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ABSTRACT 
 

LINEAR AND NONLINEAR ANALYSIS OF HUMAN POSTURAL SWAY 

 

Çelik, Hüseyin 

 

M.S., Department of Engineering Sciences 

Supervisor: Assist. Prof. Dr. Senih Gürses 

Co-Supervisor: Prof. Dr. Turgut Tokdemir 

 

September 2008, 195 pages 

 

Human upright posture exhibits an everlasting oscillatory behavior of complex 

nature, called as human postural sway. Variations in the position of the Center-of-

Pressure (CoP) were used to describe the human postural sway. In this study; CoP 

data, which has experimentally been collected from 28 different subjects (14 males 

and 14 females with their ages ranging from 6 to 84), who were divided into 4 groups 

according to their ages has been analyzed. The data collection from each of the 

subjects was performed in 5 successive trials, each of which has lasted for 180-

seconds long. Linear analysis methods such as the variance/standard deviation, Fast 

Fouriér Transformation, and Power Spectral Density estimates were applied to the 

detrended CoP signal of human postural sway. Also the Run test and Ensemble 

averages methods were used to search for stationarity and ergodicity of the CoP 

signal respectively. Furthermore, in order to reveal the nonlinear characteristics of the 

human postural sway, its dynamics were reconstructed in m-dimensional state space 

from the CoPx signals. Then, the correlation dimension (D2) estimates from the 

embedded dynamics were calculated. Additionally, the statistical and dynamical 

measures computed were checked against any significant changes, which may occur 

during aging. The results of the study suggested that human postural sway is a 

stationary process when 180-second long biped quiet stance data is considered. In 
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addition, it exhibits variable dynamical structure complex in nature (112 deterministic 

chaos versus 28 stochastic time series of human postural sway) for five successive 

trials of 28 different subjects. Moreover, we found that groups were significantly 

different in the correlation dimension (D2) measure (p≤0.0003). Finally, the behavior 

of the experimental CoPx signals was checked against two types of linear processes 

by using surrogate data method. The shuffled CoPx signals (Surrogate I) suggested 

that temporal order of CoPx is important; however, phase-randomization (Surrogate 

II) did not change the behavioral characteristics of the CoPx signal.  

 

Keywords: Human Postural Sway, Center-of-Pressure, Determinism versus 

Stochasticity, Stationarity and Ergodicity, Surrogate Data, Correlation Dimension, 

Aging   
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ÖZ 
 

DURUŞ SAPMASININ DOĞRUSAL VE DOĞRUSAL OLMAYAN ANALİZ 

YÖNTEMLERİ İLE ARAŞTIRILMASI 

 

Çelik, Hüseyin 

 

Yüksek Lisans, Mühendislik Bilimleri Bölümü 

Tez Yöneticisi: Yard. Doç. Dr. Senih Gürses 

Yardımcı Tez Yöneticisi: Prof. Dr. Turgut Tokdemir 

 

Eylül 2008, 195 sayfa 

 

Ayakta sakin halde dik duran bir insanın sonu gelmeyen, karmaşık özellikler gösteren 

salınımlarına duruş sapması adı verilmektedir. Basma merkezi (“Center-of-Pressure”, 

CoP)’nin pozisyonundaki değişimler, duruş sapmasını incelemek için 

kullanılmaktadır. Bu çalışmada, 6 ile 84 yaş arasında değişen 28 farklı denekten (14 

kadın, 14 erkek); her denekten, bir tanesi 180 saniye süren 5 farklı deneme olmak 

üzere, deneysel olarak CoP sinyali kaydedilmiştir. Denekler yaşlarına göre dört farklı 

gruba ayrılmışlardır. Varyans/standard sapma, Hızlı Fourier Dönüşümü, Güç 

Spektrum Yoğunluğu gibi doğrusal analiz yöntemleri, CoP zaman serilerinin 

ortalaması sinyalden çıkartılarak uygulanmıştır. Ayrıca, Run testi ve Topluluk 

Ortalaması yöntemleri sırasıyla durağanlığı ve ergodikliği araştırmak için 

kullanılmıştır. Bunların yanı sıra, duruş sapmasının doğrusal olmayan davranışını 

ortaya çıkarmak için duruş dinamiği, CoPx sinyalinden m-boyutlu durum uzayında 

yeniden inşa edilmiştir. Daha sonra, korelasyon boyutu (D2) kestirimleri, m-boyutlu 

durum uzayına gömülmüş dinamikten hesaplanmıştır. İlaveten, bahsi geçen ölçütlerin 

yaşlanma ile olası anlamlı değişimleri istatistiksel yöntemlerle araştırılmıştır. 

Çalışmanın sonuçları, duruş yan sapmasının, 180 saniye iki ayak üstünde sakin 

vaziyette yapılan gözlemlerde durağan bir süreç olduğunu ortaya koymuştur. Bunun 
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yanısıra, duruş yan sapması farklı kişi veya aynı kişinin farklı denemeleri için farklı 

dinamik yapılar (112 belirlenimci kaosa karşı 28 stokastik duruş yan sapması zaman 

serileri) sergilemiştir. Ayrıca, D2 ölçütü için gruplar arasında anlamlı farklılık 

saptanmıştır (p≤0.0003). Son olarak, deneysel olarak elde edilmiş CoPx sinyallerinin 

davranışı, iki doğrusal sürece karşı vekil veri (Surrogate data) kullanılarak 

sınanmıştır. Karıştırılmış CoP sinyalleri göstermiştir ki, zamansal sıra CoP sinyalleri 

için önemlidir; ama, fazın rasgelelelştirilmesi CoP sinyallerinin karakteristik 

davranışında bir farklılığa yol açmamıştır.    

 

Anahtar Kelimeler: Duruş Yan Sapması, Basma Merkezi (“Center-of-Pressure”), 

Stokastikliğe karşı Belirlenimcilik, Durağanlık ve Ergodiklik, Vekil Veri, Korelasyon 

Boyutu, Yaşlanma 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

 

1.1 General Overview 

 

Even it looks easy to stand in upright stance, many researcher have tried to 

understand the complex behavior of human erect posture. A definition of posture can 

be stated as the position of the body and limbs with respect to each other and the 

environment. Even in static conditions, human upright posture exhibits an everlasting 

oscillatory behavior of complex nature, called as the postural sway.  

 

The exploration of the dynamics, physiology and sensory motor control of human 

posture emphasizes importance in many areas of science such as neuroscience and its 

clinical applications (e.g., neurology, rehabilitation and prevention of fall); physical 

education, sport, and motor development (e.g., physical culture and education); 

ergonomics, industrial design (e.g., prosthesis and robotics); and ecology and 

adaptive biology (e.g., space studies).  

 

To be in a static equilibrium, the forces and moments acting on a body must be zero. 

However, a person cannot stand in a static equilibrium but rather sway. Both intrinsic 

(e.g., mechanics of muscles; noise, delays and nonlinearities in the control system of 

human upright stance) and extrinsic factors (e.g., external forces acting on the body) 

may cause disruptions at the static equilibrium in standing.  

 

 

The human upright posture is controlled by the central nervous system (CNS). To 

ensure the upright posture, CNS uses the information which comes from 
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somatosensory, vestibular, visual systems and control of the muscles. The 

proprioceptive system sends information about the changes of the positions of the 

body segments to the CNS [1]. The vestibular system can sense the linear and angular 

acceleration of the head and feedback this information to the CNS [2]. By the visual 

system, CNS has information about the position and velocity of the head [3]. The 

information comes from different sensory systems and is continuously re-weighted 

and integrated by the CNS to control the upright stance [4,5,6].  

 

Alternation in sensory condition results in changes on postural sway. Kuo et al. 

(1998) [7] showed that subjects swayed more when either somatosensory or visual 

information has been disrupted. In addition, loss of a sensory system may lead 

changes in the nature of re-weighting mechanism. Peterka (2002) [4] claimed that 

stimulus-response characteristics of vestibular loss subjects was quiet linear because 

they cannot perform re-weighting of sensory information; however, for the healthy 

subjects stimulus-response characteristics was non-linear due to re-weighting. 

Besides, not the changes in the parameters that characterize the stability of postural 

control system but the changes in coupling coefficients (e.g., visual gain affected 

from touch motion amplitude) is proposed to be the primary reason of the changes in 

the gains used in the postural control system among different stimuli conditions [6]. 

 

Large amount of information from different senses is sent to CNS continuously. But, 

what is more important may be, how this information is perceived in our mind. CNS 

must adapt to variations in the body, environment and the task while solving motor 

control “problems” of voluntary or involuntary origin. That might be the perception 

that allows for adaptation of movement patterns to the variations in the body, the 

environment, and the task [8].   

 

Many attempts were allocated to model postural control system (PCS). Johansson et 

al. (1988) [9] used an inverted pendulum to model postural body mechanism of their 
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subjects stimulated by the vibrators attached to their calf muscle. They made 

parametric identification of transfer function (TF) of the dynamics of the inverted 

pendulum. In another study, it was claimed that postural sway results from the 

impulsive control of calf muscle activity [10]. Peterka (2000) [11] modelled the 

postural control system with a PID (Proportional, Integral, Derivative) controller used 

to control the body, which is assumed to be an inverted pendulum. Kiemel et al. 

(2002) [5] modelled PCS as a modified optimal controller with computational noise 

(inaccuracies in neural computations). Park et al. (2004) [12] suggested that postural 

control system can be described by a single feedback controller with scalable gains 

through a biomechanical model which was composed of 3 inverted pendulums. In all 

of the aforementioned models, the feedback is continuous (closed loop control 

scheme); however, Collins et al. (1994 and 1995) [13,14] declared that feedback 

mechanisms is not continuous in time; ie, both open and closed loop dynamics co-

existing simultaneously for postural control. Recently, Bottaro et al. (2005) [15] 

proposed a sliding mode control (a control strategy that first drives system to a stable 

manifold and then slide to equilibrium [16]), where the feedback is not continuous; as 

the system switches among stable manifolds [16] in time for PCS. Another control 

model is based on a set-point model proposed by Zatsiorsky et al. (1999 and 2000) 

[17,18]. They decomposed the stabilograms into two parts as rambling and trembling. 

They suggested CNS to set a reference point (rambling) and the body to sway with 

respect to the reference point (trembling) defined. Recently, Gürses et al. (2002 and 

2006) [19,20] have  suggested a closed loop nonlinear control scheme with stationary 

dead-zone (threshold) dynamics for position and velocity feedbacks.     

 

On the contrary to the classical inverted pendulum model for the postural dynamics, 

mechanisms with higher degrees-of-freedom were also suggested for postural body 

dynamics. Creath et al. (2005) [21] and Colobert et al. (2006) [22] modelled human 

body upright posture dynamics with two inverted pendulums jointed at ankle and hip. 
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In another study, Alexandrov et al. (2005) [23] used three inverted pendulum model 

jointed at ankle, knee, and hip.  

 

To study the human upright posture, a technique called stabilography has widely been 

accepted and used [24]. The method is used to obtain the projection of center-of-mass 

(CoM) in the horizontal plane. CoP is the application point of the resultant force-

moments system created by the distributed forces and moments of standing subjects 

on the support surface [25]. That is the Center-of-Pressure (CoP) with its variations in 

its position on the horizontal plane (generally a force plate), which have been used to 

describe the human postural sway. There are many scientific researches that 

examined CoP to study human upright posture. 

   

1.2 Motivation of the Thesis 
 

1.2.1 Dynamics of the Human Postural Sway: Determinism versus Stochasticity   

 

Newell and Corcos [26] said that “Variability is inherent within and between all 

biological systems. The considerable differences that may be discerned among the 

motor abilities of humans is strong testament to this observation, as is the fact that it 

seems impossible for a given individual to generate identical movement patterns on 

successive attempts at performing the same task”. The variability on a motor control 

system has two main sources. One of them is the noise in the multi-degrees of 

freedom sensorimotor system. And, the second one is the nonlinear oscillations of a 

control system [26]. This phenomenon can be exemplified by considering the sensors 

in the postural control system. The noise in the sensors [5,6] may lead measurement 

errors on the postural control system. On the other hand, the architecture of the 

sensors e.g., threshold on the sensors (e.g., [19,20]) may lead nonlinear oscillations 

for the PCS. Both may be the reasons of that an individual cannot generate identical 

movement trajectories on successive attempts at biped upright quiet stance.  To study 
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motor control behaviour, generally the outputs of the motor control system (signals) 

was recorded and analyzed. The signals recorded demonstrate both deterministic and 

stochastic characteristics [27]. Center-of-Pressure (CoP) signal is the most common 

signal recorded to study the human postural sway. CoP is the collective output of 

postural control system and the force of gravity; and also includes dynamical 

components due to the body acceleration [28].  Subsequently, it can be suggested that 

the variability in the CoP signal has two main sources as well: noise in the 

sensorimotor system and nonlinear oscillations of the postural control system. In 

order to search the determinism versus stochastic features in the CoP signal, many 

research (e.g., Zatsiorsky and Duarte (e.g., [28,29]); Collins and De Luca (e.g., 

[13,14]); Kiemel, Oie, and Jeka (e.g., [5,6]); Newell, Slobounov, Slobounova (e.g., 

[30])) have been done since 1994 [13]. However, there is still not a universal 

consensus on the time period of the experimental trials performed to study the CoP 

signal. Trials from 30-second [31] up to 200-second [32] for quiet stance and 1800-

second long [28,29] for unconstrained prolonged stance were used to study the CoP 

signal dynamics.  

 

Determinism may be originated either from a linear or a nonlinear system. Nonlinear 

systems include both non-oscillatory systems: stable or unstable fixed points, saddle 

points (hyperbolic solutions); and oscillatory systems: periodic (e.g., limit cycle) and 

quasi-periodic (e.g., torus two-incommensurate-periodic), chaotic (e.g, strange 

attractors) [33]. Chaos in a system can be identified by showing existence of an 

attractor with fractal dimension [34] and sensitivity to the initial conditions. One may 

estimate the correlation dimension (D2) [35] of a system to search for an attractor 

with fractal dimension and positive Lyapunov exponent (LE) for showing sensitivity 

to initial conditions [36]. For this purpose, the observed signal from a dynamical 

system is firstly reconstructed in m-dimensional state space for further analysis 

[37,38]. After calculation of nonlinear measures (e.g., D2 and LE), the method of 

surrogate data is commonly applied to the calculated measures to justify the 
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nonlinearity [39]. Surrogate data sets are created by modelling the experimental data 

with some linear processes (preserving/destroying some features of the experimental 

data), then surrogate and experimental data are compared in terms of computed 

statistical measures to assess the difference/similarity between them. The nonlinear 

tools developed for physical sciences and engineering was also used widely to 

conceptualize biological systems (e.g., [40,41]). 

 

Some examples of studies on the deterministic and stochastic characteristics of 

human postural sway have previously been mentioned. Collins et al. (1994) [13] tried 

to estimate correlation dimension (D2) and Lyapunov exponent (LE) of the 90-second 

long CoP signals. However, they reported that D2 estimate cannot be calculated since 

there was no clear linear scaling region and also D2 estimates did not converge to a 

value for increasing embedding dimension (m) [42]. Also for the LE, they couldn’t 

find significant difference between the calculated LEs from experimental records and 

the ones calculated from phase randomized surrogates [39]. They then concluded that 

postural control system (PCS) dynamics should not be modelled as a chaotic system. 

They then tried to model CoP trajectories with a correlated random walk model. For 

this purpose they calculated H exponent [43] and showed the significant difference 

between experimental records and shuffled surrogates on this measure [44]. They 

found H>0.5, which means that past and future increments are positively correlated in 

the short-term region (<1 second); while H<0.5, which means that past and future 

increments are negatively correlated in the long-term (>1 second) period. In the light 

of these findings, they proposed their famous theory about the PCS, which is stating 

that postural control system utilizes open-loop and closed-loop control strategies for 

short-term and long-term intervals respectively. In another study in 1994, Collins et 

al. [14] solidify their previous findings by using one and two dimensional random 

walk models (fractional Brownian motion [45]). Their findings suggested that 

postural control system has a memory, which means that past increments in 

displacements are correlated with future increments.   
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On the other hand, Yamada (1995) [32] has proposed that postural sway is chaotic. 

He calculated D2 and LE for the 200-second long trials obtained from 5 subjects. He 

found fractal correlation dimension values and positive Lyapunov exponents. He 

suggested that to assure the “talk” between the postural control system and the body 

with its environment, the structure of postural sway should be chaotic rather than a 

limit cycle or a point attractor.  

 

Duarte et al. (2000) [28] studied fractal properties of CoP trajectories for 

unconstrained prolonged standing (30 minutes). Their results suggested that postural 

control system presents long-range correlations from 10 seconds to 10 minutes. In a 

following study by Duarte et al. in 2001 [29], detrended fluctuation analysis (DFA) 

and power spectral analysis (PSA) were applied to the same 30-minutes signals. By 

this study, they claimed that postural control system can be explained by 1/f noise 

which is also observed in many other processes in the human.       

 

Recently, Pascolo et al. (2005) [46] have estimated correlation dimension values and 

Lyapunov exponent for both healthy subjects and the subject who have Parkinson’s 

disease and found no significance difference between two groups on the measures (D2 

and LE). Roerdink et al. (2006) [31] calculated nonlinear measures as D2, LE, 

exponent H, and sample entropy [47] for healthy and stroke-after patients and they 

reported substantial differences between two groups on the mentioned measures.    

 

On the other hand, stochastic models that are different than random walk were also 

used to model CoP trajectories. Two examples may be as follows: Chow et al. (1999) 

[48] used fluctuation-dissipation theorem (FDT presents the linear relation between 

the correlated fluctuations in the system and the response of the system to an external 

stimuli) Newell et al. (1997) [30] used Ornstein-Uhlenbeck model (a linear model in 
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which successive displacements of sway are governed by only a stiffness term) 

describe postural sway.  

 

1.2.2 Stationarity of the CoP Signals 

 

Most of the methods and measures described in previous section are valid if the CoP 

signal is stationary. In other words, they are justified with the implicit assumption of 

stationarity. So, it is critical to assess the stationarity of the CoP signals explicitly. 

For this reason, one of the first analyses applied to signal is the stationarity analysis. 

A stationary signal is a trend-free signal that has time-invariant statistical properties. 

CoP signal is generally accepted as a stationary signal (e.g., [13,28,29,31,32,46]), 

however, there are studies against this view. For example, Carroll et al. (1993) [49] 

expressed that one minute long CoP x or y time series are non-stationary since the 

mean and the variance of the postural sway is not time-invariant. They presented that 

there is a transition period (from non-stationarity to stationarity) in the time series for 

the mean and the variance measures. Also, Schumann et al. (1995) [50] demonstrated 

that CoP trajectories show non-stationary characteristics by time-frequency analysis, 

which is a technique to quantify changes in the spectral characteristic of a signal in 

time, for 100-second long trials. In another study, Loughlin et al. (1996) [51] studied 

CoP time series collected from both healthy and vestibularly-impaired subjects. Their 

results suggested that CoP time series are non-stationary for 90 seconds long trials 

(first 30-seconds quiet standing followed by a 60-seconds visually induced standing) 

by using time-frequency analysis. Also, there were time and frequency dependent 

differences in visually induced standing but not in quiet standing between normal and 

impaired subjects. So, why stationarity is an issue on this study? Because, if one 

intents to suggest deterministic chaos for the CoP signal by calculating fractal D2 and 

positive LE, then he/she must show that the signal used for the analyses is stationary. 

Since, proposing a number for the mentioned measures has the inherent necessity that 

it is fixed during the measurement period.  
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1.2.3 Aging and Human Upright Posture 

 

Many changes occur in human body and mind in many aspects (e.g., psychological, 

physiological) for many reasons by aging (e.g., [52,53,54,55]). This may also be the 

case for postural control (e.g., [56,57,58,59]). Infants learn to stand in their first years 

by falling and trying again [60]. However, falling may be lethal or cause impairments 

in the elderly (e.g., [61,62,63]; falls are the leading cause of nonfatal medically 

attended injuries in the United States [64]). Deterioration of the sensory systems in 

the postural adaptation (e.g., [65,66]), weakness of the muscles (e.g., [67,68]), and 

age-related pathologies like Parkinson’s disease etc. may lead slight balance 

impairment (e.g., [69,70]). Several studies devoted to study postural control with 

aging are presented in the following paragraphs.  

 

Woollacott et al. (1990) [71] worked on changes in postural control according to age 

and come up with the following conclusions:  

 

• Older adults have more difficulty to stand when one or more sensory 

information is missing.  

• Muscle weakness is a factor of postural trouble (difficulty in maintaining 

upright posture) in older adults.  

• Older adults’ muscles give later response to external threats to balance.  

• A similarity between young children and older adults observed was using the 

co-activation of agonist and antagonist muscles when compared with young 

adults.  

 

In another study by Amiridis et al. (2003) [72], young (20 subjects with a mean age 

of 20.1 years) and old adults (19 subjects with a mean age of 70.1 years) compared in 

3 different stance (a) normal quiet stance (b) tandem Romberg stance (non-dominant 

heel in front of the dominant toe, arms on the hips) (c) one-legged stance. They used 
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CoP variations, electromyography (EMG) activity of hip and ankle muscles, 

kinesiograms (a kinematic analysis method used to measure displacements in joints) 

as the measures for looking difference between young and old adults. They found 

more CoP excursion, EMG activity, and joint displacement (ankle, knee, and hip 

displacements) in the old adults when compared to young adults. 

 

Recently, Heldberg et al. (2007) [73] experimented with 13 infants in two different 

stances as with and without support on a movable platform (can make back and 

forward move in horizontal plane) in a longitudinal study (at 8th, 10th, 12th, 14th 

months of infants). They placed electrodes to the muscles placed in ankle, hip, lumbar 

region, and arm to record EMG activity. They concluded that postural adjustments 

were task and direction specific (response to stimuli with activation of agonist or 

antagonist muscle according to the direction of stimuli) and also changing with 

increasing age.  

 

In this study, various measures have been used to understand the human postural 

sway. It has also been searched in this study whether any significant changes occur in 

these measures due to aging. Since, it may be crucial to use these measures to 

understand changes in the postural control system by aging.     

 

1.3 Aim and Scope of the Thesis 
 

The main aim of this work was searching dynamical and/or statistical measures of the 

CoP signal to build up a framework to understand human movement and perception. 

Both linear and nonlinear analytical methods were applied to CoP signals to obtain 

the relevant dynamical measures of the signal. This work covers the signal processing 

of the Center-of-Pressure in time, frequency, and state-space domains. In the time 

domain, to look for amount of postural sway, standard deviation values [74] of the 

time average detrended 180 sec long CoP signals were calculated. Also to interpret 

about the stationarity of the signal, Run Test [75] analysis; to evaluate ergodicity, 
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ensemble averages [76] were used in time domain. In the frequency domain, 

frequency content of the dynamics of the signal was searched by Fast Fourier 

Transformation [77] and the power distribution of the signal according to the spectral 

frequencies has been investigated by Welch’s method [78].  

 

In the state-space domain (the space in which the dynamical system evolves 

topologically rather; i.e., time is implicit); time delays (if x(t) is the observed signal; 

then x(t+τ), x(t+2τ), … , are constructed state-variables by time delay, τ) [37,38], and 

correlation dimension estimates [35] were calculated. Also parametric and non-

parametric statistical tools were applied to search for the significant differences in the 

dynamical measures estimated over the trials of a subject (intra-subject), the subjects 

in the age-groups (inter-subject), and the groups (inter-group) formed with respect to 

the age.  

 

1.4 Outline of the Study 
 

The study is composed of 5 Chapters. Chapter 1 is the Introduction that offers 

information about the human postural dynamics and control system as well as 

introducing the global outcome of the human postural sway defined as Center-of-

Pressure (CoP). In Chapter 2, the dynamical and statistical methods used to analyze 

the CoP signal are described. The Results obtained by analyzing the CoP signal 

collected from 28 subjects whose ages ranged from 6 to 84 are presented in Chapter 

3. Chapter 4 includes modeling attempts of the statistical and dynamical behavior of 

the CoPx (the x coordinate of CoP, refer to Chapter 2 Section 2.1.3) signal. Finally, in 

Chapter 5, the results found are discussed in the light of previous work done on 

human postural system.     
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CHAPTER 2 
 
 

MATERIALS and METHODS 
 

 

 

2.1 Data Acquisition 

2.1.1 The Experimental Set-up 

 

The experiments were performed at the Biomechanics Laboratory (Figure 2.1) of 

Mechanical Engineering Department of Middle East Technical University (METU).   

 

   

Figure 2.1 The Biomechanics Laboratory. Left: A side (from left to right) view of the 

laboratory while the subjects are standing still; Right: Back to front view of the 

laboratory with respect to the standing subjects with the scene presented to the 

subjects during the data collection.  

 

Signals from the ground reactions forces (Fx, Fy, Fz) and moments (Mx, My, Mz) were 

acquired by using Bertec® force platform while the subjects were standing at biped 

quiet stance. The analog signals were first amplified with a pre-amplifier embedded 

to the force platform, then, a second amplification was performed by a stand-alone 

amplifier with a cut-off frequency at 500 Hz, which have adjustable gains and can be 
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auto-zeroed. Filtered analog signals were sampled at 50 Hz with a 16-bit A/D 

converter card (DAQ PCI-6224 NI®), which is mounted into the computer (Pentium 

IV, Windows XP®). Data has been collected by using Matlab® (Data Acquisition 

Toolbox). The digitized signals were stored in the hard-disk of the computer and have 

been further manipulated and processed with the software Matlab®.  

2.1.2 Subjects and the Experimental Procedure  

 

The signals were collected from 28 healthy subjects (14 male and 14 female). All 

subjects gave informed consent according to the guidelines of the Human Research 

Ethics Board of Middle East Technical University to participate in this study. 28 

subjects were equally divided into 4 groups according to their ages. Group 1 

(Children) was composed of 7 subjects with their ages 6 to 15 years old. Group 2 

(Young Adults) comprised 7 subjects whose ages were between 20 and 40 years old. 

Other 7 subjects with their ages ranging from 41 to 60 years old made up the Group 3 

(Adults). The last group (Group 4) was the Elderly Group, which had 7 subjects older 

than or at 65 years old.  

 

The sex, age, height, and weight statistics of the subjects and the groups are given in 

Table 2.1. The average age, weight, and height of all subjects were 40.2 ± 24.5 (mean 

± standard deviation) years (ranging from 6 to 84 years old), 162.4 ± 16.4 cm 

(ranging from 119 to 183 cm), and 64.9 ± 16.6 kg (ranging from 25 to 88 kg) 

respectively.  

 

Each subject has been instructed to stand still as quiet as possible with an upright 

posture on the force platform at two-leg (tandem) stance without wearing shoes and 

with their eyes open.  A series of five successive 180 seconds long trials were 

recorded from each of the 28 subjects. The sampling frequency of the data collection 

was 50 Hz. 180 seconds long resting gaps were allowed between the successive trails 

of the subjects. After the experiments, two questions were asked to the subjects. First 
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one was “Have you been tired in the experiments?” and the other one was “What did 

you pay attention during the experiments?” The answers of the subjects to the 

questions and the other knowledge about the subjects are given in the Appendix J.  
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Table 2.1 Age, height, and weight statistics of the subjects and the groups 

Subject Group Sex* Age [years] Height [cm] Weight [kg] 
1 

G
ro

u
p

 1
 

F 6 119 25 

2 M 7 130 43 

3 M 9 137 31 

4 M 10 140 42 

5 F 11 142 41 

6 M 14 174 86 

7 F 14 162 61 

Group 1 Means   10.1 ± 3.1 143.4 ± 18.8 47.0 ± 20.6 
8 

G
ro

u
p

 2
 

M 21 183 85 

9 F 25 174 63 

10 F 27 162 68 

11 F 28 170 53 

12 M 31 183 70 

13 F 35 160 60 

14 M 39 180 88 

Group 2 Means   29.4 ± 6.1 173.1 ± 9.6 69.6 ± 12.8 
15 

G
ro

u
p

 3
 

F 41 175 70 

16 M 42 176 76 

17 F 43 168 67 

18 F 54 168 67 

19 M 48 174 75 

20 M 50 178 75 

21 F 55 154 78 

Group 3 Means   47.6 ± 5.7 170.4 ± 8.2 72.6 ± 4.5 
22 

G
ro

u
p

 4
 

F 65 158 69 

23 M 65 161 82 

24 M 68 176 78 

25 M 73 170 81 

26 M 78 167 75 

27 F 83 153 54 

28 F 84 154 56 

Group 4 Means   73.7 ± 8.1 162.7 ± 8.6 70.7 ± 11.6 
      * F, denotes Female and M, denotes Male 
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2.1.3 Center-of-Pressure 

 

Center-of-Pressure (CoP) (Figure 2.2 (c)) is the application point of the resultant 

force-couple system (Figure 2.2 (b)) created by the distributed forces beneath the feet 

of standing subjects on the support surface (Figure 2.2 (a)). Variations in the position 

of the Center-of-Pressure (CoP) were used to describe the human postural sway 

[24,25]. Fz, Mx, and My signals were used to construct the time series CoPx and CoPy 

which are the x and y coordinates of CoP respectively (Equations (2.1) and (2.2)). 

Each of the signals, CoPx and CoPy time series were composed of 9000 samples (180-

sec long trial with the sampling frequency of 50 Hz). The x- and y- components of the 

CoP signal give knowledge about the sway dynamics mapped to the sagittal and 

coronal planes respectively (Figure 2.3 (a) and (b)). CoPx and CoPy time series were 

used for further analysis of human postural sway.  

 

( )
( ) , 1 9000

( )
y

x

z

M i
CoP i i

F i
= − = …                          (2.1)       

                                                                                            

( )
( ) ,  1 9000

( )
x

y

z

M i
CoP i i

F i
= = …                  (2.2) 

 

 

Figure 2.2 (a) Distributed forces at the foot-base (b) The resultant force-couple 
system of the distributed forces at the mid-point (origin) of the platform (Point O) (c) 
The resultant force-couple system has been moved to Point P (Center of Pressure), 
where Mx and My were zero [19,79] 
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Figure 2.3(a) Anatomical planes described for the human body 

 

 

 
Figure 2.3(b) Sagittal and coronal planes on force plate 

 

Examples of CoPx and CoPy signals are presented in Figure 2.4 and 2.5. The 

exemplar CoP signals belong to the first trial of Subject 11 (Table 2.1).  
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Figure 2.4 A typical representative 180 sec long CoPx [11th subject, F, 28] time series 
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Figure 2.5 A typical representative 180 sec long CoPy [11th subject, F, 28] time series  
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2.2 Analysis of the Signals 
 

The CoPx or CoPy signals were abbreviated by the symbol X for the signal analysis. 

Also, Xi is the amplitude of the ith sample of the signal and Xi,j is the amplitude of the 

ith sample of the jth trial, if not otherwise stated. 

2.2.1 Linear Analysis   

 

2.2.1.1 Time Domain Analysis 

2.2.1.1.1 Mean and Variance 

 

The first step in the statistical analysis of the time series was to compute the mean 

and variance (CoPx and CoPy). The mean value (time average) of the signals, which 

represents the central tendency in the signals, was computed. “Central tendency is a 

statistical measure to determine a single score that defines the center of a distribution 

[80]”. The mean value of CoP signal was estimated by computing the arithmetic 

average of all sample values in the trial (Equation (2.3)). Since the mean value of CoP 

signal is a static measure, which indicates the arbitrary position of the subject while 

standing on the platform during the test, it has been subtracted from the 

corresponding signal; i.e., signals which were used in the further analysis have been 

detrended. The standard deviation and the variance (Equation (2.4)) of the CoP 

signals were also computed. Standard deviation/variance is a measure of dispersion of 

the distribution [74]. In our case, it is a measure of variability or amount of postural 

sway.  

 

1

1
,  1 9000

n

i

i

X X i
n =

= = …∑                                                                                         (2.3) 
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2 2

1

1
( ) ,  1 9000

1

n

X i

i

X X i
n

σ
=

= − =
−
∑ …                (2.4)

  

               

2.2.1.1.2 Run Test 

 

Run test is a non-parametric statistical test to examine whether a signal carries a trend 

or not. A signal can be categorized as being non-stationary or stationary depending 

on whether it carries a trend or not, respectively [76]. A formal definition of 

stationarity by Kantz et al [81] is as follows; “a signal is called stationary if all joint 

probabilities of finding the system at some time in one state and at some later time in 

another state are independent of time within the observation period, i.e. when 

calculated from the data”.  

 

The procedure to apply the Run Test to the CoP time series has been described below 

[75]. Also, a demonstration of application of the Run Test has been given in 

Appendix A.  

 

1)  CoPx (or CoPy) signal which was composed of 9000 samples (180 seconds x 50 

Hz) has been divided into 18 equal segments each containing 10 second–long data. 

The mean square of each segment (Ψ2) was computed (Equation 2.5). Thus a series of 

18 elements each being an estimate of the segmental mean square was computed 

(Equation (2.6)).   

 

2 ,  1 18
r

rΨ = …                      (2.5) 

 

2 21

500

  i ( 1) 500 1,  500,  1 18

w

r i

i

X

where r w r r

Ψ =

= − ⋅ + = ⋅ = …

∑                    (2.6)      
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2) The median of the series was calculated (Equation (2.7)).  

 

2( ,  1 18)
r

median rΨ = …                     (2.7) 

 

3) In order to apply the non-parametric statistical Run Test, the elements of the series 

(Equation 2.5), which are larger than the median of the series (Equation 2.7) were 

marked with the symbol ‘+’; while the elements of the series, which are less than the 

median of the series were marked with the symbol ‘-’.  

 

4) Sequences of ‘+’s and ‘-’s were grouped separately and each group is counted as a 

run. By this way, the value of the total run was found.  

 

5) The null hypothesis of the Run Test is that the signal does not carry a trend. The 

null hypothesis has been tested by comparing the value of the total run with the 

interval estimated (Equation 2.8) in the Run Distribution Table. The Run Distribution 

Table (given in Appendix B) presents the intervals estimated at different confidence 

levels to reject or accept the null hypothesis for the value of the total run computed.   

 

In this study, the confidence level has been selected as 95% and the number of 

elements in the series (Ψ2
r, r=1…18) was 18. The interval to accept the null 

hypothesis (Equation (2.8)) is given in the ‘Run Distribution Table’ (refer to 

Appendix B). If the condition defined in Equation (2.8) is satisfied, then it can be 

concluded that the signal does not carry a trend. Thus it is called a stationary signal. 

On the other hand, if the condition defined in Equation (2.8) is not satisfied, then it is 

concluded that the signal carries a trend, which states that the signal is non-

stationary. Two intervals for the signal to be non-stationarity are given in Equation 

(2.9) and Equation (2.10). It has been defined that if the condition given in Equation 

(2.9) holds, then the signal is said to be non-stationary from the left-side and if the 
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condition given in Equation (2.10) holds, then the signal is said to be non-stationary 

from the right-side [84].   

 

5 14r< ≤                                 (2.8) 

 

0< 5r ≤                           (2.9) 

 

14< 18r ≤                        (2.10) 

  

2.2.1.1.3 Ensemble Average 

 

In the further statistical analysis, “Ensemble Average” of the CoP signal was used to 

check whether the signals are ergodic or not. Ensemble average is defined as an 

average over trials at a given instant in time [76].  In other words, ensemble average 

is measured across the trials (x1(t), x2(t), x3(t), x4(t), x5(t)) at a particular instant of 

time (t1 or t2) (Figure 2.6) or at a particular frame [82]. A frame is a data window 

composed of a fixed number of data samples. Stationary signals are called ergodic if 

the ensemble average is equal to the time average obtained from one of the trial 

(xi(t)), and the time average obtained from one frame to the next is the same [76].  

 

In order to apply the method, a number of frames were to be composed from the CoP 

signals. The data window width has been chosen to be consisting of 500 data 

samples. It has been shown that the dynamics in the CoPx signal collected during 

quiet stance, consists of at least two natural frequencies in the frequency band of 0.1-

1 Hz [4,21]. Thus, a data window with a width of 500 data samples, which has been 

sampled with a frequency of 50 Hz would then cover a full cycle of CoP dynamics 

reported. Because the CoP signals were composed of 9000 samples and the width of 

data window has been chosen to be 500 data samples, the total number of frames 

came out to be 18. There was no overlap between the two successive frames.   
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Figure 2.6 Concept of ensemble averaging [10]. x1(t), x2(t), x3(t), x4(t), x5(t) are the 

trials and t1 or t2 are the instants in time (t) 

 

The procedure to check ergodicity by computing the ensemble average is 

symbolically presented below.  

 

1) Frames (F) were started to be composed from the first trial’s data (i = 1 to 9000 

data samples and j = 1) of a subject. Each frame (Fi,j, Equation (2.11)) has 500 

samples. The first frame consisted of data samples from 1st to 500th of the first trial. 

The second frame has data samples starting from 501th data sample to 1000th data 

sample of the first trial and so on. Thus, there were a total number of 18 frames 

within a trial. The same procedure was repeated for the other 4 trials (Equation 2.12).  

 

, ( 1) 500 1, 500,[ , , ],  1...5,  1...18i j i j i jF X X i j− ⋅ + ⋅= = =…                       (2.11)

  

 

1,1 1,18

5,1 5,18

F F

F

F F

 
 

=  
 
 

…

� � �

�

                 (2.12) 
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All of the frames obtained from CoP signals of five of the successive trials of one 

subject composed the frame matrix F defined in Equation (2.12).  

 

2) Time average (Ti,j) of each frame (Fi,j ) was computed and time average matrix (T) 

was composed. 

 

500

, ,
( 1) 500 1

1
,  1...5,  1...18

500

i

i j i j

i

T X i j
⋅

− ⋅ +

= = =∑                 (2.13) 

 

1,1 1,18

5,1 5,18

T T

T

T T

 
 

=  
 
 

…

� � �

�

                            (2.14) 

 

3) A two-way analysis of variance (ANOVA) was applied to T matrix in order to 

check whether averages on columns and rows are significantly different or not. A p-

value less than 0.05 was accepted as an indication of significant difference (Appendix 

C).  

                                                              

4) The null hypothesis of the statistical test has been defined as the CoP signals of a 

subject are ergodic. The null hypothesis has been checked by comparing the p-values 

obtained from the two-way ANOVA test of T matrix of a subject at the confidence 

level, α set to 0.05. The null hypothesis has been accepted if the p-values for both 

columns and rows are greater than 0.05.  
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2.2.1.2 Frequency Domain Analysis 
 

Detrended CoPx and CoPy signals were used in the frequency domain analysis. CoPx 

and CoPy signals were filtered with a digital 3rd-order low-pass Butterworth filter, 

with a cut-off frequency of 8 Hz [4,21].  

2.2.1.2.1 Fast Fouriér Transformation 

 

To explore the frequency content of the CoPx and CoPy signals, Fast Fouriér 

Transformation (FFT) analysis was applied [77]. The built-in function (fft) in the 

software Matlab®, which is based on Cooley-Tukey algorithm [83] has been used. 

The discrete Fouriér coefficients of the transformation are defined in Equation (2.15). 
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,  0,1,2, , ( -1)
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i

C X e k N
N

π
−

−

=

= = …∑               (2.15) 

where 1 and  is the length of the signal in samples.j N= −  

 

2.2.1.2.2 Power Spectral Density Estimates 

 

Power Spectral Density (PSD) estimates via Welch's method [78] were computed to 

quantify the distribution of the power of the signals in frequency spectrum. The built-

in function (pwelch) of Matlab® was used for computing PSD estimates. By using 

Equations (2.16) and (2.17) the ratio of the power between 0-0.1 Hz and 0-1 Hz 

frequency band to the power involved in the signal at the entire frequency spectrum 

of the signal (0-25 Hz) were defined respectively. These two frequency bands (0-0.1 

Hz and 0.1-1 Hz) which have been used to compute the power ratios, involve the two 

natural frequencies of the CoPx dynamics [4,21]. The integrals in Equations (2.16) 

and (2.17) were computed numerically by using Trapezoid Rule (presented in 

Appendix D).  
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The derivation and definition of the estimator P(f) [78] were given in Appendix E. 

 

2.2.2 Nonlinear Analysis 

 

In the previous part of the study, linear methods were introduced for the analysis of 

the CoP signals. However, the linear analyses are not adequate to explain the complex 

structure of the CoP signals (e.g., [13,28,29,32,46]). In this part of the study, 

nonlinear methods are presented to study the complexity in the structure of the CoP 

signals.  

 

2.2.2.1 Correlation Dimension 
 

Complex and chaotic systems are usually characterized by searching for the existence 

and the properties of an attractor [33,76,85,87]. An attractor is the smallest set of the 

phase points to which all of the system trajectories eventually converge [33]. The 

space in which the dynamical system evolves is called the state space of the 

dynamical system and the ordered points in this space are called as the phase points, 

which constitute the dynamical system trajectories in the state space [76].  

 

“The dimension of an attractor determines the minimum number of essential variables 

required to describe the dynamics on the attractor [76]”. Generally, dimension 

estimates [85] are used to search and quantify the properties of an attractor. In this 
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study, a widely used dimension estimate, correlation dimension estimate (D2) [35] 

has been used to search and quantify the properties of the possible attractor. 

Independent m-signals are needed in order to compute an estimate of the dimension 

of an attractor [86]. It follows that the dynamics of the CoPx signal is to be 

reconstructed in a m-dimensional state space.  

 

2.2.2.2 Reconstruction of Dynamics in m-dimensional Embedding State Space 
 

Experimentally obtained CoPx signals (Section 2.1.3) were utilized as the observable 

state of the human postural sway. The observable state of a dynamical system is the 

dynamical variable which is measured in the experiment to describe the phenomenon 

studied [76]. In our case, the studied phenomenon was the human postural sway and 

the dynamical variable measured in the experiments has been the CoPx signal. 

However, it is not possible to estimate the dimension of a possible attractor, which 

has a dimension larger than 1 through a single time series; thus the dynamics from the 

observable state should be reconstructed in a m-dimensional state space [86]. Packard 

et al. [29] and Takens [30] suggested a way to reconstruct the dynamics from the 

observable state in m-dimensional state space by selecting a fixed time delay, τ. The 

method is called method of time delay [87], by which  x(t), x(t+τ), x(t+2τ),… become 

the new independent variables obtained from a single time series, x(t). The 

amplitudes of the data samples (Xi) in the original time series of measurements, which 

have been collected by using a fixed time interval (∆t), are represented by Equation 

(2.18), where N is the total number of the data points in the time signal.  

 

1 0 2 0 3 0 0( ),  ( ),   ( 2 ),  ... ,  ( ( -1) )
N

X x t X x t t X x t t X x t N t= = + ∆ = + ∆ = + ∆              (2.18) 

 

By selecting a fixed time delay τ, m vectors (ξ) of fixed length k have been 

constructed (Equation (2.19)); where k = N-(m-1)τ. 
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Then the first elements of the vectors, ξi where i=1…m define the coordinates of the 

first phase point (X1, X1+τ,..., X1+(m-1)τ) in the m-dimensional state space, second 

elements of the vectors, ξi are the coordinates of the second phase point (X2, X2+τ,..., 

X2+(m-1)τ) and it goes on (Equation (2.20)).  
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where N is the length of the experimental time series and τ is the time delay 

introduced. Xm,k is the kth phase point in m-dimensional state space, where k = N-(m-

1)τ. Subsequently, in order to be able to use the method of time delay, a proper time 

delay should be determined.   

 

2.2.6.2 Estimate of Time Delay (τ) 
 

In order to embed CoPx dynamics in m-dimensional state space, a proper time delay 

(τ) should be selected. Choosing a proper time delay (τ) is critical in reconstructing 

the CoPx dynamics. If τ is chosen to be too small, it leads to a redundancy between 

the successive delay coordinates (Equation (2.19)), which causes the possible 

attractor to be represented in the state space as the identity line (Figure 2.7 (a)) [88]. 

In other words, if τ had been chosen to be too small, the variables (ξ) would not 

behave as independent signals [88]. On the other hand, if τ had been chosen to be too 
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large, then, it would lead to irrelevance in successive delay coordinates. To put it in 

another way, it would cause the independent variables (ξ) to be dynamically unrelated 

(Figure 2.7 (b)). The dynamics of the CoPx signal in m-dimensional state-space 

wouldn’t have been represented properly in both of the above two cases. Thus, the 

strategy to choose the proper time delay τ, should be to search for expanding the 

possible attractor sufficiently away from the identity line without losing relevance to 

the dynamics. Rosenstein et al. [88] stated that expansion of the attractor from the 

identity line is best quantified by measuring the average displacement (Sm, Equation 

(2.21)). The average displacement is a multidimensional measure that quantifies the 

difference between delay coordinates (ξ) [88].  
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= −∑ ∑                        (2.21) 

 

where J is related to the time delay in samples by Equation (2.22) and M is the 

number of pairs of phase points in m-dimensional state space. 

 

J tτ= ∆                   (2.22) 

 

The value of τc (the subscript “c” denotes the critical time delay) for a given 

dimension m was quantified by the point where the slope of the curve Sm(τ), obtained 

by plotting the average displacement Sm (Equation (2.21))) against varying time 

delays (τ), first decreased to less than 40% of its initial value. Further, a 

reconstruction window, τw (Equation (2.23))) has been proposed to be defined as a 

system invariant when the system dynamics is to be reconstructed in a m-dimensional 

embedding state-space [88,89].  

 

( 1)
w c

mτ τ= ⋅ −                   (2.23) 
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Average displacement (Sm(τ)) curves were computed for varying embedding 

dimensions (m=2,3,4,5,6,8,9,10,12,15,18,20) from CoPx signals at each of the trial of 

every subject. Then, the critical time delays (τc) were determined by using the curve, 

Sm(τ). The existence of reconstruction windows (τw) [88,89] were searched in our 

particular problem. Time delays were used to embed CoPx dynamics in m-

dimensional state-space, so the correlation dimension estimates could be computed.  
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Figure 2.7 (a) The figure shows how the pattern of the possible attractor changes by 

selecting the time delay τ, too small (1/10 of the proper time delay).  
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Figure 2.7 (b) The figure shows how the pattern of the possible attractor changes by 

selecting the time delay τ, too large (10 times the proper time delay). 
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Figure 2.7 (c) The figure shows how the pattern of the possible attractor changes by 
selecting the time delay τ, properly [88,91]. The plots in the figure have been 
generated by plotting the three successive delay coordinates against each other (ξ1, ξ2 
and ξ3 in Equation (2.19)) of the reconstructed CoPx signal [11th subject, F, 28] in 3-
dimensional embedding state space (m=3) with the time delay (τ) values taken as (a) 
2 (b) 190 (c) 19 in number of data samples.  

 

2.2.6.3 Correlation Dimension Estimates 
 

Correlation dimension is a measure obtained by considering spatial correlations 

between the phase points on the attractor [35]. In order to compute the correlation 

dimension (D2) estimate from a time series, the correlation function, C(r) is defined 

as the spatial correlations between the pairs of phase points (Equation (2.24)) in the 

m-dimensional embedded dynamics (Equation (2.20)). The correlation function, C(r) 

is computed by constructing a sphere of radius r around each point Xi in the state 
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space of the possible attractor and counting the number of points within the sphere 

[76]. 
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where H is the Heaviside function defined as 
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and 
i j

X X− is Euclidean norm [90] and defined in Equation (2.26). 
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Then, the correlation dimension D2 is defined as: 
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The correlation dimension (D2) has been computed from the slope of the linear 

portion of the curve obtained by plotting the natural logarithm of the correlation 

function, C(r) against the natural logarithm of varying tolerance distances, r; i.e., 

curve lnC(r) as a function of ln(r). To estimate D2, the slope of the linear portion of 

the curve lnC(r) versus ln(r) must have a significant length (a length of ∆ln(r)=1.6 is 

the minimum acceptable scaling length) [42]. Furthermore, D2 estimates must be 

robust against variations in embedding dimension, m [42]. Thus the correlation 
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dimension estimates were computed for the embedding dimensions, 

m=2,3,4,5,6,8,9,10,12,15,18,20. 
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CHAPTER 3 
 
 

RESULTS 
 

 

 

3.1 Results of the Linear Analysis 

 

3.1.1 Results of the Time Domain Analysis 

 

3.1.1.1 Variance/Standard Deviation of the Signals  

 

The variance/standard deviation statistics (Section 2.2.1.1.1) for both detrended CoPx 

and CoPy signals (Section 2.1.3) are presented in this section. Variance values of the 

CoPx and CoPy signals are measures of amount of postural sway in the antero-

posterior and medio-lateral directions at the horizontal plane respectively (Figure 

2.3(b)) in Chapter 2 Section 2.1.3). The standard deviation values of the CoPx and 

CoPy signals for five successive trials of each of 28 subjects are presented in Table 

3.1 and 3.2 respectively.  

 

3.1.1.1.1 Standard Deviation of the CoPx Signals  

 

The maximum standard deviation value for detrended CoPx signals was 16.0 mm, 

which belongs to the fourth trial of 6 years old, female subject (Subject 1 in Table 

3.1(a)). On the other hand, the minimum of the standard deviation values for CoPx 

signals was 2.9 mm, which was demonstrated by two subjects. One of the subjects 

was Subject 14 (39 years old, Male, Table 3.1(a)) while the other one was Subject 27 

(83 years old, Female, Table 3.1(a)).  
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When the mean of standard deviation values of five trials of the subjects considered, 

the maximum mean value was 12.5 ± 2.4 which was performed by the 1st subject 

(Female, 6 years old) (Table 3.1(a)). Also, the minimum mean value was 3.5 which 

was demonstrated by two subjects (Subject 9: Female 25 years old, Subject 14: Male, 

39 years old) in Group 2 (Table 3.1(a)).  

 

A 2-way ANOVA test performed on the standard deviation values of CoPx signals 

were found to be significantly different on subjects (p<0.000) but not significantly 

different on trials (p<0.195). In addition, 1-way ANOVA test was used to search for 

the group differences on the standard deviation values. The results of 1-way ANOVA 

test, where the groups were the main effect and the trials have been the repeated 

measures, indicated that standard deviation values were not significantly different on 

the groups (p<0.414).  

 

3.1.1.1.2 Standard Deviation of the CoPy Signals  

 

The maximum standard deviation value of the detrended CoPy signals was 23.3 mm, 

which has been observed in the second trial of the 7 years old, male subject (Subject 2 

in Table 3.1(b)). On the other hand, the minimum of the standard deviation values of 

CoPy signals was 1.2 mm, which has been demonstrated by two subjects as well. The 

first subject was the same subject as in the case of minimum CoPx performance; i.e., 

Subject 14 (39, Male) while the other subject was Subject 19 (48, Male).  

 

Similar to the CoPx signal, the maximum mean value of standard deviations in CoPy 

signals was 10.8 ± 4.7 which was performed by the Subject 1 (Female, 6 years old) 

(Table 3.1(b)). Similarly, the minimum mean value was 1.5 ± 0.4 which was made by 

the Subject 14 (39, Male) (Table 3.1(b)).  
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Similarly, a 2-way ANOVA test applied on the standard deviation values of CoPy 

signals were found to be significantly different on subjects (p<0.000) but not 

significantly different on trials (p<0.511). Besides, 1-way ANOVA test was 

performed to search for the group differences on the standard deviation values. The 

results of 1-way ANOVA test, where the groups were the main effect and the trials 

have been the repeated measures, showed that standard deviation values were not 

significantly different on the groups (p<0.112).  
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Table 3.1(a) Standard deviation values of the CoPx signals in millimeters 

Subject Group T 1 T 2 T 3 T 4 T 5 Means* StDevs* 
1 

G
ro

u
p

 1
 

9.8 11.0 12.0 16.0 13.9 12.5 2.4 

2 6.8 7.9 6.2 7.5 6.7 7.0 0.7 

3 5.1 6.1 5.1 5.1 7.0 5.7 0.9 

4 7.2 9.0 8.9 10.0 8.3 8.7 1.0 

5 4.7 4.4 4.2 5.6 5.4 4.8 0.6 

6 7.8 8.9 5.2 7.4 5.8 7.0 1.5 

7 6.4 6.6 5.1 6.3 7.0 6.3 0.7 

8 

G
ro

u
p

 2
 

4.4 5.8 9.2 11.8 7.1 7.7 2.9 

9 3.1 3.1 3.8 3.9 3.9 3.5 0.4 

10 7.8 10.7 12.1 11.2 12.3 10.8 1.8 

11 6.0 7.0 5.9 6.4 7.8 6.6 0.8 

12 7.3 5.0 4.2 3.5 4.7 4.9 1.4 

13 4.0 3.9 6.3 4.4 3.4 4.4 1.1 

14 4.1 3.1 3.6 2.9 3.9 3.5 0.5 

15 

G
ro

u
p

 3
 

5.4 5.0 5.4 5.8 5.1 5.3 0.3 

16 4.1 4.6 3.6 3.1 3.9 3.8 0.5 

17 3.8 4.0 4.9 4.5 3.4 4.1 0.6 

18 11.2 8.4 7.0 8.9 6.9 8.5 1.8 

19 4.1 4.6 7.7 4.7 5.7 5.3 1.4 

20 8.2 7.2 7.1 8.2 7.3 7.6 0.6 

21 4.1 3.6 4.3 4.5 3.9 4.1 0.3 

22 

G
ro

u
p

 4
 

4.0 4.0 4.5 5.7 5.3 4.7 0.8 

23 3.4 5.4 4.1 4.4 4.7 4.4 0.7 

24 8.5 9.3 8.4 10.9 8.9 9.2 1.0 

25 5.5 11.1 7.1 6.6 4.4 6.9 2.5 

26 9.1 7.1 5.2 7.5 7.0 7.1 1.4 

27 3.9 3.0 2.9 4.9 4.3 3.8 0.9 

28 4.4 3.8 4.2 4.4 3.7 4.1 0.3 
*Means and StDevs indicate the mean and the standard deviation value of five 
successive trials of a subject respectively. 
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Table 3.1(b) Standard deviation values of the CoPy signals in millimeters 

Subject Group T 1 T 2 T 3 T 4 T 5 Means* StDevs* 
1 

G
ro

u
p

 1
 

6.0 7.1 9.9 13.6 17.4 10.8 4.7 

2 5.9 23.3 6.0 6.9 5.5 9.5 7.7 

3 3.5 2.7 3.8 3.5 4.2 3.5 0.5 

4 4.0 5.2 4.5 6.0 4.9 4.9 0.7 

5 2.8 3.1 2.8 2.0 1.9 2.5 0.5 

6 3.8 2.2 2.8 2.7 2.5 2.8 0.6 

7 5.3 4.6 3.3 5.5 4.8 4.7 0.9 

8 

G
ro

u
p

 2
 

5.0 4.1 3.5 2.9 3.2 3.7 0.8 

9 2.1 2.9 2.3 2.5 2.0 2.4 0.3 

10 3.8 2.8 3.3 4.1 3.6 3.5 0.5 

11 3.0 4.5 6.9 5.8 5.7 5.2 1.5 

12 2.8 1.4 2.5 1.9 2.0 2.1 0.5 

13 1.8 1.5 2.7 2.1 2.5 2.1 0.5 

14 1.2 1.2 1.7 1.5 2.0 1.5 0.4 

15 

G
ro

u
p

 3
 

2.5 4.0 3.2 2.8 2.0 2.9 0.8 

16 1.7 2.0 1.4 3.3 2.9 2.3 0.8 

17 2.5 2.2 2.2 2.8 2.9 2.5 0.3 

18 5.5 3.2 5.6 7.3 6.1 5.6 1.5 

19 1.2 2.4 2.4 1.4 2.2 1.9 0.5 

20 5.2 5.5 5.1 4.9 6.0 5.3 0.4 

21 2.3 1.8 1.8 1.7 2.3 2.0 0.3 

22 

G
ro

u
p

 4
 

2.9 2.1 3.1 1.8 3.4 2.7 0.7 

23 2.5 5.3 3.2 2.4 3.7 3.4 1.2 

24 6.1 5.7 3.7 4.8 7.1 5.5 1.3 

25 1.9 3.4 1.8 1.7 1.3 2.0 0.8 

26 6.3 5.9 4.9 5.2 5.5 5.6 0.6 

27 3.2 4.2 4.0 6.6 7.1 5.0 1.7 

28 2.0 2.0 2.1 3.0 1.9 2.2 0.5 
*Means and StDevs indicate the mean and the standard deviation values of five 
successive trials of a subject respectively. 
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3.1.1.2 Results of Run Test 
 

Run Test (Section 2.2.1.1.2) was applied to detrended CoPx and CoPy signals obtained 

from 5 successive trials of each of 28 subjects (140 CoPx and 140 CoPy signals 

altogether). The results of the Run Test were given in total run (Chapter 2 Section 

2.2.1.1.2) in Table 3.2. The test results for the CoPx signal has shown that 4 out of 

140 trials, which belong to four different subjects (Subjects 5, 7, 23, and 24) were 

non-stationary from the left-side (refer to Chapter 2 Section 2.2.1.1.2). Thus, 136 of 

the CoPx signals recorded during 140 of 180-sec long quiet stance trials (97.1%) were 

stationary. On the other hand, CoPy signals’ Run Test results demonstrated that 11 

out of 28 subjects presented non-stationarity in at least one of their five successive 

trials and totally 14 CoPy signals were non-stationary from the left-side among 140 

trials. Thus, 126 of the CoPy signals (90.0%) were stationary. None of the 280 signals 

of CoPx and CoPy were non-stationary from the right-side.    

 

3.1.1.3 Results of Ensemble Average Analysis  
 

The ensemble average analysis (Section 2.2.1.1.3) has been applied to the CoP 

signals that belong to the subjects who demonstrated stationary signal characteristics 

in each of the five successive experimental trials [76]; i.e., 24 out of 28 subjects have 

been evaluated for CoPx signal (Subject 5,7,23,24 excluded) and 17 out of 28 subjects 

have been evaluated for CoPy signal (Subject 1,8,9,13,15,17,18,19,20,21,23 

excluded). The reason for excluding the subjects who demonstrated at least one non-

stationary trial in their five successive trials is that when the mean value CoP estimate 

changes with respect to time in a trial, it doesn’t make sense to search for trends with 

respect to time over the trials; subsequently, it becomes unnecessary to make an 

ergodicity analysis for these subjects. The results were presented in p-values (Table 

3.3 (a) and (b)) obtained from 2-way ANOVA test performed on T matrix (Section 

2.2.1.1.3, Equation (2.14)). The results for the CoPx signal (Table 3.3 (a)) revealed 

that 13 subjects (Subjects 2, 3, 9, 11, 12, 13, 14, 15, 19, 20, 22, 26, and 27) have p 
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values less than 0.05 on columns. Thus, the CoPx signals which belong to these 

Subjects were not ergodic. As a result, 11 out of 28 subjects (Subjects 1, 4, 6, 8, 10, 

16, 17, 18, 21, 25, and 28) had stationary ergodic CoPx signals.  

 

Similarly, the CoPy signals of Subjects 3, 4, 7, 11, and 27 have p values less than 0.05 

on columns (Table 3.3). Thus, the CoPy signals which belong to Subjects 3, 4, 7, 11, 

and 27 were not ergodic. Subsequently, CoPy signals of 12 subjects (Subjects 

2,5,6,10,12,14,16,22,24,25,26, and 28) were stationary and ergodic.   
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Table 3.2 Run Test Results in total run 

    CoPx CoPy 
Subject Group T 1 T 2 T 3 T 4 T 5 T 1 T 2 T 3 T 4 T 5 
1 

G
ro

u
p

 1
 

7 11 10 6 10 11 4* 8 6 10 

2 9 10 11 6 12 9 7 7 10 11 

3 8 10 8 6 7 6 9 7 8 7 

4 9 6 14 8 8 12 6 8 9 9 

5 8 5* 10 9 7 7 7 9 9 8 

6 9 8 9 11 12 7 7 10 8 7 

7 8 10 8 10 5* 8 11 13 10 7 

8 

G
ro

u
p

 2
 

10 9 6 6 8 5* 9 7 10 6 

9 7 9 10 7 11 6 12 4* 8 8 

10 11 6 6 8 10 8 8 12 9 6 

11 9 7 8 12 10 10 6 9 6 7 

12 9 7 8 11 10 12 8 7 7 9 

13 8 11 7 7 7 6 13 4* 6 5* 

14 11 8 7 9 7 8 6 7 9 6 

15 

G
ro

u
p

 3
 

7 7 6 8 6 4* 7 5* 7 4* 

16 14 7 10 11 7 6 8 10 6 9 

17 14 8 7 8 9 10 9 7 5* 6 

18 9 10 11 7 13 7 6 7 9 5* 

19 9 13 11 12 7 7 12 6 8 5* 

20 9 8 9 10 11 6 10 9 9 4* 

21 9 12 12 9 7 9 6 8 7 5* 

22 

G
ro

u
p

 4
 

9 7 11 8 10 6 9 6 8 7 

23 10 9 10 8 5* 5* 11 6 7 9 

24 9 5* 6 7 8 6 9 10 8 11 

25 8 10 8 12 7 9 9 7 9 9 

26 7 9 12 13 7 13 10 10 10 8 

27 7 12 8 8 7 9 6 10 12 12 

28 8 9 7 8 7 6 10 8 6 8 
   *indicates non-stationary trials 
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Table 3.3 (a) p-values obtained from the two-way ANOVA of T matrix for CoPx 

Subject pcolumns prows 
1 0.44 1.00 

2 0.00 1.00 

3 0.00 1.00 

4 0.15 1.00 

6 0.53 1.00 

8 0.09 1.00 

9 0.01 1.00 

10 0.06 1.00 

11 0.00 1.00 

12 0.00 1.00 

13 0.00 1.00 

14 0.00 1.00 

15 0.00 1.00 

16 0.19 1.00 

17 0.26 1.00 

18 0.06 1.00 

19 0.00 1.00 

20 0.03 1.00 

21 0.62 1.00 

22 0.00 1.00 

25 0.14 1.00 

26 0.00 1.00 

27 0.01 1.00 

28 0.86 1.00 
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Table 3.3 (b) p-values obtained from the two-way ANOVA of T matrix for CoPy 

Subject pcolumns prows 
2 0.39 1.00 

3 0.00 1.00 

4 0.03 1.00 

5 0.95 1.00 

6 0.62 1.00 

7 0.04 1.00 

10 0.70 1.00 

11 0.04 1.00 

12 1.00 1.00 

14 0.06 1.00 

16 0.39 1.00 

22 0.97 1.00 

24 0.06 1.00 

25 0.65 1.00 

26 0.31 1.00 

27 0.00 1.00 

28 0.76 1.00 
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3.1.1.4 Sign Test of the Results of Run Test and Ergodicity Analysis 
 

In this part of the analysis, a sign test based on the direction of the differences 

between two measures has been applied to the results obtained from the stationarity 

and ergodicity analysis. The trials of a subject were named as fully-stationary if all of 

the 5 successive trials are stationary (indicated with ‘+’ in Table 3.3(c), Column 

‘Stationarity’). However, even if one of the five successive trials of a subject were to 

be found non-stationary, then the trials of that subject were called as not-fully-

stationary (indicated with ‘-’ in Table 3.3(c), Column ‘Stationarity’). Furthermore, 

subjects who demonstrated ergodic trials were recorded with a ‘+’ sign, while the 

subjects who had non-ergodic trials were recorded with a ‘-’ sign in Table 3.3(c), 

Column ‘Ergodicity’. The last column (Sign Test) of the Table 3.3(c) has been 

composed either for CoPx or CoPy signals in such a way that: 

 

1) If the CoPx (or CoPy) signals of a subject were fully-stationary and ergodic, then a 

‘+’ sign has been used  

2) If the CoPx (or CoPy) signals of a subject were fully-stationary but non-ergodic, 

then a ‘-’ sign has been used 

3) If the CoPx (or CoPy) signals of a subject were not-fully-stationary, then a ‘0’ sign 

has been used 

 

The results revealed that 11 out of 24 subjects’ CoPx signals have been marked with a 

‘+’ sign, which means that the one-tailed probability of the case “fully-stationary and 

ergodic” was 0.419 by reference to the binomial distribution (Appendix F). Similarly, 

the results showed that 12 out of 17 subjects’ CoPy signals were marked with a ‘+’ 

sign, which means that the one-tailed probability of the case “fully-stationary and 

ergodic” has been 0.975 for CoPy signal by reference to the binomial distribution 

(Appendix F). 
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On the other hand, Group 2 and 3 differed significantly (p<0.05) from the other 

groups in terms of demonstrating fully-stationary CoPx signal characteristics, since 

the one-tailed probability of the case “fully-stationary signal characteristics own by 

all of seven of the subjects in Group 2 or 3” was 0.008 by reference to the binomial 

distribution (Appendix F). Lastly, Group 3 differed considerably from other groups in 

terms of the not-fully-stationary characteristics of CoPy signals, since the one-tailed 

probability of the case “fully-stationary signal characteristics of only one subject out 

of 7” was 0.062 by reference to the binomial distribution (Appendix F). 

 

3.1.1.5 Robustness of Run Test Results 
 

To check the robustness of the Run Test results, the same test was applied to the CoPx 

and CoPy signals, but with different window sizes. In the previous analysis the 

window size has been used as 500 data samples. The window size was changed from 

500 to 550 data samples by 10 data sample increments for the robustness test of the 

Run Test results.   

 

For the CoPx signal, the results showed that 18 out of 28 subjects had 5 stationary 

trials for all of the five different window sizes (Table 3.3(d)). 16 out of these 18 

subjects had also five successive stationary CoPx trials by the Run Test, which has 

been made by using 500 data samples window size (Chapter 3 Section 3.1.1.2). Thus, 

16 out of 24 subjects’ trials were robust to changes in window size.  

 

Group 3 behavior in CoPx fully stationary signal characteristics was shown to be 

robust until the data window size has reached to 530 data samples, while the 

significant difference observed in Group 2 through sign test was not robust to data 

window size change. Similarly, the considerable difference observed in the behavior 

of Group 3 CoPy signals as being not-fully stationary was shown not to be robust to 

the change in the data window size.       
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Similarly, for the CoPy signal, the results indicated that 7 out 28 subjects had 5 

stationary trials for all of the five different window sizes (Table 3.3(e)). 6 out of these 

7 subjects had also five successive stationary CoPy trials by the Run Test has made 

with 500 data samples window size (Chapter 3 Section 3.1.1.2).  
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Table 3.3 (c) Sign Test Table 

  Stationarity Ergodicity Sign Test 
Subjects Group CoPx CoPy CoPx CoPy CoPx CoPy 

1 

G
ro

u
p

 1
 

+ - + - + 0 
2 + + - + - + 
3 + + - - - - 
4 + + + - + - 
5 - + - + 0 + 
6 + + + + + + 
7 - + - - 0 - 
8 

G
ro

u
p

 2
 

+ - + - + 0 
9 + - - - - 0 

10 + + + + + + 
11 + + - - - - 
12 + + - + - + 
13 + - - - - 0 
14 + + - + - + 
15 

G
ro

u
p

 3
 

+ - - - - 0 
16 + + + + + + 
17 + - + - + 0 
18 + - + - + 0 
19 + - - - - 0 
20 + - - - - 0 
21 + - + - + 0 
22 

G
ro

u
p

 4
 

+ + - + - + 
23 - - - - 0 0 
24 - + - + 0 + 
25 + + + + + + 
26 + + - + - + 
27 + + - - - - 
28 + + + + + + 
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Table 3.3 (d) Run Test Results for varying data window size (w.s.) for the CoPx 
signal  

Subject Group w.s.=510 w.s.=520 w.s.=530 w.s.=540 w.s.=550 
1 

G
ro

u
p

 1
 

+ + + + + 
2 - - + + + 
3 + + + + + 
4 + + - - - 
5 - + + + + 
6 + + + + + 
7 + + + + + 
8 

G
ro

u
p

 2
 

+ + + + + 
9 + + + + + 

10 - - + - - 
11 + + + + + 
12 + + + + + 
13 - - + - + 
14 + + + + + 
15 

G
ro

u
p

 3
 

+ + - - - 
16 + + + + + 
17 + + + + + 
18 + + - - - 
19 + + + + + 
20 + + + + + 
21 + + + + + 
22 

G
ro

u
p

 4
 

+ + + + + 
23 + + + + + 
24 + - + + + 
25 + + + + - 
26 + + + + + 
27 + + + + + 
28 + - + + + 

      ‘+’ indicates fully-stationary; ‘-’ indicates not-fully-stationary 
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Table 3.3 (e) Run Test Results for varying data window size (w.s.) for the CoPy 
signal  

Subject Group w.s.=510 w.s.=520 w.s.=530 w.s.=540 w.s.=550 
1 

G
ro

u
p

 1
 

+ - - - - 
2 + + + + + 
3 - - + - - 
4 + + + - + 
5 + + - + - 
6 + + + + + 
7 + + + - + 
8 

G
ro

u
p

 2
 

+ + + + + 
9 - - - - - 

10 + + + + + 
11 + + + - - 
12 + + - - + 
13 - - - - - 
14 - + - - + 
15 

G
ro

u
p

 3
 

- - - - - 
16 + + - + - 
17 - - + - - 
18 + + + - - 
19 - - - - - 
20 - - - - + 
21 + + - - - 
22 

G
ro

u
p

 4
 

+ + + - - 
23 + + + - + 
24 + + + + + 
25 + + + + + 
26 + + + + + 
27 + - + - + 
28 - + + + + 

       ‘+’ indicates fully-stationary; ‘-’ indicates not-fully-stationary 
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3.1.2 Results of Frequency Domain Analysis 

 

3.1.2.1 Fast Fouriér Transformation and Power Spectral Density estimates  
 

Fast Fouriér Transformation (FFT) and Power Spectral Density estimates (PSD) 

analysis (Section 2.2.1.2) of 140 CoPx and 140 CoPy signals were performed to 

explore the frequency content and the distribution of the power of the signals in 

frequency spectrum respectively. Figure 3.1 is a typical example of FFT and PSD of 

CoPx signals, which belongs to the five successive trials of the 11th subject (Female, 

28). Similarly, Figure 3.2 illustrates a typical FFT and PSD pattern for CoPy signals 

(the same subject). In addition, Table 3.4 ((a) and (b)) and Table 3.5 ((a) and (b)) 

show the ratios of the power between 0-0.1 Hz (R1) and 0-1 Hz (R2) band to the 

power in the entire frequency spectrum (0-25 Hz) for the CoPx and CoPy signals 

respectively. (see Equations (2.16) and (2.17)).  

 

The power ratios’ results of the CoPx signal show that the signal demonstrates 

dynamics in different frequencies but the dynamics involved in the CoPx signal has 

mostly settled at 0-1 Hz frequency band. The amplitude of the dynamics was larger at 

lower frequencies for all trials and for all subjects. The ratios of the power of the 

signal at 0-0.1 Hz and 0-1 Hz frequency band to the whole frequency spectrum for all 

trials of all subjects had a grand mean of 0.48±0.08 and 0.98±0.02 respectively (these 

values were computed from the “Mean” column of the Table 3.4(a) and Table 3.4(b) 

respectively). Fifth trial of the Subject 27 was the minimum value of ratios of the 

power of the signal at 0-0.1 Hz, as being 14%. Also, 89% was the minimum value of 

ratios of the power of the signal at 0-1 Hz (Subject 2, trial 2, Table 3.4(b)).  

 

The power ratios’ results of the CoPy signals demonstrated that the CoPy signal also 

contained dynamics in different frequencies. Similar to the CoPx signal, the dynamics 

of the CoPy signals existed mostly at 0-1 Hz frequency band. The lower frequencies 

contained the higher amplitudes of motion in CoPy dynamics. The ratios of the power 
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of the signal at 0-0.1 Hz and 0-1 Hz frequency band to the whole frequency spectrum 

for all trials of all subjects had a grand mean of 0.47±0.09 and 0.98±0.02 respectively 

(these values were computed from the “Mean” column of the Table 3.5(a) and Table 

3.5(b) respectively). Like the CoPx signal, fifth trial of the Subject 27 has shown the 

minimum value of ratios of the power of the signal at 0-0.1 Hz, as being 9%. Further, 

81% was the minimum value of ratios of the power of the signal at 0-1 Hz (Subject 8, 

trial 4, Table 3.5(b)).  

 

A 2-way analysis of variance (ANOVA) test on PSD R1 ratios of CoPx signals (Table 

3.4 (a)) were significantly different on subjects (p<0.000) but not significantly 

different on trials (p<0.800). Further, 1-way ANOVA test where groups were the 

main effect and the trials were the repeated measures, on PSD R1 ratios of CoPx 

signals demonstrated that the groups were not significantly different (p<0.098). 

 

Similarly, a 2-way analysis of variance (ANOVA) test on PSD R2 ratios of CoPx 

signals (Table 3.4 (b)) were significantly different on subjects (p<0.000) but not 

significantly different on trials (p<0.617). Additionally, 1-way ANOVA test where 

groups were the main effect and the trials were the repeated measures, on PSD R2 

ratios of CoPx signals indicated that the groups were not significantly different 

(p<0.158).  

 

In the same way, a 2-way analysis of variance (ANOVA) test on PSD R1 ratios of 

CoPy signals (Table 3.5 (a)) were significantly different on subjects (p<0.000) but not 

significantly different on trials (p<0.825). Moreover, 1-way ANOVA test where 

groups were the main effect and the trials were the repeated measures, on PSD R1 

ratios of CoPy signals showed that the groups were not significantly different 

(p<0.604). 
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Lastly, a 2-way analysis of variance (ANOVA) test on PSD R2 ratios of CoPy signals 

(Table 3.5 (b)) were significantly different on subjects (p<0.000) but not significantly 

different on trials (p<0.609). Furthermore, 1-way ANOVA test where groups were 

the main effect and the trials were the repeated measures, on PSD R2 ratios of CoPy 

signals demonstrated that the groups were significantly different (p<0.044). Group 1 

and Group 3 were significantly different from each other for the measure PSD R2 

ratios.   
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Figure 3.1 FFTs (left panel) and corresponding PSDs (right panel) of the five 
successive trials of the CoPx signal [9th subject, F, 25]. PSDs are in log-log scale. 
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Figure 3.2 FFTs (left panel) and corresponding PSDs (right panel) of the five 
successive trials of the CoPy signal [9th subject, F, 25]. PSDs are in log-log scale. 
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Table 3.4 (a) The ratios of the power of the signal at 0-0.1 Hz (R1) frequency band to 
the power in the whole frequency spectrum for the CoPx  

Subject Group T 1 T 2 T 3 T 4 T 5 Mean StDev 
1 

G
ro

u
p

 1
 

0.50 0.39 0.37 0.34 0.25 0.37 0.09 

2 0.33 0.31 0.31 0.38 0.36 0.34 0.03 

3 0.53 0.42 0.31 0.41 0.51 0.44 0.09 

4 0.51 0.57 0.52 0.52 0.52 0.53 0.02 

5 0.51 0.35 0.41 0.47 0.46 0.44 0.06 

6 0.52 0.61 0.46 0.54 0.47 0.52 0.06 

7 0.53 0.55 0.42 0.42 0.51 0.49 0.06 

8 

G
ro

u
p

 2
 

0.20 0.50 0.60 0.68 0.56 0.51 0.19 

9 0.44 0.47 0.53 0.58 0.51 0.51 0.05 

10 0.57 0.62 0.66 0.60 0.60 0.61 0.03 

11 0.58 0.68 0.61 0.60 0.65 0.62 0.04 

12 0.58 0.56 0.41 0.34 0.53 0.48 0.10 

13 0.59 0.47 0.67 0.53 0.45 0.54 0.09 

14 0.55 0.51 0.56 0.43 0.62 0.53 0.07 

15 

G
ro

u
p

 3
 

0.33 0.32 0.50 0.49 0.27 0.38 0.11 

16 0.46 0.49 0.40 0.29 0.48 0.43 0.08 

17 0.32 0.47 0.49 0.46 0.40 0.43 0.07 

18 0.64 0.56 0.44 0.58 0.49 0.54 0.08 

19 0.49 0.54 0.64 0.50 0.58 0.55 0.06 

20 0.51 0.56 0.58 0.64 0.59 0.58 0.05 

21 0.23 0.26 0.37 0.38 0.32 0.31 0.07 

22 

G
ro

u
p

 4
 

0.36 0.44 0.48 0.59 0.55 0.48 0.09 

23 0.45 0.56 0.47 0.45 0.48 0.48 0.05 

24 0.51 0.61 0.57 0.62 0.58 0.58 0.04 

25 0.46 0.65 0.53 0.54 0.33 0.50 0.12 

26 0.47 0.49 0.35 0.53 0.48 0.46 0.07 

27 0.55 0.31 0.33 0.36 0.14 0.34 0.15 

28 0.45 0.45 0.46 0.49 0.51 0.47 0.03 
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Table 3.4 (b) The ratios of the power of the signal at 0-1 Hz (R2) frequency band to 
the power in the whole frequency spectrum for the CoPx  

Subject Group T 1 T 2 T 3 T 4 T 5 Mean StDev 
1 

G
ro

u
p

 1
 

0.98 0.97 0.97 0.97 0.95 0.97 0.01 

2 0.95 0.89 0.95 0.95 0.95 0.94 0.03 

3 0.98 0.96 0.94 0.96 0.97 0.96 0.01 

4 0.99 0.98 0.98 0.98 0.97 0.98 0.01 

5 0.95 0.95 0.94 0.96 0.94 0.95 0.01 

6 0.98 0.98 0.96 0.98 0.97 0.98 0.01 

7 0.99 0.98 0.98 0.98 0.98 0.98 0.01 

8 

G
ro

u
p

 2
 

0.97 0.98 0.99 0.99 0.99 0.98 0.01 

9 0.97 0.95 0.96 0.97 0.98 0.96 0.01 

10 0.99 1.00 1.00 1.00 1.00 1.00 0.00 

11 0.99 1.00 0.99 0.99 1.00 0.99 0.00 

12 0.99 0.99 0.98 0.98 0.99 0.99 0.00 

13 0.99 0.98 0.99 0.98 0.96 0.98 0.01 

14 0.99 0.98 0.98 0.96 0.99 0.98 0.01 

15 

G
ro

u
p

 3
 

0.99 0.99 0.99 0.99 0.99 0.99 0.00 

16 0.99 0.99 0.98 0.97 0.98 0.98 0.01 

17 0.97 0.98 0.99 0.98 0.97 0.98 0.01 

18 0.99 0.99 0.99 0.99 0.99 0.99 0.00 

19 0.99 0.99 1.00 0.99 0.99 0.99 0.00 

20 0.99 0.99 0.99 0.99 0.99 0.99 0.00 

21 0.92 0.94 0.95 0.95 0.92 0.93 0.01 

22 

G
ro

u
p

 4
 

0.97 0.97 0.98 0.98 0.98 0.98 0.01 

23 0.97 0.97 0.97 0.97 0.96 0.97 0.01 

24 0.99 1.00 0.99 1.00 0.99 0.99 0.00 

25 0.94 0.97 0.95 0.95 0.90 0.94 0.03 

26 0.98 0.99 0.98 0.99 0.99 0.99 0.00 

27 0.99 0.98 0.97 0.98 0.98 0.98 0.01 

28 0.96 0.95 0.96 0.97 0.97 0.96 0.01 
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Table 3.5 (a) The ratios of the power of the signal at 0-0.1 Hz (R1) frequency band to 
the power in the whole frequency spectrum for the CoPy signals 

Subject Group T 1 T 2 T 3 T 4 T 5 Mean StDev 
1 

G
ro

u
p

 1
 

0.39 0.26 0.27 0.26 0.19 0.27 0.07 

2 0.35 0.37 0.33 0.31 0.33 0.34 0.02 

3 0.42 0.33 0.46 0.53 0.59 0.46 0.10 

4 0.55 0.63 0.50 0.56 0.51 0.55 0.05 

5 0.46 0.52 0.48 0.38 0.39 0.45 0.06 

6 0.56 0.34 0.54 0.52 0.48 0.49 0.09 

7 0.61 0.54 0.42 0.43 0.49 0.50 0.08 

8 

G
ro

u
p

 2
 

0.56 0.48 0.40 0.25 0.33 0.40 0.12 

9 0.41 0.62 0.62 0.54 0.48 0.53 0.09 

10 0.57 0.33 0.48 0.48 0.52 0.48 0.09 

11 0.38 0.59 0.63 0.54 0.55 0.54 0.10 

12 0.37 0.35 0.52 0.40 0.46 0.42 0.07 

13 0.43 0.29 0.47 0.42 0.60 0.44 0.11 

14 0.43 0.43 0.56 0.39 0.62 0.48 0.10 

15 

G
ro

u
p

 3
 

0.54 0.67 0.65 0.64 0.46 0.59 0.09 

16 0.55 0.40 0.43 0.62 0.53 0.51 0.09 

17 0.41 0.37 0.38 0.59 0.41 0.43 0.09 

18 0.61 0.45 0.49 0.60 0.61 0.55 0.08 

19 0.27 0.39 0.55 0.27 0.45 0.39 0.12 

20 0.64 0.51 0.50 0.60 0.55 0.56 0.06 

21 0.52 0.45 0.47 0.48 0.64 0.51 0.08 

22 

G
ro

u
p

 4
 

0.66 0.47 0.61 0.58 0.66 0.59 0.08 

23 0.48 0.59 0.65 0.54 0.45 0.54 0.08 

24 0.50 0.59 0.54 0.46 0.57 0.53 0.05 

25 0.35 0.55 0.29 0.41 0.32 0.39 0.11 

26 0.38 0.46 0.48 0.47 0.40 0.44 0.04 

27 0.30 0.23 0.15 0.11 0.09 0.17 0.09 

28 0.50 0.45 0.49 0.61 0.56 0.52 0.06 
 

 
 

 

 

 



58 
 

Table 3.5 (b) The ratios of the power of the signal at 0-1 Hz (R2) frequency band to 
the power in the whole frequency spectrum for the CoPy signals 

Subject Group T 1 T 2 T 3 T 4 T 5 Mean StDev 
1 

G
ro

u
p

 1
 

0.97 0.97 0.96 0.97 0.97 0.97 0.00 

2 0.96 0.97 0.97 0.91 0.93 0.95 0.03 

3 0.99 0.98 0.98 0.98 0.99 0.98 0.01 

4 0.98 0.98 0.95 0.98 0.97 0.97 0.01 

5 0.95 0.95 0.95 0.92 0.93 0.94 0.01 

6 0.97 0.95 0.98 0.98 0.97 0.97 0.01 

7 0.99 0.99 0.97 0.98 0.99 0.98 0.01 

8 

G
ro

u
p

 2
 

0.97 0.97 0.97 0.81 0.95 0.93 0.07 

9 0.98 0.98 0.99 0.99 0.99 0.99 0.01 

10 0.99 0.98 0.98 0.99 0.99 0.99 0.00 

11 0.94 0.99 0.99 0.98 0.99 0.98 0.02 

12 0.98 0.93 0.98 0.98 0.96 0.97 0.02 

13 0.98 0.97 0.98 0.98 0.99 0.98 0.01 

14 0.98 0.99 1.00 0.99 1.00 0.99 0.00 

15 

G
ro

u
p

 3
 

0.99 1.00 0.99 0.99 0.99 0.99 0.00 

16 0.99 0.99 0.98 1.00 0.99 0.99 0.00 

17 0.99 0.99 0.98 0.99 0.99 0.98 0.01 

18 1.00 0.99 1.00 1.00 1.00 1.00 0.00 

19 0.99 1.00 0.99 0.99 0.99 0.99 0.00 

20 1.00 0.99 0.99 0.99 0.99 0.99 0.00 

21 0.99 0.99 0.98 0.97 0.99 0.98 0.01 

22 

G
ro

u
p

 4
 

0.99 0.98 0.99 0.99 1.00 0.99 0.01 

23 0.99 0.99 1.00 0.99 0.99 0.99 0.00 

24 1.00 1.00 1.00 1.00 1.00 1.00 0.00 

25 0.96 0.98 0.93 0.95 0.93 0.95 0.02 

26 0.98 0.99 0.99 0.99 0.99 0.99 0.01 

27 0.99 0.99 0.99 0.99 0.99 0.99 0.00 

28 0.96 0.96 0.97 0.99 0.97 0.97 0.01 
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3.2 Results of the Nonlinear Analysis 

3.2.1 Results of the Time Delays (τ) 

 

Time delays (τ) were computed to embed the CoPx dynamics into m-dimensional 

state space (Chapter 2 Section 2.2.2.2). Time delays were calculated for 136 CoPx 

signals which belong to 28 subjects’ five successive trials at 12 different embedding 

dimensions; i.e., m=2,3,4,5,6,8,9,10,12,15,18,20. 4 trials: 2nd trial of Subject 5, 5th 

trial of Subject 7, 5th trial of Subject 23, and 2nd trial of Subject 24 was excluded as 

they were non-stationary trials. For embedding dimension, 

m=2,3,4,5,6,8,9,10,12,15,18,20 was selected as they are the exact dividers of 9000 

(number of data samples). 

 

The results of the time delays were given in Tables 3.6, 3.7, 3.8, 3.9, and 3.10 for the 

1st, 2nd, 3rd, 4th, and 5th trials of the subjects respectively.  

 

The minimum time delay (τ) value (Tables 3.6, 3.7, 3.8, 3.9, and 3.10) was 3 data 

samples, which belongs to the first trial of Subject 21 at m=20; the first, third, and 

fifth trial of Subject 25 at m=18; the first, third, fourth and fifth trial of Subject 25 at 

m=20, while the maximum time delay value (Tables 3.7) was 44 data samples that 

belongs to the second trial of Subject 15 at m=2. The grand mean of time delay values 

was 9.7 data samples (0.194 seconds) with a standard deviation of 6.5 data samples 

(0.130 seconds). 

 

Moreover, for each time delay value, a reconstruction window value (τw) has been 

evaluated according to Equation (2.6) in Chapter 2, Section 2.2.2. The results are 

presented in Tables 3.11, 3.12, 3.13, 3.14, and 3.15 for the 1st, 2nd, 3rd, 4th, and 5th 

trials of the subjects respectively.  
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Figures 1 – 8 show the τ (Figures 3.3,3.5,3.7,3.9) and τw (Figures 3.4,3.6,3.8,3.10) 

values for 5 trials (trial-1:green, trial-2:blue, trial-3:cyan, trial-4:magenta, trial-5:red 

in color for line and markers in Figures 3.3-3.10) of 4 subjects from different groups 

with error bars (error bars are drawn for τ only). The strategy to define the error bars 

for the time delays: 

• The mean (µτ) and standard deviation (στ) value of five different time delay 

(τ) values for 5 successive trials at each embedding dimension was calculated.  

• The mean values (µτ) were indicated with the black triangular marker in the 

Figures 3.3,3.5,3.7,3.9 

• The error bars (also in black color) had a total length of two standard 

deviation (στ) and each error bar was symmetric with respect to the black 

triangular marker in the Figures 3.3,3.5,3.7,3.9 at each m.  

• An error bar was drawn for each m in Figures 3.3,3.5,3.7,3.9. 
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Table 3.6 Time delays (τ) of the first trials of 28 subjects for varying m 

Subject Group m=2 m=3 m=4 m=5 m=6 m=8 m=9 m=10 m=12 m=15 m=18 m=20 

1 

G
ro

u
p

 1
 

29 19 14 12 10 9 8 8 7 6 6 5 

2 19 13 10 8 7 6 6 5 5 4 4 4 

3 20 15 12 10 9 7 6 6 6 5 5 4 

4 29 22 17 14 12 10 9 9 8 7 6 6 

5 17 11 8 7 6 5 5 4 4 4 4 4 

6 21 14 11 9 8 7 6 6 6 6 6 6 

7 27 19 14 12 10 8 8 7 7 6 6 6 

8 

G
ro

u
p

 2
 

24 16 13 10 9 7 7 6 6 5 4 4 

9 20 14 11 9 8 6 6 5 5 4 4 4 

10 36 24 18 14 12 10 9 8 7 6 6 6 

11 26 19 14 12 10 8 8 7 7 6 6 6 

12 28 21 17 14 12 10 9 8 7 6 6 6 

13 26 20 16 13 11 9 8 8 7 6 6 5 

14 22 16 13 11 9 8 7 7 6 6 5 5 

15 

G
ro

u
p

 3
 

40 27 20 16 14 11 10 9 8 7 6 6 

16 38 24 18 15 13 10 9 8 7 6 6 5 

17 27 18 14 12 10 9 8 7 7 6 5 5 

18 26 16 13 10 9 7 7 6 6 5 5 5 

19 31 22 17 15 13 10 10 9 8 7 6 6 

20 35 27 21 18 15 13 12 12 11 10 9 9 

21 20 13 10 8 7 5 5 5 4 4 4 3 

22 

G
ro

u
p

 4
 

23 15 11 9 8 7 6 6 5 5 5 5 

23 17 12 10 9 8 7 7 6 6 6 5 5 

24 40 33 25 20 17 13 12 11 10 8 8 7 

25 16 11 9 7 6 5 5 4 4 4 3 3 

26 26 17 13 10 9 7 6 6 5 5 4 4 

27 28 19 15 12 10 8 8 7 6 6 5 5 

28 12 8 8 7 7 6 6 5 5 6 6 6 
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Table 3.7 Time delays (τ) of the second trials of 28 subjects for varying m 

Subject Group M=2 m=3 m=4 m=5 m=6 m=8 m=9 m=10 m=12 m=15 m=18 m=20 

1 

G
ro

u
p

 1
 

20 14 11 9 8 7 7 7 6 6 6 6 

2 15 10 8 7 6 5 5 5 4 4 4 4 

3 21 14 11 9 8 6 6 6 5 5 5 5 

4 19 15 12 10 9 7 7 7 6 6 5 5 

5             

6 18 12 10 8 7 6 6 5 5 5 5 5 

7 22 15 12 10 8 7 7 6 6 6 5 5 

8 

G
ro

u
p

 2
 

23 17 13 11 9 7 7 6 6 5 5 5 

9 17 11 8 7 6 5 5 4 4 4 4 4 

10 36 25 19 15 13 11 10 9 8 7 7 6 

11 29 19 14 12 10 8 7 7 6 5 5 5 

12 21 17 15 13 11 9 8 8 7 6 6 5 

13 26 17 13 11 9 7 7 6 6 5 5 4 

14 18 14 12 10 9 8 7 7 6 6 6 6 

15 

G
ro

u
p

 3
 

44 28 21 16 14 11 9 9 7 6 6 5 

16 29 21 16 13 11 9 8 8 7 6 5 5 

17 24 16 13 11 9 7 7 7 6 6 5 5 

18 28 18 14 12 10 8 7 7 6 6 6 5 

19 27 19 14 12 10 8 7 7 6 6 6 6 

20 26 18 14 12 10 9 8 8 7 7 7 8 

21 19 13 10 8 7 6 5 5 5 5 4 5 

22 

G
ro

u
p

 4
 

19 13 10 8 7 6 6 5 5 5 5 5 

23 17 11 9 8 7 6 6 5 5 5 4 4 

24             

25 15 10 8 7 6 5 5 4 4 4 4 4 

26 31 20 15 12 10 8 7 7 6 5 5 5 

27 30 19 14 11 10 8 7 6 6 5 4 4 

28 9 8 7 6 6 6 6 6 6 6 6 6 
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Table 3.8 Time delays (τ) of the third trials of 28 subjects for varying m 

Subject Group m=2 m=3 m=4 m=5 m=6 m=8 m=9 m=10 m=12 m=15 m=18 m=20 

1 

G
ro

u
p

 1
 

20 14 12 10 9 8 7 7 7 6 5 5 

2 20 13 10 8 7 6 6 5 5 5 5 5 

3 20 13 10 8 7 5 5 5 4 4 4 5 

4 17 13 10 9 8 7 6 6 5 5 5 5 

5 18 12 9 7 6 5 5 5 4 4 4 4 

6 19 12 10 8 7 6 6 5 5 5 4 4 

7 23 16 12 10 9 7 7 6 6 5 5 5 

8 

G
ro

u
p

 2
 

23 17 13 11 9 8 7 7 6 5 5 5 

9 17 12 9 8 7 6 5 5 5 5 5 4 

10 40 27 21 17 14 11 11 10 9 8 8 8 

11 33 21 16 13 11 9 8 7 7 6 6 6 

12 27 19 15 12 10 8 7 7 6 5 5 5 

13 21 14 11 9 8 6 6 5 5 5 4 4 

14 15 13 11 10 9 8 7 7 6 6 5 5 

15 

G
ro

u
p

 3
 

36 25 19 16 13 10 10 9 8 7 6 6 

16 27 19 15 12 11 9 8 8 7 6 6 5 

17 30 20 16 13 11 9 8 8 7 6 6 5 

18 34 22 17 14 12 9 8 8 7 6 6 5 

19 39 27 21 17 15 12 11 10 9 8 8 8 

20 26 17 12 10 9 7 6 6 5 5 4 4 

21 17 12 9 7 6 5 5 5 5 5 5 5 

22 

G
ro

u
p

 4
 

18 13 10 9 8 6 6 6 5 5 5 5 

23 17 11 10 8 8 7 7 7 6 6 6 5 

24 29 20 15 12 10 8 8 7 7 7 7 7 

25 15 10 8 7 6 5 5 4 4 4 3 3 

26 30 20 15 12 10 8 8 7 6 6 5 5 

27 27 17 13 10 9 7 6 6 5 5 4 4 

28 13 9 8 8 7 6 6 6 5 5 5 5 
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Table 3.9 Time delays (τ) of the fourth trials of 28 subjects for varying m 

Subject Group m=2 m=3 m=4 m=5 m=6 m=8 m=9 m=10 m=12 m=15 m=18 m=20 

1 

G
ro

u
p

 1
 

21 15 11 9 8 7 6 6 6 5 5 5 

2 18 13 10 8 7 6 5 5 5 4 4 4 

3 20 13 10 8 7 6 5 5 5 4 4 4 

4 22 15 12 10 8 7 6 6 5 5 5 4 

5 19 13 10 8 7 5 5 5 4 4 4 4 

6 20 14 10 9 8 6 6 6 5 5 5 5 

7 24 17 13 11 9 8 7 7 6 5 5 5 

8 

G
ro

u
p

 2
 

19 13 10 9 8 6 6 6 5 5 5 5 

9 17 11 9 7 6 5 5 5 4 4 4 4 

10 42 29 22 18 15 12 11 11 10 8 8 7 

11 30 21 15 12 10 8 7 7 6 6 5 5 

12 29 21 16 14 12 9 8 8 7 6 5 5 

13 22 15 11 9 8 7 6 6 5 5 5 5 

14 20 14 11 9 8 6 6 6 5 5 4 4 

15 

G
ro

u
p

 3
 

34 22 17 14 12 9 8 8 7 6 5 5 

16 26 17 13 10 9 7 6 6 5 5 4 4 

17 22 15 12 10 8 7 6 6 6 5 5 5 

18 37 25 18 15 12 10 9 8 7 6 5 5 

19 34 24 19 15 13 11 10 9 8 7 7 7 

20 23 15 12 10 8 7 6 6 5 5 5 5 

21 20 13 10 8 7 6 5 5 5 4 4 4 

22 

G
ro

u
p

 4
 

17 12 10 8 7 6 6 5 5 5 5 4 

23 17 13 10 9 8 7 7 7 6 6 5 5 

24 32 23 17 14 12 10 9 8 8 7 6 6 

25 16 11 8 7 6 5 5 4 4 4 4 3 

26 35 22 17 14 12 9 9 8 7 6 6 5 

27 31 19 14 11 9 7 7 6 5 5 4 4 

28 10 9 8 7 7 7 7 6 6 6 6 5 
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Table 3.10 Time delays (τ) of the fifth trials of 28 subjects for varying m 

Subject Group m=2 m=3 m=4 m=5 m=6 m=8 m=9 m=10 m=12 m=15 m=18 m=20 

1 

G
ro

u
p

 1
 

20 14 11 9 8 6 6 6 5 5 4 4 

2 18 12 10 8 7 6 6 5 5 5 4 4 

3 22 14 10 8 7 6 5 5 4 4 4 4 

4 19 13 10 9 8 6 6 6 5 5 5 5 

5 17 11 9 7 6 5 5 4 4 4 4 4 

6 18 13 10 8 7 6 5 5 5 5 5 5 

7             

8 

G
ro

u
p

 2
 

21 15 11 9 8 7 6 6 5 5 5 5 

9 21 15 11 9 8 6 6 6 5 5 5 5 

10 43 31 24 19 16 13 12 11 10 9 8 8 

11 41 26 20 17 14 11 10 9 8 8 7 7 

12 24 18 14 12 10 8 7 7 6 5 5 5 

13 20 13 10 8 7 6 5 5 5 4 4 4 

14 21 15 11 9 8 7 6 6 6 5 5 5 

15 

G
ro

u
p

 3
 

42 28 21 16 14 11 9 9 7 6 6 5 

16 24 16 13 10 9 7 7 6 6 5 5 5 

17 22 15 11 9 8 6 6 5 5 4 4 4 

18 37 24 18 14 12 9 9 8 7 6 5 5 

19 39 26 20 16 14 11 10 9 8 7 6 6 

20 23 16 12 10 8 7 6 6 5 5 5 5 

21 18 12 9 7 6 5 5 4 4 4 4 4 

22 

G
ro

u
p

 4
 

19 13 10 9 8 6 6 6 5 5 5 4 

23             

24 27 19 15 12 11 9 8 8 8 8 7 7 

25 16 11 8 7 6 5 5 4 4 4 3 3 

26 37 24 18 15 12 10 9 8 7 7 6 6 

27 31 19 14 11 9 7 6 6 5 4 4 4 

28 8 8 8 8 7 7 7 6 6 6 5 5 
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Table 3.11 Reconstruction window (τw) for the first trials of 28 subjects for varying m 

Subject Group m=2 m=3 m=4 m=5 m=6 m=8 m=9 m=10 m=12 m=15 m=18 m=20 

1 

G
ro

u
p

 1
 

29 38 42 48 50 63 64 72 77 84 102 95 

2 19 26 30 32 35 42 48 45 55 56 68 76 

3 20 30 36 40 45 49 48 54 66 70 85 76 

4 29 44 51 56 60 70 72 81 88 98 102 114 

5 17 22 24 28 30 35 40 36 44 56 68 76 

6 21 28 33 36 40 49 48 54 66 84 102 114 

7 27 38 42 48 50 56 64 63 77 84 102 114 

8 

G
ro

u
p

 2
 

24 32 39 40 45 49 56 54 66 70 68 76 

9 20 28 33 36 40 42 48 45 55 56 68 76 

10 36 48 54 56 60 70 72 72 77 84 102 114 

11 26 38 42 48 50 56 64 63 77 84 102 114 

12 28 42 51 56 60 70 72 72 77 84 102 114 

13 26 40 48 52 55 63 64 72 77 84 102 95 

14 22 32 39 44 45 56 56 63 66 84 85 95 

15 

G
ro

u
p

 3
 

40 54 60 64 70 77 80 81 88 98 102 114 

16 38 48 54 60 65 70 72 72 77 84 102 95 

17 27 36 42 48 50 63 64 63 77 84 85 95 

18 26 32 39 40 45 49 56 54 66 70 85 95 

19 31 44 51 60 65 70 80 81 88 98 102 114 

20 35 54 63 72 75 91 96 108 121 140 153 171 

21 20 26 30 32 35 35 40 45 44 56 68 57 

22 

G
ro

u
p

 4
 

23 30 33 36 40 49 48 54 55 70 85 95 

23 17 24 30 36 40 49 56 54 66 84 85 95 

24 40 66 75 80 85 91 96 99 110 112 136 133 

25 16 22 27 28 30 35 40 36 44 56 51 57 

26 26 34 39 40 45 49 48 54 55 70 68 76 

27 28 38 45 48 50 56 64 63 66 84 85 95 

28 12 16 24 28 35 42 48 45 55 84 102 114 
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Table 3.12 Reconstruction window (τw) of the second trials of 28 subjects for varying 
m 

Subject Group m=2 m=3 m=4 m=5 m=6 m=8 m=9 m=10 m=12 m=15 m=18 m=20 

1 
G

ro
u

p
 1

 
20 28 33 36 40 49 56 63 66 84 102 114 

2 15 20 24 28 30 35 40 45 44 56 68 76 

3 21 28 33 36 40 42 48 54 55 70 85 95 

4 19 30 36 40 45 49 56 63 66 84 85 95 

5             

6 18 24 30 32 35 42 48 45 55 70 85 95 

7 22 30 36 40 40 49 56 54 66 84 85 95 

8 

G
ro

u
p

 2
 

23 34 39 44 45 49 56 54 66 70 85 95 

9 17 22 24 28 30 35 40 36 44 56 68 76 

10 36 50 57 60 65 77 80 81 88 98 119 114 

11 29 38 42 48 50 56 56 63 66 70 85 95 

12 21 34 45 52 55 63 64 72 77 84 102 95 

13 26 34 39 44 45 49 56 54 66 70 85 76 

14 18 28 36 40 45 56 56 63 66 84 102 114 

15 

G
ro

u
p

 3
 

44 56 63 64 70 77 72 81 77 84 102 95 

16 29 42 48 52 55 63 64 72 77 84 85 95 

17 24 32 39 44 45 49 56 63 66 84 85 95 

18 28 36 42 48 50 56 56 63 66 84 102 95 

19 27 38 42 48 50 56 56 63 66 84 102 114 

20 26 36 42 48 50 63 64 72 77 98 119 152 

21 19 26 30 32 35 42 40 45 55 70 68 95 

22 

G
ro

u
p

 4
 

19 26 30 32 35 42 48 45 55 70 85 95 

23 17 22 27 32 35 42 48 45 55 70 68 76 

24             

25 15 20 24 28 30 35 40 36 44 56 68 76 

26 31 40 45 48 50 56 56 63 66 70 85 95 

27 30 38 42 44 50 56 56 54 66 70 68 76 

28 9 16 21 24 30 42 48 54 66 84 102 114 
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Table 3.13 Reconstruction window (τw) of the third trials of 28 subjects for varying m  

Subject Group m=2 m=3 m=4 m=5 m=6 m=8 m=9 m=10 m=12 m=15 m=18 m=20 

1 

G
ro

u
p

 1
 

20 28 36 40 45 56 56 63 77 84 85 95 

2 20 26 30 32 35 42 48 45 55 70 85 95 

3 20 26 30 32 35 35 40 45 44 56 68 95 

4 17 26 30 36 40 49 48 54 55 70 85 95 

5 18 24 27 28 30 35 40 45 44 56 68 76 

6 19 24 30 32 35 42 48 45 55 70 68 76 

7 23 32 36 40 45 49 56 54 66 70 85 95 

8 

G
ro

u
p

 2
 

23 34 39 44 45 56 56 63 66 70 85 95 

9 17 24 27 32 35 42 40 45 55 70 85 76 

10 40 54 63 68 70 77 88 90 99 112 136 152 

11 33 42 48 52 55 63 64 63 77 84 102 114 

12 27 38 45 48 50 56 56 63 66 70 85 95 

13 21 28 33 36 40 42 48 45 55 70 68 76 

14 15 26 33 40 45 56 56 63 66 84 85 95 

15 

G
ro

u
p

 3
 

36 50 57 64 65 70 80 81 88 98 102 114 

16 27 38 45 48 55 63 64 72 77 84 102 95 

17 30 40 48 52 55 63 64 72 77 84 102 95 

18 34 44 51 56 60 63 64 72 77 84 102 95 

19 39 54 63 68 75 84 88 90 99 112 136 152 

20 26 34 36 40 45 49 48 54 55 70 68 76 

21 17 24 27 28 30 35 40 45 55 70 85 95 

22 

G
ro

u
p

 4
 

18 26 30 36 40 42 48 54 55 70 85 95 

23 17 22 30 32 40 49 56 63 66 84 102 95 

24 29 40 45 48 50 56 64 63 77 98 119 133 

25 15 20 24 28 30 35 40 36 44 56 51 57 

26 30 40 45 48 50 56 64 63 66 84 85 95 

27 27 34 39 40 45 49 48 54 55 70 68 76 

28 13 18 24 32 35 42 48 54 55 70 85 95 
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Table 3.14 Reconstruction window (τw) of the fourth trials of 28 subjects for varying 
m  

Subject Group m=2 m=3 m=4 m=5 m=6 m=8 m=9 m=10 m=12 m=15 m=18 m=20 

1 
G

ro
u

p
 1

 
21 30 33 36 40 49 48 54 66 70 85 95 

2 18 26 30 32 35 42 40 45 55 56 68 76 

3 20 26 30 32 35 42 40 45 55 56 68 76 

4 22 30 36 40 40 49 48 54 55 70 85 76 

5 19 26 30 32 35 35 40 45 44 56 68 76 

6 20 28 30 36 40 42 48 54 55 70 85 95 

7 24 34 39 44 45 56 56 63 66 70 85 95 

8 

G
ro

u
p

 2
 

19 26 30 36 40 42 48 54 55 70 85 95 

9 17 22 27 28 30 35 40 45 44 56 68 76 

10 42 58 66 72 75 84 88 99 110 112 136 133 

11 30 42 45 48 50 56 56 63 66 84 85 95 

12 29 42 48 56 60 63 64 72 77 84 85 95 

13 22 30 33 36 40 49 48 54 55 70 85 95 

14 20 28 33 36 40 42 48 54 55 70 68 76 

15 

G
ro

u
p

 3
 

34 44 51 56 60 63 64 72 77 84 85 95 

16 26 34 39 40 45 49 48 54 55 70 68 76 

17 22 30 36 40 40 49 48 54 66 70 85 95 

18 37 50 54 60 60 70 72 72 77 84 85 95 

19 34 48 57 60 65 77 80 81 88 98 119 133 

20 23 30 36 40 40 49 48 54 55 70 85 95 

21 20 26 30 32 35 42 40 45 55 56 68 76 

22 

G
ro

u
p

 4
 

17 24 30 32 35 42 48 45 55 70 85 76 

23 17 26 30 36 40 49 56 63 66 84 85 95 

24 32 46 51 56 60 70 72 72 88 98 102 114 

25 16 22 24 28 30 35 40 36 44 56 68 57 

26 35 44 51 56 60 63 72 72 77 84 102 95 

27 31 38 42 44 45 49 56 54 55 70 68 76 

28 10 18 24 28 35 49 56 54 66 84 102 95 
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Table 3.15 Reconstruction window (τw) of the fifth trials of 28 subjects for varying m  

Subject Group m=2 m=3 m=4 m=5 m=6 m=8 m=9 m=10 m=12 m=15 m=18 m=20 

1 

G
ro

u
p

 1
 

20 28 33 36 40 42 48 54 55 70 68 76 

2 18 24 30 32 35 42 48 45 55 70 68 76 

3 22 28 30 32 35 42 40 45 44 56 68 76 

4 19 26 30 36 40 42 48 54 55 70 85 95 

5 17 22 27 28 30 35 40 36 44 56 68 76 

6 18 26 30 32 35 42 40 45 55 70 85 95 

7             

8 

G
ro

u
p

 2
 

21 30 33 36 40 49 48 54 55 70 85 95 

9 21 30 33 36 40 42 48 54 55 70 85 95 

10 43 62 72 76 80 91 96 99 110 126 136 152 

11 41 52 60 68 70 77 80 81 88 112 119 133 

12 24 36 42 48 50 56 56 63 66 70 85 95 

13 20 26 30 32 35 42 40 45 55 56 68 76 

14 21 30 33 36 40 49 48 54 66 70 85 95 

15 

G
ro

u
p

 3
 

42 56 63 64 70 77 72 81 77 84 102 95 

16 24 32 39 40 45 49 56 54 66 70 85 95 

17 22 30 33 36 40 42 48 45 55 56 68 76 

18 37 48 54 56 60 63 72 72 77 84 85 95 

19 39 52 60 64 70 77 80 81 88 98 102 114 

20 23 32 36 40 40 49 48 54 55 70 85 95 

21 18 24 27 28 30 35 40 36 44 56 68 76 

22 

G
ro

u
p

 4
 

19 26 30 36 40 42 48 54 55 70 85 76 

23             

24 27 38 45 48 55 63 64 72 88 112 119 133 

25 16 22 24 28 30 35 40 36 44 56 51 57 

26 37 48 54 60 60 70 72 72 77 98 102 114 

27 31 38 42 44 45 49 48 54 55 56 68 76 

28 8 16 24 32 35 49 56 54 66 84 85 95 
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Figure 3.3 τ for varying dimensions, m [Group 1, 1st subject, F, 6 years old, 5 trials 
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Figure 3.4 τw for varying dimensions, m [Group 1, 1st subject, F, 6 years old, 5 trials] 
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Figure 3.5 τ for varying dimensions, m [Group 2, 8th subject, M, 21 years old, 5 trials] 
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Figure 3.6. τw for varying dimensions, m [Group 2, 8th subject, M, 21 years old, 5 
trials]  
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Figure 3.7. τ for varying dimensions, m [Group 3, 16th subject, M, 42 years old, 5 
trials]  
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Figure 3.8. τw for varying dimensions, m [Group 3, 16th subject, M, 42 years old, 5 
trials]  
 



74 
 

2 3 4 5 6 8 9 10 12 15 18 20
0

10

20

30

40

embedding dimension, m

de
la

y 
[s

am
pl

es
]

 

Figure 3.9. τ for varying dimensions, m [Group 4, 22th subject, F, 65 years old, 5 
trials]  
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Figure 3.10 τw for varying dimensions, m [Group 4, 22th subject, F, 65 years old, 5 
trials]  
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3.2.2 Correlation Dimension Estimates 

 

Correlation dimension estimates (D2) from 136 CoPx signals have been computed 

according to the following steps. 4 trials: 2nd trial of Subject 5, 5th trial of Subject 7, 

5th trial of Subject 23, and 2nd trial of Subject 24 were excluded as they were non-

stationary trials. 

1. The dynamics from the CoPx signal has been reconstructed in the phase 

space by using the method of time delays (Chapter 2, Section 2.2.2.2). 

2. Spatial correlations between the phase points on the possible attractor have 

been explored by the algorithm proposed by Grassberger and Procaccia 

[35]. In order to compute the correlation dimension (D2) estimate from a 

time series, the correlation function, C(r) is defined as the spatial 

correlations between the pairs of phase points (Equation (2.24) in Chapter 2, 

Section 2.2.6.3) in the m-dimensional embedded dynamics (Equation (3.3) 

in Chapter 2, Section 2.2.6.3). The correlation function, C(r) is computed by 

constructing a sphere of radius r around each point Xi in the state space of 

the possible attractor and counting the number of points within the sphere 

[76].  

3. The correlation dimension (D2) was estimated from the slope of the linear 

portion of the curve obtained by plotting the natural logarithm of the 

correlation function, C(r) against the natural logarithm of varying tolerance 

distances, r; i.e., curve lnC(r) as a function of ln(r).  

4. Besides, three criteria introduced by Rapp et al. [42] have been used in 

order to compute correlation dimension estimates (Chapter 2, Section 

2.2.6.3). The three criteria were given below.    

i) The scaling region of the curve lnC(r) versus ln(r) must be linear.  

ii) Scaling region must be of significant length (a length of ∆lnr=1.6 is 

the minimally acceptable scaling length). 
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iii) The estimate of dimension should be robust against variations in 

the embedding dimension, m.  

 

The three steps in order to compute D2 estimate from a CoPx signal of one trial of a 

subject are as follows:  

• The first step is plotting the curve lnC(r) versus lnr (Figure 3.11).  

• The second step is detecting the linear scaling region with the significant 

length (Criteria i,ii) (Figure 3.12).  

• The final step is to compute D2 estimate from the slope of the linear scaling 

region (Figure 3.13).  

The procedure described above in three steps has been repeated at 12 different 

embedding dimensions, m=2,3,4,5,6,8,9,10,12,15,18,20 for each trial of a subject. 

Lastly, the third criterion (Criteria iii) has been checked whether D2 estimates 

converged to a value for the corresponding trial. If D2 estimates were found to 

converge to a value against variations in the embedding dimensions, m; and then this 

value was accepted as the correlation dimension of the corresponding CoPx signal. 

(Figure 3.14). This procedure has been repeated for each stationary CoPx signal of 28 

subjects.  
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Figure 3.11. Step 1 - Curve ln C(r) versus lnr for the first trial of Subject 11 at m=2 
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Figure 3.12. Step 2 - Curve ln C(r) versus lnr for the first trial of Subject 11 at m=2  
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Figure 3.13. Step 3 - Curve ln C(r) versus lnr for the first trial of Subject 11 at m=2  
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Figure 3.14. Step 4 - Computed D2 estimates for varying dimensions, m [11th subject, 

F, 28, 1st trial]  
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In order to define a criterion for convergence of the D2 estimate curves, the following 

algorithm has been developed: 

 

Step 1. The D2 estimate curves were fitted to the double exponential model (due to 

poor fit of one exponential model, Figure 3.15) defined in Equation (3.1) for each of 

136 saturated trials (Figure 3.16). The constants (a,b,c,d) were calculated by using the 

built-in function, “fit” of the software Matlab®.  

 

2
b m d m

D a e c e
⋅ ⋅= ⋅ + ⋅

                                                                                          (3.1) 
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Figure 3.15. D2 estimate curve (poor fit of one exponential model) of the Subject 11, 
trial 1 
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Figure 3.16. D2 estimate curve (experimental and modeled by Equation (3.1)) of the 
Subject 11, trial 1 
 

Step 2. The embedding dimension at which modeled D2 estimate curves are to be 

accepted as saturated has to be decided. The modeled D2 estimate curves are 

accepted as saturated when the criterion defined in Equation (3.2) is satisfied [114]. 

In Equation (3.2), m is embedding dimension and n is topological dimension.  

 

2 1m n≥ +                      (3.2) 

             

In the place of n, D2 estimates were used. The line m versus (m-1)/2 (derived from 

Equation (3.2) by solving for n) was drawn for each of 136 stationary trials. The 

intersection point of the line, D2(m); ie, m versus (m-1)/2 (red line in Figure 3.17) and 

the D2 estimate curves (black line in Figure 3.17) has been found. Then, the saturation 

point in embedding dimension (blue plus marker in Figure 3.17) has been accepted as 

the first embedding dimension value which is in the right side of the intersection 

point. The saturation points found accordingly in embedding dimension, m of 136 

converged trials were given in Table 3.16.  
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Figure 3.17. The line m versus (m-1)/2 and D2 estimate curve of the Subject 11, trial 
1. The marker “+” is the saturation point right to the intersection point of the line 
D2(m) with D2 estimates curve. 
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Table 3.16. Saturation points in embedding dimension of 136 converged trials 
Subjects t1 t2 t3 t4 t5 

1 8 9 9 9 8 
2 8 8 8 8 9 
3 8 9 8 8 8 
4 8 9 8 8 9 
5 9 n 9 8 8 
6 8 8 9 9 9 
7 8 9 9 8 n 
8 9 9 8 8 9 
9 9 8 8 8 8 

10 8 8 8 8 8 
11 8 8 8 8 8 
12 8 8 9 9 9 
13 8 8 8 8 8 
14 9 9 9 9 8 
15 9 8 8 9 8 
16 8 8 9 9 9 
17 9 8 8 9 9 
18 8 8 8 8 8 
19 9 8 8 8 8 
20 9 8 8 8 8 
21 9 9 9 9 9 
22 9 9 9 9 9 
23 10 9 10 10 n 
24 8 n 8 8 8 
25 9 9 9 9 8 
26 8 8 9 8 8 
27 9 9 9 9 9 
28 12 12 12 12 12 

                     ‘n’ indicates non-stationary trials 
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Step 3. The values of modeled D2 estimates starting from the saturation point (in 

embedded dimensions m, larger than 2D2 + 1) to m=20 have been fitted to a line 

(linear regression, Equation 3.3, Figure 3.18) to search for a linear trend. Similarly, 

the constants a and b were calculated by using the built-in function, “fit” of the 

software Matlab®.   

 

2D a m b= ⋅ +
                    (3.3) 

2 3 4 5 6 8 9 10 12 15 18 20
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Figure 3.18. Modeled D2 estimate curve of 1st trial of 1st subject (black line), fitted 
line (red line)  
 

The convergence criterion is then defined as: D2 estimate curves are accepted as 

“converged” if the slope of the fitted line (a in Equation (3.3)) to D2 estimates starting 

from the saturation point on (in embedded dimensions m, larger than 2D2 + 1), is less 

than the slope of the double exponential model fit to D2 estimates at the same 

saturation point. The convergence test has been applied to only the trials that possess 

stationary CoPx signal characteristics. By this method, 112 out of 136 trials passed 

the convergence test (Table 3.17).  
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Table 3.17. Results of Convergence 
Subjects t1 t2 t3 t4 t5 
1 c c c c c 
2 c c nc nc c 
3 c nc nc c c 
4 c c c c c 
5 nc n nc nc nc 
6 c c c c nc 
7 c c c c n 
8 c c c c c 
9 c nc nc c nc 
10 c c c nc c 
11 c c c c nc 
12 c c c c c 
13 c c nc c c 
14 c c c c c 
15 c c c c c 
16 c c c c c 
17 c c c c nc 
18 c c c c c 
19 c nc c c c 
20 c c c c nc 
21 c c nc c nc 
22 nc c c c c 
23 c c c c n 
24 c n nc c c 
25 c nc c c nc 
26 c c c c c 
27 c c c c c 
28 c c c c c 

 ‘n’ indicates non-stationary trials, ‘nc’ not-converged trials, ‘c’ converged trials 
 
      

Finally, the D2 value of a trial is defined as the mean value of the D2 estimates 

starting from the saturation point (in embedded dimensions m, larger than 2D2 + 1) to 

m=20 (Table 3.18). The grand mean of D2 values of 112 converged trials was 3.78 

with a standard deviation of 0.45 (Table 3.18). The minimum D2 value computed was 

2.88 (Subject 18, t1, Female, 54), while the maximum D2 value was 5.28 (Subject 28, 

t5, Female, 84) among D2 values of 112 converged trials of stationary saturated CoPx 
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signals (Table 3.18). D2 values exhibited diversity within the population studied 

(Table 3.18). However, there existed similarities in the computed D2 values also 

(Table 3.18). 83 D2 values out of 112 were among 3-4 (3 and 4 included), while 23 of 

the D2 values were between 4 and 5. Furthermore, 3 trials demonstrated D2 values 

among 2-3 and among 5-6 (Table 3.18).  
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Table 3.18. D2 values of the converged trials 
Subject Group t1 t2 t3 t4 t5 
1 

G
ro

u
p

 1
 

3.45 3.99 3.95 3.84 3.63 
2 3.72 3.60 - - 4.06 
3 3.63 - - 3.76 3.79 
4 3.67 3.90 3.73 3.63 3.96 
5 - - - - - 
6 3.87 3.82 4.00 4.01 - 
7 3.66 3.92 3.87 3.65 - 
8 

G
ro

u
p

 2
 

3.90 4.04 3.70 3.65 3.90 
9 3.89 - - 3.79 - 
10 3.17 3.05 2.98 - 2.93 
11 3.65 3.11 3.18 3.36 - 
12 3.50 3.60 3.79 3.82 3.87 
13 3.53 3.68 - 3.72 3.72 
14 3.82 4.13 4.22 4.09 3.78 
15 

G
ro

u
p

 3
 

3.81 3.33 3.66 3.69 3.50 
16 3.55 3.66 4.00 3.79 4.03 
17 3.92 3.62 3.41 3.87 - 
18 2.88 3.05 3.17 3.17 3.16 
19 3.83 - 3.03 3.52 3.60 
20 3.81 3.49 3.18 3.29 - 
21 3.88 4.11 - 4.01 - 
22 

G
ro

u
p

 4
 

- 4.28 4.21 4.17 4.16 
23 4.52 4.18 4.51 4.65 - 
24 3.47 - - 3.42 3.59 
25 4.09 - 4.11 4.23 - 
26 3.10 3.58 3.95 3.38 3.29 
27 3.90 3.69 3.99 3.72 3.79 
28 5.27 5.15 4.83 4.92 5.28 

 

 

Another similarity for correlation dimension analysis was the behavior of the 

correlation integral curves; i.e., lnC(r) versus lnr were similar among the trials (intra-

subject) and the subjects (inter-subject). Figure 3.19 and 3.20 show the behavior of 

the curves lnC(r) versus lnr for the first and the fifth trials of an exemplar subject 

(Subject 11) for varying embedding dimensions, m respectively. Figure 3.21 shows 



89 
 

the behavior of the curves lnC(r) versus lnr for the first trial of a different subject 

(Subject 14) for varying embedding dimensions, m. This similarity in the behavior of 

the curves of lnC(r) versus lnr has existed in all of the trials of all subjects.   

 

On the other hand, Figure 3.22 and 3.23 present D2 estimates computed from five 

successive trials of Subjects 5 and 12 for varying embedding dimensions, m 

respectively. Although D2 estimates look similar, the behavior of the D2 estimates is 

different in terms of convergence (Figure 3.22 and 3.23). Since none of the five 

successive trials of Subject 5 (Female, 11) has converged (Figure 3.22), while all of 

the five successive trials of Subject 12 (Male, 31) have converged (Figure 3.23).  

 

Figures 3.24,3.25,3.26,3.27 presented the converged D2 estimates of the Groups 

1,2,3,4 respectively. There were 24 converged trials out of 35 for the Group 1 with an 

average D2 value of 3.80±0.16 (mean ± std). Also, for the Group 2, the number of 

converged trials was 29 out of 35, and the mean value was 3.64±0.35. The largest 

number of converged trials was owned by the Group 3 with 30 trials and mean of 

them was 3.57±0.34. Lastly, the Group 4 had 29 converged trials with the mean 

4.12±0.59. Also, Figure 3.28 showed all converged D2 estimates. 

 

In addition, Figures 3.29 – 3.56 show fitted D2 estimates for varying embedding 

dimensions, m of each subjects’ first, second, third, fourth, and fifth trials. The non-

stationary trials showed green in color, not converged trials were red in color, and the 

converged trials were black in color. In addition, the line m versus (m-1)/2 was blue 

in color and the blue plus markers indicate saturation point in embedding dimension. 

Finally, the double exponential curve fitting to D2 estimates didn’t work well for one 

of the trials of three of the subjects (Subject 9,13,25). These curves were shown in 

dashed lines rather than solid lines. 
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Finally, a Kruskal-Wallis (KW) test (analog to 1-way ANOVA, but data replaced by 

their ranks, go to Appendix H for a more detailed description) [92] on the D2 values 

of the converged trials of the CoPx signals (Table 3.18) were significantly different on 

subjects (p<0.000).  Furthermore, another Kruskal-Wallis test was applied to search 

for significance difference between groups on the D2 values of the converged trials of 

the CoPx signals (Table 3.18) resulted in a way that groups were significantly 

different (p<0.000). Group 4 has been found to be significantly different than Group 

2 and 3 for the measure of D2 values.   
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Figure 3.19. Curves ln C(r) versus lnr for varying m [11th subject, F, 28, 1st trial] 
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Figure 3.20. Curves ln C(r) versus lnr for varying m [11th subject, F, 28, 5th trial] 
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Figure 3.21. Curves ln C(r) versus lnr for varying m [14th subject, M, 39, 1st trial] 
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Figure 3.22. Computed D2 estimates of five trials for varying m [5th subject, F, 11]  
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Figure 3.23. Computed D2 estimates of five trials for varying m [12th subject, M, 31] 
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Figure 3.24. Computed D2 estimates of the converged trials for the Group 1 
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Figure 3.25. Computed D2 estimates of the converged trials for the Group 2 
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Figure 3.26. Computed D2 estimates of the converged trials for the Group 3 
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Figure 3.27. Computed D2 estimates of the converged trials for the Group 4 
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Figure 3.28. Computed D2 estimates of all converged trials 
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Figure 3.29 Fitted D2 estimates of Subject 1 for varying m  

 

2 3 4 5 6 8 9 10 12 15 18 20
0

1

2

3

4

5

emdedding dimension,m

co
rr

el
at

io
n

 d
im

en
si

on
,D

2

 

 

Figure 3.30. Fitted D2 estimates of Subject 2 for varying m  
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Figure 3.31. Fitted D2 estimates of Subject 3 for varying m  
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Figure 3.32. Fitted D2 estimates of Subject 4 for varying m  
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Figure 3.33. Fitted D2 estimates of Subject 5 for varying m  
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Figure 3.34. Fitted D2 estimates of Subject 6 for varying m  
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Figure 3.35. Fitted D2 estimates of Subject 7 for varying m  
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Figure 3.36. Fitted D2 estimates of Subject 8 for varying m  
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Figure 3.37 Fitted D2 estimates of Subject 9 for varying m  
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Figure 3.38. Fitted D2 estimates of Subject 10 for varying m  
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Figure 3.39. Fitted D2 estimates of Subject 11 for varying m  
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Figure 3.40. Fitted D2 estimates of Subject 12 for varying m  
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Figure 3.41. Fitted D2 estimates of Subject 13 for varying m  
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Figure 3.42. Fitted D2 estimates of Subject 14 for varying m  
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Figure 3.43. Fitted D2 estimates of Subject 15 for varying m  
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Figure 3.44. Fitted D2 estimates of Subject 16 for varying m  
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Figure 3.45. Fitted D2 estimates of Subject 17 for varying m  
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Figure 3.46. Fitted D2 estimates of Subject 18 for varying m  



105 
 

2 3 4 5 6 8 9 10 12 15 18 20
0

1

2

3

4

5

emdedding dimension,m

co
rr

el
at

io
n

 d
im

en
si

on
,D

2

 

 

Figure 3.47. Fitted D2 estimates of Subject 19 for varying m  
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Figure 3.48. Fitted D2 estimates of Subject 20 for varying m  
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Figure 3.49. Fitted D2 estimates of Subject 21 for varying m  
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Figure 3.50 Fitted D2 estimates of Subject 22 for varying m  
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Figure 3.51. Fitted D2 estimates of Subject 23 for varying m  
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Figure 3.52. Fitted D2 estimates of Subject 24 for varying m  
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Figure 3.53. Fitted D2 estimates of Subject 25 for varying m  
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Figure 3.54. Fitted D2 estimates of Subject 26 for varying m  
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Figure 3.55. Fitted D2 estimates of Subject 27 for varying m  
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Figure 3.56. Fitted D2 estimates of Subject 28 for varying m  
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CHAPTER 4 
 
 

MODELING 
 

 

 

4.1 Surrogate Data 

 

The behavior observed in stationarity and ergodicity characteristics of the CoPx 

signals has been checked against two types of linear processes by using surrogate 

data [94]. For this purpose, first a linear process was specified then the surrogate data 

have been generated, which were consistent with the process specified. Next, the 

analytical methods as Run test [75] and Ensemble average [76] (see Chapter 2 

Section 2.2.1.1.2 and 2.2.1.1.3 respectively) were applied to the surrogate data 

created to check stationarity and ergodicity characteristics respectively. Two linear 

models have been used to generate the surrogate data. 

4.1.1 Surrogate Data I 

 

The first linear process was stationary uncorrelated Gaussian noise. In order to 

compare the stationary and ergodic characteristics in the CoPx signal behavior against 

the first linear process, the surrogate data have been obtained by shuffling the 

temporal order [95] of the corresponding CoPx signals for each experimental trial. In 

this process, the amplitude distribution of the experimental data is preserved (Figure 

4.1).  

4.1.2 Surrogate Data II 

 

The second linear process compared to the stationary and ergodic characteristics in 

the CoPx signal behavior has been chosen to be the stationary correlated Gaussian 

noise. The surrogate data which were consistent with the corresponding experimental 
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record and the linear process have been created for each experimental trial. The 

surrogate data sets (time series) for the second linear process have been created by 

taking the Fouriér transform of the experimental CoPx signals, randomizing the phase 

and then taking the inverse Fouriér transform [94]. In this process Fouriér power 

spectrum of the experimental data is preserved (Proof is given in Appendix I) (Figure 

4.1).  
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Figure 4.1. Time series (first column), amplitude distributions (second column), and 
Fast Fouriér Transformations (third column) of the experimental, shuffled (Surrogate 
Data I), and phase randomized (Surrogate Data II) CoPx signals [14th subject, F, 28] 
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4.2 Results 

4.2.1 Results of Run Test 

 

Run Test (Chapter 2 Section 2.2.1.1.2) has been applied to shuffled (Surrogate-1) and 

phase-randomized (Surrogate-2) CoPx signals obtained from 5 successive surrogates 

of each of 28 subjects; i.e., a shuffled CoPx signal and a phase randomized CoPx 

signal have been generated for each experimental CoPx signal. The results of the Run 

Test were given in total run (Chapter 2 Section 2.2.1.1.2) in Table 4.1. The test 

results for the shuffled CoPx signal has suggested that 2 out of 140 surrogates, which 

belong to Subjects 5 (Male, 7 years old), were non-stationary (refer to Chapter 2 

Section 2.2.1.1.2). One surrogate is non-stationary from the left-side and one is non-

stationary from the right-side [84]. Hence, 138 of the shuffled CoPx signals (98.6%) 

were stationary. On the other hand, phase randomized CoPx signals’ Run Test results 

established that 3 out of 28 subjects (Subject 12,13,23) presented non-stationarity 

from the left-side [84] in one of their five successive surrogates. Thus, 137 of the 

phase randomized CoPx signals (97.9%) were stationary.  

4.2.2 Results of Ensemble Average Analysis  

 

The ensemble average analysis (Section 2.2.1.1.3) has been applied to the shuffled 

and phase-randomized CoPx signals that belong to the subjects who demonstrated 

stationary signal characteristics in each of the five successive surrogates [94]; i.e., 27 

out of 28 subjects have been evaluated for the shuffled CoPx signal (Subject 2 

excluded) and 25 out of 28 subjects have been assessed for the phase-randomized 

CoPx signal (Subject 12,13,23 excluded). The results were presented in p-values 

(Table 4.2 and Table 4.3) obtained from 2-way ANOVA test (Appendix C) 

performed on T matrix (Chapter 2 Section 2.2.1.1.3, Equation (2.14)). The results for 

the shuffled CoPx signal (Table 4.2) revealed that 27 subjects have p values more than 
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0.05 on both rows and columns. Thus, all 27 subjects’ shuffled CoPx signals that 

performed in the ensemble average analysis were ergodic.  

 

Besides, the phase-randomized CoPx signals of Subjects 2 and 22 have p values less 

than 0.05 on columns (Table 4.3). Thus, the phase-randomized CoPx signals which 

belong to Subjects 2 and 22 were not ergodic. Subsequently, phase-randomized CoPx 

signals of 23 subjects (Subjects 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 

21, 24, 25, 26, 27, and 28) were stationary and ergodic. 
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Table 4.1. Run Test Results in total run 

    Shuffled CoPx Phase Randomized CoPx 

Subject Group T 1 T 2 T 3 T 4 T 5 T 1 T 2 T 3 T 4 T 5 

1 

G
ro

u
p

 1
 

9 10 10 13 9 11 12 12 8 6 

2 6 10 9 15* 5* 8 14 10 9 10 

3 9 13 8 12 7 9 10 9 8 7 

4 6 9 7 6 10 12 10 7 8 8 

5 13 10 10 12 10 8 8 8 10 6 

6 10 12 10 10 8 8 11 9 6 11 

7 9 10 11 7 11 8 7 9 14 6 

8 

G
ro

u
p

 2
 

13 9 11 11 12 11 9 7 8 9 

9 11 9 8 9 8 10 10 9 9 7 

10 10 13 13 11 11 10 8 8 7 8 

11 8 11 11 8 11 8 6 9 7 11 

12 9 8 9 10 10 9 8 10 9 5* 

13 11 10 9 14 10 9 10 9 5* 8 

14 7 13 8 9 9 8 13 10 9 7 

15 

G
ro

u
p

 3
 

12 9 9 12 9 12 8 10 8 8 

16 8 10 10 8 8 7 7 7 7 7 

17 11 10 11 11 9 10 9 7 7 6 

18 7 10 8 11 10 7 9 10 11 9 

19 8 14 10 12 13 10 9 7 12 7 

20 8 10 7 10 10 11 10 11 10 8 

21 11 6 13 8 8 8 7 9 10 9 

22 

G
ro

u
p

 4
 

6 10 11 10 8 12 12 9 10 8 

23 8 8 8 11 12 9 4* 10 6 10 

24 12 9 14 13 8 10 9 7 9 10 

25 13 10 9 10 8 11 8 9 9 11 

26 9 7 10 6 10 9 11 9 10 9 

27 12 12 11 7 10 9 9 10 11 11 

28 11 6 9 9 12 10 10 10 11 8 
      *indicates non-stationary trials 
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Table 4.2. p-values obtained from the two-way ANOVA of T matrix for the shuffled 
CoPx 

Subject pcolumns prows 

1 0.95 1.00 

3 0.848 1.000 

4 0.186 1.000 

5 0.318 1.000 

6 0.930 1.000 

7 0.786 1.000 

8 0.654 1.000 

9 0.661 1.000 

10 0.077 1.000 

11 0.393 1.000 

12 0.221 1.000 

13 0.385 1.000 

14 0.106 1.000 

15 0.373 1.000 

16 0.963 1.000 

17 0.163 1.000 

18 0.716 1.000 

19 0.239 1.000 

20 0.881 1.000 

21 0.607 1.000 

22 0.270 1.000 

23 0.425 1.000 

24 0.841 1.000 

25 0.934 1.000 

26 0.130 1.000 

27 0.211 1.000 

28 0.376 1.000 
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Table 4.3. p-values obtained from the two-way ANOVA of T matrix for the phase-
randomized CoPx 

Subject pcolumns prows 

1 0.980 1.000 

2 0.003 1.000 

3 0.397 1.000 

4 0.522 1.000 

5 0.293 1.000 

6 0.608 1.000 

7 0.321 1.000 

8 0.101 1.000 

9 0.985 1.000 

10 0.059 1.000 

11 0.593 1.000 

14 0.508 1.000 

15 0.050 1.000 

16 0.897 1.000 

17 0.375 1.000 

18 0.190 1.000 

19 0.446 1.000 

20 0.765 1.000 

21 0.068 1.000 

22 0.039 1.000 

24 0.839 1.000 

25 0.078 1.000 

26 0.998 1.000 

27 0.866 1.000 

28 0.810 1.000 
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4.2.3 Sign Test of the Results of Run Test and Ergodicity Analysis 

 

In this section, a sign test has been applied to the results obtained from the 

stationarity and ergodicity analyses. The surrogates of a subject were named as fully-

stationary if all of the 5 successive surrogates are stationary (indicated with ‘+’ in 

Tables 4.4 and 4.5, Column ‘Stationarity’). However, even if one of the five 

successive surrogates of a subject were to be found non-stationary, then the 

surrogates of that subject were called as not-fully-stationary (indicated with ‘-’ in 

Table 4.4 and 4.5, Column ‘Stationarity’). Furthermore, subjects who demonstrated 

ergodic trials were recorded with a ‘+’ sign, while the subjects who had non-ergodic 

trials were recorded with a ‘-’ sign in Table 4.4 and 4.5, Column ‘Ergodicity’. The 

last columns (Sign Test) of the Table 4.4 and 4.5 have been composed in a way that 

has been described in Chapter 3 Section 3.1.1.4. 

 

The results suggested that 27 out of 28 subjects’ shuffled CoPx signals have been 

marked with a ‘+’ sign, which means that the shuffled signals demonstrated “fully-

stationary and ergodic” characteristics for 27 subjects out of 28. On the other hand; 

Group 2, 3, and 4 differed significantly (p<0.05) from the Group 1 in terms of 

demonstrating fully-stationary shuffled CoPx signal characteristics, since the one-

tailed probability of the case “fully-stationary signal characteristics own by all of 

seven of the subjects in Group 2 or 3 or 4” was 0.008 by reference to the binomial 

distribution (Appendix F).  

 

Lastly, Group 3 differed significantly from other groups in terms of the fully-

stationary characteristics of phase-randomized CoPx, since the one-tailed probability 

of the case “fully-stationary signal characteristics of 7 subjects out of 7” was 0.008 by 

reference to the binomial distribution (Appendix F).  
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In Table 4.6, Sign test results of the experimental, shuffled, and phase-randomized 

CoPx signals were summarized. There were 11, 27, and 23 out of 28 subjects who 

demonstrated fully-stationary and ergodic trials for the experimental, shuffled, and 

phase-randomized CoPx signals respectively. No subject had fully-stationary but non-

ergodic trials for the shuffled CoPx signals; however, 13 and 2 subjects had fully-

stationary but non-ergodic trials for experimental and phase-randomized CoPx signals 

respectively. Finally, the number of subjects for the case having not-fully-stationary 

trials was as 13, 1, and 2 for the experimental, shuffled, and phase-randomized CoPx 

signals respectively. Being fully-stationary but non-ergodic behavior of the 

experimental CoPx signals was not observed for the shuffled CoPx signals yet it exists 

for the phase-randomized CoPx signals.    
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Table 4.4. Sign Test Table for shuffled CoPx 
Subjects Group Stationarity Ergodicity Sign 

1 

G
ro

u
p

 1
 

+ + + 
2 - - 0 
3 + + + 
4 + + + 
5 + + + 
6 + + + 
7 + + + 
8 

G
ro

u
p

 2
 

+ + + 
9 + + + 

10 + + + 
11 + + + 
12 + + + 
13 + + + 
14 + + + 
15 

G
ro

u
p

 3
 

+ + + 
16 + + + 
17 + + + 
18 + + + 
19 + + + 
20 + + + 
21 + + + 
22 

G
ro

u
p

 4
 

+ + + 
23 + + + 
24 + + + 
25 + + + 
26 + + + 
27 + + + 
28 + + + 
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Table 4.5. Sign Test Table for phase-randomized CoPx 
Subjects Group Stationarity Ergodicity Sign 
1 

G
ro

u
p

 1
 

+ + + 
2 + - - 
3 + + + 
4 + + + 
5 + + + 
6 + + + 
7 + + + 
8 

G
ro

u
p

 2
 

+ + + 
9 + + + 
10 + + + 
11 + + + 
12 - + 0 
13 - + 0 
14 + + + 
15 

G
ro

u
p

 3
 

+ + + 
16 + + + 
17 + + + 
18 + + + 
19 + + + 
20 + + + 
21 + + + 
22 

G
ro

u
p

 4
 

+ - - 
23 - + 0 
24 + + + 
25 + + + 
26 + + + 
27 + + + 
28 + + + 
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Table 4.6. Sign Test Results for experimental, shuffled, and phase-randomized CoPx 

Subjects Group Experimental Shuffled 
Phase- 

randomized 
1 

G
ro

u
p

 1
 

+ + + 
2 - 0 - 
3 - + + 
4 + + + 
5 0 + + 
6 + + + 
7 0 + + 
8 

G
ro

u
p

 2
 

+ + + 
9 - + + 
10 + + + 
11 - + + 
12 - + 0 
13 - + 0 
14 - + + 
15 

G
ro

u
p

 3
 

- + + 
16 + + + 
17 + + + 
18 + + + 
19 - + + 
20 - + + 
21 + + + 
22 

G
ro

u
p

 4
 

- + - 
23 0 + 0 
24 0 + + 
25 + + + 
26 - + + 
27 - + + 
28 + + + 
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CHAPTER 5 
 
 

DISCUSSION 
 

 

 

Complex nature of the human postural sway has been investigated by analyzing the 

CoP signals (CoP signals covers both CoPx and CoPy signals) of 28 subjects from a 

wide range of different ages. Firstly, the variance/standard deviation [74] of the 

signals was computed. Standard deviation is a measure of variability or amount of 

postural sway. Secondly, Run test [75], which is a non-parametric statistical test, was 

applied to examine whether the signals are non-stationary or stationary. Thirdly, 

Ensemble average [76] of the CoP signal was used to check whether the signals are 

ergodic or not. Fourthly, to explore the frequency content of the CoP signals, FFT 

[77] analysis was applied. Fifthly, PSD estimates via Welch's method [78] were 

computed to quantify the distribution of the power of the signals in frequency 

spectrum. Finally, nonlinear analysis methods such as reconstruction of the dynamics 

of the CoPx signals in state-space [37,38] and calculation of correlation dimension 

estimates (D2) [35] were applied.   

 

The first analysis was computing standard deviation values (Chapter 3 Section 

3.1.1.1), which is a measure of amount of postural sway, for detrended CoPx and 

CoPy signals. The maximum values for the observed measure was 16.0 mm (Subject 

1, F, 6 years old) and 23.3 mm (Subject 14, M, 39 years old) in sagittal (CoPx) and 

coronal (CoPy) planes respectively. This finding showed that even for the worst 

individual performance on this measure, Center-of-Pressure is bounded in area 

compatible with a matchbox. This finding has suggested that all subjects were very 

successful to assure their balance in quiet stance. For almost all of the subjects (26 

out of 28 subjects), the sway in the sagittal plane has been more than the sway in the 

coronal plane (exceptions are Subject 2 and 27) when the mean values of the five 
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successive trials are compared (Table 3.1(a) and Table 3.1(b) Column “Means” in 

Chapter 3 Section 3.1.1.1). The reason for this outcome may be the anatomical 

structure of the human body as it allows more movement in sagittal plane. Human 

upright biped stance in sagittal plane can be modeled with an inverted pendulum 

[9,11]; still in coronal (frontal) plane, it can be modeled with a four-bar linkage 

[100,101]. This kind of modeling approach may shed light to the finding about the 

relative stability of CoPx signal compared to CoPy signal, where further research is 

warranted. The subject who swayed most was the youngest subject (Subject 1, 6 

years old, Female) participated in the experiments. The best performance on this 

measure was performed by Subject 14 (39 years old, Male). He has done sport almost 

in his entire life so he may be better on controlling his muscles [10] for a good 

performance on this measure. The ANOVA tests suggested that subjects are different 

(p<0.000 for both CoPx and CoPy) for the measure of amount of postural sway (inter-

subject variability). Besides, subjects behaved similar in trials in the amount postural 

sway since standard deviation values of the CoP signals were not significantly 

different on the trials (p<0.195 for CoPx and 0.511 for CoPy). This has been 

suggested as a good indicator of repeatability of this measure (standard deviation 

values of CoP signals) over the trials. Lastly, groups were not found to be 

significantly different from each other when amount of postural sway was considered 

(p<0.414 for CoPx and 0.112 for CoPy). This result is not consistent with the 

previously reported studies about the amount of postural sway in different age groups 

(e.g. [71,72]). However, the subjects have been experimented in more difficult 

stances than quiet stance (e.g. stimulated stance or one-legged stance) at the 

aforementioned studies [71,72]. Provoking quiet stance may be more effective to 

detect changes in amount of postural sway with respect to ages when working at 

different age groups. In general, all groups included both good and bad performers in 

amount of postural sway at this particular study.            
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Only 4 CoPx and 14 CoPy trials were found to be non-stationary (Chapter 3 Section 

3.1.1.2). So in the light of this finding, it can be suggested that CoP can be considered 

as a stationary signal, in our case where it has been observed 180 seconds long in 

quiet stance. Also it was interesting to observe that if a CoP signal is non-stationary 

then it is non-stationary from left-side [84]. In other words, none of the signals were 

non-stationary from the right-side [84]. In the analysis of stationarity by the Run Test 

[75], the total run (Chapter 2 Section 2.2.1.1.2) span is divided into three intervals 

(left, middle, and right, see Appendix A and B; and Equations (2.8), (2.9), (2.10) in 

Chapter 2 Section 2.2.1.1.2; and also Chapter 4). If the number of total run for the 

particular case is in the middle interval (Equation (2.8) in Chapter 2 Section 

2.2.1.1.2), then the observed signal is stationary [75]. However, the left and right 

intervals indicate a non-stationary signal [75]. So, if a signal is non-stationary as its 

number of total run is in the left interval (Equation (2.9) in Chapter 2 Section 

2.2.1.1.2), then it is called as “non-stationary from left-side” for the first time by 

Celik and Gürses (2007) [84]. Similarly, if a signal is non-stationary as its number of 

total run is in the right interval (Equation (2.10) in Chapter 2 Section 2.2.1.1.2), then 

it is called as “non-stationary from right-side” [84]. Dynamical correspondences of 

left and right side non-stationarity could be suggested such that non-stationary from 

left-side indicates consistent linear trend in time; however, non-stationary from right 

points to consistent oscillatory trend in time, both of which are sensitive to the data 

window size. Contrary to stationarity of the CoP signal observed in this study, some 

of the previous work on the CoP signal reported non-stationary characteristics of the 

CoP signal (e.g., [49,50,51]). Carroll et al. [49] used 60 seconds, Schumann et al. [50] 

100 seconds and Loughlin et al. [51] used 90 seconds trials. Duarte et al. (2000 and 

2001) [28,29] suggested that some previous researchers tested only small portions of 

a longer process. In addition, for a stationary analysis, it is a critical issue to decide on 

the data window size, since underestimated window sizes may give spurious results. 

In this study, it has been taken as 500 data samples (10 seconds), since a data window 

width of 500 data samples, which has been sampled with a frequency of 50 Hz would 
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then cover at least one full cycle of CoP dynamics reported (the CoP dynamics 

consists of at least two natural frequencies in the frequency band of 0.1-1 Hz [4,21]). 

The robustness of the selection on 500 data samples was also examined and 

robustness was observed (Chapter 3 Section 3.1.1.4). So, the authors (e.g., 

[13,14,15]) who reported that CoP is a non-stationary signal have probably observed 

a “small” (60-second for Carroll et al. [49], 100-second for Schumann et al. [50]  and 

90 seconds trials for Loughlin et al. [51]) fraction of a “longer process” (1800-second 

for Duarte et al. [28,29], and 180-second for this particular study). It resembles to say 

that the mean value of sinus signal is a positive rational number rather than zero, by 

observing half of it. A study on “how long the CoP signal should be observed?”, 

Doyle et al. (2007) [96] suggested that CoP measures reached acceptable levels of 

reliability with at least five 60-second trials. This criterion (at least five 60-second 

trials) supports the choice of time-length (180 seconds) and the number of the trials (5 

trials for each subject) for this particular study. However, their measures for this 

outcome [96] were standard deviation, velocity, and 95% confidence ellipse area; but 

a stationarity analysis.  

 

Another issue was the ergodicity of the CoP signals (Chapter 3 Section 3.1.1.3). 

Nearly half of the subjects had ergodic signals (11 for CoPx and 12 for CoPy out of 

28). However, if the five successive 180-sec long trials are regarded, CoPy signal is 

more likely to be ergodic compared to the CoPx signal. As the one-tailed probability 

of the case “fully-stationary and ergodic” has been 0.975 (see Chapter 3 Section 

3.1.1.4) for the CoPy signal (it was 0.419 for CoPx). Stationarity indicate trend-free 

behavior of a subject in a trial however ergodicity indicates behavioral consistency in 

the whole data collection period. Ergodicity increases the “usability” of measures of a 

signal as it does not continuously change on the successive trials. In other words, it 

makes more sense defining measures of a signal that does not change character over 

the trials to quantify patterns, behaviors etc. So, if an individual signature as a 
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dynamical pattern [103] exists for each subject in terms of human postural sway, then 

this pattern should be observed in all trials of a subject (be ergodic).   

 

The results of the Modeling Chapter (Chapter 4) suggested that temporal order of 

CoPx is important. Since, when the temporal order of the CoPx signal was destroyed 

by shuffling the temporal order of the signal (Surrogate I), the previously revealed 

behavior of the CoPx signal on stationarity and ergodicity (Chapter 3 Section 3.1.1.2-

3.1.1.5) was diminished (see also Chapter 4 Section 4.2). However; that was not the 

case when the phase information of the CoPx signal was randomized (Surrogate II); 

ie, the behavior of experimentally obtained CoPx signal (Chapter 3 Section 3.1.1.2-

3.1.1.5) and phase-randomized CoPx signal (Chapter 4 Section 4.2) was similar on 

stationarity and ergodicity. This outcome might indicate that the phase relation is not 

the critical control variable between the mod shapes of the CoPx signal [21] on biped 

upright stance.   

 

In the frequency domain (Chapter 2 Section 3.1.2), all CoP signals showed dynamics 

with larger amplitudes at lower frequencies. This was a common pattern of the CoP 

signal. Another characteristic of the FFT pattern was that almost the whole power of 

the signal has settled at 0-1 Hz frequency band (the grand mean of all subjects all 

trials was 0.98). This broad and side-banded FFT pattern is a strong indicator of 

chaotic behavior as it points out bifurcations in the dynamics of the CoP signals 

[102]. Besides, the significant low frequency dynamics was appended with long-

range correlations of the CoP signal by Duarte et al. (2000 and 2001) [28,29]. They 

realized the similarity between the long-range correlations revealed in the CoP signal 

and a dynamics like 1/f noise. Most probably, it is the dynamics at the low 

frequencies, which cause the long-range correlations in the control process of human 

upright posture. Collins et al. [13] proposed both open (<1 second) and closed (>1 

second) loop dynamics co-existing simultaneously for the control process of human 

upright posture, and the long-range correlations is most likely related with the closed-
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loop control scheme. Also, it could be also suggested that open loop dynamics cause 

low frequency drift [13]. Additionally; when the rambling-trembling [17,18] 

dynamics was considered, low frequency (larger in amplitude) dynamics may be 

related with rambling and high frequency (smaller in amplitude) dynamics can be 

associated with trembling. The ANOVA tests performed on the power of the signals 

settled on 0-0.1 Hz and 0-1 Hz bands showed that people behaved different on these 

PSD measures. However, PSD of the signals were not significantly different on 

different trials, which states that the subjects used the same frequency bands in 

successive experiments. For the PSD R1 of CoPx, PSD R2 of CoPx, and PSD R1 of 

CoPy measures, groups were not significantly different; however, PSD R2 of CoPy is 

the measure that differed among the groups significantly in this particular study 

(p<0.044). However; as the p-value is greater 0.010, it does not make much sense to 

claim that PSD R2 of CoPy is a key measure to differ the groups.      

 

Another issue on posture studies is fatigue which might emerge in the experiments. 

Fatigue is defined for the muscles as the reduction in the force generating capacity of 

the muscles [109]. Motor control performance and the proprioceptive ability 

decreases with increasing fatigue in the muscles [110,111]. It was also shown that 

fatigue causes increased CoP displacements [112]. In this study; third, fourth, and 

twenty first subjects stated tiredness, a bit of tiredness and no tiredness during the 

experiments respectively. However, no significant changes in the calculated measures 

were observed over the trials of these subjects. Besides, the subjects were allowed 3 

minutes to rest between the successive trials during the data collection. Therefore, it 

might be proposed that fatigue didn’t appear on the conducted experiments for this 

particular study. However, measurements with proper instruments should be made in 

order to evaluate fatigue if it is a concern of the study. 

 

Is postural sway good or bad? If not leading fall, there is no disadvantage for 

swaying. The basic function of postural control system is preventing fall by 
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maintaining static equilibrium. In addition, trying to maintain static equilibrium 

without swaying may be more energy-inefficient [113] compared to quasi equilibrium 

with swaying, since the former task is much more difficult to perform. Besides, action 

(swaying) supports perception [8]. In other words, postural sway may have a 

functional role as it provides adaptation by information transmission [8,32]. For 

example, when a person walks in a dark room, he/she usually “sway”s his/her arm to 

learn environment.  

 

The main hypothesis of the study was that “CoP signal is stationary chaotic in nature 

and its measures change with aging”. To explore the possible chaotic structure of the 

human postural sway correlation dimension estimates (D2) [35] were calculated for 

the stationary CoPx signals (Chapter 3 Section 3.2.2). In order to compute D2 

estimates CoPx signals were initially reconstructed in m-dimensional state-space by 

using proper time delays [37,38]. Generally, the time delay values (τ) (Chapter 3 

Section 3.2.1) computed have decreased with increasing embedding dimension (m) 

and also tended to get saturated after a critical embedding dimension, m-value. 

Conversely, the reconstruction window values (τw) [88] (Chapter 3 Section 3.2.1) 

continuously increased with increasing m, which makes suspectable to define a 

reconstruction window (τw) for the CoPx signal. So, the suggested phenomenon by 

Martinerie et al. (1992) [89] and Rosenstein et al. (1994) [88]: the correlation integral 

is sensitive to τw but not to τ and m individually seemed not to be valid for the 

dynamics re-constructed from the CoPx signals. Low frequency drift dynamics [13] 

might have caused some problems to apply τw to the dynamics re-constructed from 

the CoPx signal.  

 

The correlation dimension (D2) estimate computed through a signal is related with the 

dimension (degrees-of-freedom) of the inherent dynamics of the system from which a 

signal has been collected. The correlation dimension of limit cycle is 1; D2 of a torus 

is 2 [33]. A limit cycle and a torus correspond to uniformly distributed points that 
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constitute a line and a plane in the state space respectively. When a sphere of radius r 

(Chapter 2 Section 2.2.6.3) is constructed and expanded gradually to look for D2, the 

points in the sphere will be proportional to r
1 and r

2 for a limit cycle and a torus 

respectively [87]. So, the D2 of limit cycle is 1 and D2 of a torus is 2. The results of 

correlation dimension analysis suggested that 112 trials out of 140 converged and the 

remaining 28 not. The correlation dimension estimate value that was computed for 

112 converged trials was fractional dimensions rather than being an integer. 

Convergence indicated determinism since a signal composed of noise does not 

converge to a value for D2 with increasing m [87]. This was showed by the Surrogate-

I analysis of the CoPx signals, since shuffled CoPx signals (modeled as uncorrelated 

Gaussian noise) did not converge to a value with increasing m [13]. Also, fractional 

correlation dimension values pointed a strange attractor rather than a limit cycle or 

torus. So, both the convergence of D2 estimates and the fractal structure revealed 

form the 112 CoPx signals suggested a chaotic behavior for the postural sway. 

Followed by, it could be claimed that at the remaining 28 trials, i.e., the human 

postural sway observed at 28 not-converged CoPx signals, stochastic characteristics 

were predominating the deterministic characteristics of the signal. Then comes the 

question: What caused this main difference on the dynamical structure of the postural 

sway (112 deterministic chaos versus 28 stochastic (e.g., random walk) sway) 

obtained from the experimentally recorded 180-sec long CoP data collected at 

identical laboratory conditions from 28 different subjects? Nevertheless, switching in 

between deterministic chaos and stochastic sway has also been diagnosed during the 

five successive trials of the same subject. Perception of the subjects who have been 

instructed as “stand still as quiet as possible with an upright posture” might be 

different over subjects [8]. Also the perception of “standing still” might have changed 

continuously during and over the trials since some of the subjects had both converged 

and not-converged trials (refer to the Table 3.17 in Chapter 3). In the experiments, 

subjects were not instructed to look at a target but have been instructed as to look 

forward. Some of the subjects stated orally (in the conservation part after the 
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experiments) that they selected an imaginary point on the wall, which is in front of 

them and might have fixed their gaze to that point look at that point (may result in 

less eye movements), while the other subjects have not orally expressed such a 

behavior; i.e., their eyes might have “swayed” in stance (may result in considerable 

eye movements). The latter case might lead changes in self perception of their motion 

in space for those subjects (e.g., [8,98]). This may be a reason for both having 

deterministic and stochastic results from the same quiet stance experiment for 

different subjects, and even for different trials of a subject. However, as the eye 

movements was not measured while the experiments, it is not possible to claim 

proposed relationship between eye movements and dynamics of human postural sway 

quantitatively (i.e., it need to be further studied with suitable instruments).    

 

Human is not a machine out of a mass-production with constant system parameters or 

a dynamical system that can be described definitely (in the sense of Newtonian 

mechanics) with a set of differential equations. It is a living organism that changes at 

every time it is sampled and also in time it is evolving. Different people have 

different bodies and minds. However, in spite of these inherent differences, common 

patterns are also used by the subjects, which suit most of the people’s behavior 

observed in many of the scientific research performed. For example, in this particular 

study, the pattern of FFTs were quiet similar for different subjects. This indicates that 

most of the people use a common frequency band (0-1 Hz) for their postural body 

dynamics. Another common pattern was the behavior of the correlation integral 

curves i.e., the curves lnr vs. C(r) (e.g., Figure 3.19 in Chapter 3 Section 3.2.2). The 

pattern for all trials could be described with a sigmoid rather than a knee [97]. A knee 

pattern offers two significant linear scaling regions, so two non-interacting 

subsystems with different number of degrees-of freedom [97] for the observed 

dynamics. However that is not the case for the CoPx signal, the sigmoid pattern offers 

one significant linear scaling region, so one unified system for the dynamics of 

human postural system. Nevertheless, D2 values obtained by correlation integral 
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curves were significantly different on subjects. Moreover, we found that groups were 

also significantly different for the measure D2 values. 

 

In this part, the method for computing the correlation dimension in this particular 

study are discussed against the other previous studies. Previously Collins et al. [13] 

have shown that computing D2 estimates gives erroneous results since there is no 

significant linear scaling region. They used 90-second long experimental records and 

varying embedding dimension from m=2 to m=20.  However, Yamada [32] computed 

D2 estimates from reconstructed CoPx dynamics in 3-dimensional state space for 5 

subjects and found a D2 estimate between 2.1 and 2.5 using 200-second long trials. 

Recently, Pascolo et al. [46] reported correlation dimension estimates between 1.312 

and 1.514 computed from 60-sec long CoPx signals embedded in 3-dimensional state 

space for 4 healthy subjects. However, Pascolo et al. [46] and Yamada [32] have not 

shown that their estimates of correlation dimension were robust against variation in 

embedding dimension, m [42]. In our research, we were also able to compute 

correlation dimension estimates between 2.88 and 5.28 and observed that D2 values 

converged when the embedding dimension, m is larger than 8 up to 12. However, 

Yamada [32] and Pascolo et al. [46] used embedding dimension, m up to 3 for 

reconstructing the CoPx dynamics, where the correlation dimension estimate curves 

(e.g., Figure 3.29-3.56 in Chapter 3 Section 3.2.2) have not saturated yet. This might 

lead them to underestimate the correlation dimension values of the reconstructed 

CoPx dynamics. Contrary to Collins et al. [13], we have shown that there existed a 

significant linear scaling region to quantify an estimate for the correlation dimension 

and further this estimate was robust to varying embedding dimension, m. 

       

Finally, the physiological reason behind the quantified topological dimension of the 

postural dynamics is discussed. Postural dynamics during quiet stance has been 

shown to consist of two simultaneously co-existing excitable modes each with a 

separate eigen-frequency [21]. Two simultaneously co-existing modes point to a 
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postural dynamics with an order of four. Nevertheless, the nonlinear features of the 

human postural sway during quiet stance have been extensively reported in the 

literature (e.g. [5,19,51,91,104,105]). The integer dimension of the human postural 

sway is expected to become a non-integer value due to the nonlinear features of the 

oscillations. This may be one of the reasons for the observed fractal correlation 

dimension values up to 4. In contrast, the correlation dimension estimate values 

higher than 4 may be pointing to higher order dynamics which are due to the sensory 

feedbacks in the closed-loop postural dynamics or other modal frequencies involved 

in human quiet stance posture [23,99].  

 

In conclusion, when the main hypothesis of the study: “CoPx signal is stationary and 

chaotic in nature and its measures change due to aging” is considered; it has been 

suggested that human postural sway is a stationary process when 180-second long 

biped quiet stance data is considered. Additionally, it demonstrates variable 

dynamical structure (112 deterministic chaos versus 28 stochastic postural sway (e.g., 

random walk)) for different subjects and different trials of the same subjects. Finally, 

we observed significant change for the D2 values computed from the CoPx signal in 

this particular study due to aging. We conclude that, it is possible to suggest human 

postural sway reflecting a mixture of deterministic (chaotic) and stochastic 

components [5], such that determinism is more dominant to stochasticity for some 

individuals while stochasticity predominating for some of the others.      

  

Further Studies: To solidify the chaotic structure of the converged CoPx signal, 

Lyapunov exponents [36], which quantifies the initial condition sensitivity of the 

trajectories, should be computed. Also to find the physical/physiological 

correspondence of the degrees-of-freedom pointed by the correlation dimension 

estimates, kinematic and EMG data during quiet stance should be collected and the 

postural control system should be identified by using a dynamical biomechanical 

model.       
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APPENDIX A 
 
 

RUN TEST DEMONSTRATION 
 

 

 

In this Appendix, a demonstration of Run Test [75] (described in Chapter 2 Section 

2.2.1.1.2) is presented. . 

 

Step 1.  180-second (9000 data samples) CoPx time series of the Subject 11 (first trial, 

F, 28) was presented in Figure 1. 
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Figure 1. The CoPx time series used in this Appendix. 
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Step 2. CoPx signal was divided into 18 equal segments (Figure 2) each containing 10 

second–long (500 data samples) data. The mean square of each segment (Ψ2) was 

computed (Equation 1). Thus a series of 18 elements each being an estimate of the 

segmental mean square was computed (Equation (2)).   

 

2 ,  1 18
r

rΨ = …                      (1) 

 

2 21

500

  i ( 1) 500 1,  500,  1 18

w

r i

i

X

where r w r r

Ψ =

= − ⋅ + = ⋅ = …

∑

                   (2)    
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Figure 2. The segmented (18 segments) CoPx time series 

 

 



145 
 

Step 3. The median of the series (Equation (1)) was calculated (Equation (3)). Then, 

for applying the non-parametric statistical Run Test, the elements of the series 

(Equation (1)), which are larger than the median of the series (Equation (3)) were 

marked with the symbol ‘+’; while the elements of the series, which are less than the 

median of the series were marked with the symbol ‘-’ (Figure 3).  

 

2( ,  1 18)
r

median rΨ = …                     (3) 
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Figure 3. The marked (with the symbol ‘+’ or ‘-’) CoPx time series 
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Step 4. Sequences of ‘+’s and ‘-’s were grouped separately and each group was 

counted as a run. By this way, the value of the total run was found. In this particular 

case the value of total run was 9 (Figure 4). So; by the Equation (2.8) (in Chapter 2 

Section 2.2.1.1.2, for the explanation of the Equation refer to same Section as well), 

this particular CoPx signal is stationary.  
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Figure 4. The grouped (by sequences of ‘+’s and ‘-’s) CoPx time series 
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APPENDIX B 
 
 

THE RUN DISTRIBUTION TABLE 
 
 
 
The Run Distribution Table [75] is given in this Appendix. 

 

 

Source: Bendat and Piersol (1985), pp.532 [75] 
 
 

 

 

 



148 
 

APPENDIX C 
 
 

ANOVA TEST 
 
 
 
Analysis of variance (ANOVA) test was used in Chapter 3 Section 3.1. Here is 

presented the formal description of the test [106].  

 

To compare several means, the analysis of variance (ANOVA) is a commonly used 

tool. The method can be described with a simple case – single factor experiment with 

replicates (repeated measures). The statistical linear model for a single effect 

(treatment) experiment is described in the Equation (1). 

 

1, 2,

1,2,ij i ij

i a
Y

j n
µ τ ε

= …
= + + 

= …             (1) 

 

Yij is a random variable denoting the (ij)th observation, µ is the overall mean, τi is the 

i
th treatment effect, and εij is the random error component. Also a and n indicate the 

number of levels of effect and replicates respectively.  

 

The terms of µ and τi could be combined to define the mean of the i
th treatment 

(Equation (2)).  

 

i i
µ µ τ= +            (2) 

 

The treatment effect, τi is defined as deviation from the overall mean µ. So, it is 

apparent that sum of deviations from the overall mean µ is zero (Equation (3)).  
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1

0
a

i

i

τ
=

=∑
            (3) 

 

The main point of the analysis is testing the equality of the treatment means µ1, 

µ2,…,µa. To search it, the null hypothesis can be stated by using Equations (2) and (3) 

such that; the treatment effect (τi) is equal to zero (Equation (4)). 

 

0 1 2 0
a

H τ τ τ= = = = =…           (4) 

 

Data composed of N (a·n) many observations should be arranged as in the Table 1 for 

the ANOVA test. 

 

Table 1. The data layout for the ANOVA test 

Treatment Observations Totals Averages 

1 y11 y12 . . . y1n y1. 1.y  

2 y21 y22 . . . y2n y2. 2.y  

. . . . . . . . . 

. . . . . . . . . 

. . . . . . . . . 

a ya1 ya1 . . . yan yan .a
y  

       y.. ..y  

 

 

3 sum of squares (SS) are computed for the test (Equation 5).  

 



150 
 

2
2 ..

1 1

2 2
. ..

1

a n

total ij

i j

a
i

treatments

i

error total treatments

y
SS y

N

y y
SS

n N

SS SS SS

= =

=

= −

= −

= −

∑∑

∑

          (5) 

 

  

Then the f0 value is: 

 

( )0

( 1)

1
treatments

error

SS a
f

SS a n

−
=

−             (6) 

  

The null hypothesis is accepted if each observation consists of the overall mean µ and 

a realization of the random error εij. The hypothesis is tested by the f0 (Equation (6)) 

value (the measure of variability of the treatment) which is computed in the analysis 

and the F value comes from the F-distribution (a statistical distribution used for 

checking equality of variances) with proper level of significance (α) and degree of 

freedoms (related with the number of levels of treatment). Null hypothesis is rejected 

if the condition defined in Equation (7) satisfied. 

 

0f F>            (7) 

 

Also, p-value of the f0 which is defined in Equation (6) must be less than a level of 

significance for rejection.  

 

1, ( 1) 0( )
a a n

p P F f α− −= > <
          (8) 
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The rejection of null hypothesis corresponds to that treatment means µ1, µ2,…,µa are 

significantly different.  

 

The methodology can be extended the case: two main effects. The statistical linear 

model for two main effect (treatments) experiment is described in the Equation (9). 

 

1,2,

1, 2,ij i j ij

i a
Y

j b
µ τ β ε

= …
= + + + 

= …             (9) 

Yij is a random variable denoting the (ij)th observation, µ is the overall mean,  τi is the 

i
th first treatment effect, βj is the jth second treatment effect, and εij is the random error 

component. Also a and b indicate the number of levels of first and second treatments 

respectively. There are two null hypotheses (Equations (10) and (11)) and should be 

checked independently described above (Equation (7) and (8)).   

 

0 1 2 0
a

H τ τ τ= = = = =…                   (10) 

0 1 2 0
b

H β β β= = = = =…                   (11) 

 

The level of significance (α) was used as 0.05 in all ANOVA analysis in this study. 
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APPENDIX D 
 
 

TRAPEZOID RULE 
 
 
 
Trapezoid rule was used to compute the integrals in Equation (2.16) and (2.17) in 

Chapter 2 Section 2.2.1.2.2 by numerically. Here is presented the formal description 

of the rule [107]. 

 

Let f(x) (Equation (1)) be the function considered. The definite integral in Equation 

(2) is to be approximated (grey area in Figure 1) by the trapezoid rule.  

 

( )y f x=             (1) 

 

( )
b

a
I f x dx= ∫               (2) 

 

 

Figure 1. Graphical presentation of the trapezoidal rule  
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Then the estimate of the integral in Equation (2) is: 

 

1 ( ) ( )

2 ( )

f a f b
I

b a

+
≈

−
                    (3) 

 

In order to improve the estimate of the integral in Equation (2), the interval between a 

to b (Figure 1) should be divided into n pieces. Then the width of the each piece, h is: 

 

b a
h

n

−
=             (4) 

 

Finally, the improved estimate for the integral defined in Equation (2) is:  

 

( )( ) 2 ( ) 2 ( 2 ) 2 ( ( 1) ) ( )
2

h
I f a f a h f a h f a n h f b≈ + + + + + + + − +…     (5) 
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APPENDIX E 
 
 

DERIVATION OF THE SPECTRAL ESTIMATE 
 
 
 
In order to evaluate Power Spectral Density estimates, the Welch’s method was used 

in Chapter 2 Section 2.2.1.2.2. Here, the derivation of the spectral estimate ( �( )P f , in 

Equation 2.16 and 2.17 in Chapter 2 Section 2.2.1.2.2) is given [78].  

 

Step 1. Let X(j), j=0,…,N-1 be a time series. The mean estimate of the series was 

assumed as zero and the spectral density was P(f), |f|≤½. The overlapping length was 

L with the starting point D units apart for successive segments (K many segments).  

 

1

2

( ) ( ) 0, , 1

( ) ( ) 0, , 1

( ) ( ( 1) ) 0, , 1 ( 1)K

X j X j j L

X j X j D j L

X j X j K D j L and K D L N

= = −

= + = −

= + − = − − + =

…

…

…

     (1)

    

Step 2. For each segment, a modified periodogram was calculated (e.g., with a data 

window W(j), j=0,…,N-1; the sequences was X1(j)W(j),…,XK(j)W(j)). Then the finite 

Fourier transforms of the sequences was taken (Equation (2)). 

 

1
2 /

0

1
( ) ( ) ( ) 1

L
kijn L

k k

j

A n X j W j e where i
L

−
−

=

= = −∑         (2) 

 

Step 3. K modified periodograms were obtained (Equation (3)). 
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n
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j

L
I f A n k K

U

n
where f n L

L

and U W j
L

−

=

= =

= =

= ∑

…

…                   (3)

        

Step 4. Finally, the spectral estimate was the average of these periodograms. 

 

�

1

1
( ) ( )

K

n k n

k

P f I f
K =

= ∑             (4) 
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APPENDIX F 
 
 

SIGN TEST 
 
 
 
Sign test was used in Chapter 3 Section 3.1.1.4. Here is presented the formal 

description of the test [92].  

 
The sign test is used to determine the difference between two conditions when only 

available information is the direction on differences. The null hypothesis of the test is 

given in Equation (1). 

 

[ ] [ ] 1 2
i j

P X X P Xi Xj> = < =         (1) 

 

Xi (in Equation (1)) is the judgment (or score) under one condition and Yi (in Equation 

(1)) is the judgment (or score) under the other condition. The direction of the 

differences was coded by the sign ‘+’ or ‘-’ for every Xi and Yi. In order to be 

accepted the null hypothesis, the number of pairs Xi>Yi should be equal to the number 

of pairs Xi<Yi. The probability of a condition on a particular number of ‘+’s and/or ‘-

’s can be determined with the binomial distribution with p=q=½ (given in Table 1, 

next page).   
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Table 1. Binomial distribution for p=q=½ 
 

 

Source: Siegel and Castellan (1988), pp.324-325 [92]  
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APPENDIX G 
 
 

CONFIDENCE INTERVAL ESTIMATION BY BOOTSTRAPPING 
TECHNIQUE 

 
 
 
Confidence interval estimation by bootstrapping technique was used in the study. 

Here is presented the formal description of the analysis [108].  

 

Let X (Equation 1) be a random variable with n number of elements.  

 

{ }1, , nX X X= …             (1) 

 

The confidence interval can be estimated by the principle of bootstrap by following 

steps: 

 

1) Resample N number of bootstrap resample, X* by replacement.  

 

2) Calculate the mean, µ* of each bootstrap resample, X*.  

 

3) Sort the means, µ*s in ascending order. 

 

4) The 100(1-α)% bootstrap confidence interval is (µ*q1, µ*q2) where q1=Nα/2 and 

q2=N-q1+1. For example; for 95% confidence interval, q1=25 and q2=976; so the 

confidence interval is (µ*25, µ*976). 
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APPENDIX H 
 
 

KRUSKAL-WALLIS TEST 
 
 
 
Kruskal-Wallis test was used in Chapter 3 Section 3.2.2. Here is presented the formal 

description of the test [92].  

 

Kruskal-Wallis is a one-way analysis of variance by using ranks but not the scores (in 

a parametric Analysis of Variance (ANOVA)) of k many independent groups from 

different populations. The test is used for searching significance difference between 

groups. 

 

Data should be arranged as Table 1 for the analysis. 

 

Table 1. The data layout for the Kruskal-Wallis test 

Group 

1 2 3 … k 

X11 X21 …  Xk1 

X21 X22 …  Xk1 

…
 

    

Xn11 …   …
 

  …  Xnk1 

 Xn21    

 

Xij (Table 1) is the score for the ith observation in the jth group and the nj is the 

number of the observations in the jth group. Each value in Table 1 should be replaced 

by ranks in this manner: smallest score is replaced by rank 1, the next smallest score 
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is replaced by rank 2, … ,and largest score is replaced by rank N (total number of 

observations in the analysis).  

 

The null hypothesis of the test is: 0 1 2:
k

H θ θ θ= = =…  where θj is the median of the 

jth group. The null hypothesis is evaluated by computing Kruskal-Wallis statistics 

(Equation 1). 

 

2

1

12
3( 1)

( 1)

k

jj

j

KW n R N
N N =

 
= − + 

+ 
∑         (1) 

where  

k  = number of groups  

j
n  = number of observation in the jth group 

N  = total number of observation in the analysis 

j
R  = sum of the ranks in the jth group 

jR  = average of the ranks in the jth group 

R  = average of the ranks in the analysis (the grand mean) 

 

If the number of the groups is equal or less than 3, then Table 2; if the number of the 

groups is larger than 3, then Table 3 is used to obtain critical value of KW to compare 

with the Kruskal-Wallis statistics computed by the Equation (1). If the critical value 

of KW (obtained from Table 2 or 3 for predefined njs and level of significance (α)) is 

equal or larger than the Kruskal-Wallis statistics computed by the Equation (1), then 

the null hypothesis cannot be rejected; if not the null hypothesis should be rejected. 
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Table 2. The critical values for KW 

 

Source: Siegel and Castellan (1988), pp.356 [92] 
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Table 3. The critical values for KW by chi-square distribution 

 

 

Source: Siegel and Castellan (1988), pp.323 [92] 
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APPENDIX I 
 
 

DERIVATION OF SURROGATE DATA WITH PHASE RANDOMIZATION 
 
 
 
The author’s version for the proof of the derivation of surrogate data with phase 

randomization is presented in this Appendix.  

 

A periodic function ( )x t  with period T could be represented by trigonometric series: 

 

0
1

2 2
( ) 2 cos sin

k k

k

kt kt
x t a a b

T T

π π∞

=

 
= + ⋅ + 

 
∑          (1) 

 

where 0a  and 
k

a  and 
k

b  are constant Fourier coefficients given by: 

 

0

0

1
( )

T

a x t dt
T

= ∫     

0

1 2
( )cos

T

k

kt
a x t dt

T T

π
= ∫            (2) 

0

1 2
( )sin

T

k

kt
b x t dt

T T

π
= ∫  

 

If the mean value of ( )x t  is zero then 0a  will be zero. Equation (2) can be combined 

into a single equation by defining:  

 

k k k
X a ib= −              (3) 

 

And putting: 
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(2 ) 2 2
cos sini kt T kt kt

e i
T T

π π π− = −    (4) 

 

to give: 

 

(2 )

0

1
( )

T

i kt T

kX x t e dt
T

π−= ∫                        (5) 

 

If ( )x t is not known and only equally spaced samples are available as in an 

experimental time series which was represented by the discrete 

series{ } , 0,1,2,..., ( 1)rx r N= − , where t r= ∆  and T N∆ = . 

 

Then the integral in the equation (5) may be replaced approximately by the 

summation: 

 

1
(2 )( )

0

1 N
i k T r

k r

r

X x e
T

π
−

− ∆

=

= ∆∑             (6) 

 

Substituting T N= ∆  into the equation (6) gives: 

 

1
(2 )

0

1 N
i kr N

k r

r

X x e
N

π
−

−

=

= ∑                        (7) 

 

To obtain phase randomized surrogate data described by Theiler et al (1992) which 

was used in Modeling Chapter, each 
k

X  multiplied by ki
e

φ  where 
k

φ  is independently 

chosen from the interval [ ]0,2π . 
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1
(2 )

,
0

1
k

N
ii kr N

k r r

r

X x e e
N

φπ
−

−

=

= ∑             (8) 

 

By applying substitutions T N= ∆ , t r= ∆  and T N∆ = inversely equation (8) can be 

written in the integral form as: 

 

(2 )
,

0

1
( ) k

T

i kt T

k rX x t e dt
T

π φ− −= ∫             (9) 

 

Also equation (9) can be written in open form as follows: 

 

,

0

,

0

1 2
( )cos

1 2
( )sin

T

k r k

T

k r k

kt
a x t dt

T T

kt
b x t dt

T T

π
φ

π
φ

 
= − 

 

 
= − 

 

∫

∫

                    (10) 

 

Using trigonometric identities: 

  

cos( ) cos cos sin sin

sin( ) sin cos sin cos

α β α β α β

α β α β β α

− = ⋅ + ⋅

− = ⋅ − ⋅
                   (11) 

 

Equation (10) could be expanded in a form 

 

,

0

,

0

1 2 2
( ) cos cos sin sin

1 2 2
( ) sin cos cos sin

T

k r k k

T

k r k k

kt kt
a x t dt

T T T

kt kt
b x t dt

T T T

π π
φ φ

π π
φ φ

 
= ⋅ + ⋅  

 
= ⋅ − ⋅  

∫

∫

                 (12) 

 

Equation (12) could be further manipulated as 
k

φ is independent of “t”. 
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,

0 0

,

0 0

1 2 1 2
cos ( )cos sin ( )sin

1 2 1 2
cos ( )sin sin ( ) cos

T T

k r k k

T T

k r k k

kt kt
a x t dt x t dt

T T T T

kt kt
b x t dt x t dt

T T T T

π π
φ φ

π π
φ φ

= ⋅ + ⋅

= ⋅ − ⋅

∫ ∫

∫ ∫

                (13) 

Using equation (2), one can write equation (13) as: 

 

,

,

cos sin

cos sin

k r k k k k

k r k k k k

a a b

b b a

φ φ

φ φ

= ⋅ + ⋅

= ⋅ − ⋅
                    (14) 

 

Then, periodic function ( )x t  with period T could be written with new coefficients: 

 

( )

( )
0

1

2
cos sin cos

( ) 2
2

cos sin sin

k k k k

k

k k k k

kt
a b

T
x t a

kt
b a

T

π
φ φ

π
φ φ

∞

=

 
⋅ + ⋅ ⋅ + 

= + ⋅  
 ⋅ − ⋅ ⋅ 
 

∑               (15) 

 

Equation (15) expanded and manipulated as: 

 

0
1

2 2
cos cos sin sin

( ) 2
2 2

sin cos cos sin

k k k

k

k k k

kt kt
a

T T
x t a

kt kt
b

T T

π π
φ φ

π π
φ φ

∞

=

  
⋅ − ⋅ +  

  = + ⋅
  

⋅ +  
  

∑               (16) 

 

Using trigonometric identities  

 

cos cos sin sin cos( )

sin cos cos sin sin( )

α β α β α β

α β α β α β

⋅ − ⋅ = +

⋅ + ⋅ = +
                   (17) 

 

Equation (16) take its final form: 
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0
1

2 2
( ) 2 cos sin

k k k k

k

kt kt
x t a a b

T T

π π
φ φ

∞

=

    
= + ⋅ + + +    

    
∑                  (18) 

 

It concludes derivation of surrogate data with phase randomization. 
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APPENDIX J 
 
 

THE KNOWLEDGE ABOUT THE SUBJECTS 
 
 
 
Subject 1: 6 years old. Female. Experimented at 27.07.2007. No evidence of a motor 

disorder. She was attending the sport and art summer school for children organized 

by METU in 2007. After the experiments, she said “I got tired. I didn’t feel 

comfortable. I held my attention on not stepping and not making head movement.”     

 

Subject 2: 7 years old. Male. Experimented at 09.08.2007. No evidence of a motor 

disorder. He was attending the sport and art summer school for children organized by 

METU in 2007. He has just finished first grade of primary school. After the 

experiments, he said “I didn’t get tired. I felt itching due to sweating.” 

 

Subject 3: 9 years old. Male. Experimented at 27.07.2007. No evidence of a motor 

disorder. He was attending the sport and art summer school for children organized by 

METU in 2007. After the experiments, he said “I didn’t get tired. I paid my attention 

on the pattern at the wall.” 

 

Subject 4: 10 years old. Male. Experimented at 06.08.2007. No evidence of a motor 

disorder. He was attending the tennis club in METU for 3 years. After the 

experiments, he said “I got a bit tired. I paid attention to my arm. I got bored.”  

 

Subject 5: 11 years old. Female. Experimented at 27.07.2007. No evidence of a 

motor disorder. She was attending the sport and art summer school for children 

organized by METU in 2007. After the experiments, she said “I didn’t get tired. I 

didn’t think so much during the experiments. I looked at a point on the wall. I felt 

comfortable while standing.” 
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Subject 6: 14 years old. Male. Experimented at 27.07.2007. No evidence of a motor 

disorder. He was attending the sport and art summer school for children organized by 

METU in 2007. After the experiments, he said “I didn’t get tired. I looked at a pattern 

on the wall.” 

 

Subject 7: 14 years old. Female. Experimented at 17.08.2007. No evidence of a 

motor disorder. She was attending the sport and art summer school for children 

organized by METU in 2007. After the experiments, she said “I didn’t get tired. I 

sang in my mind during the third trial. I thought about different things in my mind 

during the other trials.”   

 

Subject 8: 21 years old. Male. Experimented at 01.08.2007. No evidence of a motor 

disorder. He was an undergraduate student at METU in 2007. He was not doing sport 

in a regular base. After the experiments, he said “I got tired. I tried not to move too 

much.”  

 

Subject 9: 25 years old. Female. Experimented at 25.07.2007. No evidence of a 

motor disorder. She was an academic personnel at METU in 2007. She was not doing 

sport in a regular base. After the experiments, she said “I didn’t get tired. I tried not to 

move too much. I looked forward. I tried to focus.”  

 

Subject 10: 27 years old. Female. Experimented at 02.08.2007. No evidence of a 

motor disorder. She was an academic personnel at METU in 2007. She was not doing 

sport in a regular base. After the experiments, she said “I got a bit tired. I got bored. I 

counted numbers in my mind. I paid attention to the pattern on the wall.”  

 

Subject 11: 28 years old. Female. Experimented at 24.07.2007. No evidence of a 

motor disorder. She was academic personnel of METU in 2007. She was an athlete. 
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After the experiments, she said “I got tired. I got bored. I paid attention on my 

breathing.”  

 

Subject 12: 31 years old. Male. Experimented at 31.07.2007. No evidence of a motor 

disorder. He was an academic personnel at METU in 2007. He was not doing sport in 

a regular base. After the experiments, he said “I got a bit tired. I had my attention on 

standing upright without moving. I tried to look at the same point on the wall.”  

 

Subject 13: 35 years old. Female. Experimented at 02.07.2007. No evidence of a 

motor disorder. She was an academic personnel at METU in 2007. She was not doing 

sport in a regular base. After the experiments, she said “I didn’t get tired. I got 

attention to the pattern on the wall. I didn’t feel very comfortable.”  

 

Subject 14: 39 years old. Male. Experimented at 21.08.2007. No evidence of a motor 

disorder. He was an academic personnel at METU in 2007. He was an athlete. After 

the experiments, he said “I didn’t get tired. I have always tried to stand upright and 

look forward straightly.”  

 

Subject 15: 41 years old. Female. Experimented at 01.04.2008. No evidence of a 

motor disorder. She was an administrative personnel at METU in 2007. She was not 

doing sport in a regular base. After the experiments, she said “I didn’t get tired. I got 

attention to the pattern on the wall.”  

 

Subject 16: 42 years old. Male. Experimented at 02.04.2008. No evidence of a motor 

disorder. He was an academic personnel at METU in 2007. He was an athlete. After 

the experiments, he said “I didn’t get tired. I tried to look at the same point on the 

wall.”  
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Subject 17: 43 years old. Female. Experimented at 16.08.2007. No evidence of a 

motor disorder. She was not doing sport in a regular base. After the experiments, she 

said “I didn’t get tired. I looked at the same point on the wall.”  

 

Subject 18: 54 years old. Female. Experimented at 11.08.2007. No evidence of a 

motor disorder. She was not doing sport in a regular base. After the experiments, she 

said “I didn’t get tired. I felt like a pendulum.” 

 

Subject 19: 48 years old. Male. Experimented at 19.07.2007. No evidence of a motor 

disorder. He was an academic personnel at METU in 2007. He was walking in a 

regular base. After the experiments, he said “I didn’t get tired. I had my attention on 

the eye movements, breathing, swallowing, and hand movements.”  

 

Subject 20: 50 years old. Male. Experimented at 20.08.2007. No evidence of a motor 

disorder. He was not doing sport in a regular base. After the experiments, he said “I 

got a bit tired. I got attention to the pattern on the wall. I sang in my mind and also 

counted numbers.”  

 

Subject 21: 55 years old. Female. Experimented at 02.04.2008. No evidence of a 

motor disorder. She was not doing sport in a regular base. After the experiments, she 

said “I didn’t get tired. I got attention to look forward.”  

 

Subject 22: 65 years old. Female. Experimented at 04.04.2008. No evidence of a 

motor disorder. She was not doing sport in a regular base. She didn’t have a chronic 

illness. After the experiments, she said “I didn’t get tired. I looked the same point in 

the wall.”  

 

Subject 23: 65 years old. Male. Experimented at 03.04.2008. No evidence of a motor 

disorder. He was an academic personnel at METU in 2008. He was not doing sport in 
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a regular base. He didn’t have a chronic illness. After the experiments, he said “I 

didn’t get tired. I had attention on oscillations.”   

 

Subject 24: 68 years old. Male. Experimented at 03.04.2008. No evidence of a motor 

disorder. He was not doing sport in a regular base. He didn’t have a chronic illness. 

He was using anti-depressant drugs. After the experiments, he said “I didn’t get tired. 

I looked at the wall.”  

 

Subject 25: 73 years old. Male. Experimented at 04.04.2008. No evidence of a motor 

disorder. He was not doing sport in a regular base. He didn’t have a chronic illness. 

After the experiments, he said “I didn’t get tired. I had attention on standing upright.”  

 

Subject 26: 78 years old. Male. Experimented at 20.08.2007. No evidence of a motor 

disorder. He was not doing sport in a regular base. He didn’t have a chronic illness. 

He was using anti-hypertension drugs. After the experiments, he said “I didn’t get 

tired. I looked the same point in the wall.”  

 

Subject 27: 83 years old. Female. Experimented at 20.08.2007. No evidence of a 

motor disorder. She was not doing sport in a regular base. She didn’t have a chronic 

illness. She had had a lung surgery ten years ago. She was using drugs for ulcerative 

colitis. After the experiments, she said “I didn’t get tired. I got attention on my 

balance. I counted numbers in my mind.”  

 

Subject 28: 84 years old. Female. Experimented at 11.08.2007. No evidence of a 

motor disorder. She was not doing sport in a regular base. She had an anxiety 

disorder which is under control. She was using anti-hypertension drugs. After the 

experiments, she said “I didn’t get tired. I always looked forward. I felt that the 

platform is moving.”  
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APPENDIX K 
 
 

ALTERNATIVE ALGORITHM FOR CONVERGENCE 
 
 
 
In order to define a criterion for convergence of the D2 estimate curves (Figure 1), the 

following alternative algorithm has also been developed in the study: 

 

Step 1. The slope of D2 estimate curves (Figure 2) were calculated on 11 intervals as 

being m=2-m=3, m=3-m=4, m=4-m=5, m=5-m=6, m=6-m=8, m=8-m=9, m=9-m=10, 

m=10-m=12, m=12-m=15, m=15-m=18, m=18-m=20 for 140 trials. The intervals 

were called as “m index”; such as m index of the interval m=2-m=3 is 1, m index of 

the interval m=3-m=4 is 2, and goes on.  
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Figure 1. D2 estimate curve of the Subject 11, trial 1 
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Figure 2. Slope of D2 estimate curve of the Subject 11, trial 1 

 

Step 2. The slope values of D2 estimate curves  were normalized with respect to the 

initial value of the slope of the D2 estimate curve of corresponding trial at m index = 

1 (Figure 3(a)).   
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Figure 3(a). The percentage slope values of D2 estimate curves 
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Step 3. The percentage slope values of D2 estimate curves of each trial of each subject 

were fitted to the exponential model (Equation (1)), where a and b are the two 

constants of the model. The reason of modeling with an exponential model was to 

smooth the percentage slope values of D2 estimate curves. The constants were 

calculated by using the built-in function, “fit” of the software Matlab®. 

 

 
2  values     b m index

percentage slope of D estimate curves a e
⋅= ⋅

                      (1)            

 

Step 4. Interpolated values of modeled percentage slopes of D2 estimate curves were 

computed at each m index and (Figure 3(b)) by using Equation (1). Then, mean (µ), 

standard deviation (σ), and coefficient of variation (CoV) values (Equation (2)) of 

interpolated slopes at each m index were calculated (Table 1(a)).  
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Figure 3(b). The modeled percentage slopes of D2 estimate curves 

 

CoV = σ / µ * 100                                                                                                       (2) 
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As seen from Table 1(a), coefficient of variation values of modeled percentage slope 

of D2 estimate curves became larger than 50% starting from m index = 6, which 

indicates that standard deviation and mean values are compatible in terms of 

magnitude [93]. It is then proposed that the saturation point for D2 estimate curves 

start from m index = 6 (interval within m=8 and m=9).   

 
Table 1(a). Mean (µ), standard deviation (σ), and coefficient of variation (CoV) 
values of modeled percentage slopes of D2 estimate curves for varying m index. 

m index µ σ CoV 

1 98.8 3.2 3.2 

2 62 7 11.3 

3 39.3 8.6 21.9 

4 25.2 8.4 33.3 

5 16.3 7.4 45.4 

6 10.7 6.2 57.9 

7 7.1 5.1 71.8 

8 4.7 4.1 87.2 

9 3.2 3.3 103.1 

10 2.2 2.6 118.2 

11 1.5 2.1 140.0 

 

Step 5. 95% confidence interval (CI) of the interpolated values of modeled percentage 

slopes of D2 estimate curves at each m index was computed by the method of 

bootstrapping (Appendix G) (Table 1(b)).  
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Table 1(b). The 95% confidence intervals of the interpolated values of modeled 
percentage slopes of D2 estimate curves for varying m index 

 95% CI 

m index Lower Band Upper Band 

1 98.20 99.28 

2 60.80 63.21 

3 37.88 40.88 

4 23.81 26.56 

5 15.12 17.57 

6 9.67 11.90 

7 6.26 8.05 

8 4.11 5.51 

9 2.72 3.86 

10 1.82 2.68 

11 1.20 1.94 

 

Then the saturation criterion can be defined as: D2 estimate curves has been accepted 

as “saturated” if the interpolated values of modeled percentage slopes of D2 estimate 

curves at m index=6 is less than 11.90% (the upper band value of 95% confidence 

interval of the interpolated values of modeled percentage slopes of D2 estimate curves 

at m index=6, refer to Step 3,4,5). Results of the saturation test are presented in Table 

2. 93 out of 136 trials passed the saturation test and named as saturated trials.  
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Table 2. Results of the Saturation Test 
Subjects T1 t2 t3 t4 t5 
1 1 1 0 1 1 
2 1 1 1 1 1 
3 1 0 1 1 1 
4 0 0 1 1 0 
5 1 n 1 1 1 
6 1 1 1 0 1 
7 0 1 0 1 n 
8 0 0 0 0 1 
9 0 0 0 0 1 
10 1 1 1 1 1 
11 1 1 1 1 1 
12 1 1 1 1 1 
13 0 0 1 1 1 
14 0 0 0 0 0 
15 1 1 1 1 1 
16 0 1 1 1 1 
17 1 1 1 1 1 
18 1 1 1 1 1 
19 0 1 1 1 1 
20 0 1 1 1 1 
21 1 1 1 1 1 
22 1 0 0 0 0 
23 0 0 0 0 n 
24 1 n 1 1 1 
25 0 0 1 0 1 
26 1 1 0 1 1 
27 1 1 1 1 1 
28 0 0 0 0 0 

‘1’ indicates the trials which saturated, ‘0’ indicates the trials which did not saturate, 
‘n’ indicates non-stationary trials 
 

Step 6. The D2 estimate curves were fitted to the double exponential model (due to 

poor fit of one exponential model, Figure 4(a)) defined in Equation (3) for each of 93 

saturated trials (Figure 4(b)). The constants (a,b,c,d) were calculated by using the 

built-in function, “fit” of the software Matlab®.  

 

2
b m d m

D a e c e
⋅ ⋅= ⋅ + ⋅

                                                                                           (3) 
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Figure 4(a). D2 estimate curve (poor fit of one exponential model) of the Subject 11, 
trial 1 
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Figure 4(b). D2 estimate curve (experimental and modeled by Equation (3)) of the 
Subject 11, trial 1 
 

Step 7. The values of D2 estimate from m=9 to m=20 (as the D2 estimate converged 

starting from m=9) was fitted to a line (linear regression, Figure 5) to look for a linear 

trend by convergence criterion (next paragraph). The equation of line is defined in 
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Equation (4). Similarly, the constants a and b were calculated by using the built-in 

function, “fit” of the software Matlab®.   

 

2D a m b= ⋅ +
                       (4) 
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Figure 5. D2 estimate curve of 1st trial of 1st subject (black line), fitted line (red line) 

 

The convergence criterion is then defined as: D2 estimate curves are accepted as 

“converged” if the slope of the fitted line to D2 estimates from m=9 to m=20 (a in 

Equation (4)) is less than slope of the double exponentially modeled D2 estimates at 

m index=6 (m=8-m=9). The convergence test has been applied to only the trials that 

possess stationary CoPx signal characteristics and passed the saturation test. By this 

method, 70 out of 140 trials passed the convergence test. Mapping of the trials 

according to the algorithm was given in Table 3.  
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Table 3. Mapping of the convergence algorithm for trials 
Subjects t1 t2 t3 t4 t5 
1 c c ns c c 
2 c c nc nc c 
3 c ns nc c c 
4 ns ns nc c ns 
5 nc n nc nc nc 
6 c nc c ns nc 
7 ns c ns c n 
8 ns ns ns ns c 
9 ns ns ns ns nc 
10 c c c nc c 
11 c c c c nc 
12 c c c c c 
13 ns ns nc nc c 
14 ns ns ns ns ns 
15 c c c c c 
16 ns c c c c 
17 c c c c c 
18 c c c c c 
19 ns nc nc c c 
20 ns c c c nc 
21 c c nc c nc 
22 c ns ns ns ns 
23 ns ns ns ns n 
24 c n nc c c 
25 ns ns c ns nc 
26 c c ns c c 
27 c c c c nc 
28 ns ns ns ns ns 

‘n’ indicates non-stationary trials, ‘ns’ indicates stationary but not-saturated trials,  
‘nc’ indicates stationary, saturated but not converged trials, ‘c’ indicates stationary, 
saturated and converged trials 
 

Figures 6 – 33 show computed D2 estimates for varying embedding dimensions, m of 

each subjects’ first, second, third, fourth, and fifth trials. The non-stationary trials 

showed red in color and circular markers; the stationary but not-saturated trials were 

green in color with plus markers; the stationary, saturated but not converged trials 

were blue in color with square markers; and the stationary, saturated and converged 

trials were black in color with diamond markers for the Figures 6 – 33. 
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Figure 6. Computed D2 estimates of Subject 1 for varying m 
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Figure 7. Computed D2 estimates of Subject 2 for varying m 
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Figure 8. Computed D2 estimates of Subject 3 for varying m 
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Figure 9. Computed D2 estimates of Subject 4 for varying m 
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Figure 10. Computed D2 estimates of Subject 5 for varying m 
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Figure 11. Computed D2 estimates of Subject 6 for varying m 
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Figure 12. Computed D2 estimates of Subject 7 for varying m 
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Figure 13. Computed D2 estimates of Subject 8 for varying m 
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Figure 14. Computed D2 estimates of Subject 9 for varying m 
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Figure 15. Computed D2 estimates of Subject 10 for varying m 
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Figure 16. Computed D2 estimates of Subject 11 for varying m 
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Figure 17. Computed D2 estimates of Subject 12 for varying m 
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Figure 18. Computed D2 estimates of Subject 13 for varying m 
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Figure 19. Computed D2 estimates of Subject 14 for varying m 
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Figure 20. Computed D2 estimates of Subject 15 for varying m 
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Figure 21. Computed D2 estimates of Subject 16 for varying m 
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Figure 22. Computed D2 estimates of Subject 17 for varying m 
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Figure 23. Computed D2 estimates of Subject 18 for varying m 
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Figure 24. Computed D2 estimates of Subject 19 for varying m 
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Figure 25. Computed D2 estimates of Subject 20 for varying m 
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Figure 26. Computed D2 estimates of Subject 21 for varying m 
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Figure 27. Computed D2 estimates of Subject 22 for varying m 
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Figure 28. Computed D2 estimates of Subject 23 for varying m 
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Figure 29. Computed D2 estimates of Subject 24 for varying m 
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Figure 30. Computed D2 estimates of Subject 25 for varying m 
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Figure 31. Computed D2 estimates of Subject 26 for varying m 
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Figure 32. Computed D2 estimates of Subject 27 for varying m 
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Figure 33. Computed D2 estimates of Subject 28 for varying m 
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