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ABSTRACT 

 

 

COMPUTATION OF RADAR CROSS SECTIONS OF 
COMPLEX TARGETS BY PHYSICAL OPTICS  

WITH  
MODIFIED SURFACE NORMALS 

 

 
Durgun, Ahmet Cemal 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mustafa Kuzuoğlu    

 

 

August 2008, 136 Pages 

 

In this study, a computer code is developed in MATLAB® to compute the Radar 

Cross Section (RCS) of arbitrary shaped complex targets by using Physical Optics 

(PO) and Modified PO. To increase the computational efficiency of the code, a 

novel fast integration procedure for oscillatory integrals, called Levin’s 

integration, is applied to PO integrals. 

 

In order to improve the performance of PO near grazing angles and to model 

diffraction effects, a method called PO with Modified Surface Normal Vectors is 

implemented. In this method, new surface normals are defined to model the 

diffraction mechanism. 

 



 v

Secondary scattering mechanisms like multiple scattering and shadowing 

algorithms are also included into the code to obtain a complete RCS prediction 

tool. For this purpose, an iterative version of PO is used to account for multiple 

scattering effects. Indeed, accounting for multiple scattering effects automatically 

solves the shadowing problem with a minor modification. Therefore, a special 

code for shadowing problem is not developed. 

 

In addition to frequency domain solutions of scattering problems, a waveform 

analysis of scattered fields in time domain is also comprised into this thesis. 

Instead of direct time domain methods like Time Domain Physical Optics, a 

Fourier domain approach is preferred to obtain the time domain expressions of the 

scattered fields. 

 

Frequency and time domain solutions are obtained for some simple shapes and for 

a complex tank model for differently polarized incident fields. Furthermore, a 

statistical analysis for the scattered field from the tank model is conducted. 

 

Keywords: Physical Optics (PO), Modified Surface Normal Vectors, Radar Cross 

Section (RCS), Levin’s Integration Method, Fast Integration Methods 
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ÖZ 

 

 

DEĞİŞTİRİLMİŞ YÜZEY NORMALLİ  
FİZİKSEL OPTİKLE KARMAŞIK HEDEFLERİN 

 RADAR KESİT ALANLARININ HESAPLANMASI 
 

 
Durgun, Ahmet Cemal 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mustafa Kuzuoğlu    

 

 

Ağustos 2008, 136 sayfa 

 
Bu çalışmada, herhangi bir şekle sahip karmaşık geometrili cisimlerin Radar Kesit 

Alanlarını Fiziksel Optik ve Değiştirilmiş Fiziksel Optik yöntemlerini kullanarak 

hesaplayan bir MATLAB® programı geliştirilmiştir. Geliştirilen bilgisayar 

kodunun verimliliğini artırmak amacıyla, Levin integrasyon yöntemi olarak 

bilinen yeni bir hızlı integral hesaplama yöntemi fiziksel optik integrallerine 

uygulanmıştır. 

 

Fiziksel Optik yönteminin sıyırma açıları yakınındaki başarımını artırmak ve 

kırınım etkilerini modelleyebilmek için Değiştirilmiş Yüzey Normalli Fiziksel 

Optik adı verilen bir yöntem uygulanmıştır. Bu yöntemde, yeni yüzey normalleri 

tanımlanarak kırınım mekanizması modellenmiş olur.  
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Radar Kesit Alanını eksiksiz olarak hesaplayan bir bilgisayar programı elde 

edebilmek için, çoklu saçılmalar gibi ikincil etkiye sahip saçılma 

mekanizmalarıyla birlikte gölgeleme algoritmaları da programa eklenmiştir. Bu 

amaçla, çoklu saçılmaları hesaba katabilmek için Yinelemeli Fiziksel Optik 

yöntemi programa eklenmiştir. Çoklu saçılmaların etkilerinin hesaplanması, 

Küçük bir değişiklikle, gölgeleme problemini de otomatik olarak çözdüğünden 

ayrıca bir gölgeleme algoritması geliştirilmemiştir. 

 

Elektromanyetik saçılım problemlerinin frekans bölgesi çözümlerine ek olarak, 

cisimlerden saçılan dalga şekillerinin zaman bölgesindeki analizleri de bu tezin 

içeriğine dahil edilmiştir. Burada, saçılan dalgaların zaman bölgesindeki 

ifadelerin elde edilebilmesi için Zaman Bölgesi Fiziksel Optik yöntemi gibi 

doğrudan zaman bölgesinde yapılan çözümler yerine, Fourier bölgesi yaklaşımı 

kullanılmıştır. 

 

Frekans ve zaman bölgesi çözümleri bazı basit cisimler ve bir tank modeli için 

değişik polarizasyonlu dalgalar kullanılarak elde edilmiştir. Bunlara ek olarak 

tank modelinden saçılan alanın istatistiksel analizi de yapılmıştır. 

 

Anahtar Sözcükler: Fiziksel Optik, Değiştirilmiş Yüzey Normalleri, Radar Kesit 

Alanı, Levin İntegrasyon Yöntemi, Hızlı İntegrasyon Yöntemleri 
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 CHAPTER 1 

 

 

INTRODUCTION  

 

 

 
Electromagnetic scattering problems have been investigated starting from the late 

19th century after the proposal of electromagnetic wave theory. Especially with 

the widespread usage of radars during World War II, the research on the 

estimation of scattered field power has been accelerated dramatically [1]. In order 

to determine the scattered field power rigorously and to generate a common sense 

between the researchers, a fictitious area was defined for targets to which the 

scattered field power is proportional. This fictitious area, which is denoted as 

Radar Cross Section (RCS), is defined as the square of the ratio of the scattered 

and incident electric fields. The mathematical expression of this definition is 

given in equation (1.1). 
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After defining RCS in mathematical means, thousands of papers have been 

published by scientists because estimation of RCS opens a very practical way for 

determining the scattered field for plane wave illumination [1]. In the first papers 

related to this topic, the RCS estimation problem was solved for simple targets 

like plates and spheres. However, for real problems, it was impossible to obtain an 

analytical solution because of the complex geometry of targets. Therefore, new 
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computational methods were developed to estimate the RCS of complex targets. 

These computational methods can be classified into two groups such as the exact 

and approximate solution techniques. 

 

The exact methods, like the Method of Moments (MoM) and the Finite Elements 

Method (FEM), are rigorous solutions based on the integral and differential 

equations, respectively. However, some approximations may be performed when 

solving the integral or differential equations by numerical techniques. In these 

methods, the target geometry is modeled by small patches and the integral 

equations are reduced to a set of linear equations that can be solved by standard 

matrix algebra [3], with the help of some basis or shape functions defined on each 

patch. Although these methods give very accurate results, they are limited to low 

frequency and resonant frequency ranges [4]. Since the number of patches 

increases with frequency, the sizes of the matrices attained in these methods grow 

too much which result in long computation time at high frequencies. 

 

The approximate methods were proposed to overcome the limitations of exact 

methods at high frequencies. In these methods, the surface currents induced on the 

target surface are approximated by using some assumptions such that the 

scattering problem can be solved quite easily. The first method suggested was the 

geometric optics (GO) method which is based on the assumption that the energy 

propagate along rays [1]. Hence, ray tracing is used to compute the reflected 

waves. The main advantage of this method is its computational simplicity but it 

gives zero field when no specular points exist [5]. The second method was the 

physical optics (PO) method (which is the main topic of this thesis and will be 

discussed in detail in the following paragraphs) which estimates the scattered 

fields simply by the integration of induced currents found by GO. Although PO 

improved the results of GO significantly near specular region, the results for 

grazing angles were still inaccurate. 
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To improve the performance of optical techniques, two new methods have been 

developed by Keller and Ufimtsev which were the extensions of GO and PO. The 

geometrical theory of diffraction (GTD) and the physical theory of diffraction 

(PTD) were both derived from rigorous solutions to the infinite wedge problem 

and improved the performance of the previous methods for edge effects [5]. 

 

In addition to these methods, some hybrid methods were developed to take the 

advantage of both exact techniques at low frequencies and approximate 

techniques at high frequencies. In the hybrid methods for the appropriate portions 

of the target surface the approximate methods are used to obtain the initial 

currents named as “Ansatz” currents which can be used as effective sources in a 

surface integral equation formulation problem solved by MoM [6]. By this way 

the computation time may be increased for complex structures. 

 

Apart from the frequency domain solutions, time domain analysis of scattered 

waves has also been a very important topic in electromagnetic theory. The finite 

difference time domain method is a very popular and effective tool for transient 

analysis of waves in which the differential equation form of the Maxwell’s 

equations are solved by employing the boundary conditions on the discretized 

target surface [3]. However, similar to MoM and FEM, this method also suffers 

for the necessity of large number of sampling points at high frequencies. 

Undeniably, the time domain version of physical optics (TDPO) is also an 

efficient way for transient response analysis at those frequency ranges [48]. 

 

As it can be observed from the introductory discussion given here, many 

numerical techniques have been developed for electromagnetic scattering 

problems since the start of widespread application of radars. Even though there 

are more advanced methods in the literature, PO is still a powerful tool for RCS 

estimation problems at high frequencies for both frequency and time domain 

solutions. The main reason of this situation is straightforward application of PO. 

Moreover, the performance of PO can be improved further, by some 
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modifications or by adding some correction terms, without hindering the 

simplicity of its implementation [19]-[23]. Furthermore, being a very productive 

academic topic, PO still remains open for further improvements. That is why we 

have chosen it as the main concern of this thesis. 

 

1.1  Scope of the Thesis 

Since PO is a high frequency technique, the numerical integration may become 

intractable in terms of computational aspects. Starting from the proposal of PO 

theory, many techniques have been suggested to compute these integrals. A 

detailed summary of the earliest methods are given in [7]. Concomitant to the 

progress in computer technology, more advanced techniques have been suggested 

by researchers to improve the computational efficiency [8]-[14]. Indeed, the basic 

motivation behind this study stands on this most intricate part of PO; the 

numerical integration. A novel fast integration algorithm has been developed for 

the solution of electromagnetic scattering and RCS estimation problems by PO. 

 

There is another important issue related to PO is that, while applying this theory 

to complex targets, one should make some extra efforts to account for the effects 

which cannot be modeled by classical PO approach. Some modifications should 

be done to improve the performance of PO for edge effects like diffraction and for 

measuring the polarization dependence of RCS. Moreover, to attain accurate 

results, the secondary effects like multiple scattering and shadowing should be 

taken into account. These topics are also included to the scope of this thesis in 

order to implement a complete tool for RCS prediction of complex targets. 
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1.2 Outline of the Thesis 

The thesis is composed of three main parts involving the aforementioned subjects 

related to PO method. 

 

Chapter-2 will be devoted to the derivation of a novel integration technique, 

namely the Levin’s Integration Method, and its applications to electromagnetic 

scattering problems. In this chapter, firstly, the derivation of the PO integral for an 

arbitrary surface will be discussed. Then a summary of the integration methods 

that exist in the literature will be given before the novel integration scheme will 

be proposed for these integrals. Thirdly, a discussion will be done on a modified 

version of PO (PO with Modified Surface Normal Vectors) which is suggested to 

improve the performance of PO for edge effects. Lastly, the validity of the novel 

integration method and modified PO will be proven by experimental results. 

 

In Chapter-3, the additional tools needed for the application of PO to complex 

targets will be emphasized. In the first part of this chapter, the target modeling 

technique used in this study will be summarized. Secondly the iterative physical 

optics method will be examined for multiple scattering and shadowing problems. 

Lastly, the experimental results will be given and the results will be compared 

with the ones states in the literature. In this chapter, the literature review for each 

section will be done separately. 

 

Chapter-4 will focus on time domain analysis of the waveforms of the scattered 

waves. After a brief literature review on time domain techniques, the derivation of 

TDPO formula will be handled. Then, Fourier transform approach for finding the 

time domain expression of the scattered waves will be presented and the 

experimental results related to time domain methods will be examined. 

 

In Chapter-5, the theories asserted during the thesis will be supported by 

frequency and time domain numerical experiments performed on simple and 
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complex scatterers. The results attained will also be compared with the results 

given in the literature. 

 

Finally in Chapter-6, all of the work done during this study will be summarized. 

The advantages and disadvantages of the methods suggested in the thesis will be 

discussed and concluding remarks will be done on the experimental results. 

Lastly, the future endeavors involving the enhancement of the proposed algorithm 

will be described with some recommendations. 
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 CHAPTER 2 

 

 

PHYSICAL OPTICS SOLUTION IN FREQUENCY 

DOMAIN  

 

 

 

2.1 Formulation of the Physical Optics Solution 

Similar to the other scattering problems in electromagnetic theory, the frequency 

domain solution of physical optics approximation may be obtained starting from 

the Maxwell’s equations in the frequency domain. If ω time dependence is 

accepted for the fields, then the Maxwell’s equations in the frequency domain can 

be written as: 

 

 MHjE −−=×∇ ωμ                                      (2.1) 

 JEjH +=×∇ ωε              (2.2) 

 eD ρ=⋅∇               (2.3) 

 mB ρ=⋅∇               (2.4) 

 

If we apply the curl operator to Equation (2.2), the wave equation for the 

magnetic field can be obtained. 
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JMjHkH

JMHjjHH
JEjH

m ×∇+−=∇−∇⇒

×∇+−−=∇−⋅∇∇⇒

×∇+×∇=×∇×∇

ωε
μ
ρ

ωμωε

ωε

22

2

)(

)()(  

 

 JMjHk m ×∇−∇+=+∇⇒ )()( 22

μ
ρωε           (2.5) 

 

Using the Green’s function for the magnetic field in free space to solve the wave 

equation, the following expression is obtained for the scattered magnetic field: 

 

 VdGrJrrMjrH
V

m
s ′′×∇−′

∇′
+′

−
= ∫ 0))()()((

4
1)( ρ

μ
ωε

π
 

 ∫ ′∇′×′−∇′′−′−
=⇒

V
m

s VdGrJGrGrMjrH ))()(1)((
4

1)( 000 ρ
μ

ωε
π

    (2.6) 

 

Now if we convert the volume integral to a surface integral and if we use surface 

sources instead of volume sources, we obtain the well known Stratton-Chu 

equation. 

 

 ∫ ′∇′×′+∇′′+′−=
S

SmsS
s SdGrJGrGrMjrH ))()(1)((

4
1)( 000 ρ

μ
ωε

π
   (2.7) 

 

In addition to Stratton-Chu equation, by definition, we also have the following 

three equations: 

 

 T
m Hn ⋅= ˆμρ               (2.8) 

 T
S EnrM ×−=′ ˆ)(              (2.9) 

 T
S HnrJ ×=′ ˆ)(            (2.10) 
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If we substitute the equations (2.8)-(2.10) into (2.7), the magnetic field scattered 

from an arbitrary illuminated surface is obtained. 

 

 ∫ ′∇′××+∇′⋅+×=
S

TTTs SdGHnGHnGEnjrH ))ˆ()ˆ()ˆ((
4
1)( 000ωε
π

(2.11) 

 

Here, 
rr

eG
rrjk

′−
=

′−−

0  is the Green’s function for the magnetic field in free space. 

In case of a PEC scatterer the relations 0ˆˆ =⋅=× TT HnEn  will be valid and the 

scattered magnetic field may be expressed as: 

 

 ∫ ′∇′××=⇒
S

Ts SdGHnrH 0)ˆ(
4
1)(
π

         (2.12) 

 

where S is the illuminated surface. 

If we assume that the observer is in the far field and if we substitute the 

divergence of the Green’s function in (2.12) by )(0 ˆ rr

rrjk

a
rr

ejkG ′−

′−−

′−
−=∇′ , the 

scattered magnetic field is obtained as in equation (2.13). 

 

 ∫ ′×
−

= ′⋅
−

S

rkjk
sS

jkR
s SdekJ

R
jkeH s

ˆ

0

ˆ
4

0

π
                                                       (2.13) 

 

where rR =0  is taken and sk̂  is the unit vector in the direction of scattering. 

 

To find the scattered magnetic field and to compute the RCS of the scatterer, one 

should use equation (2.13). However, up to this point no approximation is 

assumed related to physical optics. In order to apply the physical optics 

approximation, equation (2.14) should be employed instead of the surface current 

density. 
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 i
S HnJ ×= ˆ2             (2.14) 

 

As a consequence the physical optics integral for the scattered magnetic field is 

found to be: 

 

 ∫ ′××
−

= ′⋅
−

S

rkjk
s

i
jkR

s SdekHn
R

jkeH s
ˆ

0

ˆ)ˆ2(
4

0

π
                  (2.15) 

 

2.2 Levin’s Method for Computing the Integrals of 

Functions with Rapid Oscillations 

The integrand of the physical optics integral obtained in (2.15) is a very 

oscillatory function especially at high frequencies. Therefore it is very costly to 

compute these kinds of integrals by simple numerical integration techniques. 

Some special techniques are needed in order to compute these integrals accurately 

and effectively. In fact, there are many techniques on this subject in the literature. 

 

The earlier methods suggested to solve this problem were the methods like 

“Simpson’s Rule” and “Newton-Cotes Formulas” which were based on the idea 

of approximating the integrand as a combination of partial polynomials. These 

methods might give quite accurate results however they were not satisfactory in 

terms of computation speed because, too many sampling points were needed to 

compute the integrals accurately. In order to defeat this difficulty, another 

algorithm was suggested by Ludwig in which the integration domain is divided 

into small planar sub domains and on each of them the amplitude and phase 

components of the integrand are approximated by first degree polynomials [8]. 

The most significant disadvantage of this method is that, since planar sub domains 

are used to model the integration domain, too many facets are needed for the 

accuracy of the computation, especially around the regions where the curvature is 
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very high when compared with the wavelength. Consequently, this situation leads 

to a very long integration time. 

 

On the other hand, if curved surfaces are used to model the targets, the 

computation speed may be increased considerably. In the literature, there are 

some other methods employing this idea. A good example of these methods is the 

one proposed by Kobayashi, Hongo and Tanaka. In this method, the integration 

domain is modeled as a combination of smaller surfaces which are approximated 

by second degree polynomials and the whole integral can be converted to 

summation of some easy recursive integrals. By this way, the number of sub 

domains used in target modeling can be decreased [10]. 

 

Apart from the aforementioned techniques, another frequently used method to 

calculate the integrals of functions with rapid oscillations is Filon’s method. In the 

first step of this method, the integration domain is divided into sub domains. A 

second degree polynomial is then fitted to the first and last points of each sub 

domain. After applying integration by parts twice, an algebraic expression is 

obtained for each sub domain and the summation of these expressions simply 

gives the result [11].  However, Filon’s method is only applicable to the integrals 

in which the phase variation of the integrand is linear. In cases of nonlinear phase 

variations, a modified version of this method may be employed in which the 

integration domain is parametrized by some shape functions on 9 points on the 

surface. Then the whole integral may be converted to summation of 9 integrals 

which can easily be expressed in terms of “error function” [12].  

 

Another application of Filon’s method present in the literature is used in 

monostatic RCS computation by PO approximation. The solution starts with the 

mapping of an integration domain, which is expressed analytically, to a 

rectangular domain with the help of Fubini’s theorem. Then depending on the 

position of the stationary phase points, different approaches are chosen for 

computation of the integral. In the neighborhood of stationary phase point, the 
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integral is converted to simpler forms which have already been solved by 

approximating the amplitude and phase terms of the integrand with second degree 

polynomials. However, at the points where the phase is not stationary, the surface 

integral is converted to the summation of oscillatory line integrals by applying 

Stokes theorem. Finally, these line integrals are computed by Filon’s method [13]. 

 

An additional improved version of the Filon’s method is suggested by Levin. 

Although Filon’s method can be applied to any kind of integrals, the most 

accurate results are obtained for constant frequency (linear phase variation i.e.) 

cases [14]. On the other hand the performance of Levin’s method for variable 

frequencies is better. 

2.2.1 Levin’s Method for One Dimensional Integrals 

One dimensional oscillatory integrals may be expressed in the following form: 

 

 ∫=
b

a

xjq dxexfI )()(            (2.16) 

 

In this integral, if f is a smooth and nonoscillatory  function and if the condition 
1)()( −−>>′ abxq  is satisfied, then this integral can easily be computed using 

only a small number of values of f and q’ in [a,b].  

 

In his paper, Levin proposed that if f is of the form 

 

 )()()()()( )1( xpLxpxpxqjxf ≡′+′=                                                    (2.17) 

 

then the integral can be evaluated as  

 

 )()()( )()())(( ajqbjq
b

a

xjq eapebpdxexp
dx
dI −== ∫                                    (2.18) 
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where the general solution for p is given as 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∫− cdtetfexp

x

a

tjqxjq )()( )()(                                                           (2.19) 

 

Since p(x) is also as oscillatory as the integral in the equation (2.19), it is proved 

by Levin that if f and q’ are slowly oscillatory then, there exists a slowly 

oscillatory particular solution p0 of (2.17). (The proof is given in Appendix-A.) 

Then the result of the integral in (2.16) can be expressed as 

 
)(

0
)(

0 )()( ajqbjq eapebpI −=                                                                 (2.20) 

 

After this point, an n-point collocation approximation can be made to the function 

p in terms of some linearly independent basis functions uk, 

 

 ∑
=

=
n

k
kkn xuaxp

1
)()(            (2.21) 

 

where the coefficients ka  are determined by the n collocation conditions. Now, 

the problem reduces to finding the coefficients ka . If we substitute equation (2.21) 

into equation (2.17), we get 

 

 ∑∑
==

==⎟
⎠

⎞
⎜
⎝

⎛
=

n

k
kk

n

k
kkn xfxuLaxuaLxpL

1

)1(

1

)1()1( )())(()())((       (2.22) 

 

Equation (2.22) can easily be converted to an inverse problem in the form of 

bAx = , where A, b and x are defined as follows: 
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     (2.23) 

 

Therefore it is enough to solve this system of linear equations to find the result of 

the integral given in equation (2.16). 

2.2.2 Levin’s Method for Two Dimensional Integrals 

The two dimensional approach of Levin’s method is very similar to one 

dimensional problem. In this case, a two dimensional oscillatory integral is to be 

solved which is in the form: 

 

 ∫ ∫=
b

a

jq
d

c

ddefI ηξηξ ηξ ),(),(           (2.24) 

 

In order to apply the Levin’s method to this kind of integrals, f should be smooth 

and nonoscillatory as in the one dimensional case. However, the conditions that 

should be satisfied by q are expanded to two dimensional space. 

 

 
1

1

)(

)(

−

−

−>>=
∂
∂

−>>=
∂
∂

cdqq

abqq

η

ξ

η

ξ
           (2.25) 

 

In addition to this, a new operator should be defined instead of the operator given 

in equation (2.17). The new operator is: 

 

 fpqqjqpjqpjqppL =−+++= )()( ηξξηξηηξξη        (2.26) 

 

Then, by using the equation (2.27) 
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 jqjq epqqjqpjqpjqppe ))(()(
2

ηξξηξηηξξηηξ
−+++=

∂∂
∂       (2.27) 

 

one can show that the solution of the integral in (2.24) is equal to 

 

 ),(),(),(),( ),(),(),(),( cajqcbjqdajqdbjq ecapecbpedapedbpI +−−=⇒   (2.28) 

 

Making the use of n-point collocation, p can be approximated by pn and the 

function f may be written as: 
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Note that in equation (2.29), two dimensional monomials are used as basis 

functions. 

 

As a result, the inverse problem to be solved is obtained as 
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where each ix  is a two dimensional vector. 

2.2.3 Levin’s Method for Three Dimensional Surfaces 

The procedure explained in Section 1.1.2 is only applicable to rectangular 

domains in two dimensional spaces. However, in radar cross section problems the 

integration domain is generally an arbitrary three dimensional surface and the 

integrals are in the form of equation (2.31). Therefore, a special treatment is 

needed to use Levin’s method to RCS problems. 
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 ∫= ϕ
ϕdezyxfI zyxjq ),,(),,(           (2.31) 

 

Let ),,( zyx=ϕ  be an arbitrary surface in 3ℜ . It is possible to map any surface ϕ  

to a rectangular domain [-1,1]x[-1,1] in ),( ηξ  local coordinates [15]. A mapping 

example is illustrated in Figure 2-1. 
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Figure 2-1: Mapping Example 
 

 

If x, y and z components of an 8-noded isoparametric surface are expressed in 

terms of some shape functions with variables ),( ηξ , then such a mapping is 

possible. Using the collocation points ),,( iii zyx , x, y and z components can be 

written as: 
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          (2.32) 

 

where the shape functions iN  are defined in equations (2.33) and (2.34) [16]. 
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Corner points:  )1)(1)(1(
4
1

−+++= ηηξξηηξξ iiiiiN       (2.33) 
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0)1)(1(
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0)1)(1(
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iii

iii

ifN

ifN

ηξξη

ξηηξ
       (2.34) 

 

If these relations are used in a three dimensional oscillatory integral on the 

surfaceϕ , then the integral given in (2.31) can easily be converted to an integral 

of the form given in (2.35). 

 

 ∫ ∫
− −

×=
1

1

1

1

)),(),,(),,(()),(),,(),,(( ηξϕϕηξηξηξ ηξ
ηξηξηξ ddezyxfI zyxjq      (2.35) 

 

By this way, an equivalent expression for equation (2.31) is obtained to which 

two dimensional Levin’s method can be applied directly. 

2.2.4 A Special Case: Singularities in Two Dimensional Levin’s 

Method 

It was mentioned that, the Levin’s method may be applied to oscillatory integrals 

of the form (2.24) under the condition that the relations given in (2.25) should be 

satisfied. If these conditions are not satisfied, then the matrix A in the inverse 

problem of bAx =  becomes very close to a singular matrix. Levin’s method does 

not work properly for those cases. On the other hand, in case where the 

dimensions of the isoparametric surface are small or the observation point is in 

the neighborhood of the forward scattering direction, such a problem is inevitable. 

Therefore, to overcome this problem a special approach should be developed. 

 

Without loss of generality, assume that the condition 1)( −−>> abqξ  is not 

satisfied. Then it can be said that the integrand is not oscillatory in ξ  direction. 

Therefore there is not any need to special techniques to compute the integral in 
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that direction; the trapezoidal rule may be sufficient to give accurate results. 

However, the integrand is still oscillatory in the η  direction. To compute the 

integral in that direction Levin’s method may be used but in this case the 

integration will be one dimensional. 

 

Assume that the function F is defined as in equation (2.36). 

 

 ∫=
d

c

jq defF ηηξξ ηξ ),(),()(           (2.36) 

 

If we substitute this equation into the equation (2.24), then we obtain the 

following integral which can be computed by trapezoidal rule. 

 

 ∫=
b

a

dFI ξξ )(             (2.37) 
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∑          (2.38) 

 

where )( iF ξ  is defined as 

 

 ∫=
d

c

jq
ii defF i ηηξξ ηξ ),(),()(           (2.39) 

 

If the one dimensional operator given in equation (2.17) is substituted into the 

equation (2.39) 

 

 ),(),(),( ),(),()),(()( cjq
i

djq
i

d

c

njq
ii

iii ecpedpdep
d
dF ξξξ ξξηηξ
η

ξ −== ∫      (2.40) 

 

is obtained. Now, each )( iF ξ  can be found by one dimensional Levin’s method.  
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If the conditions given in the equation (2.25) are not satisfied in both directions, 

then the integral can be computed by two dimensional trapezoidal rule assuming 

that the integrand is not oscillatory. 

 

2.3 Application of Levin’s Method to PO Integrals 

Levin’s method is a very efficient integration method for computing oscillatory 

integrals and can effortlessly be applied to physical optics integrals given in the 

equation (2.15). However, to apply Levin’s method to physical optics, the 

oscillatory and non-oscillatory parts of the integrand should be separated 

properly. 

 

If the incident magnetic field iH  is expressed as 

 

 rkjki ieHH ⋅−=
ˆ

0            (2.41) 

 

then, the surface current density on the integration surface takes the following 

form: 

 

 rkjk

S

i
S

ieHnHnJ ′⋅−

′
×′=×=

ˆ
0ˆ2ˆ2          (2.42) 

 

Substituting equation (2.42) into equation (2.15), one can obtain the expression 

given below. 

 

 ∫ ′××′
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rkkjk
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π
       (2.43) 

 

Since the oscillatory and non-oscillatory parts of the integrand are separated 

successfully, the integral in (2.43) is in the form of the integral in (2.31). 

Nevertheless, Levin’s method is still not directly applicable to this integral. The 
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integration domain should be divided into subdomains modeled by 8-noded 

isoparametric surfaces. The result is equal to the summation of integrals on these 

subdomains. Then, following the procedure explained in Section 2.2.3, the 

integration is mapped onto the ),( ηξ  local coordinates for each isoparametric 

element. Now, Levin’s method can directly be applied to compute the integral. 

 

At this point, another important concern arises in terms of computational 

efficiency of Levin’s method. The selection of basis functions and their number 

may affect the computational cost significantly. Throughout this study the 

monomials up to 2nd order are used as basis functions, for both one and two 

dimensional cases, and it is observed that, this selection gives very accurate 

results with sufficiently low computational cost. In view of the fact that it is out of 

the scope of this thesis, the effects of using other kinds of basis functions to the 

results may also be investigated as a future work. 

 

Another important concern regarding the integration is giving the decision of 

switching from Levin’s method to trapezoidal rule. Since each isoparametric 

element is mapped to the interval [-1,1]x[-1,1] in ),( ηξ  domain, the conditions 

given in (2.25), for applying Levin’s method to oscillatory integrals, are converted 

to 

 

 5.0, >>ηξ qq             (2.44) 

 

The experimental results show that choosing ηξ qq ,  10 times greater than the 

inverse of the length of the integral gives very accurate results. Therefore, in the 

cases where 5, >ηξ qq  condition is satisfied, the two dimensional Levin’s method 

is used in this study. If the condition is not satisfied in any direction, then a 10-

point trapezoidal integration rule is applied in that direction and the one 

dimensional Levin’s method is applied in the other direction. If the condition is 
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not satisfied in both directions, then a two dimensional trapezoidal rule is 

conducted over 100 grid points. 

 

2.4 Physical Optics with Modified Surface Normal 

Vectors 

It is a known fact that physical optics approximation gives accurate results only 

within the neighborhood of the specular region and the degree of error increases 

as the observer moves away from the specular region. Because physical optics 

fails to account for the diffraction effects caused by the discontinuities of the 

target geometry and the discontinuity of the surface currents at the intersections of 

shadow and lit regions [17]. Therefore, to predict the RCS of the targets more 

accurately, some modifications are needed to be done. In fact in order to 

investigate the polarization sensitivity of RCS, these modifications are necessary. 

This subject may be understood more clearly if the scattering mechanisms at high 

frequency regimes are explained briefly. 

2.4.1 Scattering Mechanisms in High Frequency Regimes 

At high frequencies the wavelength becomes very small when compared with the 

dimensions of the targets and the collective effects of the scattering centers on the 

targets may be ignored. Therefore, the field scattered from the target can be 

expressed as a vector summation of the fields scattered from each of the 

individual scatterers [18]. The scattering mechanisms occur at those scattering 

centers can be summarized as follows: 

 

• Specular Reflection: This is the most dominant scattering mechanism at 

high frequencies. It forms the main lobe in the specular and forward 

scattering directions which are illustrated in Figure 2-2. 

• End Region Scattering: This mechanism models the scattering at the edges 

of the finite length targets. It contributes to side lobe radiations away from 
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the specular region. This mechanism with specular reflection can be 

sufficiently modeled by physical optics approximation. 

• Diffraction: Diffraction is due to the induced currents at the edges, tips or 

the regions where the curvature of the surface changes very rapidly. This 

mechanism becomes dominant especially away from specular region and 

is sensitive to polarization changes. Physical optics approximation fails to 

model diffraction effects. Hence, some modifications are needed. The 

modified surface normal vectors method is one of the methods found in 

the literature. 

• Multiple Scattering: The interactions between the surfaces of the targets 

that see each other are modeled by this mechanism. It has secondary 

effects when compared with the previous 3 mechanisms. 

 

 

Incidence Direction Specular Reflection
Direction

Forward Scattering
Direction

θ θ

θ

 
Figure 2-2: Specular Reflection and Forward Scattering Directions 

 

 

In addition to these mechanisms, there may be diffractions caused by surface 

traveling waves. However, these are effective at low frequencies. 

2.4.2 Modified Surface Normal Vectors 

There are several methods in the literature suggested to improve the performance 

of physical optics for diffraction. The first one of these theories is the “Physical 

Theory of Diffraction (PTD)” which is suggested by Ufimtsev. In his theory, 

Ufimtsev expresses the total field as the superposition of the incident, physical 
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optics and diffracted fields. To find the diffracted fields, the incident and physical 

optics fields are subtracted from the asymptotic solution of the total field [1]. 

 

Nearly at the same time with Ufimtsev, Keller proposed his “Geometric Theory of 

Diffraction (GTD)”. In this theory, dissimilar to PTD, the diffracted fields are 

easily obtained in terms of the incident field and the diffraction coefficients. 

However, the diffraction coefficients become singular at reflection and shadow 

boundaries. Also, in case of caustics, the field diverges to infinity. Another 

disadvantage of this theory is that, the contribution of the diffracted fields cannot 

be computed for the points lying outside the Keller cone. Therefore, another 

approach was developed in which equivalent currents are suggested to model the 

diffracted fields. Since these currents are dependent on the observation point, they 

are not real physical currents; but only fictitious currents to model the diffraction 

mechanism [1]. 

 

The physical optics with modified surface normal vectors method (will be 

denoted as Modified PO for the rest of the thesis) has also a similar structure. In 

this method, the effects of the diffraction coefficients obtained by GTD are 

modeled by modifying the surface normals according to incidence and 

observation directions. Thus, the performance of the PO is increased up to the 

level of GTD by making use of imaginary surface currents [20]. 

 

The diffracted fields for the diffraction problem illustrated in Figure 2-3 can be 

obtained as: 

 

 jkr
c

id erADEE −= ),(ρ           (2.45) 

 

In this expression, the dyadic D  contains the diffraction coefficients which are 

functions of incidence and observation directions. The definition of D  is given in 

equation (2.46). 
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 dihdis DDD φφθθ ˆˆˆˆ −=            (2.46) 

 

where the soft and hard diffraction coefficients are defined as follows: 
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            (2.47) 

 

The incident and reflected diffraction coefficients are denoted as iD  and rD , 

respectively. 
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Figure 2-3: The Diffraction Problem and Local Spherical Coordinate System at the 

Diffraction Point 

 

 

If the diffraction problem illustrated in Figure 2-3 is solved by the stationary 

phase method, by following a similar approach to that given in [21] or in [22], the 

diffraction coefficients for PO and GTD given in Table 1 can be obtained. 
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Table 1: Diffraction Coefficients for PO and GTD 
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It can be seen from Figure 2-3 that the only difference between the diffraction 

coefficients PO and GTD is the sine function in the numerator of the PO 

diffraction coefficients. In fact, the reason for the failure of PO for modeling the 

diffraction is that sine function. The modified PO approach is based on the idea of 

removing this sine function from the numerator of the diffraction coefficients. 

In the modified PO method, new surface normal vectors are defined such that the 

reflection rules are satisfied for both the incident wave and its image with respect 

to the surface. The definitions of the modified normal vectors in the reflection 

region are given in equation (2.48) in terms of incidence direction ( ik̂ ), 

observation direction ( sk̂ ) and the incidence direction of the image field ( imk̂ ) 

which are illustrated in Figure 2-4. 
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The modified normal vectors can be simplified as isr kkn ˆˆˆ −==  and in̂  becomes a 

tangential vector to the surface for backscattered RCS calculations [23]. 
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Figure 2-4: Modified Surface Normal Vectors 

 

 

After the modified normal vectors are defined, the surface current used in PO 

integral can be modified as follows: 

 

 ( )im
i

i
rS HnHnJ ×+×= ˆˆ2           (2.49) 

 

where the image field imH  can be found by using the image theory. 

 

 )ˆ(ˆ2 nHnHH iiim ⋅+−=           (2.50) 

 

Since this surface current is dependent on the observation and incidence 

directions, it is not a real current. However, if the stationary phase method is 

applied to PO with the modified current in (2.49) instead of the current in (2.14), 

the diffraction coefficients of PO becomes equivalent to GTD diffraction 

coefficients. Hence, the diffraction mechanism can be modeled by PO without 

any significant modifications in the classical PO formulation. 

 

It can be observed from equation (2.48) that the normal vector in̂  may have 

different signs within the reflection region. In fact this sign change is the trickiest 

part of applying modified PO to electromagnetic scattering problems. Since the 

angles that are variables of the diffraction coefficients given in Figure 2-3 are 

defined locally from the illuminated surface of the scatterer [24], such a sign 
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change is necessary in order to work in a fixed coordinate system. To distinguish 

this necessity, a simple two dimensional scattering problem may be investigated. 

2.4.3 A Two Dimensional Example 

Consider a 2D scattering problem from a strip which is illuminated by a soft 

polarized incident field as illustrated in Figure 2-5. 
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Figure 2-5: 2D Scattering Problem 

 

 

The incident field is given as 
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z
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η
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and the image of the magnetic field with respect to the PEC strip is 
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If we assume that the strip extends to infinity in z direction, then the 3D radiation 

integral for this problem may be written as 
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where 222 )()()( zzyyxxR ′−+′−+′−= . 

 

If we define 222 )()( yyxx ′−+′−=′− ρρ  then we have 

22 )( zzR ′−+′−= ρρ . Substituting this relation into equation (2.54) we obtain 
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Knowing the relation given in equation (2.56) 
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one may obtain the following relation for the scattered magnetic field. 
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In the far field we may assume that ρρ ′>> . Then the Hankel function of the 2nd 

kind can be approximated as 
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If this approximation is substituted into (2.57), the expression in (2.59) is found 

for the scattered magnetic field. 
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Using the definitions of the modified surface normal vectors given in (2.48) one 

may attain the expressions for these vectors. The geometry for these vectors is 

illustrated in Figure 2-6. 
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Figure 2-6: The Modified Surface Normal Vectors for 2D Scattering Problem 

 

 

The surface current generated by the image field may be found by using the 

expression given for in̂ . 
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If we substitute the surface current expression into (2.59) and employ “+” sign for 

the upper limit and “-” sign for the lower limit of the integral, the scattered field 

generated by the image of the incident field is obtained as 
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Since the relation φφφ == si  is valid for backscattering, the expressions for the 

backscattered magnetic and electric fields are found to be 
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If we follow the procedure given above, the backscattered electric field generated 

by the incident field is obtained as 
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Since the total scattered field is equal to the sum of the scattered fields generated 

by the incident field and its image, the expression for the total scattered field in 

the backscattering direction is attained as given in equation (2.68). 
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The same problem is also handled by Balanis and is solved by using the 

diffraction coefficients of GTD in [25]. In this solution the contributions of the 

end points to the scattered field are considered separately. Since there is no any 

stationary phase point on the strip for backscattering, the contribution from it is 

neglected. The diffracted fields from the edges 1 and 2 are denoted as dE1  and 
dE2  respectively. The expression for the scattered electric field is given in (2.69) 
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where the diffraction coefficient for soft polarization is given as 
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Then the contributions from each edge is calculated as 
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Finally, the expression for the total diffracted field which is equal to the sum of 

the diffracted fields from two edges is obtained to be identical to expression given 

in (2.68). 
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Therefore we may conclude that the sign change in the modified surface normal 

vector in̂  yields the correct result. 

 

If we solve the scattering with the same geometry illustrated in Figure 2-5 but 

with a hard polarized incident field, then using the diffraction coefficient given in 

(2.74) the diffracted fields may be obtained. 
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The expressions for the diffracted fields are given in the equations (2.75)-(2.77). 
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If the expressions attained in (2.73) and (2.77) are investigated in detail, a very 

remarkable consequence arises that both fields generate the same RCS even 

though they are created by differently polarized incident fields. This concern will 

be discussed in the subsequent sections in detail. 

 

2.5 Numerical Results 

In this section, the RCS of some simple targets are computed by Levin’s 

integration method and its accuracy is tested by comparing the results with other 

computation techniques. Moreover, the performance of Modified PO is also 
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checked on simple geometries. In these experiments both Levin’s method and 

Modified PO are proved to give satisfactorily accurate results. 

2.5.1 Results of Levin’s Method 

The first experiment was conducted on a perfect electric conductor (PEC) flat 

plate as illustrated in Figure 2-7. In this experiment both monostatic and bistatic 

RCS of a square PEC plate with side length of λ100  was computed and compared 

with other methods. 

 

For monostatic case, the plate was illuminated from o90=φ  and its RCS was 

computed with respect to θ at 10GHz. The result of the Levin’s method was 

compared with the analytical solution of the physical optics integral of this 

problem and with the result of Ludwig’s method in Figure 2-8. The result of 

Ludwig’s algorithm was obtained by the code POFACETS 3.01 written by David 

C. Jenn from Naval Postgraduate School California. (For the rest of the thesis the 

results obtained by Ludwig’s method will be denoted as POFACETS 3.01.) 
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Figure 2-7: Simulation Setup for PEC Plate 
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Figure 2-8: Monostatic RCS of a PEC Plate 

 

It can be observed from the figure that, the results obtained by both Levin’s 

method and Ludwig’s method perfectly match with the analytical solution. On the 

other hand, while the plate is modeled with 2 triangular facets in Ludwig’s 

method; only a single patch is used in Levin’s method. Hence, Levin’s method 

seems to be more advantageous in the perspective of computational efficiency. 

 

For bistatic case, the plate was normally illuminated and its RCS was computed 

with respect to θ  on the plane o90=φ . The results of this experiment are shown 

in Figure 2-9. It can be seen that the results of the Levin’s method are very 

accurate as in the monostatic case. 
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Figure 2-9: Bistatic RCS of a PEC Plate 

 

 

The performance of Levin’s method was proved to be accurate for flat plates. 

However, in the previous sections it was mentioned that Levin’s method is 

applicable to any surface modeled as a quadrilateral. Indeed, one of the most 

important advantages of Levin’s method is this property. Therefore, for a 

complete performance check of this novel technique, further experiments are 

needed to be conducted on curved surfaces. 

 

The second experiment was computation of RCS of a singly curved PEC screen. 

In this experiment a o5  sector of a cylindrical shell was used as curved screen 

which is shown in Figure 2-10. The radius of the cylinder is equal to 1m and its 

length is equal to λ100  at 10GHz frequency. The screen was illuminated from 
o0=θ  and its bistatic RCS was computed with respect to θ  on the plane o90=φ . 
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Figure 2-10: Simulation Setup for Singly Curved Screen 

 

 

The results of the second experiment are shown in Figure 2-11 where the Levin’s 

method solution is compared with the brute force integration solution. It can be 

observed from the figure that the results are very close to each other. It should 

also be noted that the cylindrical shell was modeled by a single quadrilateral 

which makes the computation very efficient. 

 

In order to test the performance of the Levin’s method on doubly curved screens, 

a third experiment was conducted on a spherical PEC shell as shown in Figure 

2-12. In this experiment a o6  sector (in both curvature directions) of a spherical 

shell with a radius of 1m was used. The screen was illuminated from o90=θ , 
o0=φ  and its bistatic RCS was computed with respect to φ  on the cone o90=θ . 
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Figure 2-11: Bistatic RCS of a Singly Curved PEC Screen 
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Figure 2-12: Simulation Setup for Doubly Curved Screen 

 

 

In Figure 2-13, the Levin’s method results for doubly curved screen are compared 

with the results of brute force integration. From the graph, it may be claimed that 

the results are in a good agreement. Similar to the previous experiment, the screen 

was modeled with only one quadrilateral.  
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These experiments confirmed that Levin’s method is an effective and efficient 

technique for the computation of the PO fields even on curved surfaces. In 

addition to these experiments, one extra experiment was conducted to verify the 

efficiency and advantage of this method when compared with the methods which 

are using planar facets to model the integration domain. 
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Figure 2-13: Bistatic RCS of a Doubly Curved PEC Screen 

 

 

The last experiment was conducted on a half cylinder with a radius of 1m and 

length of λ100  which was illuminated from o0=θ  as shown in Figure 2-14. In 

the experiment, the half cylinder was modeled by singly curved screens and 

planar facets separately. Then the bistatic RCS of the half cylinder was computed 

on the plane o0=φ  at 10 GHz and the results belonging to different types of 

modeling were compared. 
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Figure 2-14: Simulation Setup for Half Cylinder 

 

 

In the last experiment the half cylinder was modeled with singly curved screens 

and planar facets separately and their performances were compared. In Figure 

2-15 the results of this experiment are illustrated. It can be observed that, when 

compared with the model with 180 flat facets, the results obtained for the model 

with 360 flat facets are closer to the results of the model with curved facets. Thus 

the accuracy of the solution increases with the increasing number of facets. 

However, as a trade off the computation time increases too. This is due to 

increasing number of integrations as well as the increasing computation time for 

each facet. (This subject will be discussed in the subsequent paragraphs.). On the 

other hand accurate results may be obtained when the half cylinder is modeled 

with 60 curved facets. Therefore, using curved facets instead of flat facets 

decreases the computation time at least 6 times for the half cylinder. In fact, this 

consequence is one of the most significant advantages of techniques using curved 

patches against the techniques using planar patches as mentioned before. 
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Figure 2-15: The Comparison of the Bistatic RCS of the Half Cylinder Modeled with 

Different types of Patches 
 

 

In the previous paragraph it is stated that the computation time for each facet 

increases with the increasing number of facets. Indeed, this point is the greatest 

weakness of the Levin’s integration method. Since the sizes of the facets decrease 

with the increasing number of facets, the phase variation within a facet decreases. 

(This is analogous to decreasing the operating frequency.) Hence, the oscillatory 

behavior of the PO integral starts to diminish which makes Levin’s method 

inapplicable for small sized facets. As a result, the computation time for each 

facet increases if the phase of the integrand does not satisfy the conditions given 

in (2.44). 

 

In addition to the aforementioned drawback of the Levin’s method, another 

weakness of it arises around the forward scattering direction due to the same 

reasons. In the forward scattering direction the incidence and scattering directions 

will be the same ( is kk ˆˆ = ). Since the phase of the integrand of the PO integral is of 

the form rkkk is ′⋅− )ˆˆ( , the phase of the integrand vanishes around forward 

scattering direction. Thus, Levin’s method is not applicable around these regions. 
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Although Levin’s method has some deficiencies, it is still a powerful technique to 

compute the PO integrals as stated in this section. Additional experimental results 

of this method for complex targets will be discussed in Chapter-5. 

2.5.2 Results of Modified PO 

In the previous sections it was declared that PO is unsuccessful in predicting the 

diffraction effects in scattering problems. To overcome this drawback, modified 

PO was proposed to improve the performance of PO for diffracted fields. In order 

to observe the improvement in the performance of PO, some experiments were 

conducted on simple geometries and the results were compared with the results 

obtained by a more reliable method like FEM. In these experiments, the same 

simulation geometry which is illustrated in Figure 2-7 was used  

 

In the first experiment, the monostatic RCS of a PEC square plate, with a side 

length of λ10 , was computed with respect to θ  by both PO and modified PO for 

different polarizations at 10 GHz. In Figure 2-16 and Figure 2-17 the results 

obtained in this experiment are compared with FEM results. In this experiment 

the computations are done at every o5 . 

 

It may be seen from the figures that, for both polarizations, the modified PO gives 

enhanced results in comparison with PO. Although the results for φφ  polarization 

are close to the FEM results, modified PO is not successful for θθ  polarization. It 

may also be observed that PO and modified PO give identical solutions for both 

polarizations as mentioned in the previous section because, to encounter for the 

polarization effects multiple diffractions should be considered. Moreover for θθ  

polarization, the fields associated with double diffractions are greater than 

corresponding φφ  polarization [17]. On the other hand, modified PO accounts for 

only single diffraction effects. Therefore, modified PO cannot give accurate 

results for θθ  polarization. 
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Figure 2-16: Comparison of PO and Modified PO for θθ  Polarized Monostatic RCS of a 

PEC Square Plate 
 

 

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

50

55
Monostatic RCS Profile (φφ-polarization)

θ (degree)

R
C

S
 / 
λ2  (d

B
)

 

 
FEM
Modified PO
PO

 
Figure 2-17: Comparison of PO and Modified PO for φφ  Polarized Bistatic RCS of a PEC 

Square Plate 
 

 

For the bistatic case, the same square PEC plate was used which was illuminated 

from normal direction and the RCS of the plate was computed with respect to θ  

on the plane o90=φ . Similar to the monostatic case, the modified PO was found 
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to be more thriving than PO. The results of this experiment are illustrated in 

Figure 2-18 and Figure 2-19. 
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Figure 2-18: Comparison of PO and Modified PO for θθ  Polarized Bistatic RCS of a PEC 

Square Plate 
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Figure 2-19: Comparison of PO and Modified PO for φφ  Polarized Monostatic RCS of a 

PEC Square Plate 
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These figures show that modified PO solutions are closer to FEM solutions. 

Although the results of modified PO are not in a perfect agreement with the FEM 

results, PO with modified surface normal vectors can be an effective method to 

model the diffraction mechanism. Therefore, we may conclude that modified PO 

is a computationally efficient technique to improve the performance of PO in 

accounting for diffraction mechanism. 

 

In the previous section it was mathematically shown that the sign of the modified 

surface normal vector in̂  should be changed within the integration domain to 

obtain precise results. It was also discussed that the reason for this sign alteration 

is due to the change in the coordinate systems defined locally at the diffraction 

point. Thus, an appropriate algorithm should be determined for sign changing to 

apply the modified PO to scattering problems. 

 

In this thesis, the sign of the vector in̂  is determined via the relation given in 

equation (2.78). In this equation the positions of the integration point and the mid 

point of the integration point are denoted by r ′  and cr ′ , respectively. 
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In order to observe the accuracy of this algorithm, a consistency check was 

performed where the square plate used in the previous experiments was modeled 

with different models. In Model-1 only one facet was used to model the square 

plate while different numbers of facets were used in Model-2, Model-3 and 

Model-4. These models are illustrated in Figure 2-20. 
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Figure 2-20: Plate Models Used for Consistency Check of Modified PO 

 

 

Modified PO with the sign change algorithm given in (2.78) was applied to these 

models separately and it was observed that the results attained by Model-3 was 

very close to the results obtained by Model-1 and Model-2 which were identical. 

These results are shown in Figure 2-21. Therefore we may conclude that the 

algorithm for sign changing gives consistent results independent of facet shape. 
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Figure 2-21: Consistency Check Results for Modified PO 
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 CHAPTER 3 

 

 

APPLICATION OF PHYSICAL OPTICS TO 

COMPLEX TARGETS 

 

 

 
In the previous chapter, the procedure for calculating the scattered field from 

basic targets such as plates and curved screens was discussed in detail. However, 

RCS estimation for complex targets needs a special care; more issues should be 

taken into consideration than discussed in Chapter-2. In fact, calculation of RCS 

for complex targets involves target modeling and computation of scattered fields 

due to different scattering mechanisms [26]. Hence for a complete RCS prediction 

code, all of these subjects should be handled. Since the primary scattering 

mechanisms were examined in the previous chapter, only target modeling and 

secondary effects due to geometry of target (such as multiple scattering and 

shadowing) are going to be discussed in this chapter. 

 

3.1 Target Modeling 

In parallel to RCS prediction techniques, lots of target modeling methods have 

been improved and used for modeling the complex target geometries. Although 

these techniques may vary in their degree of complexity and modeling time, all 

share the common limitation of geometric approximation [26]. 
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The first target modeling method seen in the literature was the “body of 

revolution technique” which was limited to simple targets only. The second 

technique was the “method of components techniques using primitives”. In this 

method, the complex targets are modeled as a combination of simple shapes such 

as cone, cylinder, plate and etc. However, this method allows only a coarse 

modeling of the targets. To avoid these problems, some computer aided design 

(CAD) tools were started to be used in target modeling [26]. 

 

The simplest technique employed by CAD tools was modeling the target surface 

with triangular facets as in [8] and [27]. Although this method is easy to 

implement, it suffers from large number of facets and long computation time due 

to linear approximations of amplitude and phase functions. To overcome this 

disadvantage, more advanced techniques such as modeling the target surface by 

quadratic curved patches [28] and biparametric polynomials with restrictions 

(Bezier surfaces) [29] were developed. Furthermore, in recent years, using 

nonuniform rational B-splines (NURBS) became very popular in target modeling 

[30], [31]. 

 

Since Levin’s method can be applied to curved surfaces by the help of appropriate 

transformations, it can be applied to targets modeled by curved patches. 

Nevertheless, for the sake of simplicity, complex targets were modeled by 

arbitrary shaped large (with respect to wavelength) tetragons instead of 

quadrilaterals in this thesis study. On the other hand, a mesh generation algorithm 

for target modeling by quadrilaterals may be handled as a future work to improve 

the performance of Levin’s method. 

 

Surface mesh of a tank model which was used in the experiments is shown in 

Figure 3-1. In this figure, the tank is modeled by 3276 tetragons of arbitrary size. 
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Figure 3-1: Surface Mesh for a Tank Model 

 

 

3.2 Multiple Scattering 

The contribution of multiple interactions between different parts of the target is 

usually lower than the primary scattering mechanisms namely reflection and 

diffraction. However for some special geometries such as dihedral or trihedral 

corner reflectors or cavity like structures, multiple interactions may become 

dominant. In fact, due to the coupling between neighboring facets, such structures 

are frequently seen in complex targets (tanks, ships and etc). Therefore for a 

complete RCS analysis of complex targets, multiple scattering mechanism should 

also be taken into account. 

 

There are several methods in the literature to handle multiple scattering. The first 

one of these methods was shooting and bouncing rays method which was 

proposed by Ling et. al [32]. In this technique, PO is used to calculate the primary 

scattered fields which are then tracked by ray tracing until they hit to another 
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facet. When the traced rays hit to another facet, they reradiate to generate the 

secondary scattered fields. In order to have accurate results with this method, both 

amplitude and phase changes should be tracked during the ray tracing. Although 

shooting and bouncing rays technique gives quite accurate results, it needs too 

much computation time to trace the rays from all of the facets for complex targets. 

 

Another approach, which is used to predict the monostatic RCS of complex 

targets, employs the image theory to find the contribution of double effects to the 

scattered field [33]. In this approach, the double effects are separated as facet-

facet and facet-edge interactions. For facet-facet interactions, the currents induced 

on the facets by the incident field are calculated by PO. Then the image source 

currents through the second facet are obtained by GO. On the other hand, for 

facet-edge interactions, the equivalent edge currents are obtained from simple 

diffraction formulas while PO is used for the reflected waves. 

 

In addition to these, current modes can be used for calculating the effects of 

multiple scattering. In current modes method, the surface currents are 

approximated by the summation of a finite number of wave functions 

(exponential functions), with slowly varying amplitude and phase terms, which 

are called current modes. Then using the fact that a mode is a narrow pass band 

signal in the spatial frequency domain, the currents on large surfaces can be 

sampled by a few number of sample points [34]. 

 

A fast and very interesting method which was suggested by Boag and Michielssen 

is based on the observation that the scattering amplitude pattern of a pair of finite 

scatterers is an essentially bandlimited function of aspect angle and frequency 

multiplied by common phase factor [35]. In this method, the primary surface 

currents are obtained from the incident fields by PO. Then these induced surface 

currents are treated as the new sources of the secondary fields. To reduce the 

computational complexity, the surface of the scatterer is divided into subdomains 

by a special domain decomposition formula. Lastly, the scattered field is attained 
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by the interpolation of the scattering pattern samples at specific angle-frequency 

points. 

 

Another efficient method which was frequently used in the literature is iterative 

physical optics (IPO) [36]. At the beginning, IPO was proposed for multiple 

interactions of surfaces in cavity like structures. However, later investigations 

have shown that it is also applicable to complex targets. Similar to the approach 

given in [35], IPO uses the primary induced surface currents as the sources of 

secondary surface currents and multiple scattering contributions are computed 

with an iterative treatment. 

 

IPO uses the magnetic field integral equation (MFIE) given in equation (3.1). 
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where the gradient of the Green’s function is given as 
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Note that in order to take into account the near field effects in multiple scattering; 

a far field approximation is not done in the expression (3.2). 

 

The iterative algorithm starts with putting 0)( =′rJ  on the right hand side of the 

equation (3.1). This gives us the PO surface current. Then in the next iteration, the 

PO current obtained in the first iteration is substituted into equation (3.1). 

Repeating this procedure for N times, the following recursive formula is obtained: 
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        (3.3) 

 

The iterations are truncated at a number N when a stable value for the surface 

current is obtained. However, for complex targets only one iteration is adequate to 

estimate the double bounce effects [37]. 

 

One disadvantage of this method is that for a rapid convergence, the integration 

domain should be sampled by at least 4-9 facets per an area of 2λ . Therefore, to 

speed up the integrations some approximations may be performed. Since the areas 

of the facets are very small, rr ′−  vector can be considered to be constant for all 

of the points within a facet. If this approximation is combined with the fact that 

the surface current density is also constant on a facet (Because for flat surfaces 
iHn×ˆ2  is constant.), the expression in (3.1) can be rewritten as 
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where ii rrR ′−= , ii RR =  and the area of the facet is denoted as iA . In this 

formulation ir  and r  are the vectors pointing the mid point of each source and 

illuminated facets. A similar formulation can also be found in [37]. 

 

Although the formulation given in (3.4) seems to be very easy to implement, 

some special care should be taken when combining it with Levin’s method. In 

Chapter-2, it is shown that Levin’s method is applicable to large facets and to take 

the advantage of this, large facets are used for target modeling. However, IPO 

does not give accurate results for large facets as explained. Thus, a refinement 

should be done in target model to compute the secondary surface currents. This 

refinement is achieved by dividing the facets into smaller facets such that the 

sampling ratio of 4-9 patches per an area of 2λ  is satisfied for most part of the 
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surface. In this procedure, the first step is finding the average facet area of the 

model. Then each facet is divided into 4 facets until the given sampling condition 

is attained. An adaptive sampling may also be used to speed up the computation. 

 

After satisfactorily obtaining the secondary surface currents, the scattered field 

due to these currents is computed by Levin’s integration method. If modified PO 

currents are used in this method, the facet-facet and facet-edge interactions can be 

approximated by one integration. 

 

An additional important concern about IPO is the shadowing problem. Since these 

integrations are performed using the principles of PO, shadowing must also be 

taken into account. 

 

3.3 Shadowing  

Shadow region calculation is one of the most essential topics of RCS computation 

of complex targets. Shadowing is composed of two parts; the self shadowing and 

the shadowing of one component by another [26]. Self-shadowing is the 

shadowing of facets that belong to the same object and it depends on the direction 

of incidence. On the other hand, the shadowing of the facets of one component to 

the facets of other components is denoted as component/component shadowing. 

 

The self-shadowed facets can be identified by a simple calculation. If the facets 

do not satisfy the condition (3.5) then they are guaranteed to be in the shadow 

region. In this expression the incidence direction and the normal of the facet is 

denoted as ik̂  and n̂ , respectively. The facets that satisfy the condition (3.5) are 

signed as candidates to be illuminated. After this point, component/component 

shadow calculation should be performed. 

 

 0ˆˆ <⋅ nki               (3.5) 
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The component/component shadowing problem has been handled by many 

researchers and several different techniques have been proposed by them. The 

most popular method in the literature is the ray tracing method. In this method, 

each candidate facet to be illuminated is tested if it is shadowed by other facets. 

This is accomplished by special fast algorithms like Möller-Trumbore algorithm. 

If there exists at least one facet shadowing the other, then each shadowing facet is 

projected onto the shadowed facet and shadowed portion of the facet is cut out 

[39]. However, this method is very time consuming. To decrease the computation 

time of this technique, some accelerated ray tracing algorithms have been 

proposed in [40] and [41]. In these methods, angle elements called anxels and 

volume elements called voxels are used to increase the speed of the ray tracing 

algorithm. In the first method each facet is stored in an anxel which is associated 

to the spherical coordinates of the normal of the facet. By this way, the facets with 

negligible contribution to the scattered field can be determined easily. In the 

second method, the ray-surface intersection test is performed within voxels which 

are on the direction of incidence. 

 

Although the accelerated ray tracing algorithms seem to be efficient algorithms 

for shadow region calculation, there is a more efficient way of handling 

shadowing phenomenon. Since in the forward scattering direction a scattered field 

that is almost equal and out of phase with the incident wave is produced by the 

induced surface currents, the sum of incident and scattered fields over the 

shadowed region almost add up to zero. Thus, keeping the track of multiple 

scattering can take care of shadowing problem automatically [37]. When keeping 

the track of multiple scattering an additional condition should be considered 

together with the condition given in (3.5). For computing the contribution of 

multiple interactions between the facets (and consequently shadowing), only the 

points satisfying the following condition should be considered. 

 

 0ˆ)( <⋅′− nrr               (3.6) 
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3.4 Numerical Results 

In order to perceive the accuracy of the IPO method for multiple scattering and 

shadowing, some experiments are conducted and their results are compared with 

the results found in the literature. 

 

The first experiment, which is illustrated in Figure 3-2, was the computation of 

the monostatic RCS of a dihedral corner reflector at 10 GHz frequency. In this 

experiment, the RCS of a dihedral corner reflector, due to a θ -polarized incident 

field, with respect to φ  angle was observed. The dihedral used in this experiment 

was formed by two square plates of size 12cm. 
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Figure 3-2: Experiment Geometry for Dihedral Corner Reflector 

 

 

The results of this experiment are given in Figure 3-3. The contribution of 

multiple scattering can be seen clearly from the figure. Although the results 

obtained in this experiment do not agree with the results given in [34], they agree 

well with the results given in [42]. 
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Figure 3-3: The Monostatic RCS of the Dihedral Corner Reflector at 10 GHz  
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Figure 3-4: The Monostatic RCS of the Dihedral Corner Reflector at 9.4 GHz 

 

 

To prove the validity of the IPO method implemented in this study, another 

experiment was conducted with a square dihedral corner reflector of size 

λ6088.5  at 9.4 GHz. The results of this experiment are shown in Figure 3-4. In 

the literature, the results related to the same experiment were also given by 

Griesser et. al. in [43] and there is an excellent match between these results and 
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the ones given here. This experiment proves that IPO method is a powerful tool 

for the computation of multiple scattering. 

 

Lastly, to show the correctness of our claim about shadowing problem another 

experiment was done with the simple PEC object shown in Figure 3-5. In this 

model some of the facets may be fully or partially shadowed by other facets of the 

target. Therefore, shadowing should be taken into account for an accurate RCS 

prediction. The results of this experiment are given in Figure 3-6. 
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Figure 3-5: Target Model Used for Numerical Multiple Scattering and Shadowing 

Experiment 
 

 

It can be observed from Figure 3-6 that the double-bounce scattering and 

consequently shadowing are satisfactorily modeled by IPO method when 

compared with RCS computed due to single scattering only. In fact these results 

are in perfect agreement with the results given in [37]. Hence, it can be concluded 

that IPO is an efficient and powerful tool to compute the multiple scattering 

effects together with shadowing for the RCS prediction problems of complex 

targets. 
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Figure 3-6: Monostatic RCS of the Target Shown in Figure 3-5 at 10 GHz 
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 CHAPTER 4 

 

 

PHYSICAL OPTICS SOLUTION IN TIME 

DOMAIN 

 

 

 
The steady state scattered field strength can be satisfactorily computed by PO in 

frequency domain. However, in practice, radar systems have pulsed and 

modulated (amplitude, frequency and etc.) waveforms where monochromatic 

source assumption cannot be made. This makes transient analysis of 

electromagnetic waves necessary especially for large scatterers in which transient 

effect cannot be neglected [44]. 

 

The early methods suggested for transient analysis were based on the idea of 

transformation of frequency domain solution of the same problem to time domain. 

Nevertheless, direct time domain solutions were more advantageous than this 

procedure in terms of convenient handling of nonlinearities, solution efficiency, 

physical insight and etc. [47]. Hence, the research related to this topic was 

focused on direct time domain solutions. Foremost solution techniques were the 

time domain extensions of the exact frequency domain solutions like space-time 

integral and finite difference time domain (FDTD) methods. Although these 

methods are very accurate, they suffer from numerical instability, error 

accumulation with time marching, sample-space truncation error, interpolation 

error and etc. Moreover, they need extensive computer memory and computation 

time to solve problems [48]. 
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The paths that PO passed through were similar to ones of formerly mentioned 

methods. The earliest applications of PO to time domain problems were based on 

determination of PO impulse response [49], [50]. In [49], a closed form 

expression is given for the PO impulse response of triangular facets. A similar 

formulation was also derived by Bölükbaş and Ergin by interpreting the PO 

integral as a Radon transform [51]. In this paper, the inverse Fourier transform of 

the frequency domain PO impulse response is interpreted as the Radon transform 

of the triangular facet, on which the integration is performed; along the direction 

obtained by the vector addition of observation and the inverse of incidence 

directions. Likewise, in the formulation given in [50], the time domain expression 

for the impulse response of a triangular surface is calculated by the inverse 

Fourier transform of the frequency domain solution. However, the computation is 

simplified by employing the band limited property of the realistic radar signals; 

the erroneous low frequency terms and the high frequency terms which do not fall 

into the bandwidth of the radar signal are not computed. 

 

In the subsequent years, direct time domain PO method was proposed by Sun et. 

al. which recovered the deficiencies of the exact time domain methods [48]. As a 

consequence, TDPO became a very popular method for the transient analysis of 

second order surfaces such as paraboloidal reflector antennas [44]-[46]. 

 

4.1 Derivation of the Time Domain PO Integral 

For the derivation of TDPO integral, we may start with the time domain 

Maxwell’s equations. 
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 0=⋅∇ B               (4.4) 

 

Since the divergence of B  is equal to zero, it can be written as a curl of some 

function called the vector potential. 

 

 AB ×∇=               (4.5) 

 

If equation (4.5) is substituted into equation (4.1), the expression for the scalar 

potential is obtained. 
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Now, substituting equations (4.5) and (4.6) into equation (4.2), one obtains 
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Then by making use of the Lorentz Gauge, the wave equation for the vector 

potential can be derived from equation (4.7). 
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Under the far field conditions, the solution of this wave equation may be 

approximated as: 

 

 ∫
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where 
c

rr ′−
=τ  is the time retardation between the source and observation 

points. 

 

The expression given in (4.10) is denoted as the retarded vector potential. If 

equation (4.10) is substituted into (4.6), the electric field intensity can be attained. 
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If there are no free surface charges on the integration surface, then the scalar 

potential will be equal to zero. Thus, the expression for the electric field intensity 

will be 
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For plane waves, the relation between the magnetic and electric field intensities 

may be written as 

 

 EaH R ×= ˆ1
η

            (4.13) 

 

Then, by using equations (4.12) and (4.13), the time domain expression for the 

magnetic field intensity at the far field may be obtained. 
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where rrR ′−=  and Râ  is the unit vector in the direction of R . 

 

Equation (4.14) is denoted as the TDPO integral for magnetic field intensity. If 

this integral is numerically computed by trapezoidal rule, the following 

formulation may be used. 
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where 
c
R

c
rr kk =

−
=τ . 

 

By this formulation, since the mutual coupling between the points on the surface 

is ignored, the numerical limitations, such as interpolation error, numerical 

dispersion error and etc., of the other time domain techniques are avoided. 

Besides, when compared with the exact time domain techniques, the computation 

time can be reduced drastically by TDPO [48]. 

 

Figure 4-1 illustrates a sample discretization of a rectangular integration domain 

for TDPO according to the formula given in (4.15). In this problem, in order to 

calculate the scattered field strength at a point R  at an arbitrary time, the time 

retardation due to propagation of the wave should be taken into account. 

Furthermore, in order to find the transient waveform in a certain interval, the time 

interval should be divided into smaller subintervals in which the strength of the 

scattered field is calculated separately. For adequate sampling of the scattered 

field at high frequencies, very small time steps should be selected which results in 

long computation times. Additionally, for different observation points, due to the 

finite time sampling space, some interpolation techniques are required to evaluate 
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the retarded surface currents [48]. Since any special integration technique is not 

applied to TDPO during this study, the direct TDPO method is also time 

consuming although it is more advantageous than the exact time domain methods. 
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Figure 4-1: Discretization of the Integration Domain for TDPO 

 

 

Because of the computational drawbacks of TDPO formulation mentioned above, 

another technique which has already been proposed in the literature was used in 

this thesis. In this technique, the response of the scatterer is computed via a fast 

integration method like Levin’s method in the frequency domain and the domain 

response is attained by taking the inverse Fourier transform of the frequency 

domain response. Although this method has some previously discussed 

weaknesses, when compared with direct time domain techniques, the Fourier 

domain solution has been preferred for the sake of shorter CPU time. On the other 

hand if the speed of TDPO is increased by special integration method, it will be 

more convenient to employ TDPO for transient response analysis. 
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4.2 Fourier Domain Solution of TDPO 

The Fourier domain solution is the earliest method suggested for time domain 

scattering problems. As stated by Houshmand et. al. [52], the inverse Fourier 

transform of the frequency domain response of a scatter is equivalent to the time 

domain response of the same scatter obtained by direct time domain methods. 

Due to simplicity and computational efficiency of this method, it has been widely 

used for time domain analysis of several targets such as reflector antennas and 

missiles [52] and [53]. 

 

Although this method may be seen as an efficient method at the first glance, the 

scene is more different at high frequencies, especially when dealing with long 

pulses. It is a known fact that to reconstruct a time domain signal from its 

samples, it should be sampled at least at its Nyquist rate. Moreover, for sinusoidal 

signals, a convenient sampling rate is higher than the Nyquist rate; approximately 

20 samples within a period. Hence, for long pulses a very long sequence of 

samples is needed in the discrete time domain. As a consequence, the fast Fourier 

transform (FFT) occupies a considerable percentage of the computation time. 

From this discussion it is clear that, some modifications are necessary for 

transient analysis of target responses via Fourier domain solutions. 

 

In the modified version of Fourier domain solution, the envelope of the signal is 

sampled instead of full signal. Since the envelope of the signal is composed of 

only the low frequency terms, the Nyquist rate of the envelope will be decreased 

dramatically with respect to the one of the real signal. After the envelope 

detection, the spectrum of the envelope is attained via FFT. The relation between 

the time domain and frequency domain expressions of the real signal and its 

envelope is given in equations (4.16) - (4.18). In these equations, the input signal 

and its envelope are denoted by )(tx  and )(txLP  respectively. 

 

 



 
 
65

 tjw
LP

cetxtx )()( =            (4.16) 

 { })()( txFTwX LPLP =            (4.17) 

 )()( cLP wwXwX −=            (4.18) 

 

Then, the frequency domain target response is computed for each frequency 

component of the envelope. Even though, this procedure seems to be very 

straightforward, one should be very careful at this step. Indeed, this is the most 

tricky and critical point of the modified Fourier domain solution. Since PO is 

valid only at high frequencies, every frequency component of the envelope should 

be carried back to high frequency region by multiplying it with the carrier signal. 

After the modulation of the envelope, the frequency response of the scatterer is 

computed by FDPO for each associated frequency component of the modulated 

envelope signal. At the end of this step, the frequency domain output of the 

system is obtained. Nevertheless, there is still some work to do before passing to 

the time domain. The frequency domain output should be demodulated by the 

carrier signal and carried to the base band. Now, if the inverse FFT (IFFT) 

algorithm is applied to this base band signal, the time domain expression for the 

output signal is attained. Similar to the input signal, the expressions for the time 

domain and frequency domain output signals may be written. 

 

 )()( cLP wwYwY −=            (4.19) 

 { })()( wYIFTty LPLP =            (4.20) 

 

Figure 4-2 illustrates the block diagram of the modified Fourier domain solution 

(MFDS) discussed in detail. 



 
 
66

PO
Frequency Domain

Envelope
Detection FFT

Carrier

Carrier

IFFT

)(tx )(wX

)(wX )(wY )(tyLP

 
Figure 4-2: Block Diagram of the Modified Fourier Domain Solution 

 

 

For frequency modulated signals, MFDS may be improved further by introducing 

auxiliary approximations to decrease the computation time. In these 

approximations, the signal may be thought as a linear combination of shorter 

pulses with constant frequencies. Assume that we have a chirp signal as expressed 

in equation (4.21). The envelope of this incident signal is also illustrated in Figure 

4-3. 

 

 
22)()( tjtfj eetAtx c πβπ=            (4.21) 
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Figure 4-3: The Envelope of the Incident Pulse 
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If the envelope of the incident pulse is written as a linear combination of shorter 

pulses with constant frequencies then, the following mathematical relation may be 

obtained. 

 

 ∑
=

Δ−=
N

k

wtjk
dLP ekttstx

1
)()(           (4.22) 

 

where 
N
T

w pβ
=Δ . Figure 4-4 shows the model for the envelope of the chirp signal 

which is mathematically expressed in equation (4.22). 

 

 

dt

)(txLP

pT
t

t

)(ts
dt

 
Figure 4-4: The Mathematical Modeling of the Chirp Signal 

 

 

After approximating the envelope of the incident pulse by following this 

procedure, the transient response of a scatterer can be obtained by employing 

MFDS. In fact, there are two ways for the application of MFDS after this point 

which are computationally almost equivalent to each other. 
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The first method handles each short pulse )( dktts −  separately and then combines 

the solutions for these short pulses by taking into account of the time delay 

between the pulses. During these operations an kM  point FFT and IFFT are done 

for N times. ( kM ’s are determined by considering the Nyquist rate of each short 

pulse) Since the short pulse has a constant frequency, the beam width of the short 

pulse is narrower than the whole incident pulse. Therefore, in each iteration, the 

frequency domain solutions are computed for a less number of frequency 

components. 

 

On the other hand in the second method, the envelope of the incident pulse is 

treated in only one iteration. In this case, the Nyquist rate is chosen as the greatest 

Nyquist rate of the short pulses. Therefore an { }kMN max  point FFT and IFFT 

are performed and the corresponding frequency domain problem is solved for 

only once. 

 

In this study, the second approach was preferred because of its slight advantages 

against the first method. 

 

4.3 Numerical Results 

In this part of the thesis, the waveform analysis of the scattered fields was 

accomplished on very simple targets like plates and corner reflectors and the 

scattered waveforms were discussed in terms of high frequency scattering 

mechanisms. For this purpose, two different incident waveforms were used to 

illuminate the objects. The first one was a short pulse of width 5ns and the second 

one was a frequency modulated chirp signal with a pulse width of 1μs. 

 

In the first time domain experiment a λλ 5100 ×  PEC plate was used with the 

same geometry given in the frequency domain experiments. Figure 4-5 the 

experiment geometry is illustrated in which the longer dimension of the plate is in 
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the x direction. This plate was illuminated by an incident wave with a carrier 

frequency of 10 GHz. The envelope of the incident pulse and its Fourier transform 

are also shown in Figure 4-6. 
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Figure 4-5: Simulation Geometry for PEC Plate 
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This plate was normally illuminated from the normal direction ( o0=iθ ) and the 

backscattered waveform at a distance of 500m from the plate was observed. In 
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Figure 4-7 the envelope scattered waveform and its Fourier transform obtained by 

PO are shown. As it can be seen from this figure, the amplitude of the scattered 

wave is smaller than the incident wave as expected. On the other the waveforms 

of these pulses are identical. Indeed, this observation is an obvious consequence 

of the high frequency scattering mechanisms. Since the specular reflection and 

backscattering directions coincide for normal incidence, specular reflection 

mechanism dominates the scattered wave. Hence, its waveform does not change 

in comparison with the incident pulse. 
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Then the angle of incidence was changed to o30=iθ  and the plate was 

illuminated from the plane o0=iφ . In this case, the waveform of the scattered 

signal differs from the incident signal. There exist two pulses as it can be seen 

from Figure 4-8. Again by taking the scattering mechanisms into account, a 

logical statement can be made. Since for oblique incidence the specular reflection 

and backscattering directions are different, in the backscattering direction “end 

region scattering” mechanism becomes dominant. Therefore, the scattered fields 

from the two edges of the plate are seen as two distinct pulses. 
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In addition to the explanations stated above, one may also observe that the 

amplitudes of the pulses are very small when compared with amplitude of the 

scattered wave obtained for normal incidence. In Section 2.4.1 it was stated that 

the end region scattering contributes to the side lobes of the scattering pattern. 

However, main lobe is generated by specular reflection. Thus, it is very usual to 

expect a weaker scattering for oblique incidence than for normal incidence. It 

does also worth to mention that, the duration of the pulses are same with the 

incident pulse due to the fact that the whole phase front hits to edge at the same 

time. 
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The time retardation between the pulses scattered from the edges of the plate can 

be calculated by making the use of the effective length illustrated in Figure 4-9. 

The effective length between the two edges of the plate, which is given in the 

equation (4.23), is equal to the projected length of the plate in the direction of 

incidence. 

 

 ieff ww θsin=             (4.23) 
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After the incident pulse is scattered from the leading edge of the plate, it travels 

along the plate and is scattered from the trailing edge. Since the pulse scattered 

from trailing edge travels along the plate twice (before and after scattering), the 

retardation or delay time between these pulses can be obtained by using equation 

(4.24) in which the speed of light is denoted by c. 

 

 
c

w
c
w

t ieff
ret

θsin22
==           (4.24) 

 

In our case, the length of the plate along the x direction is equal to λ100  and the 

plate is illuminated from o30=iθ . Therefore, the effective length is found to be 

λ50 . Since the wavelength at 10 GHz is equal to 0.03m, the retardation time is 

calculated as 10ns which agrees with the results illustrated in Figure 4-8. 
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Figure 4-9: Illustration of the Effective Length 

 

 

If the incidence angle is increased to o60=iθ , due to the increase in the effective 

length of the plate, the retardation time between the pulses scattered from the 

edges increases. In fact, the results shown in Figure 4-10 agree with this 

inference. If we further increase the incidence angle to o90=iθ , the retardation 
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time is expected to have its maximum value. Figure 4-11 illustrates the results 

related to this case. It is also essential to note that the amplitude of the scattered 

wave is inversely proportional with the incidence angle as it can be observed from 

the figures. 
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If we change the incidence direction from o0=iφ  to o90=iφ , the effective length 

of the plate decreases below to a critical value such that the pulses cannot be 

distinguished from each other. The two pulses overlap and form a new waveform 

with a different envelope and duration. This situation is similar to the range 

resolution concern in RADAR systems. Figure 4-12 shows the waveform 

obtained for this case. 
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Figure 4-13 illustrates the envelope of the scattered wave and its Fourier 

transform for the case o30=iθ  and o45=iφ . Since the plate is illuminated from 

o45=iφ , the whole phase front of the incident pulse does not hit to the edge of the 

plate at the same time for this case. The pulse firstly hits to the corner at one 

point, the rest of the phase front gradually hits to the plate as the pulse penetrates 

along it. Therefore, for this incidence direction, the transient effects may be seen 

more clearly. In fact, the duration of the pulses shown in Figure 4-13 is greater 

than 5ns. 
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Throughout the experiments conducted by employing PO, the effects of the 

specular reflection and end region scattering mechanisms on the scattered 

waveform were observed properly. In addition to these scattering mechanisms, in 

order to see the effects of diffraction, modified PO was employed for the same 

problem given above. The results obtained in this case slightly differed from the 

results obtained by PO. All of the discrepancies observed in these experiments 

were explained via diffraction phenomena. 
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In the first experiment conducted by modified PO, the plate was illuminated 

normally. Since specular reflection is dominant in the backscattering direction for 

normal incidence the results obtained in this experiment were the same with the 

results obtained by PO. Figure 4-14 and Figure 4-15 show the results of this 

experiment for different polarizations. 
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Then the angle of incidence was increased from o0=iθ  to o30=iθ  and it was 

observed that the responses of the edges were different for different polarizations. 

The scattered waveforms obtained in this experiment are illustrated in Figure 4-16 

and Figure 4-17. 
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These results can be explained mathematically by using the consequences of the 

two dimensional scattering problem from a strip solved in Section 2.4.3. In the 

GTD solution of that problem, the contributions from the edges of the plate are 

given by the equations (2.71) and (2.72) for a soft polarized incident wave. (In our 

case φφ  polarization corresponds to soft polarization.) From these equations, the 

ratio of the magnitudes of the fields scattered from the edges may be attained as 
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ϕ

ϕ

cos
11

cos
11

1

2

+

−
=

d

d

E

E
           (4.25) 

 

where the angle between the incident wave and the plane on which the plate lies is 

denoted by ϕ . Since in the geometry of the problem the leading edge is numbered 

as the 2nd edge, the contributions from the leading and trailing edges of the plate 

are also denoted by dE2  and dE1  respectively. 

 

When the incidence angle is equal to o30=iθ , then the angle from the plane of 

the plate will be equal to o120=ϕ . Hence the ratio of the magnitudes of the fields 

scattered from the leading and trailing edges is calculated to be equal to 3 from 

equation (4.25). If this result is compared with the ratio of the amplitudes of 

pulses read from Figure 4-16, the consistency of the results can be seen 

effortlessly. From the figure, this ratio is attained to be equal to 

996.2
1039.2
1016.7

5

5

1

2 =
×
×

= −

−

d

d

E

E
. 

 

For the hard polarization (θθ  Polarization) case, due to the change in the 

diffraction coefficients, the roles of the leading and trailing edges toggle. As it can 

be seen from the equations (2.75) and (2.76), the contribution of the trailing edge 

becomes more dominant. 

 

A further discussion about the physics of this problem is done in [54]. It is stated 

that for soft polarization, the dominant current mode generated on the surface of 

the plate is due to diffraction from the leading edge; the trailing edge has a low 

level contribution. On the other hand, for hard polarization trailing edge becomes 

dominant and surface travelling waves are generated in addition to diffracted 
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field. In view of the fact that our approach cannot model the surface travelling 

waves, their contribution to the total scattered field are not observed. 

 

Similar results are obtained for other incidence directions which are illustrated 

from Figure 4-18 to Figure 4-23. Here it is interesting to note that when the 

incidence angle becomes o90=iθ , the contributions of the trailing edge and 

leading edge vanish for soft and hard polarizations, respectively. 
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The effects of different scattering mechanisms can be observed easily under 

illumination by a short pulse. However, the pulse width of the short pulse used in 

the previous experiments is very small when compared with the usual RADAR 

pulses. Therefore, in order to see the validity of the Fourier domain approach for 

feasible RADAR pulses, the same experiments were repeated with a longer pulse. 

 

According to Skolnik, for a pulse Doppler RADAR operating in the X-band (8-12 

GHz) and with a medium pulse repetition frequency, the most common pulse 

repetition frequencies are between 10-30 kHz with a duty cycle around 0.05 [55]. 

Thus, a long pulse with a pulse width of 1μs is an appropriate choice for the 

experiments. Moreover, this long pulse is chosen to be a frequency modulated 

chirp signal with a chirp rate of 100 MHz which is also a feasible value for 

RADAR systems. Figure 4-24 shows the envelope of the incident pulse and its 

Fourier transform, which is modeled by a combination of 5 shorter pulses with 

constant frequencies according to the procedure stated in the previous section. 
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The experimental results obtained for the long pulse are shown from Figure 4-25 

to Figure 4-34. Since the pulse width of the incident signal is greater than the time 
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interval necessary to travel a distance equal to two times the length of the plate, 

the effects of end region scattering and diffraction mechanisms cannot be noticed. 
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For the case where o90=iθ  the scattered wave attained for hard polarization is 

slightly retarded in comparison with the scattered wave attained for soft 

polarization. This is because of the fact that the incident wave does not recognize 

the leading edge for hard polarization and the entire scattered field is generated by 

the trailing edge as explained in the discussions made for short pulse examples. 

Since in this case the pulse width is very large, the duration for the field to travel 

the way between the two edges is negligible. Hence, the retardation cannot be 

observed clearly. 

 

It is also interesting to note that for oblique incidence cases, the strength of the 

pulse is not constant because, the frequency response of the plate is different for 

different frequencies and this difference becomes significant for oblique incidence 

where specular reflection mechanism loses its effect in the backscattering 

direction. 

 

The last experiment conducted for time domain waveform analysis was performed 

on a corner reflector shown in Figure 4-35 to see the effect of specular reflection 

mechanism in scattering problems. The corner reflector used in the experiment is 

composed of two plates which have the same dimensions with the plate used in 

the previous experiments. One of these plates is located on z=0 plane and the 

other is attached to it with an obtuse angle. Thus, when the corner reflector is 

illuminated normally, specular reflection takes place in the first plate while end 

region scattering and diffraction occurs in the other plate for backscattering 

direction. Since the total scattered field is the combination of the fields scattered 

from the plates, we may examine the effects of these scattering mechanisms by 

comparing with the results attained in plate experiments. 
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Figure 4-35: Corner Reflector 

 

 

Figure 4-36 and Figure 4-37 illustrates the envelope of the scattered wave from 

the corner reflector when it is illuminated by short and long pulses respectively. 

For both case, the amplitudes of the scattered waves are almost equal to the 

amplitude of the wave scattered from the plate under normal incidence. 

Furthermore, since the projected distance between the edges of the second plate in 

y direction is very small, the pulse scattered from the trailing edge of the second 

plate overlaps the pulse scattered from the leading edge and cannot be observed. 

Hence, we may conclude that, if there exist a specular reflection contribution in 

the observation direction, it dominates the scattered field. 
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Figure 4-36: Envelope of the Scattered Waveform from Corner Reflector Computed by 

Modified PO (Normal Incidence φφ  Polarization) For Short Pulse 
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 CHAPTER 5 

 

 

NUMERICAL RESULTS AND DISCUSSIONS 

 

 

 

5.1 Frequency Domain Experiments 

The RCS results of very primitive targets like plates, curved screens and dihedral 

corner reflectors were given in the previous chapters but the performance of the 

developed approach was not tested for other objects. Therefore, RCS results 

related to additional targets will be presented in this section. In the first part, the 

experimental results obtained for simple shapes by Levin’s method will be 

compared by POFACETS 3.01 results. Then, the RCS of a tank whose surface 

mesh model is illustrated in Figure 3-1 will be given for different aspect angles 

and polarizations. Finally, a statistical analysis of the scattered fields from the 

tank model will be conducted in the last part. 

5.1.1 Simple Targets 

In this part, the RCS results of a cube, a rectangular prism, a cylinder and a sphere 

were computed by Levin’s method by employing both PO and Modified PO 

methods. It was observed that the results were in good agreement with the results 

of POFACETS 3.01 code which uses Ludwig’s integration algorithm. 

Furthermore, Levin’s method was seen to have significant advantages in terms of 

computational aspects. For the sake of being consistent with the previous 

chapters, the experiments were performed at 10 GHz. 
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The first experiment was performed on a cube which is shown in Figure 5-1. The 

monostatic RCS of the cube was computed with respect to θ in the planes o45=φ  

and o90=φ . The results are illustrated in Figure 5-2 and Figure 5-3. 
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Figure 5-1: Cube Model 

 

 

In this experiment, the cube was modeled by 6 square facets for Levin’s approach. 

On the other hand POFACETS 3.01 uses 12 triangular facets for the same model. 

It can be observe from the figures that PO results attained by Levin’s method are 

in good agreement with POFACETS 3.01 results. Therefore, if we take the 

number of facets (i.e. number of computation) into account, Levin’s method 

seems to be more efficient. Furthermore, for the directions where the specular 

reflection region coincides with the backscattering region, the Modified PO 

results are close to results of other two. However, for the angles where diffraction 

becomes significant, Modified PO gives enhanced RCS values.  
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Figure 5-2: Monostatic Normalized RCS of the Cube ( o90=φ ) 
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Figure 5-3: Monostatic Normalized RCS of the Cube ( o45=φ ) 
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Figure 5-4 shows the model of rectangular prism used in the second experiment. 

Similar to the first experiment, the monostatic RCS of the model was computed 

on the planes o45=φ  and o90=φ  which are illustrated in Figure 5-5 and Figure 

5-6. From these figures one may conclude the same results discussed in the 

previous experiment. Moreover, as in the first experiment, the prism was modeled 

by 6 facets for Levin’s method while 12 triangular facets were used for Ludwig’s 

method. 
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Figure 5-4: Rectangular Prism Model 
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Figure 5-5: Monostatic Normalized RCS of the Rectangular Prism ( o90=φ ) 
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Figure 5-6: Monostatic Normalized RCS of the Rectangular Prism ( o45=φ ) 
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The next model used in these experiments, which is shown in Figure 5-7, was a 

circular cylinder. Since cylinder is symmetric with respect to φ  the monostatic 

RCS of the cylinder was computed for only one angle. The results of this 

experiment are illustrated in Figure 5-8. 
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Figure 5-7: Cylinder Model 

 

 

Apart from the previous ones, this experiment has an important place in terms of 

demonstrating the computational efficiency of the Levin’s method in comparison 

with the Ludwig’s method. Even though the curved surface of the cylinder is 

modeled by 600 triangular facets in POFACETS 3.01, only 90 curved patches 

were used in Levin’s method. Hence, the number of computation was decreased 

approximately on the order of 1/6 in comparison with Ludwig’s method. 

 

Another important consequence of this experiment comes from the results of 

Modified PO. Since the upper and lower sides of the cylinder were not modeled in 

this experiment (It can be considered as a pipe.), the PO approaches give nearly 

zero field for incidence angles of o0=θ  and o180=θ  for both Levin’s and 
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Ludwig’s methods. However, Modified PO approach results in a considerable 

amount of scattered field in the neighborhood of these regions due to the fact that 

it accounts for the diffraction effects. On the other hand around o90=θ , PO, 

Modified PO and POFACETS 3.01 give almost the same results. 
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Figure 5-8: Monostatic Normalized RCS of the Cylinder 

 

 

The last simple target was a sphere with a radius of 1m. The monostatic RCS of 

this sphere was computed by Levin’s method and its variation with respect to 

frequency was tried to be observed. Figure 5-9 shows the results of this 

experiment where the sphere was modeled by 7204 curved and 16204 flat patches 

separately. It can be observed that both models give close results that converge to 
2rπ  as frequency increases. Nevertheless, the results belonging to flat patch 

model start to deviate from the correct results for high frequencies. This outcome 

also proves the computational efficiency of Levin’s method in terms of its 

applicability to curved surfaces. 
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Figure 5-9: Monostatic RCS of the Sphere with Respect to Frequency 

 

 

5.1.2 Complex Targets 

After the experiments conducted on simple objects, to see the performance of 

Levin’s method on complex targets, more realistic models were simulated. For 

this purpose, the RCS of a tank model illustrated in Figure 3-1 was computed for 

different polarizations and aspect angles. Three aspect angles were used through 

out the experiments, which were o85=θ , o80=θ  and o75=θ  corresponding to 

elevation angles of o5 , o10  and o15  respectively. In fact, these angle values are 

very feasible in terms of military concerns. The RCS of the tank was computed 

with respect to φ  and the results for both co-polarization and cross-polarization 

cases were observed. First, the RCS computations were performed by PO 

approach. Then, the same experiments were repeated by Modified PO in order to 

see the contribution of the diffracted fields to the results. Figure 5-10 - Figure 

5-12 and Figure 5-13 - Figure 5-15 illustrates the co-polarized monostatic RCS of 

the tank model. 
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Figure 5-10: Monostatic RCS of the Tank Computed by PO ( o85=θ ) 
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Figure 5-11: Monostatic RCS of the Tank Computed by PO ( o80=θ ) 
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Figure 5-12: Monostatic RCS of the Tank Computed by PO ( o75=θ ) 
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Figure 5-13: Monostatic RCS of the Tank Computed by Modified PO ( o85=θ ) 
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Figure 5-14: Monostatic RCS of the Tank Computed by Modified PO ( o80=θ ) 
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Figure 5-15: Monostatic RCS of the Tank Computed by Modified PO ( o75=θ ) 
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From the figures given above, it may be observed that the RCS values obtained by 

Modified PO are slightly higher than the values obtained by PO due to the 

contribution of the diffracted fields. A comparison of the average RCS values 

attained by these methods is shown in Table 2. 

 

 
Table 2: Comparison of Average RCS Values Computed by PO and Modified PO 

 
Modified PO 

θ  PO 
θθ  φφ  

o85  12.2 m2 18.6 m2 12.6 m2 
o80  9.0 m2 17.5 m2 8.9 m2 
o75  3.3 m2 8.4 m2 6.4 m2 

 

 

It may be concluded from the results given in Table 2 that, the Modified PO 

solutions for different polarizations are also close to each other. This observation 

is mainly due to the fact that polarization sensitivity of the targets can only be 

observed if multiple diffraction mechanisms are included into the electromagnetic 

solver. Nonetheless, only the first order diffractions can be modeled via Modified 

PO. Furthermore, it may also be observed that PO and Modified PO results do not 

differ significantly. Since the tank is modeled by a considerable amount of facets, 

for each incidence direction there may exist some facets which cause specular 

reflection. Due to the fact that specular reflection is the most dominant scattering 

mechanism and is independent of polarization, PO and Modified PO solutions are 

obtained to be close to each other. 

 

In addition to co-polarized RCS, cross-polarized RCS values of the tank was also 

computed. Figure 5-16 - Figure 5-18 and Figure 5-19 - Figure 5-24 shows cross-

polarized RCS of the tank computed by PO and Modified PO respectively. Since 

PO is independent of polarization, PO results are given for only one polarization. 
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Figure 5-16: Cross Polarized Monostatic RCS of the Tank Computed by PO ( o85=θ ) 
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Figure 5-17: Cross Polarized Monostatic RCS of the Tank Computed by PO ( o80=θ ) 
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Figure 5-18: Cross Polarized Monostatic RCS of the Tank Computed by PO ( o75=θ ) 
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Figure 5-19: Cross Polarized (θφ ) Monostatic RCS of the Tank Computed by Modified PO 

( o85=θ ) 
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Figure 5-20: Cross Polarized (θφ ) Monostatic RCS of the Tank Computed by Modified PO 

( o80=θ ) 
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Figure 5-21: Cross Polarized (θφ ) Monostatic RCS of the Tank Computed by Modified PO 

( o75=θ ) 
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Figure 5-22: Cross Polarized (φθ ) Monostatic RCS of the Tank Computed by Modified PO 

( o85=θ ) 
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Figure 5-23: Cross Polarized (φθ ) Monostatic RCS of the Tank Computed by Modified PO 

( o80=θ ) 
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Figure 5-24: Cross Polarized (φθ ) Monostatic RCS of the Tank Computed by Modified PO 

( o75=θ ) 
 

 

In contrast to the co-polarized case, PO and Modified PO results are not close to 

each other for cross-polarization. In view of the fact that the cross-polarization 

fields are introduced by diffraction mechanism, PO approach gives almost zero 

fields. On the other hand, Modified PO approach results in nonzero but relatively 

small RCS values in comparison with the co-polarized ones. Expectedly, 

Modified PO results for θφ  and φθ  polarizations are very close (almost equal) to 

each other due to not considering multiple diffractions. Also, the difference 

between these values becomes very insignificant since the strength of the 

scattered field is low. Table 3 summarizes the statements discussed in this 

paragraph. 

 

 

 



 
 
109

Table 3: Comparison of Average Cross Polarized RCS Values Computed by PO and 
Modified PO 

 
Modified PO 

θ  PO 
θφ  φθ  

o85  9.6x10-33 m2 0.6 m2 0.6 m2 
o80  1.3x10-32 m2 0.6 m2 0.6 m2 
o75  2.4x10-32 m2 0.5 m2 0.5 m2 

 

 

5.1.3 Statistical Analysis 

The results given in the previous section show that the RCS values of both simple 

and complex targets fluctuate in a very dynamic range. In fact, even in the case of 

two scatterers with the same cross sections, the total RCS fluctuates in a dynamic 

range too. Moreover, these fluctuations increase with the increasing number of 

scatterers. This behavior of RCS leads to some statistical studies which result in 

remarkable outcomes. 

 

If a statistical analysis is conducted on the electromagnetic field scattered by N 

randomly distributed scatterers with equal cross sections, it can be observed that 

the real and imaginary parts of the scattered field have “Normal” distributions 

with same variance. Hence the distributions of magnitude of the field and square 

of magnitude of the field (or RCS) fit to “Rayleigh” and “Exponential” 

distributions respectively. In addition to these, the phase of the field has a uniform 

distribution. (See Appendix B for the proof.) If there are dominant scatterers 

contributing to the field, then the distribution of the RCS may be modeled by 

“Chi-square”, “Rice”, “Weibull” or “Log-normal” distributions [56]. 

 

Remember that the RCS computations of the tank were accomplished for 720 

different aspect angles. Indeed, changing the aspect angle for RCS computation, 

corresponds to changing the distribution of the scatterers inside a volume. 
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Therefore, the histogram of the RCS of the tank computed for different aspect 

angles gives the distribution of the RCS for randomly distributed scatterers within 

a volume. 

 

In our case, the tank is modeled by flat facets with individual RCS close to each 

other so, they may be considered as almost equally weighted scatterers distributed 

into the volume occupied by the tank. Thus, a normal distribution is expected 

from the real and imaginary parts of the field scattered by the tank model. 

However, in order to obtain reliable information about the distribution, the RCS 

of the tank should be computed for many aspect angles (more than 10000). Since 

our experiments were conducted for 720 angles, the results attained here cannot 

give thorough distribution but only an idea about it. Figure 5-25 - Figure 5-27 

shows the histograms of the real part, imaginary part, phase, magnitude and 

magnitude square of the scattered field computed by PO and Modified PO for co-

polarized case. 

 

 

 
Figure 5-25: Statistical Analysis of the Scattered Field from the Tank Computed by PO 

( o80=θ ) 
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Figure 5-26: Statistical Analysis of the Scattered Field from the Tank Computed by 

Modified PO ( o80=θ , φφ  Polarization) 
 

 

 
Figure 5-27: Statistical Analysis of the Scattered Field from the Tank Computed by  

Modified PO ( o80=θ , θθ  Polarization) 
 



 
 
112

 

It can be observed that the results are very close to expected ones. The deviations 

from the ideal results may be due to facets with very high or very low RCS in 

comparison with the other facets. On the other hand, the results obtained for 

cross-polarized case are closer to ideal ones. In the view of the fact that even the 

large (in terms of RCS) facets generate weak cross-polarized scattered fields, 

“equally weighted scatterers” model fits to this case better than co-polarized case. 

The histograms of cross-polarized fields are illustrated in Figure 5-28 - Figure 

5-30. 

 

 

 
Figure 5-28: Statistical Analysis of the Cross Polarized Scattered Field from the Tank 

Computed by PO ( o80=θ ) 
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Figure 5-29: Statistical Analysis of the Cross Polarized Scattered Field from the Tank 
Computed by Modified PO ( o80=θ , φθ  Polarization) 

 

 

 
Figure 5-30: Statistical Analysis of the Cross Polarized Scattered Field from the Tank 

Computed by Modified PO ( o80=θ , θφ  Polarization) 
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5.2 Time Domain Experiments 

In the time domain experiments, the waveforms scattered from the simple shaped 

objects used in frequency domain experiments were observed. It was seen that the 

results are in agreement with discussions given in Chapter-4. 

 

The first experiment was conducted on the cube which is illustrated in Figure 5-1. 

The cube was illuminated from o45== φθ  in order to light 3 faces of the cube 

simultaneously. Figure 5-31 and Figure 5-32 show the scattered waveform for θθ  

and φφ  polarizations respectively. Since there are more than 2 scattering centers 

in a cube, the number of pulses observed is more than 2. 

 

 

-5 0 5

x 109

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10-4 Fourier Transform

Frequency (Hz)
0 1 2 3 4

x 10-8

0

0.2

0.4

0.6

0.8

1

1.2
x 10-6 Scattered Wave

Time (s)  
Figure 5-31: Scattered waveform from the Cube (θθ  Polarization) 
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Figure 5-32: Scattered waveform from the Cube (φφ  Polarization) 

o45=θ and o45=φ  
 

 

For the case of the rectangular prism shown in Figure 5-4, we obtain similar 

results as they can be seen from Figure 5-33 and Figure 5-34. 
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Figure 5-33: Scattered waveform from the Rectangular Prism (θθ  Polarization) 
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Figure 5-34: Scattered waveform from the Rectangular Prism (φφ  Polarization) 

o45=θ and o45=φ  
 

 

The main difference between the waveforms scattered from the cube and 

rectangular prism is the overlapping of the pulses. Since the side lengths of the 

rectangular prism are not equal to each other, the retardation between the pulses 

differs from each other resulting in interesting waveforms. 

 

If the cylinder is illuminated from o90=θ  and o90=φ , due to the curvature of 

the surface, the transient effects may be seen clearly. However, for the case of the 

cylinder shown in Figure 5-7 the transient part of scattered wave is very short 

when compared with the whole pulse. Since the radius of the cylinder is large 

( λ100 ) with respect to the wave length (curvature is small), the cylinder behaves 

like a flat plate. The results of this experiment are illustrated in Figure 5-35. 
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Figure 5-35: Scattered waveform from the Cylinder (θθ  Polarization) 

o90=θ and o90=φ  
 

 

If the same experiments are repeated with the long pulse used in Chapter-4, 

similar results are obtained. Nonetheless, the retardation between the pulses 

scattered from different scattering centers of the targets cannot be observed 

because of long duration of the incident pulse. The results related to these 

experiments are illustrated in Figure 5-36 - Figure 5-40. 
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Figure 5-36: Scattered waveform from the Cube (θθ  Polarization) 

o45=θ and o45=φ  
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Figure 5-37: Scattered waveform from the Cube (φφ  Polarization) 

o45=θ and o45=φ  
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Figure 5-38: Scattered waveform from the Rectangular Prism (θθ  Polarization) 

o45=θ and o45=φ  
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Figure 5-39: Scattered waveform from the Rectangular Prism (φφ  Polarization) 

o45=θ and o45=φ  
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 CHAPTER 6 

 

 

CONCLUSIONS 

 

 

 

6.1 Summary of the Thesis 

In this thesis a MATLAB® code for RCS computation of complex targets by PO 

and Modified PO methods is developed. 

 

The most intricate part of RCS computation by PO/Modified PO is the integration 

part. Since PO is valid at high frequencies, the complex exponential term in the 

integrand of the PO integral becomes very oscillatory at high frequencies. Hence, 

too many sampling points are needed with the classical quadrature methods. To 

increase the computational efficiency of the code, a novel fast integration 

technique, which is called Levin’s integration method, is applied to 

electromagnetic scattering problems. In this method, an accurate solution can be 

attained for an integral on a rectangular domain by making use of only a few 

collocation points. The integrand is approximated by some basis functions 

(monomials in this study) and the integration is concerted to solving a differential 

equation with the help of a genius operator. Then a nonoscillatory particular 

solution of this differential equation is obtained. In order to apply this model to 

arbitrary shaped objects, the surfaces of the objects are modeled by 8-noded 

quadrilaterals. Then, with the help of some shape functions, the integration 

domain is mapped to a rectangular domain where Levin’s method is easily 

applicable. 
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PO gives accurate results for high frequency scattering problems near specular 

reflection region. Nonetheless, its performance is not so good for grazing angles. 

The main reason of this situation is the fact that PO cannot account for diffraction 

effects that become significant for grazing angles. Thus to improve the 

performance of PO, a modified version of it is used which also accounts for the 

primary diffraction effects. In this method, diffraction is modeled by defining new 

surface normal vectors that generate fictitious surface currents that are functions 

of incidence and observation directions. By this method, the performance of PO is 

improved to the level of GTD with a minor modification in the PO integral. 

 

An algorithm which accounts for multiple scattering and shadowing problems is 

also included into the code. IPO algorithm is used to account for multiple 

scattering effects. This method is more efficient in comparison with Shooting and 

Bouncing Rays method. In this technique, PO surface currents are reradiated to 

calculate the secondary fields scattered by the object. If higher order scattering 

effects are desired to be observed, then the surface currents should be reradiated 

iteratively until it converges. A useful consequence of this method is that, it 

solves shadowing problem automatically by making use of a slight modification 

in the shadowing conditions of the IPO. However, a considerable amount of facets 

are needed to obtain accurate results with this method which makes it 

computationally expensive. Therefore, this method is more appropriate for 

parallel computing. 

 

In addition to frequency domain solutions, to see the transient effects on the 

scattered waveforms, a time domain analysis is also accomplished. For this 

purpose, a Fourier domain approach is employed instead of a direct time domain 

technique because of lack of a fast direct time domain solver. To increase the 

computational efficiency of the method, sampling rate is decreased by 

investigating the envelopes of the waveforms only. By this way, the high 

frequency signals are carried to low frequency level where the Nyquist rate is 

dramatically lower than the rate in the high frequency region. 
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Finally, the implemented methods are applied to some simple and complex targets 

in both frequency and time domains and the results are compared with other 

techniques. In addition to these, a statistical analysis of the scattered fields from 

the tank model is included into the thesis. 

 

6.2 Advantages and Disadvantages of the Levin’s Method 

Levin’s method is an efficient and fast way to compute the integrals with rapid 

oscillations. Since it can be applied to curved surfaces, the number of patches 

used for target modeling can be decreased drastically. Hence, computational 

efficiency of Levin’s method is higher than the methods using planar patches to 

model the targets. Moreover, the complexity of the algorithm is almost of order 

zero with respect to frequency. That is the number of computations and CPU time 

does not change with frequency. Therefore, very large facets (such as facets with 

a surface area of 210000λ ) may be used for target modeling. This makes Levin’s 

method appropriate for large targets like ships, planes and tanks. 

 

Despite the advantages of Levin’s method, there are some drawbacks restricting 

the usage of it. Due to the possible singularities stated in the thesis, Levin’s 

method cannot be applied to PO integrals at low frequencies. Since a rapid phase 

variation within a facet is also necessary for the application of the method, small 

facets are not appropriate for this technique. Thus, for some case the geometry of 

a target may not be modeled precisely. Furthermore, Levin’s method is not 

applicable to compute the scattered fields in the neighborhood of forward 

scattering region because of the same reason. 

 

6.3 Advantages and Disadvantages of Modified PO 

Modified PO is a simple method to model the diffraction effects without making 

use of any diffraction coefficients or edge currents. The diffraction effects can be 

accounted by computing the same number of integrals as in the PO method. 
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Therefore, CPU time needed is not increased significantly in comparison with PO. 

However, multiple diffraction effects are not modeled by Modified PO. In the 

view of the fact that the polarization dependency of RCS is introduced by 

multiple diffraction mechanism, Modified PO should be improved further for the 

investigation of the polarization sensitivity of targets. 

 

Modified PO is mathematically proven to be an accurate method to improve the 

performance of PO for diffraction up to the level of GTD for 2D problems. 

Nevertheless, a more rigorous formulation should be developed to apply this 

method to arbitrarily shaped 3D objects. 

 

6.4 Future Work 

The performance of Levin’s method is satisfactory in terms of computational 

aspects. However, the computation time of the code can be decreased further by 

accomplishing a code optimization. Moreover, a parallel computing algorithm 

may be developed for this program. In fact, there is no need for superfluous 

communication between the computers since the total scattered field is computed 

by the superposition of the fields scattered from each facet. Thus, the 

parallelization of the algorithm may be done effortlessly and improves the 

performance of the code dramatically. 

 

For the sake of simplicity, planar facets are used to model complex targets in this 

study. Therefore, a special mesh generation algorithm that models the targets by 

curved patches may be developed. By this way a complete software package for 

RCS prediction at high frequencies will be obtained. 

 

In this thesis, monomials are used as basis functions in the integration part. The 

use of other basis functions may be investigated and a comparison of the 

performance of the Levin’s method for different basis functions may be done. 
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Indeed, there is a strong intuition that if Bernstein polynomials are used as basis 

functions, Levin’s method may be applied to surfaces modeled by NURBS. 

 

Finally, Levin’s method may be applied to direct time domain integrals to 

decrease the computation time and memory requirements of TDPO. If the time 

retardation is rewritten as a function of spatial coordinates of the integration 

surface, then TDPO integral may be computed by storing the field values at the 

collocation points only. By this way time needed for interpolations can also be 

decreased. 
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APPENDIX A 

 

 

PROOF OF LEVIN’S THEOREM 

 

 

 
The proof of Levin’s theorem given in [14] is as follows: 

 

We would like to show that under the aforementioned conditions the differential 

equation given in (2.17) has a slowly oscillatory particular solution 0p . 

 

 fpqjppL =′+′=)()1(            (A.1) 

 

Let )()( xWuxq =  where 1)(0 ≤′< xu  and let )(ζx  be the inverse of )(xu  where 

)()( buau ≤≤ ζ . Since the functions f and q are slowly oscillatory functions, 

))((
))((

ζ
ζ

xq
xf

′  is also slowly oscillatory and therefore its spectrum is bounded. 
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where WW ≤< 00 . 

 

Then the slowly oscillatory particular solution of (A.1) is found to be  

 



 
 
134

 ∫
− +

=
0

0
)(

)()(
)(

0

W

W

xjwu

dw
Wwj

ewGWxp            (A.3) 

 

This can be verified by computing 
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The particular solution given in (A.3) is slowly oscillatory in comparison with 
)(xjqe  since its spectrum is bounded in [ ]00,WW−  and WW <<0 . 
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APPENDIX B 

 

 

STATISTICAL ANALYSIS FOR COMPLEX 

RANDOM VARIABLES 

 

 

 

Consider a complex random variable yjxz ~~~ +=  where x~  and y~  are independent 

normally distributed random variables with same variance σ. Then the probability 

density function for these variables can be written as 
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Then the probability for being in an arbitrary infinitesimal rectangle is  
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If we define 2 new random variables 22 ~~~~ yxzr +==  and 
x
y
~
~

tan~ 1−=ψ , then 

the probability given in (B.2) can be rewritten as 

 

 ψ
πσ

σ rdrdeP
r2

22
1

22
1 −

=            (B.3) 

 

Then the probability density function may be expressed as 
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where 
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The probability density functions given in (B.5) and (B.6) are the density 

functions for Rayleigh and uniform distributions respectively. 


