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ABSTRACT 
 
 

DESIGN AND FPGA IMPLEMENTATION OF AN EFFICIENT 
DEINTERLEAVING ALGORITHM 

 
 

OLGUN, Muhammet Ertuğ 

M.S., Department of Electrical and Electronics Engineering 

Supervisor : Prof. Dr. Gözde Bozdağı Akar 

Co Supervisor : Assoc. Prof. Dr. Sencer Koç 

 
 

August 2008, 73 pages 
 
 
 
 
 
 
 
 

In this work, a new deinterleaving algorithm that can be used as a part of an ESM 

system and its implementation by using an FPGA is studied. The function of the 

implemented algorithm is interpreting the complex electromagnetic military field in 

order to detect and determine different RADARs and their types by using incoming 

RADAR pulses and their PDWs. It is assumed that RADAR signals in the space are 

received clearly and PDW of each pulse is generated as an input to the implemented 

algorithm system. Clustering analysis and a new interpreting process is used to 

deinterleave the RADAR pulses. In order to implement the algorithm, FPGA is used 

for achieving a faster and more efficient system. Comparison of the new algorithm 

and the previous deinterleaving studies is done. The simulation results are shown and 

discussed in detail. 

 
Keywords: Deinterleaving of RADAR pulses, Clustering, ESM, PDW, FPGA 
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ÖZ 
 
 

VERİMLİ AYRIŞTIRMA ALGORİTMASININ TASARIMI VE FPGA 
UYGULAMASI 

 
 
 
 

OLGUN, Muhammet Ertuğ 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Gözde Akar Bozdağı 

Ortak Tez Yöneticisi: Doç. Dr. Sencer Koç 
 
 

Ağustos 2008, 73 sayfa 
 
 
 
 
 
 
 
 

Bu tez çalışmasında, Elektronik Destek sistemlerinde kullanılabilecek yeni bir 

ayrıştırma algoritması ve algoritmanın FPGA uygulaması çalışılmıştır. Uygulanmış 

algoritmanın işlevi; farklı radarların ve çeşitlerinin, algılanan radar darbeleri ve 

bunların darbe tanımlayıcı kelimelerini kullanarak, tespiti ve tayini için karmaşık 

askeri elektromanyetik ortamların yorumlanmasıdır. Havadaki radar sinyalleri temiz 

bir şekilde alınmış ve her darbenin darbe tanımlayıcı kelimelerinin uygulanmış 

sisteme girdi olarak üretilmiş olduğu varsayılmıştır. Radar darbelerinin ayrıştırılması 

için gruplama analizi ve yeni bir yorumlama işlemi kullanılmıştır. Daha hızlı ve 

verimli bir sisteme ulaşmak için algoritmanın uygulamasında FPGA kullanılmıştır. 

Yeni algoritma ile daha önceki ayrıştırma çalışmalarının karşılaştırması yapılmıştır. 

Gerçekleme sonuçları gösterilmiş ve detaylı bir şekilde tartışılmıştır. 

 

Anahtar Kelimeler: RADAR darbelerini ayrıştırma, Gruplama, Elektronik Destek 
Ölçümleri, Darbe Tanımlayıcı Kelime, FPGA  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

1.1 RADAR and Electronic Warfare 

A RADAR (radio detection and ranging) is a device capable of detecting the 

presence of an object, the target, in space, and of measuring its bearings in angle and 

in range by the use of electromagnetic waves. In general, this is achieved by the 

generation of a pulsed signal of a certain frequency, which is radiated into space by a 

directive antenna capable of scanning a given sector [1]. 

 

Electronic Warfare (EW) is military action involving the use of electromagnetic 

energy to determine, exploit, reduce or prevent hostile use of the electromagnetic 

spectrum and to maintain friendly use of spectrum. EW consists of four main 

principal elements: 

 

● Electronic Support Measures (ESM): Gathering and immediate analysis of 

electronic emission of weapon systems to determine a proper and immediate 

reaction. 

 

● Electronic Counter Measures (ECM): Development and application of equipment 

and tactics to deny enemy use of electromagnetically controlled weapons. 

 

● Electronic Counter Counter Measures (ECCM): Actions necessary to ensure use of 

the electromagnetic spectrum by friendly forces. 

 

● Signal Intelligence (SIGINT): Acquisition of as much data as possible about the 

electromagnetic emissions of a potential enemy [2]. 
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Electronic Intelligence (ELINT), ESM and RWR (RADAR Warning Receiver) 

devices are used to gather information on the use of electromagnetic spectrum in 

order to reduce the effectiveness of unfriendly EW systems. The characteristics of 

hostile electronic emissions such as their locations and time waveforms are acquired 

by ELINT system. Also the analysis of electronic signals both in frequency and time 

is done by ELINT systems in order to obtain the “fingerprints” of the enemy EW 

devices. 

 

An ESM system is used as a tactical interception system. Complex electromagnetic 

scenario, including previously unknown emitters can be regenerated by ESM 

systems. ESM automatic extraction is generally known as one of the most difficult 

problems in the field of military electronics. Most of the scenarios are sophisticated, 

because the extraction is done from a complicated and crowded space. This situation 

makes ESM much more important. The simplest ESM systems detect the presence of 

already known emitters by comparison of the intercepted signals with stored data, 

which are called RWRs [3]. 

 

1.2 Clustering Analysis and Deinterleaving Process 

Clustering analysis and deinterleaving processes are very well known concepts in 

EW. They are mostly used in ESMs in order to help distinguish RADAR signals in a 

complex electromagnetic environment. These concepts are separately discussed in 

the following sections. 

 

1.2.1 Clustering Analysis 

Clustering analysis refers to the process of grouping objects, where similar objects 

are located in the same group called a cluster. The most commonly used term for 

techniques which try to separate data into convenient groups is cluster analysis. In 

general such techniques are used for grouping objects. There are several techniques 

for grouping objects that have been suggested in the literature. These techniques 

offer lots of advantages over a manual grouping process. First of all, a clustering 

program can apply a set of specified criteria consistently for grouping. A human 
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being can be a good example for a clustering system. From the beginning of an 

individual’s life, he forms object clusters visually in two and three dimension, where 

the clustering criteria vary for each individual based on educational and cultural 

background differences [2]. Like human beings, ESM systems use clustering for 

interpretation and analysis of the complex environment. 

 

The characterization of electromagnetic signals is commonly used to form clusters. 

Received RADAR pulses, which are also electromagnetic signals, give the 

information of carrier frequency, angle of arrival (AOA), time of arrival (TOA), 

pulse width (PW) and pulse amplitude (PA). The combination of these information 

parameters form the pulse description word (PDW). PDW includes the major 

information about its source emitter, so it is often used in ESM clustering analysis. 

An example of PDW clustering will be discussed in the subsequent sections. 

 

The clustering analysis is used for identification of the emitters, which is crucial to 

determine the best technique of ECM for those emitters. The process of correlating 

pulses and grouping them is a complex one, which is called deinterleaving. The 

variability of the signals of a single emitter makes extraction more difficult. 

 

1.2.2 Deinterleaving Process 

Deinterleaving of RADAR pulses, as an important part of ESM, is a process of 

detection and recognition of different, simultaneously active, RADAR emitters. The 

purpose is to sort (or cluster), the received pulses based on their characteristics. 

 

Deinterleaving algorithms are commonly based on the analysis of various parameters 

of the received RADAR pulses, which are mentioned in the previous section, such as 

TOA, AOA, PW, PA and carrier frequency. Besides these parameters, pulse 

repetition interval (PRI) is one of the most important signal parameters for 

deinterleaving process. However, PRI cannot be measured directly; instead this 

parameter must be generated by the deinterleaving algorithm. 
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A lot of techniques have appeared since 1960’s in the literature and almost all of 

them are based on the time-space relation property of periodic pulse signals. Many of 

these techniques applied are based on the following principle: taking the adjacent 

interval as PRI and comparing it to the next pulse to realize pulse train deinterleaving 

[4]. Some of these deinterleaving algorithms are Folding, CDIF and SDIF 

deinterleaving algorithms and these are discussed in detail in Chapter 4. 

 

1.3 Description of the Thesis 

In this work, a new deinterleaving algorithm that can be used as a part of an ESM 

system and its implementation by using an FPGA is studied. The new algorithm is 

called Real-Time Clustering Deinterleaving Algorithm (RCDA) and will be 

described in detail in Chapter 3. The function of implemented RCDA is interpreting 

the complex electromagnetic military field in order to detect and determine different 

RADARs and their types by using incoming RADAR pulses and their PDWs. It is 

assumed that RADAR signals in the space are received clearly and PDW of each 

pulse is generated as an input to the implemented RCDA system. Clustering analysis 

and a new interpreting process is used to deinterleave the RADAR pulses. In order to 

implement the algorithm, FPGA is used for achieving a faster and more efficient 

system. Comparison of RCDA and the previous deinterleaving studies is done. The 

simulation results are shown and discussed in detail. 

 

1.4 Outline of the Thesis 

The thesis is organized as follows: In Chapter 2, the problem is stated and described; 

pulse parameters of RADARs and types of RADAR PRI modes are given. Their 

usage in RCDA is also emphasized briefly. 

 

In Chapter 3, construction of RCDA is described. Parts of the algorithm and their 

process are explained and also their operational flowcharts are given. Links between 

parts of RCDA are discussed for a better understanding of each subalgorithm. 
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After explanation of the new algorithm (RCDA), some of the early deinterleaving 

algorithms from literature are given in Chapter 4. Their algorithms and 

implementations are emphasized. The differences between previous algorithms and 

RCDA are noted and discussed. 

 

In Chapter 5, implementation of RCDA by using MATLAB is given. Results of the 

simulations are presented and compared with the simulation results of other 

algorithms. Simulations are done for different scenarios. 

 

In Chapter 6, the hardware implementation of RCDA by using FPGA is given. Steps 

of the implementation process are explained. The advantages of using FPGA rather 

than a processor are discussed. 

 

Finally, both RCDA and some of the other algorithms found in the open literature are 

summarized. Moreover some concluding remarks of these algorithms and 

implementations are discussed in Chapter 7. 
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CHAPTER 2 
 
 

 PROBLEM DESCRIPTION 
 
 
 

In modern Electronic Warfare, the large number of RADARs that are independent 

from each other cause ESM systems to receive a pulse stream consisting of 

interleaved pulses from different RADARs. For identification of different RADARs, 

their interleaved pulse trains should be deinterleaved. For this purpose, an automatic 

ESM processing is needed to overcome the high received pulse rate and generate a 

real time response [5]. RCDA is an algorithm for such a process. It deinterleaves the 

incoming pulse stream and interprets the deinterleaved data in order to help detection 

of surrounding RADARs on the field. 

 

The two most important parameters necessary to identify a RADAR are PDW and 

PRI of the emitted pulses of it. If these parameters’ analysis is done carefully, the 

type of RADAR is provided, easily. The following section focuses on pulse 

parameters that form PDW and the types of RADAR PRIs. 

 

2.1 Pulse Parameters 

The parameters AOA, carrier frequency, PW, PA and TOA give the characteristics of 

a pulse. In Figure 2.1, the separation of pulse parameters in AOA, frequency and PW 

for some typical RADARs is shown. 
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Figure 2.1 Pulse Separation in AOA, Frequency and PW 

 

 

In the following sections, more information about mentioned pulse parameters and 

their usage for clustering will be given. 

 

2.1.1 Angle of Arrival (AOA) 

Angle of arrival is generally emphasized as the best sorting parameter for clustering 

process. The reason for this notification is that it cannot be varied rapidly by the 

hostile RADARs from pulse to pulse. It is a fact that even airborne RADARs cannot 

change their location in a few milliseconds of the PRI time, so the AOA 

measurement by an intercept receiver on the RADAR is relatively stable [2]. 

 

However, assuming AOA as the best sorting parameter for clustering can cause 

crucial problems, because the measurement of AOA is the most difficult one. 

Amplitude and phase comparisons are the commonly used AOA measurement 
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methods in intercept receivers. An RMS AOA measurement accuracy of 1.7° has 

been achieved by many ESM system producers [2]. 

 

Also, for land or navy platform RADARs, reflection and deflection of the main 

signal cause wrong measurement of AOA. It is easily noticed that there can be lots of 

obstacles in land or navy fields, where lots of reflections and deflections can occur. 

A simple example of reflection from surrounding obstacles and corruption of AOA 

measurement is seen in Figure 2.2. 

 

Consequently, AOA is not used as a PDW clustering parameter in RCDA. In Chapter 

3 and 5, PDW includes frequency, PA, PW and TOA. However, AOA can be easily 

added in the later versions of the algorithm for multitask purpose. Discarding AOA 

from PDW will also be discussed in those chapters. 

 

 

 

Figure 2.2 Reflection of Main Signal (corruption of AOA measurement) 
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2.1.2 Frequency 

In many of pulse parameter clustering applications, it is emphasized that the carrier 

frequency is the next most important parameter after AOA [2]. The major advantage 

of frequency parameter is highlighted if it is noticed that radars physically near to 

each other cannot operate on the same frequency. Despite the fact that frequency 

parameter helps to form correct pulse parameter clusters, it also has some 

disadvantages. Frequency agile (random variation of carrier frequency) or frequency 

hopping (systematic variation of carrier frequency) RADARs can easily change their 

carrier frequencies making the frequency parameter unreliable for pulse parameter 

clustering. The carrier frequency is changed by a frequency agile RADAR on a 

pulse-to-pulse basis. The frequency of the next pulse cannot be predicted from the 

frequency of the current pulse. Frequency hopping is the capability to operate at a 

number of frequencies. The frequency is changed in a minimal time period that is 

longer than a few PRIs [2]. 

 

In order to detect frequency agile or hopping parameters, a frequency tolerance value 

is set in RCDA. Although this is not an exact solution, it is useful if the frequency 

changes smoothly. The algorithm is vulnerable for large amount of pulse-to-pulse 

frequency changes. This subject will be discussed in later sections in detail. 

 

2.1.3 Pulse Width 

PW is accepted as a less effective clustering parameter because many RADARs are 

similar in this respect and also PW varies with pulse amplitude. Multipath situations 

may also cause variations in measured PW values. PW parameter cannot be used for 

separating same type of RADARs whose pulses are interleaved [2]. 

 

Due to variation of PW, it is not used in ECCM systems for clustering. However, 

RADARs that have selectable range of PRIs can have different PW in each PRI 

sequence. In addition, an input signal may be designated as continuous wave (CW) 

when the PW is longer than a few hundred microseconds, which cannot be tracked or 

deinterleaved. This situation results in a missing parameter and is a great 

disadvantage for PW clustering [2]. 
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2.1.4 Pulse Amplitude 

The pulse amplitude is commonly defined as the peak value of the received RADAR 

pulse. It is generally used along with TOA for deriving the scan pattern of the 

RADAR and not used for clustering. First of all, PA is not a reliable parameter for 

clustering because of its variability within a pulse train due to antenna scanning. 

However, PA has a major advantage since it is not changed too much from pulse-to-

pulse [2]. 

 

PA can easily help to deinterleave signals coming from the RADARs that are located 

far away from each other, since it is a strong function of distance to the RADAR. 

Adjacent pulses with a large amount of amplitude difference do not come from the 

same RADAR, which can be a good reason for using it in pulse parameter clustering. 

This parameter is used for PDW clustering in RCDA, which will be explained in 

detail in Chapter 3. 

 

2.1.5 Time of Arrival 

TOA of the pulse can be taken as the instant that a threshold is passed. This becomes 

a variable measurement in the presence of noise and distortion. TOA can be obtained 

more precisely if the time of arrival of the first 3 dB point is taken [2]. 

 

Although its measurement is a rough process, TOA is another important parameter 

for RADAR identification. The PRI values of RADARs are obtained from this 

parameter. TOA is also used as a matching parameter between pulses or groups of 

pulses. However, the RADARs that use jittered PRI for ECCM makes the TOA 

clustering difficult. In order to handle jittered PRI RADARs, a jitter tolerance value 

is used in RCDA, similar to frequency parameter clustering. This concept will be 

discussed in later sections. A jittered PRI sequence example is shown in Figure 2.3. 
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Figure 2.3 Jittered PRI Sequence where t1=t ±δ1, t2=t ±δ2, t3=t ±δ3 

 

 

2.2 The Types of RADAR PRIs  

The military technology is growing with a high speed. As a result, many different 

RADARs have been developed and are still being developed. ESM systems have to 

be improved in order to catch up with the development of RADARs. This work is 

focused on three types of RADAR PRI modes, which are well known in EW: Stable 

PRI mode, Dwell PRI mode and Stagger PRI mode. Jittered PRIs are not taken as a 

separate PRI mode, because this type of PRI sequence can be detected by the same 

methods of Stable PRI mode detection. These PRI modes are explained in the 

following sections. 

 

2.2.1 Stable PRI Mode 

Stable PRI Mode is the simplest mode of RADAR PRIs. The RADAR that uses 

stable PRI emits pulses with a constant period. The difference between adjacent 

pulses’ TOA parameters is constant. An example of stable PRI sequence is shown in 

Figure 2.4. 
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Figure 2.4 Stable PRI Mode pulse sequence 

 

 

2.2.2 Dwell PRI Mode 

Dwell PRI mode can be considered as a combination of several Stable PRI 

sequences, which are called PRI windows. There is a gap between each PRI window 

called the gap value. Generally, the gap value is up to a few milliseconds that is 

much longer than a PRI time. In Figure 2.5, a generic waveform of a dwell PRI mode 

pulse sequence is shown. 

 

 

 

Figure 2.5 Dwell PRI Mode pulse sequence 

 

 

In a RADAR that uses dwell PRI mode, a PRI window typically includes 5 to 20 

pulses with a constant PRI. The ratio of gap duration occurrence to PRI value 

occurrence in the PRI window that is commonly encountered in modern RADARs 

has values in the range 0.05 to 0.2. This range of ratios is used to identify a dwell 

PRI mode RADAR in RCDA. This approach will be described clearly in Chapter 3. 
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In RCDA, dwell and switch RADARs are not taken as a different RADAR mode, 

because this kind of RADARs can be tracked as the combination of several Stable 

PRI sequences that have a different PRI values from each other. So, there is no need 

to assign a new RADAR mode in the algorithm.  

 

2.2.3 Stagger PRI Mode 

Stagger PRI mode is another PRI mode of RADARs, which is more robust to ECM 

and is also considered as an ECCM feature. Different from the previous modes, PRI 

value varies from pulse-to-pulse in stagger PRI mode. The Level of stagger PRI 

points the number of different PRI values in the stagger PRI sequence. The PRI 

values in the sequence follow each other sequentially, which makes stagger PRI 

sequence detectable. A level 3 stagger PRI mode pulse sequence can be seen in 

Figure 2.6. 

 

 

 

Figure 2.6 Level 3 Stagger PRI Mode pulse sequence 

 

 

As PRI values in stagger PRI mode follow each other, the numbers of occurrences of 

each of them are expected to be close. In other words occurrences of t1, t2 and t3 

should be close to each other. In RCDA, occurrence of PRI values ratio (t1/t2 or t2/t3 

or t1/t3) should be set 0.75 to 1, which is a user defined value in RCDA. Missing 

pulses and false alarms decrease the ratio which should be considered before setting 

the tolerance on this ratio. 
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CHAPTER 3 
 
 

 REAL-TIME CLUSTERING DEINTERLEAVING 
ALGORITHM 

 
 
 

3.1 Parts of the Algorithm 

Real-Time Clustering Deinterleaving Algorithm is an algorithm that can be used in 

an ESM system in order to detect and determine different RADARs and their types 

on the military field. RCDA consists of two main parts. In the first part, every 

received pulse in the given frequency range are collected and their given PDW are 

clustered. In addition, probable PRI values are determined and clustered, too. The 

clustering processes generate two sets of clusters, namely PDW clusters and PRI 

clusters. These clustering processes are accomplished by the first part of the 

algorithm, which is called the Arranger. 

 

After the clustering process, PRI clusters are analyzed in order to find the number of 

active RADARs on the field and their types. The PRI clusters that have same 

clustering parameters point to a single RADAR and their relationship shows the 

mode of that RADAR. This analysis gives the mode of each detected RADAR and 

also their numbers, which is done by the second part that is called the Interpreter.  

 

The combinations of these two parts form the system that is called the Analyzer. It is 

also the implemented version of RCDA. In Figure 3.1, the simplest block diagram of 

the Analyzer is shown. More details are given in the following sections. 
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Figure 3.1 The Block Diagram of  the Analyzer 

 

 

3.2 Arranger Part 

The first part of RCDA is the Arranger part. It takes received RADAR pulses’ PDWs 

as input. It is assumed that all pulses in the space are received clearly and their 

PDWs are generated before they are given to the Arranger. The Arranger clusters the 

PDWs respecting the user defined error tolerance boundaries of each PDW 

parameter. The Arranger’s main purpose is to determine probable PRI values of the 

RADARs on the field. In order to do that, during the PDW clustering process, 

probable PRIs are also clustered, as mentioned in the previous part. These processes 

start by the first incoming PDW. 

 

3.2.1 PDW Clustering 

When RCDA is started, the variables are initialized to their default values. This is the 

reset state. After reset state, the first incoming PDW triggers the beginning of the 

process. All parameters of PDW, which are frequency, PW, PA and TOA, are 

recorded. PDW used in RCDA discards AOA and this point is explained previously 

in Chapter 2. 
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First pulse forms the first cluster of the clustering PDW process. A PDW cluster is a 

structure that contains four parameters and a pointer as shown in Figure 3.2. The four 

parameters are set to the PDW parameters of the first pulse and Last PRI Cluster 

Pointer is set to ‘0’ since there is no previous PRI clustering. The usage of Last PRI 

Cluster Pointer is described in the following section. 

 

 

 

Figure 3.2 The Basic Structure of a PDW Cluster 

 

 

After setting the values of the first cluster, another PDW is waited as an input. When 

the new PDW arrives, its parameters are compared with the previous PDW cluster’s 

parameters. If the new frequency, PA and PW parameters are in the range of 

previous PDW cluster’s parameter boundaries, which is shown in Eq. (3-1), (3-2) and 

(3-3), then the compared PDW cluster’s parameters are updated. This situation is 

called matched PDWs. If they are not in the mentioned boundaries, then a second 

cluster is formed. It must be mentioned that all delta values in the following 

equations are user defined. 
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In the matched PDW situation, the parameter updates are done as follows: TOA of 

the mentioned PDW cluster is set to new PDW’s TOA value. Frequency, PW and PA 

parameters are updated by using moving average. They are formulated in Eq. (3-4), 

(3-5) and (3-6), respectively, where n is the number of previous occurrences for the 

PDW cluster of concern. 
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Moving average process and giving a range for these parameters makes RCDA more 

sensitive to interpret the RADAR types that use jittered PRI, frequency agile and 

frequency hopping, which are also mentioned in Chapter 2. If the delta values are set 

properly, the pulse parameters of such RADARs fall into same PDW cluster, so the 

probability of correctly identifying such RADARs increases. 
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As mentioned previously, there is another value that is kept in the PDW clusters, 

which is called Last PRI Cluster Pointer. This value’s setting and usage is given in 

the following section, because it is related to PRI Clustering. 

 

The flowchart for PDW clustering is shown in Figure 3.3. 
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Figure 3.3 The Flowchart of  PDW Clustering 
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3.2.2 PRI Clustering 

Updating the parameters of PDW cluster is not the only process when a new PDW 

falls into an existing cluster. Two matched PDW is interpreted as they should belong 

to same RADAR and form a probable PRI value. The difference between previous 

and present TOA values gives the first PRI value. This PRI forms the first PRI 

cluster that is the first member of the PRI clustering process. A PRI cluster contains 

the parameters: the PRI value, PDW Cluster Pointer, Occurrence, Next Value and 

Previous Value. In Figure 3.4, the basic structure of a PRI cluster is shown. 

 

 

 

Figure 3.4 The Basic Structure of a PRI Cluster 

 

 

Next Value and Previous Value show the sequence of PRIs that point to same PDW 

cluster. In other words, they are the pointers within the PRI clusters. These cluster 

parameters are used to find the PRI mode of a RADAR, which is described in the 
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following part of the algorithm. The major advantage of using Next Value and 

Previous Value parameters is to avoid harmonics of desired PRI values. When the 

first PRI cluster is formed, Next Value and Previous Value parameters are set to ‘0’, 

as there are no other assumed PRI values yet. The Occurrence parameter is just a 

counter that shows the number of occurrences of the PRI value of the PRI cluster that 

is set to ‘1’, initially. 

 

The relationship between PRI clusters, which are formed by pulses that have 

matched PDWs, is shown in Figure 3.5 for a better understanding of PRI cluster 

parameters. The dashed arrows show the relationship between PRI clusters and PDW 

clusters and line arrows show the relationship within PRI clusters. This type of 

clustering helps to identify the type of the RADARs, if they use dwell or stagger PRI 

modes. The interpretation of clusters and RADAR mode identification is done by the 

next part of the algorithm, the Interpreter. In the following section, this concept is 

explained. 
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Figure 3.5 PRI clusters, which are formed by pulses that have matched PDWs 
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When a new PDW arrives as an input, PDW clustering is done first. If the new PDW 

does not fall into an existing PDW cluster, it forms a new PDW cluster as mentioned 

previously. Otherwise, matched PDW cluster’s parameters are updated. A new PRI is 

calculated by using TOA values. After this calculation, it is compared with existing 

PRI values to check if the new PRI value and its PDW Cluster Pointer fall into an 

existing PRI cluster. Comparison is done by looking at two parameters of the PRI 

clusters: PRI value and pointed PDW cluster’s parameters. New PRI value must be 

in the range of existing cluster’s PRI parameter boundaries if it falls into that cluster. 

The boundaries are set by the operator through the delta value that is shown in Eq. 

(3-7). 

 

PRIPRIPRInew

PRIPRIPRInew

∆−≥

∆+≤

_

_
 (3-7) 

 

If the new PRI’s PDW Cluster Pointer parameter does not match with any other 

previous PRI clusters’ PDW Cluster Pointer parameter, it forms a new PRI cluster. 

Its Next Value and Previous Value parameters are set to ‘0’ and Occurrence 

parameter is set to ‘1’. If the new PRI’s PDW Cluster Pointer is the same as a 

previous PRI clusters’ PDW cluster parameter, but not the PRI value, it also forms a 

new PRI cluster. However, this time Previous Value of it is set to the PRI cluster that 

is pointed by the Last PRI Cluster Pointer of the same PDW cluster. Each PDW 

cluster keeps the parameter Last PRI Cluster Pointer that points PRI cluster that is 

formed by pulses whose PDWs are matched and fall into mentioned PDW cluster. 

The Next Value of the PRI cluster, which is pointed by the new PRI cluster’s 

Previous Value, is also set to point at the new PRI cluster. The flowchart of PRI 

clustering is shown in Figure 3.6. 
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Figure 3.6 Flowchart of  PRI Clustering 
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3.2.3 End of Clustering 

Updating PDW and PRI Clusters is done for each pulse detected by the system. It 

does not finish until the system is shut down. However, there should be a limitation 

in order to analyze and decide the number of active RADARs and their types. As 

RCDA is a user friendly algorithm, operator can choose the limitation type. It can be 

a time or pulse count limit. If the time or pulse count exceeds their limits, Arranger 

triggers the second part of the algorithm, the Interpreter. Until the triggering, the 

Arranger forms two well prepared cluster groups, PDW and PRI clusters. Also the 

relationships between PDW and PRI clusters; and within PRI clusters are kept by the 

use of pointers. 

 

3.3 Interpreter Part 

The second and last part of RCDA is the Interpreter part. As mentioned previously, 

the Interpreter is triggered by the Arranger in order to determine number of 

surrounding RADARS and identify the modes of each of them. For this purpose, it 

uses PRI clusters that are formed by the Arranger. All saved PRI cluster values are 

read and their values are examined. The process is described in detail in the 

following subsections. 

3.3.1 Stable PRI Mode 

First, PRI cluster list formed by the Arranger is examined and its Occurrence 

parameter is inspected, .i.e., if Occurrence is below an occurrence threshold, this PRI 

cluster is not processed and called waste data. The occurrence threshold value is set 

by the operator. This is done to eliminate PRI values that occur infrequently. These 

types of PRIs are possibly caused by missing pulses or false alarms, which are not 

desired. Occurrence parameter examination is done for each PRI cluster. 

 

If Occurrence parameter is above the threshold value, this PRI cluster is called a 

valid data. After this validation, Next Value parameter of this mentioned PRI cluster 

is examined. If this parameter shows ‘0’, this PRI cluster is interpreted to point a 
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RADAR that has a stable PRI mode. The PRI cluster’s PRI parameter and the 

pointed PDW values by its PDW Cluster Pointer are set as output and a warning 

flag, sequence found, is sent to the operator. After warning flag, the other PRI 

clusters are examined sequentially. In Figure 3.7, an example of stable PRI mode 

pulse sequence is shown. 

 

 

  

Figure 3.7 Stable PRI Mode Pulse Sequence 

 

 

3.3.2 Dwell PRI Mode 

If Next Value of a PRI cluster points to another PRI cluster, this is a strong indication 

for a RADAR that has dwell or staggered PRI mode. In this situation, first PRI 

cluster’s Occurrence parameter is stored in max_occ and the following PRI cluster’s 

Occurrence parameter is examined. If it is a valid data, the ratio of its Occurrence 

parameter and max_occ is calculated. If the ratio is below the stagger_occ threshold 

value, above the gap_occ threshold, and Next Value of this PRI cluster points to the 

first PRI cluster, this PRI series possibly points a dwell PRI mode RADAR. As 

mentioned before, dwell and switch RADAR type is not assigned as a different 

RADAR mode in RCDA. The threshold values are again set by the operator. The 

ranges of these values are mentioned in Chapter 2. In Figure 3.8, an example of 

dwell PRI mode pulse sequence is shown. 

 

 

 

Figure 3.8 Dwell PRI Mode Pulse Sequence 
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The first PRI cluster contains the main PRI value and the other one contains the ‘gap’ 

value. The relationship between mentioned PRI clusters and pointed PDW clusters is 

shown in Figure 3.9. The dashed arrows show the relationship between PRI clusters 

and PDW clusters and line arrows show the relationship within PRI clusters. 

 

 

 

Figure 3.9 PRI and PDW Clusters of a Dwell PRI mode sequence  

 

 

The PRI clusters’ PRI parameters and the pointed PDW values by their PDW Cluster 

Pointers are set as output and a warning flag, sequence found, is sent to the operator. 

After sending warning flag, the other PRI clusters are examined sequentially. 
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3.3.3 Staggered PRI Mode 

If the proportion of the occurrences of first and second PRI clusters exceeds 

stagger_occ threshold, this situation possibly points a stagger PRI mode RADAR. 

However, how many different PRI clusters form this staggered series is unknown, 

yet. To answer this question, Next Value parameter of second PRI cluster is 

examined. If it points at the first PRI cluster, that means two different PRI cluster 

form the stagger PRI series. The stagger chain is completed. Otherwise, the PRI 

cluster that is pointed by Next Value parameter of second PRI cluster is examined. 

The stagger detection process continues until one of the PRI cluster’s Next Value 

parameter points to the first PRI cluster. All PRI clusters’ Occurrence parameters are 

also examined and max_occ is updated during this process. At the end of the stagger 

process, detected PRI clusters’ PRI parameters and the pointed PDW values by their 

PDW Cluster Pointers are set as output, respectively and a warning flag, sequence 

found, is sent to the operator. In Figure 3.10, an example of stagger PRI mode pulse 

sequence is shown. 

 

 

 

Figure 3.10 Stagger PRI Mode Pulse Sequence 

 

 

The relationship between mentioned PRI clusters and pointed PDW clusters in a 

level 3 stagger PRI mode sequence is shown the Figure 3.11. The dashed arrows 

show the relationship between PRI clusters and PDW clusters and line arrows show 

the relationship within PRI clusters. 
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Figure 3.11 PRI and PDW Clusters of a level 3 Stagger PRI mode sequence 
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Determination of the number of surrounding active RADARs and identification of 

modes of each of them is continued until examining the last PRI cluster. All formed 

PRI clusters are checked and interpreted by the Interpreter. Finally, the number and 

modes of RADARs on the field are detected. At the end of the work, a final flag, 

search_ends, is set in order to warn the operator. In Figure 3.12, the flowchart of the 

Interpreter part is shown. 
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Figure 3.12 The Flowchart of Interpreter 
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CHAPTER 4 
 
 

 SURVEY ON DEINTERLEAVING ALGORITHMS 
 
 
 

4.1 Folding Deinterleaving Algorithm 

The folding deinterleaving algorithm is based on the principle that the pulse 

sequence of a stable PRI mode RADAR is symmetric about any of its pulses. 

Consider the pulse sequence received from 3 stable PRI mode RADARs, called A, B 

and C, with different PRIs as shown in Figure 4.1. If this sequence is folded at time 

tm that corresponds to a pulse of RADAR B, earlier and later pulses of B will occur at 

the same instant, while pulses of A and C will not as shown, in Figure 4.2. Thus 

pulses of RADAR B can be identified and taken out of the sequence. This procedure 

is applied recursively on the remaining sequence in order to identify all stable PRI 

mode RADARs. By defining a tolerance value to decide on overlapped pulses, the 

algorithm can also handle jittered PRI RADARs. The overlapped pulses are assumed 

to be emitted from the same emitter. The differences of TOAs of these pulses give 

the PRI values of corresponding emitters. 

 

 

 

Figure 4.1 3 interleaved stable PRI sequences 
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Figure 4.2 3 interleaved stable PRI sequences after folding 

 

 

The experimental results point that the folding deinterleaving algorithm is limited up 

to 1000 recorded pulses. This limitation increases the possibility to get the correct 

result [6]. 

 

4.1.1 Criticism of the Algorithm 

It can be easily noticed that there are lots of advantages of the folding deinterleaving 

algorithm. It is easy to implement by using simple processors. It is fast and has 

higher success rate in complex environments compared to other synchronized 

deinterleaving methods. A pulse train containing 1000 pulses with 5 emitter sources 

and 10 emitter sources is processed and success rate is 100% for environments that is 

mentioned in Table 4-1 [6]. 
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Table 4-1 Simulation Experimental Results of  Folding Deinterleaving Algorithm 

# of emitters 
Loss rate of 

pulses 
Jitter rate 

Probability of correct 

computation of interleaving 

frequency 

0% 2% 100% 
5 

2% 5% 100% 

0% 2% 100% 
10 

2% 5% 100% 
 
 

 

However, there are also lots of disadvantages of this algorithm, if it is compared to 

RCDA. First of all, checking all incoming pulse trains without their PDW parameters 

(AOA, frequency, PW and PA), makes the pulse trains complex. This approach 

decreases the success rate. If the following case is inspected, the vulnerability of 

folding deinterleaving algorithm can be easily noticed. There are two emitters in the 

field that has same PRI = T. Their pulses are transmitted in different frequencies. If 

their pulses are received as one inside the other (interleaved), as shown in Figure 4.3, 

the folding deinterleaving algorithm decide that there is a single emitter in the field 

with PRI = T/2. This example demonstrates a serious vulnerability of the algorithm. 

 

 

 

Figure 4.3 Two different emitter that has same PRI and different frequencies 
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The folding deinterleaving algorithm records TOA parameters of each pulse in a 

sequence. This requires significant amount of memory for storage. It is a waste of 

resources and also limits the number of pulses that can be processed at a time. 

However, in RCDA, each pulse is processed as they arrive and only relevant 

information is stored, reducing the amount memory for storage and removing the 

limitation on the number of pulses that can be processed. 

 

4.2 Difference Histogram Based Deinterleaving Algorithms 

The original version of these algorithms is based on the so-called CDIF (cumulative 

difference) [4] histogram of TOA differences of pulses. Modified and improved 

version of this algorithm, based on the new sequential difference histogram 

technique (SDIF) [8], is SDIF deinterleaving algorithm. Before the discussion of 

CDIF and SDIF algorithms, the TOA difference histogram concept should be 

described. 

 

The TOA differences of the sequential pulses give an idea for PRI values of the 

received pulse trains. Consider a list of TOAs. The first order TOA differences are 

defined as the difference between any adjacent TOAs. The second order TOA 

differences are defined as the difference between the TOAs of every other pulse. 

Likewise, nth order TOA differences can be defined. In Figure 4.4, the orders of 

TOA differences for a pulse train are shown. 

 

 

 

Figure 4.4 The orders of TOA differences for a pulse train 
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In CDIF and SDIF algorithms, nth order TOA difference histogram is formed by the 

nth order TOA differences of each reference pulse in the pulse train. The CDIF 

algorithm is described in detail in the following section. 

 

4.2.1 CDIF Algorithm 

This algorithm is based on the CDIF histogram analysis [4]. By using TOA 

differences, potential values of PRIs are calculated, which corresponds to histogram 

peaks. As can be easily noticed from its name, Cumulative Difference, CDIF 

algorithm forms histogram of TOA differences by using all orders of TOA 

differences. In other words, cumulative TOA difference histograms are formed. An 

nth order cumulative TOA difference histogram is the histogram of all TOA 

differences of order less than or equal to n. 

 

In CDIF algorithm, starting with c=1, the cth order CDIF histogram is formed and a 

threshold is calculated. Each histogram value, and double that value, is compared to 

the threshold, and if none of these couples exceeds the threshold, the next level (of 

level c + 1) cumulative histogram is calculated [8]. 

 

After the identification of the potential PRI, the algorithm looks for a group of pulses 

that form a periodical pulse train, with periods equal to PRI. Such a group of pulses 

is set as a PRI sequence. If the search is successful, the PRI sequence is extracted 

from the input buffer and the CDIF algorithm is applied on the remaining sequence. 

This process is repeated as long as there are enough pulses in the input buffer. The 

thresholds for histograms can be calculated by modeling the TOA of pulses as a 

Poisson process. If more than one histogram value exceeds the threshold, the 

sequence search is performed for every potential PRI value, starting from the lowest 

[4]. 

4.2.2 SDIF Algorithm 

The SDIF algorithm is a modification of CDIF algorithm. It consists of two parts, 

namely the estimation of the PRI and the sequence search. The estimation of the PRI, 
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as the key part of the deinterleaving algorithm, is described below. The sequence 

search part in the SDIF algorithm is the same as in CDIF algorithm. 

 

Different from the CDIF histogram, in the SDIF histogram only single level of 

differences exists, so the histogram is clearer than the corresponding CDIF 

histogram. In CDIF algorithm, the cumulative histogram is compared to a threshold 

and a value and twice that value is expected to pass the threshold to identify a PRI 

sequence. Then, that PRI sequence is searched for in the input list. SDIF algorithm 

looks for a single threshold crossing since a PRI sequence search is eventually 

necessary. PRI sequence search for a given PRI is an easier process than the 

computation of the next level histogram and thus SDIF algorithm is less 

computationally extensive. 

 

When the first difference is computed, if only one histogram value exceeds the 

threshold, that value becomes the potential PRI for which a sequence search will be 

performed. However, if many emitters are present, the first difference histogram 

produces a few values exceeding the threshold, none of which corresponds to the 

right PRI value. That is why the next difference has to be calculated without a 

sequence search. The reason of skipping the first difference in the case of three 

interleaved radar signals can be seen from Figure 4.5. In this scenario, two classic 

RADARs (with PRIs of 217 and 248) and one stagger RADAR (with a stagger frame 

rate of 318) are present. The first difference in the SDIF histogram does not present 

the true PRI values, because they are hidden in higher differences. 
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Figure 4.5 SDIF histogram of the TOA first difference in a complex radar environment [8] 

 

 

If the random jitter of PRI values is analyzed, similar PRI values in the SDIF 

histogram, grouped around the true PRI value, can produce histogram values 

exceeding the threshold. If the range of PRI values is no greater than the permitted 

tolerances, the sequence search is performed for the central value, which represents 

the potential jittered PRI. Figure 4.6 illustrates this case: the histogram values 

exceeding the threshold correspond to one detected emitter with a random jitter PRI 

of central value 263. 
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Figure 4.6 SDIF histogram of random jittered PRI signal [8] 

 

 

If in the case concerned great amounts of pulses are missing, the harmonics of the 

basic PRI can produce significant components in the SDIF histogram. These values 

could be so dominant as to exceed the threshold. This is not a problem if the 

histogram value corresponding to the true PRI value also exceeds the threshold, since 

the PRI analysis and the sequence search start from the lowest PRI having a 

histogram value that exceeds the threshold [8]. However, this situation could be a 

great disadvantage to detect correct PRI sequence, if the true PRI sequence does not 

exceed the threshold. In this case, the harmonics are sensed as true PRI and false PRI 

value occurs in the output. Figure 4.7 shows the SDIF histogram with a true PRI 

value of 428. However only its first harmonic of 856 exceeds the threshold and 

appears as a true PRI value. 
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Figure 4.7 SDIF histogram of TOA for many missing pulses[8] 

 

 

In order to avoid false detections, subharmonic checking is done, that is the 

histogram maximum is found. If it does not exceed the threshold, the first (lowest) 

value exceeding the threshold is checked. If the corresponding PRI value presents 

some harmonic of the PRI value corresponding to the histogram maximum, the 

maximum then becomes the potential PRI for which the sequence search is 

performed. If the lowest PRI value which exceeds the threshold is not a multiple of 

the histogram maximum PRI value, the sequence search is performed for all PRI 

values which exceed the threshold, starting with the lowest [8]. This analysis of 

harmonics and subharmonics represent a modification of the CDIF algorithm [4]. 

This checking could be misleading in complex environments. Also it could take 

significantly much time for detecting the true PRI; since the harmonics could also be 

true PRI values. 

 

As it can be easily understood, threshold choice is very important in SDIF histogram 

for reliable detection of true PRI values. The threshold value follows the distribution 

function of the process to prevent the detection of false alarms. As leading edge of 

pulses could be observed as random Poisson points, there can be various types of 
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threshold value calculations. The simulation results for different threshold values can 

be seen in Table 4-2, where τ is the bin number in the SDIF histogram. 

 

 

Table 4-2 Simulation Experimental Results of SDIF Algorithm using only PRI 

Threshold 
function 

Number of 
successfully detected 

RADARs 

Number of false 
RADARs 

Processor time (flops) 

# of 
RADARs 

5 7 3 5 7 3 5 7 3 

)exp( τ−
 

5 7 3 0 1 0 285K 341K 188K 

τ/1  2 3 2 5 10 2 823K 1.32M 514K 

τ/1  4 5 3 2 5 1 489K 827K 333K 
 

 

 

The effects of changing threshold function can be noticed better in Figure 4.8. 

 

 

 

Figure 4.8 Different forms of threshold in SDIF histogram [8] 
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The processor time results of SDIF histogram deinterleaving algorithm in Table 4-2, 

may not be compared to the timing results of RCDA, because parameters of 

RADARs, i.e. frequency, PW and PA, are not considered yet in SDIF histogram 

deinterleaving algorithm. In the following section, SDIF algorithm with multiple 

parameter is explained and the comparisons between two algorithms can be 

discussed after the following explanation. 

 

4.2.2.1 Multiple Parameter Deinterleaving With SDIF 

The algorithm is based on multiple parameter deinterleaving. The incoming pulses 

are sorted by azimuth (DOA), frequency, PW and TOA. By DOA and frequency 

filtering, incoming pulses are split and forms clusters. TOA difference histograms are 

processed sequentially. Stable and agile RADARs cause the main challenge in this 

algorithm. The goal is correct grouping of RADARs despite their overlapping 

characteristics. This is not a new algorithm, but comparison of speed and reliability 

become main target [8]. Similar to RCDA, clustering process is the first part of the 

algorithm, but differently, parameters have priorities in the clustering process. 

 

Choosing histogram group boundaries is important and affects the performance of 

the algorithm. Local minima of the average histogram values are declared as group 

boundaries. This is declared as one possible solution [8]. The clustering is done on 

azimuth parameter and then the next parameter, frequency is used for better 

clustering. 

 

Frequency parameter is important for frequency agile RADARs. These kinds of 

RADARs cause false clustering problem. In the azimuth cluster groups, sub 

frequency clusters are formed. However this kind of clustering could break the 

correlation of azimuth and frequency and detecting RADARs correctly becomes 

almost impossible. So, a new priority of parameters is assigned. PRI value is used as 

the second clustering parameter and frequency has the third priority. 

 

Frequency histogram shows one significant peak for RADARs with fixed carrier 

frequencies. If multiple peaks are observed in the frequency histogram, a frequency 
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agile RADAR is present, so the frequency histograms are only used to identify the 

type of the detected RADAR, and not significant for clustering. 

 

The clusters that have same azimuth, PRI and frequency, are assumed to be stagger 

RADAR signals. Stagger analysis is done last. The simulation results are shown in 

the following table [8]. 

 

 

Table 4-3 Simulation Experimental Results of SDIF Algorithm using multiple parameters 

Number of 
RADARs in the 

environment 

Successfully 
Detected RADARs 

False RADARs 
Processor time 

(flops) 

2 2 0 56271 

4 4 1 326212 

5 5 0 282097 

10 9 3 623417 
 
 

 

4.2.3 Criticism of the Algorithm 

The results of the SDIF deinterleaving algorithm seem satisfactory, if the success 

ratios are examined. Most of the RADARs are detected correctly. The tools that are 

used for implementation are old fashioned, which can be an excuse for slow handling 

of process. However, number of processor flops gives a chance to compare SDIF 

deinterleaving algorithm and RCDA. If the numbers of cycles are compared, it will 

be seen that RCDA is much faster. Besides the cycling time, using hardware tools 

(FPGA) makes RCDA more efficient and faster. The results of RCDA are given in 

the following chapter. 

 

SDIF deinterleaving algorithm forms histograms after collecting incoming pulse 

parameters. It waits the end of streaming data for starting the main process. The 

major advantage of RCDA over SDIF deinterleaving algorithm is starting to form its 

clusters during the data flow. It updates the clusters in each incoming pulse. If two 
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mentioned algorithms are started at the same time, such a situation occurs: when 

SDIF deinterleaving algorithm is at the beginning of forming histogram and 

clustering, RCDA just finishes the same work, which makes it much more preferable. 

 

In the SDIF histogram part, determining optimal detection threshold value takes lots 

of processor flops, which also decreases the speed of the process. In RCDA, the 

threshold value is constant and user defined which is mentioned in the previous 

chapter. This can be considered as a disadvantage for RCDA, but some trade-offs 

should be done in hardware implementation. First of all, taking threshold as a 

constant, but not a Poisson distribution function [7], eliminates a large amount of 

process time. Also using complex mathematical functions, like dividing, power, 

exponential, root and etc., is not preferable in hardware implementations, because 

such operations occupy significant logic units and block memories. Despite the speed 

and area disadvantages, determining the threshold by using Poisson distribution 

could have some advantages for true PRI detection in complex environments. 

 

Clustering process in SDIF deinterleaving algorithm has some important differences 

as compared to RCDA. It uses parameters of pulses in a priority order while splitting 

the cluster groups. Azimuth parameter is chosen as first priority parameter [8], but 

this choice could bring some disadvantages for detecting correct PRI sequences. 

Reflection and deflection of main signal corrupt the measurement of azimuth (or 

AOA), which makes this PDW parameter unreliable. This issue is discussed in detail 

in Chapter 2. 

 

As it can be easily noticed from the situation of parameter measurement problems, it 

may be necessary to adjust the priority of the pulse parameters from case to case, so 

the algorithm may not be stable for each scenario. It should be adjusted to the 

environment, which is not desirable for user. There are no such situations in RCDA, 

as priority is not handled while forming PDW clusters. 

 

Discarding the parameter, PW, in SDIF deinterleaving algorithm is another 

discussable approach. This parameter could help separating the clusters of PDW. It 

seems that the number of clustering parameters in SDIF deinterleaving algorithm is 
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kept small because of the sub clustering approach. More parameters make the 

algorithm more complex and hard to implement. 

 

Another comparison can be done between SDIF deinterleaving algorithm and 

RCDA, among the histograms of PRI values. In SDIF deinterleaving algorithm, 

avoiding harmonics and subharmonics of a true PRI value is a problem. Complex 

threshold calculations and analysis are done in order to suppress those harmonics. 

However, Next Value and Previous Value parameters of PRI clusters in RCDA 

prevent harmonics and subharmonics of a true PRI value. Harmonics can be only 

seen if missing pulses or false alarms occur. In such a situation, occurrence threshold 

value is used to suppress them in order to avoid processing harmonic PRI values as 

true PRIs. 

 

SDIF deinterleaving algorithm has great advantages over previous deinterleaving 

algorithms [8]. It uses clustering, optimal detection of threshold and analysis of 

histogram. However, speed, implementation issue and some algorithm choices, 

which are discussed above, bring major disadvantages to this algorithm as compared 

to RCDA. 
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CHAPTER 5 
 
 

 SOFTWARE IMPLEMENTATION OF ANALYZER 
 
 
 

The software implementation of Analyzer is done by using MATLAB 7.4.0 (R2007a) 

tool in order to test the reliability of the RCDA. The software implementation 

provides input flexibility and more insight on the operation of the algorithm. Using 

this software, the algorithm can be tested for various user defined parameters and 

different environment variables such as the number of RADARs and their types, 

noise and jitter values. The steps of the RCDA implementation and analysis of the 

simulation results are given in the following sections. 

 

5.1 Implementation of the MultiRadar Simulator 

The MultiRadar simulator is implemented in order to generate the PDW parameters 

of various numbers of different RADARs. The pulse sequence, which includes PDW 

parameters of various RADARs, is simulated. The output of the MultiRadar 

simulator is a sequence of interleaved pulses that are emitted from different 

RADARs, and used as input to the implemented version of RCDA. Number of 

generated RADARs and their modes, PDW parameters and PRI values are 

determined by the user. 

 

The percentage of variance of frequency is also specified by the user in order to 

generate frequency agile or frequency hopping RADARs. The percentages of 

variances of PW, PA and PRI jitter value are also input to generate RADAR pulses 

that are received in noisy environments. The ratio of missing pulse or false alarm to 

total number of generated pulse is also an input of MultiRadar simulator. It is used to 

generate missing pulse or false alarm situations. 
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The PDW parameters of each pulse are generated by adding jitter and noise values. 

The percentage of jitter and noise input values are the max values. The max values 

are multiplied by a random value before adding to the PDW parameters. The random 

values are generated by Uniform distribution function. Each RADAR’s pulse train 

starts with a random offset value. As a result, MultiRadar simulator generates 

different pulse trains with same input values for each trial. The block diagram of 

MultiRadar simulator is shown in Figure 5.1. 

 

 

 

Figure 5.1 Block Diagram of MultiRadar Simulator 
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5.2 Implementation of the Analyzer 

The implementation of Analyzer is done by using MATLAB 7.4.0 (R2007a) tool by 

following the steps of RCDA that is described in detail in Chapter 3. The pulse train 

that includes PDW parameters of each generated pulse by MultiRadar simulator is 

one of the inputs of the Analyzer. The other inputs are delta values for each PDW 

parameters, threshold values for Occurrence parameter of PRI clusters and 

search_limit, which are described in detail in Chapter 3. 

 

5.2.1 Simulation Results of Analyzer 

The simulations are done for different scenarios. The variables of each scenario are 

the number of RADARs, percentage of jitter and noise values and percentage of 

missing pulses or false alarms. The simulations are done for simple to complex 

environments. 

 

5.2.1.1 Different Environments for Simulating Real Scenarios 

Different environments are generated by using MultiRadar simulator. Simulations of 

the Analyzer are done for each environment. In each case, 100 trials are done and 

success rate of each trial is given. The success rate is calculated in each trial as 

shown in Eq. (5-1). 

 

100
_

__
_ ×=

radarsgenerated

radarsfoundcorrectly
ratesuccess  (5-1) 

 

In the following success analysis, the variables of the environment are changed in 

each case. Number of RADAR takes values of 1, 3, 5 and 8; jitter and noise 

percentages take values of 0%, 2% and 5% and missing pulse percentage takes 

values of 2%, 5% and %10, respectively. Different RADAR modes are chosen in 

multi RADAR scenarios. The results are shown in Table 5-1 and Table 5-2. 
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Table 5-1 Simulation Results of  RCDA for environment of 1 and 3 RADARs 

# of 

RADARs 

Jitter and 

Noise rate 

Missing 

pulse rate 
Success Rate 

2% 100% 

5% 100% 0% 

10% 100% 

2% 100% 

5% 100% 2% 

10% 100% 

2% 100% 

5% 100% 

1 

5% 

10% 100% 

2% 100% 

5% 100% 0% 

10% 100% 

2% 100% 

5% 100% 2% 

10% 100% 

2% 100% 

5% 100% 

3 

5% 

10% 100% 
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Table 5-2 Simulation Results of  RCDA for environment of 5 and 8 RADARs 

# of 

RADARs  

Jitter and 

Noise rate 

Missing 

pulse rate 
Success Rate 

2% 100% 

5% 100% 0% 

10% 100% 

2% 100% 

5% 100% 2% 

10% 100% 

2% 100% 

5% 100% 

5 

5% 

10% 100% 

2% 100% 

5% 100% 0% 

10% 100% 

2% 100% 

5% 100% 2% 

10% 100% 

2% 98% 

5% 98.88% 

8 

5% 

10% 98.88% 
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An inspection of the above success analysis shows that, RCDA is a satisfactory 

algorithm for different cases that simulate real environment situations. Only, in the 

case that includes 8 RADARs and 5% of jitter and noise rate, the success rate does 

not reach value of 100%. 

 

Although the above success analyses are satisfactory, the limitations of RCDA are 

still unknown. In order to investigate the limits for different environment parameters, 

the following success analyses are done. 

 

5.2.1.2 Limits of RCDA for Different Environment Parameters 

As mentioned previously, there are three environment parameters in each case: 

number of RADARs, jitter and noise rate, missing pulse or false alarm rate. In the 

following simulations, only one of these parameters is changed and success analysis 

is done. In each analysis, Monte Carlo simulation is used. 100 trials are done for each 

value of the variable parameter and success rate is calculated. New RADARs are 

generated by MultiRadar simulator in each trial. 

 

The simulation results for jitter and noise rate variable is shown in Figure 5.2. In this 

case, missing pulse or false alarm rate is 0% and number of RADAR is ‘1’. The 

mode of RADAR is chosen as equal probability of stable, dwell and stagger PRI 

modes. 

 

Up to 16% jitter and noise, the algorithm has a success rate of 100%. For a typical 

environment, this result does not seem unsatisfactory. The noise rate is reversely 

proportional to SNR, which is related to the receiver of the system. Increasing SNR 

decreases the noise rate, which is better for correct detection of RADARs. SNR value 

cannot be adjusted or changed by RCDA. If the jitter rate is considered, the delta 

values of PRI and frequency should be increased by the increasing of jitter rate in 

order to reach better success rates. In this scenario, the delta values are kept constant. 
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Figure 5.2 Success Analysis for variable values of jitter and noise rate 

 

 

The simulation results for missing pulse or false alarm rate variable is shown in 

Figure 5.3. In this case, jitter and noise rate is 0% and number of RADAR is ‘1’. The 

mode of RADAR is chosen as equal probability of stable, dwell and stagger PRI 

modes. 

 

Up to 12% missing pulse or false alarm rate, the algorithm has a success rate of 

100%. The missing pulse rate is also related to SNR value and SNR value is related 

to receiver of the system as mentioned before. For 100% success rate 88% of the 

pulses should be received correctly. 
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Figure 5.3 Success Analysis for variable values of missing pulse or false alarm rate 

 

 

Simulations for number of RADARs variable are done and success rate is 100% up 

to 59 RADARs which is the largest number of RADARs that can be simulated using 

the implemented software due to memory and processing power limitations. The 

modes of RADARs are chosen randomly. In this case, both jitter and noise rate and 

missing pulse or false alarm rate are 0%. The consequence of this analysis is that the 

success rate is independent from number of RADARs when the other parameters 

have the value of 0% due to the clustering structure of the RCDA. As there is no 

jitter, noise, missing pulse or false alarms, the PDW and PRI clusters includes true 

parameters, so there is no false detection of RADARs. Therefore, the success 

analysis is done for some different values of jitter and noise rate and missing pulse or 

false alarm rate. The simulation results are shown in Figure 5.4, Figure 5.5, Figure 

5.6 and Figure 5.7. 
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Figure 5.4 Success Analysis for different numbers of RADARs for 2% jitter and noise rate 

and 5% missing pulse or false alarm rate 

 

 

 

Figure 5.5 Success Analysis for different numbers of RADARs for 2% jitter and noise rate 

and 10% missing pulse or false alarm rate 
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Figure 5.6 Success Analysis for different numbers of RADARs for 5% jitter and noise rate 

and 2% missing pulse or false alarm rate 

 

 

 

Figure 5.7 Success Analysis for different numbers of RADARs for 5% jitter and noise rate 

and 10% missing pulse or false alarm rate 
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5.3 Evaluation of Simulation Results 

The simulations of RCDA are done for different environment parameters and the 

results are shown in the previous section. The results seem satisfactory for real 

environment simulations. Some recommendations are described below for better 

results of RCDA. 

 

First of all, delta values should be set properly before the beginning of the process. 

Otherwise the PDW clusters cannot be formed correctly, especially in the case of 

high jitter and noise rates. In that case, PDW parameters of pulses, which are emitted 

from same RADAR, can fall into different PDW clusters because of the high 

difference level of the PDW parameters. So the probable RADARs cannot be 

detected correctly, which is not desired. 

 

For correct detection of RADARs, PDW parameters should be measured correctly. It 

is curial for PDW clustering. If more than one RADARs’ pulses’ PDW parameters 

are measured as the same PDW parameters, they cannot be detected as different 

RADARs. In such cases, correct detection of RADARs cannot be done. 

 

If there are at least two RADARs that emit pulses, which have same PDW 

parameters, they cannot be detected by using RCDA. For such cases, AOA parameter 

should be added to the PDW clusters of the RCDA. Because PRI clusters, which 

have same parameters of PDW Cluster Pointer, are interpreted as belonging to same 

PRI sequence and hence same RADAR. In order to deinterleave pulse trains of 

RADARs, the pulse trains of each RADAR should have different PDW parameters. 

 

In fact, at least one PDW parameter must different for pulses of different RADARs 

in a real environment. As an example, consider a scenario in which there are more 

than a RADAR that emit pulses with same carrier frequency and PW. Their distances 

to the receiver are equal, so PA parameters of pulses from these different emitters are 

also the same. However, the AOA parameter must be different since these RADARs 

are assumed to be different. In such a scenario, the pulse trains can be deinterleaved 

using AOA parameter in the PDW. This scenario is depicted in Figure 5.8. 
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Figure 5.8 Same RADARs with same distances to receiver 

 

 

Another interesting scenario might include more than a RADAR that emit pulses 

with same carrier frequency, PW and AOA. The distances of these RADARs to the 

receiver must be different since otherwise we would have identical RADARs 

operating at the same geographical location which is not a realistic case. Thus the PA 

parameters of these RADARs cannot be same and  pulses of pulse train that belong 

to different RADARs do not fall into same PDW cluster in RCDA. This scenario is 

depicted in Figure 5.9. 
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Figure 5.9 Same RADARs with different distances and same angle to receiver 

 

 

As a result, if an ideal receiver receives the pulses that are emitted from the 

RADARs in the environment, the measured PDW parameters of each pulse train that 

is emitted from one RADAR are different from the PDW parameters of pulses that 

are emitted from another RADAR. So, RCDA can deinterleave pulse trains and is 

used to detect RADARs in the environment correctly. 

 

Consequently, RCDA gives satisfactory results, if the conditions that are explained 

above are satisfied and values of inputs are set properly for each environment. 

However, operation on real data is not done during the software implementation 

simulations. Antenna rotation and pattern effects on PA are not considered in these 

simulations. As mentioned before, it is assumed that the PDW parameters are 

produced perfectly as input to the RCDA by a previous system. 
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CHAPTER 6 
 
 

 HARDWARE IMPLEMENTATION OF ANALYZER 
 
 
 

In this chapter, the hardware implementation of the Analyzer and the hardware 

simulation results are discussed. The reliability of RCDA is discussed in the previous 

chapter and the timing analysis is emphasized in this chapter. The simulation results 

are discussed in detail. 

 

6.1 Hardware Implementation 

The implementation of the Analyzer is done in VHSIC Hardware Description 

Language (VHDL) by using Project Navigator 6.3 program tool of Xilinx Inc. First 

of all, the project is generated and properties of it are set by following the steps of 

project navigator. In Figure 6.1, the selected properties of project are shown. The 

XC2VP50 of Virtex II Pro device family is chosen. It is a mature FPGA type of that 

family and a preferable one for high speed implementations. 
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Figure 6.1 Project Properties of Analyzer 

 

 

The structure of the project is decided as follows: the entity, the Analyzer, is the top 

level part of project and components of it, the Arranger and the Interpreter, are sub 

level parts. This is also visualized in Figure 3.1. The structures are based on state 

machines and Intellectual Property (IP) cores. IP cores that are used in the Arranger 

and the Interpreter are adders and Block RAMs (BRAMs) of FPGA. Proper values 

are set for all IP cores before they are generated.  

 

After building the design in VHDL, the project is synthesized. The device utilization 

summary of the Analyzer is shown in Figure 6.2. 

 

 

 

Figure 6.2 Device utilization summary of the Analyzer 
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6.2 Simulation Results of Hardware Implementation 

The simulations are done by using Modelsim SE 5.7e tool of Modeltech in order to 

test the timing performance of the Analyzer. In the simulation, the clock period is set 

to 10 ns. The timing of two process are crucial in the hardware implementation 

simulations, these are time duration of updating clusters in each arrival of pulse that 

is done by the Arranger and time duration of interpretation that is done by the 

Interpreter. 

 

For timing analysis simulations, an environment with two different RADARs is 

chosen. One of the RADARs is in stable PRI mode and the other one is in level 4 

stagger PRI mode. The carrier frequency, PW and PA of the pulse trains of these 

RADARs are different. The pulse trains that are emitted from RADARs are 

interleaved. The time duration of updating clusters is shown in Figure 6.3. 

 

 

 

Figure 6.3 Time duration of updating clusters 

 

 

The time duration between the arrival of a new PDW and the end of updating PDW 

clusters and PRI clusters is 300 ns, i.e., 30 clock times. This duration can increase in 

more complex environments. In this time duration, the Arranger is busy and if a new 

PDW arrives, it is pipelined. However, this pipelining has a limit, i.e., if two inputs 

arrive to the system with an interval less than 100 ns, the Arranger cannot process 

both of them. It misses one of those inputs and this is not desirable. 
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Another time analysis is done to measure the time duration between triggering of the 

Interpreter and the end of interpretation of probable RADARs, which is called the 

time duration of interpretation. The time duration of interpretation is shown in Figure 

6.4. 

 

 

 

Figure 6.4 Time duration of interpretation 

 

 

The time duration between rising of arranged signal, which is the trigger for the 

Interpreter, and rising of sequence_found signal is 150 ns, i.e., 15 clock times. This 

time duration is also the time duration of interpretation and can increase in more 

complex environments, because it is directly proportional to the number of PRI 

clusters that are formed by the Arranger. 

 

6.3 Criticism of Simulation Results 

The simulations of hardware implementation of the Analyzer are done in order to 

determine the limits of crucial timing process and the results are shown in the 

previous section. The timing results seem satisfactory. If the timing results of 

previous deinterleaving algorithms, which are discussed in detail in Chapter 4, and 
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the Analyzer are compared, it can be easily seen that the Analyzer processes much 

faster than the others. Implementation by using FPGA provides major advantage to 

the Analyzer, because real time clustering cannot be done without FPGA. The other 

algorithms collect the data of pulses first and start to deinterleave the pulse trains. 

However, the Analyzer makes real time clustering in each arrival of data of pulse. It 

does not only collect but also clusters the PDWs and probable PRIs. 

 

When the Analyzer finishes clustering process and starts the interpretation, the other 

systems, which are described in detail in Chapter 4, just start their deinterleaving 

processes, which take time duration of at least a few microseconds. However, the 

Analyzer finishes the interpretation in less than a microsecond. The pulse processing 

rate of Analyzer is also faster. In average, more than 8 million pulses can be 

processed in a second.  

 

In order to improve the hardware implementation, improved versions of FPGAs can 

be used. Virtex 5 family FPGAs that are the products of Xilinx Inc. can be used for 

faster clock times. Using faster clocks provides less time duration of updating 

clusters, making it possible to process more closely spaced pulses and decreasing the 

probability of missing a pulse. Faster clock also decreases the time duration for 

interpretation and improves the performance of the Analyzer. Using improved FPGA 

versions also decreases the area that is occupied by the implemented Analyzer, 

because the slice structure of new FPGAs is designed more efficient than the 

previous ones. 
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CHAPTER 7 
 
 

 CONCLUSIONS 
 
 
 

In this thesis, a new deinterleaving algorithm that is called RCDA, which can be used 

as a part of an ESM system, and its implementation by using an FPGA, is studied. 

The function of implemented RCDA is interpreting the complex electromagnetic 

military field in order to detect and determine different RADARs and their types by 

using incoming RADAR pulses and their PDWs. Real time processing of PDW is the 

most important motivation behind this work. It is assumed that RADAR signals in 

the space are received clearly and PDW of each pulse is generated as an input to the 

implemented RCDA system. 

 

PDW and PRI clustering and a new interpreting process are used in RCDA in order 

to deinterleave the RADAR pulses. Reliability of the algorithm is tested by using 

software implementation of it. For hardware implementation, FPGA is used to 

achieve a more efficient and faster system. The simulation results of software and 

hardware implementations are shown and discussed. After the simulation results, the 

comparison of implemented RCDA system and the previous systems, which are 

discussed in detail in Chapter 4, is done. The comparison results are determined in 

the following. 

 

First of all, most of the deinterleaving algorithms in the literature collect RADAR 

pulse’s data and wait to start the deinterleaving process until the end of this 

collection process. This approach may include some disadvantages for fast 

processing. However, the process starts in RCDA by the arrival of the first pulse, 

because real time processing is done in RCDA. PDW and PRI clusters are updated in 

each pulse’s arrival. When the other systems stop collecting data of pulses and start 

deinterleaving of pulse trains; the Analyzer, which is the implemented version of 

RCDA, finishes forming PDW and PRI clusters and starts interpreting of probable 
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RADARs on the field. This is one of the significant advantages of the Analyzer over 

the other deinterleaving algorithms that are examined in detail in Chapter 4. 

 

Another advantage of the Analyzer is the more efficient use of memory. As the other 

deinterleaving algorithm systems collect and record each RADAR pulse’s data, they 

need a significant amount of memory, which the Analyzer does not require, because 

it does not record each pulse’s data separately. The Analyzer just updates PDW and 

PRI clusters by the arrival of each pulse’s data. This conservation of memory is also 

very important in hardware implementations. 

 

Determining threshold value for PRI histograms is another difference between 

RCDA and the previous Deinterleaving algorithms. In the CDIF [4] and SDIF [8] 

deinterleaving algorithms’ histogram parts, determining optimal detection threshold 

value takes lots of processor flops, which also decreases the speed of the process, and 

requires large amount of memory. In RCDA, the threshold value is constant and user 

defined. This can be seen as a disadvantage for the Analyzer, but some trade-offs are 

done in hardware implementation. First of all, taking threshold as a constant, but not 

a Poisson distribution function [7], decreases the process time. Using complex 

mathematical functions, like dividing, power, exponential, root and etc., is not 

preferable in hardware implementations, because such operations occupy significant 

logic units and block memories in FPGA. Despite the speed and area disadvantages, 

determining the threshold by using Poisson distribution could provide more precise 

results for true PRI detection in more complex environments. 

 

In RCDA, there is no priority for PDW parameters during PDW clustering process. 

However, in multiple parameter deinterleaving algorithm [8], the priorities are given 

to each PDW parameter and forms sub clusters, i.e., AOA has the first priority and 

top level clusters are formed respecting this PDW parameter. This approach may be 

unsafe, because if measurement of AOA is not done properly, as discussed in 

Chapter 2 in detail, all cluster chains may collapse. In this situation, deinterleaving of 

RADAR pulse trains becomes impossible. So giving no priority to PDW parameters 

during PDW clustering is the approach chosen in RCDA. 
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Harmonics analysis of true PRI values is another important process in deinterleaving 

algorithms. In CDIF [4] and SDIF [8] deinterleaving algorithms, this analysis is done 

to determine the true PRI values. This process takes a lot of flops of time and is not 

preferred in RCDA, because RCDA is designed in order to be used in hardware 

implementation. The chains between PRI clusters are provided by the parameters, 

Next Value and Previous Value, of PRI clusters in RCDA. They prevent false 

detection of probable PRI values and discard the harmonic analysis from the 

algorithm. 

 

Discarding AOA from the PDW parameters that are used for PDW clustering is a 

discussable approach in RCDA. For land or navy platform RADARs, reflection and 

deflection of the main signal cause wrong measurement of AOA that is also 

mentioned in Chapter 2 in detail. This is the main reason for discarding AOA. 

However, AOA can be easily added as another PDW clustering parameter to RCDA, 

if it is needed. This modification of RCDA can be done for more complex 

environments that exclude reflection and deflection. 

 

Although the Analyzer has lots of advantages and performs well that can be easily 

noticed form the simulation results, it has some disadvantages. One of the 

disadvantages is the following: if the missing pulse or false alarm situations occur in 

the last PRI period of a dwell or stagger PRI mode pulse sequence, the chain between 

PRI clusters that are provided by Next Value and Previous Value parameters of PRI 

clusters is broken, because the missing pulse or false alarm situations causes to set 

wrong value to these parameters. 

 

The other vulnerability of RCDA is that if there are more than one RADARs that 

have pulse trains with the same PDW parameters, these RADARs cannot be 

distinguished and probably detected as single RADAR. 

 

In the hardware implementation, the VirtexII Pro family of FPGAs are used. Using 

FPGA provides the major advantage to the Analyzer. If the comparison of speed 

performance is done between the Analyzer and the other deinterleaving algorithm 

systems that are also discussed in Chapter 4, it is easily noticed that the Analyzer is 
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much faster than the others because of the hardware implementation of it. However, 

the speed and occupation of area results can be improved by using new products of 

FPGAs, i.e., Virtex 5 family FPGAs that are produced by the Xilinx Inc. The slice 

structure is improved in these products. This improvement provides less occupation 

of area. Also the clock period can be decreased significantly in order to achieve 

faster performance. 

 

The implementation of the algorithm should be tested with real data as a future work. 

In this work, all tests and simulations are done with produced inputs as mentioned 

before. In the tests with real data, digital receivers can be used for better results, 

because digital receivers give more precise outputs to the Analyzer than the analog 

receivers.  

 

As mentioned before, real time processing is the main motivation behind this work, 

so all approaches, choices and trade-offs are decided to implement an efficient 

deinterleaving algorithm for an FPGA implementation, which processes with a high 

speed and occupies less area. The simulation results of performance, reliability and 

speed seem satisfactory. 
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APPENDIX A 

 
 

A.1 FPGA’s 

 
A field programmable gate array (FPGA) is a general-purpose integrated circuit. It is 

"programmed" by the designer rather than the device manufacturer. Unlike an 

application-specific integrated circuit (ASIC), which can perform a similar function 

in an electronic system, an FPGA can be reprogrammed, even after it has been 

deployed into a system. 

 

An FPGA provides the user with a two-dimensional array of configurable resources 

that are used to implement a wide range of arithmetic and logic functions. These 

resources include dedicated 18x18 bit multipliers, dual port memories, lookup tables 

(LUTs), registers, tristate buffers, multiplexers, and digital clock managers. 

 

FPGAs are high performance data processing devices. FPGA performance is derived 

from the ability they provide to construct highly parallel architectures for processing 

data. Compared to a microprocessor or DSP processor, where performance is tied to 

the clock rate at which the processor can run, FPGA performance is tied to the 

amount of parallelism that can be brought to bear in the algorithms making up a 

signal processing system. Currently system frequencies of 100-200 MHz are 

commonly used today. A combination of increasingly high system clock rates and 

highly distributed memory architecture gives the system designer an ability to exploit 

parallelism in DSP applications that operate on data streams. For example, the raw 

memory bandwidth of a large FPGA running at a clock rate of 150 MHz can be 

hundreds of terabytes per second. [10] 

 

There are wide ranges of DSP applications as digital up/down converters, digital FIR 

filters etc that can be implemented only in custom integrated circuits (ICs) or 

specifically in an FPGA. Advantages of using an FPGA include significantly lower 
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non-recurring engineering costs than those associated with a custom IC (FPGAs are 

commercial off-the-shelf devices), shorter time to market, and the configurability of 

an FPGA, which allows a design to be modified, even after deployment in an end 

application. 

 

 

 

Figure A.0.1 Virtex Family FPGA Logic Slice 

 

 

Logic Slice is the fundamental unit of the logic fabric array. It is instructive to take a 

closer look at the Virtex family logic slice construction, which is given in Figure 

A.0.1. Each logic slice contains two 4-input lookup tables (LUTs), two configurable 

D-flip flops, multiplexers, dedicated carry logic, and gates used for creating slice 

based multipliers. Each LUT can implement an arbitrary 4-input Boolean function. 

Coupled with dedicated logic for implementing fast carry circuits, the LUTs can also 

be used to build fast adder/subtractors and multipliers of essentially any word size. In 

addition to implementing Boolean functions, each LUT can also be configured as a 

16x1 bit RAM or as a shift register (SRL16). An SRL16 shift register is a 

synchronously clocked 16x1 bit delay line with a dynamically addressable tap point. 
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In recent years, field-programmable gate arrays (FPGAs) have become key 

components in implementing high performance digital signal processing (DSP) 

systems, especially in the areas of digital communications, networking, video, and 

imaging. The logic fabric of today's FPGAs consists not only of look-up tables, 

registers, multiplexers, distributed and block memory, but also dedicated circuitry for 

fast adders, multipliers, and I/O processing (e.g., giga-bit I/O). The memory 

bandwidth of a modern FPGA far exceeds that of a microprocessor or DSP processor 

running at clock rates two to ten times that of the FPGA. Coupled with a capability 

for implementing highly parallel arithmetic architectures, this makes the FPGA 

ideally suited for creating high-performance custom data path processors for tasks 

such as digital filtering, fast Fourier transforms, and error correcting codes [11]. 
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APPENDIX B 
 
 

B.1 Information About VHDL 

 
VHDL is the VHSIC Hardware Description Language. VHSIC is an abbreviation for 

Very High Speed Integrated Circuit. It can describe the behavior and structure of 

electronic systems, but is particularly suited as a language to describe the structure 

and behavior of digital electronic hardware designs, such as ASICs and FPGAs as 

well as conventional digital circuits. 

 

VHDL is a notation, and is precisely and completely defined by the Language 

Reference Manual (LRM). This sets VHDL apart from other hardware description 

languages, which are to some extent defined in an ad hoc way by the behavior of 

tools that use them. VHDL is an international standard, regulated by the IEEE. The 

definition of the language is non-proprietary. 

 

VHDL is not an information model, a database schema, a simulator, a toolset or a 

methodology, but, a methodology and a toolset are essential for the effective use of 

VHDL. 

 

Simulation and synthesis are the two main kinds of tools which operate on the 

VHDL language. The Language Reference Manual does not define a simulator, but 

unambiguously defines what each simulator must do with each part of the language. 

 

VHDL does not constrain the user to one style of description. VHDL allows designs 

to be described using any methodology - top down, bottom up or middle out. VHDL 

can be used to describe hardware at the gate level or in a more abstract way. 

Successful high level design requires a language, a tool set and a suitable 

methodology. VHDL is the language; the user chooses the tools, and the 

methodology [12]. 


