and 2.15, the impedance coefficients
are calculated to be K, =6.430-10"kN-m/rad and K, =7.71-10° kN/m. When
horizontal deformation of foundation is omitted, natural period of structure on

flexible foundation, T, is calculated as 0.67 s through employing (Yilmaz,
2004):

T =T"+T,” (3.17)
where,
2
T, =2.7. |- (3.18)
K,(B,L)

is the natural period of a rigid inversed pendulum structure on flexible

foundation. Employing equations 3.13 and 3.14, damping coefficients of
foundation are calculated as C, =2.06-10° kN-m-s/rad and C, =2.47-10*
kN-s/m. Hence, considering resonant response, the damping ratio for foundation

impedance is calculated as =0 - 159,

T -ko

A simple sinusoidal horizontal excitation is employed in analyses. Acceleration

history of the ground motion is defined as

@:A-sm(z'—”-zj-sm( 27 'tj (3.19)
10T

exc exc

where, A is the amplitude and T,,. is the excitation period. A long and a short

period excitation is employed in analyses by setting 7, =1.5-T and

exc

T =0.3-T,respectively.

exc
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3.3.1 Response to Long Period Excitation

The accuracy of analysis procedure is first investigated by considering response

of inversed pendulum structure to a long period excitation, such that 7, =1.5-T

and A=0.79 m/s’>. In Figure 3.2, normalized M-0 relationship is compared with
that obtained for static loading of Winkler model (Figure 2.5). It is observed that,
when equation 2.6 is employed so that viscous reaction forces are omitted in
calculation of M, the M- relationship follows the static curve closely (Figure
3.2.a). When equation 3.1 is employed, viscous reaction forces are included in
calculation of M, hysteretic loops around the static M-8 relationship are observed
(Figure 3.2.b). Since T is relatively long, the viscous terms do not play a
significant role in foundation reaction, and the reaction forces are almost equal to

their static counterparts for all practical values of 6.

In Figure 3.3 the time-histories of u,, h-0, and u are compared. Smooth sinusoidal
variations of the response variables by time points out that, the contribution of u
and h-0 in u, are similar in early stages of oscillations where reaction of
foundation is linear, but the proportion of /-0 in u, significantly exceeds that of u
when nonlinear response of foundation is more pronounced. Hence, considering
the dynamic response of a slender structure on tensionless foundation, one can

calculate that an increase in u, may not imply a similar increase in u.

When larger values of A are selected, so that nonlinear response of foundation
becomes more pronounced, excessive deviations from static M-6 curve are
observed when @ attains its maximum. Similar results are obtained when higher
order RK algorithms are also employed. One possible explanation is that, the
omission of viscous reaction forces in calculation of B' renders incorrect
calculation of foundation impedance during uplift. The second possible
explanation is that, vertical displacement (v) plays a significant role in foundation
rocking during uplift. In order to understand the source of deviations from static
M-0 relationship, the response of foundation to short period excitation is

computed and presented in the following.
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Figure 3.2. Comparison of M-6 response in dynamic analysis with that in static
analysis for long period excitation by (a) employing equation 2.6, (b) employing

equation 3.1.
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Figure 3.3. Comparison of u,, u and h-8 histories for long period excitation.

3.3.2 Response to Short Period Excitation

In Figure 3.4, the computed response of foundation to short period excitation

during uplift is compared with its static response presented in Chapter 2. The

dynamic excitation parameters are chosen as 7, =0.3-T and A=20 m/s”.

Viscous response forces are more significant than those for long period
excitation. Hence, wider hysteretic loops around static M-6 curve are observed in
Figure 3.4.b. When equation 2.6 is used for calculation of M-6 relationship,
significant deviations from the static backbone curve is observed in Figure 3.4.a.
The source of deviations from static loading M-6 curve is discussed in the

following.

36



0.4r

0.2F

0.17

Normalized M
S

-0.3- = —Dynamic analysis
— Static analysis

4 0.5 0 0.5 1
Normalized 6

(a)

0.4r

0.2F

0.17

Normalized M
S

-0.1F
-0.2
-0.3- 2 —Dynamic analysis
— Static analysis
_0'4—11 -0.5 0 0.5 1
Normalized 6
(b)

Figure 3.4. Comparison of M-6 response in dynamic analysis with that in static
analysis for short period excitation by (a) employing equation 2.6, (b) employing

equation 3.1.
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In order to investigate the significance of vertical oscillations, the variation of v
normalized by static settlement (i.e., V/K,(B,L)) with normalized 8 is plotted in
Figure 3.5. It is apparent that foundation uplift induces significant vertical
oscillations, which in turn result in significant deviation of M-6 response of
foundation from the static backbone curve. The vertical oscillations are rather

important when separation of uplift becomes more pronounced.

1.57

Normalized v

_0—'8.8 06 -04 -02 0 0.2 0.4 0.6 0.8
Normalized 6

Figure 3.5. Variation of v with 8 during short period excitation.

In order to examine significance of error induced in estimation of B’ in deviation
of M-0 relationship, the damping coefficients of foundation are multiplied by six
in the analysis with short period excitation. The M- curves are presented in
Figure 3.6. Although viscous reaction forces are more pronounced than the case
shown in Figure 3.4, M-6 curves obtained by employing equation 2.6 follows the
static backbone curve more closely than the foundation with lower damping.
Hence, the main reason of deviation from static M-6 curve and fluctuations in M-
6 relationship for larger amplitudes of excitation is the vertical oscillations
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induced during uplift, because an increased C, results in reduced amplitudes of

vertical oscillations and less diversion from static M-6 curve.

In order to verify the explanation for observed hysteretic loops in Figure 3.4.a,
the deviation of dynamic vertical response and rocking response of foundation
from static response is plotted in Figure 3.7. For that purpose, 46, which is the
difference between foundation rotation computed in dynamic response analysis
and foundation rotation that corresponds to the same M in static analysis, and Av,
which is the difference between vertical foundation displacement computed in
dynamic response analysis and vertical foundation displacement that corresponds
to the same M in static analysis, is computed at each time-step. It is observed that,
a relative increase in vertical displacement with respect to static displacement
results in stiffer response in rocking mode, such that for any given instantaneous
value of M, a decrease in rotation with respect to its static counterpart occurs. In
contrast, a relative decrease in vertical displacement results in a relative increase

in rotation.
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Figure 3.6. Comparison of M-6 response in dynamic analysis with that in static
analysis for short period excitation and increased foundation damping by (a)

employing equation 2.6, (b) employing equation 3.1.
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Figure 3.7. The deviation of dynamic response of a shallow foundation from its

static response during short period excitation.

The transmission of energy between rocking and vertical modes of oscillations
can be shown by integration of work done by reaction forces acting on the base of

foundation. Hence, the work done by overturning moment till i time step, t;, s

W (e, }M(t)-ém-dtsi[(M(””M(”*)j-(e(t,-)—e(rj_l))J (320a)

0 j=1 2

and the work done by vertical reaction force is

Wi )= [V (0) et = j((wj.(v(tj)_v(tj_l ))] (3200)

0 j=1 2

Figure 3.8 shows the history of W)y, Wy and the total work done by foundation
reaction forces, Wy+Wy, when contribution of viscous reaction forces in M and V

are omitted. The work is normalized by V*/K,(B,L) in Figure 3.8. The hysteretic
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loops in M-8 plot (Figure 3.4.a) result in positive accumulation of W)y, by time,
showing energy loss in rocking mode during successive load cycles. In contrast,
the loops following counter-clockwise direction in V - v plot (Figure 3.9) exhibit
accumulation of negative work done by vertical load, and an equivalent energy
gain in vertical oscillation mode. The total work history is giving a mean zero
process in Figure 3.8, showing that the overall response of foundation is elastic,
but energy transmission between two modes of foundation oscillations occur due
to coupling of v and @ during uplift, and accurate simulation of vertical

oscillations is mandatory.
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Figure 3.8. The work done by M and V during dynamic response to short period

excitation.
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Figure 3.9. The V-v response of shallow foundation to short period excitation

between time instants (a) 0 and 5 s, and (b) 0.211 and 0.312 s.
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3.3.3 Response to Short Period, Large Amplitude Excitation

Finally the response of Winkler foundation to short period-large amplitude
excitation is investigated. Large hysteretic loops in M-0 response point out very
significant vertical displacements and excessive energy dissipation during uplift
(Figure 3.10.a). This is also confirmed by Figure 3.11 that shows variation of v
with 6: since excessive vertical displacements play a significant role in
calculation of B’, the limitation of Winkler model that it cannot simulate vertical
and rocking impedance of shallow foundation simultaneously renders a reduction

in its capability to simulate uplift response of foundations.

No convergence problems arose during analyses, although contact width of
foundation is decreased to levels less than % 20 of total width of rectangular
foundation (Figure 3.12). The observation of increasing B” by decreasing 6 is
possible when v is also simultaneously increasing. Hence, accurate calculation of
vertical foundation impedance is important for analysis of uplift problems. This
issue is more important in analysis of frame structures, since vertical
displacements of spread foundations are also constrained by structural frame,
such that vertical load acting on a footing is dependent on its vertical

displacement.
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Figure 3.10. Comparison of M - 0 response in dynamic analysis with that in
static analysis for short period-large amplitude excitation (a) employing equation

2.6, (b) employing equation 3.1
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Figure 3.11. Variation of v with 6 during short period-large amplitude

excitation.
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Figure 3.12. Variation of contact width with 6 during short period-large

amplitude excitation.
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Finally time-histories of u;, u, and h-6 under short period-large amplitude
excitation are presented in Figure 3.13. Although maximum amplitude of
structural distortions during successive load cycles is somewhat constant, the
total displacement amplitude of mass significantly increases due to uplift of
foundation. In contrast with the results given in Figure 3.3, sharp peaks of u can

be observed, due to frequency content of excitation.

In summary, the results of both static and dynamic analyses show that, vertical
response of foundation should be realistically modeled for accurate simulation of
foundation uplift during seismic loading. Although Winkler model is useful for
investigation of effect of foundation uplift on structural response, its inability to
simulate vertical and horizontal reaction of a shallow foundation concurrently
limits the realism in structural response computations that employ Winkler

model.
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Figure 3.13. Comparison of u;,, u and h-6 histories for short period-large

amplitude excitation.
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CHAPTER 4

SUMMARY AND CONCLUSIONS

4.1. Summary

Uplifting of foundations can have an important role in seismic response of
slender structures, such as towers, chimneys and bridge piers due to the increase
in support flexibility. Calculation of nonlinear moment-rotation (M — 6)
relationship for footings of a frame structure is particularly important for
investigation of damage susceptibilities of individual frame elements. Hence,
realistic modeling of behavior of uplifting foundation is necessary. In this study,
two algorithms are developed in order to compute static M — @ relationship for
foundations during uplift, and to compute dynamic response of a simple inversed
pendulum structure on tensionless foundation. Since Winkler model, which is
described as a rigid foundation resting on distributed uniform tensionless springs,
is widely employed in literature, the algorithms are used for critical evaluation of
Winkler model. Hence response of a Winkler foundation is compared with that

on elastic half-space through employing impedance factors given in literature.

The stiffness matrix of shallow foundation during uplift has been formulated as a
function of the contact width and length. Assuming that the threshold moment for
initiation of uplift is proportional to ultimate moment that can be exerted on a
foundation on rigid base, fixed point iteration method with underrelaxation
technique has been used to calculate the contact width. The vertical and rocking
stiffness coefficients for a foundation on elastic half-space have been separately
used for calculation of Winkler spring coefficients. Considering two different

spring coefficients, the normalized M — 6 relationship of Winkler model is
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compared with that of foundation on elastic half-space.

In order to estimate the dynamic response of an inversed pendulum structure
during foundation uplift, a second algorithm, based on Runge-Kutta method for
solution of initial value problem at hand, has been developed by employing the
dynamic equilibrium equations. The stiffness and damping matrices are
calculated externally so that any type of support beneath the foundation can be
easily introduced. The algorithm is used for computing response of an inversed
pendulum structure on Winkler foundation. Considering a set of parameters, the

dynamic M - 0 response of foundation is also compared with static M - 6 curve.

4.2. Conclusions

The following conclusions on analysis of foundation uplift have been obtained:

1- M — @ relationship for a foundation on elastic support is similar for the cases
o = 1/2 and a = 1/3. Provided that experimental studies do not show that a
should take a very distinct value, a= 1/3, implicitly presumed by Winkler model,

is a suitable choice for practical applications.

2- M — 0 relationship of a Winkler foundation is significantly different from that
of a foundation on elastic half-space, especially when vertical stiffness of
foundation is employed for calculation of Winkler spring coefficients. When

there is no constraint on vertical displacements, k, =k, is the appropriate choice

for Winkler spring coefficients.

3- The difference between M — @ relationship for Winkler model and for elastic

half-space decreases when a increases.

4- The ratio L/B, hence the foundation geometry, has insignificant effect on

normalized M — 0 relationships.
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5- When the nonlinear response of foundation becomes more prominent, the
maximum structural distortion to total displacement ratio of an inversed

pendulum structure decreases.

6- Increase in amplitudes of vertical oscilations during dynamic loading results in
significant deviations from static M — 6 curve. Hence, the capability of Winkler
model to simulate uplift response is very limited since it cannot simulate the

vertical and rocking impedance of a foundation consistently.

4.3. Future Studies

It is possible to introduce the nonlinearity of soil behavior in calculation of soil
impedance factors. In literature, the nonlinear behavior of typical soils
encountered in practice is presented with charts of shear modulus versus shear
strain. Hence, through developing a constitutive model for foundation behavior
such that a link between nonlinear response of soil and foundation is provided, a
more rigorous method to compute M — 6 relationship for a shallow foundation is

possible.

The coupling between vertical displacement and rocking of foundation during
uplift can have pronounced effect on the uplift performance of footings. Hence,
limitations of existing practical procedures, which are generally based on Winkler
model, for determination of structural response to foundation uplift can be

critically investigated through employing the algorithms presented in this study.
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