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ABSTRACT

APPROXIMATE MODELS AND SOLUTION APPROACHES FOR THE VEHICLE
ROUTING PROBLEM WITH MULTIPLE USE OF VEHICLES AND TIME WINDOWS

Boer, Jeroen Wouter de
M.Sc., Department of Industrial Engineering
Supervisor: Assoc. Prof. Dr. Haldun Süral

June 2008, 90 pages

In this study we discuss the Vehicle Routing Problem with multiple use of vehicles (VRPM).
In this variant of the routing problem the vehicles may replenish at any time at the depot.
We present a detailed review of existing literature and propose two mathematical models to
solve the VRPM. For these two models and their several variants we provide computational
results based on the test problems taken from the literature. We also discuss a case study
in which we are simultaneously dealing with side constraints such as time windows, working
hour limits, backhaul customers and a heterogeneous vehicle �eet.

Keywords: Vehicle Routing, Set-Covering, Time Windows, Pick-up and Delivery, Heteroge-
neous Vehicle Fleet
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ÖZ

ÇOK SEFERL� VE ZAMAN PENCEREL� ARAÇ ROTALAMA PROBLEM� �Ç�N
YAKLA�IK ÇÖZÜM VEREN MODELLER VE ÇÖZÜM YÖNTEMLER�

Boer, Jeroen Wouter de
Yüksek Lisans, Endüstri Mühendisli§i Bölümü Bölümü

Tez Yöneticisi: Doç. Dr. Haldun Süral

Haziran 2008, 90 sayfa

Bu çal�³mada çok seferli araç rotalama problemi i³lenmi³tir. Bu problemde araçlar günün
herhangi bir an�nda depoya dönüp, tekrar sefere ç�kabilirler. Problemde ilgili detayl� bir
literatür taramas� yap�lm�³ ve problemi çözmek için iki matematiksel model önerilmi³tir.
Önerilen modeller ve varyasyonlar�, literatürden al�nan test problemleri üzerinde denenmi³
ve say�sal sonuçlar verilmi³tir. Ayr�ca, zaman penceresi, çal�³ma saati k�s�tlar�, farkl� mü³teri
tipi ve de§i³ik tipte araçlar bar�nd�ran �lo gibi özellikler içeren bir gerçek hayat uygulamas�
ele al�nm�³t�r.

Anahtar Kelimeler: Araç Rotalama, Küme-Kapsama, Zaman Penceresi, Toplama ve Da§�t�m,
Heterojen Araç Filosu
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CHAPTER 1

INTRODUCTION

In this study, we will discuss the Vehicle Routing Problem (VRP) with multiple use of vehi-
cles, also known as the multiple trip vehicle routing problem. The vehicle routing problem
tries to minimize the total distance traveled by a set of vehicles while satisfying the demand
of a given set of customers. In this classical VRP the assumption is made that each vehicle
serves a single route during any planning period. In the vehicle routing problem with mul-
tiple use of vehicles we drop this assumption.

We start this study by reviewing some of the formulations and solution approaches of the
capacitated vehicle routing problem (CVRP). This problem is frequently discussed in the
literature because of its wide range of application areas as well as the mathematical com-
plexity. We will demonstrate the applicability of the VRP by mentioning several important
modi�cations of the CVRP.

Continuing this brief overview we will extensively study the literature related to the ve-
hicle routing problem with multiple use of vehicles. We will in detail explain the solution
approaches that are suggested and the possible drawbacks of each approach. We will also
carefully look at the computational results of the benchmark test problems proposed in the
literature as we will be making use of these problems as well.

Inspired by a real-life problem that concerns the scheduling of the vehicle �eet of Santa
Fe Indonesia, we modify some of the existing algorithms in the literature to solve this prob-
lem. Since we want to solve a practical problem, we are dealing with many side constraints
such as a heterogeneous vehicle �eet, time windows for the drivers, individual time windows
for customers, inaccessibility of certain vehicle types for certain jobs, etc. It is our contribu-
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tion here that we explore the fruitful features of some classical VRP approaches. We adapt
and combine them to solve more complex practical routing problems.

1.1 Problem de�nition of the classical VRP

The classical VRP is a generalization of the Traveling Salesman Problem (TSP). A common
used de�nition for the TSP is the following: given a graph with nonnegative arc weights,
�nd a least weight Hamiltonian cycle such that all nodes (customers) are visited at least once.

In vehicle routing problem, instead of salesmen, we now have vehicles with restricted ca-
pacities that visit customers having demand. When demand of all customers exceeds the
vehicle capacity, we need two or more vehicles. This implies that in the CVRP we have
to �nd multiple Hamiltonian cycles such that each Hamiltonian cycle is not exceeding the
vehicle capacity (see an illustration of VRP in Figure 1.1).

Figure 1.1: VRP example from Osman (1993), page 422
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In the classical problem we make the following assumptions:

• The vehicle �eet is homogeneous, i.e. each vehicle has an equal capacity of C.

• Each customer has a positive demand qi which has to be fully satis�ed.

• The depot has no demand.

• All customers are served by a single vehicle.

We de�ne a graph G = (V,A) where V = 0, . . . , n is a vertex set with vertex 0 representing
the depot and other vertices representing customers. Let A be an arc set (see equation (1.1)),
where each arc is associated with nonnegative numbers cij and tij that denote travel cost
and travel time, respectively. We make a distinction between symmetric and a-symmetric
travel cost/time matrices. In the symmetric case the arc set is usually replaced by an edge-
set E (see equation (1.2) with undirected edges). Solution approaches can vary signi�cantly
between these two cases.

A = {(i, j)|i ∈ V, j ∈ V, i 6= j} (1.1)
E = {(i, j)|i ∈ V, j ∈ V, i < j} (1.2)

1.1.1 Vehicle �ow formulation for the VRP

In this section we will show the integer linear programming vehicle �ow formulation for the
asymmetric VRP, given by Toth and Vigo (2001). This model is minimizing the total cost
or distance for all vehicles while completely satisfying all demands. The parameters and
decision variables of this model are given below.

Parameters:
cij = the cost of travelling from node i to node j.
qi = positive demand of customer i.
m = the number of vehicles available.
C = the vehicle capacity.

3



Decision variables:

xijk =
 1, if vehicle k travels from node i to node j

0, otherwise

yik =
 1, if vehicle k satis�es the demand of node i

0, otherwise

The mathematical representation:

min z =
n∑

i=0

n∑
j=0

m∑
k=1

cijxijk (1.3)

s.t.
m∑

k=1

y0,k = m (1.4)
m∑

k=1

yik = 1 i = 1, . . . , n (1.5)
n∑

i=1

qiyik ≤ C k = 1, . . . ,m (1.6)
n∑

j=1

xijk =
n∑

j=1

xjik = yik i = 1, . . . , n k = 1, . . . ,m (1.7)
∑
i∈S

∑
j∈S

xijk ≤ |S| − 1 S ⊂ {1, . . . , n}, |S| ≥ 2, k = 1, . . . ,m (1.8)

xijk ∈ {0, 1} ∀i, j, k, i 6= j (1.9)
yik ∈ {0, 1} ∀i, k (1.10)

The objective function, equation (1.3), minimizes the total cost or distance while constraints
(1.4)-(1.10) are satis�ed. Constraint (1.4) ensures that exactly m vehicles will leave the
depot, while constraint (1.5) guarantees that exactly one vehicle will visit each customer.
Constraint (1.6) restricts total demand of each vehicle by its capacity. Constraint (1.7) and
(1.8) will guarantee feasible routes without sub-routes or more than once visited customers.
Finally equations (1.9) and (1.10) de�ne decision variables.

O(n2m+nm) variables and the exponential number of subtour elimination constraints (1.8)
make this model hard to solve. Because of this interesting property the CVRP and its model-
ing have attracted attention for several decades now. As a result, several other formulations
and solution approaches have been proposed. We will discuss several of these in Chapter 2.
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1.2 Problem de�nition of the VRPM

Throughout this study we mainly focus on the modi�cation of the classical VRP where ve-
hicles are allowed to be replenished at the depot, the so called VRP with multiple use of
vehicles (VRPM). Each vehicle may now serve more than one route in a single planning
period.

While studying the logistic activities of a (real-life) Jakarta based relocation company we ob-
served that quite frequently a vehicle returned to the depot during the day for (un)loading.
Their activities consist of inbound shipments arriving at air or seaport that have to be
picked up from the concerning port. Once arrived at the depot the shipment is prepared to
be shipped to its �nal destination. Outbound shipments travel in the reverse order, �rst the
shipment is packed at origin from where it is brought to the depot. Here the shipments are
prepared for long-haul sea or airfreight.

When choosing a model for their activities the classical VRP is clearly not appropriate
and the VRPM is a more logical choice. While analyzing the available literature on this
topic, we noticed that, despite its relevance to many practical applications, this topic is not
well covered in the literature.

A trivial way of extending the vehicle �ow formulation (1.3)-(1.10) would be to add a con-
straint that puts a limit to the maximum duration of a route. When de�ning this limit as
half a working day, we could assign one route to each vehicle in the �rst half of the day
and another route to each vehicle in the second half of that day. For some applications this
method could work reasonable, but obviously there are more complex examples that require
more sophisticated models. For instance, it could be the case that some vehicles serve more
than one route, but other vehicles only serving one route. This case is obviously disregarded
in the method above.

Basically the literature only covers the case where the vehicles are limited on their working
day. A maximum size (in terms of total time or total distance) is de�ned and a bin-packing
approach is used to "pack" the routes in these bins. In this formulation each route would be
associated with a weight (duration or length) and the bins (working day) have to be utilized
e�ciently �lling these routes. In Chapter 3 we will discuss the VRPM in more detail.
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In the case-study we are simultaneously dealing with a heterogeneous vehicle �eet and indi-
vidual time windows for the customers. The latter is discussed once (without details) in the
literature, but the �rst is never before discussed in combination with the VRPM. Besides
these two extensions we also extend the VRPM to two types of customers (namely, linehaul
and backhaul).

Since all these extensions are of signi�cant importance to the logistic activities of Santa
Fe and these were not covered yet in the literature, we decided that this was a suitable
subject for this study.

1.3 Chapter outline

The following chapters will all contribute to the completeness of our study.

In Chapter 2 we give a detailed literature survey. Because of the large amount of papers
dedicated to the VRP and related topics we have to make a selection. We have selected
important papers that all have contributed to our study. After a quick note on the rise of
combinatorial optimization problems in general, we will start with a famous survey-paper.
Following the classi�cation of this survey, we will discuss a number of papers that propose
di�erent solution approaches. We end this chapter by discussing some papers related to a
variety of VRP extensions.

In Chapter 3 we completely focus on the available literature about the vehicle routing prob-
lem with multiple use of vehicles. Since the number of papers about this topic is very limited,
we will discuss all related papers about this topic. We look at the proposed solution ap-
proach, computational results, drawbacks, and their potential improvement directions.

In Chapter 4 we basically suggest two approaches to solve VRPM: an integer model based
on the well-known route-�rst cluster-second approach and a new approach using set-covering
principle. The �rst model can be considered as an approximate formulation where as the
second one is a true representation of the problem as long as entire route set or optimal routes
are incorporated into the formulation. Both approaches are enhanced using improvement

6



routines. We will compare our results with the existing algorithms and discuss our �ndings.

In Chapter 5 we discuss a case study based on a real-life problem from a relocation company
in South-East Asia. We modify the set-covering approach developed in Chapter 4 to deal
with the presence of several practical side constraints such as a heterogeneous vehicle �eet,
individual time windows and backhaul customers.

We conclude this study in Chapter 6 by discussing our �ndings and pointing out several
possible follow-up studies.
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CHAPTER 2

LITERATURE SURVEY

The Vehicle Routing Problem (VRP) is a generalization of the well known and widely studied
Traveling Salesman Problem (TSP). The TSP is in mathematical terms a hard combinatorial
problem. As Schrijver (2005) mentions in his working paper, the TSP has been discussed as
early as 1832 by a group of Germans, but the �rst mathematician to pay attention to the
problem was K. Menger in 1928. For a more detailed outline of the early evolution of the
TSP and other combinatorial optimization problems we refer to Schrijver (2005).

As we already mentioned in the introduction a di�culty of solving the CVRP is its computa-
tional complexity. Innumerable studies have been performed on complexity of combinatorial
problems such as the TSP and VRP. In this study we take for granted that the TSP and
therefore also the VRP are NP-hard. We will no further discuss the details of the computa-
tional complexity, but for a reliable survey we refer to Lenstra and Rinnooy Kan (1981).

The NP-hard property is an important reason that TSP and VRP received much attention
of researchers. Secondly researchers had an inquisitive attitude towards the VRP, because
of the applicability to a wide range of areas. Think of only school bus routing, collection
of milk, postal delivery network, supplying gas stations, moving personnel to o�-shore oil
platforms, etc. Researchers developed many exact and approximate algorithms in the liter-
ature over the last couple of decades to solve these problems. Laporte (1992, 2007) gives an
overview of some important algorithms. In both overviews a classi�cation is made between
exact and approximation algorithms. We will start with discussing some exact algorithms.
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2.1 Exact algorithms for the VRP

In this section we mention several exact algorithms proposed in the literature. The aim of
these exact algorithms is to solve the problem to optimality. Laporte (1992) makes a rough
classi�cation of all exact algorithms to put into three categories,

• Direct tree-search methods

• Dynamic programming methods

• Integer linear programming methods
For each of these categories we will now show an example to illustrate how each class of
algorithms works.

2.1.1 Direct tree-search methods

Christo�des et al. (1981) have proposed a formulation for the symmetrical VRP. A symmet-
rical VRP is de�ned on a graph G = (V,E) with edges instead of arcs. The idea presented
in this paper is based on partitioning of the edge set E into four subsets:

• E0: Edges not belonging to the solution

• E1: Edges forming a k-degree center tree where the depot has degree k, k = 2m− y

• E2: y edges incident to the depot.

• E3: m− y edges not incident to the depot.
The objective of their model is to minimize the cost of the edges selected such that all de-
mand is satis�ed. The parameters and decision variables are given below.

Parameters:
cl = the cost of edge l.
m = the number of available vehicles.

Decision variables:

εt
l =

 1, if edge l is an element of Et for t = 1, 2, 3

0, otherwise
y = the number of edges incident to the depot, 0 ≤ y ≤ m.

9



Furthermore they de�ne Ei as the set of all edges incident to node i; (S, S̄) as the set
of all edges with one node in subset S ⊂ N and one node in the complement of S.

The mathematical representation:

min
∑
l∈E

cl(ε1l + ε2l + ε3l ) (2.1)

s.t. ∑
l∈(S,S̄)

ε1t ≥ 1 (S ⊂ V ; |S| ≥ 1) (2.2)
∑
l∈E1

ε1l = 2m− y (2.3)
∑
l∈E

ε2l = n− 1 (2.4)∑
l∈E1

ε2l = y (2.5)
∑

l∈E\E1

ε3l = m− y (2.6)
∑
l∈Ei

(ε1l + ε2l + ε3l ) = 2 (i = 2, . . . , n) (2.7)

εt
l ∈ {0, 1} l ∈ E, t = 1, 2, 3 (2.8)

0 ≤ y ≤ m and integer (2.9)

The objective function, equation (2.1), is minimizing the cost of the selected edges. The
�rst three constraints (2.2)-(2.4) de�ne a k-degree center tree. Constraint (2.5) de�nes the
y-edges, incident to the depot, that will form the set E2. Constraint (2.6) states that m− y

edges not incident to the depot will form the set E3. The model is completed with (2.7)
that ensures each vertex to have degree 2. Finally (2.8) and (2.9) de�ne the decision variables.

The model can be solved most e�ciently by relaxing the constraint-set (2.7) by introducing
Lagrangean multipliers, because its relaxation decomposes the problem into three separate
subproblems. By the time of writing the authors were able to successfully solve several
VRP's up to twenty-�ve nodes with this method.

Fisher (1994) improves this method. He claims that the lower bound used by Christo�des
et al. (1981) is a weak link in their approach. Instead of �nding a k-degree center tree, Fisher
rede�nes the formulation in order to �nd a m-tree which is a set of n+m arcs that span the
complete set of n + 1 nodes with degree 2m on the depot. On a set of test problems with n
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ranging between 25 and 199 nodes he �nds that this method obtains lower bounds of 98% of
the optimum, compared to a performance of 85% by the method of Christo�des et al. (1981).

Other algorithms that are members of this class are all sorts of branch-and-bound and
branch-and-cut algorithms. Branch-and-bound algorithms are frequently used to solve all
sorts of MIP-formulations. Here the idea is to relax the integer property of the decision
variables. The solution of the polynomially solvable LP-problem is then used as our starting
point. For each decision variable we then branch by adding additional constraints in which
the variable is �xed to either nearest integer and solve the LP again. By continuously up-
dating lower and upper bounds we try to reduce the size of our branching tree.

Branch-and-cut algorithms are the latest development in the exact solution approaches for
the symmetric VRP (SVRP). Branch-and cut is a quite competitive algorithm for MIP for-
mulations with an exponential number of constraints such as the TSP and VRP. We will
explain the idea of the branch-and-cut method on the basis of a mathematical representation
of the SVRP, given by Laporte (2007). The parameters and decision variables of this model
are given below.

Parameters:
cij = the cost of travelling from node i to node j.
qi = positive demand of customer i.
m = the number of vehicles available.
C = the vehicle capacity.

Decision variables:

xij = number of times edge (i, j) appears in the solution.

The mathematical representation:

min z =
∑

(i,j)∈E

cijxij (2.10)

s.t. ∑
j∈V \{0}

x0j = 2m (2.11)
∑
i<k

xik +
∑
j>k

xkj = 2 k ∈ V \{0} (2.12)
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∑
i∈S,j /∈S

xij +
∑

i/∈S,j∈S

xij = 2
∑
i∈S

qi/C S ⊂ V \{0} (2.13)

xij ∈ {0, 1} i, j ∈ V \{0} (2.14)
x0j ∈ {0, 1, 2} j ∈ V \{0} (2.15)

where the objective function, equation (2.10), minimizes the total cost of the selected edges.
Equation (2.11) ensures that the degree of the depot equals 2m, where equation (2.12) de-
�nes the degree of all other nodes to be 2. Equation (2.13) ensures that the number of
vehicles serving an arbitrary subset of customers is larger than a certain lowerbound which
is usually de�ned as ∑

i∈S
qi/C. Equation (2.14) and (2.15) de�ne the decision variable that

can equal to 2 referring to the case that customer j is the only customer served on a route.

Recall that in the branch-and-bound method, we relax the integer-property of the deci-
sion variable and solve the resulting linear program. The objective function value of this
linear program is a lower bound on the optimal objective function value of the original prob-
lem. However, when the number of constraints, which is growing exponentially with n is too
large to solve the linear program, the branch-and-bound method shows de�ciency.

The branch-and-cut method based on a cutting plane technique tries to resolve the de�-
ciency of the branch-and-bound method. We de�ne P as the complete set of constraints
(2.13). We then take only a subset P̂ of reasonable size and solve the linear relaxation of
the resulting model. When the obtained solution is feasible for (2.10)-(2.15) this is also the
optimal solution, otherwise we need to �nd one or more constraints of the set (2.13) that are
violated. These constraints (cutting planes) are then added to the subset P̂ and we repeat
this process. According to Laporte (2007), these branch-and-cut methods have successfully
solved VRP's up to 135 customers.

2.1.2 Dynamic programming methods

In the early days that the VRP was studied, a few researchers tried to apply dynamic pro-
gramming to solve the VRP problem. An example of such a formulation is given by Laporte
(1992). Here V (S) is de�ned as the cost of a TSP visiting all customers in S ⊆ V . Then
f(k, S) is de�ned as the minimum cost of serving all customers in S with k vehicles.
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f(k, S) =

 V (S) k = 1

minL⊂S⊆V f(k − 1, S\L) + V (L) k > 1
(2.16)

The optimal solution is then given by f(m,V ). Since it requires excessive amounts of com-
putations this method gives very poor performance on big problems in terms of computation
time. The size of computations can, however, be reduced by adding two more constraints:

∑
i∈S

di − (k − 1)D ≤
∑
i∈L

di ≤ D (2.17)
∑
i∈V

di − (m− k)D ≤
∑
i∈S

di ≤ kD (2.18)

Note that D is the capacity of a single vehicle. This reduction is useful, but it remains a
poor method for larger problems. In recent papers we could not �nd any work related to
solving a VRP with the use of dynamic programming.

2.1.3 Integer linear programming methods

Balinski and Quandt (1964) propose a method based on a set-partitioning formulation. The
idea is simple; they prepare a set J with all feasible routes j. The model is then to select a
subset of routes from J such that each customer is visited and the cost of the routes in this
subset is minimized. The parameters and decision variables of their model are given below.

Parameters:
cj = the cost (or distance) of route j.
aij = equals one if customer i is included in route j.
m = the number of vehicles available.

Decision variables:

xj =
 1, if route j is selected in the solution

0, otherwise
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The mathematical representation:

min z =
∑
j∈J

cjxj (2.19)

s.t. ∑
j∈J

aijxj = 1 i = 1, . . . , n (2.20)
∑
j∈J

xj ≤ m (2.21)

xj ∈ {0, 1} ∀j (2.22)

The objective, equation (2.19), is minimizing the cost of the selected routes. Equation (2.20)
will ensure that each customer is visited and (2.21) is a limitation on the number of vehicles.
Finally (2.22) de�nes the binary decision variables.

The bottleneck of this approach is the size of set J which grows exponentially with n.
For larger problems this is very impractical and for this reason a column generation tech-
nique is used by several researchers. The idea is here to de�ne (2.19)-(2.22) as the master
problem and then de�ne a second problem in which we �nd the column that will maximize
improvements on z when it is added to set J .

The objective function of the sub-problem (the second problem) is de�ned as the reduced
cost of route j. If there is a route with negative reduced cost, we add this route to the set of
initial routes. The process is continued until no new routes can be found to further reduce
the objective function value of the master problem. The column generation phase is still
time consuming and therefore the initial set of routes will be of importance the CPU-time.

Since even this sub-problem is NP-hard, it received much attention in the literature. Bramel
and Simchi-Levi (2001) propose to generate a large and good set of initial routes J and
then solve the linear relaxation of (2.13)-(2.15) for a small subset Ĵ ⊆ J . They look at the
reduced cost of the routes in J and add the routes with negative reduced costs to Ĵ . Repeat
these steps till no routes can be added to Ĵ .

This approach have been applied to many types of MIP formulations. A successful applica-
tion to the VRP has been carried out by Sierksma and Tijssen (1998). In their paper they
solve a real-life VRP by means of an integer linear programming formulation in combination
with a column generation technique.
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2.1.4 Remarks

The drawback of all these exact algorithms is that so far they have been proved to be suc-
cessful only for relatively small problem instances. A recent review of some successful exact
approaches by Toth and Vigo (2002) concludes that over the years the largest solvable in-
stances have grown from about 25 customers to over a 100 customers. This means relatively
important progress has been made, but problems of reasonable size remain unsolvable. They
report some Euclidean capacitated VRP instances with 75 customers that are still unsolved.

Despite this fact we have seen successful applications in recent studies. Successful meaning
that such exact algorithms gave optimal or near optimal solutions in acceptable CPU time.

We expect that as long as new approaches are developed and computers grow stronger,
larger instances can be solved in the future. Toth and Vigo (2002) suggest several pos-
sible studies that are not (well) covered so far. An example they give are Dantzig-Wolfe
decomposition based approaches (also known as branch and price algorithms).

2.2 Heuristic algorithms for the VRP

Heuristic approach cannot guarantee optimal solutions, but their goal is to �nd a "good"
solution in reasonable time. Not all of the heuristics discussed were originally designed to
solve the VRP, but were modi�ed for this purpose.

In this section we will discuss some of the heuristic methods that are proposed in the lit-
erature to solve the VRP. According to Zanakis et al. (1989) who thoroughly scanned the
literature (442 papers in 37 journals) for the use of di�erent conventional heuristic methods,
we can roughly make the following classi�cation. However, we will not discuss all twelve
classes mentioned in their paper. We only discuss the classes that according to us have
proved to be of signi�cant importance for solving the VRP and its extensions:

1. Construction heuristics

2. Decomposition and partitioning heuristics

3. Improvement heuristics
Now we will give an example of a heuristic for each of these classes and discuss its proper-
ties. Note that for a good solution approach a sequential use of several heuristics might be
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necessary in order to obtain satisfactory solutions. For example, constructive heuristics are
frequently used to �nd initial feasible solutions which then can be improved using one or
more improvement heuristics.

2.2.1 Construction heuristics

This class of heuristics gradually constructs solutions by adding nodes or arcs to the solution
following a prede�ned set of rules. The famous nearest neighbor heuristic that was originally
developed for the TSP, can also be used for solving the VRP. The heuristic works as follows.
Let S be the set of all customers that are not routed yet. We randomly pick a customer
as the starting point of our tour. Then we look in S for the closest node to the starting
point. We add this customer to our route and remove it from S. We continue till S = ∅

and connect the last added node with the starting point and we obtain a Hamiltonian cycle.
It tends to perform well in the beginning, but while adding the last customers to the tour,
some expensive arcs have to be used. Even though it is highly unlikely to �nd the optimal
solution in this way, it is possible to �nd a reasonable solution in polynomial time.

To modify this heuristic for the VRP, we simply add the rule that every time a vehicle
is full we end the tour and start a new tour from the depot (starting point of the tour). Note
that we select the node for insertion by the rule of nearest neighbor of the last inserted note.
We could modify this rule into: cheapest insertion, farthest insertion, random insertion, etc.

Another important heuristic based on a constructional principle is the saving heuristic in-
troduced by Clarke and Wright (1964). This heuristic starts with n tours that all serve a
single customer. Then the cost that can be saved by merging route i and j for each pair i, j

are de�ned as sij .
sij = ci0 + c0j − cij (2.23)

Here ci0 is the cost between node i and node 0 (the depot). We merge the routes with
the highest savings, given that the capacity restrictions are satis�ed and merging is applied
to the nodes next to the depot in each route. We continue till no further savings can be
obtained. Computational results of di�erent methods are presented by Laporte and Semet
(2001), see Table 2.1, given at the end of this chapter.
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2.2.2 Decomposition and partitioning heuristics

This class includes both decomposition and partitioning heuristics as the di�erence is some-
times hard to expound. Decomposition heuristics solve a sequence of smaller sub-problems;
the output of the previous sub-problem is used as the input for the next. Partition heuristics
are quite similar as they also partition the original problem and solve these sub-problems
independently from each other. Some examples of this class of heuristics are,

1. Cluster �rst, route second heuristic

2. Route �rst, cluster second heuristic

3. Petal heuristic

The cluster-�rst, route-second heuristic �rst makes up a set of rules to divide the customer
set in several clusters. The goal of this �rst phase is to �nd m clusters of entire customer
set, each of which is a disjoint set from others, and with equally distributed demand between
the clusters. In the second phase a TSP is solved for each cluster individually.

The route-�rst, cluster second heuristic is doing the exact same steps, but in reverse or-
der. First we try to �nd a giant tour by solving the TSP problem for all customers. Second
we try to �nd an optimal partition of this tour to obtain feasible vehicle routes in terms of
capacity and time limitations. Beasley (1983) is the �rst source to apply this idea to the
VRP. He proposes several modi�cations of this approach to obtain good quality solutions
for the classical VRP.

The Sweep Heuristic is a modi�cation of a route-�rst, cluster second heuristic. It was �rst
discussed by Gillett and Miller (1974). The idea is based on the following assumptions. We
assume that all nodes have known coordinates on a plane and the distances are Euclidean.
Then we calculate for each customer the polar coordinate angle with respect to the depot
and order them in terms of these angles. After reordering we start assigning customers to
vehicles in such a way that we start with the �rst customer on the list and keep adding
customers to the route while keeping the route feasible. Once this is no longer possible, we
�nish the route and start a new route.

The last, but probably the most interesting heuristic of this class is an algorithm �rst dis-
cussed by Foster and Ryan (1976) in an attempt to employ the fact that many optimal
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solutions show a petal or an almost petal structure. In this approach the authors start sim-
ilar as in the sweep method by assigning polar coordinate angles and reorder all customers
accordingly. In the next step they list all feasible routes with a petal structure. In the last
step they solve a linear program to optimality in which they select a set of feasible petal
routes (a spanning petal) such that each customer is visited and the total traveled distance
is minimized. A major advantage for this method is that additional constraints can easily
be added, but the drawback is the CPU time.

This method has proved to give near optimal results for several problems with size ranging
from 21 to 100 customers. In the year this paper was written these were good results. How-
ever to further improve this promising method, Ryan et al. (1993) propose an alternative
method to �nd the optimal petal solution. This method is based on a shortest path tech-
nique. The authors �rst de�ne a cyclic petal directed graph where the nodes correspond to
customers and the arcs to generalized petals. In this they de�ne a generalized petal as the
petals obtained when reordering the customers in a non-radial cyclic order before generating
the petals. Then they claim that the problem reduces to �nding a shortest path on this
cyclic petal directed graph. Computational results of di�erent methods are presented by
Laporte and Semet (2001), see Table 2.1, given at the end of this chapter.

2.2.3 Improvement heuristics

This class of heuristics is based on the idea to �nd improvements on feasible solutions that
we have obtained in a di�erent way. In each step of the improvement heuristic we try to
�nd an exchange or transfer of customers on the tours that will improve our solution. A
famous heuristic by Lin and Kernighan (1973) is called k-opt heuristic for TSP. Despite the
fact that this paper is written more than 3 decades ago, the idea is still frequently used in
new algorithms for the improvement steps.

In their paper the authors apply their heuristic to the TSP, but they already mention it
can be modi�ed to solve other combinatorial optimization problems. For the TSP the idea
is the following. Assume we have a solution T with objective value z(T ) and any tour T

′

with length z(T
′
) < z(T ). Suppose that these tours di�er by k arcs. The algorithm then

attempts to �nd two disjoint set of arcs X = {x1, . . . , xk} and Y = {y1, . . . , yk} such that if
the arcs of set X are replaced by the elements of set Y , the result is a new tour T

′ with a
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lower objective function value.

Note that this algorithm is a generalization of the 2-opt and 3-opt algorithms frequently
mentioned in the literature. The k-opt heuristic just assumes that the number of arcs that
will be interchanged is a variable instead of an input parameter.

Computational results of di�erent methods are presented by Laporte and Semet (2001),
see Table 2.1, given at the end of this chapter.

2.3 Metaheuristics for the VRP

The latest development in solving combinatorial optimization problems is the use of Meta-
heuristics. Where conventional approximation methods are no longer su�cient, metaheuris-
tics can be very helpful. They have been developed since early 1980's. Osman and Laporte
(1996) de�ne a metaheuristic as an iterative generation process which guides a subordi-
nate heuristic by combining intelligently di�erent concepts for exploring and exploiting the
search space. Learning strategies are used to structure information in order to �nd e�ciently
near-optimal solutions. An important property is that in most metaheuristics we allow non-
improving and infeasible solutions as intermediate steps to avoid local optima. Some classes
of metaheuristics are

1. Constrained logic programming, CLP

2. Evolutionary Computing (Genetic Algorithms), GA

3. Neural Networks, NN

4. Simulated Annealing, SA

5. Tabu Search, TS

6. Nonmonotonic search trajectories

7. Threshold algorithms

8. Hybrid methods

Not all of these methods have (frequently) been used to solve the VRP. Therefore we will
only discuss four of these classes of metaheuristic in this paper. Based on the frequency
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that these methods are applied to the VRP, we will discuss: GA, SA and TS. We note that
metaheuristics frequently make use of conventional heuristics to �nd good starting points of
the search trajectory.

2.3.1 Evolutionary Computing (Genetic Algorithms), GA

The principles of Genetic Algorithms are based on the fact that we maintain a population
of solutions by an iterative reproduction process. In each step we select "parent" solutions
to produce so called "o�spring" solutions with some features of every parent. The quality of
each o�spring solution is measured by the objective function value. In general the number
of o�spring solutions that survive, i.e. the solutions with the best objective function values,
is equal to the number of parent solutions chosen in order to keep the population size at the
same level.

The question how a parent solution can represent a VRP solution is not straightforward.
Baker and Ayechew (2003) choose for a representation of size n with values in the range of
[1,m] that represent which vehicle visits each customer. Note that for this representation
the total distance traveled is not immediately known, but by solving m TSP's the optimal
objective function for every solution can be obtained. A di�erent representation could be
a string of size n + m with values in the range of [0, n] that are ordered in the way the
customers are visited. Each time a new vehicle is used, we separate this by adding a zero in
the string. This way it is not necessary to solve m TSP's at each iteration. See Figure 2.1
for two di�erent representations of the same VRP solution.

Also for creating o�spring solutions there does not exist a clear set of rules that is to be
used. Depending on the problem structure we can create o�spring solutions by cross-over,
randomness, etc. Computational results are scarce, but Baker and Ayechew (2003) claim
that the GA is performing good, although it is beaten by TS in terms of solution quality.
However, when they make some small adjustment (hybrid GA) they �nd solutions almost
similar to the best known solutions. More often than the classical VRP, the GA has been
used to solve the VRP with time windows.
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parent 3 4 3 1 4 2 3 2 1
parent 0 4 9 0 6 8 0 1 3 7 0 5 2

Figure 2.1: Di�erent representations of a VRP solution

2.3.2 Simulated Annealing, SA

Simulated Annealing (SA) starts from an initial solution and at each iteration a solution
in neighborhood of previous solution is selected. When an improvement is found we con-
tinue with this solution and rede�ne neighborhood as such, however when a worse solution
is picked we continue with this solution with probability pt where t is the iteration counter.
The probability that a worse solution is picked will usually diminish over time, because when
approaching the global optimum we would like to avoid decreasing steps.

Osman (1993) reports a successful implementation of SA for VRP. He uses a λ-interchange
generation mechanism to determine neighborhood of a given solution. First two routes are
selected and then we choose a subset of customers from each route such that the size of these
sets is less than or equal to λ. When the interchange of these subsets is feasible in terms of
capacity, the move is feasible. Note that the subsets of customers are allowed to be empty
and therefore "donation" is also included in this method. Donation means that a customer
is moved to a di�erent route without returning another customer. Computational results
show several good results for problem instances ranging in size from 30 to 200 customers.

2.3.3 Tabu Search, TS

Tabu Search (TS) works similar as SA, we also start with an initial solution and then search
neighborhood of this solution. However, in TS we are always looking for the best solution
in neighborhood which is then used as our next solution. To avoid cycling we put the "old"
solutions in a Tabu-list. Members from this list cannot be selected anymore. TS has been
proven to be very e�ective when solving the VRP.

Osman (1993) and Taillard (1993) have reported high quality solutions for most of the
instances from the VRP-library for both symmetric and asymmetric cases. CPU-times are
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very high compared to conventional heuristics, but still acceptable. For instances up to 200
customers, both authors report CPU-times of sometimes close to 100 minutes.

2.4 Extensions of the classical VRP

As mentioned before it is possible to drop or add certain assumptions in order to obtain
a new VRP. In the literature the most studied modi�cation is the vehicle routing problem
with time windows (VRPTW). The modi�cation that is of most interest to our study is
the vehicle routing problem with multiple use of vehicles. In the next chapter we will give
a detailed description of this problem. In this section we will brie�y discuss several other
modi�cations that can be of importance to our and other case studies.

1. The mix-�eet vehicle routing problem

2. The vehicle routing problem with stochastic demands

3. The multi-depot vehicle routing problem (MDVRP)

4. The vehicle routing problem with backhauls (VRPB)

5. The vehicle routing problem with pick-up and delivery

6. Dynamic location-routing problems

7. Split delivery vehicle routing problems

8. The vehicle routing problem with time windows (VRPTW)

The �rst modi�cation drops the assumption that the vehicle �eet has identical characteris-
tics for each vehicle. Most common is a �eet of vehicles with capacity Ck for each vehicle
k, but there are also multi-commodity applications where some vehicles might have refriger-
ated compartments and other vehicles that do not have this property. Either way, it should
be clear that in some applications a mix of vehicles with di�erent capacities or properties
can be more useful than the use of a single vehicle type. When vehicle �eet composition is
assumed to be �xed in advance, a small change in the formulation can solve this problem. A
much more interesting question is what the optimal composition of the vehicle �eet should
be. This is discussed in detail by Salhi and Rand (1993).
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The second modi�cation takes into account that customer demands are usually not known
in advance. This means that we have to design routes in such a way that the probability
that the capacity of a vehicle serving a route is not su�cient is minimized while the total
distance traveled is minimized at the same time. For many applications this is a very realistic
assumption. Consider distribution of consumer goods; we know that demands may change
according to weather and other factors.

The third modi�cation drops the assumption that a single depot is operated. The goal
of this problem is to construct a set of routes in such a way that all the equations of the
classical VRP hold true as well as that each route starts and ends in the same depot. Renaud
et al. (1996) give a detailed formulation of the MDVRP. A trivial solution approach would
be to assign each customer to the nearest depot and independently solve for each depot a
VRP. However more sophisticated approaches are proposed in the literature to give better
quality solutions. Renaud et al. (1996) propose a TS algorithm for this modi�cation and
report to �nd the best known solutions on 20 out of 23 benchmark problems.

The fourth modi�cation is the VRP with backhauls. This problem considers that besides
the deliveries to a set of customers, a second set of customers requires a pick up. In this
problem it is assumed that each vehicles will �rst visit all customers that require delivery
(linehaul customers) before it visits the customers that require pick-up (backhaul customers).

A generalisation of this variant is the VRP with pick up and delivery. Now we drop the
assumption that each vehicle �rst visits all the linehaul customers. In other words combined
e�ort of pick-up and delivery of goods is considered. The di�culty here is the continuously
changing load of the vehicle that should be less than the capacity of the vehicle at each stop.
Therefore when a full vehicle leaves the depot, it �rst has to serve one or more deliveries
before a pick-up can be served. In other words the available capacity of vehicles determines
whether or not a next stop is feasible.

The sixth modi�cation considers simultaneously the decision problems of locating depots
and designing routes to customers. Laporte and Dejax (1989) discuss an exact approach for
small-scale problems and an approximate approach for bigger-scale problems. In both ap-
proaches the idea is to introduce a binary variable that equals 1 when the depot representing
that variable is used. Associating that variable is a constant cost of operating that depot,
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which is used in the objective function.

The seventh modi�cation of the classical VRP drops the assumption that every customer
has to be visited exactly once by a single vehicle. In the split delivery VRP it is therefore
now possible that the total demand of a single customer is delivered by multiple vehicles.
Archetti et al. (2006) propose a TS algorithm for this variant of the VRP and report to �nd
better solutions than previous methods.

Finally we mention the vehicle routing problem with time windows (VPRTW). This variant
of the VRP is probably the variant that has received the most attention in the literature.
This could be explained by the practical importance of time windows. Time windows occur
when customers require pick-up or delivery within pre-speci�ed times. In the literature a
distinction is made between soft time windows that can be violated against a penalty-cost
and hard time windows that cannot be violated. For a few decades the VRPTW has been
discussed in the literature. An overview of the early published papers is given by Solomon
(1987). He mentions and compares several approximation heuristics that are all modi�ca-
tions of well known heuristics for the classical VRP.

2.5 Computational results

Most approaches discussed in this chapter have been tested on benchmark problems from
the literature. All benchmark problems are named as follows X111-11y where "X" is de�ning
the character of the problem instance, like

• "E" for Euclidean symmetric VRP instances

• "A" for asymmetric capacitated VRP instances

• "D" for symmetric distance constrained VRP

Following X (i.e. 111) is the number of nodes of the instance, which is followed by the
number of vehicles (i.e. 11). Finally "y" is the character that identi�es the source where the
problem data are introduced, like

• "c" refers to Christo�des, Mingozzi, and Toth (1979)

• "e" refers to Christo�des and Eilon (1969)
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• "f" refers to Fisher (1994)

We have already brie�y discussed the performance of several heuristics and metaheuristics,
but in this section we will try to compare some of the results. In Table 2.1 we have collected
solutions and their CPU times from di�erent methods. In the table, the entries under z refer
to the solution value of the associated problem instance, whereas the entries under CPU are
the CPU-time in seconds.

When comparing the CPU times we have to take the di�erence, in the computer used to
solve that problem instance, into account. For this reason we present the characteristics of
the di�erent computers in Table 2.2. Given these di�erent computers it is very hard to draw
any solid conclusions regarding the CPU time, but a rough conclusion is that conventional
heuristics need less CPU than metaheuristics. Looking at the solution quality we notice that
metaheuristics are in general performing better, in particular the TS algorithm of Taillard
(1993).

Usually the CPU time and solution quality are the only two properties taken into account
when evaluating a solution approach. However, Laporte (2007) is mentioning two other im-
portant properties that are of importance when assessing algorithms. These are simplicity
of implementation and �exibility. The �rst one meaning that researchers often put too much
weight in the accuracy of their algorithm by introducing lots of user-controlled parameters,
which can be a handicap for later users. Flexibility means the ease in which the algorithm
can adopt important side constraints encountered in practical applications.
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Table 2.1: Computational results
heuristics

C&W Sweep Petal C&W + 3-opt
Problem z CPU z CPU z CPU z CPU
E051-05e 584.64 <0.2 532 12.2 531.90 0.10 578.56 <0.2
E076-10e 900.26 <0.2 874 24.3 885.02 0.07 888.04 <0.2
E101-08e 886.83 <0.2 851 65.1 836.34 0.32 878.70 <0.2
E101-10c 618.40 <0.2 560 11.4 560.08 0.09 616.66 <0.2
E121-07c 975.46 <0.2 933 23.8 968.89 0.07 974.79 <0.2
E151-12c 973.94 <0.2 888 58.5 877.80 0.25 968.73 <0.2
E200-17c 1287.64 <0.2 1230 134.7 1220.20 0.26 1284.63 <0.2
D051-06c 1538.66 <0.2 1518 238.5 1515.95 0.35 1523.24 <0.2
D076-11c 1596.72 <0.2 1776 85.5 1773.69 0.26 1587.93 <0.2
D101-09c 875.75 <0.2 949 53.6 894.77 0.17 868.50 <0.2
D101-11c 1395.74 <0.2 1389 252.2 1406.84 0.41 1386.84 <0.2
D121-11c 1133.43 <0.2 1079 142 1070.50 0.41 1128.24 <0.2
D151-14c 833.51 <0.2 937 50.8 824.77 0.21 824.42 <0.2
D200-18c 1071.07 <0.2 1266 104.3 1252.84 0.61 1049.43 <0.2
average: <0.2 89.8 0.26 <0.2

metaheuristics
SA GA TS best

Problem z CPU z CPU z CPU
E051-05e 528 167.4 524.61 23.00 524.61 49 524.61
E076-10e 838.62 6434.3 838.89 617.00 835.26 53 835.26
E101-08e 829.18 9334.0 829.47 717.00 826.14 580 826.14
E101-10c 826.00 632.0 819.56 1285.00 819.56 3800 819.56
E121-07c 1176 315.8 1046.27 1483.00 1042.11 3000 1042.11
E151-12c 1058 5012.3 1034.80 1961.00 1028.42 17 1028.42
E200-17c 1378 2318.1 1327.78 5261.00 1298.42 51 1291.45
D051-06c 555.43 3410.2 555.43 429.00 555.43 1100 555.43
D076-11c 909.68 626.5 909.68 449.00 909.68 1100 909.63
D101-09c 866.75 957.2 867.68 1904.00 865.94 - 865.94
D101-11c 890 305.2 867.13 585.00 866.37 - 866.37
D121-11c 1545.98 7622.5 1546.31 1063.00 1541.14 340 1541.14
D151-14c 1164.12 84301.2 1166.27 2242.00 1162.55 3900 1162.55
D200-18c 1417.85 5708.0 1425.27 6433.00 1397.94 1500 1395.85
average: 9081.8 1746.6 1290.8
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Table 2.2: Hardware properties

Method: Source: Year Avg. CPU
C&W Laporte and Semet (2001)1 2001 <0.2
Sweep Laporte and Semet (2001)2 1979 89.8
Petal Laporte and Semet (2001)3 1996 0.3
C&W + 3-opt Laporte and Semet (2001)4 2001 <0.2
SA Osman (1993)5 1993 9081.8
GA Baker and Ayechew (2003)6 2003 1746.6
TS Gendreau et al. (2001)7 1996 1290.8
1 Sun Ultrasparc 10 workstation (42 M�ops)
2 CDC6600
3 Sun Sparcstation 2 (210.5 Mips, 4.2M�ops)
4 Sun Ultrasparc 10 workstation (42 M�ops)
5 VAX 8600 computer
6 Pentium 266Mhz (83.7 M�op/s)
7 Silicon Graphics 4D/35

2.6 Remarks

In this chapter we have given an extensive survey where we discussed several solution ap-
proaches in terms of exact and heuristic algorithms for the VRP. In Table 2.3 we have given
an overview of some important papers we have discussed.

We have seen that there is no exact algorithm capable to solve VRP's of realistic size in
polynomial time. Therefore we have discussed the use of heuristic search methods that
can help us in �nding near optimal solutions in polynomial time. We have seen that some
heuristics perform better than others, but in general we can conclude that the conventional
heuristics usually do not �nd acceptable solutions.

For this reason the development of metaheuristics is necessary. In these heuristics we perform
an iterative process of replicating solutions and by some set of rules accept new solutions and
delete old solutions. These methods are build in such a way that local optima are avoided.
The best reported results are calculated with TS and GA.
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Table 2.3: Overview of important VRP papers

Category Author Year Topic
History Schrijver, A. 2005 History of combinatorial optimization
Survey Solomon, M. 1987 Survey of VRPTW

Zanakis, S. 1989 Categorized survey heuristics
Laporte, G. 1992 Exact and approximate algorithms
Toth, P. and Vigo, D. 2002 Branch & bound algorithms
Laporte, G. 2007 Exact and approximate algorithms

Exact Balinski, M. 1964 Set-partitioning
approaches Christo�des, N. 1981 Spanning tree

Fisher, M 1994 Minimum K-trees
Heuristics Clarke, G. 1964 Saving heuristic

Lin, S. and Kernighan, B.W. 1973 Improvement heuristic
Gillet, B. 1974 Sweep heuristic
Beasley, J. 1983 Route-�rst, Cluster-second
Ryan, D. 1993 Petal heuristic

Meta- Osman, I. 1993 SA & TS
heuristics Taillard, E. 1996 TS

Baker, B. and Ayechew, M. 2003 GA
Modi�cations Laporte, G. and Dejax, P.J. 1987 Dynamic location-routing

Salhi, S. and Rand G. 1993 Vehicle �eet composition problem
Renaud et al. 1996 Multi-depot vehicle routing
Archetti, C. 2006 Split delivery VRP

Applications Sierksma, G. and Tijssen, G. 1998 Routing helicopters
Pamuk et al. 2004 Product delivery system
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CHAPTER 3

THE VEHICLE ROUTING PROBLEM

WITH MULTIPLE USE OF VEHICLES

In the previous chapter we have seen that many researchers have been working on the vehicle
routing problem and its modi�cations. In this study we are predominantly interested in the
vehicle routing problem with multiple use of vehicles.

Contrary to the classical VRP the vehicles are now allowed to be replenished at the de-
pot. This implies that we have to adjust our model such that the depot, besides being the
start and end node of a tour, can also be an intermediate node in the same tour. We will
discuss several related formulations and the associated solution methods in the literature.
We will also look what happens with the problem when we add additional constraints such
as time windows, backhaul customers, heterogeneous vehicle �eet, etc.

This topic is usually overlooked in the literature despite the fact that it is relevant to many
real-life applications. Our main goal is to give a complete survey of all published articles
related to this topic and to discuss how we can approach practical problems based on the
methods related with the VRP with multiple use of vehicles. To illustrate the latter we will
discuss a real life case study in Chapter 5.

3.1 The VRPM in the literature

Surprisingly this topic received very little attention in the literature. It is surprising because
of the number of applications it can be used for. In our opinion models based on the VRPM
can be applied to many real life situations.
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A trivial example would be the increasing e-commerce sector in Europe and the United
States. Consider the case where we have to serve many customers in a small geographical
area; home deliveries in a big city from a warehouse on the outskirts of the city. It is now
plausible that the use of small vehicles each of which serves several routes on a single day
is more e�cient than the use of less bigger trucks on longer routes. Furthermore, in most
European cities the streets are narrow and the only vehicles that are small in size can serve
on such streets.

In this example we are dealing with a low-volume commodity that has to be transported a
short distance. The use of vehicles with smaller capacity in this example is easy to justify,
since in many big cities the use of larger vehicles is very ine�cient and sometimes even re-
stricted with aggravating time windows. Of course for practical problems where commodities
have to be transported over long distances the use of a VRP with multiple use of vehicles
seems not very likely.

Now, we �rst look at the already published papers in the literature. The �rst published
paper about the VRPM is from Taillard et al. (1996), however they admit that Fleischmann
was the �rst to explicitly de�ne this problem in 1990.

To avoid misunderstandings we make a clear distinction between a route and a tour. A
route is a single trip for a vehicle starting and ending at the depot without replenishing. A
tour consists of one or more routes and encompasses a working day of a vehicle.

3.2 Heuristic algorithms for the VRPM

As mentioned Fleischmann was the �rst to propose a solution approach for the VRPM. His
approach is built up from two phases. In the �rst phase a saving based heuristic is used
to construct routes and in the second phase a bin packing algorithm is used to construct
feasible working days for each of the vehicles.

Taillard et al. (1996) propose a tabu search algorithm based on the idea of Rochat and
Taillard (1995). They start with mentioning a trivial heuristic that is not further discussed,
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because it gives rather poor results. The idea here is to arti�cially lower the maximum du-
ration of a route. For instance, if the vehicles are allowed to work 10 hours a day, we could
set the maximum duration to 5 hour and assign the routes to vehicles using a bin-packing
algorithm. Of course such an approach can give very poor results depending on the problem
structure. In some cases it might even not be practical if every vehicle is forced to make
at least two or more trips in each day. The case that some vehicles make 1 trip and other
vehicles make multiple trips is excluded in this approach.

The tabu search algorithm they discuss in more detail consists of three steps. The �rst
step involves the generation of several feasible VRP solutions using the algorithm proposed
by Taillard (1993). The second step consists of �nding a subset of routes from the solutions
found in step 1 using an enumerative algorithm. The last step uses a bin packing algorithm
to create feasible working days to create a feasible solution for the VRPM.

The authors tested this algorithm on a number of generated problems, with customer sets
varying in size between 50 and 199. They run each of these instances with several di�erent
values for the number of vehicles. This way they create 52 replicated VRPM instances out
of 9 VRP instances, see Table 3.1.

Table 3.1: Characteristics of benchmark test problems
Problem number Source m zRT 1

1 E051-05e 1,. . . ,4 524.61
2 E076-10e 1,. . . ,7 835.26
3 E101-10c 1,. . . ,6 826.14
4 E151-12c 1,. . . ,8 1028.42
5 E200-17c 1,. . . ,10 1291.44
6 E121-07c 1,. . . ,5 1042.11
7 E101-08e 1,. . . ,6 819.56
8 E072-04f 1,. . . ,3 241.97
9 E135-07f 1,. . . ,3 1162.96

1 Optimal objective function value by Rochat and Taillard (1995)

Note that Rochat and Taillard (1995) solved the VRP with an unspeci�ed number of vehi-
cles. In such a VRP the objective is simply to minimize the total distance regardless of the

31



number of vehicles. For the VRPM this is an acceptable lower bound since in the VRPM
multiple routes can be served by the same vehicle as long as the combined duration does
not exceed the maximum allowable driving time of a vehicle. Note that these values are not
optimal solution values even to classical VRP, but only an estimate of the "lower bound"
for VRPM. It is therefore possible to �nd objective values lower than this zRT value.

In Taillard et al. (1996) the maximum allowable driving time T for a single vehicle is deter-
mined by considering the number of vehicles available and an estimate (zRT ) of total length
(time) of all routes. For this reason they de�ne two estimates, T1 and T2 speci�ed below,
where [x] is the value of x rounded to the nearest integer.

T1 = [1.05zRT /m] (3.1)
T2 = [1.1zRT /m] (3.2)

The authors try to �nd solutions that are feasible with respect to T1 and T2. This means
that an infeasible solution exceeds the maximum allowable driving time, which implies the
presence of overtime. The authors penalize this overtime with a factor 2 in order to give the
cost of the infeasible solutions. A second measure that is introduced to measure the quality
of the infeasible instances is the longest tour ratio (LTR).

LTR =
length of longest tour in the solution

T
(3.3)

In equation (3.3), T can be either T1 or T2. It is obvious that ratios closer to 1 can be con-
sidered as better solutions. The authors conclude that this algorithm can �nd high quality
solutions to the VRPM within reasonable computation times. Computational time for this
algorithm for the above introduced VRPM instances vary between 300 and 4500 seconds.
However, not for all of the 52 instances, the algorithm produces feasible solutions. Using T1

they solved 38 out of 52 instances, while using T2 gives a performance of 48 out of 52. We
have to notice that the authors run this algorithm 5 times for each instance, sometimes only
1 run produced a feasible solution. They state that likelihood of �nding a feasible solution
grows for problems with more customers. This is due to the fact that the �rst step of the
procedure produces more routes when n increases.

They do not compare the computational results of this algorithm with any other algorithms
(for instance, with the algorithm proposed by Fleischmann) so it is not possible to judge the
results on quality. Another drawback of this approach is that they do not take any additional
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constraints into account such as time windows, multiple vehicle type, etc.

Golden et al. (1997) try to apply the idea of this approach to the minmax vehicle rout-
ing problem. These are problems in which for equity reasons the objective is to minimize the
maximum distance traveled by any vehicle. Frederickson et al. (1978) and Franca et al. (1995)
have discussed this variant of the classical vehicle routing problem. Golden et al. (1997) then
claim to be the �rst to propose an algorithm for the minmax capacitated VRPM. Their al-
gorithm is tested on the VRPM problem instances generated by Taillard et al. (1996). For
a measure of solution quality they use the following statistic:

x = 100(
mz̄

zRT
− 1) (3.4)

where z̄ is de�ned as the length of the longest tour of a single vehicle. Again assuming zRT

here is functioning as a lowerbound, x will always be nonnegative. Observing the values of
x, we notice that when m increases, the value of x is also increasing. This is easy to explain
since it is plausible that when more vehicles are used to serve the same set of customers in
less time tours will vary more in length.

Brandao and Mercer (1997) propose a di�erent Tabu Search algorithm for the VRPM. This
algorithm was specially designed to be able to solve real distribution problems. In their pa-
per they discuss a real life problem for Burton's Biscuits Ltd. Some of the problem speci�c
constraints they took into account in this study are:

• Time windows

• Heterogeneous vehicle �eet

• Restricted access to certain customers by certain vehicle types

• Maximum daily driving time for drivers

• (Un)loading times

The conclusion of this paper was that the algorithm performed 20% better than the manual
scheduling which was used till that time. However, since many problem speci�c constraints
were used the algorithm could not be compared to the one of Taillard et al. (1996). To make
such a comparison, they simpli�ed this algorithm, (see Brandao and Mercer, 1998)
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This simpli�ed algorithm consists of two phases. In phase one they generate an initial
solution with a constructive algorithm in which they use two independent procedures, near-
est neighbor and insertion to �nd a layer. A layer is then de�ned as a set of routes such
that each route belongs to a di�erent vehicle. The solution of this phase is then used as
the starting solution of the second phase. This phase is a tabu search algorithm with two
sub-phases. The di�erence between these phases is that in the �rst one a solution is allowed
to be infeasible in terms of allowable driving times.

In phase one at each iteration of the Tabu Search we have a set of routes Nr and a set
of customers that are randomly chosen from each route to serve as candidates for a possible
move. For moves they consider two possibilities, an insert or swap move. At the end of the
iteration, they update the best solution found so far (feasible or infeasible) and repeat this
process until a given number of iterations is attained without improving the best solution
so far. During phase one, a table of frequencies is created to count the number that each
customer has been moved between two routes. In the second phase, the set C of candidates
for a possible move is �xed by the customers that have been moved below average in phase
one. This phase also ends after a certain number of iterations without improving the best
found solution.

The authors apply their heuristic on test problems introduced in Table 3.1. Taillard et al.
(1996) are so far the only paper publishing results on these test problems. In order to
compare their approaches, we refer to their results with TLG. Using T1 as the maximum
tour length for each vehicle, they solved 37 out of 52 instances, compared to 38 from TLG.
However using T2, all instances are solved compared to 48 of TLG. Then further details are
given on the infeasible problem instances. They conclude that, in terms of total length, their
approach performs 2.1% poorer than TLG, but in terms of LTR, they perform 1.2% better
than TLG, meaning that their approach performs better in terms of balancing the tours.
Computation times are ranging from 3 to 80 minutes, which is comparable with TLG. Again
5 runs are done for each instance and only the results of the best run is taken into account.
On the other hand the strength of this approach is that the authors have proven it to be
e�ective on real life examples after adding some problem speci�c side constraints.

Recently a new multi-phase heuristic is proposed by Petch and Salhi (2004). The algo-
rithm is designed to generate a greater diverse set of routes which increases the probability
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of �nding a more successful bin-packing solution. The phases are brie�y shown in Figure
3.1. In step 1 an initial set of VRP solutions is created. In the next step we order the
VRP solution according to the objective function value in nondecreasing order in a list L.
In the third step, we select a solution from the set L which is then used to construct a
VRPM solution with a bin-packing algorithm. After improving this solution, we compare
the VRPM solution with the best known solution. If a better solution is found, the best
known solution is updated and this process is continued till L is empty. The last phase of
this algorithm is producing a second initial VRP solution sample and the process is repeated.

step 1 Generate VRP solution sample using a saving approach.
step 2 Order VRP solutions according to total driving time in a list L.
step 3 Take VRP solution with lowest total driving time from L.

Construct VRPM solution with bin-packing algorithm.
step 4 Improve the VRPM solution.
step 5 Compare results with best solution found so far.

Update best solution if applicable.
While L 6= ∅ return to step 3.

step 6 More VRP solution are derived and placed in L.

Figure 3.1: Multi-phase heuristic of Petch and Salhi (2004)

They compare the computational results on the benchmark instances with the results from
TLG and Brandao and Mercer (1998) (we will refer to these solutions with BM). For T1 this
multi-phase algorithm produces feasible solution for only 24 of the 52 instances compared
to 38 from TLG and 37 from BM. Also for T2, this algorithm is performing poorer than the
other two, 47 compared with 48 from TLG and 52 from BM. However, when overtime is
required the algorithm gives solutions with competitive overtime restrictions. To be precise
they claim to decrease the average overtime against TLG by 29.6%, while compared to BM
they �nd a 25.3% higher average overtime. The computation times for this algorithm are
ranging between 60 and 2460 seconds.

To summarize, Petch and Salhi (2004) have presented a multi-phase algorithm to solve the
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VRPM. In terms of solution quality this algorithm is not performing better than the existing
TS-algorithms of Taillard et al. (1996) and Brandao and Mercer (1998). The computational
times are better, but when taking the computational power of their computer into account
this di�erence is negligible. We think the drawback of their approach is the lack of combining
elements from di�erent good VRP solutions together. Each VRPM solution is constructed
with elements from only one VRP solution. We will come back to this point in Chapter 4.

Lin and Kwok (2006) proposed multi-objective metaheuristics for the VRPM. Instead of
just routing decisions, they simultaneously take location decisions into account. This topic
is too far out of the scope of this study and shall therefore not be discussed in more detail.

Another paper related to VRPM is Kim et al. (2006) about an application of waste col-
lection in which they consider multiple disposal trips. In their paper they introduce a new
set of benchmark problems and propose a solution approach for the commercial waste col-
lection. In this application they take the following constraints into account:

• Hard time windows (i.e. earliest and latest starting time at each node)

• Driver lunch breaks

• Vehicle capacity

• Limited routing time per vehicle

Since these additional constraints are considered, the proposed algorithm cannot be used to
solve the benchmark problems of TLG. For this reason their computational results are too
far out of the scope of this study.

The last published paper in tackling the VRPM is from Olivera and Viera (2007). They
propose an algorithm based on adaptive memory programming principle which was intro-
duced by Rochat and Taillard (1995) as an enhancement of TS. Also this idea has been
applied by Golden et al. (1997) to solve the minmax variant of the VRPM.

The idea is the following: a set of solutions is stored in the memory M . Now every time a new
solution is constructed combining components of M and a local search procedure is applied
to this new solution to obtain an improved solution. The components of this improved so-
lution are stored in M and we continue this iterative process until a stopping criterion is met.
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Their approach is actually comparable with the approach of TLG. However, the assignment
of routes to vehicles is done in every iteration to obtain intermediate solutions for the VRPM
while TLG only applies an assignment heuristic at the end of their approach. They report
feasible solutions on several so far unsolved instances. For T1 they have solved 46 out of 52
instances and for T2 they have solved all instances, but computational times ranging from
10 to 320 seconds which are acceptable computational times.

3.3 Exact algorithms for the VRPM

Azi et al. (2007a,b) presented two papers about the VRPM. In one paper they discuss the
single-vehicle case and in the other they generalize the same idea for the case where we have
a vehicle �eet. The main di�erence with the previously discussed papers is that they try to
solve the problem with an exact algorithm based on a mathematical programming formula-
tion. Besides that the authors include some practical constraints such as time windows and
service times. We start by introducing the parameters in Azi et al. (2007a).

Parameters:
cij = the cost of travelling from node i to node j.
qi = positive demand of customer i.
ai = the earliest starting time of service at customer i.
bi = the latest starting time of service at customer i.
si = the service time for customer i.
σr = the set-up time for route r (loading at the depot).
C = the vehicle capacity.
β = coe�cient for set-up times.
tmax = maximum duration of a route.

Decision variables:

xr
ij =

 1, if arc (i, j) is in route r

0, otherwise

yr
i =

 1, if customer i is in route r

0, otherwise
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tri = the starting time of service at customer i in route r.
tr0 = the starting time of route r.
trn+1 = the end time of route r.

Further symbols that have to be introduced before the mathematical representation can
be presented are N = {1, . . . , n} for the customer set and N+ for N ∪{0, n+1} where 0 and
n + 1 are representing the depot. Similarly A is the arc set with arcs (i, j), i, j ∈ N and A+

the extended arc set including all arcs to and from the depot. The single vehicle is serving
a set K of routes {1, . . . , k}, some of these routes might be empty.

min
∑
r∈K

∑
(i,j)∈A

dijx
r
ij (3.5)

s.t. ∑
j∈N+

xr
ij = yr

i i ∈ N, r ∈ K (3.6)
∑
r∈K

yr
i = 1 i ∈ N (3.7)∑

i∈N+

xr
ih −

∑
j∈N+

xr
hj = 0 h ∈ N, r ∈ K (3.8)

∑
i∈N+

xr
0,i = 1 r ∈ K (3.9)

∑
i∈N+

xr
i,n+1 = 1 r ∈ K (3.10)

∑
i∈N

qiy
r
i ≤ Q r ∈ K (3.11)

tri + si + tij −M(1− xr
ij) ≤ trj (i, j) ∈ A+, r ∈ K (3.12)

aiy
r
i ≤ tri ≤ biy

r
i i ∈ N, r ∈ K (3.13)

t10 ≥ σ1 (3.14)
trn+1 + σr+1 ≤ tr+1

0 r = 1, . . . , k − 1 (3.15)
σr = β

∑
i∈N

siy
r
i r ∈ K (3.16)

tri ≤ tr0 + tmax i ∈ N, r ∈ K (3.17)
xr

ij , y
r
i ∈ {0, 1} (3.18)

Equation (3.5) is the objective function that is minimizing the overall traveled distance.
Equation (3.6) and (3.7) state that each customer is visited exactly once. Equation (3.8)
assures that exactly one vehicle is entering and leaving customer h. Equation (3.9) ensures
that each route is leaving the depot where (3.10) does the opposite and ensures that each
route is turning back at the depot. Equation (3.11) guarantees the vehicle capacity is not
exceeded for each route r. Equation (3.12) de�nes the starting times of service at each cus-
tomer and (3.13) guarantees that these starting times satisfy the time windows. Equation
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(3.14) and (3.15) ensure that the routes cannot start before the vehicle is prepared (loaded)
at the depot using the set-up times. Equation (3.16) de�nes the set-up cost as a linear func-
tion of the total service time on that particular route. Equation (3.17) de�nes the maximum
time for each route. Finally equation (3.18) is de�ning the binary decision variables.

In practice it can occur that due to high demand not all customers can be served within
their time windows. We could in this case hire an additional vehicle or consider a common
carrier and solve the generalized model discussed later in this section. When this is not an
option, we can modify our objective function to maximize the number of customers visited
while minimizing the total distance traveled. In this case equation (3.5) would be replaced
by (3.19), where p(i) is the pro�t made when customer i is serviced.

z =
∑
r∈K

∑
(i,j)∈A

dijx
r
ij −

∑
i∈N

p(i)yr
i (3.19)

The authors try to solve this problem via an approach that is based on the elementary short-
est path algorithm with resource constraints proposed by Feillet et al. (2004). In phase one
a set of feasible non-dominated routes is constructed. In phase two, some of these routes will
be selected to build a feasible working day. The algorithm cannot be tested on the VRPM
problem instances introduced by Taillard et al. (1996) due to the absence of time windows.
Instead, the algorithm is tested on VRPTW problem instances from Solomon (1987), dead-
lines are added and tests were run on a 900 MHz Sun Ultra III with 8GB of RAM. We notice
that CPU times can vary from only a few seconds to a day. The CPU times are depending
on problem size for obvious reasons and tmax. When tmax is not tight enough, the number
of feasible routes is exploding and strongly e�ecting the CPU.

The drawback of their study is that they only consider a single vehicle and therefore clearly
not very useful for practical applications. For this reason, the authors are currently working
on a generalisation of this approach where it is possible to have many vehicles. A working
paper is already available, see Azi et al. (2007b).
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3.4 Remarks

In this chapter we have seen that the VRPM is a very complex problem that is very hard
to solve. The available literature is very limited compared to its importance in real life
applications. Only four papers have been published that propose solution approaches for
the classical VRPM and all of these approaches are tested on the same problem instances.
Taillard et al. (1996), Brandao and Mercer (1998), and Olivera and Viera (2007) de�ne meta-
heuristic solution approaches. Petch and Salhi (2004) are so far the only authors proposing
a multi-phase algorithm for the VRPM.

Olivera and Viera (2007) is clearly performing the best in terms of solution quality as well
as computational times, but no comments are made for the use of this algorithm in practical
applications. The only authors that explicitly discussed a real life example are Brandao
and Mercer (1997). They conclude that compared with a manual scheduling system, their
approach can save up to 20% on the daily driving times.

Furthermore we have seen the paper of Azi et al. (2007a) that is proposing an exact so-
lution approach for the VRPM with a single vehicle. They include time windows in their
approach, but since they only use one vehicle, the practical use is very limited.

In the next chapter we will discuss two models that can solve the VRPM. Our goal is
to develop a model that can easily adopt several side-constraints. The model should also be
solvable within reasonable CPU times.
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CHAPTER 4

MATHEMATICAL MODELS FOR VRPM

In this chapter we will basically present two models to solve the VRPM. Our aim is to
present a solution approach that is able to solve a practical application. This means that
the approach should be capable of successfully adapting several side constraints that might
occur within the application.

The �rst model is an integer formulation based on the route-�rst cluster-second principle.
We have chosen for a conventional based heuristic since they are relatively simple and there-
fore require very low CPU times. It is also an approximate representation of the problem in
an integer formulation. Second we adapt the classical set-covering approach such that it can
solve the VRPM. Actually it is a true representation of the problem in an integer formulation,
but only when the optimal set of routes is included in the input set. Both approaches are
enhanced using improvement routines. We show that the set-covering approach can easily
be adapted to handle side constraints frequently observed in real-life applications.

Both approaches are tested on benchmark problems given in the literature and we com-
pare the results with the previously published results.

4.1 Mathematical model for the route-�rst cluster-second

approach

The route-�rst cluster-second heuristic for the classical VRP is already introduced in Chap-
ter 2, recall that in the �rst step we solve a TSP problem to obtain a giant tour. In the
second step of the algorithm we assign customers to individual routes such that each route is
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satisfying the vehicle capacity and the combined length is minimized. Recall from Chapter
2 that Ryan et al. (1993) proposed to use a shortest path technique in the second phase. In
this integer formulation we enhance this idea for the VRPM.

We start with presenting a mathematical representation of a shortest path model. The
parameters and decision variables are given below.

Parameters:
cij = the cost of travelling from node i to node j.

Decision variables:

xij =
 1, if arc (i, j) is used

0, otherwise

The mathematical representation (which we will refer to as SP1):

[SP1] min
n∑

i=0

n∑
j=0

cijxij (4.1)

s.t.
n∑

j=0

x0,j = 1 (4.2)
n∑

j=0

xj,n = 1 (4.3)
n∑

i=0

xij =
n∑

i=0

xji ∀j = 1, . . . , n− 1 (4.4)

xij ∈ {0, 1} ∀i, j = 0, . . . , n (4.5)

In the objective, equation (4.1), the total cost of the arcs selected in the optimal solution is
minimized. We are interested in a shortest path starting at node 0 and ending at node n.
Equation (4.2) is ensuring one arc is leaving the starting point and equation (4.3) is de�ning
one arc to enter the end point of the shortest path. Equation (4.4) are the connectivity
constraints that ensure inclusion of all nodes into the resulting set of individual (for vehicle)
tours. Finally equation (4.5) is de�ning the binary decision variables. In this formulation
the optimal solution will represent the shortest path from node 0 to node n disregarding
whether all other nodes are visited or not.
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step 1 Solve the giant TSP for n customers.
step 2 Create shortest path graph.
step 3 Solve shortest path model.
step 4 Improve solution.

Figure 4.1: Route-�rst, cluster-second based solution approach for the VRPM

In Figure 4.1 we have systematically showed the steps of our approach. In step 1 we solve
the giant TSP using Concorde (Cook, 2008). Concorde is a software package that can solve
TSP. It has solved to optimality, 104 out of 110 TSP's from the TSPLIB, with the largest
instance solved having 15,112 customers. In step 2 we create a shortest path graph. The
resulting graph is acyclic. We order the nodes and re-index every customer in the order
as they appear on the giant TSP solution. Look at Figure 4.2, here i = 0 represent the
depot and i = 1 the node that is visited �rst on the giant tour, etc. Finally node i = n is
representing the node that is visited last in the giant tour.

Because of the technical issues, we de�ne an arc (i, j) as follows. Arc (i, j) represents a
route starting at the depot, traveling to node i + 1, i + 2, . . . , j and back to the depot. This
means that each arc can be interpreted as a route itself. The total length of this route is
given by cij . When de�ning the arc we make a major assumption. We de�ne arc (i, j) if and
only if i < j, because it is an acyclic graph. Therefore arc (i, j) is only de�ned if and only
if ∑j

h=i+1 qh ≤ C where C is the vehicle capacity.

Figure 4.2: Shortest path graph

In step 3 we solve the shortest path with a modi�ed version of the standard shortest path
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model SP1. Since we assume in this model that each vehicle can make several routes on
a single day, we need an additional constraint ensuring that the combined length of these
routes is not exceeding a prescribed limit T . In this study we assume that T is equal for
all vehicles. Since our approach is solved in a framework of the route-�rst cluster-second
algorithm, we assume, while solving the shortest path problem, that the order in which the
customers are visited is �xed. This means that the order in which the customers are visited is
an input for this model. The parameters and decision variables of this model are given below.

Parameters:
cij = the cost of a route serving customers i + 1 up to and including j.
qi = positive demand of customer i.
m = the number of vehicles available.
C = the vehicle capacity
T = the maximum cost (or driving time) of each vehicle in a planning horizon.

aij =


1, if j∑
h=i+1

qh ≤ C

0, otherwise

Decision variables:

xijk =
 1, if vehicle k travels on arc (i, j)

0, otherwise

The mathematical representation (which we will refer to as SP2):

[SP2] min
n∑

i=0

n∑
j=0

m∑
k=1

cijxijk (4.6)

s.t.
n∑

j=0

m∑
k=1

x0,jk = 1 (4.7)
n∑

j=0

m∑
k=1

xj,n,k = 1 (4.8)
n∑

i=0

m∑
k=1

xijk =
n∑

i=0

m∑
k=1

xjik ∀j = 1, . . . , n− 1 (4.9)
n∑

i=1

n∑
j=1

cijxijk ≤ T ∀k = 1, . . . ,m (4.10)

xijk ≤ aij ∀i, j = 0, . . . , n & k = 1, . . . ,m (4.11)
xijk ∈ {0, 1} ∀i, j = 0, . . . , n & k = 1, . . . ,m (4.12)

In the objective, equation (4.6), the total cost of the arcs selected in the optimal solution
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is minimized. We are interested in a shortest path starting at node 0 and ending at node
n. Equation (4.7) is ensuring one arc is leaving the starting point and equation (4.8) is
de�ning one arc to enter the end point of the shortest path. Equation (4.9) are the connec-
tivity constraints, and equation (4.10) is the bin-packing constraint representing the working
days of the vehicles. Finally equation (4.11) and (4.12) are de�ning the binary decision vari-
ables that can only equal 1 when part of the acyclic graph satisfying the capacity constraints.

The solution of this model will give us a set of arcs that represent routes and simulta-
neously give feasible working days for the vehicles each of which serves one or more routes.
In step 4, we try to improve this solution by solving an individual TSP for each of the se-
lected routes. In the next section we will test this model on the benchmark problems from
the literature.

4.1.1 Computational results

All computations in this section are coded in C++ and were run on a Dell Inspiron 1300
with an Intel(R) Pentium(R) M 1.70GHz processor. The integer model SP is solved with
CPLEX 10.0. Before we can modify our model to adapt several practical side constraints we
want to compare its performance with the results published in the literature.

We start by solving our approach for m = 1 for the problem instances introduced in Table
3.1 (these are 9 of the 52 VRPM instances). Note that in this case our problem is equal
to the classical VRP with an unspeci�ed number of vehicles such as solved by Rochat and
Taillard (1995). To compare the performance of our approach with the previous published
results, we look at the statistic de�ned in equation 4.13 which shows the deviation of our
solution value from that of Rochat and Taillard (1995) de�ned by zRT .

x =
z(·) − zRT

zRT
∗ 100% (4.13)

where z(·) is referring to the solution value of the used procedure (·).

We present the results for these 9 instances in Table 4.1. In the �rst column we see the
problem instances also used by Taillard et al. (1996) with the corresponding number of cus-
tomers in the second column. The third column shows the values obtained by Rochat and

45



Table 4.1: The results for Route-�rst, cluster-second algorithm

n zRT zSP1 x (Eq. 4.13) CPU(sec)
CMT-1 50 525 560 6.75 0.7
CMT-2 75 835 880 5.36 0.9
CMT-3 100 826 928 12.33 1.4
CMT-4 150 1028 1099 6.86 2.4
CMT-5 199 1291 1397 8.17 4.1
CMT-11 120 1042 1071 2.77 1.8
CMT-12 100 820 887 8.23 1.3
F-11 71 242 249 2.91 0.9
F-12 134 1163 1224 5.25 2.0
Avg. 6.51 1.7

Taillard (1995) while the fourth column is �lled with our objective function values. The �fth
column is the statistic introduced in equation 4.13, and �nally the last column presents the
time spent to �nd this solution (in seconds) for each instance.

We notice that this heuristic is on average performing 6.5% poorer than the TS algorithm of
Rochat and Taillard (1995). We notice that this value is too high to �nd good solutions for
the VRPM. Increasing m will only add extra constraints to our model meaning that results
can only get poorer. However, the CPU-time of our algorithm is negligible, which is a strong
aspect compared to Rochat and Taillard (1995), because it is a metaheuristic and their best
solutions are the results of �ve replications of the algorithm.

We notice the following: after we have selected routes based on their cost (cij), we im-
prove these cij values in step 4 by solving an individual TSP. However, this is only done for
those routes that are selected in the optimal solution. We now suggest that if we solve an
individual TSP for each arc (route) on our shortest path graph, we can further improve our
solution quality. In the worst case scenario this would mean that we have to solve n∗(n−1)

2

TSP's, however because of vehicle capacity constraints the number of actual TSP that is
solved is only a small fraction of this number. To avoid misunderstandings, we would like to
emphasize that the shortest path graph remains unchanged and only routing "within" the
arcs is considered in this step. The results of the SP1 with modi�ed arcs, denoted by SP2,
are given in Table 4.2 for the nine test instances with m = 1.
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In Table 4.2 we observe that the algorithm now performs on average 4.8% poorer com-
pared to the Tabu search algorithm of Rochat and Taillard (1995) compared to the 6.5% we
found before. It is an important improvement, but CPU times are no longer negligible. This
is due to the additional computational time needed to solve n∗(n−1)

2 TSP's.

Table 4.2: Enhancement of route-�rst, cluster-second algorithm

n zRT zSP2 x (Eq. 4.13) CPU(sec)
CMT-1 50 525 560 6.75 196
CMT-2 75 835 880 5.36 230
CMT-3 100 826 860 4.10 451
CMT-4 150 1028 1086 5.60 891
CMT-5 199 1291 1375 6.47 1110
CMT-11 120 1042 1064 2.10 1123
CMT-12 100 820 858 4.69 620
F-11 71 242 249 2.91 665
F-12 134 1163 1219 4.82 1414
avg. 4.75 744

So far we have only been solving the classical VRP with an unspeci�ed number of vehicles.
When we increase the number of vehicles m and de�ne a maximum allowable driving time
T for each vehicle, we have a VRPM. In these tests we use the same values for m and T as
Taillard et al. (1996) in order to compare our results. Remind that T could be either T1 or T2.

T1 = [1.05zRT /m] (4.14)
T2 = [1.1zRT /m] (4.15)

It is clear that this setting of T 's is arti�cial and there is nothing to do with representing
time windows. Furthermore it cannot be possible to �nd feasible solutions even with T = T2.
Therefore we introduce an even more relaxed limit on T , as

T3 = [1.15zRT /m] (4.16)

We present our results of these tests in a detailed way in Appendix A. We use a "∗∗" sign
to illustrate the instances for which we have found a feasible solution given the maximum
allowable distance of a single vehicle. In Table 4.3 we compare the results with respect to
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the other results in the literature in terms of the number of instances for which a feasible
solution is found. Our computations are based on the 52 test problem instances.

Table 4.3: The number of feasible solutions found for the benchmark test problems

TLG1 BM2 PS3 OV 4 SP25

T1 38 37 24 46 11
T2 48 52 47 52 42
T3 50
1 results from Taillard et al. (1996)
2 results from Brandao and Mercer (1998)
3 results from Petch and Salhi (2004)
4 results from Olivera and Viera (2007)
5 results from our approach SP2 in section 4.1

We notice that our relatively simple algorithm cannot compete with the more sophisticated
metaheuristics proposed in the literature when T = T1, but it is competitive when T = T2.
We reckon that the drawback of our method is the restriction that the customers are or-
dered when solving the giant TSP. For this reason we drop this restriction and propose a
set-covering approach in the next section to �nd a true representation of the problem.

4.2 Set-covering based mathematical model

In this section we discuss a set-covering model modi�ed to solve the VRPM. We already
discussed the set-partitioning model in Section 2.1.3, but now we will use the set-covering
model. The parameters and decision variables of the set-covering model are given below.

Parameters:
cj = The cost (in terms of distance or time) of route j.
aij = Equals 1 if customer i is included in route j for each j in the route set J .
m = the number of vehicles available.

48



Decision variables:

xj =
 1, if route j is selected in the solution

0, otherwise

The mathematical representation (which we will refer to as SC):

[SC] min z =
∑
j∈J

cjxj (4.17)

s.t. ∑
j∈J

aijxj ≥ 1 i = 1, . . . , n (4.18)
∑
j∈J

xj ≤ m (4.19)

xj ∈ {0, 1} ∀j (4.20)

The objective function, equation (4.17), is minimizing the cost of the selected routes. Equa-
tion (4.18) ensures that each customer is visited at least once, and equation (4.19) puts a
restriction on the number of vehicles. Finally equation (4.20) is de�ning the decision vari-
ables. Note that route j could be any feasible route.

Converting this model such that it can solve the VRPM involves the following changes,
�rst we introduce a new index k ∈ {1, . . . ,m} that represent the vehicles. Then we rede�ne
the decision variable and give the modi�ed mathematical representation.

Decision variables:

xk
j =

 1, if route j is served by vehicle k in the optimal solution
0, otherwise

The mathematical representation (which we will refer to as SCT):

[SCT] min z =
∑
j∈J

m∑
k=1

cjx
k
j (4.21)

s.t. ∑
j∈J

m∑
k=1

aijx
k
j ≥ 1 i = 1, . . . , n (4.22)

∑
j∈J

cjx
k
j ≤ T ∀k (4.23)

xk
j ∈ {0, 1} ∀j, k (4.24)

All equations are same as those of model SC except (4.23). It is changed and this equation
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is now ensuring that for each vehicle the total duration of the routes that is served is less
than the prescribed limit T . An advantage of this model is that we are no longer limited to
a �xed order of routes in which the customers have to be visited in a prescribed order. We
can now incorporate any route from any di�erent source into set J and let the model pick
the best mix of these routes.

This approach gives us the optimal solution to the model if J contains all possible feasible
routes. Given the route set J (which could be only a small subset of the set of all possi-
ble feasible routes, because the entire set is so large) we also incorporate an improvement
procedure to �nd a better solution.

4.2.1 Improvement on SCT

Let us assume that (4.21)-(4.24) results in an infeasible solution in terms of T . Most likely
we have a solution where a few vehicles have a total driving time of more than T , while
at the same time other vehicles have a total driving time less than T . In our improvement
procedure we select a customer from a vehicle with Tk > T and try to insert it in one of the
other routes such that the new driving time remains below T and the capacity restriction
is satis�ed. For a stepwise summary of our solution approach, see Figure 4.3. In the next
section we will present our computational results related to di�erent settings of set J for
SCT and improvement procedure in Figure 4.3.

4.2.2 Computational results

Again all computations in this section are coded in C++ and were run on a Dell Inspiron
1300 with an Intel(R) Pentium(R) M 1.70GHz processor. We used CPLEX 10.0 to solve the
model SCT. Before we can modify our model to adopt several practical side constraints we
want to compare its performance in its pure form with the results published in the literature.

We start by de�ning the subset Ĵ . Remember from the integer-approach in Section 4.1
that we constructed an acyclic graph where each arc represented a route. This graph was
created solving a giant TSP. Now we create a second graph using the sweep-method. We
thus construct our route-set Ĵ as the set containing all routes from these two graphs com-
bined. This means that we combine routes from both methods and at least it guarantees us
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step 1 Derive any subset Ĵ from the entire route set J .
step 2 Solve (4.22)-(4.25) given this Ĵ .
step 3 If a feasible solution is found, stop.

Otherwise go to step 4.
step 4 Select the vehicle with the longest total driving time (>T).
step 5 List the customers served by this vehicle in order to seek savings

when any one is removed from this vehicle.
step 6 Take item from the list and insert it in one of the other routes.

Check feasibility and update driving times.
step 7 If feasible improvement is found, update solution and

return to step 3.
While list is not empty, return to step 6.

step 8 Stop.

Figure 4.3: Improvement procedure on the set-covering approach

no worse solutions.

Following the same methodology as in Section 4.1.2, we �rst solve our model for the nine
test problem instances with m = 1 and we present the results in Table 4.4. zSCT in this
table refers to the optimal solution value of the model SCT given the subset of routes.

We notice that this approach is �rst of all performing only 2.9% poorer than the TS-algorithm
of Rochat and Taillard (1995) for the VRP with an unspeci�ed number of vehicles. The CPU-
times are negligible as it only takes fractions of a second to solve the model to optimality
using CPLEX version 10.0. Regarding the VRPM instances we expect that since we have
a larger route-set the chance of �nding a feasible solution is now higher compared with our
MIP-model from Section 4.1.

In appendix B we have presented all results in detail, covering all 52 test problem instances,
in the same manner as we did in appendix A. The symbol ∗∗ is illustrating for which in-
stances we have found a feasible solution given the maximum allowable distance of a single
vehicle. Note that if we have found a feasible solution for the T1 instance, this automatically
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Table 4.4: Results for the set-covering approach

n zRT zSCT x (Eq. 4.13)
CMT-1 50 525 525 0
CMT-2 75 835 879 5.27
CMT-3 100 826 827 0.12
CMT-4 150 1028 1086 5.54
CMT-5 199 1291 1361 5.34
CMT-11 120 1042 1064 2.11
CMT-12 100 820 827 0.85
F-11 71 242 249 2.91
F-12 134 1163 1211 4.13
Avg. 2.92

means we will �nd a feasible solution for T2 and T3. This may not be necessarily the same
solution, there might be an improvement possible in terms of the total cost.

Although we see an improvement in the number of instances solved, the results are still
not as good as the published results in the literature. However, since CPU-times of the
set-covering model are so low, we come up with the following idea. We decide to generate
more high quality routes with a modi�ed version of the Clark and Wright saving heuristic
introduced in Chapter 2 to enlarge the number of routes in set Ĵ . Recall that the saving
heuristic is initially serving all customers on an individual route and then step by step merges
the routes in order to obtain a VRP solution. To determine which routes are to be merged
we de�ne:

sij = c0i + coj − cij (4.25)

We order these saving in a list in non-increasing order and start at the top of the list by
looking if a merge is feasible. If so, we merge the routes and continue with the next element
from the list. If not, we do not merge the routes and continue with the next element from
the list. We continue till the list of savings is empty. Remind that a merge is only feasible
when the combined capacity of the "old" routes is not exceeding C. Each time a feasible
merge is found we add this "new" route into our route-set Ĵ .

Note that this saving approach is deterministic in selection and gives us the same routes
each time we run it. In order to obtain more "good" routes with the saving heuristic, we
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make a small modi�cation and propose a stochastic version of the same saving heuristic.
Here we select an item from the saving list with a probability p. We de�ne the probability
P (sij) as follows.

P (sij) > P (stv) if sij ≥ stv (4.26)

We have noticed that as the size of the route set is growing, the increase in CPU-time is
quite signi�cant. So we have to �nd a balance between the desired improvement of adding
more routes into Ĵ against the increase in CPU-time. Preliminary experiments show us that
when we apply the stochastic saving heuristic 20 times plus the deterministic saving heuristic
and the routes given by the route-�rst cluster-second approach of Section 4.1, this will keep
CPU-times reasonable. Note that we have excluded the routes from the sweep method here,
because we noticed these routes were barely chosen and only a�ecting the CPU-time.

Table 4.5: Route generation results
n zRT routes time(sec) zSCT x (Eq. 4.13)

CMT-01 50 525 1861 612 521 -0.76
CMT-02 75 835 2462 771 864 3.47
CMT-03 100 826 3951 1384 824 -0.24
CMT-04 150 1029 6744 2501 1072 4.18
CMT-05 199 1292 8667 3979 1342 3.87
CMT-11 120 1042 6258 2626 1041 -0.10
CMT-12 100 820 4474 1781 827 0.85

F-11 71 242 3728 1871 249 2.89
F-12 134 1163 8525 4090 1139 -2.06

average 5186 2179 [-2.06,4.18]

In Table 4.5 we show the results of the new route generation phase for only the nine test
instances. In the �rst column we �nd the problem instances, in the second column the ac-
companying number of customers. The third column gives us the results of the VRP for an
unspeci�ed number of vehicles by Rochat and Taillard (1995). The fourth column shows the
size (cardinality) of the route set Ĵ and the �fth column shows the presolving time that is
needed to calculate the cj values for j ∈ Ĵ . The next column shows the objective function
value found with the set-covering model and in the last column we look at the statistic x as
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de�ned in equation (4.13). It is clear that this time we do even better than the benchmark
results for some cases. The worst deviation is about 4%, which is observed for only two
instances. These results are quite compatible with the results in the literature even if we
only consider the quality of the solution and the solution e�ort needed as criteria.

In Table 4.6 we compare, for all 52 test problem instances, the results with respect to
the other results in the literature in terms of the number of instances for which a feasible
solution is found.

Table 4.6: The number of feasible solutions found for the benchmark test problems

TLG1 BM2 PS3 OV 4 SP25 SCT 6

T1 38 37 24 46 11 34
T2 48 52 47 52 42 45
T3 50 50
1 results from Taillard et al. (1996)
2 results from Brandao and Mercer (1998)
3 results from Petch and Salhi (2004)
4 results from Olivera and Viera (2007)
5 results from our route-�rst, cluster-second approach SP2 in section 4.1
6 results from our set-covering approach SCT in section 4.2

We notice that this approach is signi�cantly performing better than without the routes gen-
erated with the saving heuristic. To see if this enhancement also has a positive e�ect on
the number of VRPM instances with a feasible solution we test this data on the VRPM
instances. We presented our results in appendix C. To compare the results of our infeasible
instances with the other authors we have computed the longest tour ratios (LTR) as de�ned
in equation 3.3. We will now present two tables.

In Table 4.7 we present the LTR of the infeasible solution given by the set covering model
(4.21)-(4.24). In this table T1 is determined by equation (4.14) and T2 by equation (4.15).
When the LTR is smaller than 1 (< 1) this means we have found a feasible solution in
terms of T1 or T2. In Table 4.8 we present again the same LTR, but this time after we have
improved the infeasible solutions.
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We notice that after we solve the set covering model, we obtain 25 instances (for T1 and
T2 only) with an infeasible solution in terms of total driving time (or cost). After our
improvement procedure, we have improved 20 out of these 25 instances. We see that this
improvement step has a signi�cant good e�ect on the instances to make the infeasible tours
shorter.

4.3 Remarks

In this chapter we have derived two models to solve the VRPM. The �rst model based on the
route-�rst cluster-second principle showed to be really good in terms of computation times.
For each instance we found solutions within just a few seconds. On the other hand, we saw
that assuming the customer must be visited in a prescribed order has a negative e�ect on
the solution quality. So we can conclude that this approach is useful for large instances that
need to be solved very quickly. However when solution quality becomes more important this
approach is not very useful.

The second model is derived based on the set covering model. Here we drop the assumption
that the customers have to be visited in the order as they appear on the giant tour and we
take any feasible route as a candidate. We derive several good routes using three di�erent
procedures. The �rst being the same route-�rst cluster-second method as we use for the in-
teger model. Second we derive a set of good petal routes using the idea of Ryan et al. (1993),
and �nally we derive a good set of routes using a stochastic version of the parallel saving
heuristic of Clarke and Wright (1964). Results show very reasonable results in acceptable
computation time.

We notice looking at the costumer distributions in Appendix E, that our results are better
for problems where the customers appear in clusters. The set covering approach seems to fail
for larger instances, especially for the randomly distributed instances, compared with other
published results in terms of LTR, however after incorporating an improvement procedure
this failure is �xed and comparable results are found. However the comparisons made are
quite poor. For instance the total tour length is so far not considered important in the
literature. The main focus so far was to �nd feasible solutions (minimizing the longest tour).
We think that in future research on this topic the total tour length will become of more
importance.
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Table 4.7: Results for infeasible instances before improvement
Problem: m T1 T2 SCT TLG1 BM2 PS3 OV 4

CMT-01 50 2 276 <1 <1 <1 1.004 <1
3 184 1.027 1.115 1.041 1.026 1.024
3 193 <1 1.05 <1 1.000 <1
4 138 1.051 1.027 1.027 1.085 1.027
4 144 <1 <1 <1 1.031 <1

CMT-02 75 6 146 1.041 1.032 1.031 1.019 <1
7 125 1.056 1.073 1.088 1.064 1.009
7 131 <1 1.023 <1 1.009 <1

CMT-03 100 5 173 <1 1.062 <1 1.052 <1
5 182 <1 1.010 <1 <1 <1
6 145 1.048 1.032 1.003 1.001 <1
6 151 <1 1.012 <1 <1 <1

CMT-04 150 4 270 <1 <1 <1 1.005 <1
5 216 1.051 <1 <1 <1 <1
6 180 1.050 <1 <1 1.01 <1
7 154 1.110 1.033 1.071 1.072 1.002

162 1.056 1.010 <1 1.005 <1
8 135 1.178 1.075 1.031 1.058 <1

141 1.128 1.029 <1 <1 <1
CMT-05 199 5 271 1.052 <1 <1 1.007 <1

6 226 1.049 <1 <1 1.000 <1
7 194 1.046 <1 <1 1.008 <1
8 170 1.094 <1 <1 1.015 <1
8 178 1.045 <1 <1 <1 <1
9 151 1.059 <1 1.056 1.024 <1
9 158 1.013 <1 <1 <1 <1
10 136 1.088 1.024 1.051 1.064 <1
10 142 1.042 <1 <1 1.018 <1

CMT-11 120 2 547 <1 <1 <1 1.006 <1
3 365 <1 <1 <1 1.006 <1
4 274 <1 1.020 1.011 1.052 <1
4 287 <1 <1 <1 1.002 <1
5 219 <1 <1 <1 1.037 <1

CMT-12 100 4 215 <1 <1 1.012 <1 <1
5 172 1.069 1.050 1.036 1.000 <1
5 180 1.022 1.003 <1 <1 <1
6 144 1.132 1.064 1.072 1.029 1.014
6 150 1.087 1.014 <1 <1 <1

F-11 71 2 127 <1 1.031 1.011 1.020 <1
3 85 1.047 1.075 1.011 1.020 1.020
3 89 <1 1.027 <1 <1 <1

1 results from Taillard et al. (1996)
2 results from Brandao and Mercer (1998)
3 results from Petch and Salhi (2004)
4 results from Olivera and Viera (2007)
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Table 4.8: Results for infeasible instances after improvement
Problem: m T1 T2 SCT TLG1 BM2 PS3 OV 4

CMT-01 50 2 276 <1 <1 <1 1.004 <1
3 184 1.027 1.115 1.041 1.026 1.024
3 193 <1 1.05 <1 1.000 <1
4 138 1.029 1.027 1.027 1.085 1.027
4 144 <1 <1 <1 1.031 <1

CMT-02 75 6 146 1.034 1.032 1.031 1.019 <1
7 125 1.056 1.073 1.088 1.064 1.009
7 131 <1 1.023 <1 1.009 <1

CMT-03 100 5 173 <1 1.062 <1 1.052 <1
5 182 <1 1.010 <1 <1 <1
6 145 1.020 1.032 1.003 1.001 <1
6 151 <1 1.012 <1 <1 <1

CMT-04 150 4 270 <1 <1 <1 1.005 <1
5 216 1.046 <1 <1 <1 <1
6 180 1.011 <1 <1 1.01 <1
7 154 1.064 1.033 1.071 1.072 1.002
7 162 1.012 1.010 <1 1.005 <1
8 135 1.089 1.075 1.031 1.058 <1
8 141 1.043 1.029 <1 <1 <1

CMT-05 199 5 271 1.007 <1 <1 1.007 <1
6 226 1.031 <1 <1 1.000 <1
7 194 1.046 <1 <1 1.008 <1
8 170 1.088 <1 <1 1.015 <1
8 178 1.039 <1 <1 <1 <1
9 151 1.059 <1 1.056 1.024 <1
9 158 1.013 <1 <1 <1 <1
10 136 1.074 1.024 1.051 1.064 <1
10 142 1.028 <1 <1 1.018 <1

CMT-11 120 2 547 <1 <1 <1 1.006 <1
3 365 <1 <1 <1 1.006 <1
4 274 <1 1.020 1.011 1.052 <1
4 287 <1 <1 <1 1.002 <1
5 219 <1 <1 <1 1.037 <1

CMT-12 100 4 215 <1 <1 1.012 <1 <1
5 172 1.064 1.050 1.036 1.000 <1
5 180 1.017 1.003 <1 <1 <1
6 144 1.090 1.064 1.072 1.029 1.014
6 150 1.047 1.014 <1 <1 <1

F-11 71 2 127 <1 1.031 1.011 1.020 <1
3 85 1.011 1.075 1.011 1.020 1.020
3 89 <1 1.027 <1 <1 <1

1 results from Taillard et al. (1996)
2 results from Brandao and Mercer (1998)
3 results from Petch and Salhi (2004)
4 results from Olivera and Viera (2007)
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CHAPTER 5

CASE STUDY

In this chapter we will discuss a real life example of an application of a vehicle routing prob-
lem with multiple use of vehicles. We will extend the set-covering model discussed in the
previous chapter in order to develop a useful tool for the daily logistic decisions that have
to be made in this case study.

Santa Fe Indonesia is a company that o�ers relocation services to individuals as well as
companies. Santa Fe operates in South-East Asia with 26 o�ces located in 12 di�erent
countries, see Figure 5.1. Each o�ce is independently operating a vehicle �eet for the oper-
ations in that area. In this study we put our focus on the logistic activities of the o�ce in
Jakarta, Indonesia, but it is plausible to assume that this study with some minor modi�ca-
tions can be used in the other o�ces as well.

Figure 5.1: Countries with o�ces of Santa Fe
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5.1 Problem introduction

Santa Fe is operating a warehouse in South-Jakarta from where all logistic operations are
performed. Basically we can distinguish three di�erent types of transportation.

1. Inbound shipments

2. Outbound shipments

3. Local moves

Inbound shipments arrive at the (air)port of Jakarta and once released from customs they
will be brought to the warehouse. The shipment is then prepared to be transported to the
�nal destination in Jakarta (or beyond). Most shipments arrive in containers at the port
of Jakarta, located North-East of the city center. After custom formalities the shipment is
released and transported to the warehouse. Goods are transfered into liftvans and delivered
to �nal destination upon request of the customer.

Outbound shipments are packed into liftvans at the site of origin, before transported and
collected at the warehouse. Here the shipment is prepared for air or sea freight transporta-
tion. At this point deadlines are really important since a shipment is usually booked onto a
vessel and shipments need to arrive at the port before a deadline. Planning for this reason
is essential and the use of time windows in our model is required.

The last type of transportation is local moves. Here both the origin and destination are
located within the range of the Jakarta-o�ce. Depending on the job-requirements, the ship-
ment is transported directly to the destination or via the warehouse.

Most shipments involve household goods including consumer electronics and other fragile
items. This requires much labor at origin and destination site. For valuable items, special
custom-made wooden crates are made for transportation. For this reason one could argue
for a joint crew and vehicle assignment approach since a job can not be transported before
it is carefully packed. In our model, however, we do not take the crew assignment into
consideration. We can justify this, because additional crew members can be hired from a
labor o�ce at all times at almost nil cost.
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In Figure 5.2 we show some geographical information about Jakarta. The city can be parti-
tioned roughly in �ve districts. North-Jakarta (yellow), East-Jakarta (pink), South-Jakarta
(orange), West-Jakarta (green) and Central-Jakarta (purple). Also we have displayed the
location of:

• The (main) airport, Soekarno-Hatta international airport.

• The (main) seaport, Tanjung Priok sea port.

• The Santa Fe warehouse.

Furthermore we should mention that the warehouse is located along the major toll-road
circling around the city and o�ering a fast link with both the air and sea ports of Jakarta.
Other roads are highly congested and driving times are di�cult to estimate with a Graphical
Information System (GIS). For this reason we are using time estimates from experts.

Figure 5.2: Districts of Jakarta
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5.2 Problem de�nition

Let us brie�y recall the set-covering model for the VRPM discussed in Section 4.2. We de-
�ned a route set J containing feasible routes. Each route j ∈ J is associated with a positive
route cost (time). We assume that we have a set of m vehicles that is operational for T

hours each day. We assume T is equal for each vehicle. Furthermore we de�ne the following
parameters and decision variables given below.

Parameters:

cj = The cost (in terms of distance or time) of route j.
aij = Equals 1 if customer i is included in route j, j ∈ J .
m = The number of vehicles available.
T = The maximum operational time for each vehicle.

Decision variables:

xk
j =

 1, if route j is served by vehicle k in the optimal solution
0, otherwise

α = The maximum allowable overtime, any positive numerical value.

The mathematical representation:

min z = α (5.1)
s.t. ∑

j∈J

m∑
k=1

aijx
k
j ≥ 1 i = 1, . . . , n (5.2)

∑
j∈J

cjx
k
j ≤ T + α ∀k (5.3)

xk
j ∈ {0, 1} ∀j, k (5.4)

α ≥ 0 (5.5)

Note that we have changed the objective function here. In addition an upperbound on α

can be added to the model, in this case feasibility is no longer guaranteed. Equation (5.1)
is now minimizing the maximum overtime. Equation (5.2) ensures that all customers are
visited and equation (5.3) is the bin-packing constraint assigning the routes to the vehicles.
Equation (5.4) is de�ning the binary decision variables, and equation (5.5) de�nes overtime
as a positive variable.
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We could easily modify the model to minimize the total overtime by introducing a deci-
sion variable αk for each vehicle k and rewrite the objective function value as:

min z =
∑
k

αk (5.6)

In this section we will step by step modify the set-covering model for the VRPM discussed
in Section 5.1. First we incorporate a heterogeneous vehicle �eet, secondly we modify the
model such that it can cope with backhaul customers. Finally we incorporate individual
time windows for the customers.

5.2.1 Heterogeneous vehicle �eet

As we have seen in Section 2.4 this extension implies that the vehicle �eet consist of vehicles
with di�erent characteristics. Based on the vehicle �eet of Santa Fe we say that there are
3 di�erent types of vehicles, vehicles having either small, medium or large capacity, but
di�erent compositions are possible as well. We de�ne:

K = {1, . . . , k1, k1 + 1, . . . , k2, k2 + 1, . . . , k3}

Where k1 is the number of vehicles with small capacity, k2 − k1 the number of vehicles with
medium capacity and k3 − k2 the number of vehicles with large capacity. Note that earlier
we de�ned the route set J given that all vehicles have equal capacity. Since this is no longer
valid, we must partition the route set. We de�ne J1 as the route set given that all vehicles
have the capacity of a small vehicle, J2 as the route set given that all vehicles have the
capacity of a medium vehicle and J3 as the route set given that all vehicles have the capacity
of a large vehicle. Now we notice that J1 ⊆ J2 ⊆ J3, this is true since each route from J1

that can be served by vehicles having a small capacity, can be served by a vehicle with a
medium or large capacity as well. Because of this property we de�ne the set J as

J = {1, . . . , r1, r1 + 1, . . . , r2, r2 + 1, . . . , r3},

where

• J1 = {1, . . . , r1}

• J2 = J1 ∪ {r1 + 1, . . . , r2}

• J3 = J1 ∪ J2 ∪ {r2 + 1, . . . , r3} = J
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Note that this is a capacity based classi�cation. There could be another classi�cation in
terms of accessibility in narrow streets. In this case routes from the subset of large vehicles
could also be served by small vehicles, but not the other way around, i.e. J1 ⊇ J2 ⊇ J3.
Here the smallest vehicles can go anywhere in the city, but the larger vehicles can go to only
a small subset of streets. Anyway for the time being we stick to the �rst (capacity based)
classi�cation. Given these de�nitions we show the modi�ed mathematical representation.

min z = α (5.7)
s.t. ∑

j∈J

∑
k∈K

aijx
k
j ≥ 1 ∀i (5.8)

∑
j∈J

cjx
k
j ≤ T + α ∀k ∈ K (5.9)

xk
j = 0 j ∈ J\J1, k = {1, . . . , k1} (5.10)

xk
j = 0 j ∈ J\J2, k = {k1 + 1, . . . , k2} (5.11)

xk
j ∈ {0, 1} ∀k ∈ K, j ∈ J (5.12)

α ≥ 0 (5.13)
The objective function, equation (5.7) is minimizing the maximum overtime. Equation (5.8)
is guaranteeing that all customers are visited, we do not allow unvisited customers at a
penalty cost. Equation (5.9) is the bin-packing constraint that assigns routes to the vehicles
such that the maximum (allowable) total driving time is not exceeded. Equation (5.10) is
valid for the small vehicles (k = 1, 2, 3) and states that they cannot serve routes that need
the capacity of a medium or large truck. Equation (5.11) is valid for the medium vehicles
(k = 4, 5) and states that they cannot serve routes that need the capacity of a large vehicle.
Finally, equation (5.12) is de�ning the decision variables, and equation (5.13) de�nes over-
time as a positive variable.

5.2.2 Backhaul customers

This extension means that we do not only make deliveries to customers, but that we also have
customers that require a pick-up. We assume that all pick-up (backhaul) customers have
goods that are shipped to the warehouse. For this reason we de�ne a set N1 = {1, . . . , n1}

with customers having positive demand and a second set N2 = {1, . . . , n2} having negative
demands (pick-up) for backhaul customers. In this case study we assume that on each route
�rst the customers of N1 are visited before visiting the customers of N2.
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The model (5.7)-(5.13) is still valid, but only the de�nition of the route set J needs to be
modi�ed. In Figure 5.3 we will give a stepwise overview of how J is constructed.

step 1a for each i ∈ N1 we de�ne an individual route j

we add this route to Jd
p depending on qi (p ∈ {1, 2, 3}).

step 1b for each i ∈ N2 we de�ne an individual route j

we add this route to Jb
p depending on qi (p ∈ {1, 2, 3}).

step 2a for each j1, j2 ∈ Jd we merge the routes
where Jd = Jd

1 ∪ Jd
2 ∪ Jd

2 referring to routes with linehaul customers only.
if merged route is feasible add to Jd

p , (p ∈ {1, 2, 3}).
step 2b for each j1, j2 ∈ Jb we merge the routes

where Jb = Jb
1 ∪ Jb

2 ∪ Jb
2 referring to routes with backhaul customers only.

if merged route is feasible add to Jb
p , (p ∈ {1, 2, 3}).

step 3 if no more feasible merges exist we de�ne Jp = Jd
p ∪ Jb

p

step 4 for each j1 ∈ Jd, j2 ∈ Jb we merge the routes
if merged route is feasible add to Jp, (p ∈ {1, 2, 3}).

Figure 5.3: Generation of route set J

In this procedure we de�ne all routes consisting of just delivery customers in the set Jd.
Similarly we de�ne the set Jb as the set of routes with only backhaul customers. The set of
all feasible routes J is the union of these sets plus the set of routes with both delivery and
backhaul customers (step 4).

Note that we determine all feasible routes. We can do this in this case study, because
of the fact that the number of customers served on a single route does not exceed 2 or 3 cus-
tomers in practice. For an application with many customers on each route we could generate
a subset of J using techniques discussed in Chapter 4 such as the route-�rst cluster-second
approach or saving heuristic.
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5.2.3 Time Windows

The most important modi�cation are the individual time windows for each customer. In our
case study we are dealing with preferences of customers, but more importantly deadlines at
the air or sea port. We are given for each job (customer) a time window (ai, bi) in which
delivery or pick-up is requested. When we add this property to the route set generation
steps, we de�ne ej and lj as the earliest time and latest time a route can start at the depot.
Obviously a route is only feasible if ej ≤ lj .

A di�cult step in dealing with the time windows for the VRPM is that we need to "re-
member" the time that a second or third route by a speci�c vehicle can start. For this
reason we de�ne a new index h = {1, . . . ,H} that represents the order in which the routes
are served by a certain vehicle on its tour. So vehicle k always serves h = 1 before it can
serve h = 2 etc. Now we rede�ne our decision variables accordingly and introduce a new
decision variable thk .

Decision variables:

xh
jk =

 1, if vehicle k serves route j in the hth order within its tour
0, otherwise

thk =
 1, starting time of the hth route served by vehicle k

0, otherwise
α = The maximum allowable overtime, any positive numerical value.

The mathematical representation:

min z = α (5.14)
s.t. ∑

j∈J

∑
k∈K

∑
h∈H

aijx
h
jk ≥ 1 ∀i ∈ N1 ∪N2 (5.15)

∑
j∈J

xh
jk ≤ 1 ∀h ∈ H, k ∈ K (5.16)

xh
jk > xh+1

jk ∀h ∈ H, k ∈ K, j ∈ J (5.17)
thk + cj −M(1− xh

jk) ≤ th+1
k ∀h ∈ H, k ∈ K, j ∈ J (5.18)

ejx
h
jk ≤ thk ≤ ljx

h
jk ∀h ∈ H, k ∈ K, j ∈ J (5.19)

thk + cj −M(1− xh
jk) ≤ T + α ∀h ∈ H, k ∈ K, j ∈ J (5.20)

xh
jk = 0 j ∈ J\J1, k = {1, . . . , k1} (5.21)

xh
jk = 0 j ∈ J\J2, k = {k1 + 1, . . . , k2} (5.22)
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thk ≥ 0 ∀h ∈ H, k ∈ K (5.23)
xh

jk ∈ {0, 1} ∀h ∈ H, k ∈ K, j ∈ J (5.24)
α ≥ 0 (5.25)

In this formulation M is a large positive number. The objective function, equation (5.14)
is minimizing the maximum necessary overtime. Equation (5.15) is assigning each customer
from N1 as well as N2 to at least one vehicle. Equations (5.16) and (5.17) are necessary
technical assignment restriction constraints. Equation (5.18) de�nes that route h+1 cannot
start before route h has �nished, but only if these routes are served by the same vehicle.
Equation (5.19) de�nes for each route the earliest and latest starting times, where equation
(5.20) is de�ning that each route should be �nished before T + α. Equation (5.21) ensures
that small vehicles cannot serve on routes requiring a larger capacity and equation (5.22)
does the same thing for medium vehicles. Finally equation (5.23) de�nes the decision variable
for the starting time of all route h for vehicle k to be nonnegative and equation (5.24) de-
�nes the binary decision variables, and equation (5.25) de�nes overtime as a positive variable.

5.3 Decision support system

In this section we give some speci�c details about the case study and suggest a decision
support system for Santa Fe. We suggest a decision support system because the decision
maker has reported to us that the current vehicle-assignment process is out-of-date and
time-consuming.

At Santa Fe each (outbound) job is guided by one of the sales employees of Santa Fe.
This person is responsible for recruiting new customers and planning the entire move. Each
move requires a professional estimation of the total load of the move, pointing out the items
that require special care, a division between items that are to be shipped with air or sea
transport, etc. Secondly a time schedule is proposed to the customer. The number of days
that is needed for packing, a vessel and/or �ight is selected and a partner relocation company
at destination is selected.

Each inbound job requires less preparation, since all estimations are done at site of ori-
gin. The sales person from the site of origin is simply informing Santa Fe Indonesia about
the date and time the shipment is arriving in Jakarta and all other job speci�cations. Santa
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Fe will collect the shipment as soon as it arrives and stores the shipment at the warehouse
in anticipation of the customer to select a delivery day and time.

Most shipments in the international relocation industry consist of two parts. The main
part consists of high volume furniture, consumer electronics, etc. This part is usually packed
into lift vans (wooden box of 3.5m to 5.2m long, 1.9m wide and 2m high) and shipped by
sea. The possible second part consists usually of low-volume items of high importance such
as clothes, papers, etc. This part is usually preferred to be sent by air because of duration
advantages.

Santa Fe is currently using a deadline of 4pm for all employees to announce a "vehicle
job" to the logistic manager regarding jobs for the next working day. Meaning that after
4pm the logistic manager is manually assigning customers to vehicles. This process takes
up to 30 minutes and frequently needs to be repeated when last-minute announcements are
done. Moreover when after the arrival of a last-minute job the vehicle �eet and/or packing-
crew is not su�cient for the next day, this implies the fact that a rental-vehicle or additional
crew-members have to be hired. We conclude that the planning-phase can cause vexation or
be annoying for the logistic manager.

One di�culty in this case study is the data collection. Not the number of customers, but the
fact that the customer sites are always changing makes it very di�cult and time-consuming
to construct distance or time matrices. In other practical application we have seen success-
ful implementations of a Graphical Information System (GIS) (see for instance Pamuk et al.
(2004)). Such a system can be used to extract coordinate and distance information of the
customer set. Di�culties as di�erent road-properties in di�erent areas of the city can be
manipulated in such a system.

Because of these di�culties we have tested the model with equations (5.11)-(5.21), for a
selected of typical number of days. A typical working day may include a total number of 6
to 13 jobs divided over N1 and N2 that have to served with 6 vehicles. Two small capacitated
vehicles (max. load: 1 lift van), three medium capacitated vehicles (max. load: 3 lift vans)
and one large capacitated vehicle (max. load: 4 lift vans). We collected the following data
for the four selected days, see Table 5.1 up to and including Table 5.4.
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Table 5.1: Details for working day 1 of Santa Fe
Customer Pick-up/ load Time Window Driving Time Service time

Delivery (lift van) (min) (min)
1 Delivery 2 10am - 4pm 120 60
2 Delivery 2 8am - 7pm 120 120
3 Delivery 1 8am - 11am 45 60
4 Delivery 1 12am - 4pm 30 150
5 Delivery 3 8am - 6pm 60 60
6 Pick-up 4 8am - 6pm 75 60
7 Pick-up 1 9am - 4pm 30 180
8 Delivery 1 10am - 4pm 120 120

Table 5.2: Details for working day 2 of Santa Fe
Customer Pick-up/ load Time Window Driving Time Service time

Delivery (lift van) (min) (min)
1 Delivery 1 8am - 7pm 120 120
2 Delivery 1 11am - 4pm 30 140
3 Delivery 1 3pm - 7am 60 90
4 Delivery 1 8am - 11am 45 60
5 Delivery 2 2pm - 5pm 45 90
6 Pick-up 1 9am - 6pm 60 60
7 Pick-up 1 1pm - 5pm 60 120

Table 5.3: Details for working day 3 of Santa Fe
Customer Pick-up/ load Time Window Driving Time Service time

Delivery (lift van) (min) (min)
1 Pick-up 4 09am - 3pm 30 90
2 Delivery 3 8am - 11am 60 60
3 Pick-up 3 12am - 4pm 60 75
4 Pick-up 1 8am - 11am 30 60
5 Delivery 1 12am - 4pm 60 90
6 Pick-up 2 8am - 4pm 90 30
7 Pick-up 2 8am - 4pm 90 30
8 Pick-up 2 8am - 4pm 90 30
9 Delivery 3 8am - 4pm 30 30
10 Delivery 3 8am - 4pm 30 30
11 Delivery 1 10am - 6pm 90 60
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Table 5.4: Details for working day 4 of Santa Fe
Customer Pick-up/ load Time Window Driving Time Service time

Delivery (lift van) (min) (min)
1 Delivery 2 10am - 4pm 90 120
2 Pick-up 1 10am - 4pm 120 30
3 Delivery 1 8am - 10am 30 30
4 Delivery 1 11am - 1pm 30 60
5 Delivery 3 8am - 4pm 45 120
6 Delivery 2 8am - 1pm 60 60
7 Delivery 2 8am - 1pm 60 60

In Table 5.1 up to Table 5.4 the �rst column speci�es whether a customer is a delivery or
backhaul customer. The second column denotes the corresponding load for this customer.
In the third column an individual time window is given for each customer. The fourth
column denotes the driving time from the warehouse to the customer location (one-way)
and the last column denotes the service time necessary at the customer location. The last
two columns are estimates in minutes. In addition to this data we collected information
about intermediate travel times between all customers in order to create routes serving more
than one customers. We coded the computations in C++ and ran on a Dell Inspiron 1300
with an Intel(R) Pentium(R) M 1.70GHz processor using CPLEX 10.0 as our MIP-solver.

Table 5.5: Results of Scheduling Santa Fe activities
Day # Cust. # Routes Ureal Umodel CPU(sec)
1 8 20 51% 51% 1.6
2 7 18 38% 38% 1.2
3 11 22 66% 66% 6.2
4 7 18 35% 35% 1.0

In Table 5.5 we have summarized further results for each of the data instances provided by
Santa Fe. In this table we displayed the number of jobs in the second column, the number
of routes given by the route generation procedure in the third column. The fourth and �fth
column give the utilization rate of the vehicles as a measure of performance of the scheduling.
Here we assume that all vehicles are operational for 11 hours. We compare the utilization
rate resulted from the actual schedule (Ureal) against (Umodel). The last column presents
the CPU-time in seconds needed to solve (5.14)-(5.25).
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We notice that the number of feasible routes given by the route generation process is very
small. The number of routes being so small gives us a great advantage in solving the model,
since the number of decision variables is therefore very limited. This con�rms with Laporte
(2007) who suggests that set-covering based models can be very helpful for practical applica-
tions since the various side-constraints restrict the number of feasible routes. Recall that the
exponential number of feasible routes in theory was a drawback for the set-covering approach.

We noticed that using the decision support system in the used instances does not lead
to better solutions, but it guarantees no poorer solutions. Unfortunately, we are not able
to compare route lengths with those obtained by the logistic manager. We have only in-
formation about the number of vehicles used for each day. Given that our approach gives
quite meaningful results we would expect reasonable time savings when exact travel time
and distances are known. In Figure 5.4 we show an overview of the decision support system.

Figure 5.4: Decision support system

70



The main advantage of using a decision support system would be the time needed to �nd
the optimal solution, meaning that the decision support system gives the optimal solution
within seconds, which is a signi�cant improvement for the logistic manager. Besides, addi-
tional last-minute jobs can be added to the data and instantly giving the logistic manager
the knowledge whether or not this additional job is still feasible with the existing vehicle
�eet. This information could then be used to possibly move this job to a later (more quite)
day to avoid additional hiring costs.

5.4 Remarks

In this chapter we have seen an application of the set-covering model for VRPM discussed
in Chapter 4. We have discussed additional side constraints such as a heterogeneous vehicle
�eet, pick-up and delivery customers and individual time windows. For each of these addi-
tional constraints we made some minor modi�cations in the model.

We can conclude that the set-covering model is very �exible given that all these constraints
can easily be incorporated in the model. We have seen that the problem instances from
Santa Fe could all be solved within negligible CPU-time. Besides the small number of ve-
hicles, it is due to the fact that the side constraints seriously reduce the number of feasible
routes. Moreover we can say that a decision support system would be more bene�cial when
the number of customers in a period would be larger.
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CHAPTER 6

CONCLUSION

In this study we basically propose two mathematical models to solve the VRPM. We �rst
showed that an integer formulation based on the route-�rst, cluster-second method was per-
forming really good in terms of CPU-time and is not inferior in terms of solution quality
compared with other results in the literature. Next we adapted the set-covering formulation
to solve the VRPM. The set-covering problem is a well studied problem and has been used
to solve a wide-range of combinatorial optimization problems. We have tested the quality
and speed of this approach on the available VRPM benchmark problems. We have seen that
this approach is very compatible in terms of speed and is performing similar to the existing
algorithms in terms of solution quality.

Given that all procedures in the literature are based on metaheuristics and their solution
performances are based on the best outcomes of several replications, our simple approaches
could be considered as an alternative to solve practical problem instances of moderate size.
Moreover, our simple approaches could be a potential tool that can be embedded into a
metaheuristic framework to solve practical problems of larger size.

In the last chapter we have modi�ed the set-covering model to adopt several side constraints.
We have showed that this model when applied to the VRPM can adopt a wide range of prac-
tical constraints such as time windows, a heterogeneous vehicle �eet and inaccessibility of
certain vehicle types. We have seen that for problems with these additional side constraints
the �exibility of the model is of signi�cant importance. The set-covering model proved to
be very �exible in this framework.

Future research areas may include the derivation of new models as well as practical appli-
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cations. We think that mathematical models are of major importance these days for many
companies operating a vehicle �eet. For example the total distance traveled by a vehicle
�eet becomes more and more �nancially signi�cant with oil prices that keep rising. Another
reason is the growing demand of customers, consumers rely more and more on home delivery
services, while they do not want to keep waiting all day for a delivery. Time windows are
for this reason of great importance in such applications.

The VRPM can be of great help for these mathematical models since it can signi�cantly
increase the utilization of the �eet. It is possible to operate with a fewer number of vehicles,
but with high utilization, if you operate as VRPM. Also vehicles with less capacity can be
used in VRPM, rather than very large trucks.
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APPENDIX A

RESULTS OF ROUTE-FIRST

CLUSTER-SECOND APPROACH

5% 10% 15%
m =M1 =M2 =M3 zSP2 x (Eq. 4.13)

CMT-01 1 - ** ** 560 6.746
(525) 2 - ** ** 560 6.746

3 - - ** 560 6.746
4 - - - 565 7.619

CMT-02 1 - ** ** 880 5.3564
(835) 2 - ** ** 880 5.3564

3 - ** ** 880 5.3564
4 - ** ** 880 5.3564
5 - ** ** 885 5.988
6 - ** ** 892 6.8263
7 - - ** 890 6.5868

CMT-03 1 ** ** ** 860 4.1162
(826) 2 ** ** ** 860 4.1162

3 ** ** ** 861 4.2373
4 - ** ** 860 4.2373
5 - - ** 860 4.2373
6 - - ** 860 4.2373

CMT-04 1 - ** ** 1086 5.5393
(1029) 2 - ** ** 1086 5.5393

3 - ** ** 1086 5.5393
4 - ** ** 1086 5.5393
5 - ** ** 1086 5.5393
6 - ** ** 1088 5.7337
7 - - ** 1087 5.6365
8 - - - 1097 6.6084
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CMT-05 1 - ** ** 1375 6.5066
(1292) 2 - ** ** 1375 6.5066

3 - ** ** 1375 6.5066
4 - ** ** 1375 6.5066
5 - ** ** 1375 6.5066
6 - ** ** 1375 6.5066
7 - ** ** 1375 6.5066
8 - ** ** 1375 6.5066
9 - - ** 1378 6.6563
10 - - ** 1378 6.6563

CMT-11 1 ** ** ** 1064 2.1113
2 ** ** ** 1064 2.1113
3 ** ** ** 1068 2.4952
4 - ** ** 1064 2.1113
5 - ** ** 1070 2.6871

CT-12 1 ** ** ** 858 4.6341
2 ** ** ** 858 4.6341
3 - ** ** 858 4.6341
4 - ** ** 858 4.6341
5 - ** ** 889 8.4146
6 - - ** 879 7.1951

F-11 1 ** ** ** 249 2.9053
2 ** ** ** 249 2.9053
3 - ** ** 249 2.9053

F-12 1 ** ** ** 1219 4.8151
2 - ** ** 1219 4.8151
3 - ** ** 1219 4.8151

Figure A.1: The VRPM solutions using SP2-model
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APPENDIX B

RESULTS OF SET-COVERING

APPROACH I

In this table we present the results of the set-covering approach when we generate our initial
set of routes using the route-�rst cluster-second method combined with petal routes from
the advanced sweep method.

5% 10% 15%
m =M1 =M2 =M3 zSCT x (Eq. 4.13)

CMT-01 1 * * ** 525 0
n=50 2 * * ** 549 4.5714
z=525 3 - * ** 549 4.5714

4 - - - - -
CMT-02 1 - * ** 879 5.2695

n=75 2 - * ** 879 5.2695
z=835 3 - * ** 879 5.2695

4 - * ** 879 5.2695
5 - * ** 879 5.2695
6 - * ** 888 6.3473
7 - * ** 908 8.7425

CMT-03 1 * * ** 827 0.0012
n=100 2 * * ** 827 0.0012
z=826 3 * * ** 827 0.0012

4 * * ** 827 0.0012
5 - * ** 827 0.0012
6 - - ** 827 0.0012

CMT-04 1 - * ** 1086 5.5394
n=150 2 - * ** 1086 5.5394
z=1029 3 - * ** 1086 5.5394

4 - * ** 1086 5.5394
5 - * ** 1086 5.5394
6 - * ** 1088 5.7337
7 - - ** 1087 5.6365
8 - - - - -
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CMT-05 1 - ** ** 1361 5.3405
n=199 2 - ** ** 1361 5.3405
z=1292 3 - ** ** 1361 5.3405

4 - ** ** 1361 5.3405
5 - ** ** 1361 5.3405
6 - ** ** 1361 5.3405
7 - ** ** 1375 6.5066
8 - ** ** 1375 6.5066
9 - - ** 1378 6.6563
10 - - ** 1378 6.6563

CMT-11 1 ** ** ** 1064 2.1113
n=120 2 ** ** ** 1064 2.1113
z=1042 3 ** ** ** 1068 2.4952

4 - ** ** 1064 2.1113
5 - ** ** 1070 2.6871

CMT-12 1 ** ** ** 827 0.0085
n=100 2 ** ** ** 827 0.0085
z=820 3 - ** ** 827 0.0085

4 - ** ** 827 0.0085
5 - ** ** 889 8.4146
6 - - ** 879 7.1951

F-11 1 ** ** ** 249 2.9053
n=71 2 ** ** ** 249 2.9053
z=242 3 - ** ** 249 2.9053
F-12 1 ** ** ** 1211 4.1273

n=134 2 ** ** ** 1212 4.2132
z=1163 3 ** ** ** 1212 4.2132

Figure B.1: The VRPM solutions using SCT model
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APPENDIX C

RESULTS OF SET-COVERING

APPROACH II

In this table we present the results of the set-covering approach when we generate our ini-
tial set of routes using the route-�rst cluster-second method combined with routes from the
saving heuristic.

5% 10%
m =M1 =M2 zSCT CPU(sec)

CMT-01 1 ** ** 521 1
n=50 2 ** ** 544 7

RT=525 3 - ** 549 4
4 - ** 555 1

CMT-02 1 ** ** 864 1
n=75 2 ** ** 864 7

RT=835 3 ** ** 864 5
4 ** ** 864 113
5 ** ** 864 249
6 - ** 869 128
7 - ** 875 831

CMT-03 1 ** ** 824 1
n=100 2 ** ** 824 1
RT=826 3 ** ** 824 3

4 ** ** 824 28
5 ** ** 852 1252
6 - ** 852 164

CMT-04 1 ** ** 1072 2
n=150 2 ** ** 1072 14

RT=1029 3 ** ** 1072 453
4 ** ** 1072 358
5 - ** 1072 677
6 - ** 1077 807
7 - -
8 - -
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CMT-05 1 ** ** 1342 1
n=199 2 ** ** 1342 37

RT=1292 3 ** ** 1342 118
4 ** ** 1342 138
5 - ** 1342 237
6 - ** 1342 203
7 - ** 1364 55
8 - -
9 - -
10 - -

CMT-11 1 ** ** 1041 1
n=120 2 ** ** 1041 6

RT=1042 3 ** ** 1041 10
4 ** ** 1053 85
5 ** ** 1041 18

CMT-12 1 ** ** 827 1
n=100 2 ** ** 827 1
RT=820 3 ** ** 854 1326

4 ** ** 827 10
5 - -
6 - -

F-11 1 ** ** 249 1
n=71 2 ** ** 249 8

RT=242 3 - ** 249 11
F-12 1 ** ** 1139 1
n=134 2 ** ** 1139 1

RT=1163 3 ** ** 1139 6

Figure C.1: The VRPM solutions using SCT model
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APPENDIX D

DETAILS OF THE COMPUTER CODE

All codes are written in C++, we give some detailed information about the di�erent used
modules in Table D.1. Furthermore we have displayed the interaction between C++, CPLEX
10.0 and Concorde in Figure D.1.

Table D.1: C++ Modules

Name # of lines Details
Main 137 Main code.
Input 50 Reads input from text �le.
Distance 31 Computes distance matrix.
Giant TSP 31 Solves TSP with Concorde.
Generate 69 Generates feasible routes given tour.
Saving 372 Generates feasible routes with saving heuristic.
Delete 161 Delete double routes from route list.
Cost 161 Calculates cost of each route.
Write 22 Writes route list to text �les.
Improvement 460 Improvement of infeasible solutions.
Main 62 Main code for case study.
Generate1 39 Generates all routes with single customer of same type.
Generate2 95 Generates all routes with >1 customer of same type.
Generate3 175 Generates all routes with linehaul and backhaul customers.
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Figure D.1: Systematic overview computer activities
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APPENDIX E

TEST PROBLEM INSTANCE

STRUCTURES

Figure E.1: CMT-01

Figure E.2: CMT-02
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Figure E.3: CMT-03

Figure E.4: CMT-04
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Figure E.5: CMT-05

Figure E.6: CMT-11
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Figure E.7: CMT-12

Figure E.8: F-11
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Figure E.9: F-12
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