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ABSTRACT

An Investigation on Dynamic Contact Parameters in
Machining Center Spindle — Tool Assemblies

Ozsahin, Orkun
M.Sc., Department of Mechanical Engineering
Supervisor: Prof. Dr. H. Nevzat Ozgiiven

Co-Supervisor: Assoc. Prof. Dr. Erhan Budak

August 2008, 85pages

In machining centers, with the increasing trends in high precision machining,
chatter has become an important problem which results in poor surface finish and
low material removal rate. Chatter can be avoided with stability diagrams which
provide the stable regions in the machining process for the depth of cut and spindle
speed combinations. In order to obtain stability diagrams, tool point frequency
response function (FRF) of the system should be obtained. Throughout this study,
contact parameters which are the most critical part of the analytical modeling of
spindle-holder-tool assembly in order to obtain tool point FRF, are examined. For
the accurate identification of the contact parameters, a recently suggested closed
form approach based on measured FRFs is improved and applied to real structures

by solving several application problems.



In addition to the identification of contact parameters from experimental results, in
order to eliminate the dependency on experiments, artificial neural networks are
used to predict contact parameters for cases for which no experiments were carried
out. By using trained neural network, contact parameters are predicted for the first
seen combination of tool gauge length and diameter with a high accuracy. Such an
application will have an important contribution to the machining stability studies
since elimination of dependency on experiments will make it possible to predict
stability diagrams for different combinations of spindle, holder and tool without

performing any experiments.

Additionally, since accurate identification of contact parameters, thus tool point
FRFs and stability diagrams are highly dependent on accuracy of the performed
experiments, possible errors due the mass of the accelerometers are also
investigated. In order to compensate the mass effect of the accelerometers, a
structural modification with matrix inversion method is applied to the

accelerometer based results.

Keywords: Chatter Stability, Contact dynamics, Contact Parameters

Identification, Accelerometer Mass Effect and Neural Networks.
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iSLEME MERKEZLERINDE DINAMIK BAGLANTI
PARAMETRELERININ INCELENMESI

Ozsahin, Orkun
Yiiksek Lisans, Makine Miihendisligi Boliimii
Tez Yéneticisi: Prof. Dr. H. Nevzat Ozgiiven

Ortak Tez Yoneticisi: Dog. Dr. Erhan Budak

Agustos 2008, 85 sayfa

Isleme merkezlerinde, yiiksek hassasiyette kesme islemlerinin artmasiyla birlikte,
diisiik ylizey kalitesine ve talas kaldirma oranin azalmasina neden olan tirlama
onemli bir sorun haline gelmistir. Tirlama belirli kesme hiz1 ve kesme derinligi
icin kararli bolgelerin elde edilmesini saglayan kararlilik diyagramlarinin
kullanilmasi ile oOnlenebilir. Kararhilik diyagramlarinin elde edilebilmesi igin
sistemin takim ucu frekans tepki fonksiyonun (FTF) belirlenmesi gerekmektedir.
Bu c¢alismada, takim ucu FTF’sini analitik olarak elde edilmesinde oldukca kritik
bir O6neme sahip olan baglanti parametreleri incelenmistir. Baglanti

parametrelerinin dogru bir sekilde belirlenebilmesi amaciyla, deney sonuglarinin

Vi



kullanimina dayal1 yeni 6nerilmis bir yontem gelistirilmis ve uygulamadaki g¢esitli

sorunlar ¢oziilerek gergek sistemlere uygulanmistir.

Baglant1 parametrelerinin deney sonuglarindan belirlenmesine ek olarak, deneylere
olan bagimlilig1 ortadan kaldirmak ve deney yapilmayan durumlar i¢in de baglanti
parametrelerini  Ongorebilmek amaciyla yapay sinir aglar1  uygulamasi
kullanilmistir. Egitilmis yapay sinir aglari kullanilarak, ilk defa karsilagilan takim
uzunlugu ve takim ¢ap1 kombinasyonlar1 i¢in baglanti parametreleri olduk¢a hasas
olarak belirlenmistir. Boylesi bir uygulama, farkli saft, takim tutucu ve takim
kombinasyonu i¢in deney yapmadan kararlilik diyagramlarinin elde edilebilmesini
saglamasi ac¢isindan, kararlilik diyagramlari ile ilgili ¢aligmalara 6nemli bir katki

saglayacaktir.

Ayrica, baglant1 parametrelerinin ve dolayisi ile takim ucu FTF’sinin ve karalilik
diyagramlarinin dogru bir sekilde belirlenmesi, deneylerin dogruluguna baglh
olmasi nedeniyle, ivme Olger kiitle etkisinin deney sonuglar1 {izerine etkisi
incelenmistir. Ivme dlger kiitle etkisini telafi etmek amaciyla, matris tersi yapisal

degisiklik metodu ivmedlger ile elde edilen sonuglara uygulanmastir.

Anahtar Kelimeler: Tirlama Kararliligi, Baglanti Dinamigi, Baglanti

Parametrelerinin Belirlenmesi, Ivme Olger Kiitle Etkisi, Yapay Sinir Aglar:
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CHAPTER 1

INTRODUCTION

1.1 Literature Survey

Machining is one of the most commonly used manufacturing processes in variety
of industries. Majority of the machining operations are carried out on machining
centers due to their capability to produce wide variety of parts. In machining
centers, chatter is the main source of process instability which results in poor
surface finish and low material removal rate. Chatter results from the dynamic
interaction between the cutting process and the structures which may yield
instability. With the increasing trends in high precision machining, chatter has
become an important problem in machining processes. In order to decrease the
effects of chatter, mechanism of the cutting process is examined in detail for
decades [1-5] and the stability lobe diagram method, which provides the stable
regions in the machining process for the depth of cut and spindle speed
combinations, has been developed [3-6]. Although there are various methods for
the generation of stability diagrams, in all approaches the identification of tool
point Frequency Response Function (FRF) of the spindle — holder — tool assembly
is required. In general, the tool point FRF is determined experimentally using
impact testing and modal analysis. In impact tests, the tool point FRF is obtained
with exciting the assembly at the tool tip with an instrumented hammer which also
measures the impact force, and measuring the response with an accelerometer at
the tool tip. After these measurements, tool tip FRF is calculated using the

frequency spectrums of the force and the response. In this approach, for every



combination of spindle, holder and tool the modal testing must be performed,
which is time consuming and may be costly especially on production machines.
This has lead researchers to investigate alternative methods to obtain tool point
FRF. Schmitz et al. [7-9] proposed a semi — analytical method which applies the
receptance coupling technique to couple the experimentally obtained spindle —
holder subassembly receptances with the analytically obtained tool receptances

using the contact parameters at the holder tool interface.

Schmitz’s semi - analytical method in determining the tool point FRF has been
followed by several studies based on receptance coupling method. [10-12].
Recently, Ertiirk et al. [13] proposed an experimentally verified [13,14] analytical
model for predicting the tool point FRF by combining the receptance coupling and
structural modification techniques where all components of the spindle-holder-tool
assembly were modeled analytically with the Timoshenko beam theory and
combined with the contact parameters at the spindle — holder and holder — tool

interfaces.

After all improvements, studies showed that the accurate calculation of tool point
FRF highly depends on the accuracy of contact parameters at the spindle — holder
and holder — tool interfaces. Therefore, some of the recent studies concentrated on
the contact parameters. Schmitz et al. [15] introduced off-diagonal elements to the
diagonal joint stiffness matrix used in their early work [7-9] to account for the
translations imposed by moments and rotations caused by forces. More recently,
Ahmadi and Ahmadian [16] considered the holder-tool interface as a distributed
elastic layer to model the change in the normal contact pressure along the joint
interface. Although the methods of modeling the contact mechanism at spindle —
holder and tool — holder interfaces were improved, the identification of the contact
parameters were limited to numerical optimization techniques in all of these

studies. In this approach, tool point FRF of the spindle — holder — tool assembly is



modeled analytically or semi analytically and compared with the measured tool
point FRF. Finally, the contact parameters are identified by fitting the analytical
tool point FRF to the experimentally obtained tool point FRF using nonlinear least
square error minimization (NLSEM). The main uncertainty in NLSEM technique
is the convergence behavior of the identified contact parameters. Depending on the
initial values of the contact parameters, the numerical solution using NLSEM
converges to different values. Therefore, different sets of solutions are obtained for
the contact parameters where it is impossible to identify the correct ones. This
behavior is due to the nonlinearity of the LSEM approach. It is not uncommon to
obtain more than one solution since the numerical solution may converge to the
results for a local minimum. Thus, mathematically meaningful but physically
meaningless results may be obtained. However, the effect analysis performed by
Ertirk et al. [17] showed that the contact parameters at the spindle — holder
interface mainly affect the first elastic mode and contact parameters at the holder —
tool interface mainly affect the second elastic mode. In addition to these
observations it is also concluded that the stiffness values at the interface points
alter the modal frequencies, and damping values alter the magnitude of the FRF

peaks.

The reason why the identification of contact parameters at the interface points of
machining centers is concentrated on experimental techniques is mainly the
complexity of the contact mechanisms. Although Hertz contact theory provides
approximate calculations of contact mechanisms in various contact cases, e€.g.
cylindrical and tapered type contacts, it may not be used in some cases since Hertz
contact theory is derived for the cases where the contact area is small in relation to
the curvature of contacting bodies [18]. Rivin [18] proposed semi - analytical
methods for the determination of stiffness values in machining centers, however
there is still need for experiments in order to identify some coefficients. In

addition, Rivin’s semi — analytical model for the determination of contact



parameters is limited to the contact stiffness identification, but they cannot be used

for the determination of contact damping.

In order to eliminate the dependency on experimentation in identification of
contact parameters, recent studies showed that neural networks can also be an
effective tool. Liu and Ewins [19] used neural network for identification of joint
dynamic parameters and Kang et Al. [20] used neural networks in the stiffness
identification of angular contact ball bearings. It is obvious that the main difficulty
in using neural networks to identify the contact parameters is obtaining a reliable
training set. Because, in order to get successful results from the neural network, it
should be trained with reliable input parameters. However there does not exist an
accurate method for the identification of contact parameters. Therefore, before the
training of neural networks, identification problem of the contact parameters

should be solved.

1.2 Objective

The aim of this thesis is to investigate the contact parameters at different interface
surfaces of machining centers, and to develop identification methods for them.
Since there is no fast and accurate way of identifying these parameters, such a
developed method can make a significant contribution to the accurate prediction of
tool point FRFs, and thus to the generation of stability diagrams in order to avoid
chatter. In addition to the identification problem, this thesis is also concentrated
on the elimination of experimental dependency for each case through application
of the artificial neural networks. Therefore, the developed methods can make it

possible to obtain tool point FRFs without experimentation for each case.



1.3 Scope of the Thesis

Outline of the thesis is as follows:

In Chapter 2, the theory of the contact parameter identification formulation and the
improvements made in the closed form approach are presented. For this purpose,
forward receptance coupling equation is rearranged, and a closed form expression
for the contact parameter identification is obtained. As an improvement fully
populated complex stiffness matrix is used in the formulation, and to overcome the
practical application problems to measure rotational degree of freedom (RDOF)
related FRFs, they are obtained with finite difference method. Then the approach
developed is verified first with simulated case studies in this chapter. Moreover,
the proposed method is tested with the polluted receptance matrices and the effect

of the noise in the input parameters is studied in detail.

In Chapter 3, experimental verification of the proposed method is presented. For
this purpose, displacement to force receptances of the spindle- holder subassembly
and spindle-holder-tool assembly are obtained with the modal testing, and
remaining rotational degree of freedom (RDOF) related receptances are obtained
by the finite difference method. Also, in order to minimize the noise effect of the
measurements, experimentally obtained receptances are filtered with Savitzky
Golay filter [21]. After the determination of the receptance matrices, the
identification is performed with the proposed method and unique contact
parameters are identified from the dominant tool mode region. Finally, the
identified parameters are used in the forward receptance coupling equation, and it
is concluded that the proposed method can be used for the identification of contact

parameters.

In Chapter 4, in order to eliminate the experimental dependency, artificial neural

networks are studied. For that purpose, for different combinations of tool gauge



length and tool diameter, contact parameters are identified and are used in the
training of the neural networks. Finally, the trained neural network is tested with
the first seen inputs, and it is observed that the neural networks can learn the
characteristics of the contact mechanism accurately and thus can successfully be

used in the identification of contact parameters.

In Chapter 5, possible inaccuracies of the accelerometer measurements are
examined. For this purpose, comparison of laser doppler vibrometer (LDV) and
accelerometer measurements are presented and the mass effect of the
accelerometers is expressed. After that, a structural modification with matrix
inversion method is applied in order to eliminate the mass effect. With the
modification technique, consistent results with the laser measurements are

obtained.

In Chapter 6, summary and conclusion of the thesis is given. Also, scope of a

possible future work is suggested.



Chapter 2

A CLOSED FORM APPROACH IN IDENTIFICATION
OF CONTACT PARAMETERS

2.1 Mathematical Background

Components of a typical spindle — holder — tool assembly and contact parameters
used in the receptance coupling are shown in Figure 2.1. In order to obtain the
tool point FRF of a spindle — holder — tool assembly given in Figure 2.1
analytically, the model proposed by Ertiirk et al. [13] provides an efficient method.
In this model, individual receptance matrices of the subassemblies spindle (S),
holder (H) and tool are obtained by rigid receptance coupling of free-free

Timoshenko beams. After obtaining subassembly receptance matrices, the spindle

and holder are coupled through complex stiffness matrix [Ksh] at the spindle-

holder interface and the spindle — holder subassembly tip point receptance matrix

1s obtained as follows:

[SH, J=[H - [Ho ][ [Ha 1+ [Ka T +150]] [H] 2.1)

Finally, spindle — holder subassembly receptance matrices are coupled with the

tool receptances through complex stiffness matrix [Km] at the holder-tool

interface, and the receptance matrix of the spindle — holder — tool assembly is

obtained as follows:



[SHT, )= [T ][] [T ]+ [Ku T +[5H, 1] [T (22)

Receptance matrices given in Equation (2.1) and Equation (2.2) are 2x2 matrices
corresponding to translational and rotational degrees of freedom (DOF). Subscripts

11 and 22 represent point receptances and 12 and 21 represent cross receptances.

' shl -
Spindle w [Km]
Holder /

Figure 2.1 Components of spindle-holder-tool assembly and the complex stiffness

matrices of spindle-holder and holder-tool interfaces.

Since the contact mechanism is complicated and difficult to model at the spindle —
holder and holder — tool interface with analytical methods, the part of the holder
inside the spindle is coupled to the spindle rigidly, and the remaining part outside
the spindle is coupled with spindle (which already includes the part of the holder

inside the spindle) through complex stiffness matrix. Similarly, for the holder —



tool contact, the part of the tool inside the holder and collet are coupled to the
holder rigidly, and the remaining part of the tool is coupled with holder (which
already includes part of the tool inside the holder) through complex stiffness
matrix. Therefore, in Equations (2.1) and (2.2), S represents the spindle and holder
part inside the spindle, and SH represents spindle, holder and part of the tool in the
holder assembly.

In the following section, these elastic receptance coupling equations are rearranged
for obtaining closed-form expressions to predict the complex stiffness matrices of
holder-tool and spindle-holder interfaces. Thus, the dynamical contact parameters,
i.e. stiffness and damping parameters, of these interfaces can be extracted in

closed-form.

2.2 ldentification of Contact Dynamics at the Holder-Tool

Interface

2.2.1 Rearrangement of Receptance Coupling Equations

In order to obtain a closed form expression for the contact parameters, receptance
coupling equations can be rearranged as expressed by Ozsahin et al [22]. For the
holder — tool contact parameters, in Equation (2.2) if the spindle — holder
subassembly and tool receptances are taken to the right hand side of the equation, a

closed form equation given below can be obtained.

1

(K= | [T [T ] -l [54,) @3



In the early stage application of receptance coupling theory in stability diagram
determination, the complex stiffness matrix given below was used in the elastic

receptance coupling equations:

ht H ht
ky +iwc, 0

24
0 ky' +iacy) @9

[Km]=

In Equation (2.4), off-diagonal elements which are linear displacement-to-moment
and angular displacement-to-force terms, are neglected. In a recent study, Schmitz
et al. [15] replaced this classical form of the joint stiffness matrix with the

following fully populated matrix:

ht | & ht ht H ht
kg +iwcy; kg +ioc)

kp: +iwc). k) +iwc)

[Ki]= (2.5)

where kj is the linear displacement — to — force stiffness, cj; is the linear
displacement — to — force damping, k;‘r‘n is the linear displacement — to — moment
stiffness, c*y‘r‘n is the linear displacement — to — moment damping, k) is the
angular displacement — to — force stiffness, ¢/ is the angular displacement — to —

force damping, k;, is the angular displacement — to — moment stiffness and ¢/, is

the angular displacement — to — moment damping of the holder-tool interface, @ is

the excitation frequency and i is the unit imaginary number.

Although complex stiffness matrix proposed in Equation (2.5) has non- zero off
diagonal terms, it is expected that these terms should be equal or close to each
other so that the linear receptance coupling formulation is in agreement with the
Betti-Maxwell reciprocity theorem of linear elasticity [23]. Otherwise, the forward

receptance coupling formulation given by Equation (2.2) may yield an asymmetric

10



tool point receptance matrix even for symmetric subsystem matrices, violating the
aforementioned theorem. Therefore, after the identification process, one should

check the symmetry.

As seen from Equation (2.3), in order to perform the identification method to
obtain the contact parameters, tool receptance matrices, and spindle — holder
subassembly tip point receptance matrix and spindle — holder — tool assembly tool
point receptance matrix should be obtained. Methods applied for the receptance
matrices of tool are given in the following section. For the spindle — holder
subassembly and spindle — holder — tool assembly tip point receptance matrices,

applied methods are given in section 2.2.3.
2.2.2 Analytical Calculation of Tool Receptance Matrices

In order to obtain tool point FRF of spindle — holder — tool assembly, receptance

matrices of the cutting tool in free-free boundary conditions should be obtained
which are denoted by [T,,], [T,], [T,,] and [T,,] in Equation (2.2). These point

and cross receptances of the cutting tool are given as follows:

11 12 12 (26)
H), L, H, L,
[Tzl]_ NL Pt [ 22]_ NL P
21 21 22 22
where;
Hmn :% > Nmn :0_"‘ > Lmn :% > Pmn :H_m (2'7)
fn fn mn mn
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In Eqn. (2.7), w is the transverse displacement & is the bending slope, f is the
transverse force, m is the bending moment and the subscripts stand for the points

of interest over the length of the tool. For instance, if the tool is to be modeled as a

uniform beam, the elements of its point receptance matrix [Tn] are given as

follows [13]:

M e P ST a7 @9
e S
b= A|_2 2 Z(ﬁfyl_))j(i) (2.10)
i pAL3 2 i“lﬁl(yl_))a()bz(—l_z)z (2.11)

where p is the density, A is the cross-sectional area, L is the length and y is the

loss factor of the tool. Furthermore, @, is the r-th natural frequency, ¢, (X) is the

r-th mode shape for transverse displacement of the tool and ¢, (X) is the derivative

of ¢ (X) with respect to axial independent displacement variable X.

2.2.3 Calculation of Rotational Degree of Freedom Related FRF with
Finite Difference Method

In addition to tool point and cross receptances, spindle — holder subassembly and
spindle — holder — tool assembly receptances should also be calculated as given in
Equation (2.3). For the spindle — holder — tool assembly receptance matrix, first

element of the matrix which is H" can be obtained by performing impact testing.

But for the remaining receptances, simple impact testing is not applicable due to

12



the difficulty in measuring angular displacements and exciting the system with

moment. Therefore, approximate methods can be applied for the Rotational

Degree of Freedom (RDOF) related receptances L', N andP™. For the

1

approximate solution Duarte and Ewins proposed a finite difference method [24].
In the proposed method first or second order methods exist. In the first order finite

difference method, forward and backward transformation matrices are given by the

following equations, respectively:

hf]r% 1%] (2.12)
k| o1

where s represents the spacing between measurement points.

For the second order finite difference method, forward, central and backward

transformation matrices are also given by the following equations, respectively:

[T ]_LO 0 2s
2001555111 4 s (2.14)
[T ]_L—O 25 0
2c “os|-1 0 1 (2.15)
[T ]_L_O 0 2s
2b Tos|1 -4 3 (2.16)
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In finite difference method, according to the location where the RDOF related
FRFs are desired, displacement-to-force cross and point FRFs are measured. If the
second order approximation is preferred, measurements are taken from 3 distinct
locations and if the first order approximation is preferred, measurements are
performed at 2 distinct locations. Finally RDOF related FRFs are obtained as

follows with the suitable transformation matrix to the order of approximation.

Heal-| ™ " il T
est H@y Hp meas (2.17)
h%s h3 I3
[Hmeas]=| M3 My hyo (2.18)

T T
hi3 Py by

Most crucial part of the approximation method is that the accuracy of the method
is highly dependent on the order of the approximation and spacing between
measurement points. As expressed by Duarte and Ewins [24], higher order
approximation requires smaller spacing between measurement points for the
angular displacement — to — force FRFs and requires larger spacing for the angular

displacement to moment FRFs. Therefore, for the four receptance matrices that

define matrix [SHTH], one should carefully perform the experimental

measurements on the cutting tool of the assembly so that H*, L, N and

P™ are obtained by a suitable approximation method and [SHTU] can be

constructed. It is also required to obtain the receptance matrix [SHH] of the

spindle-holder subassembly (without the cutting tool outside the holder)

experimentally. The procedure of obtaining the elements of this matrix is similar to

that used for generating [SHT“] :
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Having obtained all the receptance matrices at the right hand side of Equation (2.3)
analytically and experimentally, one can obtain the complex stiffness matrix of the
holder-tool joint, elements of which give the stiffness and damping parameters of

3 . ht ht ht ht ht ht ht ht
the holder-tool interface: Ky s Cyi» Kyms> Coms Kgrs Cop s Ko s C

ym ? om > ~fm *

2.3 Analytical Case Study

In this section an analytical case study for the identification method proposed is
given. In order to apply the proposed method for an analytical case; spindle, holder
and tool are modeled analytically. After obtaining the subassembly receptances,
these receptances are coupled with the contact parameters at the spindle — holder

and holder — tool interfaces given in Table 2.1 and Table 2.2, respectively.
As seen from Table 2.1 and Table 2.2, due to the symmetry requirement of the

receptance matrices as discussed in section 2.2.1, off — diagonal terms of the

complex stiffness matrices are taken to be equal.
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Table 2.1 Dynamical contact parameters at the spindle - holder interface in the

analytical case study

Linear displacement — to — force 13x107
stiffness (N/m) '
Linear displacement — to — force 5
damping (N.s/m)
Linear dl‘splacement - to - 6.06x10°
moment stiffness (N.m/m)
Linear displacement — to —

. 12.2
moment damping (N.m.s/m)
Angular displacement — to — 6

6.06x10

force stiffness (N/rad)
Angular displacement — to — 122
force damping (N.s/rad) '
Angular displacement — to — 1.5%10°
moment stiffness (N.m/rad) ’
Angular displacement — to — |
moment damping (N.m.s/rad)
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Table 2.2 Dynamical contact parameters at the holder-tool interface in the
analytical case study

Linear displacement — to — force 7
4.19x10

stiffness (N/m)
Linear displacement — to — force

. 54
damping (N.s/m)
Ll'near displacement — to - moment 5 06x10°
stiffness (N.m/m)
Linear displacement — to — moment

. 222
damping (N.m.s/m)
Angular displacement — to — force 6

2.06x10

stiffness (N/rad)
Angular displacement — to — force

. 222
damping (N.s/rad)
Angular displacement — to — moment 6.5% 10"
stiffness (N.m/rad) ’
Angular displacement — to — moment |
damping (N.m.s/rad)

The tip point receptance of the spindle - holder subassembly (without the tool
outside the holder) is obtained by coupling analytically obtained spindle and

holder receptances by using the analytical model [13]. The first element of the

receptance matrix [SH”]calculated is given in Figure 2.2.
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Figure 2.2 The analytically obtained tip point FRF (H ISIH ) of the spindle-

holder subassembly.

The tool point FRF of the assembly is obtained by coupling the spindle — holder
subassembly receptance matrix with tool receptances through complex stiffness

matrix at the holder — tool interface. Tool point FRF which is the first element of

the assembled matrix [SHT“] is given in Figure 2.3.

After obtaining the receptance matrices at the right hand side of Equation (2.3),
complex stiffness matrix, and therefore the linear displacement — to — force, linear
displacement — to — moment, angular displacement — to — force and angular
displacement — to — moment stiffness and damping values can be identified. As
can be seen from Figure 2.4 and Figure 2.5, the dynamic contact parameters of the
holder-tool interface are exactly the same as the values entered as input to the

analytical model (Table 2.2).
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0 500 1000 1500 2000 2500
Frequency [Hz]

Figure 2.3 Analytically obtained tool point FRF ( H ISIHT ) of the spindle-

holder-tool assembly.

...... Linear displacement to force X107 N/m

__Angular displacement to force x1 0® N/rad
Linear displacement to momentx10° N.m/m
— Angular displacement to moment x10* N.m/rad

Identified stiffness values

L 1 1 1
1] 500 1000 1500 2000 2500

Frequency [Hz]

Figure 2.4 Identified stiffness values at the holder-tool interface obtained

from Equation (2.3) by using the analytically obtained FRFs.
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— Angular displacement to moment N.m.s/rad

Identified damping values
$a
e ]
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Frequency [Hz]

Figure 2.5 Identified damping values at the holder-tool interface obtained

from Equation (2.3) by using the analytically obtained FRFs.

Since the FRFs constructed by the analytical model are directly used in the
identification method of the dynamical contact parameters at the holder-tool
interface, exactly the same values used as input are obtained. In order to simulate a
more realistic scenario, random number arrays with mean value of unity and

standard deviation of 5% are generated in MATLAB® and they are multiplied with
the FRFs of matrices [SH”] and [SHT”]. This way, the analytical coherence

between the elements of these matrices is distorted. The distorted displacements to

force FRFs are given in Figure 2.6 and Figure 2.7 respectively.
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Figure 2.6 Distorted tip point FRF (H 151"' ) of the spindle-holder

subassembly.

Mag nitute(H1S1HT )N

u] SDID 1 DIDD 1 5IDD QDIDD 2500
Frequency [HZ}

Figure 2.7 Distorted tip point FRF (H 1SIHT ) of the spindle — holder - tool

assembly.
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Since in the proposed method the tool receptances can be obtained analytically,
only the first elements of the spindle — holder subassembly and spindle — holder —
tool assembly receptances are polluted. Then, the stiffness and damping
parameters of holder-tool interface are obtained and linear displacement — to —
force stiffness and linear displacement — to — force damping are plotted against

frequency in Figure 2.8 and Figure 2.9, respectively.

For the remaining contact parameters, similar deficiencies are observed as in the
Figure 2.8 and Figure 2.9. Comparing the fully analytical case and distorted case,
deficiencies in the identified contact parameters show that the proposed method is
highly sensitive to noise in the input receptances. This sensitivity is mainly the
result of the matrix inversions used in the calculations. Although the identified
parameters with frequency are not constants as can be seen from Figure 2.8 and
Figure 2.9, in the effect analysis study [17] it is shown that the holder-tool
interface controls mainly the tool mode of the tool point FRF. Consistent with the
effect analysis results [17], as seen from Figure 2.8b and Figure 2.9b, the identified
stiffness and damping parameters are not affected from the noise in input
receptance values in the tool mode region. In the tool mode region, mean value of
the identified stiffness is 4.05x10” N/m and the mean value of the identified
damping is 51 N.s/m. Therefore, instead of considering the whole frequency band
one should focus on the vicinity of the tool mode frequency and identify the
interface parameters of the holder-tool interface from that region. Consequently,
the translational stiffness and damping parameters are identified in Figure 2.8 and
Figure 2.9 at the frequency of the second vibration mode, and they are found in

good agreement with those identified in Figure 2.4 and Figure 2.5.
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Figure 2.8 (a) Identified displacement to force stiffness, (b)Identified
displacement to force stiffness and tool point FRF at the tool mode region.
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Figure 2.9 (a) Identified displacement to force damping, (b) Identified
displacement to force damping and tool point FRF at the tool mode region.
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Chapter 3

EXPERIMENTAL VERIFICATION FOR
IDENTIFICATION OF CONTACT DYNAMICS AT
THE HOLDER-TOOL INTERFACE

3.1 Introduction

In cutting stability analysis, the tool point FRF must be known. Although
important progress has been achieved in modeling the spindle — holder — tool
assembly analytically, measurements are still needed since there are no analytical
methods for the prediction of contact parameters. Recent studies have shown that
accurate identification of contact parameters plays a crucial role in accurate
determination of tool point FRFs. Therefore, the accuracy of the experimentation
becomes very important. In this chapter, in order to investigate the contact
parameters at the spindle — holder and holder — tool interface, experimental

investigations are carried out using real machine tool components.
3.2 Experimental Setup

In order to perform experiments on real machine parts, BT 40 type holder is
assembled to the free-free spindle and the tool is clamped to the holder via collets.
Spindle and the BT40 type holder used in the assembly are shown in Figure 3.1
and Figure 3.2, respectively. Also, depending on the tool diameter different collets

are used in the holder for clamping. These collets are also shown in Figure 3.3.
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Figure 3.1 Spindle used in experiments.

Figure 3.2 BT40 type holder clamped to spindle.

As it can be seen from Figure 3.2 and Figure 3.3, the contacts between the spindle
and the holder and the collet and holder are tapered types whereas the contact

between the collet and the tool is cylindrical type.

The clamping torque applied on the holder during the installation of the tools was
maintained at the same level since it may have an effect on the FRFs. A complete
spindle — holder — tool assembly where 12 mm diameter tool is clamped to the

holder is shown in Figure 3.4.

26



Figure 3.3 Collets used in experimental setup.

Figure 3.4 Spindle — holder — tool assembly used in experiments.

3.3 Modal testing and Measurement Equipment

In modal testing, the most common way of obtaining FRFs is the single point
excitation where the system is excited at a single point, and the response is
measured. In such experiments both response and excitation are measured
simultaneously, and the FRF of the system is obtained from the measured values.
In measuring system response, accelerometers are commonly used. For both
exciting the system, and measuring the excitation level, impact hammers are used

widely. Although accelerometers are common measurement devices, their mass
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may affect the system response, and cause FRF peak values to shift to the left in
the frequency range of interest. Therefore, in order to obtain accurate measurement
results, experiments are performed by measuring the response using both
accelerometer and LDV laser vibrometer. Measurement results from both sensors
are compared. The accelerometer mass effect is investigated for accurate

prediction of tool point FRF, and the results are given in chapter 5.

In addition to measurement techniques and devices, another important aspect of
the modal testing is the boundary conditions of the system. Boundaries can be
taken free or fixed according to the model used. In this thesis, since spindle —
holder — tool assembly with free end conditions is modeled analytically,
experiments are also performed with the same end conditions. But it is not very
practical to support the experimental set up in real free end conditions, and it is
often preferred to suspend the assembly in a manner which approximates the free
end condition [25]. Therefore, the assembly is supported with elastic bands which
behave as soft springs. Free free suspended spindle-holder-tool assembly is also

given in Figure 3.5.

Figure 3.5 Free free suspended spindle-holder-tool assembly.
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3.4 Experimental Case Study

In this section, in addition to the analytical case study given in section 2.3, an
experimental case study for the identification approach is presented. Experiments
were performed using the set up whose details are given in section 3.1. During
experiments, a 16 mm diameter carbide tool of 123 mm length was clamped in the
holder with an overhang length of 49 mm. The tool was clamped to the holder
using 30 N.m clamping torque. By using the laser sensor, the mass loading effect
of the accelerometers was avoided, and furthermore the accuracy of the

measurements is improved.

Since in the analytical modeling tool part inside the holder is rigidly coupled to the
holder and this tool part is included in the spindle-holder subassembly,
experiments are also performed with the same configuration. For the spindle-
holder subassembly, holder is attached to the spindle and just the tool part inside
the holder is clamped to the holder. After obtaining subassembly, tip point

receptance was determined using impact testing and the response is as shown in

Figure 3.6. Note that this is the first element of the assembled matrix [SH 11] .

As observed in Section 2.2, the noise in the measured data highly affects the
identification method. Therefore, the experimentally obtained FRFs are filtered
with the Savitzky-Golay filter [21]. The filtered tip point FRFs of the spindle-

holder subassembly is given also in Figure 3.7.

For the tool point FRF of the assembly, similar to spindle — holder subassembly,

impact test was performed and obtained tool point FRF is shown Figure 3.8.

Again, this is the first element of the assembled matrix[SHT” ] The filtered tip

point FRF of the spindle holder tool assembly is also given in Figure 3.9.
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Figure 3.6 Experimentally obtained tip point FRF ( HlslH ) of the spindle-

holder subassembly.
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Figure 3.7 Filtered tip point FRF of the spindle holder subassembly.
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Figure 3.8 Experimentally obtained tool point FRF (H 151HT ) of the spindle —

holder - tool assembly.
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Figure 3.9 Filtered tip point FRF of the spindle — holder - tool assembly.

31



In order to obtain angular displacement or moment related FRFs of [SH“] and

[SHT” ] , second order approximation proposed by Duarte and Ewins [26] is used

with spacing of 35 mm and 40 mm between measurement points for the holder —

spindle subassembly and spindle — holder — tool assembly, respectively. The

resulting FRFs of the [SH”] which are Llsi" , lelH and PISIH are given in Figure

3.10 — Figure 3.12 respectively. Also resulting FRFs of the [SHT,,] which are

SHT NSHT
11 11

SHT

L 1

and P37 are given in Figure 3.13 — Figure 3.15 respectively. It is

important to note that the accuracy of the method depends on the spacing between

measurement points and the order of the approximation [24].
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Figure 3.10 Approximately obtained tip point FRF ( LIS|1_| ) of the spindle-

holder subassembly.
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Figure 3.11 Approximately obtained tip point FRF ( lelH ) of the spindle-

holder subassembly.
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Figure 3.12 Approximately obtained tip point FRF ( PISIH ) of the spindle-

holder subassembly.
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Figure 3.13 Approximately obtained tool point FRF ( LIS';T ) of the spindle-

holder-tool assembly.
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Figure 3.14 Approximately obtained tool point FRF ( lelHT ) of the spindle-

holder-tool assembly.
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Figure 3.15 Approximately obtained tool point FRF ( Plsl"'T ) of the spindle-

holder-tool assembly.

The receptance matrices of the cutting tool in free-free boundary conditions, which

are denoted by[T,,], [T,], [T.] and [T, ]are obtained analytically. After

obtaining the FRFs required for constructing the right hand side of Equation (2.3),

the complex stiffness matrix [K,, | is obtained from Equation (2.3). Then, the

linear displacement — to — force, linear displacement — to — moment, angular
displacement — to — force and angular displacement — to — moment complex

stiffness functions of the holder-tool interface are obtained.

It is known from the typical spindle-holder-tool assembly investigated by Ertiirk et
al. [17] that the holder — tool connection parameters mainly affect the tool-
dominant vibration mode. Hence, it is reasonable to identify the holder- tool
contact parameters from this mode. As seen from Figure 3.8, the tool point FRF of

the assembly has 5 distinct modes in the frequency range of interest. Therefore, in
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order to identify tool-dominant mode, the assembly tool point FRF is measured for
different overhang lengths of the tool. The three different overhang lengths taken
are 82 mm, 88 mm and 94 mm. For these three configurations, it is observed that
the third mode is mainly affected by the tool overhang length as shown in Figure
3.16. Therefore, the third vibration mode in the tool point FRF is the tool mode

and the holder-tool contact dynamics can be identified from this mode.

. outer tool length 82 rmm | 7
L R outer tool length 88 mm | 4
— — outer toal length 34 mm | 3

Magnitute(H1S1HT) /N

10

1 1 1 1 1 1 1 1 1 1 .|
B00 500 1000 1200 1400 1600 1800 2000 Z200 2400

Fregquency [HZ]

Figure 3.16 Tool point FRF with changing tool length outside the holder.
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For a tool overhang length of 49 mm, spindle — holder subassembly, spindle —
holder — tool assembly and tool receptance matrices are substituted in Equation
2.3, and the contact parameters are identified. Identified stiffness values are shown
in Figure 3.17 — Figure 3.20, whereas the identified damping values are given in
Figure 3.21 — Figure 3.24. Note that, the identified contact parameters are not
constant in the frequency range, but identification can be done using the results at
the tool mode region. These identified values are given in Table 3.1. Also note
that, since the L and N FRFs are taken to be identical as given for the spindle-
holder subassembly in Figure 3.10 and Figure 3.11 and for the spindle-holder-tool
assembly in Figure 3.13 and Figure 3.14 for convenience (with the assumption of

reciprocity), 6 distinct values have been identified.

As seen from Figures 3.17 - Figure 3.20, unlike the behavior of the identified
stiffness in the frequency band, stiffness values display a convergence behavior in
the tool mode region. Therefore the average values of the stiffness values in the

tool mode region are taken as identified parameters.

The identified damping values become maximum in the tool mode region and drop
to negative values with a sharp decrease as can be seen from Figures 3.21 —Figure
3.24. In the identification procedure these peak values are taken as identified
damping values. Accuracy of these identified parameters is checked as shown in

Figures 3.25 and Figure 3.26.
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As seen from Table 3.1, in the tool mode region, due to two separate peak values
the contact parameters converge to different values but these identified parameters
differ from each other with only a small amount. This difference between two peak
values is the result of the sensitivity of the method to the experimental inaccuracies

due to the matrix inversions.

In order to show the accuracy of the identification method, the experimentally
obtained spindle-holder subassembly receptance matrix [SH1 1] is coupled with

the analytically obtained tool FRFs through the forward coupling equation,
Equation (2.3). In the coupling of the spindle-holder and tool subsystems, instead
of using frequency dependent contact parameters, the constant values identified
from the respective dominant modes of the holder-tool interface (Table 3.1) are
used. Also, in order to investigate the effect of the deviation of the contact
parameters between two peak values, coupling of the receptance matrices are
performed with the identified parameters from both peak values in the tool mode

region. Results are shown in Figure 3.25 and Figure 3.26.
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Table 3.1 Identified dynamical contact parameters at the holder-tool interface in

the experimental case study

d peak
First peak of the Second pea
of the tool
tool mode
mode
Linear displacement — to — 7 7
5.3x10 5.2x10
force stiffness (N/m)
Linear dlsplacement — to — 2000 1900
force damping (N.s/m)
Linear displacement — to - 6 6
2.5x10 2.6x10
moment stiffness (N.m/m)
Linear displacement — to —
. 96 95
moment damping (N.m.s/m)
Angular displacement — to — 6 6
2.5x10 2.6x10
force stiffness (N/rad)
Angular displacement — to — 96 95
force damping (N.s/rad)
Angular displacement — to — 5 5
34x10 32x10
moment stiffness (N.m/rad) X X
Angular displacement — to —
moment damping | 5.1 4.9
(N.m.s/rad)
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Figure 3.25 Experimentally obtained tool point FRF and the tool point FRF
obtained by receptance coupling with the identified contact parameters from the

first peak of the tool mode.
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Figure 3.26. Experimentally obtained tool point FRF and the tool point
FRF obtained by receptance coupling with the identified contact parameters from

the second peak of the tool mode.
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As seen from Figures 3.25 and Figure 3.26, small changes in the identified
parameters have negligible effect on tool point FRF. Thus, using the identified
parameters from the developed method, tool point FRFs can be obtained with a

high accuracy.

In this chapter, experimental verification of the method developed is performed.
Since the polluted case study given in section 2.3 shows that the method is highly
sensitive to the noise in the data, experimental data is filtered with Savitzky Golay
filter. Also RDOF related FRFs, which are difficult to measure with experiments,
are obtained with finite difference method. Finally, contact parameters are
identified form the experimental data. As given in Figure 3.25 and Figure 3.26, the
results show that the contact parameters can be identified accurately by using the

method developed.
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Chapter 4

IDENTIFICATION OF CONTACT PARAMETERS
WITH NEURAL NETWORK

4.1 Introduction

Although important progress has been achieved for the identification of contact
parameters in spindle-holder-tool assemblies, there 1is still need for
experimentation. Due to the complexity of the contact mechanism, it is difficult to
model the contact parameters analytically. In such cases, where the system
characteristics are unknown or difficult to identify, artificial neural networks
(ANN) provide an efficient tool to predict the system characteristics. Especially in
the last two decades, ANN has become an important tool in many engineering
applications. ANN learns the system characteristics with limited sets of data pairs,
containing inputs and corresponding outputs of the system. This training principle
is based on minimization of the error of the neural network for known input —
output pairs [26, 27]. Once the network learns the system characteristics, it can
provide reasonable results to the inputs. Therefore, a well-trained neural network
can be an efficient solution to the identification of contact parameters in
developing machining stability diagrams. They can save substantial amount of

time and eliminate the need for high number of tests.
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4.2 Neural Network Theory

A sample ANN is shown in Figure 4.1 consisting of 3 layers which are input layer,
hidden layer and output layer. Each layer contains neurons, weights and activation

functions.

Hidden Laver

Figure 4.1 Sample neural network and its components.

In neural network connections between input layer and hidden layer are done with

Wij weight and connection between hidden layer and output layer is done with

w ik weight. , w; i is the connection between i neuron of input layer and j™ neuron

of hidden layer, andw jk is the connection between j™ neuron of hidden layer and

k™ neuron of output layer. ANN also contains activation functions. The sum of the
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weighted inputs is the input for the activation functions. If the input to the neural

network is | input for the j" neuron of the hidden layer is given as follows.

hidden _ &,
T = @4.1)

An ANN is based on the minimization of the error between expected outputs of the
system and the actual output of the neural network. In the ANN the total error is
given by the following equation where T is the expected output and O is the actual

output:

E=— X (T} -0p)° (42)

%

1
2 k=1
In order to minimize the error, weights are updated after each minimization, and
the process is finished after the error decreases below the desired value. New

values of the weights are given as follows,

(Wi Inew = (Wij Dolg = AW;; (4.3)
(Wi new = Wik )oig —AWj (4.4)
aw, = ZVEV (4.5)
aw, =& (4.6)

jk

In Equations (4.5) and (4.6), 7 is the learning rate used for the arrangement of the

convergence rate. When the derivatives in Equations (4.5) and (4.6) are calculated,

updated weights w jk and w; j are obtained as follows,
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(ij)neWZ(ij)om —n(Tk—Ok)f'(lk)Oj (4.7)

_ oEZ o,
(WijInew = (Wij) 14 —ﬂiWijf () (4.8)

where fis the activation function in the hidden layer.

A well-trained ANN is highly probable to identify the system characteristics and
give reasonable results to inputs which are given to itself for the first time. The
most common problem in training neural network is the over fitting of the system
which leads to a problem where the system memorizes the training set rather than
learning the system characteristics. In order to prevent the over fitting the training
set, one method in the literature, is to divide the training set into sub groups and
while using one group in training procedure of the ANN, the remaining part of the
data set is not given to ANN. After each optimization, error of the ANN to the first
seen inputs is checked. When the error of the ANN to the first seen inputs starts to
increase, training is stopped. Because in over fitting case, although ANN predicts
the output of the data set given in training procedure accurately, they start to give
wrong results to the first seen inputs and error to the first seen inputs starts to

Increase.

4.3 ldentification of Contact Parameters

In order to identify the contact parameters at the holder — tool interface, the
analytical model proposed by Ertiirk et al. [13] is used. The individual receptance
matrices of the subassemblies, spindle (S), holder (H) and tool (T) are obtained by
rigid coupling of free-free Timoshenko beams. After obtaining receptance matrices
of the subassemblies, spindle and holder are coupled through the complex stiffness

matrix of the spindle-holder interfaces which is represented by the complex
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stiffness matrix [Ksh], and thus the spindle — holder subassembly receptance

matrix is obtained as follows,

[SH, J=[H - [Ho ][ [Ha ]+ [Ka T +150]] TH] (49)

Similarly, the spindle — holder subassembly receptance matrix is coupled with tool

receptances through the complex stiffness matrix of the holder tool interface

[Km] , and tool point FRF of the spindle — holder — tool assembly is obtained as

follows,

[SHT, =T )= [T ]| [T ]+ [Kie]” +[SH“]T [T.] (4.10)

Spindle — holder and holder — tool interface complex stiffness matrices are

respectively given as follows.

SR 0

kepl=| @.11)

0 k P ioc am

sht . _sht
[K ]_ kyf +|a)Cyf 0

shtl™ sht sht (4.12)

0 k, = +ioc

om ém

where kg%[ is the linear displacement — to — force stiffness, CCE is the linear

displacement — to — force damping, , kgtn is the angular displacement — to —

moment stiffness and Cgfn is the angular displacement — to — moment damping of
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the holder-tool interface, @ is the excitation frequency and i is the unit imaginary

number.

For simplicity, off diagonal terms of the complex stiffness matrices are taken zero.
In order to identify the contact parameters at the holder — tool interface, first
spindle, holder and tool subassemblies are obtained analytically. and Then, they
are coupled through complex stiffness matrices at the spindle — holder and holder
— tool interface, and finally the tool point FRF is obtained analytically. After
obtaining it analytically, the tool point FRF is also measured for the same spindle —
holder — tool combination. Finally, spindle — holder and holder — tool contact
parameters are identified from the relevant frequency regions of interest with the
results of effect analysis given by Ertiirk et al [17]. According to effect analysis
results, contact parameters at the spindle — holder interface mainly affect the first
elastic mode and contact parameters at the holder — tool interface affect the second
elastic mode. In addition, these modes are mainly affected by the translational
parameters as the rotational parameters have negligible effects. Therefore, average

values can be used for the rotational parameters in the predictions.

In the experimental set up, BT 40 type holder is assembled to the free spindle
where the tool is clamped to the holder via collets. Details of the experimental
setup are already given in section 3.1. In order to obtain set of contact parameters
to train the ANN, experiments were performed using end mills with different
diameters and gauge lengths. Four different tool diameters were used in the tests:
10 mm, 12 mm with, 16 and 20 mm with varying tool gauge lengths. Complete
spindle — holder — tool assembly where 12 mm diameter tool is clamped to the

holder is shown in Figure 3.4.

As seen the experimental results given in section 3, in the frequency range of

interest, the assembly has five distinct peak values. In order to identify the contact
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parameters precisely, the tool point FRF was measured for overhang lengths of 74
mm, 80 mm and 86.5 mm for the same tool diameter. Results are shown in Figure
4.2. It is obvious that the only change occurs in the third mode and it can be
concluded that the identification of contact parameters at the holder — tool
interface can be done from this mode since the tool mode is mainly affected by
these contact parameters. Similar, measurements were done for the other tools with

different diameters with changing tool length outside the holder.

Outer length 86.5 mm

------- Outer length 80 mm
—.—QOuter length 74 mm

" —_
Du
T

= L)
T T T T

_1
Du
T

Mag nitute(H,il”!?t) N

1 1 1 1 1 1 1
&00 800 1000 1200 1400 1600 1300

Frequency Hz|

Figure 4.2 Tool point FRFs of the spindle — holder — tool assembly with varying
tool length outside the holder.
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In addition to the spindle, holder and tool geometries, another possible parameter
that might affect the contact parameters and thus the tool point FRF is the
clamping torque. In order to see the effect of clamping torque, for the same spindle
— holder — tool combination, the tool point FRF was measured for different
clamping torques. The tool point FRFs with 20 N.m, 30 N.m and 40 N.m clamping
torques for the 12 mm diameter end mill with 76 mm gauge length are shown in

Figure 4.3.
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Figure 4.3 Tool point FRF with changing clamping torque.

As it can be seen from Figure 4.3, the clamping torque has a negligible effect on
tool point FRF. Therefore, clamping torque of the tool can be neglected, and just

the geometry of the tool can be selected as the input to the ANN.
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Tool point FRFs were measured for different tool diameter and gauge length

combinations, and the contact parameters at the holder — tool interface are

identified from the third mode. Identified parameters for the tool with 12 mm

diameter and 83 mm gauge length are given in Table 4.1.

Table 4.1 Dynamical contact parameters at the holder-tool interfaces

identified for 12 mm diameter tool with 83 mm gauge length.

Linear Linear Angular Angular
displacement | displacement | displacement | displacement
to force to force to moment to moment
stiffness damping stiffness damping
(N/m) (N.s/m) (N.m/rad) (N.m.s/rad)
Spindle —
P 4.1x 10 400 3.5x 10° 7
holder interface
Holder — tool ; .
0.47x 10 12 8x 10 4

interface

In order to check the accuracy of the identified contact parameters, the spindle,

holder and tool analytical models were coupled through identified contact

parameters, and the results are shown in Figure 4.4.
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Figure 4.4 Experimentally and analytically obtained (using the identified
contact parameters) tool point FRFs for 12 mm diameter tool with 83 mm gauge

length.

After obtaining tool point FRF, for given cutting conditions and work material,
stability diagrams can be generated using the experimental and analytical FRFs.
An example case is shown in Figure 4.5. Stability diagrams are calculated with the

software called MADSIM developed during TUBITAK supported project under
number 104M430.
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Figure 4.5 Stability lobe diagrams obtained by using experimentally and
analytically obtained tool point FRFs for 12 mm diameter tool with 83 mm gauge

length.

As can be seen from Figure 4.5, the stability diagram obtained with analytically
tool point FRF has very close agreement with the stability diagram obtained from
the experimental tool point FRF. Therefore, with the accurate prediction of contact

parameters, stable regions in the machining process can be identified precisely.

4.4 Sensitivity of the Tool Point FRF to Contact Parameters

After the identification of the contact parameters at the holder — tool interface for
different cases, the effect of the contact parameters on the tool point FRF was
analyzed in order to show the importance of accurate identification of these
parameters. In this section, the effects of contact parameters are investigated by

changing just one parameter and keeping the remaining ones constant.
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In order to study the effect of the contact parameters, spindle — holder — tool
assembly given in Figure 3.5 is used. For the assembly, 12 mm diameter tool is
inserted to the holder with 83 mm gauge length. Identified parameters for this case
are given in Table 4.1. First, different linear displacement-to-force contact
stiffness values are used: 0.27x10’ N/m, 0.47x10” N/m and 0.97x10" N/m. The
spindle — holder subassembly receptance is coupled with the tool receptances, and
the tool point FRFs are shown in Figure 4.6 are obtained. As shown in Figure 4.6,
the linear displacement-to-force contact stiffness affects the tool point FRF
substantially, demonstrating the need for accurate knowledge of these parameters

in machine tool dynamics and chatter stability analyses.
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Figure 4.6 Analytically obtained tool point FRFs for different contact

translational stiffhess.
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In order to see the effect of the angular displacement-to-moment stiffness, 6x10*
N.m/rad, 8x10* N.m/rad and12x10* N.m/rad were used while keeping the rest of
the parameters as given in Table 4.1. The calculated tool point FRFs are given in
Figure 12 which indicates that the angular displacement —to-moment contact

stiffness does not have a significant effect on the tool point FRF.
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Figure 4.7 Analytically obtained the tool point FRFs using different

angular displacement —to-moment contact stiffness.

In addition to the contact stiffness effects on the tool point FRFs, effects of the
contact damping were also investigated. With changing values of linear
displacement-to-force and angular displacement-to-moment contact damping, the

tool point FRFs are given in Figure 13 and Figure 14, respectively. As expected,
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the contact damping values affect the magnitude of the tool mode and do not cause

tool mode frequency to shift.
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Figure 4.8. Analytically obtained tool point FRFs with different linear

displacement-to-force contact damping values.

Results of the sensitivity analysis show that the accurate identification of the
contact parameters, especially linear displacement-to-force stiffness plays a crucial
role in the accurate determination of the tool point FRF. Therefore in training of
ANN variations in rotational damping, rotational stiffness and translational
damping values can be neglected for simplicity and as stated by Ertiirk et al [16]

average values from the literature can be used.
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Figure 4.9 Analytically obtained tool point FRFs with different angular

displacement-to-moment contact damping values.

4.5 Training of Neural Network and Results

Back propagation ANN was constructed and trained with the identified contact
parameters. In ANN, the tool diameter and tool gauge lengths are chosen as inputs,
and the linear displacement-to-force stiffness values are set as the output of the
ANN. The linear displacement-to-force stiffness is set as output of the ANN since
the effect of the rotational parameters is observed to be negligible compared to
translational ones. While training the ANN, a limited part of the identified
parameters was given to ANN, and the mean square error goal was set to 0.01.
When the mean square error reached the desired value, the training was stopped.

After the training was completed, the results of the ANN to the inputs used in the
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training were checked to confirm that it provided the correct answers. Most
important part of the procedure is the ability of the ANN to learn the
characteristics of the system rather than memorizing the input — output set. Finally,
the inputs that the ANN has never seen were used to predict the outputs, which are

given in Table 4.2.

Table 4.2 ANN results for the linear displacement-to-force contact stiffness and

the corresponding errors.

Tool Linear displacement
diameter Gauge length of | ¢, force stiffness | ANN  output
(mm) the tool (mm) (N/m)x107 (N/m)x10’ Error %

10 65 0.97 0.99 2.10
10 68 0.84 0.87 3.45
10 73 0.58 0.58 0.51
12 76 1.43 1.39 2.80
12 81 1.95 1.98 1.54
12 85 1.20 1.15 4.17
16 83 2.20 2.35 6.82
16 86 2.25 2.22 1.33
16 89 2.20 2.15 2.27
16 92 2.26 2.19 3.10
20 98 3.48 3.49 0.29
20 100 3.68 3.53 4.08
20 106 3.75 3.66 2.40

Results given in Table 4.2 show that the applicability of the ANN in identification
of contact parameters is highly effective. The highest error of the neural network

to the first seen inputs is less than 7 %.
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In order to investigate the effect of using ANN based identified contact
parameters in the analytical method, ANN results for the 12 mm diameter tool
with 85 mm gauge length were used in the analytical tool point FRF prediction
model [13]. The tool point FRFs of the same assembly obtained with the contact
parameters identified from experiments are compared with those obtained by using
ANN predicted value, which was 4 % different than the experimental value, in

Figure 4.10.

------- Tool point FRF with experimetaly obtained contact parameters
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Figure 4.10 Tool point FRF obtained with contact parameters identified
with neural network and tool point FRF obtained with contact parameters from

experimental results.

66



As seen from Figure 4.10, 4 % error in the linear displacement-to-force contact
stiffness has negligible effect on the tool point FRF. Therefore, it can be
concluded that the ANN errors to the first seen inputs are in an acceptable range,
and thus ANN predictions can be used in the analytical determination of tool point
FRF, and thus in the stability diagrams. Also input parameters to ANN can be
increased such that different collet, holder types and different contact mechanisms

can be considered in a future work.
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Chapter 5

MASS LOADING EFFECT OF ACCELEROMETERS
ON TOOL POINT FRF AND STABILITY DIAGRAMS

5.1 Introduction

In tool point FRF measurements, accelerometers are commonly used to obtain the
response to impact loading. Although the mass effect of accelerometers is a well
known source of measurement errors, due to their simple use, cost benefits and
relatively small mass this effect is usually neglected. With the development of the
non contact sensors, such as LDV laser vibrometers, the response of the system to
a given excitation can be measured more accurately than the accelerometers.
However, due to the cost and other practical issues such as the surface conditions
of the target point and space limitations, accelerometers are still preferred in many
cases. Also, in-process measurements with non contact sensors might be difficult
due to the existence of chips and machining processes. In this chapter,
experimental errors due to the mass of the accelerometers are investigated. Also, in
order to eliminate the mass loading effect of the accelerometers, a structural

modification method is presented.
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5.2 Experimental Verification of Accelerometer Mass Effect

In order to investigate the mass effect of accelerometers on tool point FRFs, the
same spindle — holder — tool assembly tool point FRF was measured using both a
2-gram accelerometer and an LDV laser vibrometer. The test was performed using
the experimental setup presented in section 3.2 on a 12 mm diameter tool with 80
mm gauge length. Measured tool point FRF with both measurement device is
given in Figure 5.1. As seen from Figure 5.1, the tool point FRF measured with
laser vibrometer has a tool mode with peak value at 1444 Hz. However, the tool
point FRF measured with accelerometer has the tool mode with peak value at 1277
Hz. This difference can be attributed to the mass of the accelerometer which
causes 167 Hz shift of the tool mode. In addition to the accelerometer and laser
measurements, in order to verify the fact that the frequency shift of the tool point
FRF is mainly due to the additional mass of the accelerometer, the tool point FRF
of the spindle-holder-tool assembly with additional mass is measured with laser
vibrometer. For the additional mass, accelerometer is attached at the tool tip.
Obtained tool point FRF is also given in Figure 5.1. As seen from Figure 5.1, the
same amount of frequency shift is observed in additional mass case. Therefore, it
can be concluded that the accelerometer measurement causes a significant errors in

the tool point FRF which is due to the mass of the measurement device.

The mass of the accelerometer causes a significant shift of the tool mode so that a
15 % error 1s obtained for the dominant tool mode. Note that the mass effect
causes much smaller variation on the frequencies for the other modes of the system
as can be seen from the same figure. This is mainly due to the fact that the other
modes of the system belong to the spindle and the holder which have much higher
mass than the tool. In addition, for these modes the displacement at the tool point
where the accelerometer is attached is relatively smaller compared to that of the

tool mode.
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Figure 5.1 Tool point FRF measured with both laser and accelerometer for 12 mm

diameter tool with gauge length 80 mm.

In order to identify the effect of the mass of the accelerometer on chatter
prediction, stability diagram is calculated for the tool point FRF for the 16 mm
diameter tool with 79 mm gauge length for the with and without additional mass
cases where the radial depth of cut is 3 mm and number of teeth is 4 for the up
milling mode. Also cutting force coefficients are taken as Kt=625 MPa and
Kr=100 MPa which represent an aluminum alloy. For the additional mass case
frequency shift of the tool mode is 74 Hz. The effect of this error on the stability
diagram is given in Figure 5.2, which shows that performing experiments with

accelerometer also causes an important  deviation in the stability diagram.
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Therefore, in a real machining application accelerometer based stability diagrams

may make the process completely in the unstable region causing chatter.

— Tool point FRF with mass
— — Tool point FRF without mass
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Figure 5.2 Stability diagrams for the tool point FRF with additional mass
and without additional mass for the 12 mm diameter tool with 79 mm gauge

length.

Frequency shift of the tool mode with respect to tool gauge length is also given in
Figure 5.3 for the 16 mm diameter tool. As seen from Table 5.1 and Figure 5.3,
with increasing gauge length, the effect of the accelerometer mass is decreasing
which is also the case for the increasing tool diameter. This is expected as diameter

and length of tools are increased so are their mass. Although the mass effect can be
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neglected for large diameter tools, for smaller tools (12 mm diameter and less for

the cases considered in this study) the mass effect may cause significant errors in

the tool point FRFs, and thus in stability diagrams.

Table 5.1 Frequency change of tool mode peak value due to the mass effect

of the accelerometer.

Tool mode
location with Tool mode Frequenc

Tool laser vibrometer location with quency

. Gauge length of without laser vibrometer | change
diameter .\ . ..

(mm) the tool (mm) additional mass | with additional (Hz)
(Hz) mass (Hz)

10 70 1228 1041 187
10 75 1200 1023 177
12 76 1438 1278 160
12 81 1361 1219 142
12 85 1247 1125 122
16 79 1413 1339 74
16 88 1267 1202 65
16 94 1203 1147 56
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Figure 5.3 Frequency shift of the tool mode with increasing tool gauge

length.

5.3 Structural Modification with Matrix Inversion Method

In order to check the accuracy of the experimental results the structural
modification method suggested by Ozgiiven [28] can be applied. In this method,
unmodified tool point FRF and mass properties of the modification are used to

obtain modified system receptance as follows.

[SHTlrlnodified ]: [[I ]+ [SHTILinmodified ]x [D]r « [[SHTILinmodified]] 5.1)
Where, [I] is the identity matrix and [D] is the modification matrix.
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Since in accelerometer measurements, the modification on the assembly is only the
mass of the accelerometer, and the effect of the mass on the displacement-to-force
receptance is being investigated, the modification matrix is a single element given

as

[D]=(-?M) (5.2)
and thus Equation (5.1) will take the form,

(HID) modified = 1+ (HT D unmodified *@>M) ™ x(HID) yn modified (5.3)

Here, M is mass of the accelerometer and @ is the frequency.

Modification method represented by Equation (5.3) is applied to the tool point
FRF obtained by the LDV laser vibrometer (for no additional mass case) and the
mass modified tool point FRF is obtained. Tool point FRFs measured with and
without additional mass are given with the modified tool point FRF in Figure 5.4.
As seen from Figure 5.4, with the Matrix Inversion Method, the mass loading

effect of the accelerometer can be predicted precisely.

In addition to the application of additional mass in the modification method, the
mass effect can also be subtracted from the tool point FRF by using the Matrix

Inversion Method as follows,

sh sh 2 -1 sh
(HTT ) modified =1+ HTD unmodified <@ M)~ *(HI D ynmodified (5.4)
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Figure 5.4 Tool point FRF measured with laser vibrometer for with mass,

without mass and modified tool point FRF

With Equation (5.4), the mass effect of the accelerometer can be subtracted from
tool point FRF. In Figure 5.5, tool point FRF with mass (measured with laser
vibrometer), the tool point FRF without mass (measured with laser vibrometer)
and the modified tool point FRFs are given. As seen from Figure 5.5, the tool point
FRF measured with laser has perfect agreement with the modified tool point FRF.
This shows that even when the measurements are performed with an

accelerometer, the mass effect can be eliminated by applying the modification.
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Figure 5.5 Tool point FRF measured with laser vibrometer for with mass,

without mass and modified tool point FRF.

In this chapter, a common source of error in measurement of tool point FRF is
investigated. Results show that for small diameter tools, performing experiments
with accelerometers causes significant errors in the tool point FRF. In order to
eliminate the mass effect, a modification method is applied to the accelerometer
based tool point FRFs. It is verified with the laser measurements that the mass

effect can be compensated satisfactorily by using the modification method.
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Chapter 6

CONCLUSION AND SUMMARY

In this thesis, investigation of contact parameters in machining centers is
presented. These parameters result from the contacts on the interfacing surfaces of
machine tool components, i.e. spindle, holder and tool, and may have significant
effects on the dynamic behavior and chatter stability during machining. In order to
identify these parameters, the closed form formulation for FRF computation in
spindle-holder-tool systems can be rearranged [22]. In this study, the contact
parameter identification formulation is improved for obtaining reliable results, and
moreover the problems encountered during the practical application of the method
in real systems were solved. Thus an effective identification method is developed.
The verification of the method suggested is demonstrated with several case
studies. Also, as an alternative method, neural network approach is applied for the
identification of contact parameters in order to eliminate experimental
measurements for each case. The development of methods for accurate
identification of contact parameters, and thus tool point FRFs and stability

diagrams is the main goal of this thesis.

6.1 A New Approach on ldentification of Contact Parameters

First, the details of the experimental method developed are presented. In this
method first the receptance coupling equations are rearranged to obtain contact

parameters, and a closed form expression is obtained. As an improvement fully
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populated complex stiffness matrix is used in the formulation, and to overcome the
practical application problems to measure RDOF related FRFs, they are obtained
with finite difference method. The method is used for the identification of contact

parameters at the holder-tool interface.

First, the method is tested with the analytical case study. It is shown that the
method can identify contact parameters accurately. In addition to the success of the
method for the analytical case study, the method is tested with the polluted
receptance matrices in order to simulate a more realistic scenario. In the polluted
case study, it is observed that the proposed method for the identification of contact
parameters is highly sensitive to the changes in the receptance matrices. Instead of
constant contact parameters, method yields results with frequency depended
parameters. Since the identification from the noisy results is impossible, affectivity
of the identification of contact parameters from the relevant mode of the tool point
FRF is investigated.  Although identified contact parameters change with
frequency, promising results are obtained from the relevant tool mode. It is also
concluded that the sensitivity of the method is mainly due to the matrix inversions

in the formulation.

6.2 Experimental Verification of the Proposed Method

It is experimentally verified that the proposed method can identify contact
parameters successfully. For the verification of the method, an experimental setup
is constructed with real machine parts, and experiments are performed with the
laser LDV vibrometer. Since in the method suggested, the receptances of spindle-
holder subassembly, spindle-holder-tool assembly and tool are required, both
experimental and analytical methods are applied for the determination of these
receptance matrices. First, spindle-holder subassembly and spindle-holder-tool

assembly displacement-to-force receptances are obtained by performing modal
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testing and remaining RDOF related FRFs are obtained with the finite difference
method from the experimentally measured receptances. For the determination of
tool receptance matrices, Timoshenko beam theory is used and tool receptances
are obtained analytically. Before applying experimental data in the method,
experimentally obtained data is filtered with the Savitzky Golay filter due to the
sensitivity problem of the method, and the identification is performed with the
filtered receptances. Although the identification method results contact parameters
which vary with frequency and sometimes assume meaningless values, it is
observed that these parameters can successfully be identified from the dominant
tool mode. Also, the verification of the identified parameters is demonstrated by
using these parameters in the receptance coupling equation. The results show that
the tool point FRF obtained with the identified contact parameters has a perfect

agreement with the experimentally obtained tool point FRF.

6.3 ldentification of Contact Parameters with Neural Networks

In order to eliminate the dependency on experiments, as an alternative approach,
artificial neural network based identification is presented. For the training
procedure of the ANN, contact parameters identified for different tool diameters
and gauge lengths are used. It is observed that for the first seen combination of
tool diameter and gauge length, ANN can predict corresponding contact
parameters successfully. Therefore, by performing experiments with limited sets of
spindle- holder-tool combination, contact parameters can be predicted in a wide
range of spindle-holder-tool combinations. Elimination of dependency on
experiments with the application of the neural network will have an important
contribution to the stability diagram studies. This will have advantages in terms of
cost and time benefits. Moreover in the design stage of the spindle and holder, it

will be possible to predict the stable regions of the designed assembly.
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6.4 Mass Loading Effect of the Accelerometers on Tool Point
FRF

It is observed that the accurate identification of contact parameters, thus the tool
point FRF and stability diagrams, requires reliable experimental data. Since
accelerometers are the most commonly used measurement devices in the machine
tool dynamics studies, the effect of the accelerometer mass on the tool point FRF
is investigated. For that purpose, the tool point FRF is measured both with a laser
LDV vibrometer and an accelerometer. From the performed experiments, it is
observed that, as the tool diameter decreases, the mass effect of the accelerometer
becomes more important and might cause erroneous results. In addition to the error
analysis due to the mass of the accelerometer, Ozgiiven’s modification technique
is applied in order to eliminate the mass effect. Modification results show that
when the measurements are done with an accelerometer, the mass effect can be

eliminated and accurate tool point FRFs can be obtained.

6.5 Future Work

Accurate identification of contact parameters plays an important role in accurate
tool point FRF determination. Although a closed form approach for the
identification of contact parameters is presented in this thesis in detail, there is still
a need for the improvement of the method suggested. Most crucial improvement is
the sensitivity of the method due to the matrix inversions since a small change in
input data may cause large deviations in the output. The possibility of avoiding
matrix inversion may be investigated with a modification in the formulation in
order to improve the effectiveness of the method. Also, the sensitivity problem
may be overcome by applying an alternative method instead of receptance
coupling in order to avoid matrix inversions. Another possible improvement is the

determination of RDOF related FRFs. With the progress of the measurement
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devices, instead of using the finite difference technique, accurate and direct
measurement of RDOF related FRF may become available. Therefore with such a

technique inaccuracies due to the approximations can be eliminated.
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