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submitted bySELÇUK KAVUT in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Electrical and Electronics Engineering Department, Middle
East Technical Universityby,

Prof. Dr. Canan̈Ozgen
Dean, Graduate School ofNatural and Applied Sciences

Prof. Dr. İsmet Erkmen
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ABSTRACT

BOOLEAN FUNCTIONS WITH EXCELLENT CRYPTOGRAPHIC PROPERTIES
IN AUTOCORRELATION AND WALSH SPECTRA

Kavut, Selçuk

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Melek Diker Yücel

August 2008, 78 pages

We introduce a steepest-descent-like search algorithm for the design of Boolean functions,

yielding multiple desirable cryptographic properties in their Walsh and autocorrelation spec-

tra together. The algorithm finds some Boolean functions on 9, 10, 11, 13 variables with very

good cryptographic properties unattained in the literature. More specifically, we have dis-

covered 9-variable rotation symmetric Boolean functions (RSBFs) having nonlinearity of

241, which exceeds the bent concatenation bound and has remained as an open question in

the literature for almost three decades. We have then shown that there is noRSBF having

nonlinearity greater than 241, and that there are 8×189 many RSBFs having nonlinearity of

241, such that, among them there are only two that are different up to the affine equivalence.

We also propose a generalization to RSBFs and dihedral symmetric Boolean functions (DS-

BFs), which improves the nonlinearity result of 9-variable Boolean functions to 242. Further,

we classify all possible permutations (9!= 362,880) on the input variables of 9-variable

Boolean functions and find that there are only 30 classes, which are different with respect

to the linear equivalence of invariant Boolean functions under some permutations. Some of

these classes and their subsets yield new 9-variable Boolean functions having the nonlinear-

ity of 242 with different autocorrelation spectra from those of the Boolean functions found
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in generalized RSBF and DSBF classes. Moreover, we have attained 13-variable balanced

Boolean functions having nonlinearity of 4036 which is greater than the bent concatenation

bound of 4032, and improves the recent result of 4034.

Furthermore, we have found 10-variable Boolean functions having first order resiliency and

a nonlinearity of 492, which was posed as an open question at Crypto 2000. We have also

discovered balanced Boolean functions onn =9, 10, 11 variables having absolute indicator

value less than 2⌈
n
2⌉. Earlier the existence of such functions were known for 15 and 21

variables.

Keywords: Autocorrelation, Boolean Function, Cryptography, Heuristic Search, Nonlinear-

ity.
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ÖZ

ÖZİL İNTİ VE WALSH SPEKTRUMLARINDA ÜSTÜN KRİPTOGRAḞIK
ÖZELLİKLERE SAHİP BOOLEİŞLEVLERİ

Kavut, Selçuk

Doktora, Elektrik ve Elektronik M̈uhendislĭgi Bölümü

Tez Yöneticisi : Doç. Dr. Melek Diker Ÿucel

Ag̃ustos 2008, 78 sayfa

Walsh veözilinti spektrumlarında çeşitli arzulanan kriptografiközelliklere sahip Boole işlev-

leri tasarımı için en dik iniş prensibine dayalı arama algoritması geliştirilmiştir.Algoritma

çok iyi kriptografik özelliklere sahip, literaẗurde dahaönce elde edilememiş bazı 9, 10,

11, 13 dẽgişkenli Boole işlevleri ortaya çıkarmıştır.̈Ozellikle, literaẗurde yaklaşık olarak

otuz senedir açık bir soru olarak bulunan, dog̃rusal olmamäolçütü 241 olan 9 dẽgişkenli

döng̈usel simetrik Boole işlevleri (DSḂI) elde edilmiştir. Dõgrusal olmamäolçütü 241’den

büyük DSḂI olmadı̃gı gösterilmiş ve dõgrusal olmamäolçütü 241 olan DSḂI’lerin sayısının

8× 189 adet oldũgu bulunarak, bunların içinden sadece iki tanesinin ilgin eşdeg̃erlig̃e g̈ore

farklı oldug̃u ortaya çıkarılmıştır. Sonrasında, döng̈usel simetrik ve ikid̈uzlemli simetrik

Boole işlevleri (̇ISBİ) genelleştirilmiş ve bunun sonucunda 9 deg̃işkenli Boole işlevleri için

başarılan dõgrusal olmamäolçütü 242’ye çıkarılmıştır. Bununla birlikte, 9 deg̃işkenli Boole

işlevlerinin giriş dẽgişkenlerine uygalanabilir b̈utün devrişimler (9!= 362,880) sınıflandırıl-

mış ve devrişime g̈ore dẽgişimsiz Boole işlevlerinin dõgrusal eşdẽgerlig̃i bakımından sadece

30 sınıfın farklı oldũgu bulunmuştur. Bu sınıfların bazılarında ve bunların altkümelerinde,

genelleştirilmiş DSḂI ve İSBİ sınıflarınlarında elde edilen 242 dog̃rusal olmamäolçütüne

sahip 9 dẽgişkenli Boole işlevlerininözilinti spektrumlarından farklı̈ozilinti spektrumları

bulunan yeni 242 dõgrusal olmamäolçütüne sahip 9 dẽgişkenli Boole işlevleri ortaya çıkarıl-
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mıştır. Bunun yanısıra, en yüksek dõgrusal olmamäolçütüne sahip çift dẽgişkenli iki işlevin

birbirine bãglanması ile bulunan dengeli işlevler için dog̃rusal olmama sınırı 4032’den büyük,

dog̃rusal olmamäolçütü 4036 olan 13 dẽgişkenli dengeli Boole işlevlerïuretilmiştir. Bu

sonuç, yakın zamanda elde edilen 4034 dog̃rusal olmama dẽgerini geliştirmiştir.

Ayrıca, Crypto 2000’de açık soru olarak ortaya konulan birinci derece esneklĩge sahip ve

dog̃rusal olmamäolçütü 492 olan 10 dẽgişkenli Boole işlevleri ortaya çıkarılmıştır. Bundan

başka, mutlak g̈osterge dẽgeri 2⌈
n
2⌉’den küçük n =9, 10, 11 dẽgişkenli dengeli Boole işlevleri

elde edilmiştir. Bu ẗur Boole işlevleri dahäonce 15 ve 21 dẽgişkenliler için bilinmekteydi.

Anahtar Kelimeler: BoolėIşlevi, Dog̃rusal Olmama, Kriptografi,̈Ozilinti, Buluşsal Arama.

vii



ACKNOWLEDGMENTS

I wish to express my deepest gratitude to Assoc. Prof. Dr. Melek Diker Yücel for her
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CHAPTER 1

INTRODUCTION

1.1 Background on Cryptography

Cryptographyis the art and science of protecting and hiding a message from those who do

not possess thekeyused to obscure that message. The security of a cryptographic system

is usually based on some secret key, which is usually a binary sequence of sufficient length.

The message to be protected (unencrypted data) is referred to asplaintext, while its obscured

form (encrypted data) is calledciphertext. Plaintext and ciphertext are considered as the

sequences of characters from an alphabet. In practice the alphabet consists of binary digits

(bits). The process of hiding the plaintext within the ciphertext is termedencryptionand the

reverse process of extracting information from ciphertext is calleddecryption. A cipher is a

cryptographic algorithm, which performs encryption and decryption.

In his vital paper [63] for modern cryptography, Shannon presentedthe principles ofcon-

fusionanddiffusion. Confusion obscures the relationship between the elements of plaintext

and the elements of ciphertext, while diffusion spreads the influence of the plaintext elements

over the ciphertext elements. Both principles try o achieve the same goal: hiding the statisti-

cal features of plaintext.Cryptanalysisis the study of recovering the information, hidden in

the ciphertext, without access to the key. The science that encompasses both cryptography

and cryptanalysis is referred to ascryptology.

There are mainly two classes of cryptosystems:asymmetric(public-key) andsymmetric(se-

cret-key). In asymmetric cryptography [12], each user has two distinct but mathematically

related keys: apublic keythat is available to everyone and aprivate keythat is kept secret

from everybody. In order to send a secret message to a user, one encrypts the plaintext with

the public key of that user. Decryption is possible only with the related private key uniquely

owned by the intended user. Design principles of the cryptosystem make thecalculation of

the private key from the public key computationally infeasible.
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Symmetric cryptographic algorithms have a single secret key, shared by thesender and the

receiver, to perform both encryption and decryption. Symmetric cryptographic algorithms

can be divided intoblock ciphersand stream ciphers. A block cipher operates on large

blocks of data, while a stream cipher encrypts the plaintext symbols (usuallybits) one at a

time by combining with the keystream. For a given key, the transformation used by the block

cipher is fixed, whereas that used by the stream cipher varies depending on cipher’s state.

Block ciphers can be used to construct other cryptographic primitives such as hash functions,

message authentication codes and pseudorandom number generators. To fulfill the principles

of confusion and diffusion, both block and stream ciphers make use of Boolean functions

having desirable cryptographic properties.

1.2 Boolean Functions in Cryptography

Boolean functions, having either multi-output (also calledvector-output) or single-output,

constitute crucial components in secret-key cryptosystems. In fact, a standard block cipher

(such as Data Encryption Standard (DES) [48] or its successor Advanced Encryption Stan-

dard (AES) [49]) can be considered as a vector-output Boolean function depending on the

key. However, it is infeasible to analyze these functions due to the large number of input

variables. On the other hand, vector Boolean functions on small number ofvariables such as

substitution boxes (S-boxes) are iteratively used in block ciphers. Substitution boxes apply

a nonlinear transformation on their input, hence their characteristics have significant effects

on the strength of the entire system. Highly nonlinear S-boxes are requiredsince in linear

cryptanalysis [41], the linear combinations of the component functions of an S-box are ap-

proximated by linear Boolean functions. On the other hand, in differential cryptanalysis [3],

the autocorrelation properties of S-boxes such as Strict Avalanche Criteria (SAC) [70] and

Propagation Characteristics (PC) [54] are exploited; which makes Boolean functions with

high values of autocorrelation undesirable.

In the design of a block cipher, the involved single-output Boolean functions must separately

satisfy the desired cryptographic properties since ann×mvector Boolean function that maps

n bits to m bits is composed ofm many,n-variable single-output functions, each mapping

n bits to a single bit. In case of stream ciphers, single-outputn-variable Boolean functions

are used as nonlinear combiners of Linear Feedback Shift Registers (LFSRs) to introduce

2



nonlinearity [57]. In Figure 1.1, the combination generator is shown as a classic stream

cipher model.

Figure 1.1: Combination generator

The stream{Rk} is called thekeystream, which is modulo 2 added to the plaintext stream

{Pk} to produce the ciphertext stream{Ck}. As the internal structure ofn LFSRs and the

Boolean functionf can be public, the security of this cryptosystem depends on the initial

state of the registers, which constitutes the secret key. To make the cryptosystem secure

against cryptanalysis, the keystreamRk is desired to appear random. In fact, if it were truly

random then the resulting cryptosystem, known as one time pad or Vernam cipher [69],

would provideunconditional security.

The underlying single-output,n-variable Boolean functionf must satisfy several crypto-

graphic properties such as balancedness, high algebraic degree, high nonlinearity and cor-

relation immunity to resist against cryptanalytic attacks available in symmetric key cryp-

tography literature. Balancedness requires an equal number of 0’s and 1’s in the truth table

of f to prevent the keystream from having statistical bias. High algebraic degree of f is a

necessary condition to provide highlinear complexity[13] of the keystream. The function

f with low nonlinearity makes the cryptosystem vulnerable to Best Affine Approximation

(BAA) attack [13] in which the keystream is approximated by an affine Boolean function.

Thus f is desired to possess high nonlinearity. In general, it is easier to mount a cryptan-

alytic attack using linear approximations including a small number of input bits thanusing

linear approximations involving a large number of input bits off . This leads to the notion of

correlation immunity and resiliency [13, 64, 65, 18], which are among the desired properties

of cryptographically strong functions.
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In this thesis we concentrate on single-output Boolean functions. Henceforth, we will use

the term “Boolean functions” while referring to such functions. Boolean functions are also

important in error correcting codes. For instance, Reed-Muller and Kerdock codes can be

defined as sets of Boolean functions. In this thesis, we obtain important results on the cov-

ering radius of the first order Reed-Muller codes having codewords of length 29 = 512,

which corresponds to the maximum possible nonlinearity achieved by 9-variable Boolean

functions.

1.3 Contributions of the Thesis

As discussed in the previous section, Boolean functions with high nonlinearity and low au-

tocorrelation are important building blocks in cryptographic applications. For odd number

of input variablesn, the problem of constructing Boolean functions with very high nonlin-

earity is also related to the upper bound⌊2n−1−2
n
2−1⌋ on the covering radius of the first order

Reed-Muller code [21], which is later improved [23] as 2⌊2n−2−2
n
2−2⌋. Until 2006, the max-

imum nonlinearity known for the Boolean functions onn = 9,11,13 variables was thebent

concatenation boundof (2n−1−2
n−1

2 ). The bound is simply achieved by the concatenation of

two bent functions on (m= n− 1) variables, where bent functions are Boolean functions on

even number of variablesmattaining maximum nonlinearity of (2m−1−2
m
2−1). Our four main

contributions are related to these concepts. Firstly, in 2006, we discovered [25] 9-variable

Boolean Functions with nonlinearity 241 (= 29−1−2
9−1

2 +1) in the class of Rotation Symmet-

ric Boolean Functions (RSBFs), which led to the construction of functions with nonlinearity

exceeding the bent concatenation bound by 1× 2
n−9

2 , for oddn ≥ 9. Such functions were

attained utilizing the steepest-descent-like iterative algorithm that first appeared in [29] and

then suitably modified in [25] for a search in the class of RSBFs.

Considering a Boolean functionf as a mapping fromGF(2n) → GF(2), the functions for

which f (α2) = f (α) for anyα ∈ GF(2n), are referred to as idempotents [15, 16]. In [52], 15-

variable Patterson-Wiedemann functions having nonlinearity 16276 (= 215−1 − 2
15−1

2 + 20)

are identified in the idempotent class. As pointed out in [15, 16], the idempotents can be

seen as RSBFs with a proper choice of basis. Motivated by this, we studiedthe RSBF

class and discovered 9-variable Boolean functions having nonlinearity 241. On the other

hand, we exploited the nice combinatorial structure of the Walsh spectra forRSBFs on odd

4



number of variables [43] to carry out the exhaustive search of 9-variable RSBFs having

nonlinearity> 240, with considerable computational effort. Consequently, we found [24]

that there are 8× 189 many RSBFs having nonlinearity 241, which we showed as being the

maximum possible value in this class. Further, utilizing some variants of binary nonsingular

circulant matrices, we showed [24] that there are only two different 9-variable RSBFs having

nonlinearity 241 up to the affine equivalence.

In 2007, as the second important contribution of this study, we proposed [30] the general-

izedk-RSBFs, as functions that satisfyf (α2k
) = f (α), where 1≤ k | n. Note that ifk = 1,

the resulting functions are the same as idempotents; whereas fork = n the entire space of

n-variable Boolean functions is covered. In the space of generalizedk-RSBFs, imposing

the condition of invariance under the action of dihedral group, we have defined the class of

generalizedk-DSBFs as a subset ofk-RSBFs. Then, we have used the steepest-descent-like

iterative algorithm in [25] for a search in the generalized 3-DSBF and 3-RSBF classes. As

our third main contribution, this search successfully ended up [30] with 9-variable functions

in both of these classes, achieving nonlinearity 242. This result shows that the covering ra-

dius of the first order Reed-Muller codeR(1, 9) is at least 242. This result is also important

for n = 11 andn = 13, since the bent concatenation of 9-variable functions with nonlinear-

ity 242 leads to the construction of 11-variable and 13-variable functions with nonlinearity

(2n−1 − 2
n−1

2 + 2× 2
n−9

2 ), which exceeds the bent concatenation bound by 2× 2
n−9

2 . However,

we should mention that for oddn ≥ 15, the nonlinearity (2n−1 − 2
n−1

2 + 20× 2
n−15

2 ) given

in [52] that can be obtained by concatenating 15-variable Patterson-Wiedemann functions is

still greater than the nonlinearity (2n−1 − 2
n−1

2 + 2× 2
n−9

2 ).

Further, in this thesis, knowing the fact that RSBFs, DSBFs, as well as thegeneralized

k-RSBFs andk-DSBFs are invariant under some special types of permutations on input vec-

tors, we have investigated [27] on the same search problem from a different direction and

considered the possibility of other ‘rich’ classes that are invariant under some permutations.

Linearly equivalent Boolean functions have the same nonlinearity; therefore, while search-

ing for highly nonlinear functions, it is quite logical to classify alln! permutations up to the

linear equivalence of Boolean functions that are invariant under them. More specifically, for

9-variable Boolean functions, we have classified 9! many permutations into 30classes which

are different up to the linear equivalence of Boolean functions that are invariant under them.

Then for each class, by picking up a representative permutation arbitrarily, we have searched

5



the corresponding set of Boolean functions. Consequently, in some of these sets, we have

obtained [27] 9-variable Boolean functions with nonlinearity 242. So, ouraim of defining

other ‘rich’ classes has been accomplished, as the fourth main contribution of this study.

However, the functions mentioned so far do not contain any zero in their Walsh spectra, and

hence, they cannot be linearly transformed to balanced functions.

In [34], Maitra used the 9-variable Boolean functions with nonlinearity 242, which we pre-

sented in [30], to construct a 13-variable balanced function having nonlinearity (213−1 −

2
13−1

2 + 2 = 4034). That was the first demonstration of balanced Boolean functions on odd

number of variables having nonlinearity strictly greater than the bent concatenation bound

for number of input variables less than 15. We modified the search algorithmused in [34],

and improved Maitra’s result by arriving at 13-variable balanced functions having nonlin-

earity 4036 [36]. We consider this result as one of the side contributions of our study.

In 1995, it was conjectured [72] that for any balanced function on oddnumber of input

variablesn, the maximum absolute value in the autocorrelation spectrum is greater than

or equal to 2
n+1

2 . Since then, the conjecture has been disproved by modifying 15-variable

functions with nonlinearity 16276 given in [52] forn = 15 [39] andn = 21 [17]. As for

another side contribution of our study, we have demonstrated [25] functions disproving the

conjecture for oddn < 15. Our systematic search in the RSBF class shows that there exist

balanced functions on 9 and 11 variables having maximum absolute value lessthan 2
n+1

2 .

In [60], a tight upper bound on nonlinearity has been proposed for resilient Boolean func-

tions and the existence of some Boolean functions on 7 to 10 variables satisfying the bound

has been posed as an open problem. Since then, the construction of thesefunctions has been

a challenging question. Some of them are presented in [51, 37, 68, 58]. As for another

side contribution of our study, we found [25] a 10-variable 1-resilient function having non-

linearity 492, which was one of the unattained functions listed in [60]; previously, the best

achieved nonlinearity of 10-variable 1-resilient functions was 488 [37].

1.4 Outline of the Thesis

After giving some preliminary material, related to this thesis, on Boolean functions in Chap-

ter 2, we introduce our steepest-descent-like iterative search strategy and present its results
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attained in the class of Rotation Symmetric Boolean Functions (RSBFs) in Chapter3. In

particular, an RSBF on 9 variables having nonlinearity 241 is presented along with some

other important Boolean functions having very good cryptographic properties in their Walsh

and autocorrelation spectra together. The material of Chapter 3 are based on [25].

In Chapter 4, 9-variable RSBFs having nonlinearity> 240 are enumerated by an efficient

exhaustive search strategy. It is found that there is no RSBF having nonlinearity> 241 and

there are 8× 189 many RSBFs having nonlinearity 241. Further it is proved that there are

only two different 9-variable RSBFs having nonlinearity 241 up to the affine equivalence.

This chapter is based on [24].

In Chapter 5, we improve the nonlinearity result of 241 by suitably generalizing the classes of

RSBFs and Dihedral Symmetric Boolean Functions (DSBFs) and present several 9-variable

Boolean functions having nonlinearity of 242. Then, we classify all possible permutations

on input variables of 9-variable Boolean functions with respect to the linear equivalence of

Boolean functions that are invariant under some permutations, which yieldsnew 9-variable

Boolean functions having nonlinearity 242 with different autocorrelation spectra from those

of the functions found in generalized RSBF and DSBF classes. For this chapter the material

are obtained from [30, 27].

In Chapter 6, we have attained 13-variable balanced functions having nonlinearity 4036

which is greater than the bent concatenation bound of 4032, and improvesthe recent re-

sult [34] of 4034. The material in this chapter are based on [36].

Finally, Chapter 7 is devoted to the conclusions, which provides a summary ofour work and

related open problems.
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CHAPTER 2

PRELIMINARIES

An n-variable Boolean functionf (x) produces a single-bit result for eachn-bit input vector

x = (x0, . . . , xn−1), which may be considered as a mapping from{0,1}n into {0,1}. f (x) is

basically represented by itstruth table, that is, a binary vector of length 2n,

f = [ f (0,0, . . . ,0), f (1,0, . . . ,0), f (0,1, . . . ,0), . . . , f (1,1, . . . ,1)]. (2.1)

We represent the set of alln-variable Boolean functions byBn; clearly |Bn| = 22n
. A binary

vectorg has theHamming weight wt(g) equal to the number of its nonzero elements. The

Hamming distancebetween two binary vectorsg and h, both having the same length, is

defined as the number of places for whichg andh differ, i.e.,d(g,h) = wt(g ⊕ h), where

⊕ denotes the addition overGF(2). An n-variable Boolean functionf is calledbalancedif

wt( f ) = 2n−1.

Algebraic Normal Form and Degree. The algebraic normal form(ANF) of a Boolean

function f (x) is defined as its unique representation in the form of a multivariate polynomial

overGF(2),

f (x0, . . . , xn−1) = c⊕
⊕

0≤i≤n−1

ai xi ⊕
⊕

0≤i< j≤n−1

ai j xi x j ⊕ . . . ⊕ a01...n−1x0x1 . . . xn−1, (2.2)

where the coefficientsc,ai ,ai j , . . . ,a01...n−1 ∈ {0,1}. The algebraic degree, or simply the

degree off , is the number of variables in the highest order product term with nonzerocoef-

ficient, which is denoted bydeg( f ).

Affine and Linear Boolean Functions.A Boolean functionf (x) having degree at most one

is called anaffinefunction ofx = (x0, . . . , xn−1) ∈ {0,1}n . Its ANF is given by
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f (x) = w0x0 ⊕ w1x1 ⊕ . . . ⊕ wn−1xn−1 ⊕ c =< w, x > ⊕c, (2.3)

wherec ∈ {0,1}, w = (w0, . . . ,wn−1) ∈ {0,1}n, and< w, x > represents the inner product

of w andx. An affine function with the constant termc = 0 is calledlinear. The set of all

n-variable affine (respectively linear) functions is denoted byAn (respectivelyLn).

Walsh Hadamard Transform. For a Boolean functionf the Walsh Hadamard transform is

a real valued function over{0,1}n which is defined as

Wf (w) =
∑

x∈{0,1}n
(−1)f (x)⊕<x,w>. (2.4)

We refer to the vectorWf = [Wf (0,0, · · · ,0), Wf (1,0, · · · ,0), Wf (0,1, · · · ,0), . . ., Wf (1,

1, · · · ,1)] as theWalsh spectrum, or simply the spectrum of the functionf . The Boolean

functions f andg are said to havenonintersecting Walsh spectra[60, Lemma 7] if and only

if Wf (w) , 0⇒Wg(w) = 0 andWg(w) , 0⇒Wf (w) = 0 for all w ∈ {0,1}n.

Nonlinearity. The nonlinearity of ann-variable Boolean functionf is defined as its mini-

mum distance to any affine function, i.e.,

nl( f ) = min
g∈An

(d( f ,g)). (2.5)

In terms of Walsh spectrum, the nonlinearity off is given by

nl( f ) = 2n−1 −
1
2

max
w∈{0,1}n

|Wf (w)|. (2.6)

Boolean functions used in cryptographic systems must be highly nonlinear toresist Best

Affine Approximation (BAA) and correlation attacks [6, 13].

Correlation Immunity and Resiliency. Zhen and Massey [18] have provided a spectral

characterization of correlation immune functions, which we use as the definition here. A

Boolean functionf is m-th order correlation immune (respectivelym-resilient) if and only if

its Walsh transform satisfies
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Wf (w) = 0, for 1 ≤ wt(w) ≤ m (respectively 0≤ wt(w) ≤ m). (2.7)

Parseval’s Theorem.It states that for ann-variable Boolean functionf , the sum of squared

Walsh spectrum is constant and equal to 22n:

∑

w∈{0,1}n
(Wf (w))2 = 22n. (2.8)

Autocorrelation Function. The autocorrelation function of a Boolean functionf is given

by

r f (d) =
∑

x∈{0,1}n
(−1)f (x)⊕ f (x⊕d), (2.9)

whered ∈ {0,1}n. The autocorrelation value having maximum magnitude (excluding the

value at the origin which is equal to 2n) is also known as the absolute indicator [72] and

denoted as:

∆ f = max
d∈{0,1}n,d,(0,...,0)

|r f (d)|. (2.10)

Propagation Characteristics (PC) and Strict Avalanche Criteria (SAC) [70, 54] are important

properties of Boolean functions to be used in S-boxes. A function is said tosatisfy PC(k), if

r f (d) = 0 f or 1 ≤ wt(d) ≤ k. (2.11)

An n-variable Boolean function (n is even) is calledbent if the Walsh spectrum is flat, i.e.,

Wf (w) = 2
n
2 for all w ∈ {0,1}n. Bent functions achieves the maximum nonlinearity of

(2n−1 − 2
n
2−1) and absolute indicator value of 0 (i.e.,r f (d) = 0 for all d , 0, ∈ {0,1}n).

These functions exist only whenn is even. In [71], the squared spectral distances from bent

autocorrelation and bent Walsh spectra are related by the following theorem.

Theorem 2.1.
∑

d,0 r f
2(d) = 2−n∑

w(Wf
2(w) − 2n)2.

10



Proof. Let us denote the Walsh Hadamard transform ofr f (d) by Rf (w). The following fact,

which states that the autocorrelation and squared Walsh spectra form a transform pair, is

used to prove the theorem.

Rf (w) =
∑

d

r f (d)(−1)<w,d>,

=
∑

d

∑

x

(−1)f (x)(−1)f (x⊕d)(−1)<w,d>,

=
∑

x

∑

y

(−1)f (x)(−1)f (y)(−1)<w,x⊕y>,

=
∑

x

(−1)f (x)(−1)<w,x>
∑

y

(−1)f (y)(−1)<w,y>,

= Wf
2(w). (2.12)

Then, using this result together with Parseval’s theorem,

∑

d,0

r f
2(d) =

∑

d

r f
2(d) − r f

2(0),

=
∑

d

r f
2(d) − 22n,

=
∑

d

2−n
∑

w

Rf (w)(−1)<x,w>2−n
∑

v

Rf (v)(−1)<x,v> − 22n,

= 2−2n
∑

w

Rf (w)
∑

v

Rf (v)
∑

d

(−1)<x,w⊕v> − 22n,

= 2−2n
∑

w

Rf (w)
∑

v

Rf (v)2nδ(w⊕ v) − 22n,

= 2−n
∑

w

Rf
2(w) − 22n,

= 2−n
∑

w

Wf
4(w) − 22n,

= 2−n(
∑

w

Wf
4(w) − 2n+1

∑

w

Wf
2(w) + 23n),

= 2−n
∑

w

(Wf
2(w) − 2n)2, (2.13)

whereδ(w⊕ v) is the Kronecker delta function which is nonzero only whenw⊕ v = 0.

In our steepest-descent-like search algorithm, we mostly use
∑

d,0 r f
2(d) as the cost func-

tion, which minimizes the squared distance to bent functions both in terms of Walshand

autocorrelation spectra, as can be seen from Theorem 1.
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A Boolean function is balanced if and only if its Walsh spectrum value is zero at the origin.

On the other hand, if an unbalanced Boolean functiong(x) contains a zero in its Walsh

spectrum except the origin, sayWg(u) = 0 andu , (0, . . . ,0), it can be linearly transformed

into a balanced functionf (x) = g(x)⊕ < x,u >, which has the same nonlinearity and

absolute indicator; i.e.,nl( f ) = nl(g) and∆ f = ∆g.

Following the notation used in [60], we define the profile of a Boolean function by (n,m,d, σ)

as its (input variable length, resiliency order, degree, nonlinearity). Adding the last entry∆ to

the notation, by an (n,m,d, σ,∆) function we denote ann-variable,m-resilient function with

degreed, nonlinearityσ and absolute indicator∆. By (n,−1,d, σ,∆) we mean unbalanced

functions and by (n,0,d, σ,∆) we mean balanced functions.

2.1 Group Action by Permutation Groups

A groupG is said to act on a setX if there is a mappingφ : G × X → X denoted asg · x,

which satisfies the following two axioms for all elementsx ∈ X.

1. e · x = x whereestands for the identity element ofG.

2. g · (h · x) = (gh) · x for all g,h ∈ G.

The mappingφ is called thegroup actionand the setX is called aG-set. The orbit ofx is

defined as the setG(x) = {g · x | g ∈ G}, i.e., the group action movesx to its orbit. As

the set of orbits ofX under the action ofG, denoted byG, constitutes a partition ofX, the

corresponding equivalence relation is defined byx ∼ y iff there exists ag ∈ G such that

g · x = y. Hence, the orbits form the equivalence classes under this relation.

Let G be a permutation group acting on{0,1}n, and consider the class ofn-variable Boolean

functions which are invariant under the action ofG, i.e., any Boolean functionf in the class

satisfies the condition for eachx ∈ {0,1}n, f (x) = f (y), for all y ∈ G(x). As a consequence

of the invariance property, the class composes a subclass ofBn, and knowing the number of

orbits, i.e.,|G|, it contains 2|G| manyn-variable Boolean functions, each satisfying the given

condition. The value of|G| can be determined using Burnside’s Lemma.
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Lemma 1 (Burnside’s Lemma). Let G be a group of permutations acting on a setX, and

f ixX(g) = {x ∈ X | g · x = x} for eachg ∈ G. Then the number of orbits induced onX is

given by 1
|G|

∑

g∈G | f ixX(g)|.

Let us represent an orbit by its lexicographically the first element, and denote the repre-

sentative element asΛi . The Boolean functionf which is invariant under the action ofG,

can be represented by (f (Λ0), . . . , f (Λ|G|−1)), whereΛ0, . . . ,Λ|G|−1 are again arranged lexi-

cographically. Clearly, this representation is shorter than the truth table off . Further, it can

be shown [68] thatWf (u) = Wf (v) if u ∈ G(v), implying that the Walsh spectrum off can

be at most|G| valued. Then, defining a|G| × |G| matrixA asAi, j =
∑

x∈GΛi
(−1)<x,Λ j> [68],

the Walsh spectrum off can be calculated as

Wf (Λ j) =
|G|−1
∑

i=0

(−1)f (Λi )Ai, j . (2.14)

In [43], a nice structure in the matrixA is obtained by applying some permutations on the

representative elementsΛ0,Λ1, . . . ,Λ|G|−1 for Boolean functions on odd number of input

variablesn. Let Λ̂i denote the complement ofΛi , then, for oddn, there is a one-to-one

correspondence between the orbits of even weightΛi ’s and the orbits of odd weightΛi ’s

by Λi → Λ̂i . So, the set of orbits can be divided into two subsets (of same cardinality)

containing representative elements of even weights and odd weights.

Now, consider the ordering of theΛi ’s as follows. Let us permuteΛi ’s so that the first|G|2

representative elements correspond to the orbits of even weights in lexicographical order and

the second|G|2 representative elements correspond to the complements of the first|G|
2 orbits in

the same order. That means thei-th (i = 0, . . . , |G|2 −1) orbit representativeΛi , whereΛi is the

i-th element in the new order, corresponds to the orbit representativeΛ̂ |G|
2 +i . Consequently,

the permuted matrix, denoted byAπ, has the form [43]

Aπ =





















H H

H −H





















. (2.15)

whereH is a sub matrix ofAπ.
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2.2 Rotation Symmetric Boolean Functions

Letting (x0, x1, . . . , xn−1) ∈ {0,1}n, the (left)k-cyclic shift operatorρk
n onn-tuples is defined

as

ρk
n(x0, x1, . . . , xn−1) = (x(0+k) mod n, . . . , x(n−1+k) mod n), (2.16)

for 1 ≤ k ≤ n. A Boolean functionf is calledrotation symmetricif for each input (x0, . . .,

xn−1) ∈ {0,1}n, f (ρ1
n(x0, . . . , xn−1)) = f (x0, . . . , xn−1). That is, RSBFs are invariant under

all cyclic rotations of the inputs. The inputs of a rotation symmetric Boolean function can

be divided intoorbits so that each orbit consists of all cyclic shifts of one input. An orbit

generated by (x0, x1, . . . , xn−1) is denoted byGn(x0, x1, . . . , xn−1) = {ρk
n(x0, x1, . . . , xn−1) |

1 ≤ k ≤ n} and the number of such orbits isgn (≈ 2
2n
n ). More specifically,gn is equal

to 1
n

∑

t|n φ(t)2
n
t [67], whereφ(t) is the Euler’s phi-function. The total number ofn-variable

RSBFs is 2gn.
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CHAPTER 3

SEARCH IN ROTATION SYMMETRIC CLASS

3.1 Introduction

On odd number of input variablesn, constructing Boolean functions with maximum possible

nonlinearity is an unsettled open problem in the area of symmetric cryptography and combi-

natorics. The problem is also related to the upper bound⌊2n−1−2
n
2−1⌋ on the covering radius

of the first order Reed-Muller code [21], which is later improved [23] as2⌊2n−2 − 2
n
2−2⌋.

Boolean functions on even number of input variablesn, attaining maximum nonlinearity of

(2n−1 − 2
n
2−1) are called the bent functions [56]. For odd number of input variablesn, the

nonlinearity value (2n−1 − 2
n−1

2 ) is known as thebent concatenation bound, since the con-

catenation of two bent functions on (n − 1) variables yieldsn-variable Boolean functions

achieving this bound.

For oddn ≤ 7, it is known that the maximum nonlinearity is equal to the bent concatenation

bound [2, 47]. Clearly, as the number ofn-variable Boolean functions (22n
) increases super-

exponentially asn increases, exhaustive search of the whole space is not feasible forn ≥ 7

with currently available hardware. Therefore, for any search attempt, different subclasses of

Boolean functions are always significant and interesting.

In 1983, Patterson and Wiedemann [52] demonstrated a construction in the idempotent class,

of 15-variable Boolean functions with nonlinearity 16276 (exceeding the bent concatenation

bound by 20), using combinatorial techniques and search methods. Sincethen, it has been

possible to get functions with nonlinearity (2n−1 − 2
n−1

2 + 20× 2
n−15

2 ) for oddn ≥ 15, which

exceeds the bent concatenation bound by 20× 2
n−15

2 . Until 2006, the maximum nonlinearity

known for the cases ofn = 9,11,13 was equal to the bent concatenation bound. In 2006,

9-variable Rotation Symmetric Boolean Functions (RSBFs) with nonlinearity 241(= 29−1−

2
9−1

2 + 1) were discovered [25], which led to the construction of functions with nonlinearity

exceeding the bent concatenation bound by 1× 2
n−9

2 , for oddn ≥ 9. Such functions were
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attained utilizing the steepest-descent-like iterative algorithm that first appeared in [29] and

then suitably modified in [25] for a search in the class of RSBFs.

In symmetric cryptography, highly nonlinear Boolean functions having low absolute indica-

tor value (∆ f ) are desired to satisfy confusion and diffusion criteria. In 1995, it was conjec-

tured [72] that the maximum absolute value∆ f ≥ 2
n+1

2 in the autocorrelation spectrum of any

balanced Boolean function on odd number of input variablesn. Since then, the conjecture

has been disproved by modifying 15-variable Boolean functions with nonlinearity 16276

given in [52] forn = 15 [39] andn = 21 [17]. For the first time, we have demonstrated such

functions for oddn < 15. Our systematic search in the RSBF class shows that there exist

balanced Boolean functions on 9, 10 and 11 variables having∆ f < 2⌈
n
2⌉. For even number of

input variablesn, 8-variable balanced Boolean functions having∆ f = 2
n
2 are attained exper-

imentally in [9, 28, 29], yielding better absolute indicator value than that of the construction

proposed in [35] for which∆ f ≤ 2
n
2 + ∆g, where f andg are balanced functions onn and n

2

variables respectively. So far there was no evidence of balanced Boolean functions on even

number of input variablesn having∆ f < 2
n
2 .

In particular, we have attained 9-variable (11-variable) RSBFs having nonlinearity 240 (988),

∆ f = 24 (56), and algebraic degree 7 (9). Then, we have linearly transformed these functions

to 1-resilient or PC(1) functions. 1-resilient Boolean functions having∆ f < 2
n+1

2 have not

been demonstrated earlier for any variable. Further we have obtained an 11-variable RSBF

having nonlinearity 990,∆ f = 56 and algebraic degree 10, which can be linearly trans-

formed to a PC(1) function. For even number of input variables, we havefound 10-variable

functions having nonlinearity 488,∆ f = 24 and algebraic degree 9; some of them can be

linearly transformed to PC(1) functions.

In [60], a tight upper bound on nonlinearity has been proposed for resilient Boolean func-

tions and the existence of some Boolean functions on 7 to 10 variables satisfying the bound

has been posed as an open problem. Since then, the construction of thesefunctions has been

a challenging question. Some of them are presented in [51, 37, 68, 58]. The 10-variable

1-resilient function having nonlinearity 492, which we present here, remained unknown till

our work [25]; previously, the best achieved nonlinearity was 488 [37].

Considering a Boolean functionf as a mapping fromGF(2n) → GF(2), the functions for

which f (α2) = f (α) for anyα ∈ GF(2n), are referred to as idempotents [15, 16]. In [52],
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15-variable Patterson-Wiedemann functions having nonlinearity 16276= 215−1 − 2
15−1

2 + 20

are identified in the idempotent class. As pointed out in [15, 16], the idempotents can be seen

as RSBFs with proper choice of basis. From this motivation, we study the RSBF class and

discover 9-variable functions with nonlinearity 241. In [15, 16], the nonlinearity of RSBFs

up to 9 variables is studied providing encouraging results. After that, the class of RSBFs has

received a lot of attention in the literature [67, 66, 68, 11, 7, 20, 43, 42], where it has been

asserted theoretically and experimentally that the RSBF class contains important functions

having good cryptographic properties. Further, in [53], RSBFs are studied as components in

the rounds of a hashing algorithm and research in this direction was later continued in [10].

Heuristic strategies, such as genetic algorithms and hill climbing, have been initially inves-

tigated in [44, 45, 46] for the design of Boolean functions. However, these attempts seem to

be insufficient in designingnear-the-bestBoolean functions. After that, simulated anneal-

ing [31], a heuristic optimization thechnique based on annealing process ofmetals, was used

to provide promising results [9, 28], which yields Boolean functions havinggood crypro-

graphic properties in both Walsh and autocorrelation spectra for small functions (n ≤ 8).

On the other hand, in [8], it was pointed out that some of the Boolean functions found by

simulated annealing could be linearly transformed (using simple linear change of basis) to

achieve resiliency supplying the best possible trade-offs. Consequently, supplementing op-

timization with theory yields the best Boolean functions onn ≤ 8 variables in terms of non-

linearity, algebraic degree and resiliency. Recently, exploiting a heuristic strategy based on

“Particle Swarm Optimization” [1], the existence of 9-variable, 3-resilient functions having

nonlinearity 240 has been demonstrated in [58], which was open since Crypto 2000 [60].

In this chapter, our steepest-descent-like iterative algorithm that first appeared in [29] is suit-

ably modified so that it can be efficiently applied for a search in the RSBF class and attained

Boolean functions which are very good in terms of their Walsh and autocorrelation spectra.

The strategy presented in [29] has been applied to the complete space of Boolean functions

that resulted in discovery of 8-variable balanced Boolean functionsf having nonlinearity

116 and∆ f = 16. It performs much better when applied to the much smaller (but rich) space

of RSBFs. To have a quick feel of how efficient our strategy is, one may refer to Remark 1.

In the following section we present the search strategy. The results are presented in Sec-

tion 3.3.
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3.2 Search Strategy

The search strategy uses a steepest-descent-like iterative algorithm, where each iteration step

has the input Boolean functionf and the output Boolean functionfmin. At each iteration

step, a cost function is calculated within a pre-defined neighborhood off and the Boolean

function having the smallest cost is chosen as the iteration outputfmin. We use the sum of

squared errors [28, 71] as the cost function, which is defined as:

Cost=
∑

ω

(W2
f (ω) − 2n)2. (3.1)

Note that since
∑

d,0 r f
2(d) = 2−n∑

w(Wf
2(w) − 2n)2 (see Theorem 2.1), the cost function

minimizes the squared distance to bent functions both in terms of Walsh and autocorrelation

spectra.

In some rare cases, the cost offmin may be larger than or equal to the cost off . This is the

crucial part of the search strategy, which provides the ability to escape from local minima

and its distinction from the steepest-descent algorithm.

The 1-neighborhood off is obtained by flipping a single element of its truth table. For

an n variable balanced Boolean function, the 1-neighborhood consists of 2n many distinct

Boolean functions, each being at the Hamming distance 1 to the original Boolean function.

However, when the search space is restricted to RSBFs, the 1-neighborhood is either an

empty set or contains a single RSBF. If a bit in the truth table of an RSBF is changed, all

entries corresponding to an orbit (a rotationally symmetric partition, which is composed of

vectors that are equivalent under rotational shifts) should be changed to obtain another RSBF.

The closest rotationally symmetric neighbors of RSBFs can be found by complementing the

truth table entries corresponding to a complete orbit. So, at each step of the algorithm, we

constitute the neighborhood off by complementing each RSTT entry (i.e., changing all the

values in a truth table corresponding to an orbit).

Our steepest-descent-like search technique minimizes the cost until a local minimum is at-

tained, then it takes a step in the direction of non-decreasing cost. That is,whenever possible,

the cost is minimized; otherwise, a step in the reverse direction is taken. The deterministic

step in the reverse direction corresponds to the smallest possible cost increase within the pre-
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defined neighborhood of the preceding Boolean function, which makes itpossible to escape

from the local minima.

Our algorithm given below starts with an arbitrary RSBF,finitial , and stops after a fixed

number of iterations,N. At each iteration,gn distinct Boolean functions within the prede-

fined neighborhood, each of which is shown byf f lipped, are visited by storing the cost value

costf lipped in COS T, and the corresponding Boolean function itself inS ETf . Among the

stored cost values, the minimum one,costmin, is chosen, and the respective Boolean func-

tion, fmin, is obtained fromS ETf as the candidate of the step output. If the candidatefmin

is already inS TORE, which contains all previous iteration outputs, then this candidatefmin

and its cost are removed fromS ETf andCOS Trespectively. The minimum cost value is

searched again inCOS Tamong the remaining cost values to find the respective new candi-

date for fmin.

Algorithm 3.1

f = finitial ;

for(int k = 0; k < N; k+ +){

for(int i = 0; i < gn; i + +){

Flip one orbit of f

S ETf [ i ] = f f lipped

COS T[ i ] = costf lipped

}

Findcostmin (min. costf lipped in COS T), and fmin (respectivef f lipped in S ETf )

while( fmin is already inS TORE){

Removecostmin from COS T, and fmin from S ETf

Findcostmin in COS T, and fmin in S ETf

}

S TORE[k] = fmin

f = fmin

}

Since the neighbors off are obtained simply by flipping a bit in its RSTT, the number of

neighbors is equal togn. We present the C code of Algorithm 3.1 in Appendix C.
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3.3 Results

We start this section with the most important result of this chapter.

3.3.1 9-variable RSBF with nonlinearity 241

The following is the truth table of a 9-variable functionf (x1, . . . , x9) having nonlinearity

29−1 − 2
9−1

2 + 1 = 241.

977F3FFA0EFAAEC955F8FACDCCA9A0837666EBC0FA88E0B3F4E08983C845915E

7F7C2C29FCCBA101EA98C085E8118B5EFE21E9118483851EE1952136971676E9

Given an integerm> 0 and even, it is clear that the functiong(y1, y2, . . . , ym)⊕ f (x1, . . . , x9) is

ann-variable (n = m+9) function with nonlinearity (2n−1−2
n−1

2 +2
m
2 ), whereg(y1, y2, . . . , ym)

is anm-variable bent function. Thus there exist Boolean functions having nonlinearity >

(2n−1 − 2
n−1

2 ) for oddn ≥ 9. Keeping this in mind, and adding the results of [2, 47] that the

maximum nonlinearity of Boolean functions on odd number of variables for odd n ≤ 7 is

(2n−1 − 2
n−1

2 ), we get the following.

Theorem 3.1. There exist Boolean functions onn (odd) variables having nonlinearity>

(2n−1 − 2
n−1

2 ) if and only if n > 7. In other words, for oddn, the covering radius of the

(2n,n+ 1) Reed-Muller code is> (2n−1 − 2
n−1

2 ) if and only if n > 7.

Remark 3.1. At this point we like to highlight the efficiency of the search method. In [24]

(our work later to [25]), it has been noted that there are 1512 many 9-variable RSBFs having

nonlinearity 241 and this is the maximum nonlinearity in the 9-variable RSBF class.Note

that the 9-variable RSBF class is of size 260. Thus in a random search, the probability of

getting a 9-variable RSBF with nonlinearity 241 is 1− (1− 1512
260 )i in i many attempts. Note

that limz→∞(1 − 1
z)z = 1

e. Thus in approximately260

1512 (> 249) many attempts one may

get a 9-variable RSBF having nonlinearity 241 with probability 1− 1
e >

1
2 in a random

search. Our search method performs much better than that. We found 5 manyRSBFs having

nonlinearity 241 in 2· 108 (< 228) many generation of Boolean functions using Algorithm

3.1; which shows that the efficiency of our search strategy plays an important role to discover

such functions.
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Next we concentrate on other important functions in the RSBF class.

3.3.2 Important RSBFs on 9, 10 and 11 variables

In Table 3.1, we summarize the profiles of the some other important RSBFs that weobtain

by Algorithm 3.1. We use the notation (number of variables, resiliency, degree, nonlinearity,

absolute indicator) for each profile; resiliency= −1 (respectively 0) denotes unbalanced

(respectively balanced) functions. If the given profile (n,m,d, σ,∆) can be transformed into

a function having the property of PC(1), then we denote it by (n,m,d, σ,∆)*.

Table 3.1: Summary of other important RSBFs.

RSBF No Initially Attained RSBF Affinely Transformed Results
1 (9, 0, 7, 240, 24) (9, 0, 7, 240, 24)*, (9, 1, 7, 240, 24)
2 (11, -1, 10, 990, 56)* (11, 0, 10, 990, 56)*
3 (11, 0, 9, 988, 56) (11, 0, 9, 988, 56)*, (11, 1, 9, 988, 56)
4 (10, -1, 9, 488, 24)* (10, 0, 9, 488, 24)*
5 (10, -1, 8, 492, 56) (10, 1, 8, 492, 56)

1. Algorithm 3.1 outputs the following functionφ, which is a 9-variable balanced RSBF

havingnl(φ) = 240 and∆φ = 24< 32= 2
9+1

2 and algebraic degree 7.

005473257A0E49676BDD10E864D3287F399BB2E30214BC916865E70B58853BBE

0ED3C29B9F48AD0F554906658BB1C3562D857833F92B159E33C5D1765BDEDEE9

Given ann-variable Boolean functionf , let us form a set of vectorsS f , which is defined as

S f = {ω ∈ {0,1}
n |Wf (ω) = 0}. (3.2)

SupposeBf is a nonsingularn × n matrix whose rows are linearly independent vectors be-

longing toS f (if there exist such vectors inS f ). Then, definingf ′(x) = f (B−1
f x), it is ensured

that bothf ′ and f have the same weight, nonlinearity and algebraic degree[33]. Moreover,

Wf ′(ω) = 0 for wt(ω) = 1, which provides thatf ′ is correlation immune of order 1. Further

if f is balanced thenf ′ is 1-resilient, in other words, ifWf (0) = 0, thenWf ′(0) = 0 for

0 ≤ wt(ω) ≤ 1. This technique has been used in [50, 38, 8]. The following function is

obtained by a linear transformation on the input variables ofφ above, which is 1-resilient.
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1C969EEC0B5B87307EB530AD3C365AD32A6771C130CBA71435798C8B6A9DE615

ECF9D05D64E8987F8414D1018621E7EEE05FD4E1AF403F05BF2226AEE2B36D0E

Similar technique can be used to construct PC(1) functions. Given ann-variable Boolean

function f , let us defineT f = {α | ∆ f (α) = 0}. If there existn linearly independent vectors

in T f , then one can form a nonsingularn×n matrix D f whose rows are linearly independent

vectors belonging toT f . Now one can definef ′(x) = f (xDf ). Both f ′ and f have the same

weight, nonlinearity and algebraic degree[33]. Moreover,∆ f ′(α) = 0 for wt(α) = 1. This

ensures thatf ′ is PC(1). This technique has been used in [39]. The following function is

obtained by a linear transformation on the input variables ofφ above, which is PC(1).

2C317F8130464E9D30EA0A95556F8EAAE108188979AC48E9F23AA6793CBBE526

F0DA686073CFD3D6ABE78F641FEB34DD64ED3721BCE0C6CA0CB8E5FCA6655004

It would be interesting to get a transformation on input variables such that 1-resiliency and

PC(1) can both be achieved at the same time.

2. Using Algorithm 3.1 we find the following functionφ, which is an 11-variable unbalanced

RSBF havingnl(φ) = 990,∆φ = 56, anddeg(φ) = 10. Note that this function is by itself a

PC(1) function which is not balanced, but soon we will provide a balanced PC(1) function

too.

FEEDB8A7CA94D83AF4C88330F7C04EC8BB64F4C5C05B0F41BB6AF41130BCB595

CACF7D60FF75F463B04473DB00FE2553DACF7CDDAE6517161A40DAA08A32D263

F198E0EE3FA62C15BEFE3A36BF75280A8B5571703A1EE7CA4551BEEC4C23725A

A798A4BF2EB5B3A6C9FC7C63566A562806996510A2D8984484CC1B49B60D684B

EB4386C4E814F8A85AEB8D3958E546778BF8FFE94ADD0E3DCBEF2B7648C004C9

D48A72276E467F001FDC46B8BD6AA1CC342727529EE9E8E025B40C4A2A596389

992A86C0C935CBAF1CF98F279B1E8829E0C3AAF07EA4781A633C698836280D91

502897936D335601890CE2C496906035C075B5E1128A64878F7940A33D8171DE

We transformφ to a balanced one,f , by usingω = (0,0,0,0,1,1,0,0,1,1,1) for which

Wφ(ω) = 0. Thus the functionf (x) = φ(x) ⊕ ω · x is balanced as given below with the same

nl(φ), ∆φ, anddeg(φ).

9784D1CE5C024EAC625E15A69EA927A1D20D9DAC56CD99D72DFC628759D5DCFC

A3A6140969E362F526D2E54D69974C3AB3A615B438F381808CD64C36E35BBB0A

98F18987A930BA832868ACA0D61C4163E23C1819AC88715CD3C7287A254A1B33
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CEF1CDD6B82325305F6AEAF53F033F416FF00C79344E0ED2125A8DDFDF640122

822AEFAD7E826E3ECC7D1BAF318C2F1EE2919680DC4B98AB5D79BDE021A96DA0

BDE31B4EF8D0E996894AD02ED403C8A55D4E4E3B087F7E76B3229ADC43300AE0

F043EFA95FA35D398A6F19B1F277E14089AAC399E832EE8CF5AAFF1E5F4164F8

3941FEFAFBA5C0971F9A7452FFF9095CA91CDC88841CF21119EFD63554E818B7

Note that this balanced functionf is by itself a PC(1) function. Since the above function

is of nonlinearity 990, which is not divisible by 4, it cannot be made 1-resilient by affine

transformation.

3. Next we present such a function of nonlinearity 988 having degree 9, so that we may

get 1-resiliency by linear transformation on input variables. By Algorithm 3.1, we get a

balanced RSBFf having nonlinearity 988,∆ f = 56 and algebraic degree 9.

ECB4DE71F3FD6B13FB1ABAB7688A075EFA9F17D89B9DCA3E6D80D0CC542B63ED

BE8992BB076FE6C083CAD2A7E0CD4AE96CE6C411A244F4B166600D9F281AB8B6

DEB881879619CBCB407E29BAFC3CE501C14AB0DCA31CCD2BEC01F4A621C8E8D7

7DF1FD28B0201317CC5C3421EB618F533969280455B2D3BB4DD04299CF859F7C

A6EDDF95D447803EC77C5786B0CAE19B61453BA818C38B89AAA50AE5A8370446

E41365998E14E6B1984E16B1A1E2188FFDF04057AE61993D5902F4D5BC85B37E

2BF7EB06BEF248959B504911030B072AA5B526A54A651843FC8F2957D0EF635E

1F926C875C95113037238B49E31FCB9E74A3E75471199796E1BED57696FE6EA0

The function is then transformed to 1-resilient function as follows.

975D2EFDA7C9D97E96B58F09B056960188614907BACF4617219BF147E6B34314

410C9E8BB000FE87E8A7A3590CF4B1A66D11818429EC3F0F61EF89CB9E898BE0

B208B29527E8404F871B756693944C3972D242039F3017FD34E2973C2B2567A5

C2FFF57B3783DD747993E8346E5DE671ADE80D4D3E98FA461ACAA93A2FF87622

D0BCA271ABDD139C66ED2D8C75ED7DD3B22968E85BC520361B31DD9F09FF1162

974F19DD09251C16C56CDC7C3AE920EADBC08BFC51B3F300DE3C7B6CC668D504

01EC68AC1D3AB7525BEEE63D0C208D358F88DED59DD59B4433B80016AF5DA8BD

D8E2B053C0E67A16241122E8E4A4C158CB654ABAFDA03E73A05A75DA610B99BF

Further we can also transformf to a PC(1) function as follows.

850EC14AF195F38DD59EB29E7CD758C76122F20FCE9E83DE393F53757954269F

44C0EC07E6724883E726A750939EE4DB5475F56C1D3933F585C6DB9719D8BA35

58041ABEF105914D59F02FFB8CED823D982469B85F32874654BB8CBAEB4A110E

F2381C97099C58E1A0FD724A35D28129D9F61CA877BE0109BD67A3B62EA4BA5F

0DA4AE0E2D84AA64301635E183CE33D19B7D50C9230D027BBB22443BF5765A34

F3AF2B9F0AB2DE85ABDF1367526B942351D91F43EB123B9CE5B164E6DFB95E81

60D537FB9ED65A0AD8674BC3443C83804D5D3169CD0E5B22E723184D144D0918

00332B98CF8E2E39F53C6BAEF24402F19B9B703616B1C860AE538705DEEAF0B7
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4. Using Algorithm 3.1, We first find an unbalanced RSBFφ with nl(φ) = 488,∆φ = 24,

anddeg(φ) = 9 as given below. This is an unbalanced PC(1) function.

FFFEEBF9E8CAAFD2E8C5A4899CFFB20CFDC4F162992580C283E5FAAA8F1C51B5

FAA6B471FA12385996824D379154A55DD10EA827BF9D8D98D0EB07B43606CE27

FE9D883C8B216F42FAD853081BC036D7C26DC44D60B75E3FD2037734C93662A3

E70611B8CCD0586F8BAB87E7C1F69681B254ACCB113B9E614E295569A1F91D7F

We find only one zero atω = (1,1,1,1,1,1,1,1,1,1) in the Walsh spectrum ofφ, which

is used to get a balanced function as follows. One may note that this function isby itself a

PC(1) function.

96687D907EA3C6447EACCD1FF56924656BAD98F4F0B316ABEA736CC319753823

6CCFDDE79384AE30FF14DB5E073DCCCBB8983E4E29F4E40E46826E225F90584E

68F4E1AAE2B7F92B934EC5618DA95F41ABFB5224F6DE37A9446A1EA2A0A0F4CA

8E9087D15AB931F91DC2EE71A86000E8243DC55D78AD080827BFC300379074E9

5. We first identify unbalanced RSBFφ having nonlinearity 492 and algebraic degree 8. The

functionφ is as follows.

E9C6B17C9F136FE496BA574B7CEEA820D33C8E9D776F709B6EB1A8E9CCD01941

B34F4EF095F8C2E23E6A68AA6B40C2DA3CE8DB469C81A883F4A1A24146877153

9A5E75BA64F9EA00D627FBC5A509AC595BAC7C886880988C68DA6101E109A3DD

4EF4AD80E3DB312DD2E080428C91911FAE309D53C8082557247D803F2F07335E

To make it balanced we takeω = (0,0,0,0,0,0,0,1,0,1) whereWφ(ω) = 0. Thus f =

φ ⊕ ω · x is a balanced function. Then we consider the setS f = {ω ∈ {0,1}n | Wf (ω) = 0}

having|S f | = 40. There exist 10 linearly independent vectors inS f , and one can construct

a nonsingular 10× 10 matrixBf whose rows are linearly independent vectors fromS f . We

have considered the following matrix.

Bf =

































































































0 1 0 1 0 0 0 1 0 1
1 1 0 1 0 1 1 0 1 0
1 1 1 0 1 0 1 0 1 0
0 0 0 0 0 0 1 1 1 1
1 1 1 1 0 1 0 0 1 0
1 0 0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1 1 1
1 1 1 1 1 0 1 1 1 0
1 0 0 0 0 0 1 1 1 1
0 1 0 0 0 0 0 0 0 0

































































































. (3.3)
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Let, C f = B−1
f and thenf ′(x) = f (C f x) is a 10-variable 1-resilient function with algebraic

degree 8 and nonlinearity 492. The functionf ′ is as follows.

8180CDED6C1C0302AA32E761B2079F0C37D8393E5B8DF2934B2AACEA7EB40BF0

AF6694BAF19E415E4580C0D679DB9BEB982963591185C33FEC2F67987D121D3B

C4E281F3D071957A74DF8A99FF258E9EC3D3AE6BE39415B0F4E5DA104DFC0125

24AD19CBA965D3768C525AD75C5316AA0F77F1A49E4AFD4223D40756C8388886

3.3.3 Search Effort

In Remark 1, we have quantified how efficient our search method is in terms of finding 9-

variable RSBFs having nonlinearity 241. Since it is not possible to completely enumerate

the other important functions we have achieved, the efficiency of the search method cannot

be quantified. However, the following search effort related to Algorithm 3.1 show that it is

indeed possible to achieve good functions in nominal time.

Forn = 9 we have carried out 2000 runs each withN = 100,000 iterations. Among these 200

million RSBFs, five have the nonlinearity 241, and 580 many RSBFs have the nonlinearity

240 and absolute indicator 24. Forn = 10, 250 runs have been performed each withN =

400,000 iterations. Among the total of 100 million RSBFs, 11 have the nonlinearity 488

and absolute indicator 24, all transformable to balanced functions. In the same experiment,

we have found 67,479 RSBFs with nonlinearity 492, all transformable to balanced functions

and among them we could obtain several 1-resilient functions using linear change of basis.

Besides, we have noticed that only four of the 67,479 RSBFs are balanced, and none of these

balanced functions can be transformed into a 1-resilient function. Forn = 11, there are 7

successes with nonlinearity 988 and absolute indicator 56 in 500 runs. Moreover, we have

encountered an unbalanced RSBF having nonlinearity 990 and absolute indicator 56, which

is transformable to a balanced function.

Using a computer system with Pentium IV 2.8 GHz processor and 256 MB RAM having

Windows XP operating system, and setting the iteration numberN = 100,000, a typical run

of our algorithm takes 1 minute and 29 seconds forn = 9. With the same computer system,

a typical run takes 57 minutes forn = 10, and 69 minutes forn = 11, by setting the iteration

numbers toN = 400,000 andN = 500,000 respectively.
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3.4 Conclusions

Boolean functions, which have not been known for a long time, could be achieved with our

steepest-descent-like iterative heuristic search in the class of rotation symmetric Boolean

functions. As a major result, we find a 9-variable RSBF with nonlinearity 241 and thus

we could show the existence of Boolean functions having nonlinearity> (2n−1 − 2
n−1

2 ) for

n = 9,11,13. We could find balanced Boolean functions on 9,10 and 11 variables with

maximum absolute value in the autocorrelation spectrum< 2⌈
n
2⌉ with other cryptographic

properties such as good nonlinearity and algebraic degree. Some of these functions on each

of the 9,10 and 11 variables cases can be affinely transformed to balanced PC(1) functions.

Some of these functions on 9 and 11 variables can be transformed to 1-resilient functions as

well. Further, we discovered several 10-variable 1-resilient functions with nonlinearity 492,

which was posed as an open question in Crypto 2000.
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CHAPTER 4

9-VARIABLE RSBFs WITH NONLINEARITY > 240

4.1 Introduction

In this chapter, the complete class of 9-variable RSBFs is studied for nonlinearity 241. For

this purpose, we exploit the nice combinatorial structure of the Walsh spectra for RSBFs on

odd number of variables [43] to carry out the exhaustive search of 9-variable RSBFs having

nonlinearity> 240 with considerable computational effort. As a consequence, we find that

there are 8× 189 many RSBFs having nonlinearity 241 that is maximum possible in the

class. Further, utilizing some variants of binary nonsingular circulant matrices, it is shown

that there are only two different 9-variable RSBFs having nonlinearity 241 up to the affine

equivalence.

In the following section, the details of the exhaustive search strategy for finding 9-variable

RSBFs having nonlinearity> 240 is explained. The affine equivalence among 9-variable

RSBFs having nonlinearity 241 is presented in Section 4.3.

4.2 Exhaustive Search Strategy

First we permute the orbit leaders to obtain the matrixAπ as discussed in Section 2.1. Given

the new ordering ofΛi ’s, let us represent two vectors

µ f = ((−1)f (Λ0), . . . , (−1)
f (Λ gn

2 −1)
) andν f = ((−1)

f (Λ gn
2

)
, . . . , (−1)f (Λgn−1)) (4.1)

corresponding to ann-variable RSBFf , wheregn = |G|. Then, considering the vectors

uf = µ f H , vf = ν f H and denoting theiri-th (i = 0, . . . , gn
2 − 1) components byuf [i],

vf [i] respectively, it is seen that the vaules in the Walsh spectrum off can be calculated

as (uf [i] + vf [i]) for the first gn
2 many representative elements (which are of even weights)
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and (uf [i] − vf [i]) for the nextgn
2 many representative elements (which are of odd weights).

For 9-variable RSBFs, the matrixAπ is a 60× 60 matrix, as the number of distinct orbits

gn = 60; hence, the matrixH is a 30× 30 matrix. We start with a technical result which is

easy to prove.

Proposition 4.1. Let a,b andM be three integers withM > 0. Then|a+b| ≤ M, |a−b| ≤ M

iff |a| + |b| ≤ M.

To achieve nonlinearity> 240, it is clear that the Walsh spectrum values of a Boolean func-

tion must be in the range [−30,30]. Keeping this in mind and adding the result of Proposition

4.1, one can see that|uf [i]| + |vf [i]| ≤ 30, where 0≤ i ≤ g9
2 − 1 = 29, for a 9-variable RSBF

(represented by a 60-bit vectorµ f ||ν f ) having nonlinearity> 240. A naive method to extract

such RSBFs requires to generate all theµ f ||ν f patterns, which exhausts the search space of

260.

We present an efficient method for this purpose. As each of the patternsµ f andν f must

satisfy the necessary conditions|uf [i]| ≤ 30 and|vf [i]| ≤ 30 respectively for 0≤ i ≤ 29,

we first search for all the patternsµ f ’s such that|uf [i]| ≤ 30 for 0 ≤ i ≤ 29. Note that

the search for all the patternsν f ’s such that|vf [i]| ≤ 30 for 0 ≤ i ≤ 29 produces the same

result. Let us represent the set of resulting patterns byS. By fixing µ f [0] = (−1)0 = 1

(or ν f [0] = (−1)0 = 1), this search requires the generation of 229 many patterns ofµ f (or

ν f ). The reason why we fix the first bit of the patterns will be explained by Proposition

4.2. Using a computer with the specification 3.6 Ghz Intel Xeon and 4 GB RAM, ittakes

little less than half an hour to obtain the setS and it contains 24037027 (< 225) many

patterns. Consequently, the search for 9-variable RSBFs having nonlinearity greater than

240 reduces to the problem of choosing any two patternsµ f , ν f from S such that the resulting

concatenationµ f ||ν f satisfies the condition|uf [i]| + |vf [i]| ≤ 30 for 0≤ i ≤ 29. Let us first

present the following technical result, which helps us explain how we select two patterns

from the setS.

Proposition 4.2. Consider a 9-variable RSBFf which is represented asµ f ||ν f such that

|uf [i]| + |vf [i]| ≤ 30 for 0≤ i ≤ 29. Let l8 = x0 ⊕ x1 . . . ⊕ x7 ⊕ x8, the rotation symmetric

linear function containing all the variables. Consider the functionsg such that any of the

following holds:
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µg = µ f , νg = ν
c
f , i.e., g(x0 . . . x8) = f (x0, . . . , x8) ⊕ l8, (4.2a)

µg = µ
c
f , νg = ν f , i.e., g(x0 . . . x8) = f (x0, . . . , x8) ⊕ l8 ⊕ 1, (4.2b)

µg = µ
c
f , νg = ν

c
f , i.e., g(x0 . . . x8) = f (x0, . . . , x8) ⊕ 1, (4.2c)

µg = ν f , νg = µ f , i.e., g(x0 . . . x8) = f (1⊕ x0, . . . ,1⊕ x8), (4.2d)

µg = ν f , νg = µ
c
f , i.e., g(x0 . . . x8) = f (1⊕ x0, . . . ,1⊕ x8) ⊕ l8, (4.2e)

µg = ν
c
f , νg = µ f , i.e., g(x0 . . . x8) = f (1⊕ x0, . . . ,1⊕ x8) ⊕ l8 ⊕ 1, (4.2f)

µg = ν
c
f , νg = µ

c
f , i.e., g(x0 . . . x8) = f (1⊕ x0, . . . ,1⊕ x8) ⊕ 1, (4.2g)

Then|ug[i]| + |vg[i]| ≤ 30 for 0≤ i ≤ 29.

Hence, for a single 9-variable RSBFf there exist 8 many (includingf ) affinely equivalent

RSBFs providing the same nonlinearity. Hence, the reason we fixµ f [0] = 1 is to remove

such affinely equivalent RSBFs fromS. Initially we note that, by Parseval’s theorem, re-

peating a pattern fromS twice (i.e.,µ f ||ν f , whenν f = µ f ) one can not satisfy the condition

|uf [i]| + |vf [i]| ≤ 30 for 0 ≤ i ≤ 29; in such a case, the maximum possible nonlinearity is

240. Thus
(

24037027
2

)

= 288889321480851 (< 249) many pairs are needed to check.

To reduce the number of patterns inS, a sieving method is then applied as follows. For

somet, 0 ≤ t ≤ 29, all theµ f patterns inS satisfying |uf [t]| = 30 are stored in the set

S30,t. Similarly, the setS0,t is constituted for theν f patterns satisfying|vf [t]| = 0. After

that, selecting each of theµ f patterns fromS30,t and each of theν f patterns fromS0,t, we

check the condition|uf [i]| + |vf [i]| ≤ 30 for all i, 0 ≤ i ≤ 29. If it holds, we storeµ f ||ν f ,

which yields a 9-variable RSBF having nonlinearity 241. Note that since theµ f patterns in

S30,t cannot be concatenated with anyν f patterns inS except the ones inS0,t, to achieve

nonlinearity 241, the setS is updated byS \ S30,t for eacht.

In the process of applying the sieving method, the following observations are encountered.

1. Fort = 0 the setS30,t is an empty set; so we do not consider this.

2. Fort = 28 there is noν f pattern such that|vf [28]| ≤ 2; hence, we initially update the

setS removing all theµ f patterns such that 28≤ |uf [28]| ≤ 30, which reduces|S|

from 24037027 to 18999780.
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Table 4.1 shows the number of patternsµ f ||ν f yielding 9-variable RSBFs having nonlinearity

241 for eacht (exceptt = 0 and 28). It is seen that the sieving method provides 7× 27 =

189 many 9-variable RSBFs having nonlinearity 241, and hence, we get 8× 189 many 9-

variable RSBFs having the same nonlinearity. This experiment reducesS from 24037027 to

9540580. Using the same computer system, the experiment requires little more than a day.

Table 4.1: Initial search result for 9-variable RSBFs having nonlinearity241.

t |S30,t| |S0,t| # of µ f ||ν f such thatnl( f ) = 241

1 687215 37584 0
2 514474 37584 0
3 132406 77328 27
4 545152 37584 0
5 408014 37584 0
6 255915 37584 0
7 126821 77328 27
8 338321 37584 0
9 206952 37584 0
10 237525 37584 0
11 121290 77328 27
12 464475 37584 0
13 364029 37584 0
14 385125 37584 0
15 552651 77328 27
16 531456 37584 0
17 222237 37584 0
18 115705 77328 27
19 495350 37584 0
20 272767 37584 0
21 192113 37584 0
22 104643 77328 27
23 320685 37584 0
24 597941 37584 0
25 110174 77328 27
26 542078 37584 0
27 613686 37584 0
29 747073 37584 0

Then we check
(

9540580
2

)

(< 246) many pairs, which takes 30 hours using 20 computers

in parallel, each with the specification of 2.8 GHz Pentium IV and 256 MB RAM having

Windows XP operating system. Finally, we do not find any other RSBF havingnonlinearity

> 240, suggesting the following result.
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Theorem 4.1. There are 8×189 many 9-variable RSBFs having nonlinearity 241 and this is

the highest nonlinearity for the 9-variable RSBF class.

Interestingly, all of the 189 many 9-variable RSBFs having nonlinearity 241available from

Table 4.1 have the same distribution of Walsh spectra, which is presented in thefollowing

table.

Table 4.2: Distribution of Walsh spectra of the functions found in Table 4.1.

Wf (ω) -30 -22 -14 -6 2 10 18 26
# ofω’s 127 27 36 18 55 39 54 156

Among these RSBFs, we find that there are only two classes (63 of them in one class and the

rest in another class) having different distribution of autocorrelation spectra as can be seen

from the following table.

Table 4.3: Distribution of autocorrelation spectra of the functions found in Table 4.1.

r f (d) -52 -44 -36 -20 -12 -4 4 12 28
# of nonzerod’s 9 9 9 18 81 85 198 81 21

r f (d) -76 -36 -28 -20 -12 -4 4 12 20 28
# of nonzeroω’s 1 9 18 36 81 135 108 54 48 21

Thus it seems that among the 189 RSBFs found in Table 4.1 there are only two different

RSBFs up to the affine equivalence, which is justified in the next section.

4.3 Affine equivalence of RSBFs having nonlinearity 241

Let f andg be Boolean functions onn variables. We call them affinely equivalent if the

following condition is satisfied

g(x) = f (xA⊕ b) ⊕ d · x⊕ c, (4.3)

whereA is ann× n binary nonsingular matrix,b,d aren-bit binary vectors andc is a binary

constant. Note that, in Proposition 4.2 theg functions are affinely equivalent tof .
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Given (a0, . . . ,an−1) ∈ {0,1}n, then× n circulant matrix generated by (a0, . . . ,an−1) is in the

form

C(a0,a1, . . . ,an−1) =















































a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2

an−2 an−1 a0 . . . an−3
...

...

a1 a2 a3 . . . a0















































. (4.4)

The determinant of the matrixC(a0,a1, . . . ,an−1) is given by

det[C(a0,a1, . . . ,an−1)] =
n−1
∏

i=0

(a0 + a1ζi + a2ζ
2
i + . . . + an−1ζ

n−1
i ), (4.5)

whereζi ’s (0 ≤ i ≤ n− 1) are then-th roots of unity. In particular we denoteζ0 = 1. We are

interested in the binary circulant matrices which are nonsingular.

Proposition 4.3. Letα, β ∈ {0,1}n such thatα ∈ Gn(β) andA be ann× n nonsingular binary

circulant matrix. ThenαA ∈ Gn(βA).

Proof. As α ∈ G(β), we haveα = ρk(β), for somek such that 0≤ k < n. It is also clear that

the columnsA1,A2, . . . ,An of the matrixA = C(a1,a2, . . . ,an) are cyclic shift of each other,

precisely,A j = ρ
j−1(A1). Now,

βA = (βA1, βA2, βA3, . . . , βAn),

= (βA1, βρ
1(A1), βρ2(A1), . . . , βρn−1(A1)),

= (βA1, ρ
n−1(β)A1, ρ

n−2(β)A1, . . . , ρ
1(β)A1). (4.6)

Again,

αA = (αA1, αA2, αA3, . . . , αAk+1, αAk+2, . . . , αAn),

= (αA1, ρ
n−1(α)A1, ρ

n−2(α)A1, . . . , ρ
n−k(α)A1, ρ

n−k−1(α)A1, . . . , ρ
1(α)A1),

= (ρk(β)A1, ρ
n−1(ρk(β))A1, ρ

n−2(ρk(β))A1, . . . , ρ
n−k(ρk(β))A1,

ρn−k−1(ρk(β))A1, . . . , ρ
1(ρk(β))A1),
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= (ρk(β)A1, ρ
n−1+k(β)A1, ρ

n−2+k(β)A1, . . . , ρ
n−k+k(β)A1,

ρn−k−1+k(β)A1, . . . , ρ
1+k(β)A1),

= (ρk(β)A1, ρ
k−1(β)A1, ρ

k−2(β)A1, . . . , βA1, ρ
n−1(β)A1, . . . , ρ

k+1(β)A1). (4.7)

This showsαA ∈ Gn(βA).

Proposition 4.4. Let f (x) be ann-variable RSBF andA be ann × n nonsingular binary

circulant matrix. Thenf (xA) is also an RSBF.

Proof. Letg(x) = f (xA). Considerx1, x2 ∈ Gn(Λ). Nowg(x1) = f (x1A) andg(x2) = f (x2A).

As x1A, x2A ∈ Gn(ΛA) (from Proposition 4.3) andf is an RSBF,g(x1) = f (x1A) = f (x2A) =

g(x2). Thusg is also an RSBF.

It is found that there exist 21 different nonsingular binary circulant 9×9 matrices up to equiv-

alence corresponding to the row permutations. Then, using any of these 21 matrices, the 189

RSBFs (available from Table 4.1) are classified (based on Proposition 4.4) into 9 classes each

consisting of 21 affinely equivalent RSBFs. More specifically, in a class, the RSBFs are gen-

erated asf (x), f (xA), f (xA2), . . . , f (xA20), whereA is one of the 21 matrices, andf (x) is

one of the 189 RSBFs. One example circulant matrix generated by (0,0,0,1,0,1,1,1,1) is

given below:

A = C(0,0,0,1,0,1,1,1,1) =





















































































0 0 0 1 0 1 1 1 1
1 0 0 0 1 0 1 1 1
1 1 0 0 0 1 0 1 1
1 1 1 0 0 0 1 0 1
1 1 1 1 0 0 0 1 0
0 1 1 1 1 0 0 0 1
1 0 1 1 1 1 0 0 0
0 1 0 1 1 1 1 0 0
0 0 1 0 1 1 1 1 0





















































































. (4.8)

As a consequence, there are 9 representative RSBFs. We have checked that out of these 9

RSBFs, three RSBFs follow the distribution of autocorrelation spectrum presented in the top

sub-table of Table 4.3 and six RSBFs follow the distribution of the autocorrelation spectrum

presented in the bottom one of Table 4.3.
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To achieve further affine equivalence, we consider some larger class of nonsingular matrices

than the binary circulant matrices. In particular, instead of starting with a rowand then rotate

the row one place (we use the right rotation) to generate the next row, we consider that given

the first row, we may go fori-rotation such thati,n are coprime.

Let us defineCi(a0,a1, . . . ,an−1) as the matrix formed by taking (a0,a1, . . . ,an−1) as the first

row and each of the other rows is thei-rotation of its preceding row, i.e.,

Ci(a0,a1, . . . ,an−1) =














































a0 a1 a2 . . . an−1

an−i an+1−i an+2−i . . . an+n−1−i

a2n−2i a2n+1−2i a2n+2−2i . . . a2n+n−1−2i
...

...

a(n−1)n−(n−1)i a(n−1)n+1−(n−1)i a(n−1)n+2−(n−1)i . . . a(n−1)n+n−1−(n−1)i















































. (4.9)

Proposition 4.5. Let α, β ∈ {0,1}n such thatα ∈ Gn(β). Let B be a nonsingular matrix,

B = Ci(a1,a2, . . . ,an), wheren andi are coprime and (a1,a2, . . . ,an) ∈ {0,1}n. ThenαB ∈

Gn(βB).

Proof. As α ∈ G(β), thenα = ρk(β), for somek such that 1≤ k < n. It is also clear that the

columnsB1, B2, . . . , Bn of the matrixB = Ci(a1,a2, . . . ,an) are i-cyclic shift of each other,

precisely,Bj = ρ
( j−1)i B1. Now,

βB = (βB1, βB2, βB3, . . . , βBn),

= (βB1, βρ
i(B1), βρ2i(B1), . . . , βρ(n−1)i(B1)),

= (βB1, ρ
n−i(β)B1, ρ

n−2i(β)B1, . . . , ρ
i(β)B1). (4.10)

Again,

αB = (αB1, αB2, αB3, . . . , αBn),

= (αB1, ρ
n−i(α)B1, ρ

n−2i(α)B1, . . . , ρ
i(α)B1),

= (ρk(β)B1, ρ
n−i(ρk(β))B1, ρ

n−2i(ρk(β))B1, . . . , ρ
i(ρk(β))B1),

= (ρk(β)B1, ρ
n−i+k(β)B1, ρ

n−2i+k(β)B1, . . . , ρ
i+k(β)B1). (4.11)
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Sincei andn are coprime, for some integerγ we have,γi ≡ 1 modn, i.e.,γki ≡ k modn,

i.e., ri ≡ k modn, asγk ≡ r modn, for somer, 0 ≤ r < n. Therefore, in the expression

of αB, we have,ρ(n−ri+k)(β)B1 = βB1, ρ(n−(r+1)i+k)(β)B1 = ρ
(n−i)(β)B1 and in this way all the

elements of{βB1, ρn−i(β)B1, ρ
n−2i(β)B1, . . . , ρ

i(β)B1}will appear inαB in the same sequence

in which they occur inβB. If τ be the term ofβB, which occurs as then-th term ofαB, then

all the remaining terms ofβB afterτ will appear in the same sequence starting from the 1st

position up to the (r − 2)-th position inαB. ThereforeαB ∈ Gn(βB). Hence the proof.

Similar to the Proposition 4.4, using Proposition 4.5 we get the following.

Proposition 4.6. Let f (x) be ann-variable RSBF andB be ann × n nonsingular binary

matrix as explained in Proposition 4.5. Thenf (xB) is also an RSBF.

In our case,n = 9 and we choosei = 2. As for example, one may consider the matrix

B =





















































































0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0





















































































. (4.12)

It is found that, exploiting this matrix, the nine RSBFs can be represented by two RSBFs

which are different up to the affine equivalence. Note that the autocorrelation spectra of

these two RSBFs are different (as can be seen from Table 4.3), hence there is no affine

equivalence between them. Below these two representative RSBFs havingnonlinearity 241

are presented, the first one with absolute indicator 52 and the second onewith absolute

indicator 76.

05777A7A6ED82E887CFCE3C549E994947AE4FBA5B91FE46674C3AC8386609671

3FCCAC20EE9B9966CAD357AAE921286D7A20A55A8DF0910BC03C3C51866D2B16

04757A727ED96F087EFCE2C768EB04947AECFBA5B91DE42E7CC1AC8B1060D671

2FCCEDB0EE8B8926CAD357A2E92148ED3AB4A1128DF0918B46143C51A66D2B16
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4.4 Conclusions

In this chapter, 9-variable RSBFs having nonlinearity> 240 are enumerated by an efficient

exhaustive search strategy. It is found that there are 8×189 many RSBFs having nonlinearity

241 and there is no RSBF having nonlinearity> 241. On the other hand, exploiting binary

nonsingular circulant matrices and some variants of them, it is shown that there are only two

different 9-variable RSBFs having nonlinearity 241 up to the affine equivalence.
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CHAPTER 5

NEW CLASSES OF BOOLEAN FUNCTIONS

5.1 Introduction

As the space of the RSBF class is much smaller (≈ 2
2n
n ) than the total space of Boolean

functions (22
n
) onn variables, it is possible to exhaustively search the space of RSBFs up to

a certain value ofn. In [24], an exhaustive search carried out for the whole space (260) of 9-

variable RSBFs exploiting some combinatorial results related to the Walsh spectra of RSBFs,

has shown that there is no RSBF having nonlinearity greater than 241. Consequently, in

order to find Boolean functions with higher nonlinearity, one needs to increase the search

space.

Motivated by this fact, we have firstly proposed the generalizedk-RSBFs, as functions which

satisfy f (α2k
) = f (α), where 1≤ k | n. Note that ifk = 1, the resulting functions are the

same as idempotents; whereas fork = n the entire space ofn-variable Boolean functions is

covered. In the space of generalizedk-RSBFs, imposing the condition of invariance under

the action of dihedral group, we have defined the class of generalizedk-DSBFs as a subset

of k-RSBFs.

Secondly, we have used the steepest-descent-like iterative algorithm in [25] for a search in

the generalized 3-DSBF and 3-RSBF classes. This search has successfully ended up with

9-variable Boolean functions in both of these classes, having nonlinearity242, absolute

indicator values 32, 40 and 56. This result shows that the covering radius of the first order

Reed-Muller codeR(1, 9) is at least 242. This result is also important forn = 11 andn =

13, since the bent concatenation of 9-variable functions with nonlinearity 242 leads to the

construction of 11-variable and 13-variable functions with nonlinearity (2n−1−2
n−1

2 +2×2
n−9

2 ),

which exceeds the bent concatenation bound by 2×2
n−9

2 (see Table 5.1). However, we should

mention that for oddn ≥ 15, the nonlinearity (2n−1 − 2
n−1

2 + 20× 2
n−15

2 ) given in [52] that

can be obtained by concatenating 15-variable Patterson-Wiedemann functions is still greater
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than the nonlinearity (2n−1−2
n−1

2 +2×2
n−9

2 ). In Table 5.1, we present the bent concatenation

bound for 7≤ n ≤ 15, together with recent nonlinearity results.

Table 5.1: Summary of Nonlinearity Results forn = 7,9,11,13,15

n 7 9 11 13 15

Bent Concatenation Bound: 2n−1 − 2
n−1

2 56 240 992 4032 16256
Nonlinearity Results in Chapter 4 − 241 994 4036 16264

Nonlinearity Results in this chapter − 242 996 4040 16272
Patterson-Wiedemann Construction [52]− − − − 16276

Upper Bound [23] 56 244 1000 4050 16292

Thirdly, knowing the fact that RSBFs are invariant under a special typeof permutation, we

have investigated the same search problem from a different direction and considered the pos-

sibility of other ‘rich’ classes that are invariant under some permutations. Linearly equiv-

alent Boolean functions have the same nonlinearity; therefore, while searching for highly

nonlinear functions, it is quite logical to classify alln! permutations up to the linear equiv-

alence of Boolean functions that are invariant under them. More specifically, for 9-variable

functions, we have classified 9! many permutations into 30 classes which aredifferent up

to the linear equivalence of functions that are invariant under them. Thenfor each class, by

picking up a representative permutation arbitrarily, we have searched thecorresponding set

of functions. Consequently, in some of these sets, we have obtained 9-variable functions

with nonlinearity 242 and absolute indicator values 40, 48 & 56. So, our aim of defining

other ‘rich’ classes is accomplished. However, the functions presented in this chapter do not

contain any zero in their Walsh spectra, and hence, they cannot be linearly transformed to

balanced functions.

In the following section, we introduce the generalized rotation symmetric and dihedral sym-

metric Boolean functions. Classification of permutations on inputs of 9-variable Boolean

functions, with respect to the linear equivalence of Boolean functions that are invariant un-

der them, is presented in Section 5.5. Different results related to 9-variable Boolean func-

tions with nonlinearity 242 are presented in both Section 5.3 and Section 5.5. Finally, some

additional 11 and 13-variable DSBFs, which are attained by the steepest-descent-like search

algorithm with nonlinearities 994 and 4036 respectively, are presented in Section 5.4. It

should be noticed that those functions have exactly the same nonlinearities, as those would

be obtained by concatenating 9-variable functions with nonlinearity 241.
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5.2 Generalizedk-RSBFs andk-DSBFs

After recalling RSBFs, we propose the generalized classes ofk-RSBFs andk-DSBFs in

Definition 5.1 and Definition 5.2 respectively. Letting (x0, x1, . . . , xn−1) ∈ {0,1}n, the (left)

k-cyclic shift operatorρk
n onn-tuples is defined as

ρk
n(x0, x1, . . . , xn−1) = (x(0+k)modn, . . . , x(n−1+k)modn), (5.1)

for 1 ≤ k ≤ n.

A Boolean functionf is calledrotation symmetricif for each input (x0, . . ., xn−1) ∈ {0,1}n,

f (ρ1
n(x0, . . . , xn−1)) = f (x0, . . . , xn−1). An orbit generated by (x0, x1, . . . , xn−1) is denoted

by Gn(x0, x1, . . . , xn−1) = {ρk
n(x0, x1, . . . , xn−1) | 1 ≤ k ≤ n} and the number of such orbits

is gn (≈ 2
2n
n ). More specifically,gn is equal to1

n

∑

t|n φ(t)2
n
t [67], whereφ(t) is the Euler’s

phi-function. The total number ofn-variable RSBFs is 2gn.

In the following, we define the generalized RSBFs ask-rotation symmetric Boolean func-

tions (k-RSBFs).

Definition 5.1. Let 1 ≤ k ≤ n, k |n. An n-variable Boolean functionf is calledk-rotation

symmetricif for each input (x0, . . . , xn−1) ∈ {0,1}n, f (ρk
n(x0, . . . , xn−1)) = f (x0, . . . , xn−1).

As can be seen, thek-rotation symmetric Boolean functions are invariant underk-cyclic rota-

tions of inputs. Therefore, an orbit of ak-RSBF generated by (x0, x1, . . . , xn−1) is Gk
n(x0, x1,

. . . , xn−1) = {ρi
n(x0, x1, . . . , xn−1) | i = k,2k, 3k, . . . ,n}. For example,G3

9(001 001 111)=

{(001 001 111), (001 111 001), (111 001 001)}.

If gn,k is the number of distinct orbits in the class ofk-RSBFs ofn variables, one can show

thatgn,k =
k
n

∑

t| nk
φ(t)2

n
t (≈ 2k× 2n

n ), whereφ(t) is the Euler’s phi function.

In [40], a subspace of RSBFs called Dihedral Symmetric Boolean Functions(DSBFs), which

are invariant under the action of dihedral groupDn are introduced. In addition to the (left)k-

cyclic shift operatorρk
n onn-tuples, which is defined previously, the dihedral groupDn also

includes the reflection operatorτn(x0, x1, . . . , xn−1) = (xn−1, . . . , x1, x0). The 2npermutations

of Dn are then defined as{ρ1
n, ρ

2
n, . . . , ρ

n−1
n, ρ

n
n, τ

1
n, τ

2
n, . . . , τ

n−1
n, τ

n
n}. The dihedral
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groupDn generates equivalence classes in the set{0,1}n [55]. Let dn be the number of such

partitions. The following proposition gives the exact count ofdn [19, page 184], [40].

Proposition 5.1. Let dn be the total number of orbits induced by the dihedral groupDn

acting on{0,1}n. Thendn = gn/2 + l, where,gn =
1
n

∑

t|n φ(t)2
n
t is the number of rotation

symmetric classes [67],φ(t) is the Euler’s phi-function and

l =



















3
42

n
2 , if n is even,

2
n−1

2 , if n is odd.
(5.2)

Since there are 2dn manyn-variable DSBFs anddn ≈ 2
2n
2n , a reduction in the size of the search

space over the size of RSBFs is provided.

Definition 5.2. Let 1 ≤ k ≤ n, k |n. An n-variable Boolean functionf is calledk-dihedral

symmetricif f is invariant under the group actionDk
n = {ρ

i
n, τnρ

i
n | i = k,2k,3k, ...,n}.

As the class of DSBFs is a subspace ofk-DSBFs, we callk-DSBFs “generalized dihedral

symmetric Boolean functions”. One should observe thatk-DSBFs is a subspace ofk-RSBFs.

When Proposition 5.1 is applied tok-dihedral symmetric functions, we obtain the following

corollary.

Corollary 5.1. Let dn,k be the number of distinct orbits, in the class ofk-DSBFs ofn vari-

ables. Then,dn,k = gn,k/2 + l, where,gn,k =
k
n

∑

t| nk
φ(t)2

n
t is the number ofk-rotation

symmetric classes,φ(t) is the Euler’s phi-function and

l =



































2
n
2−1, if n is even,k is even,

3
42

n
2 , if n is even,k is odd,

2
n−1

2 , if n is odd.

(5.3)

Table 5.2 compares the orbit counts ofk-rotational classes,k-dihedral classes, RSBFs, and

DSBFs fork|n,n ≤ 15.
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Table 5.2: Comparison of the orbit countsgn,dn,gn,k anddn,k (for n = 4,6, . . . ,15, and all
integersk, which dividen).

k 2 3 4 5 6 7
n

4
g4 = 6 g4,k 10 – – – – –
d4 = 6 d4,k 7 – – – – –

6
g6 = 14 g6,k 24 36 – – – –
d6 = 13 d6,k 16 24 – – – –

8
g8 = 36 g8,k 70 – 136 – – –
d8 = 30 d8,k 43 – 76 – – –

9
g9 = 60 g9,k – 176 – – – –
d9 = 46 d9,k – 104 – – – –

10
g10 = 108 g10,k 208 – – 528 – –
d10 = 78 d10,k 120 – – 288 – –

12
g12 = 352 g12,k 700 1044 1376 – 2080 –
d12 = 224 d12,k 382 570 720 – 1072 –

14
g14 = 1182 g14,k 2344 – – – – 8256
d14 = 687 d14,k 1236 – – – – 4224

15
g15 = 2192 g15,k – 6560 – 10944 – –
d15 = 1224 d15,k – 3408 – 5600 – –

5.3 9-variable 3-DSBFs and 3-RSBFs

We apply our search strategy to 9-variable 3-DSBFs, where the size of the 3-DSBF search

space is 2104 (see Table 5.2). We have found several unbalanced Boolean functions having

nonlinearity 242. Among them there are two different absolute indicator values, which are

32 and 40. The following is the truth table of a 9-variable, 3-dihedral symmetric Boolean

function having nonlinearity 242, absolute indicator value 40, and algebraic degree 7:

68B7EF2DA03B0D3EA00DB6A96DD99AEAFDB9C842B6D5DC8C4526CE0DD29020DB

B75FE3314568344E73688FF0CB2482E065231869E1AA4583765CC491F8A8DB12

And, the function below is another 9-variable 3-DSBF having nonlinearity 242, absolute

indicator value 32, and algebraic degree 7:

125425D30A398F36508C06817BEE122E250D973314F976AED58A3EA9120DA4FE

0E4D4575C42DD0426365EBA7FC5F45BE9B2F336981B5E1863618F49474F6FE00

We present the C code of our search algorithm in Appendix D. Using a computer system

with Pentium IV 2.8 GHz processor and 256 MB RAM having Windows XP operating

41



system, and setting the maximum iteration number toN = 60,000, a typical run of the

search algorithm takes 1 minute and 17 seconds. We have carried out 100runs, each with

N = 60,000. Out of 6 million distinct 3-DSBFs, 152 functions have the nonlinearity 241,

and 36 many 3-DSBFs have the nonlinearity 242.

Additionally, we have applied the search strategy to 9-variable 3-RSBFs (the size of the

search space is now 2176 as can be seen from Table 5.2), for which we initiate the search

algorithm with a 9-variable 3-DSBF having nonlinearity 242. Then we have obtained some

9-variable 3-RSBFs (which are not in 3-DSBFs) having nonlinearity 242, absolute indicator

56, and algebraic degree 7. The following is the truth table of such a function:

3740B6A118A1E19642A85E2B7E2F3C3CB65FA0D95EC9DB1EA92BDB3666185AE0

087F5FE6E0757106A12FC918754C40E8A1BCCB7A714032A8961456E066E8A801

It is clear that using one of the above 9-variable Boolean functions (sayf ) and a 2-variable

bent function (sayg), the 11-variable functiong(y0, y1) ⊕ f (x0, . . . , x8) with highest -till

date- nonlinearity of 211−1 − 2
11−1

2 + 4 = 996, can be obtained. Similarlyh(y0, y1, y2, y3) ⊕

f (x0, . . . , x8) is the most nonlinear 13-variable function known to date, with nonlinearity

213−1 − 2
13−1

2 + 8 = 4040 whereh is a 4-variable bent function andf is one of the above

9-variable functions with nonlinearity 242. We think this is a significant improvement on

the results of [25]. However, since the nonlinearity (2n−1 − 2
n−1

2 + 2 × 2
n−9

2 ), which can be

obtained by bent concatenation of 9-variable functions with nonlinearity 242 is less than the

nonlinearity (2n−1 − 2
n−1

2 + 20× 2
n−15

2 ) given in [52] for oddn ≥ 15, this result is significant

only for odd 13≥ n ≥ 9.

5.3.1 Coding Theoretic Significance

The concept ofurcosetwas first presented in [22] and then in [4, 5] asorphan coset. The set

D defines an urcoset, if the union of the support of the leaders ofD covers the full space; in

other words, a cosetD of the first order Reed-Muller codeR(1,n) with a set of coset leaders

L(D) is an urcoset [32], when∪g∈L(D)supp(g) = {0,1, . . . ,2n − 1}.

In [16], orphan cosets having minimum weight of 240 have been reported, and in [24] it is

confirmed that each of the cosetsf ⊕ R(1,9) is an orphan or urcoset, wheref is any RSBF

having nonlinearity 241.
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We have checked by running a computer program that for any of the above functions f

having nonlinearity 242, each of the cosetsf ⊕ R(1,9) is an orphan or urcoset. This is the

first time orphan cosets having minimum weight 242 are demonstrated.

In [4], it is conjectured that the covering radius [33, 52] ofR(1,n) is even. Our results for

n = 9 show that the covering radius is at least 242 and it is an interesting open question to

settle it. The upper bound presented in [23, 21] for the covering radius of R(1,9) is 244.

5.4 11 and 13-variable DSBFs

In [40], the class of Dihedral Symmetric Boolean Functions (DSBFs), a subset of the RSBF

class, which is invariant under the action of the dihedral group, is introduced. It has been

shown that some of the 9-variable RSBFs having nonlinearity 241 also belong to this subset,

demonstrating the richness of DSBFs in terms of high nonlinearity. Motivated by this point,

we have carried out a systematic search in the DSBF class for 15> oddn > 9, and found

Boolean functions having nonlinearity> (2n−1 − 2
n−1

2 ). More specifically, for 11-variable

DSBFs, we have attained an 11-variable DSBF with nonlinearity 994 within the space of

size 2126. For 13-variable DSBFs, in order to reduce the search space (2380), we have applied

some additional permutations on input vectors, and obtained a subset of size 274, in which

we have found several 13-variable DSBFs with nonlinearity 4036. Consequently, our trials

confirm that the DSBF class contains highly nonlinear Boolean functions and it is a rich

subset of the RSBF class forn = 11,13, as well. We should also mention that, this is the first

demonstration of Boolean functions on odd number of input variables 9< n < 15 having

nonlinearity greater than the bent concatenation bound, which are not obtained by the bent

concatenation of 9-variable Boolean functions with nonlinearity> 240.

For the 11-variable DSBF case for which the size of search space is 2126, we have carried out

8000 runs of the search algorithm, and found an 11-variable DSBF having nonlinearity 994,

absolute indicator value 200, and algebraic degree 9, which is given Appendix A. A typical

run of the search algorithm takes 1 minute and 16 seconds using the same computer system.

For the 13-variable DSBF case, since its search space is huge (2380), before starting the

search we apply the following permutation in addition to the permutations of dihedral group

on input vectors
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π(x0, x1, . . . , x12) = (x0, x2, x4, x6, x8, x10, x12, x1, x3, x5, x7, x9, x11) (5.4)

such that for each input (x0, . . . , x12) ∈ {0,1}13,

f (ρ1
n(x0, . . . , x12)) = f (τn(x0, . . . , x12)) = f (π(x0, . . . , x12)) = f (x0, . . . , x12), (5.5)

and the search space of 13-variable DSBFs is reduced from 2380 to 274. Note that this

permutation constitutes a subset of 13-variable DSBFs for which, using similar combinato-

rial methods as in [24], it may be possible to carry out an exhaustive search to enumerate

13-variable DSBFs with nonlinearity≥ 4036, with a reasonable amount of computational

power. We have carried out 500 runs of the search algorithm, and found two 13-variable DS-

BFs having nonlinearity 4036 in this subset. One of them with nonlinearity 4036, absolute

indicator value 208, and algebraic degree 10 is given in Appendix A. In this case, a typical

run takes one minute using the same computer system.

Since these results confirm that the DSBF class contains highly nonlinear Boolean functions

on 11 and 13-variables as well, it would be an interesting and open problemto attain some

rich subsets achieving higher nonlinearity in the DSBF class.

5.5 Classification of Permutations

As it is deduced from the discussion in the preceding section, RSBFs are invariant under a

special type of permutation. To search for better cryptographic characteristics, we consider

the possibility of other classes of Boolean functions that are invariant under some permu-

tations. Since linearly equivalent functions have the same nonlinearity, it makes sense to

classify alln! permutations up to the linear equivalence of Boolean functions that are invari-

ant under them. The classification is based on the following proposition, which is easy to

prove.

Proposition 5.2. Let f and g be Boolean functions which are invariant under arbitrary

permutationsπ f andπg respectively. Then,f andg are said to belinearly equivalentif there

exists a bijective linear mappingL : {0,1}n→ {0,1} such thatπ f = (L−1 ◦ πg ◦ L).
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Proof. Supposef (x) = g(L(x)), i.e., f = g ◦ L. Then, it holds that

f = g ◦ L = g ◦ πg ◦ L = f ◦ L−1 ◦ πg ◦ L = f ◦ π f . (5.6)

Thus, we classify all possible permutations up to the equivalence

π f ∼ πg⇔ ∃L such thatπ f = (L−1 ◦ πg ◦ L). (5.7)

The classification can be accomplished through a computer program by exploiting the Jordan

Normal Form for matrices. Specifically for 9-variable Boolean functions,all permutations

of the identity matrix (362,880 many) yield that there are only 30 permutations (see Table

5.3), which are different up to the equivalence defined above. Then, we apply the search

algorithm for each class using its representative permutation and determine the correspond-

ing nonlinearity given in the last column of Table 5.3. Our results show the existence of

permutations having similar cryptographic characteristics withk-RSBFs andk-DSBFs.

From Table 5.3, it is seen that we have attained several 9-variable Boolean functions with

nonlinearity 242, which we initially found in 3-DSBFs and 3-RSBFs, in the classes with

sizes 2100, 2104, 2140. In the following, we present 9-variable Boolean functions having

nonlinearity 242 and different autocorrelation spectra from those of the functions found in

3-DSBFs and 3-RSBFs.

We have applied 100 runs of the search algorithm to the space of size 2104 and found two 9-

variable Boolean functions with nonlinearity 242, absolute indicator value 48, and algebraic

degree 7. A typical run takes the same amount of time as for the case of 3-DSBFs (since the

sizes of both spaces are the same). One of these functions is given below:

7B8F94BAD364DAC9931906F9465FF33E921E13D7552DAFD684757B662FDA3C68

FA8D94B3C3659B5FCC46FD1518050F97A1E02039AAF74337134F30AB5B41D9DE

which is invariant under the representative permutation

π(x0, x1, . . . , x8) = (x0, x2, x1, x4, x5, x6, x7, x8, x3). (5.8)
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Table 5.3: Classification of all possible 362,880 many permutations for 9-variable Boolean
functions, and the best achieved nonlinearity result for each class.

Maximum Total
number of number of Best achieved

Representative Number of input vectors distinct nonlinearity
permutation permutations in an orbit orbits result

(0,1,2,3,4,5,6,7,8)
(identity) 1 1 512 239

(5,7,4,8,2,0,6,1,3) 945 2 272 2406

(3,1,7,0,5,4,6,2,8) 1260 2 288 240
(7,1,2,3,5,4,6,0,8) 378 2 320 240
(0,8,2,3,4,5,6,7,1) 36 2 384 240
(4,6,7,2,8,1,5,3,0) 2240 3 176 2423,4

(5,1,2,4,7,8,6,3,0) 3360 3 192 240
(0,1,2,8,4,5,6,3,7) 168 3 256 240
(1,4,7,5,6,2,0,3,8) 11340 4 140 2422

(4,7,5,6,0,1,3,2,8) 11340 4 168 240
(0,2,1,7,4,3,5,6,8) 7560 4 176 240
(0,8,2,3,4,1,6,5,7) 756 4 192 240
(0,7,2,5,4,1,3,6,8) 3024 5 128 239
(8,7,3,0,1,6,2,4,5) 20160 6 100 2421

(0,2,1,4,5,6,7,8,3) 30240 6 104 242
(7,1,0,3,4,2,8,6,5) 10080 6 112 240
(7,4,0,5,1,8,6,2,3) 10080 6 144 240
(8,4,3,2,1,7,5,6,0) 2520 6 144 240
(0,6,2,7,8,1,5,3,4) 7560 6 160 240
(8,1,3,2,4,5,0,7,6) 2520 6 192 240
(2,0,6,1,4,5,7,8,3) 25920 7 80 240
(0,3,5,8,1,4,7,2,6) 45360 8 72 240
(1,6,7,4,8,2,5,3,0) 40320 9 60 2415

(5,8,6,7,2,0,1,3,4) 9072 10 80 240
(1,3,8,7,4,0,6,5,2) 18144 10 96 240
(3,5,7,1,6,0,8,2,4) 15120 12 88 240
(0,2,7,8,4,6,3,1,5) 15120 12 96 240
(4,5,7,1,0,8,3,6,2) 25920 14 60 240
(6,5,1,4,7,2,3,0,8) 24192 15 64 238
(4,8,1,2,6,7,5,0,3) 18144 20 48 240

1 Nonlinearity result of 242 is attained in the subset of size 274 in the set of size 2100.
2 Nonlinearity result of 242 is attained in the subset of size 286 in the set of size 2140.
3 Nonlinearity result of 242 is attained in the subset of size 2104 in the set of size 2176.
4 The class contains the permutation corresponding to 3-RSBFs.
5 The class contains the permutation corresponding to RSBFs.
6 The class contains the permutation corresponding to 9-DSBFs.
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Then, in order to reduce the search space, we have considered some subclasses. For this

purpose, we have applied the reflection operator, which is defined asτn(x0, x1, . . . , x8) =

(x8, . . . , x1, x0) for 9-variable Boolean functions, in addition to the representative permuta-

tion. As a result of this method, we have identified a subset of size 274 in the set of size 2100.

In this subset, we have attained several 9-variable Boolean functions withnonlinearity 242,

absolute indicators 40 and 64, and algebraic degree 7. One of them having absolute indicator

64 is provided below:

0331786B34D878855663A2E961F1CB4F779EBBF6881ABB24AC033E6C2B32E049

3D0891DB1888EA5E6F910310311532FC68D5F2A4B5BE6445E41F64299F0CC99A

which is invariant under the permutations of the reflection operatorτn and the representative

permutation

π(x0, x1, . . . , x8) = (x8, x7, x3, x0, x1, x6, x2, x4, x5). (5.9)

For this case, we have carried out 100 runs of the search algorithm resulting in 9 many

Boolean functions with nonlinearity 242 such that seven of them with absoluteindicator

value of 64, and the remaining with that of 40. A typical run takes 1 minute and 4seconds

using the same computer system.

5.6 Conclusions

By suitably generalizing the class of RSBFs, we have introducedk-RSBFs, as functions

which satisfyf (α2k
) = f (α), where the nonzero positive integerk dividesn, andα ∈ GF(2n).

We have also defined the class ofk-DSBFs as a subset ofk-RSBFs imposing the condition

of invariance under the action of dihedral group. Using the steepest-descent-like iterative

algorithm in [25, 26] for a search in the generalized 3-DSBF and 3-RSBFclasses, we have

attained 9-variable 3-RSBFs and 3-DSBFs with nonlinearity 242. This result shows that

the covering radius of the first order Reed-Muller codeR(1,9) is at least 242 and there exist

Boolean functions onn variables having nonlinearity (2n−1−2
n−1

2 +2×2
n−9

2 ) for n = 9,11,13.

Further, we have considered the invariance of Boolean functions under all possible permuta-

tions which are classified up to the linear equivalence of Boolean functionsthat are invariant

47



under them. Specifically forn = 9, there are 30 such classes. Exploiting the same search

algorithm [25], we have attained 9-variable Boolean functions having nonlinearity 242 in

the classes with sizes 2104 and 2140. Then, we have considered some subclasses by adding

permutation of the reflection operatorτn to the representative permutation. As a result, we

have identified a subset of size 274, in the set of size 2100, having 9-variable Boolean func-

tions with nonlinearity 242. Considering the combinatorial search techniquesin [24], we

note that it may be possible to exhaustively search the subset of size 274 for the enumeration

of 9-variable Boolean functions having nonlinearity≥ 242, with a reasonable amount of

computational power. Moreover, we have obtained an 11-variable DSBFhaving nonlinear-

ity 994 and several 13-variable DSBFs having nonlinearity 4036, which confirm the richness

of DSBFs [40] in terms of high nonlinearity forn = 11 and 13.

We think that the results that we present contain significant information on theexistence of

maximum nonlinearity-Boolean functions with odd number of input variables, within the

classes that are invariant under some permutations.
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CHAPTER 6

BALANCED BOOLEAN FUNCTIONS ON 13-VARIABLES

6.1 Introduction

As balancedness is an important cryptographic and combinatorial property of Boolean func-

tions, balanced Boolean functions with odd number of variables having nonlinearity greater

than the bent concatenation bound have received lot of attention in the literature. In fact,

in the literature, such functions could be constructed exploiting Boolean functions having

nonlinearity greater than bent concatenation bound. Below the existing results in this area

are listed (we will refer 15-variable Boolean functions having nonlinearity16276 as PW

functions since these function were found by Patterson and Wiedemann).

1. In [62], balanced Boolean functions having nonlinearity greater thanbent concatena-

tion bound of (2n−1 − 2
n−1

2 ) could be found for oddn ≥ 29, using the PW functions as

black box.

2. In [59, 39], 15-variable balanced Boolean functions having nonlinearity 215−1−2
15−1

2 +

6 = 16262 have been constructed by modifying the structure of the PW functions with

heuristic search.

3. In [61], modifying the structure of the PW functions systematically in the space of ro-

tation symmetric Boolean functions, 15-variable Boolean function having nonlinearity

215−1 − 2
15−1

2 + 10= 16272 has been constructed.

4. In [34], using the Boolean functions on 9-variables having nonlinearity 242, 13-

variable balanced function having nonlinearity 213−1 − 2
13−1

2 + 2 = 4034 has been

constructed.

The Boolean functions on 9-variables having nonlinearity 242, presented in the previous

chapter, do not contain any zero in the Walsh spectrum and therefore they cannot be linearly

transformed to balanced functions. In [34], these functions are used toconstruct 13-variable
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balanced function having nonlinearity 213−1− 2
13−1

2 + 2 = 4034 which is the first demonstra-

tion of balanced Boolean functions on odd number of variables having nonlinearity strictly

greater than the bent concatenation bound for number of input variablesless than 15. We

improve the search algorithm used in [34], and then arrive at 13-variable balanced functions

having nonlinearity 4036.

6.2 13-variable Balanced Functions with Nonlinearity 4036

Sinilar to the idea of [59, 39], the strategy described in [34] is based uponthe concept of

searching balanced functions within the eight-bit neighborhood of an 13-variable unbalanced

function F with nl(F) = 4040, andWF(0) = ±16. The 13-variable unbalanced function is

constructed from 9-variable unbalanced functions which are highly nonlinear. The minimum

valued spectral components (±4) of 9-variable unbalanced functions are translated to the

origin; so that the resulting 13-variable function hasWF(0) = ±16 and it is therefore probable

to find a highly nonlinear but balanced functions in its 8-bit neighborhood.

OnceF is constructed, the problem is reduced to a search in a space of size
(

212+8
8

)

, which

is approximately equal to 281. The search algorithm [34] used in finding the 13-variable

balanced function with nonlinearity 4034 randomly toggles eight many positionsof the truth

table ofF from 0 to 1. We have carried out 15 million trials of this algorithm, which takes 62

hours by using a computer system with Pentium IV 2.8 GHz processor and 256 MB RAM

having Windows XP operating system. The search has resulted in 238 functions having

nonlinearity 4034 and 14,999,762 many functions having nonlinearity 4032.The distribu-

tion of nonlinearities found by random search of this algorithm demonstratesthe rareness of

13-variable balanced functions with nonlinearity greater than 4032.

In order to reduce the search time, we have then used our steepest-descent-like iterative algo-

rithm, which has recently proved its effectiveness with the results for 9-variable functions of

nonlinearity 241 [25] and 242 [30]. Calling the input of an iteration,Fin, each iteration step

of the algorithm firstly computes the costs of all functions in a pre-defined neighborhood

S of Fin. Then, the function with the smallest cost is chosen as the iteration outputFout,

provided that it is different from the outputs of all previous iteration steps.S is not allowed

to containFin; therefore, it is possible in some cases that the cost ofFout is larger than that
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of Fin. Recall that this is one of the critical parts of the search strategy, which provides its

ability to escape from local minima. The proper choice of the cost function is also crucial.

We adapt our steepest-descent-like algorithm to the search of highly nonlinear and balanced

13-variable functions in the eight-bit neighborhood ofF. The setS used in our algorithm

is defined as the intersection of three sets:i) 13-variable balanced functions,ii ) 8-bit neigh-

borhood of a 13-variable functionF with nl(F) = 4040, andWF(0) = ±16, iii ) 2-bit neigh-

borhood ofFin, which changes at each iteration step. This intersection set contains 8× 212

many balanced functions.

The choice of a suitable cost function is very important. We base our choiceupon the

following intuition: Let the 2-bit neighborhood of ann-variable functionf be partitioned by

3 sets,

A = {functions fa having the same nonlinearitynl( f ) as f}, (6.1a)

B = {functions fb with nonlinearity (nl( f ) − 2)}, (6.1b)

C = {functions fc with nonlinearity (nl( f ) + 2)}. (6.1c)

DenotingWf
max as the maximum magnitude in the Walsh spectrum off and M f as the

number of spectral components with value±Wf
max; functions fb with small M fb are much

probable than those with largeM fb. So, the cost function that we assign should ease the

passage of the algorithm from Set B to Set A by favoring small values ofM f as follows:

Cost( f ) = (2n+1 + M f )Wf
max. (6.2)

The termWf
max in the cost expression is used to commend high nonlinearity, whereasM f

punishes large number of maximum magnitude-components in the Walsh spectrum,and the

bias term 2n+1Wf
max is necessary to direct the search in favor of functionsf for which

Cost( f ) > Cost(g) just becauseM f > Mg; althoughnl( f ) > nl(g).

Setting the maximum iteration number to 500, a typical run of the search algorithm takes

less than 3 hours using a computer system with Pentium IV 2.8 GHz processorand 256 MB

RAM having Windows XP operating system, as above. Almost each step of thealgorithm
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finds a balanced function with nonlinearity 4036, except for a minority with nonlinearity

4034 or 4032. Table 6.1 gives the nonlinearity distribution for three different runs, each

starting with a different initial functionF, which is constructed by using one of the three 9-

variable functions of nonlinearity 242, as in the example described below. In Table 6.1, we

use the notation (n,nl,△,d) to indicate the (number of input variables, nonlinearity, absolute

indicator, degree) of the corresponding function.

Table 6.1: Nonlinearity distribution of 13-variable balanced functions found in a total num-
ber of 500 iterations of the steepest-descent-like algorithm.

Run# (n,nl,△,d) 4032 4034 4036
1 (9, 242, 32, 7) 1 92 407
2 (9, 242, 40, 7) 1 11 488
3 (9, 242, 56, 7) 3 6 491

An example for a balanced function with nonlinearity 4036 is presented in Appendix B,

which is obtained by flipping eight bits of the initial functionF described below. The toggled

bits of F correspond to the indices 4667, 4758, 4807, 4823, 4913, 5042, 8133, 8187, where

the truth table is indexed from 0 to 8191.

Details of the initial 13-variable functionF of this example, havingnl(F) = 4040 and

WF(0) = 16 are as follows: We utilize the unbalanced 9-variable functionf with nonlin-

earity 242, absolute indicator 32 and degree 7, for which the corresponding truth table is

given as follows:

125425D30A398F36508C06817BEE122E250D973314F976AED58A3EA9120DA4FE

0E4D4575C42DD0426365EBA7FC5F45BE9B2F336981B5E1863618F49474F6FE00

As in [34], we choosew1 = (0,0,0,0,1,1,0,1,1) so that the linear transformationf1(x) =

f (x) ⊕ w1 · x, generates a functionf1(x) with Wf1(0) = 4; since the Walsh spectrum value

of f corresponding tow1 is equal to 4. We then construct the 13-variable functionF by the

direct sum of 9-variable functionf1(x) with the 4-variable bent functionh(y0, y1, y2, y3) as

F = h(y0, y1, y2, y3) ⊕ f1(x0, . . . , x8), (6.3)

whereh = (0,0,0,0,0,0,1,1,0,1,0,1,0,1,1,0).
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6.3 Conclusions

The strategy [34, 59, 39] that we have used is based upon the conceptof searching balanced

functions within theK-bit neighborhood of an unbalanced function with high nonlinearity,

where the parameter±2K corresponds to the smallest value of its Walsh spectrum. The most

elegant part of this concept is to translate the minimum valued spectral component (±2K) of

this unbalanced function to the origin so thatWF(0) = ±2K. TogglingK zeros or ones ofF

depending on the sign ofWF(0), one obtains a balanced function with nonlinearity greater

than or equal to (nl(F) − K).

As in [34], to makenl(F) as high as possible, we exploit the 9-variable unbalanced functions

with nonlinearity 242. The 13-variable unbalanced functions obtained by bent concatenation

have the nonlinearity 4040, and the smallest value in their Walsh spectra is±16. Resulting

balanced function of nonlinearity 4036 given in Appendix B improves the result in [34].
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CHAPTER 7

CONCLUSIONS

In Chapter 3, as a major result, we show the existence of Boolean functionshaving nonlin-

earity> (2n−1 − 2
n−1

2 ) for n = 9,11,13, which remained as an open question in the literature

for almost three decades. Further we attain balanced Boolean functions on 9,10 and 11 vari-

ables having maximum absolute value in the autocorrelation spectrum< 2⌈
n
2⌉. Earlier such

Boolean functions were known for 15, 21 variables; on even number ofvariables, there was

no evidence of such Boolean functions. Some of these Boolean functionson 9 and 11 vari-

ables can be affinely transformed to obtain first-order resiliency or first-order propagation

characteristics. Some of these Boolean functions on 10-variable case can be affinely trans-

formed to yield first order propagation characteristics. Moreover, we present a 10-variable

Boolean function having first-order resiliency and nonlinearity 492, which was posed as an

open question at Crypto 2000. The Boolean functions reported in this chapter are discov-

ered using the steepest-descent-like iterative search algorithm [29, 25], an efficient search

technique with an outstanding ability to escape from local optima, in the class of Rotation

Symmetric Boolean Functions (RSBFs) along with proper affine transformations.

In Chapter 4, using the nice combinatorial structure of the Walsh spectra for RSBFs on

odd number of variables [43], we efficiently perform the exhaustive search to enumerate

9-variable RSBFs having nonlinearity> 240. Consequently, we find that there is no RSBF

achieving nonlinearity> 241 and there are 8×189 many RSBFs having nonlinearity 241. We

further show that these RSBFs are represented by only two distinct RSBFs up to the affine

equivalence. This result is obtained by utilizing some larger class of binarynonsingular

circulant matrices.

Then, in Chapter 5, we improve the nonlinearity result of 241 to 242, which shows the

existence ofn-variable Boolean functions having nonlinearity (2n−1−2
n−1

2 +2×2
n−9

2 ) for n =

9,11,13. This result is attained by suitably generalizing the classes of RSBFs andDihedral

Symmetric Boolean functions (DSBFs). More specifically, we introduce generalized RSBFs

(k-RSBFs) as functions which satisfyf (α2k
) = f (α), where 1≤ k |n, α ∈ GF(2n), and
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describe the class ofk-DSBFs as a subset ofk-RSBFs imposing the condition of invariance

under the action of dihedral group. Further, we classify all possible permutations (9!=

362,880) on input variables of 9-variable Boolean functions up to the linear equivalence

of Boolean functions that are invariant under some permutations and find that there are 30

such classes. Then, in some of these classes and their subsets, we identify new 9-variable

Boolean functions having nonlinearity 242 with different autocorrelation spectra from those

of the functions found in generalized RSBF and DSBF classes. In particular, we find a

subset of size 274 (in the class of size 2100), much smaller than the sizes of 2176 and 2104 for

the generalized RSBFs and DSBFs respectively, containining 9-variableBoolean functions

having nonlinearity 242. Moreover, we obtain an 11-variable DSBF having nonlinearity 994

and several 13-variable DSBFs having nonlinearity 4036, which confirms the richness of

DSBFs [40] in terms of high nonlinearity forn = 11 and 13. These functions are given in

Appendix A. As in Chapter 3, we perform the steepest-descent-like iterative search algorithm

to discover the Boolean functions presented in this chapter.

Finally, in Chapter 6, following the strategy used in [34, 59, 39], we modify the steepest-

descent-like algorithm to attain balanced 13-variable Boolean functions having nonlinearity

4036, which improves the nonlinearity result of 4034 in [34]. Basically, thestrategy is

to searh balanced functions within theK-bit neighborhood of an unbalanced function with

high nonlinearity, where the parameter±2K corresponds to the smallest value of its Walsh

spectrum. As in [34], to construct such highly nonlinear unbalanced functions, we utilize the

9-variable unbalanced functions having nonlinearity 242 presented in Chapter 5. Resulting

balanced 13-variable function having nonlinearity 4036 is given in Appendix B, which is

identified within the 8-bit neighborhood of a 13-variable unbalanced function of nonlinearity

4040 obtained by bent concatenation.

At the end of this thesis, we point out some challenging open problems in the area:

1. Do there exist 8-variable balanced Boolean functions having nonlinearity 118?

2. In [14], Dobbertin has conjectured that the nonlinearity of a balancedBoolean func-

tion on n-variables cannot exceed (2n−1 − 2
n
2 + nlmax( f )) wherenlmax( f ) denote the

maximum achievable nonlinearity of a balanced Boolean functionf on n
2 variables.

Can this conjecture be disproved?
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3. In [4], it is conjectured that the covering radius [33, 52] ofR(1,n) is even. Our results

for n = 9 show that the covering radius is at least 242. The upper bound presented

in [23, 21] for the covering radius ofR(1,9) is 244. What is the covering radius of

R(1,9)?

4. Do there exist balanced Boolean functions onn = 9, 11 variables having nonlinearity

> (2n−1 − 2
n−1

2 )?
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APPENDIX A

TRUTH TABLES OF 11- AND 13-VARIABLE DSBFs

We present the truth tables in hexadecimal format. The following is the truth tableof (11,

−1, 9,994,200) DSBF.

68C1F052AA14260999DD0365487844C6C397A7B6114A787724957BC46471F12D

F05F873ECC6E8A29034265887BD17A2A483583367B8FF1312C347E12FA1708F3

AA1433AF952B5BE9B5F02CA891985C92114A640C2D6380C57B9BB3027E991D8D

34C45B66D00E5B7D6ACF80EEAB021A430CE54E707AAD520DAB9D472F4081FF1F

89CC06215F1B8CAA973658CF27DAADD3CF36AA0118B0DDC08716D3D526E4C70D

065371D97C2054E458A2390BD550E5736ADAC2DF8B0A10492BACC3C317B381F7

1A21F52076CB3C3DB60144F836DF2AB32DDDE0EAC051FCBD8C8F10491299751F

41F0E96761AC6F053F888DE7234945F79C9B92B3703B19BF6545C557BBBF57FF

The following is the truth table of (13,−1,10,4036,208) DSBF, which is invariant under the

permutation

π(x0, x1, . . . , x12) = (x0, x2, x4, x6, x8, x10, x12, x1, x3, x5, x7, x9, x11). (A.1)

177E7EF97EFCFF937FF8EBA0FAFBC71A7EFBEAD0EC8B8815EA99FADEA12A568D

7EE8EA8BF889B215FDB1848F80950677EDC883D3AE9DB2ED9D031888277CD4F7

7FEDE881ECDC948AFF90D0968B0C0676EFE3CE028524D4FAC114C666116C2A6B

F8E2A195815AF71A89FCD3A29B48BDE3C7F6155F139090904C2B2AA1F321AA3F

7EEEF8B2E881D107ECA1E3B5C665D088EAAE9354A710C37C81CB04E4156C3A28

ECAFEC0AB5ED504C85361D75B325AA88F4560730A4386C7C13537CF04CCD299B

FA85B81D9C129772D143368CFE2A43C88096AEB4B35E8809D3DE64959BE7A90E

A12BBF7D077227FA034FC601D340931535A159CF4C88CC17BB0B4D13C8990BAE

7EFCE8ACEAC18B0DE881C517E253407FF8F4C917EC5E9F32A12C3826F700C081

F889C9F8934B2770DC7B5710F44F2EF09146A5CA1530BD3107663CA14BCD0C81

F9A18DABB9F411C88A26ECF6364474B484321F7D47E33B779B5E58679CCD85D5

FA35626C042E4E419C244A902CF12EF5420E660B6EA0EE0570A0A4B64D86979E

FFCDD1728BC516A786F10348976A7F09B212350A0A78D5F1BFA85CD8350BA194

C015D72899F98F208E1B73E9C0950093B24AE7B96C65933782CAFC7BCCD715BC

9D0208CA8AAA7FE2147A2E49192BFBCD145A74FAF0790003E75B7451930B1736

1E76880372D3A1AB70F18590E1F5177A8E8B449F61B2075AF08597D6519ECCE9

7EEDEEF5FC90CDB4ED8CA10785CE10E3E881C147F523072FB81D274B71403EEF

FB81AE60F4C6122EB9A032EC96AA5A09C8171CF41ED05879BE7F5444A101D107
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EAC481D3A197ABC0825E349E192A7A40A3A07BCA367F5300EE3424AE5DECAB15

C347647CD962E09806265E01DEA75B12117F3C3C1BA1D85771DBA0A751B58512

EE82891381B78D8FCE97AE741242F081C19C593CEDF4EB2C5A3874753A619B21

D1315E5802AE6AE6247FB95F5ECB6B3FC78A22A962842D2F82A1A0A3C026B276

FBDC1B632D1878F144700CFD70EC711687F05D3025D9870548B5AB5708EDAF76

700800F86C2951DB6CECCD01BDED51766E01CD11CD349F7C21A7943CC37ED6A9

EBAFE4B6B2133A49819BF1334739D86BD128EA42504A60C1876E6CCD6FEA11D3

8A1D17180E6650C810D86FD0A622FA179BAED88422E1E3D45F6651CFDD03D734

A0151733A72E48C196D6BE92C4EF4951D5EC028A2F5FE997B00182330101824E

DE5934CDAC2FCAD63CF43D33871F0B3EC00CA1DDAAB17BDEA1B5B67E13669EE1

93A6454915D5B5C9D088C8893AABB85D07742AC84CBC20C752C2099EFADBF1F6

077532896E64AB9DFA003F974105110AED6B238E6E753716821F05DE176E5A69

52B97F79C081414F3E08A60BC816CDDE3F41AA17C0779350B912AF76073E7AC9

C5FD819B602186BE79078F5C543E36C9BF158126D33EE6697712D6A9F4E1E997
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APPENDIX B

TRUTH TABLE OF 13-VARIABLE BALANCED FUNCTION

The following is the truth table of (13,0,11,4036,536) Boolean function.

74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98

68D4DC13A2B4492405FC72C19AC6DCD8FDB6AA0FE72C78E050816DF2126F6766

74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98

68D4DC13A2B4492405FC72C19AC6DCD8FDB6AA0FE72C78E050816DF2126F6766

74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98

68D4DC13A2B4492405FC72C19AC6DCD8FDB6AA0FE72C78E050816DF2126F6766

74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98

68D4DC13A2B4492405FC72C19AC6DCD8FDB6AA0FE72C78E050816DF2126F6766

74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98

68D4DC13A2B4492405FC72C19AC6DCD8FDB6AA0FE72C78E050816DF2126F6766

74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98

68D4DC13A2B4492405FC72C19AC6DCD8FDB6AA0FE72C78E050816DF2126F6766

8B32434A935FE9AFC9EA6018E28874B7BC6BF1AA8D9F10374CEC58308B6BC267

972B23EC5D4BB6DBFA038D3E65392327024955F018D3871FAF7E920DED909899

8B32434A935FE9AFC9EA6018E28874B7BC6BF1AA8D9F10374CEC58308B6BC267

972B23EC5D4BB6DBFA038D3E65392327024955F018D3871FAF7E920DED909899

74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98

68D4DC13A2B4492405FC72C19AC6DCD8FDB6AA0FE72C78E050816DF2126F6766

8B32434A935FE9BFC9EA6018E28874B7BC6BF3AA8D9F10374DEC59308B6BC267

972B23EC5D4BF6DBFA038D3E65392327024955F018D3A71FAF7E920DED909899

74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98

68D4DC13A2B4492405FC72C19AC6DCD8FDB6AA0FE72C78E050816DF2126F6766

8B32434A935FE9AFC9EA6018E28874B7BC6BF1AA8D9F10374CEC58308B6BC267

972B23EC5D4BB6DBFA038D3E65392327024955F018D3871FAF7E920DED909899

74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98

68D4DC13A2B4492405FC72C19AC6DCD8FDB6AA0FE72C78E050816DF2126F6766

8B32434A935FE9AFC9EA6018E28874B7BC6BF1AA8D9F10374CEC58308B6BC267

972B23EC5D4BB6DBFA038D3E65392327024955F018D3871FAF7E920DED909899

8B32434A935FE9AFC9EA6018E28874B7BC6BF1AA8D9F10374CEC58308B6BC267

972B23EC5D4BB6DBFA038D3E65392327024955F018D3871FAF7E920DED909899

74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98

68D4DC13A2B4492405FC72C19AC6DCD8FDB6AA0FE72C78E054816DF2126F6776
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APPENDIX C

ALGORITHM USED IN THE CLASS OF 9-VARIABLE RSBFs

The following is the C programming code (compiled with Microsoft Visual C++ 6.0) of our

steepest-descent-like iterative search algorithm that is used to find 9-variable RSBFs having

nonlinearity of 241.

#include "stdlib.h"

#include "stdio.h"

int gn=60,R[60][9],p[]={1, 2, 3, 4, 5, 6, 7, 8, 0};

int n=9,B[512][9],h,G[9][9],A[60][60],A2[60][60][2];

long double FW2[513];

int main(){

void orbit(int k);

void repres();

void walsh(int *TT, int *FW);

void tohex(int *TT, int *tt);

void walsheff(int *FWnew, int *FWold, int k1, int k0);

int findmaxwh(int *FW);

long double sumsse(int *FW);

int i,j,k,l,t,NL,N=60000,indx,K,CHK,cnt,*P3,*Q3,srt,k0,k1;

int FW[512],FWupd[512],tt[2];

long double I,Maxi,cost,Q2[60];

P3=(int *)malloc(120000*sizeof(int));

Q3=P3;

for (i=0;i<gn;i++)

for (j=0;j<gn;j++)

A[i][j]=0;

repres();

for (i=0;i<gn;i++){

orbit(i);

for (j=0;j<gn;j++)

for (k=0;k<h;k++){

l=0;

for (t=0;t<n;t++)

l=lˆ(G[k][t]*R[j][t]);

A[i][j]+=1-2*l;

}

}

for (i=0;i<gn;i++)
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for (j=0;j<gn;j++){

A2[i][j][0]=2*A[i][j];

A2[i][j][1]=-2*A[i][j];

}

I=0;

for (i=0;i<513;i++){

FW2[i]=(I*I-512)*(I*I-512);

I+=1;

}

//The algorithm starts with the following truth table (randomly

//chosen rotation symmetric truth table).

int TT[]={0,0,1,0,1,1,1,1,1,0,0,0,1,1,0,1,0,0,1,0,0,0,1,1,1,1,0,0,

1,1,0,1,0,1,0,1,1,0,1,1,1,0,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,0,0};

walsh(TT,FW);

tohex(TT,tt);

NL=256-findmaxwh(FW)/2;

printf("\nStarting... nonlinearity=%d cost=%f",NL,sumsse(FW));

cnt=0;

srt=gn/32+1;

for (i=0;i<srt;i++){

*(Q3+cnt)=tt[cnt];

cnt+=1;

}

for (K=1;K<=N;K++){

Maxi=1.6e+50;

for (i=1;i<gn;i++){

k0=i;

k1=TT[i]ˆ1;

walsheff(FWupd,FW,k1,k0);

cost=sumsse(FWupd);

if (cost<=Maxi){

Maxi=cost;

indx=i;

}

Q2[i]=cost;

}

TT[indx]=1ˆTT[indx];

tohex(TT,tt);

for (i=0;i<K;i++){

CHK=0;

for (j=0;j<srt;j++)

if (*(Q3+i*srt+j)==tt[j])

CHK+=1;

else

break;

if (CHK==srt)

break;

}

while (CHK==srt){
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Maxi=1.69e+50;

TT[indx]=1ˆTT[indx];

Q2[indx]=1.7e+50;

for (i=1;i<gn;i++)

if (Q2[i]<=Maxi){

Maxi=Q2[i];

indx=i;

}

TT[indx]=1ˆTT[indx];

tohex(TT,tt);

for (i=0;i<K;i++){

CHK=0;

for (j=0;j<srt;j++)

if (*(Q3+i*srt+j)==tt[j])

CHK+=1;

else

break;

if (CHK==srt)

break;

}

}

for (i=0;i<srt;i++){

*(Q3+cnt)=tt[i];

cnt+=1;

}

walsh(TT,FW);

NL=256-findmaxwh(FW)/2;

if (NL>240){

printf("\nIteration Step=%d Nonlinearity=%d cost=%f\n",K,NL,

sumsse(FW));

for (i=0;i<gn;i++)

printf("%d",TT[i]);

}

}

return 0;

}

void walsh(int *TT, int *FW){

int i,j;

for (i=0;i<gn;i++){

FW[i]=0;

for (j=0;j<gn;j++)

FW[i]=FW[i]+(1-2*TT[j])*A[j][i];

}

}

void walsheff(int *FWnew, int *FWold, int k1, int k0){

int i;

for (i=0;i<gn;i++)
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FWnew[i]=FWold[i];

for (i=0;i<gn;i++)

FWnew[i]=FWnew[i]+A2[k0][i][k1];

}

void tohex(int *TT, int *tt){

int i,j;

for (i=0;i<(gn/32);i++){

tt[i]=0;

for (j=31;j>=0;j--)

tt[i]=(TT[i*32+j]<<(31-j))ˆtt[i];

}

tt[gn/32]=0;

for (j=gn-(gn/32)*32-1;j>=0;j--)

tt[gn/32]=(TT[(gn/32)*32+j]<<(gn-(gn/32)*32-1-j))ˆtt[gn/32];

}

int findmaxwh(int *FW){

int i,D,Maxi=-1;

for (i=0;i<gn;i++){

D=FW[i];

if (FW[i]<0)

D=-FW[i];

if (D>Maxi)

Maxi=D;

}

return Maxi;

}

long double sumsse(int *FW){

int i;

long double sum=0;

for (i=0;i<gn;i++){

if (FW[i]<0)

sum=sum+FW2[-FW[i]];

else

sum=sum+FW2[FW[i]];

}

return sum;

}

void orbit(int k){

int i,j,l,chk=1,b[9],a[9];

h=0;

for (i=0;i<n;i++){

G[h][i]=R[k][i];

b[i]=R[k][i];

}

while (chk!=0){
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h+=1;

for (i=0;i<n;i++)

a[i]=b[p[i]];

for (i=0;i<n;i++)

b[i]=a[i];

for (i=0;i<h;i++){

l=0;

for (j=0;j<n;j++)

if (G[i][j]==a[j])

l+=1;

if (l==n){

chk=0;

break;

}

}

if (chk!=0)

for (i=0;i<n;i++)

G[h][i]=a[i];

}

}

void repres(){

int i,j,k=0;

for (i=0;i<512;i++){

for (j=0;j<n;j++)

B[i][n-1-j]=(i&(1<<j))>>j;

}

for (i=0;i<512;i++)

if (B[i][0]!=-1){

for (j=0;j<n;j++)

R[k][j]=B[i][j];

orbit(k);

for (j=0;j<h;j++)

B[256*G[j][0] + 128*G[j][1] + 64*G[j][2] + 32*G[j][3] +

16*G[j][4] + 8*G[j][5] + 4*G[j][6] + 2*G[j][7] +

1*G[j][8]][0]=-1;

k+=1;

}

}
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APPENDIX D

ALGORITHM USED IN THE CLASS OF 9-VARIABLE DSBFs

The following is the C programming code (compiled with Microsoft Visual C++ 6.0) of our

steepest-descent-like iterative search algorithm that is used to find 9-variable DSBFs having

nonlinearity of 242.

#include "stdlib.h"

#include "stdio.h"

int R[104][9],gn=104,p[]={3, 4, 5, 6, 7, 8, 0, 1, 2};

int n=9,B[512][9],h,G[6][9],A[104][104],A2[104][104][2];

long double FW2[513];

int main(){

void orbitd(int k);

void repres();

void walsh(int *TT, int *FW);

void tohex(int *TT, int *tt);

void walsheff(int *FWnew, int *FWold, int k1, int k0);

int findmaxwh(int *FW);

long double sumsse(int *FW);

int i,j,k,l,t,NL,N=60000,indx,K,CHK,cnt,*P3,*Q3,srt,k0,k1;

int FW[512],FWupd[512],tt[4];

long double I,Maxi,cost,Q2[104];

P3=(int *)malloc(240000*sizeof(int));

Q3=P3;

for (i=0;i<gn;i++)

for (j=0;j<gn;j++)

A[i][j]=0;

repres();

for (i=0;i<gn;i++){

orbitd(i);

for (j=0;j<gn;j++)

for (k=0;k<h;k++){

l=0;

for (t=0;t<n;t++)

l=lˆ(G[k][t]*R[j][t]);

A[i][j]+=1-2*l;

}

}

for (i=0;i<gn;i++)
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for (j=0;j<gn;j++){

A2[i][j][0]=2*A[i][j];

A2[i][j][1]=-2*A[i][j];

}

I=0;

for (i=0;i<513;i++){

FW2[i]=(I*I-512)*(I*I-512);

I+=1;

}

//The algorithm starts with the following truth table (randomly

//chosen 3-dihedral symmetric truth table).

int TT[]={0,0,1,0,1,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,1,0,1,1,0,1,1,0,

0,0,1,0,1,1,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,0,1,0,0,0,1,1,1,0,1,0,

1,1,0,1,1,0,0,0,0,1,0,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0,0,1,1,1,0,1,1,

1,0,0,1,1,1,0,0,0,0};

walsh(TT,FW);

tohex(TT,tt);

NL=256-findmaxwh(FW)/2;

printf("\nStarting... nonlinearity=%d cost=%f",NL,sumsse(FW));

cnt=0;

srt=gn/32+1;

for (i=0;i<srt;i++){

*(Q3+cnt)=tt[cnt];

cnt+=1;

}

for (K=1;K<=N;K++){

Maxi=1.6e+50;

for (i=1;i<gn;i++){

k0=i;

k1=TT[i]ˆ1;

walsheff(FWupd,FW,k1,k0);

cost=sumsse(FWupd);

if (cost<=Maxi){

Maxi=cost;

indx=i;

}

Q2[i]=cost;

}

TT[indx]=1ˆTT[indx];

tohex(TT,tt);

for (i=0;i<K;i++){

CHK=0;

for (j=0;j<srt;j++)

if (*(Q3+i*srt+j)==tt[j])

CHK+=1;

else

break;

if (CHK==srt)

break;
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}

while (CHK==srt){

Maxi=1.69e+50;

TT[indx]=1ˆTT[indx];

Q2[indx]=1.7e+50;

for (i=1;i<gn;i++)

if (Q2[i]<=Maxi){

Maxi=Q2[i];

indx=i;

}

TT[indx]=1ˆTT[indx];

tohex(TT,tt);

for (i=0;i<K;i++){

CHK=0;

for (j=0;j<srt;j++)

if (*(Q3+i*srt+j)==tt[j])

CHK+=1;

else

break;

if (CHK==srt)

break;

}

}

for (i=0;i<srt;i++){

*(Q3+cnt)=tt[i];

cnt+=1;

}

walsh(TT,FW);

NL=256-findmaxwh(FW)/2;

if (NL>241){

printf("\nIteration step=%d nonlinearity=%d cost=%f\n",K,NL,

sumsse(FW));

for (i=0;i<gn;i++)

printf("%d",TT[i]);

}

}

return 0;

}

void walsh(int *TT, int *FW){

int i,j;

for (i=0;i<gn;i++){

FW[i]=0;

for (j=0;j<gn;j++)

FW[i]=FW[i]+(1-2*TT[j])*A[j][i];

}

}

void walsheff(int *FWnew, int *FWold, int k1, int k0){

73



int i;

for (i=0;i<gn;i++)

FWnew[i]=FWold[i];

for (i=0;i<gn;i++)

FWnew[i]=FWnew[i]+A2[k0][i][k1];

}

void tohex(int *TT, int *tt){

int i,j;

for (i=0;i<(gn/32);i++){

tt[i]=0;

for (j=31;j>=0;j--)

tt[i]=(TT[i*32+j]<<(31-j))ˆtt[i];

}

tt[gn/32]=0;

for (j=gn-(gn/32)*32-1;j>=0;j--)

tt[gn/32]=(TT[(gn/32)*32+j]<<(gn-(gn/32)*32-1-j))ˆtt[gn/32];

}

int findmaxwh(int *FW){

int i,D,Maxi=-1;

for (i=0;i<gn;i++){

D=FW[i];

if (FW[i]<0)

D=-FW[i];

if (D>Maxi)

Maxi=D;

}

return Maxi;

}

long double sumsse(int *FW){

int i;

long double sum=0;

for (i=0;i<gn;i++){

if (FW[i]<0)

sum=sum+FW2[-FW[i]];

else

sum=sum+FW2[FW[i]];

}

return sum;

}

void orbitd(int k){

int i,j,l,chk=1,b[9],a[9],h2;

h=0;

for (i=0;i<n;i++){

G[h][i]=R[k][i];

b[i]=R[k][i];
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}

while (chk!=0){

h+=1;

for (i=0;i<n;i++)

a[i]=b[p[i]];

for (i=0;i<n;i++)

b[i]=a[i];

for (i=0;i<h;i++){

l=0;

for (j=0;j<n;j++)

if (G[i][j]==a[j])

l+=1;

if (l==n){

chk=0;

break;

}

}

if (chk!=0)

for (i=0;i<n;i++)

G[h][i]=a[i];

}

chk=1;

for (i=0;i<n;i++)

b[i]=G[0][n-i-1];

for (i=0;i<h;i++){

l=0;

for (j=0;j<n;j++)

if (G[i][j]==b[j])

l+=1;

if (l==n){

chk=0;

break;

}

}

if (chk!=0)

for (i=0;i<n;i++)

G[h][i]=b[i];

h2=1;

while (chk!=0){

h+=1;

for (i=0;i<n;i++)

a[i]=G[h2][n-i-1];

h2+=1;

for (i=0;i<n;i++)

b[i]=a[i];

for (i=0;i<h;i++){

l=0;
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for (j=0;j<n;j++)

if (G[i][j]==b[j])

l+=1;

if (l==n){

chk=0;

break;

}

}

if (chk!=0)

for (i=0;i<n;i++)

G[h][i]=a[i];

}

}

void repres(){

int i,j,k=0;

for (i=0;i<512;i++){

for (j=0;j<n;j++)

B[i][n-1-j]=(i&(1<<j))>>j;

}

for (i=0;i<512;i++)

if (B[i][0]!=-1){

for (j=0;j<n;j++)

R[k][j]=B[i][j];

orbitd(k);

for (j=0;j<h;j++)

B[256*G[j][0] + 128*G[j][1] + 64*G[j][2] + 32*G[j][3] +

16*G[j][4] + 8*G[j][5] + 4*G[j][6] + 2*G[j][7] +

1*G[j][8]][0]=-1;

k+=1;

}

}
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4. S. Kavut, S. Maitra and M. D. Ÿucel. “Search for Boolean Functions with Excellent Pro-
files in the Rotation Symmetric Class”, IEEE Transactions on Information Theory, Volume:
53, Issue: 5, pages 1743-1751, ISSN: 0018-9448, May 2007.
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7. S. Kavut and M. D. Ÿucel. “Finite Field Power Mappings in Cryptography”, National
Cryptology Symposium II, pages 37-49, Ankara, Turkey, December 2006.

8. S. Kavut, S. Maitra, S. Sarkar and M. D. Yücel. “Autocorrelation Spectra of Balanced
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