

SYSTEMATIC COMPONENT-ORIENTED DEVELOPMENT WITH
AXIOMATIC DESIGN

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CENGİZ TOĞAY

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

JULY 2008

Approval of the thesis:

SYSTEMATIC COMPONENT-ORIENTED DEVELOPMENT WITH
AXIOMATIC DESIGN

Submitted by CENGİZ TOĞAY in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay
Head of Department, Computer Engineering

Assoc. Prof. Dr. Ali H. Doğru
Supervisor, Computer Engineering Dept., METU

Examining Committee Members

Prof. Dr. Muslim Bozyiğit
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ali H. Doğru
Computer Engineering Dept., METU

Prof. Dr. Mehmet R. Tolun
Computer Engineering Dept., Çankaya University

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Dept., METU

Assist. Prof. Dr. Bülent Gümüş
Industrial Engineering Dept., TOBB Univ. of Econ. and Tech.

 Date: 0 16/07/2008 8

 ii

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name: Cengiz Toğay

Signature

 iv

ABSTRACT

SYSTEMATIC COMPONENT-ORIENTED DEVELOPMENT WITH
AXIOMATIC DESIGN

Toğay, Cengiz

Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali Hikmet Doğru

July 2008, 131 pages

In this research, component oriented development is supported with design

guidance by extending the Axiomatic Design Theory for component orientation,

and utilizing domain engineering and ontology mechanisms. Guidance is offered

in the form of suggesting missing components and discovering incompatibilities

among the candidate elements of software development, corresponding to

different phases such as requirement analysis, design, and implementation. A

mature domain concept is developed suggesting the availability of reference

models for customer needs, software system requirements, software design, and

also a rich set of implemented components. As the system is being defined starting

with the customer needs and progressing towards components, at every step the

developer is presented what is available in the domain and what becomes

unavailable. This guidance is based on the selections made so far, utilizing

ontology based constraint checking. Feature Models are incorporated for modeling

customer needs. Case studies are presented for demonstration purposes.

Keywords: Component Orientation, Axiomatic Design Theory, Feature Model,

COSEML, Ontology.

 v

ÖZ

AKSİYOMATİK TASARIM İLE SİSTEMATİK BİLEŞENE YÖNELİK
GELİŞTİRME

Toğay, Cengiz

Doktora, Bilgisayar Mühendisliği Bölümü

 Tez Yöneticisi: Doç. Dr. Ali H. Doğru

Temmuz 2008, 131 sayfa

Aksiyomatik tasarım teorisi, bileşen yönelimli geliştirmeyi desteklemek üzere

genişletilmiştir. Ayrıca, bileşen yönelimli geliştirmeyi desteklemek için alan

mühendisliği ve ontoloji mekanizmaları yardımı ile bir tasarım rehberliği

oluşturulmuştur. Rehberlik, eksik bileşenlerin ve geliştirme ögeleri adayları

arasındaki uymusuzlukların gereksinimler, tasarım, ve uygulama gibi değişik

safhalara yönelik olarak önerilmesi şeklindedir. Olgun alan kavramı, müşteri

ihtiyaçları, yazılım sistem gereksinimleri, yazılım tasarımı ve çok sayıda

geliştirilmiş bileşenler için referans modellerinin mevcut olmasına bağlı olarak

geliştirildi. Sistem geliştirme süreci, müşteri ihtiyaçlarından başlayarak bileşenlere

ulaşma yönünde devam ederken her daımda geliştiriciye alanda neyin uygun

olduğu ve neyin uygunsuzlaştığı bildirilir. Bu rehberlik, yapılmış seçimler ışığında

ontolojıye dayanarak kısıtların kontrol edilmesi yolu ile gerçekleştirilir. Müşteri

gereksinimlerinin modellenmesi için yetenek modeli kullanılmaktadır. Örnek

uygulamalar ile yöntem anlatılmıştır.

Anahtar Kelimeleri: Bileşen yönelimi, Aksiyomatik Tasarım Teorisi, y Modeli,

COSEML, Ontoloji.

 vi

DEDICATION

To My Wife Sine

 vii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude and appreciation to my supervisor,

Assoc. Prof. Dr. Ali H. Doğru, for his guidance, advice, criticism,

encouragements, insight and patience throughout the research.

I would also like to thank my committee members Prof. Dr. Mehmet R. Tolun,

Prof. Dr. Muslim Bozyiğit, Assoc. Prof. Dr. Halit Oğuztüzün, and Assist. Prof.

Dr. Bülent Gümüş for their invaluable suggestions and comments.

Prof. Dr. Murat Tanik’s guidance and suggestions during my visit at University of

Alabama (UAB) have presented crucial steering which I appreciated deeply.

I would also like to thank Prof. Dr. Muslim Bozyiğit, Burak Ulutoprak, Dr. Okan

Topçu for their technical support for developing simulations, Orhan Üçtepe for his

technical support while developing ADCO tool, my friends Alper Kılıç, Alev

Mutlu, Eren Koçak Akbıyık, Gayathri Sundar, Gülşah Tümüklü, Levent Bayındır,

Selma Süloğlu, Oral Dalay, Dr. Özgür Aktunç, Özgür Kaya, Dr. Urcun Tanik, and

all my friends not named for their support during my Ph.D, and the staff members

at CENG department, especially Sultan Arslan, Perihan İlgun and Güldane Öcal

for their indefinite help and cooperation.

Last but not least, I would like to give special thanks to my wife and my parents

for their continual and indefinite support and prayers.

This study was supported by the State Planning Organization (DPT) Grant No:

BAP-08-11-DPT2002K120510.

 viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. v

DEDICATION .. vi

ACKNOWLEDGMENTS ... vii

TABLE OF CONTENTS ... viii

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS .. xv

CHAPTERS

1. INTRODUCTION ... 1

2. BACKGROUND ... 4

2.1. Axiomatic Design Theory .. 4

2.1.1. Concepts of Axiomatic Design Theory 4

2.1.1.1. Domains ... 4

2.1.1.2. Hierarchies ... 7

2.1.1.3. Zigzagging ... 7

2.1.1.4. Axioms ... 8

2.1.1.4.1. Independence Axiom ... 10

2.1.1.4.2. Information Axiom .. 12

2.1.2. Axiomatic Design of Object-Oriented Software Systems 19

2.2. High Level Architecture and Object Model Template 21

2.3. Component Oriented Software Engineering 23

2.4. COSE Modelling Language ... 28

2.5. Design Structure Matrix ... 31

2.6. Communicating Sequential Process ... 35

 ix

2.7. Feature Model .. 41

2.8. Knowledge-Base .. 48

2.9. Mature Domain .. 50

3. ONTOLOGY MODELING ... 53

3.1. Modeling Features ... 55

3.2. Modelling Functional Requirements ... 58

3.3. Modelling Design Parameters .. 60

3.4. Modelling Process Variables ... 60

4. PROPOSED APPROACH ... 62

4.1. Development Processes ... 62

4.1.1. Mature Domain Creation ... 65

4.1.1.1. Application Development 65

4.1.1.2. Mature Domain Development 69

4.1.2. ADCO Process ... 71

4.2. Guidance .. 73

4.2.1. Conference Management System .. 75

4.2.2. Aircraft Simulations ... 82

5. CONCLUSION .. 101

5.1. Conducted Work .. 101

5.2. Evaluation .. 103

5.3. Future Work ... 105

REFERENCES .. 107

APPENDIX A. CONFERENCE MANAGEMENT SYSTEM COMPONENTS

 ... 119

A.1. Author Component .. 119

A.2. Database Component ... 120

A.3. Edit Component ... 121

A.4. File System Component ... 122

A.5. Paper Component ... 123

A.6. Paper Topic Component .. 124

A.7. Submit Component .. 125

 x

A.8. System Environment Component .. 127

A.9. Utility Component ... 128

CURRICULUM VITAE .. 129

 xi

LIST OF TABLES

TABLES
Table 2.1 Meaning of the design domains in various disciplines (adapted from

[101]).. 6

Table 2.2 Design Ranges of Components (adapted from [111, 116]) 17

Table 2.3 FR design ranges (adapted from [111, 116]) ... 18

Table 2.4 Probability of success for FRs (adapted from [111, 116]) 18

Table 2.5 Information content of components corresponding to the related design

ranges (adapted from [111, 116]) ... 18

Table 2.6 Information content of application components 19

Table 2.7 Development Process (adapted from [114]) .. 31

Table 2.8 CSP expressions used in this article .. 35

Table 2.9 COSEML and CSP representations ... 37

Table 2.10 CSP representations of an Application that compose Component 1,

Component 2 (adapted from [112]) ... 39

Table 2.11 Summary of constructors to form different description logics (adapted

from [5]) .. 49

Table 2.12 Mature Domain Concepts .. 51

Table 4.1 Application development process without mature domain (adapted from

[116] and [114]) ... 66

Table 4.2 Mature domain development process .. 69

Table 4.3 Application development process with mature domain 71

Table 4.4 Constraints for Conference Management System 78

Table 4.5 Constraints for FR1_1_1_5 .. 81

Table 4.6 Adapted FEDEP process with ADT (adapted from [118]) 82

Table 4.7 OMT classes of simulation (adapted from [118]) 85

Table 4.8 Constraints for simulation domain ... 98

Table 5.1 A comparison of ADCO with COSEML and ADT 104

 xii

LIST OF FIGURES

FIGURES

Figure 2.1 Domains and their elements (adapted from [101]) 5

Figure 2.2 Zigzagging (adapted from [101]) ... 8

Figure 2.3 Partial Design Matrix of Submit Component Interface 10

Figure 2.4 Design range, system range, common range, and system probability

density (adapted from [101]). .. 13

Figure 2.5 Probability of DP1 success with specified FR (adapted from [111,

116]). .. 14

Figure 2.6 Probability of success graph of composed two components (adapted

from [111, 116]). .. 15

Figure 2.7 Probability of success for a composition of two components with

specified FRs (adapted from [111, 116]). .. 16

Figure 2.8 Mature domain (adapted from [111, 116]) ... 17

Figure 2.9 Systematic OO Programming with Axiomatic Design (adapted from

[34]).. 20

Figure 2.10 Mapping between design matrix and OO class diagrams (adapted

from [101]) .. 20

Figure 2.11 High Level Architecture based components communication (adapted

from [118]) .. 22

Figure 2.12 COSEML symbols used in this study (adapted from [114]) 29

Figure 2.13 Axiomatic design representation (left side) and COSEML

representation (right side) .. 30

Figure 2.14 Example Design Structure Matrix (adapted from [120]) 32

Figure 2.15 DSM table for the components in the example (adapted from [120]) 33

Figure 2.16 Axiomatic design diagrams of components 0-2 (deadlock free)

(adapted from [120]) .. 34

 xiii

Figure 2.17 Axiomatic design diagrams of components 0-2 (deadlock) (adapted

from [120]) ... 35

Figure 2.18 COSEML representation of Component 1 and Component 2 (adapted

from [112]) ... 38

Figure 2.19 Design matrix of Component 1 (adapted from [112]) 40

Figure 2.20 Design matrix of Component 2 (adapted from [112]) 40

Figure 2.21 Feature Model (adapted from [64]) .. 43

Figure 2.22 Three layers of the Feature Models representation in OWL (adapted

from [14]) ... 45

Figure 2.23 Meta-ontology classes (adapted from [14]) .. 46

Figure 2.24 An example Feature Model for military vehicles(adapted from [117])

.. 47

Figure 2.25 Semantic web represention of knowledge .. 48

Figure 3.1 Partial Feature Model of the Conference Domain 56

Figure 3.2 Partial FR-DP Design Matrix of the Conference Domain 59

Figure 4.1 Development Processes .. 64

Figure 4.2 Axiomatic design process for CO software system: white boxes

represent additions to V-Model (adapted from [116]) 66

Figure 4.3 Domain view of ADCO Tool ... 74

Figure 4.4 Conference Management Components .. 76

Figure 4.5 Partial FR-DP design matrix .. 77

Figure 4.6 Partial Feature Model of the conference management system 80

Figure 4.7 FR-DP design matrix representing inconsistencies 82

Figure 4.8 All components in Aircraft simulation ... 84

Figure 4.9 Screenshot from F18 federate includes F16, F18, and Su25 federates 86

Figure 4.10 Software components ... 87

Figure 4.11 FR-DP design matrix of Control component 88

Figure 4.12 FR-DP design matrix of Terrain component 89

Figure 4.13 FR-DP design matrix of GUI component ... 90

Figure 4.14 FR-DP design matrix of System component 91

Figure 4.15 F16 component and interfaces .. 92

Figure 4.16 F16_Request component .. 93

 xiv

Figure 4.17 F16_Service component ... 94

Figure 4.18 FR-DP design matrix of F16 component ... 95

Figure 4.19 Feature Model of simulation domain ... 96

Figure 4.20 Domain FR-DP design matrix of domain and application 97

Figure 4.21 Selected features ... 99

Figure 4.22 Mature Domain FR-DP design matrix of application after constraint

evaluation ... 100

Figure A.1 Design matrix of Author component ... 119

Figure A.2 Design matrix of Database component .. 120

Figure A.3 Design matrix of Edit component .. 121

Figure A.4 Design matrix of File System component ... 122

Figure A.5 Design matrix of Paper component ... 123

Figure A.6 Design matrix of Paper Topic component ... 124

Figure A.7 Design matrix of Submit component ... 125

Figure A.8 Partial process diagram of submit method (adapted from [1]) 126

Figure A.9 Design matrix of System Environment component 127

Figure A.10 Design matrix of Utility component .. 128

 xv

LIST OF ABBREVIATIONS

ADCO Axiomatic Design with Component Orientation

ADT Axiomatic Design Theory

CN Customer Need

CORBA Common Object Request Broker Architecture

COSE Component Oriented Software Engineering

COSEML Component Oriented Software Engineering Modeling Language

COTS Commercial Off-The Shelf

CSP Communicating Sequential Process

DCOM Distributed Component Object Model

DM Design Matrix

DP Design Parameter

DSM Design Structure Matrix

EJB Enterprise JavaBeans

FR Functional Requirement

HLA High Level Architecture

IDL Interface Definition Language

OMT Object Model Template

OO Object Oriented

PV Process Variable

UML Unified Modeling Language

OWL Web Ontology Language

 1

1. INTRODUCTION

CHAPTER 1

INTRODUCTION

The Axiomatic Design Theory (ADT) has been proposed by Suh as a scientific

approach [100-103]. ADT encapsulates the design process from customer needs to

product, utilizing two fundamental axioms and corollaries to obtain “good design”

in terms of complexity, maintenance, and testing concepts. ADT has been applied to

software engineering for structured analysis and development of software designs

[32], object oriented software design [19, 33, 34, 91, 101], requirements

management [46], and project planning [98]. In this study, we applied ADT to

Component-Oriented Software Engineering (COSE) [113, 114, 116, 118, 119] and

named the new approach as Axiomatic Design with Component-Orientation

(ADCO). We also added some enhancements to ADT such as collaboration

diagrams [114] that are proposed to identify dependencies in the ADT’s design

matrix, deadlock detection [112, 120] to test solutions against requirements,

component interface representations in terms of COSEML [114], component

congruity measurement in terms of information content [111], and Feature Models

[64] utilized to identify customer needs.

Using component technologies is one of the cost-effective ways of constructing

systems. In Component-Based software engineering approaches, system design and

component usage are not drastically different from Object-Oriented software

development [37]. However, in COSE, components, identified based on customer

requirements and their composition, are represented, hence avoiding code

development. In one of the COSE approaches namely COSEML [36, 37],

requirements are evaluated and systems are created through structural

decomposition. COSEML approach is based on the available components and

developer experience. Success of system development with COSE is dependent on

 2

availability of mature domains. Mature domains including various components still

carry some problems in terms of integration. In this dissertation, we are proposing

another COSE approach based on ADT that is Axiomatic Design with Component

Orientation (ADCO) for mature domains. One advantage of integrating ADT and

COSEML [36, 37] is to support component interfaces with more information. Well

defined interfaces and constraints help to locate and integrate components [21]. If

information about the components is not adequately presented to the developers, the

developers will not optimally benefit from the reuse potential of the components.

In our approach, we assume that the services published by components are

implemented to solve functional requirements. Incorporating ADT, supplements

component interfaces with a design matrix that stores all relationships among

functional requirements and interface items (methods, attributes, and events). Also,

any component internal dependencies as well as external dependencies are possible

to represent.

There are two opposite approaches for system design. In the first approach, same set

of functional requirements can be solved with the same solution set. This approach

increases reliability, decreases design cost because most of the design problems

have been identified and solved before. The gained expertise is transferred to the

mature domain for future use. Also mature domains increase chance of utilization

success for components. But at the same time, this approach prevents finding more

effective solutions. The second approach proposes to focus on functionalities

without considering available designs [45]. Since in software world, reuse is a

primary goal in the software development because of well known reasons, ADCO is

closer to the first approach.

In a mature domain, a generic system is defined that is utilized in the instantiation of

specific products. Mature domains include experiences of the designer. Experiences

are reflected to the mature domain with various constraints. Constraints which relate

to components, features, requirements, design parameters, and dependencies should

be evaluated and utilized to guide designers. Expert requirements analysts can

 3

decide which functional requirements can be defined in a new system through

interpretation of the customers' needs. Customer needs can be identified with

various tools such as brainstorming, interviews, observation of work patterns,

reverse engineering, technical documentation review etc. [45]. We have utilized

features [64] to identify customer needs. Feature Models as a domain analysis tool

provides a communication environment between customers and other stakeholders

such as designers. Since features can include requirements, implementation level

information, constraints, etc., they can be useful in mature domains. Therefore, one

of the contributions in this study is to construct a bridge between customers and the

solution, based on available solution alternatives in mature domains. Another

advantage of Feature Models is guidance for customers to express themselves with

available materials (features). Generally, customers do not express themselves

because of cultural/educational differences between customers and designers.

Customers define their needs using the domains Feature Model through selection of

features. Designers benefit from the selected features to specify Functional

Requirements for specific systems originating from the mature domain. We define a

mapping approach based on ontology among the features and ADT domains

corresponding to requirements, design, and implementation domains.

Beyond this first chapter, the dissertation is organized as follows: In chapter 2,

required background and our related studies are described. In Chapter 3, our

ontology creation method is described. In Chapter 4, ADCO approach is explained

and applied to two different domains namely Conference Management System (web

service based application) and High Level Architecture [54] based simulations. A

brief conclusion for this dissertation and further work that can be performed based

on this work is represented in the last chapter.

 4

2. BACKGROUND

CHAPTER 2

BACKGROUND

2.1. Axiomatic Design Theory

Axiomatic Design Theory (ADT) is a systematic methodology to decompose

requirements and solution in a top-down fashion that assists designers to structure

design problems [101, 103, 104]. Ultimate goal of ADT is to reach the “best” or

“good” design as other Decision Based Design (DBD) methods and methodologies

[82]. ADT is an interdisciplinary approach which is applied to various engineering

domains such as mechanical [80, 130], GRID engineering [107], and software

engineering such as structured analysis and development of software designs [32],

object oriented software design [19, 33, 34, 91, 101], requirement management [46],

project planning [98], and Component-Oriented software design [113, 114, 116,

118, 119]. Also, research has been conducted for incorporating collaboration

diagrams [114], deadlock detection [112, 120], COSEML [114], component

congruity [111], test concepts [46] in the ADT. Concepts of ADT are introduced in

section 2.1.1 and a systematic approach for Object Oriented design is explained

briefly in section 2.2.2.

2.1.1. Concepts of Axiomatic Design Theory

Essentially, axiomatic design concentrates on four concepts: domains, hierarchies,

zigzagging, and axioms [101]. The following subsections explain those concepts.

2.1.1.1. Domains

The domains are divided into four inter-related parts: (1) customer domain, (2)

functional domain, (3) physical domain, and the (4) process domain, providing

 5

respectively, Customer Needs (CNs), Functional Requirements (FRs), Design

Parameters (DPs), and Process Variables (PVs), as shown in Figure 2.1.

Figure 2.1 Domains and their elements (adapted from [101])

The relation between the domains is expressed as “What” and “How” questions

(e.g. what the customer wants (CN) is addressed by how it is accomplished (FR)).

FRs are defined as a minimum set of independent requirements that completely

characterize the functional needs. The FRs represent system requirements in a

hierarchy that specifies CNs and should describe the expectations from the products,

and how such expectations should succeed is not of concern. DPs are defined as the

key physical variables such as methods, services, components, and some

abstractions in terms of software that characterizes the design that satisfies the FRs.

The PVs satisfy the DPs with implemented items such as implemented components.

Design domains can be interpreted differently by various disciplines as listed in

Table 2.1. As represented in Table 2.1, in this dissertation, we have characterized

customer attributes as features [64] in the customer domain. Features are mapped to

FRs and there are many to many relationships among FRs, DPs, PVs, and features.

This is one of our contributions to ADT. How relationship between FRs and

features are defined is explained in Chapter 3.

Customer
Needs

Functional
Requirements

Design
Parameters Process

Variables

Customer
Domain

Functional
Domain

Physical
Domain

Process
Domain

 6

Table 2.1 Meaning of the design domains in various disciplines (adapted from

[101])

 Customer
Domain

Functional
Domain

Physical
Domain

Process
Domain

Manufacturing Customer
attributes

FRs specified
for product

DPs that can
satisfy FRs

PVs that
control DPs

Materials Desired
performance

Required
properties Microstructure Process

Organizations Customer
satisfaction

Functions of
the

organization

Programs,
offices,

activities

People and
other

resources to
support

programs

Systems

Attributes
desired of the

overall
system

FRs of the
system

Machines,
components,

subcomponents
Resources

Business ROI Business
goals

Business
structure

Human and
financial
resources

So
ft

w
ar

e

General
Attributes

desired in the
software

Output
specification
of program

codes

Input variables,
algorithms,
modules,

program codes

Subroutines,
machine
codes,

compilers,
modules

Object
Oriented

Customer
attributes Objects Data

Subroutines,
machine

codes

Component
Oriented

Attributes
desired in the

software
(features)

FRs specified
for products

Processes,
methods,

abstractions
(component,

interface,
package)

Real
components

and web
services

Constraints are used to define the boundaries of the acceptable solutions and they

have to be consistent with each other [101]. There are two kinds of constraints

namely input and system constraints [101]. Input constraints are defined in the

beginning of design activity and affect the whole design decisions for instance

price, time, industrial standards, environment constraints, etc. System constrains

 7

such higher- level design decisions are specified during design process. In this

study, we have used ontology definitions as explained in Chapter 3 to define some

input constraints.

2.1.1.2. Hierarchies

The second concept of axiomatic design that is consistent with Simon [96] is

hierarchical decomposition process for all ADT domains. According to Simon, an

important approach to solving complex problems is to divide the problems into

simpler parts, solve them, and integrate into the solution [96]. Thus, axiomatic

design decomposes the problems (functional requirements) into simpler parts since

it has a top-down approach (hierarchies), while introducing the concept of

Zigzagging in all axiomatic design domains.

2.1.1.3. Zigzagging

The third concept is Zigzagging. Instead of decomposing only the FR domain

thoroughly, independent of any other domain, zigzagging allows a parallel

decomposition of all four domains. Process starts with specifying the customer

needs. FRs are specified by answering the question, “What must this design do to

satisfy our customer’ needs?” We used Feature Models to define customer’s needs.

Hence, the decomposition of a complex problem starts with determination of the

most general FR from the customer needs. Then, the designer “zigs” to the DP

domain and determines an appropriate DP to fulfill that particular FR. Once a DP is

chosen to satisfy FR and the DP is not implementable, then the designer “zags” to

the FR domain to a level below the former FR, thus creating a dependency of that

particular FR to the previous DP choice. This process of zigzagging continues until

all the leaves of the DPs are satisfied with implementable PVs, as shown in Figure

2.1 and Figure 2.2.

 8

Figure 2.2 Zigzagging (adapted from [101])

2.1.1.4. Axioms

The fourth concept establishes two axioms to select the best design among

candidates and also accelerate the design in the right direction without much trial

and error [69]. Axioms defined based on the investigation of various system designs

in different engineering disciplines are listed below [101]:

Axiom 1 (Independence): “Maintain the independence of the functional

requirements”: The independence here corresponds to the functional

requirements set so that a requirement is understood easily without having to

refer to the others extensively. The axiom leads to keeping the design

simple.

Axiom 2 (Information): “Minimize the information content of the design”:

Information content is measured based on the design range specified by the

designer and system range provided by DP. This axiom also prevents the

design from getting unnecessarily complex.

Mappings between domains are represented using a square design matrix implying

the expectation that one FR should correspond to one and only one DP. Square

design matrices are recommended to provide independence axiom but design may

be started with non-square matrix. There are two kinds of design matrices in ADT

FR DP

 Functional Domain Physical Domain

 9

namely FR-DP and DP-PV matrices called Process Matrix. Mappings between FR

and DP vectors can be represented in equation 2.1 where |A| is called the FR-DP

design matrix.

=

2

2

1

333231

232221

131211

3

2

1

DP
DP
DP

AAA
AAA
AAA

FR
FR
FR

(2.1)

Elements of the equation can be written as defined in equation 2.2.

3332321313

3232221212

3132121111

DPADPADPAFR
DPADPADPAFR

DPADPADPAFR

++=
++=
++=

(2.2)

Similarly, DP-PV matrix is represented in equation 2.3.

=

2

2

1

333231

232221

131211

3

2

1

PV
PV
PV

BBB
BBB
BBB

DP
DP
DP

(2.3)

 10

Figure 2.3 Partial Design Matrix of Submit Component Interface

The mappings between domains can be described with “X” symbols in related cells

of the matrix. So if Aij is “X” then FRi is related to DPj for the FR-DP matrix.

Otherwise, the case of no relationship is indicated by “0” as depicted in Figure 2.3.

In the design matrix, FRs are represented in rows and DPs are represented in

columns. As an example, FR1.1.1 is satisfied by DP1.1.1 and DP1.2.5. The main DP to

satisfy FR1.1.1 is the DP1.1.1. The DP1.2.5 is the supporter DP required by DP1.1.1.

2.1.1.4.1. Independence Axiom

The Independence Axiom is used to identify whether the design is coupled,

decoupled, or uncoupled by utilizing design matrices. Independence axiom is used

during decomposition to reduce couplings. Coupling corresponding to the

dependencies among FRs increases the complexity of a system. The three cases

involved in such fulfillments are as follows:

 11

• Uncoupled Design: This kind of design is the ideal case, but rarely occurs in

the real world. Each FR is satisfied by one DP so that a diagonal design

matrix is produced. Diagonal matrix is formed when Aij =0 except those

where i=j.

• Decoupled Design: This arrangement occurs most often in the design world.

The design matrix must be triangular, meaning that all the relationships

indicated by “X” must be placed at only one of the sides of the diagonal in

the design matrix.

• Coupled Design: The relationships “X”s are everywhere in the design

matrix, indicating a highly interdependent design.

Independence axiom should be applied after partitioning algorithms [97, 99].

Although some designs can be seen coupled, after the application of partitioning

algorithms they can be converted to decoupled designs. A design can satisfy the

independence axiom if it is uncoupled or decoupled. There may be a unique solution

that satisfies the FRs in a coupled design but such a design produces various

problems. For instance, if one of the FRs is changed all the design matrix is effected

from this change. If the system is uncoupled it provides advantages such as FRs and

related DPs can be changed or modified dynamically without affecting others. This

property is important for Component Oriented Approaches. Another advantage of

the uncoupled design occurs during decomposition. Uncoupled parts can be

decomposed separately from others. Any modification of the higher-level FRs is

local in uncoupled designs.

The coupling degree of a design matrix can be a quality factor for design. Coupled

designs can cause unintended consequences [34] such as deadlocks [120]. An

approach has been proposed to measure strength of a coupled design [99]. Another

method is proposed by Suh [102] named imaginary complexity and calculated as

equation 2.4:

CI = - log 2 (z/m!) (2.4)

 12

where z is the number of acceptable sequences and m is the design tasks. Therefore,

fuzzy values can be obtained to evaluate the coupling degree of a design. In another

study, we combined ADT and Design Structure Matrix [97] to identify some design

conflicts [44, 120].

2.1.1.4.2. Information Axiom

A problem can be solved by different designers through different functionally

equivalent and acceptable set of solutions. The main goal of the information axiom

is to define the best solution among alternatives providing a quantitative

measurement to determine the complexity of a design [101].

Probability of success Pi is defined as the overlapping of the System Range (SR)

that is provided by the DP and the Design Range (DR) that is provided by the

design. In terms of probability of success (Pi) of FRi and the information content (Ii),

information content of the system (Isys) for the case where all FRs are independent is

represented in equation 2.5.

i

n

i

n

i
isys PII ∑∑

==

−=−=
1

2
1

log (2.5)

When an FRi is not statistically independent, conditional probability of success

Pi|{j} is calculated with all other correlated FRj where j = 1,…,m. The information

axiom states that the minimum information content Isys is the best. The overlapping

area between the design range and the system range is called the common range as

shown in Figure 2.4. Pi is represented with proportion of them as given in equation

2.6.

SR
CRPi = (2.6)

 13

Figure 2.4 Design range, system range, common range, and system probability

density (adapted from [101]).

Although, designers should satisfy the independence axiom first for acceptable

designs, there is a relationship between independence and information axioms.

Coupled designs cause more information content than decoupled designs. ADT

states that there can be decoupled or uncoupled designs which have less information

than coupled design.

A direct relationship between information measure and Taguchi’s Quality Loss

Function and a new measure of quality named Signal to Noise (S/N) ratio is

identified in [69]. Depending on the study, when a DP has low information content,

it has also low quality loss and high S/N ratio.

It is possible that semantically correct and deadlock free components may not be

composed because of their constraints [111, 116]. Information axiom can be used

for accordance measurements of component to design or component to component.

For applying the information axiom, all components and applications must be

designed based on our axiomatic design approach introduced in Chapter 4.

Although it is not mandatory to define the design range of components or

 14

applications, some of them can have this definition. For example, we can assume

that there are two components. One of them is a wind turbine that produces

electricity from wind speeds in the range of 5 to 25 km/hr and the other is the

environment component that produces a range of wind speeds that is 50 to 100

km/hr. These two components are suitable to compose in terms of their interfaces

but their design ranges are not. That means if we compose these components, the

wind turbine component will not do anything. Also application developer can define

design ranges such as a wind tribune application that can run with winds of 1 to 10

km/hr strength. We have utilized the information axiom to calculate congruity

among methods of components [111, 116]. Regular information content calculation

is based on the FR and DP ranges. The client server relationship between FRs and

DPs can also be among methods since methods can call other methods. A designer

only concentrates on the satisfaction of the FRs with DPs. DPs such as methods

need other methods which are not considered in design. When a method is called,

the method can call other methods of components if all required components which

are required are in the system. We have identified three cases to utilize information

content between methods:

1. This is regular form of calculation of information content. An FR satisfied

by a DP is shown in Figure 2.5.

Figure 2.5 Probability of DP1 success with specified FR (adapted from [111, 116]).

 15

2. This case can occur when the range of FR is not defined and a DP calls

another DP. In this situation, we can calculate method-to-method

information content. If DP1 is called by DP2 then the design range of DP1

can be accepted as the system range as shown in Figure 2.6.

Figure 2.6 Probability of success graph of composed two components (adapted from

[111, 116]).

3. For the calculation of information content of composed methods,

intersection area of DPs can be accepted as system range as shown in Figure

2.7. This depicts the composed DPs harmony within the given design range

that correspond to a FR. Common area of DPs’ ranges forms the system

range. Information content calculated based on the common area of the

intersection of FR’s design range and the system range.

Applications are formed from components and components share methods. We have

applied this method to evaluate congruity of components and to guide designer

about detecting conflicts among components.

 16

Figure 2.7 Probability of success for a composition of two components with

specified FRs (adapted from [111, 116]).

Information content represents the FRs’ satisfaction by DPs. Similarly sum of the

information contents of methods in a component represent the satisfaction degree of

the component depending on other components. Value of information content will

increase based on the number of methods, and ranges. Evaluation of the value of

information content is left up to designer. It should be noted that zero value

represents the best congruity and infinity represents the incongruity. In the

incongruity case, designer has to decide which components will be changed or

modified. Designer can decide to change or modify the component that has infinity

value or its neighbors cause the infinity value.

In our case study [111], we generated seven components (C0…6) and their related

eleven DPs with design ranges that are as listed in Table 2.2. Publish-subscribe

information is obtained from Figure 2.8. For instance, C0 publishes DP1, DP10 and

subscribes to DP0, DP3, and DP9. As an example, C0 subscribes DP0 with ranges

between 50 and 150, and publishes to DP1 with ranges between 30 and 100 as

shown in Table 2.2.

 17

Table 2.2 Design Ranges of Components (adapted from [111, 116])

 DP0 DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 DP9 DP10

C0 50,

150

30,

100

 60,

70

 10,

50

100,

200

C1 5,

45

300,

400

 1000,

3000

50,

200

 20,

30

C2 100,

350

0,

100

 30,

150

 50,

150

C3 500,

1000

C4 0,

150

10,

150

100,

200

C5 0,

300

C6 0,

5000

Figure 2.8 Mature domain (adapted from [111, 116])

We assume the FR design ranges are specified by application designer as listed in

Table 2.3. We can obtain the probability of success for FRs as listed in Table 2.4

and total information contents are listed in Table 2.5. There are only three

C1 C0 C4 C5

C3 C6 C2

DP1 DP0

DP9 DP5 DP7

DP8

DP3 DP10 DP4
DP2 DP6

 18

components that relate with FR’s design ranges as listed in Table 2.4. We know that

smaller information content means better fit for composition. If information content

of component is not infinity then these components can be accepted for

composition. However, if there are similar components then the component which

yields less information content is selected.

Table 2.3 FR design ranges (adapted from [111, 116])

 DP1 DP3 DP9

Design Ranges 10 - 40 50-150 0-100

Table 2.4 Probability of success for FRs (adapted from [111, 116])

Components DP1 DP3 DP9

C0 0.142 1.0 1.0

C1 0.75 1.0

C2 0.5

Table 2.5 Information content of components corresponding to the related design

ranges (adapted from [111, 116])

Components Information content

C0 2.807

C1 0.415

C2 1

C3 0

C4 0

C5 0

C6 0

 19

When our third approach is applied for calculating the information content (utilizing

intersections), results in Table 2.6 are obtained. Information content of C3 is

calculated as infinity. We know that infinity value depicts the incongruity between

components. Therefore, C3 or connected component (C1) has to be modified or

replaced with another one in the domain or a new component should be developed.

Table 2.6 Information content of application components

Components Information content

C0 0

C1 1.16

C2 7.38

C3 infinity

C4 1.5

C5 0

C6 0

2.1.2. Axiomatic Design of Object-Oriented Software Systems

One of the applications of ADT is Object-Oriented (OO) software systems [33, 34,

101]. A systematic OO programming methodology is represented in Figure 2.9. OO

development with respect to ADT starts with considering the customer needs and

continues towards completing a design matrix obtained and then the design matrix

is mapped to class diagrams as depicted in Figure 2.10. The created class diagrams

are implemented and integrated. In this methodology, FRs are accepted as an object

which has behavior. The DPs represent the DATA which are used by behaviors.

FR-DP dependencies are represented in a matrix and mapped to class diagrams as

methods. We have extended this approach for component oriented software

engineering, as described in Chapter 4. In another OO software engineering

 20

approach based on ADT [33, 34, 91, 101], functional requirements are represented

with use case diagrams.

Figure 2.9 Systematic OO Programming with Axiomatic Design (adapted from

[34])

Figure 2.10 Mapping between design matrix and OO class diagrams (adapted from

[101])

Parent
Level

FR
(NAME)

Leaf Level
FR

(Behaviour)

Design Matrix
Elements

(METHOD)

Parent Level DP
Leaf Level DP

(DATA)

Class NAME
DATA

METHOD
Mapping

 21

2.2. High Level Architecture and Object Model Template

Both High Level Architecture (HLA) [54-56] and its ancestor Distributed

Interactive Simulation (DIS) [51, 52] were developed by the US Department of

Defense to provide a common architecture for simulations. HLA provides re-

usability and interoperability among federates. The first version of HLA was

released in August 1996, and the final version was released in March 1998. The

responsibility for HLA evolution was moved to IEEE’s Simulation Interoperability

Standards Committee in 1997 [81]. The committee has released three standards to

define the core specifications [109]:

The Framework and Rules [54] (IEEE Std. 1516) specify the federation and federate

responsibilities through ten defined rules. HLA Federate Interface Specification [55]

(IEEE Std. 1516.1) defines the standard services of an interface to runtime

infrastructure (RTI). The RTI is a simulation-oriented middleware that provides

services. The RTI describes the interface between federates and the RTI in six

classes of services, namely federation management, declaration management, object

management, ownership management, time management, and data distribution

management. For using these services, HLA application programming interfaces are

prepared for various programming languages (C++, ADA 95, Java, and WSDL).

Therefore, federates implemented in different platforms can communicate with

others in federations.

Figure 2.11 depicts the structure of communication between federates. All

communication must be provided by the RTI. Publish/subscribe methods are used

for the communication of federates in HLA simulations. A federate that wants to

announce a variable or an interaction declares to the simulation environment that it

will publish. Federates, that are interested in the variable or interaction that is

published, subscribe to it [56]. Federates do not require to have information about

the location of each other in the environment. For executable simulation, at least

one publisher has to publish an attribute or interaction for other federates to

subscribe to it. RTI controls the data and procedure flows among concurrently

running federates like an operating system.

 22

Figure 2.11 High Level Architecture based components communication (adapted

from [118])

HLA Object Model Template (OMT) [56] is used to specify the interface of

federates (known as Simulation Object Model (SOM)) that describes which items

(objects, attributes, interactions (methods), parameters) will be exchanged with

other federates. Also OMT is used to specify simulation objects which will be

shared in a federation (known as a Federation Object Model (FOM)). A FOM file is

used during the beginning of a federation; however, a SOM file is used only to

describe the federate. Federates do not communicate with one another directly;

therefore, each federate defines objects which will be shared (published) with others

and required (subscribed) from others in the SOM file. Objects are defined in

fourteen tables (object model identification, object class structure, interaction class,

attribute, parameter, dimension, time representation, user-supplied tag,

synchronization, transportation, switches, data type, notes, and FOM/SOM lexicon)

of an OMT. These tables define all the information about the federate or the

federation.

Federation Development and Execution Process (FEDEP) [57] introduce a process

to create federations, promoting interoperability among federates. Our component

oriented approach is applied to FEDEP process as defined in Section 4.2.2.

In 2005, the HLA Evolved Program Development Groups (EPDG) was established

to evaluate proposals for improving IEEE standards in the areas of WSDL API for

Federate Federate

Runtime Infrastructure

 23

IEEE 1516.1, fault tolerance, dynamic link compatible HLA API for IEEE 1516.1,

XML schema for IEEE 1516.2, conformance specification, and additional flexibility

in update rate [81]. In terms of component oriented approaches, a federate is called

an “HLA component,” and a federation that consists of more than one component is

called a “distributed system” [84, 87]. An HLA component can be a computer

simulation, a manned simulator, a simulation utility (data collector, passive viewer,

etc.), or a simulation interface to live players [27, 29]. An HLA component can

consist of one or more software components.

Interoperability has been considered from two perspectives: technical

interoperability and substantive interoperability. Resolving technical

interoperability issues ensures that the federation will run, but says nothing about

the adequacy of the federation to accomplish its mission. Technical interoperability

includes composition anomalies defined in [28, 47, 108, 109]. These anomalies

should be detected and solved during composition of federates. Substantive

interoperability is driven by the needs of the federation and has to be addressed by

each federation in a federation specific way [8].

2.3. Component Oriented Software Engineering

All industries attempt to reduce cost and time required to develop increasingly

sophisticated products without sacrificing reliability. Reuse is the primary goal of

the components. There are various and similar definitions of components; one of

them is [50] “software components are (binary) units of independent production,

acquisition, and deployment that interact to form a functioning system.” Definitions

of components are not enough to define all properties of them. We have identified

some common properties of component definitions as following:

• As defined by Szyperski [105], component reuse will be cost effective easier

than redeveloping it. We can expand the easier term as cheaper, time

effective etc. Their weight is dependent on the stakeholders. For example,

important issue for some stakeholders is time, for another, cost.

 24

• Components can be developed in different programming languages and then

compiled. Therefore, binary form of components is language-neutral. For

example, a component can be developed through a C++ environment, and it

can be composed by EJB components.

• Components should provide enough information about themselves. This

information should be what components are publishing as services and what

they need from other components. Five level categories are introduced to

represent the information in [13, 77] :

• Syntactic Level (Basic Contract): Signature of the component (such as

Interface Description Languages defined by CORBA, COM) which

includes published operations, input output parameters, and possible

exceptions. Most of the component interfaces include this level of

information. However, signature of the component does not provide

required information to compose components [127]. Since internal

mechanisms are not known factors proposed, they cannot be considered

during component quantification of third–party components [Bro96].

• Behavioral Level: Semantic descriptions are represented. Since third

party component users do not have access to component

implementations, they can only expect the component to do the

functionality what method names imply. To provide more information

about components, Boolean assertions and pre and post conditions can

be used. In COSEML [37], required relations among components are

represented in a graphical form.

• Synchronization Level: Concurrency issues are represented. One

approach is synchronization policies attached to components. Another

approach proposed by Yelling and Strom [127] introduce collaboration

specification that consist of set of sequencing constraints that defines the

legal ordering of messages.

 25

• Quality-of-Service Level: Nonfunctional requirements are represented

such as maximum delay, average response, quality of response, etc.

Quality attributes for components are introduced with more detail in [12,

60].

• Non-Technical Level: Business oriented information such as submitted

by, resource url, category, language, marketing type, version number

contact address, price, etc. [11].

• Components can be developed or implemented independently.

• Components reduce maintenance costs. Modifications on components are local

because of the inherent encapsulation of components.

• Components reduce test costs. Although, components are self tested, they also

should be tested in the application based on such as a black box technique.

• Components increase the reliability of applications. Components are shared

among various applications; therefore they are tested in different application

sets. Component usage provides more reliable systems than newly coded

systems.

• Components can be classified as visual (controls and containers) and non-visual

components (command packages, interacts with visual objects such as spelling

checker, library, business, and framework) [121].

• Components can offer many interfaces [37, 59].

We refer to components for two separate purposes: 1- as software components 2- as

federates of HLA (HLA components) [54-56].

Inter-connection technologies .NET, CORBA and J2EE provide environments for

components to create runtime instances of components, discover other components,

 26

and communicate components. These technologies provide mainstream software

buses for components to connection. Ideally, each component should be able to

connect with components developed anywhere; bridges among technologies provide

capability to connect components wherever there are problems due to different

technologies.

In software engineering world, objects and components are confused most

commonly. Although, components and objects have commonalities such as

encapsulation, well defined interfaces etc., an object is not a component [105].

Object exists at runtime, while components are binaries. Components can be

developed through highly collaborative objects (classes), but when they are

compiled they form components. Users of the component do not need to know how

a component is internally represented such as class diagrams etc. Therefore another

difference is the granularity between objects and components. One of the important

concepts in object orientated software engineering is inheritance. Instead of

inheritance, composition is proposed in Component Oriented Software Engineering

(COSE).

Other confused terminologies are Component-Based and Component-Oriented. In

component-based approaches component development and integration is essential

but Component-Oriented approaches are based on integration of already available

components [37].

Some challenges exist that can be generally attributed to following:

• Multiple competing standards such as .NET, CORBA and J2EE [62].

• Lack of standards (such as documentation), as is often the case with

separately designed components [62].

• Component interfaces present insufficient information about its capabilities

and functionalities [13, 62, 70, 77].

 27

• Component finding through internet is defined as a cumbersome effort in

2002 [121], and still continues. Some web sites for component searching are

listed in [121].

• Lack of security policies. Especially during component selection security

requirements should be identified and defined by components [76].

• Functional congruency: when composing with other components some

incompatibilities can occur such as:

o Type problem such as a method can get a parameter as integer and

other component can try to call the method with real. To solve this

problem interface mapping is required [127].

o Protocol (synchronization or control) problems. [127]. To solve this

problem, Yelling and Strom [127] introduce collaboration

specification.

There are two approach to solving complex problems namely top-down and bottom-

up. In bottom-up approach, components are iteratively composed into higher level

components until a system that satisfies the customer expectations is emerged [10].

In this approach, components are being composed without considering the system.

There is no idea about the whole system when composition is started. In top-down

approach, most abstract requirement based on customer needs is specified and

decomposition is started. Decomposition progress toward concrete components. In

top-down approach, complex problems are solved by the “divide and conquer”

approach, which seeks to divide the problem into simpler parts, solve them, and

integrate into a viable solution [18, 96, 106]. Problem of the top-down approach is

requirements analysis. Such as designer in the beginning can define abstractions

wrongly because of missing requirements, inconsistent requirements etc. [10].

Practical experiences indicate hybrid approaches being the best for component

based-oriented systems [10]. A kind of approach is introduced by Dogru and Tanik

named COSE Modeling Language (COSEML) [37]. COSEML stresses that while

top-down decomposition is continuing, existing components should be kept in mind.

 28

2.4. COSE Modelling Language

Component-Oriented development environments generally assume the existence of

already developed components as an integral part of a successful Component-

Oriented development process [37, 59]. COSEML is a graphical modeling language

utilizing a single hierarchy diagram supports this. Modeling starts with a top-down

decomposition of a system while defining its modules in such a way that those

modules can be matched by available components. Therefore, system development

is reduced to a decompose-find-integrate operation instead of define-develop from

scratch. Component-Oriented development environments generally assume the

existence of already developed components as a requirement for a successful

Component-Oriented development process [37]. To be effective, available

components should be considered while decomposing the system. COSE separates

the parts of the system (components) from its abstract specification. A COSEML

specification consists of two parts: abstractions and components as shown in Figure

2.12. Decomposition starts with a package and a package can include more than one

component or sub packages. Each component has zero or more interfaces to

represent its properties, methods in, methods out, events in, and events out elements.

The methods in and events in represent the published services of a component and

the methods out and events out represent the subscribed services of other

components. COSEML representation forms the static view of the system structure.

There is a need for a dynamic model to verify compatibility of static structure with

requirements. Therefore, logical and run- time collaboration diagrams are used [35,

123]. If a given set of abstractions are not enough to provide the required

functionality then decomposition must be reconsidered.

 29

Figure 2.12 COSEML symbols used in this study (adapted from [114])

Component oriented approaches have not incorporated the relationships among

requirements (FRs) and solutions (Design Parameters (DPs)). Although interface

concepts are important, interfaces do not include enough information to describe

components. Therefore, we presented an approach [114, 116, 118] that composes

the axiomatic design and COSE concepts. This approach provides an environment

to design and develop components and applications in a mature domain. A mature

domain is formed from components that are designed using this approach. This

approach contains the design matrix that is used to keep relationships between FRs

and DPs. COSEML and design matrix depict the different views of systems. While

COSEML presents the system view with components and their integration, design

matrix presents the relationships among FRs and DPs (property, method, and event

names) as shown in Figure 2.13. Creation of design matrices suffers from missing

of a method to specify the dependency relationships among FRs and DPs. It is

completely left to the developer. In [114], we proposed usage of the collaboration

diagrams to find these relationships. After specifying components, they can be

verified depending on specific scenarios. Scenarios are prepared using run-time

collaboration diagrams. Assuming that all components are designed with Axiomatic

Design, giving two advantages:

 30

1. We can see the relations among DPs (attributes, methods, events) in one

component,

2. Design matrix carries the information on why a specific DP is used or which

functionalities are satisfied.

Figure 2.13 Axiomatic design representation (left side) and COSEML

representation (right side)

The method includes the construction of the COSEML model and the design matrix

of ADT corresponding to the system. Table 2.7 lists the steps to perform our

suggested development method in [114].

 31

Table 2.7 Development Process (adapted from [114])

Step Description

1 Construct the COSEML decomposition and compatible design matrix for

abstract levels.

2 Prepare the logical collaboration diagrams for abstract functions of

COSEML diagram.

3 Specify available and missing components

4 Add FRs and DPs of components, gathering from their design matrices, to

the system design matrix. If there is no candidate component then define

components with interfaces and specify corresponding FRs and DPs in the

system design matrix.

5 Prepare the run-time collaboration diagrams for each specific scenario.

6 Verify the components’ functionality with run-time collaboration diagrams

7 Develop missing components depending on run-time collaboration

diagrams and design matrices.

8 Integrate components.

2.5. Design Structure Matrix

The Design Structure Matrix or Dependency Structure Matrix (DSM) was

developed by Steward [97] for representing and analyzing task dependencies. DSM

also provides a visual representation to detect requirement of compositions and

decompositions [15]. Categorized DSM applications are given in [15] in a form

such as component-based representation that represents component relationships,

team-based representation that represents team relations; activity-based

 32

representation that represents information flows, and parameter-based

representation that represent physical design parameters relationships. Since DSM

uses a square matrix called N2 diagram. We utilized DSM for component-based

applications where the elements listed are one-to-many comparisons of four

components and component-component interactions as shown in Figure 2.14 and

Figure 2.15. Some applications of DSM’s cells include more than one information

such as spatial, energy, information and materials [92]. For the simplicity, relations

represented with “X” as in design matrix of ADT are depicted in Figure 2.14. In the

matrix in Figure 2.14, the publisher components are listed in the columns and the

subscriber components are listed in the rows, such as component B, provides some

information to component C and component D. Also it can be inferred that

component D is a subscriber component publishing nothing to other components.

 A B C D
A A
B X B X
C X X C
D X X D

Figure 2.14 Example Design Structure Matrix (adapted from [120])

Relations are used to calculate coupling degrees of components similar to ADT.

Coupling degrees of components show their run time communication way;

uncoupled components can be executed concurrently, decoupled components can be

executed sequentially since one component influences the behavior of another

element in a uni-directional fashion, and coupled components may not be executed

together. Coupled components assembly can result in architectural mismatch when

trying to integrate components with incompatible interaction behavior resulting in

deadlocks, live-locks, or failing to satisfy some desired functional properties of the

system [58]. Complexity of DSM matrix is reduced using partitioning algorithm

[97, 99] that rearranges the DSM matrix.

 33

In one of our studies [120], we utilized DSM to detect coupled components.

However, not all coupled components can be detected by DSM which cause

deadlock. Component dependency relation in DSM matrix represents high-level

relationships among components. Low-level (wiring level) relations have to be

considered. We proposed to use Axiomatic Design Theory and design matrix to

identify the method and attribute interactions of the components and discover

deadlock situations among the coupled components [120].

DSM can be used to detect this kind of interaction that could lead to coupling. We

create a DSM shown in Figure 2.15 by considering the transition property

represented in Figure 2.8, as indicated by the conclusion that C0 C3 (C0 publishes

method(s) to C3), since C0 C1 (C0 publishes method(s) to C1) and C1 C3 (C1

publishes method(s) to C3). The values in the cells of the DSM show distance

values; e.g. In Figure 2.8, the distance between the C1 and C3 is shorter than the

distance between C0 and C3. One value in the cell represents the direct connection

between components. Such as, C5 and C4 components are directly connected as

shown in Figure 2.15.

 C5 C6 C4 C0 C1 C2 C3

C5 C5

C6 C6

C4 1 C4

C0 4 2 3 C0 2 1

C1 2 3 1 1 C1 2

C2 3 1 2 2 1 C2

C3 3 4 2 2 1 1 C3

Figure 2.15 DSM table for the components in the example (adapted from [120])

The DSM table as depicted in Figure 2.15 shows that C0, C1 and C2 are tightly

coupled. Coupled components can cause deadlock but not always. Our method to

 34

confirm whether the coupled components can cause deadlock or not, is by

developing the components using Axiomatic Design principles and by mapping

their DPs and FRs using a design matrix. For instance the design matrices for each

of the coupled components, C0, C1 and C2 could be developed based on same FRs

with different DPs. The design matrices for three components are shown in Figure

2.16 and Figure 2.17. Components can be used in composition only if their relations

do not occasion the components to deadlock as depicted in Figure 2.16. If the

coupled components do not cause a deadlock, they can be used to form a super-

component in the mature domain. Coupling test is a very difficult task for complex

systems which includes various components. To handle this problem, we have

proposed an approach [112] to utilize communicating sequential process (CSP) [48]

as defined in section 2.6.

Figure 2.16 Axiomatic design diagrams of components 0-2 (deadlock free) (adapted

from [120])

 35

Figure 2.17 Axiomatic design diagrams of components 0-2 (deadlock) (adapted

from [120])

2.6. Communicating Sequential Process

Communicating Sequential Processes (CSP) is a process algebra introduced by

Hoare [48]. CSP is a language and is supported by the tools: Failures-Divergence-

Refinement (FDR2) [40] for model checking and Process Behavior Explorer

(ProBE) [41] for state machine based models. Wright [2, 4] is an architecture

description language that uses a CSP like notation to describe components’ ports

and roles. For instance, HLA Runtime Infrastructure (RTI) [55] is formalized using

Wright to detect deadlocks and race conditions [3]. It should be noted that

developed tools translate the Wright representation to CSP for utilizing the FDR2

tool. CSP can also be used for modeling complex service choreography for

checking for deadlock among integrated services [128, 129].

Table 2.8 CSP expressions used in this article

CSP Expression Explanation

P[| A |] Q P and Q processes are partial interleaved parallel

composition. A is the set of the events. If A is empty then

composition of P and Q behaves interleaved parallel.

P ||| Q P and Q are interleaved parallel

 36

Table 2.8 (Cont’d)

e-> P Event e performed first and then Process P is executed

after an external trigger occurred.

SKIP Successfully termination

STOP Deadlock

Datatype x = a | b | c Defines x datatype with a set of alternatives

Channel e Defines event e

Channel e:x Defines event e with x datatype

e ? a Defines input on event e of an item defined during

channel definition. As defined in datatype, instead of an

item, b or c items can be used.

e ! a Defines output on event e of an item. After this expression

is performed, e?a expression in another process in waiting

situation can be performed. Input and output expressions

are used to provide synchronization.

Union Unions the sets.

In CSP, processes defined statically include a set of events. Events are atomic and

provide synchronization among processes. They are used to define the behavior of

processes. More than one process can be executed at a time in concurrent systems.

This causes well known problems such as deadlocks. CSP theory and FDR2 are

used for checking defined processes in terms of traces, stable failures, and failure-

divergence models. In this section, we will concentrate on the traces to check for the

deadlock situation in the composed system using the FDR2 tool. CSP expressions

that will be used in this article are listed in Table 2.8.

In one of our studies [112], we have utilized CSP to detect deadlocks of a system

constructed from components. Deadlock also represents the availability of missing

components. We have defined a method to translate design matrices of components

to CSP language in order to detect deadlocks in federations and compatibilities

 37

among federates in terms of system requirements. Component interfaces are

represented in COSEML notation. A process concept in CSP corresponds to a

partial or a whole component. Methods and component events are defined as events

in terms of CSP and they are represented in a process. Input and output definitions

in COSEML notation are represented in CSP as listed in Table 2.9.

Table 2.9 COSEML and CSP representations

COSEML representation CSP representation

Component Process

Published method a Output event (e ! a)

Subscribed method a Input event (e ? a)

Published event a Output event (e ! a)

Subscribed event a Input event (e ? a)

Systems can be defined in an application design matrix which includes components

composed to satisfy functional requirements. The application design matrix is

represented with the CSP language to utilize the FDR2 tool. The required mapping

mechanism is listed in the following rules [112]:

• Input and output definitions are specified based on dependence relationships

of published methods or events. For instance, Method 1 requires Event 1 is

represented as “Event1? e1 -> Method1! m1”

• A Component is represented as a process that consists of one or more sub

processes as shown in Table 2.10.

• An application is also represented as a process and it is formed from one or

more component processes.

 38

• Processes are composed based on shared methods or events among

processes. If there is no shared item(s) than the “|||” term is used to connect

processes. If there are, then “[| |]” is used.

• Shared items among processes are looked up from the design matrix. If there

are events defined as input events (subscribed) and required output events

(published) from other components, they must be considered during the

forming of the application process.

Event1
Event2
Event4

Component 1

Method 1

Method 2

Event3

Component 2

Method 2

Method 1

Event1

Event3

Figure 2.18 COSEML representation of Component 1 and Component 2 (adapted

from [112])

Based on the mapping mechanism and design matrices of components as depicted in

Figure 2.19 and Figure 2.20, we can create CSP language representation of the

application design matrix as depicted in Table 2.10. Component 1 has four

published items therefore there are four sub processes which are C1_SUB1,

C1_SUB2, C1_SUB3, and C1_SUB4. Only Method 2 is shared between C1_SUB1

and C1_SUB2. Processes C1_SUB3 and C1_SUB4 can be executed concurrently

since there is no shared item between them. Component 2 has two published items

therefore there are two sub processes namely C2_SUB1 and C2_SUB2. Only

Method 1 is shared between C2_SUB1 and C2_SUB2. Composition of Component 1

and Component 2 is represented in Table 2.10 as one process namely

 39

APPLICATION. The process composes components with their shared items namely

Method 1, Method 2, Event 1, and Event 3.

We tested the executable CSP codes in Table 2.10 and obtained a deadlock free

application. Although, coupling is available between Component 1 and Component

2 as shown in the design matrix in terms of DSM, we can conclude that components

which are sharing methods and events are not forming cycles. In this application, all

components are satisfied in terms of their required interface items. Otherwise,

FDR2 tool warn us about deadlock which means some of the processes require

other process (es) to produce required items.

Table 2.10 CSP representations of an Application that compose Component 1,

Component 2 (adapted from [112])

datatype D_i1= i1, D_i2= i2, D_e1= e1, D_e2= e2, D_e3= e3, D_e4= e4

channel Method1:D_i1, Method2:D_i2, Event1:D_e1, Event2:D_e2,

Event3:D_e3, Event4:D_e4

--------------------------------------Component 1---

C1_SUB1 = Event1?e1 -> Method1?i1 -> Method2!i2 -> C1_SUB1

C1_SUB2 = Method2?i2 -> Event3?e3 -> Event4!e4 -> C1_SUB2

C1_SUB3 = Event1!e1 -> C1_SUB3

C1_SUB4 = Event2!e2 -> C1_SUB4

C1 = (C1_SUB1 [|{|Method2|}|] C1_SUB2) || C1_SUB3 ||| C1_SUB4

--------------------------------------Component 2---

C2_SUB1 = Event1?e1 -> Method1!i1 ->C2_SUB1

C2_SUB2 = Method1?i1 -> Method2?i2 -> Event3!e3 -> C2_SUB2

C2 = (C2_SUB1 [|{|Method1|}|] C2_SUB2)

---------------------------------------Application--

APPLICATION=(C1[| union(union(union ({|Event1|}, {|Method1|}),

{|Method2|}), {|Event3|})|] C2)

 40

Figure 2.19 Design matrix of Component 1 (adapted from [112])

Figure 2.20 Design matrix of Component 2 (adapted from [112])

 41

2.7. Feature Model

Customer needs are mapped to functional requirements but there is no defined

straightforward method in ADT for narrowing this gap. Customers concentrate on

the system features and designers focus on solutions [124]. Feature concept is

introduced by Kang [64] to define information about the domain in the Feature

Oriented Design Analysis (FODA) [64] and its enhanced version: Feature Oriented

Reuse Modeling (FORM) [65]. There are various definitions of a feature [30, 53,

75, 124] but all definitions have a common point that features are stakeholder (user,

customer, developer, domain expert, etc.) visible aspects and they represent the

commonality and variability of products in terms of aspect, quality or characteristic.

It is essentially an abstract or product characteristic that both costumer and

developer understand [67]. They have also the capability to represent customer

needs in a domain. Therefore, Feature Modeling can be defined as a domain

modeling technique [25]. There are some example domains where Feature Model is

applied such as the bulletin board system domain [65], the private branch exchange

domain [66], web services domain [94], elevator control systems [72], bank account

and transaction systems [75].

Features should be well-known by both customers and designers and can be

functional (services or operations) and nonfunctional (capacity, usage, cost, and

other quality attributes) [67]. Main source to be used in the identification of features

are books, user manuals, experiences of experts, customers’ domain knowledge,

terminology, etc. [64]. Different stakeholders have different interests about features

therefore features are classified in terms of capabilities (services and non-functional

characteristics), domain-technologies (way of implementing services),

implementation techniques (synchronization mechanisms), and operating

environments [64]. Features are organized in a graphical model called Feature

Model that represents distinctiveness and commonalities among features in a

hierarchical view [64, 65, 67]. Feature Models can be represented in both graphical

[23, 64] and textual forms such as Feature Definition Language [31] , feature

diagram algebra [31], textual specification language [65], semantic model [61] and

 42

XML based [17]. Features are organized in multiple levels of increasing detail in the

Feature Model [25]. Feature Model is utilized by various methods, architectures

such as reuse driven software engineering business [43], aspect-oriented

programming [73], generative programming [22], product line software engineering

[20, 67, 68], reengineering [85, 86], object oriented software engineering [66, 72,

90], component based systems [63, 65, 88, 110, 115, 117], feature oriented

programming [6].

The core feature diagram, presented in [64], has been expanded with the

introduction of the new extensions and variations in the recent years [23, 24] and

still there is no consensus on notation of Feature Models [9]. Set of features interact

to define purpose of the product [39]. Five main types of feature interactions namely

intentional interaction, resource-usage interaction, environment induced interaction,

usage dependency, and excluded dependency are identified [39]. There are three

types of relationships between parent and children features: composed-of,

generalization/specialization, and implemented-by. Features are represented in a

diagram formed as a tree and connected to their parents in the diagram through

mandatory, optional, and group relationships as represented in Figure 2.21. To

avoid redundancy, a feature can be child of more than one parent feature, however

in this situation tree form is broken. To handle this problem Czarnecki et al. [22]

proposed the sub-models for reusing and connecting a feature to various parent

features [16]. Mandatory features are common features among all products and they

have to be selected in all products. On the contrary, optional features may take place

in some products and selection of optional features is left to the customers hence

letting the customer define a product. There are two kinds of grouping among

features namely OR and alternative (XOR). In OR grouping, one or more children

features can be selected however in alternative grouping only one of the children

features can be selected. Also features can specify constraints that define exclude

and require relationships with other features. When a feature is selected, required

other features have to be selected and excluded other features have to be un-

selected.

 43

 The level of standardization in a field can perhaps indicate the maturity of

engineering in the field [64]. For example, the car domain is matured and therefore

no one designs all parts from the beginning. In the designing of a new car, probably

it will not be necessary to design a new transmission. Perhaps it will be sufficient to

select its feature: automatic or manual as depicted in Figure 2.21. In this diagram,

Air Conditioning is an optional feature and in order to be selected, the car is

required to have 100 horse-power of engine capacity. Transmission can be

automatic or manual.

Horsepower Air Conditioning

Composition rule:
Air conditioning requires Hoursepower>100

Rationale:
Manual more fuel efficient

Mandatory
Optional
XOR

Legend

ManualAutomatic

Transmission

Car

Figure 2.21 Feature Model (adapted from [64])

Amount of features and constrains are important factors, of complexity of Feature

Models. For instance, as one of the mature domains the automotive industry has

Feature Models consisting of up to 10.000 features [8]. Relationships among

features are defined through rules. It should be noted that independently defined

relations can be inconsistent with other relations [95]. Therefore, we have identified

two methods to handle complexity in multi-level feature trees [93] and checking the

 44

consistency of the Feature Model. Checking method is a challenging problem [9,

14, 89, 125, 126]. Descriptive power of ontologies is applied to Feature Models [14,

25, 126]. Feature Models are represented in Web Ontology Language (OWL) for

tool support utilizing query and constraint mechanisms [25]. Consistency can be

required in a Feature Model, or instance Feature Model which is created through

feature selections in the Feature Model. We have utilized number 7 in the following

list, as defined in number 8, for this work. There are eight approaches to handle this

problem:

1. Approach [9] is utilizing Constraint Satisfaction Problem [9] and Java

constraint solvers through Feature Model with cardinalities translating into

Constraint Satisfaction Problem.

2. In approach [7], logic truth maintenance systems [7] and SAT solver [38]

are utilized to debug by confirming compatible and incompatible feature

sets.

3. In approach [95]., feature computation tree model is proposed to consistency

checks of requirements

4. Approach [26] proposing the Object Constraint Language (OCL) [83] and

SAT solver [38] to verify feature configurations.

5. In our approach [14], we represented the Feature Model with utilizing OWL

and Semantic Web Rule Language (SWRL) [49, 79] based on feature

notations [23, 24]. As depicted in Figure 2.22, we proposed a three-layer

approach for representing the Feature Models in OWL. Meta ontology as

depicted in Figure 2.22 is a base to create Feature Models. During feature

configuration, the user creating instances of features have to obey

constraints. As well as parent child relationships among features, the most

common constraints in the Feature Model, the “requires” and “excludes” are

required to obey. These rules are defined by using SWRL and checked by

the supporting rule engine. Previous approaches are applied after Feature

 45

Model is created, but our approach directly involves the user with

consistency.

6. Approach [89] is similar to our approach [14] and both papers are

simultaneously published. They are different in terms of representation of

Feature Models in ontology.

7. Approach [126] is about utilizing OWL [78] and reasoning engine Fast

Classification of Terminologies (FACT++) [122]. Instance of the Feature

Model have to be consistent with the core Feature Model and its constraints.

Constraint violating features can be detected through executing a reasoning

engine.

8. We have expanded the seventh approach with our axiomatic design

ontology and ADCO tool. Since feature diagram view of ADCO tool saving

all information about parent child, required, excluded etc. relations, we have

omitted the hierarchical representation of features as depicted in [14] and

represented only features and their dependencies through setting constraints.

Reasoning engines provide the information about consistency of an instance

of the domain Feature Model as defined in [126]. Detailed information is

given in Chapter 3.

Figure 2.22 Three layers of the Feature Models representation in OWL (adapted

from [14])

Meta-ontology

Instance Layer

Feature Model

 46

Figure 2.23 Meta-ontology classes (adapted from [14])

Axiomatic design theory considers the customer and functional domains separately.

Domain analysis artifacts are not employed to specify functional requirements but

they are used as an input to functional analysis process [64]. The system capabilities

are specified by customer needs represented in a Feature Model. Features can be not

only requirements but also implementation level information. Features are different

from the functional requirements and a mapping is required. Therefore, we utilized

the Feature Model in the customer domain of ADT to create common understanding

between designers and customers.

Feature Models are used by different approaches in different ways:

• Feature Models are used to represent variations and communalities among

products or components [20]. Similar approach proposed for Service

Oriented Architectures with utilizing OWL. Therefore there is a direct

connection between features and components such as defined in [63, 65]. In

[63], many-to-many relationship is identified between features and

components thus a feature-based component selection is targeted.

 47

• Features are mapped to reference architecture including subsystem, process,

and module models and the reference architecture is used to obtain

components [65].

• Features are mapped to behaviors that are described by scenarios.

Requirements or goals are achieved by scenarios [71].

In one of our studies [117], we have identified relationships between features and

Object Model Template (OMT) [56] items in High Level Architecture (HLA) [54]

based simulations. As illustrated in Figure 2.24, maneuver feature is connected to

Turn_Right, Get_Wind_Speed, and Coordinate_XYZ OMT items. Relationship

between features and OMT is hidden from end-users. When user selects maneuver

feature, federates (components) that are publishing or subscribing to related OMT

items are searched.

F16

Plane Tank

F4

Accelerate

Leopard

Land Vehicle

Helicopter

Air Vehicle

ManeuverAccelerate

M60

Car

Maneuver

Simulation

Environment

Moisture Wind

Optional
Feature

Mandatory
Feature

OR
Needed OMT items

Turn_Right Coordinate_XYZGet_Wind_Speed

Figure 2.24 An example Feature Model for military vehicles(adapted from [117])

 48

We have identified some problems:

• There is no representation of dependency relationship between OMT items.

As noted in [65], interaction problems can occurr and ordering relations

should be defined for functional features [95].

• Most of the time a feature is not capable to define requirements as defined in

[64, 65].

Therefore, in this dissertation, we are using Feature Models to capture customer

understanding, and mapping them to FRs. Even there is no direct mapping between

features and functional requirements. Some combinations of features, FRs, and DPs

only causes the activation of an FR. FRs are defined by the designer and then

combinatorial dependency is set between the FR and features. Components and their

methods satisfy the FRs, therefore there is no direct connection from features to

components.

2.8. Knowledge-Base

Knowledge-bases include the symbols of the computational model in form of

statements about the domain and use them to perform reasoning [42]. With utilizing

knowledge-base, applications can make their decisions based on domain-relevant

questions [42]. Concepts and relationships among them are represented in semantic

networks [42]. For instance, Professor and Course concepts are connected with

instructorof relationships and it can be represented as depicted in Figure 2.25.

Figure 2.25 Semantic web represention of knowledge

Professor Course
instructorof

 49

Another form of expressing knowledge is rules [42]. Such as relationship between

Professor and Course concepts are represented in the equation 2.7.

?)(?)?,(?)(Pr yCourseyxOfinstructorxoffesor →∧ (2.7)

Both semantic networks and rules can be represented with logic languages [42].

Such as, rule in equation 2.7 can be represented in logic as depicted in equation 2.8.

)()(Pr),((:, yCoursexofessoryxOfinstructoryx ∧→∀

),()(Pr)((:: xyOfinstructeryofessorxCourseyx ∧→∃∀
(2.8)

Knowledge is processed by reasoning engines through deriving new statements

[42]. Such as, based on “student is a human”, “Ahmet is a student” statements,

reasoning engine such as (Fast Classification of Terminologies (FACT++) [122])

can derive “Ahmet is a human” statement. Description logic (DL) [5] is one of

formalism to represent rules. In abstract notation, we use the letter A for atomic

concepts, the letter r for atomic roles, and the letters C and D for concept

descriptions. Table 2.11 lists some DL constructs used in this dissertation.

Table 2.11 Summary of constructors to form different description logics (adapted

from [5])

Name Syntax Description

Atomic Concept A Class

Atomic negation ¬A Complement of class

Concept conjunction C ⊓ D Intersection of classes

Concept disjunction C ⊔ D Union of classes

 50

Table 2.11 (Cont’d)

Value restriction ∀r.C All range of values of r in C

Limited existential restriction ∃r.C some range of values of r in C

Concept equivalence C ≡ D Equivalence of concepts

Inclusion axiom C ⊆ D Specialization

A knowledge-base in the basic DL has two parts: the TBox and the ABox. TBox

introduces the terminology, i.e., the vocabulary of the domain of discourse, while

the ABox contains assertions about named individuals in terms of this vocabulary.

TBox axioms can be concept inclusions of the form C ⊆ D or concept equivalences

of the form C ≡ D (i.e. C ⊆ D and D ⊆ C). The equation 2.8 can be represented as

utilizing DL as following:

ofessorOfinstructorCourse Pr.∃⊆ (2.9)

An important ontology language is Web Ontology Language (OWL) [78] that

provides an expressive ontology model for Semantic Web. It has three subsets with

different power of expressiveness - OWL Lite, OWL-DL and OWL Full. In this

dissertation, we use OWL-DL as it provides direct support for (classical) negation,

disjunction, cardinality restrictions, enumerations, and value restrictions compared

to OWL Lite. Protégé is one of the tools to represent OWLs and plugins such as

FACT++ [122] reasoning engines can be utilized for reasoning.

2.9. Mature Domain

From the early days on when the module concept was introduced, reuse has been a

very important topic because of well-known considerations such as cost and time to

develop. It is beneficial to satisfy same functional requirement items using the same

set of existing design items. Therefore, in a mature domain, a generic system is

 51

defined that is utilized in the instantiation of specific products. Mature domain

concept is also investigated by Kang et al. [65]. In terms of Kang et al., maturity is

indicated by the existence of utilization of standards, documented standard

terminology, availability of experts, etc. COSE approaches assume that there are

some mature domains that include components which are suitable for integration.

Table 2.12 lists the assets that should be included in a mature domain for the

proposed approach.

Table 2.12 Mature Domain Concepts

Item Description

A Feature Model Mature Domains must be satisfying the common

understanding. All features in a mature domain are

represented in a feature diagram. An instance of the

domain Feature Model identifies customer needs for a new

application. Customer selects the features considering

dependencies among features.

A dictionary Features are read by all stakeholders therefore stakeholders

should have the same understanding about them. Also,

standard method names are implemented by components.

A design Matrix A mature domain has one FR-DP design matrix. This

matrix is used later to create the applications FR-DP design

matrix. Therefore, a new system’s design matrix is only a

subset of this matrix.

Components There should be sufficient number of components in

mature domain to implement designs.

 52

Table 2.12 (Cont’d)

Design matrices

of components

Since components are designed through ADCO as

described in chapter 4, there are design matrices defining

functionalities and dependencies.

Ontology • Features

• FRs, DPs (methods), PVs (components)

• Components and their design matrices

• Relationships based on rules among features, FRs,

DPs, and components

• Object Model Template Classes for HLA based

simulations

Collaboration

diagrams

Collaboration diagrams can be helpful to define FR-DP

dependencies and verify application in terms of

functionality.

To be effective, mature domains are allowed to be populated with new components

as time progresses. A mature domain expert can add or delete components to a

domain. In mature domains, applications can be created as instances of the domain.

Different FR subsets of the domain are utilized to satisfy customer needs. Also,

mature domains can provide DP alternatives that have similar capabilities to satisfy

an FR. Number of alternative DPs increase the flexibility of a mature domain. At

the same time it increases the complexity of the design process. This complexity is

due to the fact that a selected DP should be consistent with the rest of the mature

domain.

 53

3. ONTOLOGY MODELING

CHAPTER 3

ONTOLOGY MODELING

The gap between customer needs and Functional Requirements (FRs) is reduced

through utilizing Feature Models, description logic and ontologies which are used to

provide formal mechanisms for representing system requirements and component

specifications. We assume that a mature domain includes a number of elements

such as a Feature Model, FRs, Design Parameters (DPs), and Process Variables

(PVs). In our methodology, each of these elements is represented by the

corresponding ontology in order to be reused in development processes with the

representation and reasoning capabilities of the Description Logic (DL). These

ontologies, as a whole, constitute the knowledge-base (i.e. TBox) of the domain.

Mature domain concepts namely features, FRs, DPs, PVs and their dependencies are

represented in an ontology that is expanding Wang’s method [126]. Each concept

may have one or more concept relationships derived from a base concept.

Dependencies are represented using the Linkedtoaconceptname role. A concept is

represented with an equivalence constraint for reasoning:

Concepti ≡ ∃ LinkedtoConcepti.Concepti

Relationships among concepts are represented using the subsumption constraint (ex.

Concepti requires Conceptm) as represented below.

Concepti ⊆ ∃ LinkedtoConceptm.Conceptm

 54

Constraints can be combinations of more than one constraint (union, intersection or

complement). We can write the restriction related with Concepti such as: Concepti

requires Conceptm and complement of Conceptn.

Concepti ⊆ ∃ LinkedtoConceptm.Conceptm ⊓ ¬∃LinkedtoConceptn.Conceptn

Definition of any element (feature, FR, DP, or PV) in our mature domain ontology

is determined by the base concepts, namely Feature, FunctionalRequirement,

DesignParameter, and ProcessVariable. In the text, we refer to this ontology as the

mature domain core ontology.

Definition 1: (Mature Domain) Given a set of features, F={f1,...,fn}, functional

requirements, FR={fr1,…, frm}, design parameters, DP={ dp1,…, dps}, and

PV={pv1,…,pvt}, a mature domain is defined as a terminology including the

following basic axioms:

• fi ≡ ∃ Linkedtofi.fi, for 1≤ i ≤ n

fi ⊆ ¬ ∃ Linkedtofi.fi, for 1≤ i ≤ n

• frj ≡ ∃ Linkedtofrj.frj, for 1≤ j ≤ m

frj ⊆ ¬ ∃ Linkedtofrj.frj,, for 1≤ j ≤ m

• dpk ≡ ∃ Linkedtodpk.dpk, for 1≤ k ≤ s

dpk ⊆ ¬ ∃ Linkedtodpk.dpk, for 1≤ k ≤ s

• pvx ≡ ∃ Linkedtopvx.pvx, for 1≤ x ≤ t

 pvx ⊆ ¬ ∃ Linkedtopvx.pvx, for 1≤ x ≤ t

In the early stages of design, FRs and DPs do not have complemented subsumption

restrictions because applications which are instances of the domain have to have

these FRs and DPs. Therefore feature and PV concepts violate the constraints in the

core ontology. The core ontology is utilized by applications which are instances of

the domain. Our implementing tool allows application designer to select only

 55

features and components. Therefore, applications only reflect selections to the core

ontology with deleting the following restrictions:

fi ⊆ ¬ ∃ Linkedtofi.fi, for 1≤ i ≤ n

pvx ⊆ ¬ ∃ Linkedto pvx.pvx , for 1≤ x ≤ t

When a reasoning engine such as FACT++ [122] executes on the ontology,

elements which are not selected and all dependent concepts will be in an unusable

state.

In the following sections, we introduce ontology modeling for each base concept.

There are many-to-many relationships among concepts. For instance, a FR can

depend on a combination of features, FRs, DPs, and PVs.

3.1. Modeling Features

Features are an important part of the mature domain as they are the means to allow

customers to specify their needs. As stated in Definition 1, each feature is

represented as a sub-class of the base Feature concept in our mature domain.

Although this is necessary, it is not sufficient to define the full semantics of a

feature within the ontology. The actual semantics can only be revealed by

considering the relationships of a feature with other features as described in Section

2.7. The parent/child relations in a Feature Model, represented as a complete tree

have not been incorporated in the ontology presented in this article. Such work has

been included in [14] and summarized in section 2.7. In this section, we will explain

our Feature Modeling technique and explain it on a conference management system

and an aircraft simulation example depicted in Figure 3.1. The representations of

relations in the Feature Model such as mandatory and optional are presented below.

 56

Figure 3.1 Partial Feature Model of the Conference Domain

Proposition 1: Given a parent feature fp and its mandatory subfeature fs, a

mandatory feature relationship between them can be defined by further restriction

such as:

fp ⊆ ∃ Linkedtofs. fs

For Submit feature in our example Feature Model in Figure 3.1, we can specify a

mandatory PaperInfo subfeature as:

Submit ⊆ ∃ Linkedto PaperInfo.PaperInfo

In a similar fashion, we can define other feature relationships.

Proposition 2: Given a parent feature fp and its optional subfeature fs, there is no

need to define any restriction.

Paper Operation

Conference

Mandatory Feature
Optional Feature
Alternative Rel.

Legend

Notification Reviewing

Email Mail

Authoring

Submit Edit

Paper Info Upload

 57

Proposition 3: If a set of subfeatures Fs={ fs1,…, fsn} is related to a parent feature fp

over an Or relationship, concept fp is restricted with the following restriction:

fp ⊆ ∃ Linkedtofs1.fs1 ⊔…⊔∃ Linkedtofsn.fsn

Proposition 4: Alternative relationship is also similar to Or relationship, but this

time we can select one and only one subfeature. If a set of disjoint subfeatures

Fs={fs1,…,fsn} is related to a parent feature fp over an Alternative relationship, parent

concept fp is restricted with the following restriction:

fp ⊆ (∃ Linkedtofs1.fs1 ⊓ ¬ ∃ Linkedtofs2.fs2⊓…⊓ ¬ ∃ Linkedtofsn.fsn)
⊔…⊔(∃ Linkedtofsn.fsn ⊓ ¬ ∃ Linkedtofs1.fs1⊓…⊓ ¬ ∃ Linkedtofsn-1.fsn-1)

For instance, Notification feature in the example includes a number of notification

means represented by features within an Alternative relationship. Therefore, we

include such a restriction to show this in the ontology:

Notification ⊆ (∃ LinkedtoEmail.Email ⊓ ¬ ∃ LinkedtoMail.Mail) ⊔
(¬ ∃ LinkedtoEmail.Email ⊓ ∃ LinkedtoMail.Mail)

It should be noted that constraints which include complementof is not observable

unlikely others. This constraint yields the Root as unusable (represented in the

following statement) but not the related concept. For instance, notification feature

will be consistent when Email and Mail features are selected. However, root

concept which includes all concepts as represented in the following statement will

be unusable. To detect which statement makes Root concept unusable, debugging is

required. Our implemented tool includes a Feature Model preparation and

debugging capability.

Root ⊆ ∃ LinkedtoEmail.Email ⊓ ∃ LinkedtoMail.Mail ⊓ ∃
LinkedtoNotification.Notification ⊓ …

 58

3.2. Modelling Functional Requirements

As depicted in Figure 3.2, FRs are represented in a tree structure. In this study, we

have identified two properties of the parent child relationship between FRs,

corresponding to mandatory and optional specifications. Parent FR can be

considered as decomposed if some set of the child FRs are consistent with the

ontology. This kind of relationship is similar to mandatory relationship in the

Feature Model. Other relationship is similar to optional relationship in the Feature

Model meaning that implementation of a set of child FRs do not affect the parent

FR. Each FR has to be satisfied by at least one DP. For FR1.1 in Figure 3.2, we can

specify FR1.1.4 and FR1.1.5 as mandatory FRs since without them FR1.1 is not

capable to realize Submit process.

Other children FRs are not added as restrictions as defined in Proposition 2. FRs are

satisfied by DPs. Therefore, restriction for FR1.1 is defined as following.

FR1_1 ⊆ (∃ LinkedtoFR1_1_4. FR1_1_4) ⊓ (∃ LinkedtoFR1_1_5. FR1_1_5)
⊓ (∃ LinkedtoDP1_1. DP1_1)

In some situations, FRs can be satisfied by one among the alternative DPs. Designer

has to select one of them. This restriction is similar to restrictions of alternative

features and is defined as in the following statement.

frp ⊆ (∃Linkedtodpk1.dpk1 ⊓ ¬ ∃Linkedtodpk2.dpk2⊓...⊓ ¬ ∃Linkedtodpkn.dpkn

) ⊔...⊔(∃Linkedtodpkn.dpkn ⊓ ¬ ∃Linkedtodpk1.dpk1⊓...⊓ ¬ ∃Linkedtodpkn-

1.dpkn-1)

FRs can be dependent on features. For instance, FR1.1.1.1 is dependent on Email

feature and corresponding restriction is defined as following:

FR1_1_1_1 ⊆ (∃ LinkedtoEmail. Email) ⊓ (∃ LinkedtoDP1_1_1_1.
DP1_1_1_1)

FRs can be dependent on the complements of features, DPs, or FRs.

 59

Fi
gu

re
 3

.2
 P

ar
tia

l F
R

-D
P

D
es

ig
n

M
at

rix
 o

f t
he

 C
on

fe
re

nc
e

D
om

ai
n

 60

3.3. Modelling Design Parameters

Design parameters satisfy the FRs and they can be in the form of a process (method)

in terms of software terminology. Design parameters can be dependent on other

DPs, features, and components. DPs are published by components and DP-

component relationship is defined in the DP concepts. For instance, DP1.1.4 in

Figure 3.2 is published by PV_1 (such as PaperOperations component). Therefore

without PV_1, DP1.1.4 is not a valid DP. This restriction can be represented as

follows:

DP1_1_4 ⊆ (∃ LinkedtoPV_1. PV_1)

If more than one component is publishing a DP then this restriction is defined as in

the following statement.

dpk ⊆ ∃ Linkedtopv0.pv0 ⊔ … ⊔∃ Linkedtopvs.pvs

DPs can be dependent on features. For instance different implementations of DPs

can have different capabilities with different PVs. This kind of restrictions is

presented for dpk in pvx as in the following statement:

dpk ⊆ (∃ Linkedtopvx.pvx ⊓ ∃ Linkedtofi.fi), for 1≤ i ≤ n

DPs can be dependent on other DPs and this restriction is represented for dpi in pvx

as following:

dpi⊆ (∃ Linkedtopvx.pvx ⊓ ∃ Linkedtodpj.dpj) , for 1≤ j ≤ n

DPs can be dependent on complements of features, DPs, FRs, or PVs.

3.4. Modelling Process Variables

Components are represented as PVs. There can be relationships between PVs and

features and other PVs. Some examples of dependencies (e.g. pvj requires pv1) are

represented as following:

 61

pvj ⊆ (∃ Linkedtopv1. pv1)

pvj can be dependent on features.

pvj ⊆ (∃ Linkedtofm. fm) , for 1≤ m ≤ n

PVs can be dependent on complemented forms of features or PVs.

 62

4. PROPOSED APPROACH

CHAPTER 4

PROPOSED APPROACH

4.1. Development Processes

In this study, we propose a systematic component oriented system development

framework. We have utilized complementary tools such as Feature Model,

Axiomatic Design Theory, COSEML, and Ontology which are explained in Chapter

2. Since axiomatic design’s process model does not yet address component level

architecture issues, we have outlined a new method to combine Component-

Oriented (CO) approach with the Axiomatic Design Theory (ADT) process model,

offering design guidance. This approach is based on the Axiomatic Design with

Component-Orientation (ADCO) approach [116, 118]. ADT provides some

advantages when applied to Component-Orientation:

1. Documentation: Software industries tend to develop systems with limited

documentation because of cost and time constraints. However, in ADT,

design artifacts (requirements, customer needs, design matrices, etc.) are

part of the design - without them design cannot be completed. Therefore,

documentation is mandatory in ADT. Additional to standard artifacts of the

ADT, we have proposed using collaboration diagrams and Feature Models.

Since design matrices, Feature Models, and collaboration diagrams are

products of the design process, documentation is produced without extra

effort.

 63

2. Component Interface: COSEML based interfaces are represented in design

matrices. Dependency information among methods (published or

subscribed) is represented in design matrices. Functional requirements

represent why a method is defined or implemented. Since design matrices

are a product of the design process, component interfaces are enhanced

without extra effort.

3. Scientific bases: ADT is an assurance towards “better design”. In terms of

software, it means less maintenance costs, design failures etc.

4. Measurement quality of design: Some derived complexity formulas are used

to measure complexity of system in terms of coupling of system. When

coupling is increased, various problems can be occurred such as

maintenance, debugging etc. costs.

5. Independent designs: One of the axioms independence axiom advice

uncoupled designs (ideally). There are various advantages of modular

designs.

• Customer requirements can be changed in different phases of

development. Changes in customer requirements can easily be

reflected to the uncoupled designs.

• We propose to design components based on ADT. Therefore, as

addition to interface enrichment, components can be decomposed

easily to sub-components if required.

• Interdependent modules (methods, components, etc.) can be tested

separately.

 64

ADCO is based on the mature domain concept. There are two ways of creating

mature domains for compatibility with our approach: 1) utilizing ADT and 2) other

software development as depicted in Figure 4.1. Although, currently available

projects are prepared with different software design and development methods, they

may be used to create mature domains. In the following sections, we have assumed

that projects are designed and developed with utilizing axiomatic design approach.

Figure 4.1 Development Processes

Application
Development

with
ADT

Projects

Application
Development

with
ADCO

Mature Domain
Development

Mature
Domain

Mature Domain
Creation

Application
Development

with
Different Methods

ADCO

 65

4.1.1. Mature Domain Creation

Component-Oriented Software Engineering (COSE) approaches assume that there

are mature domains that include components that are suitable for integration [37].

This is also a fundamental assumption in our approach. When number of projects in

a domain is increased, mature domains can be created. One way of create mature

domains is utilizing existing projects developed based on the axiomatic design

concepts and similar projects. Reusing of the similar projects increases the chance

of creation mature domains since mature domains are formed from similar projects

which share lots of commonality especially in the design matrices.

4.1.1.1. Application Development

We expanded Do and Suh’s specific process model called the V-Model [34] as

depicted in Figure 4.2, which serves as an axiomatic methodology for Object-

Oriented (OO) software development as defined section 2.1.2. The parts of our

approach that depart from the original OO version are shown in white boxes. The

development process looks very similar to that of the original OO version.

However, there are key differences due to the COSE approach that assumes the

existence of components in a domain. A general an 11-step method is adapted from

[118] for the proposed process as listed in Table 4.1.

The process starts with identification of customer needs. The developer then

identifies the domains which include similar projects based on the identified

customer needs. Then a top-down design utilizing projects’ design matrices in

accordance to AD principles is applied. Therefore, software modules are effectively

identified in a top-down fashion. Modules represent the services which are satisfied

by components. If there are projects utilized during decomposition, their

components may help to satisfy required services. If components are still required,

first their design matrices are created based on the application design matrix.

Application design matrix includes the required services and other dependent

services. Then components are developed and added to the repository. Components

 66

are integrated and designer solves integration problems. Application development

with ADT process [116] is outlined in Table 4.1.

Figure 4.2 Axiomatic design process for CO software system: white boxes represent

additions to V-Model (adapted from [116])

Table 4.1 Application development process without mature domain (adapted from

[116] and [114])

Step Description

Step 1 Customer Needs: The first step in designing a software application is to

determine the customer needs (CNs) or attributes in the customer domain

that the software systems must satisfy. One way to solve communication

problem between customers and designers is utilizing Feature Models.

 67

Table 4.1 (Cont’d)

Step 2 Identify Domain: The next step is to find similar projects related with the

customer needs. As defined by Suh [101], if an Functional Requirement

(FR) and its decomposition is already included in a project, then it should

be reused. More than one project can be utilized, in an application. As we

define later, these projects will be composed to create a mature domain.

Step 3 Define Functional Requirements (FRs): FRs are defined by the developer

to satisfy the customer needs. Lower-level FRs guide the developer in

selecting a specific attribute or a method. Design matrices corresponding

to mature domain components help in determining lower-level FRs. It

must be kept in mind that FRs are defined without considering Design

Parameters (DPs).

Step 4 Define Design Parameters (DPs): FRs are mapped to DPs. We are using

COSEML notations to define DPs. Therefore a DP can be a package

name, abstractions, component, interface, method, property, or event

name. Abstract representations are preferred especially for higher-level

DPs. If function or data abstraction is used, then logical collaboration

diagrams can be prepared [114]. Since projects design matrices and their

components are shared in various projects, standard name pools (such as,

OMT tables in HLA) are created. All DPs do not have to correspond to

existing component interface items but all physical DPs must be extracted

from the standard name pool or they should be added to the pool if

required. Abstract DPs, however, can be in COSEML’s abstract

representation. It should be noted that the independence axiom must be

applied to the design.

Step 5 Decomposition: Decomposition is continued until all FRs are mapped to

physical DPs (component, method, property, or event). Therefore steps 2-

5 must be conducted recursively.

 68

Table 4.1 (Cont’d)

Step 6 Define Modules: Leaf-level DPs are specified as system modules that can

be components, methods, properties, or events. These modules define

what is required and should be satisfied by components.

Step 7 Identify Missing Components: Since DPs are chosen from the name pool,

identified DPs in the previous step can be used to reach existing

components. When all components are identified, missing DPs required

by other components or defined in the application matrix but not satisfied

by identified components are ascertained. More than one component can

be used to solve the application problem. We are proposing two methods

to select components among alternatives:

• The Information Axiom is applied to pick correct components in

terms of their information content and also for inter-component

congruity detection as explained in section 2.1.1.4.2.

• Communicating Sequential Processes (CSP) [48] and Failures-

Divergence-Refinement (FDR2) [40] tool utilizing our method

explained in section 2.6 can be used. This method is used where

number of components is huge and relationships are complex.

Step 8 Develop Missing Components: The FRs of the application and the related

components provide the development reason for the required DPs. At this

point, the design phase is already completed for the components because

the FRs and DPs and their dependencies in the design matrix and

collaboration diagrams are known. Components are implemented

depending on the design matrix and optionally collaboration diagrams.

Step 9 Add Components to Repository: For the purpose of reuse, all newly

developed components are added to the component repository.

 69

Table 4.1 (Cont’d)

Step 10 Integration: Components are integrated during the execution. Mismatch

problems [62] and composition anomalies defined in [28, 47, 108, 109]

may need to be solved.

Step 11 Software Product: Execute the application.

4.1.1.2. Mature Domain Development

When number of related projects increase in a field, a mature domain is created by a

domain expert. Feature Model is one of the fundamental tools in domain creation.

Feature Model is used to define customer needs. These features are mapped to

functional requirements considering design parameters. Also these features are used

to define capabilities of components. All mappings are realized through our

mapping approach based on ontology among the features and ADT domains

corresponding to requirements, design, and implementation domains as defined in

Chapter 3. We have identified five steps to create a mature domain and listed in

Table 4.2. At the end of this process, a mature domain with a domain design matrix

and an ontology file that includes design constraints are created.

Table 4.2 Mature domain development process

Step Description

Step 1 Domain Identification: Mature domain concept is required where similar

projects are created again and again with minor differences. Therefore,

selection of similar projects is very important for identification of a

domain.

Step 2 Domain Analysis: Domain expert prepares a reference Feature Model for

a domain. This Feature Model will be used to define customer needs and

 70

Table 4.2 (Cont’d)

 to create rules on FRs, DPs and PVs. Customers domain view will help in

the definition of relations among the features, FRs, DPs, and PVs should

be located in the Feature Model. In other words, if a feature is not utilized

in a rule, it should not be defined. Otherwise, lots of features are located in

Feature Models and they increase the complexity of Feature Models. Also,

unused features can confuse customer since features defines the

expectation of customers. Feature Model is created by investigating

available domain projects.

Step 3 Functional Requirement and Design Parameter specification: Intersection

of the domain projects’ design matrices creates domain (reference) design

matrix.

Step 4 Design is satisfied by project’s components. However still there can be

request to design and develop components as defined in step 8 in Table

4.1. Some components can be created newly, some components can be

composed, some of them decomposed to create new components, and

some of them modified.

Step 5 Create ontology: Relationships among features, FRs, DPs and components

are defined and added to ontology as explained in Chapter 3.

• Set Rules for features: Relationships among features are added to

the ontology.

• Set Rules for FRs: To activate an FR, dependent FRs, DPs, and

features are specified and added to the ontology. In this step, new

features can be added or unused features can be deleted.

• Set Rules for DPs: DPs’ publishing and subscribing relationship

with PVs and feature relationships are added to the ontology. We

assume that all DPs are published by at least one PV.

 71

Table 4.2 (Cont’d)

 • Set Rules for DPs: DPs’ publishing and subscribing relationship

with PVs (components) and feature relationships are added to the

ontology. We assume that all DPs are published by at least one

PV.

• Set Rules for PVs: Relationships among PVs (such as require and

mutually exclusive), relationships among features and PVs are

added to the ontology as defined in Chapter 3

4.1.2. ADCO Process

In this section, we are proposing the application development process in mature

domains. We have identified seven steps to create applications in mature domain

and listed in Table 4.3. Developer first seeks to find a mature domain (a collection

of interrelated components and their AD artifacts). Application designers benefit

from features selected by customers to specify functional requirements for specific

systems originating from the mature domain. All constraints among features, FRs,

DPs, and PVs are used to define consistency conditions of FRs which are set during

mature domain creation process.

Table 4.3 Application development process with mature domain

Step Description

Step 1 Identify mature domain: The most related domain is selected. Since

domains can be flexible, if expansions are required, they have to be

consistent with available features, FRs, DPs, and PVs in the mature

domain and should be conducted by domain experts.

Step 2 Identify customer needs: Customer needs are identified through mature

 72

Table 4.3 (Cont’d)

 domain Feature Model. Therefore, application Feature Model is a sub-

Feature Model of the mature domain. Customers select or unselect the

features to specify their needs. A Feature Model guides the customer

about which features can be selectable.

Step 3 Select Components: Application designer can decide to extract some

components from the solution space. After that, a reasoning engine is

executed on the ontology.

Step 4 Design the system: Application design matrix is created from the domain

design matrix. Since reasoning over the ontology reveals usable and

unusable concepts (features, FRs, DPs, and PVs), designer can be warned

about unusable FRs. If root FR concept is consistent, there is an

application including at least one component. If inconsistency starts with

the root FR, in this situation no application will be implemented, because

selected features and components cause inconsistency. Designer can

debug the causes of the inconsistency using the ontology.

Step 5 Search components: Consistent PVs (components) in the ontology

represent the usable components. Alternative components can be available

in solution space. Designer selects the components among the alternatives

utilizing the information axiom (section 2.1.1.4.2) and CSP (section 2.6).

Step 6 During the integration, mismatch problems [62, 118] and composition

anomalies defined in [28, 47, 108, 109] may need to be resolved (e.g. by

type casting, synchronization, etc.).

Step 7 Execute system: If unexpected results occur in terms of customer

expectation, design is modified. It should be noted that modifications will

be local; that is an advantage of this approach if design is uncoupled.

 73

4.2. Guidance

We have identified that design guidance can be provided where mature domains and

various parameters (constraints) in the mature domains are available. Our aim is

helping designer to consider all parameters (customer needs, functional

requirements, design parameters, components etc.) during his decisions. To handle

this requirement, we are proposing a guidance mechanism that considers all

ingredients of design artifacts and guides application designer in the mature

domains. Designer is warned about functional requirements which should be

implemented utilizing related customer needs and the environment which includes

available components. We have developed an ADCO tool as depicted in Figure 4.3

to implement our framework. The ADCO tool has a capability to create designs for

mature domains, components, and applications based on the mature domain. There

are six views in the ADCO tool:

1. FR-DP design matrix

2. Component lists: component designer/domain expert can decide intuitively

which components are not congruent to execute together because of conflicts

such as performance, price, security, etc. with a specific component.

3. COSEML harmonized with the design matrix view represents components

in structural view.

4. Feature Model: Feature Model view is used to define customer needs.

5. Rule List: Constraints are created and represented as rules.

6. Information: Represents the mappings with ontology concepts and design

items (features, FRs, DPs, and PVs) and some debugging information.

 74

Figure 4.3 Domain view of ADCO Tool

These views become different depending on where they are used: COSEML view

represents all components used in Application Design but represents a component

related with its design matrix in Component Design as depicted in Figure 2.13.

Although our framework is more general and applicable to other domains, we

applied it to the Conference Management System domain and the HLA based

Aircraft Simulations domain as detailed in the following sections.

 75

4.2.1. Conference Management System

We will represent our guidance on a Conference Management System example.

This example is adapted from Open Conference [131] which is a conference

management system based on the PHP technology. Some functionalities of this PHP

based system is converted to a component based system. To represent guidance we

concentrate on the submit functionality and we also identified nine core components

(web services) as depicted in Figure 4.4 and their design matrices are depicted in

Appendix A. We have also represented function call order of Submit method with

BPMN representation as depicted in Figure A.8 which can be used to detect

dependencies similar to collaboration diagrams. Some of these components can also

be used to satisfy other functionalities in the mature domain such as editing etc. The

FR-DP design matrix belonging to the conference management system domain is

shown in Figure 4.5.

 76

Fi
gu

re
 4

.4
 C

on
fe

re
nc

e
M

an
ag

em
en

t C
om

po
ne

nt
s

 77

Figure 4.5 Partial FR-DP design matrix

ADCO tool automatically produces some constraints as explained in Chapter 3,

such as dependencies among FRs and DPs. We have defined some rules in addition

to the automatically generated rules for the Conference Management System as

listed in Table 4.4. Normally concepts are defined with unique identifiers in the

ontology; for simplicity we used abbreviations such as the names for FRs start with

“FR”, DPs start with “DP”, features start with “F” and components start with “PV”

in the Tables 4.4 and 4.5. Some rules are defined for FR-DP design matrix

represented in Figure 4.5 by the designer and represented in Table 4.4. For instance,

“FR1.1.1: Authors can submit their papers” can be consistent, if “FR1.1.1.4: Add

paper to system and return paper id” and “FR1.1.1.5: Add all authors with paper id”

 78

are consistent. This constraint defines FR1.1.1.4 and FR1.1.1.5 as mandatory FR for

FR1.1.1. Another example, “FR.1.1.1.1.1: Send notification email to contact author

about submission” can be consistent if Email, Notify_Author, and Alternate_Email

features are selected as represented in Figure 4.6.

Table 4.4 Constraints for Conference Management System

No Constraints

1 FR1⊆ ∃ LinkedtoFR1_1. FR1_1

2 FR1_1⊆ ∃ LinkedtoFR1_1_1. FR1_1_1

3 FR1_1_1⊆ ∃LinkedtoFSubmit.FSubmit

4 FR1_1_1⊆ (∃ LinkedtoFR1_1_1_4. FR1_1_1_4 ⊓ ∃

LinkedtoFR1_1_1_5. FR1_1_1_5)

5 FR1_1_2⊆ ∃LinkedtoFEdit.FEdit

6 FR1_1_1_1⊆ ∃ LinkedtoFR1_1_1_1_1. FR1_1_1_1_1 ⊔

 ∃ LinkedtoFR1_1_1_1_2. FR1_1_1_1_2

7 FR1_1_1_3⊆ ∃LinkedtoFUpload.FUpload

8 FR1_1_1_5⊆ ∃LinkedtoFName.FName

9 FR1_1_2_2⊆ ∃LinkedtoFReupload.FReupload

10 FR1_1_1_1_1⊆∃ LinkedtoFEmail.FEmail ⊓ LinkedtoFNotify_Author.

 FNotify_Author ⊓ LinkedtoFAlternate_Email

11 FR1_1_1_1_2⊆∃ LinkedtoFMail.FMail ⊓ LinkedtoFNotify_Author.

 FNotify_Author ⊓ LinkedtoFAddress

 79

Based on the automatically generated constraints and constraints defined by domain

experts, reasoning engine provides information about inconsistencies. We are

interested in figuring out which FRs should be implemented. If FR1 (root FR) is

specified as an unusable concept then the application designer can decide that no

application can be implemented in this circumstance. Which constraints cause this

circumstance can be found through debugging.

 80

Fi
gu

re
 4

.6
 P

ar
tia

l F
ea

tu
re

 M
od

el
 o

f t
he

 c
on

fe
re

nc
e

m
an

ag
em

en
t s

ys
te

m

 81

In Table 4.5, we have represented all constraints related with FR1_1_1_5. First four

rules are the same as those in Table 4.4. The following constraints are automatically

generated from the design matrices of domain and design matrices of the Author

and Database components. If a dependency chain is broken somewhere the

reasoning engine will detect the inconsistency and ADCO tool will warn the

application designer. For instance if there is no Author component in the

environment, concepts will be unusable; DPAdd_Author concept because of

constraint six, FR1_1_1_5 concept because of constraint five, FR1_1_1 concept

because of constraint three, FR1_1 concept because of constraint two, and FR1

concept because of constraint one will be unsatisfied. ADCO tool represents all

these inconsistencies in the design matrix as depicted in Figure 4.7. When the Mail

feature is not selected from the Feature Model, FR1_1_1_1_2 will be unusable

because of violation constraint eleven in Table 4.4 as represented in Figure 4.7.

Table 4.5 Constraints for FR1_1_1_5

No Constrains

1 FR1⊆ ∃ LinkedtoFR1_1. FR1_1

2 FR1_1⊆ ∃ LinkedtoFR1_1_1. FR1_1_1

3 FR1_1_1⊆ (∃ LinkedtoFR1_1_1_4. FR1_1_1_4 ⊓ ∃

LinkedtoFR1_1_1_5. FR1_1_1_5)

4 FR1_1_1_5⊆ ∃LinkedtoFName.FName

5 FR1_1_1_5⊆ ∃LinkedtoDPAdd_Author. DPAdd_Author

6 DPAdd_Author⊆ ∃LinkedtoDPSQL_Execution. DPSQL_Execution ⊓

∃LinkedtoPVAuthor. PVAuthor

7 DPSQL_Execution ⊆ ∃LinkedtoPVDatabase. PVDatabase

 82

Figure 4.7 FR-DP design matrix representing inconsistencies

4.2.2. Aircraft Simulations

We have adapted ADT to FEDEP [118]. The steps of this process are lısted in Table

4.6. This approach is similar to application development process without mature

domain as presented in Table 4.1.

Table 4.6 Adapted FEDEP process with ADT (adapted from [118])

Step Description

Step 1 Define federation objectives: Costumer requirements and features of the

expected software systems are determined.

 83

Table 4.6 (Cont’d)

Step 2 Perform conceptual analysis: The next step is to find mature domains

related to the customer needs. Customer needs to point to a general idea

about which domain (s) can include the components.

Step 3 Design federation: Problem is decomposed to the parts utilizing ADT.

Available federates are identified utilizing a design matrix for the problem

and design matrices of available federates. Required actions are listed

below:

 Define Functional Requirements (FRs)

 Define Design Parameters (DPs)

 Define dependencies among FRs and DPs

 Check axioms

 Identify missing components

Step 4 Develop federation: Missing federate development and/or available

federate modifications are realized utilizing design matrices in this step.

Step 5 Plan, integrate, and test federation.

Step 6 Execute federation and prepare outputs.

Step 7 Analyze data and evaluate results.

ADCO process is applied to simulations based on High Level Architecture [118]

and explained in this case study. Since HLA can be used to develop agents for

games [74], and military simulations are so popular, we developed a war-vehicle

domain. There are two kinds of components: software components and federates

formed by the software components as represented in Figure 4.8. We have applied

 84

ADCO to HLA based simulations in two levels. As it can be seen in Figure 4.8,

software components create federates and federates forms federation. Federates

communicate with federates through RTI and software components communicate in

software components. In this section, we will represent three aircraft (F16, F18,

Su25) federates and software components formed these federates. One of federates

F18 with center view is represented in Figure 4.9. In this simulation, only OMT

attributes as listed in Table 4.7 and saved as FED file are shared among federates.

There is no OMT interaction classes in this case study.

Figure 4.8 All components in Aircraft simulation

In the simulation environment, there are four software components common in

federates as represented in Figure 4.8 and Figure 4.10. In our example, all federates

can be implemented thorough these components because of their similar

capabilities. Recalling the ADCO processes, mature domains are created where

some components and functionalities become common. Controller component is

used to control federates. Its COSEML representation is depicted in Figure 4.10 and

F16

Terrain

F16 Request

F18 Service

F18 Request

SU25 Service

SU25 Request

GUI

Controller

System

F16 Service

RTI

F18

Terrain

GUI

Controller

System

Su25

Terrain

GUI

Controller

System

F16 Federate F18 Federate Su25 Federate

 85

FR-DP design matrix is depicted in Figure 4.11. In the Terrain component, aircrafts

and effects are represented as depicted in Figure 4.10 and design matrix of Terrain

component is depicted in Figure 4.12. In the GUI component, actual values of OMT

attributes are represented as depicted in Figure 4.9 and design matrix is depicted in

Figure 4.13. System component produce events which are obtained from operating

system such as keyboard events as shown in Figure 4.10 and Figure 4.14.

Table 4.7 OMT classes of simulation (adapted from [118])

Class Attribute DataType Description

Vehicles
(PublishSubscribe)

Longitude Integer Actual longitude within terrain
Altitude Integer Actual altitude within terrain
Latitude Integer Actual latitude within terrain
Roll_Angle Integer Roll angle of vehicle to

represent vehicle on terrain
Pitch_Angle Integer Pitch angle of vehicle to

represent vehicle on terrain
Yaw_Angle Integer Yaw angle of vehicle to

represent vehicle on terrain
Vehicle_Type String Vehicle type: F16, F18, etc.
Crashed Boolean Value is set to “true” if vehicle

has crashed
Height Integer Height of vehicle to represent

vehicle on terrain and
calculating crashes

Width Integer Width of vehicle vehicle to
represent vehicle on terrain
and calculating crashes

Speed Integer Actual speed value of vehicle

 86

Fi
gu

re
 4

.9
 S

cr
ee

ns
ho

t f
ro

m
 F

18
 fe

de
ra

te
 in

cl
ud

es
 F

16
, F

18
, a

nd
 S

u2
5

fe
de

ra
te

s

 87

Figure 4.10 Software components

 88

Figure 4.11 FR-DP design matrix of Control component

 89

Figure 4.12 FR-DP design matrix of Terrain component

 90

Figure 4.13 FR-DP design matrix of GUI component

 91

Figure 4.14 FR-DP design matrix of System component

Federates publish some functionalities such as for F16 is represented in Figure 4.15.

Federates are represented by communication components Request and Service used

during communication with other federates. Such component representations for

F16 federate are depicted in Figure 4.15. The F16_Request component accepts

subscribed OMT attributes published by other federates through RTI. The OMT

attributes are evaluated as events in the components. Values of OMT attributes are

used through published methods of the F16_Request component by software

components. Such as for F16 federate, dependencies between methods and OMT

attributes are depicted in Figure 4.16. The F16_Service component publishes OMT

attributes and they can be reachable by software components through get and set

methods as represented in Figure 4.17.

 92

Figure 4.15 F16 component and interfaces

 93

Figure 4.16 F16_Request component

 94

Figure 4.17 F16_Service component

Mature domain includes three federates and their software components as

represented in Figure 4.8. Mature domain Feature Model as represented in Figure

4.19 includes features to create federations. Design matrix of the domain as depicted

in Figure 4.20 includes functionalities of federations. ADCO guides designer

utilizing constraints listed in Table 4.8 and automatically generated constraints from

design matrices of components and domain. If F18 component is extracted from a

solution and features are selected as depicted in Figure 4.21, then the design matrix

as depicted in Figure 4.22 is obtained. As it can be seen in Figure 4.21, feature Su25

and Trail features are not selected. In this situation, designer is interested in a

federation that includes F16 federate without trail effect. For this case, in the F16

 95

component, Display_trail_F16_effects should be omitted and a new F16 component

should be generated. Also related components in F16 federation with this method

can be required modifications. We can extract this knowledge from design matrices

and ontology. “FR1.5.1:F16 trail effect” in the application design matrix depicted in

Figure 4.22, requires “DP1.5.1:Display_trail_F16_effects” which is published by

F16 component as represented in Figure 4.18. Display_trail_F16_effects method

requires Display_trail_effects published by the Terrain component. Since

Display_trail_effects is not required, then Terrain component also can be required

to be modified.

Figure 4.18 FR-DP design matrix of F16 component

 96

Fi
gu

re
 4

.1
9

Fe
at

ur
e

M
od

el
 o

f s
im

ul
at

io
n

do
m

ai
n

 97

Figure 4.20 Domain FR-DP design matrix of domain and application

 98

Table 4.8 Constraints for simulation domain

No Constrains

1 FR1⊆ ∃ LinkedtoFR1_1. FR1_1 ⊔ ∃ LinkedtoFR1_3. FR1_3

2 FR1_1⊆ ∃ LinkedtoFR1_1_1. FR1_1_1 ⊔ ∃ LinkedtoFR1_1_2.

FR1_1_2 ⊔ ∃ LinkedtoFR1_1_3. FR1_1_3

3 FR1_2⊆ ∃ LinkedtoFR1_2_1. FR1_2_1 ⊔ ∃ LinkedtoFR1_2_2.

FR1_2_2 ⊔ ∃ LinkedtoFR1_2_3. FR1_2_3

4 FR1_3⊆ ∃ LinkedtoFR1_3_1. FR1_3_1 ⊔ ∃ LinkedtoFR1_3_2.

FR1_3_2 ⊔ ∃ LinkedtoFR1_3_3. FR1_3_3

5 FR1_4⊆ ∃ LinkedtoFR1_4_1. FR1_4_1 ⊔ ∃ LinkedtoFR1_4_2.

FR1_4_2 ⊔ ∃ LinkedtoFR1_4_3. FR1_4_3

6 FR1_5⊆ ∃ LinkedtoFR1_5_1. FR1_5_1 ⊔ ∃ LinkedtoFR1_5_2.

FR1_5_2 ⊔ ∃ LinkedtoFR1_5_3. FR1_5_3

7 FR1_1_1⊆ ∃ LinkedtoFF16. FF16

8 FR1_1_2⊆ ∃ LinkedtoFF18. FF18

9 FR1_1_3⊆ ∃ LinkedtoFSu25. FSu25

10 FR1_2_1⊆ ∃ LinkedtoFF16. FF16 ⊓ ∃ LinkedtoFCrashing.FCrashing

11 FR1_2_2⊆ ∃ LinkedtoFF18. FF18 ⊓ ∃ LinkedtoFCrashing.FCrashing

12 FR1_2_3⊆ ∃ LinkedtoFSu25. FSu25 ⊓ ∃ LinkedtoFCrashing.FCrashing

13 FR1_3_1⊆ ∃ LinkedtoFF16. FF16

14 FR1_3_2⊆ ∃ LinkedtoFF18. FF18

 99

Table 4.8 (Cont’d)

15 FR1_3_3⊆ ∃ LinkedtoFSu25. FSu25

16 FR1_4_1⊆ ∃ LinkedtoFF16. FF16

17 FR1_4_2⊆ ∃ LinkedtoFF18. FF18

18 FR1_4_3⊆ ∃ LinkedtoFSu25. FSu25

19 FR1_5_1⊆ ∃ LinkedtoFF16. FF16 ⊓ ∃ LinkedtoFTrail.FTrail

20 FR1_5_2⊆ ∃ LinkedtoFF18. FF18 ⊓ ∃ LinkedtoFTrail.FTrail

21 FR1_5_2⊆ ∃ LinkedtoFSu25. FSu25 ⊓ ∃ LinkedtoFTrail.FTrail

Figure 4.21 Selected features

 100

Figure 4.22 Mature Domain FR-DP design matrix of application after constraint

evaluation

 101

5. CONCLUSION

CHAPTER 5

CONCLUSION

This chapter includes the final remarks about this dissertation. The first section

includes the evaluation and critique of the work performed and the following

subsection discusses future work and items open for improvement.

5.1. Conducted Work

This research proposed techniques for domain oriented software development,

through component facilities. Since component oriented software engineering is

based on integration of available components, component utilization can be

effective when a set of components that satisfy stakeholders’ expectations are

located. Therefore, two requirements are identified: 1- definition of stakeholders’

expectations and 2- locating components based on the expectations. Customer needs

can include various attributes which can range from functional needs to

implementation-level details. Customer needs should be understandable by all

stakeholders. In order to locate components, they should include enough

information. Not only method names and some dependencies but also functional

reasons, why a method is defined, should be available. Success of component

location and integration is based on the domains’ maturity. Without mature

domains, component composition and integration suffers from implementation-level

problems. Also semantic matching between customer needs and component services

can suffer from such problems.

 Mature domains can be formed from similar applications (projects). Our goal has

been to guide the designers based on their on-going decisions (constraints),

available components, and customer needs in mature domains. In order to achieve

 102

this goal, we have proposed Axiomatic Design with Component-Orientation

(ADCO). ADCO integrates Axiomatic Design Theory (ADT) and Component-

Oriented Software Engineering approaches. ADT with scientific bases is an

assurance towards “good design”. Customer needs are evaluated and Functional

Requirements (FRs) are identified. The FRs are mapped to Design Parameters

(DPs). At the end of the design, design parameters are used to locate components

which are already developed based on ADT. In ADCO, Feature Models are utilized

to capture customer needs and they are mapped to FRs, DPs, and Process Variables

(PVs). Experiments/decisions of the design experts are saved in ontology through

features, FRs, and DPs. We have implemented an ADCO tool that utilizes reasoning

engines operating on the ontology to guide designers in mature domains.

ADCO is based on ADT and we have some contributions to it as listed below:

• Mappings between the ADT domains are represented in an ontology

representation for providing guidance through reasoning.

• Constraints are represented in the ontology.

• Feature models are proposed to specify customer needs.

• Collaboration models and process models are incorporated to identify the

dependencies between domains.

• A Component-Oriented measurement method based on information content

is proposed.

During the research, a deadlock checking mechanism was initially developed and

incorporated the Communicating Sequential Processes (CSP) notation and

supporting tools. Later it was found that a more general capability was attained by

conducting various constraint checking over the ontology. Therefore the final

version of the ADCO Tool does not include the CSP based operations.

 103

In conclusion, we have developed the ADCO approach to guide designers in mature

domains in an effort to more successfully apply Component-Oriented software

development.

5.2. Evaluation

Our tool provides an environment to experiment with the proposed approach. Case

studies have operationally demonstrated the functionality of the mechanisms within

the specified perspective. It has been observed that for a mediocre design, manual

maintenance of the dependencies, constraints and the compatibility of various ADT

domains can easily grow to enormous complexities – Applying ADCO the process

becomes manageable. Also this highly specialized domain based experience

otherwise would be only recorded in the minds of the experts hence yielding the

valuable knowledge, to be volatile. Representing this knowledge in the mature

domain helps keeping the expertise partially in the organization, ready for

duplicated usage.

The involved approaches are all new. Unfortunately there is no compatible method

to be used in a comparative evaluation study on our method. Therefore the feasible

selection limits us to those involved approaches that were expanded in this study

anyway. One of those is Component Oriented Software Engineering (COSE) and

the other one is ADT. However, ADT is not component oriented whereas our

approach is. Table 5.1 presents a comparison of the proposed ADCO approach with

COSE and ADT approaches.

 104

Table 5.1 A comparison of ADCO with COSEML and ADT

Comparison parameter ADCO COSEML ADT

Design Dimension for Decomposition Functional Structural Functional

Decomposition criteria Yes No Yes

Representation of dependencies between
methods in a component

Yes No No

Component interfaces carry enough
information

Yes No -

Component modification method Yes No -

Domain support (Feature model) Yes No -

Guidance Yes No Very
limited

Product verification Yes No Yes

All components should be known by
developer

No Yes -

During our case studies, some shortcomings have been observed and they are listed

below:

• Training is required for utilizing ADT for component orientation.

• Tracing of the dependencies becomes a problem in complex systems.

• Complexity of the Feature Models can be a problem during handling

consistency of the model and selection of the features. This is a common

problem for all the approaches utilizing Feature Models.

• Alternative DPs are not considered.

 105

• Creating & modifying mature domains have difficulties.

• After new configuration based on feature selections, some components need

to be modified. This disadvantage will decrease in time because of increased

maturity.

• Non-functional requirements are not directly addressed. Although a feature-

based approach can treat most of such items similar to functional

requirements, an exclusive presentation of non-functional requirements

could prove useful.

As an overall assessment we can conclude that the approach can prove useful in

the software industry.

5.3. Future Work

This work has been a first attempt trying to enhance component-orientation through

design guidance. There are many directions this pioneer work can expand. Some

shortcomings are listed in the previous section already. As an initial list of possible

improvements, we are planning to enrich the ADCO tool by:

 integrating use case diagrams, collaboration diagrams, information axiom

calculation facility which was already implemented in C++ language,

 implementing partitioning algorithms for design matrices in an effort to

triangularize coupled designs,

 implementing DP-PV design matrix for showing the connections between

the DPs and components,

 implementing a master design matrix for the system under development, that

includes only the leaf level FRs and DPs – for easier visualization,

 implementing a capability to propose solution sets from available

components, and

 106

 implementing a capability to identify missing components automatically.

We are also planning to adapt ADCO approach to Product Line Architecture (PLA).

Some theoretical work is already in progress in this venue.

 107

REFERENCES

REFERENCES

[1] Akbiyik, E.K., Suloglu, S., Togay, C. and Dogru, A.H., Service Oriented

Systems Design Through Process Decomposition, Proceedings of the The
Eleventh World Conference on Integrated Design and Process Technology,
Tauichung, Taiwan, 2008, pp. 332-338.

[2] Allen, R. and Garlen, D., A formal basis for architectural connection, ACM

Transactions on Software Engineering and Methodology, Vol. 6, No. 3,
1997, pp. 213-249.

[3] Allen, R.J., Garlan, D. and Ivers, J., Formal modeling and analysis of the

HLA component integration standard, Proceedings of the 6th ACM
SIGSOFT international symposium on Foundations of software engineering,
1998.

[4] Allen, R.J. and Garlen, D., A Formal Approach to Software Architecture,

Carnegie Mellon University, 1997.

[5] Baader, F., Calvanese, D., McGuinness, D., Nardi, D. and Patel-Schneider,

P., The Description Logic Handbook: Theory, Implementation, and
Applications, Cambridge University Press, 2003.

[6] Batory, d., Feature-oriented programming and the AHEAD tool suite,

Proceedings of the 26th International Conference on Software Engineering
(ICSE 2004), 2004, pp. 702- 703.

[7] Batory, D., Feature Models, Grammars, and Propositional Formulas,

Lecture Notes in Computer Science, Vol. 3714,2005, pp. 7-20.

[8] Batory, D., Benevides, D. and Ruiz-Cortes, A., Automated Analysis of

Feature Models: Challenges Ahead, Communication of the ACM, Vol. 49,
No. 12, 2006, pp. 45-47.

[9] Benavides, D., Segura, S., Trinidad, P. and Cortés, A.R., Using Java CSP

Solvers in the Automated Analyses of Feature Models, Lecture Notes in
Computer Science, Vol. 4143, No. 2006, 2006, pp. 399-408.

[10] Bergner, K., Rausch, A., Sihling, M. and Vilbig, A., A Componentware

Development Methodology based on Process Patterns, Proceedings of the
Pattern Languages of Programs Conference (PLOP98), Monticello, Illinois,
1998, pp. 11-14.

 108

[11] Bertoa, M.F., Troya, J.M. and Vallecillo, A., A Survey on the Quality

Information Provided by Software Component Vendors, Proceedings of the
tth ECOOP Workshop on Quantitative Approaches in Object Oriented
Software Engineering, Darmstadt, Germany, 2003.

[12] Bertoa, M.F. and Vallecillo, A., Quality Attributes for COTS Components,

Proceedings of the 6th ECOOP Workshop on Quantitative Approaches in
Object Oriented Software Engineering, Malaga, Spain, 2002.

[13] Beugnard, A., Jezequel, J.-M., Plouzeau, N. and Watkins, D., Making

Components Contract Aware, IEEE Computer, Vol. 32, No. 7, 1999, pp. 38-
45.

[14] Bicer, V. and Togay, C., Representing Feature Models with Semantic Web

Ontologies, Proceedings of the Ulusal Yazilim Mimarisi Konferansi
(UYMK), Istanbul, Turkey, 2006.

[15] Browning, T.R., Applying the design structure matrix to system

decomposition and integration problems: a review and new directions, IEEE
Transactions on Engineering Management, Vol. 48, No. 3, 2001, pp. 292-
306.

[16] Bühne, S., Lauenroth, K. and Pohl, K., Why is it not Sufficient to Model

Requirements Variability with Feature Models?, Proceedings of the
Automotive Requirements Engineering (AURE04), Nagoya, Japan, 2004,
pp. 5-12.

[17] Cechticky, V., Pasetti, A., Rohlik, O. and Schaufelberger, W., XML-Based

Feature Modelling, Lecture Notes in Computer Science, Vol. 3107, No.
2004, 2004, pp. 101-114.

[18] Christopher, A., Notes on the Synthesis of Form, Harvard University Press,

Cambridge, 1964.

[19] Clapis, P.J. and Hintersteiner, J.D., Enhancing Object Oriented Software

Development through Axiomatic Design, Proceedings of the First
International Conference on Axiomatic Design, Cambridge, MA, 2000.

[20] Clements, P. and Northrop, L., Software Product Lines: Practices and

Patterns, Addison-Wesley, 2001.

[21] Clements, P.C., From Subroutines to Subsystems: Component-Based

Software Development, The American Programmer, Vol. 8, No. 11, 1995.

[22] Czarnecki, K. and Eisenecker, U., Generative Programming: Methods,

tools, and Applications, Addison-Wesley, 2000.

 109

[23] Czarnecki, K., Helsen, S. and Eisenecker, U., Formalizing Cardinality-

based Feature Models and Their Specialization, Formalizing Cardinality-
based Feature Models and Their Specialization, Vol. 10,2005, pp. 7-29.

[24] Czarnecki, K., Helsen, S. and Eisenecker, U., Staged Configuration Using

Feature Models, Procedings of SPLC 2004, Lecture Notes in Computer
Science, Vol. 3154,2004, pp. 266-283.

[25] Czarnecki, K., Kim, C.H.P. and Kalleberg, K.T., Feature Models are Views

on Ontologies 10th International Software Product Line Conference
(SPLC'06) 2006, pp. 41-51.

[26] Czarnecki, K. and Pietroszek, K., Verifying feature-based model templates

against well-formedness OCL constraints, Proceedings of the Proceedings of
the 5th international conference on Generative programming and component
engineering, Portland, Oregon, USA, 2006 pp. 211-220.

[27] D'Ambrogio, A. and Gianni, D., Using CORBA to Enhance HLA

Interoperability in Distributed and Web-Based Simulation, Proceedings of
the 19th International Symposium on Computer and Information Sciences
(ISCIS'04), Lecture Notes in Computer Science, Vol. 3280/2004,2004, pp.
696-705.

[28] Dahmann, J., Salisbury, M., Turrell, C., Barry, P. and Blemberg, P., HLA

and Beyond: Interoperability Challenges, Proceedings of the The 1999 Fall
Simulation Interoperability Workshop, Orlando,FL, 1999.

[29] Dahmann, J.S. and Morse, K.L., High Level Architecture for simulation: an

update, Proceedings of the Proceedings of the Second International
Workshop on Distributed Interactive Simulation and Real-Time
Applications, Montreal, Que., Canada, 1998, IEEE Computer Society

[30] Davis, A.M., The Design of a Familiy of Application-Oriented Requirements

Language, Computer, Vol. 15, No. 5, 1982, pp. 21-28.

[31] Deursen, A.v. and Klint, P., Domain-specific language design requires

feature descriptions, Journal of Computing and Information
Technology2001, pp. 1-20.

[32] Do, S.H. and Park, G.J., Application of Design Axioms for Glass-Bulb

Design and Software Development for Design Automation, Proceedings of
the Third CIRP Workshop on Design and Implementation of Intelligent
Manufacturing, Tokyo, Japan, 1996, pp. 119-126.

 110

[33] Do, S.H. and Suh, N.P., Object Oriented Software Design with Axiomatic
Design, Proceedings of the Proceedings of ICAD2000 First International
Conference on Axiomatic Design, Cambridge, 2000.

[34] Do, S.H. and Suh, N.P., Systematic OO Programming with Axiomatic

Design, IEEE Computer, Vol. 32, No. 10, pp. 121-124.

[35] Dogru, A.H., Component-Oriented Software Engineering, The Academy of

Learning and Advances Studies (The ATLAS), Dallas, 2006.

[36] Dogru, A.H., Component Oriented Software Engineering Modeling

Language:COSEML, Proceedings of the Computer Engineering Department,
Middle East Technical University,Turkey, TR 99-3, 1999.

[37] Dogru, A.H. and Tanik, M.M., A Process Model for Component-Oriented

Software Engineering, IEEE Software, Vol. 20, No. 2, pp. 34-41.

[38] Eén, N. and Sörensson, N., An extensible SAT solver, Lecture Notes in

Computer Science, Vol. 2919, No. 2004, 2004, pp. 502-518.

[39] Ferber, S., Haag, J. and Savolainen, J., Feature Interaction and

Dependencies: Modeling Features for Reengineering a Legacy Product
Line, Lecture Notes in Computer Science, Vol. 2379, No. 2002, 2002, pp.
37-60.

[40] Formal Systems Ltd., Failures-Divergence-Refinement: FDR2 User

Manual, 2003, http:// www.fsel.com/documentation/probe/probe-doc.pdf,
last accessed date: 01/05/2008

[41] Formal Systems Ltd., Process Behavior Explorer: Probe User Manual,

2003, http:// http://www.fsel.com/documentation/fdr2/fdr2manual.pdf, last
accessed date: 01/05/2008

[42] Grimm, S., Hitzler, P. and Abecker, A., Knowledge Representation and

Ontologies, in Semantic Web Services, Springer Berlin Heidelberg, 2007,
pp. 51-105.

[43] Griss, M.L., Favaro, J. and d'Alessandro, M., Integrating feature modeling

with the RSEB, in Fifth International Conference on Software Reuse,
Victoria, BC, Canada, 1998, pp. 76-85.

[44] Guenov, M.D. and Barker, S.G., Application of Axiomatic Design and

Design Structure Matrix to the Decomposition of Engineering Systems,
Systems Engineering, Vol. 8, No. 1, 2005, pp. 29-40.

 111

[45] Gumus, B., Axiomatic Product Development Lifecycle, Mechanical
Enginnering, Texas Tech University, PhD Dissertation, 2005.

[46] Gumus, B. and Ertas, A., Requirement Management and Axiomatic Design,

Journal of Integrated Design and Process Science, Vol. 8, No. 4, 2004, pp.
19-31.

[47] Harmon, S.Y. and Youngblood, S.M., Leveraging Fidelity to Achieve

Substantive Interoperability, Proceedings of the Spring 2001 Simulation
Interoperability Workshop, Orlando, FL, 2001.

[48] Hoare, C.A.R., Communicating Sequential Processes, Communication of

the ACM, Vol. 21, No. 8, 1978, pp. 666-677.

[49] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B. and

Dean, M., SWRL: A Semantic Web Rule Language Combining OWL and
RuleML, 2004, http://www.w3.org/Submission/SWRL, last accessed date:
01/05/2008

[50] Huizing, M., Component Based Development, Component Technology, Vol.

6, No. 2, pp. 5-9.

[51] IEEE Std 1278.1-1995, IEEE Standard for Distributed Interactive

Simulation (DIS)--Application Protocol, 1995.

[52] IEEE Std 1278.2-1995, IEEE Standard for Distributed Interactive

Simulation (DIS)--Communication Services and Profiles, 1995.

[53] IEEE Std. 830-1998, IEEE Recommended Practice for Software

Requirements Specifications (IEEE Std 830-1998), IEEE Press New York,
1998.

[54] IEEE Std. 1516-2000, IEEE Standard for Modeling and Simulation (M&S)

High Level Architecture (HLA) - Framework and Rules, 2000.

[55] IEEE Std. 1516.1-2000, IEEE Standard for Modeling and Simulation (M&S)

High Level Architecture (HLA)- Federate Interface Specification, , 2000.

[56] IEEE Std. 1516.2, IEEE Standard for Modeling and Simulation (M&S) High

Level Architecture (HLA)-Object Model Template (OMT) Specification,
2000.

[57] IEEE Std. 1516.3-2003, IEEE Recommended Practice for High Level

Architecture (HLA) Federation Development and Execution Process
(FEDEP), 2003.

 112

[58] Inverardi, P. and Uchitel, S., Proving Deadlock Freedom in Component-
Based Programming, Proceedings of the Proceedings of the 4th International
Conference on Fundamental Approaches to Software Engineering, 2001, pp.
65-75.

[59] Iribarne, L., Troya, J.M. and Vallecillo, A., Selecting software components

with multiple interfaces, Proceedings of the Euromicro Conference, 2002,
pp. 26- 32.

[60] ISO/IEC 9126-1:2001, Software Engineering—Product Quality—Part 1:

Quality model, June, 2001.

[61] Jia, Y. and Gu, Y., The Representation of Component Semantics: A Feature-

Oriented Approach, Proceedings of the Component-based Software
Engineering Workshop: Composing Systems from Components
(ECBS2002), Lund, SWEDEN, 2002.

[62] Jololian, L.K., Ngatchou, J.C. and Seker, R., A Component Integration

Meta-Framework using Smart Adapters, Proceedings of the IEEE
Proceedings of the 2004 International Symposium on Information and
Communication Technologies Las Vegas, Nevada, 2004, ACM, pp. 128-
133.

[63] Kalaoja, J., Niemela, E. and Perunka, H., Feature modelling of component-

based embedded software, Proceedings of the 8th International Workshop on
Software Technology and Engineering Practice (STEP '97), 1997, pp. 444-
451.

[64] Kang, K.C., Cohen, S.G., Hess, J.A., Nowak, W.E. and Peterson, A.S.,

Feature Oriented Domain Analysis Feasibility Study, Carnegie Mellon
University, Pittsburg, PA,, 1990.

[65] Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E. and Huh, M., FORM: A

feature-oriented reuse method with domain-specific reference architectures,
J. C. Baltzer AG, Science Publishers Red Bank, NJ, USA, 1998.

[66] Kang, K.C., Kim, S., Lee, J. and Lee, K., Feature-oriented engineering of

PBX software for adaptability and reuseability, Software: Practice and
Experience, Vol. 29, No. 10, 1999, pp. 875-896.

[67] Kang, K.C., Lee, J. and Donohoe, P., Feature-Oriented Product Line

Engineering, IEEE Software, Vol. 19, No. 4, 2002, pp. 58-65.

[68] Kang, K.C., Lee, K., Lee, J. and Kim, S., Feature Oriented Product Line

Software Engineering: Pricinples and Guidelines, in Hirota, T., Itoh, K. and
Kumagai, S. eds, Domain Oriented Systems Development: Perspectives and
Practices Routledge, UK, 2003.

 113

[69] Kar, A.K., Linking Axiomatic Design and Taguchi Methods via Information

Content in Design, Proceedings of the First International Conference on
Axiomatic Design, Cambridge, 2000, pp. 219-224.

[70] Kim, I.-G., Bae, D.-H. and Hong, J.-E., A component composition model

providing dynamic, flexible, and hierarchical composition of components for
supporting software evolution, The Journal of Systems and Software, Vol.
doi:10.1016/j.jss.2007.02.047,2007.

[71] Kim, M., Yang, H. and Park, S., A Domain Analysis Method for Software

Product Lines Based on Scenarios, Goals and Features Proceedings of the
10th Asia-Pacific Software Engineering Conference (APSEC'03), 2003, pp.
126-135.

[72] Lee, K., Kang, K.C., Chae, W. and Choi, B.W., Feature-Based Approach to

Object-Oriented Engineering of Applications for Reuse Sofware practive
and experience, Vol. 30, No. 9, 2000, pp. 1025-1046.

[73] Lee, K., Kang, K.C., Kim, M. and Park, S., Combining Feature-Oriented

Analysis and Aspect-Oriented Programming for Product Line Asset
Development, Proceedings of the The 10th International on Software
Product Line Conference, 2006 pp. 103 - 112

[74] Lees, M., Logan, B. and Theodoropoulos, G., Agents, games and HLA,

Simulation Modeling Practice and Theory, Vol. 14,2006, pp. 752-767.

[75] Liu, D. and Mei, H., Mapping requirements to software architecture by

feature-orientation, Proceedings of the STRAW'03 Second International
Software Requirements to Architectures Workshop, Portland, Oregen, 2003.

[76] Lloyd, W.J., A Common Criteria Based Approach for COTS Component

Selection, Journal of Object Technology, Vol. 4, No. 4, 2005, pp. 27-34.

[77] Lüer, C. and Rosenblum, D.S., WREN---an environment for component-

based development, Proceedings of the 8th European software engineering
conference held jointly with 9th ACM SIGSOFT international symposium
on Foundations of software engineering, Vienna, Austria, 2001, pp. 207-
217.

[78] McGuinness, D.L. and Harmelen, F.v., OWL Web Ontology Language

Overview, 2004, http://www.w3.org/TR/owl-features, last accessed date:
01/05/2008

[79] Mei, J. and Bontas, E.P., Reasoning Paradigms for SWRL-enabled

Ontologies., Proceedings of the International Workshop on Protege with
Rules, Madrid, Spain, 2005.

 114

[80] Melvin, J.W., Axiomatic System Design: Chemical Mechanical Polishing

Machine Case Study, Mechanical Engineering, Massachusetts Institute of
Technology, PhD Dissertation, 2003.

[81] Morse, K.L., Lightner, M., Little, R., Lutz, B. and Scrudder, R., Enabling

Simulation Interoperability, IEEE Computer, Vol. 39, No. 1, pp. 115-117.

[82] Olewnik, A.T. and Lewis, K., On Validating Engineering Design Decision

Support Tools, Concurrent Engineering, Vol. 13,2005, pp. 111-121.

[83] OMG, UML 2.0 OCL Specification, 2003, http://www.omg.org/docs/ptc/03-

10-14.pdf, last accessed date: 01/05/2008

[84] Oses, N., Pidd, M. and Brooks, R.J., Critical issues in the development of

component-based discrete simulation, Simulation Modeling Practice and
Theory, Vol. 12,2004, pp. 495-514.

[85] Pashov, I. and Reiebisch, M., Using feature modeling for program

comprehension and software architecture recovery, Proceedings of the 11th
IEEE International Conference and Workshop on the Engineering of
Computer-Based Systems, 2004, pp. 406- 417.

[86] Pashov, I., Reiebisch, M. and Philippow, I., Supporting architectural

restructuring by analyzing feature models, Proceedings of the Eighth
European Conference on Software Maintenance and Reengineering, 2004,
pp. 25-34.

[87] Pawletta, S., Drewelow, W. and Pawletta, T., HLA-based Simulation within

an Interactive Engineering Environment, Proceedings of the 4th
International Workshop on Distributed Simulation and Real Time
Applications (DS-RT 2000), San Francisco, California, USA, 2000.

[88] Peng, X., Wu, Y. and Zhao, W., A Feature-Oriented Adaptive Component

Model for Dynamic Evolution, Proceedings of the 11th European
Conference on Software Maintenance and Reengineering CSMR '07, 2007.

[89] Peng, X., Zhao, W., Xue, Y. and Wu, Y., Ontology-Based Feature Modeling

and Application-Oriented Tailoring, Lecture Notes in Computer Science,
Vol. 4039, No. 2006, 2006.

[90] Philippow, I., Riebisch, M. and Boellert, K., The Hyper/UML Approach for

Feature Based Software Design, Proceedings of the The 4th AOSD
Modeling With UML Workshop, 2003.

[91] Pimentel, A.R. and Stadzisz, P.C., Application of the Independence Axiom

on the Design of Object Oriented Software using the Axiomatic Design

 115

Theory, Journal of Integrated Design & Process Science, Vol. 10, No. 1,
2006, pp. 57-69.

[92] Pimmler, T.U. and Eppinger, S.D., Integration Analysis of Product

Decomposition, Proceedings of the ASME Design Theory and Methodogy
Conference, 1994.

[93] Reiser, M.O. and Weber, M., Multi-level feature trees A pragmatic

approach to managing highly complex product families, Requirements
Engineering, Vol. 12, No. 2, 2007, pp. 57-75.

[94] Robak, S. and Franczyk, B., Modeling Web Services Variability with

Feature Diagrams, Lecture Notes in Computer Science, Vol. 2593, No.
2008, 2008, pp. 120-128.

[95] Roubtsova, E.E. and Roubtsov, S.A., A Feature Computation Tree Model to

Specify Requirements and Reuse, Proceedings of the ICEIS 2006 -
Proceedings of the Eighth International Conference on Enterprise
Information Systems: Databases and Information Systems Integration,
Paphos, Cyprus, 2006, pp. 118-125.

[96] Simon, H.A., The Science of the Artificial, The MIT Press, 1969.

[97] Steward, D., System Analysis and Management: Structure, Strategy and

Design, Petrocelli Books, New York, 1981.

[98] Steward, D. and Tate, D., Integration of Axiomatic Design and Project

Planning, Proceedings of the First International Conference on Axiomatic
Design, Cambridge, 2000, pp. 286-289.

[99] Su, J.C.Y., Chen, S.J.G. and Lin, L., A structured approach to measuring

functional dependency and sequencing of coupled tasks in engineering
design, Computers and Industrial Engineering, Vol. 45, No. 1, 2003, pp.
195-214.

[100] Suh, N.P., Axiomatic Design Theory for Systems, Research in Engineering

Design, Vol. 10, No. 4, 1998, pp. 189-209.

[101] Suh, N.P., Axiomatic Design: Advantages and Applications, Oxford

University Press, New York, 2001.

[102] Suh, N.P., Complexity: Theory and Applications, Oxfor University Press,

New York, 2005.

[103] Suh, N.P., Designing-in of Quality Through Axiomatic Design, IEEE

Transactions on Reliability, Vol. 44, No. 2, 1995, pp. 256-264.

 116

[104] Suh, N.P., The Principles of design, Oxford University Press, New York,
1990.

[105] Szyperski, C., Component Software – Beyond Object-Oriented

Programming, Addison-Wesley and ACM Press, 1999.

[106] Tanik, M.M. and Chan, E.S., Fundamentals of Computing for Software

Engineers, Van Nostrand Reinhold, New York, 1991.

[107] Tate, D. and Cha, J., The Relationship between Axiomatic Design and Grid

Engineering, Proceedings of the 11th International Conference on
Concurrent Engineering, Beijing, China, 2004.

[108] Taylor, S.J.E., HLA-CSPIF:The high level architecture-COTS simulation

package interoperation forum, Proceedings of the Fall Simulation
Interoperability Workshop, Orlando, FL, 2003.

[109] Taylor, S.J.E., Wang, X. and Turner, S.J., Integrating Heterogeneous

Distributed COTS Discrete-Event Simulation Packages: An Emerging
Standards-Based Approach, IEEE Transaction on Systems, Man, and
Cybernetics-Part A: Systems and Humans, Vol. 36, No. 1, January 2006, pp.
109-122.

[110] Togay, C., HLA Tabanli Bilesenler ile Otomatik Uygulama Gelistirme,

Proceedings of the Ulusal Yazilim Muhendisligi Sempozyumu, Ankara,
Turkey, 2005.

[111] Togay, C., Aktunc, O., Tanik, M.M. and Dogru, A.H., Measurement of

Component Congruity for Composition Based on Axiomatic Design,
Proceedings of the The Ninth World Conference on Integrated Design and
Process Technology, San Diego, CA, 2006.

[112] Togay, C., Bicer, V. and Dogru, A.H., Deadlock Detection in High Level

Architecture Federations Using Axiomatic Design Theory, Proceedings of
the EUROSIM07, Ljubljiana, Slovenia, 2007, pp. 139.

[113] Togay, C. and Dogru, A.H., Aksiyomatik Tasarim ile Benzetim Bileşen Ara

Yüzlerinde Kazanımlar, Proceedings of the SAVTEK 2006, Savunma
Teknolojileri Kongresi, Ankara, 2006.

[114] Togay, C. and Dogru, A.H., Component Oriented Design Based on

Axiomatic Design Theory and COSEML, Proceedings of ISCIS, Lecture
Notes in Computer Science, Vol. 4263/2006,2006, pp. 1072-1079.

[115] Togay, C. and Dogru, A.H., Federasyonların HLA Tabanlı Simulasyonlara

Tümleştirilme Otomasyonu için bir Mekanizma, Proceedings of the 1. Ulusal

 117

Savunma Uygulamaları Modelleme Simülasyon Konferansı, Ankara,
Turkey, 2005.

[116] Togay, C. and Dogru, A.H., A Framework for Component Integration Using

Axiomatic Design and Object Model Template for Simulation Applications,
Department of Electrical and Computer Engineering University of Alabama,
Birmingham, Alabama, 2005.

[117] Togay, C. and Dogru, A.H., Infrastructure Design for HLA Based

Automated Federation Development, Proceedings of the The Eighth World
Conference on Integrated Design and Process Technology, Beijing, China,
2005, pp. 698-704.

[118] Togay, C., Dogru, A.H. and Tanik, U.J., Systematic Component-Oriented

Development with Axiomatic Design, Journal of Systems and Software, Vol.
doi: 10.1016/j.jss.2007.12.746,2008.

[119] Togay, C., Dogru, A.H., Tanik, U.J. and Grimes, G.J., Component Oriented

Simulation Development With Axiomatic Design, Proceedings of the The
Ninth World Conference on Integrated Design and Process Technology, San
Diego, CA, 2006.

[120] Togay, C., Sundar, G. and Dogru, A.H., Detection of Component

Composition Mismatch with Axiomatic Design, Proceedings of the IEEE
Southern Conference, Memphis, TN, 2006, IEEE.

[121] Traas, V. and Hillegersberg, J.v., The software component market on the

internet current status and conditions for growth, Software Engineering
Notes, Vol. 25, No. 1, 2000, pp. 114-117.

[122] Tsarkov, D. and Horrocks, I., FaCT++ Description Logic Reasoner: System

Description, Lecture Notes in Artificial Intelligence, Vol. 4130,2006, pp.
292-297.

[123] Tuncel, M.B., Using Collaboration Diagrams in Component Oriented

Modeling, Computer Engineering Dept., Middle East Technical University,
Master Thesis, 2006.

[124] Turner, C.R., Fuggetta, A., Lavazza, L. and Wolf, A.L., A conceptual basis

for feature engineering, The Journal of Systems and Software, Vol. 49, No.
1, 1999, pp. 3-5.

[125] Wang, H., Li, Y.F., Sun, J., Zhang, H. and Pan, J., A SemanticWeb Approach

to Feature Modeling and Verification, Proceedings of the Workshop on
Semantic Web Enabled Software Engineering (SWESE'05), 2005.

 118

[126] Wang, H., Li, Y.F., Sun, J., Zhang, H. and Pan, J., Verifiying feature models
using OWL, Web Semantics: Science, Services, and Agents on the World
Wide Web, Vol. 5, No. 2, 2007, pp. 117-129.

[127] Yellin, D.M. and Strom, R.E., Protocol Specifications and Component

Adaptors, ACM Transactions on Programming Languages and Systems,
Vol. 19, No. 2, 1997, pp. 292-333.

[128] Yeung, W.L., Mapping WS-CDL and BPEL into CSP for Behavioral

Specification and Verification of Web Services, Proceedings of the Web
Services ECOWS '06, 2006, pp. 297-305.

[129] Yeung, W.L., Wang, J. and Dong, W., Verifying Choreographic

Descriptions of Web Services Based on CSP, Proceedings of the The IEEE
Services Computing Workshops, 2006, pp. 97-104.

[130] Yi, J.W. and Park, G.J., Development of a design system for EPS cushioning

package of a monitor using axiomatic design, Advances in Engineering
Software, Vol. 36,2005, pp. 273-284.

[131] Zakongroup, OpenConf, 2007,

http://www.zakongroup.com/technology/openconf.shtml, last accessed date:
01/05/2008.

 119

APPENDIX A. CONFERENCE MANAGEMENT SYSTEM COMPONENTS

APPENDIX A

CONFERENCE MANAGEMENT SYSTEM
COMPONENTS

A.1. Author Component

Design matrix of Author 1 component is represented in Figure A.1. There are two

published methods namely Add_Author and Delete_Author. There is a subscribed

method namely SQL_Execution. As it can be seen in Figure A.1, both published

methods require the SQL_Execution method.

Figure A.1 Design matrix of Author component

 120

A.2. Database Component

Database component is used to utilize database operations. There is no subscribed

method. SQL_Execution method requires the Open_DB and Close_DB methods as

depicted in Figure A.2. Published methods can be required by other published

methods for instance Open_DB and Close_DB methods utilize SQL_Execution

method as depicted in Figure A.2.

Figure A.2 Design matrix of Database component

 121

A.3. Edit Component

Edit component provides methods for satisfying editing operations. There are two

published and three subscribed methods as depicted in Figure A.3. Login method

utilizes Get_Contact_Password method published by Paper Component as depicted

in Figure A.5 to control password.

Figure A.3 Design matrix of Edit component

 122

A.4. File System Component

File System component is utilized for file system operations as depicted in Figure

A.4. This component is one of the core components and provides upload service.

Although, there can be more methods we prefer to represent critical methods for our

case study. There are no subscribed methods.

Figure A.4 Design matrix of File System component

 123

A.5. Paper Component

Paper component provides all paper operations on database utilizing

SQL_Execution method as depicted in Figure A.5.

Figure A.5 Design matrix of Paper component

 124

A.6. Paper Topic Component

Paper Topic component provides all topic operations on database utilizing

SQL_Execution method as depicted in Figure A.6.

Figure A.6 Design matrix of Paper Topic component

 125

A.7. Submit Component

Submit component is a complex component including methods to satisfy submitting

operations with utilizing other components as depicted in Figure A.7. Submit

method uses other published methods and represented in partial process diagram as

depicted in Figure A.8.

Figure A.7 Design matrix of Submit component

 126

Figure A.8 Partial process diagram of submit method (adapted from [1])

 127

A.8. System Environment Component

System Environment component provides environment information about

conference as depicted in Figure A.8. This information is saved in a file.

Figure A.9 Design matrix of System Environment component

 128

A.9. Utility Component

Utility component provides some useful methods as depicted in Figure A.9. Such as

validate email evaluates the congruity of the email address with standards.

Figure A.10 Design matrix of Utility component

 129

CURRICULUM VITAE

CURRICULUM VITAE

PERSONEL INFORMATION

Surname, Name: Toğay, Cengiz
Nationality: Turkish (TC)
Date and Place of Birth: 30 October 1977, Hatay
Marital Status: Married
Phone: +90 312 2105533
Fax: +90 312 2105544

EDUCATION

Degree Institution Year of Graduation
MS Çanakkale Onsekiz Mart University,

Computer Engineering Department
2001

BS Çanakkale Onsekiz Mart University,
Computer Engineering Department

1999

High School İskenderun Lisesi 1994

WORK EXPERIENCE

Year Place Enrollment
2001-Present Middle East Technical University,

Computer Engineering Department
Research Assistant

1999-2001 Canakkale Onsekiz Mart University,
Computer Engineering Department

Research Assistant

1997-1999 Figensoft Programmer

FOREIGN LANGUAGE

English

PUBLICATIONS

National Conferences

 1. Togay, C., Dogru, A.H, “Federasyonların HLA Tabanlı Benzetimlere
Tümleştirilme Otomasyonu için bir Mekanizma”, 1. Ulusal Savunma
Uygulamaları Modelleme Simülasyon Konferansı, 2005.

 130

2. Togay, C., “HLA Tabanli Bileşenler ile Otomatik Uygulama Geliştirme”, II.

Ulusal Yazilim Muhendisligi Sempozyumu (UYMS) 05, pg: 243-251, 22-24
September 2005.

3. Togay, C., Dogru, A.H., “Aksiyomatik Tasarim ile Benzetim Bileşen Ara

Yüzlerinde Kazanımlar”, SAVTEK 2006, Savunma Teknolojileri Kongresi,
vol. 2, Pg: 201-208, 29-30 June 2006, Ankara.

4. Bicer, V. and Togay, C., “Representing Feature Models with Semantic Web

Ontologies”, Ulusal Yazilim Muhendisligi Konferansi, pg. 70-78, Istanbul,
2006.

International Conferences

1. Togay, C., Dogru, A.H, “Infrastructure Design for HLA Based Automated

Federation Development”, The Eighth World Conference on Integrated
Design and Process Technology, Beijing, China, June 12-16, 2005, pp: 698-
704.

2. Togay, C., Sundar, G., Dogru, A.H., “Detection of Component Composition

Mismatch with Axiomatic Design”, IEEESouthEastCon06, March 31- April 2,
Memphis, USA.

3. Bicer, V., Togay, C., Dogru, A.H., “Service-Oriented e-learning Systems with

Axiomatic Design”, The Ninth World Conference on Integrated Design and
Process Technology, San Diego, California, June 25-30, 2006.

4. Togay, C., Dogru, A.H., Tanik, U.J., Grimes, G.J., “Component Oriented

Simulation Development with Axiomatic Design”, The Ninth World
Conference on Integrated Design and Process Technology, San Diego,
California, June 25-30, 2006.

5. Togay, C., Aktunc, O., Tanik. M., Dogru, A.H., “Measurement of Component

Congruity for Composition based on Axiomatic Design”, The Ninth World
Conference on Integrated Design and Process Technology, San Diego,
California, June 25-30, 2006.

6. Togay, C., Dogru, A.H., “Component Oriented Design Based on Axiomatic

Design Theory and COSEML”, Lecture Notes in Computer Science,
4263/2006: 1072-1079, 2006.

7. Bicer, V., Togay, C., Dogru, A.H., “A model Driven Approach for Service-

Centric System Development”, The Tenth World Conference on Integrated
Design and Process Technology, pg: 175-182, Antalya, Turkey, June 3-8,
2007.

 131

8. Togay, C., Bicer, V., Dogru, A.H., “Deadlock Detection in High Level
Architecture Federations using Axiomatic Design Theory”, EUROSIM07,
Slovenia, September, 2007.

9. Akbiyik, E.K., Suloglu, S., Togay, C., Dogru, A.H.,”Service Oriented

Systems Design Through Process Decomposition”, The Eleventh World
Conference on Integrated Design and Process Technology, pg: 332-338,
Tauichung, Taiwan, June 1-6, 2008.

10. Alkislar, L., Ergun, R., Togay, C., Dogru, A.H., ”Fault Avoidance for Mission

Critical Systems”, The Eleventh World Conference on Integrated Design and
Process Technology, pg: 326-331, Tauichung, Taiwan, June 1-6, 2008.

International Journals

1. Togay, C., Dogru, A.H., Tanik, J.U.,” Systematic Component-Oriented

Development with Axiomatic Design”, The Journal of Systems & Software,
DOI information: http://dx.doi.org/10.1016/j.jss.2007.12.746

Technical Reports

1. Togay, C., Dogru, A.H., “A Framework for Component Integration Using

Axiomatic Design and Object Model Template”, Technical Report, 2005-11-
ECE-001, Department of Electrical and Computer Engineering, University of
Alabama, December, 2005.

2. Kaya, O., Alkislar, L., Togay, C., Dogru, A.H., “Modeling Fault Management

Domain with Fault Avoidance Capability”, Technical Report, METU-CENG-
TR-2007-12, Department of Computer Engineering, METU, December, 2007.

