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ABSTRACT

AN EMPIRICAL COMPARISON OF INTEREST RATE
MODELS FOR PRICING ZERO COUPON BOND
OPTIONS

SENTURK, HUSEYIN
M.Sc., Department of Financial Mathematics
Supervisor: Assist. Prof. Dr. Omiir Ugur
Co-advisor: Assist. Prof. Dr. Kasirga Yildirak

August 2008, 88 pages

The aim of this study is to compare the performance of the four interest rate
models (Vasicek Model, Cox Ingersoll Ross Model, Ho Lee Model and Black Der-
man Toy Model) that are commonly used in pricing zero coupon bond options.
In this study, 1-5 years US Treasury Bond daily data between the dates June 1,
1976 and December 31, 2007 are used. By using the four interest rate models,
estimated option prices are compared with the real observed prices for the begin-
ing work days of each months of the years 2004 and 2005. The models are then
evaluated according to the sum of squared errors. Option prices are found by
constructing interest rate trees for the binomial models based on Ho Lee Model
and Black Derman Toy Model and by estimating the parameters for the Vasicek
and the Cox Ingersoll Ross Models.

Keywords: Zero Coupon Bond Options, Interest Rate Models, Vasicek Model,
Cox Ingersoll Ross Model, Ho Lee Model, Black Derman Toy Model, Arrow-

Debreu Prices.
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OZ

KUPONSUZ TAHVIL OPSIYONLARININ
FIYATLAMASINDA KULLANILAN FAIZ HADDI
MODELLERININ AMPIRIK KARSILASTIRMASI

SENTURK, HUSEYIN
Yiiksek Lisans, Finansal Matematik Boltimii
Tez Yoneticisi: Yar. Dog. Dr. Omiir Ugur
Tez Yonetici Yardimcist: Yar. Dog. Dr. Kasirga Yildirak

Agustos 2008, 88 sayfa

Bu calismanin amaci kuponsuz tahvillere dayali opsiyonlarin fiyatlamasinda
kullanilan dort faiz haddi (Vasicek Model, Cox Ingersoll Ross Model, Ho Lee
Model ve Black Derman Toy Model) modelinin performanslarimin kargilagtiriimasi-
dir. Bu c¢aligmada ham veri olarak 1 Haziran 1976 ve 31 Aralik 2007 tarih-
leri arasinda giinliikk, 1-5 yil vadeli Amerika Birlesik Devletleri kuponsuz de-
vlet tahvili verileri kullanilmigtir. Dort faiz haddi modeli kullanilarak, 2004 ve
2005 yillar her aym ilk caligma giiniine ait opsiyonlarin tahmin edilen fiyatlariyla
gercek gozlenen fiyatlar karsilagtirilmig, modeller hata kareleri toplamlarina gore
degerlendirilmigtir. Opsiyon fiyatlari, binom modeller (Ho Lee ve Black Derman
Toy Modelleri) igin faiz haddi agaclar1 olugturularak, Vasicek ve Cox Ingersoll

Ross Modelleri icin parametre tahmini yapilarak bulunmustur.

Anahtar Kelimeler: Kuponsuz Tahvil Opsiyonlari, Faiz Haddi Modelleri, Vasicek
Model, Cox Ingersoll Ross Model, Ho Lee Model, Black Derman Toy Model,
Arrow-Debreu Fiyatlari.
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CHAPTER 1

INTRODUCTION

Interest rates play an important role in our daily life even we may not realize.
It extremely influences our purchase power. Moreover, the trend of interest rate
has great impact on our investments. The upward or downward movements of
interest rates tell us to revise our present situation as well as potential opportu-
nities. Thus, an investor pays a great attention to this type of trends. Treasury
Bills are comparison point of interest rates. For instance, an investor may ex-
pect returns of her/his money market account slide upward or downward while
Treasury Bill prices begin to slip upward or downward direction. In this frame,
we need interest rate models to understand the dynamics of interest rates which
can be defined as a rate which is charged or paid for the use of money and often
expressed as an annual percentage of the principal.

The main purpose of interest rate models can be thought as explaining the
behaviour of interest rate movements. By fitting our available interest rate data
to a model, we can provide both pricing and hedging interest rate derivative
securities. Although, estimation of future movements of prices and rates is one
of the most desirable goals; none of the interest rate models can achieve this
completely. It is hard to point out which model is the best though, we may write

some characteristics that a good model should have [13]:
e Accurate Valuation of Simple Market Instruments
e Ease of Calibration to the Market

e Robustness



e Extensibility to New Instruments

e Stability of Floating Parameters

It is useful to investigate some properties of interest rate models to under-
stand them. We can define various points for distinguishing interest rate models.
First, we can categorize interest rate models as discrete time and continuous time
models. Compared to discrete models, continuous models have more popular-
ity since continuous time mathematics have become more applicable in deriving
formulas and proving theorems. In recent years, models that involve jumps and
point process have made great contribution in order to develop discrete models.

Single and multi-factor model categorization is another way to classify interest
rate models. In modelling short rate interest rates, it is important to determine
how many (unknown) factors influence evolution of interest rates. Using one
factor models is an important practice, since as empirical evidences show; there
is more than one factor that determines the evolution of interest rate. But,
working with one factor models can be helpful to understand the procedures, and
hence, may be advantageous in applications of multi-factor models.

Another commonly used categorization method is dividing the interest rate
models as arbitrage free and equilibrium models. This is the essential distinction
from a theoretical perception. Arbitrage free models have assumptions about
stochastic behaviors of interest rates, market price of risk, and also by assuming
the no-arbitrage opportunities at the market, they derive the price of all contin-
gent claims. In other words, there is no risk free strategy with zero cost that
gives the possibility of positive returns.

On the contrary, equilibrium models that begin with description of economy;,
assume that the market is at equilibrium. However, the difference is not obvious,
because equilibrium models should also be arbitrage free. If this is not the case,
then the economy would not be at equilibrium.

In this study, we will use four models: two one factor equilibrium models

- Vasicek and Cox Ingersoll Ross Models — and two no-arbitrage models —



Ho Lee and Black Derman Toy Models that have normal distributions (Vasicek
Model and Ho Lee Model), lognormal distribution (Black Derman Toy Model)
and non-central chi-square distribution (Cox Ingersoll Ross Model). One factor
equilibrium models will be used to compute European call option prices on the
beginning work days of months of 2004 and 2005 by using their estimated pa-
rameters. Binomial models will be applied in valuing European call options on
related dates by using interest rate trees.

In this chapter, we will present some preliminaries to understand the concept
that will be used throughout the study. Then we will investigate explicit solutions
of some interest rate models in Chapter 2. Moreover, Chapter 3 focuses on
the four models in terms of bond and option pricing. There, we will show the
derivation of formulas that will be used in the applications. In Chapter 4, we will
estimate the parameters of one factor equilibrium models first and then construct
binomial trees. Moreover, by calculating the option prices, we will conclude the
work by comparison of the models by estimating the call option prices. Finally,

we give a brief conclusion in Chapter 5.

1.1 Preliminaries

In this section, we want to describe some concepts and definitions about
stochastic processes in terms of both finance and mathematics that is used for

modelling interest rates and interest rate options.

Definition 1.1.1. Let (Q,A) be a measurable space and let P be a probability
measure on A. Then the triple (0, A,P) is called a probability space [16].

All the stochastic processes and the random variables are specified on a given

probability space (2,,4,P) throughout the thesis.

Definition 1.1.2. A filtration F, is an increasing sequence of o-algebras in
A. F, is for the information accessible at time n; in other words, o-algebras of

occurrences up to time N, where N stands for the maturity.



Definition 1.1.3 (Martingale). An adapted sequence (M, )o<n<n of random vari-

able’s is said to be
e martingale if E(M,1/F,) = M,,
e submartingale if (M, 1/F,) > M,,
e supermartingale if E(M,1/F,) < M,
with respect to information sets JF,, and probability P.

Martingale concept was proposed by Paul Levy and it was then developed by
Joseph Doob. The concept is very important for determining the characteristics
of arbitrage free market. One of the best known Levy processes is the Brownian
Motion. Brownian Motion shows the random movement of the asset prices. Since
prices of zero coupon bond and options are uncertain in future, the Brownian

Motion becomes the principal element in our study.

Definition 1.1.4 (Brownian Motion). A Brownian Motion is a real valued con-

tinuous process (X;)i>o with independent and stationary increments:

e Continuity: P almost surely the maps s — X (w) is continuous (has con-

tinuous paths).

e Independent Increments: If s <t, X; — X, is independent of
Fs = o(Xu,u < 8) or Xy, — X4y, Xoy — Xoy,- -, Xy, — Xy, independent

random variables.

e Stationary Increments: If s <t, X; — X, X, s — Xo have the same proba-
bility law.

Another important theorem in stochastic calculus is the Girsanov Theorem. It
shows how to convert physical probability measure P to the risk neural probability

measure Q.



Theorem 1.1.1 (Girsanov Theorem [18]). Let (2, F, (Ft)o<t<r, P) be a probabil-

ity space and (W[ )o<i<r be an F Brownian motion. Let (0;)o<i<r be an adapted

T
process such that / 02ds < co. Define
0

t 1 t
Ly := exp </ 0,dWr — —/ 9§d8>,
0 2 Jo

and under probability Q,
t
WtQ = WtP — / est
0

1s a F Brownian Motion. Then, L, is a Martingale if

Lo
E {exp <§/0 Qtdt)] < 00.

Lemma 1.1.2 (Tto Lemma [18]). Let (X;)o<i<r be an Ito process. If f € C?,

PO = 060+ [ a5 [ Fena ),

where (X, X)), is the quadratic variation of X.
More generally, if f(t,x) € CY2, then we have

i, Lo
f(t, Xy) —f(O,X0)+/O 8_£(87Xs)d8+/0 a—;((s,Xs)dXs

1 [t o*f
+§ ; W(S,XQd(X,X)g.

In modelling interest rates, mean reversion property is one of the desirable
property that the model should have. This property suggest that prices or rates
move back toward average price or rate. Orstein Uhlenbeck process can be used

to solve the stochastic differential equations that have mean reverting property.

Definition 1.1.5 (Ornstein Uhlenbeck Process). The Ornstein Uhlenbeck Process

15 a stochastic process that satisfies

dXt = —CXtdt + Uth



Define Y; = X,e“, so the initial term become as Xy = Y, and X, = X.

By Ito’s integration by parts formula

dY, = e%dX;+ cXedt,
= e (—cXydt + odWy) + cXedt,

= getdW,.
Then integrating both sides gives us
t
Y, - Y, = / oe“dWs.
0
Inserting X,e in place of Y; yields

t
Xt =X +U/ e“CdWs,
0

t
X, =Xe “+ O'G_Ct/ e“dWs.
0
The expected value of X; can be written as
E(X;) = Xe ™.

Then, the variance of the process becomes

2

Var(X,) = B(X, — E(X))) = E <ae—ct /0 t eCSdWS) ,

by isometry property

t
Var(X;) =o’eE </ eQCSdS) :
0

t
:0_26—2ct/ 62csd8.
0

Proposition 1.1.3 (Feynman-Kac Formula). Let F be a solution to the problem

oF oF 1 0*F
—(t, Xy) + p(t, X)) 7= + 0°(t, Xt)m

ot 0xX 2 —rkt ) =0

F(Tv XT) = ¢(XT)



where u(t, z), o(t,x), r(t,z) are p(x) are given functions and X satisfies the SDE
dXs = p(s, Xs)ds + o (s, Xs)dWs,

under probability measure Q. Then F is

T
F(t, X)) = 9 {exp (— / rsds) o) | J-"t] |
¢
Definition 1.1.6 (Arrow - Debreu Prices). Let r(t,j) (or denoted as ;) be the
interest rate at time t and state j, at (t,j) for short, over time period [t,t+ 1] on
a binomial tree. Let P be the risk neutral probability that the interest rate will go
up from r(t,7) tor(t + 1,7 4+ 1) with probability p. (Hence, r(t,j) will go down
to r(t+1,7) with probability 1 — p.)
P r(t+1,j+1)
r(t,j)

1-p r(t+1,])

Figure 1.1: One Period Binomial Tree

For 0 < tg, 0 < jo, let G(to,jo) be the value of a derivative at time 0 and the

payoff at t =t is given by d;,; where j is the state reached at time t.

The G(t, 7)’s are known as the Arrow-Debreu prices. (We also use G(to, jo) to
denote the above defined derivative.) Note that G(0,0) is 1. (Let V(¢,7) be the
value (payoff) of an arbitrary derivative at (¢,j).) It can easily be verified that
V'(0,0), the value of the derivative at time ¢ = 0 is given by

t
V(0,0) =Y V(t,s)G(t, ). (1.1.1)
s=0
If ¢y and jy are given, then the value of G(tg,jo + 1) at time ¢y — 1 becomes
(1—p)D(to— 1,7+ 1), at state jo+ 1;

G(to,jo+1) = pD(to —1,7), at state jo; (1.1.2)

0, otherwise



where D(t,7) is the discount factor at (¢,7) over [t,t + 1]. We therefore have

et for continuously compounded interest;
D(t) = 1
®) —— for simple interest.
1+7r(t,J)
r(t-1,j+1) 1-p
) r(t,j+1)
r(t-1,j)

r(t,])

Figure 1.2: One Period Binomial Tree at Different States

Let 1 <tand —1 < j <t—1 be given. Let V(¢ — 1,57 — 1) be the payoff
(value) of G(t,j + 1) at time ¢t — 1. Note that the time zero value V(¢ — 1,7+ 1)
is G(t,j+ 1). By equation (1.1.1) and equation (1.1.2) we have

Gt,j+1)=1—-p)D(t—1,j+1)G(t—1,j+1)+pD(t—1,5)G(t—1,5) (1.1.3)

With this recursion, it is now possible to calculate G(t, j) recursively [17].
In constructing interest rate trees, we need volatility estimates of the inter-
est rate series. Instead of historical volatility and implied volatility, we prefer

GARCH models to estimate the volatilities of the spot interest rates.

Definition 1.1.7 (GARCH Model). Generalized autoregressive conditional het-
eroscedasticity (GARCH ) model was claimed by Bollerslev in 1986 [4]. The
GARCH (1,1) model is the simplest GARC H model, which can be written as

2 2 2
O = Qg + Uy + a0y

In other words, at time t the conditional variance o? of u depends not only on

the squared error term u?_, in the previous time period but also on its conditional



variance o | in the previous time period. More generally, GARCH (p, q) model
can be expressed as a generalized model in which there are p lagged terms of the

squared errors and q terms of the lagged conditional variances.



CHAPTER 2

INTEREST RATE MODELS

In this part of our work, we will present closed-form solutions of some inter-
est rate models. Furthermore, we will give some brief descriptions about these
models.

Merton (1973) and particularly Vasicek (1977) models are among the old-
est methods based on modelling the evolution of the instantaneous spot interest
rates. In their works they assume that the short rate followed a normal dis-
tribution; therefore, they allow negative interest rates with positive probability.
Dothan (1978) and Rendleman and Bartter (1980) offered a lognormal distribu-
tion for the instantaneous spot interest rate to manage this disadvantageous. At
the same time Brennan and Schwartz (1980) proposed a model by adding a mean
reverting term to Dothan’s model. But their models did not assume any known
distribution for short rates. Ball and Torous assumed that the bond prices do
not follow the original geometric Brownian motion of Black and Scholes (1973),
but they follow Brownian bridges. So they included the constraints of bond price
approaching its face value at maturity. Cox, Ingersoll and Ross (1985) (CIR)
offered a non-central chi-square distribution instead of a lognormal distribution.
All these models can be said as “endogenous term structure” models. In endoge-
nous models, the initial term structure of interest rates is an output of the model
rather than an input as observed in the market. On the other hand, Ho and Lee
(1986) took the initial term structure as exogenously given at a point in time. Hull
and White (1990) suggested an extension of the Vasicek (1977) Model and the
Cox Ingersoll and Ross (1985) Model. In addition to Dothan (1978) and Rendle-
man and Bartter (1980), Black Derman Toy (1990), Black Karasinski (1991) and

10



Sandmann and Sondermann (1993) also offered lognormal distribution for the in-
stantaneous spot interest rates. Heath, Jarrow and Morton (1992) considered the
forward rates rather than the bond prices. Later, Longstaff and Schwartz (1992)
developed an equilibrium model in which an investor has a logarithmic utility
function. Moreover, the investor has alternatives of investing or consuming the
only available goods in the economy. After Longstaff and Schwartz, Chen (1996)
claimed his three-factor model. In Chen’s model, the dynamics of short rate is
related with the current short rate, stochastic mean and stochastic volatility of

the short rate.

2.1 Merton Model (1973)

The Merton Model [13] can be expressed simply as
d?”t = adt + O'th,

where a and o are constants, respectively called the drift and the volatility. The

t t
e =To —I—/ ads +/ odW,
0 0

=719+ at+ oW,

solution r is

This can be generalized as follows:
re =1y +a(t —u) + o(W, — W,,).

Since in the Merton Model, interest rates distributed normally, it is possible that
r can take negative values. This is, however, unlikely observed at the interest

rate markets.

2.2 Vasicek Model (1977)

The beginning devise of Vasicek’s model [23] is very general: with the short

term interest rate it is pronounced by a diffusion process. An arbitrage con-

11



tention, having a likeness to that used to trace the Black-Scholes option pricing
formula, is put to usage within this large structure to conclude that the partial
differential equation is satisfied by any contingent claim. The bond price is then
an outcome from the solution to this equation. Vasicek Model, however enforces
more restrictive assumptions to formulate the model. The compatibility of the
model description of requirements with an underlying economic equilibrium is
not demonstrated. More truly, it is implicitly assumed. Vasicek uses equilib-
rium economy which was introduced by Merton in an analysis of price dynamics
in continuous time. Equilibrium conditions indicate that interest rates are such
that the demand and supply of capital are equally associated.

Assumptions of the model include the following:

Assumption 2.2.1. The present short interest rate is known with certainty.
However, the short rate values in future are not known (the assumption is made

that r(t) follows a stochastic process). The model also assume that r(t)

e is a continuous function of time, and

e conforms a Markovian process (that is, given its present value, future de-

velopments of the short rate are not influenced of past of the processes).

Assumption 2.2.2. Price of a discount bond P(t,T') at the time t with maturity
T is entirely obtained by the time t evaluation of {r(t*) |t <t* <T}. Further-
more, the progress of the short rate on [t,T) is entirely determined by its present
value r(t). Hence, the bond price may be written as a function of the current short
rate: P(t,T) = P(r(t),t,T). Therefore, the whole term structure is determined
by the short rate.

Assumption 2.2.3. [t is assumed that the market is efficient. This indicates

that

e there are no transaction costs,

e information is delivered to all investors at the same time,

12



e investors are rational, and

e riskless arbitrage is not possible.

The main disadvantage of the Vasicek Model is that, r(¢) has normal distribu-
tion, and hence, it is possible that the model can generate negative rates, which
is not desired in general.

In what follows, 3 > 0 is the speed of adjustment of the interest rate towards
its average long run level, a > 0 is the long run normal interest rate and o is the
volatility. Moreover, when r(t) > «, then the drift becomes negative, so that the
rate will be forced to the level a on average. On contrary when r(t) < «a, then
the drift becomes positive, so that the rate will be forced again to the level a on
average. The Vasicek Model specifies that the interest rates follow the stochastic
differential equation:

dry = B(a — ry)dt + odW,. (2.2.1)

The solution of equation (2.2.1) can be obtained by letting X; = r; — « so that

If we further define Y, = %X, then Yy = ¢°X, = X,,. By Ito’s integration by

parts formula
aY, = peltX,dt + e*dX,
= ﬁeBtXtdt + eﬁt<—ﬂXtdt + Uth)

= ePladW,.
Then by integrating both sides, we get

t
Y, - Y, = / P adW.
0
Putting e X, for Y, follows

t
X, = X+ / ePodW,,
0

13



so that i .
X, =e P X, +/ eﬁsadWs} )
0

Returning back to 7, we obtain

t
ro—a=ec¢ " |rg—a +/ eﬁsadWS] ,
0

and further,

t
r =a+e P rg—a)+ e‘ﬁta/ e dWw,
0
t
=a+eP(rg—a)+ a/ e U= gy,
0

t
= e Plrg+a(l —e ) + a/ e P gy,
0
More generally, we can write

t
ry=e PWr 4 o (1- e_ﬁ(t_“)) + 0/ e Bt qw.,.

2.3 Exponential Vasicek Model (1978)

Exponential Vasicek Model assumes short rate process evolves as exponential
Ornstein Uhlenbeck process with lognormal distribution. Under Q probability

measure, the model can be expressed as
dry = ri[m — alogry]dt + ordWy.

By appling Ito Lemma for f(x) = log (z) we get:

"1 1 [f-1
logr, =logry+ / (—(7“5[775 — alogrglds + Urdes)) +3 / — o?rids
0 Ts o Ts

t t 1 t
= logry +/ (ns — alogrs)ds + / odW, — —/ olds
0 0 2 /o

t 1 t
= logry —I—/ (775 —alogry — 502) ds —I—/ odWs.
0 0

14



Then, denoting ¥, := logr;, we have

t 1 t
Ye = Yo + / (775 —Qys — —02> ds —I—/ odWs.
0 2 0

In terms of stochastic differential equation, it is equivalent to

1
dyt = (T/t — QY — §U2> dt + O'th.

1
If we set 6, : g, — 502, then it can be further expressed as
dyt = [Gt — Oéyt]dt + th

0
Further, we need transformations as: [; = ~ and X, = y; — B¢ to obtain the
Q

Ornstein Uhlenbeck process
dX; = —aXdt + adW;.

Then, the solution for X; as follows

X, = Xoe ™ + g™ /t e dW,.

0
Returning back to the process y; we have
v — By = (yo — Br)e " + o™ /Ot e dW;,
which yields t
Y = yoe '+ (1 —e )3 + ae“t/ e dW,.
Since, y; = log 4, O
logr; = logrge ™™ + (1 — e )3, + o™ /t e dWs,
0
and hence,
0 t
ry = exp (log roe”* + Et(l —e ) + aeo‘t/O eanWS).

Since Exponential Vasicek Model has the lognormal variable, we can get non-
negative interest rates, and it also follows a mean reverting Ornstein Uhlenbeck

process.
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2.4 Cox Ingersoll Ross Model (1985)

Cox, Ingersoll and Ross (CIR) explain the matter of interest rate modelling
as one in “general equilibrium theory”. Expectation of future events, such as
risk, other investment and consumption choices affect the term structure. Cox
Ingersoll Ross Model makes use of a general equilibrium asset pricing model
to endogenously conclude the stochastic process conformed by the short term
interest rate and the partial differential equation satisfied by the value of any
contingent claims. Bond prices are then determined as solutions to this partial
differential equation, which depends on the underlying short term interest rate.

Here are some the assumptions of Cox Ingersoll Ross Model.

(i) There is a single physical good which may be assigned to investment or for

consumption.
(ii) Access to all production processes is free.

(iii) There exists an immediate borrowing and loaning for the market. This take
places at a rate r that is determined as section of the equilibrium in the

economy.

The Cox Ingersoll Ross Model specifies that the interest rates follow the

stochastic differential equation [12]:
dry = B(a — ry)dt + o+/ridWy,

which is equivalent to integral equation

t t
rt—ruzﬁ/ (a—rs)ds—l—a/ ri2dw;.
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Applying the Ito Lemma to f(z;) = 27 and z; = r; as in [20] we get

t 1 t
r2 =12 +/ 2r, [B(a —ry)ds + orl/2dW,] + 5/ 202r,ds
t t
=724 / 2r,Bads — 2r?Bds + 2r§’/20dWs + / o’ryds

t t
=72+ / (2rsBa — 2r23 + o°ry) ds + / 232 g dW,,

u

hence,

t t t
re =12+ (28a + 0?) / reds — Qﬁ/ rids + 20/ r32dW.

u

If u =0, we further

t t
re =10+ ﬁ/ (v —1rg)ds + a/ T;/2dWS.
0 0

Although there is no explicit form for the solution to the Cox Ingersoll Ross

Model, it is known that the model has unique positive solution [12].

2.5 Ho Lee Model (1986)

Ho and Lee constructed a model [10] which takes the initial interest rate term
structure as input, and produces its future stochastic evolution. Hence, the the-
oretical zero coupon bond prices will be accurately consistent with the observed
prices in the market.

Ho Lee Model uses all the information of the current observed term structure
to price contingent claims by avoiding the arbitrage. The assumptions of the

model include
(i) The market is frictionless, that is there are no taxes or transaction costs.

(ii) The bond market is complete.

17



(iii) There is a finite number of possible states of the world for each time period
n. The Pi(n) (T') denote the equilibrium prices of a T-maturity zero coupon
bond at time n, and state 7. This function is called for discount function

and it satisfies some certain conditions:

lim P(T) =0.

T—o00

Ho and Lee represent the changes of the discount function by a binomial
lattice. The Pi(")(-) show the discount function for i times upstate and (n — )
times downstate moves at time n. When passing from the period n to the period
(n 4+ 1) the discount function may depend on an upstate move or a downstate
move. So, at the time n discount function Pi(n)(-) have two possible situations

when passing at time (n + 1): Pl(f:;rl)() or B(n+l)(-). Therefore, we have
e There are (n + 1) possible states at each time n.
e The discount function in each state is independent.

Each discount bond’s price conforms a binomial process. This is related with
the behavior of interest rates of different kinds maturities depend on to each
other. This is why the binomial lattice is used to model the whole term structure
rather than that of a particular bond [15].

The binomial lattice method makes the following characteristics of the bond

price clear
e uncertainty is small the near maturity of the bond,
e uncertainty increases as time to maturity increases.

Following features are related with two factors:

18



e For longer times, the number of changes increases and therefore uncertainty

connected with the term structure increases.

e As the time come nearer to the maturity of the bond, price uncertainty

decreases.

The dynamics of Ho Lee Model can be expressed as
d?"t = etdt + Uth, (253)

whose solution can be computed as follows:

t t
re =Tp +/ Ods +/ odW
0 0

t
=1y +/ Osds + oW,
0

or equivalently,

t
re ="y + / Osds + oWy — W, ]. (2.5.4)

In the form of a binomial tree Ho and Lee represented the model of bond
prices with two parameters. First is the short rate standard deviation and the
second is the market price of the risk of the short rate in discrete time.

The variable 6, in equation (2.5.3) defines the average direction that short rate
moves at time . The main drawback of this model is that it does not consider

the mean reversion property of the interest rates, unlike Vasicek Model.

2.6 Hull White Extended Vasicek Model (1990)

Vasicek suggested the poor fitting of the initial term structure of interest rates.
Ho and Lee made effort to construct exogenous term structure model, but their
main assumption was that the whole term structure of rates follows a binomial
tree although their model has continuous time limit. For the need of an exact

fit, Hull and White [11] introduced a time varying parameter in the Vasicek
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Model. The model then indicated a normal distribution for the short rate process.
The strength of normal distribution is that it allows the derivation of analytical
formulas; however, the weakness is that it also allows negative interest rates with
positive probability.

The dynamics of Hull White Model can be expressed as

d’r‘t = (ﬁt — O{trt)dt + Uttha (265)

where (;, oy and o; are deterministic functions of time. For the solution of this
t

stochastic differential equation we define K; = / o, du. Then, applying the Ito’s
0

integration by parts formula to e*tr,. We have
d(eftr,)) = Xt K,'r,dt + e™dr,.
Hence, equation (2.6.5) we calculate
d(eKtTt> = €KtOétTtdt -+ €Kt[<ﬁt — OétTt)dt -+ Utth]
= eKtoztrtdt + eKtﬂtdt — €Kt Oétrtdt + eKt O'tth

= eKtﬁtdt + €Kt0'tth

= €Kt (6tdt + O'tth).

Integrating both sides now gives

t t
efor, =1 +/ e B.ds —|—/ e o dWy,
0 0

from which we get,

t t
r, =e (7“0 —|—/ eKSﬁsds +/ BKSO'SdWS)
0 0

t ¢
= e Btpg 4 / e~ K=K 3 ds +/ e~ Ee=Ks) g aw,.
0 0
To generalize the result for any u < ¢, we write

t t
ry = e(Kth)ru—i—/ e(Kth)ﬁsds+/ e~ Ke=Ks) g dW,.
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2.7 Black Derman Toy Model (1990)

For modelling interest rates in a discrete time, Black, Derman and Toy [8] use
a binomial tree method. For determining all rates, the short term interest rate,
the main fundamental factor is used. In order to form a binomial tree of short
term interest rates in the future, both the present term structure of interest rates
and the associated volatilities are used.

The essential variable that urges security prices into the model is the short
term interest rate, which can be specified as the annualized one period rate of
interest. The data entered to the model are a set of long-term interest rates of
different maturities and their related volatilities. For this reason, to calibrate the
model we need a yield curve and a volatility curve. These inputs are used to
calculate means and related volatilities of future realization of the interest rate.
The change in the yield and volatility curves cause changes of the means and
volatilities of future short term interest rates. The changes in future volatility
have an influence on the degree of mean reversion.

As with most models, the assumption of a perfect market is made. Here are

the other assumptions of the model.

(i) Yields of all zero coupon bond’s changes are perfectly correlated to each

other.
(ii) The expected returns of one period are identical for all securities.
(iii) There are no taxes and no transaction costs.

The lognormality property enables several strengths for calibration of the
model. The main advantage of lognormal distribution is that, negative interest
rates are avoided and the volatility input may be given in percentages.

As mentioned before, the model produces the term structure so that it matches
the observed term structure. After having calculated the price of the short term

interest rate at each branch in Figure 2.1, we are able to determine the price of
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1/2 Su

1/2 Sq

Figure 2.1: Price of Contingent Claim for One Period

any European type contingent claims. At each branch, the value is equal to the
discounted expected value one time period in future. We calibrate the binomial
tree to the observed risk-free rate, hence, we may price the contingent claim in
a risk-neutral environment. Here we assume that the up and down movement
probabilities are equal. Therefore, after one period, the expected price of our

contingent claim becomes

1

Here S, stands for the price of the contingent claim after an up move and Sy
is for the price of the contingent claim after a down move. If we discount the
price of the contingent claim S by the current one period interest rate r, then the

discounted expected price of contingent claim becomes

1
—(Su + Sd)
g—2 7
1+r
The Black Derman Toy dynamics is given by the stochastic differential equa-
tion

dlogr, = [0, + pilog ry|dt + oy dWy,

which can also be written as

/
dlogr, = [Ht + I log Tt:| dt + o dWy,
O

. O't,
by using p; = —.
Oy
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We can choose the function o; to make the model consistent with the term

structure of spot rate volatilities.
dlogr, = 0ydt + odW,.

By integrating both sides, we get the following result

t t
logr; =logry —|—/ 05d3+/ odW;
0 0

t
=logry + / Osds + oW,
0

t
e = Tgexp </ O.ds + aWt).
0

In general for u < ¢, the solution can be expressed as

t
Ty = TI'y €Xp (/ Osds + o(W; — Wu))

2.8 Black Karasinski Model (1991)

Black and Karasinski [3] brings out a model, where the target rate, mean rever-
sion rate and local volatility are time dependent, however they are deterministic
functions. The future short term interest rate volatilities can be mentioned in-
dependently of the initial volatility term structure by determining the three time
dependent factors. As Black Derman Toy Model assumes, the Black Karasinski
Model also assumes that the short term interest rate have a lognormal distribu-
tion. In their original work, Black and Karasinski proposed a mean reverting

lognormal short rate model:
leg Ty = ¢t[10g Mt — log Tt]dt + O'tth, (286)

where p; is the target rate, ¢; is the speed of mean reversion and o, is the local

volatility. In solving the stochastic differential equation (2.8.6), we will assume
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that ay = ¢y and §; = ¢, log u, following [1]. Let Y, =logr; and define a new

t
Kt:/ agds.
0

By applying Ito’s integration by parts formula to e®*Y; we obtain

deterministic function K; as

d(e®Y;) = e K[/Y,dt + efdY,
= eMa,Yydt + " (6 — euYi)dt + oy d W)

= (B, + o dW7).

Integrating both sides and simplifying the result follows

t t
Y, = e 5tY, +/ e K=K 3 dg +/ e K=K g dW,.
0

0

If we further replace Y; by logr, then

t t
logry = e~ =K Jog +/ e K=K g ds +/ e KK g d W,

u

where u < t. Hence,

t t
ry = exp (e(KtK“) log ry, +/ e*(Kt’K“)ﬁsds +/ e(KtK“)ades)
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CHAPTER 3

ZERO COUPON BOND AND
OPTION PRICING

In this chapter, we will analyze the four interest rate models that are com-
monly used bond and option pricing. First, zero coupon bonds pricing formulas
will be given for the Vasicek Model and the Cox Ingersoll Ross Model. After
investigating pricing principles of these models the formulas will follow. The
binomial models of Ho Lee and Black Derman Toy will specifically be treated

together with some of their properties, in particular, on volatilities.

3.1 Vasicek Model for Bond Pricing

Under real world probability P, the model can be described by the stochastic
differential equation

dr; = B(a —r;)dt + cdW} . (3.1.1)

For pricing purposes, however we need to work with the risk neutral probability

measure Q. Hence, we use the Girsanov Theorem for the change of measure as

T 1 T
L(7,\) = exp ( / MW — = / A%lt),
0 2 0

dQ = L(r,\)dP.

follows: define

so that

Then, inserting dW} = dW2 — Adt into (3.1.1), we obtain

dry = B(a — ry)dt + o (AW — \dt). (3.1.2)
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Therefore, under the unique probability measure Q, equation (3.1.1) is equivalent

to the stochastic differential equation

A
dry = (a - Fa - rt) dt + O’thQ,

and hence, the bond value under the measure Q is

B(t,T) = E¥ (e_ftT rads

Ft> .

By Ito’s Lemma, the partial differential equation for bond pricing in Vasicek

Model takes the form

dB(t,T) Ao dB(t,T) 1 ,0*°B(t,T)
a2y A B L el A el G Y ST o R
dt b (a 3 rt) dr + 27 T o2 rB(tT) 0
B(T,T) =1.
(3.1.3)
The solution of this partial differential can be formed as [2]:
B(r(t),t,T) = A(t,T)e”¢&Dr®), (3.1.4)
Inserting (3.1.4) in (3.1.3) follows
—Cr —Cr Ao —Cr 1 2 2 —Cr —Cr
Ase —rACe - f a—?—r ACe +§0 AC%e —rAe =0,

and after simplification we find that
1
At—TAC’t—ﬁ(a—)\—;—r) AC+§U2ACQ—TA:0,

and
1
A; — (Ba+ \o)AC + 502146’2 =rA+rAC; — prAC.

hold. Here the subscripts denote the differentiation with respect to time ¢. For

the right hand side we assume that
rA+rAC, — prAC =0,
so that

rA(1+4+Cy—CpB) =0.
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The solution for C'(t,T") can be obtained from first order linear differential equa-

tion and it is
1
C(t,T) = B (1 — eiﬁ(Tit)).

On the other hand, for the solution of A(t,T") we have
1
— (aff 4+ o) AC + 5021402 =0,
so that
1
A+ AC (—(Ozﬁ + o) + 5020) = 0.

Fortunately, we now have a separable first order equation

%JFC( ZC—aﬁ—)\a)dt—O,

which implies

T
1,1 ey
log A(T,T) — log A(t, T) +/t (502@ (1 — 9~ B(T—u) 4 ,—26(T )))

_ AN L B(Tu)) _
(ﬁ(a—kﬁ)ﬁ(l e ) du = 0.

Having inserted C'(¢,T) and taking the integral it follows that

102 2 1 w=T
log A(T,T) —log A(t,T) + =— <u — e AT 4 —e‘zﬁ(T_“))
23 B 20 u—t
\o 1 u=T
( ﬁ ) ( B u=t

using the fact that A(T,T") = 1 so that log A(7,T') = 0. Then,

1
log A(t,T) % ( e_ﬁ(T_t)) + 5

_ﬁ (1 _ 6—2B(T—t)))

— (a + %) ((T —1) — % (1- e—3<T—t>)) .
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By taking the exponential of both sides, we obtain the solution for A(t,T) as

2

A(L,T) = exp <;_62 ((T —t)— % (1— e BT=0) 4 % (1- 6—25<T—t>)>)

() (7o)

and some re-arrangements take the solution into the form

A 2 2
A(t,T) =exp (—(T — 1) (a — ?0 — ;_52) + Af_ﬁ2 (1 _ 6—2[3(T—t))>

1 (T —t A 2
Go-rre-5-5)

Remark 3.1. The general form of the Ricatti equation is

=0

-1

w'(t) + [a(t) + d(t)]w(t) + b(t)w?(t) — c(t)
t
The solution of this equation can be written as w(t) = (—ti, where v(t) and u(t)
u
are solutions of the associated system of first order linear equations:

(1) + e(t)u(t) — dt)o(t) =0
W () — altyu(t) — b(t)o(t) =0
3.2 Cox Ingersoll Ross Model for Bond Pricing

Under probability measure P, Cox Ingersoll Ross Model can be described as
dr; = B(a — r)dt + o/ridWr, (3.2.5)
and Radon-Nikodym derivative in this case is
L(1,)\) = exp ( /0 ' M/ dWE — % /O ' )\Qrsds) :
Thus for the Cox Ingersoll Ross Model, if

AWE = dWR — \/r;
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is substituted in (3.2.5) we obtain

dr, = Ba — r)dt + o\/7; (thQ - )\\/Edt) . (3.2.6)

So, under probability measure Q the dynamics is governed by the stochastic

differential equation
dry = (Ba— (B4 oN)ry) dt + o/rdWE.

By the application of the Ito’s Lemma, the corresponding partial differential

equation for the bond price in Cox Ingersoll Ross Model can be specified as

dB(t,T) dB(t,T) 1 ,0*B(t,T) B
p + (Ba— (B+ o)1) o T30 e T rB(t,T) =0

B(T,T) =1.

The solution of this partial differential can be obtained, similarly as in Vasicek
Model [2]:
B(t,T) = A(t,T)e~¢®Tr,

The partial differential equation, in this case becomes
A" —rACe ™" — (Ba — (B + o N)r)ACe™ " + %aerC’ze_CT —rAe” " =0,
from which, by dividing e~¢" we find that
Ay —rAC, — (Ba— (B+ oN)r)AC + %aerC’2 —rA=0.
holds. After some re-arrangements, the equation turns to be
rA (%(7202 —Ci+ (B+oNC — 1) = [aAC — Ay
Assuming that the right hand side vanishes,
Ay — faAC =0, (3.2.7)
then we have

1
Cy — (B+0oN)C — 50202 +1=0. (3.2.8)
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We need to solve for A(t,T) and C(t,T): Equation (3.2.8)is a Ricatti equation
and its solution can be expressed as

ot T)
(T’

C(t,T)
where v(t,T) and u(t,T) are solutions to the following system of equations [22]:

V(T +u(t, T) — Bu(t,T) =0

1
u'(t,T) + Aou(t, T) + éazv(t, T) =0.

0 d
For 7 =T —t, where T is the bond maturity date, and ETi Thus, the
T
above system of equations may be transformed to
—'(7) + u(r) — po(r) =0, (3.2.9)
and
1
—u/(7) + Aou(r) + 502"0(7) = 0. (3.2.10)
By taking the derivatives of both sides of (3.2.9) as
W(1) =" (1) + Bv'(7), (3.2.11)

and using it in (3.2.10) we obtain a second order linear ordinary differential

equation for v = v(7)

—v" — BV (1) + Ao/ (1) + Ao fu(T) + %0%(7’) = 0. (3.2.12)

Expressing this in terms of D-operators results in a simple quadratic equation
1
D? — (Ao — B)D — ()\aﬁ + 502)] v(t) =0.

v+ Ao — —y+ Mo —f

2

and
v = /(B + Ao)? + 202 and hence the solution may be written as

The roots of this quadratic equation are where

o(1) = krexp((y + Ao — B)7/2) + kaexp((—y + Ao — B)7/2),
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v(0)

0

where k; and ky are arbitrary constants. Since C(T,7T) =0 = 2(0)’ v(0) should
u

be equal to 0 and hence, k; be equal to —ks. By setting k1 = 1 and ky = —1, v(7)

can be expressed as

v(1) = exp((y + Ao — 5)7/2) — exp((—y + Ao — B)7/2), (3.2.13)
Now, (3.2.9) implies that

1 1
v = 57+ Ag = B0 PTITE Sy ng — el (32.14)

Therefore we find that

1 1
u(r) = S(y+ Ao+ B)eT I — o (—y 4 do 4 B)el AT (3.2.15)

Since 7 =T —t, the solution of the Ricatti equation is obtained as in (3.2.13)
and equation (3.2.15). Therefore, the solution of C'(¢,T) can be written as
o, 1) = 20,
u(7)
Inserting v(7) and (1)
_ 2(exp((y +Ag = B)(T = 1)/2) — exp((=7 + Ao = B)(T" — 1)/2))
= (7 + Ao + B)e(rTAa=B(T—D/2 _ (—y 4 \o + [)e(-71+ro=B)(T~1)/2
2 (e —1)
(y+ Ao+ 5)er T — (—y+ Ao+ ()

Ot T)

Finally, simplifying the expression gives
2 (e —1)
c(t,T)= . 3.2.16
) = et @ - 12 (3.2.16)

Now consider A; — faAC' = 0 with fixed bond maturity 7', so that the bond price

is considered to be a function of ¢ only. Hence,

dA

2 BaA

7 BaAC,
is a separable equation, since

dA

7 = ﬁOZCdt,
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and integrating both sides,

log A(t,T) = / BaC(s,T)d

By taking the exponential, A(t,T) becomes

A(t,T) = exp (—ﬁa /t ' C(s,T)ds) , (3.2.17)

and by inserting equation (3.2.16) into equation (3.2.17)

A(t,T) = exp (—Qﬁa / ' e 0 -1 ds )

+ Ao +6) (T — 1) + 2y
The integral in A(¢,T) can be calculated by letting y = ¢""=*) then,

dy
29 Ao (T=s)
dS 76 )
and
ds = — dy dy
fyeW(t*S) fyy

Making use of the substitution and noting that

(v=Ao=B)(v+ Ao+ B) =7 = (B4 Ao)* =207,

the integral above can be computed

T efy(T s) _ 1
I = / = ds
¢ (Y H Ao+ B) (T — 1) + 2y

_1/1 (y—1) dy
Y Jerw—ty (Y+ Ao+ B)(y—1)+27 y

1 ~2y/(y — Ao — ) 1 1}
_v/w—w {(7+Aa+ﬁ)(y—1)+2v+(v—M—ﬁ)y 4.

Furthermore,
_9 y=1
7 = log|(v+ Ao+ 08)(y—1)+2
G-t e+ B0 W=D+2) s
1 y=t
+ logy ,
(v — Ao — ) e (T—)
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Since (v — Ao — B)(7 + Ao + ) = 202, the integral simplifies to

1 + Ao+ v
I == [— log((y + Ao+ B)(y — 1) +2v) + y¥rotp 1ogy]
o 27y yee(T—1)
y(rtATt8)/2y y=1
= |
o (Y+B+A0)(y —1) +27] |, _rirn
Ll 1 (AT HB)(T—1) /2
= | —log 2y — .
| e S

Hence, the solution A(t,T) is therefore, from (3.2.17),

2B«
A, T) = exp( = log

2,7/6('y+)\0+ﬁ)(T7t)/2
(y+ Ao+ 8) (T — 1) + 27) ’

which can also be expressed as

2B«
2/}/6(7+>\U+6) (T_t)/2

A(t,T) = ((7+ Mo+ B) (T — 1) + 27) '

Now, we can calculate the bond prices both in Vasicek and Cox Ingersoll Ross

Models by using the solutions of A(t,T") and C(¢,T). After computing the price
of bonds, we will be able to estimate their parameters. Then for comparing the
models, we use the prices of European call options. In the following sections, we

will show how to price a call option for Vasicek and Cox Ingersoll Ross Models.

3.3 Vasicek Model for Option Pricing

The price of a European call option on the zero coupon bond maturing at time

S with strike price K and exercise date T (with 7" < S) is [14]:

V(t) = P(t,5)®(dy) — KP(t,T)®(dy), (3.3.18)
where
1 P(t,S) o B
dl_O'_plong<, )+2, dQ—dl—Up,



and

 _93(S-T
o, = 7 (1 - e 01 L— e
P o 203

Here ®(z) is the cumulative distribution function of a standard normal random
variable.

In order to prove (3.3.18), we need the following lemma. This lemma estab-
lishes the joint distribution under probability measure Q of / ' r(s)ds and (7)),
for r(t). t

T
Lemma 3.3.1. [6] a) The bivariate Laplace transform of/ r(s)ds and r(T)
given r(t) is t
T
Pr(t,T,r,v,w) = E© {exp (—U/ r(s)ds — wr(T)) ’ r(t) = 7’]
t (3.3.19)
=exp [A(t, T,v,w) — B(t,T,v,w)r],

where
T=T—t, B(tT,v,w)=vB(t,T)+ wBy(t,T),

1—e P

Bl(t, T) — ﬁ

and  By(t,T) = e "".

The first term in exponential is

A(t, T, v, w) = —UAl (t, T) - ’U)Az(t, T) + %Uzcn(t, T)

1
‘l‘UlUClQ(t, T) + 521)2022 (t, T),
where
1—e P

At T) = a (T— 5

>, Aq(t,T) :oz(l—e_ﬁT),

and Cq, Co and Cy stand for

2

C(t,T) = ;—53 [Qﬁr — 3447 — 672&} ,
o? o?
012(t7T) - 2_ﬁ2 (1 - eiﬁT) ’ 022(t7 T) Y (1 - 67257-)



T
b) Hence r(s)ds and r(T') given r(t) have a bivariate normal distribution

under Q with '

EQ[r(T) | r(t)] = Bo(t, T)r(t) + Ao(t,T) = o+ (r(t) — )™,

T (1—e )
E° / r(s)ds ’ r(t)| =Bi(t,T)r(t) + At T)=ar+ (r(t) — Q)T,
t
T
for the expectations. Moreover, the variances of r(T') and / r(s)ds given r(t)
t

are

0_2

Var@r(T) | r(t)] = Cyu(t,T)= 23 (1 - e—ZﬁT) ;

0_2

2 [257 —34+4e P — e‘wT] .

Vaﬂ?LZTr@ﬁk‘r@ﬂ =Cn(tT) =

T
Furthermore, covariance of (7)) and (/ r(s)ds ‘ T(t)> is
t

T 2
Cov? [T(T), / r(s)ds ‘ r(t)} =Cp(t,T) = ;—@ (1- 67’87)2.
t
The proof of this lemma can be found in [6]. However, below we explain the
proof of (3.3.18)

Proof of Equation (3.3.18). The payoff on the call option at time T is
(P(T,S) — K)4 :=max{0, P(T,S) — K}.

Define the indicator random variable:

1, if P(T,S,r(T)) > K

0, otherwise.

I =
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The value of the option at time ¢ < T can be written as in [18]

V(t) = EQ e I &ds(p(T, 8 0(T)) — K, ] r(t)]

= B9 |1 IO (P(T, 8,r(T))

r(t)] — KE® [Je—ff“s)ds

r(t)]

— FQ e r(s)ds

r(t)} — KE® [Je*ff“s)ds

r(t)] .
(3.3.20)

Let Py and P5 be two new measures, equivalent to Q with Radon-Nikodym
derivatives:
dPl e fts r(s)ds sz e~ ftT r(s)ds

- , - _ . (3.3.21)
dQ EQ |:€7 fts r(s)ds ’ T(t) — ,r,i| dQ EQ |:€7 ft r(s)ds | T(t) — ,,,:|

Then, from equation (3.3.20) we have

_ 7ftsr s)ds _ @ _
V(t) = EQ[e I r(t)—r}EQ{dQI‘r(t)—r}
—~KE® [e‘ftTr(S)dS r(t) = r} E® {2—22[ ’ r(t) = 7’]

= P(t,S,r)EN I | r(t) = 7] — KP(t,T,r)E™2[I | r(t) = 7).

Since E™[I | 7(t) = r] can be written as Pr/(P(T,S) > K | r(t) = r), the value
of a call option V'(¢) takes the form

V(t) = P(t,S,r)Priv(P(T,S) > K |r(t)=7)

—KP(t,T,r)Pr™(P(T,S) > K | r(t) = r).

It remains only to establish the distribution of r(7") under P; and P,. Let us
first look at Py:

Pr(t,T,r,1,w) =explA(t,T,1,w)— B(t,T,1,w)r]
_ EQ |:6_ ftT r(s)ds—wT(T) ‘ r(t) — T]
= P(t,T,r)E™ [e‘wr(T) |r(t) =r],
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hence, we have

EP [e‘wr(T) | r(t) = 7"}
=exp|A(t,T,1,w) — A(t,T,1,0) — (B(t,T,1,w) — B(t,T,1,0))r]

1
= exp [—wAg(t, T) +wCis(t,T) + §w2022(t, T) —wBs(t, T)r| .

Comparing this equation with the moment generating function of normal distri-
ot
bution, exp | ut + 5 ) shows that r(7T") given r(t) = r has normal distribution

under P, with expectation

EP2 [T<T) ‘ 71(25) - 7“] = AZ(ta T) - CY12(757 T) + BQ(t, T)T'
=a+(r—a)e T %z (1- e—ﬁ(T—t))2

=T,

and the variance

Var®[r(T) | r(t) = r] = Cas(t, T) = ;—ﬁ (1 — e 28-0)

Hence, we obtain the standard normal distribution expressed as
Pri2(r(T) < v |r(t) = 1) = ®(dy),

where
. AT,S)—log K
r* = B(T.9) ) (3.3.22)

Here as exp(A(T,S) — B(T, S)r*) > K, we can choose r* given in (3.3.22). Also,

from Lemma (3.3.1),

P(t’ S) = EQ e~ ftT T(S)ds—f;‘ T‘(S)ds

r(t) = ?"]

= P(t,T)ER2[P(T,S,r(T)) | r(t) = 7],
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which can be expressed as
P(t,8) = P(t,T)E" [AT9- BT () o]
1
= P(t, T) exp |:A(T, S) — B(T, S)TQ —+ §B(T, S)2022<t7 T):| .
Hence, it follows that

log _PtS) A(T,S) — B(T, S)ry + %B(T, S)?Cos(t,T) —log K.

KP(t,T)
Therefore,
" r*—ry AT, S)—log K — B(T, S)ry
ng(t,T) B(T,S)\/Cax(t,T)
log(P(t,S)/KP(t,T)) — 5B(T, 5)*Caa(t, T)

Y

B(T, S)\/Cau(t,T)

which simplifies to

1 P(t,S) o}
dy = —log o2 %p
2T BKPWHT) 2

where
1— efB(S*T))Q (1 — e~281-9)
52 20 '

Next, we consider the distribution of r(7") under Pjy:

= B(T, S)*Coy(t,T) = o (

E? [e_j;fs’"(s)ds_wr(T) ‘ r(t) = r} = P(t,S)EN [ —ur(T) ) T} .

Here, we compute

[ft

_ EQ |:€7 ftT r(s)dsfwr(T)EQ |:€7 fﬁ r(s)ds

r(t) =]

r(T)] ‘r(t) — r}

_ 50 [e‘ [T r(s)ds—wr(T)+A(T,S,1,0)— B(T,S,1,0)r(T) ’ r(t) = T] ‘

38



This equation can further be simplified as follows:

EQ [ei fts r(s)ds—wr(T) ‘ T(t) _ T]

_ eA(T,S,l,O)EQ |:6— ftT r(s)ds—war(T) ‘ T(t) — r:|

= explA(T,S,1,0) + A(t, T, 1,ws) — B(t, T, 1, ws)r],

where we set ws as
1 — e—B(5=T)

g

Hence, similarly as in computations for Py, we calculate

wy =w+ B(T,S5,1,0) =w +

EP [emorM) | p(t) = r] = exp[A(T, S,1,0) + A(t, T, 1, w,)

—A(t,5,1,0) — (B(t,T,1,wy) — B(t,5,1,0))r],
so that

ED [G*W(T) | r(t) = T}
1
= exp[—A1 (T, S) + §Cll(T, S) — Al(t, T) — ngg(t, T)

1 1
+§Cn(t, T) 4+ woCia(t, T) + §w3022(t, T)+ A (t,S)

—5Cu(t,8) ~ {Bi(t,T) + w1, T) — Ba(t, $)}r].

After some simplifications this turns out to be

En [e*w’”(T) | r(t) = r}
= exp[—wAz(t, T) + U)Clg(t, T) + w31 (T, S)C22(t7 T)

1
+§U)2CQQ (t, T) - U}Bg(t, T)T]
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Thus r(T') given r(t) = r is normally distributed under P; with expectation
EP[r(T) | r(t) =7r] = As(t,T) — C1a(t, T) — By(T, S)Cos(t, T) + Bo(t, T)r

, (1 — e A=) (1 — =280
g 253

=To — O

=T,

and the variance

Var®[r(T) | r(t) = r] = Cas(t, T) = ;—ﬁ (1 — e 20-0)

Therefore, it can be expressed as
Pri(r(T) < r*) = ®(dy),

where

ot e N B(T,S)Cy(t,T)
\/022 (tv T) \/022 <t7 T) Cos (t, T)

= d2+0'p.

dy

3.4 Cox Ingersoll Ross Model for Option Pric-
ing

Let C be the price at time 0 of a European call option on the zero coupon
bond maturing at time U = T+ 7 with exercise date T" and an exercise price K.

Then given r(0) = r,
C = P(0,U,7)x*(d, A\i; 1) — KP(0,T,7)x*(d, \2; y2) (3.4.23)

Where x*(d, \;y) is the cumulative distribution function of the non-central chi-

squared distribution with d degrees of freedom and non-centrality parameter \.
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The required inputs d, A1, Aa, y; and ys are calculated as follows

i¥51eY
d - 7,
Vo 8y2e Ty
LT (@ 1) 2+ (7 + B+ ?BU - T)) (T — 1))
N — 8y2e Ty

o* (T = 1)(2v+ (v +B) (T = 1))’

for the degrees of freedom and non-centrality parameter. Denote

2 2 (v()+B)(T—t)/2
A, T,v,w) = 2fa log y(v)e ,
o? (02w +7(v) + ) (T —1) +27(v)

v(v) = +/F%+ 2020,

and

w(2y(0) + (3(2) = BT — 1) 4 20(e T 1)
(02w +7(v) + )T — 1) + 27(v) '
By taking v = 1 and w = 0, it follows that

- (y+B)7/2
i) =g (2 )

B(t, T,v,w) =

o v+ B)(em —1) +2y
= VPR,
Blr) = 2(e™ = 1)

(y+B8) (e —1)+2y
On the other hand, the variables of the distribution are

,,,.* 7,.,*
yl:k‘_l and y2:k:—2’
where
b — o?(eT —1)
L 22yt (y+ B+ a2BU - T))(T — 1))
by — a2t —1)

227+ (v+B8)(e” = 1))
AU -T)-logK

B{U-T)

*
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Now, we will derive the equation in (3.4.23). For notational convenience and
without loss of generality we will assume that ¢ = 0. The price at time zero of
a Furopean call option with maturing 7" and strike price K with the underlying

zero coupon bond maturing at time U =T + 7 > T is

C = E9 e~ Jo "&ds(P(T U, 7(T)) — K),

r(0) = r] :

Let us consider under what circumstances will the call option be exercised; that

is, if and only if

P(T,Ur(T)) > K < CAU-T)=BU-T)r(T) < K

< r(T) < A(Uj T)—logK =r".
B(U - T)

Thus, the call option price of the Cox Ingersoll Ross Model becomes

C =E° [e*foT r($)ds p(T, U, (T)) [ (+(T) < )

r(0) = 7’]

_E9 [e— I r@ds T (1(T) < 1)

r(0)=r
] (3.4.24)
— E@ [e—f'oUT(SMSJ(r(T) <)

r(0) = r}

_EQ [e* Jo T e 1 (p(T) < 1)

r(0) = 7‘] :
Let Py and P, be two new measures, equivalent to Q with Radon-Nikodym

derivatives:

dP; e fOU r(s)ds AP,y e~ fOT r(s)ds
dQ  po eI r@ds | o) =] dQ  pe[e- s r@ds | o) = 5|
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Then, from equation (3.4.24) we have

C =E° [e’ Iy r(s)ds r(0) = r] E° [%I(T(T) <7r*)|r(0) = r]
—B [l 7 | p(0) = | B9 {%K[(r(ﬂ <) | r(0) = r}

= P(0,U,r)EP[I(r(T) < 7*) | r(0) = r]

—KP0,T,r)E®[I(r(T) < r*) | r(0) = 7].

Since EP[I(r(T) < 7*) | (0) = r] can be written as Prf*(r(T)) < r* | r(0) =r),

the value of a call option C' becomes

C = P,Ur)Prf (r(T) <r* | r(0) =7)

—KP(0,T,r)PrP2(r(T) < r* | 7(0) = r).

In order to establish the distribution of (7") under P and P, let us first consider
Pz:

EQ |:67 fOT r(s)ds—wr(T) ‘ 70(0) — 7":| = P(O, T, T’)EPQ |:@7’LU7“(T) ‘ 7“(0) = 7’:| .
Thus, we ahve
B2 [ @) | (0) = 1]

= exp[A(0,T,1,w) — A(0,7,1,0) — (B(0,T,1,w) — B(0,T,1,0))r].

By inserting A and B for v = 1, and using v = /32 + 202, the expectation can

be written as

2 [ ,—wr + M _1)+2 2Bax/o”
B r =] = <(02157+ gl n)feﬁ)(eﬂ’ )— 1) 1 27)

oty + BT -1 +27 O+ e 1) +2y

[ (e (= BT = ) 2 1) 27 — 1) 1
|- ( )]
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Now we concentrate on the terms involving w to establish the form of the Laplace
transform. Within the exponential term we have
w2y + (v = B) (@ - 1) +2(e2" — 1)
X =
(0w +v+B) (" —1) +2y

w4 (= BT - 1) + 27~ 1)
@7+ (v + BT — 1)(1L + 2kyw)

where
a?(eT —1)

b S T BT = D)

This can be further simplified to

2y + (v + B)(erT — 1))(1 + 2kyw)’

by indicating # and ¢ as

24T 20 AT _ 1\2
0 = Py Py (4y“e™ +20%(e 1)%),
4y2e Ty
— T e ==
o =2(e r—0= T 1)

Similarly, the first part of expectation can be expressed as

Y = (Y+B) (" —1)+2y el (- v x constant
T\ + BT -1 + 2y L+ 2haw |

where

d = 4Ba/a”.

Hence,

1\ A
EP [6—(k2w)(r(T)/k2) | r(0) = r] = (m) exp (2(1+—;/€2w)) X constant,

for Ay as
8y2e Ty

M= T Dt (4 AT 1)
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Compare the Laplace transform with equation

d
Ele ] = HE [e—k(wim)z]
1=1

d
>~ 1 1
— H/_oo Nor exp (—k‘(w2 + 20w + 67) — §w2) dw

k
- I I —1/2 - 2
(14 2k) exp( 1—1—2]{;51) :

yields
A
B [e™" ] = (1 + 2k)~"?e 2 exp <ﬁ> :

where

d
A=) 5
=1

Note that we should also mention that the transform is defined for k > —1/2.
Therefore, under Py, r(T")/ky has a non-central chi-squared distribution with

d degrees of freedom and non-centrality parameter \,:
Pri(r(T) < r*[1(0) = r) = Pri*(r(T) [ky < 1" [ky | 1(0) = 1) = x*(d, Aai ),

where y, = r*/ky and x%(d, \;y) is the cumulative distribution function of the
non-central chi-squared distribution with d degrees of freedom non-centrality pa-
rameter \.

Next we consider the distribution of 7(7") under Py:

EQ |:€— fOU r(s)ds—wr(T)

1(0) = | = P(O,U,r) B [emmD

r(0) = T] :
The expectation in this case becomes

EQ [ei fOU r(s)ds—wr(T) ‘ 7,(()) _ T}

_ EQ |:€— fOT r(s)ds—wr(T)EQ |:€— fOU r(s)ds

r(T)} ‘T(O) - r}

e |:e_./-OTT(s)ds—wr(T)+A(T,U,I,O)—B(T,U,I,O)T(T) ‘ r(0) = T} ‘
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Taking the term A(T, U, 1,0) outside of the expectation follows

EQ [6_ fOU r(s)ds—wr(T) ‘ T(O) — T]

= exp(A(T, U1, O))EQ [e—foT r(s)ds—wir(T)

r(0) = r}

=exp(A(T,U,1,0) + A0, T,1,wy) — B(0, T, 1,w;y)r),
where we have denoted w; as
w; = w4+ B(T,U,1,0) = w+ B(U —T).
Hence,

En [G’W(T) ‘ r(0) = r} = gh [e‘foU r(s)ds—wr(T) ‘ r(0) = r] /P(0,U,r)
= exp[A(T,U,1,0) + A(0,T,1,w;) — A(0,U, 1,0)

_(B(Ov T7 17 wl) - B(07 U7 17 0))T]
Similarly, we concentrate on the terms involving w; to establish the form of the

Laplace transform. First, we have

2y +AIT/2 200/
1)+ 27>

exp (A(0,T,1,wy)) = ((02w1 ++8) (e —

( 2y BT/ > 2fafo?
- \(Pw+y+ B+ 2BU = T)) (e —1) + 2y

1 28a/a?
= — X constant,

where
o2 —1)

S ST (4 B+ B - T — 1)

Next, consider
w+ BU =T))2y+ (v = B)(" = 1)) +2(7" = 1))r
(2w 4y + B+ 02B(U —T))(e7T — 1) + 2y
9(1 + 2/{71w) + ¢
(27 + (71 B+ 2B~ T)( — 1)1+ 2kyw)

B(0,T,1,wy)r = (
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To simplify the equation, we denote

27+ (v =" = 1))y + (v + B+ *BU = T)) (" —1))r

0 =
a?(erT) —1
_ 4" 1 20°(@7 — 1)’ + ?BU ~ T )2y + (v = B)(" = 1))
o2 — 1)
and
¢:=2" = 1)r+BU-T)(2y+ (y—=B) (" —1))r —6 = —gj(zjiwn

Hence, the expectation can be expressed as

P (k1w)(r(T)/k1) — | = 1 " A1
El[—w ! 0_]_ x constant,
‘ r0)=r <1 + 2k:1w) P (2(1 + 2k‘1w)> constal

where \; is given by

8y2e Ty

o2 —1)2y+ (y+ 5+ (TQB(U —T))(eT —1)

A =

Note that if U = T, then k; = ky and A; = Ag, as expected.
Therefore, under Py, r(T')/k; has a non-central chi-squared distribution with
d degrees of freedom and non-centrality parameter A;. Thus, we derive the ex-
pression (3.4.23) as
Priv(r(T) < r*) = x*(d, M\ m),

where

*

or
yl—kl-

As a result, we showed how the required inputs be calculated for pricing
European zero coupon bond option in Cox Ingersoll Ross Model. Now, we are
able to calculate the price of options with (3.3.18) for the Vasicek Model and with
(3.4.23) for the Cox Ingersoll Ross Model.
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3.5 Ho Lee Binomial Tree

Ho Lee Model is given by
th = tht + O'th.

A numerical approximation for Ho Lee Model [21] based on Euler-Maruyama
method is given by
Tkt = Tk + OpT + 0, AW,

where AW}, is an approximation of dW; and 7 stands for the time steps. Since

dW,=e+v/dt, we may write
i1 = T + 06T + okER/T.

Note that ¢, is a random number drawn from a standard normal distribution. In

the Ho Lee binomial tree, the general form of the expression for ry, ; is

Thaljil = Tk + MuT + 0k\/T,

for an up move and
Phtlj = Thj + MeT — 0k\/T,
for a down move which can be seen in Figure 3.1.

r(k+1,j+1)
rk,j)

r(k+1,3)

Figure 3.1: Ho Lee Model One Period Binomial Tree

In these equations my stands for the numerical approximation to the drift

value 6. Now, for the first step, we have

12 = To + MoT + 0o/T, (3.5.25)
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and
ri1 = T0o 4+ MeT — 0oV/T. (3.5.26)
The, rates for the second step are

Tos = Tio+MuT + 01V,
2,2 :T1’2+m17—01ﬁ

=711+ mT+ Ulﬁ.

Finally the down-down scenario denoted by rs 1, can be written as

21 ="T11 + myT — 0'1\/;.

Since Ho Lee binomial tree is recombining lattice we can write rp 5 as up move
from 7, ; and down move from 7r; 5. A down movement from r; » must be equal

to an up movement from r; ;
r1,2+m17—01\/F:r1,1 —|—m17'—|—0'1\/? (3527)

Solving o7 from equation (3.5.27) yields

o —Ti1
21
and using 1 and 7 o from equations (3.5.25) and (3.5.26), we find that
200\/?
0'1 = — =
2T

By a simple induction, on the Ho Lee binomial tree, volatility is constant over

01 —

aggp-

time, that is: o, = 0.
Therefore,
Tkt1j4+1 — Tkyj = MpT + o\/T,
and
Tl j+1 — Thaly = 20V/T.

Furthermore, the relation between the states 1 and k£ + 1 at time k is simply

Thgt1 — Tt = 2koy/T.
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3.6 Black Derman Toy Binomial Tree

Black Derman Toy Model is given by the stochastic differential equation

dlogr, = [0, + pilog ry|dt + oy dWy,

where
1 o/
= — 10 = —.
Pt di g 0t o,
Or equivalently,
/
dlogr; = [9,5 + It log 7}] dt + o, dW;, (3.6.28)
oy
and setting u,; for logr;
/
dut = |:9t + a—tut:| dt + Utth (3629)
o

If 0, is a decreasing function, then o;' becomes smaller than zero. In this case,
Black Derman Toy Model satisfies the mean reversion property. On contrary, if o
is an increasing function, then o,/ becomes greater than zero. In this case, Black
Derman Toy will grow and it has no mean reversion effect. If o, is a constant
function, then o,/ be equal to 0. Then the Black Derman Toy Model becomes a
specific model

leg Tt = Odt + O'tth,

which is the so-called Kalotay Williams Fabozzi Model [24].

The expected value of equation (3.6.29) can be expressed as

/

duy = [@t + U—tut} dt. (3.6.30)

Ot

Solution of the first order linear differential equation (3.6.30) for u, is given by

t
0,

U = {@ +/ —ds] O¢,
0o 0 Os

and substituting log r; for u, gives

1 Lo,
ry = exp ({ 98 7o —l—/ —ds] at)
go 0 Og
(atlogro) ( /t 0, )
=exp|———— |exp|o; | —ds]|.
UO 0 US
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Multiplying and dividing by r¢, this follows that

t
—_ 08

ry = Toexp (Ut - 90 log 7“0> exp (crt/ J—ds) )
0 0 s

From (3.6.30), it is clear that the expected value of Black Derman Toy Model

depends on the volatility term ;. If o; is a decreasing function, then the first
term of the equation above will have negative power and will motivate a decrease
in the short rate. If o; is an increasing function, then the term will have positive
power and will motivate an increase in the short rate. It is crucial to note that
mean reversion property of Black Derman Toy Model comes from the volatility
parameter.

If 0 is constant, then the equation simplifies to

t
- 1
Tt = To €Xp <Ut - 0o log 7’0) exp (60}/ U_ds) .
0 0 s

1
In general the volatility term oy is very small so that the term — becomes large.
Os

Moreover integrating this value causes a larger value for this part. Therefore, in

the second term of equation, the exponential part most probably becomes large,
and the smaller volatility values, can cause the unboundness of Black Derman
Toy Model. Suppose the case

O't/

n— a/’

O

and a is constant. In this case, the solution of (3.6.30) is simply given by
0 0
ur = |ug + — | exp(at) — —.
a a

0

Since 0 < r < 1, ug = logrg will be negative, so that ug + — could be positive or
a

negative depending on the sign and the magnitude of the drift 8. For a > 0 and

uy + — < 0, then u; — —oo and thus r; = exp(u;) — 0. Moreover, for a > 0, if
a

0

ug + — > 0, then, u; — oo and r; = exp(u;) — oo. So, we can conclude that for
a

a > 0, the Black Derman Toy Model’s short rate may either explode or converge

0 0
to zero. If a < 0, then u; — ——, which indicates r, — exp (——). Therefore, we
a a

o1



predict that if volatility term decrease over time, the short rate that Black Derman
Toy Model generates converge to the target rate. This target rate depends on
the sign and the magnitude of 8 as well as a.

Suppose the case where the volatility is linear, that is,
oy = mt + oy,
so that
gy = 1M,

where the m is a constant. When the volatility is linear and if # is constant then
the expected value of Black Derman Toy Model becomes

t 0 t
Tt = To€Xp ((ﬁ> log 7‘0> exp <(9t + ﬂ) log |:m——|—0-0 > .
0o m 0o

If m is negative, the first exponential term increases, since logrg < 0, but the

. . . mt + o .
second exponential term which contains log {—0} becomes negative. So,
0o

the second term decreases if # > 0, and increases if # < 0. A similar result can

be drawn for positive m. Hence, for 0,/ = m, the short rate that is generated by
Black Derman Toy Model can grow without bound or tends to the target rate for
either > 0 or 8 < 0. There is also positive probability that o, = mt + ¢ can be
negative, for negative m. But for o; < 0, its logarithm can not be defined. As a
result for linearly decreasing volatility of Black Derman Toy Model, with m < 0,

it should satisfy

or _ mT +og
(o)) n (o)
mT
=14+ —>0.
0o

A numerical approximation of Black Derman Toy Model is given by the Euler-

Maruyama discretization as

U1 = Wi, + (O + prug)T + OrERNT, (3.6.32)
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!/

o
where pp = L Then, o4’ can be approximated by a forward finite difference,
Ok

(ok41 — o) /T, so that an approximation to py is given by

oy = Tk = OW)/T (3.6.33)

Ok

We now have

g — 0 T
Uk+1 = U + (Ok + Muk) -+ Jk5k\/F
k

= U, (1 + —(O-k+1 — Uk)/TT) + ekT + O'kEk\/F

Ok

Ok+1
= ——Uug + ‘ng + O'k&fk\/F.
Ok

The expected value of uyq is

Ok+1

Ug+1 = U + QkT. (3634)

Ok
Now, in order to reach for the recurrence relation in (3.6.34), we write

01
Uy = —Ug + 90’7‘,
0o

02 02 (01 02 02
Uy = —Up + 917' = — | —U + 90’7’ + 91’7’ = —Up + —907' -+ 917’,
01 01 \ 0o 0o 01

g

k—1

k Ok Ok

U = Up_1 + Qk_lT = —Ug + E (—Qj_ﬂ') + ek_lT.
Ok—1 (o) ) 0

We see that uy and thus logry depend on the volatility. In particular, if

Ok+1
O ’
where « is a constant, then
k—1
U = Oék’lLo + E Ozjek_j_lT.
Jj=0
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If exp(uy) is replaced by r, then

k—1

T = To€xXp ((o/C - 1) log rg) exp (Z ajﬁkj17'> )

§=0
In the equation if a > 1, the first part of the equation decreases since logry < 0.
Moreover, if 8 < 0, the second term also decreases and short rate of the model
converges to the target rate. On the other hand, if 6 > 0, the second part of
equation increases, hence we either reach the target rate or the second part of
the equation dominates. Similar conclusion may be given if e < 1. Therefore, to

obtain more logical results, it is desirable that « be close to 1.

Returning back to equation (3.6.32), and inserting log ry for uy, we have

logrpy1 = logry, + (O + prlog i)™ + orerV/T,

so that
Tke1 = Tk €XP ([Hk + prlogr] T+ akskﬁ) :

This expression is then used to generate r, and ry, respectively for up and down
move, to construct the binomial Black Derman Toy tree for short rates. For the

up move from rq, it yields

Tw =T12

= roexp(moT + 0oV/T),

then, for the down move from rq, we have
Tqe =T11
= rgexp(moeT — oo\/T).
We can also take myq from equation (3.6.28)

0o
mg = 6 — — logry,
0o

o4



and compute the ratio of r, and ry as

Ty _ 200 \ﬁ
— = ,
Td

so that,
logr, — logry = 200\/T.
In the Black Derman Toy Model the general expressions for ry ; are

Thtlj+1 = Tk €xXp(my ;7 + Uk\/F)a
for the up moves, and
Tk+1,j = Tk,j eXp(mk,jT - Uk\/F),
for the down moves. For example the first step can be set to
1.2 = 1o exp(moT + 0oy/T),

and
1,1 = roexp(mot — oo\/T).

Then, for the second step, rates 791, 722 and 753 can be computed as

ros = T12exp(mioT + 01V/7),
Too = rigexp(miaT — o1V/T) = rigexp(miat + o1v/7),
21 =T11 eXp(mmT — 0'1\/;).

Furthermore, by inserting 71 2 and 7 ; into equation of 75, we obtain

o exp(moT +00v/T) exp(my o7 — 01\/T) = 1o exp(moT — oo\/T) exp(my 17+ 01/T),

which simplifies to

20'0\/; + (m172 — m171)7' = 20'1\/;.
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Hence, arranging the equation gives

_ 200\/?“‘ (ml,g — mlyl)’/'

2\/T ’

which shows that only if m; 9 = my 1, 01 is the same as the initial volatility oy.

01

Since, we want volatility change over time, the drift m should be the function of
time as well as the level. So we should keep it in the form my ; to denote the

time and the level by subscripts.
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CHAPTER 4

APPLICATION

In Chapter 3, we have shown how to price a zero coupon bond and option
that is written on such a bond by using both the Vasicek and the Cox Ingersoll
Ross Models. We have also mentioned some of the features of Ho Lee and Black
Derman Toy Models. In this chapter, we will estimate the parameters of Vasicek
and Cox Ingersoll Ross Models from a real data set for the beginning days of each
month of the years 2004 and 2005. Furthermore, we will show the procedure for
generating binomial trees for Ho Lee and Black Derman Toy Models. After that,
we will calculate the value of options that are written on five years bond with
maturity four years for different exercise prices by using the formulas obtained in
Chapter 3. For binomial models we need to trace backward for pricing procedure.
However, we specify some of the descriptive statistics to get some idea about our

real data.

4.1 The Data

In this work, we took the data from June 1, 1976 to December 31, 2007.
Since yields are already interpolated by U.S. Treasury, we do not need to do so.
Here, we present some descriptive statistics for 1-5 years constant maturity U.S.
Government Bond rate data in Table 4.1.

According to Table 4.1, range of the interest rate series decrease as time to
maturity increase and also, all the series are skewed positively. Moreover, there
is an inverse correlation between standard deviation and time to maturity of the

bonds: the longer the time to maturity, the smaller the standard deviation.
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Figure 4.1: Historical Graph of Interest Rates

4.2 Parameter Estimation and Constructing Bi-

nomial Trees

In this section of the thesis, we will to calculate the price of a European call
option by using Vasicek, Cox Ross Ingersoll, Ho Lee and Black Derman Toy
Models. For Vasicek and Cox Ingersoll Ross Models, we will estimate the related
parameters so that, we will be able to use the formulas given in the Chapter
3. On the other hand, we will investigate binomial trees of Ho Lee and Black

Derman Toy Models, for the interest rates.
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Table 4.1: Descriptive Statistics for Interest Rates

Statistics 1 Year 2 Years | 3 Years | 4 Years | 5 Years
Mean 0.0656 0.0688 0.0704 0.0716 0.0729
Standard Error 0.0004 0.0004 0.0003 0.0003 0.0003
Median 0.0588 0.0627 0.0647 0.0661 0.0676
Mode 0.0546 0.0611 0.0650 0.0460 0.0455

Standard Deviation | 0.0325 0.0314 0.0304 0.0296 0.0289
Sample Variance 0.0011 0.0010 0.0009 0.0009 0.0008

Kurtosis 0.5843 0.3063 0.2347 0.1862 0.1269
Skewness 0.8054 0.7227 0.7319 0.7564 0.7718
Range 0.1643 0.1585 0.1525 0.1471 0.1419
Minimum 0.0088 0.0110 0.0134 0.0171 0.0208
Maximum 0.1731 0.1695 0.1659 0.1642 0.1627
Count 7890 7890 7890 7890 7890

4.2.1 Parameter Estimation for Vasicek Model and Cox

Ingersoll Ross Model

The bond price formula for Vasicek model was formed in the preceding chapter

as in equation (3.1.4). The components of this equation were
1 —B(1-1)
C(taT) :B(l_e )7

and

2 2
A(t,T) =exp (—(T —t) (a — % — ;_52) + 4;‘_52 (1- 6—25(T—t))>

Now, we need to estimate the parameters of Vasicek Model, namely «, (3, o and A,

by the method of calibration. Although, there are many calibration methods, we
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minimize the sum of squares of the difference between the data which generated

by the models and the real observed data. By formulation

Bi(a, B,0,)\) = (By(11 /o, 3,0, )), ..., Bt/ v, B,0, )T,

and

Jt(aa 57 g, )\) = (Pt - Bt(aa 57 g, )‘)T(Pt - Bt(Qaﬁa g, )‘)

We want minimize this calibration function Ji(«, 3,0,A). It is important to
choose initial values of the parameters, since the value of calibration function
vary with respect to different initials. In this study, we tried from [0.01 0.01 0.01
0.01] to [0.1 0.1 0.1 0.1] for initials of «, 3, o and A respectively, so we tried
10000 initial values and we got 10000 function values. Then, we took the initials
that generate minimum value of calibration function J;(a, 3, o, ). Moreover, we
took maximum number of function evaluations as 5000 and maximum number of
iterations were allowed as 700 in our calculations. Based on the criteria of the
smallest function value and ¢ should be positive, the initial values and estimated
parameters are tabulated in Table 4.2.

According to results, & tends to move straightly upward from 0.0496 to 0.0910.
This represents the long run equilibrium value which the interest rate reverts. In
other words, interest rate is expected to increase in the long run. The parameter
B shows the speed of adjustment, the positivity of this parameter ensure stability
around the long term value. Model volatility can be seen from the parameter &,
where all the 6’s are smaller than 0.02. The market price of risk, A , shows the
increase in expected rate of return on a bond. It can be thought as the return
of per unit risk with respect to risk free investment. In other words, it is the
cost of taking the risk instead of risk free investment. According to estimated
parameters, taking the risk is the least meaningful in 01/07/2007.

The bond price for the Cox Ingersoll Ross Model had the same form as in the
Vasicek Model, where the elements of (3.1.4) were

2(e7T= — 1)
(v + Ao+ B) (T — 1) + 27

Ot T) =
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Table 4.2: Estimated Parameters for Vasicek Model

Initials Estimated Parameters

Date o Bi o Ai Q; Bz o) A

02.01.2004 | 0.04 | 0.09 | 0.03 | 0.01 | 0.0496 | 0.1267 | 0.0108 | 0.0101
02.02.2004 | 0.04 | 0.09 | 0.03 | 0.01 | 0.0496 | 0.1266 | 0.0114 | 0.0101
01.03.2004 | 0.04 | 0.10 | 0.02 | 0.01 | 0.0463 | 0.1288 | 0.0112 | 0.0103
01.04.2004 | 0.04 | 0.09 | 0.01 | 0.04 | 0.0451 | 0.1016 | 0.0075 | 0.0412
03.05.2004 | 0.04 | 0.10 | 0.04 | 0.03 | 0.0497 | 0.1354 | 0.0101 | 0.0316
01.06.2004 | 0.04 | 0.09 | 0.03 | 0.05 | 0.0500 | 0.1224 | 0.0076 | 0.0525
01.07.2004 | 0.05 | 0.10 | 0.01 | 0.08 | 0.0551 | 0.1109 | 0.0079 | 0.0821
02.08.2004 | 0.05 | 0.10 | 0.04 | 0.01 | 0.0614 | 0.1382 | 0.0151 | 0.0104
01.09.2004 | 0.05 | 0.07 | 0.04 | 0.01 | 0.0523 | 0.1051 | 0.0091 | 0.0121
01.10.2004 | 0.05 | 0.09 | 0.04 | 0.07 | 0.0620 | 0.1288 | 0.0128 | 0.0710
01.11.2004 | 0.06 | 0.08 | 0.09 | 0.03 | 0.0630 | 0.1191 | 0.0128 | 0.0378
01.12.2004 | 0.06 | 0.08 | 0.01 | 0.07 | 0.0662 | 0.0887 | 0.0081 | 0.0710
03.01.2005 | 0.06 | 0.10 | 0.02 | 0.02 | 0.0670 | 0.1191 | 0.0135 | 0.0211
01.02.2005 | 0.06 | 0.09 | 0.02 | 0.07 | 0.0700 | 0.1132 | 0.0120 | 0.0714
01.03.2005 | 0.07 | 0.05 | 0.10 | 0.03 | 0.0750 | 0.0781 | 0.0080 | 0.0371
01.04.2005 | 0.07 | 0.07 | 0.01 | 0.02 | 0.0770 | 0.0776 | 0.0082 | 0.0205
02.05.2005 | 0.09 | 0.10 | 0.01 | 0.03 | 0.0770 | 0.0949 | 0.0110 | 0.0324
01.06.2005 | 0.07 | 0.07 | 0.10 | 0.02 | 0.0750 | 0.1036 | 0.0126 | 0.0252
01.07.2005 | 0.08 | 0.09 | 0.01 | 0.01 | 0.0791 | 0.0872 | 0.0104 | 0.0103
01.08.2005 | 0.10 | 0.10 | 0.01 | 0.03 | 0.0821 | 0.0954 | 0.0114 | 0.0318
01.09.2005 | 0.07 | 0.05 | 0.01 | 0.04 | 0.0810 | 0.0612 | 0.0062 | 0.0410
03.10.2005 | 0.07 | 0.10 | 0.05 | 0.05 | 0.0870 | 0.1393 | 0.0192 | 0.0509
01.11.2005 | 0.09 | 0.09 | 0.01 | 0.03 | 0.0902 | 0.0850 | 0.0103 | 0.0311
01.12.2005 | 0.08 | 0.09 | 0.02 | 0.07 | 0.0910 | 0.1067 | 0.0134 | 0.0726
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and

2Ba

A 2/}/6(’7+>\0—+ﬁ)(T_t)/2 o2
t.T) =
(t.1) ((7+Ao+ﬁ)(e”(“)—1)+2v>

Here, in this case we also followed the same procedure as calibrating the Vasicek

Model with the same initial values to make these two models comparable.
Unlike the Vasicek Model, estimation of the long run mean parameter, & does
not move straightly upward. The estimated volatility of model is greater than
the Vasicek Model. Although, all estimated volatilities are smaller than 0.02 in
the Vasicek Model, volatility estimate in the Cox Ingersoll Model becomes 0.2;
about 10 times of the volatility in the Vasicek Model. Another lack of harmony is
in the estimation market risk premium: In 01/07/2004 the market risk premium
was the greatest value in Vasicek Model, but in the Cox Ingersoll Ross model, the
cost of risk is the greatest in 01/09/2004. The Table 4.3 below shows the results

of the estimated parameters and initial values of parameters.

4.2.2 Construction of Interest Rate Binomial Tree for Ho

Lee Model and Black Derman Toy Model

For constructing Ho Lee binomial tree, Arrow-Debreu [17] prices are used. Let
us define D(t) as the discount factor over time period [0,t]. D(t) can be thought
of as the value at time ¢ = 0 of a $1 face value default free zero bond matures at

time ¢. Note that

e i) for continuously compounded interest;

D(t) = 1 ' _ (4.2.1)
——, for simple interest.
(L+7(t,5))
Therefore, D(t,j) can be defined as the discount factor at time ¢ and state j, at
(t,7) for short rates, over the time period [¢,t + 1].

e (i), for continuously compounded interest;

D(t) = 1 ' ) (4.2.2)
——— for simple interest.
(1+r(t, 7))
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Table 4.3: Estimated Parameters for Cox Ingersoll Ross Model

Initials Estimated Parameters

Date Q; Bi o Ai Q; B@ g; by

02.01.2004 | 0.04 | 0.09 | 0.03 | 0.01 | 0.0138 | 0.1847 | 0.0361 | 0.0049
02.02.2004 | 0.04 | 0.09 | 0.03 | 0.01 | 0.0132 | 0.1852 | 0.0364 | 0.0046
01.03.2004 | 0.04 | 0.10 | 0.02 | 0.01 | 0.0155 | 0.1994 | 0.0236 | 0.0048
01.04.2004 | 0.04 | 0.09 | 0.01 | 0.04 | 0.0121 | 0.1888 | 0.0121 | 0.0196
03.05.2004 | 0.04 | 0.10 | 0.04 | 0.03 | 0.0158 | 0.1804 | 0.0563 | 0.0266
01.06.2004 | 0.04 | 0.09 | 0.03 | 0.05 | 0.0146 | 0.1808 | 0.0359 | 0.0228
01.07.2004 | 0.05 | 0.10 | 0.01 | 0.08 | 0.0195 | 0.2000 | 0.0118 | 0.0377
02.08.2004 | 0.05 | 0.10 | 0.04 | 0.01 | 0.0178 | 0.1874 | 0.0547 | 0.0090
01.09.2004 | 0.05 | 0.07 | 0.04 | 0.01 | 0.0045 | 0.1541 | 0.0645 | 0.0085
01.10.2004 | 0.05 | 0.09 | 0.04 | 0.07 | 0.0143 | 0.1738 | 0.0582 | 0.0799
01.11.2004 | 0.06 | 0.08 | 0.09 | 0.03 | 0.0078 | 0.1205 | 0.1317 | 0.0281
01.12.2004 | 0.06 | 0.08 | 0.01 | 0.07 | 0.0129 | 0.1815 | 0.0122 | 0.0254
03.01.2005 | 0.06 | 0.10 | 0.02 | 0.02 | 0.0204 | 0.2044 | 0.0240 | 0.0093
01.02.2005 | 0.06 | 0.09 | 0.02 | 0.07 | 0.0175 | 0.1923 | 0.0241 | 0.0313
01.03.2005 | 0.07 | 0.05 | 0.10 | 0.03 | 0.0202 | 0.0753 | 0.1951 | 0.0272
01.04.2005 | 0.07 | 0.07 | 0.01 | 0.02 | 0.0079 | 0.1697 | 0.0122 | 0.0059
02.05.2005 | 0.09 | 0.10 | 0.01 | 0.03 | 0.0062 | 0.1671 | 0.0123 | 0.0282
01.06.2005 | 0.07 | 0.07 | 0.10 | 0.02 | 0.0049 | 0.0991 | 0.1522 | 0.0203
01.07.2005 | 0.08 | 0.09 | 0.01 | 0.01 | 0.0199 | 0.2001 | 0.0121 | 0.0042
01.08.2005 | 0.10 | 0.10 | 0.01 | 0.03 | 0.0065 | 0.1669 | 0.0124 | 0.0278
01.09.2005 | 0.07 | 0.05 | 0.01 | 0.04 | 0.0115 | 0.1463 | 0.0141 | 0.0009
03.10.2005 | 0.07 | 0.10 | 0.05 | 0.05 | 0.0112 | 0.1622 | 0.0606 | 0.0470
01.11.2005 | 0.09 | 0.09 | 0.01 | 0.03 | 0.0227 | 0.1988 | 0.0121 | 0.0120
01.12.2005 | 0.08 | 0.09 | 0.02 | 0.07 | 0.0224 | 0.1962 | 0.0239 | 0.0313
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Note that r(0,0) = r(1) at each time ¢, we may assume without loss of generality

1
that r(t,7) goes up r(t + 1,j + 1) with probability 5 Hence, r(t, ) goes down

1
to r(t + 1, j) with probability 7 Suppose for t > 0 we have
20(t+1)=r(t+1,7+1)—rt+1,7).

From now on we will assume that interests are continuously compounded, and
that
D(t)=e7W and D(t,j) = e "I,

and hence,

e 2Dt +1,5) =D(t+ 1,5+ 1). (4.2.3)

Given D(1), D(2),...D(n) and o(1), 0(2),...0(n), where n > 2. Now, we show
how to find r(¢, j) inductively, where 1 <t <n —1,0 < 7 <t and under the no-

arbitrage principle. At time ¢ = 0 consider the following two portfolios:

e Portfolio A that consists of a zero bond which matures at time ¢t = 2 with

a face value of $1.

e Portfolio B that consists of a financial derivative which pays

The value of portfolio A at time ¢ = 0 is D(2) and the value of portfolio B at
time t =0 is

G(1,0)D(1,0) + G(1,1)D(1,1),

where G(t, j)’s are the Arrow-Debreu prices and they are known. As both portfo-
lios have the same payoff at time ¢t = 1, by the no-arbitrage argument, therefore,

their value at time ¢t = 0 must be the same. Hence,

D(2) = G(1,0)D(1,0) + G(1,1)D(1,1), (4.2.4)
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and from (4.2.3) we have
e 2WD(1,0) = D(1,1).
Thus, equation (4.2.4) now becomes
D(2) = G(1,0)D(1,0) + G(1,1)e~>*D D(1,0),
which gives
D(2)

G(1,0) + G(1,1)e20(1)°
Returning back to the rates we find that

D(1,0) =

_ D(2)
r(1,0) = —log (G(1,0) +G(, 1)e2o<1>)‘

As r(1,0) is known, (1, 1) could be deduced from equation (4.2.3). Now that we
have worked out the spot rates at time ¢ = 1, we move on to time t = 2. At time

t = 0, consider (new portfolios)

e Portfolio A that consists of a zero bond which matures at time ¢t = 3 with

a face value of $1.

e Portfolio B that consists of a derivative which pays

Both portfolios A and B have the same payoff at time t = 2. By a similar

no-arbitrage argument they must have the same value at time ¢ = 0. This gives
D(3) = G(2,0)D(2,0) + G(2,1)D(2,1) + G(2,2)D(2, 2). (4.2.5)
Again by using equation (4.2.3) wecompute
D(3) =G(2,0)D(2,0) 4+ G(2,1)e P D(2,0) + G(2,2)e P D(2,0),

D(3)
G(2,0) + G(2,1)e 203 4+ G(2,2)e4(2)’

D(2,0) =
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and hence,

- D(3)
r(2,0) = ~leg (G(z, 0) +G(2,1)e7® + G(2, 2)6‘4"(2’)'

Generally, suppose ¢t > 0 and let (¢, j) and G(t, 7) are known or calculated, then

writing Arrow-Debreu prices in general form as

1 1

then the no-arbitrage argument leads to

D(t+2
r(t+1,0) = —log (t+2)

t+1

Z G(t _'_ 1,j)672j0'(t+1)
=0

Note that 7(0,0) = (1) and G(0,0) = 1. Since for the first five years volatility

term of Ho Lee Model is constant through time we can write
o(l)=0(2)=0(3) =0(4) =0(b).

In order to approximating the volatility term, first we calculated the forward
rates for all the days. Then, we computed the standard deviations of all forwards
rates with the beginning of our data set to the day that we want to analyze.
By the concept of that knowledge of the Arrow-Debreu prices and of the short
rates at time ¢ completely determines all the Arrow-Debreu prices at time t + At
and knowledge of the Arrow-Debreu prices completely determines the value of
a discount bond [19], so that, we can generate the binomial tree by this notion.
As we mentioned before, the drift term is also important part of these trees,
since it determines the slope of the curves. To calculate the drift term, we will
use numerical approximation for 0, equivalently denoted by mj. Recall that

equivalently

MUT = Thi1j41 — Thy — Ok T,
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for an up move and
MET = Thy1,j) — Thyj + OkV/T,

for a down move were discussed in Chapter 3. The Figures 4.2, 4.3 and 4.4
show both the interest rate trees and the approximation of drift term 6 for the
days January 02, 2004, December 01, 2004 and December 01, 2005. Note that,
the larger values of approximation of drifts generates the bigger changes in the
interest rates. In 02/01/2004, since we have the largest drifts, the changes of
interest rates are also the biggest. In that date, rates start with 1.31% and go
to 4.134% for the four down scenario and 5.959% for the four up scenario. On
the other hand, in 01/12/2005, since we have the smallest drifts, the changes are
from 4.36% to 3.464% for the four down and 5.289% for the four up scenarios.

In the Black Derman Toy Model, we used the same procedure as in the Ho
Lee Model. The discount factors were defined by equations (4.2.1) and (4.2.2).
Unlike Ho Lee Model, in the Black Derman Toy Model, we have

rt+1,541) =r(t+1,5)e*tD, (4.2.6)
for t > 0. Hence,

e r(t0)e2io(t) for continuously compounded interest ;
D(t) = 1 . . (4.2.7)
— , for simple interest.
(1+r(t, j)exo®)

As in the Ho Lee Model, two equivalent portfolios will be constructed and again
we will have equations (4.2.4) and (4.2.5). The no-arbitrage argument gives

t+1
D(t+2)=> G(t+1,j)D(t+1,j),

=0
and from equation (4.2.7)

t+1
Z Gt +1,5)e 10290+ - for cont. compounded interest;
D(ty={ I

t+1 ,
G(t+1,) . ,
Z T+ (¢ + 1, 0)e20FD) for simple interest.

=0
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Note that this is an equation with one unknown r(¢ + 1,0), that could be solved
using a numerical method such as bisection method. Once we know r(t+1,0) the
r(t+1,7)’s could be deduced from equation (4.2.6) for j = 1,2,...¢t+1. Different
by than Ho Lee Model, in the Black Derman Toy Model volatility varies through
time. To estimate volatility terms as an input parameters, similar to Ho Lee
Model, we computed the forward rates of bonds, then we used GARCH(1,1) for

these forward rates. As before, the general form of expression ry ;’s are

Tht1j41 = Tk €Xp(mu 7 + op/T),

for an up move, and

Tht1y = Thj €Xp(Me T — 0pV/T),

for a down move, and for estimating m’s

my.; = 10g (Tey1,441) — log (1k5) — o,
and
my,; = log (1k+1,;) — log (1%;) + o

In the Ho Lee Model, m is the approximation of the drift parameter 6, whereas
in the Black Derman Toy Model, the my ;’s involve the drift, the volatility and
the initial spot rate.

Therefore, Black Derman Toy Model can be written as
dlogr; = mudt + oy dWy,
where
my = 0; + p;logry.
Since we approximate pg by equation (3.6.33), it becomes

(0k+1 - Uk)
Ok

my = Qt —+ log T¢.
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The Figures 4.5, 4.6 and 4.7 show both interest rates and the drift terms at
each branch for the days January 02, 2004, December 01, 2004 and December 01,
2005. The results of three analyzed days are similar to results of Ho Lee Model.
As in the Ho Lee Model, drift terms are important for jump of the interest rates
from one step to other. The change of interest rates from step 1 to step 5 is
greater on 02/01/2004 and the smaller on the 01/12/2005 that is harmonious
with their drift terms. The latest day has the smallest change, interest rates
go from 4.36% to 4.884% for the four up and go to 3.904% for the four down
scenarios. Moreover, the first day has the biggest change. On this day, rates
start with 1.310% and go to 5.747% for the four up scenario and 4.448% for the
four down scenario.

To make comparison, we need to observed values of, for instance, call options.
For this purpose first we will compute the option prices then we will compare

them.

4.3 Calculating Call Option Prices

In the final part of our application, we will estimate the European call option
written on zero coupon bonds. For all of the four models, we use five years US
Treasury Zero Coupon Bond and we estimate the four years maturity European
call options written on them for each analyzed days. After computing the price
of call options, we will compare the results with the real observed values. The
Table 4.4 shows the estimated call prices, for all of the models.

In Chapter 3, we showed the call option prices for both Vasicek and Cox
Ingersoll Ross Models, by equations (3.3.18) and (3.4.23), respectively. There is
also one additional input variable in the Cox Ingersoll Ross Model that is initial
interest rate. We chose initial interest rate as the rates of four year zero coupon
bond rates at time ¢.

For the binomial models we constructed interest rate trees for the analyzed
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days. Then by classical binomial approaches, it is not difficult to calculate call
option prices on the days that we analyze for two models. For the beginning we

calculate the call prices at the end of period five by
C’jﬂ; = maX[PM — K, O],

where K is the strike price of a call option that we chose its price same as the real
strike prices. After that by backward induction we can compute all the prices at
each leaves with [9]

(05 X Cj+1,i+1 + 0.5 x Cj+17i)
(1 + ’I"jﬂ')

C;; = max |0,

The Figures 4.8-4.13 show the call option price trees for the days January 02,
2004, December 01, 2004 and December 01, 2005, both for Ho Lee Model and
Black Derman Toy Model. Furthermore, the Table 4.4 shows all of the estimated
prices for four models. We used the sum of errors criteria to compare our models

n

> (0= E)

=1

min

The sum that has minimum value may be thought as the best model in terms of
fitting available data.

The Table 4.4 shows the calculated European call option prices. The sum
of squares of errors (SSE) is the criteria for choosing the best fit model. The
model which has the minimum SSE may be thought as the best fit model. The
calculates SSE’s are in Table 4.5.

According to minimum SSE criteria and our available data, Black Derman
Toy Model performs the best with 0.0014078, while Vasicek Model performs the
worst with 0.0014450. On the other hand, after Black Derman Toy Model, Cox
Ingersoll Ross Model has the minimum SSE that is 0.0014217. Among two normal
distribution Model, Ho Lee Model fits the data better than the Vasicek Model.
This results are coinciding with the general characteristics of desirable interest

rate model [19]:
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Table 4.4: Estimated Call Prices for Vasicek Model, Cox Ingersoll Ross Model,
Ho Lee Model and Black Derman Toy Model

Date Vasicek | CIR HL BDT
02.01.2004 | 0.0718 0.0716 0.0728 0.0723
02.02.2004 | 0.0673 0.0669 0.0679 0.0676
01.03.2004 | 0.0620 0.0611 0.0619 0.0616
01.04.2004 | 0.0626 0.0626 0.0634 0.0631
03.05.2004 | 0.0781 0.0780 0.0792 0.0789
01.06.2004 | 0.0836 0.0836 0.0849 0.0846
01.07.2004 | 0.0859 0.0859 0.0872 0.0868
02.08.2004 | 0.0800 0.0797 0.0809 0.0806
01.09.2004 | 0.0769 0.0769 0.0778 0.0776
01.10.2004 | 0.0841 0.0840 0.0851 0.0848
01.11.2004 | 0.0781 0.0783 0.0790 0.0788
01.12.2004 | 0.0894 0.0894 0.0906 0.0903
03.01.2005 | 0.0841 0.0841 0.0852 0.0850
01.02.2005 | 0.0919 0.0919 0.0930 0.0928
01.03.2005 | 0.0958 0.0972 0.0971 0.0969
01.04.2005 | 0.1021 0.1021 0.1034 0.1032
02.05.2005 | 0.0915 0.0915 0.0926 0.0925
01.06.2005 | 0.0959 0.0963 0.0968 0.0967
01.07.2005 | 0.0935 0.0935 0.0945 0.0944
01.08.2005 | 0.1040 0.1040 0.1053 0.1052
01.09.2005 | 0.0936 0.0937 0.0947 0.0946
03.10.2005 | 0.1036 0.1036 0.1049 0.1048
01.11.2005 | 0.1077 0.1077 0.1092 0.1091
01.12.2005 | 0.1083 0.1083 0.1097 0.1096
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Table 4.5: Sum of Squares of Errors for Vasicek Model, Cox Ingersoll Ross Model,
Ho Lee Model and Black Derman Toy Model

Vasicek CIR HL BDT
SSE | 0.0014450 | 0.0014217 | 0.0014357 | 0.0014078

(i) Rates should not be allowed to negative interest rates

(ii) Very high values of interest rates tend to be followed by a decrease in rates,

in other words a model should have mean reverting property

(iii) The level of volatility has been observed to vary with the absolute level of

the rates themselves.

Among these four models, the characteristics of Black Derman Toy Model can
be expected as the most fitting model while the Vasicek Model be least with its

normal distribution assumption.
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Figure 4.2: Ho Lee Model Interest Rate Tree on 02/01/2004
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Figure 4.4: Ho Lee Model Interest Rate Tree on 01/12/2005
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Figure 4.5: Black Derman Toy Model Interest Rate Tree on 02/01,/2004
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Figure 4.6: Black Derman Toy Model Interest Rate Tree on 01/12/2004
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Figure 4.7: Black Derman Toy Model Interest Rate Tree on 01/12/2005
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Figure 4.13: Black Derman Toy Model Call Option Tree on 01/12/2005
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CHAPTER 5

CONCLUSION

In this work, we calculated the price of a European call option that is written
on zero coupon bonds, by using four interest rate models: Vasicek, Cox Ingersoll
Ross, Ho Lee and Black Derman Toy Models. We began our work with presenting
some interest rate model’s explicit solutions. Then we derived closed form solu-
tions of bond and call option pricing of Vasicek and Cox Ingersoll Ross Models
and also we mentioned some characteristics about Ho Lee and Black Derman Toy
Models. Finally, we put into practice our models with United States Zero Coupon
Bond with maturity time from one years to five years. Since our data set have
constant maturity, we did not need to make any interpolation. To calculate call
option prices with Vasicek and Cox Ingersoll Ross Models, we estimated their pa-
rameters, by using calibration method. We calibrated these models 10000 times
with different initial values for each day that we analyzed. We choose the initial
values that made the calibration function value the smallest. By this time, we
constructed binomial trees for Ho Lee and Black Derman Toy Models for the days.
The drift terms and slope of curves were also approximated while constructing
binomial trees. Finally, we computed European call option prices by the closed
form formulas for the Vasicek and Cox Ingersoll Ross Models and by backward
induction for Ho Lee and Black Derman Toy Models.

In this study, we compared our models with respect to sum of squares errors
of fitted results. According to results of SSE, it can be inferred that the Black
Derman Toy Model fits the data best, while the Vasicek Model fits worst. More-
over, the Cox Ingersoll Ross Model performs better than the Ho Lee Model. As

a result, the normal distributed models performed poorer than others. Moreover,
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the binomial models better fitted than the one factor equilibrium models.
In this thesis, we used only one factor equilibrium and no-arbitrage models.

It might be advantageous to use multi-factor models for the further research.
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