
 

 
 

INVESTIGATION OF ELECTROMAGNETIC 

WAVE PROPAGATION IN DOUBLE NEGATIVE 

MATERIALS 

 

 

 

 

 

 

 

 

SAFFET GÖKÇEN ŞEN 

 

 

 

 

 

 

 

JULY 2008 

 



 

 
 

INVESTIGATION OF ELECTROMAGNETIC WAVE PROPAGATION IN 

DOUBLE NEGATIVE MATERIALS 

 

 

 

A THESIS SUBMITTED TO                                                                         

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES  

OF                                                                                                           

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

BY 

 

 

SAFFET GÖKÇEN ŞEN 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS                       

FOR                                                                                                                

THE DEGREE OF DOCTOR OF PHILOSOPHY                                            

IN                                                                                                   

ELECTRICAL ENGINEERING 

 

 

 

JULY 2008 

 

 

 



 

 
 

Approval of the thesis: 

 

INVESTIGATION OF ELECTROMAGNETIC WAVE PROPAGATION 

IN DOUBLE NEGATIVE MATERIALS 

 

submitted by SAFFET GÖKÇEN ŞEN in partial fulfillment of the 

requirements for the degree of Doctor of Philosophy in Electrical and 

Electronics Engineering Department, Middle East Technical University 

by, 

 

Prof. Dr. Canan Özgen        ______________ 

Dean, Graduate School of Natural and Applied Sciences 

Prof. Dr. İsmet Erkmen        ______________ 

Head of Department, Electr. and Electronics Eng. 

Prof. Dr. Mustafa Kuzuoğlu        ______________ 

Supervisor, Electr. and Electronics Eng. Dept., METU  

 

Examining Committee Members: 

Prof. Dr. Gönül Turhan Sayan      _______________ 

Electr. and Electronics Eng. Dept., METU 

Prof. Dr. Mustafa Kuzuoğlu       _______________ 

Electr. and Electronics Eng. Dept., METU 

Prof. Dr. Gülbin Dural       _______________ 

Electr. and Electronics Eng. Dept., METU 

Assoc. Prof. Dr. Özlem Aydın Çivi      _______________ 

Electr. and Electronics Eng. Dept., METU 

Assoc. Prof. Dr. Vakur B. Ertürk      _______________ 

Electr. and Electronics Eng. Dept., Bilkent Uni. 

 

      Date:          25.07.2008 

 



 

iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained 

and presented in accordance with academic rules and ethical conduct. I 

also declare that, as required by these rules and conduct, I have fully cited 

and referenced all material and results that are not original to this work. 

 

Name, Last Name: Saffet Gökçen Şen 

 

             Signature: 

 



 

iv 
 

ABSTRACT 

 

INVESTIGATION OF ELECTROMAGNETIC                      

WAVE PROPAGATION IN DOUBLE NEGATIVE 

MATERIALS 

 

Şen, Saffet Gökçen 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mustafa Kuzuoğlu 

July 2008, 138 pages 

 

 

This thesis analyzes some aspects of electromagnetic wave propagation in 

double negative materials. Double negative materials have negative refractive 

indices. They are backward-wave materials. Plane waves undergo negative 

refraction at interfaces between double positive and double negative media. 

Causality principle implies these properties. High frequency plane wave 

scattering from a double negative infinitely long cylinder has been analyzed by 

using modified Watson transform, geometrical optics and Mie series. Mie 

series results and the modified Watson transform results have been found to be 

in good agreement. Hence, the physical mechanism of the scattering has been 

revealed. 

Keywords: Double Negative Material, Negative Refraction, Causality, 

Modified Watson Transform, Geometrical Optics 
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ÖZ 

 

ÇİFT NEGATİF MATERYALLERDE 

ELEKTROMANYETİK DALGALARIN YAYILIMININ 

İNCELENMESİ 

 

Şen, Saffet Gökçen 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof.Dr.Mustafa Kuzuoğlu 

Temmuz 2008, 138 sayfa 

 

 

Bu tez, elektromanyetik dalgaların çift negative materyallerdeki yayılımının 

bazı kısımlarını analiz eder. Çift negatif materyaller negatif kırılma indisine 

sahiptirler. Backward-wave materyallerdir. Düzlemsel dalgalar, çift pozitif ve 

çift negatif ortamların arasındaki arayüzlerde negatif kırılmaya uğrarlar. 

Causality prensibi bu özellikleri gerektirir. Modifiye edilmiş Watson 

dönüşümü, geometrik optik ve Mie serisi kullanılarak, çift negatif sonsuz 

uzunluktaki silindirden yüksek frekans düzlemsel dalga saçılımı analiz edildi. 

Mie serisi sonuçları ve modifiye edilmiş Watson dönüşümü sonuçlarının iyi 

uym içinde oldukları bulundu. Böylece, saçılmanın fiziksel mekanizması 

ortaya çıkarıldı. 

Anahtar kelimeler: Çift Negatif Materyal, Negatif Kırılma, Causality, Modifiye 

Edilmiş Watson Dönüşümü, Geometrik Optik 
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CHAPTER 1 

 

INTRODUCTION 

 

 
In 1968, Veselago suggested a theoretical electromagnetic material in his 

article [1] and examined the properties of this material which has a negative 

permittivity and a negative permeability. The practical implementation of this 

theoretical suggestion is double negative or left-handed metamaterials. The 

reason for the name double negative is the fact that both of the permittivity and 

the permeability are negative. As shown in the article of Veselago, the 

coordinate system formed by the electric field intensity vector, the magnetic 

field intensity vector and the propagation vector of a monochromatic plane 

wave is a left-handed coordinate system. Hence, another naming convention 

for double negative metamaterials is the left-handed metamaterials. Veselago 

presents the unusual properties of the materials as having a negative refractive 

index, the opposite directions of the phase velocity vector and the power 

propagation vector, the reverse Doppler effect, and the negative refraction at an 

interface between a right-handed medium and a left-handed medium. In 

addition, a left-handed material must be dispersive. 

In the studies made for the realization of the double negative metamaterials, the 

articles [2] and [3] are often referred. In [2], several structures including the 

split ring resonator (SRR) are proposed to build a material having an effective 

permeability under microwave radiation. The dependence of the effective 

permeability on the geometrical parameters of the structures and frequency is 

given. In [3], a method for forming a plasmon effect in the GHz frequency 

ranges by lowering the effective plasma frequency is given. Using a structure 

made of thin wires of a particular separation, an effective permittivity and an 

effective plasma frequency are obtained at GHz ranges for the structure. [2] 
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and [3] are the fundamental articles for the SRR and thin-wire realizations of 

left-handed metamaterials. 

In [4], the construction of a left-handed metamaterial and the numerical and the 

experimental verification of the left-handedness are reported. The building 

blocks of the left-handed structures are split ring resonators (SRR) and thin 

wires. In [5], a slab of a left-handed metamaterial is reported to focus all 

Fourier components of a 2D image. The realization of such super-lenses is 

reported to be possible in the microwave range. Simulations of a version of the 

lens operating at the frequency of visible light in the form of a slab of silver are 

reported. The first experimental verification of the negative refraction is 

claimed in [6]. A prism made of SRRs and thin wires are claimed to refract the 

incident beam negatively in the microwave range. However, the negative 

refraction experiments are claimed to be wrong by [7] and [8]. In [7], it is 

indicated that experiments on metallic left-handed materials to verify the 

existence of the negative refraction are questionable. At the experiments’ 

microwave frequencies, the material behaves as a metal and the waves under 

observation become inhomogeneous. In [8], it is indicated that the negative 

refraction of the phase is possible but the negative refraction of the signal is 

impossible due to causality requirements and the finite signal speed. The 

positive group refraction and the negative phase refraction cause the formation 

of an inhomogeneous wave and this distortion prevents the healthy information 

transfer across two media. It is claimed in [8] that negative refraction is 

impossible for all kinds of waves. [9] claims that the analysis in [5] has some 

errors in it and the negative refraction by a left-handed metamaterial slab is 

impossible. [10] examines left-handed metamaterials especially from the aspect 

of causality. In left-handed metamaterials, the causality principle implies a 

negative refractive index. Narrowband and wideband pulses are propagated in 

a dispersive left-handed medium using finite difference time domain (FDTD) 

method in order to exhibit the negative phase velocity and the agreement 

between the negative phase velocity and the causality principle. It is shown that 
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the perfect lens made of a slab of a left-handed metamaterial is impossible for 

realistic metamaterials. [11] also reports FDTD simulation results to show that 

the causality principle requires the left-handed material to be dispersive. It is 

also shown that the wave propagation properties in a left-handed medium, 

negative refractive index and the causality are all in agreement.  

After a brief chronological survey of the literature on left-handed 

metamaterials, the articles which are referred the most in the literature on left-

handed metamaterials are reviewed. 

The first realization of metamaterials was first made by using SRRs and thin 

wires. Another popular way of realization was given almost at the same time in 

[12], [13] and [14]. In the article [15] about this realization, the positions of L 

and C are simply interchanged in the L-C distributed network representation of 

homogeneous dielectrics to obtain simultaneously negative material 

parameters. The circuit and full-wave field simulations illustrating negative 

refraction and focusing are presented. The first experimental verification of 

near-field focusing of an incident cylindrical wave is demonstrated. In [16], the 

experimental data, numerical simulations and analytical transfer-matrix 

calculations for a two-dimensionally isotropic left-handed metamaterial at X-

band microwave frequencies show that it is appropriate to consider LHM as a 

homogeneous material with frequency dispersive material parameters. Hence, 

the concept of LHM is simplified. In [17], the transmission at a boundary 

between a right-handed medium and a left-handed medium is studied. Two 

types of signals are used. One of the signals is a Gaussian pulse and the other is 

made of two discrete spectra. For both of the signals, negative refraction is 

observed as a result of the calculations. In [18], the basic electromagnetic 

properties of left-handed metamaterials are reviewed. These properties are 

verified by finite-element method full-wave analysis using rectangular 

waveguide structures loaded by an LHM. The negative phase velocity, positive 

intrinsic impedance and the negative angle of refraction at an interface with a 

right-handed medium are experimentally verified. 
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There are some studies on the scattering properties of cylinders and spheres 

made of left-handed metamaterials. The extinction spectra of a sphere with 

negative permittivity and permeability are examined in [19]. It is determined 

that when both of the permittivity and the permeability of the dispersive sphere 

become negative, radiation can penetrate into the sphere. However, if either of 

the permittivity or the permeability (but not both) is negative, then the radiation 

cannot penetrate into the sphere. The scattering properties of a cylinder made 

of a left-handed material are subject of the article [20]. The scattering width of 

the infinite-length cylinder is calculated in terms of the Mie scattering 

coefficients. The maximum values of the scattering width are obtained at the 

resonances of the Mie scattering coefficients. These resonances occur in the 

frequency region where the cylinder behaves as a left-handed material. The 

electric field intensity distributions inside an infinite-length cylinder or a 

sphere are calculated for both right-handed and left-handed cases under the 

illumination of a plane wave in [21]. For the left-handed case and high-

frequency operation, it is shown that the intensity focuses on the axis through 

the center closer to the side of the illumination. This observation is in 

agreement with the negative refraction of the incident plane wave. 

There are also practical applications of left-handed metamaterials. In [22], an 

electrically small antenna is covered with a double negative shell to increase 

the power radiated and to decrease the reactance of the antenna. The DNG shell 

is used as a matching network to the free space. This antenna configuration is 

theoretically studied assuming a non-dispersive DNG shell. A left-handed 

metamaterial layer is inserted between two single-mode waveguides in [23]. 

By the help of this LHM layer, the coupling length of the single-mode 

waveguides is significantly reduced. The reflection loss is reduced by tapering 

the ends of the LHM layer. Another advantage of this new directional coupler 

is omitting the need for bent waveguides. 

The scattering of a high frequency plane wave from an infinitely long double 

positive and an infinitely long double negative cylinder is analyzed using the 
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Debye expansion with the Modified Watson transformation in this thesis work. 

The Debye expansion was first introduced by Debye in 1908 in his work on a 

dielectric cylinder in [24]. The Debye expansion brings a physical insight into 

the Mie series expansion of the scattered field. At high frequency, the incident 

plane wave can be considered as a collection of incident rays. If the incident 

rays are traced, then it can be observed that the incident rays are first reflected 

by the scatterer, and then the incident rays are transmitted into the scatterer. 

The transmitted ray is partly reflected by the inside surface of the scatterer and 

is transmitted to the outside of the scatterer. The ray reflected from inside of 

the scatterer continues with this infinite chain of reflections and transmissions. 

When the Debye expansion is applied to the Mie coefficients, this series of 

reflection and transmissions is revealed. In [25], the high frequency scattering 

by a dielectric cylinder or a sphere is calculated in terms of the radar cross 

section applying the Debye expansion to the Mie series coefficients and 

applying the Watson transformation to each term of the Debye expansion. This 

thesis work is similar to another work that is performed in [26]. The high-

frequency scattering due to a dielectric cylinder is calculated by applying the 

Debye expansion to the Mie series coefficients and applying the Watson 

transformation to the Debye expansion terms in [26]. This thesis work takes 

[27] and [28] as the starting points. In [27], the high-frequency scalar scattering 

from an impenetrable sphere illuminated by a plane wave is studied using the 

Modified Watson transformation. In [28], the high-frequency scalar scattering 

from a penetrable sphere illuminated by a plane wave is analyzed using the 

Debye expansion and the Modified Watson transformation. The method in [28] 

considers the scattering as a series of surface interactions between the sphere 

and the rays of the incident high frequency plane wave. Each surface 

interaction is interpreted as a scattering problem similar to the one in [27]. 

The double negative metamaterials have some new properties when they are 

compared to the materials with positive relative permeabilities and positive 

relative permittivities. Some of these properties are the negative refractive 
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index property, the backward wave property and the negative refraction 

property. In the second chapter, these properties are introduced and they are 

proven to exist. It is also shown that the causality principle implies the 

refractive index of a double negative material to be negative. In the proof of 

this fact, the idea has been taken from the reference [10]. However, the proof is 

a little different from the reference [10]. The third chapter is devoted to the 

time domain analysis of the propagation of an rf pulse in a double negative 

medium. The analysis in this chapter uses the time domain pulse model and the 

double negative medium model given in the reference [10]. The way of 

exhibiting the backward wave property of the medium is taken from the 

reference [11]. However, the method of making the pulse propagate in the 

medium is different from the method (FDTD) in the references [10] and [11]. 

The backward wave property of the double negative medium is shown to agree 

with the causality principle using the simulation results. The fourth chapter 

deals with the high frequency analysis of the plane wave scattering from a 

double positive infinitely long cylinder and from a double negative infinitely 

long cylinder. The analysis using the modified Watson transform and the 

Debye series expansion given in the reference [28] for the scalar scattering 

from a penetrable sphere is adapted to the electromagnetic scattering from the 

infinitely long cylinder. The physical interpretation given in [28] for the Debye 

series expansion is adapted to the scattering problem. The first and the second 

terms of the Debye series are examined. The field formation in the geometrical 

shadow and the geometrically lit regions of the first and second terms are 

explained by giving the physical insight into the scattering. In the fifth chapter, 

the theoretical results are proven to be true for both of the double positive and 

the double negative infinitely long cylinder. The proof of the theoretical results 

is made by comparing the Debye series terms with the corresponding field 

integrals in the corresponding geometrical shadow and the geometrically lit 

regions. The computations are made using Mathematica. In the sixth chapter, 
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the conclusions derived from the work and the possible future studies are 

presented. 
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CHAPTER 2 

 

BASIC PROPERTIES OF DOUBLE NEGATIVE 

METAMATERIALS 

 

A double negative medium (DNG) is a medium with a negative permittivity 

denoted by 𝜀 and a negative permeability denoted by 𝜇. A double negative 

medium has several important properties. These are having a negative 

refractive index, the backward wave property, the negative refraction at a 

planar interface. In this chapter, these basic properties of double negative 

metamaterials are presented and they are shown to exist. 

 

2.1 The Negative Refractive Index 

The following analysis uses the idea presented in [10] for the proof of the 

negative refractive index property. Throughout the analysis, the time harmonic 

dependence of 𝑒𝑗𝜔𝑡  is assumed. Another assumption is that the double negative 

medium is temporally dispersive and passive. Let the complex permeability 

and the complex permittivity be given as follows: 

𝜀 𝜔 = 𝜀𝑅 𝜔 − 𝑗𝜀𝐼 𝜔  

   (1) 

𝜇 𝜔 = 𝜇𝑅 𝜔 − 𝑗𝜇𝐼 𝜔  

   (2) 

The causality condition for the DNG medium, i.e. the medium does not give 

any response before a disturbance is applied, is satisfied if 𝜀 𝜔  and 𝜇 𝜔  are 

analytic in the lower half of the complex 𝜔-plane. The following results can be 

shown to be true for a temporally dispersive medium: 

lim
 𝜔 →∞

 𝜔 𝜀 𝜔 − 𝜀0  = 0 𝑓𝑜𝑟 𝐼𝑚 𝜔 < 0 

  (3) 
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lim
 𝜔 →∞

 𝜔 𝜇 𝜔 − 𝜇0  = 0 𝑓𝑜𝑟 𝐼𝑚 𝜔 < 0 

  (4) 

Since the medium is passive, the imaginary parts of the permeability and the 

permittivity are negative. Due to the medium’s being double negative, the real 

parts of the permeability and the permittivity are also negative. Hence, the 

permittivity and the permeability are in the third quadrant of the complex plane 

and have the following mathematical forms: 

𝜀 𝜔 =  𝜀 𝜔  𝑒𝑥𝑝 𝑗∢𝜀 𝜔   𝑓𝑜𝑟 𝜋 < ∢𝜀 𝜔 <
3𝜋

2
 

  (5) 

𝜇 𝜔 =  𝜇 𝜔  𝑒𝑥𝑝 𝑗∢𝜇 𝜔   𝑓𝑜𝑟 𝜋 < ∢𝜇 𝜔 <
3𝜋

2
 

 (6) 

The square roots of the permittivity and the permeability functions are given by 

 𝜀 𝜔 =  𝜀 𝜔  
1
2 𝑒𝑥𝑝  𝑗

∢𝜀 𝜔 

2
+ 𝑗𝑚𝜋  𝑓𝑜𝑟 𝑚 = 0 𝑎𝑛𝑑 𝑚 = 1 

 (7) 

 𝜇 𝜔 =  𝜇 𝜔  
1
2 𝑒𝑥𝑝  𝑗

∢𝜇 𝜔 

2
+ 𝑗𝑞𝜋  𝑓𝑜𝑟 𝑞 = 0 𝑎𝑛𝑑 𝑞 = 1 

 (8) 

Using the information given in the equation (3), it is written that 

lim
 𝜔 →∞

 𝜀 𝜔 =  𝜀0 

   (9) 

For the equation (9) to hold, 𝑚 in the equation (7) must be chosen as 1. If 𝑚 is 

chosen as 0, then 

lim
 𝜔 →∞

 𝜀 𝜔 = − 𝜀0 

   (10) 
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which is in contradiction with (3) and (9). Hence, the value for 𝑚 in the 

computation of the square root of the permittivity function is determined from 

the calculation of 

lim
 𝜔 →∞

 𝜀 𝜔  

Since  𝜀 𝜔  is a factor determining the refractive index of a real life material, 

it is required to be an analytical function of 𝜔. The analyticity requires 𝑚 to be 

the same over the whole range of 𝜔.Using the same reasoning, a similar result 

is found for 𝜇 𝜔 . The value of q in (8) must be equal to 1. 

Then, the refractive index 𝑛 of a DNG material is calculated as 

𝑛 𝜔 =  𝜀 𝜔  𝜇 𝜔 𝑒𝑥𝑝  𝑗  
∢𝜀 𝜔 + ∢𝜇 𝜔 

2
   

 (11) 

where 

𝜋 < ∢𝑛 𝜔 =
∢𝜀 𝜔 + ∢𝜇 𝜔 

2
<

3𝜋

2
 

   (12) 

For the time harmonic dependence of 𝑒𝑗𝜔𝑡 , 𝑛 𝜔  has a negative real part and a 

negative imaginary part. If the time harmonic dependence were 𝑒−𝑗𝜔𝑡 , 𝑛 𝜔  

would have a negative real part and a positive imaginary part. 

 

2.2 The Backward Wave Property 

One of the important properties of a DNG material is the backward wave 

property. A DNG material is a backward wave material because the direction 

of the phase velocity of the wave and the direction of the power flow are 

opposite to each other. Let the material be double negative, passive and 

temporally dispersive. 

It is assumed an x-polarized plane wave propagates along z-axis in the 

material. The time harmonic dependence is 𝑒𝑗𝜔𝑡 . Then, the following equations 

can be written as 
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𝐸  = 𝑎 𝑥𝑒
−𝑗𝑘𝑧  

    (13) 

𝐻   = 𝑎 𝑦  
𝑘

𝜔𝜇
 𝑒−𝑗𝑘𝑧  

   (14) 

where 

𝑘 = 𝑘0𝑛 

    (15) 

𝑛 =  𝜀 𝜔  𝜇 𝜔  

   (16) 

𝜀 𝜔 =  𝜀 𝜔  𝑒𝑥𝑝 𝑗∢𝜀 𝜔   𝑓𝑜𝑟 𝜋 < ∢𝜀 𝜔 <
3𝜋

2
 

  (17) 

𝜇 𝜔 =  𝜇 𝜔  𝑒𝑥𝑝 𝑗∢𝜇 𝜔   𝑓𝑜𝑟 𝜋 < ∢𝜇 𝜔 <
3𝜋

2
 

 (18) 

The complex Poynting vector of the electromagnetic field can be written as 

𝑃  = 𝐸  × 𝐻   ∗ = 𝑎 𝑧

𝑘0 𝑛 𝜔  ∗

𝜔 𝜇 𝜔  𝑒−𝑗∢𝜇 𝜔 
𝑒𝑥𝑝 2𝑘0𝐼𝑚 𝑛 𝜔  𝑧  

 (19) 

The average Poynting vector corresponding to the complex Poynting vector is 

given by 

𝑃  𝑎𝑣 =
1

2
𝑅𝑒 𝑃   = 𝑎 𝑧

1

2
 
 𝜀 

 𝜇 
 

1
2

 
𝑘0

𝜔
 𝑒2𝑘0𝐼𝑚 𝑛 𝜔  𝑧𝑅𝑒  𝑒

𝑗  
∢𝜀 𝜔 

2
−

∢𝜇 𝜔 
2

 
  

   (20) 

where 

−
𝜋

4
<  

∢𝜀 𝜔 

2
−

∢𝜇 𝜔 

2
 <

𝜋

4
 

The direction of the average Poynting vector gives the direction of the power 

flow and the direction of the real part of the wave number vector gives the 
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direction of the phase velocity vector. Hence, the inner product of 𝑃  𝑎𝑣  with 

𝑅𝑒 𝑘    indicates if there is the backward wave property as indicated in [30]. 

𝑃  𝑎𝑣 . 𝑅𝑒 𝑘    

= 

1

2
 𝜀 𝜔   

𝑘0
2

𝜔
 𝑒2𝑘0𝐼𝑚 𝑛 𝜔  𝑧

                   
+

𝑅𝑒  𝑒
𝑗  

∢𝜀 𝜔 
2

−
∢𝜇 𝜔 

2
 
 

             
+

𝑅𝑒  𝑒
𝑗  

∢𝜀 𝜔 +∢𝜇 𝜔 
2

 
 

             
−

 

(21) 

Hence, 

𝑃  𝑎𝑣 . 𝑅𝑒 𝑘   < 0 

   (22) 

which means that there is the backward wave property. A DNG material is a 

backward wave material. 

 

2.3 The Negative Refraction at a Planar Interface 

 Assume that the x-z plane is divided into two halves by a plane 

interface at 𝑧 = 0. A plane wave propagating in the free space (𝑧 < 0) is 

obliquely incident on the interface with a perpendicular polarization. To the 

right of the plane interface (𝑧 > 0), there is a DNG medium. The problem 

geometry is given in the Figure 1. 

 

x

z

E
i

i

DNG medium

 
 

Figure 1 The problem geometry 
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Using the time harmonic dependence of 𝒆𝒋𝝎𝒕, the incident electromagnetic field 

is given by the following: 

𝐸  𝑖 = 𝑎 𝑦𝑒−𝑗𝑘0𝑎 𝑛𝑖
.𝑟 

 

    (23) 

𝐻   𝑖 =
1

𝑍0

 −𝑎 𝑥 cos 𝜃𝑖 + 𝑎 𝑧 sin 𝜃𝑖 𝑒
−𝑗𝑘0𝑎 𝑛𝑖

.𝑟 
 

  (24) 

where 

𝑎 𝑛𝑖
= 𝑎 𝑥 sin 𝜃𝑖 + 𝑎 𝑧 cos 𝜃𝑖  

   (25) 

is the propagation direction of the incident wave, 𝜃𝑖  is the incidence angle, and  

𝑍0 is the intrinsic impedance of the free space. 

The reflected electromagnetic field is written as follows: 

𝐸  𝑟 = 𝑎 𝑦𝑅𝑒−𝑗𝑘0𝑎 𝑛𝑟 .𝑟  

    (26) 

𝐻   𝑟 =  
𝑅

𝑍0
  𝑎 𝑥 cos 𝜃𝑟 + 𝑎 𝑧 sin 𝜃𝑟 𝑒

−𝑗𝑘0𝑎 𝑛𝑟 .𝑟  

   (27) 

where 

𝑎 𝑛𝑟
= 𝑎 𝑥 sin 𝜃𝑟 − 𝑎 𝑧 cos 𝜃𝑟  

𝑅 =
 

1
𝑍0

cos 𝜃𝑖 −
1
𝑍 cos 𝜃𝑡 

 
1
𝑍0

cos 𝜃𝑟 +
1
𝑍 cos 𝜃𝑡 

 

𝑍 =  
 𝜇𝑟  

 𝜀𝑟  
 

   (28) 

𝑎 𝑛𝑟
 is the propagation direction of the reflected wave, 𝜃𝑟  is the reflection angle, 

𝜃𝑡  is the refraction angle, 𝑅 is the reflection coefficient, and 𝑍 is the intrinsic 
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impedance of the DNG medium with relative permittivity 𝜀𝑟  and relative 

permeability 𝜇𝑟 . 

The electromagnetic field transmitted to the DNG medium is given by 

𝐸  𝑡 = 𝑎 𝑦𝑇𝑒−𝑗𝑛 𝑘0𝑎 𝑛𝑡 .𝑟  

    (29) 

𝐻   𝑡 =
𝑇

𝑍
 −𝑎 𝑥 cos 𝜃𝑡 + 𝑎 𝑧 sin 𝜃𝑡 𝑒

−𝑗𝑛 𝑘0𝑎 𝑛𝑡 .𝑟  

  (30) 

where 

𝑎 𝑛𝑡
= 𝑎 𝑥 sin 𝜃𝑡 + 𝑎 𝑧 cos 𝜃𝑡  

𝑇 = 1 + 𝑅 

   (31) 

𝑎 𝑛𝑡
 is the propagation direction of the transmitted wave, 𝑇 is the transmission 

coefficient, 𝑛 is the refractive index of the DNG medium. 

In order to find the reflected and the transmitted waves, the continuity of the 

tangential components of the total electric field intensities at the interface is 

satisfied. The continuity requirement is met also for the tangential components 

of the total magnetic field intensities at the interface. To satisfy the continuity 

requirement, the phase matching condition must first be written at the interface. 

The phase matching condition at the interface is as follows: 

𝑘0 sin 𝜃𝑖 = 𝑘0 sin 𝜃𝑟 = − 𝑛 𝑘0 sin 𝜃𝑡  

  (32) 

The phase matching condition implies that  

𝜃𝑖 = 𝜃𝑟  

    (33) 

sin 𝜃𝑖 = − 𝑛 sin 𝜃𝑡  

   (34) 

Then, the reflection angle is the same as the usual case. However, the refraction 

angle is the negative of the usual case. This means that the transmitted wave is 
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negatively refracted. It stays at the same side of the normal as the incident 

wave. The negative refraction is shown in the Figure 2. 
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Figure 2 The negative refraction at the plane interface 
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CHAPTER 3 

 

TIME DOMAIN ANALYSIS OF RF PULSE 

PROPAGATION IN A DOUBLE NEGATIVE 

METAMATERIAL 

 

In this chapter, the propagation of an rf pulse in a DNG medium is to be 

demonstrated in the time domain. The DNG medium is modeled by a Lorentz 

medium model. The permittivity and the permeability are functions of the 

angular frequency 𝜔. The observation of the pulse at very close time instants 

demonstrates the double-negativeness of the medium. On the other hand, the 

distant time observations exhibits the fact that double-negativeness does not 

violate the causality principle. 

 

3.1 The Modeling of the DNG Medium 

The DNG medium is temporally dispersive with some dielectric loss. The 

mathematical forms of the permittivity and permeability are described as 

functions of the angular frequency 𝜔. They are given as follows: 

𝜀 𝜔 = 𝜀0  1 −
𝜔𝑝𝑒

2

 𝜔 + 𝑗Γe1  𝜔 + 𝑗Γe2 
  

   (35) 

𝜇 𝜔 = 𝜇0  1 −
𝜔𝑝𝑚

2

 𝜔 + 𝑗Γm1  𝜔 + 𝑗Γm2 
  

   (36) 

𝜔𝑝𝑒 , 𝜔𝑝𝑚 : 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑝𝑙𝑎𝑠𝑚𝑎 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 

Γ𝑒1, Γ𝑒2, Γ𝑚1, Γ𝑚2: 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

The angular plasma frequencies and the negative damping coefficients can be 

adjusted to obtain a medium of desired properties changing with angular 

frequency. As an example, the real parts of the relative permeability and the 
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relative permittivity of a DNG medium becomes -1 at the frequency 30 GHz 

with the following angular plasma frequencies and the negative damping 

coefficients: 

Γ𝑒1 = −1 × 108𝑟𝑎𝑑/𝑠 Γ𝑚1 = −1 × 108𝑟𝑎𝑑/𝑠 

Γ𝑒2 = −1 × 108𝑟𝑎𝑑/𝑠 Γ𝑚2 = −1 × 108𝑟𝑎𝑑/𝑠 

𝜔𝑝𝑒 = 2.6650 × 1011𝑟𝑎𝑑/𝑠 𝜔𝑝𝑚 = 2.6650 × 1011𝑟𝑎𝑑/𝑠 

The values given in the above are taken from [10]. For this medium, the real 

part of the relative permittivity is shown in the following figures: 

 

 
 

Figure 3 The real part of the relative permittivity. The frequency axis is from -100 MHz to 100 

MHz. The maximum value of the real part of the relative permittivity axis is 8x106. 
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Figure 4 The real part of the relative permittivity. The frequency axis is from -1 GHz to 1 GHz. The 

maximum value of the real part of the relative permittivity axis is 8x106. 
 

 

 
 

Figure 5 The real part of the relative permittivity. The frequency axis is from 1 GHz to 10 GHz. 
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Figure 6 The real part of the relative permittivity. The frequency axis is from 10 GHz to 110 GHz. 
 

 

The imaginary part of the relative permittivity is shown in the following 

figures: 

 

 
 

Figure 7 The imaginary part of the relative permittivity. The frequency axis is from -100 MHz to 

100 MHz. The maximum value of the imaginary part of the relative permittivity axis is 5x106. 
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Figure 8 The imaginary part of the relative permittivity. The frequency axis is from -1 GHz to 1 

GHz. The maximum value of the imaginary part of the relative permittivity axis is 5x106. 
 

 

 

 
Figure 9 The imaginary part of the relative permittivity. The frequency axis is from 1 GHz to 10 

GHz. 
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Figure 10 The imaginary part of the relative permittivity. The frequency axis is from 10 GHz to 110 

GHz. 
 

 

The relative permeability of the medium is the same as the relative permittivity 

of the medium. The refractive index of the medium is shown in the following 

figures: 
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Figure 11 The real part of the refractive index. The frequency axis is from -100 MHz to 100 MHz. 

The maximum value of the real part of the refractive index axis is 8x106. 
 

 

 

 
Figure 12 The real part of the refractive index. The frequency axis is from -1 GHz to 1 GHz. The 

maximum value of the real part of the refractive index axis is 8x106. 



 

23 
 

 

 
Figure 13 The real part of the refractive index. The frequency axis is from 1 GHz to 10 GHz. 

 

 

 

 
Figure 14 The real part of the refractive index. The frequency axis is from 10 GHz to 110 GHz. 
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Figure 15 The real part of the refractive index. The frequency axis is from 25 GHz to 30 GHz. The 

real part becomes -1 at 30 GHz. 
 

 

 

 
Figure 16 The imaginary part of the refractive index. The frequency axis is from -100 MHz to 100 

MHz. The maximum value of the imaginary part of the refractive index axis is 5x106. 
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Figure 17 The imaginary part of the refractive index. The frequency axis is from -1 GHz to 1 GHz. 

The maximum value of the imaginary part of the refractive index axis is 5x106. 
 

 

 

 
Figure 18 The imaginary part of the refractive index. The frequency axis is from 1 GHz to 10 GHz. 
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Figure 19 The imaginary part of the refractive index. The frequency axis is from 10 GHz to 110 

GHz. 
 

 

 

 
Figure 20 The imaginary part of the refractive index. The frequency axis is from 25 GHz to 30 

GHz. 
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3.2 The Formulation of the RF Pulse 

The rf pulse consists of a carrier signal and a modulating signal. The 

mathematical form of the rf pulse is taken from [10]. The carrier signal is a 

sinusoidal of the angular frequency 𝜔0. The modulating signal is composed of 

adjustable turn-on and turn-off portions. The turn-on and turn-off portions of 

the modulating signal are used to control the frequency content of the rf pulse. 

The turn-on portion is used to control the speed at which the rf pulse starts and 

reaches its steady state. On the other hand, the turn-off portion controls the 

speed at which the rf pulse turns off. The higher the turn-on or turn-off speeds 

are, the bigger the amount of the high frequency content of the signal is. 

The modulating signal is given as follows: 

𝑔𝑜𝑛  𝑡 = 10𝑥𝑜𝑛
3 − 15𝑥𝑜𝑛

4 + 6𝑥𝑜𝑛
5  

   (37) 

𝑔𝑜𝑓𝑓  𝑡 = 1 −  10𝑥𝑜𝑓𝑓
3 − 15𝑥𝑜𝑓𝑓

4 + 6𝑥𝑜𝑓𝑓
5   

  (38) 

𝑥𝑜𝑛  𝑡 = 1 −
 𝑚𝑇𝑝 − 𝑡 

𝑚𝑇𝑝
 

    (39) 

𝑥𝑜𝑓𝑓  𝑡 =
 𝑡 −  𝑚 + 𝑠 𝑇𝑝 

𝑚𝑇𝑝
 

    (40) 

where 𝑇𝑝 is the fundamental period of the carrier sinusoid. m gives the length of 

the turn-on interval and the length of the turn-off interval in terms of the 

fundamental period of the carrier signal. s gives the length of the steady-state 

portion in terms of the fundamental period of the carrier sinusoid. That’s the 

mean, the turn-on and the turn-off intervals last for m times the fundamental 

period of the carrier sinusoid, and the steady-state portion of the rf pulse lasts 

for s times the fundamental period of the carrier sinusoid.  
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After the definitions made in the previous paragraphs, the rf pulse is 

formulated as follows: 

𝑓 𝑡 =

 
 
 

 
 

𝑔𝑜𝑛  𝑡 sin 𝜔0𝑡    𝑓𝑜𝑟    0 ≤ 𝑡 ≤ 𝑚𝑇𝑝

sin 𝜔0𝑡    𝑓𝑜𝑟   𝑚𝑇𝑝 ≤ 𝑡 ≤  𝑚 + 𝑠 𝑇𝑝

𝑔𝑜𝑓𝑓  𝑡 sin 𝜔0𝑡    𝑓𝑜𝑟    𝑚 + 𝑠 𝑇𝑝 ≤ 𝑡 ≤  𝑚 + 𝑠 + 𝑚 𝑇𝑝

0   𝑓𝑜𝑟    𝑚 + 𝑠 + 𝑚 𝑇𝑝 ≤ 𝑡

  

 (41) 

For an rf pulse obtained by modulating a carrier sinusoid of the fundamental 

period of 33.3 picoseconds with a modulating signal of 𝑚 = 1 and 𝑠 = 15, the 

following time domain waveform and the frequency domain waveform in the 

Figures 21, 22 and 23 are obtained: 

 

 
 

Figure 21 The rf pulse in the time domain for m=1, s=15, Tp=33.3 ps 
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Figure 22 The rf pulse in the frequency domain m=1, s=15, Tp=33.3 ps. The frequency axis is from  

-50 GHz to 50 GHz. 
 

 

 
 

Figure 23 The rf pulse in the frequency domain m=1, s=15, Tp=33.3 ps. The frequency axis is from  

-120 GHz to 120 GHz. 
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Another example for the rf pulse is the one obtained by modulating a carrier 

sinusoid of the fundamental period of 33.3 picoseconds with a modulating 

signal of m=10 and s=15. The time domain waveform and the frequency 

domain waveform are given in the Figures 24, 25 and 26: 

 

 

 
Figure 24 The rf pulse in the time domain for m=10, s=15, Tp=33.3 ps 
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Figure 25 The rf pulse in the frequency domain m=10, s=15, Tp=33.3 ps. The frequency axis is from  

-50 GHz to 50 GHz. 
 

 

 
 

Figure 26 The rf pulse in the frequency domain m=10, s=15, Tp=33.3 ps. The frequency axis is from  

-90 GHz to 90 GHz. 
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If the continuous time Fourier transforms are compared, it can be easily seen 

that the frequency content of the first pulse is larger than that of the second 

pulse. This is due to the reason that the turn-on and turn-off portions of the first 

pulse are shorter than those of the second pulse. 

 

3.3 The Formulation of the Propagation of the RF Pulse 

The rf pulse is not a monochromatic signal. That is the mean, it is not 

composed of a single frequency. It has a span of frequencies as shown by its 

frequency domain representation. Using the continuous time Fourier transform, 

the rf pulse can be described as an integral sum of monochromatic complex 

exponentials. Each of these complex exponentials travels through the 

dispersive DNG medium with its own phase speed 𝑣𝑝𝑎𝑠𝑒  𝜔  given by 

𝑣𝑝𝑎𝑠𝑒  𝜔 =
𝑐

𝑛 𝜔 
 

    (42) 

where 𝑐 is the speed of light and 𝑛 𝜔  is the refractive index of the DNG 

medium at the specific angular frequency of 𝜔. Hence, every monochromatic 

signal propagates with a different phase speed. The DNG medium behaves as a 

filter which shapes the rf pulse as the pulse propagates through the medium. 

If the medium were not dispersive, then the phase speed would be a constant 

𝑣𝑝𝑎𝑠𝑒  independent of the angular frequency 𝜔. Assuming that 𝑓 𝑡  stands for 

the rf pulse, after propagating a distance of 𝑧0 in the positive z direction, the 

pulse would be described by 𝑓  𝑡 −
𝑧0

𝑣𝑝𝑎𝑠𝑒
 . The continuous time Fourier 

transform pair for the rf pulse is defined as 

𝐹 𝜔 = ℱ 𝑓 𝑡  =  𝑓 𝑡 𝑒−𝑗𝜔𝑡 𝑑𝑡

∞

−∞

 

 (43) 
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𝑓 𝑡 =
1

2𝜋
 𝐹 𝜔 𝑒𝑗𝜔𝑡 𝑑𝜔

∞

−∞

 

   (44) 

Then, the propagating pulse can be expressed in terms of a continuous time 

Fourier integral using the time-shifting property of the transform as follows: 

𝑓  𝑡 −
𝑧0

𝑣𝑝𝑎𝑠𝑒
 =

1

2𝜋
  𝐹 𝜔 𝑒

−𝑗𝜔
𝑧0

𝑣𝑝𝑎𝑠𝑒  𝑒𝑗𝜔𝑡 𝑑𝜔

∞

−∞

 

  (45) 

The effect of the dispersive medium to the continuous time Fourier transform 

of the rf signal as it propagates through the medium will be multiplying 𝐹 𝜔  

by 𝑒
−𝑗𝜔

𝑧0
𝑣𝑝𝑎𝑠𝑒  𝜔  

. This effect is dependent on 𝜔 and may distort the shape of the 

rf signal. Then, the propagating signal can be expressed as follows: 

𝑔 𝑡 =
1

2𝜋
  𝐹 𝜔 𝑒

−𝑗𝜔
𝑧0

𝑣𝑝𝑎𝑠𝑒  𝜔  𝑒𝑗𝜔𝑡 𝑑𝜔

∞

−∞

 

  (46) 

where 𝑔 𝑡  denotes the propagating signal. 

The inverse Fourier transform operation in equation (46) is carried out using 

MATLAB. First, the continuous Fourier transform of the rf pulse, i.e. 𝐹 𝜔 , is 

computed. Then, it is multiplied by 𝑒
−𝑗𝜔

𝑧0
𝑣𝑝𝑎𝑠𝑒  𝜔  

. The inverse Fourier 

transform of the product is taken to obtain the propagating rf pulse in the time 

domain. In this observation, the reference for the observation point or the 

observation time is to be thought with respect to the same rf pulse propagating 

in a non-dispersive medium. 

For an rf pulse obtained by modulating a carrier sinusoid of the fundamental 

period of 33.3 picoseconds with a modulating signal of 𝑚 = 1 and 𝑠 = 15, the 

propagating waveform is obtained for the observation points of 𝑧1 = 1.5 𝑐𝑚 

and 𝑧2 = 1.6 𝑐𝑚 as shown in the Figure 27. 
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In the Figure 28, the steady-state portions of the propagating wave at close 

observation points reveal the double negativeness of the medium. The steady-

state portion is at 30 GHz and feels the double negativeness property of the 

dispersive medium at this frequency with Re{n} = -1. The steady-state portion 

propagates to the right, i.e. the power propagation direction of the steady-state 

portion is towards right. The power propagation direction of the steady-state 

portion is the same as the propagation direction of the rf pulse. The continuous 

curve (𝑧2 = 1.6 𝑐𝑚) is seen to be to the left of the dotted curve (𝑧1 = 1.5 𝑐𝑚) 

despite the power propagation direction. This is due to the negative phase 

velocity of the steady-state portion of the pulse. It can be seen simultaneously 

on the same figure that the power propagation direction is opposite to the phase 

velocity direction in a double negative medium. The portions where the 

continuous waveform is to the right of the dotted waveform correspond to the 

spectral regions where the medium behaves as a double negative medium. The 

method for the determination of the double negativeness of the medium has 

been taken from [11]. 

 

 
 

Figure 27 The propagating waveform observed at 𝒛𝟏 = 𝟏. 𝟓 𝒄𝒎 and 𝒛𝟐 = 𝟏. 𝟔 𝒄𝒎 
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Figure 28 The continuous wave portion of the propagating pulse at 𝒛𝟏 = 𝟏. 𝟓 𝒄𝒎 and 𝒛𝟐 = 𝟏. 𝟔 𝒄𝒎 
 

 

In the Figure 29, the observations made at 𝑧1 = 1.5 𝑐𝑚 and 𝑧2 = 3.0 𝑐𝑚 show 

that the pulse is propagating towards positive 𝑧 direction although the phase 

velocity of the steady-state portion is towards the negative z direction. Hence, 

it is proven that in a DNG medium, the power propagation direction is opposite 

to the phase velocity direction and the causality is preserved. 

For an rf pulse obtained by modulating a carrier sinusoid of the fundamental 

period of 33.3 picoseconds with a modulating signal of 𝑚 = 10 and 𝑠 = 15, 

the propagating waveform shown in the Figure 30 is obtained for the 

observation points of 𝑧1 = 1.5 𝑐𝑚 and 𝑧2 = 1.6 𝑐𝑚. 

In the Figure 31, the leading edge of the propagating time domain pulse is 

observed. The dotted curve (𝑧1 = 1.5 𝑐𝑚) starts to move before the continuous 

curve (𝑧2 = 1.6 𝑐𝑚). This is the expected physical behavior because the 

medium is causal. 
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Figure 29 The propagating waveform observed at 𝒛𝟏 = 𝟏. 𝟓 𝒄𝒎 and 𝒛𝟐 = 𝟑. 𝟎 𝒄𝒎 
 

 

 
 

Figure 30 The propagating waveform observed at 𝒛𝟏 = 𝟏. 𝟓 𝒄𝒎 and 𝒛𝟐 = 𝟏. 𝟔 𝒄𝒎 
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Figure 31 The leading edge of the propagating pulse at 𝒛𝟏 = 𝟏. 𝟓 𝒄𝒎 and 𝒛𝟐 = 𝟏. 𝟔 𝒄𝒎 
 

 

In the Figure 32, the steady-state portion of the propagating pulse at 𝑧1 =

1.5 𝑐𝑚 and 𝑧2 = 1.6 𝑐𝑚 show that the phase velocity direction is opposite to 

the power propagation direction and the medium is DNG at this frequency. In 

this part, the continuous curve (𝑧2 = 1.6 𝑐𝑚) is to the left of the dotted curve 

(𝑧1 = 1.5 𝑐𝑚) although the power propagates to the right. 

In the trailing edge of the propagating pulse, Figure 33, the continuous curve 

(𝑧2 = 1.6 𝑐𝑚) stops later than the dotted curve (𝑧1 = 1.5 𝑐𝑚). This is also in 

agreement with the expected physical result since the medium properties do not 

violate causality. 

In the Figure 34, the observations made for 𝑧1 = 1.5 𝑐𝑚 and 𝑧2 = 3.0 𝑐𝑚 

show that the pulse propagates towards the positive z direction although the 

phase velocities of the parts feeling the double negativeness of the medium are 

toward the negative z direction.  
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Figure 32 The continuous wave portion at 𝒛𝟏 = 𝟏. 𝟓 𝒄𝒎 and 𝒛𝟐 = 𝟏. 𝟔 𝒄𝒎 
 

 

By observing the propagation of an rf pulse in a dispersive medium adjusted to 

be double negative at the carrier frequency of the rf pulse, it is proven that the 

propagation direction of the pulse, i.e. the power propagation direction, is 

opposite to the phase velocity directions of the rf pulse’s portions which feel 

the double negativeness of the dispersive medium and this property does not 

violate causality. 

 



 

39 
 

 
 

Figure 33 The trailing edge of the propagating pulse at 𝒛𝟏 = 𝟏. 𝟓 𝒄𝒎 and 𝒛𝟐 = 𝟏. 𝟔 𝒄𝒎 
 

 

 
 

Figure 34 The propagating waveform observed at 𝒛𝟏 = 𝟏. 𝟓 𝒄𝒎 and 𝒛𝟐 = 𝟑. 𝟎 𝒄𝒎 
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CHAPTER 4 

 

HIGH FREQUENCY PLANE WAVE SCATTERING 

BY AN INFINITELY LONG DOUBLE NEGATIVE 

CYLINDER 

 

In this chapter, the scattering of a high frequency plane wave by an infinitely 

long cylinder is analyzed using the modified Watson transform along with the 

Debye expansion. Both the double positive cylinder and the double negative 

cylinder are examined. The contributions of the first two terms of the Debye 

expansion to the scattered field in the corresponding geometrical shadow and 

the geometrically lit regions are derived. The physical insight to the scattering 

problem is revealed. 

In this chapter, the time harmonic dependence is fixed as 𝑒−𝑗𝜔 𝑡 . The reason of 

this change after the harmonic dependence of 𝑒𝑗𝜔𝑡  used in the third chapter is 

explained as in the following lines. Some of the results of this work were 

compared to some of the results in [28]. The time harmonic dependence in [28] 

is 𝑒−𝑗𝜔𝑡  and the time harmonic dependence of this chapter has been fixed as 

𝑒−𝑗𝜔𝑡  due to this reason. 

 

4.1 The Problem Description 

A plane wave 

𝐸  𝑖 = 𝑎 𝑧𝑒
−𝑗𝑘0𝑥  

    (47)      

propagates in the negative 𝑥 direction where  

𝑘0 = 𝜔 𝜇0𝜀0 

     (48)  
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is the free space propagation constant. A dielectric cylinder of infinite length is 

at the origin. The cylinder radius is 𝑎 and it is assumed to be large compared to 

the wavelength of the incident plane wave. In other words, the operation 

frequency is very high. The problem geometry is given in Figure 35. 

 

Figure 35 The problem geometry 
 

 

4.2 Mie Series Solution 

The incident plane wave is expanded as a series in terms of Bessel functions of 

the first kind as follows: 

𝐸  𝑖 = 𝑎 𝑧  𝑗−𝑙𝐽𝑙 𝑘0𝜌 𝑒𝑗𝑙𝜙

∞

𝑙=−∞

 

  (49) 

The scattered field at the point  𝜌, 𝜙  can be expressed in terms of a series of 

Hankel functions of the first kind: 

𝐸  𝑠 = 𝑎 𝑧  𝑐𝑙𝐻𝑙
 1 

 𝑘0𝜌 𝑒𝑗𝑙𝜙

∞

𝑙=−∞

 

   (50) 

The continuity of the tangential electric field intensity and the tangential 

magnetic field intensity at the surface of the cylinder yields the following 

expression for 𝑐𝑙 : 

z 

a 

y 

𝜌 

x 

𝐸  𝑖  
𝛽 0 
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𝑐𝑙 =
𝑗−𝑙 −𝜇𝑟𝐽𝑙 𝛼 𝐽𝑙

′ 𝛽 + 𝑛𝐽𝑙
′ 𝛼 𝐽𝑙 𝛽  

 𝜇𝑟𝐽𝑙 𝛼 𝐻𝑙
 1 ′  𝛽 − 𝑛𝐽𝑙

′ 𝛼 𝐻𝑙
 1  𝛽  

 

   (51) 

where 𝜇𝑟  is the relative permeability of the cylinder, 𝑛 is the refractive index of 

the cylinder, and 

𝛽 = 𝑘0𝑎 

    (52) 

𝛼 = 𝑛𝛽 

    (53) 

The convention for 𝑓 ′ 𝑥0  is given as follows: 

𝑓 ′ 𝑥0 =  𝑑𝑓

𝑑𝑥
 
𝑥=𝑥0

 

   (54) 

As an illustration of the Mie series solution for the scattered field, the scattered 

field from an infinitely long cylinder of radius one centimeter is plotted in the 

following figures when the cylinder is illuminated by a TMz plane wave of 30 

GHz and unit amplitude. The magnitude and the real part of the electric field 

intensity distribution for 0 ≤ 𝜌 ≤ 2 𝑐𝑚 is displayed in the Figures 36-41. 

Color-bars are used to indicate the value of the displayed quantity in volts per 

meter. Both double positive and double negative cylinders with varying 

refractive indices are chosen. 
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Figure 36 The magnitude of the electric field intensity distribution for 𝒏 = −𝟏 
 

 

 
 

Figure 37 The real part of the electric field intensity distribution for 𝒏 = −𝟏 
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Figure 38 The magnitude of the electric field intensity distribution for 𝒏 = 𝟐 
 

 

 
 

Figure 39 The real part of the electric field intensity distribution for 𝒏 = 𝟐 
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Figure 40 The magnitude of the electric field intensity distribution for 𝒏 = −𝟐 
 

 

 
 

Figure 41 The real part of the electric field intensity distribution for 𝒏 = −𝟐 
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The Mie series solution for the scattered field is given by the equation (50). 

Theoretically, it is a sum consisting of infinite number of terms. However, at 

low frequencies, it converges rapidly to the solution. On the other hand, at high 

frequencies, the number of terms to be kept in the sum must be at least the 

integer closest to 2𝛽. In the Figure 42 obtained using Mathematica, the number 

of terms to be kept in the Mie series for the correct result is shown versus 𝛽 

values. The results are for the scattering from a dielectric cylinder of the 

refractive index 3 and relative permeability 1. The 𝜙 coordinate of the field 

point is 𝜋 radian and the 𝜌 coordinate is 3  𝛽 + 𝛽
1

3 . 

The higher the operation frequency is, the smaller the convergence speed of the 

Mie series is. The convergence speed at high frequencies is low but using 

special package programs, such series sums can be obtained. Apart from the 

convergence issue, another point to consider in the high frequency scattering 

solution is the physics of the problem. The physical insight to the high 

frequency solution provides the information about the mechanisms in the 

scattering event. The desired physical insight does not exist in the Mie series 

solution. Hence, another method is required for the high frequency solution. 

 

 
 

Figure 42 The number of terms to be kept in the Mie series versus beta 
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4.3 The Modified Watson Transform 

The modified Watson transform is the method used in achieving a fast 

converging solution with physical insight into the scattering mechanism.  

First, the Mie series is converted to an integral. The conversion is carried out 

using the following equality: 

 𝑓 𝑙 𝑒−𝑗𝑙𝜙

∞

𝑙=−∞

=
1

2𝑗
  

𝑓 𝑣 𝑒−𝑗𝑣 𝜙−𝜋 

sin 𝑣𝜋 
 𝑑𝑣

𝐶1+𝐶2

 

 (55) 

where the integration contours 𝐶1and 𝐶2 are shown in the Figure 43. 

If two functions 𝑝 and 𝑞 are analytic at a point 𝑧0 and  

𝑝 𝑧0 ≠ 0, 𝑞 𝑧0 = 0, 𝑞′ 𝑧0 =  𝑑𝑞

𝑑𝑧
 
𝑧=𝑧0

≠ 0 

then 𝑧0 is a simple pole of the quotient 
𝑝 𝑧 

𝑞 𝑧 
 and the residue at this simple pole 

is 
𝑝 𝑧0 

𝑞 ′  𝑧0 
. 

 

C
2

C
1

-plane

Im

Re 

 
 

Figure 43 The integration contours 𝑪𝟏 and 𝑪𝟐 
 

 

Using the mentioned theorem and assuming that 

𝑝 𝑣 = 𝑓 𝑣 𝑒−𝑗𝑣 𝜙−𝜋 , 𝑞 𝑣 = sin 𝑣𝜋 , 
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the residue of the quotient 
𝑓 𝑣 𝑒−𝑗𝑣  𝜙−𝜋 

sin  𝑣𝜋 
 at the simple pole 𝑣 which is an integer 

is given by 

𝑅𝑒𝑠  
𝑓 𝑣 𝑒−𝑗𝑣 𝜙−𝜋 

sin 𝑣𝜋 
 =

𝑓 𝑣 𝑒−𝑗𝑣 𝜙−𝜋 

𝜋 cos 𝑣𝜋 
 

   (56) 

The Cauchy integral formula implies that the integral 

  
𝑓 𝑣 𝑒−𝑗𝑣 𝜙−𝜋 

sin 𝑣𝜋 
 𝑑𝑣

𝐶1+𝐶2

 

is equal to the 2𝜋𝑗 times the sum of the residues of the integrand at the 

integrand’s poles which are enclosed by the closed contour  𝐶1 + 𝐶2 . Then, 

  
𝑓 𝑣 𝑒−𝑗𝑣 𝜙−𝜋 

sin 𝑣𝜋 
 𝑑𝑣

𝐶1+𝐶2

= 2𝜋𝑗  
𝑓 𝑙 𝑒−𝑗𝑙  𝜙−𝜋 

𝜋 cos 𝑙𝜋 

∞

𝑙=−∞

 

= 2𝑗  𝑓 𝑙 𝑒−𝑗𝑙𝜙

∞

𝑙=−∞

 

   (57) 

Equation (57) is the equation (55). Hence, the equality in equation (55) is 

proven. 

The scattered field at the point  𝜌, −𝜙  which is the same as the scattered field 

at the point  𝜌, 𝜙  due to the symmetry of the problem can now be written as 

the following integral: 

𝐸  𝑠 = 𝑎 𝑧  𝑐𝑙𝐻𝑙
 1  𝑘0𝜌 𝑒−𝑗𝑙𝜙

∞

𝑙=−∞

 

= 𝑎 𝑧

1

2𝑗
  

𝑐𝑣𝐻𝑣
 1  𝑘0𝜌 𝑒−𝑗𝑣 𝜙−𝜋 

sin 𝑣𝜋 
 𝑑𝑣

𝐶1+𝐶2

 

  (58) 

The integration contour consists of two parts. The first part 𝐶1 is in the upper 

half of the complex 𝑣-plane and the second part 𝐶2 is in the lower half of the 
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complex 𝑣-plane. In order to make the integration contour be completely in the 

upper half, the following Laurent series expansions for 
1

𝑧
 are used: 

1

𝑧
=   −1 𝑚 𝑧 − 1 𝑚

∞

𝑚=0

 𝑓𝑜𝑟  𝑧 − 1 < 1 

  (59) 

1

𝑧
= −   −1 𝑚 𝑧 − 1 𝑚

−1

𝑚=−∞

 𝑓𝑜𝑟  𝑧 − 1 > 1 

  (60) 

Putting 𝑧 = 1 + 𝑒𝑗2𝜋 𝑣−
1

2
 
 in the place of 𝑧 in the Laurent series expansions in 

equations (59) and (60), the following Laurent series expansions for 
1

sin  𝑣𝜋 
 are 

obtained: 

1

sin 𝑣𝜋 
= 2   −1 𝑚𝑒 𝑗  2𝑚+1 𝜋 𝑣−

1
2
  

∞

𝑚=0

 𝑓𝑜𝑟 𝐼𝑚 𝑣 > 0 

  (61) 

1

sin 𝑣𝜋 
= −2   −1 𝑚𝑒 𝑗  2𝑚+1 𝜋 𝑣−

1
2
  

−1

𝑚=−∞

 𝑓𝑜𝑟 𝐼𝑚 𝑣 < 0 

 (62) 

After inserting the derived expansions into the integral for the scattered field, 

the new form of the integral becomes as 

𝐸𝑠 = 

1

2𝑗
 𝑐𝑣𝐻𝑣

 1  𝑘0𝜌 𝑒−𝑗𝑣 𝜙−𝜋  −2   −1 𝑚𝑒𝑗  2𝑚+1 𝜋 𝑣−
1
2
 

−1

𝑚=−∞

 𝑑𝑣

∞−𝑗𝜀

−∞−𝑗𝜀

 

+ 

1

2𝑗
 𝑐𝑣𝐻𝑣

 1  𝑘0𝜌 𝑒−𝑗𝑣 𝜙−𝜋  −2   −1 𝑚𝑒𝑗  2𝑚+1 𝜋 𝑣−
1
2
 

∞

𝑚=0

 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

 (63) 
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where 𝜀 is an arbitrarily small positive number. In equation (63), in the first 

integral the integration variable 𝑣 is changed to – 𝑣 to get the following 

expression for the scattered field: 

𝐸𝑠 = 

−
1

2𝑗
 𝑐−𝑣𝐻−𝑣

 1  𝑘0𝜌 𝑒𝑗𝑣  𝜙−𝜋  2   −1 𝑚𝑒𝑗  2𝑚+1 𝜋 −𝑣−
1
2
 

−1

𝑚=−∞

 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

+ 

−
1

2𝑗
 𝑐𝑣𝐻𝑣

 1  𝑘0𝜌 𝑒−𝑗𝑣 𝜙−𝜋  2   −1 𝑚𝑒𝑗  2𝑚+1 𝜋 𝑣−
1
2
 

∞

𝑚=0

 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

 (64) 

Hence, the integration contour is now completely in the upper half of the 

complex 𝑣-plane. In order to simplify the expression for the scattered field, the 

series’ in the integrands are explicitly written and compared with each other to 

detect if there is a similarity. 

  −1 𝑚𝑒𝑗  2𝑚+1 𝜋 −𝑣−
1
2
 

−1

𝑚=−∞

 

= 

−𝑒𝑗𝜋𝑣 𝑒𝑗
𝜋
2 + 𝑒𝑗3𝜋𝑣𝑒𝑗3

𝜋
2 − 𝑒𝑗5𝜋𝑣𝑒𝑗5

𝜋
2 + 𝑒𝑗7𝜋𝑣𝑒𝑗7

𝜋
2 − ⋯ 

 (65) 

  −1 𝑚𝑒𝑗  2𝑚+1 𝜋 𝑣−
1
2
 

∞

𝑚=0

 

= 

𝑒𝑗𝜋𝑣 𝑒−𝑗
𝜋
2 − 𝑒𝑗3𝜋𝑣𝑒−𝑗3

𝜋
2 + 𝑒𝑗5𝜋𝑣𝑒−𝑗5

𝜋
2 − 𝑒𝑗7𝜋𝑣𝑒−𝑗7

𝜋
2 + ⋯ 

 (66) 

The explicit form of the series shows that they are in fact the same as each 

other. Then, the scattered field can now be written in a simpler form: 
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𝐸𝑠 =  𝑐𝑙𝐻𝑙
 1  𝑘0𝜌 𝑒−𝑗𝑙𝜙

∞

𝑙=−∞

= 

−
1

2𝑗
  𝑐−𝑣𝐻−𝑣

 1  𝑘0𝜌 𝑒𝑗𝑣  𝜙−𝜋 + 𝑐𝑣𝐻𝑣
 1  𝑘0𝜌 𝑒−𝑗𝑣  𝜙−𝜋   2   −1 𝑚𝑒 𝑗  2𝑚+1 𝜋 𝑣−

1
2
 

∞

𝑚=0

 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

(67) 

The scattered field expression has been converted to an integral given by (67). 

This procedure is called the modified Watson transform. 

 

4.4 The Debye Expansion 

The Cauchy integral formula is one of the possible ways for calculating the 

integral in (67). It is necessary to examine the poles of the integrand in the 

upper half of the complex 𝑣-plane to use the Cauchy integral formula. The 

integral in (67) is composed of two parts. The first part is 

−
1

2𝑗
  𝑐−𝑣𝐻−𝑣

 1  𝑘0𝜌 𝑒𝑗𝑣  𝜙−𝜋   2   −1 𝑚𝑒𝑗  2𝑚+1 𝜋 𝑣−
1
2
 

∞

𝑚=0

 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

 (68) 

and the second part is 

−
1

2𝑗
  𝑐𝑣𝐻𝑣

 1  𝑘0𝜌 𝑒−𝑗𝑣  𝜙−𝜋   2   −1 𝑚𝑒𝑗  2𝑚+1 𝜋 𝑣−
1
2
 

∞

𝑚=0

 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

 (69) 

The poles of the second part are the poles of 𝑐𝑣 given by 

𝑐𝑣 =
𝑗−𝑣 −𝜇𝑟𝐽𝑣 𝛼 𝐽𝑣

′  𝛽 + 𝑛𝐽𝑣
′  𝛼 𝐽𝑣 𝛽  

 𝜇𝑟𝐽𝑣 𝛼 𝐻𝑣
 1 ′  𝛽 − 𝑛𝐽𝑣′  𝛼 𝐻𝑣

 1  𝛽  
 

  (70) 

It is possible to write the equations with Bessel and Hankel functions in a more 

compact form using the following notations taken from [28]: 
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 𝑥 ≜
𝐽′ 𝑥 

𝐽 𝑥 
 

  (71) 

 1 𝑥 ≜
𝐻𝑣

 1 ′  𝑥 

𝐻𝑣
 1  𝑥 

 

   (72) 

 2 𝑥 ≜
𝐻𝑣

 2 ′  𝑥 

𝐻𝑣
 2  𝑥 

 

  (73) 

The poles of 𝑐𝑣 are the roots of 

𝜇𝑟𝐽𝑣 𝛼 𝐻𝑣
 1 ′  𝛽 − 𝑛𝐽𝑣

′  𝛼 𝐻𝑣
 1  𝛽 = 0 

  (74) 

Making use of the notations, equation (74) can be written in a more compact 

form: 

 1 𝛽 =
𝑛

𝜇𝑟

 𝛼  

   (75) 

The roots of equation (75) can be collected in two groups. One group consists 

of those which are almost parallel to the real 𝑣-axis and the other group 

contains those which are almost parallel to the imaginary 𝑣-axis. The poles of 

the integrand are shown in Figure 44.  
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Figure 44 The roots of equation (75) 
 

 

It is necessary to calculate the residues of the integrand at these two groups of 

poles and sum the residues up for the computation of the integral (69). Due to 

the fact that the residues at the poles which are almost parallel to the imaginary 

𝑣-axis are fast decaying exponentials, the sum of these residues quickly 

converges to a result. However, the residues at the poles which are almost 

parallel to the real 𝑣-axis are not fast decaying exponentials. Their sum does 

not converge to a result rapidly. Due to the poor convergence property of the 

sum of these residues, it is not an efficient way to calculate the integral (69) by 

using the Cauchy integral formula. The integral (68) is similar to the integral 

(69). 

At high frequency, the incident plane wave can be thought to be made up of 

incident rays. Each ray incident on the dielectric cylinder is reflected and 

refracted infinitely many times by the cylinder. Let a ray be traced in this 

series. After arriving at the surface of the cylinder, some part of it is reflected 

and the rest is transmitted into the cylinder by refraction. The first term in the 

series is formed by the reflection of the ray to the outside of the cylinder. The 

contribution to the scattered field as the first term is made by this reflected part. 

The transmitted part of the ray hits the surface from inside after traveling in the 
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cylinder. Then, some part of it is reflected and the rest is transmitted to the 

outside. The contribution to the scattered field as the second term in the series 

is made by this transmitted part. The third term in the series is the part which is 

formed after the first transmission into the cylinder, then reflection from inside 

the cylinder, and then transmission to the outside of the dielectric cylinder. The 

scattering mechanism described in the above is shown in Figure 45. The series 

is constructed in this way and converges to the scattered field at the end. 

 

1

1
r

2

2
t

3

3
t

4

 
 

Figure 45 The scattering mechanism at high frequency 
 

 

The physical picture in Figure 45 is valid for the problem at high frequency. 

This physical insight to the scattering problem is used for the scattering 

amplitude calculation due to a penetrable sphere in [28], for calculation of the 

scattered wave function of an impenetrable sphere in [27]. The problem of 

scattering by a dielectric cylinder can be attacked by using a similar model. 

The scattered field is a linear combination of infinite number of Hankel 

functions of the first kind scaled by the scattering coefficients 𝑐𝑙 . The series of 

reflections and transmissions of cylindrical waves shape the scattering field 

coefficients into their final forms. Hence, the scattering phenomenon given in 

the Figure 45 must be mathematically represented by the coefficients 𝑐𝑙 . In 
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[28], a quantity called S-function is decomposed into a series of reflection and 

transmission terms to mathematically express the physical picture in the Figure 

45. Depending on this information and the fact that the scattering coefficients 

𝑐𝑙  is the overall mathematical representation of Figure 45, it is deduced that 𝑐𝑙  

must be able to be written in terms of the S-function which is denoted as 𝑥𝑙  in 

this analysis and given in the equation (76). By writing 𝑐𝑙  in terms of 𝑥𝑙 , 𝑐𝑙  is 

analyzed in terms of the mathematical building blocks of the whole physical 

picture and the Debye expansion is carried out. 

𝑥𝑙  is defined as follows: 

𝑥𝑙 =
𝐻𝑙

 2  𝛽 

𝐻𝑙
 1  𝛽 

 𝑅22 𝑙, 𝛽 + 𝑇21 𝑙, 𝛽 𝑇12 𝑙, 𝛽 
𝐻𝑙

 1  𝛼 

𝐻𝑙
 2  𝛼 

  𝑅11 𝑙, 𝛽 
𝐻𝑙

 1  𝛼 

𝐻𝑙
 2  𝛼 

 

𝑝−1∞

𝑝=1

  

(76) 

where 

 𝑅11 𝑙, 𝛽 
𝐻𝑙

 1  𝛼 

𝐻𝑙
 2  𝛼 

 < 1 

In the equation (76), the reflection coefficient for the cylindrical wave 

represented by the Hankel function of the first kind incident from inside of the 

cylinder to the surface is 𝑅11 𝑙, 𝛽 . The reflection coefficient for the cylindrical 

wave represented by the Hankel function of the second kind incident from 

outside of the cylinder to the surface is 𝑅22 𝑙, 𝛽 . The transmission coefficient 

for the cylindrical wave represented by the Hankel function of the first kind 

incident from inside of the cylinder to the surface is 𝑇12 𝑙, 𝛽 . The transmission 

coefficient for the cylindrical wave represented by the Hankel function of the 

second kind incident from outside of the cylinder to the surface is 𝑇21 𝑙, 𝛽 . 

These coefficients are mathematically expressed as follows: 

𝑅11 𝑙, 𝛽 = −
 1 𝛽 −

𝑛
𝜇𝑟

 1 𝛼 

 1 𝛽 −
𝑛
𝜇𝑟

 2 𝛼 
 

 (77) 
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𝑅22 𝑙, 𝛽 = −
 2 𝛽 −

𝑛
𝜇𝑟

 2 𝛼 

 1 𝛽 −
𝑛
𝜇𝑟

 2 𝛼 
 

 (78) 

𝑇12 𝑙, 𝛽 =
4𝑗

𝜋𝛽𝐻𝑙
 1  𝛼 𝐻𝑙

 2  𝛼   1 𝛽 −
𝑛
𝜇𝑟

 2 𝛼  
 

  (79) 

𝑇21 𝑙, 𝛽 =
4𝑗

𝜋𝛽𝐻𝑙
 1  𝛽 𝐻𝑙

 2  𝛽   1 𝛽 −
𝑛
𝜇𝑟

 2 𝛼  
 

  (80) 

The first part of 𝑥𝑙  which is given by  

𝐻𝑙
 2  𝛽 

𝐻𝑙
 1  𝛽 

𝑅22 𝑙, 𝛽  

 (81) 

represents the rays which are reflected by the cylinder. The rest of it given by 

𝐻𝑙
 2 

 𝛽 

𝐻𝑙
 1  𝛽 

𝑇21 𝑙, 𝛽 𝑇12 𝑙, 𝛽 
𝐻𝑙

 1 
 𝛼 

𝐻𝑙
 2  𝛼 

  𝑅11 𝑙, 𝛽 
𝐻𝑙

 1 
 𝛼 

𝐻𝑙
 2  𝛼 

 

𝑝−1∞

𝑝=1

 

  (82) 

represents the rays which are first transmitted into the cylinder, make 𝑝 − 1 

number of reflections and are transmitted to the outside of the cylinder after 

these 𝑝 − 1 reflections.  

It is possible to write the scattering coefficients 𝑐𝑙  in terms of 𝑥𝑙  as follows: 

𝑐𝑙 =
𝑗−𝑙

2
 𝑥𝑙 − 1  

  (83) 

Putting the relation in (83) into the equation (67), the scattered field is written 

as follows: 
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𝐸𝑠 = 

−
1

2𝑗
  

𝑗𝑣

2
 𝑥−𝑣 − 1 𝐻−𝑣

 1 
 𝑘0𝜌 𝑒𝑗𝑣  𝜙−𝜋 +

𝑗−𝑣

2
 𝑥𝑣 − 1 𝐻𝑣

 1 
 𝑘0𝜌 𝑒−𝑗𝑣 𝜙−𝜋  

∞+𝑗𝜀

−∞+𝑗𝜀

× 

 2   −1 𝑚𝑒
𝑗  2𝑚+1 𝜋 𝑣−

1
2
 

∞

𝑚=0

 𝑑𝑣 

  (84) 

The application of the Debye expansion to 𝑐𝑙  is performed by writing 𝑐𝑙  in 

terms of 𝑥𝑙 . The Debye expansion reveals the physical mechanism in the 

scattering. Another use of the Debye expansion is that it makes the residue 

series form of the integral in (84) converge very fast in the appropriate field 

region. The following new equation is to be solved to find the poles: 

 1 𝛽 =
𝑛

𝜇𝑟

 2 𝛼  

  (85) 

The roots of this equation, i.e. the poles of the integrand, are almost parallel to 

the imaginary 𝑣-axis. The poles which are almost parallel to the real 𝑣-axis 

have been eliminated. Hence, the residue series is now quickly convergent. The 

new poles are shown in the Figure 46. 

 

 

-plane

Im

Re

 
 

Figure 46  The roots of equation (85) 
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In the following sections, the contribution of the first two terms of the Debye 

expansion to the scattered field is computed using the scattering integral (84) 

and the related physical interpretation is confirmed.  

 

4.5 The First Term of the Debye Expansion 

The expression in (81) is inserted into the place of 𝑥𝑣 in the scattered field 

integral in (84) to get the the contribution of the first term of the Debye 

expansion to the scattered field: 

𝐸𝑓𝑖𝑟𝑠𝑡  𝑡𝑒𝑟𝑚
𝑠 = 

−
1

2𝑗
   

𝐻−𝑣
 2  𝛽 

𝐻−𝑣
 1  𝛽 

𝑅22 −𝑣, 𝛽 − 1 𝐻−𝑣
 1  𝑘0𝜌 𝑒𝑗𝑣  𝜙−

𝜋
2
 +  

∞+𝑗𝜀

−∞+𝑗𝜀

 

  
𝐻𝑣

 2  𝛽 

𝐻𝑣
 1  𝛽 

𝑅22 𝑣, 𝛽 − 1 𝐻𝑣
 1  𝑘0𝜌 𝑒−𝑗𝑣 𝜙−

𝜋
2
  × 

   −1 𝑚𝑒𝑗  2𝑚+1 𝜋 𝑣−
1
2
 

∞

𝑚=0

 𝑑𝑣 

  (86) 

Using the information that 

𝑅22 𝑣, 𝛽 = 𝑅22 −𝑣, 𝛽  

  (87) 

the integral in equation (86) can be written in the following form: 

𝐸𝑓𝑖𝑟𝑠𝑡  𝑡𝑒𝑟𝑚
𝑠 = 

−
1

2𝑗
   

𝐻−𝑣
 2  𝛽 

𝐻−𝑣
 1  𝛽 

𝑅22 𝑣, 𝛽 − 1 𝐻−𝑣
 1  𝑘0𝜌 𝑒

𝑗𝑣 𝜙−
𝜋
2
 

+  

∞+𝑗𝜀

−∞+𝑗𝜀

 

 +  
𝐻𝑣

 2  𝛽 

𝐻𝑣
 1  𝛽 

𝑅22 𝑣, 𝛽 − 1 𝐻𝑣
 1  𝑘0𝜌 𝑒

−𝑗𝑣 𝜙−
𝜋
2
 
 × 

   −1 𝑚𝑒
𝑗  2𝑚+1 𝜋 𝑣−

1
2
 

∞

𝑚=0

 𝑑𝑣 

  (88) 
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In order to examine if the integral can be written as residue series, the 

integrands are tested for vanishing as  𝑣 → ∞ in the upper half of the complex 

𝑣-plane. Neither 

 
𝐻−𝑣

 2  𝛽 

𝐻−𝑣
 1  𝛽 

𝑅22 𝑣, 𝛽 − 1 𝐻−𝑣
 1  𝑘0𝜌 𝑒𝑗𝑣  𝜙−

𝜋
2
 𝑒𝑗  2𝑚+1 𝜋 𝑣−

1
2
 
 

 (89) 

nor 

 
𝐻𝑣

 2 
 𝛽 

𝐻𝑣
 1  𝛽 

𝑅22 𝑣, 𝛽 − 1 𝐻𝑣
 1  𝑘0𝜌 𝑒−𝑗𝑣 𝜙−

𝜋
2
 𝑒𝑗  2𝑚+1 𝜋 𝑣−

1
2
 
 

  (90) 

vanish as  𝑣 → ∞ in the upper half of the complex 𝑣-plane. Hence, in this 

form, the integrals are not appropriate to be written in the form of a residue 

series. 

In order to make the integrals vanish in the upper half of the complex 𝑣-plane 

as  𝑣 → ∞, the expressions in (89) and (90) are put into the following forms: 

 
𝐻−𝑣

 2  𝛽 𝐻−𝑣
 1  𝑘0𝜌 

𝐻−𝑣
 1  𝛽 

𝑅22 𝑣, 𝛽 − 𝐻−𝑣
 1  𝑘0𝜌 − 𝐻−𝑣

 2  𝑘0𝜌 + 𝐻−𝑣
 2  𝑘0𝜌  𝑒

𝑗𝑣  𝜙−
𝜋
2
 
𝑒

𝑗  2𝑚 +1 𝜋 𝑣−
1
2
 
 

(91) 

 
𝐻𝑣

 2  𝛽 𝐻𝑣
 1  𝑘0𝜌 

𝐻𝑣
 1  𝛽 

𝑅22 𝑣, 𝛽 − 𝐻𝑣
 1  𝑘0𝜌 − 𝐻𝑣

 2  𝑘0𝜌 + 𝐻𝑣
 2  𝑘0𝜌  𝑒

−𝑗𝑣 𝜙−
𝜋
2
 
𝑒

𝑗  2𝑚+1 𝜋 𝑣−
1
2
 
      

(92) 

Putting (91) and (92) into the integral in (88) and assuming that the condition 

for the separation of the integral into its parts is satisfied, the following 

expression is obtained for the first term of the Debye expansion for the 

scattered field: 
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𝐸𝑓𝑖𝑟𝑠𝑡  𝑡𝑒𝑟𝑚
𝑠 = 

   −
1

2𝑗
   𝐼1 −1 𝑚𝑒−𝑗 2𝑚+1 

𝜋
2𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

  
∞

𝑚=0

 

+ 

  −
1

2𝑗
   𝐼2 −1 𝑚𝑒−𝑗 2𝑚+1 

𝜋
2𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

 
 
 
 
 

(93) 

where 

𝐼1 =  
𝑅22𝐻−𝑣

 2  𝛽 𝐻−𝑣
 1  𝑘0𝜌 + 𝐻−𝑣

 1  𝛽 𝐻−𝑣
 2  𝑘0𝜌 

𝐻−𝑣
 1  𝛽 

 𝑒𝑗𝑣  𝜙−
𝜋
2

+ 2𝑚+1 𝜋 
 

+ 

 
𝑅22𝐻𝑣

 2  𝛽 𝐻𝑣
 1  𝑘0𝜌 + 𝐻𝑣

 1  𝛽 𝐻𝑣
 2  𝑘0𝜌 

𝐻𝑣
 1  𝛽 

 𝑒−𝑗𝑣  𝜙−
𝜋
2
− 2𝑚+1 𝜋 

 

 (94) 

𝐼2 = − 𝐻−𝑣
 1 

 𝑘0𝜌 + 𝐻−𝑣
 2 

 𝑘0𝜌  𝑒
𝑗𝑣  𝜙−

𝜋
2

+ 2𝑚+1 𝜋 
 

+ 

 −1  𝐻𝑣
 1  𝑘0𝜌 + 𝐻𝑣

 2  𝑘0𝜌  𝑒−𝑗𝑣  𝜙−
𝜋
2
− 2𝑚+1 𝜋 

 

(95) 

The separation of the integral in (93) into the integrals of each of 𝐼1 and 𝐼2 is 

possible only if each of the integrals of 𝐼1 and 𝐼2 converge. In the following 

sections, it will be shown that each of the integrals of 𝐼1 and 𝐼2 converge. 

From the related section of [29], the following identities are written: 

𝐻−𝑣
 1  𝑧 = 𝑒𝑗𝑣𝜋 𝐻𝑣

 1  𝑧  

(96) 

𝐻−𝑣
 2  𝑧 = 𝑒−𝑗𝑣𝜋 𝐻𝑣

 2  𝑧  

(97) 

Using the identities in (96) and (97), 𝐼1 can be put into the following form: 
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𝐼1 =  
𝑅22𝐻𝑣

 2  𝛽 𝐻𝑣
 1  𝑘0𝜌 + 𝐻𝑣

 1  𝛽 𝐻𝑣
 2  𝑘0𝜌 

𝐻𝑣
 1  𝛽 

 × 

 𝑒𝑗𝑣  𝜙−
3𝜋
2

+ 2𝑚+1 𝜋 +𝑒−𝑗𝑣  𝜙−
𝜋
2
− 2𝑚+1 𝜋   

(98) 

The form of the integrand in (98) vanishes as  𝑣 → ∞ in the upper half of the 

complex 𝑣-plane. The reason of the vanishing is the symmetry of the Hankel 

functions in the numerator of the integrand. The asymptotic behavior of 𝑅22  as 

 𝑣 → ∞ in the 𝑣-plane is given in the appendix B of [28]. According to this 

behavior, in the regions where 𝑅22 → −1, there is a some sort of cancellation 

in the numerator of the integrand. The vanishing in these regions is due to the 

cancellation. In the region where 𝑅22 → 0, 𝐻𝑣
 2  𝑘0𝜌  is the remaining 

cylindrical function in the numerator. However, in this region, 𝐻𝑣
 2  𝑘0𝜌  goes 

to zero as  𝑣 → ∞. Hence, the integrand in (88) is made suitable for residue 

series representation by means of adding and subtracting the required terms 

shown before. 

The integral of 𝐼1in (93) is represented by the residue series given as follows: 

 

 
 
 
 
 −

1

2𝑗
   𝐼1 −1 𝑚𝑒−𝑗 2𝑚+1 

𝜋
2𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

 
 
 
 ∞

𝑚=0

 

= 

  −
1

2𝑗
  2𝜋𝑗   𝑅𝑒𝑠  𝐼1 −1 𝑚𝑒−𝑗 2𝑚+1 

𝜋
2  

𝑣=𝑣𝑞

∞

𝑞=1

∞

𝑚=0

 

= 

  −𝜋    −1 𝑚𝑒−𝑗 2𝑚+1 
𝜋
2  

4𝑗𝐻𝑣
 1  𝑘0𝜌  𝑒 𝑗𝑣  𝜙−

3𝜋
2

+ 2𝑚+1 𝜋 +𝑒−𝑗𝑣  𝜙−
𝜋
2
− 2𝑚+1 𝜋  

𝜋𝛽 𝐻𝑣
 1  𝛽  

2 𝜕
𝜕𝑣

  1 𝛽 −
𝑛
𝜇𝑟

 2 𝛼  
 

𝑣=𝑣𝑞

∞

𝑞=1

∞

𝑚=0

 

(99) 
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where 𝑣 = 𝑣𝑞  are the poles of the integrand 𝐼1. The exponential term of the 

residue series in (99) determines the convergence of the residue series. It is 

useful to make the Debye asymptotic expansion of 𝐻𝑣
 1  𝑘0𝜌  in the residue 

series to find a good approximation to the residue series convergence region 

which is in agreement with the physical insight to the problem. The Debye 

asymptotic expansion taken from the appendix A of [27] is given by 

𝐻𝑣
 1  𝑧 ≈  

2

𝜋
 

1
2
 𝑧2 − 𝑣2 −

1
4 𝑒𝑥𝑝  𝑗   𝑧2 − 𝑣2 

1
2 − 𝑣 cos−1  

𝑣

𝑧
 −

𝜋

4
   

(100) 

with the following expansion conditions 

 

 𝑧2 − 𝑣2 −
1
4 > 0

0 < cos−1  
𝑣

𝑧
 <

𝜋

2
−𝑧 < 𝑣 < 𝑧

 𝑣 − 𝑧 >  𝑧 
1
3  

 
 

 
 

 

(101) 

The use of the asymptotic expansion in the residue series in (99) puts the 

overall exponential term into the following form: 

𝑒𝑥𝑝  𝑗    𝑘0𝜌 2 − 𝑣2 
1
2 − 𝑣 cos−1  

𝑣

𝑘0𝜌
 −

𝜋

4
+ 𝑣  𝜙 −

3𝜋

2
+  2𝑚 + 1 𝜋    

+ 

𝑒𝑥𝑝  𝑗    𝑘0𝜌 2 − 𝑣2 
1
2 − 𝑣 cos−1  

𝑣

𝑘0𝜌
 −

𝜋

4
− 𝑣  𝜙 −

𝜋

2
−  2𝑚 + 1 𝜋    

(102) 

The poles far away from the real axis hardly contribute to the residue series 

because the residue series terms exponentially decay to zero as the imaginary 

parts of the poles increase. Then, approximating the poles of the integrand with 

𝛽 in (102) is meaningful and puts the exponential term into the following form: 
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𝑒
𝑗 𝑘0  𝜌2−𝑎2 

1
2 
𝑒−𝑗

𝜋
4𝑒𝑥𝑝  𝑗  −𝑣 cos−1  

𝑎

𝜌
 + 𝑣  𝜙 −

3𝜋

2
+  2𝑚 + 1 𝜋    

+ 

𝑒
𝑗 𝑘0  𝜌2−𝑎2 

1
2 
𝑒−𝑗

𝜋
4𝑒𝑥𝑝  𝑗  −𝑣 cos−1  

𝑎

𝜌
 − 𝑣  𝜙 −

𝜋

2
−  2𝑚 + 1 𝜋    

(103) 

The exponential expression in (103) converges provided both of the following 

conditions are satisfied at the same time: 

 

𝑅𝑒  𝑗  −𝑣 cos−1  
𝑎

𝜌
 + 𝑣  𝜙 −

3𝜋

2
+  2𝑚 + 1 𝜋   < 0

𝑅𝑒  𝑗  −𝑣 cos−1  
𝑎

𝜌
 − 𝑣  𝜙 −

𝜋

2
−  2𝑚 + 1 𝜋   < 0

𝑚 = 0,1,2,3,4, …  
  
 

  
 

 

(104) 

The poles 𝑣 are in the upper half of the 𝑣-plane. Hence, the imaginary parts of 

the poles are positive. Then, equation (104) implies the following: 

 

− cos−1  
𝑎

𝜌
 + 𝜙 −

3𝜋

2
+  2𝑚 + 1 𝜋 > 0

− cos−1  
𝑎

𝜌
 − 𝜙 +

𝜋

2
+  2𝑚 + 1 𝜋 > 0

𝑚 = 0,1,2,3,4, …  
 
 

 
 

 

(105) 

From (105), the range of 𝜙 for the convergence of the residue series is given as 

follows: 

 

𝜋

2
+ cos−1  

𝑎

𝜌
 < 𝜙 <

3𝜋

2
− cos−1  

𝑎

𝜌
    𝑓𝑜𝑟 𝑚 = 0

𝜋

2
+ cos−1  

𝑎

𝜌
 − 2𝑚𝜋 < 𝜙 <

3𝜋

2
− cos−1  

𝑎

𝜌
 + 2𝑚𝜋   𝑓𝑜𝑟 𝑚 > 0

 
 

 

 

(106) 

The range of 𝜙 when 𝑚 = 0 corresponds to the region called the geometrical 

shadow region of the dielectric cylinder. The geometrical shadow region of the 
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dielectric cylinder for a specific 𝜌 coordinate is shown in the Figure 47 with 

the following definition for 𝜙0: 

𝜙0 = cos−1  
𝑎

𝜌
  

(107) 

The range of 𝜙 corresponds to the whole dielectric cylinder when 𝑚 > 0. 

Hence, the intersection of the convergence ranges of 𝜙 is the geometrical 

shadow of the dielectric cylinder and the validity region of the equality in (99) 

is the geometrical shadow region of the cylinder for the high frequency 

scattering. 
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Figure 47 The geometrical shadow region of the double positive cylinder for a specific 𝝆 coordinate 

corresponding to the first term of the Debye series 
 

 

The exponential part of the residue series has a physical interpretation. The 

exponential part at point 𝐹 𝜌, 𝜙  can be written in the following form which is 

suitable for the interpretation: 
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𝑒
𝑗 𝑘0  𝜌2−𝑎2 

1
2 
𝑒−𝐼𝑚 𝑣  𝜙𝐹−𝜙1+2𝑚𝜋  𝑒𝑗𝑅𝑒  𝑣  𝜙𝐹−𝜙1 𝑒𝑗𝑅𝑒  𝑣  2𝑚𝜋   

+ 

𝑒
𝑗 𝑘0  𝜌2−𝑎2 

1
2 
𝑒−𝐼𝑚 𝑣  −𝜙𝐹+𝜙2−2𝑚𝜋  𝑒𝑗𝑅𝑒  𝑣  −𝜙𝐹+𝜙2 𝑒𝑗𝑅𝑒  𝑣  −2𝑚𝜋   

(108) 

where  

 
𝜙1 =

𝜋

2
+ 𝜙0

𝜙2 =
3𝜋

2
− 𝜙0

  

(109) 

The Figure 48 helps in making the physical interpretation of the residue series 

exponential part. The first part in (108) represents the diffraction of the ray 

hitting 𝑃1. At point 𝑃1, the incident ray has the mathematical form of 

 𝑒−𝑗𝑘0𝑥  
𝑥=0

. After hitting point 𝑃1, the ray travels an arc length of  𝑃1𝑇1 =

𝑎𝜙𝑠1. Then, at point 𝑇1, the exponential representation of the ray becomes 

 𝑒−𝑗𝑘0𝑥  
𝑥=0

× 𝑒𝑗𝑘0 𝑃1𝑇1 =  𝑒−𝑗𝑘0𝑥  
𝑥=0

× 𝑒𝑗 𝑘0𝑎𝜙𝑠1 . After travelling on the 

surface to the point 𝑇1, the ray propagates to the field point 𝐹 taking a distance 

of  𝑇1𝐹 =  𝜌2 − 𝑎2 
1

2. Then, the exponential representation of the ray is 

modified to be  𝑒−𝑗𝑘0𝑥  
𝑥=0

× 𝑒𝑗𝑘0𝑎𝜙𝑠1 × 𝑒𝑗𝑘0𝑎 𝜌2−𝑎2 
1
2
. 

The 𝜙 coordinate of the field point 𝐹 satisfies the following relation: 

 𝜙 𝑝𝑜𝑖𝑛𝑡  𝐹 = 𝜙𝑠1 + 𝜙1 

(110) 

Hence, at point 𝐹, the exponential representation of the ray can be written as  

 𝑒−𝑗𝑘0𝑥  
𝑥=0

× 𝑒𝑗 𝑘0𝑎 𝜌2−𝑎2 
1
2
× 𝑒𝑗 𝑘0𝑎𝜙𝑠1 = 𝑒𝑗 𝑘0𝑎 𝜌2−𝑎2 

1
2
× 𝑒𝑗 𝑘0𝑎 𝜙𝐹−𝜙1  

(111) 

Since the real part of the poles are close to 𝛽, the first part of (108) has the 

same propagating exponential part as (111). Hence, the physical interpretation 
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for the first part of (108) has been made using the geometrical optics (GO). If 

𝑚 > 0, then the ray takes 𝑚 tours in the anti-clockwise direction around the 

cylinder before its propagation to the field point. This is expressed by the extra 

𝑒𝑗𝑅𝑒  𝑣  2𝑚𝜋   term in (108). The propagation of the ray in the anti-clockwise 

direction as a creeping wave on the cylinder, the time harmonic dependence 

𝑒−𝑗𝜔𝑡 , 𝑒𝑗𝑅𝑒  𝑣  𝜙𝐹−𝜙1  and the sign of 𝑅𝑒 𝑣  which is positive are all in good 

agreement with each other. 
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Figure 48 The mechanism of the shadow field formation by the 1st term of the Debye expansion for 

the double positive cylinder  
 

 

The physical interpretation of the second term in (108) is similar to that of the 

first term. The second term is interpreted to be the diffraction of the ray to the 

field point 𝐹 𝜌, −𝜙 . The field at the point 𝐹 𝜌, 𝜙  and the point 𝐹 𝜌, −𝜙  are 

the same due to the symmetry of the problem. Hence, there is an inherent 
1

2
 

factor in (99). The verification of the amplitude of the residue series terms are 
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not made theoretically using geometrical optics. The verification is to be 

carried out by comparing the residue series numerical results with the first term 

of the Debye expansion results in the fifth chapter. 

The computation of the second integral in (93) requires the operation in the 

equation (67) to be carried out in the reverse direction. The equality in (67) is 

repeated for a function 𝑓 𝑣  for convenience: 

 𝑓 𝑙 𝑒−𝑗𝑙𝜙

∞

𝑙=−∞

=  −
1

2𝑗
    𝑓 −𝑣 𝑒𝑗𝑣  𝜙−𝜋 + 𝑓 𝑣 𝑒−𝑗𝑣 𝜙−𝜋   

∞

−∞

× 

  2   −1 𝑚𝑒𝑗  2𝑚+1 𝜋 𝑣−
1
2
 

∞

𝑚=0

  𝑑𝑣 

(112) 

Using the equation (112), the second integral in (93) satisfies the following 

equality: 

 −
1

2𝑗
   𝐼2 −1 𝑚𝑒−𝑗 2𝑚+1 

𝜋
2𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 = −  𝑗−𝑙𝐽𝑙 𝑘0𝜌 𝑒𝑗𝑙𝜙

∞

𝑙=−∞

= −𝑒−𝑗𝑘0𝑥  

(113) 

It has now been shown that both of the integrals in (93) converge. The first 

integral in (93) can be written as a residue series which converges in the 

geometrical shadow region of the dielectric cylinder. The second integral 

converges without any restriction. Hence, the integral in (88) can be written as 

the sum of a converging residue series and −𝑒−𝑗𝑘0𝑥  only in the geometric 

shadow region of the dielectric cylinder. The term −𝑒−𝑗𝑘0𝑥  is called the 

shadow forming field of the first term of the Debye series. Since the operation 

frequency is high, the representation of the incident plane wave with rays is 

appropriate. From the physical interpretation of the residue series, it is known 

that the field in the geometrical shadow of the dielectric cylinder is due to the 

rays which creep on the surface of the dielectric cylinder and enter the 

geometrical shadow region. The creeping waves on the surface of the cylinder 

are responsible for the geometrical shadow field. The rest of the incident plane 
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wave cannot enter the geometrical shadow of the dielectric cylinder. The 

mathematical counterpart of this physical interpretation is the shadow forming 

field. In the geometrical shadow region, the incident plane wave exists. 

However, according to the physical interpretation, there must be no field 

except the creeping waves. The shadow forming field −𝑒−𝑗𝑘0𝑥  cancels the 

incident plane wave 𝑒−𝑗𝑘0𝑥  in the geometrical shadow region. The physical 

interpretation and the mathematical result agree with each other.  

Up to this point, the whole analysis has been carried out assuming that the 

dielectric cylinder is not made of a DNG material. If the material is DNG, then 

the refractive index, the relative permeability and the relative permittivity of 

the material will be negative. The new equation to be solved instead of 

equation (85) is  

 1 𝛽 = −
 𝑛 

 𝜇𝑟  
 1   𝑛 𝛽   

(114) 

The roots of the equation (114) which are near the zeros of 𝐻𝑣
 1  𝛽  are similar 

to those roots of the equation (85). The field in the geometrical shadow region 

of the DNG cylinder will be given by 

 

 
 
 
 
 −

1

2𝑗
   𝐼1 −1 𝑚𝑒−𝑗 2𝑚+1 

𝜋
2𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

 
 
 
 ∞

𝑚=0

 

= 

  −
1

2𝑗
  2𝜋𝑗   𝑅𝑒𝑠  𝐼1 −1 𝑚𝑒−𝑗 2𝑚+1 

𝜋
2  

𝑣=𝑣𝑞

∞

𝑞=1

∞

𝑚=0

 

= 

  −𝜋    −1 𝑚𝑒−𝑗 2𝑚+1 
𝜋
2  

4𝑗𝐻𝑣
 1  𝑘0𝜌  𝑒 𝑗𝑣  𝜙−

3𝜋
2

+ 2𝑚+1 𝜋 +𝑒−𝑗𝑣  𝜙−
𝜋
2
− 2𝑚+1 𝜋  

𝜋𝛽 𝐻𝑣
 1  𝛽  

2 𝜕
𝜕𝑣

  1 𝛽 +
𝑛
𝜇𝑟

 1   𝑛 𝛽   
 

𝑣=𝑣𝑞

∞

𝑞=1

∞

𝑚=0

 

(115) 
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The geometrical shadow region of the DNG cylinder is the same as that of the 

double positive cylinder. The physical interpretation made for the double 

positive cylinder is also valid for the DNG cylinder. 

The scattered field in the geometrical shadow region of the dielectric cylinder 

due to the first term of the Debye series has been calculated along with its 

physical interpretation. The other region of interest is the geometrically lit 

region of the dielectric cylinder. The 𝜙 angles of the field points will be chosen 

near zero radian to guarantee that the geometrically lit region is not left. 

The residue series representation of the integral in (99) is valid in the 

geometrical shadow region. The residue series does not converge for 𝑚 =

0 outside of the geometrical shadow region since the source of the scattered 

field is not the creeping waves. One of the regions where the residue series 

does not converge for 𝑚 = 0 is the geometrically lit region. The source of the 

scattered field for 𝑚 = 0 in the geometrically lit region is the rays reflected by 

the dielectric cylinder. The field due to reflected or transmitted rays can be 

calculated from the scattering integral using the steepest descent method 

(SDM). 

The following integral is computed in the geometrically lit region: 

1

2
   

𝑅22𝐻𝑣
 2  𝛽 𝐻𝑣

 1  𝑘0𝜌 + 𝐻𝑣
 1  𝛽 𝐻𝑣

 2  𝑘0𝜌 

𝐻𝑣
 1  𝛽 

  𝑒
𝑗𝑣 𝜙−

𝜋
2
 
+𝑒

−𝑗𝑣 𝜙−
3𝜋
2

 
 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

  

(116) 

The term corresponding to 𝑚 = 0 in the integral series in the first part of 

equation (99) is the integral in (116). First, it is assumed that the separation of 

the integral in (116) into two parts is possible. The integral can be separated 

into two parts only if each of the parts is a convergent integral. The separation 

is performed in the following way: 
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1

2
   

𝑅22𝐻𝑣
 2  𝛽 𝐻𝑣

 1  𝑘0𝜌 

𝐻𝑣
 1  𝛽 

  𝑒𝑗𝑣  𝜙−
𝜋
2
 +𝑒−𝑗𝑣 𝜙−

3𝜋
2

  𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

  

+ 

1

2
  𝐻𝑣

 2  𝑘0𝜌  𝑒𝑗𝑣  𝜙−
𝜋
2
 +𝑒−𝑗𝑣 𝜙−

3𝜋
2

  𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

  

(117) 

It is necessary to apply the Debye asymptotic expansion to the integrand to 

compute the first integral in (117). The asymptotic expansion puts the 

integrand to a form which is suitable for the ray interpretation. The following 

Debye asymptotic expansions are applied: 

𝐻𝑣
 1  𝛽 ≈  

2

𝜋
 

1
2
 𝛽2 − 𝑣2 −

1
4 𝑒𝑥𝑝  𝑗   𝛽2 − 𝑣2 

1
2 − 𝑣 cos−1  

𝑣

𝛽
 −

𝜋

4
   

𝐻𝑣
 2  𝛽 ≈  

2

𝜋
 

1
2
 𝛽2 − 𝑣2 −

1
4 𝑒𝑥𝑝  −𝑗   𝛽2 − 𝑣2 

1
2 − 𝑣 cos−1  

𝑣

𝛽
 −

𝜋

4
   

𝐻𝑣
 1  𝑘0𝜌 ≈  

2

𝜋
 

1
2
  𝑘0𝜌 2 − 𝑣2 −

1
4 𝑒𝑥𝑝  𝑗    𝑘0𝜌 2 − 𝑣2 

1
2 − 𝑣 cos−1  

𝑣

𝑘0𝜌
 −

𝜋

4
   

(118) 

The first integral in (117) is also separated into two parts assuming that each of 

them is convergent. The separation is as follows: 
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1

2
   

𝑅22𝐻𝑣
 2  𝛽 𝐻𝑣

 1  𝑘0𝜌 

𝐻𝑣
 1  𝛽 

  𝑒𝑗𝑣  𝜙−
𝜋
2
 + 𝑒−𝑗𝑣 𝜙−

3𝜋
2

  𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

  

= 

1

2
   

𝑅22𝐻𝑣
 2  𝛽 𝐻𝑣

 1  𝑘0𝜌 

𝐻𝑣
 1  𝛽 

 𝑒𝑗𝑣  𝜙−
𝜋
2
 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

  

+ 

1

2
   

𝑅22𝐻𝑣
 2  𝛽 𝐻𝑣

 1  𝑘0𝜌 

𝐻𝑣
 1  𝛽 

 𝑒−𝑗𝑣 𝜙−
3𝜋
2

 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

  

(119) 

The Debye asymptotic expansion is applied to the integrand of the first integral 

in (119). The first derivative of the exponential part of the integrand is taken to 

find the following equation for the saddle point 𝑣 : 

2 cos−1  
𝑣 

𝛽
 − cos−1  

𝑣 

𝑘0𝜌
 + 𝜙 −

𝜋

2
= 0 

(120) 

The following definitions are used in the solution of the equation in (120): 

 
𝑣 = 𝛽 sin 𝑤 

𝑥 = cos−1  
𝑣 

𝑘0𝜌
      𝑓𝑜𝑟 0 < 𝑥 <

𝜋

2

  

(121) 

The solution of the equation (120) is  

𝑥 =
𝜋

2
− 2𝑤 + 𝜙 

(122) 

The saddle point is a first order saddle point. When the solution of the steepest 

descent equation is put into the Debye asymptotic expansion of the integrand, 

the following is obtained as the exponential contribution of the saddle point to 

the integral in the first part of (119): 
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𝑒𝑥𝑝 𝑗𝑘0 −2𝑎 cos 𝑤 + 𝜌 sin 𝑥   𝑒𝑗
𝜋
4  

(123) 

The exponential contribution of the saddle point to the integral has a physical 

interpretation to be shown using the geometric optics. The Figure 49 is to be 

used for the interpretation. The wave incident on the point 𝑃 𝑎, 𝜃  is denoted 

by the ray 𝑒−𝑗𝑘0𝑎 cos  𝜃 . The exponential dependence of the reflected ray at the 

field point 𝐹 𝜌, 𝜙  is expressed as 𝑒−𝑗𝑘0𝑎 cos  𝜃 × 𝑒 𝑗 𝑘0 𝑃𝐹  . This exponential 

dependence must be equal to the exponential dependence in (123) if the right 

matching is made between the physical picture and the saddle point evaluation 

of the integral. If 𝑤 is chosen as being equal to 𝜃, then the physical picture and 

the saddle point contribution to the integral match with each other in terms of 

the exponential dependence and the following equation can be written using 

the Figure 49: 

𝑗𝑘0 −2𝑎 cos 𝑤 + 𝜌 sin 𝑥  = 𝑗𝑘0  𝑃𝐹 − 𝑎 cos 𝜃   

(124) 

The matching between the two in terms of the amplitude is to be verified 

numerically in another chapter. Hence, as a result, it has been shown in terms 

of the exponential dependence that the first of the integral in (119) denotes the 

field at the point 𝐹 𝜌, 𝜙  due to the ray which is incident on the point 𝑃 𝑎, 𝜃  

and is reflected by the cylinder to the field point 𝐹 𝜌, 𝜙 . 
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Figure 49 The physical interpretation for the geometrically lit region 
 

 

In a similar way, it can be proven in terms of the exponential dependence that 

the second integral in (119) represents the field at the point 𝐹 𝜌, −𝜙  due to 

the ray which is incident on the point 𝑃 𝑎, −𝜃  and is reflected by the cylinder 

to the field point 𝐹 𝜌, −𝜙 .  

Hence, the separation of the integral into two parts in (119) has been proven to 

be correct since each of the parts is convergent. 

Due to the symmetry in the problem geometry, the field at 𝐹 𝜌, 𝜙  and the 

field 𝐹 𝜌, −𝜙  must be equal to each other. Hence, in terms of the exponential 

dependence, the integral in (119) denotes the field at the point 

𝐹 𝜌, 𝜙 (𝑜𝑟 𝐹 𝜌, −𝜙 ) due to the ray which is incident on the point 

𝑃 𝑎, 𝜃 (𝑜𝑟 𝑃 𝑎, −𝜃 ) and is reflected by the cylinder to the field point 

𝐹 𝜌, 𝜙 (𝑜𝑟 𝐹 𝜌, −𝜙 ). 

It is time to calculate the second part of the integral in (117). It is assumed that 

the second part can be separated into two parts as follows: 
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1

2
  𝐻𝑣

 2  𝑘0𝜌  𝑒𝑗𝑣  𝜙−
𝜋
2
 +𝑒−𝑗𝑣 𝜙−

3𝜋
2

  𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

  

= 

1

2
 𝐻𝑣

 2  𝑘0𝜌 𝑒𝑗𝑣  𝜙−
𝜋
2
 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

+
1

2
 𝐻𝑣

 2  𝑘0𝜌 𝑒−𝑗𝑣 𝜙−
3𝜋
2

 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

(125) 

After the Debye asymptotic form of the integrand of the first integral in (125) 

is obtained and the first derivative of the exponential part of the integrand is 

taken, the following equation is found for the saddle point 𝑣 : 

cos−1  
𝑣 

𝑘0𝜌
 + 𝜙 −

𝜋

2
= 0 

(126) 

The solution of the steepest descent equation is given by the following: 

𝑣 = 𝑘0𝜌 sin 𝜙  

(127) 

The saddle point is again a first order saddle point. The contribution of the 

saddle point to the first integral in equation (125) is calculated to be 
1

2
𝑒−𝑗𝑘0𝑥 . 

After similar operations are carried out for the second integral in equation 

(125), the following steepest descent equation is obtained: 

− cos−1  
𝑣 

𝑘0𝜌
 + 𝜙 −

3𝜋

2
= 0 

(128) 

The solution of the steepest descent equation is 

𝑣 = −𝑘0𝜌 sin 𝜙  

(129) 

The saddle point is a first order saddle point and the contribution of it to the 

second integral in equation (125) is calculated to be 
1

2
𝑒−𝑗𝑘0𝑥 . 
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Since each of the first and second integrals in equation (125) has been shown to 

converge, the separation in (125) is proven to be appropriate. Then, the second 

part of the integral in equation (117) is equal to 𝑒−𝑗𝑘0𝑥  which cancels out the 

shadow forming field −𝑒−𝑗𝑘0𝑥  in the geometrically lit region. This result is 

physically expected as well. 

In the case of a DNG cylinder, the first part of the integral in equation (117) 

has a different integrand due to the 𝑅22  multiplier. The physical picture is the 

same as the double positive cylinder case. The second part of the integral in 

equation (117) does not change either. It cancels out the shadow forming field. 

 

4.6 The Second Term of the Debye Expansion 

Inserting the expression in (82) with 𝑝 being equal to 1 into the place of 𝑥𝑣 in 

the scattered field integral in (84) reveals the contribution of the second term of 

the Debye expansion to the scattered field. The contribution of the second term 

of the Debye expansion to the scattered field is expressed as follows after some 

operations on the integrand and setting 𝑚 to 0: 

𝐸𝑠
𝑠𝑒𝑐𝑜𝑛𝑑  𝑡𝑒𝑟𝑚 =

1

2
 𝐻𝑣

 1  𝑘0𝜌 
𝐻𝑣

 2  𝛽 

𝐻𝑣
 1  𝛽 

𝐻𝑣
 1  𝛼 

𝐻𝑣
 2  𝛼 

𝑇12𝑇21𝑒
𝑗𝑣 𝜙+

3𝜋
2

 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

+ 

1

2
 𝐻𝑣

 1  𝑘0𝜌 
𝐻𝑣

 2  𝛽 

𝐻𝑣
 1  𝛽 

𝐻𝑣
 1  𝛼 

𝐻𝑣
 2  𝛼 

𝑇12𝑇21𝑒
𝑗𝑣  −𝜙+

3𝜋
2

 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

(130) 

The integral is separated into two parts assuming that each of the two parts is 

convergent. The automatic verification of this assumption is delayed to the 

calculation of the integrals. The scattered field due to the rays which are 

transmitted into the cylinder and then transmitted out of the cylinder to form 

the scattered field at the field point is represented by the second term of the 

Debye expansion. The geometrically lit regions and geometrical shadow 
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regions formed by these rays are specific to the second term of the Debye 

series. The shaded region shown in the Figure 50 is the geometrically lit region 

of the cylinder for the 𝜌 coordinate of 𝜌0, 𝑛 >  2 and corresponding to the 

second term of the Debye series. 
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Figure 50 The geometrically lit region of the double positive cylinder for the 𝝆 coordinate of 𝝆𝟎 and 

corresponding to the second term of the Debye series 
 

 

First, the contribution of a typical ray to its geometrically lit region is 

calculated. The field in the geometrically lit region is formed by the ray 

propagating to the field point after transmission to the inside of the cylinder 

and a later transmission to the outside of the cylinder. Hence, the SDM is used 

for the calculation of the contribution to the scattered field.  

The Debye asymptotic expansion of the second integrand in (130) is performed 

and the derivative of the exponential part with respect to 𝑣 is taken to get the 

following steepest descent equation for the saddle point: 

2 cos−1  
𝑣 

𝛽
 − cos−1  

𝑣 

𝑘0𝜌
 − 2 cos−1  

𝑣 

𝛼
 − 𝜙 +

3𝜋

2
= 0 

(131) 

The following change of variable is used: 
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𝑣 ≜ 𝛽 cos 𝑤  

(132) 

Then, the steepest descent equation becomes as follows: 

2𝑤 − cos−1  
𝑎

𝜌
cos 𝑤  − 2 cos−1  

1

𝑛
cos 𝑤  − 𝜙 +

3𝜋

2
= 0 

(133) 

The connection between the steepest descent equation and the physical picture 

for the second term of the Debye expansion is set by drawing the expected 

physical picture and deriving the mathematical expression related to the 

physical picture. As an additional check for the matching between the physical 

picture and the SDM evaluation of the integral, the exponential part of the 

scattered field obtained from the geometrical optics and the exponential part of 

the scattered field obtained from the SDM evaluation will be compared and 

detected to be the same. 

From the Figure 51, the following equation can be derived: 

2 sin−1  
1

𝑛
sin 𝜙1  − 2𝜙1 + sin−1  

𝑎

𝜌
sin 𝜙1  = 𝜙 − 𝜋 

(134) 

The following relations are inserted in the equation (134): 

 
𝜙1 =

𝜋

2
− 𝑥

sin−1 𝑡 =
𝜋

2
− cos−1 𝑡 

  

(135) 

Then, the equation (134) takes the following form: 

2𝑥 − cos−1  
𝑎

𝜌
cos 𝑥  − 2 cos−1  

1

𝑛
cos 𝑥  − 𝜙 +

3𝜋

2
= 0 

(136) 

The comparison between the equation (133) and the equation (136) shows that 

they become the same as each other if the following equation is written for 𝑤: 
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𝑤 = 𝑥 

(137) 

Using the equation (135), the equation (137) can be written as follows: 

𝑤 =
𝜋

2
− 𝜙1 

(138) 
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Figure 51 The physical picture for the second term of the Debye series in the geometrically lit 

region for the double positive cylinder 
 

 

The steepest descent equation is matched to the physical picture by the relation 

in (138). The next step is to compare the exponential contributions to the 

scattered field. 

When the saddle point solution is put into the exponential part of the Debye 

asymptotic expansion of the integrand, the following exponential part is 

obtained: 

𝑒𝑥𝑝  𝑗𝑘0  2𝑎 𝑛2 − 𝑠𝑖𝑛2𝜙1 
1
2 +  𝜌2 − 𝑎2𝑠𝑖𝑛2𝜙1 

1
2 − 2𝑎𝑐𝑜𝑠 𝜙1   𝑒−𝑗

𝜋
4  

(139) 

Due to the high frequency operation, the plane wave incident on the cylinder 

can be represented by rays. The plane wave incident on the point 𝑃 𝑎, −𝜙1  is 

represented by a ray incident at the point 𝑃 𝑎, −𝜙1 . The ray incident on the 
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point 𝑃 𝑎, −𝜙1  is denoted by 𝑒−𝑗𝑘0𝑎 cos  𝜙1 . Then, the ray is transmitted into 

the cylinder and propagates for a path length of  𝑃𝑄 . This propagation is 

reflected as a multiplication by 𝑒 𝑗𝑛 𝑘0 𝑃𝑄  . Hence, the exponential dependence 

of the ray at the point 𝑄 is given by 𝑒−𝑗𝑘0𝑎 cos  𝜙1 × 𝑒 𝑗𝑛 𝑘0 𝑃𝑄  . Then, the ray 

is transmitted out of the cylinder and propagates to the field point 𝐹 𝜌, −𝜙 . 

During this propagation, it takes a path of length  𝑄𝐹 . The exponential 

dependence of the ray at the field point is given by 𝑒−𝑗𝑘0𝑎 cos  𝜙1 ×

𝑒 𝑗𝑛 𝑘0 𝑃𝑄  × 𝑒 𝑗 𝑘0 𝑄𝐹  . After the calculations for the path lengths, it can be 

shown that the exponential dependence of the ray at the field point is equal to 

𝑒𝑥𝑝  𝑗𝑘0  2𝑎 𝑛2 − 𝑠𝑖𝑛2𝜙1 
1
2 +  𝜌2 − 𝑎2𝑠𝑖𝑛2𝜙1 

1
2 − 2𝑎𝑐𝑜𝑠 𝜙1    

(140) 

Hence, in terms of the exponential dependence, it is proven that the second 

term of the Debye series physically represents the ray which is transmitted into 

the cylinder and is transmitted outside of the cylinder. The verification for the 

amplitude will be carried out numerically in a separate chapter.  

The first integral in (130) represents another ray. This ray is incident on the 

point 𝑃 𝑎, 𝜙1  and contributes to the scattered field at the point 𝐹 𝜌, 𝜙 . Due 

to the symmetry of the problem geometry, the contribution to the scattered 

field at the point 𝐹 𝜌, −𝜙  is the same as the one at the point 𝐹 𝜌, 𝜙 . Hence, 

taking the 
1

2
 coefficient in front of the integral in (130), it is proven in terms of 

the exponential dependence that the integral in (130) represents the 

contribution of the ray incident on the point 𝑃 𝑎, −𝜙1 (𝑃 𝑎, 𝜙1 ) to the 

scattered field at the point  𝐹 𝜌, 𝜙 (𝐹 𝜌, −𝜙 ). 

The contribution of the second term of the Debye series to the scattered field in 

the geometrical shadow region of the cylinder is calculated using the residue 

series. In order to express the integral in (130) in terms of a residue series, the 

integrand must be checked for vanishing in the upper half of the complex 𝑣-

plane as  𝑣 → ∞. After making the asymptotic expansion of the integrand as 
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 𝑣 → ∞ in the upper half of the complex 𝑣-plane, it is determined that the 

integrand vanishes for the 𝜙 values of the geometrical shadow region. 

The integral in the equation (130) is modified as follows after some 

mathematical operations: 

𝐸𝑠
𝑠𝑒𝑐𝑜𝑛𝑑  𝑡𝑒𝑟𝑚 =  −

8

 𝜋𝛽 2
  

𝐻𝑣
 1  𝑘0𝜌  𝑒𝑗𝑣  𝜙+

3𝜋
2

 + 𝑒𝑗𝑣  −𝜙+
3𝜋
2

  

 𝐻𝑣
 1  𝛽 𝐻𝑣

 2  𝛼  
2

  1 𝛽 −
𝑛
𝜇𝑟

 2 𝛼  
2 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

(141) 

The poles of the integrand in the equation (141) are the same as the poles of the 

integrand of the first term of the Debye series. However, the poles of the 

second term of the Debye series are second order poles. The following 

definition is made for making the residue calculations easier: 

 

 1 𝛽 −
𝑛

𝜇𝑟

 2 𝛼 ≜ 𝑔 𝑣  𝑣 − 𝑣𝑙 

𝑓 𝑣 ≜
𝐻𝑣

 1  𝑘0𝜌  𝑒𝑗𝑣  𝜙+
3𝜋
2

 + 𝑒𝑗𝑣  −𝜙+
3𝜋
2

  

 𝐻𝑣
 1  𝛽 𝐻𝑣

 2  𝛼  
2

 
 
 

 
 

 

(142) 

where 𝑣𝑙  is the 𝑙𝑡  pole of the integrand in the equation (141). Then, the 

residue series representation of the integral in the equation (141) for the 

geometrical shadow region of the second term of the Debye series is given by 

the following: 

𝐸𝑠
𝑠𝑒𝑐𝑜𝑛𝑑  𝑡𝑒𝑟𝑚 =  −

16𝜋𝑗

 𝜋𝛽 2
   𝑅𝑒𝑠  

 𝑓 𝑣 / 𝑔 𝑣  2 

 𝑣 − 𝑣𝑙 2
  

𝑣→𝑣𝑙𝑙

 

(143) 

The scattered field due to the second term of the Debye series is expressed as 

follows when the residue operation in the equation (143) is carried out: 

𝐸𝑠
𝑠𝑒𝑐𝑜𝑛𝑑  𝑡𝑒𝑟𝑚 =  −

16𝜋𝑗

 𝜋𝛽 2
    

𝑓 ′ 𝑣 

 𝑔 𝑣  2
−

2𝑓 𝑣 𝑔′ 𝑣 

 𝑔 𝑣  3
  

𝑣→𝑣𝑙𝑙

 

(144) 
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If the equation (144) is explicitly written, then it can be seen that  

𝐻𝑣
 1  𝑘0𝜌 

 𝐻𝑣
 2  𝛼  

2  𝑒𝑗𝑣  𝜙+
3𝜋
2

 + 𝑒𝑗𝑣  −𝜙+
3𝜋
2

   

(145) 

can be fixed as a common factor. The Hankel functions in the common factor 

are expanded into their Debye asymptotic forms. The purpose of applying the 

Debye asymptotic expansions is to determine the convergence region of the 

residue series and relate it to the physical picture of the creeping waves 

traveling on the cylinder from the geometrically lit region to the geometrical 

shadow region. Then, the exponential terms in the common factor takes the 

following form: 

𝑒
 𝑗    𝑘0𝜌 2−𝑣2 

1
2+2 𝛼2−𝑣2 

1
2  

𝑒
 𝑗  −𝑣 cos −1 

𝑣
𝑘0𝜌

 −2𝑣 cos −1 
𝑣
𝛼

   
 𝑒

𝑗𝑣 𝜙+
3𝜋
2

 
+ 𝑒

𝑗𝑣 −𝜙+
3𝜋
2

 
  

(146) 

The approximation of the poles to 𝛽 in the first exponential factor in (146) is 

enabled by their proximity to 𝛽. In addition, the following equality and the 

definitions  

 

cos−1 𝑡 =
𝜋

2
− sin−1 𝑡 

𝜃0 = cos−1  
𝑎

𝜌
 

𝜃𝑐 = sin−1  
1

𝑛
  

 
 

 
 

 

(147) 

are used in the equation (146) to obtain the common factor in the following 

form: 

𝑒
 𝑗    𝑘0𝜌 2−𝛽2

 

1
2+2 𝛼2−𝛽2

 

1
2  

𝑒 𝑗𝑣  −𝜃0+2𝜃𝑐−𝜋  𝑒
𝑗𝑣 𝜙+

3𝜋
2

 
 

+ 

𝑒
 𝑗    𝑘0𝜌 2−𝛽2

 

1
2+2 𝛼2−𝛽2

 

1
2  

𝑒 𝑗𝑣  −𝜃0+2𝜃𝑐−𝜋  𝑒
𝑗𝑣 −𝜙+

3𝜋
2

 
 

(148) 
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The convergence of the residue series depends on the convergence of the 

exponentials in the expression (148). The fact that the imaginary parts of the 

poles are positive implies the following conditions for the convergence of the 

residue series: 

 
−𝜃0 + 2𝜃𝑐 + 𝜙 +

𝜋

2
> 0

−𝜃0 + 2𝜃𝑐 − 𝜙 +
𝜋

2
> 0

  

(149) 

The intersection of the ranges in (149) yields the following range of 

convergence of the residue series: 

𝜃0 − 2𝜃𝑐 −
𝜋

2
< 𝜙 < −𝜃0 + 2𝜃𝑐 +

𝜋

2
 

(150) 

It can be seen in the Figure 50 that the above range is actually the geometrical 

shadow of the cylinder for the second term of the Debye series. 

The residue series representation has a physical interpretation which is 

obtained using the ray interpretation of the incident high frequency plane wave. 

The Figure 52 is used to display the physical picture. The high frequency plane 

wave incident on the point 𝑃  𝑎,
𝜋

2
  is denoted by the exponential dependence 

𝑒−𝑗𝑘0𝑎 cos  
𝜋

2
 
. Then, it is critically refracted into the cylinder and takes a path of 

length 

 𝑃𝑄 = 2𝑎 cos 𝜃𝑐 = 2𝑎
 𝑛2 − 1 

1
2

𝑛
 

(151) 
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Figure 52 The physical picture corresponding to the residue series for the second term of the Debye 

series in the case of a double positive cylinder 
 

 

According to the geometric optics, the propagation along this path is 

mathematically reflected to the ray as a multiplication by 𝑒𝑗𝑛 𝑘0 𝑃𝑄 . Then, the 

ray is denoted by 𝑒−𝑗𝑘0𝑎 cos  
𝜋

2
 × 𝑒𝑗2𝛽 𝑛2−1 

1
2
 at the point 𝑄  𝑎, −

𝜋

2
− 2𝜃𝑐 . At 

the point 𝑄  𝑎, −
𝜋

2
− 2𝜃𝑐 , the ray is transmitted to the outside of the cylinder, 

but it does not leave the cylinder surface and creeps on the surface of the 

cylinder into the geometrical shadow region for the second term of the Debye 

series. The creeping ray leaves the surface of the cylinder at the point 

𝑅  𝑎, −
𝜋

2
− 2𝜃𝑐 + 𝜙𝑠1 . At this point, the creeping wave has the exponential 

dependence of 𝑒−𝑗𝑘0𝑎 cos  
𝜋

2
 × 𝑒𝑗2𝛽 𝑛2−1 

1
2
× 𝑒𝑗𝛽 𝜙𝑠1 . The ray propagates to the 

field point 𝐹 𝜌, 𝜙  after taking the path  𝑅𝐹 . The ray finally arrives at this 

point with an exponential dependence of 𝑒−𝑗𝑘0𝑎 cos  
𝜋

2
 × 𝑒𝑗2𝛽 𝑛2−1 

1
2
×

𝑒𝑗𝛽 𝜙𝑠1 × 𝑒𝑗𝑘0 𝑅𝐹 . The length of the path  𝑅𝐹  is given by 

 𝑅𝐹 =  𝜌2 − 𝑎2 
1
2 

(152) 
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Then, the overall exponential dependence of the ray at the field point is given 

by the following expression: 

𝑒−𝑗𝑘0𝑎 cos  
𝜋
2
 × 𝑒𝑗2𝛽 𝑛2−1 

1
2
× 𝑒𝑗𝛽 𝜙𝑠1 × 𝑒𝑗   𝑘0𝜌 2−𝛽2 

1
2
 

(153) 

The angle 𝜙𝑠1 corresponding to the arc travelled by the creeping wave on the 

cylinder satisfies the following relation: 

𝜙𝑠1 = 𝜙 +
𝜋

2
+ 2𝜃𝑐 − 𝜃0 

(154) 

Using the relation in the equation (154), the exponential dependence of the ray 

at the field point can be written as follows: 

𝑒−𝑗𝑘0𝑎 cos  
𝜋
2
 × 𝑒𝑗2𝛽 𝑛2−1 

1
2
× 𝑒𝑗𝛽  𝜙+

𝜋
2

+2𝜃𝑐−𝜃0 × 𝑒𝑗   𝑘0𝜌 2−𝛽2 
1
2
 

(155) 

Since the real part of the first few poles of the integrand in (141) are close to 𝛽, 

the propagating part of the first part of the common factor in (148) becomes 

equal to the expression in (155) if the real part of the poles are approximated 

with 𝛽. In this way, the residue series is matched with the physical picture in 

the Figure 52. 

The second exponential term in the common factor in (148) can be related to 

the other ray in the physical picture shown in the Figure 52 by using exactly 

the same reasoning. 

The mathematical calculations and the physical interpretations have been made 

for an infinite length cylinder made of a double positive material. A material of 

positive relative permittivity and positive permeability is meant by means of 

the double positive medium. The analysis for a double negative is to be carried 

out and there will be some differences in the analysis for the double negative 

medium. 
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The integral to be calculated is again the one in the equation (130). However, 

the negativity of the refractive index which shows itself in the following 

relation causes the differences in the calculations: 

𝛼 = − 𝑛 𝛽 

(156) 

The Debye asymptotic approximation is used in the integrand of the second 

integral in (130). In treating the Hankel functions with the argument 𝛼, the 

following analytical continuity relations are used from [29]: 

 𝐻𝑣
 1 

 𝑧𝑒𝑗𝜋  = −𝑒−𝑗𝑣𝜋 𝐻𝑣
 2  𝑧 

𝐻𝑣
 2 

 𝑧𝑒−𝑗𝜋  = −𝑒𝑗𝑣𝜋 𝐻𝑣
 1  𝑧 

  

(157) 

The application of the Debye asymptotic approximation with the analytical 

continuation relations is followed by taking the first derivative of the exponent 

of the resulting integrand with respect to 𝑣. The obtained derivative expression 

is equated to zero to find the possible saddle point 𝑣 : 

2 cos−1  
𝑣 

𝛽
 + 2 cos−1  

𝑣 

 𝑛 𝛽
 − cos−1  

𝑣 

𝑘0𝜌
 − 𝜙 −

𝜋

2
= 0 

(158) 

The physical picture shown in the Figure 53 for the double negative cylinder 

differs from that of the double positive cylinder in the negative refraction. 

From the Figure 53, the following relation can be derived: 

𝜙 = 𝜋 − 2𝜃1 − 2 sin−1  
1

 𝑛 
sin 𝜃1 + sin−1  

𝑎

𝜌
sin 𝜃1  

(159) 

The following definition and the relation is used in the equation (158): 

 
𝑣 = 𝛽 cos 𝑤

sin−1 𝑥 =
𝜋

2
− cos−1 𝑥

  

(160) 
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Figure 53 The physical picture in the geometrically lit region of the DNG cylinder corresponding to 

the second term of the Debye series 
 

 

After using the definitions in (160), it can be seen that the equation (158) and 

the equation (159) become the same when the solution for the saddle point is 

expressed as follows: 

𝑤 =
𝜋

2
− 𝜃1 

(161) 

In this way, the integral under investigation is partly related to a physical 

picture. This connection is to be made stronger using the SDM evaluation of 

the integral and the geometrical optics. It is going to be proven that the 

exponential part of the SDM result of the integral is the same as the 

exponential part of the ray obtained using the geometrical optics at the field 

point. 

The SDM evaluation of the integral produces the following exponential 

expression: 

𝑒𝑥𝑝  𝑗𝑘0   𝜌2 − 𝑎2𝑠𝑖𝑛2𝜃1 
1
2 − 2𝑎  𝑛 2 − 𝑠𝑖𝑛2𝜃1 

1
2 − 2𝑎𝑐𝑜𝑠𝜃1   

(162) 

The high frequency plane wave incident on the point 𝑃 𝑎, −𝜃1  can be denoted 

by a ray of exponential dependence 𝑒−𝑗𝑘0𝑎 cos 𝜃1 . The incident ray is negatively 
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refracted into the cylinder and takes the path of length  𝑃𝑄  to arrive at the 

point 𝑄 𝑎, 𝜃2 . The exponential dependence of the ray at the point 𝑄 𝑎, 𝜃2  is 

given by 𝑒−𝑗𝑘0𝑎 cos 𝜃1 × 𝑒𝑗𝑘0 𝑛  𝑃𝑄 . The ray is again negatively refracted at the 

point 𝑄 𝑎, 𝜃2  to the outside of the cylinder and propagates to the field point 

𝐹 𝜌, 𝜙  after taking the path of length  𝑄𝐹 . The exponential dependence of 

the ray at the field point is given by the following 𝑒−𝑗𝑘0𝑎 cos 𝜃1 × 𝑒𝑗 𝑘0 𝑛  𝑃𝑄 ×

𝑒𝑗 𝑘0 𝑄𝐹 . If the required mathematical operations are carried out to determine 

the path lengths, then it can be shown that the exponential dependence of the 

ray at the field point is given by the following expression: 

𝑒𝑥𝑝  𝑗𝑘0   𝜌2 − 𝑎2𝑠𝑖𝑛2𝜃1 
1
2 − 2𝑎  𝑛 2 − 𝑠𝑖𝑛2𝜃1 

1
2 − 2𝑎𝑐𝑜𝑠𝜃1   

(163) 

This exponential dependence is the same as the one in the equation (162). 

Hence, it is proven that the geometrical optics calculation of the exponential 

part of the integral and the SDM solution for the exponential part of the 

integral yield the same results. The physical picture for the integral has been 

proven to be right in terms of the exponential part of the field at the field point. 

The verification in terms of the amplitude will be numerically carried out in a 

later chapter. 

The first part of the integral in the equation (130) has a similar interpretation. It 

represents the scattered field formed at the field point by the ray incident at the 

point 𝑃 𝑎, 𝜃1 . This ray is negatively refracted into the cylinder and propagates 

to the point 𝑄 𝑎, −𝜃2 . At that point, it is negatively refracted again and 

propagates to the field point 𝐹 𝜌, −𝜙 . Due to the symmetry of the problem 

geometry, the scattered field at the point 𝐹 𝜌, −𝜙  is the same as the one at the 

point 𝐹 𝜌, 𝜙 . Hence, in terms of the exponential dependence, the overall 

integral in (130) is equal to the contribution of the ray incident on the point 

𝑃 𝑎, 𝜃1  (or 𝑃 𝑎, −𝜃1 ) to the scattered field at the point 𝐹 𝜌, −𝜙  (or 

𝐹 𝜌, 𝜙 ). The verification in terms of the magnitude will be numerically 

carried out in a later chapter. 
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For the case of the double negative cylinder, the contribution of the second 

term of the Debye series to the scattered field at the geometrical shadow region 

corresponding to the second term of the Debye series is calculated in a similar 

way to the double positive case. The only main difference is the critical 

negative refraction. 

The analysis for the double negative cylinder goes parallel with the one for the 

double positive cylinder. The integral in the equation (130) takes the following 

form after some mathematical operations: 

𝐸𝑠
𝑠𝑒𝑐𝑜𝑛𝑑  𝑡𝑒𝑟𝑚 =  −

8

 𝜋𝛽 2  
𝐻𝑣

 1  𝑘0𝜌  𝑒
𝑗𝑣 𝜙+

3𝜋
2

 
+ 𝑒

𝑗𝑣 −𝜙+
3𝜋
2

 
 

 𝐻𝑣
 1 

 𝛽 𝐻𝑣
 2 

 𝛼  
2
  1 𝛽 +

𝑛
𝜇𝑟

 1  𝑛 𝛽  
2 𝑑𝑣

∞+𝑗𝜀

−∞+𝑗𝜀

 

(164) 

where 

𝛼 = − 𝑛 𝛽 

(165) 

The integral in the equation (164) must be checked for vanishing as  𝑣 → ∞ in 

the upper half of the complex 𝑣-plane. The examination for vanishing is carried 

out by making the asymptotic expansion of the integrand as  𝑣 → ∞ in the 

upper half of the complex 𝑣-plane. The integrand vanishes in the geometrical 

shadow region corresponding to the second term of the Debye series. In this 

region, the integral in the equation (164) can be written as a residue series: 

𝐸𝑠
𝑠𝑒𝑐𝑜𝑛𝑑  𝑡𝑒𝑟𝑚 =  −

16𝜋𝑗

 𝜋𝛽 2
   𝑅𝑒𝑠  

 𝑓 𝑣 / 𝑔 𝑣  2 

 𝑣 − 𝑣𝑙 2
  

𝑣→𝑣𝑙𝑙

 

(166) 

where 

 

 1 𝛽 +
𝑛

𝜇𝑟

 1 𝛼 ≜ 𝑔 𝑣  𝑣 − 𝑣𝑙 

𝑓 𝑣 ≜
𝐻𝑣

 1  𝑘0𝜌  𝑒𝑗𝑣  𝜙−
𝜋
2
 + 𝑒𝑗𝑣  −𝜙−

𝜋
2
  

 𝐻𝑣
 1  𝛽 𝐻𝑣

 1   𝑛 𝛽  
2

 
 
 

 
 

 

(167) 
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After the residue series is written explicitly, it can be seen that 

𝐻𝑣
 1  𝑘0𝜌 

 𝐻𝑣
 1   𝑛 𝛽  

2  𝑒𝑗𝑣  𝜙−
𝜋
2
 + 𝑒𝑗𝑣  −𝜙−

𝜋
2
   

(168) 

can be fixed as a common factor. A more detailed determination of the 

convergence region of the residue series is allowed by the application of the 

Debye asymptotic expansion to the common factor. The exponential part of the 

common factor after the Debye asymptotic expansion is given as follows: 

𝑒
 𝑗    𝑘0𝜌 2−𝑣2 

1
2−2  𝑛 2𝛽2−𝑣2 

1
2  

𝑒
 𝑗  −𝑣 cos −1 

𝑣
𝑘0𝜌

 +2𝑣 cos −1 
𝑣

 𝑛 𝛽
   

 𝑒 𝑗𝑣  𝜙−
𝜋
2
 + 𝑒 𝑗𝑣  −𝜙−

𝜋
2
   

(169) 

Due to the closeness of the poles in the equation (166) to 𝛽, they are 

approximated by 𝛽. It is possible to write the common factor in the following 

more compact form using the definitions in (147) with 𝑛 replaced with  𝑛 : 

𝑒
 𝑗    𝑘0𝜌 2−𝛽2 

1
2−2𝛽  𝑛 2−1 

1
2  

𝑒 𝑗𝑣  −𝜃0−2𝜃𝑐+𝜙+
𝜋
2
  

 

+ 

𝑒
 𝑗    𝑘0𝜌 2−𝛽2 

1
2−2𝛽  𝑛 2−1 

1
2  

𝑒 𝑗𝑣  −𝜃0−2𝜃𝑐−𝜙+
𝜋
2
  

 

(170) 

Since the imaginary parts of the poles are positive, the following conditions are 

required for the convergence of the common factor: 

 
−𝜃0 − 2𝜃𝑐 + 𝜙 +

𝜋

2
> 0

−𝜃0 − 2𝜃𝑐 − 𝜙 +
𝜋

2
> 0

  

(171) 

The conditions in the equation (171) require the following range of 𝜙 for the 

convergence of the residue series: 

𝜃0 + 2𝜃𝑐 −
𝜋

2
< 𝜙 < −𝜃0 − 2𝜃𝑐 +

𝜋

2
 

(172) 
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The geometrical shadow region of the double negative cylinder for a specific 𝜌 

coordinate corresponding to the second term of the Debye series is shown in 

the Figure 54. The comparison made between the geometrical shadow region 

of the double negative cylinder corresponding to the second term of the Debye 

series and that of the double positive cylinder corresponding to the second term 

of the Debye series reveals that the double negative cylinder has a quite smaller 

geometric shadow region for  𝑛 >  2. 

The residue series solution is expected to be related with the physical picture 

shown in the Figure 55. The high frequency plane wave which is incident on 

the cylinder is denoted by the ray hitting the point 𝑃  𝑎,
𝜋

2
 . The ray has the 

exponential dependence of 𝑒−𝑗𝑘0𝑎 cos
𝜋

2 . After hitting the point 𝑃  𝑎,
𝜋

2
 , the ray 

is negatively refracted into the double negative cylinder and propagates to the 

point 𝑄  𝑎, −
𝜋

2
+ 2𝜃𝑐 . The length of the path taken by the ray is given by the 

following: 

 𝑃𝑄 = 2𝑎
  𝑛 2 − 1 

1
2

 𝑛 
 

(173) 

The propagation of the ray to the point 𝑄  𝑎, −
𝜋

2
+ 2𝜃𝑐  is reflected as a 

multiplication by the exponential factor 𝑒𝑗 𝑘𝑜  𝑛  𝑃𝑄 . The exponential 

dependence of the ray at the point 𝑄  𝑎, −
𝜋

2
+ 2𝜃𝑐  is given by 𝑒−𝑗𝑘0𝑎 cos

𝜋

2 ×

𝑒𝑗2𝛽  𝑛 2−1 
1
2
. Then, the ray is transmitted to the outside of the cylinder and 

creeps on the surface of the cylinder into the geometrical shadow region 

corresponding to the second term of the Debye series. The creeping wave 

travels to the point 𝑅  𝑎, −
𝜋

2
+ 2𝜃𝑐 + 𝜙𝑠1 . At this point, the creeping wave 

has the exponential dependence of 𝑒−𝑗𝑘0𝑎 cos
𝜋

2 × 𝑒𝑗2𝛽  𝑛 2−1 
1
2
× 𝑒𝑗𝛽 𝜙𝑠1 . Then, 
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the ray leaves the cylinder at this point and propagates to the field point 

𝐹 𝜌, 𝜙  by taking the path of length 

 𝑅𝐹 =  𝜌2 − 𝑎2 
1
2 

(174) 

The exponential dependence of the ray at the field point is given by 

𝑒−𝑗𝑘0𝑎 cos
𝜋
2 × 𝑒𝑗2𝛽  𝑛 2−1 

1
2
× 𝑒𝑗𝛽 𝜙𝑠1 × 𝑒𝑗 𝑘0 𝜌2−𝑎2 

1
2
 

(175) 

The angle 𝜙𝑠1 corresponding to the arc travelled by the creeping wave on the 

cylinder satisfies the following relation: 

𝜙𝑠1 = 𝜙 +
𝜋

2
− 2𝜃𝑐 − 𝜃0 

(176) 

The exponential dependence of the ray at the field point given by (175) 

becomes equal to the first exponential term given in the equation (170) if the 

relation in (176) is put into the expression in (175). 

The second exponential term in the expression (170) has a similar 

interpretation and it corresponds to the second ray in the Figure 55. 
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Figure 54 The geometrical shadow region of the double negative cylinder for a specific 𝝆 coordinate 

corresponding to the second term of the Debye series is the shaded region for 𝒏 >  𝟐. 
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Figure 55 The physical picture in the geometrical shadow region of the DNG cylinder 

corresponding to the second term of the Debye series 
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CHAPTER 5 

 

NUMERICAL RESULTS 

 

In this chapter, the series results of the first and the second terms of the Debye 

expansion are tabulated along with the corresponding residue series results and 

the corresponding steepest descent method (SDM) results. The series results 

and the results obtained using the physical insight into the problem, i.e. the 

residue series and the SDM calculations are compared to each other. 

Throughout the tabulation of the results, the following definition is valid for 

the percentage errors in the results: 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑡𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 ≜
 𝑟𝑒𝑠𝑢𝑙𝑡 − 𝐷𝑒𝑏𝑦𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑟𝑒𝑠𝑢𝑙𝑡 

𝐷𝑒𝑏𝑦𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑟𝑒𝑠𝑢𝑙𝑡
× 100 

 

5.1 The Geometrical Shadow Region of the Double Positive 

Cylinder Corresponding to the First Term of the Debye Series 

The following series expression represents the contribution of the first term of 

the Debye series to the field in the geometrical shadow region corresponding to 

the first term of the Debye series for the double positive cylinder: 

 
1

2
𝑗−𝑙  𝑅22 𝑙 

𝐻𝑙
 2  𝛽 

𝐻𝑙
 1  𝛽 

𝐻𝑙
 1  𝑘0𝜌 + 𝐻𝑙

 2  𝑘0𝜌  𝑒−𝑗𝑙𝜙

∞

𝑙=−∞

 

(177) 

Mathematica is used in the computation of the series. Calculation of the 

integral corresponding to the series is carried out using the residue series. The 

results shown in the tables are obtained using only three terms of the residue 

series corresponding to first three poles of the integrand. There is an obvious 

computational advantage. The Debye expansion for 𝐻𝑣
 1  𝑘0𝜌  in the residue 

series is not applied for getting the residue series results. 
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First, the series results and the residue series results are tabulated with respect 

to varying refracting indices. The following parameters are used in the 

calculations: 

 

𝛽 = 50𝜋
𝜇𝑟 = 1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 

  

 

 
Table 1 The series results for varying refractive indices, the geometrical shadow region of the 

double positive cylinder corresponding to the first term of the Debye series 
 

n 161.2o 164.96o 168.72o 

1.5 -0.379717+0.171978j 0.0689067+0.14581j 0.0573083-0.0486615j 

2 -0.374175+0.174276j 0.0686173+0.141592j 0.0540335-0.047026j 

3 -0.370288+0.175848j 0.0683746+0.13867j 0.0518701-0.0458813j 

4 -0.368638+0.176509j 0.0682645+0.137437j 0.0509806-0.0453984j 

5 -0.367703+0.176882j 0.0682007+0.136742j 0.0504841-0.0451262j 

n 172.48o 176.24o 180o 

1.5 -0.0356742-0.0133717j -0.00611043+0.015343j 0.0227899-0.00727888j 

2 -0.03332-0.0124896j -0.00529878+0.0143123j 0.0203606-0.00672293j 

3 -0.0317692-0.0119097j -0.00479522+0.0136158j 0.0188199-0.00633763j 

4 -0.0311339-0.0116706j -0.00459544+0.0133272j 0.0182019-0.00617759j 

5 -0.03078-0.0115369j -0.0044857+0.0131658j 0.0178609-0.00608818j 

 

 

 
Table 2 The residue series results for varying refractive indices, the geometrical shadow region of 

the double positive cylinder corresponding to the first term of the Debye series 
 

n 161.2o 164.96o 168.72o 

1.5 -0.299323+0.0742719j 0.0632328+0.127644j 0.054299-0.0489249j 

2 -0.297048+0.0759453j 0.0626646+0.124136j 0.0511709-0.0471958j 

3 -0.29544+0.0772511j 0.0622701+0.121708j 0.0491097-0.0459967j 

4 -0.294751+0.0778292j 0.0621032+0.120682j 0.048263-0.0454929j 

5 -0.294359+0.0781613j 0.0620089+0.120103j 0.0477904-0.0452092j 

n 172.48o 176.24o 180o 

1.5 -0.0358715-0.0128958j -0.00603859+0.0153968j 0.0228173-0.00729995j 

2 -0.0334897-0.0120419j -0.00523181+0.0143592j 0.0203843-0.00674257j 

3 -0.0319224-0.0114819j -0.00473178+0.0136585j 0.0188413-0.00635612j 

4 -0.0312807-0.0112512j -0.00453347+0.0133683j 0.0182225-0.0061956j 
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Table 2 The residue series results for varying refractive indices, the geometrical shadow region of 

the double positive cylinder corresponding to the first term of the Debye series (Cont’d) 

n 172.48o 176.24o 180o 

5 -0.0309233-0.0111222j -0.00442456+0.0132059j 0.017881-0.00610593j 

 

 

 
Table 3 The percentage error in the magnitude of the residue series results for varying refractive 

indices, the geometrical shadow region of the double positive cylinder corresponding to the first 

term of the Debye series 
 

n 161.2o 164.96o 168.72o 

1.5 26.01601741 11.67237896 2.782388157 

2 25.720693 11.62197489 2.818472675 

3 25.50459352 11.57605097 2.83591935 

4 25.41208932 11.55565389 2.842028832 

5 25.35953829 11.5441504 2.845536165 

n 172.48o 176.24o 180o 

1.5 0.055627587 0.143074541 0.135906736 

2 0.014011419 0.137176753 0.133691132 

3 0.010832329 0.134329729 0.131857541 

4 0.020396943 0.133624874 0.13161273 

5 0.025669261 0.132428704 0.131185537 

 

 

 

Second, the series results and the residue series results are tabulated with 

respect to varying operating frequencies. The following parameters are used in 

the calculations: 

 

𝑛 = 3
𝜇𝑟 = 1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 
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Table 4 The tabulation of the results for 𝜷 = 𝟏𝟎𝝅, the geometrical shadow region of the double 

positive cylinder corresponding to the first term of the Debye series 
 

 162.368o 165.894o 169.421o 

Series -0.0609014-0.376342j 0.215358+0.117345j -0.166967+0.0615577j 

Residue series 

without the Debye 

approximation 

-0.00341465-0.33116j 0.188239+0.114018j -0.157882+0.0570327j 

The percentage error 

in the magnitude of 

the residue series 

13.13096976 10.26510147 5.667667625 

 172.947o 176.474o 180o 

Series 0.0406401-0.0841446j 0.0608596+0.0172329j -0.0967259+0.0231716j 

Residue series 

without the Debye 

approximation 

0.0389236-0.0808288j 0.0604285+0.0157956j -0.0959294+0.0239236j 

The percentage error 

in the magnitude of 

the residue series 

3.994074053 1.254590306 0.598355753 

 

 

 
Table 5 The tabulation of the results for 𝜷 = 𝟐𝟎𝝅, the geometrical shadow region of the double 

positive cylinder corresponding to the first term of the Debye series 
 

 161.73o 165.384o 169.038o 

Series -0.0752267+0.391876j 0.206762-0.0021143j -0.0448998-0.115676j 

Residue series 

without the Debye 

approximation 

-0.112459+0.306594j 0.182617+0.00356314j -0.044009-0.109096j 

The percentage error 

in the magnitude of 

the residue series 

18.15967649 11.66548543 5.195041326 

 172.692o 176.346o 180o 

Series -0.0355867+0.0544876j 0.0271474+0.0224718j -0.011326-0.052127j 

Residue series 

without the Debye 

approximation 

-0.0337649+0.0543157j 0.0271086+0.0220066j -0.0116163-0.052098j 

The percentage error 

in the magnitude of 

the residue series 

1.727282997 0.922010638 0.063898433 
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Table 6 The tabulation of the results for 𝜷 = 𝟑𝟎𝝅, the geometrical shadow region of the double 

positive cylinder corresponding to the first term of the Debye series 
 

 161.459o 165.167o 168.876o 

Series -0.0838648-0.394836j 0.0332628-0.18627j 0.035451-0.090705j 

Residue series 

without the Debye 

approximation 

-0.0106799-0.317969j 0.0311276-0.164171j 0.03196-0.0875153j 

The percentage error 

in the magnitude of 

the residue series 

21.1810355 11.69067462 4.331398088 

 172.584o 176.292o 180o 

Series 0.0268974-0.0507225j 0.0214958-0.0339658j 0.0197858-0.02992684j 

Residue series 

without the Debye 

approximation 

0.0258559-0.050645j 0.0212935-0.0341051j 0.0197403-0.0293724j 

The percentage error 

in the magnitude of 

the residue series 

0.957158587 0.025557729 1.356275329 

 

 

 
Table 7 The tabulation of the results for 𝜷 = 𝟒𝟎𝝅, the geometrical shadow region of the double 

positive cylinder corresponding to the first term of the Debye series 
 

 161.303o 165.043o 168.782o 

Series 0.341557+0.218905j -0.170124+0.00616087j 0.0536875-0.0603431j 

Residue series 

without the Debye 

approximation 

0.225856+0.211528j -0.150179+0.00620783j 0.0502209-0.0595802j 

The percentage error 

in the magnitude of 

the residue series 

23.72337052 11.70629326 3.524109725 

 172.521o 176.261o 180o 

Series 0.00529038+0.0366238j -0.0212161-0.00136576j 0.0221089-0.0132127j 

Residue series 

without the Debye 

approximation 

0.00587064+0.0362938j -0.0213027-0.00126135j 0.0221281-0.0132626j 

The percentage error 

in the magnitude of 

the residue series 

0.644251304 0.376274443 0.163458275 
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Table 8 The tabulation of the results for 𝜷 = 𝟓𝟎𝝅, the geometrical shadow region of the double 

positive cylinder corresponding to the first term of the Debye series 
 

 161.2o 164.96o 168.72o 

Series -0.370288+0.175848j 0.0683746+0.13867j 0.0518701-0.0458813j 

Residue series 

without the Debye 

approximation 

-0.29544+0.0772511j 0.0622701+0.121708j 0.0491097-0.0459967j 

The percentage error 

in the magnitude of 

the residue series 

25.50459352 11.57605097 2.83591935 

 172.48o 176.24o 180o 

Series -0.0317692-0.0119097j -0.00479522+0.0136158j 0.0188199-0.00633763j 

Residue series 

without the Debye 

approximation 

-0.0319224-0.0114819j -0.00473178+0.0136585j 0.0188413-0.00635612j 

The percentage error 

in the magnitude of 

the residue series 

0.010832329 0.134329729 0.131857541 

 

 

 

5.2 The Geometrically Lit Region of the Double Positive 

Cylinder Corresponding to the First Term of the Debye Series 

The contribution of the first term of the Debye series to the corresponding 

geometrically lit region is denoted by the following series expression for the 

double positive cylinder: 

 
1

2
𝑗−𝑙  𝑅22 𝑙 

𝐻𝑙
 2  𝛽 

𝐻𝑙
 1  𝛽 

− 1 𝐻𝑙
 1  𝑘0𝜌 𝑒−𝑗𝑙𝜙

∞

𝑙=−∞

 

(178) 

The integral corresponding to the series is calculated using the steepest descent 

method. However, only the upper half of the steepest descent path is traversed 

since the integrand blows up in the lower half of the 𝑣-plane. This causes a 

factor of 
1

2
 to be put in front of the steepest descent result. 
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First, the series results and the SDM results are tabulated with respect to 

varying refractive indices. The following parameters are used in the 

calculations: 

 

𝛽 = 50𝜋
𝜇𝑟 = 1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 

  

 

 

 
Table 9 The series results with respect to varying n, the geometrically lit region of the double 

positive cylinder corresponding to the first term of the Debye series 
 

n 0o 5o 10o 

1.5 0.077826+0.04033j 0.0589269+0.0650204j -0.0286799+0.0832317j 

2 0.129668+0.0672989j 0.0980985+0.108381j -0.0478029+0.138439j 

3 0.194438+0.101072j 0.146979+0.162592j -0.0717077+0.207239j 

4 0.233288+0.12136j 0.176273+0.195122j -0.0860507+0.248435j 

5 0.259183+0.134893j 0.195791+0.21681j -0.0956127+0.275872j 

n 15o 20o 

 
1.5 -0.0760301-0.0453139j 0.0884806-0.0111156j 

 
2 -0.126153-0.0752999j 0.146415-0.0182925j 

 
3 -0.188391-0.112615j 0.218063-0.0270983j 

 
4 -0.225569-0.134936j 0.260747-0.0323174j 

 
5 -0.250299-0.149795j 0.289102-0.0357756j 

 

 

 

 
Table 10 The SDM results with respect to varying n, the geometrically lit region of the double 

positive cylinder corresponding to the first term of the Debye series 
 

n 0o 5o 10o 

1.5 0.0777952+0.0403869j 0.058878+0.065063j -0.0287411+0.0832092j 

2 0.129659+0.0673116j 0.0980863+0.108389j -0.0478136+0.138433j 

3 0.194489+0.100968j 0.147064+0.162511j -0.0715894+0.207276j 

4 0.233387+0.121161j 0.176437+0.194969j -0.0858291+0.248508j 

5 0.259319+0.134624j 0.196015+0.216603j -0.0953138+0.275971j 

n 15o 20o 

 
1.5 -0.0759951-0.0453697j 0.0884871-0.0110493j 

 
2 -0.126147-0.0753054j 0.146413-0.0182905j 

 
3 -0.188457-0.112497j 0.21804-0.0272473j 
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Table 10 The SDM results with respect to varying n, the geometrically lit region of the double 

positive cylinder corresponding to the first term of the Debye series (Cont’d) 
 

n 15o 20o 

4 -0.225692-0.134722j 0.260709-0.0325829j 

5 -0.250465-0.149508j 0.289053-0.0361272j 

 

 

 
Table 11 The percentage error in the magnitudes of the SDM results, the geometrically lit region of 

the double positive cylinder corresponding to the first term of the Debye series 
 

n 0o 5o 10o 

1.5 0.001303738 0.001422775 0.001488743 

2 0.001462766 0.0015426 0.001487473 

3 0.001225374 0.001394386 0.001679149 

4 0.001490111 0.001330177 0.001310485 

5 0.001161864 0.001143627 0.001428488 

n 15o 20o 

1.5 0.001664168 0.002007237 

2 0.001587879 0.001513017 

3 0.001755394 0.002001514 

4 0.001593397 0.001871791 

5 0.001629581 0.001796254 

 

 

 

Second, the series results and the SDM results are tabulated with respect to 

varying operating frequencies. The following parameters are used in the 

calculations: 

 

𝑛 = 3
𝜇𝑟 = 1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 

  

 

 

 

 

 

 

 

 



 

101 
 

Table 12 The tabulation of the results for 𝜷 = 𝟏𝟎𝝅, the geometrically lit region of the double 

positive cylinder corresponding to the first term of the Debye series 
 

 0o 5o 10o 

Series 0.211088+0.00931496j 0.209945+0.0241705j 0.200309+0.0677121j 

SDM 0.211041+0.00872599j 0.209938+0.0235699j 0.200433+0.0670942j 

Percentage error for 

the magnitude of the SDM 
0.03412577 0.035397303 0.037589081 

 15o 20o 

Series 0.164885+0.132662j 0.0830161+0.194936j 

SDM 0.165239+0.132081j 0.0836648+0.194551j 

Percentage error for 

the magnitude of the SDM 
0.04126199 0.046596951 

 

 

 
Table 13 The tabulation of the results for 𝜷 = 𝟐𝟎𝝅, the geometrically lit region of the double 

positive cylinder corresponding to the first term of the Debye series 
 

 0o 5o 10o 

Series -0.173117+0.128484j -0.189577+0.102737j -0.215187+0.0154159j 

SDM -0.172928+0.128707j -0.189418+0.102989j -0.215145+0.0157256j 

Percentage error for 

the magnitude of the SDM 
0.008659284 0.009052323 0.009055912 

 15o 20o 

Series -0.173767-0.128173j 0.011131-0.215889j 

SDM -0.173949-0.127887j 0.0107539-0.215882j 

Percentage error for 

the magnitude of the SDM 
0.010669967 0.012064413 

 

 

 
Table 14 The tabulation of the results for 𝜷 = 𝟑𝟎𝝅, the geometrically lit region of the double 

positive cylinder corresponding to the first term of the Debye series 
 

 0o 5o 10o 

Series -0.101123-0.192454j -0.0580983-0.209537j 0.0784306-0.202928j 

SDM -0.101291-0.192356j -0.0582858-0.209476j 0.0782338-0.202994j 

Percentage error for 

the magnitude of the SDM 
0.003920393 0.003952788 0.004268637 

 15o 20o 

 
Series 0.215652-0.0301133j 0.0487773+0.212471j 

 
SDM 0.215611-0.0303349j 0.0490194+0.212403j 
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Table 14 The tabulation of the results for 𝜷 = 𝟑𝟎𝝅, the geometrically lit region of the double 

positive cylinder corresponding to the first term of the Debye series (Cont’d) 
 

 15o 20o 

Percentage error for 

the magnitude of the SDM 
0.004520485 0.005486793 

 

 

 
Table 15 The tabulation of the results for 𝜷 = 𝟒𝟎𝝅, the geometrically lit region of the double 

positive cylinder corresponding to the first term of the Debye series 
 

 0o 5o 10o 

Series 0.169749-0.137494j 0.201582-0.0842667j 0.196101+0.0965975j 

SDM 0.169654-0.137603j 0.201521-0.0844007j 0.196165+0.0964559j 

Percentage error for 

the magnitude of the SDM 
0.002365644 0.002082144 0.002334713 

 15o 20o 

 

Series -0.0660486+0.208583j -0.165074-0.143985j 
 

SDM -0.065886+0.208629j -0.165193-0.143839j 
 

Percentage error for 

the magnitude of the SDM 
0.002361473 0.002835043 

 

 

 

 
Table 16 The tabulation of the results for 𝜷 = 𝟓𝟎𝝅, the geometrically lit region of the double 

positive cylinder corresponding to the first term of the Debye series 
 

 0o 5o 10o 

Series 0.194438+0.101072j 0.146979+0.162592j -0.0717077+0.207239j 

SDM 0.194489+0.100968j 0.147064+0.162511j -0.0715894+0.207276j 

Percentage error for 

the magnitude of the SDM 
0.001225374 0.001394386 0.001679149 

 15o 20o 

 

Series -0.188391-0.112615j 0.218063-0.0270983j 
 

SDM -0.188457-0.112497j 0.21804-0.0272473j 
 

Percentage error for 

the magnitude of the SDM 
0.001755394 0.002001514 
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5.3 The Geometrical Shadow Region of the Double Positive 

Cylinder Corresponding to the Second Term of the Debye 

Series 

The contribution of the second term of the Debye series to the corresponding 

geometrical shadow region is represented by the following series for the double 

positive cylinder: 

 0.5 𝑗−𝑙𝑇12 𝑙 𝑇21 𝑙 
𝐻𝑙

 2  𝛽 

𝐻𝑙
 1  𝛽 

𝐻𝑙
 1  𝛼 

𝐻𝑙
 2  𝛼 

𝐻𝑙
 1  𝑘0𝜌 𝑒−𝑗𝑙𝜙

∞

𝑙=−∞

 

(179) 

The series is computed in the geometrical shadow region corresponding to the 

second term of the Debye series using Mathematica and is compared to the 

residue series result. The residue series computation is carried out by using 

only three terms of the series corresponding to first three poles of the integrand 

of the integral calculated by the residue series. The Debye approximation is not 

employed in the residue series computations. The comparisons are shown in 

the following tabulations. 

First, the series and the residue series results are tabulated with respect to 

varying n. The following parameters are used in the calculations: 

 

𝛽 = 50𝜋
𝜇𝑟 = 1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 
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Table 17 The tabulation for 𝒏 = 𝟏. 𝟓, the geometrical shadow region of the double positive cylinder 

corresponding to the second term of the Debye series 
 

 -102.421
o 

-81.9364
o
 -61.4523

o
 

Series 0.00811495+0.0287956j -0.0028666+0.00368152j -0.000476873-0.000182164j 

Residue series 

without the Debye 

approximation 

0.00787638+0.0293638j -0.00286644+0.00368143j -0.000476873-0.000182164j 

Percentage error for 

the magnitude of 

the residue series 

1.619832997 0.003628638 0 

 -40.9682
o
 -20.4841

o
 0

o
 

Series 7.0813x10
-6

-4.53639x10
-5 

j 3.70995 x10
-6

-1.11998 x10
-7 

j 1.19492x10
-7

+5.59763 x10
-7 

j 

Residue series 

without the Debye 

approximation 

7.0813x10
-6

-4.53639x10
-5 

j 3.70995 x10
-6

-1.11999 x10
-7 

j 1.19492x10
-7

+5.59763 x10
-7 

j 

Percentage error for 

the magnitude of 

the residue series 

0 8.12981x10
-7

 0 

 

 

 
Table 18 The tabulation for 𝒏 = 𝟐, the geometrical shadow region of the double positive cylinder 

corresponding to the second term of the Debye series 
 

 -78.7999
o
 -63.0399

o
 -47.2799

o
 

Series 0.0168291-0.0107059j 0.00446829-0.0017163j 0.00088392+0.0000841903j 

Residue series 

without the Debye 

approximation 

0.0175271-0.0097219j 0.00446721-0.0017188j 0.000883942+0.0000842033j 

Percentage error for 

the magnitude of 

the residue series 

0.486415296 0.002318948 0.002605366 

 -31.52
o
 -15.76

o
 0

o
 

Series 0.000110704+0.0000838428j 6.34239x10
-6

+1.87364x10
-5

 j -1.28445x10
-6

+5.08038x10
-6

 j 

Residue series 

without the Debye 

approximation 

0.000110703+0.0000838431j 6.34239x10
-6

+1.87364x10
-5

 j -1.28445x10
-6

+5.08038x10
-6

 j 

Percentage error for 

the magnitude of 

the residue series 

0.000443613 0 0 
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Table 19 The tabulation for 𝒏 = 𝟑, the geometrical shadow region of the double positive cylinder 

corresponding to the second term of the Debye series 
 

 -57.7423
o
 -46.1939

o
 -34.6454

o
 

Series -0.00151798-0.0124084j -0.00319885-0.00309481j 0.00127646+0.00044366j 

Residue series 

without the Debye 

approximation 

-0.000198208-0.0118244j -0.00318208-0.00309723j 0.00127663+0.000443667j 

Percentage error for 

the magnitude of 

the residue series 

5.398368627 0.23252977 0.012052728 

 -23.0969
o
 -11.5485

o
 0

o
 

Series 1.78828x10
-5

+0.000361966j -7.98758x10
-5

+2.99428 x10
-5 

j -2.72072x10
-5

-3.08645x10
-5 

j 

Residue series 

without the Debye 

approximation 

1.78809x10
-5

+0.000361967j -7.98758x10
-5

+2.99428x10
-5 

j -2.72072x10
-5

-3.08645x10
-5 

j 

Percentage error for 

the magnitude of 

the residue series 

0.000249728 0 0 

 

 

 
Table 20 The tabulation for 𝒏 = 𝟒, the geometrical shadow region of the double positive cylinder 

corresponding to the second term of the Debye series 
 

 -47.7549
o
 -38.2039

o
 -28.6529

o
 

Series 0.00892118-0.00233223j 0.000898382+0.00385j -0.00150771+9.96836x10
-5

 j 

Residue series 

without the Debye 

approximation 

0.00817356-0.000571589j 0.000918087+0.00381587j -0.0015082+0.000100244j 

Percentage error for 

the magnitude of 

the residue series 

11.14276036 0.725113087 0.034811011 

 -19.102
o
 -9.55098

o
 0

o
 

Series 9.60039x10
-5

-0.000516861j 0.000144047+6.1196x10
-5

 j -7.0413x10
-5

+7.4897x10
-5

 j 

Residue series 

without the Debye 

approximation 

9.60161x10
-5

-0.000516865j 0.000144046+6.11958x10
-5

 j -7.0413x10
-5

+7.48971x10
-5

 j 

Percentage error for 

the magnitude of 

the residue series 

0.001171925 0.000638046 7.08745E-05 
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Table 21 The tabulation for 𝒏 = 𝟓, the geometrical shadow region of the double positive cylinder 

corresponding to the second term of the Debye series 
 

 -41.8738o -33.499o -25.1243o 

Series -0.000442139+0.00731774j 0.00349516-0.000252527j -0.000141901-0.00151922j 

Residue series 

without the Debye 

approximation 

-0.00167997+0.00592755j 0.00344391-0.0002288648j -0.000143786-0.00152006j 

Percentage error for 

the magnitude of 

the residue series 

15.9603451 1.505719992 0.066371782 

 -16.7495o -8.37476o 0o 

Series -0.000624322+2.23494x10-5 j -2.94065 x10-6+0.000204502j 0.000165061+2.57575 x10-5 j 

Residue series 

without the Debye 

approximation 

-0.000624386+2.23343 x10-5 j -0.00000294248+0.000204502j 0.000165061+2.57575 x10-5 j 

Percentage error for 

the magnitude of 

the residue series 

0.010151568 1.2869x10-5 0 

 

 

 

Second, the series and the residue series results are tabulated with respect to 

varying operating frequency. The following parameters are used in the 

calculations: 

 

𝑛 = 3
𝜇𝑟 = 1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 

  

 

 

 
Table 22 The tabulation for 𝜷 = 𝟏𝟎𝝅, the geometrical shadow region of the double positive cylinder 

corresponding to the second term of the Debye series 
 

 -56.5749
o
 -45.2599

o
 -33.9449

o
 

Series 0.0199969-0.0171593j 0.0135712-0.00616888j 0.00793058-0.000507103j 

Residue series 

without the Debye 

approximation 

0.0209684-0.0166604j 0.0135461-0.00610014j 0.00792589-0.000508304j 

Percentage error for 

the magnitude of 

the residue series 

1.6375046 0.343477699 0.057931182 
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Table 22 The tabulation for 𝜷 = 𝟏𝟎𝝅, the geometrical shadow region of the double positive cylinder 

corresponding to the second term of the Debye series (Cont’d) 
 

 -22.63
o
 -11.315

o
 0

o
 

Series 0.00376084+0.00153307j 0.00137366+0.00186362j 0.000621587+0.00182093j 

Residue series 

without the Debye 

approximation 

0.00376089+0.00153276j 0.00137368+0.00186362j 0.000621587+0.00182093j 

Percentage error for 

the magnitude of 

the residue series 

0.001740991 0.00051256 0 

 

 

 
Table 23 The tabulation for 𝜷 = 𝟐𝟎𝝅, the geometrical shadow region of the double positive cylinder 

corresponding to the second term of the Debye series 
 

 -57.2126
o -45.7701

o -34.3275
o 

Series -0.00237558-0.0190577j 0.00299391-0.00870605j 0.00315406-0.00252371j 

Residue series 

without the Debye 

approximation 

-0.000919246-0.0191861j 0.00298094-0.00866035j 0.00315288-0.00252466j 

Percentage error for 

the magnitude of 

the residue series 

0.015200152 0.515219765 0.008109063 

 -22.885
o
 -11.4425

o
 0

o
 

Series 0.00162306-0.0000537783j 0.000475703+0.000449058j 0.000114048+0.000451814j 

Residue series 

without the Debye 

approximation 

0.00162311-0.0000537988j 0.000475703+0.000449059j 0.000114048+0.000451814j 

Percentage error for 

the magnitude of 

the residue series 

0.003119033 0.000104933 0 
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Table 24 The tabulation for 𝜷 = 𝟑𝟎𝝅, the geometrical shadow region of the double positive cylinder 

corresponding to the second term of the Debye series 
 

 -57.4832
o
 -45.9866

o
 -34.4899

o
 

Series -0.0150892+0.00501975j -0.00647151-0.00197141j -0.00127781-0.00222817j 

Residue series 

without the Debye 

approximation 

-0.0152304+0.00337952j -0.00644602-0.00195169j -0.00127842-0.0022281j 

Percentage error for 

the magnitude of 

the residue series 

1.895442507 0.445232939 0.009452784 

 -22.9933
o
 -11.4966

o
 0

o
 

Series 0.000267-0.000838659j 0.000268146-0.0000829196j 0.000152594+0.0000832453j 

Residue series 

without the Debye 

approximation 

0.000267008-0.000838667j 0.000268146-0.0000829194j 0.000152594+0.0000832453j 

Percentage error for 

the magnitude of 

the residue series 

0.001141861 2.10515x10
-5

 0 

 

 

 
Table 25 The tabulation for 𝜷 = 𝟒𝟎𝝅, the geometrical shadow region of the double positive cylinder 

corresponding to the second term of the Debye series 
 

 -57.639
o
 -46.1112

o
 -34.5834

o
 

Series 0.0108217+0.0087106j 0.000647306+0.00532905j -0.0013118+0.00124403j 

Residue series 

without the Debye 

approximation 

0.00931399+0.0096015j 0.000659043+0.0053094j -0.00131183+0.00124432j 

Percentage error for 

the magnitude of 

the residue series 

3.707514424 0.336666399 0.012242597 

 -23.0556
o
 -11.5278

o
 0

o
 

Series -0.000526443-0.000135682j -2.95322x10
-5

-0.00014313j 5.74618 x10
-5

-5.49643 x10
-5 

j 

Residue series 

without the Debye 

approximation 

-0.000526444-0.000135685j -2.95321 x10
-5

-0.00014313j 5.74618 x10
-5

-5.49643 x10
-5 

j 

Percentage error for 

the magnitude of 

the residue series 

0.000315847 1.3827 x10
-5

 0 
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Table 26 The tabulation for 𝜷 = 𝟓𝟎𝝅, the geometrical shadow region of the double positive cylinder 

corresponding to the second term of the Debye series 
 

 -57.7423
o
 -46.1939

o
 -34.6454

o
 

Series -0.00151798-0.0124084j 0.00319885-0.00309481j 0.00127646+0.00044366j 

Residue series 

without the Debye 

approximation 

0.000198208-0.0118244j 0.00318208-0.00309723j 0.00127663+0.000443667j 

Percentage error for 

the magnitude of 

the residue series 

5.398368627 0.23252977 0.012052728 

 -23.0969
o
 -11.5485

o
 0

o
 

Series 1.78828x10
-5

+0.000361966j -7.98758x10
-5

+2.99428x10
-5 

j -2.72072x10
-5

-3.08645x10
-5 

j 

Residue series 

without the Debye 

approximation 

1.78809x10
-5

+0.000361967j -7.98758x10
-5

+0.0000299428j -2.72072x10
-5

-3.08645x10
-5 

j 

Percentage error for 

the magnitude of 

the residue series 

0.000249728 0 0 

 

 

 

5.4 The Geometrically Lit Region of the Double Positive 

Cylinder Corresponding to the Second Term of the Debye 

Series 

The contribution of the second term of the Debye series to the corresponding 

geometrically lit region is calculated both by using the series expression and by 

the saddle point method (SDM). The computed series is given by the following 

expression for the double positive cylinder:  

 0.5 𝑗−𝑙𝑇12 𝑙 𝑇21 𝑙 
𝐻𝑙

 2  𝛽 

𝐻𝑙
 1  𝛽 

𝐻𝑙
 1  𝛼 

𝐻𝑙
 2  𝛼 

𝐻𝑙
 1  𝑘0𝜌 𝑒−𝑗𝑙𝜙

∞

𝑙=−∞

 

(180) 

The integral corresponding to the series is calculated using the SDM. The 

integrand of the integral does not vanish as  𝑣 → ∞ in the lower half of the 𝑣-

plane. Hence, only the upper part of the steepest descent path contributes to the 
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integral. This causes a 
1

2
 factor to be put in front of the SDM result of the 

integral. 

First, the series results and the SDM results are displayed in a table with 

respect to varying refractive indices. The following parameters are used in the 

calculations: 

 

𝛽 = 50𝜋
𝜇𝑟 = 1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 

  

 

 

 
Table 27 The series results with respect to varying refractive indices, the geometrically lit region of 

the double positive cylinder corresponding to the second term of the Debye series 
 

n 161.2
o
 164.96

o
 168.72

o
 

1.5 -0.543463-j0.135508 -0.638525+j0.00360506 -0.547074-j0.477797 

2 0.0839989+j0.518188 -0.514014-j0.204624 0.56774+j0.10663 

3 -0.258209-j0.299259 0.19536+j0.354863 0.135407-j0.390139 

4 -0.306748+j0.0837676 0.305996+j0.106257 -0.0276797-j0.327458 

5 -0.184307+j0.19298 0.271129-j0.00462893 -0.0769239-j0.263577 

n 172.48
o
 176.24

o
 180

o
 

1.5 0.73072-j0.368002 -0.89048+j0.100699 -0.436084+j0.819792 

2 -0.374067-j0.464854 -0.50606+j0.338426 -0.28484+j0.542764 

3 -0.406106-j0.10207 -0.307772+j0.289094 -0.196419+j0.375124 

4 -0.331469-j0.019358 -0.232422+j0.240004 -0.155273+j0.296605 

5 -0.276897+j0.00859809 -0.189217+j0.204372 -0.129405+j0.247188 
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Table 28 The SDM results with respect to varying refractive indices, the geometrically lit region of 

the double positive cylinder corresponding to the second term of the Debye series 
 

n 161.2
o
 164.96

o
 168.72

o
 

1.5 -0.544241-j0.131481 -0.638338+j0.00728203 -0.549592-j0.474695 

2 0.0866296+j0.517714 -0.514949-j0.202171 0.568194+j0.104038 

3 -0.25942-j0.29819 0.196725+j0.354093 0.133956-0.390627 

4 -0.306412+j0.0849537 0.306379+j0.105119 -0.0288521-j0.327348 

5 -0.183564+j0.193676 0.271103-j0.00562478 -0.0778616-j0.263295 

n 172.48
o
 176.24

o
 180

o
 

1.5 0.72817-j0.372793 -0.889548+j0.108511 -0.427871+j0.824187 

2 -0.376129-j0.463159 -0.504535+0.340662 -0.282418+j0.544008 

3 -0.40646-j0.100606 -0.306741+j0.290172 -0.195095+j0.375802 

4 -0.331527-j0.0181989 -0.231589+j0.240797 -0.154252+j0.297129 

5 -0.276859+j0.00956449 -0.188507+j0.205019 -0.128553+j0.247626 

 

 

 
Table 29 The percentage error in the magnitude of the SDM results, the geometrically lit region of 

the double positive cylinder corresponding to the second term of the Debye series 
 

n 161.2
o
 164.96

o
 168.72

o
 

1.5 0.03649382 0.02437489 0.018314087 

2 0.007647069 0.005846285 0.004545734 

3 0.003784372 0.003260423 0.002882563 

4 0.002918323 0.002862235 0.002662558 

5 0.002959991 0.002643004 0.002278534 

n 172.48
o
 176.24

o
 180

o
 

1.5 0.012775426 0.001533926 0.007516596 

2 0.003662533 0.00306465 0.00292165 

3 0.002586232 0.002555896 0.002575825 

4 0.002303246 0.002349911 0.002189631 

5 0.002274031 0.002132304 0.001960057 
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Second, the series results and the SDM results are tabulated with respect to 

varying operating frequencies. The following parameters are used in the 

calculations: 

 

𝑛 = 3
𝜇𝑟 = 1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 

  

 

 

 
Table 30 The tabulation of the results for 𝜷 = 𝟏𝟎𝝅, the geometrically lit region of the double 

positive cylinder corresponding to the second term of the Debye series 
 

 162.368o 165.894o 169.421o 

Series -0.382611+0.0329866j -0.324655+0.219775j -0.217164+0.334069j 

SDM -0.381569+0.0404719j -0.320234+0.225665j -0.210934+0.337721j 

Percentage error for 

the magnitude of the SDM 
0.083577722 0.074005858 0.067316171 

 172.947o 176.474o 180o 

Series -0.115031+0.386353j -0.0471518+0.403203j -0.0238449+0.406204j 

SDM -0.108122+0.388081j -0.040107+0.40372j -0.0168012+0.406315j 

Percentage error for 

the magnitude of the SDM 
0.062647672 0.059953183 0.059239932 

 

 

 
Table 31 The tabulation of the results for 𝜷 = 𝟐𝟎𝝅, the geometrically lit region of the double 

positive cylinder corresponding to the second term of the Debye series 
 

 161.73o 165.384o 169.038o 

Series 0.247034+0.302048j 0.389934-0.085446j 0.191523-0.358414j 

SDM 0.250002+0.299483j 0.389025-0.0891485j 0.188192-0.360094j 

Percentage error for 

the magnitude of the SDM 
0.022242295 0.019342244 0.017482649 

 172.962o 176.346o 180o 

Series -0.0537704-0.408098j -0.201002-0.362872j -0.245392-0.335786j 

SDM -0.0574018-0.407536j -0.204149-0.361038j -0.248277-0.333581j 

Percentage error for 

the magnitude of the SDM 
0.016135957 0.015296785 0.014951493 
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Table 32 The tabulation of the results for 𝜷 = 𝟑𝟎𝝅, the geometrically lit region of the double 

positive cylinder corresponding to the second term of the Debye series 
 

 161.459o 165.167o 168.876o 

Series -0.15478-0.361017j -0.344881+0.206948j 0.124864+0.390258j 

SDM -0.157201-0.359926j -0.343518+0.209135j 0.127252+0.389452j 

Percentage error for 

the magnitude of the SDM 
0.010125209 0.008751774 0.007860481 

 172.584o 176.292o 180o 

Series 0.39709+0.121484j 0.401783-0.117514j 0.372534-0.193399j 

SDM 0.39778+0.119101j 0.401058-0.119863j 0.371373-0.195558j 

Percentage error for 

the magnitude of the SDM 
0.007206802 0.006979608 0.006787953 

 

 

 
Table 33 The tabulation of the results for 𝜷 = 𝟒𝟎𝝅, the geometrically lit region of the double 

positive cylinder corresponding to the second term of the Debye series 
 

 161.303o 165.043o 168.782o 

Series 0.174053+0.353782j 0.144813-0.377089j -0.40888-0.0479778j 

SDM 0.175843+0.352871j 0.142985-0.377764j -0.409079-0.046084j 

Percentage error for 

the magnitude of the SDM 
0.005611722 0.005077435 0.004531601 

 172.521o 176.261o 180o 

Series -0.153738+0.388002j 0.168887+0.385425j 0.264367+0.328882j 

SDM -0.151988+0.388672j 0.170579+0.384661j 0.265797+0.327706j 

Percentage error for 

the magnitude of the SDM 
0.004205176 0.003944512 0.003935127 

 

 

 
Table 34 The tabulation of the results for 𝜷 = 𝟓𝟎𝝅, the geometrically lit region of the double 

positive cylinder corresponding to the second term of the Debye series 
 

 161.2o 164.96o 168.72o 

Series -0.258209-0.299259j 0.19536+0.354863j 0.135407-0.390139j 

SDM -0.25942-0.29819j 0.196725+0.354093j 0.133956-0.390627j 

Percentage error for 

the magnitude of the SDM 
0.003784372 0.003260423 0.002882563 

 172.48o 176.24o 180o 

Series -0.406106-0.10207j -0.307772+0.289094j -0.196419+0.375124j 

SDM -0.40646-0.100606j -0.306741+0.290172j -0.195095+0.375802j 
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Table 34 The tabulation of the results for 𝜷 = 𝟓𝟎𝝅, the geometrically lit region of the double 

positive cylinder corresponding to the second term of the Debye series (Cont’d) 
 

 172.48o 176.24o 180o 

Percentage error for 

the magnitude of the SDM 
0.002586232 0.002555896 0.002575825 

 

 

 

5.5 The Geometrical Shadow Region of the Double Negative 

Cylinder Corresponding to the First Term of the Debye Series 

The following series expression represents the contribution of the first term of 

the Debye series to the field in the geometrical shadow region corresponding to 

the first term of the Debye series for the DNG cylinder: 

 
1

2
𝑗−𝑙  𝑅22 𝑙 

𝐻𝑙
 2  𝛽 

𝐻𝑙
 1  𝛽 

𝐻𝑙
 1  𝑘0𝜌 + 𝐻𝑙

 2  𝑘0𝜌  𝑒−𝑗𝑙𝜙

∞

𝑙=−∞

 

(181) 

Mathematica is used in the computation of the series. Calculation of the 

integral corresponding to the series is carried out using the residue series. The 

results shown in the tables are obtained using only three terms of the residue 

series corresponding to first three poles of the integrand. There is an obvious 

computational advantage. The Debye expansion for 𝐻𝑣
 1  𝑘0𝜌  in the residue 

series is not applied for getting the residue series results.  

First, the tabulation of the series and the residue series results are made with 

respect to n. The following parameters are used in the calculations: 

 

𝛽 = 50𝜋
𝜇𝑟 = −1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 
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Table 35 The tabulation of the series results with respect to n, the geometrical shadow region of the 

double negative cylinder corresponding to the first term of the Debye series 
 

n 161.2o 164.96o 168.72o 

-1.5 -0.379787+0.172141j 0.0690321+0.145803j 0.057261-0.0487625j 

-2 -0.374195+0.174326j 0.0686548+0.141589j 0.054019-0.0470544j 

-3 -0.370295+0.175864j 0.0683862+0.138669j 0.0518655-0.0458897j 

-4 -0.368641+0.176517j 0.0682703+0.137437j 0.0509783-0.0454026j 

-5 -0.367705+0.176887j 0.0682042+0.136741j 0.0504828-0.0451287j 

n 172.48o 176.24o 180o 

-1.5 -0.0357022-0.0132994j -0.00607961+0.0153692j 0.0227744-0.00735572j 

-2 -0.0333277-0.0124693j -0.00528976+0.0143191j 0.0203557-0.00674348j 

-3 -0.0317714-0.0119036j -0.00479248+0.0136177j 0.0188184-0.00634356j 

-4 -0.031135-0.0116677j -0.00459408+0.0133282j 0.0182011-0.00618047j 

-5 -0.0307807-0.0115351j -0.00448488+0.0131663j 0.0178605-0.00608991j 

 

 

 
Table 36 The tabulation of the residue series results with respect to n, the geometrical shadow 

region of the double negative cylinder corresponding to the first term of the Debye series 
 

n 161.2o 164.96o 168.72o 

-1.5 -0.299356+0.074339j 0.0633379+0.127624j 0.0542479-0.0490218j 

-2 -0.297064+0.0759645j 0.0626955+0.124131j 0.0511558-0.0472228j 

-3 -0.295446+0.0772575j 0.0622797+0.121706j 0.049105-0.0460048j 

-4 -0.294754+0.0778325j 0.0621081+0.120682j 0.0482606-0.0454969j 

-5 -0.294361+0.0781634j 0.0620119+0.120103j 0.047789-0.0452116j 

n 172.48o 176.24o 180o 

-1.5 -0.0358987-0.0128224j -0.00600752+0.0154229j 0.0228018-0.00737693j 

-2 -0.0334971-0.0120215j -0.00522277+0.014366j 0.0203794-0.00676312j 

-3 -0.0319246-0.0114758j -0.00472903+0.0136604j 0.0188398-0.00636206j 

-4 -0.0312818-0.0112482j -0.0045321+0.0133692j 0.0182217-0.0061985j 

-5 -0.030924-0.0111203j -0.00442373+0.0132065j 0.0178805-0.00610766j 
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Table 37 The tabulation of the error in the magnitudes of the residue series results with respect to 

n, the geometrical shadow region of the double negative cylinder corresponding to the first term of 

the Debye series 
 

n 161.2o 164.96o 168.72o 

-1.5 26.0277082 11.68043921 2.784514192 

-2 25.72284684 11.62363111 2.818869024 

-3 25.50517893 11.57679535 2.835851408 

-4 25.4122978 11.55567987 2.842098704 

-5 25.35965865 11.54363599 2.845602239 

n 172.48o 176.24o 180o 

-1.5 0.055425729 0.143061852 0.136195848 

-2 0.013943727 0.137469196 0.133731128 

-3 0.010576374 0.13441283 0.131887027 

-4 0.020374045 0.132983807 0.131653501 

-5 0.02569378 0.133119844 0.130687912 

 

 

 

Second, the tabulation of the series and the residue series results are made with 

respect to the operating frequency. The calculations are made with the 

following parameters: 

 

𝑛 = −3
𝜇𝑟 = −1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 

  

 

 

 
Table 38 The tabulation of the residue series results for 𝜷 = 𝟏𝟎𝝅, the geometrical shadow region of 

the double negative cylinder corresponding to the first term of the Debye series 
 

 162.368o 165.894o 169.421o 

Series -0.061015-0.376474j 0.215468+0.117267j -0.166974+0.0617348j 

Residue series 

without the Debye 

approximation 

-0.0034586-0.331269j 0.188319+0.113953j -0.157882+0.0571969j 

Percentage error for 

the magnitude of 

the residue series 

13.13608746 10.27261898 5.672273443 

 172.947o 176.424o 180o 

Series 0.0405906-0.0842335j 0.0608833+0.017155j -0.0967225+0.0233301j 
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Table 38 The tabulation of the residue series results for 𝜷 = 𝟏𝟎𝝅, the geometrical shadow region of 

the double negative cylinder corresponding to the first term of the Debye series (Cont’d) 
 

 172.947o 176.424o 180o 

Residue series 

without the Debye 

approximation 

0.0388758-0.0809121j 0.0604495+0.0157167j -0.0959237+0.0240816j 

Percentage error for 

the magnitude of 

the residue series 

3.996079265 1.256478807 0.59907445 

 

 

 
Table 39 The tabulation of the residue series results for 𝜷 = 𝟐𝟎𝝅, the geometrical shadow region of 

the double negative cylinder corresponding to the first term of the Debye series 
 

 161.73o 165.384o 169.038o 

Series -0.0751919+0.391928j 0.20679-0.00215453j -0.0449515-0.115673j 

Residue series 

without the Debye 

approximation 

-0.112448+0.306626j 0.182639+0.00353131j -0.0440576-0.109091j 

Percentage error for 

the magnitude of 

the residue series 

18.16222519 11.66728495 5.196281977 

 172.692o 176.346o 180o 

Series -0.0355618+0.0545043j 0.0271676+0.0224617j -0.0113677-0.0521238j 

Residue series 

without the Debye 

approximation 

-0.0337394+0.0543315j 0.0271285+0.0219958j -0.0116579-0.0520946j 

Percentage error for 

the magnitude of 

the residue series 

1.727903316 0.923124796 0.063906225 
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Table 40 The tabulation of the residue series results for 𝜷 = 𝟑𝟎𝝅, the geometrical shadow region of 

the double negative cylinder corresponding to the first term of the Debye series 
 

 161.459o 165.167o 168.876o 

Series -0.0838941-0.394859j 0.0332387-0.186288j 0.0354313-0.09072j 

Residue series 

without the Debye 

approximation 

-0.010621-0.317986j 0.0311069-0.164185j 0.0319405-0.0875288j 

Percentage error for 

the magnitude of 

the residue series 

21.18289661 11.69173583 4.331925176 

 172.584o 176.292o 180o 

Series 0.0268809-0.0507356j 0.0214812-0.0339779j 0.0197718-0.0292801j 

Residue series 

without the Debye 

approximation 

0.0258392-0.0506577j 0.0212788-0.0341171j 0.0197263-0.0293842j 

Percentage error for 

the magnitude of 

the residue series 

0.957313357 0.025498939 0.172484766 

 

 

 
Table 41 The tabulation of the residue series results for 𝜷 = 𝟒𝟎𝝅, the geometrical shadow region of 

the double negative cylinder corresponding to the first term of the Debye series 
 

 161.303o 165.043o 168.782o 

Series 0.341579+0.218901j -0.170129+0.00617772j 0.0536793-0.0603552j 

Residue series 

without the Debye 

approximation 

0.225867+0.211531j -0.150182+0.00622232j 0.0502126-0.0595916j 

Percentage error for 

the magnitude of 

the residue series 

23.72396275 11.70708881 3.524228236 

 172.521o 176.261o 180o 

Series 0.00529827+0.0366248j -0.0212161-0.00135912j 0.0221046-0.0132216j 

Residue series 

without the Debye 

approximation 

0.00587851+0.0362946j -0.0213026-0.00125467j 0.0221237-0.0132716j 

Percentage error for 

the magnitude of 

the residue series 

0.644407216 0.375961669 0.163368355 

 

 
 



 

119 
 

Table 42 The tabulation of the residue series results for 𝜷 = 𝟓𝟎𝝅, the geometrical shadow region of 

the double negative cylinder corresponding to the first term of the Debye series 
 

 161.2o 164.96o 168.72o 

Series -0.370295+0.175864j 0.0683862+0.138669j 0.0518655-0.0458897j 

Residue series 

without the Debye 

approximation 

-0.295446+0.0772575j 0.0622797+0.121706j 0.049105-0.0460048j 

Percentage error for 

the magnitude of 

the residue series 

25.50517893 11.57679535 2.835851408 

 172.48o 176.24o 180o 

Series -0.0317714-0.0119036j -0.00479248+0.0136177j 0.0188184-0.00634356j 

Residue series 

without the Debye 

approximation 

-0.0319246-0.0114758j -0.00472903+0.0136604j 0.0188398-0.00636206j 

Percentage error for 

the magnitude of 

the residue series 

0.010576374 0.13441283 0.131887027 

 

 

 

5.6 The Geometrically Lit Region of the Double Negative 

Cylinder Corresponding to the First Term of the Debye Series 

The contribution of the first term of the Debye series to the corresponding 

geometrically lit region for the DNG cylinder is obtained using the following 

series: 

 
1

2
𝑗−𝑙  𝑅22 𝑙 

𝐻𝑙
 2  𝛽 

𝐻𝑙
 1  𝛽 

− 1 𝐻𝑙
 1  𝑘0𝜌 𝑒−𝑗𝑙𝜙

∞

𝑙=−∞

 

(182) 

The series is computed using Mathematica at the field points. The integral 

corresponding to the series is calculated using the SDM. The SDM result is 

scaled by 
1

2
 because the integrand does not vanish as  𝑣 → ∞ in the lower half 

of the 𝑣-plane and only the upper half of the steepest descent path is traversed. 

First, the tabulation of the series and the SDM results are made with respect to 

n. The following parameters are used in the calculations: 
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𝛽 = 50𝜋
𝜇𝑟 = −1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 

  

 

 

 
Table 43 The tabulation of the series results with respect to n, the geometrically lit region of the 

double negative cylinder corresponding to the first term of the Debye series 
 

n 0o 5o 10o 

-1.5 0.0774171+0.0411237j 0.0582661+0.0656221j -0.0295278+0.0829418j 

-2 0.129383+0.0678496j 0.0976393+0.108798j -0.0483891+0.138237j 

-3 0.194277+0.101381j 0.14672+0.162826j -0.0720361+0.207125j 

-4 0.233185+0.121558j 0.176108+0.195272j -0.0862605+0.248363j 

-5 0.259111+0.135031j 0.195676+0.216914j -0.0957583+0.275822j 

n 15o 20o 

-1.5 -0.0755711-0.0460884j 0.0885957-0.010217j 

-2 -0.125836-0.0758324j 0.146493-0.017678j 

-3 -0.188213-0.112912j 0.218105-0.0267571j 

-4 -0.225455-0.135126j 0.260774-0.0321003j 

-5 -0.250221-0.149926j 0.289121-0.0356253j 

 

 

 
Table 44 The tabulation of the SDM results with respect to n, the geometrically lit region of the 

double negative cylinder corresponding to the first term of the Debye series 
 

n 0o 5o 10o 

-1.5 0.0773859+0.0411803j 0.058217+0.0656643j -0.0295889+0.0829189j 

-2 0.129374+0.0678624j 0.0976275+0.108806j -0.0484+0.138232j 

-3 0.194329+0.101277j 0.146806+0.162745j -0.0719181+0.207163j 

-4 0.233284+0.121359j 0.176272+0.195119j -0.0860391+0.248436j 

-5 0.259247+0.134761j 0.1959+0.216707j -0.0954595+0.275921j 

n 15o 20o 
 

-1.5 -0.0755357-0.0461439j 0.0886019-0.0101506j 
 

-2 -0.12583-0.0758382j 0.146491-0.0176762j 
 

-3 -0.18828-0.112794j 0.218083-0.0269062j 
 

-4 -0.225579-0.134911j 0.260736-0.0323659j 
 

-5 -0.250387-0.14964j 0.289072-0.0359769j 
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Table 45 The tabulation of the percentage errors in the magnitudes of the SDM results with respect 

to n, the geometrically lit region of the double negative cylinder corresponding to the first term of 

the Debye series 
 

n 0o 5o 10o 

-1.5 0.001115536 0.001162385 0.001200975 

-2 0.001386143 0.001317989 0.000763007 

-3 0.000904721 0.001174067 0.001293055 

-4 0.001561836 0.001402496 0.001360445 

-5 0.001374673 0.001199037 0.001474144 

n 15o 20o 

-1.5 0.001469597 0.001595416 

-2 0.00146005 0.0014918 

-3 0.00146169 0.001651576 

-4 0.001541313 0.001952084 

-5 0.001513114 0.001859621 

 

 

 

Second, the tabulation of the series and the SDM results are made with respect 

to the operating frequency. The calculations are made with the following 

parameters: 

 

𝑛 = −3
𝜇𝑟 = −1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 

  

 

 

 
Table 46 The tabulation of the SDM results for 𝜷 = 𝟏𝟎𝝅, the geometrically lit region of the double 

negative cylinder corresponding to the first term of the Debye series 
 

 0o 5o 10o 

Series 0.211015+0.0109949j 0.209754+0.0258397j 0.199773+0.0692999j 

SDM 0.210985+0.010406j 0.209764+0.0252404j 0.199915+0.068687j 

Percentage error for 

the magnitude of the SDM result 
0.028295155 0.029577262 0.031111304 

 15o 20o 

Series 0.163839+0.133963j 0.0814906+0.195586j 

SDM 0.164209+0.133392j 0.0821476+0.195219j 

Percentage error for 

the magnitude of the SDM result 
0.034927323 0.040007398 
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Table 47 The tabulation of the SDM results for 𝜷 = 𝟐𝟎𝝅, the geometrically lit region of the double 

negative cylinder corresponding to the first term of the Debye series 
 

 0o 5o 10o 

Series -0.173629+0.127795j -0.189985+0.101984j -0.215249+0.0145633j 

SDM -0.173443+0.128021j -0.189831+0.102237j -0.21521+0.0148734j 

Percentage error for 

the magnitude of the SDM result 
0.007251963 0.007338419 0.008228621 

 15o 20o 

Series -0.173262-0.128858j 0.0119757-0.215845j 

SDM -0.173448-0.128575j 0.0115987-0.215843j 

Percentage error for 

the magnitude of the SDM result 
0.008971598 0.01043325 

 

 

 
Table 48 The tabulation of the SDM results for 𝜷 = 𝟑𝟎𝝅, the geometrically lit region of the double 

negative cylinder corresponding to the first term of the Debye series 
 

 0o 5o 10o 

Series -0.100613-0.192722j -0.0575431-0.209691j 0.0789667-0.202721j 

SDM -0.100781-0.192626j -0.0577312-0.209632j 0.0787706-0.202789j 

Percentage error for 

the magnitude of the SDM result 
0.003342099 0.003232775 0.003546962 

 15o 20o 
 

Series 0.215731-0.0295466j 0.0482232+0.212598j 
 

SDM 0.215692-0.0297686j 0.0484658+0.212533j 
 

Percentage error for 

the magnitude of the SDM result 
0.003857174 0.004394526 

 

 

 

 
Table 49 The tabulation of the SDM results for 𝜷 = 𝟒𝟎𝝅, the geometrically lit region of the double 

negative cylinder corresponding to the first term of the Debye series 
 

 0o 5o 10o 

Series 0.170022-0.137156j 0.20175-0.0838661j 0.19591+0.096986j 

SDM 0.169928-0.137266j 0.201689-0.0840006j 0.195975+0.0968449j 

Percentage error for 

the magnitude of the SDM result 

0.001853441 0.002128063 0.001963958 

 15o 20o 

 
Series -0.0664596+0.208453j -0.164792-0.144308j 
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Table 49 The tabulation of the SDM results for 𝜷 = 𝟒𝟎𝝅, the geometrically lit region of the double 

negative cylinder corresponding to the first term of the Debye series (Cont’d) 
 

 15o 20o 

SDM -0.0662974+0.2085j -0.164912-0.144163j 

Percentage error for 

the magnitude of the SDM result 

0.002022595 0.002359092 

 

 

 
Table 50 The tabulation of the SDM results for 𝜷 = 𝟓𝟎𝝅, the geometrically lit region of the double 

negative cylinder corresponding to the first term of the Debye series 
 

 0o 5o 10o 

Series 0.194277+0.101381j 0.14672+0.162826j -0.0720361+0.207125j 

SDM 0.194329+0.101277j 0.146806+0.162745j -0.0719181+0.207163j 

Percentage error for 

the magnitude of the SDM result 
0.000904721 0.001174067 0.001293055 

 15o 20o 
 

Series -0.188213-0.112912j 0.218105-0.0267571j 
 

SDM -0.18828-0.112794j 0.218083-0.0269062j 
 

Percentage error for 

the magnitude of the SDM result 
0.00146169 0.001651576 

 

 

 

 

5.7 The Geometrically Lit Region of the Double Negative 

Cylinder Corresponding to the Second Term of the Debye 

Series 

The contribution of the second term of the Debye series to the corresponding 

geometrically lit region for the DNG cylinder is denoted by the following 

series: 

 0.5 𝑗−𝑙𝑇12 𝑙 𝑇21 𝑙 
𝐻𝑙

 2 
 𝛽 

𝐻𝑙
 1  𝛽 

𝐻𝑙
 1 

 𝛼 

𝐻𝑙
 2  𝛼 

𝐻𝑙
 1  𝑘0𝜌 𝑒−𝑗𝑙𝜙

∞

𝑙=−∞

 

(183) 

The series is computed using Mathematica. The integral corresponding to the 

series is computed using SDM. The SDM result is scaled by 
1

2
. The reason of 
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the scaling is the fact that the integrand does not vanish as  𝑣 → ∞ in the 

lower half of the complex 𝑣-plane and only the upper half of the steepest 

descent path is traversed. 

First, the series and the SDM results are tabulated with respect to varying 𝑛. 

The calculations are carried out with the following parameters: 

 

𝛽 = 50𝜋
𝜇𝑟 = −1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 

  

 

 

 
Table 51 The tabulation for the series results for varying n, the geometrically lit region of the 

double negative cylinder corresponding to the second term of the Debye series 
 

n 161.2o 164.96o 168.72o 

-1.5 -0.0439222+0.310061j 0.239372+0.202416j 0.312637-0.0262297j 

-2 -0.144509+0.2708j 0.18477+0.245746j 0.307575+0.0131774j 

-3 -0.222489+0.163j 0.096654+0.259189j 0.271431+0.0565408j 

-4 -0.228129+0.085107j 0.0438046+0.240508j 0.233884+0.0737095j 

-5 -0.212743+0.0367327j 0.0131297+0.21654j 0.202784+0.0793392j 

n 172.48o 176.24o 180o 

-1.5 0.250831-0.188751j 0.174388-0.261152j 0.144033-0.279086j 

-2 0.256319-0.171031j 0.17498-0.253845j 0.141635-0.273916j 

-3 0.241623-0.136895j 0.162109-0.225817j 0.128001-0.246857j 

-4 0.219052-0.111433j 0.145861-0.198206j 0.113496-0.218479j 

-5 0.19752-0.0930337j 0.13102-0.175087j 0.100967-0.194109j 

 

 

 
Table 52 The tabulation for the SDM results for varying n, the geometrically lit region of the 

double negative cylinder corresponding to the second term of the Debye series 
 

n 161.2o 164.96o 168.72o 

-1.5 -0.0430699+0.31018j 0.239922+0.201764j 0.312565-0.0270754j 

-2 -0.143778+0.271188j 0.185424+0.245252j 0.307608+0.0123647j 

-3 -0.222029+0.163623j 0.0973704+0.258919j 0.271583+0.0557978j 

-4 -0.227874+0.0857792j 0.0445019+0.240377j 0.234092+0.0730388j 

-5 -0.212627+0.0373855j 0.0137826+0.216497j 0.203016+0.078735j 
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Table 52 The tabulation for the SDM results for varying n, the geometrically lit region of the 

double negative cylinder corresponding to the second term of the Debye series (Cont’d) 
 

n 172.48o 176.24o 180o 

-1.5 0.250322-0.189427j 0.173686-0.26162j 0.143283-0.279471j 

-2 0.255868-0.171703j 0.174316-0.254302j 0.140919-0.274285j 

-3 0.24125-0.137549j 0.161498-0.226252j 0.127335-0.2472j 

-4 0.218733-0.112052j 0.1453-0.198615j 0.11288-0.218795j 

-5 0.197243-0.0936136j 0.130506-0.175468j 0.100399-0.194401j 

 

 

 
Table 53 The tabulation for the errors in the magnitudes of the SDM results for varying n, the 

geometrically lit region of the double negative cylinder corresponding to the second term of the 

Debye series 
 

n 161.2o 164.96o 168.72o 

-1.5 0.000170643 4.39294E-05 3.33126E-05 

-2 0.000236932 0.000235974 0.000241109 

-3 0.000652129 0.000581594 0.00060455 

-4 0.001190052 0.001187877 0.000902208 

-5 0.001028306 0.001115079 0.00143711 

n 172.48o 176.24o 180o 

-1.5 0.000284875 0.000156852 0.000224341 

-2 0.0003576 0.000152877 1.18282E-05 

-3 0.000405367 0.000694855 0.000382958 

-4 0.001089556 0.000859906 0.001046813 

-5 0.001166983 0.000902219 0.000972343 

 

 

 

Second, the series and the SDM results are calculated with respect to varying 

operating frequency. The following parameters are used in the calculations: 

 

𝑛 = −3
𝜇𝑟 = −1

𝑘0𝜌 = 3  𝛽 + 𝛽
1
3 
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Table 54 The tabulation of the SDM results for 𝜷 = 𝟏𝟎𝝅, the geometrically lit region of the double 

negative cylinder corresponding to the second term of the Debye series 
 

 162.368o 165.894o 169.421o 

Series 0.165122-0.209349j 0.114245-0.241671j 0.0702861-0.25846j 

SDM 0.16214-0.211609j 0.110872-0.243187j 0.0667245-0.259354j 

Percentage error for 

the magnitude of the SDM result 
0.017253857 0.016987171 0.01746085 

 172.947o 176.474o 180o 

Series 0.0373394-0.265608j 0.0172015-0.267895j 0.0104554-0.268321j 

SDM 0.0337167-0.26605j 0.0135695-0.268062j 0.00682203-0.268394j 

Percentage error for 

the magnitude of the SDM result 
0.015584703 0.015442723 0.016362857 

 

 

 
Table 55 The tabulation of the SDM results for 𝜷 = 𝟐𝟎𝝅, the geometrically lit region of the double 

negative cylinder corresponding to the second term of the Debye series 
 

 161.73o 165.384o 169.038o 

Series -0.178073+0.20517j -0.0613425+0.265427j 0.0414769+0.269839j 

SDM -0.17662+0.206406j -0.059501+0.265834j 0.0433217+0.269538j 

Percentage error for 

the magnitude of the SDM result 
0.004512681 0.00425134 0.003968782 

 172.692o 176.346o 180o 

Series 0.112455+0.24923j 0.151519+0.227904j 0.163715+0.219411j 

SDM 0.11414+0.24845j 0.15305+0.226866j 0.165186+0.218293j 

Percentage error for 

the magnitude of the SDM result 
0.004265526 0.003842701 0.003695972 

 

 

 
Table 56 The tabulation of the SDM results for 𝜷 = 𝟑𝟎𝝅, the geometrically lit region of the double 

negative cylinder corresponding to the second term of the Debye series 
 

 161.459o 165.167o 168.876o 

Series 0.0114781-0.273549j -0.179551-0.207732j -0.265175-0.0735414j 

SDM 0.0101969-0.273595j -0.180504-0.206897j -0.265503-0.0723296j 

Percentage error for 

the magnitude of the SDM result 
0.001735179 0.002044558 0.001785459 

 172.584o 176.292o 180o 

Series -0.272549+0.0410217j -0.253945+0.107802j -0.244077+0.128778j 

SDM -0.272356+0.0422537j -0.253453+0.108942j -0.243491+0.129872j 
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Table 56 The tabulation of the SDM results for 𝜷 = 𝟑𝟎𝝅, the geometrically lit region of the double 

negative cylinder corresponding to the second term of the Debye series (Cont’d) 
 

 172.584o 176.292o 180o 

Percentage error for 

the magnitude of the SDM result 
0.00169247 0.001676324 0.001806636 

 

 

 
Table 57 The tabulation of the SDM results for 𝜷 = 𝟒𝟎𝝅, the geometrically lit region of the double 

negative cylinder corresponding to the second term of the Debye series 
 

 161.303o 165.043o 168.782o 

Series 0.227751+0.154134j 0.250777-0.11481j 0.0932457-0.26023j 

SDM 0.228289+0.153331j 0.250375-0.115676j 0.0923542-0.260545j 

Percentage error for 

the magnitude of the SDM result 
0.001021372 0.001224023 0.000927961 

 172.521o 176.261o 180o 

Series -0.062011-0.269843j -0.14909-0.233625j -0.174768-0.215206j 

SDM -0.0629251-0.269628j -0.149876-0.233118j -0.17549-0.214614j 

Percentage error for 

the magnitude of the SDM result 
0.001162387 0.001075034 0.001019531 

 

 

 
Table 58 The tabulation of the SDM results for 𝜷 = 𝟓𝟎𝝅, the geometrically lit region of the double 

negative cylinder corresponding to the second term of the Debye series 
 

 161.2o 164.96o 168.72o 

Series -0.222489+0.163j 0.096654+0.259189j 0.271431+0.0565408j 

SDM -0.222029+0.163623j 0.0973704+0.258919j 0.271583+0.0557978j 

Percentage error for 

the magnitude of the SDM result 
0.000652129 0.000581594 0.00060455 

 172.48o 176.24o 180o 

Series 0.241623-0.136895j 0.162109-0.225817j 0.128001-0.246857j 

SDM 0.24125-0.137549j 0.161498-0.226252j 0.127335-0.2472j 

Percentage error for 

the magnitude of the SDM result 
0.000405367 0.000694855 0.000382958 
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5.8 The Geometrical Shadow Region of the Double Negative 

Cylinder Corresponding to the Second Term of the Debye 

Series 

The following series expression represents the contribution of the second term 

of the Debye series to the field in the geometrical shadow region corresponding 

to the second term of the Debye series for the DNG cylinder: 

 0.5 𝑗−𝑙𝑇12 𝑙 𝑇21 𝑙 
𝐻𝑙

 2  𝛽 

𝐻𝑙
 1  𝛽 

𝐻𝑙
 1  𝛼 

𝐻𝑙
 2  𝛼 

𝐻𝑙
 1  𝑘0𝜌 𝑒−𝑗𝑙𝜙

∞

𝑙=−∞

 

(184) 

The computation of the series is carried out using Mathematica at the field 

points. The residue series calculations are made by using only three terms of 

the series. These three terms correspond to first three poles of the integrand of 

the integral calculated by the residue series. 

First, the series and the residue series results are calculated with respect to 

varying 𝑛. In these calculations, for the operating frequency corresponding to 

𝛽 = 50𝜋, the range of 𝑛 is small. This is due to the double negative property of 

the cylinder. The geometrical shadow of the second term of the Debye series 

for the DNG cylinder is very small compared to that of the double positive 

cylinder for  𝑛 >  2. The calculations are carried out with the following 

parameters: 

 

𝛽 = 50𝜋
𝜇𝑟 = −1

𝑘0𝜌 = 1.4  𝛽 + 𝛽
1
3 
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Table 59 The tabulation of the residue series results for 𝜷 = 𝟓𝟎𝝅 and 𝒏 = −𝟒, the geometrical 

shadow region of the double negative cylinder corresponding to the second term of the Debye series 
 

 -14.7198o -11.7759o -8.8319o 

Series 0.0142191-0.00801176j 0.00251608+0.0110614j -0.011142-0.00121268j 

Residue series 

without the Debye 

approximation 

0.0105111-0.00156402j 0.00216606+0.00880508j -0.0106298-0.000738343j 

Percentage error 

in the magnitude 

of the residue series 

34.88816713 20.06671016 4.928596897 

 -5.88794o -2.94397o 0o 

Series 0.0058922-0.00463913j 0.00397166+0.00176787j -0.00845512+0.00118164j 

Residue series 

without the Debye 

approximation 

0.00568141-0.00465546j 0.00402406+0.0017269j -0.00846816+0.0012186j 

Percentage error 

in the magnitude 

of the residue series 

2.055113714 0.726995125 0.212021275 

 

 

 
Table 60 The tabulation of the residue series results for 𝜷 = 𝟓𝟎𝝅 and 𝒏 = −𝟓, the geometrical 

shadow region of the double negative cylinder corresponding to the second term of the Debye series 
 

 -20.6009
o
 -16.4808

o
 -12.3606

o
 

Series -0.00946064-0.00792567j -0.00823302+0.00339752j -0.00143224+0.00634083j 

Residue series 

without the Debye 

approximation 

-0.0046831-0.00750296j -0.00734266+0.00318733j -0.00128335+0.00625093j 

Percentage error 

in the magnitude 

of the residue series 

28.33671668 10.12624735 1.834643857 

 -8.24038
o
 -4.12019

o
 0

o
 

Series 0.0022886+0.00279095j 0.00209926-0.00154353j 0.00139885-0.00326749j 

Residue series 

without the Debye 

approximation 

0.00231037+0.00276613j 0.00210171-0.00154947j 0.00139907-0.00326984j 

Percentage error 

in the magnitude 

of the residue series 

0.14521514 0.210877984 0.06321885 
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Second, the series and the residue series results are tabulated with respect to 

varying operating frequency. The following parameters are used in the 

calculations: 

 

𝑛 = −5
𝜇𝑟 = −1

𝑘0𝜌 = 1.4  𝛽 + 𝛽
1
3 

  

 

 

 
Table 61 The tabulation of the residue series results for 𝜷 = 𝟏𝟎𝝅 and 𝒏 = −𝟓, the geometrical 

shadow region of the double negative cylinder corresponding to the second term of the Debye series 
 

 -17.3993
o
 -13.9194

o
 -10.4396

o
 

Series -0.00375665+0.0267447j -0.0182038-0.00507654j 0.0180689-0.017382j 

Residue series 

without the Debye 

approximation 

-0.0104678+0.0222908j -0.0147299-0.00572843j 0.017169-0.0161282j 

Percentage error 

in the magnitude 

of the residue series 

8.815960154 16.3707928 6.046924326 

 -6.9597
o
 -3.47985

o
 0

o
 

Series -0.00374242+0.014962j -0.00953008+0.00542795j 0.0143159-0.0170097j 

Residue series 

without the Debye 

approximation 

-0.00384263+0.0143189j -0.00926057+0.00556499j 0.0140608-0.0169826j 

Percentage error 

in the magnitude 

of the residue series 

3.873451156 1.490002154 0.8288958 

 

 

 
Table 62 The tabulation of the residue series results for 𝜷 = 𝟐𝟎𝝅 and 𝒏 = −𝟓, the geometrical 

shadow region of the double negative cylinder corresponding to the second term of the Debye series 
 

 -19.1307
o
 -15.3046

o
 -11.4784

o
 

Series -0.0181909+0.00950311j 0.0111202+0.00850514j 0.00653427-0.0111614j 

Residue series 

without the Debye 

approximation 

-0.0164586+0.00356829j 0.00930751+0.0077121j 0.00620732-0.0106218j 

Percentage error 

in the magnitude 

of the residue series 

17.94338023 13.66031107 4.87765339 
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Table 62 The tabulation of the residue series results for 𝜷 = 𝟐𝟎𝝅 and 𝒏 = −𝟓, the geometrical 

shadow region of the double negative cylinder corresponding to the second term of the Debye series 

(Cont’d) 
 

 -7.65229
o
 -3.82615

o
 0

o
 

Series -0.0103386+0.00268409j -0.00112924+0.00439972j 0.00883171-0.00638149j 

Residue series 

without the Debye 

approximation 

-0.0101823+0.00281285j -0.00108813+0.0043593j 0.00880904-0.0064148j 

Percentage error 

in the magnitude 

of the residue series 

1.101521656 1.084741781 0.011087685 

 

 

 
Table 63 The tabulation of the residue series results for 𝜷 = 𝟑𝟎𝝅 and 𝒏 = −𝟓, the geometrical 

shadow region of the double negative cylinder corresponding to the second term of the Debye series 
 

 -19.878
o
 -15.9024

o
 -11.9268

o
 

Series -0.0160284-0.00144962j -0.0101795-0.00554665j -0.00412213-0.00670557j 

Residue series 

without the Debye 

approximation 

-0.0114841-0.00451637j -0.00889355-0.00495257j -0.00408404-0.00634298j 

Percentage error 

in the magnitude 

of the residue series 

23.32295055 12.18899495 4.156863631 

 -7.9512
o
 -3.9756

o
 0

o
 

Series 0.00092592-0.00600555j 0.00419331-0.00482518j 0.00531506-0.00428845j 

Residue series 

without the Debye 

approximation 

0.000851099-0.00594995j 0.00417271-0.00483559j 0.00531376-0.0043005j 

Percentage error 

in the magnitude 

of the residue series 

1.086069208 0.087851228 0.096092447 
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Table 64 The tabulation of the residue series results for 𝜷 = 𝟒𝟎𝝅 and 𝒏 = −𝟓, the geometrical 

shadow region of the double negative cylinder corresponding to the second term of the Debye series 
 

 -20.3118
o
 -16.2494

o
 -12.1871

o
 

Series -0.0122376-0.00617496j 0.00996644+0.00119667j -0.0072511+0.00162238j 

Residue series 

without the Debye 

approximation 

-0.00721932-0.00697374j 0.00887523+0.000977986j -0.00704582+0.00175181j 

Percentage error 

in the magnitude 

of the residue series 

26.77230188 11.04872798 2.288571998 

 -8.12472
o
 -4.06236

o
 0

o
 

Series 0.00498052-0.00298828j -0.00353835+0.00353602j 0.0030496-0.00367276j 

Residue series 

without the Debye 

approximation 

0.00494934-0.00303079j -0.00353575+0.00354752j 0.00305026-0.00367764j 

Percentage error 

in the magnitude 

of the residue series 

0.079684537 0.125939054 0.087494006 
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CHAPTER 6 

 

CONCLUSION 

 

Some of the properties of the double negative metamaterials have been 

investigated. These properties affect the propagation of electromagnetic waves 

through double negative metamaterials. Double negative metamaterials have 

negative refractive indices. They must have double negative refractive indices 

due to the condition of causality. The causality principle is not violated by the 

backward wave properties of double negative metamaterials. The backward 

wave property implies that the power propagation direction is opposite to the 

direction of the phase velocity. A plane wave is negatively refracted both at a 

planar interface and a cylindrical interface between a double positive medium 

and a double negative medium. The negative refraction at a planar interface has 

been proven theoretically. The negative refraction at a cylindrical interface has 

been proven both theoretically and numerically for the high frequency 

operation. 

The physical mechanism for the high frequency plane wave scattering from an 

infinitely long cylinder has been presented using the Watson transform and the 

Debye expansion. The first term and the second term of the Debye series 

expansion have been investigated. The corresponding geometrical shadow 

regions and the geometrically lit regions have been determined. The physical 

insight into the field formation in these regions has been exhibited. These 

investigations have been made for both a double positive cylinder and a double 

negative cylinder. The differences between the double negative one and the 

double positive one have been indicated. The theoretical results have been 

numerically verified by the computations made using Mathematica. The series 

expressions corresponding to the first term and the second term of the Debye 

expansion have been computed. The obtained results have been compared to 
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the computation results for the integrals corresponding to the series 

expressions. The agreement between the two groups of results has been found 

to be good. 

As a future work, the analysis of the high frequency scattering from the 

infinitely long cylinder (including transition regions) can be developed. A 

generalization to the computation of the terms of the Debye series expansion 

can be made. The physical insight into the scattering from the infinitely long 

cylinder can be used to take advantage of the properties of the double negative 

metamaterials in the possible scattering applications. 
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