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ABSTRACT 

 

 

DEVELOPMENT OF A SHELL FINITE ELEMENT 
FOR LARGE DEFORMATION ANALYSIS OF  

LAMINATED COMPOSITES 
 

 

Yıldız, Tuba 

M.Sc., Department of Mechanical Engineering 

                               Supervisor: Prof. Dr. Haluk Darendeliler 

 

September 2008, 110 Pages 

 

 

 

The objective of the present work is to investigate the behavior of laminated fiber -

reinforced polymer matrix composite shell structures under bending load with the 

help of a modified finite element computer code which was previously developed for 

the analysis of pseudo-layered single material shells. The laminates are assumed to 

be orthotropic and the formulation is adapted to first order shear deformation theory. 

The aim is to determine the large deformation characteristics numerically, and to 

predict the modes of failure by the illustration of the critical elements of the model. 

Therefore, several failure theories are also integrated to the code to detect first ply 

failure. Triangular shell elements are used and all the related data are generated from 

the mid-plane. Laminates under transverse loading are analyzed through several 

boundary conditions and ply orientations. To verify the numerical results obtained, a 

commercial finite element program is used to compare the outputs of the study, and 

the comparison is found to have shown good agreement. The onset of damage is 

investigated by using different failure criteria consisting of maximum stress, Tsai-

Wu, and Tsai- Hill theories and close results are obtained. 
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ÖZ 

 

 

TABAKALI KOMPOZĐTLERĐN BÜYÜK ŞEKĐL 
DEĞĐŞTĐRME ANALĐZĐ AMACIYLA BĐR KABUK SONLU  

ELEMANININ GELĐŞTĐRĐLMESĐ 
 

 

Yıldız, Tuba 

Yüksek Lisans, Makine Mühendisliği Bölümü 

                                Tez Yöneticisi: Prof. Dr. Haluk Darendeliler 

 

Eylül 2008, 110 Sayfa 

 

 

 

Yapılan yüksek lisans çalışmasında, polimer matrisli tabakalı kabuk kompozitlerin 

eğilme yükü altındaki davranışlarını incelemek amacıyla, daha önce hayali tabaklı 

tek malzemeli kabukların analizi için yazılmış sonlu elemanlar programı 

geliştirilmiştir. Laminalar ortotropik kabul edilmiş ve çalışmada birinci derece 

kayma gerilmesi teoremi kullanılmıştır. Çeşitli fiber yönleri ve sınır koşullarındaki 

birçok plakanın büyük deformasyon analizi sayısal olarak gerçekleştirilmiş hasar 

başlangıçlarının oluştuğu kritik elemanlar tespit edilmiştir. Üçgen sonlu elemanların 

kullanılması tercih edilmiştir. Programın doğruluğunu kontrol etmek amacıyla, ticari 

bir sonlu elemanlar analizi programı kullanılmıştır. Her iki programdan da elde 

edilen deformasyon değerleri karşılaştırılmış ve uyumlu oldukları gözlenmiştir. 

Hasar analizi sonucu ulaşılan veriler, maksimum gerilme, Tsai-Wu ve Tsai-Hill 

kriterleri ile ayrı ayrı incelenmiş ve yakın sonuçlar elde edildiği görülmüştür. 
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Anahtar Kelimeler: Tabaklı Kompozit Kabuk, Hasar Modu,  Sonlu Elemanlar 

Analizi, Elastik Deformasyon 
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 CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Composites are advanced engineering materials with superior mechanical properties 

that can be tailored and diversified among the purpose of application. The 

requirements of the design are accomplished by the combination of two or more 

distinct materials on macroscopic scale in order to improve the desired properties 

like strength, stiffness, corrosion resistance, fatigue life, weight, attractiveness, 

thermal insulation or conductivity. The advanced improvements generally result in 

challenging design applications which require professional expertise. Their high-

strength-to-weight ratio exceeding that of the constituents is the main attribute which 

makes mechanics of composite materials a more popular area of interest. 

 

1.1 Types 

 

The need for fiber placement in different directions according to the particular 

application has led to various types of composites. In the continuous fiber reinforced 

laminate, individual-continuous-fiber/matrix laminae is oriented in the required 

directions and bonded together to form a laminate. Although the continuous fiber 

laminate is used extensively, the potential for delamination, or separation of the 

laminae is still a major problem because the interlaminar strength is matrix-

dominated.  

 

Woven composites do not have distinct laminae and are not susceptible to 

delamination, but strength and stiffness are sacrificed due to the fact that the fibers 

are not so straight as in the continuous fiber laminate.  
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Chopped fiber composites may have short fibers randomly dispersed in the matrix. 

These are used extensively in high volume applications due to low manufacturing 

cost, but their mechanical properties are considerably poorer than those of 

continuous fiber composites.  

 

Hybrid composites consist of mixed chopped and continuous fibers or mixed fiber 

types such as glass/graphite. They greatly expand the range of properties that can be 

achieved with advanced composites. Hybrid composites generally suffer from 

delamination. 

 

Another common composite configuration, the sandwich structure, consists of high 

strength composite facing sheets bonded to a lightweight foam or honeycomb core. 

Sandwich structures have extremely high flexural stiffness-to-weight ratios and are 

widely used in aerospace structures. The design flexibility offered by these and other 

composite configurations is obviously quite attractive to designers, and the potential 

now exists to design not only the structure but also the structural material itself.  

 

Particulate composites have an additive constituent which is essentially one or two 

dimensional and macroscopic. They differ from the fiber and flake types in that 

distribution of the additive constituent is usually random rather than controlled. 

Particulate composites are therefore usually isotropic. This family of composites 

includes dispersion-hardened alloys and cermets. 

 

1.2 Constituents  

 

1.2.1 Fibers and Flakes 

 

Fibers are the principle constituent of a composite material. They occupy the largest 

volume fraction in a composite laminate and share the major portion of the load 

acting on a composite structure. Proper selection of the type, amount and orientation 
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of fibers is very important because it influences the following characteristics of a 

composite laminate: 

 

• Specific gravity 

• Tensile strength and modulus 

• Compressive strength and modulus 

• Fatigue strength and failure mechanisms 

• Electric and thermal conductivities 

• Cost 

 

Although the strength and one-dimensional nature of the fibers make them highly 

useful in composite structures, particularly where anisotropy is desirable, there are 

applications where two-dimensional elements or flakes, are preferable. With 

nondestructive flakes such as glass or mica, it is possible to obtain good dielectric 

properties and resistance to heat. Compared with fibers, flakes are relatively 

inexpensive to produce and can be handled in batch quantities. 

 

1.2.1.1 Fiber Types 

 

Glass fibers are the most common of all reinforcing fibers for polymeric matrix 

composites since they are strong, low in cost, nonflammable, nonconductive and 

corrosion resistant. The disadvantages are low tensile modulus, relatively high 

specific gravity, low fatigue resistance, sensitivity to abrasion and high hardness. 

Glass fiber is made by melting the raw materials (silicon dioxide and metallic-oxide-

modifying elements) in a high temperature furnace and then drawing the molten 

material into filaments. There are three main categories of glass fiber which are E-

glass, S-glass and C-glass.  E-glass (named for its electrical properties) accounts for 

most of the glass fiber production and is the most widely used reinforcement for 

composites. The second most popular glass fiber, S-glass, has roughly 30 percent 

greater tensile strength and 20 percent greater modulus of elasticity than E-glass, but 
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is not as widely used because of its high cost. C-glass is used in the areas where 

particularly chemical resistance is necessary.  

 

Carbon fibers account for the advanced group of fibers and preferred among the 

advantages of high tensile strength-to-weight and tensile modulus-to-weight ratios, 

high fatigue strengths and lower specific gravities. Their high cost has so far 

excluded them from widespread commercial applications, but they are used mostly in 

aerospace industry where weight savings is considered more critical than cost. 

Carbon fibers are manufactured from two types of precursors, namely textile 

precursor (polyacrylonitrile –PAN, or rayon) and pitch precursors (a by-product of 

petroleum refining or coal coking). After a sequence of heat treatments, the precursor 

is converted to carbon. 

 

Aramid fibers possess a tensile strength seven to eight times that of the steel wire and 

have an excellent stability against the temperature change. Therefore, aramid fibers 

are widely used in the automotive industry for tire cords, timing belts, and break 

friction materials. In addition, these fibers have been used as concrete reinforcing 

materials and in high-performance ropes. The major disadvantages of aramid fiber-

reinforced composites are their low compressive strength and the difficulty in cutting 

and machining them. Fibers are produced by extruding an acidic solution of a 

proprietary precursor from a spinneret. 

 

The most prominent feature of boron fibers is their extremely high tensile modulus 

which is in the range 379-414 GPa. Because of the relatively large diameter, boron 

fibers offer excellent resistance to buckling, which contributes to high compressive 

strength for boron fiber-reinforced composites whereas main disadvantage is the high 

cost. Boron fibers are manufactured by chemical vapor deposition of boron into a 

heated substrate (a tungsten wire or a carbon monofilament). 
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Ceramic fibers are notable for their high temperature applications in metal and 

ceramic matrix composites. SiC and Al2O3 are the examples of ceramic fibers 

suitable for reinforcing metal matrices in which carbon and boron exhibit transverse 

reactivities. 

 

Properties of an arbitrary set of fibers are listed in Table 1.2.1 

 

Table 1.2.1 Properties of Selected Reinforcing Fibers [2] 

 

 

 

 

 

Fiber 

 

 

Typical 

Diameter 

(µµµµm) 

 

 

Specific 

Gravity 

(g/cm
3
) 

 

 

Tensile  

Modulus 

(GPa) 

 

 

Tensile 

Strength 

(GPa) 

 

Strain 

to 

Failure 

(%) 

 

Coefficient 

of Thermal 

Expansion 

(10
-6

/ 
o
C) 

 

Glass       

E-glass 10 2.54 72.4 3.45 4.8 5 

S-glass 10 2.49 86.9 4.30 5.0 2.9 

PAN Carbon       

T-300 7 1.76 231 3.65 1.4 -0.6 

T-40 5.1 1.81 290 5.65 1.8 -0.75 

AS-1 8 1.80 228 3.10 1.32  

AS-4 7 1.80 248 4.07 1.65  

Pitch Carbon       

P-55 10 2.0 380 1.90 0.5 -1.3 

P-100 10 2.15 758 2.41 0.32 -1.45 

Aramid       

Kevlar 49 11.9 1.45 131 3.62 2.8 -2.59 

Boron 140 2.7 393 3.1 0.79 5 

SiC          

Monofilament 140 3.08 400 3.44 0.86 1.5 
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Fiber diameters classify the various fiber morphologies, which consist of whiskers 

(<1 µm), continuous multifilament yarn (5-25 µm), and continuous monofilament 

(>100 µm). Whiskers are discontinuous reinforcements with high aspect ratio. 

Because of their small diameters, they have very few defects to initiate fracture and 

as a result, have much higher strengths than the discontinuous fibers. Silicon carbide, 

silicon nitride, carbon and potassium titanate whiskers are currently in use.  

 

1.2.2 Matrices 

 

Depending on the application, it is possible to view the role of the matrix in two 

distinct ways, namely, as the binder that contains the major structural elements 

(fibers) and transfers load between them, or as the primary phase which is merely 

reinforced by the secondary fiber phase. Fibers are of little use without the presence 

of a matrix material or a binder. The important functions of a matrix material also 

include the following: 

 

• The matrix isolates the fibers so that individual fibers can act separately. This 

stops or slows the propagation of the crack. 

• The matrix provides a good surface quality and aids in the production of net-

shape or near-net-shape parts. 

• The matrix provides protection to reinforcing fibers against chemical attack 

and mechanical damage (wear). 

• Depending on the matrix material selected, performance characteristics such 

as ductility, impact strength, etc. are also influenced. A ductile matrix will 

increase the toughness of the structure. For higher toughness requirements, 

thermoplastic based composites are selected. 

• The failure mode is strongly affected by the type of matrix material as well as 

its compatibility with the fiber. 
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1.2.2.1 Matrix Materials 

 

Matrix materials are categorized in three groups which are mainly polymers, metals 

and ceramics. 

 

1.2.2.1.1 Polymers 

 

A polymeric material is a collection of a large number of polymer molecules of 

similar chemical structure. In the solid state, these molecules are frozen in space 

either in a random fashion or in a mixture of random and orderly fashions. Polymers 

are divided into two categories: thermoplastics and thermosets.  

 

In a thermoplastic polymer, individual molecules are linear in structure with no 

chemical linking between them. Thus, with the application of heat and pressure, a 

thermoplastic polymer can be softened, melted, and reshaped as many times as 

desired. The most important advantage of thermoplastic polymers over thermosets is 

their high impact strength and fracture resistance, which in turn impart excellent 

damping characteristics to the composite material. On the contrary, thermoplastics 

exhibit poor creep resistance, especially at elevated temperatures, and they are more 

susceptible to solvents as compared to thermosets. The higher viscosity of 

thermoplastic resins makes some manufacturing processes more difficult. The 

examples of thermoplastic matrix materials are nylon, polypropylene, 

polyetheretherketone (PEEK) and polyphenylene sulfide.  

 

In a thermoset polymer on the other hand, the molecules are chemically joined 

together by cross-links. Once these rigid, three-dimensional structures are formed 

during polymerization reaction, the thermoset polymer can not be melted and 

reshaped. However, if the number of cross-links is low, it may be possible to soften 

it. Thermosets are brittle in nature and are used with some form of filler and 

reinforcement. They provide easy processability and better fiber impregnation, 
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because the liquid resin is used at room temperature for various processes. 

Thermosets offer greater thermal and dimensional stability, better rigidity, and higher 

electrical, chemical and solvent resistance. The most common resin materials used in 

thermoset composites are epoxy, polyester, vinylester, phenolics, polyamides and 

bismaleimides. 

 

1.2.2.1.2 Metals 

 

The metal matrix composites (MMCs) are materials consisting of metal alloys 

reinforced with continuous fibers, particulates or whiskers. Because of their ability to 

provide the needed strength at the lowest weight and least volume, they are attractive 

for the structural and nonstructural applications. MMCs are superior to polymers 

with their high shear modulus and ductility, tensile strength, small coefficient of 

expansion, resistance to moisture and dimensional stability. 

 

The two most commonly used metal matrices are based on aluminum and titanium, 

since these metals have comparatively low specific gravities and are available in a 

variety of alloy forms. MMC engine applications are produced and used for 

automobile engine cylinders die-cast from a carbon fiber-aluminum-Al2O3 material. 

Titanium MMCs are used in applications where performance is demanded without 

regard to cost-effectiveness. This is where one obtains high-temperature performance 

unattainable with conventional materials. 

 

1.2.2.1.3 Ceramics 

 

Ceramic fibers such as SiC and SiN4 use polysilane as the base material. Ceramic 

matrix composites (CMCs), in which ceramic or glass matrices are reinforced with 

continuous fibers, chopped fibers, whiskers or particulates, are emerging as a class of 

advanced engineering structural materials. CMCs currently have limited temperature 

applications but a large potential for much wider use in military, aerospace, and 
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commercial applications such as energy-efficient systems and transportation with 

their superior dielectric properties. 

 

There are also other specialty CMCs such as nanocomposites (made form reactive 

powders) and electroceramics. CMCs are unique in that they combine low density 

with high modulus, strength and toughness (contrasted with monolithic ceramics), 

and strength retention at high temperatures. They are among the stiffest materials and 

have high stiffness-to-weight ratios. Many have good corrosion and erosion 

characteristics for high temperature applications. Industrial uses of CMCs include 

furnace materials, energy conversion systems, gas turbines, and heat engines. They 

have been also used in jet fighters. Ceramic matrix composites mainly suffer from 

brittleness. 

 

1.3 Applications 

 

The primary usage of advanced composite materials is for aerospace applications. 

Aircraft are distinguished from the other vehicles by the fact that structural factors of 

safety are low and power-to-weight ratios are high. These levels are achieved by 

using materials with high specific material properties and precise design procedures. 

Airplanes, rockets missiles and various structural components of these, including 

engines and also satellite applications have been routinely produced with glass, 

carbon and kevlar composites. Composite components in aircraft applications are 

given in Table 1.3.1. 

 

The construction and civil structure industries are the second major users of 

composite materials. The driving force for the use of glass- and carbon-reinforced 

plastics for bridge applications is reduced installation, handling, repair, and life-cycle 

costs as well as improved corrosion and durability. It also saves a significant amount 

of time for repair and installation, and thus minimizes the blockage of traffic. 

Composite usage in earthquake and seismic retrofit activities is also popular. The 
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columns wrapped by glass/epoxy, carbon/epoxy and aramid/epoxy show good 

potential for these applications. 

 

Table 1.3.1 Composite Components in Aircraft Applications [3] 

 

Composite Components 

F-14 Doors, horizontal tails, fairings, stabilizer skins 

F-15 

 

Fins, rudders, vertical and horizontal tails, speed breaks, 

stabilizer skins 

F-16 Vertical and horizontal tails, fin leading edge, skins on vertical 

fin box 

B-1 Doors, vertical and horizontal tails, flaps, slats, inlets 

AV-8B Doors, rudders, vertical and horizontal tails, ailerons, flaps, fin 

box, fairings 

Boeing 737 Spoilers, horizontal stabilizers, wings 

Boeing 757 Doors, rudders, elevators, ailerons, spoilers, flaps, fairings 

Boeing 767 Doors, rudders, elevators, ailerons, spoilers, fairings 

 

 

The use of composites in marine industry dates back to World War II, when the first 

experiments with reinforced plastics were initiated. It has been realized that the most 

promising combination for marine applications would utilize glass fibers reinforced 

with either epoxy or polyester resins. Today the combination of thermosetting 

polyester resin reinforced with glass fabric is almost universally accepted as the 

principal marine composite, taking the advantages of resistance to environment 

including corrosion, rusting, and other forms of degradation, ability to mold 

seamless, nonleaking structures of complex shape, excellent weight and durability 

characteristics together with low maintenance cost and ease of repair. 
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Glass fibers are most often used in production of parts for passenger cars and 

commercial vehicles. The excellent impact and corrosion resistance of composites 

make them ideal materials for the vulnerable valance panel below the front or rear 

bumper. Nonmetallic composites are also finding many applications in parts like 

radiator fan shrouds, front fender inner panels, and splash panels that have 

traditionally been made from sheet steel. Since the automotive sector is cost 

sensitive, carbon fiber composites are not yet accepted due to their high material 

cost. 

 

Sports and recreation equipment suppliers are becoming major users of composite 

materials. The growth in structural composite usage has been the greatest interest in 

high-performance racing boats and sports goods, like golf shafts, tennis rackets, 

bicycle frames, snow skis, and fishing roads. These products are light in weight and 

provide superior performance, which helps the user easy handling and increased 

comfort. 

 

Appliance and equipment field using fiber-glass-reinforced plastics (FRP) is 

expanding. FRP bulk molding compounds (BMC) and sheet molding compounds 

(SMC) have proved effective for high-volume automotive exterior components and 

are finding increasing applications for bulkheads, base pans and enclosures of many 

different configurations in the appliance and equipment industry. Fiberglass 

reinforced thermoplastics are finding significant applications in components used in 

dishwashers, home laundry equipment, sewing machines, and doors as well as 

business machines, computers and pumps. 

 

1.4 Drawbacks 

 

Drawbacks of the composites are as follows: 

• The relationships between forces and deformations are much more 

complicated for anisotropic composites than they are for conventional 
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isotropic materials, and this can lead unexpected behavior. While a normal 

stress induces only normal strains, and a shear induces only shear strains in 

an isotropic material, a normal or shear stress may induce both normal and 

shear strains in an anisotropic composite.  

• A temperature change in an isotopic material causes expansion or contraction 

that is uniform in all directions, whereas a temperature change in anisotropic 

material may cause nonuniform expansion or contraction plus distortion. 

These so-called “coupling” effects have important implications for not only 

the analytical mechanics of composites but for the experimental 

characterization of composite behavior as well. 

• Directionally dependent properties make the analysis and design applications 

more difficult and require special expertise. 

• The material cost for composite materials is very high compared to that of 

steel and aluminum. 

• The lack of high-volume production methods limits the widespread use of 

composite materials. 

• Classical ways of designing products with metals depend on the use of 

machinery and metals handbooks, and design data handbooks. Designing 

parts with composites lack such books because of the lack of database. 

• Since a large portion of composites uses polymer based matrices, temperature 

resistance is limited by the plastic’s properties. 

• Solvent resistance, chemical resistance and environmental stress cracking of 

composites depend on the properties of polymers. Some polymers have low 

resistance to solvents and environmental stress cracking. 

• Composites absorb moisture which affects the properties and dimensional 

stability of the composites [1, 2, 3, 4, 5]. 
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1.5 Scope of the Current Study 

 

In this study, a finite element program is developed to analyze the nonlinear behavior 

of the laminated composite flat shells under transverse loading. The deformed 

coordinates of the laminates having various combinations of ply orientations are 

plotted within the elastic range until the first ply failure. The initiation of the damage 

is detected through three different failure theories which are integrated to the 

developed code, and the results are verified by the help of the commercial finite 

element program, ANSYS. 

 

The outline of the thesis is briefly as follows:  After the introductory part Chapter 1, 

which includes the basic information about composite materials as properties, 

application areas, constituents, and their manufacturing techniques together with 

drawbacks; the literature survey is presented in Chapter 2. Chapter 3 is the part 

where the plate/shell theories are clarified according to the level of complexity. First 

order shear deformation theory, constituting the backbone of the current analysis is 

also presented in this content. Chapter 4 is the part that deals with the failure criteria. 

In Chapter 5, the governing equations of the analysis are derived starting from the 

virtual work principle and the constitutive relations are given. Chapter 6 is the 

section of output data, their comparisons and discussion of the results, and the 

conclusions are given in the Chapter 7. 

 

 

 

 

 

 

 

 

 



 14 

CHAPTER 2  

 

 

LITERATURE REVIEW 

 

 

 

Literature review can be roughly categorized in two parts: In the first group of 

researches, the mainly concentrated subject is to construct the appropriate 

computational model and to implement the constitutive equations, most commonly to 

the finite element programs. The second group deals with the extension of the 

previous studies to work on failure based criteria. This concept can also be subtitled 

into many variations including: (1) limit theories, (2) polynomial theories, (3) strain 

energy theories, which are generally used to detect the failure initiation, or namely 

the first ply failure, and (4) property degradation models which are employed to 

inspect the total collapse of the laminate. 

 

Masud, Tham and Liu [6] presented a continuum based shear deformable finite 

element formulation of thick composite shells assuming the displacements and 

rotations finite while the strains are infinitesimal. The model was cast into a co- 

rotational framework which had been derived from updated Lagrangian procedure. 

The algorithm was based on the idea that if the load increment was small enough 

with respect to the element dimensions, consequently the incremental strains were 

also small and of the magnitude of small strains, so the quadratic terms in Green-

Lagrange strain tensor could be omitted. Numerical examples were carried on flat, 

cylindrical and spherical geometries with different boundary conditions and mesh 

densities using eight-node hexahedral mesh elements. Before operating with 

orthotropic composites, the model was tested with isotropic plates and shells. 
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Kumar and Palaninathan [7] studied the exact through thickness integration of 

laminated shells with constant and linearly varying Jacobian inverses. They found 

out that, the conventional degenerated shell element failed to converge during the 

three-dimensional integration, especially when the number of layers in the laminate 

increased. Four computational models were developed for transversely isotropic 

layers, including numerical integration in three dimensions in each layer, linear 

Jacobian inverse across the thickness, constant Jacobian inverse through the 

thickness and a fourth model was offered with further approximation of the second. 

The performances of the models were evaluated for numerical accuracy and 

computational efficiency and it was concluded that fourth model was the best to fit.  

 

Hossain, Sinha and Sheikh [8] analyzed anisotropic, doubly curved, moderately thick 

composite shells. The approach was based on MITC (Mixed Interpolation of 

Tensorial Components) technique. With the imposition of higher order MITC 

elements, three dimensional integration was reduced into two dimensions and by this 

way, computational time was decreased since the quantities involved in the element 

matrices were independent of the thickness variable. Out-of-plane stresses have been 

plotted with different ply orientations, curvatures, loading conditions and element 

types. 

 

Dau, Polit and Touratier [9] analyzed the nonlinear behavior of composite and 

sandwich plate/shell structures with von-Karmann assumptions. Five degrees of 

freedom were assumed to obtain a cosine distribution of transverse shear stresses 

avoiding shear correction factors. Triangular elements were introduced to the finite 

element mesh. Boundary conditions were satisfied at top and bottom surfaces of the 

shells. Continuity conditions between layers of the laminate for both shear and 

transverse stresses were ensured. Transverse shear deflection through thickness was 

numerically evaluated with different meshes and boundary conditions, and compared 

with experimental results of the former studies. 
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Klinkel, Gruttmann and Wagner [10] derived a continuum based three-dimensional 

shell element. Finite element procedure was based on enhanced assumed strain and 

assumed natural strain methods in order to prevent shear locking. Eight-node 

brickelement mesh within linear elastic orthotropic layers was analyzed. In the model 

tri-linear shape functions were imposed to interpolate the geometric configuration.  

 

Brank and Carrera [11] presented a model for composite structures introducing 0
C -

continuity of displacements into the first order shear deformation theory satisfying 

the continuity of the interlaminar equilibrium conditions, taking into account 

discontinuity of derivatives of displacements and proposing a piecewise linear 

variation of displacement field across the thickness. Reissner’s mixed variational 

formulation was used and assumed natural strain method was imposed to the 

constitutive equations. Also, shear stresses were assumed according to a layerwise 

independent model. Linear and nonlinear examples were compared throughout the 

developed submodels.  

 

Alfano, Auricchio, Rosati and Sacco [12] formulated 4 and 9-node MITC (Mixed 

Interpolated Tensorial Components) elements of laminated composite plates. The 

aim was to evaluate the out-of-plane stresses by the regularization of the extensional 

and flexural strain fields. They rearranged the displacement fields of second and third 

derivatives using least square techniques to work with MITC elements, since this 

approach provides continuity of displacement and rotation fields only up to their first 

derivatives. Numerical results were compared with regular and highly distorted 

meshes as well as analytical solutions. 

 

Yu, Hogdes and Volovoi [13] simplified three dimensional anisotropic elasticity 

problem into two dimensions (an equivalent single layer theory) with a formulation 

based on asymptotic analysis. The resulting algorithm was a Reissner-like plate 

theory which can also be implemented in a one-dimensional commercial finite 
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element program. Results of the developed theory are compared with the exact 

solutions in terms of stress components. 

 

Wung [14] studied a first-order shear/fourth-order transverse deformation theory of 

laminated composite shells. The assumption of zero transverse shear stress and 

ignorance of non-zero surface tractions in the first order shear and classical plate 

theories were found unrealistic for failure prediction. Since the omission of  the 

normal stress would not just yield less accurate results but also would take more 

computational effort to satisfy the numerical convergence criterion, higher order 

shear deformations were introduced to compensate these defects. To improve the 

computational efficiency, explicit through thickness integration depending upon the 

updated Lagrangian formulation was used. 

 

Rohwer and Rolfes [15] derived a procedure for fiber reinforced composites in plane 

stress condition accounting for all six components of stress tensor. Equilibrium 

conditions were applied to locally determine the stress components in transverse 

direction. In this way, transverse shear stresses with first derivatives and transverse 

normal stresses with second derivatives of the membrane stress were imposed. To 

ease the computational efficiency, in-plane derivatives of the membrane and twisting 

forces and mixed derivatives of the membrane forces were omitted. The procedure 

was observed to work well with plates and shells as well as cylinders even under 

thermal loads.  

 

Goswami [16] presented a finite element formulation for three-dimensional stress 

analysis of thick and thin plates with higher order shear deformation theory. 

Parabolic shear strains and linearly distributed normal strains did not require any 

shear correction factors during the analysis. Comparisons under different mesh 

refinements, ply orientations, boundary conditions and loadings provided satisfactory 

convergence.  
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Chaudhuri and Hsia [17] analyzed the effect of thickness on the large deformation 

analysis of the curved laminated shells. Total Lagrangian formulation was adapted to 

a nonlinear theory accounting for layerwise linear displacement distribution through 

thickness.  

 

Malekzadeh and Setoodeh [18] employed DQ (differential quadrature) method to 

investigate the large deformation characteristics of thin and moderately thick 

laminated plates. In this way, the nonlinear equations and boundary conditions were 

constructed by DQ rules. Constitutive equations were rearranged in order to work for 

cross-ply lamina orientations since the study only concentrated on symmetric and 

anti-symmetric cross-ply laminates. 

 

Limit analyses are generally recovered by the use of Mises-like theories, especially 

with Tsai-Wu criterion, which is the adaptation of failure envelopes used in isotropic 

elasticity to anisotropy. While the investigation of damage onset is generally carried 

out with maximum stress, Tsai-Wu, Tsai-Hill, Azzi-Tsai theories or in some cases 

with the modified or combined versions of these popular criteria, the property 

degradation and the ultimate collapse of the laminates are determined with the 

implementation of  Hashin or Chang-like theories. 

 

Parhi, Bhattacharyya and Sinha [19] indicated the first ply failure of the laminate by 

the direct implementation of Tsai-Wu theory to their model. 

 

Huang [20] applied bridging model technique to characterize nonlinearity of 

composites undergoing inelastic deformation. He constructed the compliance matrix 

as a combination of fiber and matrix materials instead of the treating the structure 

with the united properties of the two constituents. The model was incorporated into a 

commercial finite element program. Laminates under bending and in-plane loads 

were analyzed with triangular and quadrilateral meshes and outputs were verified 

with experiments.  
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Huang et al. [21] also presented another version of bridging model dealing with the 

effect of matrix plasticity on ultimate strength of composite laminates introducing 

instantaneous stiffness of the lamina using its constituent properties and fiber volume 

fraction. Tsai-Wu criterion was applied to the lamina level and maximum normal 

stress criterion was applied to constituent level.  In this micromechanical model, 

fibers were treated as transversely isotropic and linearly elastic until rupture while 

matrix was isotropically elasic-plastic. 

 

Lin and Hu [22] introduced a mixed failure criterion which was composed of Tsai-

Wu and Maximum Stress theories. This criterion was used to determine the failure 

onset and proposed degrading model was used to represent post-damage mode. The 

material was assumed to behave elastic-plastic and brittle to failure. Nonlinear 

constitutive behavior was analyzed under in-plane loading, and the outputs of the 

subroutine attached to a commercial finite element program was observed to agree 

with the experimental ones.  

 

The formulation generated by Padhi, Shenoi, Moy and Hawkins [23] is one of the 

few studies dealing with progressive failure of laminated plates under transverse 

loading. Nonlinear response of composite plates with linear elastic material 

properties was analyzed with a number failure criterion including Hashin, Tsai-Wu, 

Hoffman, Azzi-Hill and maximum stress. In this way, an algorithm based on stiffness 

reduction of the failed element was progressed and integrated to a commercial finite 

element program in order to determine first ply failure and ultimate collapse of the 

structures with different aspect ratios. Achieved numerical results were found to 

correlate well with the experimental data.  

 

Spottswood and Palazotto [24] worked on the initial and progressive failure of the 

curved composite panel designed to resist transverse loading through the use of 

Hashin failure criterion. As the composite shell failed, corresponding stiffness was 

reduced and constitutive equations were rearranged in the computer program. Fiber 



 20 

failure, matrix failure and delamination were considered upon the developed SLR 

(simplified large rotation/displacement) theory.  

 

Prusty, Satsangi and Ray [25] integrated eight-noded isoparametric quadratic shell 

element to the first order shear deformation theory in order to investigate first ply 

failure analysis of laminated panels under transverse loading. Yeh-Stratton criterion 

was used to determine the failure loads together with the well known theories 

maximum stress, maximum strain, Tsai-Wu, Tsai-Hill and Hoffman. Simply 

supported boundary condition was considered for cross-ply and anti-symmetric angle 

ply plates with different lamination schemes while a thirteen-layer shell roof was 

analyzed for varying ratio of radius of curvature to the span. The results were 

compared with those of the previously published studies. 

 

In [26] and [27], a finite element based progressive failure analysis dealing with the 

transverse loading of composite plates was presented. The formulation was carried 

out for linear and elastic range. After estimating the failure onset, the related stiffness 

of the failed lamina had been discounted completely, i.e., the model was degradated 

according to the failure mode of the weakest layer. Then, the stiffness matrix was 

rearranged with the remaining laminae and stresses and strains were recalculated 

together with the displacements to compute the failure load of the second weakest 

lamina which would fail immediately under increased share of stresses. After a ply-

by-ply analysis, ultimate failure load of the laminate was achieved.  
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CHAPTER 3 

 

 

COMPOSITE PLATE/SHELL THEORIES 

 

 

 

There are several theories dealing with composite plates and shells, which are 

basically extensions of isotropic elasticity theories. These can be classified among 

the complexity of stress-strain field assumptions they propose.  

 

3. 1 Equivalent Single Layer (ESL) Theories 

 

Composite laminae are bonded together to form a laminate with desired thickness 

and stiffness. In most applications, the thickness of the laminate is small compared to 

the planar dimensions [28]. For this reason, 3-D elasticity theories are reduced into 

that of 2-D ones by making assumptions concerning with the variation of 

displacements and stresses among the thickness of the laminate.  

 

In the ESL approach, all material layers constructing the structure are treated as one 

equivalent anisotropic layer and classical plate theory is employed ignoring the 

transverse shear [6]. The displacements u and v are assumed to vary linearly through 

the thickness of the laminate while ω  is constant across the transverse direction and 

hence the shear strains are continuous at the interface between two adjacent layers. 

The main advantage is the low computational cost, but the main deficiency is that 

continuity of the shear strains at the interfaces results in inherent shear stress 

discontinuity in the model [29]. 
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3.1.1 Classical Plate Theory 

 

Classical plate theory is an extension of Euler-Bernoulli beam theory to plates, and is  

known as the Kirchhoff plate theory. This theory is based on the assumptions that a 

straight line perpendicular to the plane of the plate is 1) inextensible, 2) remains 

straight, and 3) rotates such that it remains perpendicular to the tangent to the 

deformed surface. These assumptions are equivalent to specifying [30] 

 

0,0,0 === xzyzz εεε                                                                                  (3.1.1.1) 

 

Classical plate theory does not account for transverse shear deformation. It is 

extensively used to analyze plates whose length-to-thickness ratio is of the order of 

25 or greater (thin plates). When the plate’s properties are anisotropic and the length-

to-thickness ratio is less than 25, the effect of transverse shear deformation is 

significant. Thus, to avoid underestimation of the deflections and overprediction of 

the natural frequencies and the critical buckling loads, a refined theory must be 

selected [31]. This theory is inadequate for the analysis of composite plates/shells 

due to high ratio of in-plane Young’s modulus to the transverse shear modulus. In 

addition, ignorance of interlaminar shear strains and stresses, which play a vital role 

in delamination mode gives rather unreliable results [16]. So, it is not very practical 

to use classical plate theory in industrial applications for convenience. 

 

3.1.2 First Order Shear Deformation Theory 

 

First order shear deformation theory has the most widespread application area in the 

literature since it provides a good compromise between equivalent single layer and 

layerwise theories. The theory is built up with the idea that transverse normals do not 

remain perpendicular to the midsurface after deformation, which introduces shear 

strains to the model and gives improved response as compared to the classical plate 

theory. Other assumptions can be summarized as follows: 
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1. The transverse normal does not stretch, setting out of plane normal stress 33σ  

zero which requires that ω  not be function of thickness coordinate, z. 

Consequently, it can be concluded that, the degrees of freedom are 

automatically reduced to five including three translations and two rotations.  

2. Transverse shear strain components are constant through the thickness, which 

yields a constant value of shear strain through the thickness coordinate and 

needs shear correction factors, which are dimensionless quantities to 

compensate the effects of constant state of shear strains in the first order shear 

deformation theory and the quadratic or higher order distribution of shear 

strains in the elasticity theories.  

3. Shear stresses are continuous piecewise quadratic functions of the thickness 

coordinate.  

 

Like classical plate theory, first order shear deformation theory yields poor 

interlaminar shear stresses too. The interlaminar shear stresses obtained from the 

FSDT through constitutive relations are layerwise constant values which can not 

satisfy the shear stress continuity conditions and the equilibrium conditions at the 

interlaminar interfaces. To overcome this deficiency, the theory can be improved in 

the form of higher-order shear deformation theories [14]. 

 

3.2 Three Dimensional Elasticity Theories  

 

3.2.1 Traditional 3-D Elasticity Formulations 

 

As the laminates get thicker, shear deformable models are mostly inadequate and 

three dimensional theories enter the scene to provide improved response. The point is 

to express the through thickness component of the displacement field in higher order 

terms which leads to the omission of shear correction factors automatically. By the 

implementation of 3-D elasticity equations, a more reliable stress field is obtained 

and warping problems that are impossible to solve with 2-D theories can also be 
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practiced. The formulation concludes more precise results and consequently a more 

realistic failure prediction but the model is difficult to construct and also expensive. 

 

3.2.2 Layerwise Theories 

 

Equivalent single layer theories are often inadequate to represent the 3-D stress 

domain or even global response accurately for thicker structures. For thin laminates, 

the error introduced due to discontinuous interlaminar stresses (transverse stresses at 

the interface of two layers) can be negligible. However, for thick laminates, the ESL 

theories can give erroneous results for all stresses, requiring the use of more 

sophisticated theories like layerwise ones. To overcome this issue, layerwise theories 

are proposed by Reddy [28], which assume separate displacement field within each 

layer. The displacement-based layerwise theories can be subdivided into two classes: 

 

1. The partial layerwise theories that use layerwise theories which use layerwise 

expansions for the in-plane displacement components but not the transverse 

displacement component, and 

2. The full layerwise theories that use layerwise expressions for all three 

displacement components. 

 

They lead to accurate results, especially for very thick laminates and are particularly 

useful for analyzing local effects [12]. On the other hand, finite element formulations 

in order to construct layerwise analyses need serious expertise are expensive in terms 

of CPU time. 

 

3.3 Multiple Model Methods 

 

The ESL theories, partial and full layerwise models have their own advantages and 

disadvantages in terms of solution accuracy, economy and ease of implementation. 

Used alone, none of these three types of models is suitable for general laminate 
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analysis since each is restricted to a limited portion of the laminate modeling 

spectrum due mainly to the heterogeneous nature of composite materials and the 

wide range of scales of interest. However, by combining all three model types in a 

multiple model analysis which denotes any analysis method that uses different 

mathematical models or different levels of discretization for different subregions of 

the finite element domain; or global-local analysis, a wide variety of laminate 

problems can be solved with maximum accuracy and minimum cost. Global-local 

analysis is typically used when there exists a particular subregion of interest that 

occupies a small portion of the computational domain. Typically, the global region 

(the entire computational domain) is analyzed with an economical, yet adequate 

model, the local region might be modeled with 3-D finite elements. The task often 

requires the joining of incompatible finite element meshes and/or incompatible finite 

element mathematical models. In the case of incompatibility, the numerical model 

used to implement the mathematical models may be same or different; often it is the 

finite element method.  

 

Multiple model method is simply the superimposition of two or more displacement 

fields in the same finite element domain with the integration of different 

mathematical models in order to capture localized 3-D stress regions in a tractable 

manner. In this way, solution economy can be maximized without sacrificing 

solution accuracy [28]. 
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CHAPTER 4 

 

 

FAILURE THEORIES 

 

 

 

Failure analysis of a laminate is much more complex than that of a single lamina. 

The first ply failure indicates the failure of the weakest lamina where the stress 

exceeds the allowable strength level [26]. The determination of first ply failure load 

is very essential in understanding the failure process leading to total collapse. The 

initial failure of a lamina is governed by the exceeding limit prescribed by a failure 

criterion [19]. 

 

The damage modes are dependent on loading, stacking sequence and specimen 

geometry. There are many theories to predict the onset of failures and their 

progression. Most of the failure criteria are based on the stress state in the lamina. An 

accurate kinematic model of the laminate is necessary to determine the stress and 

strain fields which are the key parameters of the design to be controlled [28].  

 

In this study, first ply failures of several laminates are analyzed among the maximum 

stress, Tsai-Wu and Tsai-Hill criteria. During the execution of all the theories 

mentioned, stresses are transformed from global coordinates to material directions in 

each ply. Laminates are considered orthotropic and analyzed with a macroscopic 

approach. 

 

4.1 Maximum Stress Criterion 

 

This criterion predicts failure when any stress component along a principle axis 

exceeds the corresponding strength in that direction. When 1σ , 2σ , 6σ are the stress 



 27 

components in a lamina along the principal material axes, the criterion is expressed 

as 
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The failure surfaces for 06 =σ take the form of a rectangle. Due to the different 

values of longitudinal and transverse tensile and compressive strengths, the rectangle 

is not symmetrical with respect to both 1σ  and 2σ  axes. The criterion does not 

account for interaction between the stress components, that is, the critical value of a 

stress component is independent of the values of the other stresses. Failure is 

predicted by the least of the three equations [32]. 

 

4.2 Tsai-Wu Criterion (Interactive Tensor Polynomial) 

 

The failure surface for this quadratic polynomial is of the form of an ellipse, 

independent of ply orientations and thickness of the laminate. The Tsai-Wu failure 

envelope is expressed as: 

 

1=+ jiijii FF σσσ   )6,...1,( =ji                                                                  (4.2) 

 

where iσ  is the stress tensor component in the material coordinates and iF , ijF  are 

the strength tensor components [6]. Points lying on the domain boundary locate 

stress states at which the material has exhausted its strength capabilities [33].  

 

For plane stress condition the equation reduces to: 

 

12 2211

2

6662222112

2

111 =+++++ σσσσσσσ FFFFFF                                            (4.3) 



 28 

In the above expression, the constants TX , CX , TY , CY  represent longitudinal strength 

in tension, longitudinal strength in compression, transverse strength in tension and 

transverse strength in compression, respectively. This criterion is regarded as a 

superior one compared to maximum stress theory since it includes additional 

interactive terms. It is also found mathematically convenient for any kind of 

programming. 

 

The stress tensor components iF  and ijF  are written in their explicit form as: 
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The term 12F  is sometimes omitted form the general equation representing the failure 

surface, since it is difficult and expensive to determine experimentally because it 

needs biaxial testing. Another important limitation of this approach is that it has no 

provision to include the effect of the operating failure mechanism during the failure 

process [34]. 

  

4.3 Tsai-Hill Criterion (Distortional Strain Energy Polynomial) 

 

This criterion is an extension of distortional strain energy or Von Mises yield 

criterion to account for anisotropy. For biaxial state of stress, it is modified as: 
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denoting a failure surface where stresses 1σ , 2σ , 6σ  refer to the principle material 

axes. For the failure to be avoided, left hand side of the equation should not exceed 1. 

(4.3.1) does not distinguish between the tensile and compressive strengths. However, 

it is suggested that the strengths X  and Y take the values TX or CX  and TY  or CY  

being compatible with the signs of the corresponding stresses [32].  

 

It has been experimentally proved that Tsai-Hill theory appears to be much more 

applicable to failure prediction for glass-epoxy composites than maximum stress or 

maximum strain theories [35].  
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CHAPTER 5 

 

 

GOVERNING EQUATIONS OF THE ANALYSIS 

 

 

 

5.1 Variational Formulation 

 

The relation between the deformed (initial) and undeformed states of a body of 

volume 0V  and surface area 0A  is defined as 

 

iii uXx +=                                                                                                              (5.1)             

 

where ix  is the Eulerian (spatial) and iX  is the Lagrangian (material) coordinates. 

When the reference surface of the undeformed body coincides with its middle 

surface, it follows that [13] 

 

 x = x (X, t)                                                                                                              (5.2)    

 

If the virtual work principle is applied over a virtual displacement ixδ  

 

00

00

dAxTdVES k

A

kij

V

ij δδ ∫∫ =                                                                                         (5.3)    

 

In the equation above, ijS  is the second Piola-Kirchoff stress tensor, ijE  is the 

Lagrangian strain tensor, kT  is the surface traction vector at a spatial point referred to 

the undeformed area. The material time derivative of (5.3) gives 

 



 31 

00

00

dAxTdVESES k
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+                                                                    (5.4) 

 

Imposing the well-known equations 
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and 
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where ρ  and 0ρ  are densities in deformed and reference configurations respectively, 

and klσ  is the Cauchy stress tensor. One obtains 
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                                                (5.7)    

 

where klσ  is the Truesdell stress rate and kv  is the velocity.  

 

The velocity gradient can also be divided into its symmetric and skew-symmetric 

parts Dij, the rate of deformation, and Wij, the spin tensor as 

 

klkl

l

k WD
x

v
+=

∂

∂
                                                                                                       (5.8)    
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klσ  can be written using the mentioned property of the velocity gradient through the 

existence of  the Jaumann rate of Cauchy stress tensor, *

klσ  as  

 

kmmllmkmkl

m

m

klkl DD
x

v
σσσσσ −−

∂

∂
+= ∗                                                                   (5.9)    

 

Imposing (5.9) into (5.7) gives 
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∂
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                          (5.10)   

 

Cauchy and Kirchoff stress tensors klσ  and klτ , and their Jaumann rates are related 

each other as 

 

klkl σ
ρ

ρ
τ 0=                                                                                                            (5.11) 

 

kl

m

m

klkl
x

v
σστ

∂

∂
+= ∗∗                                                                                                 (5.12) 

 

Assuming 1/0 ≈ρρ , and 1<<∂∂ km xv , for incompressible materials, klσ  and klτ  

become identical. One can write 

 

mnklmnkl DC=∗τ                                                                                                        (5.13) 

  

where klmnQ  is the constitutive relation for composites. Equation 5.10 finally 

becomes  
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or  

 

( ) dATvdVWDDQDD
A

T

V

TTT
•

∫∫ =+− δσδσδδ ~ˆ2                                                    (5.15) 

 

5.2 Kinematic Displacement Fields 

 

According to the shear-deformable theory of Mindlin, displacement field of any 

point in a shell whose midsurface coincides with the xy -plane can be written as [10]: 

 

),(),( yxzyxuU yxx θ+=                                                                                       (5.16) 

                                                                                   (5.17) 

),( yxuU zz =                                                                                                         (5.18)         

 

where zyx uuu ,,  are displacements of the midpoint of the laminate; xθ and yθ are 

rotations of transverse normal  about x  and y axes respectively. From the above 

equation set, velocity field is expressed as: 

 

),(),( yxzyxvV yxx

•

+= θ                                                                                       (5.19) 

),(),( yxzyxvV xyy

•

+= θ                                                                                       (5.20) 

),( yxvV zz =                                                                                                          (5.21) 

 

In order to prevent shear locking, anisoparametric approach is considered and shape 

functions are redefined according to the quadratic deflection assumption suggested 

),(),( yxzyxuU xyy θ+=
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by Tessler and Huges. Hence, velocity field iv  and rotations iθ  are written in terms 

of triangular area coordinates iξ  for 3,2,1=i ; 1,3,2=j ; 2,1,3=k  : 

 

i

xix vv ξ=                                                                                                                 (5.22) 

i

yiy vv ξ=                                                                                                                (5.23) 

••

−+−+= i

yjikikj

i

xjikikj

i

ziz aabbvv θξξξξθξξξξξ )(
2

1
)(

2

1
                                  (5.24) 

••

= i

xix θξθ                                                                                                               (5.25) 

••

= i

yiy θξθ                                                                                                              (5.26) 

  

The quadratically interpolated function zv  can also be expressed in compact form 

using quadratic shape functions iN  as 

 

i

ziz vNv =                                                                                                                (5.27) 

 

where  

 

)12( 111 −= ξξN                                                                                                     (5.28)                         

)12( 222 −= ξξN                                                                                                    (5.29) 

)12( 333 −= ξξN                                                                                                    (5.30) 

214 4 ξξ=N                                                                                                             (5.31) 

325 4 ξξ=N                                                                                                             (5.32) 

136 4 ξξ=N                                                                                                             (5.33) 
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Figure 5.2.1 Representation of a) isoparametric b) anisoparametric triangular element 

 

 

Table 5.2.1 Natural Coordinates for Isoparametric and Anisoparametric Approach 

(The coordinates are linearly independent and 1321 =++ ξξξ  for each node in each 

set (see Figure 5.2.1)) 

 

 

 
1ξ  2ξ  3ξ  

Isoparametric 1  1 1 

Anisoparameric  
2

1  
2

1  
2

1  

 

It is also possible to establish the velocity vector v  in terms of the element degrees 

of freedom vector q : 

 

v =N q                                                                                                                    (5.34) 
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In the above expression: 
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1
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( )
jikkiji ba ξξξξζ −=+

2

1
3                                                                                      (5.38) 

 

for 3,2,1=i ; 1,3,2=j ; 2,1,3=k  

 

From Equation 5.8, the tensors Dij and Wij defined in contracted notation gives 
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Introducing the rate of deformation matrix D 
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xx zv
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v
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If  the matrix D
*
 is written in terms of nodal variables in the form  

 

 D
*
= Bq                                                                                                                  (5.49) 

 

Equation 5.48 is refined as 
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D = HBq                                                                                                                (5.50) 

 

where  

 

B

































+++

−−−

−−−

=

000000000

000000000

000000000000

000000000000000

000000000000000

000000000000

000000000000000

000000000000000

3129,32118,21107,1

633,3522,2411,1

,3,3,2,2,1,1

,3,2,1

,3,2,1

,3,3,2,2,1,1

,3,2,1

,3,2,1

ξξξξξξ

ξξξξξξ

ξξξξξξ

ξξξ

ξξξ

ξξξξξξ

ξξξ

ξξξ

FFFFFF

FFFFFF

xxx

yyy

yxyxyx

yyy

xxx

xYxyxy

Yyy

xxx

 

   (5.51) 

 

and the spin tensor, ijW  
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or 
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W = GW
*
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where 

 

W
*
= Rq

 
                                                                                                       (5.54) 

 

and 
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(5.55) 
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finally 

 

W = GRq                                                                                                            (5.56) 

 

In both matrices B and R 

 

( )( ) ( )( )( )
1,33,1131,22,1211 5.0 ξξξξξξξξ yyyy yyyyF +−++−−=                            (5.57) 

( )( ) ( )( )( )
2,11,2212,33,2322 5.0 ξξξξξξξξ yyyy yyyyF +−++−−=                          (5.58) 

( )( ) ( )( )( )
3,22,3323,11,3133 5.0 ξξξξξξξξ yyyy yyyyF +−++−−=                           (5.59) 

( )( ) ( )( )( )
1,22,1121,33,1314 5.0 ξξξξξξξξ yyyy xxxxF +−−+−−=                             (5.60) 

( )( ) ( )( )( )
2,33,2232,11,2125 5.0 ξξξξξξξξ yyyy xxxxF +−−+−−=                            (5.61) 

( )( ) ( )( )( )
3,11,3313,22,3236 5.0 ξξξξξξξξ yyyy xxxxF +−−+−−=                            (5.62) 

( )( ) ( )( )( )1,33,1131,22,1217 5.0 ξξξξξξξξ xxxx yyyyF +−−+−−=                            (5.63) 

( )( ) ( )( )( )2,11,2212,33,2329 5.0 ξξξξξξξξ xxxx yyyyF +−++−−=                           (5.64) 

( )( ) ( )( )( )3,22,3323,11,3139 5.0 ξξξξξξξξ xxxx yyyyF +−++−−=                           (5.65) 

( )( ) ( )( )( )1,22,1121,33,13110 5.0 ξξξξξξξξ xxxx xxxxF +−−+−=                               (5.66) 

( )( ) ( )( )( )2,33,2232,11,21211 5.0 ξξξξξξξξ xxxx xxxxF +−−+−=                              (5.67) 

( )( ) ( )( )( )3,11,3313,22,32312 5.0 ξξξξξξξξ xxxx xxxxF +−−+−=                              (5.68) 

 

ix  and iy ( 3,2,1=i ), are the local coordinates of the nodes. 

 

Enforcing 5.50 and 5.54 into 5.15 gives 

 

∫ −
A

TTTT BqBqQBq δδ 2( +Bqσσσσ̂ RqTδ )~Rqσσσσ dA 
••••

∫∫∫∫==== TNq
A

TTδ dA                     (5.69) 
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N denotes the total number of layers and nh , the distance from the midsurface of the 

shell to the bottom of the nth [36]. 

 

5.3 Constitutive Equations  

 

The stress-strain relations for an orthotropic material in principal material 

coordinates can be written in matrix form as follows: 

 

 

 

Figure 5.3.1 Laminated flat shell and global reference axes  with N denoting number 

of layers [37] 
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In material coordinates ztl ,,  
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Imposing the assumption 03 =σ : 
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where the contracted notation ijQ  represents the elements of the reduced stiffness 

matrix , and 
2

k is the shear correction factor which is taken here as 6/5 . 

 

2344

2112

1
11

1

GQ

E
Q

=

−
=

υυ

   

1355

2112

121
12

1

GQ

E
Q

=

−
=

υυ

υ

  

1266

2112

2
22

1

GQ

E
Q

=

−
=

υυ

                                            (5.75) 

 

 

In local coordinates zyx ,,  
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Introducing the transformed reduced stiffness matrix 

 

TQTQ T=                                                                                                             (5.77) 

 

where 
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The matrix T transfers the local coordinate system of the shell by defining the angle 

θ  between the triangular element mesh and the fiber angle orientation as follows 

 

 

θcos''

lklk iiii =⋅                                                                                                 (5.79) 
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Figure 5.3.2 Definition of transform angle 

 

:mθ  Angle between global axis X and local axis x 

fθ  :  Fiber angle (Angle between global axis, X and principal material direction, l) 

θ  : Transformation angle (Angle between local axis, x and principal material          

direction, l) 

 

5.4 Coordinate Transformation 

 

Triangular area coordinates or natural coordinates are related to that of Cartesian 

system by the equation 5.4.1. This transformation is necessary in order to switch 

from one system to the other. Local quantities are transformed to global one to 

construct a proper stiffness matrix using the mapping relationships below 

 

( )∑
=

=
3

1

,
i

iixx ηξψ                                                                                                    (5.80) 

( )∑
=

=
3

1

,
i

iiyy ηξψ                                                                                                    (5.81) 

 

The following correlation can also be specified in global coordinates that 
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The inverse of 5.4.1 yields: 
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or  

( )ycxba
A

iiii ++=
2

1
ξ     3,2,1=i                                                                        (5.84) 

 

where  

 

321 AAAA ++=                                                                                                    (5.85) 

23321 yxyxa −=         31132 yxyxa −=       12213 yxyxa −=                                 (5.86)       

321 yyb −=                 132 yyb −=              213 yyb −=                                       (5.87) 

231 xxc −=                 312 xxc −=               123 xxc −=                                        (5.88) 

 

The Jacobian is derived from 5.80 to 5.83 as 
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In the form of partial derivatives of the shape functions via the chain rule 
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Figure 5.4.1 Configuration of the element 

 

5.5 Numerical Integration  

 

In order to evaluate the derived functions and to adapt them into a computer 

algorithm, the integral forms must be analytically calculated in a practical and 

convenient way over the finite element domain. The global stiffness matrix is 

constituted in this way with the employment of Gauss quadrature formula. 

 

The integrated functions are approximated by computing the function values at the 

Gaussian points ( )ηξψ ,i , the abscissas of the quadrature points within the element or 

simply integration points, through the equation 
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( ) ( )ii

n

i

i FwddF ηξηξηξ ,,
1

∑∫
=Ω

=                                                                            (5.92) 

 

where n is the number of integration points and iw  denotes the weighting functions 

that varies according to n. In the present formulation; 3=n , 3/1321 === www . It 

should also be pointed out that in the case of quadratic triangle 

 

( ) ( ) 21321 ,,, ξξξξξηξηξ ddFddF ∫∫
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=                                                                 (5.93) 

 

( ) ( )iii

n

i

i FwddF 221

1

21321 ,,,, ξξξξξξξξ ∑∫
=Ω

=                                                          (5.94) 

 

The jacobian is imposed to the element stiffness matrix eK , and the term dV  in the 

eK  is written in the form of natural coordinates as  

 

=dV det J 321 ξξξ                                                                                             (5.95) 

 

5.6 Convergence Criterion 

 

Throughout the solution procedures of a nonlinear analysis, the basic equation to be 

solved is [38] 

 

 
t+∆t

R - 
t+∆t

F = 0                                                                                                     (5.96) 

                                                                                       

In the expression above, 
t+∆t

R stores the externally applied loads and 
t+∆t

F is the 

vector of nodal point forces that are equivalent to the element stress. Since the nodal 

point forces 
t+∆t

F vary according to the nodal point displacements, equation 5.96 
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should be iterated. The aim is to evaluate the element configuration at time tt ∆+ , 

and it is assumed that the deformation state at time t is known, then 

 

t+∆t
F = 

t
F + F                                                                                                        (5.97) 

                                                                                                   

where F is the increment in nodal point forces corresponding to the increment in 

element displacements and stresses from time t to tt ∆+ . This matrix can be 

approximated using the stiffness 
t
KT  as 

 

F ≅  t
KT U                                                                                                               (5.98) 

 

where U is the vector of incremental nodal point displacements and 

 

t
KT =  t∂ F / t∂ U                                                                                                    (5.99) 

                                                                                                            

Substituting (5.98) to (5.97) gives 

 

t
KT U = 

t+∆t
R- 

t
F                                                                                                   (5.100)                                 

                                                                                                  

and solving for U, an approximation of the displacements at time tt ∆+  can be 

calculate by 

 

t+∆t
U ≅  

t
U + U                                                                                                     (5.101)                         

                                                                                                       

Having calculated an approximation to the displacements corresponding to time 

tt ∆+ , one can proceed to the next time increment with the Newton-Raphson 

equations 
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t
KT U = 

t+∆t
R - 

t
F                                                                                       

                                                                                                                             (5.102)                                         

t+∆t
U 

(i)
 ≅  

t+∆ t
U + ∆∆∆∆U

(i)
  

                                                                                     

In order for the incremental solution scheme based on iterative methods to be 

effective, a realistic criterion should be used for termination of the iteration to see 

whether the solution has converged within the present tolerances or it is diverging 

from the true value [17] 

 
 

The following inequality  

 

CON
U

U

tt

i

≤
∆

∆+

)(

                                                                                     (5.103) 

 

is employed to be satisfied within the user determined tolerance range, CON. In 

Equation 5.103,
 t+∆t

U is the nodal point displacement and it is approximated. It is 

regarded as the last calculated value of  
t+∆t

U 
(i)

  [36].  

 

5.7 Solution Algorithm 

 

Constrained nodes are not included in the stiffness matrix, so further mathematical 

operations of the finite element model take place within the unconstrained ones in 

order to save memory. In this way an array including all degree of freedoms per 

unconstrained node is established. Then element connectivity array is constructed. 

This matrix is a kind of compact addressing system that links the mesh elements to 

the corresponding nodes that they are enclosed with. 

 

Global stiffness matrix is simply computed as  
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∑=
i

iKK                                                                                                           (5.104) 

 

where the matrix K
i 
is the stiffness matrix of the ith element and summation goes 

over all elements in the assemblage. Since the matrix is symmetric, only the data 

above the diagonal of the stiffness matrix K ( ijk ), is stored. To locate the rows with 

zero elements, km , half-bandwidth of the stiffness matrix is introduced. For 

kmij +> , the elements of K are zero. Defining by im , the row number of the first 

nonzero element in column i , the variables im , ni ,,1 K= , define the skyline of the 

matrix, and the variables imi −  are the column heights. The column heights are 

determined from the connectivity arrays of the elements by evaluating im , from the 

previously mentioned formula. Furthermore, half-bandwidth of the stiffness matrix, 

km equals { }mi −max , ni ,,1= ; it is equal to the maximum difference in global 

degrees of freedom pertaining to any one of the finite elements in the mesh. After the 

determination of the column heights of the stiffness matrix K, all the elements below 

the skyline of the matrix K is stored in a one-dimensional array [38]. The addresses 

of this one-dimensional array are also stored in another array. 
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Figure 5.9.1 Program flowchart 

START 

increase the load 

calculate transformation matrices between the local 

and global coordinates, shape functions, areas etc. 

calculate constitutive matrix 

construct element stiffness matrix 

transfer the element stiffness matrix from local 

coordinates to global coordinates 

compute global stiffness matrix and force vector 

calculate global nodal displacements 

calculate element stresses and strains 

read input data 

NO convergence 

satisfied? 

YES 

A B 
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Figure 5.9.1 Program flowchart (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

write output data 

END 

 

is the total load reached? 

B 

NO 

does failure occur ? STOP YES 

YES 

A 
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CHAPTER 6 

 

 

RESULTS AND DISCUSSION 

 

 

 

Several laminates each constructed of glass/epoxy (Table 6.1) are considered with 

different orientation angles and boundary conditions. Deformed shapes of 2.8 mm 

thick 14-layered symmetric laminates having in-plane dimensions of 300 mm  x 

100 mm  are depicted for the stacking sequences of [0/90/0/90/0/90/0]s, [15/-15/15/-

15/-15/-15/15]s, [30/-30/30/-30/-30/-30/30]s, [45/-45/45/-45/-45/-45/45]s and [60/-

60/60/-60/-60/-60/60]s and results are compared with the results of the ANSYS 

software. First ply failure loads are determined for each laminate, and load-deflection 

characteristics are compared. Since ANSYS does not recommend using triangular 

element mesh with the finite strain shell, the mesh is built up with four-node 

elements in order to prevent any misleading consequences (Figure 6.1). In ANSYS, 

the material is defined as orthotropic and nonlinear-large displacement-static analysis 

case is selected as the solution scheme. The results of the developed code and 

ANSYS 8.1 are compared and in every combination, a good convergence level and 

an acceptable range of error percentage are obtained. The element mesh used for the 

developed code is shown in Figure 6.2. 

 

Three different failure theories are considered to determine the first ply failure load 

for all laminates by the developed code. Then the related plot is depicted by the 

application of the maximum allowable load obtained by the Tsai-Wu theory. The 

same load is also used as the input force into the commercial finite element program, 

and the failure index values are listed in tabular form. 
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Table 6.1 Material Properties of Glass/Epoxy 

 

401 =E GPa  

1032 == EE GPa  

5132312 === GGG GPa  

300=TX MPa  

120=CX MPa  

200=TY MPa  

110=CY MPa  

55=S MPa  

 

 

  

 

 

 

 
 

Figure 6.1 Finite element mesh for ANSYS (not to scale) 
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6.1 Case I: One End Clamped 

 

During the analyses of this case, the flat composite shells with different ply angles 

are loaded uniformly along one of the ends up to first ply failure and fully 

constrained from the other ends as shown in Figure 6.1.1. The first ply failure loads 

of 14-ply 2.8 mm thick laminates with the fiber angle orientations 

[0/90/0/90/0/90/0]s, [15/-15/15/-15/15/-15/15]s, [30/-30/30/-30/30/-30/30]s, [45/-

45/45/-45/45/-45/45]s, [60/-60/60/-60/60/-60/60]s are generated according to the 

maximum stress, Tsai-Wu and Tsai-Hill failure theories. All the deformed shapes of 

the shells are determined by using Tsai-Wu criterion. 

 

 

 

 

 

 

 
Figure 6.1.1 Schematic representation of Case I 
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For the composite shell with the fiber angle orientation [0/90/0/90/0/90/0]s, the first 

ply failure loads that are obtained from the developed code using maximum stress, 

Tsai-Wu and Tsai-Hill failure criteria are given in Table 6.1.1. Applying the failure 

load determined by Tsai-Wu criterion, tip displacements and maximum failure index 

values found by both developed code and ANSYS are given in and 6.1.2. Failure 

onset is observed at the bottom layers along the supported edge. For the same fiber 

orientation, the deformed shape of the composite shell obtained from the code and 

ANSYS that are given in Figure 6.1.2. It is observed that the results are in good 

agreement.  

  

Table 6.1.1 First Ply Failure (Results from Code) 

 

 

 

Table 6.1.2 First Ply Failure (Results from ANSYS) 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Tip  

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 36.30 61.87 1.00213 

Tsai-Wu 35.75 61.02 1.00601 

Tsai-Hill 40.15 67.69 1.01804 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Tip 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 35.75 59.43 0.88969 

Tsai-Wu 35.75 59.43 0.85329 
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The deformed shapes of the composite shell with the fiber angle orientation [15/-

15/15/-15/15/-15/15]s obtained from the developed code and ANSYS are given in 

Figure 6.1.3. It is shown that ANSYS gives slight smaller displacements and failure 

indexes (Tables 6.1.3 and 6.1.4) according to the load that is determined by the Tsai-

Wu criterion through the developed code. Failure onset is observed at the bottom 

layers along the supported edge in both of the programs and comparisons have 

shown adequate agreement between the two sets of results. 

 

Table 6.1.3 First Ply Failure (Results from Code) 

 

 

 

Table 6.1.4 First Ply Failure (Results from ANSYS) 

 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Tip  

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 48.84 65.68 1.00112 

Tsai-Wu 47.41 63.99 1.00120 

Tsai-Hill 54.34 72.03 1.00110 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Tip 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 47.41 61.77 0.90635 

Tsai-Wu 47.41 61.77 0.89329 
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Tip displacements and maximum failure index values found by both developed code 

and ANSYS are given in Tables 6.1.5 and 6.1.6 for the composite shell with the fiber 

angle orientation [30/-30/30/-30/30/-30/30]s. First ply failure is observed at the 

bottom layers along the supported edge in fiber direction in the form of compression. 

Deflection outputs of the code are appeared to be less than ANSYS; the difference is 

less than 3.5%. The deformed shape of the composite shell is illustrated in Figure 

6.1.4. 

 

 
Table 6.1.5 First Ply Failure (Results from Code) 

 

 

 

 

Table 6.1.6 First Ply Failure (Results from ANSYS) 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Tip  

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 47.41 81.85 1.00163 

Tsai-Wu 44.11 74.26 1.00001 

Tsai-Hill 54.34 91.12 1.00063 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Tip 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 44.11 76.86 0.93634 

Tsai-Wu 44.11 76.86 1.00180 
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For the composite shell with the fiber angle orientation [45/-45/45/-45/45/-45/45]s, 

the failure loads, tip displacements and maximum failure index values  found by both 

developed code and ANSYS are presented in Tables 6.1.7 and 6.1.8, and the 

deformed shape is given in Figure 6.1.5.  Failure is caused by the excess stress in 

fiber direction and is observed at the bottom layers along the supported edge. Despite 

a deviation of 5.5% in displacements, the results are compatible, and damage 

initiated at the same element in ANSYS and code. 

 

Table 6.1.7 First Ply Failure (Results from Code) 

 

 

 

Table 6.1.8 First Ply Failure (Results from ANSYS) 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Tip  

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 42.90 104.48 1.0026 

Tsai-Wu 39.60 98.46 1.0036 

Tsai-Hill 50.05 116.65 1.0048 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Tip 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 39.60 103.93 0.85429 

Tsai-Wu 39.60 103.93 1.03280 
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The composite shell with the fiber angle orientation [60/-60/60/-60/60/-60/60]s is 

analyzed with developed code and ANSYS, and failure loads, tip displacements and 

maximum failure index values found by both developed code and ANSYS are given 

in Tables 6.1.9 and 6.1.10. Satisfying results are achieved since first ply failure is 

observed at the same elements of the bottom layers along the supported edge by both 

of the programs. For the same fiber orientation, the deformed shape of the composite 

shell obtained from the code and ANSYS that are given in Figure 6.1.6. 2.28% 

difference is observed between the results. 

 

Table 6.1.9 First Ply Failure (Results from Code) 

 

 

 

 

 

Table 6.1.10 First Ply Failure (Results from ANSYS) 

 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Tip  

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 48.84 149.63 1.01690 

Tsai-Wu 40.08 126.84 1.00008 

Tsai-Hill 56.87 154.56 1.00044 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Tip 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 40.08 123.94 0.58686 

Tsai-Wu 40.08 123.94 0.86284 
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6.2 Case II: Clamped-Clamped 
 

Case II includes the loading of the both ends fixed laminates along the middle line 

(Figure 6.2.1). 14-ply 2.8 mm thick laminates with the fiber angle orientations 

[0/90/0/90/0/90/0]s, [15/-15/15/-15/-15/-15/15]s, [30/-30/30/-30/-30/-30/30]s, [45/-

45/45/-45/-45/-45/45]s, [60/-60/60/-60/-60/-60/60]s are loaded in an incremental 

iterative way and first ply failure loads and nonlinear deflection characteristics are 

detected according to the maximum stress, Tsai-Wu and Tsai-Hill failure theories. 

Graphs (Figures 6.2.2-6.2.6) are constructed by the application of the failure load 

obtained by Tsai-Wu criterion from the written code as an input load to the ANSYS. 

The output failure loads of the written code and ANSYS are listed in tabular form 

(Tables 6.2.1-6.2.10) together with the failure indexes, and a graph representing the 

deformed X-Z coordinates of the laminate up to damage onset is also plotted for each 

case. 

 

 

 

 
 

Figure 6.2.1 Schematic representation of Case II 
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For the composite shell with the fiber angle orientation [0/90/0/90/0/90/0]s, the 

failure loads are obtained from the developed code and for this failure load, midpoint 

displacements and maximum failure index values  found by both developed code and 

ANSYS are given in Tables 6.2.1 and 6.2.2, while the deformed shape is depicted in 

Figure 6.2.2. Failure onset is observed at the bottom layers at the midpoint of the 

laminate in tension form along the fiber direction according to the three criteria. 

Minimum stresses belong to maximum stress theory and the maximum ones to Tsai-

Wu, because of the increasing loads. Results are at good agreement level. 

 

Table 6.2.1 First Ply Failure (Results from Code) 

 

 

Table 6.2.2 First Ply Failure (Results from ANSYS) 

 

 

 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 2018.50 8.35 1.00070 

Tsai-Wu 2535.50 9.11 1.00100 

Tsai-Hill 2167.00 8.57 1.00024 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 2535.50 8.9884 1.00920 

Tsai-Wu 2535.50 8.9884 0.95272 
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For the composite shell with the fiber angle orientation [15/-15/15/-15/15/-15/15]s, 

the failure loads are obtained from the developed code and for this failure load, 

midpoint displacements and maximum failure index values  found by both developed 

code and ANSYS are given in Tables 6.2.3 and 6.2.4. Failure onset is observed at the 

bottom layers along the left end by the compressive stress in fiber direction. For the 

same fiber orientation, the deformed shape of the composite shell obtained from the 

code and ANSYS that are given in Figure 6.2.3. Results form code and ANSYS are 

compatible. 

 
Table 6.2.3 First Ply Failure (Results from Code) 

 

 

 

Table 6.2.4 First Ply Failure (Results from ANSYS) 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 3201.00 9.14  1.00066 

Tsai-Wu 3043.70 8.95 1.00000 

Tsai-Hill 3493.60 9.45 1.00000 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 3043.70 8.65 0.87194 

Tsai-Wu 3043.70 8.65 0.95245 
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For the composite shell with the fiber angle orientation [30/-30/30/-30/-30/-30/30]s, 

the failure loads are obtained from the developed code and for this failure load, 

midpoint displacements and maximum failure index values  found by both developed 

code and ANSYS are given in Tables 6.2.5 and 6.2.6. Failure onset is observed at the 

bottom layers near along the right hand side by the tensile stress in fiber direction. 

Also, a significant amount of shear stress is noted. For the same fiber orientation, the 

deformed shape of the composite shell obtained from the code and ANSYS that are 

given in Figure 6.2.4. The difference between the results are less than 3.2%. 

 

Table 6.2.5 First Ply Failure (Results from Code) 

 

 

Table 6.2.6 First Ply Failure (Results from ANSYS) 

 

 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 2530.00 9.59 1.00023 

Tsai-Wu 2285.80 9.20 1.00007 

Tsai-Hill 2722.50 9.86 1.00211 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 2285.80 8.91 0.95181 

Tsai-Wu 2285.80 8.91 0.89099 
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The composite shell with the fiber angle orientation [45/-45/45/-45/45/-45/45]s, the 

failure loads, midpoint displacements and maximum failure index values found by 

both developed code and ANSYS are given in Tables 6.2.7 and 6.2.8. First ply 

failure initiated at the bottom layers along the right hand side of the laminate as a 

result of excess compressive stress in fiber direction. For the same fiber orientation, 

the deformed shape of the composite shell obtained from the code and ANSYS are 

given in Figure 6.2.5. Comparisons have shown good agreement. 

 

 

 

Table 6.2.7 First Ply Failure (Results from Code) 

 

 

 

Table 6.2.8 First Ply Failure (Results from ANSYS) 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 2508.00 11.27 1.00044 

Tsai-Wu 1967.50 10.24 1.00019 

Tsai-Hill 3019.50 12.01 1.00126 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 1967.50 10.13 1.21030 

Tsai-Wu 1967.50 10.13 1.02450 
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The failure loads, midpoint displacements and maximum failure index values found 

by both developed code and ANSYS are given in Tables 6.2.9 and 6.2.10 for the 

composite shell with the fiber angle orientation [60/-60/60/-60/-60/-60/60]s. The 

deformed shapes of the composite shell obtained from the code and ANSYS are 

given in Figure 6.2.6. Failure is observed at the bottom layers along the right hand 

side of the shell in all theories. Good agreement is observed between the results of 

the developed code and ANSYS. 

 

 

   Table 6.2.9 First Ply Failure (Results from Code) 

 

 

 

 

Table 6.2.10 First Ply Failure (Results from ANSYS) 

 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 3437.50 14.25 1.00018 

Tsai-Wu 2975.50 13.49 1.00014 

Tsai-Hill 4004.00 15.09 1.00005 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 2975.50 13.35 1.39810 

Tsai-Wu 2975.50 13.35 1.61570 
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6.3 Case III: Clamped-Roller 

 

In Case-III, the structure is fully restricted on the left end while the other end is 

allowed to translate among X and Y axes, and rotate about Y (Figure 6.3.1). Loads 

are applied to the nodes lying on the middle line of the laminate, and failure 

responses and deformation characteristics are observed. 14-ply 2.8 mm thick 

laminates with the fiber angle orientations [0/90/0/90/0/90/0]s, [15/-15/15/-15/-15/-

15/15]s, [30/-30/30/-30/-30/-30/30]s, [45/-45/45/-45/-45/-45/45]s, [60/-60/60/-60/-60/-

60/60]s are examined according to the maximum stress, Tsai-Wu and Tsai-Hill 

failure theories. The output failure loads of the developed code and ANSYS are 

listed in tabular form together with the failure indexes, and a graph representing the 

deformed shape of the laminate up to damage initiation is also plotted for each case. 

Graphs are constructed by the application of the failure load obtained by Tsai-Wu 

criterion from the developed code as an input load to the ANSYS. Failure initiated at 

the bottom layers starting from the fixed ends of the laminates. 

 

 

 

 

 

Figure 6.3.1 Schematic representation of Case III 
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Failure loads, midpoint displacements and maximum failure index values found by 

both developed code and ANSYS are given in Tables 6.3.1 and 6.3.2 and a schematic 

representation of the deformed shapes of the composite shell obtained from the code 

and ANSYS is given in Figure 6.3.2 for the composite shell with the fiber angle 

orientation [0/90/0/90/0/90/0]s. Failure is caused by the compressive stress in fiber 

direction at the bottom layers along the fixed end, and initiated at the same element 

in all theories. Results are in good agreement. 

 
 

Table 6.3.1 First Ply Failure (Results from Code) 

 
 

Table 6.3.2 First Ply Failure (Results from ANSYS) 

 

 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 208.60 9.82 1.00129 

Tsai-Wu 203.50 9.66 1.00108 

Tsai-Hill 225.50 10.67 1.00376 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 203.50 9.54 0.91461 

Tsai-Wu 203.50 9.54 0.88579 
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For the composite shell with the fiber angle orientation [15/-15/15/-15/-15/-15/15]s, 

the failure loads, midpoint displacements and maximum failure index values  found 

by both developed code and ANSYS are given in Tables 6.3.3 and 6.3.4, and the  

deformed shape is plotted in Figure 6.3.3. Failure started at the bottom layers along 

the fixed end by the excess compressive stress in fiber direction, and initiated at the 

same element in all theories. Deformed shapes obtained from developed code and 

ANSYS are in good agreement.  

 

Table 6.3.3 First Ply Failure (Results from Code) 

 

 
 

 

Table 6.3.4 First Ply Failure (Results from ANSYS) 

 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 273.90 8.54 1.00015 

Tsai-Wu 266.20 8.32 1.00006 

Tsai-Hill 303.60 11.28 1.00140 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 266.20 9.75 0.92579 

Tsai-Wu 266.20 9.75 0.95794 
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For the composite shell with the fiber angle orientation [30/-30/30/-30/-30/-30/30]s, 

the failure loads are obtained from the developed code and for this failure load, tip 

displacements and maximum failure index values  found by both developed code and 

ANSYS are given in Tables 6.3.5 and 6.3.6. For the same fiber orientation, the 

deformed shape of the composite shell obtained from the code and ANSYS that are 

given in Figure 6.3.4. Both results are in good agreement. Failure onset is observed 

at the bottom layers along the fixed end in fiber-direction-compression form.  

 

 

Table 6.3.5 First Ply Failure (Results from Code) 

 

 

Table 6.3.6 First Ply Failure (Results from ANSYS) 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 249.15 10.13 1.00194 

Tsai-Wu 243.30 11.62 1.00193 

Tsai-Hill 281.08 13.78 1.00025 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 243.30 11.69 0.90996 

Tsai-Wu 243.30 11.69 0.96361 
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Failure loads, midpoint displacements and maximum failure indexes of the 

composite shell with the fiber angle orientation [45/-45/45/-45/-45/45/45]s found by 

both developed code and ANSYS are given in Tables 6.3.7 and 6.3.8. First ply 

failure is observed at the bottom layers along the fixed end in fiber-compression-

direction. For the same fiber orientation, the deformed shape of the composite shell 

obtained from the code and ANSYS are given in Figure 6.3.5. A deviation of 6.15 % 

is detected during the displacement comparisons, but results are in adequate 

agreement in both of the programs. 

 

Table 6.3.7 First Ply Failure (Results from Code) 

 

 

Table 6.3.8 First Ply Failure (Results from ANSYS) 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 223.30 16.04 1.00004 

Tsai-Wu 210.30 15.18 1.00011 

Tsai-Hill 253.00 17.98 1.00491 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 210.30 16.112 0.84186 

Tsai-Wu 210.30 16.112 1.03390 
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For the composite shell with the fiber angle orientation [60/-60/60/-60/-60/-60/60]s, 

the failure loads are obtained from the developed code and for this failure load, 

midpoint displacements and maximum failure index values found by both developed 

code and ANSYS are given in Tables 6.3.9 and 6.2.10. Damage onset is observed at 

the bottom layers along the fixed end and the failure stress is in compression form.  

For the same fiber orientation, the deformed shape of the composite shell obtained 

from the code and ANSYS that are given in Figure 6.3.6. The maximum difference 

between the results is about 6.47%. 

 

Table 6.3.9 First Ply Failure (Results from Code) 

 

  
 

Table 6.3.10 First Ply Failure (Results from ANSYS) 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 239.80 23.88 1.00363 

Tsai-Wu 205.48 20.80 1.00033 

Tsai-Hill 268.40 26.39 1.00563 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 205.48 22.24 0.63400 

Tsai-Wu 205.48 22.24 1.00600 
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6.4 Case IV: Simply Supported 

 

Case IV includes the loading of 14-ply 2.8 mm thick laminates having the fiber angle 

orientations [0/90/0/90/0/90/0]s, [15/-15/15/-15/-15/-15/15]s, [30/-30/30/-30/-30/-

30/30]s, [45/-45/45/-45/-45/-45/45]s, [60/-60/60/-60/-60/-60/60]s with the imposed 

boundary condition “simply supported” (Figure 6.4.1).  The left hand side nodes are 

pinned allowing the Y-axis rotation, and that of the other end are restricted by a 

roller constraining the X and Z rotations and X-axis translation. The laminates are 

loaded incrementally until the first ply failure initiation with respect to maximum 

stress, Tsai-Wu and Tsai-Hill theories. All models started to fail at the top layer; and 

the failed coordinates are along the middle of the laminates. The output failure loads 

of the written code and ANSYS are listed in tabular form together with the failure 

indexes, and a graph representing the deformed shape of the laminate up to damage 

initiation is also plotted for each case. Graphs are constructed by the application of 

the failure load obtained by Tsai-Wu criterion from the written code as an input load 

to the ANSYS.  

 

 

 

 

Figure 6.4.1 Schematic representation of Case IV 
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The composite shell with the fiber angle orientation [0/90/0/90/0/90/0]s is loaded 

until the first ply failure, and the resultant loads, midpoint displacements and 

maximum failure index values  found by both developed code and ANSYS are given 

in Tables 6.4.1 and 6.4.2. For the same fiber orientation, the deformed shape of the 

composite shell obtained from the code and ANSYS that are given in Figure 6.4.2. 

Failure is initiated by the stress in the fiber direction at the top layers along the 

loading line. Results are in good agreement with a difference less than 2 % . 

 

 

Table 6.4.1 First Ply Failure (Results from Code) 

 

 

 

Table 6.4.2 First Ply Failure (Results from ANSYS) 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 152.90 16.62 1.00307 

Tsai-Wu 150.70 16.39 1.00091 

Tsai-Hill 165.00 17.85 1.00646 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 150.70 16.08 0.92332 

Tsai-Wu 150.70 16.08 0.89663 
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Failure loads, midpoint displacements and maximum failure indexes found by both 

developed code and ANSYS are given in Tables 6.4.3 and 6.4.4 for the composite 

shell with the fiber angle orientation [15/-15/15/-15/15/-15/15]s. Deformed shape of 

the laminate obtained from the code and ANSYS that are given in Figure 6.4.3. 

Failure onset is detected at the top layers along the loading line. Results are observed 

to be in good agreement. 

 

 

Table 6.4.3 First Ply Failure (Results from Code) 

 

 

 

 

 

Table 6.4.4 First Ply Failure (Results from ANSYS) 

 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 217.80 18.45 1.00490 

Tsai-Wu 211.86 17.97 1.00203 

Tsai-Hill 239.80 20.19 1.00058 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 211.86 17.64 0.95034 

Tsai-Wu 211.86 17.64 0.95794 
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The composite shell with the fiber angle orientation [30/-30/30/-30/30/-30/30]s is 

loaded to detect its first ply failure characteristics. Loads obtained from the 

developed code and for this failure load, midpoint displacements and maximum 

failure indexes found by both developed code and ANSYS are listed in Tables 6.4.5 

and 6.4.6, and the deformed shape of the composite shell plotted by the data obtained 

from the code and ANSYS are given in Figure 6.4.4. Damage onset is observed at 

the top layers along the loading line in fiber direction in the form of compression. 

Results have shown good agreement. 

 
Table 6.4.5 First Ply Failure (Results from Code) 

 

 

Table 6.4.6 First Ply Failure (Results from ANSYS) 

 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 189.20 21.13 1.0025 

Tsai-Wu 180.95 20.30 1.0004 

Tsai-Hill 211.20 23.32 1.0014 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 180.95 20.50 0.89871 

Tsai-Wu 180.95 20.50 0.97364 
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For the composite shell with the fiber angle orientation [45/-45/45/-45/45/-45/45]s, 

the failure loads are obtained from the developed code and for this failure load, 

midpoint displacements and maximum failure index values  found by both developed 

code and ANSYS are presented in Tables 6.4.7 and 6.4.8. Damage is initiated by the 

excess compressive stresses at the top layers along the loading line. For the same 

fiber orientation, the deformed shape of the composite shell obtained from the code 

and ANSYS that are given in Figure 6.4.5. The maximum difference between the 

results obtained from the two sets of results is less than 7.5 %. 

 

Table 6.4.7 First Ply Failure (Results from Code) 

 

 

Table 6.4.8 First Ply Failure (Results from ANSYS) 

 

 

 

Criterion 

 

 

 

Load 

(N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 189.20 30.48 1.00477 

Tsai-Wu 177.13 28.17 1.00000 

Tsai-Hill 211.20 33.49 1.00270 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 177.13 30.25 0.89639 

Tsai-Wu 177.13 30.25 1.20720 
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The laminated composite shell with the fiber angle orientation [60/-60/60/-60/60/-

60/60]s is loaded up the first ply failure. Loads, midpoint displacements and 

maximum failure index values corresponding to this failure load that are found by 

both developed code and ANSYS are given in Tables 6.4.9 and 6.4.10. Failure onset 

is observed at the top layers along the loading line. For the same fiber orientation, the 

deformed shape of the composite shell obtained from the code and ANSYS that are 

given in Figure 6.4.6. A difference  of 6.6% is detected in the deflection amounts. 

 

Table 6.4.9 First Ply Failure (Results from Code) 

 

 

Table 6.4.10 First Ply Failure (Results from ANSYS) 

 

 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 201.30 43.18 1.00191 

Tsai-Wu 172.37 38.08 1.00031 

Tsai-Hill 220.00 46.30 1.00046 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Midpoint 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 172.37 40.50 0.64101 

Tsai-Wu 172.37 40.50 1.15940 
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6.5 Case V: Pinched Cylinder 

 

In Case V, pinched cylinder problem is inspected with the use of the developed code 

and ANSYS. This case is considered in order to check the ability of the constructed 

model whether it can sustain membrane loads as well as the bending loads. The 

cylindrical shell subjected to the compressive load P is shown in Figure 6.5.1. The 

problem is modeled taking the advantages of symmetric boundary conditions, using 

the 1/8 portion of the shell as shown in Figure 6.5.2, and applying P/4 to the point A. 

A 14-layered-2.8 mm thick cylindrical shell with the fiber angle orientation 

[0/90/0/90/0/90/0]s, having dimensions of R = 50 mm, L= 200 mm is loaded with a 

force of  P/4 = 161.0 N and radial displacement results of the developed code and 

ANSYS are compared.  

 

 

 

 

 

 

Figure 6.5.1 Pinched cylinder (not to scale) [39] 
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Figure 6.5.2 Illustration of the 1/8 of the cylindrical shell in ANSYS 

 

 

 

 

A load of 161.0 N is applied to both programs and radial displacement values are 

plotted together from point A to B, with the undeformed shape in Figure 6.5.3. 

Results from the two data sets have shown good agreement. 

 

Failure loads, midpoint displacements and maximum failure indexes of the 

composite shell with the fiber angle orientation [0/90/0/90/0/90/0]s found by both 

developed code and ANSYS are given in Tables 6.5.1 and 6.5.2. For the same fiber 

orientation, the deformed shape of the composite shell obtained from the code and 

ANSYS are given in Figure 6.5.3.  
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Table 6.5.1 First Ply Failure (Results from Code) 

 

 

 

Table 6.5.2 First Ply Failure (Results from ANSYS) 

 

 

 

 

 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Radial 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 162.25 4.37 1.00033 

Tsai-Wu 161.00 4.32 1.00017 

Tsai-Hill 169.8 4.65 1.00066 

 

 

 

Criterion 

 

 

 

Load (N) 

 

 

Radial 

Displacement (mm) 

 

 

 

Failure Index 

    

Maximum Stress 161.00 3.93 0.85652 

Tsai-Wu 161.00 3.93 0.81035 
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CHAPTER 7 

 

 

CONCLUSIONS 

 

 

 

In the content of this study, the first ply failure and large displacement characteristics 

of the laminated flat composite shells made up of glass/epoxy are investigated 

through the use of the developed code, and the commercial finite element program, 

ANSYS. According to the current work, the following conclusions have been 

acquired: 

 

 

1. Deflections and failure indexes obtained by ANSYS and developed code are 

very close to each other which yield almost the same stress states for the same 

load. The small differences may arise from the fact that mesh elements have 

different geometries and programs govern different iteration-solution 

techniques in each solution scheme.  

 

2. It is found out that the dominant mode in first ply failure is mostly originated 

from fiber-directed compressive stress. 

 

3. Whatever the boundary condition is, it is observed that out-of-plane stresses 

are considerably small values as compared to those in material coordinates for 

the laminate with the fiber angle orientation [0/90/0/90/0/90/0]s.. For the 

angle-ply laminates this situation is also valid, but the shear stress 

components become more significant. 

 

4. In all cases except for the simply supported one, damage initiated at the 

bottom layer regardless of the fiber orientation. On the contrary, the laminates 



 105 

with the simply supported boundary condition started to fail from the top 

layer. 

 

5. It can be noted that, among all the theories applied, Tsai-Hill criterion lead to 

the maximum failure load most of the time. 

 

6. It is proved that the entrance of shear correction factor into the constitutive 

relations has improved the results. 

 

7. It is observed that, as the laminate gets thinner, results obtained with higher 

load steps diverges from the actual results apparently because of the shear 

locking problem. But the imposition of the smaller load increments causes an 

incredible increase in the CPU time, so a precise compromise should be 

authorized by the user. During the FORTRAN executions, the load step must 

be chosen as small as possible in order to achieve exact results.  

 

8. The model is proved to work well with both flat and curved shells. 

 

9. Comparisons are found to have shown adequate agreement between the 

outputs of the modified computer program and the simulation tool ANSYS 

8.1. 

 

The extension of the current work may include progressive damage analysis which is 

based on the stiffness reduction of the element mesh, since the developed program is 

applicable for this kind of process. 
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