A NEW P-FAM-SILVER CATALYST FOR ASYMMETRIC 1,3-DIPOLAR CYCLOADDITION REACTIONS OF AZOMETHINE YLIDES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERAP ERÖKSÜZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CHEMISTRY

A NEW P-FAM-SILVER CATALYST FOR ASYMMETRIC 1,3-DIPOLAR CYCLOADDITION REACTIONS OF AZOMETHINE YLIDES

submitted by SERAP ERÖKSÜZ in partial fulfillment of the requirements for the degree of Master of Science in Chemistry Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. Ahmet Önal
Head of Department, Chemistry
Prof. Dr. Özdemir Doğan
Supervisor, Chemistry Dept., METU

Examining Committee Members:

Prof. Dr. Cihangir Tanyeli
Chemistry Dept., METU
Prof. Dr. Özdemir Doğan
Chemistry Dept., METU
Prof. Dr. Metin Zora
Chemistry Dept., METU
Prof. Dr. Engin U. Akkaya
Chemistry Dept., Bilkent University
Assist. Prof. Dr. Adnan Bulut
Chemistry Dept., Kırıkkale University

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: Serap Eröksüz

Signature

ABSTRACT
A NEW P-FAM-SILVER CATALYST FOR ASYMMETRIC 1,3-DIPOLAR CYCLOADDITION REACTIONS OF AZOMETHINE YLIDES
Eröksüz, Serap
M.S., Department of Chemistry
Supervisor: Prof. Dr. Özdemir Doğan

August 2008, 123 pages

In this study new twelve phosphorus based chiral ligands were synthesized and characterized. Then the catalytic activity of these chiral ligands was tested with $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Ag}(\mathrm{I})$ salts in asymmetric 1,3-dipolar cycloaddition reactions of azomethine ylides. This method provides the synthesis of different pyrrolidine derivatives with up to four stereogenic centers. Pyrrolidine derivatives are found in the structure of many biologically active natural compounds and drugs. Therefore the asymmetric synthesis of these compounds is highly important and many groups are involved in this area. As the precursor of the azomethine ylides, N-benzyliden-glycinmethylester, N-(4methoxy benzyliden)-glycinmethylester, N-(naphthalene-1-ylmethylene)-amino-acetic acid methyl ester, and N-(naphthalen-2-ylmethylene)-aminoacetic acid methyl ester were synthesized and used. As the dipolarophiles, methyl acrylate, dimethyl maleate and N-methyl maleimide were used. Using these imines and dipolarophiles with $6 \mathrm{~mol} \%$ of one of the P-FAM chiral ligands in the presence of $\mathrm{Ag}(\mathrm{I})$ salt, pyrrolidine derivatives were synthesized in up to 95% yield and 89% enantioselectivity. Additionally, chiral ligand was recovered in more than 80% yield and reused without losing its activity.

Keywords: Chiral Catalysts, Asymmetric Synthesis, 1,3-Dipolar Cycloaddition Reactions, Azomethine Ylides, Pyrrolidine Derivatives.

ÖZ

AZOMETİN İLÜRLERİN ASİMETRİK 1,3-DİPOLAR HALKASAL KATILMA TEPKİMELERİ İÇİN YENİ BİR P-FAM-GÜMÜŞ KATALİZÖRÜ

Eröksüz, Serap
Yüksek Lisans, Kimya Bölümü
Tez Yöneticisi: Prof. Dr. Özdemir Doğan

Ağustos 2008, 123 sayfa

Bu çalışmada, oniki tane yeni fosforlu kiral ligand sentezlenmiş ve karakterize edilmiştir. Bu kiral ligandların Cu (II) ve Ag (I) tuzlarıyla birlikte azometin ilürlerin asimetrik 1,3-dipolar halkasal katılma tepkimelerinde katalitik aktiviteleri test edilmiştir. Bu yöntemle dört kiral merkeze sahip farklı pirolodin türevlerini sentezlemek mümkündür. Biyolojik aktiviteye sahip bir çok doğal ürün ve ilacın yapısında bulunan asimetrik pirolodinlerin sentezi çok önemlidir ve bir çok grup tarafından çalışılmaktadır. Azometin ilürlerin ön bileşeni iminler olarak N-benzyliden-glycinmethylester, N-(4-methoxybenzyliden)-glycinmethylester, $\quad N$-(naphthalene-1-ylmethylene)-amino-acetic acid methyl ester ve N-(naphthalen-2-yl methylene)-aminoacetic acid methyl ester sentezlenip kullanılmıştır. Dipolarofiller olarak da methyl acrylate, dimethyl maleate and N-methyl maleimide seçilmiştir. Bu iminler ve dipolarofiller kiral ligandlardan bir tanesinden $\% 6$ mol oranında Ag (I) tuzu ile birlikte kullanılarak, farklı pirolodin türevleri $\% 95$ 'e varan verim ve $\% 89$ 'a varan enantioseçicilikle sentezlenmiştir. Ayrıca, kiral ligand $\% 80$ 'in üzerinde verimle geri kazanılıp aktivitesini kaybetmeden tekrar kullanılmıştır.

Anahtar kelimeler: Kiral Katalizör, Asimetrik Sentez, 1,3-Dipolar Halkasal Katılma Tepkimeleri, Azometin İlürler, Pirolidin Türevleri.

To my father and mother...

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to Prof. Dr. Özdemir Doğan who agreed to serve as the graduate advisor, for his continuous guidance, useful suggestions, discussions, encouragements and insight. His friendship and advices enabled me to carry on with my Masters degree in METU and scientifically enriched. His continuous efforts in my career will never be forgotten.

I would like to express my special thanks to Prof. Dr. Philip P. Garner for his endless guidance, advice and criticism throughout this research.

I would like to thank Dr. Hasan Koyuncu and Dr. Alper İşleyen for helping me especially for the initial steps of synthesis of the catalysts and initial asymmetric reactions. I am also indebted to Assist. Prof. Dr. Adnan Bulut whose positive energy and friendship provided warm working medium in lab. I also would like to thank my friends Ayhan Aslan and Savaş Polat for their support and friendship.

Many thanks to all my friends and colleagues who helped me throughout these years. Especially, I would like to express my gratitude to Gülben Ardahan who is always a forethoughtful friend for me throughout this period. I wish to express my eternal gratitude to my family, especially to my brother, Serkan Eröksüz, and my friend, Olcay Mert, for their continuous supports and attempts to understand and encourage me during this work.

I would like to thank TUBITAK for financial support throughout my M.S. study.

TABLE OF CONTENTS

ABSTRACT iv
ÖZ vi
ACKNOWLEDGMENTS ix
TABLE OF CONTENTS x
LIST OF TABLES xiv
LIST OF FIGURES xv
ABBREVIATIONS xxi
CHAPTERS
1.INTRODUCTION 1
1.1 Routes to enantiomerically pure compounds 1
1.1.1 Catalytic Asymmetric Cycloaddition Chemistry 1
1.1.1.1 1,3-Dipolar Cycloaddition Chemistry 2
1.1.1.1.1 1,3-Dipoles or Ylides 3
1.1.1.1.2 Dipolarophile. 4
1.1.1.1.3 Mechanism of the 1,3-Dipolar Cycloaddition Reaction 5
1.1.1.1.4 Azomethine Ylides and Their 1,3-Dipolar Cycloaddition Reactions 8
1.1.1.1.5 Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylides 10
1.2 Aim of the work 32
2.RESULTS AND DISCUSSION 34
2.1 The Synthesis of Chiral P-FAM Ligands 34
2.2 The Asymmetric 1,3-Dipolar Cycloaddition Reaction by Using Chiral P-FAM Ligands 37
2.2.1 Ligand Screening and Optimization of 1,3-Dipolar Cycloaddition Reaction 37
2.2.2 Enantioselective 1,3-Dipolar Cycloaddition Reaction of various aldimines and dipolarophiles 44
3.CONCLUSION 48
4.EXPERIMENTAL 49
4.1 General Consideration 49
4.1.1 General Procedures 49
4.1.2 Materials 50
4.1.3 Instrumentation 50
4.2 Synthesis and Characterization of Chiral Ligands 50
4.2.1 Synthesis and Characterization of Aziridines $\mathbf{1 6 0}$ and $\mathbf{1 6 1}$. 50
4.2.2 Synthesis and Characterization of Tosylated Aziridines 16252
4.2.3 Synthesis and Characterization of phosphorus aziridino ketones 163 and 164 53
4.2.4 Synthesis and Characterization of Chiral P-FAM Ligands 165 and 166 55
4.2.4 Synthesis and Characterization of Chiral P-FAM Ligands 167 and 168 56
4.2.5 Synthesis and Characterization of Tosylated Aziridine 169. 58
4.2.6 Synthesis and Characterization of phosphorus aziridino ketones $\mathbf{1 7 0}$ and $\mathbf{1 7 1}$ 59
4.2.7 Synthesis and Characterization of Chiral P-FAM Ligands 172 and 173 60
4.2.8 Synthesis and Characterization of Chiral P-FAM Ligands 174 and 175 62
4.3 General Procedure for the synthesis of α-iminoesters 64
4.4 General Procedure for Catalytic Asymmetric 1,3-DC Reaction 64
4.4.1 (2S, 3R, 4S, 5R)-Trimethyl 5-phenylpyrrolidine-2,3,4- tricarboxylate 65
4.4.2 (2S, 4S, 5R)-Dimethyl 5-phenylpyrrolidine-2,4- dicarboxylate 65
4.4.3 (2R, 4R, 5S)-4-'Butyl 2-methyl 5-phenylpyrrolidine-2,4- dicarboxylate 66
4.4.4 (2S, 3S, 4S, 5R)-Trimethyl 5-phenylpyrrolidine-2,3,4- tricarboxylate 66
4.4.5 (1S, 2R, 4S, 5R)-Methyl octahydro-7-methyl-6,8-dioxo-4- phenyl 67
4.4.6 (2S, 4S, 5R)-Methyl 4-cyano-5-phenylpyrrolidine-2- carboxylate 68
4.4.7 (2S, $3 R, 4 S, 5 R$)-Trimethyl 5-(naphthalen-2-yl)pyrrolidine- 2,3,4-tricarboxylate 68
4.4.8 (2S, 4S, 5R)-Dimethyl 5-(naphthalen-2-yl)pyrrolidine-2,4- dicarboxylate 69
4.4.9 (2S, $3 R, 4 S, 5 R$)-Trimethyl 5-(naphthalen-1-yl)pyrrolidine- 2,3,4-tricarboxylate 69
4.4.10 (2S, 4S, 5R)-Dimethyl 5-(naphthalen-1-yl)pyrrolidine-2,4- dicarboxylate 70
4.4.11 (1S, 3R, 3S, 6R)-Methyl octahydro-5-methyl-3- (naphthalen-1-yl)-4,6-dioxopyrrolo[3,4-c]pyrrole-1-carboxylate....71
4.4.12 (2S, $3 R, 4 S, 5 R$)-Trimethyl 5-(4-chlorophenyl)pyrrolidine- 2,3,4-tricarboxylate 71
4.4.13 (2S, 4S, 5R)-Dimethyl 5-(4-chlorophenyl)pyrrolidine-2,4- dicarboxylate 72
4.4.14 (2S, 3R, 4S, 5R)-Trimethyl 5-(4- methoxyphenyl)pyrrolidine-2,3,4-tricarboxylate 72
4.4.15 (2S, 4S, 5R)-Dimethyl 5-(4-methoxyphenyl)pyrrolidine-
2,4-dicarboxylate 73
REFERENCES 74
APPENDIX A. NMR SPECTRUMS AND HPLC CHROMATOGRAMS OF COMPOUNDS 77

LIST OF TABLES

TABLES

Table 1 1,3-DC reactions of azomethine ylides with $\mathrm{Cu}(\mathrm{OTf})_{2} . ~ 38 ~$
Table 2 1,3-DC reactions of azomethine ylides with AgOAc in THF 39
Table 3 1,3-DC reactions of azomethine ylides with AgOAc in DCM 40
Table 4 Optimization of the amounts of the reagentsa ${ }^{\mathrm{a}}$................................. 41
Table 5 1,3-DC reactions in different solvent ${ }^{\text {a }}$.. 42
Table 6 1, 3-DC reaction with different ligand to metal ratio........................ 43
$\begin{aligned} \text { Table } 7 & \text { 1,3-DC reactions with different aldimines and dipolarophiles under } \\ & \text { optimized conditions }{ }^{\text {a }} \ldots \ldots . ~\end{aligned} 45$

LIST OF FIGURES

FIGURES

Figure 1 General representation of 1,3-DC reactions. 2
Figure 2 Examples of 1,3 dipoles. 4
Figure 3 Various dipolarophiles used in 1,3-DC reaction 4
Figure 4 Concerted and singlet diradical mechanisms of 1,3-DC reaction. 5
Figure 5 Similarity between 1,3-DC and Diels-Alder Reaction. 6
Figure 6 Stereochemistry of 1,3-DC reaction 6
Figure 7 The classification of 1,3-DC reactions on the basis of the FMOs 7
Figure 8 The general structure of azomethine ylides. 8
Figure 9 Proton abstraction from imine derivatives 9
Figure 10 Photolysis or thermolysis of aziridines 9
Figure 11 Decomposition of N-alkyl-N-methoxymethyl-N (trimethylsilyl) methylamines 9
Figure 12 The cycloadditions of azomethine ylides 19 with alkenes 17 10
Figure 13 The retrosynthesis of 1,3-DC reactions 10
Figure 14 Examples of some biologically active compounds having pyrrolidine ring 11
Figure 15 Formation of highly functionalized pyrrolidines using chiral catalyst 12
Figure 16 1,3-DC reaction carried out by Grigg and co-workers 13
Figure 17 1,3-DC reaction using chiral ligand 44 with AgOTf. 14
Figure 18 The chemical structures of chiral ligands 48-52 15
Figure 19 1,3-DC reaction using chiral catalyst $48-\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$ 15
Figure 20 Chiral bisoxazoline ligands 57, 58, and 59. 16
Figure 21 1,3-DC reactions using chiral catalyst (S)- $\mathrm{Bu}-\mathrm{BOX}-\mathrm{Zn}(\mathrm{II}$). 16
Figure 22 The chemical structures of chiral FAM ligands 64-67. 17
Figure 23 1,3-DC reactions using chiral catalyst $64-\mathrm{Zn}(\mathrm{OTf})_{2}$. 17
Figure 24 The chemical structures of chiral ligands 72-77 18
Figure 25 1,3-DC reaction using 75a- and 77-CuClO 4. 19
Figure 26 Chiral phosphinooxazoline ligands 83, 84, 85a-f. 20
Figure 27 1,3-DC reaction using chiral catalyst 85d-CuClO4 20
Figure 28 The chemical structures of chiral ligands 89-91 20
Figure 29 1,3-DC reaction using 89a- and 89e- CuClO_{4} 21
Figure 30 The chemical structures of chial ligands 95-97 21
Figure 31 1,3-DC reaction using chiral catalyst $95 \mathrm{a}-\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{ClO}_{4}$ 22
Figure 32 The chemical structures of chiral ligand (R)-Fesulphos 102a-e 23
Figure 33 1,3-DC reaction using chiral catalyst 102a- $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{ClO}_{4}$ 23
Figure 34 Chiral phosphine ligands 106-111 24
Figure 35 1,3-DC reaction using chiral catalyst 111b-AgOAc 24
Figure 36 The chemical structures of chiral phosphine 107, and 115-119. 25
Figure 37 1,3-DC reaction using chiral catalyst 119-AgOAc. 25
Figure 38 The chemical structures of chiral P,N ligands 124 and 125 26
Figure 39 1,3-DC reaction using chiral catalyst 119-AgOAc 26
Figure 40 The chemical structures of chiral ligands 129-133. 27
Figure 41 1,3-DC reaction using chiral catalyst 132-AgF 28
Figure 42 The chemical structures of chiral BINAP ligands 106 and 137. 28
Figure 43 1,3-DC reaction using chiral catalyst 137-AgClO4. 29
Figure 44 1,3-DC reaction using chiral catalyst 145-AgOAc. 29
Figure 45 1,3-DC reaction using 149a- and 149b-AgOAc 30
Figure 46 Two different transition states 150a and 150b 31
Figure 47 The chemical structures of chiral P,S ligands 151a-k 31
Figure 48 1,3-DC reaction using 151g- and 151i-AgOAc. 32
Figure 49 Synthesis of chiral aziridines 160 and 161 35
Figure 50 Synthesis of chiral ligand 165, 166, 167 and 168. 36
Figure 51 Synthesis of chiral ligand 172, 173, 174 and 175 37
Figure A. $1^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 160 77
Figure A. $2{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 160 77
Figure A. $3^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 162 78
Figure A. $4{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 162 78
Figure A. $5^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 163 79
Figure A. $6{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 163 79
Figure A. $7{ }^{31} \mathrm{P}-$ NMR spectrum of compound 163 80
Figure A. $8{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 164 80
Figure A. $9{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 164 81
Figure A. $10{ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of compound 164 81
Figure A. $11{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 165 82
Figure A.12 ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 165 82
Figure A. $13{ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of compound 165 83
Figure A.14 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 166 83
Figure A. $15{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 166 84
Figure A. $16{ }^{31} \mathrm{P}-$ NMR spectrum of compound 166 84
Figure A. $17{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 167 85
Figure A. $18{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 167 85
Figure A. $19{ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of compound 167 86
Figure A. $20{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 168 86
Figure A. $21{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 168 87
Figure A. $22{ }^{31} \mathrm{P}-$ NMR spectrum of compound 168 87
Figure A. $23{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 161 88
Figure A. $24{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 161 88
Figure A. $25{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 169 89
Figure A. $26{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 169 89
Figure A. $27{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 170 90
Figure A. $28{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 170 90
Figure A. $29{ }^{31} \mathrm{P}-$ NMR spectrum of compound 170 91
Figure A. $30{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 171 91
Figure A. $31{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 171 92
Figure A. $32{ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of compound 171 92
Figure A. $33{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 172 93
Figure A. $34{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 172 93
Figure A. $35{ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of compound 172 94
Figure A. $36{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 173 95
Figure A. $37{ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of compound 173 95
Figure A. $38{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 174 96
Figure A. $39{ }^{31} \mathrm{P}-N M R$ spectrum of compound 174 96
Figure A. $40{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 175 97
Figure A. $41{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 175 97
Figure A. $42{ }^{31} \mathrm{P}-$ NMR spectrum of compound 175 98
Figure A. $43{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 178 99
Figure A. $44{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 178 99
Figure A. $45{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 179 100
Figure A. $46{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 179 100
Figure A. $47{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 180 101
Figure A.48 ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 180 101
Figure A. $49{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 181 102
Figure A. $50{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 181 102
Figure A.51 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 182 103
Figure A. $52{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 182 103
Figure A. $53{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 183 104
Figure A. $54{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 183 104
Figure A. $55{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 184 105
Figure A. $56{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 184 105
Figure A. $57{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 185 106
Figure A. $58{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 185 106
Figure A. $59{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 186 107
Figure A. $60{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 186 107
Figure A.61 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 187 108
Figure A. $62{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 187 108
Figure A. $63{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 188 109
Figure A. $64{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 188 109
Figure A. $65{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 189 110
Figure A. $66{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 189 110
Figure A. $67{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 190 111
Figure A. $68{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 190 111
Figure A. $69{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 191 112
Figure A. $70{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 191 112
Figure A. $71{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 192 113
Figure A.72 ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 192 113
Figure A. 73 HPLC Chromatogram of compound 178 114
Figure A. 74 HPLC Chromatogram of compound 179 114
Figure A.75 HPLC Chromatogram of compound 180 115
Figure A. 76 HPLC Chromatogram of compound 181 115
Figure A. 77 HPLC Chromatogram of compound 182 116
Figure A. 78 HPLC Chromatogram of compound 183 117
Figure A. 79 HPLC Chromatogram of racemic 183 + ent-183 117
Figure A. 80 HPLC Chromatogram of compound 184 118
Figure A. 81 HPLC Chromatogram of compound 185 118
Figure A. 82 HPLC Chromatogram of compound 186 119
Figure A. 83 HPLC Chromatogram of compound 187 119
Figure A. 84 HPLC Chromatogram of racemic 187 + ent-187 120
Figure A. 85 HPLC Chromatogram of compound 188 120
Figure A. 86 HPLC Chromatogram of racemic 188 + ent-188 121
Figure A. 87 HPLC Chromatogram of compound 189 121
Figure A. 88 HPLC Chromatogram of compound 190 122
Figure A. 89 HPLC Chromatogram of compound 191 122
Figure A. 90 HPLC Chromatogram of compound 192 123
Figure A. 91 HPLC Chromatogram of racemic 192 + ent-192 123

	ABBREVIATIONS
Ar	: aryl (also argon)
Bn	: benzyl
BINAP	: 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl
Bu	: butyl
${ }^{t} \mathrm{Bu}$: tert-butyl
br	: broad singlet
${ }^{\text {a }} \mathrm{C}$:centigrade Celcius
δ	:chemical shift in parts per million downfield from tetramethylsilane
c	: concentration
J	: coupling constant
Cy	: cyclopentyl
de	: diastereomeric excess
DCE	: 1,2-dichloroethane
1,3-DC	: 1,3-Dipolar Cycloaddition
d	: doublet (spectral)
dt	: doublet of triplets (spectral)
dd	: doublet of doublet (spectral)
EWG	: Electron withdrawing group
ee	: enantiomeric excess
$\Delta \mathrm{E}$: energy gap
Et	: ethyl
equiv	: equivalent
Fc	: ferrocenyl
FAM	: Ferrocenyl substituted Aziridinyl Methanol
FMO	: Frontier Molecular Orbitals
g	: gram(s)
Hz	: hertz

HOMO	: Highest Occupied Molecular Orbital
HPLC	: High Pressure Liquid Chromatography
h	: hour(s)
HC	: hydrocinchonine
IR	: infrared
${ }^{i} \mathrm{Pr}$: isopropyl
KPPh_{2}	: potassium diphenylphosphide
LA	: Lewis Acid
LUMO	: Lowest Unoccupied Molecular Orbital
mp	: melting point
MHz	: megahertz
Me	: methyl
mL	: milliliter(s)
mmol	: millimole(s)
min	: minute(s)
m	: multiplet (spectral)
nm	: nanometer
NMR	: Nuclear Magnetic Resonance
P-FAM	: Phosphorous based Ferrocenyl substituted Aziridinyl
	Methanol
ppm	: parts per million (in NMR)
Ph	: phenyl
q	: quartet (spectral)
R_{f}	: retention factor (TLC)
$t_{\text {R }}$: retention time (in HPLC)
rt	: room temperature
s	: singlet (spectral)
THF	: Tetrahydrofuran; solvent
TMS	; Tetramethylsilane, also Trimethylsilyl
TLC	: Thin Layer Chromatography
Tf	: Triflate ($\mathrm{CF}_{3} \mathrm{SO}_{2}$)
	xxii

t : triplet (spectral)

UV : ultraviolet

CHAPTER 1

INTRODUCTION

1.1 Routes to enantiomerically pure compounds

Organic compounds, pharmaceuticals, agrochemicals, and other materials possessing useful biological activity, play an important part in modern life. Most of these organic compounds are chiral in other words mirror images of them are not superimposed. The enantiomers should be thought as two distinct compounds because they have different biological activity. To obtain enantiomerically pure compounds there are some methods: Resolution of racemates, starting from enantiomerically pure reagents, use of chiral auxiliaries, and chiral catalysts. In recent years, the last method is the most commonly studied one because small amount of the chiral catalytic mediator is enough to produce large amount of chiral product. Therefore this method provides economic and practical advantages. ${ }^{1}$

1.1.1 Catalytic Asymmetric Cycloaddition Chemistry

The construction of carbo- and heterocyclic compounds is important for the numerous total syntheses of complex molecules because of their broad and important biological activities. In addition to these, they are found in innumerable natural products and pharmaceuticals. Therefore these cyclic compounds, especially five- and six-membered N -heterocycles continue to attract considerable attention. ${ }^{2}$ Moreover, cycloaddition reactions are very important in synthetic organic chemistry, since they have advantages of
synthetic efficiency and potentially high stereoselectivity for ringcontaining structures. ${ }^{3}$ Catalytic cycloaddition chemistry has attracted considerable interest so remarkable progress have been made in cycloaddition reaction. In the next section 1,3-DC (dipolar cycloaddition) reaction will be further explored for the scope of our studies.

1.1.1.1 1,3-Dipolar Cycloaddition Chemistry

The $1,3-\mathrm{DC}$ reaction $(4 \pi+2 \pi)$, one of the most efficient method for the preparation of five-membered heterocycles $\mathbf{3}$, can be achieved by reaction of a 1,3-dipole or ylide 1, with dipolarophile 2 (Figure 1). The 1,3-dipole is used as 4π electron component and dipolarophile is used as 2π electron component in 1,3-DC reaction.

Firstly Huisgen ${ }^{4}$ indicated that cycloaddition of the type $3+2=5$ leading to an uncharged 5 -membered ring can be possible with the reactants having formal charges (Figure 1). Combination of such a 1,3-dipole with a multiple bond system d-e, termed the dipolarophile, is referred to as a 1,3DC reaction (Figure 1).

Figure 1 General representation of 1,3-DC reactions.

In organic chemistry, the 1,3-DC offers a remarkably wide range of utility in the synthesis of five-membered heterocycles. ${ }^{4}$ Therefore 1,3-DC reaction has been reviewed recently. ${ }^{5}$ The history of 1,3-dipoles goes back
to discovery of the diazoacetic ester. After Curtius ${ }^{6}$ discovered this ester in 1883, Buchner 7 studied the reaction of diazoacetic ester with $\alpha, \beta-$ unsaturated esters. In 1888 Buchner described the first 1,3-DC reaction. After Huisgen ${ }^{4}$ et al. formulated the general concept of $1,3-\mathrm{DC}$ reaction, numerous cycloadditions involving different types of dipoles ${ }^{8}$ have been described.

1.1.1.1.1 1,3-Dipoles or Ylides

Huisgen ${ }^{4}$ defined the dipole (4π electron component) by using terms of " a -$\boldsymbol{b}-\boldsymbol{c}$ " as a 1,3-dipole. The atom "a" possesses an electron sextet, i.e. an incomplete valence shell combined with a positive formal charge and the atom " c " is the negatively charged center with an unshared electron pair. Moreover Pichon ${ }^{9}$ and et al. defined 1,3-dipole which is formed by 3 atoms with at least one heteroatom. This compound have 4π electrons with a zwitterion form where the positive charge is localized on the central atom and the negative charge is distributed on two terminal atoms according to octet stabilization structure.

1,3-dipoles can be divided into two classes: those in which the three atoms comprising the 1,3-dipole are linear and those in which they are not. Examples of different types of dipoles are given in Figure 2. ${ }^{10}$

Figure 2 Examples of 1,3 dipoles.

1.1.1.1.2 Dipolarophile

Compound with 2π-electrons is generally an alkene and is named the dipolarophile in the $1,3-\mathrm{DC}$ reaction. This specie reacts with 1,3-dipoles in a concerted manner in 1,3-DC reactions. ${ }^{9}$ There are different dipolarophiles such as; α, β-unsaturated carbonyl compounds (4), ketones (5) allylic alcohols (6), allylic halides (7), alkynes (8), vinylic ethers (9), vinylic esters (10) and imines (11) (Figure 3). ${ }^{11,10}$

Figure 3 Various dipolarophiles used in 1,3-DC reaction.

1.1.1.1.3 Mechanism of the 1,3-Dipolar Cycloaddition Reaction

There were two approaches related to the reaction mechanism of $1,3-\mathrm{DC}$ reaction in 1960s. ${ }^{12}$ Huisgen ${ }^{4}$ developed a detailed explanation for the concerted mechanism of this reaction (Figure 4). On the other hand, Firestone ${ }^{13}$ claimed that $1,3-D C$ proceeded by stepwise reaction mechanism involving diradical intermediates for 1,3-DC reactions (Figure 4). Finally, Firestone agreed that the reaction was concerted because he could not rule out diradicalic mechanism on the basis of stereospecificity. ${ }^{12}$

Figure 4 Concerted and singlet diradical mechanisms of 1,3-DC reaction.

Huisgen ${ }^{4}$ found that cycloaddition of 1,3-dipoles to alkene are stereospecifically suprafacial, solvent polarity has little effect on reaction rates, and small activation enthalpies and large negative activation entropies. As a result, his mechanistic investigation have shown that 1,3DC reaction take place in a concerted fashion in accordance with Woodward-Hoffmann rules. ${ }^{14}$ They defined the concept of a concerted reaction, which is also named pericyclic reactions such as Diels-Alder, all
bonds are made or broken around a circle. Both Diels-Alder Reactions and $1,3-\mathrm{DC}$ reactions take place in a concerted fashion, with partial formation of the two new bonds in the single transition state (Figure 5). ${ }^{12}$

Figure 5 Similarity between 1,3-DC and Diels-Alder Reaction.

On the basis of Woodward-Hoffmann theory ${ }^{14}$ three pz orbitals of the 1,3dipole and two pz orbitals of the alkene combine suprafacially. Like DielsAlder Reaction, 1,3-DC reaction proceeds with thermally allowed retains the configuration of the reactants. In other words, the stereochemistry of dipole and the dipolarophile are retained in the final product (Figure 6).

Figure 6 Stereochemistry of 1,3-DC reaction.
$1,3-\mathrm{DC}$ reaction model is based on the interactions of the HOMO's and LUMO's of both the dipolarophile and the 1,3-dipole according to the FMO theory. ${ }^{15}$ The relative positions of HOMO and LUMO energies lead to three reactivity types in 1,3-DC reactions (Figure 7). ${ }^{16}$

Figure 7 The classification of 1,3-DC reactions on the basis of the FMOs.

Type I $\mathrm{HOMO}_{\text {dipole }}-\mathrm{LUMO}_{\text {alkene }}$ controlled reactions such as azomethine ylides and azomethine imines. Type II $\mathrm{HOMO}_{\text {dipole }}-\mathrm{LUMO}_{\text {alkene }}$ or $\mathrm{HOMO}_{\text {alkene }}-\mathrm{LUMO}_{\text {dipole }}$ controlled additions such as nitrile oxides and nitrones. Type III $\mathrm{LUMO}_{\text {dipole }}-\mathrm{HOMO}_{\text {alkene }}$ controlled cycloadditions such as ozone and nitrous oxide. ${ }^{16}$

Electronic property of the substituent determines the reaction rates because the substituents influence the energy of the orbitals and change their relative separation. ${ }^{15}$ Sustman and Trill ${ }^{17}$ explained the effects of electron releasing and electron donating substituents for these three types of 1,3-DC reactions separately.

1.1.1.1.4 Azomethine Ylides and Their 1,3-Dipolar Cycloaddition Reactions

Azomethine ylides have planar structure and include one nitrogen atom attached to two terminal sp^{2} carbon atoms (Figure 8). ${ }^{18}$ Azomethine ylides are unstable species which have to be prepared in situ and trapped by almost any multiple $\mathrm{C}-\mathrm{C}$ or $\mathrm{C}-\mathrm{X}(\mathrm{X}=$ heteroatom $)$ bond.

Figure 8 The general structure of azomethine ylides.

A number of methods have been developed for the generation of azomethine ylides, such as thermolysis and photolysis of aziridines, ${ }^{19}$ desilylation of various α-amino silane derivatives, ${ }^{20}$ proton abstraction from imine derivatives of α-amino acids, ${ }^{21}$ decarboxylative condensation of amino acids, ${ }^{22}$ deprotonation of iminium salts, ${ }^{23}$ and others. ${ }^{24}$ There are three most commonly employed procedures; such as proton abstraction from imine derivatives 20 (Figure 9), photolysis or thermolysis of aziridines 22 (Figure 10) and acid catalyzed decomposition of N -alkyl-N-methoxymethyl-N (trimethylsilyl) methylamines 24 (Figure 11). ${ }^{25}$

Figure 9 Proton abstraction from imine derivatives

Figure 10 Photolysis or thermolysis of aziridines

Figure 11 Decomposition of N-alkyl-N-methoxymethyl-N (trimethylsilyl) methylamines

The cycloadditions of unstable species of azomethine ylides 19 with alkenes $\mathbf{1 7}$ provide the synthesis of pyrrolidines (26) (Figure 12). ${ }^{26}$ The $1,3-\mathrm{DC}$ reaction is important for organic chemistry because it allows the formation of two bonds and up to four stereogenic centers in a single operation as shown in Figure 12. ${ }^{27}$

Figure 12 The cycloadditions of azomethine ylides 19 with alkenes 17.

Synthesis of pyrrolidines is very important because the pyrrolidine substructure 26 (Figure 13) is a common motif in a wide range of biologically active compounds, especially alkaloids. An attractive synthetic approach to pyrrolidine-containing target molecules involves the construction of the $\mathrm{C}_{2}-\mathrm{C}_{3}$ and $\mathrm{C}_{4}-\mathrm{C}_{5}$ ring bonds via a [3+2] cycloaddition strategy. This approach calls for the use of a 4π electron azomethine ylide 19, in a $(4 \pi+2 \pi)$ cycloaddition with an alkene. Such a strategy has the advantage of synthetic efficiency and potentially high stereoselectivity. ${ }^{28}$

Figure 13 The retrosynthesis of 1,3-DC reactions.

1.1.1.1.5 Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reaction of

Azomethine Ylides

In recent years, azomethine ylides have become one of the most investigated classes of 1,3-dipoles because their reaction with alkenes provide the synthesis of pyrrolidine rings. Substituted pyrrolidine rings
attract considerable attention due to their broad and important biological activities. ${ }^{26}$ They are found in innumerable natural products and pharmaceutical compounds such as acromelic acid (27), cephalotoxine (28), cocaine (29), (+)-coccinine (30), lapidilectine B (31), lepadiformine (32), kainic acid (33) and quinocarcin (34) (Figure 14). ${ }^{3}$

Figure 14 Examples of some biologically active compounds having pyrrolidine ring.

The development of new methods for the synthesis of pyrrolidines ${ }^{29}$ is considerably important, particularly approaches leading to chiral derivatives of these ring skeletons. ${ }^{30}$

Three general approaches have emerged to directly provide optically active 1,3-DC products: 1-Utilization of a chiral, nonracemic dipolarophile or dipole, ${ }^{31}$ 2-attachment of a chiral auxiliary to dipole ${ }^{32}$ or the dipolarophile, ${ }^{33} 3$-utilization of chiral catalyst. ${ }^{18,5}$ The latter approach has been investigated much frequently. Dipole or dipolarophile can coordinate to metal-ligand chiral catalyst to provide enantioselective reaction (Figure 15). ${ }^{34-38}$

Figure 15 Formation of highly functionalized pyrrolidines using chiral catalyst.

Azomethine ylides $\mathbf{3 6}$ can be generated from imines by reaction with a base in the presence of a Lewis acid. ${ }^{34 a}$ Lewis acids form a complex as shown in Figure 16 with the imine. This complexation leads to a highly stereoselective cycloaddition reactions. On the other hand nonmetalloazomethine ylides may undergo stereomutation processes. As a results less stereoselective cycloaddition reactions take place. ${ }^{18}$

1,3-DC reaction using $\mathrm{Co}(\mathrm{II}),{ }^{35} \mathrm{Ni}(\mathrm{II}),{ }^{36} \mathrm{Zn}(\mathrm{II}),{ }^{34} \mathrm{Cu}(\mathrm{II}),{ }^{37} \mathrm{Cu}(\mathrm{I}),{ }^{37} \mathrm{Ag}(\mathrm{I}){ }^{38}$ as the metal source have been reported.

First $1,3-\mathrm{DC}$ reaction using a metal with a chiral ligand was reported by Grigg and co-workers. ${ }^{35}$ They used stochiometric amount of CoCl_{2} and MnBr_{2} with chiral ligands 39a, 39b, and 39c. Cycloadducts were obtained in high enantioselectivities with $\mathrm{CoCl}_{2}(1 \mathrm{~mol})$ and chiral ligand 39b (2 mol) at room temperature (Figure 16). Using different imines with methyl acrylate (41), they obtained cycloadducts in $67-84 \%$ yields and in up to 96% ee's. They explained their results with the transition state complex 43 $\left(\mathrm{CoCl}_{2}\right.$ coordinates to chiral ligand 39b) as shown in Figure 16. This complex shielded effectively one face of azomethine ylide to increase enanioselectivity.

Figure 16 1,3-DC reaction carried out by Grigg and co-workers.

Same group ${ }^{5}$ also synthesized phosphorous based chiral ligand 44 and used with AgOTf as a chiral catalyst for 1,3-DC reaction (Figure 17). Using this catalyst system pyrrolidine derivatives were obtained in $64-83 \%$ yields with 70% ee. The transition state complex 47 proposed for this reaction is shown in Figure 17.

Figure 17 1,3-DC reaction using chiral ligand 44 with AgOTf.

Shi 36 and coworkers developed chiral binapththalenediimine (BINIM)ligands 48, 49, 50, 51, and 52 (Figure 18). They have screened these ligands with different metal salts $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Ag}, \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{ClO}_{4}$, $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right), \mathrm{Zn}(\mathrm{OTf})_{2}$ and $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. From this study ligand 48 and $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was found to be the most effective.

Figure 18 The chemical structures of chiral ligands 48-52.
Different imines and several N -arylmaleimides were used to show the generality of this catalyst system for enantioselective 1,3-DC reaction. All reactions proceeded smoothly to give corresponding cycloadducts with endo selectivity (substituent on the dipolarophile and azomethine ylide nitrogen are on the same side) in $52-92 \%$ yields and $72-95 \%$ ee's. The possible transition state proposed for this catalyst system involves the endo approach of N -phenylmaleimide to hexacoordinated $\mathrm{Ni}(\mathrm{II})$ complex (56) as illustrated in Figure 19.

Figure 19 1,3-DC reaction using chiral catalyst $48-\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

Jorgensen ${ }^{34 a}$ and co-workers used chiral bisoxazoline ligands 57, 58, and 59 with $\mathrm{Zn}(\mathrm{OTf})_{2}$ and $\mathrm{Cu}(\mathrm{OTf})_{2}$ as the metal sources for $1,3-\mathrm{DC}$ reactions of azomethine ylides (Figure 20). The use of $\mathrm{Cu}(\mathrm{OTf})_{2}$ with chiral bisoxazoline ligands $\mathbf{5 7}, \mathbf{5 8}$, and $\mathbf{5 9}$ gave high conversion only with ligand

57 but the selectivity was very low. However, higher enantioselectivity and yield were obtained by using the chiral ligand 57 with $\mathrm{Zn}(\mathrm{OTf})_{2}$.

Figure 20 Chiral bisoxazoline ligands 57, 58, and 59.

This catalyst system (chiral ligand $\mathbf{5 7 - Z n}(\mathrm{OTf})_{2}$ gave cycloadducts in $76-$ 95% yields with $61-94 \%$ enantioselectivities. To explain the diastereo- and enantio-selectivity, they proposed the transition state complex 63 in which the cycloaddition took place by endo approach (Figure 21).

Figure 21 1,3-DC reactions using chiral catalyst (S)- ${ }^{\mathrm{B}} \mathrm{Bu}-\mathrm{BOX}-\mathrm{Zn}(\mathrm{II})$.

Dogan ${ }^{34 \mathrm{c}}$ and coworkers used FAM (Ferrocenyl substituted Aziridinyl Methanol) chiral ligands 64, 65, 66, and 67 for 1,3-DC reactions of
azomethine ylides (Figure 22). The catalytic performance of the chiral ligands 64, 65, 66, and 67 were tested by using $\mathrm{Zn}(\mathrm{OTf})_{2}$ as the metal source. When the chiral ligands $\mathbf{6 5}, \mathbf{6 6}$, and $\mathbf{6 7}$ were used, the cycloadduct was obtained in reasonable yield but low enantioselectivity. Higher yield and enantioselectivity were obtained with chiral ligand 64.

Figure 22 The chemical structures of chiral FAM ligands 64-67.

Using this catalyst system, cycloadducts were obtained in 63-93\% yield and $36-95 \%$ ee with endo selectivity. This diastereoselectivity was explained by pre-transition state $\mathbf{7 1}$ shown in Figure 23.

Figure 23 1,3-DC reactions using chiral catalyst $\mathbf{6 4 - Z n}(\mathrm{OTf})_{2}$.
$K^{K} \operatorname{Katsu}^{37 \mathrm{a}}$ and co-workers used phosphorous based chiral ligands (R, R) CHIRALPHOS (72), (S,S)-BDPP (73), (R,R)-DIOP (74), (R)-BINAP (75a), (R)-Tol-BINAP (75b), (R)-H8-BINAP (76), and (R)-SEGPHOS (77) for $1,3-\mathrm{DC}$ raction of azomethine ylides (Figure 24).

Figure 24 The chemical structures of chiral ligands 72-77.

The catalytic performance of these chiral ligands 72, 73, 74, 75, 76, and 77 were tested by using $\mathrm{Cu}(\mathrm{OTf})_{2}$ as the metal source. The $\mathrm{Cu}(\mathrm{II})$ salt with (R)-BINAP 75a gave the products in moderate yields (57-83\%) with 55$82 \%$ ee's and highest exo/endo ratio. When (R)-SEGPHOS 77 was used with the same metal the products were obtained in $54-94 \%$ yields with 62$92 \%$ ee's.

Komatsu and co-workers explained the exo selectivity (substituent on the dipolarophile and azomethine ylide nitrogen are on the opposite sides) of the reaction by offering the transition model 81 (Figure 25). The metal/ligand coordinated azomethine ylide reacted with the dipolarophile
(N -Phenylmaleimide) in exo mode rather than endo one due to a steric repulsion in endo transition state.

Figure 25 1,3-DC reaction using 75a- and $77-\mathrm{CuClO}_{4}$.

Zhang ${ }^{37 b}$ and co-workers examined chiral ligands 83, 84, and 85a-f (Figure 26) with CuOAc salt for the enantioselective $1,3-\mathrm{DC}$ azomethine ylides with acrylates at $0{ }^{\circ} \mathrm{C}$. Among these chiral ligands, $\mathbf{8 5 d}-\mathrm{Cu}$ combination gave the cycloadducts in high ee's with moderate yields.

Figure 26 Chiral phosphinooxazoline ligands 83, 84, 85a-f.

When $\mathbf{8 5 d}-\mathrm{CuClO}_{4}$ catalyst system was used at $-25^{\circ} \mathrm{C}$ the exo cycloadducts were obtained in 61-87\% yields with excellent enantioselectivities 89-98\% (Figure 27).

Figure 27 1,3-DC reaction using chiral catalyst $\mathbf{8 5 d}-\mathrm{CuClO}_{4}$.
$\mathrm{Hou}^{37 \mathrm{c}}$ et al. used chiral catalysts obtained from P-, N -ferrocene ligands $\mathbf{8 9 a} \mathbf{- e}, \mathbf{9 0}, \mathbf{9 1} \mathbf{a}, \mathbf{b}$ and CuClO_{4} for 1,3-DC reactions of azomethine ylides with nitroalkenes (Figure 28).

Figure 28 The chemical structures of chiral ligands 89-91

When ligand $\mathbf{8 9} \mathbf{a}-\mathrm{CClO}_{4}$ was used as the catalyst with different imino esters 92 and nitroalkanes 93 for 1,3-DC reactions (Figure 29), exo diastereomers were obtained in $70-97 \%$ yields with the $92-98 \%$ ee. The ratio of exo/endo ranged from 88:12 to $92: 8$. In the case of catalyst $\mathbf{8 9}$ aCuClO_{4}, however, endo diastereomers were obtained in $71-98 \%$ yields and 84-97\% ee's. The ratio of endo to exo ranged from 70:30 to 94:6.

Figure 29 1,3-DC reaction using 89a- and $\mathbf{8 9} \mathbf{e}-\mathrm{CuClO}_{4}$

In another study, $\mathrm{Shi}^{37 \mathrm{~d}}$ and coworkers used thiophosphoramide ligands 95a-d, 96 and diphenylselenophoramide ligand (97) as chiral catalysts with different metal salts, $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{ClO}_{4}, \mathrm{AgOAc}$, $\mathrm{AgOTf}, \mathrm{Cu}(\mathrm{OTf})_{2}$ and $\mathrm{Zn}(\mathrm{OTf})_{2}$ for 1,3-DC reactions of azomethine ylides (Figure 30).

Figure 30 The chemical structures of chial ligands 95-97

The chiral ligand 95a was found to be the most effective one when used with $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{ClO}_{4}$ as a catalyst for $1,3-\mathrm{DC}$ reaction of azomethine ylides. With this catalyst system endo cycloadducts were obtained in 60$89 \%$ yields with moderate enantioselectivities 26-79\%. Enantioselectivity of the reaction was explained by the transition state model shown in Figure 31.

Figure 31 1,3-DC reaction using chiral catalyst $95 \mathrm{a}-\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{ClO}_{4}$.

In a different study by Carretero ${ }^{37 e, f}$ and coworkers chiral Fesulphos ligands 102a-e were used with $\mathrm{Cu}(\mathrm{I})$ and $\operatorname{Ag}(\mathrm{I})$ as catalysts for $1,3-\mathrm{DC}$ reaction of azomtehine ylides (Figure 32).

	$\begin{aligned} & 102 \mathrm{a}: \mathrm{R}=\mathrm{Ph} \\ & 102 \mathrm{~b}: R=(p-F) \mathrm{C}_{6} \mathrm{H}_{4} \\ & 102 \mathrm{c}: R=o-T o l \\ & 102 \mathrm{~d}: R=1-\mathrm{Naph} \\ & 102 \mathrm{e}: R=C y \end{aligned}$

Figure 32 The chemical structures of chiral ligand (R)-Fesulphos 102 a-e

Fesulphos ligand 102a showed the best performance as a catalyst with copper(I) in 1,3-DC reaction of azomtehine ylides (Figure 33). Different dipolarophiles and imines were screened to synthesize pyrrolidines in 63$97 \%$ yield with $76-99 \%$ ee's. These experiments showed that the reactions were highly dipolarophile dependent, it was necessary to optimize the reaction conditions with respect to dipolarophile (symmetric or antisymmetric).

Figure 33 1,3-DC reaction using chiral catalyst $\mathbf{1 0 2 a}-\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{ClO}_{4}$.

In the study of Zhang ${ }^{38 \mathrm{a}}$ and co-workers, chiral phosphine ligands 106-111 were used with Ag as a catalyst for asymmetric 1,3-DC reaction of azomethine ylides (Figure 34).

Figure 34 Chiral phosphine ligands 106-111

Using 111b-AgOAc catalyst system only endo cycloadducts were obtained in $73-98 \%$ and $52-97 \%$ ee's Figure 35.

Figure 35 1,3-DC reaction using chiral catalyst 111b-AgOAc.

Schreiber ${ }^{38 \mathrm{~b}}$ and co-workers used commercially available chiral phosphine ligands 107, and 115-119 with AgOAc for 1,3-DC reaction of azomethine ylides (Figure 36).

Figure 36 The chemical structures of chiral phosphine 107, and 115-119.

The P,N-ligand (S)-QUINAP 119 worked the best as a catalyst with $\operatorname{Ag}(\mathrm{I})$ to form pyrolidines in $47-95 \%$ yield with $60-96 \%$ ee's. By this catalyst system endo product formation was dominant. To explain this selectivity they proposed a transition sate complex $\mathbf{1 2 3}$ as shown Figure 37.

Figure 37 1,3-DC reaction using chiral catalyst 119-AgOAc.

Carreira ${ }^{38 \mathrm{c}}$ and co-worker developed a new P,N-ligands (PINAP) 124 and 125 (Figure 38) that are structurally similar to commercially available QUINAP 119 (Figure 36). They used these ligands with $\mathrm{Ag}(\mathrm{I})$ for 1,3-DC reaction of azomethine ylides.

Figure 38 The chemical structures of chiral P,N ligands 124 and 125.

Chiral PINAP ligand 124a gave cycloadducts in $88-94 \%$ yields with $92-$ 95\% ee's Figure 39.

Figure 39 1,3-DC reaction using chiral catalyst 119-AgOAc.

In 2005, Jorgensen ${ }^{38 \mathrm{~d}}$ and co-workers screened Cinchona alkoloids 129133 (Figure 40) as chiral bases for 1,3-DC reaction with different Lewis acids $\mathrm{LiBr}, \mathrm{ZnCl}_{2}, \mathrm{AgNO}_{3}, \mathrm{AgF}$, and AgCl .

Figure 40 The chemical structures of chiral ligands 129-133

In this study they didn't use another source of a base because cinchona alkaloid acts as the chiral base. HC-132 showed better catalytic activity with AgF for $1,3-\mathrm{DC}$ reaction of azomethine ylides. With this catalyst, endo pyrrolidine derivatives were obtained in 80-97\% yields with 61-70\% ee's (Figure 41). It was not necessary to take specific precautions such as inert atmosphere and dry solvents etc.

Figure 41 1,3-DC reaction using chiral catalyst 132-AgF.

Sansano ${ }^{38 \mathrm{e}}$ and coworkers used (R)-BINAP 106, and (S)-BINAP 137 with different silver salts $\mathrm{AgOAc}, \mathrm{AgOTf}, \mathrm{AgF}, \mathrm{AgClO}_{4}$ and $\mathrm{AgClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ for $1,3-\mathrm{DC}$ reaction of azomethine ylides and maleimides (Figure 42). The highest diastereo- and enantioselectivities were observed by using (S)BINAP 137 with AgOAc and AgClO_{4}, but they used last one because the catalytic complex (S)-BINAP-AgClO $4 \mathbf{S} \mathbf{- 1 4 1}$ could be separated almost quantitavely.

Figure 42 The chemical structures of chiral BINAP ligands 106 and 137

This catalyst gave cycloadducts in $64-99 \%$ yields and $82-90 \%$ ee's with endo selectivity (Figure 43). The transition state complex $\boldsymbol{S} \mathbf{- 1 4 1}$ was proposed for the selectivity of the reaction.

Figure 43 1,3-DC reaction using chiral catalyst $137-\mathrm{AgClO}_{4}$.

Another catalyst system was developed by Zhou ${ }^{38 f}$ and co-workers. They used N,P-ligand 145 with AgOAc as a catalyst for $1,3-\mathrm{DC}$ reaction of azomethine ylide (Figure 44). Cycloadducts were obtained in 85-99\% yields with $88-98 \%$ ee's. With this catalyst system, it was not necessary to use a different base to remove α-proton of imine because AgOAc was playing a bifunctional role for this reaction.

Figure 44 1,3-DC reaction using chiral catalyst $\mathbf{1 4 5 - A g O A c}$.

Same group also synthesized chiral ligands $\mathbf{1 4 9}$ a and 149b Figure $45 .{ }^{38 g}$

Figure 45 1,3-DC reaction using 149a- and 149b-AgOAc.

Both of the catalyst obtained from these ligands showed endo approach of dipolarophile but from opposite sides of the azomethine ylides (opposite facial selectivity) as shown in Figure 46. In the case of complex 150b, hydrogen bonding was taking place between both carbonyl oxygens and NH_{2} group of the ligand. As a result the dipolarophile approached from upper face during cycloaddition. But in the case of complex 150a hydrogen bonding was not possible and the upper face of the azomethine ylide was blocked by methyl groups of the ligand. Therefore diporophile approached from the lower face of azomethine ylide during cycloaddition. With this catalyst system cycloadducts were obtained in $90-98 \%$ yield and with 36 97\% ee's.

Figure 46 Two different transition states 150a and 150b.

Zhou and Zeng ${ }^{38 \mathrm{~h}}$ also synthesized P,S-chiral ligands 151a-k (Figure 47) and used them with AgOAc for asymmetric 1,3-DC reaction of azomethine ylides.

	$(S, R p)$ 151a : $\mathrm{Ar}=\mathrm{Ph}$,	$\mathrm{R}=$
	151b : $\mathrm{Ar}=\mathrm{P}$	$\mathrm{R}=\mathrm{Cl}$
	$(S, R p) 151 \mathrm{c}: \mathrm{Ar}=\mathrm{Ph}$,	$\mathrm{R}=\mathrm{OMe}$
	$(S, R p)$ 151d : $\mathrm{Ar}=\mathrm{Ph}$	$\mathrm{R}=\mathrm{Me}$
	$(S, R p) 151 \mathrm{e}: \mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$,	$\mathrm{R}=\mathrm{OM}$
	$(S, R p)$ 151f : $\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$,	$\mathrm{R}=\mathrm{OMe}$
	$(S, R p) 151 \mathrm{~g}: \mathrm{Ar}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}$	$\mathrm{R}=\mathrm{OMe}$
	$(S, R p) 151 \mathrm{~h}: \mathrm{Ar}=4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$,	$\mathrm{R}=\mathrm{OMe}$
	$(S, R p) 151 \mathrm{i}: \mathrm{Ar}=4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$,	$\mathrm{R}=\mathrm{Cl}$
	$(S, R p) 151 \mathrm{k}: \mathrm{Ar}=4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$,	$\mathrm{R}=\mathrm{CF}_{3}$

Figure 47 The chemical structures of chiral P,S ligands 151a-k.

Ligand screening and optimization studies showed that catalyst system $151 \mathrm{~g}-\mathrm{AgOAc}$ was the best for $1,3-\mathrm{DC}$ reaction of azomethine ylides with N-phenylmaleimide Figure 48a. Only endo cycloadducts were obtained in $95-98 \%$ yields with $86-93 \%$ ee's. In the case of dimethyl maleate, catalyst system $151 \mathrm{i}-\mathrm{AgOAc}$ found to be the best by giving the products in $86-96 \%$
yields with $84-89 \%$ ee's. Again only endo cycloadducts were obtained Figure 48 b.

Figure 48 1,3-DC reaction using 151g- and 151i-AgOAc.

1.2 Aim of the work

Our group previously synthesized ferrocenyl substituted aziridinyl methanols (FAM) and used them as chiral catalysts for different types of asymmetric reactions. The use of these ligands with $\mathrm{Zn}(\mathrm{OTf})_{2}$ in asymmetric $1,3-\mathrm{DC}$ reactions of azomethine ylides gave pyrrolidines with ee's up to $95 \%{ }^{34 c}$ Asymmetric diethylzinc addition to enones gave β ethylated ketones in up to $82 \% .{ }^{39}$ Asymmetric diethylzinc addition to aldehydes gave secondary alcohols with ee's up to $96 \% .^{40}$ Asymmetric alkynylzinc addition to aldehydes gave propargylic alcohols in up to 96% ee. ${ }^{41}$ Finally the use of FAM ligands as a catalyst with zinc in nitroaldol (Henry) reaction gave the desired products in up to 92% ee. ${ }^{42}$ In this study we aimed to synthesize phosphorous derivatives of FAM ligands (P-FAM). It is known in literature that ligands having phosphorous group work much better as a catalyst with cupper and silver metals for 1,3-DC reactions of
azomethine ylides. Also, compared to amino alcohol ligands, phosphorous based ligands are used in smaller quantities. For these reasons we planned to synthesize P-FAM ligands and use them as a catalyst with cupper and silver metals for the enantioselective synthesis of pyrrolidine derivatives by employing $1,3-\mathrm{DC}$ reactions of azomethine ylides. Pyrrolidine derivatives are found in the structure of many natural products and pharmaceuticals. Therefore the asymmetric synthesis of these compounds attracts the attention of many groups worldwide. Different chiral catalysts have been used for the synthesis of these compounds by 1,3-DC reactions of azomethine ylides with dipolarophiles. In general, the catalysts are either dipolarophile dependent, or require complicated synthesis and difficult purifications, or have to be used in higher amounts to reach good yields and enantioselectivites. Therefore it is necessary to develop a more efficient catalyst system which is more selective, dipolarophile independent and doesn't require a complicated synthesis.

CHAPTER 2

RESULTS AND DISCUSSION

2.1 The Synthesis of Chiral P-FAM Ligands

We started our studies with the synthesis of P-FAM ligands. For the synthesis of these ligands we followed the steps used for the syntheis of FAM ligands. First step of the synthesis is the reaction of ferrocene with acryloyl chloride. Our group developed a good method for this reaction which gives acryloyl ferrocene in $85-90 \%$ yield. ${ }^{43}$ The next step in the synthesis of the chiral P-FAM ligands is bromination of acryloyl ferrocene. Our group also developed a nice protocol for this reaction which gives dibromo compound 159 in about 95% yield. Previous literature studies for the direct bromination of acryloyl ferrocene all failed because ferrocene ring also gets brominated and the reaction gives a complicated mixture of products. In the following step, dibromo compound was treated first with $\mathrm{Et}_{3} \mathrm{~N}$ followed by addition of (R)-2-amino-1-butanol. This reaction is also known as Gabriel-Cromwell reaction. ${ }^{44}$ The ketones 160 and 161 obtained from this reaction were easily separated from each other and purified by flash column chromatography in 53% and 42% yields respectively Figure 49.

Figure 49 Synthesis of chiral aziridines 160 and 161

In the third step, the compound $\mathbf{1 6 0}$ was tosylated with tosyl chloride by overnight stirring at room temperature to yield product 162 in 96% yield Figure 50. In the next step, the compound $\mathbf{1 6 2}$ was treated with potassium diphenyl phosphide at $-78{ }^{\circ} \mathrm{C}$ by using the procedure published by Williams and co-workers. ${ }^{45}$ This reaction gave $\mathbf{1 6 3}$ and its oxidized form 164 in 68% and 25% yields, respectively (Figure 50). To complete the synthesis of the chiral ligand, carbonyl group of ketone 163 was reduced by using $\mathrm{NaBH}_{4}+\mathrm{ZnCl}_{2}$ to give alcohol 165 in 60% yield and its oxidized form 166 in 35% yield as the only stereoisomer. Reduction of the same ketone by L-selectride at $-78{ }^{\circ} \mathrm{C}$ gave alcohol 167 in 40% yield and its oxidized form 168 in 55% yield with opposite stereochemistry at alcohol center. This alcohol was also obtained as the only stereoisomer (Figure 50). The procedure used for the reduction of ketones was developed by Korean group. ${ }^{46}$ Both of the ligands were isolated as yellow colored oil.

Figure 50 Synthesis of chiral ligand 165, 166, 167 and 168.

In order to convert ketone $\mathbf{1 6 1}$ to the ligand, we followed the same synthetic pathway. Tosylation of compound 161 gave compound 169 in 96\% yield Figure 51. Phosphorylation step yielded phospho ketone 170 and its oxidized form 171 in 75% and 20% yields respectively Figure 51. Stereocontrolled reduction of the compound $\mathbf{1 7 0}$ with $\mathrm{NaBH}_{4}+\mathrm{ZnCl}_{2}$ didn't take place even with excess amount of NaBH_{4}, starting material was recovered. Therefore, the reduction step was carried out by using more powerful reducing agent LiAlH_{4}. From this reduction alcohol 172 and its oxidized form 173 were obtained in 49% and 42% yields respectively Figure 51. They were both yellow in color and oily. When L-Selectride was used as the reducing agent, chiral ligand 174 and its oxidized form 175 were isolated in 51% and 45% yields respectively Figure 51. Chiral ligand 174 was yellow oil and its oxidized form 175 was yellow solid (mp 39-40 ${ }^{\circ} \mathrm{C}$).

Figure 51 Synthesis of chiral ligand 172, 173, 174 and 175.

The configurations of the P-FAM ligands were assigned by analogy with the configuration of FAM ligands which were determined by X-ray analysis.

2.2 The Asymmetric 1,3-Dipolar Cycloaddition Reaction by Using Chiral P-FAM Ligands

2.2.1 Ligand Screening and Optimization of 1,3-Dipolar Cycloaddition Reaction

After the synthesis of P-FAM chiral ligands and their oxidized forms (total of twelve new potential chiral ligands), they were tried for 1,3-DC reaction as a catalyst with copper and silver metals.

Firstly, the efficiency of the ligands with $\mathrm{Cu}(\mathrm{II})$ in $1,3-\mathrm{DC}$ reaction was tested by adapting the literature procedure reported by Komatsu and coworkers. ${ }^{37 \mathrm{a}}$ 1,3-DC reactions of azomethine ylides (1 eq.) with dimethyl maleate (1.1 eq.) in the presence of $4.4 \mathrm{~mol} \%$ of chiral ligand $\mathbf{1 7 1}, 2 \mathrm{~mol}$ $\% \mathrm{Cu}(\mathrm{OTf})_{2}$ and $4 \mathrm{~mol}^{2} \mathrm{Et}_{3} \mathrm{~N}$ gave the cycloadduct 178 in 98% yield
with very low ee (Table 1 , entry 8) at $-40^{\circ} \mathrm{C}$. Under the same conditions, the other ligands $\mathbf{1 6 3 - 1 6 8}, \mathbf{1 7 0}$, and $\mathbf{1 7 2 - 1 7 5}$ also gave the cycloadduct $\mathbf{1 7 8}$ in low yield and very low enantioselectivity (Table 1).

Table 1 1,3-DC reactions of azomethine ylides with $\mathrm{Cu}(\mathrm{OTf})_{2}$

Entry	chiral ligand	Aldimine	dipolarophile	yield $^{\text {a }}$ (\%)	$\begin{aligned} & \mathrm{ee}^{\mathrm{b}} \\ & (\%) \end{aligned}$
1	163	176	177	-	-
2	164	"	"	20	5
3	165	"	"	25	6
4	166	"	"	-	-
5	167	"	"	75	0
6	168	"	"	15	10
7	170	"	"	5	0
8	171	"	"	98	5
9	172	"	"	5	3
10	173	"	"	35	7
11	174	"	"	-	-
12	175	"	"	-	-

${ }^{\mathrm{a}}$ Isolated Yield. ${ }^{\mathrm{b}}$ Determined by HPLC using a Chiralpak AS column.

Next, the efficiency of the ligands in 1,3-DC reaction was tested with a different metal salt (AgOAc) by using the literature procedure. ${ }^{38 c} 1,3-\mathrm{DC}$ reactions of azomethine ylides (1 eq.) with dimethyl maleate (1.15 eq .) was performed in the presence of $3.3 \mathrm{~mol} \%$ of chiral ligand, $3 \mathrm{~mol} \% \mathrm{AgOAc}$
and $10 \mathrm{~mol} \%{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ in THF at $-40{ }^{\circ} \mathrm{C}$ (Table 2). Under these reaction conditions, all the ligands gave the expected cycloadduct in high yield (except chiral ligands 163 and 165) but very low ee (Table 2).

Table 2 1,3-DC reactions of azomethine ylides with AgOAc in THF

${ }^{\text {a }}$ Isolated Yield. ${ }^{\text {b }}$ Determined by HPLC using a Chiralpak AS column.

After the unsatisfactory results we decided to change the solvent to DCM (dichloromethane) because reaction medium became cloudy, as the reaction proceeded in THF. This was due to lower solubility of the product in THF. Due to the inhomogenity of the reaction medium, the results were unreliable. In DCM, the reaction medium was homogenous throughout the reaction and the results were more promising. Therefore we screened all
the chiral P-FAM ligands by using DCM as the solvent. The results of these studies are summarized in Table 3.

Table 3 1,3-DC reactions of azomethine ylides with AgOAc in DCM

Entry	chiral ligand	Aldimine	dipolarophile	$\text { yield }^{\mathrm{a}}$ (\%)	$\begin{aligned} & \mathrm{ee}^{\mathrm{b}} \\ & (\%) \end{aligned}$
1	165	176	177	-	-
2	166	"	"	-	-
3	167	"	"	19	0
4	168	"	"	80	7
5	170	"	"	90	3
6	171	"	"	75	10
7	172	"	"	5	46
8	173	"	"	25	46
9	174	"	"	-	-
10	175	"	"	30	65
$11^{\text {c }}$	175	"		93	61

${ }^{\text {a }}$ Isolated Yield. ${ }^{b}$ Determined by HPLC using a Chiralpak AS column. ${ }^{\text {c }}$ Reaction was conducted at $-20^{\circ} \mathrm{C}$.

In DCM reaction was slower compared to THF but enantioselectivity was higher. Ligand screening studies under optimized conditions showed that cycloadduct 178 could be obtained in higher yield with the chiral ligands 168, 170, 171, and 175 (Table 3, entries $4,5,6$, and 11). But only chiral ligand 175 gave the product in acceptable ee. To reach higher yield with this ligand, it was necessary to increase the reaction temperature to $-20^{\circ} \mathrm{C}$ (entries 10 and 11).

After determining the metal salt, chiral ligand, solvent, and the temperature we investigated the amount of all the reagents necessary for the highest yield and ee of the product. The parameters we changed did not show significant effect on the yield and ee of the product (Table 4, entries 1-6). Therefore we decided to stay with the conditions used for entry 1.

Table 4 Optimization of the amounts of the reagents ${ }^{\mathrm{a}}$

Entry	Ligand $\mathbf{1 7 5}$ $(\mathrm{mol} \%)$	AgOAc $(\mathrm{mol} \%)$	dipolarophile $\mathbf{1 7 7}$ (equiv)	${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}$ $(\mathrm{mol} \mathrm{\%)}$	yield $^{\mathrm{b}}$ $(\%)$	ee^{c} $(\%)$
1	3.3	3	1.15	10	93	61
2^{d}	3.3	3	1.15	10	75	59
3	3.3	3	1.15	$\mathbf{5}$	80	58
4	3.3	3	$\mathbf{1}$	10	87	54
5	3.3	$\mathbf{1 . 5}$	1.15	10	80	55
6	6.6	3	1.15	10	99	59
7	3.3	1.5	1.15	-	72	50
8	3.3	3	1.15	-	76	50
9	6.6	3	1.15	-	52	60

${ }^{\mathrm{a}}$ Imine (1 equiv), $-20^{\circ} \mathrm{C}, \mathrm{DCM}, 0.2 \mathrm{M}$. ${ }^{\mathrm{b}}$ Isolated Yield. ${ }^{\mathrm{c}}$ Determined by HPLC using a Chiralpak AS column. ${ }^{d}$ Reaction was performed at 0.1 M .

We also decided to investigate the effect of the base, because Zhou ${ }^{38 f, g, \mathrm{~h}}$ and coworkers claimed that when AgOAc was used as the Lewis acid, it was not necessary to use amine which deprotonates the aldimine. They reasoned that OAc ion coming from AgOAc is basic enough to remove the proton of aldimine to generate azomethine ylide. In our case this was not exactly true, the yield and the ee was low without using amine (Table 4, entries 7-9).

Initially we have found that DCM was a better solvent than THF, but we didn't search for the other solvents. Also when THF was used as the solvent reaction temperature was $-40^{\circ} \mathrm{C}$. Therefore we decided to try other
solvents including THF at $-20{ }^{\circ} \mathrm{C}$. The results of these studies were summarized in Table 5. As can be seen from this table cylcoadduct was obtained in more than 90% yield in all the solvents except acetonitrile. Product formation was faster in the case of toluene and THF. However the highest ee was obtained in DCM. In all the solvents there was still a solubility problem of the catalyst (chiral ligand +AgOAc). During the preparation of the catalyst the reaction mixture was slightly cloudy.

Table 5 1,3-DC reactions in different solvent ${ }^{\text {a }}$

Entry	solvent	aldimine	dipolarophile	yield $^{\mathrm{b}}$ $(\%)$	ee^{c} $(\%)$
1^{d}	$\mathbf{D C M}$	176	177	93	61
2^{d}	DCE	$"$	$"$	91	57
$3^{\text {d }}$	THF	$"$	$"$	98	21
4^{d}	Toluene	$"$	$"$	96	42
5^{e}	$\mathbf{C H}_{\mathbf{3}} \mathbf{C N}$	$"$	$"$	83	34

${ }^{a}$ Imine (1 equiv), dimethyl maleate (1.15 eq.), chiral ligand 175 ($3.3 \mathrm{~mol} \%$), AgOAc (3 mol $\%),{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(10 \mathrm{~mol} \%),-20{ }^{\circ} \mathrm{C}, 0.2 \mathrm{M}$. ${ }^{\mathrm{b}}$ Isolated Yield. ${ }^{\mathrm{c}}$ Determined by HPLC using a Chiralpak AS column. ${ }^{\mathrm{d}}$ Reaction time $16 \mathrm{~h} .{ }^{\mathrm{e}}$ Reaction time 22 h .

In order to obtain homogenous mixture during catalyst preparation we decided to investigate appropriate ligand to metal ratio. We thought that some of the AgOAc remain uncomplexed with the ligand therefore the reaction mixture was not homogenous. And also, besides the chiral catalyst which leads to the enantioselective product formation, uncomplexed AgOAc was catalyzing the background reaction by forming the product as a racemic mixture. We believed that due to the background reaction, higher ee can not be obtained. In order to test this hypothesis, first we carried out a background reaction using $3 \mathrm{~mol} \% \mathrm{AgOAc}$ under previous reaction conditions except using the chiral ligand. From this reaction the
cycloadduct was isolated in high yield as a racemic mixture. It was also observed that the reaction mixture was slightly cloudy during the reaction. This experiment proved our hypothesis and it was necessary to modify ligand to metal ratio in order to get homogenous reaction mixture.

The experiments carried out by using different ligand to metal ratio are summarized in Table 6 . As can be seen from this table by changing ligand to metal ratio from $1: 1$ to $2: 1$, the yield increased by 5% and the ee decreased by 4% (Table 6 , entries 1 and 2). This was not a significant change. Therefore we decided to increase ligand to metal ratio to $4: 1$. By keeping this ratio but increasing the amounts of both the ligand and metal, highest yield and ee was reached by using $6 \mathrm{~mol} \%$ chiral ligand with 1.5 $\mathrm{mol} \%$ metal (Table 6, entry 7). It is important to note that at this ligand:metal ratio reaction medium was homogenous.

Table 6 1, 3-DC reaction with different ligand to metal ratio

Entry	Ligand $\mathbf{1 7 5}$ $($ mol \%)	AgOAc $($ mol \%)	Aldimine $\mathbf{1 7 6}$ (equiv)	dipolarophile $\mathbf{1 7 7}$ (equiv)	yield $^{\mathrm{a}}$ $(\%)$	ee^{b} $(\%)$
1^{c}	3.3	3	1	1.15	75	59
2^{c}	3.3	1.5	1	1.15	80	55
3^{d}	2	0.5	1	1.15	6	67
4^{d}	4	1	1	1.15	40	65
5^{e}	6	1.5	1	1.15	65	70
6^{e}	8	2	1	1.15	75	70
7^{f}	6	1.5	1	1.5	95	70

${ }^{\text {a }}$ Isolated Yield. ${ }^{\text {b }}$ Determined by HPLC using a Chiralpak AS column. ${ }^{\mathrm{c}}$ Taken from Table 4.
${ }^{\mathrm{d}}$ Reaction was conducted at $-20{ }^{\circ} \mathrm{C}$ at 0.2 M for 40 h . ${ }^{\text {c,e }}$ Reaction was conducted at $-20{ }^{\circ} \mathrm{C}$ at 0.2 for $20 \mathrm{~h} .{ }^{f}$ Reaction was conducted at $-20^{\circ} \mathrm{C}$ at 0.2 M for 30 h .

From all these studies $1.5 \mathrm{~mol} \%$ of chiral ligand 175, $6 \mathrm{~mol} \%$ of AgOAc, 1.5 equiv of dipolarophile, $10 \mathrm{~mol} \%$ of ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{DCM}$ as the solvent, -20
${ }^{\circ} \mathrm{C}$ as the reaction temperature, and 30 h as the reaction time were determined to be the optimum conditions for 1,3-DC reactions of azomethine ylides. After determining the optimum conditions, we decided to use different aldimines and dipolarophiles to see whether our catalyst can give the cycloadducts derived from these starting materials in high yields and ee's.

2.2.2 Enantioselective 1,3-Dipolar Cycloaddition Reaction of various aldimines and dipolarophiles

In order to show the applicability of the new catalyst system [chiral ligand $175-\mathrm{Ag}(\mathrm{I})]$, 1,3-DC reactions with various azomethine ylides and dipolarophiles were carried under the optimized conditions ($6 \mathrm{~mol} \%$ of chiral ligand 175, $1.5 \mathrm{~mol} \% \mathrm{AgOAc}$ and $10 \mathrm{~mol} \%{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ in DCM at -20 ${ }^{\circ} \mathrm{C}$). Five different aldimines $\mathrm{ArCH}=\mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ ($\mathrm{Ar}=$ phenyl, 2naphthyl, 1-naphthyl, p-chlorophenhyl and p-methoxyphenyl) were used as the precursors of azomethine ylides with electron deficient dipolarophiles (dimethyl maleate, dimethyl fumarate, methyl acrylate, tert-butyl acrylate and N -methylmaleimide). The results of these studies were summarized in (Table 7).

Table 7 1,3-DC reactions with different aldimines and dipolarophiles under optimized conditions ${ }^{\text {a }}$

Table 7 (Continued)

Entry	aldimine	dipolarophile	yield ${ }^{\text {b }}$ (\%)	$\begin{aligned} & \mathrm{ee}^{\mathrm{c}} \\ & (\%) \end{aligned}$	Cycloadduct
$1{ }^{\text {d }}$	$\begin{gathered} \mathrm{Ar} \underset{(\mathrm{Ar}=\mathrm{Ph})}{\mathrm{N}} \mathrm{CO}_{2} \mathrm{Me} \\ \hline \end{gathered}$	$\mathrm{MeO}_{2} \mathrm{C}_{\ldots} \mathrm{CO}_{2} \mathrm{Me}$	95	70	
$2^{\text {d }}$	"	$\mathrm{MeO}_{2} \mathrm{C}_{\boxed{ }}$	87	70	
$3{ }^{\text {d }}$	"	${ }^{t} \mathrm{BuO}_{2} \mathrm{C}_{=}=$	75	20	
$4^{\text {d }}$	"		90	15	
$5^{\text {d }}$	"		99	30	
$6^{\text {e }}$	"	$\mathrm{NC}_{=}$	93	70	
$7^{\text {e }}$	$\begin{aligned} & \mathrm{Ar}=\mathrm{N}=\mathrm{CO}_{2} \mathrm{Me} \\ & (\mathrm{Ar}=2 \text {-Naphthyl }) \end{aligned}$	$\mathrm{MeO}_{2} \mathrm{C}_{\ldots} \mathrm{CO}_{2} \mathrm{Me}$	70	74	
$8^{\text {e }}$	"		75	74	
$9^{\text {d }}$	$\mathrm{Ar} \geq \mathrm{N} \mathrm{CO}_{2} \mathrm{Me}$ ($\mathrm{Ar}=1-$ Naphthyl)		93	89	
$10^{\text {f }}$	"	$\mathrm{MeO}_{2} \mathrm{C}_{\underset{=}{ }}$	97	76	

Table 7 (Continued)

$11^{\text {d }}$	99	96	47	
12^{g}	Ar $\left(\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$	20	60	
$13^{\text {g }}$		15	32	
$14^{\text {h }}$	$\begin{aligned} & \mathrm{Ar}=\mathrm{N} \underset{\sim}{\mathrm{~N}} \mathrm{CO}_{2} \mathrm{Me} \quad \mathrm{MeO}_{2} \mathrm{C} \quad \mathrm{CO}_{2} \mathrm{Me} \\ & \left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right) \end{aligned}$	42	74	
$15^{\text {h }}$	$\mathrm{MeO}_{2} \mathrm{C}$	33	77	 192

${ }^{\text {a }}$ Imine (1 eq.), dipolarophile (1.5 eq.), chiral ligand 177 ($6 \mathrm{~mol} \%$), AgOAc ($1.5 \mathrm{~mol} \%$), ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(10 \mathrm{~mol} \%), \mathrm{DCM},-20{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ Isolated Yield. ${ }^{\text {c }}$ Determined by HPLC using a Chiralpak AS or Daicel Chiralcel OD column. ${ }^{\mathrm{d}}$ Reaction time 30 h . ${ }^{\mathrm{e}}$ Reaction time 48 h . ${ }^{\mathrm{f}}$ Reaction time 18h. ${ }^{g}$ Reaction time 96 h . ${ }^{\mathrm{h}}$ Reaction time 72 h .

As can be seen from Table 7, cycloaddition reactions carried out with aldimine obtained from bezaldehyde and glycine methyl ester proceeded with high yields (75-99\%). Enantioselectivity, however, was not very high. Dipolarophiles; dimethyl maleate, methyl acrylate and acrylonitrile were more selective by giving the product in 70% ee (Table 7 , entries 1,2 and 6) than tert-butyl acrylate, dimethyl fumarate and N-methylmaleimide (Table 7 , entries 3-5). When the aldimine obtained from 2-naphthaldehyde was reacted with dimethyl maleate and methyl acrylate the cycloadducts were obtained in good yields and ee's (Table 7, entries 7 and 8). Best results were obtained when the aldimine obtained from 1-naphthaldehyde was
reacted with dimethyl maleate (93% yield and 89% ee, entry 9). Methyl acrylate also gave good results with the same aldimine (97% yield and 76% ee, entry 10). N -methylmaleimide was also used with this aldimine to give the product in 96% yield and 47% ee (entry 11).

We have also investigated the effect of electron donating and withdrawing substituents on the aromatic ring of aldimine. For this purpose aldimines obtained from p-chlorobenzaldehyde and p-methoxybenzaldehyde were reacted with the initially used dipolarophiles (entries 12-15). With both aldimines, although the yields were low, the ee's were similar to the aldimine obtained from benzaldehyde except for methyl acrylate (entry 13).

From these results it can be said that enantioselectivity of the $1,3-\mathrm{DC}$ reaction can be increased with aldimines having bulky aromatic units like naphthyl group. Effect of the substituent on the aromatic ring of aldimine was not so significant for the enantioselectivity of the reaction. We have also observed that the reaction was highly dipolarophile dependent which was also reported in previous studies. Interestingly cycloaddition reaction with tert-butyl acrylate (bulky substitiuent) gave the cycloadduct with lowest enantioselectivity (Table 7, entry 3) we do not have a good explanation for this result. Absolute configurations of all the products except cycloadducts $\mathbf{1 8 3}, \mathbf{1 8 7}, \mathbf{1 8 8}$ and $\mathbf{1 9 2}$ in Table 8 were determined by comparing the specific optical rotation values reported in the literature. Absolute configurations of cycloadducts 183, 187, 188 and 192 were determined by the analogy with the structurally related compounds characterized by X-ray crystallography in the literature. In all the cases, single cycloaddition product was obtained with (S)-configuration (except cycloadducts 182 and 184) on the second position. Based on the stereochemistry of the products it can be said that the cycloaddition reaction took place by endo diastereoselectivity. Enantioselectivities of the products were determined by chiral HPLC.

CHAPTER 3

CONCLUSION

We have synthesized 12 new phosphorous based chiral P-FAM ligands which can be regarded as the second generation of our previously synthesized FAM ligands. These P-FAM ligands were used as a catalyst with a metal in 1,3-DC reactions of azomethine ylides with electron deficient dipolarophiles. We used cupper and silver salts as the metal sources but silver gave better results than cupper. Among the chiral ligands P-FAM 175 was found to be the most effective in terms of yield and enantioselectivity of the 1,3-DC reaction of azomethine ylides. As the source of azomethine ylides, five different aldimines were used. From these aldimines, bulky substituted ones (1-naphtyl and 2-naphtyl) gave the cycloadducts in better ee's than the others. It was also found out that 1,3DC reaction of azomethine ylides was highly dipolarophile dependent. Dimethyl maleate gave the highest ee (89\%) with 1-naphtyladimine. It is also worth mentioning that the chiral ligand can be recovered in more than 80% yield and used without losing its activity.

CHAPTER 4

EXPERIMENTAL

4.1 General Consideration

4.1.1 General Procedures

All reactions were performed in flame-dried glassware under an atmosphere of argon. Air and moisture-sensitive liquids and solutions were transferred via syringe. Ligands, which contained phosphorus group, were purified by dry neutral alumina under an atmosphere of argon. TLC analyses were performed on triethylamine deactivated Silica Gel. Chiral P-FAM (Phoshorus Ferrocenyl substituted Aziridinyl Methanol) ligands 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175 were benzene-azeotroped and dissolved in dry DCM before transferring into the reaction flask. Commercial AgOAc was weighted out in a glove box and added to a round-bottomed flask equipped with a side arm. Cycloaddition products were purified by flash column chromatography on silica gel 60 (Merck, 230-400 mesh ASTM). TLC analyses were performed on $250 \mu \mathrm{~m}$ Silica Gel 60 F254 plates and visualized by quenching of the UV fluorescence at 254 nm . Enantiomeric excess (ee) was determined by chiral HPLC analysis using a chiral stationary phase (Chiralpak AS or Daicel Chiralcel OD column) with $1 \mathrm{~mL} / \mathrm{min}$ flow rate, eluting with $i-\mathrm{PrOH}-$ hexanes, and using UV detection at 210 nm . Racemic compounds were prepared by using silver(I) acetate in the absence of chiral ligand.

4.1.2 Materials

Solvents were dried with standard procedures and degassed with N_{2}. Dichloromethane (DCM) was dried and distilled over calcium hydride prior to use. Liquid dipolarophiles were distilled and kept under Ar prior to use. Stock solutions of the solid N -methyl maleimide and solid dimethyl fumarate in dry DCM were transferred via syringe. $\mathrm{Et}_{3} \mathrm{~N}$ and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ was distilled and kept over NaOH pellets under Ar.

4.1.3 Instrumentation

All melting points were taken in open-end capillary tubes and are uncorrected. IR spectra are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Unless indicated otherwise, ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ samples were prepared in 1:1 $\mathrm{CDCl}_{3}-\mathrm{CCl}_{4}$ and recorded at 400 MHz and 100 MHz , respectively. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data are reported as chemical shifts (δ, ppm) relative to tetramethylsilane ($\delta 0.00$), multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, br $=$ broad singlet), coupling constant (Hz) and integration. Proton decoupled ${ }^{13} \mathrm{C}$-NMR and ${ }^{31} \mathrm{P}$-NMR data are reported as chemical shifts. Optical rotations were measured in a 1 dm cell using a Rudolph Research Analytical Autopol III, automatic polarimeter with an average of 5 measurements, each with an integration time of 15 s . Infrared spectra were recorded on a Varian-1000 FTIR spectrometer.

4.2 Synthesis and Characterization of Chiral Ligands

4.2.1 Synthesis and Characterization of Aziridines 160 and 161

Acryloyl ferrocene 158 ($3.5 \mathrm{~g}, 14.56 \mathrm{mmol}$) was dissolved in DCM (0.1 M) and cooled to $-78^{\circ} \mathrm{C} . \mathrm{Br}_{2}(33.86 \mathrm{mmol}$ in 29 mL DCM$)$ was added to this solution. After five minutes the reaction was judged to be complete by TLC. The crude mixture was directly filtered through a silica gel by using CHCl_{3} as an eluent. After evaporation of the solvent pure 1,2dibromopronionylferrocene 159 ($5.9 \mathrm{~g}, 95 \%$ yield) was obtained. $\mathrm{Et}_{3} \mathrm{~N}$ $(1.18 \mathrm{~mL}, 8.5 \mathrm{mmol})$ was added to a stirred solution of this material $(2.0 \mathrm{~g}$, $5 \mathrm{mmol})$ in $\mathrm{DCM}(0.1 \mathrm{M})$ at room temperature. After 1 hour stirring, R-(-)-2-amino-1-butanol ($0.96 \mathrm{~mL}, 10 \mathrm{mmol}$) was added to this stirred. Then the reaction mixture was stirred at room temperature overnight. Solvent was removed by rotary evaporation and the crude residue was purified by flash column chromatograpy using silica gel ($\mathrm{EtOAc}+\% 2 \mathrm{Et}_{3} \mathrm{~N}$). Aziridines $\mathbf{1 6 0}$ (53% yield, light orange solid) and 161 (42%, orange solid) were obtained. 160: $R_{f}=0.40, \mathrm{EtOAc}+\% 2 \mathrm{Et} \mathrm{H}_{3}$; mp: $117-119{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21.7}=-112.5(\mathrm{c}$ $0.5, \mathrm{DCM}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Fc}), 4.85(\mathrm{~s}, 1 \mathrm{H}$, Fc), 4.52 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Fc}$), 4.22 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Fc}$), 3.76 (br, 2H), 2.69 (br, 1H), 2.31 (s , $1 \mathrm{H}), 2.22$ (br, 1H, OH) $1.77-1.54(\mathrm{~m}, 4 \mathrm{H}), 0.99\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.89(\mathrm{C}=\mathrm{O}), 78.40\left(\mathrm{C}_{\mathrm{q}}, \mathrm{Fc}\right) 72.50(\mathrm{CH}$, $\mathrm{Fc}), 72.43(\mathrm{CH}, \mathrm{Fc}), 72.16(\mathrm{CH}, \mathrm{Fc}), 69.94(\mathrm{CH}, \mathrm{Fc}), 69.86(\mathrm{CH}, 5 \mathrm{C}, \mathrm{Fc})$, $69.27(\mathrm{CH}), 64.63\left(\mathrm{CH}_{2}-\mathrm{OH}\right), 41.15(\mathrm{CH}$, aziridine $), 34.24\left(\mathrm{CH}_{2}\right.$, aziridine), $24.27\left(\mathrm{CH}_{2}\right), 10.80\left(\mathrm{CH}_{3}\right)$; IR (neat) $\mathrm{cm}^{-1} 3433(\mathrm{O}-\mathrm{H}), 3120$ (stretching, C-H, Fc), 2935 (C-H, aziridine), 1651 (C=O), 1462 (C-H), 1260 (C-N), 1100 (C-O), 825 (bending, C-H, Fc). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{FeNO}_{2}$: C, $62.40 ; \mathrm{H}, 6.47$; N, 4.28; found C, $63.58 ; \mathrm{H}, 6.83 ; \mathrm{N}, 4.39$. 161: $R_{f}=0.21, \mathrm{EtOAc}+\% 2 \mathrm{Et} \mathrm{S}_{3} \mathrm{~N} ; \mathrm{mp}: 76-78{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21.7}=+93.6(c 0.47$, DCM) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.82(\mathrm{~d}, \mathrm{~J}=12.97 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Fc}), 4.46$ (s, 2H, Fc), $4.14(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Fc}), 3.68(\mathrm{br}, 2 \mathrm{H}), 2.49(\mathrm{br}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H}), 2.14$ (br, 1H, OH), $1.81(\mathrm{br}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{br}, 1 \mathrm{H}), 0.94$ (t, J = 7.25 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.79(\mathrm{C}=\mathrm{O}), 78.41$ $\left(\mathrm{C}_{\mathrm{q}}, \mathrm{Fc}\right), 72.44(\mathrm{CH}, 2 \mathrm{C}, \mathrm{Fc}), 72.40(\mathrm{CH}, \mathrm{Fc}), 69.86(\mathrm{CH}, 5 \mathrm{C}, \mathrm{Fc}), 69.76$ $(\mathrm{CH}, \mathrm{Fc}), 69.38(\mathrm{CH}), 63.89\left(\mathrm{CH}_{2}-\mathrm{OH}\right), 39.96\left(\mathrm{CH}\right.$, aziridine), $35.88\left(\mathrm{CH}_{2}\right.$,
aziridine), $24.28\left(\mathrm{CH}_{2}\right), 10.62\left(\mathrm{CH}_{3}\right)$; IR (neat) $\mathrm{cm}^{-1} 3423(\mathrm{O}-\mathrm{H}), 3120$ (stretching, C-H, Fc), 2924 (C-H, aziridine), 1658 (C=O), 1462 (C-H), 1258 (C-N), 1120 (C-O), 824 (bending, C-H, Fc). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{FeNO}_{2}$: C, 62.40; H, 6.47; N, 4.28; found C, 62.24; H, 6.73; N, 4.25.

4.2.2 Synthesis and Characterization of Tosylated Aziridines $\mathbf{1 6 2}$

162
$\mathrm{Et}_{3} \mathrm{~N}(0.43 \mathrm{~mL}, 3.06 \mathrm{mmol})$ was added to a stirred solution of aziridine $\mathbf{1 6 0}$ $(666 \mathrm{mg}, 2.04 \mathrm{mmol})$ in DCM $(0.5 \mathrm{M})$ at room temperature. To this stirred solution was added p-toluenesulfonylchloride ($580 \mathrm{mg}, 3.05 \mathrm{mmol}$). Then the reaction mixture was stirred at room temperature overnight at which point TLC showed no starting material. To the reaction flask, water (10 mL) was added and then extracted with DCM ($10 \mathrm{~mL} \times 2$ times). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give crude 162. The crude mixture was purified by flash column chromatography on silica gel eluting with 1:2 hexane-EtOAc to afford pure 162 as an orange solid $(936 \mathrm{mg})$ in 96% yield. $R_{f}=0.46,1: 2$ hexanesEtOAc; mp: $103-104^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21.7}=-138.9$ (c 1.0, DCM); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$, 5.02 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Fc}$), 4.87 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Fc}$), 4.56 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Fc}$), 4.20 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Fc}$), 4.14 (dd, $J=3.8 \& 10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=7.7 \& 10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{q}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{Ts}\right), 2.31(\mathrm{~s}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=$ $6.5,1 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 0.99\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 199.20(\mathrm{C}=\mathrm{O}), 144.65\left(\mathrm{C}_{\mathrm{q}}, \operatorname{ArC-S}\right), 132.67\left(\mathrm{C}_{\mathrm{q}}, \operatorname{ArC}-\mathrm{CH}_{3}\right)$,
$129.82(\mathrm{CH}, 2 \mathrm{C}, \mathrm{Ph}), 127.86(\mathrm{CH}, 2 \mathrm{C}, \mathrm{Ph}), 78.71(\mathrm{C}, \mathrm{Fc}), 72.76(\mathrm{CH}, \mathrm{Fc})$, 72.68 (CH, Fc), 72.58 (CH, Fc), 70.76 (CH, Fc), 69.83 (CH, 5C, Fc), 69.19 $(\mathrm{CH}), 68.65\left(\mathrm{CH}_{2}\right.$-OTs $), 40.52\left(\mathrm{CH}\right.$, aziridine), $33.69\left(\mathrm{CH}_{2}\right.$, aziridine), $24.94\left(\mathrm{CH}_{2}\right), 21.58\left(\mathrm{CH}_{3}, \mathrm{Ts}\right), 10.42\left(\mathrm{CH}_{3}\right) ;$ IR (neat) $\mathrm{cm}^{-1} 3120$ (stretching, C-H, Fc), 2969 (C-H, aziridine), 1645 (C=O), 1455 (C-H), 1357 and $1182\left(\mathrm{Ph}_{-} \mathrm{SO}_{2}-\mathrm{OCH}_{2}\right), 1261(\mathrm{C}-\mathrm{N}), 1150(\mathrm{C}-\mathrm{O}), 869$ and $790(\mathrm{C}-$ H, Ph), 822 (bending, C-H, Fc). Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{FeNO}_{4} \mathrm{~S}: \mathrm{C}, 59.88$; H, 5.65; N, 2.91; S, 6.66; found C, 60.54; H, 5.88; N, 2.92; S, 6.66.

4.2.3 Synthesis and Characterization of phosphorus aziridino ketones 163 and 164

Compound 162 ($450 \mathrm{mg}, 0,93 \mathrm{mmol}$) was dissolved in THF (3 mL , distilled over Na-benzophenone and degassed) in a reaction flask. The flask was cooled to $-78{ }^{\circ} \mathrm{C}$ and potassium diphenylphosphide (2.1 mL , from 0.5 M THF solution) was added slowly over 30 min . After stirring about 1 hour TLC showed no starting material. The crude mixture was filtered through a short plug of basic alumina using $5: 1$ hexanes-EtOAc as an eluent under N_{2}. After evaporation of the solvent, pure 163 ($348 \mathrm{mg}, 75 \%$ yield) was obtained (it is an air sensitive orange oil) together with its oxidized form 164 (20% yield, red oily product). When pure 163 was exposed to air, it was oxidized completely to 164. 163: $R_{f}=0.73,1: 1$ hexanes: EtOAc after treatment of $\mathrm{Et}_{3} \mathrm{~N}$ for TLC; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.23(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 4.77(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Fc}), 4.43(\mathrm{~s}, 2 \mathrm{H}$,

Fc), $4.08(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Fc}), 2.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 1.74 (sextet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.65\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$ of CH_{2} aziridine), 1.38 (sextet, , $J=5.8 \mathrm{~Hz} 1 \mathrm{H}$), $0.94\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.19(\mathrm{C}=\mathrm{O}), 139.08-138.94\left(\mathrm{C}_{\mathrm{q}}, \mathrm{ArC-P}\right), 138.57-138.45$ $\left(\mathrm{C}_{\mathrm{q}}\right.$, ArC-P), $133.04(\mathrm{CH}, \mathrm{Ph}), 132.86(\mathrm{CH}, \mathrm{Ph}), 132.71(\mathrm{CH}, \mathrm{Ph}), 132.52$ $(\mathrm{CH}, \mathrm{Ph}), 128.82(\mathrm{CH}, \mathrm{Ph}), 128.62(\mathrm{CH}, \mathrm{Ph}), 128.59(\mathrm{CH}, \mathrm{Ph}), 128.56$ $(\mathrm{CH}, \mathrm{Ph}), 128.51(\mathrm{CH}, \mathrm{Ph}), 128.30(\mathrm{CH}, \mathrm{Ph}), 78.53\left(\mathrm{C}_{\mathrm{q}}, \mathrm{Fc}\right), 72.3(\mathrm{CH}$, $\mathrm{Fc})$, $70.30(\mathrm{CH}, \mathrm{Fc})$, 69.83 (CH, 5C, Fc), 69.13 (CH), 69.05 (CH, Fc), $68.89(\mathrm{CH}, \mathrm{Fc}), 40.81\left(\mathrm{CH}\right.$, aziridine), $37.01\left(\mathrm{CH}_{2}\right.$, aziridine), 34.63-34.49 $\left(\mathrm{CH}_{2}-\mathrm{P}\right), 28.70\left(\mathrm{CH}_{2}\right), 10.53\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(161.97 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -21.53; IR (neat) cm ${ }^{-1} 3051$ (stretching, C-H, Fc), 2967 (C-H, aziridine), 1665 (C=O), 1457 (C-H), 1255 (C-N), 913, 745 and 697 (C-H, Ph), 823 (bending, C-H, Fc). 164: $R_{f}=0.12,1: 1$ hexanes: EtOAc after treatment of $\mathrm{Et}_{3} \mathrm{~N}$ for TLC ; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.39(\mathrm{~m}$, 4H, Ph), 7.28 (m, 2H, Ph), 5.00 (s, 1H, Fc), 4.77 (s, 1H, Fc), 4.41 ($\mathrm{s}, 2 \mathrm{H}$, Fc), 4.05 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Fc}$), 2.96 (dd, $J=2.9$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.32$ $(\mathrm{s}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=6.2,1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H})$, $0.81\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.26$ $(\mathrm{C}=\mathrm{O}), 131.79\left(\mathrm{C}_{\mathrm{q}}, \operatorname{ArC}-\mathrm{P}\right), 130.73\left(\mathrm{C}_{\mathrm{q}}, \operatorname{ArC-P}\right), 130.60(\mathrm{CH}, \mathrm{Ph}), 128.80$ (CH, Ph), $128.70(\mathrm{CH}, \mathrm{Ph}), 128.59(\mathrm{CH}, \mathrm{Ph}), 78.67\left(\mathrm{C}_{\mathrm{q}}, \mathrm{Fc}\right), 72.51(\mathrm{CH}$, $\mathrm{Fc}), 71.03(\mathrm{CH}, \mathrm{Fc}), 69.79(\mathrm{CH}, 5 \mathrm{C}, \mathrm{Fc}), 68.70(\mathrm{CH}), 64.78(\mathrm{CH}, \mathrm{Fc})$, $40.06\left(\mathrm{CH}\right.$, aziridine), $37.94\left(\mathrm{CH}_{2}\right.$, aziridine $)$, $29.64\left(\mathrm{CH}_{2}-\mathrm{P}\right)$, $28.70\left(\mathrm{CH}_{2}\right)$, $10.37\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($\left.161.97 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.07$.

4.2.4 Synthesis and Characterization of Chiral P-FAM Ligands 165 and 166

165

166

Compound 163 ($155 \mathrm{mg}, 0.313 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(0.1 \mathrm{M}$, degassed) and cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{ZnCl}_{2}(64 \mathrm{mg}, 0.470 \mathrm{mmol})$ was added to this stirred solution. After 1 hour $\mathrm{NaBH}_{4}(23.7 \mathrm{mg}, 0.626 \mathrm{mmol})$ was added and stirring continued at $-78{ }^{\circ} \mathrm{C}$ for 4 hours. At that time TLC analysis showed that the reaction was completed. The reaction mixture was partitioned between DCM ($2 \times 10 \mathrm{~mL}$) and water (10 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give crude 165. Purification by column chromatography under N_{2} on a short plug of basic alumina with 5:1 hexanes-EtOAc gave pure $\mathbf{1 6 5}$ in 60% yield as an air sensitive pale yellow oil and oxidized form 166 (35% yield, yellow oily product). When pure compound 165 was exposed to air, it was converted to oxidized form 166 quantitatively. 165: $R_{f}=0.52,1: 1$ hexanes: EtOAc after treatment with $\mathrm{Et}_{3} \mathrm{~N}$ for TLC; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.34-7.23$ (m, 10H, Ph), 4.29 (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Fc}), 4.19$ (s, 1H, Fc), $4.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Fc}), 4.11(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Fc}), 4.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Fc}), 2.46$ (br, 1H, OH), 2.09 (ddd, , $J=7.7,6.3$ and $5.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.81(\mathrm{~d}, J=3.3,1 \mathrm{H}), 1.66$ (sextet, $J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59$ (sextet, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.53(\mathrm{~m}, 1 \mathrm{H}), 1.33$ (sextet, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.89\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 139.11-138.97 ($\mathrm{C}_{\mathrm{q}}, \operatorname{ArC-P}$), 138.82-138.69 (C_{q}, ArC-P), 132.94 (CH, Ph), 132.86 (CH, Ph), 132.75 (CH, Ph), 132.66 (CH, Ph), 128.70 (CH, Ph), 128.60 (CH, Ph), 128.47 (CH, 2C, Ph), 128.40 (CH, 2C, Ph), $89.78\left(\mathrm{C}_{\mathrm{q}}, \mathrm{Fc}\right), 68.47(\mathrm{CH}, 5 \mathrm{C}, \mathrm{Fc}), 68.09(\mathrm{CH}, \mathrm{Fc}), 67.91(\mathrm{CH}$,

Fc), $67.24(\mathrm{CH}, \mathrm{Fc}), 67.16(\mathrm{CH}, \mathrm{Fc}), 67.02,66.07,42.11(\mathrm{CH}$, aziridine $)$, 34.18-34.4 $\left(\mathrm{CH}_{2}-\mathrm{P}\right), 30.63\left(\mathrm{CH}_{2}\right.$, aziridine), $28.63\left(\mathrm{CH}_{2}\right), 10.16\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($161.97 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-23.49; IR (neat) $\mathrm{cm}^{-1} 3396$ (O-H), 3071 (stretching, C-H, Fc), 2964 (C-H, aziridine), 1480 (C-H), 1260 (C-N), 815 (bending, $\mathrm{C}-\mathrm{H}, \mathrm{Fc}$), 742 and 697 (bending, $\mathrm{C}-\mathrm{H}, \mathrm{Ph}$). 166: $R_{f}=0.15,1: 1$ hexanes: EtOAc after treatment with $\mathrm{Et}_{3} \mathrm{~N}$ for TLC; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{q}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 7.43-7.37(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 4.23(\mathrm{~s}, 1 \mathrm{H}$, Fc), 4.18 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Fc}$), 4.14 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Fc}$), 4.11 (s, 2H, Fc), 3.97 ($\mathrm{s}, 1 \mathrm{H}), 2.50$ (br, 1H), 2.32-2.13 (m, 2H), $1.81(\mathrm{~s}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.23(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 1 \mathrm{H}), 0,84\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 132.98-131.64 (C , $\mathrm{ArC}-\mathrm{P}$), 130.79-130.70 $\left(\mathrm{C}_{\mathrm{q}}, \operatorname{ArC}-\mathrm{P}\right), 130.58(\mathrm{CH}, \mathrm{Ph}), 130.49(\mathrm{CH}, \mathrm{Ph}), 130.22(\mathrm{CH}, 2 \mathrm{C}, \mathrm{Ph})$, $129.80(\mathrm{CH}, \mathrm{Ph}), 128.70(\mathrm{CH}, \mathrm{Ph}), 128.60(\mathrm{CH}, \mathrm{Ph}), 128.49(\mathrm{CH}, \mathrm{Ph})$, $127.01(\mathrm{CH}, 2 \mathrm{C}, \mathrm{Ph}), 90.05\left(\mathrm{C}_{\mathrm{q}}, \mathrm{Fc}\right), 68.87(\mathrm{CH}-\mathrm{OH}), 68.54(\mathrm{CH}, 5 \mathrm{C}, \mathrm{Fc})$, $67.97(\mathrm{CH}, \mathrm{Fc}), 67.90(\mathrm{CH}, \mathrm{Fc}), 67.49(\mathrm{CH}, \mathrm{Fc}), 65.27(\mathrm{CH}, \mathrm{Fc}), 63.93$ $(\mathrm{CH}, \mathrm{Fc}), 63.21(\mathrm{CH}, \mathrm{Fc}), 44.35(\mathrm{CH}$, aziridine $), 34.97-32.67\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}-\right.$ P), $21.68\left(\mathrm{CH}_{2}\right.$, aziridine), $16.17\left(\mathrm{CH}_{2}\right), 9.96\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR (161.97 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 28.27.

4.2.4 Synthesis and Characterization of Chiral P-FAM Ligands 167 and 168

Compound 163 ($163 \mathrm{mg}, 33 \mathrm{mmol}$) was dissolved in THF (2.5 mL , distilled over Na-benzophenone and degassed) in a reaction flask. The
flask was cooled to $-78{ }^{\circ} \mathrm{C}$ and L-Selectride $(0.5 \mathrm{~mL}$, from 1 M THF solution) was added slowly over 30 min . After stirring about eight hours TLC showed no starting material. To the reaction flask was added 10% $\mathrm{NaOH}(10 \mathrm{~mL})$ and EtOAc (15 mL) then the two layers were separated. The aqueous layer was extracted one more time with EtOAc (15 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by a short plug of basic alumina using 3:1 hexanes-EtOAc as an eluent under N_{2}. After evaporation of the solvent, pure 167 ($65 \mathrm{mg}, 40 \%$ yield) was obtained as an air sensitive pale yellow oil and its oxidized form 168 (55\% yield, yellow oily product). When pure compound 167 was exposed to air, it was oxidized quantitatively to 168. 167: $R_{f}=0.64,1: 1$ hexanes: EtOAc after treatment with $\mathrm{Et}_{3} \mathrm{~N}$ for TLC; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.25(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 4.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Fc}), 4.12(\mathrm{~s}, 5 \mathrm{H}$, Fc), $4.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Fc}), 4.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Fc}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}$ $=3.2,1 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.52($ pentet, $J=7.3,1 \mathrm{H}), 1.40(\mathrm{q}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}), 0.88\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{31} \mathrm{P}$ NMR ($161.97 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-24.42; IR (neat) $\mathrm{cm}^{-1} 3340$ (O-H), 3093 (stretching, C-H, Fc), 2960 (C-H, aziridine), 1438 (C-H), 1241 (C-N), 817 (bending, $\mathrm{C}-\mathrm{H}, \mathrm{Fc}$), 737 and 697 (bending, $\mathrm{C}-\mathrm{H}, \mathrm{Ph}$). 168: $R_{f}=0.17,1: 1$ hexanes: EtOAc after treatment with $\mathrm{Et}_{3} \mathrm{~N}$ for TLC $;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dd}, J=10.7$ and $4.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 7.41(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 4.24(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{Fc}$), 4.17 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Fc}$), 4.13 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Fc}$), 4.07 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Fc}$), 3.91 ($\mathrm{d}, \mathrm{J}=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{br}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 1 \mathrm{H}), 0.80\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 133.81-133.62 ($\left.\mathrm{C}_{\mathrm{q}}, \operatorname{ArC-P}\right)$, 131.73-131.57 ($\left.\mathrm{C}_{\mathrm{q}}, \operatorname{ArC-P}\right)$, 130.76 (CH, Ph), 130.67 (CH, Ph), 130.49 (CH, Ph), 130.39 (CH, Ph), $128.78(\mathrm{CH}, \mathrm{Ph}), 128.70(\mathrm{CH}, \mathrm{Ph}), 128.67(\mathrm{CH}, 2 \mathrm{C}, \mathrm{Ph}), 128.58(\mathrm{CH}, 2 \mathrm{C}$, $\mathrm{Ph}), 90.63\left(\mathrm{C}_{\mathrm{q}}, \mathrm{Fc}\right), 68.78(\mathrm{CH}-\mathrm{OH}), 68.70(\mathrm{CH}, \mathrm{Fc}), 68.32(\mathrm{CH}, \mathrm{Fc})$, $68.22(\mathrm{CH}, 5 \mathrm{C}, \mathrm{Fc}), 67.42(\mathrm{CH}, \mathrm{Fc}), 67.33(\mathrm{CH}, \mathrm{Fc}), 65.55(\mathrm{CH}), 35.03-$ $34.31\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{P}\right), 31.73(\mathrm{CH}$, aziridine $), 28.83\left(\mathrm{CH}_{2}\right.$, aziridine), 20.98 $\left(\mathrm{CH}_{2}\right), 18.85\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($\left.161.97 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.79$.

4.2.5 Synthesis and Characterization of Tosylated Aziridine 169

$\mathrm{Et}_{3} \mathrm{~N}(0.585 \mathrm{~mL}, 4.22 \mathrm{mmol})$ was added to a stirred solution of aziridine $161(920 \mathrm{mg}, 2.81 \mathrm{mmol})$ in $\mathrm{DCM}(0.5 \mathrm{M})$ at room temperature. To this stirred solution was added p-toluenesulfonylchloride ($802.13 \mathrm{mg}, 4.22$ mmol). Then the reaction mixture was stirred at room temperature overnight at which point TLC showed that no starting material was left. To the reaction flask water $(15 \mathrm{~mL})$ was added and then extracted with DCM $(15 \mathrm{~mL})$. The aqueous layer was extracted one more time with DCM (15 $\mathrm{mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give crude 169. Purification by flash column chromatography on silica gel eluting with $1: 1$ hexane-EtOAc gave pure compound 169 (1.3 g , orange oily product) in 96% yield. $R_{f}=0.68,1: 2$ hexanes-EtOAc; $[\alpha]_{\mathrm{D}}{ }^{21.7}=95.7$ (c 0.98, DCM); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 4.86$ (s, 2H, ferrocene), $4.51(\mathrm{~s}, 2 \mathrm{H}$, ferrocene), 4.17 ($\mathrm{s}, 5 \mathrm{H}$, ferrocene), 4.11 (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-OTs), $2.51(\mathrm{dd}, J=3.0 \& 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}, \mathrm{Ts}$), $2.22(\mathrm{~s}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83$ (pentet, $J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $199.40(\mathrm{C}=\mathrm{O}), 144.72\left(\mathrm{C}_{\mathrm{q}}, \mathrm{ArC-S}\right), 133.12(\mathrm{CH}, \mathrm{Ph}), 129.87(\mathrm{CH}, \mathrm{Ph})$, $128.97\left(\mathrm{C}_{\mathrm{q}}, \mathrm{ArC}^{2} \mathrm{CH}_{3}\right), 128.27(\mathrm{CH}, \mathrm{Ph}), 127.95(\mathrm{CH}, \mathrm{Ph}), 78.20\left(\mathrm{C}_{\mathrm{q}}, \mathrm{Fc}\right)$, 72.48 (CH, Fc), 72.45 (CH, Fc), 71.95 (CH, Fc), 69.83 (CH, 5C Fc), 69.77 $(\mathrm{CH}, \mathrm{Fc}), 69.40(\mathrm{CH}), 68.66\left(\mathrm{CH}_{2}-\mathrm{OTs}\right), 40.15(\mathrm{CH}$, aziridine $), 35.58\left(\mathrm{CH}_{2}\right.$ aziridine), $24.93\left(\mathrm{CH}_{2}\right), 21.64\left(\mathrm{CH}_{3}, \mathrm{Ts}\right), 9.96\left(\mathrm{CH}_{3}\right)$; IR (neat) $\mathrm{cm}^{-1} 2925$ (C-H, aziridine), $1657(\mathrm{C}=\mathrm{O}), 1460(\mathrm{C}-\mathrm{H}), 1360$ and $1177\left(\mathrm{Ph}_{-} \mathrm{SO}_{2}-\mathrm{OCH}_{2}\right)$, 1259 (C-N), 1100 (C-O), 840 (C-H, Ph), 820 (bending, C-H, Fc).

4.2.6 Synthesis and Characterization of phosphorus aziridino ketones 170 and 171

Compound 169 ($856 \mathrm{mg}, 1.78 \mathrm{mmol}$) was dissolved in THF (5 mL , distilled over Na-benzophenone and degassed) in a reaction flask. The flask was cooled to $-78{ }^{\circ} \mathrm{C}$ and potassium diphenylphosphide (4 mL , from 0.5 M THF solution) was added slowly over 30 min . After stirring about 1 hour TLC showed no starting material. The crude mixture was purified through a short plug of basic alumina using 5:1 hexanes-EtOAc as an eluent under N_{2}. After evaporation of the solvent pure 170 (661 mg, 75% yield) was obtained as an air sensitive orange solid with its oxidized form 171 (20% yield, red solid). When pure compound $\mathbf{1 7 0}$ was exposed to air, it turned into oxidized form $\mathbf{1 7 1}$ quantitatively. 170: $R_{f}=0.73,1: 1$ hexanes: EtOAc after treatment of $\mathrm{Et}_{3} \mathrm{~N}$ for TLC ; mp: $145-146^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21.7}=45.9(c$ 1, DCM); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.34(\mathrm{~m}, 6 \mathrm{H}$, Ph), 4.84 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Fc}$), 4.50 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Fc}$), 4.19 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Fc}$), 2.44 (m, 3H), 2.19 (s, 1H), 1.81 (pentet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.61(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.51$ (sextet, $J=6.3,1 \mathrm{H}$), $1.01\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 201.53(\mathrm{C}=\mathrm{O}), 140.42-140.29\left(\mathrm{C}_{\mathrm{q}}, \mathrm{ArC}-\mathrm{P}\right), 140.29-140.16\left(\mathrm{C}_{\mathrm{q}}\right.$, ArC-P), 134.46 (CH, Ph), 134.26 (CH, Ph), 134.20 (CH, Ph), 134.00 (CH, Ph), 130.19 (CH, Ph), 130.04 (CH, 2C, Ph), 129.97 (CH, 2C, Ph), 129.91 $(\mathrm{CH}, \mathrm{Ph}), 79.69\left(\mathrm{C}_{\mathrm{q}}, \mathrm{Fc}\right), 73.83(\mathrm{CH}, 2 \mathrm{C}, \mathrm{Fc}), 71.25(\mathrm{CH}, 5 \mathrm{C}, \mathrm{Fc}), 70.88$ $(\mathrm{CH}, \mathrm{Fc}), 70.05(\mathrm{CH}, \mathrm{Fc}) 69.91(\mathrm{CH}), 43.92\left(\mathrm{CH}\right.$, aziridine), $37.51\left(\mathrm{CH}_{2}\right.$, aziridine), 34.82-34.67 $\left(\mathrm{CH}_{2}-\mathrm{P}\right), 29.88\left(\mathrm{CH}_{2}\right), 11.34\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($161.97 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-21.90$; IR (neat) $\mathrm{cm}^{-1} 3067$ (stretching, C-H, Fc), 2964 (C-H, aziridine), 1656 (C=O), 1453 (C-H), 1254 (C-N), 853, 746 and

700 (C-H, Ph), 822 (bending, C-H, Fc). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{FeNOP}: \mathrm{C}$, 70.31 ; H, 6.10; N, 2.83; found C, 70.12; H, 6.08; N, 2.74. 171: $R_{f}=0,35$ EtOAc after treatment of $\mathrm{Et}_{3} \mathrm{~N}$ for TLC ; decomposes after $160^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21.7}$ $=75.8$ (c 1, DCM) ; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.75$ (m, 2H, Ph), 7.50 (m, 6H, Ph), 4.82 (s, 2H, Fc), 4.51 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Fc}$), 4.17 (s, $5 \mathrm{H}, \mathrm{Fc}), 2.67(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=2.7 \& 6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ (septet, $J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (pentet, $J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}$), $0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.63$ $(\mathrm{C}=0)$, 134.58-134.14 (C_{q}, ArC-P), 133.60-133.16 (C_{q}, ArC-P), 131.76 (CH, Ph), 131.67 (CH, Ph), 130.82 (CH, Ph), 130.73 (CH, Ph), 130.52 (CH, Ph), 130.43 (CH, Ph), 128.77 (CH, Ph), 128.74 (CH, Ph), 128.66 $(\mathrm{CH}, \mathrm{Ph}), 128.62(\mathrm{CH}, \mathrm{Ph}), 78.31\left(\mathrm{C}_{\mathrm{q}}, \mathrm{Fc}\right), 72.54(\mathrm{CH}, \mathrm{Fc}), 72.50(\mathrm{CH}, \mathrm{Fc})$, $69.83(\mathrm{CH}, 5 \mathrm{C}, \mathrm{Fc}), 69.24(\mathrm{CH}, \mathrm{Fc}), 64.50(\mathrm{CH}, \mathrm{Fc}), 60.32(\mathrm{CH}) 42.96$ $\left(\mathrm{CH}\right.$, aziridine), $36.04\left(\mathrm{CH}_{2}\right.$, aziridine), 34.61-33.90 $\left(\mathrm{CH}_{2}-\mathrm{P}\right)$, $28.91\left(\mathrm{CH}_{2}\right)$, $9.66\left(\mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}$ NMR ($\left.161.97 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.90$; IR (neat) $\mathrm{cm}^{-1} 3070$ (stretching, C-H, Fc), 2977 (C-H, aziridine), 1655 (C=O), 1448 (C-H), $1255(\mathrm{C}-\mathrm{N}), 1204(\mathrm{P}=\mathrm{O}), 831,760$ and 712 (C-H, Ph), 820 (bending, C-H, Fc). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{FeNO}_{2} \mathrm{P}: \mathrm{C}, 68.11 ; \mathrm{H}, 5.91$; N, 2.74; found C, 68.26; H, 6.13; N, 2.72.

4.2.7 Synthesis and Characterization of Chiral P-FAM Ligands 172 and 173

Compound 170 ($171.8 \mathrm{mg}, 0.347 \mathrm{mmol}$) was dissolved in THF (3.6 mL , distilled over Na-benzophenone and degassed) in a reaction flask (25 mL).

Reaction flask was then cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{ZnCl}_{2}(71 \mathrm{mg}, 0.52 \mathrm{mmol})$ was added and the reaction mixture was stirred for 1 h at this temperature. Then $\mathrm{LiAlH}_{4}(27 \mathrm{mg}, 0.71 \mathrm{mmol})$ was added and stirring continued for about 4 hour at which point TLC showed that no starting material was left. The contents of the reaction flask was hydrolyzed with 10 mL distilled water and then extracted with EtOAc (10 mL). The aqueous layer was extracted one more time with EtOAc $(10 \mathrm{~mL})$. Then, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Then, crude $\mathbf{1 7 2}$ was purified through a short plug of basic alumina using 3:1 hexanesEtOAc as an eluent under N_{2} gas. After evaporation of the solvent pure $\mathbf{1 7 2}$ ($84 \mathrm{mg}, 49 \%$ yield) was obtained as an air sensitive pale yellow oil as well as oxidized form 173 (42% Yield, yellow oily product). When pure 172 was exposed to air, it was converted to oxidized form 173 quantitatively. 172: $R_{f}=0.40,1: 1$ hexanes: EtOAc after treatment of $\mathrm{Et}_{3} \mathrm{~N}$ for TLC ; ${ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.23(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 4.39(\mathrm{~s}, 1 \mathrm{H}$, Fc), $4.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Fc}), 4.08(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Fc}), 4.05(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Fc}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 2.57$ $(\mathrm{s}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 4 \mathrm{H}), 1.44$ (sextet, $J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.86\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 139.29-139.20 (C_{q}, ArC-P), 139.07-138.98 ($\left.\mathrm{C}_{\mathrm{q}}, \operatorname{ArC-P}\right)$, $132.97(\mathrm{CH}, \mathrm{Ph}), 132.82(\mathrm{CH}, \mathrm{Ph}), 132.78(\mathrm{CH}, \mathrm{Ph}), 132.63(\mathrm{CH}, \mathrm{Ph})$, $128.68(\mathrm{CH}, \mathrm{Ph}), 128.53(\mathrm{CH}, \mathrm{Ph}), 128.47(\mathrm{CH}, 2 \mathrm{C}, \mathrm{Ph}), 128.40(\mathrm{CH}, 2 \mathrm{C}$, $\mathrm{Ph}), 89.39\left(\mathrm{C}_{\mathrm{q}}, \mathrm{Fc}\right), 68.49(\mathrm{CH}, 5 \mathrm{C}, \mathrm{Fc}), 68.05(\mathrm{CH}, \mathrm{Fc}), 67.82(\mathrm{CH}, \mathrm{Fc})$, $67.48(\mathrm{CH}, \mathrm{Fc}), 66.95(\mathrm{CH}, \mathrm{Fc}), 67.34,43.09(\mathrm{CH}$, aziridine), 33.63-33.49 $\left(\mathrm{CH}_{2}-\mathrm{P}\right), 29.40\left(\mathrm{CH}_{2}\right.$, aziridine $), 28.16\left(\mathrm{CH}_{2}\right), 9.89\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($161.97 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-23.00$; IR (neat) $\mathrm{cm}^{-1} 3420(\mathrm{O}-\mathrm{H}), 3071$ (stretching, C-H, Fc), 2962 (C-H, aziridine), $1460(\mathrm{C}-\mathrm{H}), 1260(\mathrm{C}-\mathrm{N}), 818$ (bending, C-H, Fc), 741 and 697 (bending, C-H, Ph). 173: $R_{f}=0.14,1: 1$ hexanes: EtOAc after treatment with $\mathrm{Et}_{3} \mathrm{~N}$ for TLC; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}) $\delta 7.75(\mathrm{dd}, J=10.5$ and $3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$), 7.67 (dd, $J=10.3$ and 3.6 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.40(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 4.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Fc}), 4.17$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Fc}), 4.11$ (s, $1 \mathrm{H}, \mathrm{Fc}), 4.08$ ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Fc}$), 4.05 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Fc}$), 4.03 ($\mathrm{s}, 1 \mathrm{H}$), 2.54 (m, 2H), 1.98
(pentet, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1,78(\mathrm{br}, 1 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 0,80\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR (161.97 MHz, CDCl_{3}) $\delta 29.40$.

4.2.8 Synthesis and Characterization of Chiral P-FAM Ligands 174 and 175

Compound 170 ($422.5 \mathrm{mg}, 0.85 \mathrm{mmol}$) was dissolved in THF (6 mL , distilled over Na-benzophenone and degassed) in a reaction flask. The flask was cooled to $-78{ }^{\circ} \mathrm{C}$ and L-Selectride $(1.275 \mathrm{~mL}$, from 1 M THF solution) was added slowly over 30 min . After stirring about 6 hours TLC showed no starting material. To the reaction flask was added $10 \% \mathrm{NaOH}$ aqueous solution $(10 \mathrm{~mL})$ followed by $\operatorname{EtOAc}(15 \mathrm{~mL})$ and the two layers were separated. The aqueous layer was extracted one more time with EtOAc (15 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by a short plug of basic alumina using 3:1 hexanes-EtOAc as an eluent under N_{2} gas. After evaporation of the solvent pure 174 ($216 \mathrm{mg}, 51 \%$ yield) was obtained as an air sensitive pale yellow oil as well as oxidized form 175 (45% Yield, yellow solid). When pure compound 174 was exposed to air, it was converted to oxidized form 175 quantitatively. 174: $R_{f}=0.45,1: 1$ hexanes: EtOAc after treatment with $\mathrm{Et}_{3} \mathrm{~N}$ for TLC; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ph}), 7.23(\mathrm{~s}, 6 \mathrm{H}$, Ph), 4.15 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Fc}$), 4.09 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Fc}$), 4.05 (s, 3H, Fc), 3.93 (d, $J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{t}, \quad J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 2 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H})$,
$1.18(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.87\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR (161.97 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-22.4$; IR (neat) $\mathrm{cm}^{-1} 3364(\mathrm{O}-\mathrm{H}), 3056$ (stretching, C-H, Fc), 2958 (C-H, aziridine), 1459 (C-H), 1262 (C-N), 816 (bending, C-H, Fc), 742 and 697 (bending, C-H, Ph). 175: $R_{f}=0.19,1: 1$ hexanes: EtOAc after treatment with $\mathrm{Et}_{3} \mathrm{~N}$ for TLC; $\mathrm{mp}: 39-40^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21.7}=+12.2$ (c 1, DCM) ; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{dd}, J=7.4$ and $3.3 \mathrm{~Hz}, 2 \mathrm{H}$, Ph), 7.73 (dd, $J=7.0$ and $3.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$), 7.46 (ddd, $J=7.6,8.5$ and 3.7 $\mathrm{Hz}, 6 \mathrm{H}, \mathrm{Ph}), 4.22$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Fc}$), 4.15 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Fc}$), 4.10 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Fc}$), 3.93 (d, J= $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 2.56\left(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{P}\right), 1.97$ (pentet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71 (ddd, $J=3.7,2.6$ and $3.4 \mathrm{~Hz}, 1 \mathrm{H}$, aziridine), 1.50 (pentet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.45(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, aziridine), $1.31(\mathrm{~d}, J$ $=3.4 \mathrm{~Hz}, 1 \mathrm{H}$, aziridine), $0.89\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 134.76-134.27 (C_{q}, $\left.\operatorname{ArC-P}\right)$, 133.78-133.28 (C_{q}, $\left.\operatorname{ArC-P}\right)$, $131.62(\mathrm{CH}, \mathrm{Ph}), 131.55(\mathrm{CH}, \mathrm{Ph}), 130.86(\mathrm{CH}, \mathrm{Ph}), 130.76(\mathrm{CH}, \mathrm{Ph})$, $130.54(\mathrm{CH}, \mathrm{Ph}), 130.45(\mathrm{CH}, \mathrm{Ph}), 128.65(\mathrm{CH}, \mathrm{Ph}), 128.62(\mathrm{CH}, \mathrm{Ph})$, $128.54(\mathrm{CH}, \mathrm{Ph}), 128.51(\mathrm{CH}, \mathrm{Ph}), 90.74\left(\mathrm{C}_{\mathrm{q}}, \mathrm{Fc}\right), 70.72(\mathrm{CH}-\mathrm{OH}), 68.46$ $(\mathrm{CH}, 5 \mathrm{C}, \mathrm{Fc}), 67.86(\mathrm{CH}, \mathrm{Fc}), 67.69(\mathrm{CH}, \mathrm{Fc}), 66.25(\mathrm{CH}, \mathrm{Fc}), 65.84(\mathrm{CH}$, Fc), $63.84(\mathrm{CH}), 44.75\left(\mathrm{CH}\right.$, aziridine), 34.33-33.62 $\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{P}\right), 32.11$ $\left(\mathrm{CH}_{2}\right.$, aziridine), $28.20\left(\mathrm{CH}_{2}\right), 9.24\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($161.97 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 28.53; IR (neat) $\mathrm{cm}^{-1} 3396$ (O-H), 3093 (stretching, C-H, Fc), 2963 (C-H, aziridine), $1446(\mathrm{C}-\mathrm{H}), 1274(\mathrm{C}-\mathrm{N}), 1178(\mathrm{P}=\mathrm{O}), 816$ (bending, $\mathrm{C}-\mathrm{H}, \mathrm{Fc}$), 742 and 716 (bending, $\mathrm{C}-\mathrm{H}, \mathrm{Ph}$). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{FeNO}_{2} \mathrm{P}$: C, 67.85; H, 6.28; N, 2.73; found C, 69.5; H, 6.99; N, 2.62.

4.3 General Procedure for the synthesis of $\boldsymbol{\alpha}$-iminoesters

To a suspension of glycine methyl ester hydrochloride (1.1 equiv) and magnesium sulfate (2.0 equiv) in DCM was added triethylamine (1.1 equiv). This solution was stirred at room temperature for 1 h . The corresponding aldehyde (1.0 equiv) was added and the reaction stirred at room temperature overnight. The magnesium sulfate was removed by filtration and the filtrate was washed once with $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was extracted once with DCM and the combined organic layers were washed with brine. The organic phase was dried over MgSO_{4}, filtered and evaporated. The imines showed satisfactory purity as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy and were used without further purification.

4.4 General Procedure for Catalytic Asymmetric 1,3-DC Reaction

Dry $\mathrm{AgOAc}(1.5 \mathrm{~mol} \%)$ was weighed in a glove bag into a pre-dried reaction flask under Ar. The reaction flask was then connected to a vacuum line and heated with a heat gun for $10-15 \mathrm{~min}$. Benzene-azeotroped chiral ligand (6 mol \%) dissolved in freshly distilled DCM (5 mL per mmole of imine) was added to the reaction flask at rt . The homogeneous mixture was stirred at this temperature for about 1 h and then cooled to $-20^{\circ} \mathrm{C}$. To this mixture was added sequentially, the imine (1 equiv), dry ${ }^{i}{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ ($10 \mathrm{~mol} \%$) and the dipolarophile (1.5 equiv). The resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ under Ar atmosphere, at which point the solvent was removed under reduced pressure and the crude product was isolated by flash column chromatography on silica gel. The reaction can be performed on up to 100 mg of imine.

4.4.1 (2S, 3R, 4S, 5R)-Trimethyl 5-phenylpyrrolidine-2,3,4-

 tricarboxylate

178

70\% Ee as determined by HPLC, Chiralpak AS column+ guard column, 70:30 hexanes-i-PrOH, $t_{\mathrm{R}}($ major $)=10.9 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=25.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=+48.8(c$ $1.39, \mathrm{DCM}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.28(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.24(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ph}), 4.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.80(\mathrm{~s}$, $3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{Me}$), $3.68\left(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{CO}_{2} \mathrm{Me}\right), 3.66(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.52(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.22\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CO}_{2} \mathrm{Me}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.7170 .5,170.4,137.2,128.2$ (2xC), 127.6, 126.7 (2xC), 65.4, 62.1, 52.4, 52.1, 51.8, 51.1, 51.0.

4.4.2 (2S, 4S, 5R)-Dimethyl 5-phenylpyrrolidine-2,4-dicarboxylate

$70 \% \mathrm{Ee}$ as determined by HPLC, Chiralcel OD column, 90:10 hexanes-i$\operatorname{PrOH}, t_{\mathrm{R}}($ major $)=16.1$ and $t_{\mathrm{R}}($ minor $)=35.3 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=+23.6$ (c 1.61, DCM); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 7.21$ (dt, J $=8.4$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 4.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.86(\mathrm{t}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{Me}\right), 3.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.13(\mathrm{~s}, 3 \mathrm{H}$, $\left.4-\mathrm{CO}_{2} \mathrm{Me}\right), 2.59(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 2.32(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,172.6,139.2,128.1$ (2xC), 127.5, 126.8 (2 xC), 65.9 , 59.9, 52.1, 51.0, 49.7, 33.3.

4.4.3 (2R, 4R, 5S)-4-'Butyl 2-methyl 5-phenylpyrrolidine-2,4dicarboxylate

20\% Ee as determined by HPLC, Chiralpak AS + guard column, 95:5 hexanes- $i-\mathrm{PrOH}, t_{\mathrm{R}}($ minor $)=10.2 \mathrm{~min}, t_{\mathrm{R}}($ major $)=17.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=-4.4(c$ 1.14, DCM); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}) 7.29$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 4.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5), 3.89 (t, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{Me}\right), 3.22(\mathrm{q}, J=7.8 \mathrm{~Hz}$, 1H, H-4), 2.77 (br, 1H, NH), 2.44-2.37 (m, 1H, H-3), 2.33-2.27 (m, 1H, H-3), $1.01(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.3,171.4,139.4,128.0$ (2xC), 127.3 (2 xC), $127.2,80.2,65.6,59.8,52.0,50.1,34.1,27.5(9 \mathrm{xC})$.

4.4.4 (2S, 3S, 4S, 5R)-Trimethyl 5-phenylpyrrolidine-2,3,4tricarboxylate

181
$15 \% \mathrm{Ee}$ as determined by HPLC, Chiralcel OD column, 90:10 hexanes-i$\operatorname{PrOH}, t_{\mathrm{R}}($ major $)=32.4 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=59.6 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=+3.0$ (c 1.25
$\mathrm{g} / 100 \mathrm{~mL}, \mathrm{DCM}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.21(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.62$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.14(\mathrm{t}, J=7,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{Me}\right)$, 3.77 (s, $3 \mathrm{H}, 3-\mathrm{CO}_{2} \mathrm{Me}$), 3.60 (dd, $J=1.4$ and $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.53 (dd, $J=$ 2.2 and $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 3.19 (s, $3 \mathrm{H}, 4-\mathrm{CO}_{2} \mathrm{Me}$), 2.73 (br, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}$); ${ }^{13} \mathrm{C}-$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.3,171.7,171.3,138.2,128.2$ (2xC), 127.8, 126.9 (2xC), 65.5, 63.3, 53.8, 52.4, 52.3, 51.4, 50.1.

4.4.5 (1S, 2R, 4S, 5R)-Methyl octahydro-7-methyl-6,8-dioxo-4-phenyl

 -3,7-diazabicyclo[3.3.0]pyrrole-2-carboxylate

182

30\% Ee as determined by HPLC, Chiralpak AS column + guard column, 4:1 i-PrOH-hexanes, $t_{\mathrm{R}}($ minor $)=7.9 \mathrm{~min}, t_{\mathrm{R}}($ major $)=22.1 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=-34.3(c$ 1.51, DCM); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ph}), 7.25(\mathrm{~m}, 1 \mathrm{H}$, Ph) 4.47 (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $4.00(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.87$ (s, 3H, 2$\mathrm{CO}_{2} \mathrm{Me}$), $3.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.52(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.86(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NMe}) 2.36$ (br, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.5$ 175.1, $170.3,138.6,128.3,128.0(2 x C), 127.3$ (2xC), 62.8, 60.9, 51.4, 49.0, 47.8, 24.3.

4.4.6 (2S, 4S, 5R)-Methyl 4-cyano-5-phenylpyrrolidine-2-carboxylate

70\% Ee as determined by HPLC, Chiralcel AS column+ guard column, 50:50 hexanes-i-PrOH, t_{R} (major) $=10.3$ and $t_{\mathrm{R}}($ minor $)=44 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=+36.9(c$ 1.40, DCM); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.39$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.34(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 4.38(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5), 3.94$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.83$ (s, $3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{Me}$), 3.24 (q, $J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 2.64 (br, 1H, NH), 2.47-2.61 (m, 2H, H-3); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \quad 172.6,137.7,128.6$ (2xC), 128.5, 127.0 (2xC), 118.8, 64.8, 58.6, 52.4, 35.9, 34.2.

4.4.7 (2S, 3R, 4S, 5R)-Trimethyl 5-(naphthalen-2-yl)pyrrolidine-2,3,4tricarboxylate

74\% Ee as determined by HPLC, Chiralpak AS column+ guard column, 50:50 hexanes-i-PrOH, $t_{\mathrm{R}}($ major $)=10.9 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=23.6 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{30}=+40.8(c$ $1.23 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{DCM}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.76(\mathrm{~m}, 4 \mathrm{H})$, 7.47-7.40 (m, 3H), 4.59 (d, $J=6.3 \mathrm{~Hz} ; 1 \mathrm{H}), 4.16(\mathrm{~d}, J=8.9 \mathrm{~Hz} ; 1 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 3.72(\mathrm{t}, J=8.2 \mathrm{~Hz} ; 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{t}, J=6.9 \mathrm{~Hz} ; 1 \mathrm{H}), 3.48(\mathrm{br}$, $1 \mathrm{H}, \mathrm{NH}), 3.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,170.5,170.3$,
$134.6,133.2,132.8,128.1,127.9,127.5,126.1,126.0,125.6,124.8,65.6$, 62.1, 61.8, 52.4, 52.3, 51.9, 51.2.

4.4.8 (2S, 4S, 5R)-Dimethyl 5-(naphthalen-2-yl)pyrrolidine-2,4dicarboxylate

74\% Ee as determined by HPLC, Chiralpak AS column+ guard column, 85:15 hexanes- $i-\mathrm{PrOH}, t_{\mathrm{R}}($ major $)=15 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=31.4 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{30}=+23.6(c$ $1.37 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{DCM}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.74(\mathrm{~m}, 4 \mathrm{H})$, 7.43-7.37 (m, 3H), 4.65 (d, $J=7.7 \mathrm{~Hz} ; 1 \mathrm{H}), 3.98$ (t, $J=8.2 \mathrm{~Hz} ; 1 \mathrm{H}$), 3.84 (s, $3 \mathrm{H}), 3.36(\mathrm{q}, ~ J=6.7 \mathrm{~Hz} ; 1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,172.6,136.6,133.2,132.9,128.0,127.7,127.5,126.0$, $125.8,125.5,125.1,66.0,59.9,52.1,51.1,49.6,33.4$.

4.4.9 (2S, 3R, 4S, 5R)-Trimethyl 5-(naphthalen-1-yl)pyrrolidine-2,3,4tricarboxylate

89\% Ee as determined by HPLC, Chiralpak AS column+ guard column, 50:50 hexanes- $i-\mathrm{PrOH}, t_{\mathrm{R}}($ major $)=20.4 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=39.9 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=+210.5$ (c $1.40 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{DCM}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}$; $1 \mathrm{H}), 7.77$ (d, $J=7.4 \mathrm{~Hz} ; 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz} ; 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.2 \mathrm{~Hz} ;$ $1 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 3 \mathrm{H}), 5.09(\mathrm{~d}, J=5.0 \mathrm{~Hz} ; 1 \mathrm{H}), 4.12$ (d, $J=8.5 \mathrm{~Hz} ; 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz} ; 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,170.4,170.1,133.5,132.5,131.1,128.9,128.2$, $126.1,125.4,125.1,123.3,122.6,61.4,61.3,57.7,52.2,51.9,51.1,50.9$.

4.4.10 (2S, 4S, 5R)-Dimethyl 5-(naphthalen-1-yl)pyrrolidine-2,4dicarboxylate

187

76\% Ee as determined by HPLC, Chiralpak AS column+ guard column, 90:10 hexanes- $i-\mathrm{PrOH}, t_{\mathrm{R}}($ major $)=26.0 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=61.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=+144.1$ (c $1.26 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{DCM}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}$; $1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.7 \mathrm{~Hz} ; 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz} ; 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}$; $1 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 3 \mathrm{H}), 5.25(\mathrm{~d}, J=7.5 \mathrm{~Hz} ; 1 \mathrm{H}), 4.02(\mathrm{t}, J=8.2 \mathrm{~Hz} ; 1 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 3.50(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz} ; 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.3,172.6,134.5,133.4,131.2,128.8,127.9,125.9$, $125.3,125.1,123.0,122.8,61.6,59.4,52.0,50.7,48.6,33.3$.

188

47\% Ee as determined by HPLC, Chiralpak AS column+ guard column, 4:1 i-PrOH-hexanes,, $t_{\mathrm{R}}($ minor $)=9.1 \mathrm{~min}, t_{\mathrm{R}}($ major $)=53.2 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{30}=+72.2(c$ $1.32 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{DCM}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz} ;$ 1H), 7.89 (d, $J=7.8 \mathrm{~Hz} ; 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz} ; 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.1 \mathrm{~Hz} ;$ $1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.7 \mathrm{~Hz} ; 1 \mathrm{H}), 5.05(\mathrm{dd}, J=8.2$ and 3.6 Hz; 1H), 4.05 (dd, $J=6.6$ and $2.1 \mathrm{~Hz} ; 1 \mathrm{H}$), $3.64(\mathrm{t}, J=7.9 \mathrm{~Hz} ; 1 \mathrm{H}), 3.55(\mathrm{t}, J$ $=7.1 \mathrm{~Hz} ; 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $176.0,174.2,170.3,133.4,133.1,131.2,129.2,128.5,126.4,125.7,125.4$, 123.3, 122.3, 61.3, 59.8, 52.3, 48.1, 48.0, 24.9.

4.4.12 (2S, 3R, 4S, 5R)-Trimethyl 5-(4-chlorophenyl)pyrrolidine-2,3,4-

 tricarboxylate

189

60\% Ee as determined by HPLC, Chiralpak AS column+ guard column 90:10 hexanes $-i-\mathrm{PrOH}, t_{\mathrm{R}}($ major $)=32.4 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=55.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{30}=+38.9(c$
$1.06 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{DCM}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~s}, 4 \mathrm{H}), 4.40(\mathrm{br}$, 1 H), 4.09 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (s, 3H), $3.65(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,170.8$ $170.7,135.8,133.6,128.5$ (2xC), 128.2 (2xC), 64.7, 62.2, 52.5, 52.3, 52.2, 51.5, 50.9, 29.7.

4.4.13 (2S, 4S, 5R)-Dimethyl 5-(4-chlorophenyl)pyrrolidine-2,4dicarboxylate

190

32\% Ee as determined by HPLC, Chiralpak AS column+ guard column 95:5 hexanes- $i-\mathrm{PrOH}, t_{\mathrm{R}}($ major $)=26.1 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=59.7 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{30}=+9.0(c$ $0.90 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{DCM}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{~s}, 4 \mathrm{H}), 4.41$ (d, J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.19(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 2.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.3,172.3,138.0,133.4,128.3,65.1,59.7,52.1,51.2,49.5$, 33.1.

4.4.14 (2S, 3R, 4S, 5R)-Trimethyl 5-(4-methoxyphenyl)pyrrolidine-2,3,4-

 tricarboxylate

74\% Ee as determined by HPLC, Chiralpak AS column+ guard column 70:30 hexanes-i-PrOH, $t_{\mathrm{R}}($ major $)=15.3 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=29.6 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{30}=+41.4(\mathrm{c}$ $1.01 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{DCM}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 1 H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2,170.1$, $170.0,158.6,128.7,127.4$ (2xC), 113.1 (2xC), 64.5, 61.7, 54.5, 52.0, 51.7, 51.4, 50.7, 50.4 .

4.4.15 (2S, 4S, 5R)-Dimethyl 5-(4-methoxyphenyl)pyrrolidine-2,4dicarboxylate

77\% Ee as determined by HPLC, Chiralpak AS column+ guard column 95:5 hexanes-i-PrOH, $t_{\mathrm{R}}($ major $)=39.8 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=66.3 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=+42.9(c$ $1.34 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{DCM}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=8.2 \mathrm{~Hz}$, 1 H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 2.35(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.0,172.2,158.5,130.8,127.4$, 113.0, 64.9, 59.3, 54.5, 51.5, 50.6, 49.2, 32.8.

REFERENCES

1. Procter, G. Asymmetric Synthesis; Oxford University Pres: New York, 1996, 1,12.
2. Felpin, F.-X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693.
3. Pearson, W. H. Pure Appl. Chem. 2002, 74, 1339.
4. Huisgen, R. Angew. Chem. 1963, 75, 604.
5. Grigg, R. Tetrahedron: Asymmetry 1995, 6, 2475.
6. Curtius, T. Ber. Dtsch. Chem. Ges. 1883, 16, 2230.
7. Buchner, E. Ber. Dtsch. Chem. Ges. 1888, 21, 2637.
8. Padwa, A., Angew. Chem. Int. Ed. Engl., 1976, 15, 123.
9. Pichon, M. Figadere, B., Tetrahedron: Asymmetry, 1996, 7, 927-964.
10. Atkinson, R. S. Stereoselective Synthesis, Wiley and Sons: England, 1995, 173, 231.
11. (a) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223-269. (b) Mehta, G.; (b) Muthusamy, S. Tetrahedron 2002, 58, 9477.
12. Houk, K. N.; Gonzales, J.; Li, Y. Acc. Chem. Res 1995, 28, 81.
13. Firestone, R. A., J. Org. Chem., 1968, 33, 2285.
14. Woodward, R. B.; Hoffmann, R. J. Am. Chem. Soc. 1965, 87, 395.
15. Sustmann, R. Tetrahedron Lett. 1971, 12, 2717.
16. Sustmann, R. Pure Appl. Chem. 1974, 40, 569.
17. Sustman, R. , Trill, H. Angew. Chem. , 1972, 11, 839.
18. Husinec, S.; Savic, V. Tetrahedron: Asymmetry 2005, 16, 2047.
19. (a) Huisgen, R.; Cheer, W.; Huber, H. J. Am. Chem. Soc. 1967, 89, 1753.
(b) DeShong, P.; Kell, D. A. Tetrahedron Lett. 1986, 27, 3979.
20. Carruthers, W., Coldhanm, I., Modern Methods of Organic Synthesis, Cambridge Universty Press, 2004, 228.
21. Tsuge, O.; Kanemasa, S.; Yoshioka, M. J. Org. Chem. 1988, 53, 1384.
22. Döndaş, A. H.; Fishwick, C. W. G.; Grigg, R.; Kilner, C. Tetrahedron 2004, 60, 3473.
23. Kraus, G. A.; Nagy, J. O. Tetrahedron Lett. 1983, 24, 3427.
24. Pearson, W. H.;Stoy, P.; Mi, Y. J. Org. Chem. 2004, 69, 1919.
25. Harwood, L. M.; Vickers, R. J. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Padwa, A.; Pearson, W. H., Eds.; John Wiley \& Sons, Inc., New York, 2002, vol 59, 170.
26. Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
27. Grigg, R.; Malone, J. F.; Mongkolaussavaratana, T.; Thianpatanagul, S. Tetrahedron 1989, 45, 3849.
28. Pearson, W. H.; Stoy, P. Synlett 2003, 903.
29. Turner, S. C., Zhai, H., Rapoport, H. J. Org. Chem. 2000, 65, 861-870
30. Bailey, P. D. Millwood, P. A. Smith, P. D. Chem. Commun. 1998, 633
31. (a) Williams, R. M.; Zhai, W.; Aldous, D. J.; Aldous, S. C. J. Org. Chem. 1992, (b) 57, 6527. (b) Kanemasa, S.; Yamamoto, H. Tetrahedron Lett. 1990, 31, 3633. (c) Anslow, A. S.; Harwood, L. M.; Phillips, H.; Watkin, D. Tetrahedron: Asymmetry 1991, 2, 997.
32. Garner, P.; Dogan, O. J. Org. Chem. 1994, 59, 4.
33. (a) Merino, I.; Laxmi, Y. R. S.; Florez, J.; Barluenga, J.; Ezquerra, J.; Pedregal, C. J. Org. Chem. 2002, 67, 648. (b) Ruano, J. L. G.; Tito, A.; Peromingo, M. T. J. Org. Chem. 2002, 67, 981.
34. (a) Gothelf, A. S.; Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. Angew. Chem. 2002, 114, 4410. (b) Gothelf, A. S.; Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2002, 41, 4236. (c) Doğan, Ö.; Koyuncu, H.; Garner, P. P.; Bulut, A.; Youngs, W.; Panzner, M. Org. Lett. 2006, 8, 4687-4690.
35. (a) Allway, P.; Grigg, R. Tetrahedron Lett. 1991, 32, 5817. (b) Grigg, R. Tetrahedron: Asymmetry 1995, 6, 2475.
36. Shi, J., Zhao, M., Lei, Z., Shi, M., J. Org. Chem., 2008, 73, 305-308
37. (a) Oderaotoshi, Y.; Cheng, W.; Fujitomi, S.; Kasano, Y.; Minakata, S.; Komatsu, M. Org. Lett. 2003, 5, 5043. (b) Gao, W.; Zhang, X.; Raghunath, M. Org. Lett. 2005, 7, 4241. (c) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2006, 45, 1979. (d) Shi, M., Shi, J., Tedrahedron: Asymmetry, 2007, 18, 645. (e) Cabrera, S., Arrayas, Matute, B., Cossio, F. P, Carretero J., C., Tetrahedron 2007, 63, 6587. (f) Carbrera, S.; Gomez, R.; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 16394.
38. (a) Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400. (b) Chen, C.; Li, X.; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174. (c) Knopfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E. M. Angew. Chem., Int. Ed. 2004, 43, 5971. (d) Alemparte, C.; Blay, G.; Jørgensen, K. A. Org. Lett. 2005, 7, 4569. (e) Najera, C., Retamosa, G., Sansano, J., Org Lett. 2007, 9, 4025. (f) Zeng, W.; Zhou, Y.,G. Org. Lett. 2005, 7, 5055. (g) Zeng, W., Chen, G., Zhou, Y., Li, Y. J. Am. Chem. Soc. 2007, 129, 750. (h) Zeng W.; Zhou Y.-G. Tetrahedron Lett.2007, 48, 4619.
39. Isleyen A.; Doğan, Ö.; Tetrahedron: Asymmetry 2007, 18, 679.
40. Bulut, A.; Aslan, A.; Izgü, E. C.; Doğan, Ö.; Tetrahedron: Asymmetry 2007, 18, 1013.
41. Koyuncu, H.; Doğan, Ö. Org. Lett, 2007, 9, 3477.
42. Bulut, A.; Aslan, A.; Doğan, Ö., J. Org. Chem. 2008, 73, DOI: 10.1021/jo8010073.
43. Doğan, Ö.; Șenol, V.; Zeytinci, S.; Koyuncu, H.; Bulut, A. J. Organomet. Chem. 2005, 690, 430.
44. Cromwell, N. H.; Babson, R. D.; Harris, C. E. J. Am. Chem. Soc. 1943, 65, 312.
45. Williams, G. D.; Wade, C.E.; Clarkson, G. J.; Wills, M. Tetrahedron: Asymmetry 2007, 18, 664.
46. Yun, J. M.; Sim, T. B.; Hahm, H. S.; Lee, W. K. J. Org. Chem. 2003, 68, 7675.

APPENDIX A

NMR SPECTRUMS AND HPLC CHROMATOGRAMS OF COMPOUNDS

Figure A. $1{ }^{1} \mathrm{H}$-NMR spectrum of compound 160

Figure A. $2{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 6 0}$

Figure A. $3{ }^{1} \mathrm{H}$-NMR spectrum of compound 162

Figure A.4 ${ }^{13} \mathrm{C}$-NMR spectrum of compound 162

Figure A. $5{ }^{1} \mathrm{H}$-NMR spectrum of compound 163

Figure A.6 ${ }^{13} \mathrm{C}$-NMR spectrum of compound 163

Figure A. $7{ }^{31}$ P-NMR spectrum of compound 163

Figure A.8 ${ }^{1} \mathrm{H}$-NMR spectrum of compound 164

Figure A. $9{ }^{13} \mathrm{C}$-NMR spectrum of compound 164

Figure A.10 ${ }^{31}$ P-NMR spectrum of compound 164

Figure A. $11{ }^{1} \mathrm{H}$-NMR spectrum of compound 165

Figure A.12 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 6 5}$

Figure A. $13{ }^{31}$ P-NMR spectrum of compound 165

Figure A. $14{ }^{1} \mathrm{H}$-NMR spectrum of compound 166

Figure A. $15{ }^{13} \mathrm{C}$-NMR spectrum of compound 166

Figure A.16 ${ }^{31}$ P-NMR spectrum of compound 166

Figure A. $17{ }^{1} \mathrm{H}$-NMR spectrum of compound 167

Figure A. $18{ }^{13} \mathrm{C}$-NMR spectrum of compound 167

Figure A.19 ${ }^{31}$ P-NMR spectrum of compound 167

Figure A.20 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 168

Figure A. $21{ }^{13} \mathrm{C}$-NMR spectrum of compound 168

Figure A. $22{ }^{31}$ P-NMR spectrum of compound 168

Figure A. $23{ }^{1} \mathrm{H}$-NMR spectrum of compound 161

Figure A. $24{ }^{13} \mathrm{C}$-NMR spectrum of compound 161

Figure A. $25{ }^{1}$ H-NMR spectrum of compound 169

Figure A. $26{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 169

Figure A. $27{ }^{1} \mathrm{H}$-NMR spectrum of compound 170

Figure A. $28{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 7 0}$

Figure A.29 ${ }^{31}$ P-NMR spectrum of compound $\mathbf{1 7 0}$

Figure A. $\mathbf{3 0}{ }^{1} \mathrm{H}$-NMR spectrum of compound 171

Figure A. $31{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 7 1}$

Figure A. $\mathbf{3 2}{ }^{31}$ P-NMR spectrum of compound 171

Figure A. $33{ }^{1} \mathrm{H}$-NMR spectrum of compound 172

Figure A. $34{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 7 2}$

Figure A. $35{ }^{31}$ P-NMR spectrum of compound 172

Figure A. $\mathbf{3 6}{ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{1 7 3}$

Figure A. $37{ }^{31}$ P-NMR spectrum of compound 173

Figure A. $38{ }^{1}$ H-NMR spectrum of compound 174

Figure A. $39{ }^{31}$ P-NMR spectrum of compound 174

Figure A. $40{ }^{1} \mathrm{H}$-NMR spectrum of compound 175

Figure A. $41{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 175

Figure A.42 ${ }^{31}$ P-NMR spectrum of compound 175

Figure A.43 ${ }^{1} \mathrm{H}$-NMR spectrum of compound 178

Figure A. $44{ }^{13} \mathrm{C}$-NMR spectrum of compound 178

Figure A. $45{ }^{1} \mathrm{H}$-NMR spectrum of compound 179

Figure A.46 ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 179

Figure A.47 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1 8 0}$

Figure A. $48{ }^{13} \mathrm{C}$-NMR spectrum of compound 180

Figure A.49 ${ }^{1} \mathrm{H}$-NMR spectrum of compound 181

Figure A.50 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 8 1}$

Figure A.51 ${ }^{1} \mathrm{H}$-NMR spectrum of compound 182

Figure A.52 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 8 2}$

Figure A. $53{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1 8 3}$

Figure A. $54{ }^{13} \mathrm{C}$-NMR spectrum of compound 183

Figure A.55 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 184

Figure A.56 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 8 4}$

Figure A.57 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 185

Figure A.58 ${ }^{13} \mathrm{C}$-NMR spectrum of compound 185

Figure A.59 ${ }^{1} \mathrm{H}$-NMR spectrum of compound 186

Figure A. $60{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 186

Figure A.61 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 187

Figure A. $62{ }^{13} \mathrm{C}$-NMR spectrum of compound 187

Figure A. $63{ }^{1} \mathrm{H}$-NMR spectrum of compound 188

Figure A. $64{ }^{13} \mathrm{C}$-NMR spectrum of compound 188

Figure A.65 ${ }^{1} \mathrm{H}$-NMR spectrum of compound 189

Figure A. $66{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 189

Figure A.67 ${ }^{1} \mathrm{H}$-NMR spectrum of compound 190

Figure A. $68{ }^{13} \mathrm{C}$-NMR spectrum of compound 190

Figure A. $69{ }^{1} \mathrm{H}$-NMR spectrum of compound 191

Figure A.70 ${ }^{13} \mathrm{C}$-NMR spectrum of compound 191

Figure A. $71{ }^{1} \mathrm{H}$-NMR spectrum of compound 192

Figure A. $72{ }^{13} \mathrm{C}$-NMR spectrum of compound 192

Figure A. 73 HPLC Chromatogram of compound 178

Figure A. 74 HPLC Chromatogram of compound 179

Figure A. 75 HPLC Chromatogram of compound 180

Figure A.76 HPLC Chromatogram of compound 181

Figure A. 77 HPLC Chromatogram of compound 182

Figure A. 78 HPLC Chromatogram of compound 183

Figure A. 79 HPLC Chromatogram of racemic 183 + ent-183

Figure A. 80 HPLC Chromatogram of compound 184

Figure A. 81 HPLC Chromatogram of compound $\mathbf{1 8 5}$

Figure A. 82 HPLC Chromatogram of compound 186

Figure A. 83 HPLC Chromatogram of compound 187

Figure A. 84 HPLC Chromatogram of racemic 187 + ent-187

Figure A. $\mathbf{8 5}$ HPLC Chromatogram of compound $\mathbf{1 8 8}$

Figure A. 86 HPLC Chromatogram of racemic 188 + ent-188

Figure A. 87 HPLC Chromatogram of compound 189

Figure A. 88 HPLC Chromatogram of compound 190

Figure A. 89 HPLC Chromatogram of compound 191

Figure A. 90 HPLC Chromatogram of compound 192

Figure A. 91 HPLC Chromatogram of racemic 192 + ent-192

