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ABSTRACT

BOOLEAN FUNCTIONS WITH EXCELLENT CRYPTOGRAPHIC PROPERTIE
IN AUTOCORRELATION AND WALSH SPECTRA

Kavut, Selcuk
Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Melek Dikerli¢el

August 2008, 78 pages

We introduce a steepest-descent-like search algorithm for the desigrotde® functions,
yielding multiple desirable cryptographic properties in their Walsh and autlation spec-
tra together. The algorithm finds some Boolean functions on 9, 10, 1BriEbles with very
good cryptographic properties unattained in the literature. More spdlgifiee have dis-
covered 9-variable rotation symmetric Boolean functions (RSBFs) hawnginearity of
241, which exceeds the bent concatenation bound and has remained@enequestion in
the literature for almost three decades. We have then shown that ther&BBfe having
nonlinearity greater than 241, and that there axel89 many RSBFs having nonlinearity of
241, such that, among them there are only two that dferdint up to the ffine equivalence.
We also propose a generalization to RSBFs and dihedral symmetric Boaleziohs (DS-
BFs), which improves the nonlinearity result of 9-variable Boolean funstio 242. Further,
we classify all possible permutations (¢! 362 880) on the input variables of 9-variable
Boolean functions and find that there are only 30 classes, which fiegedfit with respect
to the linear equivalence of invariant Boolean functions under some pations. Some of
these classes and their subsets yield new 9-variable Boolean functiong tiee nonlinear-

ity of 242 with different autocorrelation spectra from those of the Boolean functionsifoun



in generalized RSBF and DSBF classes. Maoreover, we have attaineatiaBle balanced
Boolean functions having nonlinearity of 4036 which is greater than thedegiwatenation

bound of 4032, and improves the recent result of 4034.

Furthermore, we have found 10-variable Boolean functions havirigfider resiliency and

a nonlinearity of 492, which was posed as an open question at Cryp 2W® have also
discovered balanced Boolean functionsroa9, 10, 11 variables having absolute indicator
value less than'2!. Earlier the existence of such functions were known for 15 and 21

variables.

Keywords: Autocorrelation, Boolean Function, Cryptography, Héariearch, Nonlinear-

ity.
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OZILINTI VE WALSH SPEKTRUMLARINDA USTUN KRIPTOGRARK
OZELLIKLERE SAHIP BOOLEISLEVLERI

Kavut, Selcuk
Doktora, Elektrik ve Elektronik Nthendislgi Bolimi
Tez Yoneticisi : Doc. Dr. Melek Diker Yicel

Agustos 2008, 78 sayfa

Walsh veozilinti spektrumlarinda cesitli arzulanan kriptografikelliklere sahip Boole islev-
leri tasarimi i¢in en dik inis prensibine dayall arama algoritmasi gelistiriimi&tgoritma
cok iyi kriptografik ozelliklere sahip, literdirde dahadnce elde edilememis bazi 9, 10,
11, 13 d@iskenli Boole islevleri ortaya cikarmisti©zellikle, literatirde yaklasik olarak
otuz senedir agik bir soru olarak bulunangdssal olmamalgiti 241 olan 9 dgiskenli
dongiisel simetrik Boole islevleri (DSB elde edilmistir. D@rusal olmamalciitii 241'den
biiyiik DSB olmadii gosterilmis ve dgrusal olmamalciitii 241 olan DSBlerin sayisinin
8 x 189 adet oldgu bulunarak, bunlarin icinden sadece iki tanesinin ilgin g§ed&e dire
farkll oldugu ortaya cikariimistir. Sonrasindaymdjisel simetrik ve ikidizlemli simetrik
Boole islevleri (SBI) genellestirilmis ve bunun sonucunda Sitgkenli Boole islevleri icin
basarilan d@rusal olmamalciti 242'ye cikariimistir. Bununla birlikte, 9 déskenli Boole
islevlerinin giris dgiskenlerine uygalanabiliriiiin devrigsimler (9= 362 880) siniflandiril-
mis ve devrisime @re ddjisimsiz Boole islevlerinin dgrusal esdgerligi bakimindan sadece
30 sinifin farkh old@u bulunmustur. Bu siniflarin bazilarinda ve bunlarintatiklerinde,
genellestirimis DSBve ISBI siniflarinlarinda elde edilen 242 gusal olmamadlciitiine
sahip 9 d@iskenli Boole islevlerinindzilinti spektrumlarindan farklozilinti spektrumlari

bulunan yeni 242 dgrusal olmamalcutiine sahip 9 dgiskenli Boole islevleri ortaya cikaril-

\Y



mistir. Bunun yanisira, eruisek d@rusal olmamalcitiine sahip cift dgiskenli iki islevin
birbirine bajlanmasi ile bulunan dengeliislevler icingtasal olmama siniri 4032'derijaik,
dogrusal olmamalciti 4036 olan 13 dgiskenli dengeli Boole islevleriiretilmistir. Bu

sonug, yakin zamanda elde edilen 403@mdsal olmama dgerini gelistirmistir.

Ayrica, Crypto 2000'de aclk soru olarak ortaya konulan birinci deresnekfie sahip ve
dogrusal olmamalcitll 492 olan 10 d@iskenli Boole islevleri ortaya cikariimistir. Bundan
baska, mutlak gsterge dgeri 22"'den kiigilk n =9, 10, 11 dgiskenli dengeli Boole islevleri
elde edilmistir. Buiir Boole islevleri dah@&nce 15 ve 21 dgskenliler icin bilinmekteydi.

Anahtar Kelimeler: Booldslevi, Dajrusal Olmama, KriptografOzilinti, Bulussal Arama.
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CHAPTER 1

INTRODUCTION

1.1 Background on Cryptography

Cryptographyis the art and science of protecting and hiding a message from those who do
not possess thkeyused to obscure that message. The security of a cryptographic system
is usually based on some secret key, which is usually a binary sequiesutg@aent length.

The message to be protected (unencrypted data) is referreglairstext while its obscured

form (encrypted data) is calleciphertext Plaintext and ciphertext are considered as the
sequences of characters from an alphabet. In practice the alplwaisétts of binary digits
(bits). The process of hiding the plaintext within the ciphertext is teremeatyptionand the
reverse process of extracting information from ciphertext is caltsmtyption A cipheris a

cryptographic algorithm, which performs encryption and decryption.

In his vital paper [63] for modern cryptography, Shannon presethiegrinciples ofcon-
fusionanddiffusion Confusion obscures the relationship between the elements of plaintext
and the elements of ciphertext, whilétdision spreads the influence of the plaintext elements
over the ciphertext elements. Both principles try o achieve the same goalg theistatisti-

cal features of plaintexCryptanalysids the study of recovering the information, hidden in
the ciphertext, without access to the key. The science that encompassesyptography

and cryptanalysis is referred to ayptology

There are mainly two classes of cryptosysteasymmetrigpublic-key) andsymmetriqse-
cretkey). In asymmetric cryptography [12], each user has two distinct but maticaiha
related keys: gublic keythat is available to everyone anddvate keythat is kept secret
from everybody. In order to send a secret message to a user, onypsrthe plaintext with
the public key of that user. Decryption is possible only with the related terkey uniquely
owned by the intended user. Design principles of the cryptosystem makalthaation of

the private key from the public key computationally infeasible.



Symmetric cryptographic algorithms have a single secret key, shared bgrlder and the
receiver, to perform both encryption and decryption. Symmetric cryppddac algorithms

can be divided intdlock ciphersand stream ciphers A block cipher operates on large
blocks of data, while a stream cipher encrypts the plaintext symbols (usitgjyone at a
time by combining with the keystream. For a given key, the transformation yste Iblock
cipher is fixed, whereas that used by the stream cipher varies degemdicipher’s state.
Block ciphers can be used to construct other cryptographic primitiasasihash functions,
message authentication codes and pseudorandom number generatolfdl the principles

of confusion and dfusion, both block and stream ciphers make use of Boolean functions

having desirable cryptographic properties.

1.2 Boolean Functions in Cryptography

Boolean functions, having either multi-output (also caNedtoroutpu or single-output,
constitute crucial components in secret-key cryptosystems. In fact, @asthblock cipher
(such as Data Encryption Standard (DES) [48] or its successor Addaancryption Stan-
dard (AES) [49]) can be considered as a vector-output Booleastiumdepending on the
key. However, it is infeasible to analyze these functions due to the langéemof input
variables. On the other hand, vector Boolean functions on small numigariables such as
substitution boxes (S-boxes) are iteratively used in block ciphers.tifuilms boxes apply
a nonlinear transformation on their input, hence their characteristics lypiicant efects
on the strength of the entire system. Highly nonlinear S-boxes are rediineglin linear
cryptanalysis [41], the linear combinations of the component functiona &-box are ap-
proximated by linear Boolean functions. On the other hand, flieidintial cryptanalysis [3],
the autocorrelation properties of S-boxes such as Strict Avalanchei€(&AC) [70] and
Propagation Characteristics (PC) [54] are exploited; which makes Bofle&tions with

high values of autocorrelation undesirable.

In the design of a block cipher, the involved single-output Boolean fungtioust separately
satisfy the desired cryptographic properties sincexamvector Boolean function that maps
n bits tom bits is composed afn many, n-variable single-output functions, each mapping
n bits to a single bit. In case of stream ciphers, single-outpdriable Boolean functions

are used as nonlinear combiners of Linear Feedback Shift Registe&R@) to introduce



nonlinearity [57]. In Figure 1.1, the combination generator is shown asssiclatream

cipher model.
al,
LFSR 0
£ Nonlinear Combiner
LFSR 1 "l Flxp.xq, Xy p)
LFSR n—1 2=l

Figure 1.1: Combination generator

The streamRy} is called thekeystreamwhich is modulo 2 added to the plaintext stream
{Px} to produce the ciphertext streai@x}. As the internal structure af LFSRs and the
Boolean functionf can be public, the security of this cryptosystem depends on the initial
state of the registers, which constitutes the secret key. To make the gstetossecure
against cryptanalysis, the keystre&pnis desired to appear random. In fact, if it were truly
random then the resulting cryptosystem, known as one time pad or Vernaer ¢G2],

would provideunconditional security

The underlying single-outpuf-variable Boolean functiorf must satisfy several crypto-
graphic properties such as balancedness, high algebraic degieaomignearity and cor-
relation immunity to resist against cryptanalytic attacks available in symmetric kgy cr
tography literature. Balancedness requires an equal number ofds'sam the truth table
of f to prevent the keystream from having statistical bias. High algebraie@degjif is a
necessary condition to provide higjhear complexity{13] of the keystream. The function
f with low nonlinearity makes the cryptosystem vulnerable to BeinA Approximation
(BAA) attack [13] in which the keystream is approximated by #ina Boolean function.
Thus f is desired to possess high nonlinearity. In general, it is easier to mouyptamcy
alytic attack using linear approximations including a small number of input bitsubkig
linear approximations involving a large number of input bitg of his leads to the notion of
correlation immunity and resiliency [13, 64, 65, 18], which are among thiesdiegroperties

of cryptographically strong functions.



In this thesis we concentrate on single-output Boolean functions. Haticetve will use
the term “Boolean functions” while referring to such functions. Boolaarcfions are also
important in error correcting codes. For instance, Reed-Muller andd¢&rcodes can be
defined as sets of Boolean functions. In this thesis, we obtain importaiitsres the cov-
ering radius of the first order Reed-Muller codes having codewofdength 2 = 512,
which corresponds to the maximum possible nonlinearity achieved by Biaiolean

functions.

1.3 Contributions of the Thesis

As discussed in the previous section, Boolean functions with high nonliyead low au-
tocorrelation are important building blocks in cryptographic applications.oBd number

of input variables, the problem of constructing Boolean functions with very high nonlin-
earity is also related to the upper bou@ —23-1| on the covering radius of the first order
Reed-Muller code [21], which is later improved [23] 4222 - 222]. Until 2006, the max-
imum nonlinearity known for the Boolean functions os= 9, 11, 13 variables was thieent
concatenation boundf (2"1 - 2”%1). The bound is simply achieved by the concatenation of
two bent functions onrf = n — 1) variables, where bent functions are Boolean functions on
even number of variables attaining maximum nonlinearity of {21-22-1). Our four main
contributions are related to these concepts. Firstly, in 2006, we discbj25E9-variable
Boolean Functions with nonlinearity 24% 29‘1—2% +1) in the class of Rotation Symmet-
ric Boolean Functions (RSBFs), which led to the construction of functiatisrvenlinearity
exceeding the bent concatenation bound byZL%), for oddn > 9. Such functions were
attained utilizing the steepest-descent-like iterative algorithm that first eggpaa[29] and

then suitably modified in [25] for a search in the class of RSBFs.

Considering a Boolean functiohas a mapping fron&F(2") — GF(2), the functions for
which f(a?) = f(a) for anya € GF(2"), are referred to as idempotents [15, 16]. In [52], 15-
variable Patterson-Wiedemann functions having nonlinearity 16278%1 — 2°5 + 20)
are identified in the idempotent class. As pointed out in [15, 16], the idemigotan be
seen as RSBFs with a proper choice of basis. Motivated by this, we sttitiedSBF
class and discovered 9-variable Boolean functions having nonlinearity @n the other

hand, we exploited the nice combinatorial structure of the Walsh spectRSBFs on odd



number of variables [43] to carry out the exhaustive search of i@var RSBFs having
nonlinearity> 240, with considerable computationdfat. Consequently, we found [24]
that there are & 189 many RSBFs having nonlinearity 241, which we showed as being the
maximum possible value in this class. Further, utilizing some variants of binaisimgular
circulant matrices, we showed [24] that there are only tviiedint 9-variable RSBFs having

nonlinearity 241 up to thefine equivalence.

In 2007, as the second important contribution of this study, we prop@¥dHe general-
izedk-RSBFs, as functions that satisfy(azk) = f(a), where 1< k | n. Note that ifk = 1,

the resulting functions are the same as idempotents; where&s=far the entire space of
n-variable Boolean functions is covered. In the space of generakizR8BFs, imposing

the condition of invariance under the action of dihedral group, we hafiaatl the class of
generalizek-DSBFs as a subset &RSBFs. Then, we have used the steepest-descent-like
iterative algorithm in [25] for a search in the generalized 3-DSBF anéBfRclasses. As
our third main contribution, this search successfully ended up [30] withrdle functions

in both of these classes, achieving nonlinearity 242. This result showhtheovering ra-
dius of the first order Reed-Muller cod¥1, 9) is at least 242. This result is also important
for n = 11 andn = 13, since the bent concatenation of 9-variable functions with nonlinear-
ity 242 leads to the construction of 11-variable and 13-variable functiatfisnenlinearity
(21— 27 +2x 2%9), which exceeds the bent concatenation bound Jb)ZZ%Q. However,

we should mention that for odd > 15, the nonlinearity (21 - 2% + 20 % 2”_—215) given

in [52] that can be obtained by concatenating 15-variable Pattersonewiwath functions is

still greater than the nonlinearity T — 27 + 2 x 2'2°).

Further, in this thesis, knowing the fact that RSBFs, DSBFs, as well ageheralized
k-RSBFs an&k-DSBFs are invariant under some special types of permutations on ieput v
tors, we have investigated [27] on the same search problem froifieaedit direction and
considered the possibility of otheiich’ classes that are invariant under some permutations.
Linearly equivalent Boolean functions have the same nonlinearity; trereivhile search-
ing for highly nonlinear functions, it is quite logical to classify allpermutations up to the
linear equivalence of Boolean functions that are invariant under themne pecifically, for
9-variable Boolean functions, we have classified 9! many permutations idas8§es which
are diferent up to the linear equivalence of Boolean functions that are invanaer them.

Then for each class, by picking up a representative permutation aitijtnae have searched



the corresponding set of Boolean functions. Consequently, in somesé gets, we have
obtained [27] 9-variable Boolean functions with nonlinearity 242. So,aour of defining
other fich’ classes has been accomplished, as the fourth main contribution of this study
However, the functions mentioned so far do not contain any zero in théghWpectra, and

hence, they cannot be linearly transformed to balanced functions.

In [34], Maitra used the 9-variable Boolean functions with nonlinearity, 24#ich we pre-
sented in [30], to construct a 13-variable balanced function havingjneamity (2% —

2% 1 2= 4034). That was the first demonstration of balanced Boolean functiooslid
number of variables having nonlinearity strictly greater than the bent temeigon bound
for number of input variables less than 15. We modified the search algouiskechin [34],
and improved Maitra’s result by arriving at 13-variable balancedtfans having nonlin-

earity 4036 [36]. We consider this result as one of the side contributiomsrstudy.

In 1995, it was conjectured [72] that for any balanced function on mauber of input
variablesn, the maximum absolute value in the autocorrelation spectrum is greater than
or equal to 2% . Since then, the conjecture has been disproved by modifying 15-variable
functions with nonlinearity 16276 given in [52] for = 15 [39] andn = 21 [17]. As for
another side contribution of our study, we have demonstrated [25] funsctisproving the
conjecture for odah < 15. Our systematic search in the RSBF class shows that there exist

balanced functions on 9 and 11 variables having maximum absolute valubdes#? .

In [60], a tight upper bound on nonlinearity has been proposed filieret Boolean func-
tions and the existence of some Boolean functions on 7 to 10 variables isatigfg bound
has been posed as an open problem. Since then, the construction déittetsms has been
a challenging question. Some of them are presented in [51, 37, 68, 58forAanother
side contribution of our study, we found [25] a 10-variable 1-resilientcfion having non-
linearity 492, which was one of the unattained functions listed in [60]; ptsho the best

achieved nonlinearity of 10-variable 1-resilient functions was 488 [37]

1.4 Outline of the Thesis

After giving some preliminary material, related to this thesis, on Boolean fursction@hap-

ter 2, we introduce our steepest-descent-like iterative search stratdgyesent its results



attained in the class of Rotation Symmetric Boolean Functions (RSBFs) in Clgapher
particular, an RSBF on 9 variables having nonlinearity 241 is presented alith some
other important Boolean functions having very good cryptographicestigs in their Walsh

and autocorrelation spectra together. The material of Chapter 3 arm dag25s].

In Chapter 4, 9-variable RSBFs having nonlinearity240 are enumerated by affieient
exhaustive search strategy. It is found that there is no RSBF havirnijnearity > 241 and
there are & 189 many RSBFs having nonlinearity 241. Further it is proved that there ar
only two different 9-variable RSBFs having nonlinearity 241 up to tfigme equivalence.

This chapter is based on [24].

In Chapter 5, we improve the nonlinearity result of 241 by suitably genargline classes of
RSBFs and Dihedral Symmetric Boolean Functions (DSBFs) and preseras9-variable
Boolean functions having nonlinearity of 242. Then, we classify all iptsspermutations
on input variables of 9-variable Boolean functions with respect to therliegaivalence of
Boolean functions that are invariant under some permutations, which yield®-variable
Boolean functions having nonlinearity 242 wittférent autocorrelation spectra from those
of the functions found in generalized RSBF and DSBF classes. For thigartthe material
are obtained from [30, 27].

In Chapter 6, we have attained 13-variable balanced functions havinighearity 4036
which is greater than the bent concatenation bound of 4032, and impilevrescent re-

sult [34] of 4034. The material in this chapter are based on [36].

Finally, Chapter 7 is devoted to the conclusions, which provides a summauy @fork and

related open problems.



CHAPTER 2

PRELIMINARIES

An n-variable Boolean functiorfi(x) produces a single-bit result for eaotbit input vector
X = (Xo, ..., %n-1), Which may be considered as a mapping friiyil}" into {0, 1}. f(X) is
basically represented by itsith tablg that is, a binary vector of lengtH'2

f =[f(0,0,...,0), f(1,0,...,0), f(0,1,...,0),..., f(L,1,...,1)]. (2.1)

We represent the set of alivariable Boolean functions b,; clearly|8B,| = 22". A binary
vectorg has theHamming weight wWt)) equal to the number of its nonzero elements. The
Hamming distancdetween two binary vectorg and h, both having the same length, is
defined as the number of places for whigland h differ, i.e.,d(g,h) = wt(g @ h), where

@ denotes the addition ov&F(2). An n-variable Boolean functiori is calledbalancedif
wt(f) = 21,

Algebraic Normal Form and Degree. The algebraic normal form(ANF) of a Boolean
function f(x) is defined as its unique representation in the form of a multivariate polynomial
overGF(2),

f(x0,..., X-1) = C® @ aj X ® @ ajXXj®...®a1.n1%X1... %-1, (2.2)

O<i<n-1 O<i<j<n-1

where the cofficientsc, &, aj,...,a81.n-1 € {0,1}. Thealgebraic degregor simply the
degree off, is the number of variables in the highest order product term with norzefe

ficient, which is denoted bgleq f).

Affine and Linear Boolean Functions A Boolean functionf (xX) having degree at most one

is called amgffinefunction ofx = (Xo, ..., Xn-1) € {0, 1}" . Its ANF is given by



f(X) = WoXo ®Wi1X1 D ... D Wn 1X-1 ® C =< W, X > &C, (2.3)

wherec € {0,1}, w = (W, ...,Wn_1) € {0,1}", and< w, x > represents the inner product
of wandx. An affine function with the constant term= O is calledlinear. The set of all

n-variable dfine (respectively linear) functions is denotedAy(respectivelylL,).

Walsh Hadamard Transform. For a Boolean functiorf the Walsh Hadamard transform is

a real valued function ovd0, 1}" which is defined as

Wiw) = > (-1)f00w, (2.4)
xe{0,1}"
We refer to the vectow; = [W;(0,0,---,0), Ws(1,0,---,0), W;(0,1,---,0), ..., Ws(Z,
1,---,1)] as theWalsh spectrum or simply the spectrum of the functioh The Boolean
functionsf andg are said to havaonintersecting Walsh spectf@0, Lemma 7] if and only

if Wi (W) # 0 = Wy(w) = 0 andWy(w) # 0 = Wi (w) = 0 for allw € {0, 1}".

Nonlinearity. The nonlinearity of am-variable Boolean functiori is defined as its mini-

mum distance to anyfiane function, i.e.,

ni(f) = min(d(f, g))- (2.5)

In terms of Walsh spectrum, the nonlinearityfois given by

1
I(fy=2"1-Z2 Wi (W)). 2.6
ni(f) h@%JfMN (2.6)
Boolean functions used in cryptographic systems must be highly nonlineasiti Best

Affine Approximation (BAA) and correlation attacks [6, 13].

Correlation Immunity and Resiliency. Zhen and Massey [18] have provided a spectral
characterization of correlation immune functions, which we use as the defihide. A
Boolean functionf is m-th order correlation immune (respectivelyresilient) if and only if

its Walsh transform satisfies



Ws(w) = 0, for 1 < wt(w) < m(respectively O< wi(w) < m). (2.7)

Parseval’'s Theorem.It states that for an-variable Boolean functioifi, the sum of squared

Walsh spectrum is constant and equal &t 2

(Wi (w))? = 27", (2.8)
we(0,1)n
Autocorrelation Function. The autocorrelation function of a Boolean functidns given

by

r(d)= ) (-1)ieibed, (2.9)
xe{0,1}"
whered € {0,1}". The autocorrelation value having maximum magnitude (excluding the
value at the origin which is equal td'Ris also known as the absolute indicator [72] and

denoted as:

As = max r+(d)|. 2.10
f de{0,1}",d(0,..., 0)| () ( )

Propagation Characteristics (PC) and Strict Avalanche Criteria (SACpf] are important

properties of Boolean functions to be used in S-boxes. A function is samtigfy PCK), if

r{(d)=0for1<wt(d) <k (2.11)

An n-variable Boolean functiom(is even) is calledentif the Walsh spectrum is flat, i.e.,
Wi(w) = 22 for all w € {0,1}". Bent functions achieves the maximum nonlinearity of
(2" — 22-1) and absolute indicator value of 0 (i.es(d) = O for alld £ 0, € {0,1}").
These functions exist only whemis even. In [71], the squared spectral distances from bent

autocorrelation and bent Walsh spectra are related by the following theore
Theorem 2.1.3 4.0 12(d) = 27" (W 2(w) — 22,
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Proof. Let us denote the Walsh Hadamard transform:¢d) by Rs(w). The following fact,
which states that the autocorrelation and squared Walsh spectra formséotra pair, is

used to prove the theorem.

R (w)

Z s (d)(—l)<w’d>,
d
Z Z(_1)f(x)(_1)f(X@d)(_1)<w,d>’
d X
Z Z(_1)f(X)(_l)f(y)(_1)<W,XEBy>’
Xy
Z(_l)f(x)(_1)<w,x> Z(_l)f(y)(_l)<w,y>,
X y

Wi2(w). (2.12)

Then, using this result together with Parseval’s theorem,

D ()

d+0

D r(d) - r2(0),

i re?(d) - 2,

i 270 ) ReW)(-1)727 ) Re(W)(-1) ™% — 2,
e D VFVef W) Y Ri(V) Z(—l)vﬂ’ww T

= 27 ZW: R (W) ZV" Ry (v)2:6(wea V) — 22",

= 2 Zvlv R¢%(w) —V 220,

= 27" Witw) - 22",
w

— 2—n(Z Wf 4(W) _ 2n+1 Z Wf Z(W) + 23n)’

270 ) (WeP(w) - 27, (2.13)
W
whered(w @ V) is the Kronecker delta function which is nonzero only whea v = 0.

In our steepest-descent-like search algorithm, we mostlyplisgr +2(d) as the cost func-
tion, which minimizes the squared distance to bent functions both in terms of \Afatsh

autocorrelation spectra, as can be seen from Theorem 1.
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A Boolean function is balanced if and only if its Walsh spectrum value is zettezorigin.
On the other hand, if an unbalanced Boolean functx) contains a zero in its Walsh
spectrum except the origin, salyy(u) = 0 andu # (0,...,0), it can be linearly transformed
into a balanced functiori(x) = g(X)¢@ < X u >, which has the same nonlinearity and

absolute indicator; i.enl(f) = nl(g) andAf = Ag.

Following the notation used in [60], we define the profile of a Boolean fundtyo(n, m, d, o)
as its (input variable length, resiliency order, degree, nonlinearitydlifgthe last entr to
the notation, by annim, d, o, A) function we denote an-variable,m-resilient function with
degreed, nonlinearityo and absolute indicatak. By (n, -1, d, o, A) we mean unbalanced

functions and byr, 0, d, o, A) we mean balanced functions.

2.1 Group Action by Permutation Groups

A groupG is said to act on a sef if there is a mapping : G x X —» X denoted ag - X,

which satisfies the following two axioms for all elemerts X.

1. e- x = xwheree stands for the identity element Gf

2.9-(h-x)=(gh)-xforallg,heG.

The mappingy is called thegroup actionand the seX is called aG-set. The orbit o is
defined as the sé&b(x) = {g- X | g € G}, i.e., the group action movesto its orbit. As
the set of orbits oX under the action o6, denoted byg, constitutes a partition oX, the
corresponding equivalence relation is definedxby vy iff there exists @ € G such that

g- X =Y. Hence, the orbits form the equivalence classes under this relation.

Let G be a permutation group acting ¢ 1}", and consider the class ofvariable Boolean
functions which are invariant under the actior&fi.e., any Boolean functiofi in the class
satisfies the condition for eache {0, 1}", f(x) = f(y), for ally € G(x). As a consequence
of the invariance property, the class composes a subcla®g ahd knowing the number of
orbits, i.e.|G|, it contains #! manyn-variable Boolean functions, each satisfying the given

condition. The value ofG| can be determined using Burnside’s Lemma.
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Lemma 1 (Burnside’'s Lemma). Let G be a group of permutations acting on a Xetand

fixx(g) = {x € X | g- x = x} for eachg € G. Then the number of orbits induced &nis

given by & Ygec | fixx ().

Let us represent an orbit by its lexicographically the first element, andtdehe repre-
sentative element a%;. The Boolean functiorf which is invariant under the action ¢,
can be represented by (o). . ..., f(Ajg-1)), whereAo, ..., Ajg-1 are again arranged lexi-
cographically. Clearly, this representation is shorter than the truth talfleradrther, it can
be shown [68] thatW;(u) = W;(v) if u € G(v), implying that the Walsh spectrum dfcan
be at mos{G| valued. Then, defining i x |G| matrix A asdAi | = Yxec, (~1)™"” [68],

the Walsh spectrum df can be calculated as

IG1-1
Wi(A) = D (1)) ;. (2.14)
i=0

In [43], a nice structure in the matrid is obtained by applying some permutations on the
representative elementsy, A1, ..., Aig-1 for Boolean functions on odd number of input
variablesn. Let [\i denote the complement &, then, for oddn, there is a one-to-one
correspondence between the orbits of even weiglst and the orbits of odd weight;’s

by Ai — Aj. So, the set of orbits can be divided into two subsets (of same cardinality)

containing representative elements of even weights and odd weights.

Now, consider the ordering of the;’s as follows. Let us permuta;’s so that the firsﬂ%
representative elements correspond to the orbits of even weights in legitical order and
the second@ representative elements correspond to the complements of tng'ftrmits in
the same order. That meanstké (i =0,..., % —1) orbit representativa;, whereA; is the
i-th element in the new order, corresponds to the orbit represenﬁ%]\gf. Consequently,

the permuted matrix, denoted B¥", has the form [43]

GEa
A" = : (2.15)
H | —H

where?H is a sub matrix ofA”.
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2.2 Rotation Symmetric Boolean Functions

Letting (Xo, X1.. .-, Xn_1) € {0, 1)", the (left)k-cyclic shift operatopX, onn-tuples is defined

as

pkn(XO’ X17 ceey Xn—l) = (X(O+k) modns - -» X(n—l+k) mod n)a (216)

for 1 < k < n. A Boolean functionf is calledrotation symmetricf for each input o, . . .,
Xn-1) € {0, )", f(p1, (X0, ..., % 1)) = f(Xo,...,Xn_1). Thatis, RSBFs are invariant under
all cyclic rotations of the inputs. The inputs of a rotation symmetric Booleantifumcan

be divided intoorbits so that each orbit consists of all cyclic shifts of one input. An orbit
generated by, X1, . . ., Xo_1) iS denoted bYGn(Xo, X1, - . ., Xn-1) = {P%4(X0> X1, - - - » Xn_1) |

1 < k < n} and the number of such orbits @ (= 2%). More specifically,g, is equal

to % 2tin ¢(t)2? [67], whereg(t) is the Euler’s phi-function. The total number variable
RSBFs is &n.
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CHAPTER 3

SEARCH IN ROTATION SYMMETRIC CLASS

3.1 Introduction

On odd number of input variables constructing Boolean functions with maximum possible
nonlinearity is an unsettled open problem in the area of symmetric cryptogaaphcombi-
natorics. The problem is also related to the upper ba@fid — 22-1] on the covering radius
of the first order Reed-Muller code [21], which is later improved [23pg&2 — 22-2|.
Boolean functions on even number of input variabigattaining maximum nonlinearity of
(2"-1 — 2371 are called the bent functions [56]. For odd number of input variafl¢ke
nonlinearity value (21 — 2n;21) is known as théent concatenation boundince the con-
catenation of two bent functions on £ 1) variables yields»-variable Boolean functions

achieving this bound.

For oddn < 7, it is known that the maximum nonlinearity is equal to the bent concatenation
bound [2, 47]. Clearly, as the numbermsf/ariable Boolean functions {2 increases super-
exponentially as increases, exhaustive search of the whole space is not feasilvle-f@r

with currently available hardware. Therefore, for any search attenffaret subclasses of

Boolean functions are always significant and interesting.

In 1983, Patterson and Wiedemann [52] demonstrated a construction iethpatent class,

of 15-variable Boolean functions with nonlinearity 16276 (exceeding éme doncatenation
bound by 20), using combinatorial techniques and search methods. tBam;dt has been
possible to get functions with nonlinearity"(2 — 27 +20% 2”%5) for oddn > 15, which
exceeds the bent concatenation bound by26_2£’. Until 2006, the maximum nonlinearity
known for the cases ai = 9,11, 13 was equal to the bent concatenation bound. In 2006,
9-variable Rotation Symmetric Boolean Functions (RSBFs) with nonlinearity22%1 —

27 + 1) were discovered [25], which led to the construction of functions withlinearity

exceeding the bent concatenation bound byz%’, for oddn > 9. Such functions were
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attained utilizing the steepest-descent-like iterative algorithm that first eggbea[29] and

then suitably modified in [25] for a search in the class of RSBFs.

In symmetric cryptography, highly nonlinear Boolean functions having losolute indica-

tor value (Af) are desired to satisfy confusion andfdsion criteria. In 1995, it was conjec-
tured [72] that the maximum absolute valtue > 2" in the autocorrelation spectrum of any
balanced Boolean function on odd number of input variahleSince then, the conjecture
has been disproved by modifying 15-variable Boolean functions with reenlity 16276
given in [52] forn = 15 [39] andn = 21 [17]. For the first time, we have demonstrated such
functions for oddn < 15. Our systematic search in the RSBF class shows that there exist
balanced Boolean functions on 9, 10 and 11 variables having 2/21. For even number of
input variables, 8-variable balanced Boolean functions having= 22 are attained exper-
imentally in [9, 28, 29], yielding better absolute indicator value than that ofdhstcuction
proposed in [35] for which\; < 22 + Ag, wheref andg are balanced functions enand )
variables respectively. So far there was no evidence of balancdddofunctions on even

number of input variables havingA; < 22.

In particular, we have attained 9-variable (11-variable) RSBFs havinljrearity 240 (988),

At = 24 (56), and algebraic degree 7 (9). Then, we have linearly tranefbthese functions

to 1-resilient or PC(1) functions. 1-resilient Boolean functions having< 2% have not
been demonstrated earlier for any variable. Further we have obtainedharidble RSBF
having nonlinearity 990A; = 56 and algebraic degree 10, which can be linearly trans-
formed to a PC(1) function. For even number of input variables, we foawel 10-variable
functions having nonlinearity 488, = 24 and algebraic degree 9; some of them can be

linearly transformed to PC(1) functions.

In [60], a tight upper bound on nonlinearity has been proposed &ilieet Boolean func-
tions and the existence of some Boolean functions on 7 to 10 variables isatigfg bound
has been posed as an open problem. Since then, the construction déittetsms has been
a challenging question. Some of them are presented in [51, 37, 68, §&].10-variable
1-resilient function having nonlinearity 492, which we present heraameed unknown till

our work [25]; previously, the best achieved nonlinearity was 488 [37

Considering a Boolean functiohas a mapping fron&F(2") — GF(2), the functions for

which f(a?) = f(a) for anya € GF(2"), are referred to as idempotents [15, 16]. In [52],
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15-variable Patterson-Wiedemann functions having nonlinearity 162246 — 2% +20
are identified in the idempotent class. As pointed out in [15, 16], the idemisaten be seen
as RSBFs with proper choice of basis. From this motivation, we study thé-R&Bs and
discover 9-variable functions with nonlinearity 241. In [15, 16], thelim@arity of RSBFs
up to 9 variables is studied providing encouraging results. After that, tke ofdRSBFs has
received a lot of attention in the literature [67, 66, 68, 11, 7, 20, 43,wWRé¢re it has been
asserted theoretically and experimentally that the RSBF class contains intfonetions
having good cryptographic properties. Further, in [53], RSBFstadied as components in

the rounds of a hashing algorithm and research in this direction was |at@mwed in [10].

Heuristic strategies, such as genetic algorithms and hill climbing, have beehyinities-
tigated in [44, 45, 46] for the design of Boolean functions. Howevegdlatempts seem to
be insuficient in designinghearthe-bestBoolean functions. After that, simulated anneal-
ing [31], a heuristic optimization thechnique based on annealing processtals, was used
to provide promising results [9, 28], which yields Boolean functions hagogd crypro-
graphic properties in both Walsh and autocorrelation spectra for smatfiidas f < 8).
On the other hand, in [8], it was pointed out that some of the Boolean funsctaund by
simulated annealing could be linearly transformed (using simple linear chérgeis) to
achieve resiliency supplying the best possible trafie-€Consequently, supplementing op-
timization with theory yields the best Boolean functionsmon 8 variables in terms of non-
linearity, algebraic degree and resiliency. Recently, exploiting a heurtstitegy based on
“Particle Swarm Optimization” [1], the existence of 9-variable, 3-resilienttions having

nonlinearity 240 has been demonstrated in [58], which was open sinpeoC900 [60].

In this chapter, our steepest-descent-like iterative algorithm that fipsiaaed in [29] is suit-

ably modified so that it can bdtiiently applied for a search in the RSBF class and attained
Boolean functions which are very good in terms of their Walsh and autletion spectra.

The strategy presented in [29] has been applied to the complete spaceledBé&unctions

that resulted in discovery of 8-variable balanced Boolean functfohaving nonlinearity

116 andA; = 16. It performs much better when applied to the much smaller (but rich) space

of RSBFs. To have a quick feel of houvfieient our strategy is, one may refer to Remark 1.

In the following section we present the search strategy. The resultsegenped in Sec-

tion 3.3.
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3.2 Search Strategy

The search strategy uses a steepest-descent-like iterative algorithira eabhb iteration step
has the input Boolean functiofi and the output Boolean functiofy,in. At each iteration

step, a cost function is calculated within a pre-defined neighborhoddaofl the Boolean
function having the smallest cost is chosen as the iteration oditputWe use the sum of

squared errors [28, 71] as the cost function, which is defined as:

Cost= ) (Wi(w) - 22 (3.1)

Note that SinceX 4o r2(d) = 27" 3, (Ws2(w) — 2")? (see Theorem 2.1), the cost function
minimizes the squared distance to bent functions both in terms of Walsh andetaton

spectra.

In some rare cases, the costfgf, may be larger than or equal to the costfofThis is the
crucial part of the search strategy, which provides the ability to esecapelbcal minima

and its distinction from the steepest-descent algorithm.

The 1-neighborhood of is obtained by flipping a single element of its truth table. For
ann variable balanced Boolean function, the 1-neighborhood consist$ m&Ry distinct
Boolean functions, each being at the Hamming distance 1 to the original Bdlleetion.
However, when the search space is restricted to RSBFs, the 1-ndigloblois either an
empty set or contains a single RSBF. If a bit in the truth table of an RSBF igedaall
entries corresponding to an orbit (a rotationally symmetric partition, which is osetpof
vectors that are equivalent under rotational shifts) should be chaogétain another RSBF.
The closest rotationally symmetric neighbors of RSBFs can be found byleorapting the
truth table entries corresponding to a complete orbit. So, at each step dfjtnithan, we
constitute the neighborhood éfby complementing each RSTT entry (i.e., changing all the

values in a truth table corresponding to an orbit).

Our steepest-descent-like search technique minimizes the cost until a loc@alumins at-
tained, then it takes a step in the direction of non-decreasing cost. Tivateisever possible,
the cost is minimized; otherwise, a step in the reverse direction is taken. Tdrendfdstic

step in the reverse direction corresponds to the smallest possible cesiseevithin the pre-
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defined neighborhood of the preceding Boolean function, which makessible to escape

from the local minima.

Our algorithm given below starts with an arbitrary RSBfiiai, and stops after a fixed
number of iterationsN. At each iterationgy, distinct Boolean functions within the prede-
fined neighborhood, each of which is shownfgy,peq, are visited by storing the cost value
COStkjipped iN COST, and the corresponding Boolean function itselS&ET;. Among the
stored cost values, the minimum orm®stn, is chosen, and the respective Boolean func-
tion, fmin, is obtained fronS ET; as the candidate of the step output. If the candidate

is already inS T ORE which contains all previous iteration outputs, then this candifigte

and its cost are removed froBIET; andCOS Trespectively. The minimum cost value is
searched again iBOS Tamong the remaining cost values to find the respective new candi-

date for fmin.

Algorithm 3.1
f = finitial
for(int k = 0; k < N; k+ +){
for(inti = 0;1 < gn; 1+ +){
Flip one orbit of f
SET[i]= ftiipped
COST i ] = coSkjipped
}
Find costin (Min. costjipped IN COST), and fmin (respectiveftjipped in S ETy)
while(fmin is already inS TOREY{
Removecostyin from COS T, and fin from S ET;
Find costyin in COS T, and fmin in SET;
}
S TORHK] = fmin

f= fmin

Since the neighbors df are obtained simply by flipping a bit in its RSTT, the number of
neighbors is equal tg,. We present the C code of Algorithm 3.1 in Appendix C.
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3.3 Results

We start this section with the most important result of this chapter.

3.3.1 9-variable RSBF with nonlinearity 241

The following is the truth table of a 9-variable functidifx, ..., Xg) having nonlinearity

29-1_ 2% 1 1=241.

977F3FFAOEFAAEC955F8FACDCCA9A0837666EBCOFA88EOB3F4EQ8983C845915E
7F7C2C29FCCBA101EA98CO85E8118B5EFE21E9118483851EE1952136971676E9

Given anintegem > 0 and even, itis clear that the functigys, y2, . . ., Yym)®f (X1, ..., Xg) iS
ann-variable 6 = m+9) function with nonlinearity (2*1—2”%l +272), whereg(ys, Y2, .. Ym)
is anmvariable bent function. Thus there exist Boolean functions havindjrmearity >
(2"t - 2"%1) for oddn > 9. Keeping this in mind, and adding the results of [2, 47] that the
maximum nonlinearity of Boolean functions on odd number of variables fdrmog 7 is

(21 - 2'), we get the following.

Theorem 3.1 There exist Boolean functions an(odd) variables having nonlinearity
(2m1 - 2%1) if and only if n > 7. In other words, for odah, the covering radius of the

(2", n + 1) Reed-Muller code is (2"1 - 2";21) ifand only ifn > 7.

Remark 3.1 At this point we like to highlight theféiciency of the search method. In [24]
(our work later to [25]), it has been noted that there are 1512 manyi@ble RSBFs having
nonlinearity 241 and this is the maximum nonlinearity in the 9-variable RSBF disi®

that the 9-variable RSBF class is of siZ.2Thus in a random search, the probability of
getting a 9-variable RSBF with nonlinearity 241 is-11 — 125T%,2 "in i many attempts. Note
that lime(1 — 1) = . Thus in approximatelylzsif2 (> 2*°) many attempts one may
get a 9-variable RSBF having nonlinearity 241 with probability% > % in a random
search. Our search method performs much better than that. We found 588ifs having
nonlinearity 241 in 2 1% (< 228) many generation of Boolean functions using Algorithm
3.1; which shows that thefféciency of our search strategy plays an important role to discover

such functions.
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Next we concentrate on other important functions in the RSBF class.

3.3.2 Important RSBFs on 9, 10 and 11 variables

In Table 3.1, we summarize the profiles of the some other important RSBFs tluditaia

by Algorithm 3.1. We use the notation (number of variables, resiliencyegegionlinearity,
absolute indicator) for each profile; resilieney—1 (respectively 0) denotes unbalanced
(respectively balanced) functions. If the given profiter(, d, o, A) can be transformed into

a function having the property of PC(1), then we denote ithyn(d, o, A)*.

Table 3.1: Summary of other important RSBFs.

RSBF No| Initially Attained RSBF Affinely Transformed Results
1 (9,0, 7, 240, 24) (9,0, 7,240, 24)*, (9, 1, 7, 240, 24)
2 (11, -1, 10, 990, 56)* (11, 0, 10, 990, 56)*
3 (11,0,9,988,56) | (11,0,9, 988, 56)*, (11, 1, 9, 988, 56)
4 (10, -1, 9, 488, 24)* (10, 0, 9, 488, 24)*
5 (10, -1, 8, 492, 56) (10, 1, 8, 492, 56)

1. Algorithm 3.1 outputs the following functios, which is a 9-variable balanced RSBF
havingnl(¢) = 240 andAy = 24 < 32 = 2% and algebraic degree 7.

005473257A0E49676BDD10E864D3287F399BB2E30214BC916865E70B58853BBE
OED3C29B9F48ADOF554906658BB1C3562D857833F92B159E33C5D1765BDEDEEY

Given ann-variable Boolean functioffi, let us form a set of vectoiS¢, which is defined as

St = {w € {0,1}" | Wi (w) = 0}. (3.2)

SupposeB; is a honsingulan x n matrix whose rows are linearly independent vectors be-
longing toS; (if there exist such vectors ). Then, defining’(x) = f(B;lx), itis ensured
that bothf” and f have the same weight, nonlinearity and algebraic def38 Moreover,

W (w) = 0 for wi(w) = 1, which provides that’ is correlation immune of order 1. Further

if f is balanced therf’ is 1-resilient, in other words, ¥;(0) = 0, thenWys (0) = O for

0 < wt(w) < 1. This technique has been used in [50, 38, 8]. The following function is

obtained by a linear transformation on the input variables above, which is 1-resilient.
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1C969EECOB5B87307EB530AD3C365AD32A6771C130CBA71435798C8B6A9DE6G LS
ECFI9DO5D64E8987F8414D1018621E7EEEQ5FD4E1AF403F05BF2226AEE2B36DOE

Similar technique can be used to construct PC(1) functions. Givanvamiable Boolean
function f, let us definel'; = {a | A¢(@) = 0}. If there existn linearly independent vectors

in T¢, then one can form a nonsingulax n matrix D+ whose rows are linearly independent
vectors belonging td . Now one can defindé’(x) = f(xD¢). Both f” and f have the same
weight, nonlinearity and algebraic degr¢&3]. Moreover,A¢ (a) = 0 for wt(a) = 1. This
ensures that’ is PC(1). This technique has been used in [39]. The following function is

obtained by a linear transformation on the input variables albove, which is PC(1).

2C317F8130464E9D30EAQA95556F8EAAE108188979AC48E9F23AA6793CBBES26
FODA686073CFD3D6ABE78F641FEB34DD64ED3721BCEOC6CAOCBSESFCA6655004

It would be interesting to get a transformation on input variables such thedillency and

PC(1) can both be achieved at the same time.

2. Using Algorithm 3.1 we find the following functiaf which is an 11-variable unbalanced
RSBF havingnl(¢) = 990,A, = 56, andded¢) = 10. Note that this function is by itself a
PC(1) function which is not balanced, but soon we will provide a balhi@(1) function

too.

FEEDB8A7CA94D83AF4C88330F7C0O4EC8BB64F4C5C05B0F41BB6AF41130BCB595
CACF7D60OFF75F463B04473DBOOFE2553DACF7CDDAE6517161A40DAA08A32D263
F198EQEE3FA62C15BEFE3A36BF75280A8B5571703A1EE7CA4551BEEC4C23725A
A798A4BF2EB5B3A6C9FC7C63566A562806996510A2D8984484CC1B49B60D684B
EB4386C4E814F8A85AEB8D3958E546778BF8FFE94ADDOE3DCBEF2B7648C004C9
D48A72276E467F001FDC46B8BD6AA1CC342727529EE9ESEQ25B40C4A2A596389
992A86COCI935CBAF1CF98F279B1E8829E0C3AAF07EA4781A633C698836280D91
502897936D335601890CE2C496906035C075B5E1128A64878F7940A33D8171DE

We transformg to a balanced onef, by usingw = (0,0,0,0,1,1,0,0,1, 1, 1) for which
Wy (w) = 0. Thus the functiorf(x) = ¢(X) ® w - X is balanced as given below with the same

nl(¢), Ay, anddedq).

9784D1CE5C024EAC625E15A69EA927A1D20DIDAC56CD99D72DFC628759D5DCFC
A3A6140969E362F526D2E54D69974C3AB3A615B438F381808CD64C36E35BBBOA
98F18987A930BA832868ACA0OD61C4163E23C1819AC88715CD3C7287A254A1B33
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CEF1CDD6B82325305F6AEAF53F033F416FFO0C79344E0ED2125A8DDFDF640122
822AEFAD7E826E3ECC7D1BAF318C2F1EE2919680DC4B98AB5D79BDE®21A96DA0
BDE31B4EF8DOE996894ADO2ED403C8A55D4E4E3BO87F7E76B3229ADC43300AEQ
FO43EFA95FA35D398A06F19B1F277E14089AAC399E832EE8CF5AAFF1ES5F4164F8
3941FEFAFBA5C0971F9A7452FFF9095CA91CDC88841CF21119EFD63554E818B7

Note that this balanced functiohis by itself a PC(1) function. Since the above function
is of nonlinearity 990, which is not divisible by 4, it cannot be made 1-redilyy dfine

transformation.

3. Next we present such a function of nonlinearity 988 having degrse ¢hat we may
get 1-resiliency by linear transformation on input variables. By Algorithin 8/e get a

balanced RSBF having nonlinearity 988A; = 56 and algebraic degree 9.

ECB4DE71F3FD6B13FB1ABAB7688A075EFA9F17D89BIDCA3E6D8ODOCC542B63ED
BE8992BB076FE6CO83CAD2A7EOCD4AE96CE6C411A244F4B166600D9F281AB8B6
DEB881879619CBCB407E29BAFC3CE501C14ABODCA31CCD2BECO1F4A621C8E8D7
7DF1FD28B0201317CC5C3421EB618F533969280455B2D3BB4DD04299CF859F7C
AGEDDF95D447803EC77C5786BOCAE19B61453BA818C38B89AAAS0AES5A8370446
E41365998E14E6B1984E16B1A1E2188FFDF04057AE61993D5902F4D5BC85B37E
2BF7EBO6BEF248959B504911030B072AA5B526A54A651843FC8F2957DOEF635E
1F926C875C95113037238B49E31FCBI9E74A3E75471199796E1BED57696FEGEAQ

The function is then transformed to 1-resilient function as follows.

975D2EFDA7C9D97E96B58F09B056960188614907BACF4617219BF147E6B34314
410C9ESBBOOOFE87E8A7A3590CF4B1A66D11818429EC3FOF61EF89CBIES98BED
B208B29527E8404F871B756693944C3972D242039F3017FD34E2973C2B2567A5
C2FFF57B3783DD747993E8346E5DE67 1ADES8OD4D3E98FA461ACAA93A2FF87622
DOBCA271ABDD139C66ED2D8C75ED7DD3B22968E85BC520361B31DD9FO9FF1162
974F19DD09251C16C56CDC7C3AE920EADBCO8BFC51B3F300DE3C7B6CC668D504
01EC68ACID3AB7525BEEE63DOC208D358F88DED59DD59B4433B80016AF5DA8BD
D8E2BO53COE67A16241122E8E4A4C158CB654ABAFDAO3E73A05A75DA610B99BF

Further we can also transforimto a PC(1) function as follows.

850EC14AF195F38DD59EB29E7CD758C76122F20FCE9E83DE393F53757954269F
44COECO7E6724883E726A750939EE4DB5475F56C1D3933F585C6DB9719D8BA35
58041ABEF105914D59F02FFB8CED823D982469B85F32874654BB8CBAEB4A110E
F2381C97099C58E1A0FD724A35D28129D9F61CA877BE0O109BD67A3B62EA4BASF
ODA4AEQE2D84AA64301635E183CE33D19B7D50C9230D027BBB22443BF5765A34
F3AF2B9FOAB2DE85ABDF1367526B942351D91F43EB123B9CE5B164E6DFBIO5ES1
60D537FBI9ED65A0AD8674BC3443C83804D5D3169CDOESB22E723184D144D0918
00332B98CF8E2E39F53C6BAEF24402F19B9B703616B1C860AE538705DEEAFQB7
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4. Using Algorithm 3.1, We first find an unbalanced RSBW®ith nl(¢) = 488,A4 = 24,

andded¢) = 9 as given below. This is an unbalanced PC(1) function.

FFFEEBFOE8CAAFD2E8C5A4899CFFB20CFDC4F162992580C283E5FAAA8F1C51B5
FAA6B471FA12385996824D379154A55DD10EA827BFOD8DI98DOEBO7B43606CE27
FE9D883C8B216F42FAD853081BCO36D7C26DC44D60B75E3FD2037734C93662A3
E70611B8CCDO586F8BAB87E7C1F69681B254ACCB113B9E614E295569A1F91D7F

We find only one zero ab = (1,1,1,1,1,1,1,1,1,1) in the Walsh spectrum af, which
is used to get a balanced function as follows. One may note that this functigritself a

PC(1) function.

96687D907EA3C6447EACCD1FF56924656BAD98F4F0B316ABEA736CC319753823
6CCFDDE79384AE30FF14DB5EQ@73DCCCBB8983E4E29F4E40E46826E225F90584E
68F4E1AAE2B7F92B934EC5618DA95F41ABFB5224F6DE37A9446A1EA2AQOA0F4CA
8E9087D15AB931F91DC2EE71A86000E8243DC55D78AD080827BFC300379074E9

5. We first identify unbalanced RSBfhaving nonlinearity 492 and algebraic degree 8. The

functiong is as follows.

E9C6B17C9F136FE496BA574B7CEEA820D33C8E9D776F709B6EB1ASE9CCDO1941
B34F4EFQ95F8C2E23E6A68AA6B40C2DA3CE8DB469C81A883F4A1A24146877153
9A5E75BA64F9EA00D627FBC5A509AC595BAC7C886880988C68DA6101E109A3DD
4EF4ADSOE3DB312DD2E080428C91911FAE309D53C8082557247D803F2F07335E

To make it balanced we take = (0,0,0,0,0,0,0,1,0,1) whereWy(w) = 0. Thusf =
¢ ® w - X is a balanced function. Then we consider theSet {w € {0, 1}" | Wi (w) = 0}
having|S¢| = 40. There exist 10 linearly independent vector§in and one can construct
a nonsingular 1& 10 matrixB; whose rows are linearly independent vectors fi®m We

have considered the following matrix.

(001 0100010 1
1101011010
1110101010
0000O0O0T1111
17111010010
Br=l1 00000011 1 (33)
0000101111
17111101110
1000001111
01000000 O O

N
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Let,Cs = B;l and thenf’(x) = f(C¢x) is a 10-variable 1-resilient function with algebraic

degree 8 and nonlinearity 492. The functitins as follows.

8180CDED6C1CO302AA32E761B2079F0C37D8393E5B8DF2934B2AACEA7EB40BFO
AF6694BAF19E415E4580C0D679DB9BEB982963591185C33FEC2F67987D121D3B
C4E281F3D071957A74DF8A99FF258E9EC3D3AE6BE39415BOF4E5DA104DFCO125
24AD19CBA965D3768C525AD75C5316AA0F77F1A49E4AFD4223D40756C8388886

3.3.3 Search Hort

In Remark 1, we have quantified houfieient our search method is in terms of finding 9-
variable RSBFs having nonlinearity 241. Since it is not possible to completeinerate
the other important functions we have achieved, tfieiency of the search method cannot
be quantified. However, the following seardfiogt related to Algorithm 3.1 show that it is

indeed possible to achieve good functions in nominal time.

Forn = 9 we have carried out 2000 runs each with= 100, 000 iterations. Among these 200
million RSBFs, five have the nonlinearity 241, and 580 many RSBFs have thimearity
240 and absolute indicator 24. For= 10, 250 runs have been performed each Wth:
400 000 iterations. Among the total of 100 million RSBFs, 11 have the nonlinearity 488
and absolute indicator 24, all transformable to balanced functions. lrathe experiment,
we have found 67,479 RSBFs with nonlinearity 492, all transformable to tedisflanctions
and among them we could obtain several 1-resilient functions using liheage of basis.
Besides, we have noticed that only four of the 67,479 RSBFs are bdlarmnone of these
balanced functions can be transformed into a 1-resilient functionnkorll, there are 7
successes with nonlinearity 988 and absolute indicator 56 in 500 runsovir we have
encountered an unbalanced RSBF having nonlinearity 990 and absalig&tdm 56, which

is transformable to a balanced function.

Using a computer system with Pentium IV 2.8 GHz processor and 256 MB RaWhb
Windows XP operating system, and setting the iteration nuriberl00 000, a typical run
of our algorithm takes 1 minute and 29 secondgifer 9. With the same computer system,
a typical run takes 57 minutes for= 10, and 69 minutes far = 11, by setting the iteration

numbers tadN = 400,000 andN = 500,000 respectively.
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3.4 Conclusions

Boolean functions, which have not been known for a long time, could biewaed with our
steepest-descent-like iterative heuristic search in the class of rotation syommBmolean
functions. As a major result, we find a 9-variable RSBF with nonlinearity 24l thus
we could show the existence of Boolean functions having nonlinearitg"* — 2”%1) for
n=91113. We could find balanced Boolean functions gd®and 11 variables with
maximum absolute value in the autocorrelation specteu®iz! with other cryptographic
properties such as good nonlinearity and algebraic degree. Some ®fdine§ons on each
of the 910 and 11 variables cases can ffinaly transformed to balanced PC(1) functions.
Some of these functions on 9 and 11 variables can be transformed titidntésnctions as
well. Further, we discovered several 10-variable 1-resilient funstigith nonlinearity 492,

which was posed as an open question in Crypto 2000.
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CHAPTER 4

9-VARIABLE RSBFs WITH NONLINEARITY > 240

4.1 Introduction

In this chapter, the complete class of 9-variable RSBFs is studied for naritin@41. For

this purpose, we exploit the nice combinatorial structure of the Walsh sdectRSBFs on
odd number of variables [43] to carry out the exhaustive searchvafi@ble RSBFs having
nonlinearity> 240 with considerable computationdf@t. As a consequence, we find that
there are 8 189 many RSBFs having nonlinearity 241 that is maximum possible in the
class. Further, utilizing some variants of binary nonsingular circulant neatritis shown
that there are only two ffierent 9-variable RSBFs having nonlinearity 241 up to tfi@e

equivalence.

In the following section, the details of the exhaustive search strategynfding 9-variable
RSBFs having nonlinearity 240 is explained. Thefine equivalence among 9-variable

RSBFs having nonlinearity 241 is presented in Section 4.3.

4.2 Exhaustive Search Strategy

First we permute the orbit leaders to obtain the mafifxas discussed in Section 2.1. Given

the new ordering of\;’s, let us represent two vectors

i = (', (<)) andve = (1)

v (FD)f ey (4.7)
corresponding to an-variable RSBFf, whereg, = |G|. Then, considering the vectors
us = us H, vi = vi H and denoting theii-th (i = 09’—2n — 1) components byi[i],
v¢[i] respectively, it is seen that the vaules in the Walsh spectruh adn be calculated

as Qs[i] + v¢[i]) for the firstg’—zn many representative elements (which are of even weights)
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and @g[i] — vi[i]) for the next@’—zn many representative elements (which are of odd weights).
For 9-variable RSBFs, the matrid”™ is a 60x 60 matrix, as the number of distinct orbits
On = 60; hence, the matri#{ is a 30x 30 matrix. We start with a technical result which is

easy to prove.

Proposition 4.1 Leta, bandM be three integers witM > 0. Thenja+b| < M,la-b < M
iff |a] + |b| < M.

To achieve nonlinearity 240, it is clear that the Walsh spectrum values of a Boolean func-
tion must be in the range-B0, 30]. Keeping this in mind and adding the result of Proposition
4.1, one can see thii[i]] + |v¢[i]| < 30, where O i < % —1 =29, for a 9-variable RSBF
(represented by a 60-bit vector||v+) having nonlinearity> 240. A naive method to extract

such RSBFs requires to generate all thigv; patterns, which exhausts the search space of
260,

We present anficient method for this purpose. As each of the pattegrnsndv; must
satisfy the necessary conditiopg[i]| < 30 and|v¢[i]| < 30 respectively for i < 29,
we first search for all the patterpg’s such thatu¢[i]| < 30 for 0 < i < 29. Note that
the search for all the pattermg’s such thatv¢[i]| < 30 for 0 < i < 29 produces the same
result. Let us represent the set of resulting pattern§byBy fixing u¢[0] = (-1)° =

(or v¢[0] = (-1)° = 1), this search requires the generation &f any patterns ofis (or
vi). The reason why we fix the first bit of the patterns will be explained p&sition
4.2. Using a computer with the specification 3.6 Ghz Intel Xeon and 4 GB RAMkés
little less than half an hour to obtain the stand it contains 24037027%(22%) many
patterns. Consequently, the search for 9-variable RSBFs having eantingreater than
240 reduces to the problem of choosing any two patterns: from S such that the resulting
concatenatiom||v¢ satisfies the conditiofus[i]| + [v¢[i]] < 30 for 0< i < 29. Let us first
present the following technical result, which helps us explain how we tselecpatterns

from the seSS.

Proposition 4.2 Consider a 9-variable RSBF which is represented as||v¢ such that
lus[i]l + |vi[i]l < 30for0< i < 29. Letlg = Xg® X1... ® X7 & Xg, the rotation symmetric
linear function containing all the variables. Consider the functgssich that any of the

following holds:
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Hg = pt,vg =, i.€,9(X0...Xe) = f(Xo,..., %) ®s, (4.2a)

Hg = U$.vg = Vi, 1.8, 0(X0...Xg) = f(X0,....,Xg) ®lg ® 1, (4.2b)

Mg = 1S, vg =5, 1., 0(X0...%g) = f(X0,...,%g) ® 1, (4.2¢)

fg = vi.vg = pif, 1.6, 9(X0... %) = F(1® X0,.... 18 Xg), (4.2d)

Ug = Vi, vg =5, 1.e,0(X0...%g) = f(1@ Xo,...,1® Xg) ® g, (4.2e)

Ug = V$,vg = i, 1.8, 9(X0...Xg) = f(l®Xo,...., 10 Xg) B lg® 1, (4.2f)
Mg =V, vg =45, i.e,9(X0...Xg) = f(1®Xo,....,1®Xg) B 1, (4.29)

Thenlugli]| + Ivg[i]| < 30 for 0< i < 29.

Hence, for a single 9-variable RSHBFthere exist 8 many (including) affinely equivalent
RSBFs providing the same nonlinearity. Hence, the reason we& [y = 1 is to remove
such dtinely equivalent RSBFs fror8. Initially we note that, by Parseval's theorem, re-
peating a pattern fror8 twice (i.e.,ul|lvi, whenyv¢ = u;) one can not satisfy the condition
lu¢[i]] + [v¢[i]] < 30 for 0 < i < 29; in such a case, the maximum possible nonlinearity is

240. Thug(**%57%%) = 288889321480851<(2*%) many pairs are needed to check,

To reduce the number of patterns$) a sieving method is then applied as follows. For
somet, 0 < t < 29, all theus patterns inS satisfying|u¢[t]| = 30 are stored in the set
Szot. Similarly, the setSp; is constituted for thes patterns satisfyingv¢[t]| = 0. After
that, selecting each of the patterns fronSzo; and each of thet patterns fronSq;, we
check the conditionus[i]| + |v¢[i]| < 30 for alli, 0 < i < 29. If it holds, we storeus||vs,
which yields a 9-variable RSBF having nonlinearity 241. Note that sincg thpatterns in
S3ot cannot be concatenated with any patterns inS except the ones i, to achieve

nonlinearity 241, the s& is updated bys \ S3o; for eacht.

In the process of applying the sieving method, the following observati@esrarountered.

1. Fort = 0 the seS3q; is an empty set; so we do not consider this.

2. Fort = 28 there is no/s pattern such thgv:[28]| < 2; hence, we initially update the
setS removing all theus patterns such that 28 |u;[28]| < 30, which reduce$S|
from 24037027 to 18999780.
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Table 4.1 shows the number of patterngy+ yielding 9-variable RSBFs having nonlinearity
241 for eacht (exceptt = 0 and 28). It is seen that the sieving method provides27 =
189 many 9-variable RSBFs having nonlinearity 241, and hence, we xdi3® many 9-
variable RSBFs having the same nonlinearity. This experiment re@iresn 24037027 to

9540580. Using the same computer system, the experiment requires little moeedagy.

Table 4.1: Initial search result for 9-variable RSBFs having nonlineady.

|t [ ISsod | [Sod | #ofusllve such thanl(f) = 241 |
1 [ 687215] 37584 0
2 | 514474| 37584 0
3 | 132406| 77328 27
4 | 545152| 37584 0
5 | 408014| 37584 0
6 | 255915| 37584 0
7 | 126821] 77328 27
8 | 338321| 37584 0
9 | 206952| 37584 0
10 | 237525] 37584 0
11[ 121290 77328 27
12 | 464475| 37584 0
13 | 364029| 37584 0
14 | 385125 37584 0
15 | 552651 | 77328 27
16 | 531456 | 37584 0
17 | 222237] 37584 0
18 | 115705 77328 27
19 | 495350| 37584 0
20 | 272767 37584 0
21| 192113] 37584 0
22 | 104643| 77328 27
23 | 320685| 37584 0
24 | 597941| 37584 0
25| 110174| 77328 27
26 | 542078| 37584 0
27 | 613686| 37584 0
29 | 747073 37584 0

Then we check %) (< 2%) many pairs, which takes 30 hours using 20 computers
in parallel, each with the specification of 2.8 GHz Pentium IV and 256 MB RAMrita
Windows XP operating system. Finally, we do not find any other RSBF hanonginearity

> 240, suggesting the following result.
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Theorem 4.1 There are & 189 many 9-variable RSBFs having nonlinearity 241 and this is

the highest nonlinearity for the 9-variable RSBF class.

Interestingly, all of the 189 many 9-variable RSBFs having nonlinearitya24dlable from
Table 4.1 have the same distribution of Walsh spectra, which is presentedfoiltingng

table.

Table 4.2: Distribution of Walsh spectra of the functions found in Table 4.1.

Wi(w) | -30 | -22 | -14| -6 | 2 | 10| 18| 26
#ofws | 127 | 27 | 36 | 18 | 55| 39 | 54 | 156

Among these RSBFs, we find that there are only two classes (63 of thera tiass and the
rest in another class) havingfidirent distribution of autocorrelation spectra as can be seen

from the following table.

Table 4.3: Distribution of autocorrelation spectra of the functions foundbier4.1.

re(d) 52| -44 | -36 | -20| -12 | -4 4 | 12| 28
# of nonzerad'’s 9 9 9 18 | 81 | 85| 198 | 81| 21
re(d) -76 | -36 | -28| -20| -12 | -4 4 | 12| 20| 28

# of nonzerav’s 1 9 18 | 36 | 81 | 135|108 | 54| 48 | 21

Thus it seems that among the 189 RSBFs found in Table 4.1 there are onlyffer@mt

RSBFs up to theféine equivalence, which is justified in the next section.

4.3 Affine equivalence of RSBFs having nonlinearity 241

Let f andg be Boolean functions on variables. We call themfanely equivalent if the

following condition is satisfied

g(x) = f(xAeb)ed- xec, (4.3)

whereA is ann x n binary nonsingular matrixy, d aren-bit binary vectors and is a binary

constant. Note that, in Proposition 4.2 thp&unctions are fiinely equivalent tdf .
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Given (@, ...,an-1) € {0, 1}", then x n circulant matrix generated bgd, ..., a,_1) is in the

form

ag ap a ... an1

-1 A A ... an-2
C(ao.a,...,an-1) = | &-2 &-1 & ... &3 | (4.4)

a1 a a ... Qo

The determinant of the matrR(ag, ai, .. ., an-1) is given by

n-1
defC(ao, a1, .., an1)] = | (@0 + g + aog? + ... + an 1), (4.5)
i=0
wheredi’s (0 < i < n—1) are then-th roots of unity. In particular we denotg = 1. We are

interested in the binary circulant matrices which are nonsingular.

Proposition 4.3 Leta,B € {0, 1}" such thatr € G,,(8) andA be ann x n nonsingular binary

circulant matrix. ThemA € Gy(BA).

Proof. As a € G(8), we haver = pX(8), for somek such that 0< k < n. Itis also clear that
the columngAy, Ay, ..., A, of the matrixA = C(as, @y, . . ., an) are cyclic shift of each other,

preciselyA; = p/~(A1). Now,

BA = (BALBABAs, ..., BA),
(BAL B (AL). Bo*(Aa). - . .. Bp" (A1),

(BAL " (B)AL P B)AL, - ... P (B)AY). (4.6)

Again,

aA

(@AL, P, ahs, . .., Pt Pz -, P,

(@A p"H@)AL P A(@)AL ... P (@) AL P K H@)AL - . oM (@)A),
O BAL "M B)AL PP B)AL -, PO B) AL

PO BNAL P (B)A).
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(Pk(ﬂ)Al,pn_l+k(,3)A1,,0n_2+k(,3)A1, o ,pn_k+k(ﬂ)Al,
pn_k_l+k(,3)A1, o ,pl+k(,3)A1),

" B)AL P B)AL P2 B)AL - BAL P BAL . . P B)AY). (A7)

This showsrA € G (BA).

Proposition 4.4 Let f(x) be ann-variable RSBF and\ be ann x n nonsingular binary

circulant matrix. Therf (xA) is also an RSBF.

Proof. Letg(x) = f(xA). Considerxs, X2 € Gp(A). Nowg(x1) = f(x1A) andg(xz) = f(x2A).
As X1A, XA € Gr(AA) (from Proposition 4.3) andl is an RSBFg(x1) = f(x1A) = f(xA) =
g(x2). Thusgis also an RSBF.

Itis found that there exist 21 flierent nonsingular binary circulank® matrices up to equiv-
alence corresponding to the row permutations. Then, using any of thesatfices, the 189
RSBFs (available from Table 4.1) are classified (based on Propositipin#.9 classes each
consisting of 21 fiinely equivalent RSBFs. More specifically, in a class, the RSBFs are gen
erated asf(x), f(xA), f(xA?),..., f(xA?°), whereA is one of the 21 matrices, anfx) is

one of the 189 RSBFs. One example circulant matrix generated, By(@,0,1,1,1,1) is

given below:

A=C(0,0,0,1,0,1,1,11)= (4.8)

OCORORRERERRERO
ORORRPRRLRRLROO
RPORRRLRRLROOO
ORrRRPRRRPROOOR
PR RPRPROOORO
PR P OOOROR
PP OO0OORORR
P OOORORRR
OO0OO0OFrRORRLRERE

As a consequence, there are 9 representative RSBFs. We hakedlieat out of these 9
RSBFs, three RSBFs follow the distribution of autocorrelation spectrusepted in the top
sub-table of Table 4.3 and six RSBFs follow the distribution of the autoctioelapectrum

presented in the bottom one of Table 4.3.
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To achieve furtherfiine equivalence, we consider some larger class of nonsingular matrices
than the binary circulant matrices. In particular, instead of starting with armthen rotate
the row one place (we use the right rotation) to generate the next rovgngéder that given

the first row, we may go forrotation such that n are coprime.

Let us defineCi(ag, a1, . . ., an_1) as the matrix formed by takingq; a, . . . , an_1) as the first

row and each of the other rows is theotation of its preceding row, i.e.,

C'(ag,a1,...,an-1) =

ao a az ... 9np-1

an- An+1-i aAny2—i o+ Bnen-1-i

aon-2i aon+1-2i aont2-2i co. Q2nen-1-2i . (4.9)
An-1n-(n-1)i  An-Dn+1-(n-1)i HYn-Dn+2-(n-1)i  ---  XYn-L)n+n-1-(n-1)i

Proposition 4.5 Leta,B € {0,1}" such thatr € Gy(8). Let B be a nonsingular matrix,
B = Ci(ay, @, ..., an), wheren andi are coprime andag, a, ..., an) € {0,1}". ThenaB ¢

Gn(8B).

Proof. As @ € G(B), thena = pX(B), for somek such that 1< k < n. Itis also clear that the
columnsBy, By, ..., By of the matrixB = Ci(al,ag, ..., an) arei-cyclic shift of each other,

precisely,Bj = pU=Y'B;. Now,

£B (8B1,8B2,6Bs, ..., Bn),
= (8B1.Bp'(B).Bp? (B, ... 50"V (By)),

(BB1.p"(B)By1, p" 2 (B)By, ..., p' (B)By). (4.10)

Again,

aB = (aBy,aByaBs,...,aBy),
= (aB1,p"(@)B1,p"?(@)By,...,p'(@)By),
= (0"B)BL " (V"(8)B1. PP (*(B))B1. . ... £ (V¥(8))B1),
= (0“(8)B1.p" M (B)BL " (B)BL, ..., 0T (B)BY). (4.11)

34



Sincei andn are coprime, for some integerwe have,yi = 1 modn, i.e.,vki = k modn,
i.e.,ri = kmodn, asyk = r modn, for somer, 0 < r < n. Therefore, in the expression
of @B, we havep(™ "1+ (8)B; = BBy, pM+Di+K(8)B; = p(™)(B)B; and in this way all the
elements of8B1, p"(8)B1, p"2(B)Bs, . . ., p' (8)B1} will appear ine’B in the same sequence
in which they occur ir8B. If 7 be the term oBB, which occurs as the-th term ofaB, then

all the remaining terms @B afterr will appear in the same sequence starting from the 1st

position up to ther(— 2)-th position inaB. ThereforenB € G,(B8B). Hence the proof.
Similar to the Proposition 4.4, using Proposition 4.5 we get the following.

Proposition 4.6 Let f(x) be ann-variable RSBF and be ann x n nonsingular binary

matrix as explained in Proposition 4.5. Th&fxB) is also an RSBF.

In our casen = 9 and we chooske= 2. As for example, one may consider the matrix

(4.12)

us)

I
cNoNeol NeoloNeoNeoNe
ocNoNeoNeolNolNoNol el
ool NellolNoNeNeNe
cNoNeoNoNoNoN Nele
ol NeleolNeolNoNoNoNe
cNoNeoNeoNol o lNelNe
P OOOOO0OO0OOoOOo
OO O0OOkFr OO0OO0oOOo
eclcNoNoNoNoNeoNaly

It is found that, exploiting this matrix, the nine RSBFs can be represented dR&BFs
which are diferent up to the fine equivalence. Note that the autocorrelation spectra of
these two RSBFs are fikerent (as can be seen from Table 4.3), hence there ighime a
equivalence between them. Below these two representative RSBFs haviligearity 241

are presented, the first one with absolute indicator 52 and the secondithnabsolute

indicator 76.

05777A7A6ED82E887CFCE3C549E994947AE4FBA5SBI1FE46674C3AC8386609671
3FCCAC20EE9B9966CAD357AAE921286D7A20A55A8DF0910BCO3C3C51866D2B16

04757A727ED96F087EFCE2C768EB04947AECFBASBI1DE42E7CC1AC8B1060D671
2FCCEDBOEE8B8926CAD357A2E92148ED3AB4A1128DF0918B46143C51A66D2B16
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4.4 Conclusions

In this chapter, 9-variable RSBFs having nonlineasit240 are enumerated by affieient
exhaustive search strategy. Itis found that there are8® many RSBFs having nonlinearity
241 and there is no RSBF having nonlinearity241. On the other hand, exploiting binary
nonsingular circulant matrices and some variants of them, it is shown thatateeonly two

different 9-variable RSBFs having nonlinearity 241 up to thi@a equivalence.
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CHAPTER 5

NEW CLASSES OF BOOLEAN FUNCTIONS

5.1 Introduction

As the space of the RSBF class is much smaHeernﬂ) than the total space of Boolean
functions (") onn variables, it is possible to exhaustively search the space of RSBFs up to
a certain value of. In [24], an exhaustive search carried out for the whole spa® ¢29-
variable RSBFs exploiting some combinatorial results related to the WalshapEBREBFs,

has shown that there is no RSBF having nonlinearity greater than 241seQaently, in
order to find Boolean functions with higher nonlinearity, one needs to aser¢he search

space.

Motivated by this fact, we have firstly proposed the generalizB&BFs, as functions which
satisfyf(azk) = f(a), where 1< k | n. Note that ifk = 1, the resulting functions are the
same as idempotents; whereasKot n the entire space of-variable Boolean functions is
covered. In the space of generalize®SBFs, imposing the condition of invariance under
the action of dihedral group, we have defined the class of generdib&BFs as a subset

of k-RSBFs.

Secondly, we have used the steepest-descent-like iterative algorithi®] fof2z search in
the generalized 3-DSBF and 3-RSBF classes. This search hassuttgesnded up with
9-variable Boolean functions in both of these classes, having nonline#&y absolute
indicator values 32, 40 and 56. This result shows that the coveringsraflile first order
Reed-Muller coddr(1, 9) is at least 242. This result is also importantrice 11 andn =
13, since the bent concatenation of 9-variable functions with nonlineatRyleads to the
construction of 11-variable and 13-variable functions with nonIinear[ty’%?Z"%1 +2x2%’),
which exceeds the bent concatenation bound>k)2”2Q (see Table 5.1). However, we should
mention that for oddh > 15, the nonlinearity (21 — 27 +20x 2%—’) given in [52] that

can be obtained by concatenating 15-variable Patterson-Wiedemartiomgris still greater
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than the nonlinearity (21 - 27 +2x 2"%9). In Table 5.1, we present the bent concatenation

bound for 7< n < 15, together with recent nonlinearity results.

Table 5.1: Summary of Nonlinearity Results foe 7,9,11 13,15

n 7 9 11 13 15
Bent Concatenation Bound™2 — 2"z | 56 | 240 | 992 | 4032 | 16256
Nonlinearity Results in Chapter4 | — | 241 | 994 | 4036 | 16264
Nonlinearity Results in this chapter | — | 242 | 996 | 4040 | 16272
Patterson-Wiedemann Construction [52} | - - - 16276
Upper Bound [23] 56 | 244 | 1000 | 4050 | 16292

Thirdly, knowing the fact that RSBFs are invariant under a special ¢ypermutation, we
have investigated the same search problem fronffardint direction and considered the pos-
sibility of other ‘rich’ classes that are invariant under some permutations. Linearly equiv-
alent Boolean functions have the same nonlinearity; therefore, whilersegrfor highly
nonlinear functions, it is quite logical to classify all permutations up to the linear equiv-
alence of Boolean functions that are invariant under them. More splififor 9-variable
functions, we have classified 9! many permutations into 30 classes whiahféent up

to the linear equivalence of functions that are invariant under them. fbinerach class, by
picking up a representative permutation arbitrarily, we have searchextiesponding set
of functions. Consequently, in some of these sets, we have obtainedadlgaunctions
with nonlinearity 242 and absolute indicator values 40, 48 & 56. So, our &idefining
other fich’ classes is accomplished. However, the functions presented in this chaptet
contain any zero in their Walsh spectra, and hence, they cannot bdylitr@asformed to

balanced functions.

In the following section, we introduce the generalized rotation symmetric areddihsym-
metric Boolean functions. Classification of permutations on inputs of 9-uarBbolean
functions, with respect to the linear equivalence of Boolean functiorisateanvariant un-
der them, is presented in Section 5.5 ffBient results related to 9-variable Boolean func-
tions with nonlinearity 242 are presented in both Section 5.3 and Section 5alyFsome
additional 11 and 13-variable DSBFs, which are attained by the steegmstrd-like search
algorithm with nonlinearities 994 and 4036 respectively, are presenteddtios 5.4. It
should be noticed that those functions have exactly the same nonlineastibssa would

be obtained by concatenating 9-variable functions with nonlinearity 241.
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5.2 Generalizedk-RSBFs andk-DSBFs

After recalling RSBFs, we propose the generalized classésR$BFs andk-DSBFs in
Definition 5.1 and Definition 5.2 respectively. Lettingy(xa, ..., Xn-1) € {0,1}", the (left)

k-cyclic shift operatopX,, on n-tuples is defined as

pkn(XO, le ceey Xn—l) = (X(O+k)modn, ceey X(n—l+k)modn), (51)

forl<k<n.

A Boolean functionf is calledrotation symmetridf for each input &, .. ., Xxn-1) € {0, 1}",
f(pln(Xo,...,Xn—l)) = f(Xo,...,Xn-1). An orbit generated byxg, X1, ..., X,-1) IS denoted
by Gn(X0, X1, - - - » Xn-1) = {05,(X0, X1, ..., %n-1) | 1 < k < n} and the number of such orbits
is gn ( Zz—nn). More specificallygn is equal to% 2in #(t)21 [67], whereg(t) is the Euler’s
phi-function. The total number ofvariable RSBFs is®.

In the following, we define the generalized RSBFkastation symmetric Boolean func-

tions k-RSBFs).

Definition 5.1. Let 1 < k < n, k |n. An n-variable Boolean functioti is calledk-rotation

symmetridf for each input ko, . .., Xn-1) € {0, 1}", f(pkn(Xo, e Xne1)) = f(Xo, ..oy Xnet).

As can be seen, therotation symmetric Boolean functions are invariant urideyclic rota-
tions of inputs. Therefore, an orbit okaRSBF generated by, X1, . . ., Xn_1) is G¥n(Xo, X1,
o Xne1) = {0 h(X0s X1, - - ., Xn1) | T = k, 2k, 3K,...,n}. For exampleG3(001 001 111)=
{(001 001 111)(001 111 001)(111 001 001)

If gnk is the number of distinct orbits in the classkeRSBFs ofn variables, one can show

thatgnk = ‘ﬁ‘ ZtIE ¢(t)2?(z ZKXZ—:), whereg(t) is the Euler’s phi function.

In [40], a subspace of RSBFs called Dihedral Symmetric Boolean Fun¢ix@BFs), which
are invariant under the action of dihedral grdypare introduced. In addition to the (lek)
cyclic shift operatop,, onn-tuples, which is defined previously, the dihedral gr@palso
includes the reflection operatey(xg, X1, . . ., Xn-1) = (Xn-1, ..., X1, Xg). The & permutations

of Dy are then defined a?'. p%n. ..., P" 1 0" T T20s ..., T 10, 7). The dihedral
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groupD,, generates equivalence classes in thé&ét" [55]. Let d, be the number of such

partitions. The following proposition gives the exact countipf19, page 184], [40].

Proposition 5.1 Let dy be the total number of orbits induced by the dihedral gréwp
acting on{0, 1}". Thend, = gn/2 + |, where,g, = %Zun #(t)2¢ is the number of rotation

symmetric classes [67¢§(t) is the Euler’s phi-function and

322, if nis even,
= (5.2)
2

2, if nisodd.

Since there are® manyn-variable DSBFs and, ~ 25—:, areduction in the size of the search

space over the size of RSBFs is provided.

Definition 5.2. Let 1 < k < n, k|n. An n-variable Boolean functiori is calledk-dihedral

symmetridf f is invariant under the group actid,, = {o',, Tno',| i = k, 2k, 3k, ..., n}.

As the class of DSBFs is a subspaceadSBFs, we calk-DSBFs “generalized dihedral

symmetric Boolean functions”. One should observe kHAGBFs is a subspace kIRSBFs.

When Proposition 5.1 is applied kedihedral symmetric functions, we obtain the following

corollary.

Corollary 5.1. Letdnk be the number of distinct orbits, in the classkeDSBFs ofn vari-
ables. Thendnx = gnk/2 + |, where,ghk = Iﬁ(ZIIE ¢(t)2? is the number ok-rotation

symmetric classegyt) is the Euler’'s phi-function and

22-1  if nis evenk s even,
22, if nis evenkis odd, (5.3)

2, if nis odd.

Table 5.2 compares the orbit countskerfotational classegk-dihedral classes, RSBFs, and

DSBFs forkin,n < 15.

40



Table 5.2: Comparison of the orbit courtg dn, gnk anddnx (for n = 4,6,...,15, and all
integersk, which dividen).

k 2 3 4 5 6 7
n
J L 0=6 [ou | 10| - | - [ - | - | -
ds=6 d4,k 7 — — — — _
6 Os=14 | Oex | 24 36 — — _ _
ds=13 | dsx | 16 24 - _ - Z
g | 9=36 | dsk| 70 | - | 136 | - - —
dg = 30 dsk 43 - 76 - — _
g | 9=60 | Qgok | - |176] - _ _ _
do=46 | dox | — | 104 | - - - -
10 | 90 = 108 | giok | 208 - - 528 — —
dip=78 | diok | 120 | - - 288 - —
1p| G12=352 | Gioi | 700 | 1044|1376| — | 2080 -
di2 =224 | dipx | 382 | 570 | 720 - 1072 -
14| G14=1182] gua [ 2344] — | — _ — [ 8256
diga = 687 | diak | 1236 - - - — | 4224
15| 915=2192] gisk | — | 6560| - |10944] - | -
dis=1224| disk | — | 3408 - [ 5600 | - -

5.3 9-variable 3-DSBFs and 3-RSBFs

We apply our search strategy to 9-variable 3-DSBFs, where the size GtIISBF search
space is 24 (see Table 5.2). We have found several unbalanced Boolean funitimmg
nonlinearity 242. Among them there are twdfdient absolute indicator values, which are
32 and 40. The following is the truth table of a 9-variable, 3-dihedral synicnBtolean

function having nonlinearity 242, absolute indicator value 40, and algethegree 7:

68B7EF2DA0O3BOD3EAOODB6A96DDI9AEAFDBIC842B6D5DC8C4526CEQDD29020DB
B75FE3314568344E73688FFO0CB2482E065231869E1AA4583765CC491F8A8DB12

And, the function below is another 9-variable 3-DSBF having nonlinead®, 2bsolute

indicator value 32, and algebraic degree 7:

125425D30A398F36508C06817BEE122E250D973314F976AED58A3EA9120DA4FE
0E4D4575C42DD0426365EBA7FC5F45BE9B2F336981B5E1863618F49474F6FEQQ

We present the C code of our search algorithm in Appendix D. Using a at@mpystem
with Pentium IV 2.8 GHz processor and 256 MB RAM having Windows XP afeg
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system, and setting the maximum iteration numbeNte= 60,000, a typical run of the
search algorithm takes 1 minute and 17 seconds. We have carried outri)@ach with
N = 60,000. Out of 6 million distinct 3-DSBFs, 152 functions have the nonlinearity, 24
and 36 many 3-DSBFs have the nonlinearity 242.

Additionally, we have applied the search strategy to 9-variable 3-RSBEss{tle of the
search space is nowt”? as can be seen from Table 5.2), for which we initiate the search
algorithm with a 9-variable 3-DSBF having nonlinearity 242. Then we hévaioed some
9-variable 3-RSBFs (which are not in 3-DSBFs) having nonlinearity 288olute indicator

56, and algebraic degree 7. The following is the truth table of such a fumctio

3740B6A118A1E19642A85E2B7E2F3C3CB65FAQODI5ECODB1EA92BDB3666185AEQ
087F5FE6EQ757106A12FC918754C40E8A1BCCB7A714032A8961456E066E8A801

It is clear that using one of the above 9-variable Boolean functionsf(sagid a 2-variable
bent function (sayg), the 11-variable functiom(yo,y1) & f(Xo,...,Xg) with highest -till
date- nonlinearity of 21 — 2'% + 4 = 996, can be obtained. Similarhyyo, y1, Y2, y3) &
f(Xo, ..., Xg) iIs the most nonlinear 13-variable function known to date, with nonlinearity
213-1_ 2% | 8 = 4040 whereh is a 4-variable bent function anflis one of the above
9-variable functions with nonlinearity 242. We think this is a significant impnoet on

the results of [25]. However, since the nonlinearit{{2- 27 +2x 2%’), which can be
obtained by bent concatenation of 9-variable functions with nonlinear®yikess than the
nonlinearity (21 — 2% +20% 2"%5) given in [52] for oddn > 15, this result is significant

only for odd 13> n > 9.

5.3.1 Caoding Theoretic Significance

The concept ofircosetwas first presented in [22] and then in [4, 5]aphan cosetThe set
D defines an urcoset, if the union of the support of the leadeBsadvers the full space; in
other words, a cosé of the first order Reed-Muller cod®(1, n) with a set of coset leaders

L(D) is an urcoset [32], whenge (pysupfg) = {0, 1,...,2" - 1}.

In [16], orphan cosets having minimum weight of 240 have been repatetiin [24] it is
confirmed that each of the cosdt® R(1, 9) is an orphan or urcoset, whefas any RSBF

having nonlinearity 241.
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We have checked by running a computer program that for any of theedbactions f
having nonlinearity 242, each of the cosét® R(1,9) is an orphan or urcoset. This is the

first time orphan cosets having minimum weight 242 are demonstrated.

In [4], it is conjectured that the covering radius [33, 52]R{f, n) is even. Our results for
n = 9 show that the covering radius is at least 242 and it is an interesting a@stian to

settle it. The upper bound presented in [23, 21] for the covering radliB§lo9) is 244.

5.4 11 and 13-variable DSBFs

In [40], the class of Dihedral Symmetric Boolean Functions (DSBFs)baedwf the RSBF
class, which is invariant under the action of the dihedral group, is intediult has been
shown that some of the 9-variable RSBFs having nonlinearity 241 alsogdhis subset,
demonstrating the richness of DSBFs in terms of high nonlinearity. Motivatéki$ point,
we have carried out a systematic search in the DSBF class forddidn > 9, and found
Boolean functions having nonlinearity (2" — 2"?1). More specifically, for 11-variable
DSBFs, we have attained an 11-variable DSBF with nonlinearity 994 withingheesof
size 226, For 13-variable DSBFs, in order to reduce the search spdt®,@e have applied
some additional permutations on input vectors, and obtained a subse¢ @ %iin which
we have found several 13-variable DSBFs with nonlinearity 4036. €prently, our trials
confirm that the DSBF class contains highly nonlinear Boolean functiodstdsa a rich
subset of the RSBF class for= 11, 13, as well. We should also mention that, this is the first
demonstration of Boolean functions on odd number of input variablest9< 15 having
nonlinearity greater than the bent concatenation bound, which are tzhet by the bent

concatenation of 9-variable Boolean functions with nonlineasi40.

For the 11-variable DSBF case for which the size of search spa&@jw\& have carried out
8000 runs of the search algorithm, and found an 11-variable DSBFdawvininearity 994,
absolute indicator value 200, and algebraic degree 9, which is givearippA. A typical

run of the search algorithm takes 1 minute and 16 seconds using the sama&osyptem.

For the 13-variable DSBF case, since its search space is hd@®, (@efore starting the
search we apply the following permutation in addition to the permutations of @dihgidrup

on input vectors
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7(Xo, X1, - . ., X12) = (X0, X2, X4, X6, X8, X10, X12, X1, X3, X5, X7, X9, X11) (5.4)

such that for each inpukg, . . ., x10) € {0, 1}*3,

flotn(X0, - - -+ X12)) = F(Tn(Xo, - -, X12)) = (7 (X0, - -, X12)) = (X0, .-, X12)s (5.5)

and the search space of 13-variable DSBFs is reduced fi§ft@ 2’4. Note that this
permutation constitutes a subset of 13-variable DSBFs for which, using stoitabinato-
rial methods as in [24], it may be possible to carry out an exhaustivelséaenumerate
13-variable DSBFs with nonlinearity 4036, with a reasonable amount of computational
power. We have carried out 500 runs of the search algorithm, and tawn13-variable DS-
BFs having nonlinearity 4036 in this subset. One of them with nonlinearity 4il3®lute
indicator value 208, and algebraic degree 10 is given in Appendix A.isrcdse, a typical

run takes one minute using the same computer system.

Since these results confirm that the DSBF class contains highly nonlinegaBaunctions
on 11 and 13-variables as well, it would be an interesting and open prablattain some

rich subsets achieving higher nonlinearity in the DSBF class.

5.5 Classification of Permutations

As it is deduced from the discussion in the preceding section, RSBFsvarint under a
special type of permutation. To search for better cryptographic clesistics, we consider
the possibility of other classes of Boolean functions that are invariargruswme permu-
tations. Since linearly equivalent functions have the same nonlinearity, i£srsgnse to
classify alln! permutations up to the linear equivalence of Boolean functions that aag-inv
ant under them. The classification is based on the following propositionhvidieasy to

prove.

Proposition 5.2 Let f andg be Boolean functions which are invariant under arbitrary
permutationsrs andrg respectively. Thenf andg are said to béinearly equivalentf there

exists a bijective linear mappirg: {0, 1}" — {0, 1} such thatrs = (L™t o ngoL).
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Proof. Supposd (x) = g(L(x)), i.e.,f = go L. Then, it holds that

f:goL:gOﬂ'gOL:fOL_loﬂ'gOL:fOﬂ'f. (5.6)

Thus, we classify all possible permutations up to the equivalence

m¢ ~ g & AL such thatrs = (L™ o g o L). (5.7)

The classification can be accomplished through a computer program lojtiexpthe Jordan
Normal Form for matrices. Specifically for 9-variable Boolean functi@tispermutations

of the identity matrix (362880 many) yield that there are only 30 permutations (see Table
5.3), which are dferent up to the equivalence defined above. Then, we apply the search
algorithm for each class using its representative permutation and determioertbspond-

ing nonlinearity given in the last column of Table 5.3. Our results show théeexie of

permutations having similar cryptographic characteristics WiRSBFs ank-DSBFs.

From Table 5.3, it is seen that we have attained several 9-variable Booiections with
nonlinearity 242, which we initially found in 3-DSBFs and 3-RSBFs, in thesdaswvith
sizes 290, 2104 2140 | the following, we present 9-variable Boolean functions having
nonlinearity 242 and dierent autocorrelation spectra from those of the functions found in

3-DSBFs and 3-RSBFs.

We have applied 100 runs of the search algorithm to the space of'$fzar2l found two 9-
variable Boolean functions with nonlinearity 242, absolute indicator valyad@algebraic
degree 7. A typical run takes the same amount of time as for the case dBBdJSince the

sizes of both spaces are the same). One of these functions is given below

7B8F94BAD364DAC9931906F9465FF33E921E13D7552DAFD684757B662FDA3C68
FA8D94B3C3659B5FCC46FD1518050F97A1E02039AAF74337134F30AB5B41D9DE

which is invariant under the representative permutation

7t(Xo, X1, - . ., Xg) = (Xo, X2, X1, X4, X5, X, X7, X8, X3). (5.8)
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Table 5.3: Classification of all possible 362,880 many permutations fori@blarBoolean
functions, and the best achieved nonlinearity result for each class.

Maximum Total
number of | number of| Best achieved
Representative Number of | inputvectors| distinct nonlinearity

permutation permutations| in an orbit orbits result
(0,1,2,3,4,5,6,7,8

(identity) 1 1 512 239
(5,7,4,8,2,0,6,1,3 945 2 272 240°
(3,1,7,0,5,4,6,2,8 1260 2 288 240
(7,1,2,3,5,4,6,0,8 378 2 320 240
(0,8,2,3,4,5,6,7,1 36 2 384 240
(4,6,7,2,8,1,5,3,0 2240 3 176 2424
(5,1,2,4,7,8,6,3,0 3360 3 192 240
(0,2,2,8,4,5,6,3,7 168 3 256 240
(1,4,7,5,6,2,0,3,8 11340 4 140 247
(4,7,5,6,0,1,3,2,8 11340 4 168 240
(0,2,1,7,4,3,5,6,8 7560 4 176 240
(0,8,2,3,4,1,6,5,7 756 4 192 240
(0,7,2,5,4,1,3,6,8 3024 5 128 239
(8,7,3,0,1,6,2,4,5 20160 6 100 242
(0,2,1,4,5,6,7,8,3 30240 6 104 242
(7,1,0,3,4,2,8,6,5 10080 6 112 240
(7,4,0,5,1,8,6,2,3 10080 6 144 240
(8,4,3,2,1,7,5,6,0 2520 6 144 240
(0,6,2,7,8,1,5,3,4 7560 6 160 240
8,1,3,2,4,5,0,7,6 2520 6 192 240
(2,0,6,1,4,5,7,8,3 25920 7 80 240
(0,3,5,8,1,4,7,2,6 45360 8 72 240
(1,6,7,4,8,2,5,3,0 40320 9 60 241
(5,8,6,7,2,0,1,3,4 9072 10 80 240
(1,3,8,7,4,0,6,5,2 18144 10 96 240
(3,5,7,1,6,0,8,2,4 15120 12 88 240
(0,2,7,8,4,6,3,1,5 15120 12 96 240
(4,5,7,1,0,8,3,6,2 25920 14 60 240
(6,5,1,4,7,2,3,0,8 24192 15 64 238
(4,8,1,2,6,7,5,0,3 18144 20 48 240

1 Nonlinearity result of 242 is attained in the subset of siZai2the set of size ¥°.
2 Nonlinearity result of 242 is attained in the subset of sf&the set of size 2°.
3 Nonlinearity result of 242 is attained in the subset of si#é i the set of size 2°.
4 The class contains the permutation corresponding to 3-RSBFs.

5 The class contains the permutation corresponding to RSBFs.

6 The class contains the permutation corresponding to 9-DSBFs.
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Then, in order to reduce the search space, we have considered sbofesses. For this
purpose, we have applied the reflection operator, which is defined(&s x1,...,Xg) =
(xs, ..., X1, Xg) for 9-variable Boolean functions, in addition to the representative parmu
tion. As a result of this method, we have identified a subset of gz 2he set of size ¥°.

In this subset, we have attained several 9-variable Boolean functionaavitmearity 242,
absolute indicators 40 and 64, and algebraic degree 7. One of theng ladgolute indicator

64 is provided below:

0331786B34D878855663A2E961F1CB4F779EBBF6881ABB24ACO33E6C2B32EQ49
3D0891DB1888EASE6F910310311532FC68D5F2A4B5BE6445E41F64299F0CCI99A

which is invariant under the permutations of the reflection opergtand the representative

permutation

n(Xo, X1, - - ., Xg) = (Xa, X7, X3, X0, X1, X6, X2, X4, X5). (5.9)

For this case, we have carried out 100 runs of the search algorithiitimgsin 9 many
Boolean functions with nonlinearity 242 such that seven of them with absividieator
value of 64, and the remaining with that of 40. A typical run takes 1 minute asetdnds

using the same computer system.

5.6 Conclusions

By suitably generalizing the class of RSBFs, we have introdkeB&BFs, as functions
which satisfyf (azk) = f(a), where the nonzero positive intededividesn, anda € GF(2").
We have also defined the classkeDSBFs as a subset &RSBFs imposing the condition
of invariance under the action of dihedral group. Using the steepestdtlike iterative
algorithm in [25, 26] for a search in the generalized 3-DSBF and 3-R3&dses, we have
attained 9-variable 3-RSBFs and 3-DSBFs with nonlinearity 242. Thidtrelsows that
the covering radius of the first order Reed-Muller c&{#, 9) is at least 242 and there exist

Boolean functions on variables having nonlinearity '(21—2"%1 +2X 2";29) forn=9,1113.

Further, we have considered the invariance of Boolean functiong afig@ssible permuta-

tions which are classified up to the linear equivalence of Boolean fundtiabare invariant
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under them. Specifically fan = 9, there are 30 such classes. Exploiting the same search
algorithm [25], we have attained 9-variable Boolean functions havindimearity 242 in

the classes with sizes% and 24°. Then, we have considered some subclasses by adding
permutation of the reflection operatgy to the representative permutation. As a result, we
have identified a subset of sizé*2in the set of size ¥°, having 9-variable Boolean func-
tions with nonlinearity 242. Considering the combinatorial search technigu@4], we

note that it may be possible to exhaustively search the subset of'éifte he enumeration

of 9-variable Boolean functions having nonlinearity242, with a reasonable amount of
computational power. Moreover, we have obtained an 11-variable Df@BiRg nonlinear-

ity 994 and several 13-variable DSBFs having nonlinearity 4036, widofiren the richness

of DSBFs [40] in terms of high nonlinearity for= 11 and 13.

We think that the results that we present contain significant information oexieence of
maximum nonlinearity-Boolean functions with odd number of input variablethirwthe

classes that are invariant under some permutations.
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CHAPTER 6

BALANCED BOOLEAN FUNCTIONS ON 13-VARIABLES

6.1 Introduction

As balancedness is an important cryptographic and combinatorial pyap@&oolean func-
tions, balanced Boolean functions with odd number of variables havingearnity greater
than the bent concatenation bound have received lot of attention in theurerdn fact,
in the literature, such functions could be constructed exploiting Booleastifuns having
nonlinearity greater than bent concatenation bound. Below the existinljsr@s this area
are listed (we will refer 15-variable Boolean functions having nonlined@276 as PW

functions since these function were found by Patterson and Wiedemann).

1. In [62], balanced Boolean functions having nonlinearity greater liesn concatena-
tion bound of (2-1 - 2"%1) could be found for odeh > 29, using the PW functions as

black box.

2. In[59, 39], 15-variable balanced Boolean functions having noatie2!5-1 - 2% +

6 = 16262 have been constructed by modifying the structure of the PW fusatiibim

heuristic search.

3. In[61], modifying the structure of the PW functions systematically in thespéro-
tation symmetric Boolean functions, 15-variable Boolean function havinteamity

215-1 _ 2%+ 1 10 = 16272 has been constructed.

4. In [34], using the Boolean functions on 9-variables having nonline@42, 13-
variable balanced function having nonlineariti?2 — 2% + 2 = 4034 has been

constructed.

The Boolean functions on 9-variables having nonlinearity 242, predentthe previous
chapter, do not contain any zero in the Walsh spectrum and therefgregheot be linearly

transformed to balanced functions. In [34], these functions are usmmh&ruct 13-variable
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balanced function having nonlinearity®2! — 2*5" +2 = 4034 which is the first demonstra-
tion of balanced Boolean functions on odd number of variables havinlineanity strictly
greater than the bent concatenation bound for number of input varieiskeshan 15. We
improve the search algorithm used in [34], and then arrive at 13-\Vardanced functions

having nonlinearity 4036.

6.2 13-variable Balanced Functions with Nonlinearity 4036

Sinilar to the idea of [59, 39], the strategy described in [34] is based tlmroncept of
searching balanced functions within the eight-bit neighborhood of arafidble unbalanced
function F with nl(F) = 4040, andWg(0) = +16. The 13-variable unbalanced function is
constructed from 9-variable unbalanced functions which are highlymear. The minimum
valued spectral components4) of 9-variable unbalanced functions are translated to the
origin; so that the resulting 13-variable function Wgs(0) = +16 and itis therefore probable

to find a highly nonlinear but balanced functions in its 8-bit neighborhood.

OnceF is constructed, the problem is reduced to a search in a space cé?l%’rféa which

is approximately equal to®2. The search algorithm [34] used in finding the 13-variable
balanced function with nonlinearity 4034 randomly toggles eight many posiicthe truth
table ofF from 0 to 1. We have carried out 15 million trials of this algorithm, which takes 62
hours by using a computer system with Pentium IV 2.8 GHz processor &hifBSRAM
having Windows XP operating system. The search has resulted in 238ofustaving
nonlinearity 4034 and 14,999,762 many functions having nonlinearity 40B2.distribu-
tion of nonlinearities found by random search of this algorithm demonstiaeareness of

13-variable balanced functions with nonlinearity greater than 4032.

In order to reduce the search time, we have then used our steepestiedsiterative algo-
rithm, which has recently proved itéfectiveness with the results for 9-variable functions of
nonlinearity 241 [25] and 242 [30]. Calling the input of an iteratibp, each iteration step
of the algorithm firstly computes the costs of all functions in a pre-definaghberhood

S of Fj5. Then, the function with the smallest cost is chosen as the iteration oegput
provided that it is dierent from the outputs of all previous iteration stepss not allowed

to containFj,; therefore, it is possible in some cases that the coBigfis larger than that
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of Fij,. Recall that this is one of the critical parts of the search strategy, whamhdas its

ability to escape from local minima. The proper choice of the cost functiolsdascaucial.

We adapt our steepest-descent-like algorithm to the search of highly eanénd balanced
13-variable functions in the eight-bit neighborhoodrof The setS used in our algorithm
is defined as the intersection of three sétd:3-variable balanced functions) 8-bit neigh-
borhood of a 13-variable functidfa with nl(F) = 4040, andNg(0) = +16,iii) 2-bit neigh-
borhood ofF,, which changes at each iteration step. This intersection set contai2$’8

many balanced functions.

The choice of a suitable cost function is very important. We base our clupice the
following intuition: Let the 2-bit neighborhood of arvariable functionf be partitioned by

3 sets,

A = {functionsf, having the same nonlinearitf(f) as f}, (6.1a)
B = {functionsfy with nonlinearity QI(f) — 2)}, (6.1b)
C = {functionsf. with nonlinearity aI(f) + 2)}. (6.1¢)

DenotingW;™M2* as the maximum magnitude in the Walsh spectrunf @ind M; as the
number of spectral components with vatué/s ™% functions f, with small M¢, are much
probable than those with largdy,. So, the cost function that we assign should ease the

passage of the algorithm from Set B to Set A by favoring small valudé;cds follows:

Cos(f) = 2™ + My)w;ma (6.2)

The termW; ™% in the cost expression is used to commend high nonlinearity, whéfteas
punishes large number of maximum magnitude-components in the Walsh spetidithe
bias term 2+1W; M is necessary to direct the search in favor of functién®r which

Cos{(f) > Cosl(g) just becausd; > Mg; althoughnl(f) > ni(g).

Setting the maximum iteration number to 500, a typical run of the search algorite®s ta
less than 3 hours using a computer system with Pentium 1V 2.8 GHz process@66 MB
RAM having Windows XP operating system, as above. Almost each step afghathm
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finds a balanced function with nonlinearity 4036, except for a minority withlinearity
4034 or 4032. Table 6.1 gives the nonlinearity distribution for thrége@int runs, each
starting with a diferent initial functionF, which is constructed by using one of the three 9-
variable functions of nonlinearity 242, as in the example described befolable 6.1, we
use the notatiom(nl, A, d) to indicate therfumber of input variablesonlinearity, absolute

indicator, degre¢ of the corresponding function.

Table 6.1: Nonlinearity distribution of 13-variable balanced functions ddara total num-
ber of 500 iterations of the steepest-descent-like algorithm.

Run# | (n,nl,a,d) | 4032| 4034 | 4036
1 (9,242,32,7)] 1 92 | 407
2 (9,242,40,7) 1 11 | 488
3 (9,242,56,7) 3 6 491

An example for a balanced function with nonlinearity 4036 is presented ireqtig B,
which is obtained by flipping eight bits of the initial functiéndescribed below. The toggled
bits of F correspond to the indices 4667, 4758, 4807, 4823, 4913, 5043, 8187, where
the truth table is indexed from 0 to 8191.

Details of the initial 13-variable functiof of this example, havingl(F) = 4040 and
WE(0) = 16 are as follows: We utilize the unbalanced 9-variable funcfiamith nonlin-
earity 242, absolute indicator 32 and degree 7, for which the corrdsppiruth table is

given as follows:

125425D30A398F36508C06817BEE122E250D973314F976AED58A3EA9120DA4FE
OE4D4575C42DD0426365EBA7FC5F45BE9B2F336981B5E1863618F49474F6FEQQ

As in [34], we choosev; = (0,0,0,0,1,1,0,1, 1) so that the linear transformatidin(x) =
f(x) ® wy - X, generates a functiofy (x) with W, (0) = 4; since the Walsh spectrum value
of f corresponding tov; is equal to 4. We then construct the 13-variable funckdoy the

direct sum of 9-variable functiofy(x) with the 4-variable bent function(yo, y1, ¥, y3) as

F = h(Yo, Y1, Y2, ¥3) @ fi(xo, ..., Xg), (6.3)

whereh = (0,0,0,0,0,0,1,1,0,1,0,1,0, 1, 1, 0).
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6.3 Conclusions

The strategy [34, 59, 39] that we have used is based upon the caicgatrching balanced
functions within theK-bit neighborhood of an unbalanced function with high nonlinearity,
where the parametei2K corresponds to the smallest value of its Walsh spectrum. The most
elegant part of this concept is to translate the minimum valued spectral cemp@gK) of

this unbalanced function to the origin so thet (0) = +2K. TogglingK zeros or ones of
depending on the sign &k=(0), one obtains a balanced function with nonlinearity greater

than or equal tor{I(F) — K).

As in [34], to makenl(F) as high as possible, we exploit the 9-variable unbalanced functions
with nonlinearity 242. The 13-variable unbalanced functions obtaine@&bt/dmncatenation
have the nonlinearity 4040, and the smallest value in their Walsh speati®isResulting

balanced function of nonlinearity 4036 given in Appendix B improves thaltén [34].
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CHAPTER 7

CONCLUSIONS

In Chapter 3, as a major result, we show the existence of Boolean funbtiwirsy nonlin-
earity> (2" - 2"%1) forn= 9,11, 13, which remained as an open question in the literature
for almost three decades. Further we attain balanced Boolean functi@$®and 11 vari-
ables having maximum absolute value in the autocorrelation speetr@l. Earlier such
Boolean functions were known for 15, 21 variables; on even numbearatbles, there was
no evidence of such Boolean functions. Some of these Boolean functo®snd 11 vari-
ables can beffinely transformed to obtain first-order resiliency or first-order propaga
characteristics. Some of these Boolean functions on 10-variable cade cinely trans-
formed to yield first order propagation characteristics. Moreover, iesgmt a 10-variable
Boolean function having first-order resiliency and nonlinearity 492, ivinias posed as an
open question at Crypto 2000. The Boolean functions reported in thigarhare discov-
ered using the steepest-descent-like iterative search algorithm [2%28ficient search
technique with an outstanding ability to escape from local optima, in the clasetafiéh

Symmetric Boolean Functions (RSBFs) along with progina transformations.

In Chapter 4, using the nice combinatorial structure of the Walsh specatf@SBFs on
odd number of variables [43], wetiently perform the exhaustive search to enumerate
9-variable RSBFs having nonlinearity240. Consequently, we find that there is no RSBF
achieving nonlinearity 241 and there arex8L.89 many RSBFs having nonlinearity 241. We
further show that these RSBFs are represented by only two distinct R@Bto the fine
equivalence. This result is obtained by utilizing some larger class of bimamgingular

circulant matrices.

Then, in Chapter 5, we improve the nonlinearity result of 241 to 242, wHichvs the
existence oh-variable Boolean functions having nonlinearity{2— 2% +2><2%’) forn=
9,11, 13. This result is attained by suitably generalizing the classes of RSBH3ihedral
Symmetric Boolean functions (DSBFs). More specifically, we introduceigdized RSBFs

(k-RSBFs) as functions which satisﬁ)(azk) = f(a), where 1< k|n, @« € GF(2"), and
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describe the class &EDSBFs as a subset &RSBFs imposing the condition of invariance
under the action of dihedral group. Further, we classify all possibimpitions (9!=
362 880) on input variables of 9-variable Boolean functions up to the lineaivalgnce
of Boolean functions that are invariant under some permutations and fihthtére are 30
such classes. Then, in some of these classes and their subsets, wg itamt#-variable
Boolean functions having nonlinearity 242 withférent autocorrelation spectra from those
of the functions found in generalized RSBF and DSBF classes. In partiove find a
subset of size Z (in the class of size’®%, much smaller than the sizes df’2and 2% for
the generalized RSBFs and DSBFs respectively, containining 9-vaBalolean functions
having nonlinearity 242. Moreover, we obtain an 11-variable DSBF lgavamlinearity 994
and several 13-variable DSBFs having nonlinearity 4036, which cosfthe richness of
DSBFs [40] in terms of high nonlinearity for = 11 and 13. These functions are given in
Appendix A. As in Chapter 3, we perform the steepest-descent-like itersgarch algorithm

to discover the Boolean functions presented in this chapter.

Finally, in Chapter 6, following the strategy used in [34, 59, 39], we modié/ dteepest-
descent-like algorithm to attain balanced 13-variable Boolean functiorisghagnlinearity
4036, which improves the nonlinearity result of 4034 in [34]. Basically, dtrategy is

to searh balanced functions within tKebit neighborhood of an unbalanced function with
high nonlinearity, where the paramete2K corresponds to the smallest value of its Walsh
spectrum. As in [34], to construct such highly nonlinear unbalancedtifums, we utilize the
9-variable unbalanced functions having nonlinearity 242 presenteddapt€h5. Resulting
balanced 13-variable function having nonlinearity 4036 is given in AdpeB, which is
identified within the 8-bit neighborhood of a 13-variable unbalancediomof nonlinearity

4040 obtained by bent concatenation.

At the end of this thesis, we point out some challenging open problems inghe ar

1. Do there exist 8-variable balanced Boolean functions having nornitynéa8?

2. In [14], Dobbertin has conjectured that the nonlinearity of a balaBoedean func-
tion on n-variables cannot exceed"(2 — 22 + nlnad f)) wherenlmay(f) denote the
maximum achievable nonlinearity of a balanced Boolean functiom 3 variables.

Can this conjecture be disproved?
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3. In[4], itis conjectured that the covering radius [33, 52Rf1, n) is even. Our results
for n = 9 show that the covering radius is at least 242. The upper boundnpeese

in [23, 21] for the covering radius dR(1,9) is 244. What is the covering radius of
R(1,9)?

4. Do there exist balanced Boolean functionsiea 9, 11 variables having nonlinearity
> (21 - 2%)?
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APPENDIX A

TRUTH TABLES OF 11- AND 13-VARIABLE DSBFs

We present the truth tables in hexadecimal format. The following is the truth ¢&lole,
-1, 9,994 200) DSBF.

68C1F052AA14260999DD0365487844C6C397A7B6114A787724957BC46471F12D
FO5F873ECC6E8A29034265887BD17A2A483583367B8FF1312C347E12FA1708F3
AA1433AF952B5BE9B5F02CA891985C92114A640C2D6380C57B9BB3027E991D8D
34C45B66DOOESB7D6ACFS80EEABO21A430CES4E707AAD520DABOD472F4081FF 1F
89CC06215F1B8CAA973658CF27DAADD3CF36AA0118BODDCO8716D3D526E4C70D
065371D97C2054E458A2390BD550E5736ADAC2DF8BOA10492BACC3C317B381F7
1A21F52076CB3C3DB60144F836DF2AB32DDDEQEACOS51FCBD8C8F10491299751F
41FQE96761AC6F053F888DE7234945F79C9B92B3703B19BF6545C557BBBF57FF

The following is the truth table of (13-1, 10, 4036 208) DSBF, which is invariant under the

permutation

(X0, X1, - . -, X12) = (X0, X2, X4, X6, X8, X10, X12, X1, X3, X5, X7, X9, X11). (A1)

177E7EF97EFCFFO37FF8EBAOFAFBC7 1A7EFBEADOEC8B8815EA99FADEA12A568D
7EE8EA8BF889B215FDB1848F80950677EDC883D3AE9DB2EDID031888277CD4F7
7FEDE881ECDC948AFF90D0968BOCO676EFE3CE028524D4FAC114C666116C2A6B
F8E2A195815AF71A89FCD3A29B48BDE3C7F6155F139090904C2B2AA1F321AA3F
7EEEF8B2E881D107ECA1E3B5C665DO88EAAE9354A710C37C81CBO4E4156C3A28
ECAFECOAB5ED504C85361D75B325AA88F4560730A4386C7C13537CFO4CCD299B
FA85B81D9C129772D143368CFE2A43C88096AEB4B35E8809D3DE64959BE7A9OE
A12BBF7D077227FA®34FC601D340931535A159CF4C88CC17BBOB4D13C8990BAE
7EFCESACEAC18BODE881C517E253407FF8F4C917EC5E9F32A12C3826F700C081
F889C9F8934B2770DC7B5710F44F2EF09146A5CA1530BD3107663CA14BCDOC81
F9A18DABBO9F411C88A26ECF6364474B484321F7D47E33B779B5E58679CCD85D5
FA35626C042E4E419C244A902CF12EF5420E660B6EAOEEQ570A0A4B64D86979E
FFCDD1728BC516A786F10348976A7F09B212350A0A78D5F1BFA85CD8350BA194
C015D72899F98F208E1B73E9C0950093B24AE7B96C65933782CAFC7BCCD715BC
9D0208CABAAA7FE2147A2E49192BFBCD145A74FAF0790003E75B7451930B1736
1E76880372D3A1AB70F18590E1F5177A8E8B449F61B2075AF08597D6519ECCE9
7EEDEEF5FC90CDB4ED8CA10785CE1OE3E881C147F523072FB81D274B71403EEF
FB81AE60F4C6122EB9AO32ECI96AASAQ9C8171CF41EDO5879BE7F5444A101D107
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EAC481D3A197ABCO825E349E192A7A40A3A07BCA367F5300EE3424AESDECABLS
(C347647CD962E09806265E01DEA75B12117F3C3C1BA1D85771DBA0A751B58512
EE82891381B78D8FCE97AE741242F081C19C593CEDF4EB2C5A3874753A619B21
D1315E5802AE6AE6247FBI5F5ECB6B3FC78A22A962842D2F82A1A0A3C026B276
FBDC1B632D1878F144700CFD70EC711687FQ5D3025D9870548B5AB5708EDAF76
700800F86C2951DB6CECCDO1BDED51766E01CD11CD349F7C21A7943CC37EDGA9
EBAFE4B6B2133A49819BF1334739D86BD128EA42504A60C1876E6CCD6FEA11D3
8A1D17180E6650C810D86FDOA622FA179BAED88422E1E3D45F6651CFDDO3D734
A0151733A72E48C196D6BE92C4EF4951D5ECO28A2F5FE997B00182330101824E
DE5934CDAC2FCAD63CF43D33871FOB3ECOOCAIDDAAB17BDEA1IB5B67E13669EE1
93A6454915D5B5C9DO88C8893AABB85D07742AC84CBC20C752C2099EFADBF1F6
077532896E64ABIDFA003F974105110AED6B238E6E753716821F05DE176E5A69
52B97F79C081414F3E08A60BC816CDDE3F41AA17C0779350B912AF76073E7AC9
C5FD819B602186BE79078F5C543E36C9BF158126D33EE6697712D6A9F4E1E997
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APPENDIX B

TRUTH TABLE OF 13-VARIABLE BALANCED FUNCTION

The following is the truth table of (18, 11, 4036 536) Boolean function.

74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98
68D4DC13A2B4492405FC72C19AC6DCD8FDBO6AAOFE72C78EQ50816DF2126F6766
74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98
68D4DC13A2B4492405FC72C19AC6DCD8FDBO6AAOFE72C78EQ50816DF2126F6766
74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98
68D4DC13A2B4492405FC72C19AC6DCD8FDB6AAOFE72C78EQ50816DF2126F6766
74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98
68D4DC13A2B4492405FC72C19AC6DCD8FDB6AAOFE72C78EQ50816DF2126F6766
74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98
68D4DC13A2B4492405FC72C19AC6DCD8FDB6AAOFE72C78EQ50816DF2126F6766
74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98
68D4DC13A2B4492405FC72C19AC6DCD8FDB6AAOFE72C78EQ50816DF2126F6766
8B32434A935FE9AFCIEA6018E28874B7BC6BF1AA8DI9F10374CEC58308B6BC267
972B23EC5D4BB6DBFA0O38D3E65392327024955F018D3871FAF7E920DED909899
8B32434A935FE9AFCIEA6018E28874B7BC6BF1AA8DI9F10374CEC58308B6BC267
972B23EC5D4BB6DBFA0O38D3E65392327024955F018D3871FAF7E920DED909899
74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98
68D4DC13A2B4492405FC72C19AC6DCD8FDB6AAOFE72C78EQ50816DF2126F6766
8B32434A935FE9BFCOEA6018E28874B7BC6BF3AA8DI9F10374DEC59308B6BC267
972B23EC5D4BF6DBFA038D3E65392327024955F018D3A71FAF7E920DED909899
74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98
68D4DC13A2B4492405FC72C19AC6DCD8FDBO6AAOFE72C78EQ50816DF2126F6766
8B32434A935FE9AFCOEA6018E28874B7BC6BF1AA8DI9F10374CEC58308B6BC267
972B23EC5D4BB6DBFA0O38D3E65392327024955F018D3871FAF7E920DED909899
74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98
68D4DC13A2B4492405FC72C19AC6DCD8FDBO6AAOFE72C78EQ50816DF2126F6766
8B32434A935FE9AFCIEA6018E28874B7BC6BF1AA8DI9F10374CEC58308B6BC267
972B23EC5D4BB6DBFAQO38D3E65392327024955F018D3871FAF7E920DED909899
8B32434A935FE9AFCOEA6018E28874B7BC6BF1AA8DI9F10374CEC58308B6BC267
972B23EC5D4BB6DBFA038D3E65392327024955F018D3871FAF7E920DED909899
74CDBCB56CA0165036159FE71D778B4843940E557260EFC8B313A7CF74943D98
68D4DC13A2B4492405FC72C19AC6DCD8FDB6AAOFE72C78E054816DF2126F6776
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APPENDIX C

ALGORITHM USED IN THE CLASS OF 9-VARIABLE RSBFs

The following is the C programming code (compiled with Microsoft Visuak{5.0) of our
steepest-descent-like iterative search algorithm that is used to finde®eaRSBFs having

nonlinearity of 241.

#include "stdlib.h"

#include "stdio.h"

int gn=60,R[60][9],p[]={1, 2, 3, 4, 5, 6, 7, 8, 0};
int n=9,B[512][9],h,G[9][9],A[60][60],A2[60][60][2];
long double FW2[513];

int main(){
void orbit(int k);
void repres();
void walsh(int *TT, int *FW);
void tohex(int *TT, int *tt);
void walsheff(int *FWnew, int *FWold, int k1, int kO0);
int findmaxwh(int *FW);
long double sumsse(int *FW);
int i,j,k,1,t,NL,N=60000,indx,K,CHK,cnt,*P3,*Q3,srt,k0,k1;
int FW[512],FWupd[512],tt[2];
long double I,Maxi,cost,Q2[60];
P3=(int *)malloc(120000*sizeof(int));
Q3=P3;
for (i=0;i<gn;i++)
for (j=0;j<gn;j++)
A[i][3]1=0;
repres();
for (i=0;i<gn;i++){
orbit(i);
for (j=0;j<gn;j++)
for (k=0;k<h;k++){
1=0;
for (t=0;t<n;t++)
1=1"(G[kI[tI*R[j1[tD);
A[i][j]+=1-2*1;
3
}

for (i=0;i<gn;i++)
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for (j=0;j<gn;j++){
A2[i]1[j1[0]=2*A[i1[]];
A2[i][j1[1]=-2*A[i]1[]j]1;
}
I=0;
for (i=0;i<513;i++){
FW2[i]=(I*I-512)*(I*I-512);
I+=1;
}
//The algorithm starts with the following truth table (randomly
//chosen rotation symmetric truth table).
int TT[]={9,0,1,0,1,1,1,1,1,0,0,0,1,1,0,1,0,0,
1,1,0,1,0,1,0,1,1,0,1,1,1,0,0,1,1,1,0,1,1,0,
walsh(TT,FW);
tohex (TT,tt);
NL=256-findmaxwh(FW)/2;
printf("\nStarting... nonlinearity=%d cost=%f",NL,sumsse(FW));
cnt=0;
srt=gn/32+1;
for (i=0;i<srt;i++){
*(Q3+cnt)=tt[cnt];
cnt+=1;
}
for (K=1;K<=N;K++){
Maxi=1.6e+50;
for (i=1;i<gn;i++){
kO®=i;
k1=TT[i] " 1;
walsheff (FWwupd,FwW,k1,k0);
cost=sumsse (FWupd) ;
if (cost<=Maxi){
Maxi=cost;
indx=i;
}
Q2[i]=cost;
}
TT[indx]=1"TT[indx];
tohex(TT,tt);
for (i=0;i<K;i++){
CHK=0;
for (j=0;j<srt;j++)
if (*(Q3+i*srt+j)==tt[j])
CHK+=1;
else
break;
if (CHK==srt)
break;

1,9,90,0,1,1,1,1,0,
’®!®’®’1!1!l’®’®l };

}
while (CHK==srt){
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Maxi=1.69e+50;
TT[indx]=1"TT[indx];
Q2[indx]=1.7e+50;
for (i=1;i<gn;i++)
if (Q2[i]<=Maxi){
Maxi=Q2[i];
indx=i;

}
TT[indx]=1"TT[indx];
tohex (TT,tt);
for (i=0;i<K;i++){

CHK=0;

for (j=0;j<srt;j++)

if (*(Q3+i*srt+j)==tt[j])
CHK+=1;
else
break;
if (CHK==srt)
break;
3
}
for (i=0;i<srt;i++){
*(Q3+cnt)=tt[i];
cnt+=1;
}
walsh(TT,FW);
NL=256-findmaxwh(FW)/2;
if (NL>240){
printf("\nIteration Step=%d Nonlinearity=%d cost=%f\n",K,NL,
sumsse (FW));
for (i=0;i<gn;i++)
printf("%d",TT[i]);
3
}
return 0;

}

void walsh(int *TT, int *FW){
int i,j;
for (i=0;i<gn;i++){
FW[i]=0;
for (j=0;j<gn;j++)
FW[i]=FW[i]+(1-2*TT[j1)*A[j1[1i];
}
}

void walsheff(int *FWnew, int *FWold, int k1, int kO0){
int 1i;
for (i=0;i<gn;i++)
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Fiinew[i]=FWold[i];
for (i=0;i<gn;i++)
Fiinew[i]=FWnew[i]+A2[k®][i][k1];

}
void tohex(int *TT, int *tt){
int i,j;
for (i=0;i<(gn/32);i++){
tt[i]=0;

for (j=31;3>=0;j--)
tt[i]=(TT[i*32+j]1<<(31-j)) "tt[i];
h
tt[gn/32]=0;
for (j=gn-(gn/32)%32-1;j>=0;j--)
tt[gn/32]1=(TT[(gn/32)*32+j]<<(gn-(gn/32)*32-1-j)) "tt[gn/32];
}

int findmaxwh(int *FW){
int i,D,Maxi=-1;
for (i=0;i<gn;i++){
D=FW[i];
if (FW[il<®)
D=-FW[i];
if (D>Maxi)
Maxi=D;
}

return Maxi;

}

long double sumsse(int *FW){
int 1i;
long double sum=0;
for (i=0;i<gn;i++){
if (FW[il<0®)
sum=sum+FW2 [-FW[i]];
else
sum=sum+FW2 [FW[i]];
3
return sum;

}

void orbit(int k){

int i,j,1,chk=1,b[9],a[9];

h=0;

for (i=0;i<n;i++){
G[hI[i]=R[k]1[i];
b[i]=R[k][i];

}

while (chk!=0){

69



h+=1;
for (i=0;i<n;i++)
al[il=b[p[i]l];
for (i=0;i<n;i++)
b[il=a[il];
for (i=0;i<h;i++){
1=0;
for (j=0;j<n;j++)
if (G[il[j1==aliD
1+=1;
if (1==n){
chk=0;
break;
3
}
if (chk!=0)
for (i=0;i<n;i++)
G[h][i]=ali];
}
}

void repres(){
int i,j,k=0;
for (i=0;i<512;i++){
for (j=0;j<n;j++)
B[i][n-1-j]1=(1&(1<<j))>>];
3
for (i=0;i<512;i++)
if (BLi1[0]!'=-1){
for (j=0;j<n;j++)
R[k1[j1=B[i]1[j]1;
orbit(k);
for (j=0;j<h;j++)
B[256*G[j]1[0] + 128*G[jI[1] + 64*G[j1[2] + 32*G[jI1[3] +
16*G[j1[4] + 8*G[j1[5] + 4*G[jI[6] + 2*G[j1[7] +
1*G[31[8]1]1[0]=-1;
k+=1;
3
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APPENDIX D

ALGORITHM USED IN THE CLASS OF 9-VARIABLE DSBFs

The following is the C programming code (compiled with Microsoft Visuak{5.0) of our
steepest-descent-like iterative search algorithm that is used to finds®eaD SBFs having

nonlinearity of 242.

#include "stdlib.h"

#include "stdio.h"

int R[104][9],9n=104,p[]1={3, 4, 5, 6, 7, 8, 0, 1, 2};
int n=9,B[512][9],h,G[6][9],A[104][104],A2[104][104][2];
long double FW2[513];

int main(){
void orbitd(int k);
void repres();
void walsh(int *TT, int *FW);
void tohex(int *TT, int *tt);
void walsheff(int *FWnew, int *FWold, int k1, int kO0);
int findmaxwh(int *FW);
long double sumsse(int *FW);
int i,j,k,1,t,NL,N=60000,indx,K,CHK,cnt,*P3,*Q3,srt,k0,k1;
int FW[512],FWupd[512],tt[4];
long double I,Maxi,cost,Q2[104];
P3=(int *)malloc(240000*sizeof(int));
Q3=P3;
for (i=0;i<gn;i++)
for (j=0;j<gn;j++)
A[i][3]1=0;
repres();
for (i=0;i<gn;i++){
orbitd(i);
for (j=0;j<gn;j++)
for (k=0;k<h;k++){
1=0;
for (t=0;t<n;t++)
1=1"(G[kI[tI*R[j1[tD);
A[i][j]1+=1-2*1;
3
3

for (i=0;i<gn;i++)
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for (j=0;j<gn;j++){
A2[i]1[j1[0]=2*A[i1[]];
A2[i][j1[1]=-2*A[i]1[]j]1;
}
I=0;
for (i=0;i<513;i++){
FW2[i]=(I*I-512)*(I*I-512);
I+=1;
}
//The algorithm starts with the following truth table (randomly
//chosen 3-dihedral symmetric truth table).
int TT[]={9,0,1,0,1,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,1,60,1,1,0,1,1,0,
9,0,1,0,1,1,0,1,0,0,0,0,1,0,1,90,0,0,60,1,1,0,0,1,0,0,0,1,1,1,0,1,0,
1,1,0,1,1,0,0,0,0,1,0,1,1,1,1,90,90,0,0,1,1,0,1,0,0,0,0,1,1,1,0,1,1
1,0,0,1,1,1,0,0,0,0
walsh(TT,FW);
tohex (TT,tt);
NL=256-findmaxwh(FW)/2;
printf("\nStarting... nonlinearity=%d cost=%f",NL,sumsse(FW));
cnt=0;
srt=gn/32+1;
for (i=0;i<srt;i++){
*(Q3+cnt)=tt[cnt];
cnt+=1;
3
for (K=1;K<=N;K++){
Maxi=1.6e+50;
for (i=1;i<gn;i++){
k®=i;
k1=TT[i]" 1;
walsheff (FWwupd,FW,k1,k0);
cost=sumsse (FWupd) ;
if (cost<=Maxi){
Maxi=cost;
indx=1i;
3
Q2[i]=cost;
3
TT[indx]=1"TT[indx];
tohex(TT,tt);
for (i=0;i<K;i++){
CHK=0;
for (j=0;j<srt;j++)
if (*(Q3+i*srt+j)==tt[j])
CHK+=1;
else
break;
if (CHK==srt)
break;

’ ’ ’ ’ ’ ’ ’ y ’ ’ ’ ’ ’ ’ ’ y ’ ’ ’ ’
’ ) 3 } ’
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}
while (CHK==srt){
Maxi=1.69e+50;
TT[indx]=1"TT[indx];
Q2[indx]=1.7e+50;
for (i=1;i<gn;i++)
if (Q2[i]<=Maxi){
Maxi=Q2[i];
indx=i;

}
TT[indx]=1"TT[indx];
tohex (TT,tt);
for (i=0;i<K;i++){

CHK=0;

for (j=0;j<srt;j++)

if (*(Q3+i*srt+j)==tt[j])
CHK+=1;
else
break;
if (CHK==srt)
break;
3
}
for (i=0;i<srt;i++){
*(Q3+cnt)=tt[i];
cnt+=1;
}
walsh(TT,FW);
NL=256-findmaxwh(FW)/2;
if (NL>241){
printf("\nIteration step=%d nonlinearity=%d cost=%f\n",K,NL,
sumsse (FW));
for (i=0;i<gn;i++)
printf("%d",TT[i]);
}
3
return 0;

}

void walsh(int *TT, int *FW){
int i,j;
for (i=0;i<gn;i++){
FW[i]=0;
for (j=0;j<gn;j++)
FW[i]=FW[i]+(1-2*TT[j1)*A[j1[1i];
}
}

void walsheff(int *FWnew, int *FWold, int k1, int k®){
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int i;

for (i=0;i<gn;i++)
Fiinew[i]=FWold[i];

for (i=0;i<gn;i++)
Fiinew[i]=FWnew[i]+A2[k®][i][k1];

}
void tohex(int *TT, int *tt){
int i,j;
for (i=0;i<(gn/32);i++){
tt[i]=0;

for (j=31;3>=0;j--)
tt[i]=(TT[i*32+j]1<<(31-j)) "tt[i];
}
tt[gn/32]=0;
for (j=gn-(gn/32)*32-1;3>=0;j--)
tt[gn/32]=(TT[(gn/32)*32+j]<<(gn-(gn/32)*32-1-3)) "tt[gn/32];
}

int findmaxwh(int *FW){
int i,D,Maxi=-1;
for (i=0;i<gn;i++){
D=FW[i];
if (FW[i]<®)
D=-FW[i];
if (D>Maxi)
Maxi=D;
}
return Maxi;

}

long double sumsse(int *FW){
int i;
long double sum=0;
for (i=0;i<gn;i++){
if (FW[i]<®)
sum=sum+FW2 [-FW[i]];
else
sum=sum+FW2 [FW[i]];
3
return sum;

}

void orbitd(int k){
int i,j,1,chk=1,b[9],a[9],h2;
h=0;
for (i=0;i<n;i++){
G[h][i]=R[k]1[i];
b[i]=R[k][i];
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}

while (chk!=0){
h+=1;
for (i=0;i<n;i++)
al[il=b[p[il];
for (i=0;i<n;i++)
b[i]=a[i];
for (i=0;i<h;i++){
1=0;
for (j=0;j<n;j++)
if (G[il[jl==aliD
1+=1;
if (1==n){
chk=0;
break;
}
}
if (chk!=0)
for (i=0;i<n;i++)
G[h][i]=a[i];
}

chk=1;
for (i=0;i<n;i++)
b[i]=G[0] [n-i-1];
for (i=0;i<h;i++){
1=0;
for (j=0;j<n;j++)
if (G[i1[j1==b[i1)
1+=1;
if (1==n){
chk=0;
break;
}
3
if (chk!=0)
for (i=0;i<n;i++)
G[h][i]=b[i];
h2=1;
while (chk!=0){
h+=1;
for (i=0;i<n;i++)
a[i]=G[h2][n-i-1];
h2+=1;
for (i=0;i<n;i++)
b[i]=a[i];
for (i=0;i<h;i++){
1=0;



for (j=0;j<n;j++)
if (G[iI[j1==b[iD
1+=1;
if (1==n){
chk=0;
break;
3
}
if (chk!=0)
for (i=0;i<n;i++)
G[h][i]=ali];

}

void repres(){
int i,j,k=0;
for (i=0;i<512;i++){
for (j=0;j<n;j++)
B[i][n-1-j1=(1&(1<<j))>>7];
3
for (i=0;i<512;i++)
if (BLil[0]!=-1){
for (j=0;j<n;j++)
R[kI[j1=B[i]1[j]l;
orbitd(k);
for (j=0;j<h;j++)
B[256*G[j]1[0] + 128*G[jI[1] + 64*G[j]1[2] + 32*G[j][3] +
16*G[j1[4] + 8*G[j1[5] + 4*G[jI[6] + 2*G[jI1[7] +
1*G[31[8]1]1[0]=-1;
k+=1;
}
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