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ABSTRACT 
 
 
 

OPTIMUM TOPOLOGICAL DESIGN OF GEOMETRICALLY 

NONLINEAR SINGLE LAYER LAMELLA DOMES USING  

HARMONY SEARCH METHOD 
 
 

ÇarbaĢ, Serdar 

M.S., Department of Engineering Sciences 

Supervisor: Prof. Dr. Mehmet Polat Saka 

 

July 2008, 118 pages 

 

 

Harmony search method based optimum topology design algorithm is 

presented for single layer lamella domes. The harmony search method is a 

numerical optimization technique developed recently that imitates the musical 

performance process which takes place when a musician searches for a better 

state of harmony. Jazz improvisation seeks to find musically pleasing harmony 

similar to the optimum design process which seeks to find the optimum 

solution. The optimum design algorithm developed imposes the behavioral and 

performance constraints in accordance with LRFD-AISC. The optimum 

number of rings, the height of the crown and the tubular cross-sectional 

designations for dome members are treated as design variables. The member 

grouping is allowed so that the same section can be adopted for each group. 

The design algorithm developed has a routine that build the data for the 

geometry of the dome automatically that covers the numbering of joints, and 

member incidences, and the computation of the coordinates of joints. Due to 

the slenderness and the presence of imperfections in dome structures it is 

necessary to consider the geometric nonlinearity in the prediction of their 

response under the external loading.  Design examples are considered to 

demonstrate the efficiency of the algorithm presented. 
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ÖZ 
 

 

 

HARMONĠ ARAMA YÖNTEMĠ KULLANILARAK GEOMETRĠK 

YÖNDEN DOĞRUSAL OLMAYAN TEK KATMANLI YAPRAKSI 

KUBBELERĠN OPTĠMUM TOPOLOJĠ BOYUTLANDIRMASI 

 

 

 

ÇarbaĢ, Serdar 

Yüksek Lisans, Mühendislik Bilimleri Bölümü 

Tez Yöneticisi: Prof. Dr. Mehmet Polat Saka 

 

Temmuz 2008, 118 sayfa 

 

 

   

Tek katmanlı yapraksı kubbeler için harmoni arama yöntemine dayalı optimum 

topoloji tasarım algoritması sunulmaktadır. Bir müzisyenin daha iyi bir 

müzikal sunum arayıĢı içinde uygulamaya çalıĢtığı müzikal performans 

sürecine benzetilen harmoni arama yöntemi yakın geçmiĢte geliĢtirilen bir 

sayısal optimizasyon tekniğidir. Caz doğaçlaması, optimum çözüme ulaĢmaya 

çalıĢan optimum tasarım sürecine benzer Ģekilde, müzikal açıdan tatmin edici 

uyumu bulmaya çabalar. GeliĢtirilen optimum tasarım algoritması, LRFD-

AISC (Load and Resistance Factor Design-American Institute of Steel 

Construction)„ye uygun olan davranıĢ ve performans sınırlayıcılarını uygular. 

Optimum halka sayısı, tepe yüksekliği ve boru Ģeklindeki kesitler kubbe için 

tasarım değiĢkenleridir. Her grupta aynı kesitlerin seçilebilmesi için eleman 

gruplandırmasına izin verilmiĢtir. GeliĢtirilen tasarım algoritması, bağlantı 

noktalarının ve eleman numaralandırılmalarının ve bağlantı noktalarının 

koordinat hesaplarının otomatik olarak yapılmasını kapsayan, kubbenin 

geometrik verilerini oluĢturan bir yordama sahiptir. Kubbe yapılarda, 
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narinlikten ve kusurların var olmasından dolayı bu yapıların dıĢ yükler altında 

vereceği tepkiyi tahmin ederken geometrik doğrusalsızlığı göz önüne almak 

gerekmektedir. Dikkate alınan tasarım örnekleri sunulan algoritmanın 

etkinliğini göstermeyi amaçlamaktadır. 

 

 

Anahtar Kelimeler: Optimum Yapısal Tasarım, Harmoni Arama Yöntemi, 

Minimum Ağırlık, Stokastik Arama Tekniği, Yapraksı Kubbeler.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Domes 

 

Engineering is the activity through which designs for material objects are 

produced. The engineering design communicates to the agency of manufacture 

of construction not only the creative product of the designer, but the results of 

all scientific deductions and judgmental decisions which were rendered in 

developing design. The majority of engineering tasks have as their ultimate 

goal the production of an engineering design or the provision of a means or aid 

to designing.  

 

Engineers and designers have been trying to find some new ways to cover large 

spans, such as exhibition halls, stadiums, concert halls, shopping centers and 

swimming pools, economically and to produce elegant structures from past to 

now. Domes supply unimpeded wide spaces and they encompass a maximum 

amount of areas with a minimum surface. They are also exceptionally suitable 

structures for covering places where minimum interference from internal 

supports are required. These specifications of domes make them very 

economical structures when they are compared with the classical structure 

types in terms of consumption of constructional materials.  

 

Domes are structural systems which include one or more layers of elements 

that are arched in all directions. The surface of a dome may be a part of a single 

surface such as a sphere or paraboloid, or it may consist of a patchwork of 

different surfaces. Besides, domes are either formed by using curved members 
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forming a surface of revolution or by straight members meeting at joints which 

lie on the surface. The spherical structure of a dome does not only provide 

elegant appearance but also offers one of the most efficient interior 

atmospheres for human residence because air and energy are allowed to 

circulate without obstruction. 

 

Braced steel dome structures have been widely used all over the world during 

the last three decades in many engineering applications. Some examples of 

braced domes in the world are shown in Figures 1.1 through 1.7. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Astrodome, Sport Hall, Houston – USA 

 

 

 

 

 

 

 

 

 

Figure 1.2 Nagoya dome, Sport Hall, Nagoya - Japan 
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Figure 1.3 Georgia World Congress Center, Atlanta - USA 

 

 

 

 

 

 

 

 

 

Figure 1.4 Gasometer Container, Vienna – Austria 

 

 

 

Figure 1.5 The Spruce Goose Storage Hall in Long Beach, California - USA 
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Figure 1.6 Terzibaba Mosque, Erzincan - Turkey 

 

 

 

 

 

 

 

 

Figure 1.7 Panora Shopping Hall, Ankara - Turkey 

 

1.1.1 Types of Braced Domes 

 

There are many types of braced domes, some of which are used very often, 

while others have limited applications. The eight types of domes maybe listed 

below as [1]: 

1. The Scwedler Dome 

2. The Ribbed Dome 

3. The Lamella Dome 

4. The Grid Dome 

5. The Geodesic Dome 

6. The Stiff-jointed Framed Dome 

7. The Plate Type Dome 

8. The Zimmermann Dome 
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Mostly used dome types are demonstrated in Figure 1.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Dome Types 

 

Whilst the early domes were all masonry ones, modern domes construction 

have kept abreast with the times, being entirely in concrete, steel and 

aluminum. Steel is generally used for construction of braced domes. However, 

occasionally aluminum and glass fibers can also be used. Among the latter 

materials, aluminum is the most ideal to make up braced domes due to its light 

weight and ease of fabrication. 
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Braced domes can be classified into two main groups about their construction 

places as single layer systems and double layer systems. Single layer systems 

are appropriate for smaller spans of about 40 m while double layer systems can 

cover more than 200 m span lengths. These systems can be designed as rigidly-

jointed systems or pin-connected systems. Semi-rigid connected systems are 

also used owing to impracticality of perfect pin connection.  

 

1.2 Optimization in Engineering  

 

A goal of every designer is to design the best (optimum) systems. The 

increasing demand on engineers to lower production costs to withstand 

competition has prompted engineers to look for rigorous methods of decision 

making, such as optimization methods, to design and produce products both 

economically and efficiently.  

 

Optimization is the act of obtaining the best result under given circumstances. 

In design, construction, and maintenance of any engineering system, engineers 

have to take many technological and managerial decisions at several stages. 

The ultimate goal of all such decisions is either to minimize the effort required 

or to maximize the desired benefit. Since the effort required or the benefit 

desired in any practical situation can be expressed as a function of certain 

decision variables, optimization can be defined as the process of finding the 

conditions that give the maximum or minimum value of a function.  

 

Common problems faced in the optimization field are static and dynamic 

response, shape optimization of structural systems, reliability-based design and 

optimum control of systems. Any optimization problem requires proper 

identification of objective function, design variables and constraints at problem 

formulation state. Depending on the class of problems and needs, several types 

of design variables and objective functions can be identified. Constraints 
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usually involve physical limitations, material failure, buckling load and other 

response quantities. 

 

An optimization or a mathematical programming problem can be stated as 

follows [2]; 

 

Find X 

1

2

n

X

X

X


  which minimizes f(X)                 (1.1)        

      

subject to the constraints: 

 

jg (X) 0, 1,2,...,j m         (1.2) 

 

jl (X) 0, 1,2,...,j p         (1.3) 

 

where X is an n-dimensional vector called the design vector, f(X) is termed the 

objective function, and 
jg (X) and 

jl (X) are known as inequality and equality 

constraints, respectively.  The number of variables n and the number of 

constraints m and/or p need not be related in any way. This kind of problem is 

called constrained optimization problem. Some optimization problems do not 

involve any constraints and can be stated as; 

 

Find X 

1

2

n

X

X

X


  which minimizes f(X)                 (1.4) 

 

such problems are called unconstrained optimization problems. 
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Optimization techniques, having reached a degree of maturity over the past 

several years, are being used in a wide spectrum of industries, including 

aerospace, automotive, chemical, electrical, and manufacturing industries. With 

rapidly advancing computer technology, computers are becoming more 

powerful, and correspondingly, the size and the complexity of the problems 

being solved using optimization techniques are also increasing. Optimization 

methods, coupled with modern tools of computer-aided design, are also being 

used to enhance the creative process of conceptual and detailed design of 

engineering systems. 

 

1.3 Structural Optimization 

 

The demand for economical and reliable structures in virtually all fields of 

endeavor has provided the impetus for the development of rapid, convergent 

and effective structural algorithms. Structural optimization (or optimal design) 

deals with the problem of designing a mechanical structure in an efficient way 

with respect to some criterion, such as minimum weight which is related to 

cost, maximum stiffness, minimum displacement at specific structural points 

and minimum structural strain energy, subject to design restrictions. 

 

Structural optimization when first emerged has attracted a widespread attention 

among designers. It has provided a systematic solution to age-old structural 

design problems which were handled by using trial-error methods or 

engineering intuition or both. Application of mathematical programming 

methods to structural design problems has paved the way in obtaining a design 

procedure which was capable of producing structures with cross-sectional 

dimensions. The development of computer programs enabled the engineers to 

simulate and experiment many different designs without actually building 

them. In that way it is easier today for design engineers to create an optimum 

design which performs the intended task within the design limits. 
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The logic in the optimization process is to build the model parametrically so 

that the sizes of the model can be changed through iterations and to find the 

most efficient design by changing those variables. First of all, the design 

should be able to do the task required. For example in case of a beam, the beam 

should carry the required load, which it is designed for. An optimum design 

should satisfy all the design criteria determined. Those criteria are defined by 

constraints in the optimization problem. The maximum normal stress in a beam 

may be a constraint for an optimization problem and can be limited to a certain 

value like yield stress. In structural optimization, usually the objective is to 

minimize the weight of the structure. Thus, an optimum design is usually the 

one with least amount of material. Also, to minimize the production cost can be 

the objective of the optimization in some cases. 

 

1.3.1 Mathematical Modeling of Structural Optimization Problems 

 

A general mathematical model for the optimum design problem of a pin-

jointed structure has the following form [3]; 

 

Find cross-sectional area vectors that are selected as design variables, 

 

A
T
= 1 2[ , ,....., ]NmA A A S         (1.5) 

 

to minimize; 

W(A)=
1

. .
Nm

i i i

i

A L                                (1.6) 

subject to; 

gi(A)= 0a

i i     1,....., mi N                 (1.7) 

hi(A)= 0a

i iH H                1,....., mi N                 (1.8) 

uj,k(A)= , , 0a

j k j ku u   1,....., mj N      (1.9) 
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where; 

 

 A : a vector of cross-sectional areas, 

S  : available list, 

W(A) : objective function (weight of the structure), 

i  : unit weight of i-th member, 

iL  : length of i-th member, 

iA  : cross-sectional area of i-th member, 

mN  : total number of structural members, 

gi (A) : stress constraint of i-th member, 

hi (A) : stability constraint of i-th member, 

uj,k (A) : displacement constraint at the j-th node in the k-th direction, 

i  : stress in the i-th member, 

a

i
 : allowable stres in the i-th member, 

iH  : slenderness ratio in i-th member, 

a

iH  : allowable slenderness ratio in the i-th member, 

,j ku  : displacement at the j-th node in the k-th direction, 

,

a

j ku  : allowable displacement at the j-th node in the k-th direction. 

 

1.3.2 Methods of Structural Optimization 

 

There is no single method available for solving all structural optimization 

problems efficiently. A number of optimization methods have been developed 

for solving different types of structural optimization problems. Methods of 

optimization have been studied and developed over the last 35 years. These 

methods have matured to the point where they are beginning to be utilized in 

the design of realistic engineering systems. Although the methods are currently 

being used primarily by large systems, they will undoubtedly be developed 

further so that even small design systems will have access to this new 
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technology. Optimization methods offer a designer the flexibility of studying 

many alternatives in a relatively short time, thus producing better and cost 

effective designs more efficiently. The purpose of this section is to describe the 

structural optimization methods briefly.  

   

1.3.2.1 Analytical Methods 

 

Analytical methods usually employ the mathematical theory of calculus and 

variational methods, in studies of optimal layouts or geometrical forms of 

structural elements, such as columns, beams and plates. These analytical 

methods are most convenient for fundamental studies of single structural 

components, and they are not intended to handle larger structural systems. The 

structural design is represented by a number of unknown functions and the goal 

is to find the form of these functions. The optimal design is theoretically found 

exactly through the solution of a system of equations expressing the conditions 

for optimality. 

 

Applications based on analytical methods though they sometimes omit the 

practical aspects of realistic structures, are still of certain value. Analytical 

solutions provide valuable insight and theoretical lower bound optimum 

against which more practical designs may be judged. Problems solved by 

analytical methods are called continuous problems or distributed parameter 

optimization problems.   

 

1.3.2.2 Numerical Methods 

 

Closed form analytical solutions for practical optimization problems are 

difficult to obtain if the number of design variables is more than two and the 

constraint expressions are complex. Therefore numerical methods and 

computers must be used to solve most of the optimization problems. In these 

methods, an initial design for the system is selected which is iteratively 
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improved until no further improvements are possible without violating any of 

the constraints [4].  

 

One of the advantages of using numerical optimization methods and associated 

programs is that once the problem has been properly formulated and defined 

for the program, it is quite easy to solve it for a variety of conditions and 

requirements. In most practical applications, the design variables cannot have 

arbitrary values due to manufacturing and fabrication limitations. For example, 

the plate thickness and width must be selected from the available ones, the 

number of bolts used must be an integer, the number of rebars must be an 

integer and their size must be selected from those available, and so on. Design 

problems with such variables are called discrete variable optimization 

problems in contrast to the continuous variable problems where design 

variables can have any value within the specified limits. To solve discrete 

variable problems, the optimization software must have the capability to obtain 

a final design for which values of the variables have been selected from a 

specified set [4].  

 

Mathematical programming techniques are useful in finding the minimum of a 

function of several variables under prescribed set of constraints. The various 

techniques available for the solution of different types of optimization 

problems are given under the heading of mathematical programming 

techniques, such as calculus methods, calculus of variations, linear 

programming, nonlinear programming, geometric programming, quadratic 

programming, dynamic programming, integer programming, stochastic 

programming, separable programming, and mutiobjective programming [5].  

 

The desire to optimize more than one objective or goal while satisfying the 

physical limitations led to the development of multiobjective programming 

methods. Goal programming is a well-known technique for solving specific 

types of multiobjective optimization problems. Game theory technique applied 
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to solve several mathematical economics and military problems when it was 

firstly developed, but during the last decade game theory has been applied to 

solve engineering design problems. Simulated annealing, genetic algorithms, 

evolution strategies, tabu search, harmony search, ant colony and particle 

swarm represent a new class of mathematical programming techniques that 

have come into prominence during last decade. 

 

Another numerical optimization method is Optimality Criteria based on the 

derivation of an appropriate criterion for specialized design conditions and 

developing an iterative procedure to find the optimum design [6]. Its principal 

attraction was that the method was easily programmed for the computer, was 

relatively independent of problem size, and usually provided a near-optimum 

design with a few structural analyses. This last feature represented a 

remarkable improvement over the number of analyses required in mathematical 

programming methods to reach an optimum solution. The optimality criteria 

methods were originally developed for discrete systems. The methods were 

first presented for linear elastic structures with stress and displacement 

constraints and later extended to problems with other types of constraints.  

 

1.4 Stochastic Optimization Techniques 

 

In most of the various engineering practices, including structural optimization, 

Mathematical Programming and Optimality Criteria Methods, known as 

classical optimization methods, have been used up to recent years. However, 

differential mathematical solution algorithms, which depend on the acceptance 

of continuous design variables of these methods, bring about some difficulties 

for the application of methods to large structural systems and do not produce 

ideal solutions for engineering structures requiring a design process according 

to previously identified discrete profile lists. Stochastic search is a class of 

search methods which includes heuristics and an element of nondeterminism in 

traversing the search space. Unlike the search algorithms introduced so far, a 
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stochastic search algorithm moves from one point to another in the search 

space in a nondeterministic manner, guided by heuristics. The next move is 

partly determined by the outcome of the previous move. Stochastic search 

techniques deal with situations where some or all of the parameters of the 

optimization problem are described by random or probabilistic variables rather 

than by deterministic quantities. The source of random variables may be 

several, depending on the nature and the type of problem.   

 

1.4.1 Genetic Algorithms 

 

Genetic algorithms (GAs) are adaptive heuristic search algorithm based on the 

evolutionary ideas of natural selection and genetics. They represent an 

intelligent exploitation of a random search used to solve optimization 

problems. Although randomized, genetic algorithms are by no means random, 

instead they exploit historical information to direct the search into the regions 

of better performance within the search space. The basic techniques of the 

genetic algorithms are designed to simulate processes in natural systems 

necessary for evolution, especially those following the first laid down by 

Charles Darwin of survival of the fittest [7].  

 

Genetic algorithms have been applied to optimization problems in many fields, 

such as optimal control problems, job scheduling, transportation problems, 

pattern recognition, machine-learning [7-8], etc. Genetic algorithms have been 

extremely successful in solving unconstrained optimization problems. Several 

methods have been proposed to handle constraints in construction with genetic 

algorithms for numerical optimization problems.  

 

 

 

 

 



 

15 

 

1.4.2 Evolutionary Strategies 

 

Evolution strategies (ES) were developed by Rechenberg [9] and Schwefel [10] 

in Germany. This method is conceptually similar to Genetic Algorithms, but 

originally did not use crossover operators. Evolution strategies have very 

complex mutation and replacement functions. Mutation is the main operator 

while recombination is the secondary in evolution strategies. In this technique, 

selection is a deterministic operator.  

 

Evolution strategies work with vectors of real numbers for representation of 

designs and optimization parameters. Mutation and adaptation of mutation 

rates are important working mechanisms in this method. Each new design point 

is created by adding random noise to the current one. If the new point is better 

than the former one search proceeds from this new point, if not the older point 

is retained. Historically evolution strategies search only one point at a time but 

recently they use a population of designs like GAs [11]. The main difference 

between evolution strategies and genetic algorithms is that only the best fit 

individuals are allowed to reproduce (elitist selection) in the former.   

 

Evolution strategies are often used for empirical experiments and it is based on 

principal of strong causality, that is, small changes have small effects. 

 

1.4.3 Simulated Annealing 

 

Simulated annealing (SA) is the classical algorithm in thermodynamics for 

finding low-energy or even optimum configurations for complex physical 

problems that cannot be solved analytically. It simulates the cooling process of 

a physical system, taking advantage of the fact that if this cooling procedure is 

performed slowly enough, the system will end up in the optimum state (e.g., a 

flawless crystal). On the other hand, it only reaches a less desirable local 

minimum in the energy landscape (e.g., a crystal with many defects), if the 



 

16 

 

system is rapidly cooled down. Therefore, starting at a very high temperature, a 

series of temperatures steps is performed such that the temperature is slowly 

reduced between the steps. With decreasing temperature, the system undergoes 

a transition from a high-energy, unordered regime to a relatively low-energy, at 

least partially ordered regime. The optimization process ends when the system 

is frozen in an optimum state at a low temperature [12]. 

 

1.4.4 Particle Swarm Optimization 

 

Particle swarm optimization (PSO) is a population based stochastic 

optimization technique inspired by social behavior of bird flocking or fish 

schooling. 

 

Particle swarm optimization shares many similarities with evolutionary 

computation techniques such as genetic algorithms (GAs). The system is 

initialized with a population of random solutions and searches for optimum 

result by updating generations. However, unlike genetic algorithms, particle 

swarm optimization has no evolution operators such as crossover and mutation. 

In particle swarm optimization, the potential solutions, called particles, fly 

through the problem space by following the current optimum particles.  

  

In the past several years, particle swarm optimization has been successfully 

applied in many research and application areas. It is demonstrated that particle 

swarm optimization gets better results in a faster and cheaper way compared 

with other methods.   

 

Another reason why particle swarm optimization is attractive is that there are 

few parameters to adjust. One version, with slight variations, works well in a 

wide variety of applications. Particle swarm optimization has been used for 

approaches that can be used across a wide range of applications, as well as for 

specific applications focused on a specific requirement. 
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1.4.5 Ant Colony Optimization 

 

The fundamental theory in an ant colony optimization (ACO) algorithm is the 

simulation of the positive feedback process exhibited by a colony of ants. This 

process is modeled by utilizing a virtual substance called „„trail‟‟ inspired by 

real ants. Each ant colony optimization algorithm follows a basic 

computational structure. An ant begins at a randomly selected point and must 

decide which of the available paths to travel. This decision is based upon the 

intensity of trail present upon each path leading to the adjacent points. The path 

with the most trail has a higher probability of being selected. If no trail is 

present upon a path, there is zero probability that the ant will choose that path. 

If all paths have an equal amount of trail, then the ant has an equal probability 

of choosing each path, and its decision is random. An ant chooses a path using 

a decision mechanism and travels along it to another point. Some ant colony 

optimization algorithms now apply a local update to the trail. This process 

reduces the intensity of trail on the path chosen by the ant. The idea is that 

when subsequent ants arrive at this point, they will have a slightly smaller 

probability of choosing the same path as other ants before them. This 

mechanism is intended to promote exploration among the ants, and helps to  

prevent early stagnation of the search and premature convergence of the 

solution. The amount of this trail reduction should not be great enough to 

prevent overall solution convergence. The ant continues to choose paths to 

travel between points, visiting each point, until all points have been visited and 

it arrives back at its point of origin. When it returns to its starting point, the ant 

has completed a tour. The combination of paths an ant chooses to complete a 

tour is a solution to the problem, and is analyzed to determine how well it 

solves the problem. The intensity of trail upon each path in the tour is then 

adjusted through a global update process. The magnitude of the trail adjustment 

reflects how well the solution produced by an ant‟s tour solves the problem. 

The paths that make up the tours that best solve the problem receive more trail 



 

18 

 

than those paths that make up poor solutions. In this way, when the ant begins 

the next tour, there is a greater probability that an ant will choose a path that 

was the part of the tour that performed well in the past. When all the ants have 

completed a tour and all of the tours have been analyzed and the trail levels on 

the paths have been updated, an ant colony optimization cycle is complete. A 

new cycle now begins and the entire process is repeated. Eventually almost all 

of the ants will make the same tour on every cycle and converge to a solution. 

Stopping criteria are typically based on comparing the best solution from the 

last cycle to the best global solution. If the comparison shows that the 

algorithm is no longer improving the solution, then the criteria are reached 

[13]. 

 

1.4.6 Tabu Search  

 

Tabu search (TS) is a metaheuristic technique proposed by Glover [14] as a 

strategy for solving combinatorial optimization problems. Tabu search is an 

iterative improvement method based on neighborhood search methods and on 

memories to guide the search. A tabu search algorithm uses a function called 

move which transforms a current solution into another solution until certain 

conditions to stop the process are met. The algorithm starts with an initial 

solution. In scheduling optimization problems this solution can be generated by 

a priority rule. A subset of candidate moves is defined for this solution, and for 

each move a subset of solutions called the neighborhood is generated. At each 

iteration the best neighbor of each move is selected, and similarly the best of 

all moves is chosen to lead the current solution to a new solution. The inverse 

of this move is stored in a short term memory of fixed size, called tabu list. The 

list prevents the process cycling, and guide the search to good regions in the 

search space. When a move is in the tabu list, this move is tabu or forbidden for 

a fixed number of iterations. However, if a tabu move is attractive according to 

an aspiration criterion, then this move is allowed. One aspiration criterion is to 

do a tabu move if their solution improves the best solution found to date. To 
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further improve the search, an intensification strategy can be used to 

concentrate the search in a localized region, and a diversification strategy can 

be used to direct the search to unexplored regions. Finally the algorithm 

iterates from a solution to another solution until a set of stopping conditions are 

satisfied [15]. 

 

1.4.7 Harmony Search Optimization 

 

The new HS meta-heuristic algorithm was derived by adopting the idea that 

existing meta-heuristic algorithms are found in the paradigm of natural 

phenomena. The algorithm was based on natural musical performance 

processes that occur when a musician searches for a better state of harmony, 

such as during jazz improvisation [16]. Jazz improvisation seeks to find 

musically pleasing harmony (a perfect state) as determined by an aesthetic 

standard, just as the optimization process seeks to find a global solution (a 

perfect state) as determined by an objective function. The pitch of each musical 

instrument determines the aesthetic quality, just as the objective function value 

is determined by the set of values assigned to each decision variable [17]. 

Figure 1.9 shows the harmony search optimization procedure. 
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 Figure 1.9 Harmony search optimization procedure 

 

 

In this study, optimum topology of a single layer lamella domes is determined 

by using harmony search algorithm. This technique is discussed in detail in 

Chapter 4.   

 

1.5 Literature Survey on the Optimum Design of Dome Structures 

 

The studies and the algorithms developed in recent years for optimum design 

of dome structures can be reviewed in a historical order as follows;  

   

An optimality criteria algorithm has been developed by Saka [18] for the 

optimum design of pin-jointed steel structures under multiple loading cases 

while considering displacements, buckling and minimum size constraints. In 

this study Saka designed a 112-bar pin-jointed steel dome based on minimum 

Step 1: Initialize the optimization problem and algorithm parameters:  

The optimization problem is specified. 

Step 2: Initialize the harmony memory (HM):  

The „„harmony memory‟‟ (HM) matrix is filled with as many randomly generated 

solution vectors as the size of the HM (i.e., HMS) and sorted by the values of the 

objective function, f (x). 

Step 3: Improvise a new harmony from the HM:  

A new harmony vector is generated from the HM based on memory considerations, pitch 

adjustments, and randomization. 

Step 4: Update the HM:   

If the new harmony vector is better than the worst harmony in the HM, judged in terms 

of the objective function value, the new harmony is included in the HM and the existing 

worst harmony is excluded from the HM. 

Step 5: Repeat Steps 3 and 4 until the termination criterion is satisfied:  

The computations are terminated when the termination criterion is satisfied. If not, Steps 

3 and 4 are repeated. 
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weight as an example according to AISC design requirements. Hollow pipe 

sections were used as dome members and system was subjected to equipment 

loading. Optimum design was obtained after 12 iterations having the minimum 

volume of 44.47 mm
3
. In the design problem both buckling and displacement 

constraints were equally dominant. It is shown in this example that by means of 

optimality criteria method an optimum design algorithm can be developed for 

domes that can be effectively used in the design of large structures, which is of 

importance in practice. 

 

The space trusses, including the geometrical nonlinearity due to large 

displacements, have been optimally designed based on the coupling the 

optimality criteria approach with tangent stiffness method by Saka and Ulker 

[19]. The nonlinear behavior of the space truss required for steps of optimality 

criteria method which was obtained by using iterative linear analysis. In each 

iteration the geometric stiffness matrix is constructed for the deformed 

structure and compensating load vector is applied to the system in order to 

adjust the joint displacements. During nonlinear analysis, tension members are 

loaded up to yield stress and compression members are stressed until their 

critical limits. The overall loss of elastic stability is checked throughout the 

steps of algorithm. The member forces resulted at the end of nonlinear analysis 

are used to obtain the new values of design variables for the next cycle. As a 

design example, 120-members and 37 joints steel dome truss was taken. The 

truss dome was subjected to a vertical loading at different joints acting in the 

negative direction of z-axis. The minimum weight was found to be 7587 kg 

considering nonlinear response of structure and by taking into account the 

linear behavior, optimum weight of the same structure was found to be       

8511 kg. It is shown by this study that optimality criteria method can easily be 

used for nonlinear structures.  

 

Huyber [20] implemented a study to express the effect of design shape in 

material properties, such as weight, cost, strength, thermal insulation, energy 
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requirement, for the optimization of dome structures when geometry was taken 

as a design variable. The surface of dome was subdivided into three triangular 

platonic solids, which are tetrahedron, octahedron, or icosohedron. These three 

basic patterns were compared and evaluated two different methods. The 

distribution of nodal points were considered as equal as possible on the surface 

as a start point of view to his study. The data obtained from developed 

algorithm give the opportunity to express the designed shape in material 

properties. 

 

Saka and Kameshki [21] dealt with optimum design of a 18-member framed 

dome, a 96-member lamella dome, and a 110-member network dome to show 

the importance of nonlinearity due to the effect of axial forces in members on 

the optimization of three-dimensional rigidly jointed elastic framed domes. 

They used the optimality criteria approach together with the stiffness method 

which considers geometric nonlinearity. The algorithm developed considers 

displacement restrictions and combined stress constraints not to be more than 

yield stress. The stability functions for three-dimensional beam-columns are 

used to obtain the nonlinear response of the frame. These functions are derived 

by considering the effect of axial force on flexural stiffness and effect of 

flexure on axial stiffness. The algorithm begins with the optimum design at the 

selected load factor and carries out elastic instability analysis until the ultimate 

load factor is reached. During these iterations, overall stability of frame is 

checked. If the nonlinear response is obtained without loss of stability, the 

algorithm then proceeds to the next design cycle. This study shows that in 

framed dome without diagonal members, the effect of nonlinearity is 

important. Its consideration certainly leads to an economical structure.   

 

Erbatur et. al. [22] investigated a 112-bar steel dome for verifying the 

correctness and efficiency of GAOS (genetic algorithm based structural 

optimization) program for optimum design of space steel structures. They 

collected the dome members in seven distinct groups, whereas with only two 
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groups were considered in the study carried out by Saka [18] for the same 

example before. Furthermore, in the place of AISC specifications, the 

allowable compressive stress for each member was computed according to the 

Turkish specifications. They applied the program on design examples, 

compared their results with formers‟ and showed the ability of genetic 

algorithms on structural optimization.  

 

Lin and Albermani [23] focused on application of a knowledge-based system 

which is an integrated computer-aided environment used to design problems of   

lattice-domes. The knowledge- based system offers the possibility of gathering 

the various aspects of the design process into a unified whole.    

 

Ülker and Hayalioglu [24] considered a 56-bar space dome truss as a design 

example to investigate the optimum design algorithm for the space trusses with 

the aid of spreadsheets considering displacements, stresses, and buckling 

constraints. Matrix displacement method is used for the analysis of design 

examples. The optimum designs obtained using the spreadsheets are compared 

with those employing a classical optimization method. The developed 

algorithm gives better results in comparison with those of the previous ones. 

The values of joint displacements obtained are much smaller than their upper 

bounds. As a result, it is deduced that the tensile and buckling stress constraints 

are dominant in the design. It is demonstrated that the spreadsheets algorithm 

can be effectively used in the optimum design of practical large plane and 

space trusses. 

 

Missoum, Gürdal, and Gu [25] optimized a 30-bar space dome structure by 

using a displacement-based approach. Displacement-based approach uses 

iterative finite element analyses to determine the structural response as the 

sizing variables are varied by the optimizer, which makes it different from the 

traditional optimization approach. This method searches for an optimal solution 

by using the displacement degrees of freedom as design variables. As a result 
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of this study, they found lower weights than Khot and Kaman [26], who had 

studied the same example before.  

 

Yuan, and Dong [27] studied optimization of cable domes by using nonlinear 

analysis. The nonlinear equilibrium equation of cable domes was developed 

and solved by Newton–Raphson method. They introduced the prestress which 

was very important factor for the design of a cable dome because it has no 

initial rigidity before the prestress. This study, also, showed that the impact of 

the level of prestress does not only effect the geometric configuration, but it 

also determines the load carrying capacity of cable domes. 

 

A 616-member mallow dome is studied by Rajasekaran, Mohan, and Khamis 

[28] as a design example to illustrate the computational advantage of evolution 

strategies with functional neural networks for the optimization of space trusses. 

This dome truss was formed using the Formex algebra of the Formian 

software. The evolution strategies has been applied to find the optimal design 

of this kind of space trusses considering the areas of the members of the space 

structures as discrete variables. The objective function was obtained for first 

few generations by using a structural analysis package such as Feast, and for 

other generations by functional neural networks. They presented that this study 

was suitable for solving large scale space structure optimizations which have 

700 degrees of freedom.   

 

A study on a hemispherical space dome truss with 52-bar was taken by 

Lingyun, Mei, Guangming, and Gang [29] as a design example to show the 

validity, availability, and reliability of nice hybrid genetic algorithm to achieve 

size and shape truss optimization with frequency constraints. This example was 

a highly nonlinear dynamic optimization problem with frequency–prohibited 

band constraints. Lin had reported the optimal results by the optimal criteria for 

the same example dealt before. The optimal weight of this structure found from 
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nice hybrid genetic algorithm was much lesser than Lin‟s results by nearly 

%20.  

 

Lamella-suspen dome systems were studied by Kitipornchai, Kang, Lam, and 

Albermani [30] with respect to a detailed parametric analysis. The results of 

this study demonstrate that the buckling is the most important problem for 

dome structures. They investigated the influence of geometric imperfection, 

asymmetric loading, rise-to-span ratio, and connection rigidity on buckling 

capacity. In the design examples cable prestress force method is used. As a 

result of this study it was shown that the bottom tensegrity system helps the 

dome structure to increase the buckling capacity and stiffness, and decrease the 

member stiffness. They also showed the geometric imperfection has very 

important effect on buckling capacity of suspen-dome system. They 

implemented extensive nonlinear buckling analysis to show the reduction of 

buckling capacity of a suspen-dome system up to 50%. 

 

Togan, and Daloglu [31] proposed an adaptive genetic algorithm which is used 

to design 112-bar steel dome truss of Saka [18] and Erbatur [22]. They proved 

that the automatic grouping of members, penalty function and static or adaptive 

approach has important effect for solving the system. They compared their 

results with previous examples and showed that their algorithm finds lighter 

domes. They demonstrated that when they use proper grouping and a penalty 

function in the adaptive genetic algorithm, the design algorithm becomes quite 

effective.   

 

Lόpez, Puente, and Serna [32] examined the influence of dome geometry, 

slenderness of members, joint rigidity, and loading of single-layer latticed 

domes with semi-rigid joints. They ascertained that the angle between 

members located along the same meridian line has effect on load carrying 

capacity of the dome.  
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Kameshki, and Saka [33] studied on a genetic algorithm for determining the 

optimum height, and the optimum steel section designations for the members 

of a braced dome. They considered the geometrical nonlinearity in their 

analysis to obtain realistic response of flexible dome under the external loads. 

They checked loss of stability during the nonlinear analysis due to its high 

importance. They optimally designed braced domes by using genetic algorithm 

and showed that the consideration of nonlinear behavior yields realistic results 

and leads to a lighter structure. 

 

Saka [34] presented a comprehensive coupled genetic algorithm for calculation 

of the optimum number of rings, the optimum height of crown, and the tubular 

cross-sectional designations for the single layer latticed dome members under 

given external loading. The topological design of these structures present 

difficulty due to the fact that the number of joints and members as well as the 

height of the dome keeps on changing during the design process. The most 

important characteristic of this study is that currently no study was available 

covering the topological design of dome structures that give the optimum 

number of rings, the optimum height of crown and the tubular cross-sectional 

designations for the dome members under a given general external loading. It 

is shown in the design example considered that the optimum number of joints, 

members and the optimum height of a geodesic dome under a given external 

loading can be determined without designers‟ interference. 

 

1.6 The Scope of This Study 

 

The main goal of this study is to develop an algorithm for the optimum 

topology design of single layer lamella domes based on harmony search 

algorithm. In this thesis, Chapters are arranged as in the following; In Chapter 

1, a cursory definition is given about domes and types of braced domes. 

Furthermore, engineering design optimization, structural optimization and the 

methods of structural optimization are discussed briefly. Besides these, a 
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literature survey on the optimum design of dome structures is included in a 

historical order. In Chapter 2, the elastic-critical load analysis of braced domes 

is discussed. General information about elastic critical load analysis, 

calculation of elastic critical load factor, stiffness matrix of a space member, 

nonlinear stiffness matrix with stability functions and nonlinear elastic critical 

load analysis are also described in this chapter respectively. The morphology, 

and the mathematical modeling of the optimum topology design of a single 

layer lamella dome are explained in Chapter 3. Chapter 4 contains the general 

concept of harmony search optimization method in a detailed manner and 

includes information about the harmony search based optimum design of single 

layer lamella dome algorithm developed. The last two parts of this study are 

allocated for design examples and conclusions, respectively. In Chapter 5, as a 

numerical example, a single layer lamella dome subjected to different types of 

external loading is designed by the algorithm developed and the results 

obtained are shown. The last chapter, Chapter 6, contains the conclusions of 

the study.          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

28 

 

CHAPTER 2 

 

 

ELASTIC-CRITICAL LOAD ANALYSIS OF SPATIAL 

STRUCTURES 

 

 

2.1 Definition of Elastic Critical Load Analysis 

 

Elastic Critical Load Analysis computes the elastic critical load factor, c , for a 

structure subjected to a particular set of applied loads. This load factor is the 

ratio by which the axial forces in the members of the structure must be 

increased to cause the structure to become unstable due to the flexural buckling 

of one or more members (lateral torsional buckling of individual members is 

not taken into account). The elastic critical load of the structure is a function of 

the elastic properties of the structure and the pattern of loading. 

 

Once the elastic critical load is known, member effective lengths can be 

calculated. The effective length of a member is defined as the length of an ideal 

pin-ended strut having the same elastic critical load as the load existing in the 

member when the structure is at its critical load. The effective length may be 

expressed as a factor multiplying the actual member length. 

 

The effective length factor is calculated separately for each of the member 

principal axes for each load case. A load factor of less than 1.0 for any load 

case indicates that the structure is unstable under the applied loading. 

 

The elastic critical load for any load case is determined by computing the axial 

forces in the members of the structure and then increasing them in proportion 
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until the structure becomes unstable. At this point the factor by which the axial 

forces have been increased is the elastic critical load factor for the structure 

under the current loading. The elastic critical load factor is also known as the 

buckling load factor.  

 

2.2 Calculation of Elastic Critical Load Factor 

 

The elastic behavior of a structure is governed by the equation: 

 

P = Ks ∆
                     (2.1) 

 

or more precisely: 

          

λP = Ks (λP)∆
               (2.2) 

 

The use of ( )sK P  implies that sK  is a function of the applied load P . This 

equation is nonlinear.       

 

where; 

 

P = external loads applied at the joints of the structure, 

∆ = joint displacements of the structure, 

Ks = stiffness matrix of the structure, 

 = the load factor. 

 

To determine the value of the critical load factor, c , the problem is linearized 

by carrying out a double iterative process. The value of  is increased in a 

step-by-step manner, and at each load level the singularity of ( )sK P  is 

checked. At each load level, also, an inner iteration is performed before the 

singularity check to find the correct values of the member axial forces shown 
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Figure 2.1 A Typical Space Member with Displacements and Rotations. 

in equation (2.2) is solved repeatedly until a consistent set of deflections is 

obtained. The number of iterations required here depends on how the structure 

is near to instability, and how good a guess of axial force can be made initially 

[35]. 

 

2.3 Stiffness Matrix of a Space Member 

 

p = kd                      (2.3) 

 

This is the member stiffness equation in which p and d are 12-term vectors of 

member force and displacement respectively, and k is a 12x12 member 

stiffness matrix for most general case of a prismatic member in space (shear 

deformation is neglected), and with the implicit condition that the deformations 

are so small as to leave the basic geometry unchanged.     

 

If a member in space is taken into account, there is the possibility of three 

linear displacements and three rotations at each of the member as shown in 

Figure 2.1. The letter dx1 denotes linear displacements direction, and θx1 

denotes rotations. The first suffix denotes the displacement direction, or the 

axis about which a rotation takes place, while the second suffix denotes the 

member end concerned. There are thus 12 possible displacement components 

for the member, or 12 degrees of freedom. 
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Figure 2.2 A Typical Space Member with Forces and Moments. 

Associated with each displacement, there is a corresponding force or moment, 

and these are illustrated in Figure 2.2. The letter p denotes the direct forces and 

m denotes moments. xp  is an axial thrust, 
yp  and zp  are shears, xm  is a 

torsional moment, and 
ym  and zm  are bending moments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The physical properties of the member are designated in the conventional 

manner as E, G, L, and A, which denote Young‟s modulus, shear modulus, 

length, and cross-sectional area respectively. The principle second moments of 

area for bending are 
yI  and zI , the subscripts indicating the axes about which 

the second moments are taken. The polar second moment of area, which should 

logically be denoted by xI , is denoted by J which is the conventional symbol 

in torsion studies. 

 

To allow Young‟s modulus E to be taken as a common factor, the shear 

modulus G has been replaced by / 2(1 )E , where  is Poisson‟s ratio.   

 

It is important to note that the member stiffness matrix k is symmetrical about 

its main diagonal [35]. 
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Figure 2.3 Stiffness matrix of a space member in local coordinate system. 
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Many structural members require less than the full matrix of 12 degrees of 

freedom to express their deformations. Since a member in a space truss has pin 

end connections, it cannot transmit any moment through its hinged ends. 

Consequently, its deformation depends only on the linear displacements at each 

end, which yields only three degrees of freedom at any joint. The stiffness 

matrices in such cases may be obtained by selecting relevant terms from the 

full matrix shown in Figure 2.3. 

 

2.4 Derivation of a Nonlinear Stiffness Matrix Using Stability Functions 

 

The axial forces in a member have a significant effect on its flexural bending 

that cause nonlinearity in the behavior of structures. Therefore, it is of 

importance to study this effect in the behavior of dome structures. 

 

Structures which are subjected to both axial forces and bending moments are 

called beam-column. Members carrying both axial force and bending moments 

are exposed to an interaction between these effects. The lateral deflection of a 

member causes additional bending moment when an axial force is applied. This 

changes the flexural stiffness of the member. Similarly, the presence of 

bending moments affects the axial stiffness of the member due to shortening of 

the member caused by the bending deformations. If the deformations are small, 

the interaction between bending and axial forces can be ignored. In such a case, 

the force-deformation relationship for a beam-column is same as equation 

(2.3). However, if the deformations are large, the stiffness matrix k is affected 

by the interaction between bending and axial forces, and it is not linear 

anymore [36]. The nonlinear stiffness matrix can be derived by using stability 

functions. 
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2.4.1 Stability Functions 

 

The stability functions are the modification factors from 1s  to 9s . These 

functions can be defined with respect to member length, cross-sectional 

properties, axial force, and the end moments. The effect of axial force on 

torsional stiffness and the effect of torsional moment on axial stiffness are 

neglected [36].    

 

where; 

 

1s  :  stability function for the effect of flexure on axial stiffness, 

 

2s  : stability function for the effect of axial force on flexural stiffness 

against rotation of near end about z-axis, 

 

3s  : stability function for the effect of axial force on flexural stiffness 

against rotation of far end about z-axis, 

  

 4s  : stability function for the effect of axial force on flexural stiffness 

against rotation of near end about y-axis, 

 

5s  : stability function for the effect of axial force on flexural stiffness 

against rotation of far end about y-axis, 

 

6s  : stability function for the effect of axial force on flexural stiffness 

(about z-axis) against translation in y-direction, 

 

7s  : stability function for the effect of axial force on shear stiffness in y-

direction against translation in y-direction, 
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Y  

X  

ybF  

X  

P  

Y  

yaF  

zbM  

S  

zaM  

P  

X  
P  

P  

Z  

X  

S  

Z  

yaM  

zbF  

ybM  

zaF  

8s  : stability function for the effect of axial force on flexural stiffness 

(about y-axis) against translation in z-direction, 

 

9s  : stability function for the effect of axial force on shear stiffness in z-

direction against translation in z-direction. 

 

2.4.1.1 Effect of Flexure on Axial Stiffness 

 

The axial stiffness of the beam in the absence of end moments is given by 

EA/L, and the axial deformation due to axial loading P is given by PL/EA. 

However, the end moments produce an additional axial deformation in the 

beam. In order to include the effect of flexure on axial deformation, the axial 

stiffness of the beam-column must be modified. For this purpose, the modified 

axial stiffness can be illustrated as 1s (EA/L). An expression for 1s  is derived as 

follows [36].    

 

 

 

 

(a)  

  

 

 

 

 

(b)  

Figure 2.4 Effect of Flexure on Axial Stiffness: (a) Bending in X-Y plane; (b) 

Bending in X-Z plane  
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From Figure 2.4 (a) and (b); 

 

2 2 2 2ds dx dy dz           (2.4) 

 

by rearranging this equation, 

 

2 2 2

2 2 2
1

ds dy dz

dx dx dx
         (2.5) 

 

Shortening due to bending can approximately be defined as, 

 

bd ds dx           (2.6) 

 

dividing equation (2.6) by dx, 

 

1bd ds

dx dx
          (2.7) 

 

Neglecting higher order terms, 

 

2 2
1

2

bd dy dz

dx dx dx
        (2.8) 

 

Therefore, the shortening of the beam-column due to bending is, 

 

0

L

b
b

d
dx

dx
          (2.9) 

 

2 2

0

1

2

L

b

dy dz
dx

dx dx
                 (2.10) 
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Total shortening of the beam-column is expressed,  

 

t shortening due to axial load ( a ) + shortening due to bending ( b ) 

 

2 2

0

1

2

L

t

PL dy dz
dx

EA dx dx
                (2.11) 

 

2 2

0

1
2

L

t

PL EA dy dz
dx

EA PL dx dx
               (2.12) 

 

1

t

P

EA
s

L

                              (2.13) 

 

and 1 2 2

0

1

1
2

L
s

EA dy dz
dx

PL dx dx

               (2.14)  

 

The curvature 
2

2

d y

dx
 can be defined from Figure (2.4) (a), 

 

2

2

1
( )za za zb

z

d y x
M M M Py

dx EI L
               (2.15) 

 

Let 2

z

P

EI
                   (2.16) 

 

Substituting equation (2.16) in equation (2.15) and rearranging the terms,  
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2 2 2
2

2 za zb za

d y
y M M x M

dx PL P
               (2.17) 

 

The solution for equation (2.17) is given by the summation of complementary 

function and particular integral; 

 

sin cos ( ) za
za zb

Mx
y A x B x M M

PL P
             (2.18)

  

 

Substituting the boundary conditions y=0 at x=0 and x=L, 

 

1
cosec cos

and

za zb

za

A L M L M
P

M
B

P

               (2.19) 

 

The slope of beam in the X-Y plane is given by, 

 

1
cos sin za zb

dy
A x B x M M

dx PL
              (2.20) 

 

Similarly, the equation of the beam-column for bending in the X-Z plane is  

 

sin sin
ya

ya yb

Mx
z C x D x M M

PL P
             (2.21) 

 

where 
2

y

P

EI
                  (2.22)  

 

Substituting the boundary conditions z=0 at x=0 and x=L, 
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1
cosec cos

and

ya yb

ya

C L M L M
P

M
D

P

                                                   (2.23)  

 

The slope of the beam in the X-Z plane is given by, 

 

1
cos sin ya yb

dz
C x D x M M

dx PL
              (2.24) 

 

Now the integrals in equation (2.14) can be evaluated. The final result of the 

integration is; 

 

2

2 2 2

2

0

1
[ cot cosec

2

L

za zb

dy
dx L M M L L L

dx P L
 

2
2 2 cosec 1 cot ]za zb za zbM M LM M L L L               (2.25) 

 

where; 2 2 2[ cot cosecz za zbH L M M L L L  

 
2

2 2 cosec 1 cot ]za zb za zbM M LM M L L L  

2

1

2
zH

P L
                   (2.26) 

 

and 

 

2

2 2 2

2

0

1
[ cot cosec

2

L

ya yb

dz
dx L M M L L L

dx P L
 

2

2 2 cosec 1 cot ]ya yb ya ybM M LM M L L L             (2.27)  
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where; 2 2 2[ cot cosecy ya ybH L M M L L L  

                   
2

2 2 cosec 1 cot ]ya yb ya ybM M LM M L L L  

 

2

1

2
yH

P L
                   (2.28) 

 

Therefore, equation (2.14) becomes, 

 

1

3 2

1

1
4 y z

s
EA

P L H H

                 (2.29) 

 

Note that; when end moments are absent, 1s  becomes unity. 

 

A similar approach can be used to derive an expression for 1s  for a beam-

column with axial tensile force P. The final expression is as follows: 

 

1

3 2 ' '

1

1
4 y z

s
EA

P L H H

                 (2.30) 

 

where; ' 2 2 2coth cosechy ya ybH L M M L L L  

 
2

2 2 cosech 1 cothya yb ya ybM M LM M L L L
 
(2.31) 

and 

 

' 2 2 2coth cosechz za zbH L M M L L L  

2
2 2 cosech 1 cothza zb za zbM M LM M L L L             (2.32) 
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2.4.1.2 Effect of Axial Force on Flexural Stiffness 

 

2.4.1.2.1 Bending in X-Y Plane 

 

From Figure 2.4 (a), the differential equation of the beam-column bending in 

the X-Y plane is given by Equation (2.17) for which the solution is given by 

equation (2.18). The constants A and B are obtained from Equation (2.19). The 

end slopes of the beam-column are obtained by substituting x=0 and x=L in 

equation (2.20); 

 

0

1
za za zb

x

dy
A M M

dx PL
               (2.33) 

 

1
cos sinzb ya yb

x L

dy
A L B L M M

dx PL
             (2.34) 

 

Equations (2.33) and (2.34) can be rearranged and rewritten in matrix form as; 

 

2 3

3 2

4 2

2 4

z z

za za

zb zbz z

EI EI
s s

L LM

M EI EI
s s

L L

               (2.35) 

 

when P is compressive, the 2s  and 3s  functions take the following form; 

 

2

sin cos1

4 2 2cos sin

L L L
s L

L L L
                           (2.36) 

 

3

sin1

2 2 2cos sin

L L
s L

L L L
               (2.37) 
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For members subject to axial tensile force P and bending in the X-Y plane, P is 

replaced by –P in equation (2.15). Solving the resulting differential equation, 

equation (2.35) can again be obtained as; 

 

2

cosh L sinh1

4 2 2cosh sinh

L L
s L

L L L
               (2.38) 

 

3

sinh1

2 2 2cosh sin

L L
s L

L L L
               (2.39) 

 

2.4.1.2.2 Bending in X-Z Plane 

 

From Figure 2.4 (b), and following the same procedure previously mentioned, 

the stability functions for bending in X-Z plane can be derived. The relationship 

between end moments and end slopes is given by; 

 

4 5

5 4

4 2

2 4

y y

ya ya

yb yby y

EI EI
s s

L LM

M EI EI
s s

L L

               (2.40) 

 

where; 

 

4

sin cos1

4 2 2cos sin

L L L
s L

L L L
 for compressive P            (2.41) 

 

4

cosh sinh1

4 2 2cosh sinh

L L L
s L

L L L
 for tensile P              (2.42) 

 

and 
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zbM  

zaM  

P  

P  
X  

Y  

yaF  

ybF  

y  

L  

5

sin1

2 2 2cos sin

L L
s L

L L L
 for compressive P                        (2.43) 

 

5

sinh1

2 2 2cosh sinh

L L
s L

L L L
 for tensile P              (2.44) 

 

 

2.4.1.3 Effect of Axial Force on Stiffness Against Translation 

 

If both of the ends of a beam-column are restrained against rotation, but one 

end is translated trough a distance  relative to the other, the flexural and 

shear stiffnesses of the beam against this translation are affected by the axial 

force P.  

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Effect of Axial Force on Stiffness Against Translation 

 

2.4.1.3.1 Translation in X-Y Plane 

 

From Figure 2.5, and using the slope-deflection equation; 

 

2 3

4 2y yz z
za

EI EI
M s s

L L L L
                           (2.45)  
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2 32

6 2 1

3 3

z
y

EI
s s

L
                           (2.46) 

 

       
6 2

6 z
y

EI
s

L
                             (2.47) 

 

where; 

 

6 2 3

2 1

3 3
s s s                              (2.48) 

 

Substituting the values of 2s  and 3s  from equations (2.36) and (2.37) when the 

axial force is compressive, and from equations (2.38) and (2.39) when the axial 

force is tensile, the expressions for 6s  can be obtained as; 

 

When P is compressive; 

 

2 2

6

1 (1 cos )

6 (2 2cos sin )

L L
s

L L L
                (2.49)  

 

When P is tensile; 

 

2 2

6

1 (cosh 1)

6 (2 2cosh sinh )

L L
s

L L L
                           (2.50) 

 

Once again from Figure 2.5, 

 

ya

M
F

L
                   (2.51) 
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where;  

 

za zb yM M M P                  (2.52) 

 

and 

                 

2 3

4 2y yz z
za

EI EI
M s s

L L L L
                (2.53) 

 

3 2

2 4y yz z
zb

EI EI
M s s

L L L L
                (2.54)  

 

Thus, 

 

2 33 3

8 4z z
ya y

EI EI P
F s s

L L L
               (2.55) 

 

If 2

z

P

EI
 is taken; 

 

2 2

2 3 73 3

12 122 1

3 3 12

z z
ya

EI EIL
F s s s

L L
              (2.56) 

 

where; 

 

2 2

7 2 3

2 1

3 3 12

L
s s s                             (2.57) 

 

Substituting for 2s  and 3s  from equations (2.36) and (2.37) when axial force is 

compressive; 
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2 2 2 2

7

1 cos1

6 2 2cos sin 12

L L L
s

L L L
               (2.58) 

 

When the axial force P is tensile, P is replaced by –P in equation (2.52) and 

values of  2s  and 3s  are obtained from equations (2.38) and (2.39); 

 

2 2 2 2

7

cosh 11

6 2 2cosh sinh 12

L L L
s

L L L
               (2.59)  

 

2.4.1.3.2 Translation in X-Z Plane 

 

Proceeding as in the previous section, 8s  can be given; 

 

8 4 5

2 1

3 3
s s s                              (2.60) 

 

Substituting the values of  4s  and 5s from equations (2.41) and (2.43) when the 

axial force is compressive, and from equations (2.42) and (2.44) when the axial 

force is tensile, the expressions for 8s  is shown as; 

 

2 2

8

1 cos1

6 2 2cos sin

L L
s

L L L
                (2.61) 

 

When P is tensile; 

 

2 2

8

cosh 11

6 2 2cosh sinh

L L
s

L L L
                (2.62) 

 

Proceeding as in the previous section, 9s  can be derived; 
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2 2

9 4 5

2 1

3 3 12

L
s s s   when the axial force P is compressive             (2.63) 

 

2 2

9 4 5

2 1

3 3 12

L
s s s   when the axial force P is tensile             (2.64) 

 

Substituting the values of  4s  and 5s from equations (2.41) and (2.43) when the 

axial force is compressive, and from equations (2.42) and (2.44) when the axial 

force is tensile, the expressions for 9s  is shown as; 

 

When P is compressive; 

 

2 2 2

9

1 cos1

6 2 2cos sin 12

L L L
s

L L L
                          (2.65) 

 

When P is tensile; 

 

2 2 2 2

9

cosh 11

6 2 2cosh sinh 12

L L L
s

L L L
               (2.66)  

 

The nonlinear stiffness matrix using the stability functions 1s  through 9s  is 

shown below in Figure 2.6. 
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Figure 2.6 Nonlinear stiffness matrix for three-dimensional beam-column element in local coordinate system. 
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2.5 Geometric Nonlinearity 

 

A variety of classifications may be used to describe the deformational response 

of structures; for example, small or large, elastic or inelastic, etc. In general, 

deformations of structures under the external loads are small, and hence the 

application of the equilibrium equations on the undeformed shape of the 

structure does not introduce large errors. However, when structure consists of 

slender members, the deformations become large and small deflection theory is 

no longer valid. The equilibrium equations are required to be written in such 

structures on the deformed shape of its elements. In other words, the deflected 

shape of the structure should be taken into account. When this is considered in 

the displacement computations, the relationship between the external loads and 

displacements become nonlinear. 

    

Geometric nonlinearity is required to be considered in the analysis of a 

structure, if its deflections are large compared with its initial dimensions. In 

structures with large displacements, although the material behaves linear 

elastic, the response of the structure becomes nonlinear [19]. Under certain 

types of loading, namely, even when small deformations are presumed, 

nonlinear behavior can be predicted. Changes in stiffness and loads occur as 

the structure deforms. When geometric nonlinearity occurs in a structure, the 

effect of axial forces to member stiffness must be taken into account. 

 

2.5.1 Construction of Overall Stiffness Matrix  

 

After setting up the nonlinear member stiffness matrix in local coordinate 

system displacement transformation matrix is conducted. 

 

The equation (2.3) can be rewritten for a 3D truss member in local coordinates; 

 

p=kd                     (2.67) 
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Now, the stiffness matrix in terms of local coordinates (k) must be converted to 

stiffness matrix in terms of global coordinates (K). The transformation 

equation of stiffness matrix from local to global coordinates is given below; 

 

K = T
T
 k T                    (2.68)   

 

where;    

K = global stiffness matrix, 

k = local stiffness matrix, 

T = transformation matrix (from local to global coordinates). 

 

Although in theory the direction cosine matrices for each member of a structure 

may be set up from the orientation of the members in terms of the structure 

axes, in practice this can cause some difficulty. It is convenient, therefore, to 

restate a rotation matrix R0 in terms of the projections of the members on the 

structure axes. This can most easily be done by imagining the members as 

initially lying in the x‟-direction with their y- and z-axes coinciding with y‟ and 

z‟, and then moving by a series of three rotations to their final positions. The 

rotations are i ) a rotation α about y-axis; ii ) a rotation β about the z-axis; and 

iii ) a rotation γ about the x-axis. (Although there is a number of ways in which 

a member might be moved from its initial to its final position, it is essential to 

this derivation that the order indicated is preserved.)  

 

Rotation α about y-axis : Figure 2.7 shows the rotation α of the member OA 

to OA‟. It is a rotation in the xy plane. The rotation matrix  Rα; 

 

Rα = 

cos 0 sin

0 1 0

sin 0 cos

                 (2.69) 
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Figure 2.7 Rotation α about y-axis 

 

 

At this stage; 

'

'

'

x x

y R y

z z

                 (2.70) 

 

Rotation β about z-axis; Figure 2.8 shows the rotation β of the member from 

position OA‟ to OA‟‟. It is rotation in the xy plane. The rotation matrix Rβ; 

 

Rβ = 

cos sin 0

sin cos 0

0 0 1

                 (2.71) 

y

y'

x

x'

z'

z

A

A'

O

α 

α 
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Figure 2.8 Rotation β about z-axis 

 

 

The effect of this second rotation is obtained by premultiplying the result of 

Equation (2.70) by Rβ.  

 

At this stage ; 

'

'

'

x x

y R R y

z z

                 (2.72) 

 

Rotation γ about x-axis; Rotations α and β bring the member to its final 

position, but its z-axis need not to be in the x‟z‟ plane. If, for instance, the x‟y‟ 

plane is a vertical plane, and the member is an I section with its web vertical 
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when first placed along the x‟-axis, then the web is still in a vertical plane after 

rotations α and β. If the web is inclined to the vertical in the final position, then 

a further rotation γ is required as shown in Figure 2.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Final rotation γ of the member about yz plane 

 

 

The rotation matrix Rγ; 

 

Rγ = 

1 0 0

0 cos sin

0 sin cos

                (2.73) 
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O
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The effect of this final rotation is obtained by premultiplying the result of 

Equation (2.72) by Rγ. The final state  is 

 

'

'

'

x x

y R R R y

z z

                  (2.74) 

 

Then; R0=RγRβRα 

 

If the member OA is of length L, and its projections in its final position OA‟‟ 

on the x‟-,y‟-, and z‟-axes are Lx, Ly, and Lz respectively, then it can be seen 

from Figure 2.8 that; 

 

OC=Lx , OD=Ly=BA‟‟ , BC=-Lz , OB= 2 2 2 2( ) ( )y x zL L L L  

 

Hence; 

2 2

2 2

2 2

cos / / ( )

sin / ( )

cos ( ) /

sin /

x x z

z x z

x z

y

OC OB L L L

L L L

L L L

L L

 

 

           (2.75) 

 

Equation (2.75) gives the most general form of the rotation matrix. 
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So, that is to say, direct forces in structure axes are affected only by the direct 

forces in member axes, and moments in structure axes are affected only by the 

direct forces in member axes. The form of transformation matrix (T) is; 

 

0

0

0

0 (12 12)

0 0 0

0 0 0

0 0 0

0 0 0
x

R

R
T

R

R

                 (2.76) 

 

After developing the stiffness matrices for each member of the entire structure 

in terms of local coordinates, these matrices can be assembled to form the 

global stiffness matrix for the entire structure. Total stiffness at a coordinate is 

the sum of the stiffnesses contributed to that coordinate by each element 

attached to that coordinate. 

 

The nonlinear response of a structure is obtained through successive linear 

elastic analysis as shown in Figure 2.10. Initially the axial forces are presumed 

to be zero. With zero values of axial forces, stability functions become      

equal to 1. Linear elastic analysis of the structure is carried out and axial forces 

in members are determined. With these values of axial forces the stability 

functions are calculated and structural analysis is repeated. This process are 

continued until the convergence is obtained in the axial force values of 

members.    
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Figure 2.10 Nonlinear response of a structure obtained through successive 

elastic linear analysis. 

 

 

From Figure 2.10, an accurate set of joint displacements and member forces 

become available for each load factor and nonlinear load-displacement diagram 

of the structure can be plotted as shown in Figure 2.12 below. 
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Table 1  Y-displacement values of the joint 1 of the dome under different 

external loads. 

 

 

In order to show the difference between the displacement values obtained 

through linear and nonlinear analysis, the dome structure shown in Figure 2.11 

is considered.  

 

      

 

 

 

 

 

 

 

 

 

Figure 2.11 A single layer lamella dome with 3 rings subjected to different 

concentrated loads on its crown. 

 

 
Loads (P) 

(kN) 

 Y-displacements of the joint 1 

of the dome (mm) 

Number of 

Nonlinear Iterations  

From Nonlinear 

Analysis 

From Linear 

Analysis 

100 3 4.482 4.454 

200 3 9.023 8.908 

400 3 18.300 17.820 

600 4 27.860 26.720 

800 4 37.770 35.630 

1000 4 48.140 44.540 

1200 5 59.380 53.450 

P 

20 m 

6.25 m 
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The dome is subjected to a concentrated load in Y-direction at its crown.        

Y-displacements of the crown which is the first joint of the dome are calculated 

by using linear and nonlinear analysis under different load levels. These are 

shown in Table 1. The results obtained are plotted in Figure 2.12. The effect of 

the geometrical nonlinearity on the values of Y-displacement of joint 1 is 

clearly seen in this figure. At the load of 1200 kN, the nonlinear displacement 

is 11.1% more than the linear displacement. It is clear that when the load is 

increased, the axial forces increase in the members and their effect on the 

flexural bending of the member become more emphasized. As a result 

nonlinear displacement becomes larger.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 Linear and nonlinear Y-displacements of joint 1 of the lamella                                        

dome.      

 

Figure 2.12 clearly reveals the fact that when the vertical loads become larger 

in dome structures, the displacements become larger and inclusion of 

geometric nonlinearity in the analysis of such structures becomes a necessity.  
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2.6 Elastic Critical Load Analysis 

 

Elastic critical load analysis determines the load factor such that when the 

loads are increased by this factor a structure loses its stability. The elastic 

critical load analysis of structures involves iterative nonlinear analysis with 

load increments. The flowchart shown in Figure 2.13 displays the steps of the 

algorithm [35]. 

 

 The stiffness matrix of a stable structure has the property of positive-

definiteness, and a test for this property is performed at each load level. At the 

critical load the determinant of the stiffness matrix becomes zero which means 

the stiffness matrix becomes singular. It is not easy to determine exactly at 

what value of the load factor the determinant becomes zero. In practice when 

the sign of the determinant of the stiffness matrix changes from positive to 

negative, it is understood that the structure becomes unstable. The steps of the 

algorithm are explained below; 

 

1 ) The preparatory data should include the type of structure, such as space 

frame, grillage, dome, etc., the number of the members, number of joints, 

number of load cases and common material properties, such as Young‟s 

modulus, shear modulus. The coordinates of each joint in the structure axes are 

listed against the joint number. The members of structure with same sectional 

properties are shown with the same group numbers. The support kind of the 

members are given. The load case should be revealed in preliminary data. In 

addition to this basic information, the preliminary data must include an initial 

value for the load factor (LF), and the increment applied to load factor (INC).  

 

2 ) N denotes the number of loading cycles and DET1, DET2, and DET3 are 

the values of the determinant of the stiffness matrix. The axial forces in 

members of the structure are not always known before the analysis begins, and 

this chart assumes them all zero initially. 
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Figure 2.13 Flowchart for the determination of nonlinear elastic critical load 

Analysis. 

3 ) To prevent convergence due to ill-conditioning, the number of load cycles 

can be limited by inserting a check on N. 
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4 ) A number of solutions which is counted by I are performed because initially 

the axial forces at each load level are only known approximately. 

 

5 ) The structure stiffness matrix K is set up by using stability functions as 

shown in Figure 2.6. 

 

6 ) When the terms of the stiffness matrix converge to a steady state at 

consecutive cycles, the recurrent performed analysis at each load level should 

be canceled. The determinant of the stiffness matrix DET2 is used as a suitable 

control parameter as its value depends upon the stiffness matrix terms.  

 

7 ) Once the proportional alteration in the determinant is less than %0.2, the 

recurrent analysis is called off. This restriction value is completely random, but 

it is reasonable in practice. The final determinant value is taken as the stiffness 

matrix determinant stored in DET3 and this value is used for checking the 

positive-definiteness.    

 

8 ) When the loading approaches to the critical level, the stiffness matrix 

becomes increasingly ill-conditioned and the determinant values become very 

large. In such a case it is meaningless to keep repeated analysis going and it 

should be terminated when I=15. If this termination occurs at first load level 

(N=1), it means the loading is very near to critical level at the beginning. In 

this case the analysis must be terminated and has to be renewed with a smaller 

set of loads. In other respects, the load factor can be increased so that the axial 

forces increase by the same ratio for examining further load levels. 

 

9 ) As soon as the load level holds the satisfactory convergence, the value of 

the determinant obtained is compared with that from the previous cycle. If no 

sign change is observed then the load factor and axial forces are increased by 

one step and a new load level is studied. If a sign change comes out (changing 

from positive to negative), then the process is terminated.    
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As an example, if the dome in Figure 2.11 is considered once again under 

different external loading, the determinant values of the stiffness matrix of the 

dome for the last nonlinear analysis cycle which is the optimum design stored 

as DET3 is shown in Table 2. It is obvious that dome can resist up to 1200 kN 

external concentrated loading at its crown. If the loading exceeds this value, the 

stiffness matrix of the dome changes its sign from positive to negative. This 

means after critical loading value (1200 kN) the dome lost its stability and fail.     

  

 

Table 2 Determinant values of the stiffness matrix of the dome. 

 

Loads (P) 

(kN) 

Number of  

nonlinear iterations 

DET3 

(stiffness matrix determinant) 

100 3 0.397E+231 

200 3 0.975E+230 

400 3 0.350E+229 

600 4 0.538E+227 

800 4 0.263E+225 

1000 4 0.234E+222 

1200 5 0.100E+218 

1400 3                -0.999E+194 
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CHAPTER 3 

 

 

OPTIMUM DESIGN OF LAMELLA DOMES 

 

 

3.1 Morphology of Lamella Domes 

 

The morphology of the single layer lamella dome has a simple geometric form. 

If the total number of rings and the height of the crown of the dome are known, 

then it is very simple to get the whole topological information about the dome. 

Utilizing the geometrical features of the lamella dome, the total number of 

members and joints, and the member incidences can be established by the 

knowledge about the total number of rings. One additional step to this, using 

the geometric configuration and the height of crown of the dome, the exact 

coordinates of all joint nodes can also be determined. Lamella domes with 

varying crown heights and rings number, therefore, have dissimilar topology 

from each other [33-34-37]. 

 

The form of commonly used single layer lamella dome is shown in Figure 3.1. 

If the diameter of the dome D, the total number of rings nr, and the height of 

the crown h are known, then all of the structural data about geometry of the 

dome can be computed automatically. The distance between the rings in the 

dome on the meridian line has to be equal. It can be easily seen from Figure 3.2 

(b) that all the joints are located with equal distance from each other on the 

same ring. The top joint at the crown is numbered as the first joint (joint 

number 1). Every ring has 12 joints on itself. The first joint on the first ring 

according to the positive z direction making an angle of 360
o 

/ 24 = 15
o
 with 

the radius drawn on the x axis
 
is numbered as joint 2 and all of the first joints 

of the other rings are placed as; 
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Figure 3.1 Lamella Dome. 
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Figure 3.2 Automated computation of joint coordinates in a lamella dome. 
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[Jr1 + (r-1)*12]                                                                                              (3.1)  

 

where r is the ring number and Jr1 is the first joint number of the first ring 

namely 2.  

 

It is worthwhile to mention that all of the first joints of the odd numbered rings 

(ring 1, ring 3, ring 5, etc.) are located on the x axis with same angle of 15
o
. 

Beside this, the first joints of the even numbered rings (ring 2, ring4, etc.) are 

located on the intersection points of that rings and x-axis. For example the first 

joint number of the third ring is numbered as 2 + (3-1)*12 = 26 and it makes 

15
o
 angle with x-axis. On the other hand, the first joint number of the fourth 

ring is numbered as 2 + (4-1)*12 = 38 and this joint is located on the 

intersection point of fourth ring and x-axis.  By the aid of this relation every 

joint on the rings is numbered in a regular sequence.  

 

Member incidences are arranged in similar manner. First member is taken as 

the one which is on the x axis and connects joint 1 to joint 2. The other 11 

members connect joint 1 to joints 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. This is 

followed by the members that connect joints on the ring as 2-3, 3-4, 4-5, 5-6, 6-

7, 7-8, 8-9, 9-10, 10-11, 11-12, 12-13, 13-2. This process is repeated for each 

ring and member incidences for all the members in the dome are determined 

and stored in an array.  

 

Computation of x, y, and z coordinates of a joint on the dome requires the 

angle between the line that connects the joint under consideration to joint 1 and 

the x-axis as shown in Figure 3.2 (a) and (b). This angle can be calculated for 

joint i shown in the same figure. 
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For the odd numbered rings; 

 

,1360*( )360

24 12

r

i

i j
                                                                              (3.2) 

                                      (2a) 

For the even numbered rings; 

 

,1360*( - )

12

r

i

i j
                                                                                 (3.3) 

                (2b) 

where i  is shown in Figure 3.2 (b), r is the ring number that joint i is placed 

on it and j is the first joint number on the ring number r which is on the x-axis. 

For example, the angle between the radius that connects joint 1 to joint 16 

located on a even numbered ring (ring 2) and the x-axis; 

 

16

360*(16-14)
60

12

o
                                                                              (3.4) 

 

On the other hand, the angle between the radius that connects joint 1 to joint 28 

located on a odd numbered ring (ring 3) and x-axis; 

 

28

360 360*(28- 26)
75

24 12

o
 

 

The ix  and iz  coordinates of joint i can be calculated as; 

 

cos( )

sin( )

i i

i i

x ra

z ra
                                                                                           (3.5) 

             (2c) 
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where r is the ring number that joint i is on it and a is the radius of ring r in x-z 

plane.  

 

If the distance between rings are equal to a, then a becomes D/(2nr). The iy  

coordinate of joint i; 

 

2 2

i iy R x R h                                                                          (3.6)               (2d) 

 

where R is the radius of the semi-circle shown in Figure 3.2 (a) computed from            

( D
2 

+ 4h
2 

) / (8h). By use of equations (3.5) and (3.6) for each joint, it is 

possible to obtain the coordinates of the joints in the dome automatically.  

 

 

3.2 Optimum Topology Design of Lamella Domes 

 

Topological design of a lamella dome with a given base diameter necessitates 

the finding out of the optimum number of rings and the height of the crown, 

and the steel sections designations for each member group in the dome selected 

from a standard steel sections table. These should be specified such that the 

strength and serviceability requirements are satisfied according to code of 

practice and the overall cost or only the material cost of the dome is minimum.  
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Figure 3.3 (a) Lamella Dome with Two Different Member Groups. 

 

It is possible for the members of a dome to be made of the same section in 

practice. However in some cases they can be grouped together to achieve the 

minimum construction cost for the structure. The optimum topology design of 

single layer lamella domes differs in formulation depending on the way 

member grouping is decided in the dome [33-34]. If the members are chosen to 

belong to the same group, dome becomes simple to design and member 

grouping is independent of the number of rings. In another case, members 

located in a meridian line can be one group and members on the rings are 

another, total of two groups as shown in Figure 3.3 (a). In both cases number of 

groups in the dome is not function of the number of rings and automatic 

grouping of the members can be performed without the need of the total 
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number of rings in the dome. However, it is also possible that the members of 

the dome can be grouped such that the members between each ring are to be 

assigned one group and the members on each ring are another group as shown 

in Figure 3.3 (b) [34-37]. In this case, the members between the crown and the 

first ring are assigned as group 1, the members on the first ring are assigned as 

group 2, the members between rings 1 and 2 are assigned as group 3, and the 

group number of members on the ring 2 is assigned as group 4 and so on. 

Under this circumstance, grouping of the members depend upon the total 

number of rings which is one of the design variables of the problem. Hence the 

total number of groups in the dome becomes twice the total number of rings in 

the design problem. For example, if a dome with three rings is considered, the 

total number of design variables becomes 7, six of which are the sectional 

designation to be selected for each group and the last one is the height of the 

dome. In the case of five rings in the dome the total number of design variables 

is 11, ten of which represents the sectional designations to be assigned for each 

group and the last one gives the height of the crown in the dome.    
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Figure 3.3 (b) Lamella Dome with Eight Different Member Groups. 

 

 

3.3 Mathematical Model of Optimum Design Problem of Lamella Domes 

According to LRFD-AISC 

 

In three dimensional modeling of lamella domes, joints are considered to be 

rigidly connected in order to represent real behavior of these domes. As a result 

of such modeling, all members of the lamella dome are exposed to both axial 

forces and bending moments. Consequently, axial stiffness of the members of 

lamella dome are influenced by the bending moments directly because of 

members‟ slenderness, which requires the consideration of the geometric 

nonlinearity in the analysis of these structures. 
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The design of lamella domes requires the selection of steel sections for its 

members from a standard steel pipe section tables such that the dome satisfies 

the serviceability and strength requirements specified by the code of practice 

while the economy is observed in the overall or material cost of the dome. 

When the design constraints are implemented from LRFD-AISC [38-39] in the 

formulation of the design problem the following mathematical programming 

problem is obtained. 

 

1 1

min
isng

i j

i j

W m l                    (3.7) 

 

Subject to; 

 

k ku   , 1,2,.....,k p         (3.8) 

 

For  0.2u

n

P

P
; 

 

8
1

9

uyu ux

n b nx b ny

MP M

P M M
                                                                   (3.9) 

 

For    0.2u

n

P

P
;  

     

1
2

uyu ux

n b nx b ny

MP M

P M M
                                                                 (3.10) 

 

v nr urV V    , 1,2,.....,r nm                                               (3.11) 
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where im  in equation (3.7) gives the unit weight of a lamella dome member 

belonging to group i selected from steel pipe section list of LRFD-AISC, is  is 

the total number of members in group i, and ng  is the total number of groups 

in the dome system. 
jl  is the length of member j . kδ  in equation (3.8) is the 

displacement of joint k and ku δ  is its upper bound. The joint displacements are 

computed by carrying out elastic-critical load analysis for lamella dome 

system.  

 

Equations (3.9) and (3.10) represent the strength requirements for a member 

subjected to both bending and axial force according to LRFD. In these 

inequalities Øb is the resistance factor for flexure given as 0.9,   is the 

resistance factor for compression given as 0.85, Mux is the required flexural 

strength relating to strong axis (x) bending, Muy is the required flexural strength 

related with the weak axis (y) bending, Mnx and Mny are the nominal flexural 

strength related with strong axis (x) bending and weak axis (y) bending 

respectively. Pu is the required compressive strength, and Pn is the nominal 

compressive strength which is computed from; 

 

n g crP A F                                                                                           (3.12) 

 

Subjected to; 

 

For  1.5c  

 

2

(0.658 )c

cr yF F                                                                                      (3.13) 

                 (1g) 
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For 1.5c   

 

2

0.877
cr y

c

F F                                                                                           (3.14) 

                 (1h) 

where in equation (3.12) Ag is the gross area of a lamella dome member, and 

Fcr is found from equation (3.13) or (3.14) in which Fy  is the specified yield 

stress taken as 250 MPa and c  is obtained from; 

 

y

c

FKl

r E
                                                                                         (3.15) 

 

where K is the effective length factor taken as 1, l is the length of a dome 

member, r is governing radius of gyration about the axis of buckling, and E is 

the modulus of elasticity.  

 

Equation (3.11) represents the shear strength requirement in load and resistance 

factor design according to LRFD. In this inequality v  represents the resistance 

factor for shear given as 0.9, Vnr is the nominal strength in shear and Vur is the 

factored service load shear for member r. 

 

The programming problem described with equations (3.7) to (3.11) is discrete 

programming problem due to the fact that pipe sections for the groups of the 

dome are to be selected from the available steel pipe section lists. Harmony 

search method is used to obtain the solution of this problem. It should be 

pointed out that the nominal flexural strength and the axial strength of the 

dome members are calculated by carrying out elastic critical load factor 

analysis of the dome as explained in Chapter 2. 
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CHAPTER 4 

 

 

HARMONY SEARCH METHOD BASED OPTIMUM 

DESIGN ALGORITHM 

 

 

4.1 General Concept of Harmony Search Algorithm 

  

Numerical methods which have the shortcomings, such as using gradient 

information and motivated improving the solution in the neighborhood of a 

starting point, have compelled researchers to use meta-heuristic algorithms 

counterfeiting a natural phenomena such as genetic algorithms (GAs), tabu 

search (TS), simulated annealing (SA), evolutionary strategies (ES), etc.  

 

Among these methods, a new meta-heuristic algorithm is called harmony 

search (HS) method is developed by Geem [16]. This numerical technique 

simulates the musical performance process that comes about once a musician is 

looking for a better state of harmony. Jazz improvisation seeks to find 

musically pleasing harmony similar to the optimum design process which seeks 

to find the optimum solution. The HS algorithm demands fewer mathematical 

requirements and does not need initial values for decision variables and the 

derivative information of the objective function and constraints when 

compared to mathematical programming methods mentioned above. Thereby, 

the harmony search method enables easy programming among the 

combinatorial optimization algorithms. 
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The harmony search method consists of five basic steps [40]; 

 

Step 1. Initialize the problem and algorithm parameters. 

 

Step 2. Initialize the harmony memory. 

 

Step 3. Improvise a new harmony. 

 

Step 4. Update the harmony memory. 

 

Step 5. Check the stopping criteria. 

 

The detailed descriptions of these steps can be useful to comprehend the HS 

method clearly. 

 

Step 1. Harmony search parameters are initialized. 

 

A possible value range for each design variable of the optimum design problem 

is specified as: 

 

Minimize f(x), xЄX                                                                                        (4.1) 

Subject to g(x) ≥ 0 and h(x) = 0                                                                    (4.2) 

 

where; f(x) is the objective function and g(x) is the inequality constraint 

function; h(x) is the equality constraint function. x is the set of each decision 

variable, xi, and X is the set of the possible range of values for each decision 

variable, that is Lxi ≤ Xi ≤ Uxi, where Lxi and Uxi are the lower and upper bounds 

for each decision variable.  
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A pool is constructed by collecting these values together from which the 

algorithm selects values for the design variables. Furthermore the number of 

solution vectors in harmony memory (HMS) that is the size of the harmony 

memory matrix, harmony considering rate (HMCR), pitch adjusting rate (PAR) 

and the maximum number of searches are also specified in this step. 

 

Step 2. Harmony memory matrix (HM) is initialized. 

 

Harmony memory matrix is initialized. Each row of harmony memory matrix 

contains the values of design variables which are randomly selected feasible 

solutions from the design pool for that particular design variable. Hence, this 

matrix has n columns where n is the total number of design variables, and 

HMS rows are selected in the first step. HMS is similar to the total number of 

individuals in the population matrix of the genetic algorithm. The harmony 

memory matrix has the following form: 

 

 [H] = 

hmsnhmsnhmshms

hmsnhmsnhmshms

nn

nn

xxxx

xxxx

xxxx

xxxx

,,1,2,1

1,1,11,21,1

2,2,12,22,1

1,1,11,21,1

....

....

............

............

....

....

                         (4.3)                        

 

jix ,  is the value of the i
th

 design variable in the j
th

 randomly selected feasible 

solution. These candidate designs are sorted such that the objective function 

value corresponding to the first solution vector is the minimum. In other words, 

the feasible solutions in the harmony memory matrix are sorted in descending 

order according to their objective function values. It is worthwhile to mention 

that only the feasible designs which satisfy the constraints are inserted into 

harmony memory matrix. Those designs having a small infeasibility are also 

included in the harmony memory matrix with a penalty on their objective 
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function. A detailed flowchart for the improvisation of a new harmony memory 

matrix is given in Figure 4.1.  

 

Step 3. New harmony memory matrix is improvised. 

 

In generating a new harmony matrix the new value of the i
th
 design variable 

can be chosen from any discrete value within the range of i
th

 column of the 

harmony memory matrix with the probability of HMCR  which varies between 

0 and 1. In other words, the new value of xi can be one of the discrete values of 

the vector 
T

hmsiii xxx ,2,1, ..,,........., with the probability of HMCR . The same 

is applied to all other design variables. In the random selection, the new value 

of the i
th

 design variable can also be chosen randomly from the entire pool with 

the probability of HMCR1 . That is 

 

,1 ,2 ,

1 2

, ,...........

, ,..........., (1 )

T

i i i i hms

new

i
T

i ns

x x x x with probability HMCR

x

x x x x with probability HMCR

                (4.4)     

      

where ns  is the total number of values for the design variables in the pool. If 

the new value of the design variable is selected among those of harmony 

memory matrix, this value is then checked whether it should be pitch-adjusted. 

This operation uses pitch adjustment parameter PAR that sets the rate of 

adjustment for the pitch chosen from the harmony memory matrix as follows: 

 

PARofyprobabilitwithNo

PARofyprobabilitwithYes
adjustedpitchbetoxIs new

i
1

?  (4.5)                  

Supposing that the new pitch-adjustment decision for 
new
ix  came out  to be yes 

from the test and if the value selected for   
new
ix  from the harmony memory is 

the k
th

 element in the general discrete set, then the neighboring value k+1 or 



 

79 

 

k-1 is taken for new 
new
ix . This operation prevents stagnation and improves 

the harmony memory for diversity with a greater change of reaching the global 

optimum. 

 

Constraint handling: Once the new harmony vector 
new
ix  is obtained using 

the above-mentioned rules, it is then checked whether it violates problem 

constraints. If the new harmony vector is severely infeasible, it is discarded. If 

it is slightly infeasible, there are two ways to follow. One is to include them in 

the harmony memory matrix by imposing a penalty on their objective function 

value. In this way the violated harmony vector which may be infeasible slightly 

in one or more constraints, is used as a base in the pitch adjustment operation 

to provide a new harmony vector that may be feasible. The other way is to use 

larger error values such as 0.08 initially for the acceptability of the new design 

vectors and reduce this value gradually during the design cycles and use finally 

an error value of 0.001 towards the end of the iterations. This adaptive error 

strategy is found quite effective in handling the design constraints in large 

design problems. 

 

Step 4. Harmony Memory matrix is updated. 

 

After selecting the new values for each design variable the objective function 

value is calculated for the new harmony vector. If this value is better than the 

worst harmony vector in the harmony matrix, it is then included in the matrix 

while the worst one is taken out of the matrix. The harmony memory matrix is 

then sorted in descending order by the objective function value.  

 

Step 5. Steps 3 and 4 are repeated until the termination criterion which is the 

pre- selected maximum number of cycles is reached. This number is selected 

large enough such that within this number of design cycles no further 

improvement is observed in the objective function. 
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Figure 4.1 Improvisation of a new harmony memory vector. 

 

 

 

ran ≤ 0.5 

Yes 

No 

Start 

Number of mxi  

Stop 

ran < HMCR 

i  > m  

D3 = int(ran*HMS)+1 

D4 = HM(D3, i ) 

NCHV( i )=D4 

D3 = int(ran*NS)+1 

D4 = HM(D3, i ) 

NCHV( i )=D4 

ran < PAR 

D3 = D3+1 

NCHV( i ) = HM(D3,i) 

D3 = D3-1 

NCHV( i ) =HM(D3,i) 

ix : Continuous variables ( mi ,,2,1  ) 

HMCR: Harmony memory considering rate 

NS: The total number of values for the 

design variables in the discrete set (pool) 

PAR: Pitch adjustment rate                                                          

HMS: Harmony memory size 

HM(*,*):Harmony memory matrix  

ran: Random numbers in the range 0.0 ~ 1.0 

NCHV: A new harmony vector  

Yes 

Yes 

No 

Yes 

No 

No 
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4.2  A Harmony Search Algorithm Based Optimum Design Method For 

Single Layer Lamella Domes 

 

Optimum topological design problem of single layer lamella domes under a 

given loading case, mathematical formulation of which is shown in Equations 

3.7-3.11, is solved by using harmony search method. The steps of the design 

algorithm developed are given as follows;  

 

1. Prepare the discrete sets. In this step, discrete design pools are prepared for 

the design variables since there are three different types of design variables, 

three different design pools are prepared; one for each. There are a set of steel 

sections selected from the available pipe section lists, a set of discrete height 

values and a set of total ring numbers. The steel pipe sections, height values, 

and number of rings are sorted in ascending order according to weight per 

meter, minimum height to maximum height, and minimum ring number to 

maximum ring number, respectively. The design pool for the total number of 

rings for the dome contains 4 values that are 3, 4, 5 and 6. For the height of the 

crown a list is prepared starting from 1 m to 8.75 m with the increment of   

0.25 m, resulting 32 discrete values as shown in Table 4.1. The size design 

variables (members‟ ready sections) are selected from 37 steel pipe sections 

given in LRFD-AISC [38] as listed in Table 4.2. The sectional designations 

selected vary from PIPST13 to PIPDEST203 where abbreviations ST, EST, 

and DEST stands for standard weight, extra strong, and double-extra strong 

respectively.  

 

2. Select the values of harmony parameters. The harmony memory size 

HMS, the harmony memory considering rate HMCR and the pitch adjustment 

rate PAR are selected. These parameters are decided after carrying out several 

trials. 

 



 

82 

 

3. Generate a harmony memory matrix. Select randomly total number of 

rings, crown height and sequence number of a steel pipe section from the 

discrete list for each group in the dome. The sequence numbers of steel pipe 

sections, height values, and total number of rings varying between 1 to total 

number of pipe sections, heights, and total number of ring are included in the 

design pool. These sequence numbers are treated as design variable. For 

example, if there are 37 steel pipe sections, 32 height values, and 4 ring 

numbers in the design pool and 6 member groups in the truss dome to be 

designed then the Harmony Search algorithm selects randomly integer numbers 

which vary from 1 to 37 for steel pipe sections, 1 to 32 for height values, and 1 

to 4 for ring number for each member group. Once the selection is carried out 

for each member group, the cross sectional properties of each steel pipe section 

become available from the design pool. The structure is then analyzed under 

the external loads with these sections to find out whether its response is within 

the limitations imposed by the design code.  

 

Table 4.1 Discrete Set of Height Values. 

 

Sequence Number Height (m) Sequence Number Height (m) 

1 1.00 17 5.00 

2 1.25 18 5.25 

3 1.50 19 5.50 

4 1.75 20 5.75 

5 2.00 21 6.00 

6 2.25 22 6.25 

7 2.50 23 6.50 

8 2.75 24 6.75 

9 3.00 25 7.00 

10 3.25 26 7.25 

11 3.50 27 7.50 

12 3.75 28 7.75 

13 4.00 29 8.00 

14 4.25 30 8.25 

15 4.50 31 8.50 

16 4.75 32 8.75 
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Table 4.2 Dimensions and Properties of Steel Pipe Sections. 

 

1       2   3    4   5        6     7    8     9      10      11 

1 PIPST13 21,3 2,77 160 0,00704 0,661 6,63 14,1 0,953 0,0125 

2 PIPEST13 21,3 3,73 205 0,00827 0,777 6,35 16,5 1,16 0,0159 

3 PIPST19 26,7 2,87 217 0,0156 1,17 8,48 31,2 1,65 0,0165 

4 PIPEST19 26,7 3,91 282 0,0188 1,41 8,16 37,6 2,06 0,0215 

5 PIPST25 33,4 3,38 320 0,0365 2,19 10,7 73 3,07 0,0245 

6 PIPEST25 33,4 4,55 412 0,044 2,63 10,3 87,9 3,82 0,0317 

7 PIPST32 42,2 3,56 431 0,0812 3,85 13,7 162 5,32 0,0332 

8 PIPST38 48,3 3,68 518 0,13 5,38 15,8 260 7,38 0,0397 

9 PIPEST32 42,2 4,85 569 0,101 4,79 13,3 202 6,8 0,0439 

10 PIPEST38 48,3 5,08 692 0,164 6,79 15,4 327 9,56 0,0531 

11 PIPST51 60,3 3,91 691 0,276 9,15 20 552 12,4 0,0534 

12 PIPEST51 60,3 5,54 947 0,359 11,9 19,5 718 16,6 0,0734 

13 PIPST64 73 5,16 1100 0,635 17,4 24 1270 23,8 0,0846 

14 PIPST76 88,9 5,49 1440 1,26 28,3 29,6 2520 38,3 0,111 

15 PIPEST64 73 7,01 1450 0,799 21,9 23,5 1600 30,6 0,112 

16 PIPDEST51 60,3 11,1 1710 0,544 18 17,8 1090 27,3 0,132 

17 PIPST89 102 5,74 1800 2,08 40,8 34 4160 55 0,133 

18 PIPEST76 88,9 7,62 1940 1,62 36,4 28,9 3240 50,4 0,15 

19 PIPST102 114 6,02 2040 2,98 52,3 38,2 5950 70,1 0,158 

20 PIPEST89 102 8,08 2440 2,7 52,9 33,3 5400 73,1 0,183 

21 PIPDEST64 73 14 2590 1,19 32,6 21,4 2390 49,6 0,2 

22 PIPST127 141 6,55 2750 6,23 88,4 47,6 12500 118 0,214 

23 PIPEST102 114 8,56 2790 3,91 68,6 37,4 7820 93,9 0,219 

24 PIPDEST76 88,9 15,2 3530 2,5 56,2 26,6 4990 83,9 0,271 

25 PIPST152 168 7,11 3540 11,5 137 57 23000 182 0,277 

26 PIPEST127 141 9,53 3920 8,53 121 46,6 17100 165 0,304 

27 PIPDEST102 114 17,1 5170 6,27 110 34,8 12500 161 0,402 

28 PIPST203 219 8,18 5300 29,6 270 74,7 59100 356 0,417 

29 PIPEST152 168 11 5430 16,8 200 55,6 33600 272 0,418 

30 PIPDEST127 141 19,1 7280 13,9 197 43,7 27800 285 0,564 

31 PIPST254 273 9,27 7460 65,1 477 93,4 130000 628 0,591 

32 PIPEST203 219 12,7 8110 43,4 396 73,2 86800 534 0,634 

33 PIPST305 324 9,53 9390 116 716 111 232000 940 0,724 

34 PIPDEST152 168 21,9 10100 27,5 327 52,2 55000 473 0,777 

35 PIPEST254 273 12,7 10200 87 637 92,4 174000 849 0,8 

36 PIPEST305 324 12,7 12700 154 951 110 308000 1260 0,956 

37 PIPDEST203 203 22,2 13600 66,9 611 70,1 134000 857 1,06 
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where;  Column 1 of Table 4.2 shows the sequence number, Column 2 is the 

sectional designation of the pipe sections, Column 3 is the outside diameter 

(mm), Column 4 is the wall thickness (mm), Column 5 is the area (mm
2
), 

Column 6 is the moment of inertia/10
6
 (mm

4
), Column 7 is the elastic section 

modulus/10
3
 (mm

3
), Column 8 is the governing radius of gyration (mm), 

Column 9 is the torsional constant for a section/10
3
 (mm

4
), Column 10 is the 

plastic section modulus/10
3
 (mm

3
), and Column 11 is the weight per meter 

Plain Ends (kN), respectively.  

 

As an example typical harmony memory matrix is shown below for a dome 

where the members are collected in six different groups.  

 

1 11 25 33 14 17 13 19

1 11 25 31 14 17 13 22

1 11 25 31 14 14 17 19

1 12 25 31 14 17 13 22

1 13 25 33 14 17 13 19
[ ]

1 11 25 33 17 14 13 19

1 11 25 33 14 19 13 19

1 11 25 33 15 19 13 19

1 10 26 31 14 17 13 22

1 13 25 31 14 17 13 22

H         

    

Each row of this matrix represents a potential design candidate for the dome. 

The numbers seen in this matrix are the sequence numbers of design variables 

randomly selected from discrete sets. The first row of this matrix represents the 

best design at that design cycle. The first column presents the ring numbers. 

The sequence number 1 selected by the algorithm stands for 3 rings. The 

second column represents the height values. The sequence number 11 selected 

by algorithm symbolizes 3.5 m a height for the dome. The remaining columns 

are the sequence numbers from pipe sections list for each group. The pipe 

section whose sequence number is 25 in the list which is PIPST 152 is selected 
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for member group 1. Sequence number 33 corresponds to PIPST 305 which is 

the pipe section adopted for group 2. The rest of the sections are given in 

columns 5, 6, 7, and 8. 

  

4. Generate the geometrical data such as member incidences and joint 

coordinates, automatically using the values selected for the total number of 

rings and crown height as explained in Chapter 3. 

 

5. Carry out the nonlinear elastic critical load analysis of the steel dome with 

the tubular sections selected for member groups until the ultimate load factor is 

reached and check whether there is a loss of stability at any stage of this 

nonlinear analysis as explained in Chapter 2. If the loss of stability occurs then 

this selected design vector is taken out from harmony memory matrix and 

replaced by a new design vector that is selected randomly again. This 

replacement process is repeated until a design vector is determined that does 

not have instability problem. This vector is then checked whether or not it 

satisfies the design constraints. If it does not satisfy it is once more discarded. 

However, if it is slightly infeasible it is considered for the harmony memory 

matrix.  

 

6. Check whether the new design vector selected should be pitch-adjusted as 

explained in step 3 of the harmony search method. 

 

7. Calculate the objective function value for the newly selected design vector. 

If this value is better than the worst harmony vector in the harmony matrix, it is 

then included in the matrix while the worst one is taken out of the matrix. The 

harmony memory matrix is then sorted in descending order by the objective 

function value. If the previous example is considered once more, the harmony 

memory matrix includes the sequence numbers of design variables and the 

weight (kg) which is the objective function of the dome (Table 4.3).  
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Table 4.3 A harmony set of a designed dome. 

 

When the newly selected design vector, which is the 3
rd

 row, is better than the 

worst harmony vector, the worst one is discarded from matrix and the new one 

is added as seen in Table 4.4. 

 

Table 4.4 New harmony set of a designed dome.  

 

8. Repeat steps 2 and 6 until the pre-selected maximum number of iterations 

is reached. The maximum number of iterations is selected large enough such 

that within this number of design cycles no further improvement is observed in 

the objective function. 

 

The general flow diagram of the optimum topological design of single layer 

lamella domes, based upon Harmony Search Method, can be described as in 

following chart; 

 

 

 

 

 

1 11 25 33 14 17 13 19 6348.59

1 11 25 31 14 17 13 22 6402.63

[ ] 1 11 25 31 14 14 17 19 6448.47

1 12 25 31 14 17 13 22 6449.17

1 13 25 33 14 17 13 19 6450.40

H

1 11 25 33 14 17 13 19 6348.59

1 11 25 31 14 17 13 22 6402.63

[ ] 1 12 25 31 14 17 13 22 6449.17

1 13 25 33 14 17 13 19 6450.40

1 11 25 33 17 14 13 19 6457.29

H
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Figure 4.2  Flowchart of Harmony Search method based optimum design of 

algorithm. 

 

OPTIMIZED WEIGHT 
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CHAPTER 5 

 

 

DESIGN EXAMPLES 

 

 

The design algorithm presented is used to determine the optimum number of 

rings, the crown height and the circular steel hollow section designations for 

the single layer lamella dome shown in Figure 3.1. The preparation of the 

design pool, for the steel pipe sections, the height of the crown and the total 

number of rings, is explained in detail in the previous chapter. The modulus of 

elasticity for the steel is taken as 205 kN/mm
2
 and the shear modulus is taken 

as 81 kN/mm
2
. The diameter of the dome is taken as 20 m. The limitations 

imposed on the joint displacements are given in Table 5.1.  

 

   Table 5.1 Displacement restrictions of the single layer lamella dome. 

 

 

 

Harmony memory matrix size is initially taken as 20. However, the same 

example is designed several times using different harmony memory matrix size 

which was changed from 20 to 50. In the mean time harmony memory 

considering rate (HMCR) and pitch-adjusting rate (PAR) are varied between 

0.60 to 0.90 and 0.20 to 0.45 respectively in order to determine the most 

Joint number 

Displacement restrictions (mm) 

X-direction Y-direction Z-direction 

1 - - 28 

2 33 33 28 

3 33 33 28 
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appropriate values for the design problem under consideration. Table 5.2 shows 

the effect of different values of harmony search algorithm parameters on the 

optimum design. Different set of values yields different minimum weights. 

Among these the lightest dome is selected which is the fourth one in the table. 

 

Table 5.2 The effect of Harmony Search algorithm parameters.   

 

Analysis HMS HMCR PAR Weight (kg) Height (m) 

1 50 0.80 0.30 4214.9 3.75 

2 30 0.90 0.30 4066.8 5 

3 20 0.90 0.45 4038.8 5.75 

4 50 0.85 0.40 4034.2 6.25 

 

It is apparent from Table 5.2 that the selection of the above parameters is 

problem dependent. The total number of iterations is taken as 20000 in each 

design case. This number is determined after carrying out several designs with 

a larger number of searches. It is noticed that the result obtained within the 

20000 searches remains the same even if the search continues up to 50000 for a 

better design. The design obtained in the last search is considered to be the 

optimum solution. The member grouping is decided such that the total number 

of groups in the dome becomes twice the total number of rings in the design 

problem. 

 

The dome is considered to be subjected to three loading case as follows; 

 

1. P                      (5.1) 

 

2. D + P           (5.2) 

 

3. D + P + W                     (5.3)  
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where; P is the equipment load acting on crown of the dome, D is the dead 

load, and W is the wind load. 

  

 5.1 CASE 1 (P) 

 

In this case dome is considered to be subjected to equipment loading of 500kN 

at its crown as shown in Figure 3.1. The optimum sectional designations for 

each group and the height obtained for the dome with different number of rings 

are given in Table 5.3. It is noticed in all these cases that the strength 

limitations are dominant in the design problem. In the optimum domes while 

the strength ratios were equal to 1 or very close to 1, the restricted 

displacements are much less than their upper bounds. Furthermore, it is clear 

that the lightest dome among the four optimum geometries is the one which has 

the least number of rings. It is apparent that the dome with a greater number of 

rings has more members which naturally yield a heavier structure. Hence the 

optimum number of rings for the lamella dome is three. All joints on the last 

ring are considered to be pin support for this case. The optimum dome obtained 

is shown in Figures 5.1 and 5.2.   

 

Table 5.3 Optimum design for the single layer lamella dome for load case 1.  

 

Group Number 

               

Optimum Section Designations 

3 rings 4 rings 5 rings 
1 PIPST  127 PIPST 152 PIPST 203 

2 PIPEST 89 PIPEST 89 PIPST 19 

3 PIPST 64 PIPST 64 PIPST 64 

4 PIPST 76 PIPST 76 PIPST 102 

5 PIPST 64 PIPST 64 PIPST 64 

6 PIPST 13 PIPST 76 PIPST 76 

7 N.A PIPST 64 PIPST 64 

8 N.A PIPST 13 PIPST 76 

9 N.A N.A PIPST 64 

10 N.A N.A PIPST 13 

Optimum Height (m) 6.25 5.25 3.25 

Max.Displacement (mm) 2.38 4.77 25.16 

Max. Strength Ratio  0.98 1.00 1.00 
Weight (kg) 4034.2 4502.1 4873.1 
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Figure 5.1 3D view of optimum single layer lamella dome. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Side view of optimum single layer lamella dome. 
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The elastic critical load analysis of the optimum dome is shown in Table 5.4. 

The initial load factor is taken as 0.1 and it is increased to 1.0 with the 

increment of 0.1 during the elastic critical load cycles. The number of 

nonlinear analysis iterations required to obtain the convergence in each load 

factor is given in the second column of Table 5.4. It is interesting to notice that 

number of iterations vary from 2 iterations to 16 iterations which is the largest 

allowed number of iteration during elastic critical load cycles. 

 

Table 5.4  Elastic Critical Load Factor Iterations for optimum designed dome 

for Case 1. 

 

Load Factor 
Number of Nonlinear 

Analysis Iterations 

0.1 7 

0.2 11 

0.3 16 

0.4 15 

0.5 16 

0.6 2 

0.7 16 

0.8 4 

0.9 7 

1.0 2 

 

 

Optimum single layer lamella dome with 4 rings for the load Case 1 is shown 

in Figures 5.3 and 5.4.  
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Figure 5.3 3D view of optimum single layer lamella dome with 4 rings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Side view of optimum single layer lamella dome with 4 rings. 
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Figure 5.5 and 5.6 illustrate the optimum design for single layer lamella dome 

with 5 rings for the load Case 1. 

 

 

Figure 5.5 3D view of optimum single layer lamella dome with 5 rings. 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Side view of optimum single layer lamella dome with 5 rings. 
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The same dome is designed once again for only one pin supported joint on the 

last ring for the same loading case. The joint 31 for the dome with 3 rings, the 

joint 44 for the dome with 4 rings and the joint 55 for the dome with 5 rings on 

the last ring is considered to be pin supported and all the other joints on the 

same ring are considered to be roller-supported. The optimum solutions 

obtained for this case are given in Table 5.5.  

 

Table 5.5 Optimum design of single layer lamella dome with 3 rings according 

to different support conditions. 

  

 

This system is much heavier than the one with all joints pinned on the last ring 

because harmony search method selects different steel pipe sections for groups 

1, 2, 3, 4, and 6 for 3 rings dome, for groups 2, 4, 5, 6, 7, and 8 for 4 rings 

dome and for groups 2, 3, 4, 5, 7, 9, and 10 for 5 rings dome for this case. It is 

apparent from the Table 5.5 that strength constraints are dominant in the design 

problem and the optimum number of rings for the lamella dome is three (same 

Group Number 
Optimum Section Designations 

3 rings 4 rings    5 rings 

1   PIPST 152     PIPST 152 PIPST 203 

2   PIPST 305     PIPST 305 PIPEST 305 

3   PIPST 76     PIPST 64 PIPEST 64 

4   PIPST 89     PIPST 254 PIPST 76 

5   PIPST 64     PIPST 76 PIPST 254 

6   PIPST 102     PIPST 89 PIPST 76 

7 N.A     PIPST 152 PIPEST 51 

8 N.A     PIPST 89 PIPST 76 

9 N.A N.A PIPST 203 

10 N.A N.A PIPST 127 

Optimum Height(m) 3.5 4.25 3.75 

Max.Displacement(mm) 12.1 10.23 20.524 

Max. Strength Ratio  1.00 1.00 1.00 

Weight (kg) 6348.6 9713.3 13279 
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as in the previous case). It has to be noted that optimum heights in this case are 

different from the previous case.  

 

If the lightest system of this case is taken into account, during the optimum 

design cycles, the first load factor required 4 nonlinear analysis iterations and 

all the other remaining load factors required 2 nonlinear analysis iterations to 

obtain the convergence in the axial forces. 

 

5.2 CASE 2 ( D + P ) 

  

In this case, 3 rings dome, which has the optimum ring number according to 

Case 1, is considered to be subjected to a combination of dead load and 

equipment load as presented in Figure 5.7. Equipment load of 500 kN is 

applied only on the crown of the dome. The sandwich type aluminium cladding 

is used. The load of this cladding (including frame elements to be used for the 

girts) is taken as 200 N/m
2
. All joints on the last ring are considered to be pin 

support for this case. 

  

 

 

 

 

 
 

 

 

 

Figure  5.7  Load Case 2  ( Dead Load + Equipment Load ). 

 

Dead load is converted into equivalent point load for each joint for the sake of 

simplicity. For this conversion distributed load is multiplied by projected area 

0.200 kN/m
2
 

P 

D 

500 kN 

h 

20 m 



 

97 

 

of the dome and then this result is divided by joint number of the dome which 

gives the load acting on each joint. The load value at each joint is given in 

Table 5.6.  

 

Table 5.6 Loads Acting on Joints for Case 2 ( D + P ). 

 

 

 

 

 

 

The optimum sectional designations obtained by the harmony search based 

algorithm is demonstrated in Table 5.7. It can be noticed from the table that 

strength constraint is dominant for this design case. 

 

Table 5.7 Optimum design of single layer lamella dome with 3 rings for load case 2. 

 

 

 

    

 

 

 

 

 

 

 

 

 

Joint Number Loads Acting on Joints (kN) 

1 501.6982 

2 - 37 1.6982 

Group Number 
Optimum Section Designations 

3 rings 

1                    PIPST  127 

2                    PIPST 254 

3                    PIPST 76 

4                    PIPST 76 

5                    PIPST 89 

6                    PIPST 13 

Optimum Height (h) (m) 4.5 

Max. Displacement (mm) 4.18 

Max. Strength Ratio  0.99 

Weight (kg) 5456.2 
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The optimum weight obtained from this case is heavier than the first case in 

which the single layer lamella dome is subjected to only 500 kN equipment 

load at its crown. This design is %35.25 heavier than the former case which has 

the optimum weight of 4034.2 kg. The reason is that, the harmony search 

algorithm assigns heavy sections to the some group members when the applied 

loads acting on joints are increased. In the current case, algorithm chooses 

heavier sections for group 2, 3 and 5 compared to the former case. In addition 

to this, optimum height of the dome is changed and some differences for the 

number of nonlinear analysis iterations are observed for optimum design in this 

case as illustrated in Table 5.8. 

 

Table 5.8 Elastic Critical Load Factor Iterations for optimum design of Case 2. 

 

 Load Factor 
Number of Nonlinear 

Analysis Iterations 

0.1 15 

0.2 15 

0.3 3 

0.4 3 

0.5 2 

0.6 11 

0.7 3 

0.8 8 

0.9 16 

1.0 3 

 

 

The optimum design of single layer lamella dome for this case is demonstrated 

in Figures 5.8 and 5.9. It can be easily discerned from these figures that the 
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height of the dome is 4.5 m which is 1.75 m less than the former dome which 

has the 6.25 m optimum height mentioned in load case 1.  

 

 

 

Figure 5.8 3D view of optimum single layer lamella dome for Case 2. 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Side view of optimum single layer lamella dome for Case 2. 

20 m  

 

2.43 m  

 

3.97 m  

 

4.50 m  
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5.3 CASE 3 ( D + P + W  ) 

 

In this case, the dome with 3 rings is designed for the combination of dead 

load, equipment load acting only on crown of the dome, and the wind load 

calculated below. The design procedure of wind load (analytical procedure) 

explained in part 6.5.3 of ASCE 7-05 is followed. 

 

Basic Wind Speed V is taken from Figure 6-1 of ASCE 7-05. 

 

V= 40 m/s (90 mph) 

 

Wind Directionality Factor Kd is taken from Table 6.4 of ASCE 7-05. 

 

Kd = 0.85 (for arched roofs) 

 

Importance Factor I for the building is determined as 1.15 from Table 1.1 of 

ASCE 7-05. 

 

I = 1.15 (for building category III) 

 

Exposure Category is assumed as C from the definitions given in part 6.5.6 of 

ASCE 7-05. 

 

Velocity Pressure Exposure Coefficient Kz is taken from Table 6.3 of ASCE 

7-05. 

 

The mean height of the roof is 13.125 m. (43.061 feet). 

 

Kz = 1.055 (for exposure C and 43 ft height) 
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Topographic Factor Kzt is calculated from 2

1 2 3(1 )ztK K K K  where K1, K2, 

and K3 are taken from Figure 6-4 of ASCE 7-05. 

 

It is assumed that there are a 2-D ridge with H/Lh = 0.30, 3-D escarpment with 

x/Lh = 1.00 and 2-D ridge with z/Lh = 0.40 in the general topology, where; 

 

H  : Height of the hill or escarpment relative to the upwind terrain , in meter, 

 

Lh : Distance upwind of crest to where the difference in the ground elevation is 

half the height of the hill or escarpment, in meter, 

 

K1 : Factor to account for shape of topographic feature and maximum speed-up 

effect, 

 

K2: Factor to account for reduction in speed-up with distance upwind or 

downwind of crest, 

 

K3: Factor to account for reduction in speed-up with height above local terrain, 

 

x : Distance (upwind or downwind) from the crest to the building site, in meter, 

 

z : Height above local ground level, in meter, 

 

K1 = 0.43,  K2 = 0.33,  K3 = 0.30 (from Figure 6-4 of ASCE 7-05) 

 

Kzt = (1 + 0.43x0.33x0.30)
2
  = 1.087 

 

Gust Effect Factor G is taken as 0.85 directly by assuming the structure as 

rigid from part 6.5.8 of ASCE 7-05. 

 

G = 0.85 
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Enclosure Classification is assumed as enclosed, since all lateral and upper 

parts of the building are closed and subjected to wind pressure directly. 

 

Velocity Pressure qz is calculated by using the equation given in part 6.5.10 of 

ASCE 7-05. 

 

2 20.613* * * * *  ( / )z z zt dq K K K V I N m                  (5.4) 

 

qz =  0.613x1.055x1.087x0.85x40
2
x1.15       (5.5) 

 

qz = 1099.5 kN/m
2
  

 

Internal Pressure Coefficients GCpi are found as +0.18 and –0.18 for 

enclosed buildings from Figure 6-5 of ASCE 7-05. Two signed values (positive 

and negative) are used according to the code. Plus and minus signs signify 

pressures acting towards and away from the internal surfaces, respectively. 

 

External Pressure Coefficients Cp are found from Figure 6-6 of ASCE 7-05. 

The dome is assumed to be separated into three parts as shown in Figure 5.2, 

such as windward quarter, center half and leeward quarter. Three different 

external pressure coefficients for these three parts of the dome are calculated 

with respect to rise-to-span ratio. The rise-to-span ratio, r is 6.25/20=0.3125 for 

the dome in which the maximum height (h) of 6.25 m is considered for being 

safe in wind load calculation, which is obtained from Case 1 with different 

algorithm parameters rather than optimum solution. 

 

Cp = 2.75r – 0.7 = 2.75x0.3125 – 0.7 = 0.16 (for windward quarter)   (5.6) 

 

Cp = -0.7 - r = -0.7 - 0.3125 = - 1.0125 (for center half)     (5.7) 

 

Cp = - 0.5 (for leeward quarter)        (5.8) 
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Main Force Resisting Systems 

 

Design wind pressure is calculated from Equation 6.17 of ASCE 7-05: 

 

2( ) ( / )p i pip qGC q GC N m                    (5.9) 

 

where; 

 

q = qh for roofs, evaluated at height h, 

 

qi = qh for roofs of enclosed buildings, 

 

G : Gust effect factor, 

 

Cp : External pressure coefficient from Figure 6-6 or Figure 6-8 of ASCE 7-05, 

 

(GCpi): Internal pressure coefficient from Figure 6-5 of ASCE 7-05. 

 

For windward quarter 

       - 48.378 N/m² 

p = 1099.5 x 0.85 x (0.16) – 1099.5 x (±0.18) = 

       347.442 N/m² 

For center half 

             -1144.1672 N/m
2
 

p = 1099.5 x 0.85 x (-1.0125) – 1099.5 x (±0.18) = 

             -748.3472 N/m
2
 

For leeward quarter 

         -665.1975 N/m
2
 

p = 1099.5 x 0.85 x (-0.50) – 1099.5 x (±0.18) = 

         -269.3775 N/m
2
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As a result of wind pressure procedure, a positive pressure is detected acting on 

the windward quarter. This means, wind effects create negative pressure 

(suction) on the other parts of the dome.  

 

The pieces of optimum design of single layer lamella dome with 3 rings shown 

in Figure 5.10 and the schematically shown of these pieces are demonstrated in 

Table 5.9 as below;  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Pieces of single layer lamella dome with 3 rings. 

5 m 5 m 10 m 
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Table 5.9 Schematic display of the pieces of the dome with 3 rings. 

 

Whole Structure 

Number of Total Joints 
Number of Total Members 

Total (Curved) Area 

Projected Area 

: 37 
: 96 

: 415.796 m
2
 

: 314.160 m
2
 

        Piece 1         Piece 2         Piece 3 

Number of Joints : 7 Number of Joints : 23 Number of Joints : 7 

Total Area : 82.41 m2 Total Area : 191.32 m2 Total Area : 82.41 m2 

Projected Area : 61.42 m2 Projected Area : 250.984 m2 Projected Area : 61.42 m2 

 

 

5.3.1 Load Combinations  

 

5.3.1.1 D + P + W ( internal pressure coefficient is taken as positive ) 

 

 

 

 

 

 

 

 

 

 

Figure 5.11  Load Case 3.1.1  ( Dead Load + Equipment Load + Wind Load 

(internal pressure coefficient is taken as positive) ). 

 

The load combination of dead load, equipment load acting only on crown of 

the dome, and the wind load (internal pressure coefficient is taken as positive) 

is shown in Figure 5.11. The loads acting on joints are calculated as follows; 

 

0.200 kN/m
2
 

P 

D 

500 kN 

h 

10 m 5 m 5 m 

1.1442 kN/m
2
 

0.6652 kN/m
2
 0.0485 kN/m

2
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For windward quarter 

 

P   = ( -0.200 x 61.42 + ( 0.0485 x cos (43.17)
o
 x 82.41 ) / ( 7 joints )  

     = -1.3381 kN / joint (  ) 

 

P   = ( ( -0.0485 x sin (43.17)
o
) x 82.41 ) / ( 7 joints ) 

     = -0.391 kN / joint (      )  

 

 

For Center Half 

 

P = ( -0.200 x 191.32 ) / ( 23 joints )   = -1.664 kN / joint (   ) 

 

P = ( 1.1442 x 250.984 ) / ( 23 joints ) = 12.486 kN / joint (    ) 

           10.822 kN / joint (   ) 

 

 

For Leeward Quarter  

 

P = ( -0.200 x 61.42 + ( 0.6652 x cos (43.17)
o
 ) x 82.41 ) / ( 7 joints ) 

   = 3.957 kN / joint (   )  

 

P = ( ( 0.6652 x sin (43.17)
o
 ) x 82.41 / ( 7 joints ) 

   = 5.358 kN / joint (      ) 

 

 

The results obtained for the optimum design of this loading case is given in 

Table 5.10.   
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Table 5.10 Optimum design obtained for dome with 3 rings for the case           

D + P + W (internal pressure coefficient is taken as positive). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The optimum dome for this loading case is a little lighter than the precedent 

one which has 5456.2 kg as optimum weight and is subjected to combination of 

dead load and equipment load at its crown. The Harmony Search algorithm 

selects different sections for the groups of 2, 4 and 5 for this case when it is 

compared with former loading case. The strength constraint is dominant and 

very close to one as can be seen in the above table. The optimum heights of 

previous design and this one are same. The elastic critical load factor iterations 

for optimum designed single layer lamellar dome according to this loading case 

are presented in Table 5.11. 

 

Table 5.11 Elastic Critical Load Factor Iterations for optimum design of 

loading case D+P+W (internal pressure coefficient is taken as positive ). 

 

Load Factor 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Number of 
Nonlinear Analysis 

Iterations 
3 2 2 2 2 2 2 2 1 2 

Group Number 
Optimum Section Designations 

3 rings 

1                    PIPST 127 

2                    PIPST 203 

3                    PIPST 76 

4                    PIPST 89 

5                    PIPST 102 

6                    PIPST 13 

Optimum Height (h) (m) 4.5 

Max. Displacement (mm) 4.3 

Max. Strength Ratio  0.98 

Weight (kg) 5412.4 
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    5.3.1.2 D + P + W ( internal pressure coefficient is taken as negative )  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12   Load Case 3.1.2 ( Dead Load + Equipment Load + Wind Load  

(internal pressure coefficient is taken as negative) ). 

 

The load combination of dead load, equipment load acting only on crown of 

the dome, and the wind load (internal pressure coefficient is taken as negative) 

is shown in Figure 5.12. The loads acting on joints are calculated as; 

 

For windward quarter 

 

P   = ( -0.200 x 61.42 + ( -0.3475 x cos (43.17)
o
 x 82.41 ) / ( 7 joints )  

     = -4.739 kN / joint (  ) 

 

P   = ( ( -0.3475 x sin (43.17)
o
) x 82.41 ) / ( 7 joints ) 

     = 2.799 kN / joint (      )  

 

 

 

10 m 5 m 5 m 

P 
0.200 kN/m

2
 

D 

500 kN 

h 

0.7484 kN/m
2
 

0.2694 kN/m
2
 0.3475 kN/m

2
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For Center Half 

 

P = (-0.200 x 191.32 + 0.7484 x 250.984 ) / ( 23 joints ) = -6.503 kN / joint (   ) 

For Leeward Quarter  

 

P = ( -0.200 x 61.42 + ( 0.2694 x cos (43.17)
o
 ) x 82.41 ) / ( 7 joints ) 

   = 0.559 kN / joint (   )  

 

P = ( ( 0.2694 x sin (43.17)
o
 ) x 82.41 / ( 7 joints ) 

   = 2.169 kN / joint (      ) 

 

The results obtained for the optimum design of this loading case is given in 

Table 5.12.   

 

 

Table 5.12 Optimum design for dome with 3 rings for D + P + W ( internal 

pressure coefficient is taken as negative ) . 

 

 

 

 

 

 

 

 

 

 

 

 

Group Number 
Optimum Section Designations 

3 rings 

1                    PIPST 152 

2                    PIPST 203 

3                    PIPST 76 

4                    PIPST 76 

5                    PIPST 102 

6                    PIPST 13 

Optimum Height (h) (m) 3.5 

Max. Displacement (mm) 3.53 

Max. Strength Ratio  0.98 

Weight (kg) 5390.5 
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According to Table 5.12, the optimum dome under this loading case is lighter 

than the previous two cases which are D + P and D + P + W (internal pressure 

coefficient is taken as positive). The strength constraint is dominant and the 

optimum height of the dome is less than the height of previous two designs 4.5 

m. The elastic critical load factor iterations for optimum designed single layer 

lamellar dome according to this loading case are shown in Table 5.13; 

 

 

Table 5.13 Elastic Critical Load Factor Iterations for optimum design of 

loading case D+P+W ( internal pressure coefficient is taken as positive ). 

 

Load Factor 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Number of 

Nonlinear Analysis 

Iterations 

6 2 2 2 1 2 7 2 1 2 

 

 

The elevations of the optimum domes for all load cases are shown in Figures 

5.13 - 5.15. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

P=500 kN 

hopt=4.5 m 

D=0.200 kN/m2 

D=20 m 

P=500 kN D=0.200 kN/m2 

1.1442kN/m
2 

0.0485kN/m
2 

0.6652kN/m
2 

hopt=4.5 m  

5 m 5 m 10 m 

P=500 kN 

hopt=6.25 m 

D=20 m 

P=500 kN 

hopt=3.5 m 

D=20 m 

1
1
1

 

  

    

 

 

 
                                (a) All joints are pin supported and optimum weight is W=4034.2 kg                    (b) One joint is pin supported and the rest are roller and optimum weight is W=6348.6 kg 

                         Figure 5.13 (a) and (b) Load Case 1 (P). 

              

 

 

 

Figure 5.14 Load Case 2 (D+P). All joints are pin supported and optimum weight is W=5456.2 kg. 

. 
 

 

 

 

 

  

                                             
                                             (a) All joints are pin supported and optimum weight is W=5412.4 kg                        (b) All joints are pin supported and optimum weight is W=5390.5 kg 

 
Figure 5.15  (a) Load Case  3 (D+P+W (internal pressure coefficient is taken as positive)) 

         (b) Load Case 3 (D+P+W (internal pressure coefficient is taken as negative))

P=500 kN  D=0.200 kN/m2  

hopt=3.5 m  

0.7484kN/m2  

0.2694kN/m2  0.3475kN/m2  

5 m 10 m 5 m 
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

In this thesis, the optimum topological design problem of geometrically 

nonlinear single layer lamella domes is considered. The design problem is 

formulated such that the total number of rings, the height of the crown, and the 

steel pipe section designations required for the member groups in the dome are 

treated as design variables. The design limitations that consist of serviceability 

and strength constraints are implemented from LRFD-AISC. Furthermore, the 

geometric nonlinearity of the dome structure is also taken into account and 

elastic critical load factor analysis is carried out for each candidate dome 

structure to make sure that the dome does not lose its stability under the 

external loading. The mathematical model of the programming problem 

obtained is discrete, complex, and highly nonlinear. The Harmony Search 

method which is one of the recent addition to stochastic search techniques of 

numerical optimization is used to obtain the solution of the design problem. It 

is shown in the design examples considered that the harmony search method 

can be used in finding the solution of optimum topology problem where the 

topology, shape and size of members in a structure are taken as design variable. 

However, three main parameters of the algorithm namely, harmony memory 

size HMS, harmony memory considering rate HMCR, and the pitch adjustment 

rate PAR are required to be selected before the harmony search method 

initiates its search for the optimum solution. It is shown that the appropriate 

values of these parameters are problem dependent and one set of values which 

gives good results in one design problem may not lead to a good solution in 

another problem. It is therefore necessary to carry out a number of runs with 
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different values of these parameters and determine the suitable ones that yield 

the lightest structure. 

  

It is shown that the nonlinear displacements of a lamellar dome can be more 

than 10% of the linear displacements under the same loading. This clearly 

justifies that consideration of the geometrical nonlinear behavior in the 

optimum design of such structures is a necessity. This not only provide 

inclusion of the realistic behavior of these structures, but also results in further 

reduction in the optimum weight. Support conditions also affect the optimum 

design of lamellar domes. The optimum weight of the dome with roller type 

supports becomes 57.4% heavier than the dome where supports are all pinned.   
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