
DESIGN OF KALMAN FILTER BASED  
ATTITUDE DETERMINATION ALGORITHMS FOR A LEO SATELLITE  

AND FOR A SATELLITE ATTITUDE CONTROL TEST SETUP 
 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 

BY 
 
 
 
 

AYKUT KUTLU 
 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN  

AEROSPACE ENGINEERING  
 
 
 
 
 
 
 

SEPTEMBER 2008 
 
 

 



   ii

Approval of the thesis: 
 

DESIGN OF KALMAN FILTER BASED  
ATTITUDE DETERMINATION ALGORITHMS FOR A LEO SATELLITE 

AND FOR A SATELLITE ATTITUDE CONTROL TEST SETUP 
 
submitted by AYKUT KUTLU in partial fulfillment of the requirements for the 
degree of Master of Science in the Department of Aerospace Engineering, 
Middle East Technical University by, 
 
 
Prof. Dr. Canan Özgen 
Dean, Graduate School of Natural and Applied Sciences 
 
Prof. Dr. İsmail Hakkı Tuncer 
Head of department, Aerospace Engineering 
 
Prof. Dr. Ozan Tekinalp 
Supervisor, Aerospace Engineering Department, METU 
 
 
Examining Committee Members: 
 
Dr. İlkay Yavrucuk 
Aerospace Engineering Department, METU 
 
Prof. Dr. Ozan Tekinalp 
Aerospace Engineering Department, METU 
 
Dr. Güçlü Seber 
Aerospace Engineering Department, METU 
 
Prof. Dr. Tuna Balkan 
Mechanical Engineering Department, METU 
 
Dr. Volkan Nalbantoğlu 
ASELSAN, MGEO 
 
 
 
 
 
 
 

Date:   10 September 2008  
 

 
 
 

 



   iii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also declare 
that, as required by these rules and conduct, I have fully cited and referenced 
all material and results that are not original to this work. 
 
 
 

Name, Last name : Aykut Kutlu 
  
Signature :  
  

 
 
 
 
 

 



   iv

ABSTRACT 
 
 

DESIGN OF KALMAN FILTER BASED  
ATTITUDE DETERMINATION ALGORITHMS FOR A LEO SATELLITE 

 AND FOR A SATELLITE ATTITUDE CONTROL TEST SETUP 
 
 

Kutlu, Aykut 
M.S., Aerospace Engineering Department 

Supervisor  :  Prof. Dr. Ozan Tekinalp 

 

 
September 2008, 169 pages 

 
 

This thesis presents the design of Kalman filter based attitude determination 

algorithms for a hypothetical LEO satellite and for a satellite attitude control test 

setup.  

 

For the hypothetical LEO satellite, an Extended Kalman Filter based attitude 

determination algorithms are formed with a multi-mode structure that employs the 

different sensor combinations and as well as online switching between these 

combinations depending on the sensor availability. The performance of these 

different attitude determination modes are investigated through Monte Carlo 

simulations. New attitude determination algorithms are prepared for the satellite 

attitude control test setup by considering the constraints on the selection of the 

suitable sensors. Here, performances of the Extended Kalman Filter and Unscented 

Kalman Filter are investigated. It is shown that robust and sufficiently accurate 

attitude estimation for the test setup is achievable by using the Unscented Kalman 

Filter. 

 

Keyword: Extended Kalman Filter, Unscented Kalman Filter, Attitude 

Determination System, Satellite Attitude Control Test Setup, Sensor Fusion 

Algorithms, Attitude Determination Algorithms. 
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ÖZ 
 
 

BİR ALÇAK YÖRÜNGE UYDUSU VE BİR UYDU YÖNELİM  
KONTROL TEST DÜZENEĞİ İÇİN KALMAN FİLTRE TABANLI  

YÖNELİM SAPTAMA AGORİTMALARI TASARIMI 
 
 

Kutlu, Aykut 
Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Ozan Tekinalp 

 

 
Eylül 2008, 169 sayfa 

 
 

Bu tez bir alçak yörünge uydusu ve bir uydu yönelim kontrol test düzeneği için 

Kalman filtre tabanlı yönelim saptama algoritmaları tasarımını sunmaktadır. 

 

Hayali bir alçak yörünge uydusu için, farklı algılayıcı birleşimleri kullanan ve de bu 

birleşimler arasında algılayıcı kullanılırlıklarına göre çevrimiçi anahtarlama yapan 

çoklu-mod yapısında Genişletilmiş Kalman Filtresi tabanlı yönelim tahmin 

algoritmaları oluşturulmuştur. Tasarlanan bu farklı algoritmaların başarımları Monte 

Carlo benzetimleriyle incelenmiştir. Uydu yönelim kontrol test düzeneği sistemi için 

kullanılabilir algılayıcı kısıtları göz önünde bulundurularak yeni yönelim saptama 

algoritmaları hazırlanmıştır. Burada, Genişletilmiş Kalman Filtresi ile Yansız 

Kalman Filtresi  başarımları incelenmiştir. Bu çalışmalar sonucu test düzeneği için 

gürbüz ve yeterli hassasiyette yönelim tahminine Yansız Kalman Filtresi kullanılarak 

erişildiği gösterilmiştir. 

 

 
 
Anahtar Kelimeler: Genişletilmiş Kalman Filtresi, Yansız Kalman Filtresi, 

Yönelim Saptama Sistemi, Uydu Yönelim Kontrol Test Düzeneği, Algılayıcı 

Birleştirme Algoritmaları , Yönelim Tahmin Algoritmaları. 
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CHAPTER 1 
 
 
 

1 INTRODUCTION 
 
 
There has been a great progress in the development of the satellite attitude 

determination and control systems during the past few decades. Especially the 

subject of the Earth observation by using low Earth orbit satellites and satellite 

constellations has increased the importance of the satellite attitude determination and 

control systems for both civil and military applications. The increasing demands for 

high resolution missions (and decreasing swath widths in such) require very accurate 

and stable attitude determination and control system to keep the satellite at a specific 

orientation with respect to a defined reference frame. In order to obtain such a 

successful attitude control, this control system must be fed with an accurate and 

robust attitude determination system. For this reasons, this thesis addresses satellite 

attitude determination problems and contains the studies of the Kalman filter based 

attitude determination algorithms. 

 

The Kalman filter is the most widely used method to incorporate multiple sensors for 

navigation and attitude determination of aerospace vehicles. The advances in digital 

computing made the usage of this filter practical and its applications has gone along 

way since the original work is published by R.E. Kalman in 1960 [1]. Kalman filter 

is applied in Apollo program and subsequent spacecraft attitude determination 

problems [2]. Kalman filters are used also to determine the attitude and gyro bias 

values by measuring angular rates directly form strapdown 3-axis gyros [2]. Psiaki 

et.al. used Kalman filter to estimate the attitude, attitude rates and constant 

disturbance torques for a 3-axis stabilized spacecraft [3]. The problem of filtering 

and estimation using nonlinear system and/or sensor measurement models is 

inherently more difficult than for the case of linear models. The Extended Kalman 

Filter (EKF) gives a good estimation results for the nonlinear systems where the first 
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order Taylor series linearization sufficiently approximates the nonlinear motion 

characteristics [4]. However, the estimation performance and accuracy of the EKF 

will not be adequate for the high order systems and this may cause the instability and 

divergence problem on estimation. The possible method to overcome these problems 

may lead the calculation errors because of their high computational burden. 

Therefore, the standard EKF has stayed the most popular filter for nonlinear 

estimation to this day. Other design approaches are investigated only when high 

performance is required [4]. For instance, Unscented Kalman Filter (UKF) that has 

been developed by Julier, Uhlman and Durrant-White [5]. The UKF may be applied 

in order to achieve more accurate estimation performance compared to EKF, 

therefore UKF applications can be experienced for the ground based satellite attitude 

control test setup. The reason to establish and use these test setups is to demonstrate 

the performance of the hardware and algorithms in ground and mitigates the risk to 

lose the high-cost satellite system in orbit. However, it is difficult to experimentally 

simulate satellite dynamics in ground laboratory because of the influences of gravity 

and friction. An air bearing provides a nearly torque-free environment. For this 

reason it is the preferred technology for ground-based research in satellite dynamics 

and control. Generally, spherical air bearings are one of the most common test setups 

used in spacecraft attitude dynamics, attitude determination and control researches 

because they provide three degrees of rotational freedom. Several satellite ground 

based test setups are investigated in order to determine the differences and the 

similarities between the dynamics and attitude determination systems of a satellite 

and a test setup. The first test setups examined are TASS (Three Axis Satellite 

Simulator) and TASS-2 which belong to Naval Postgraduate School (Monterey, 

California) [6]. The second test setups belong to Virginia Polytechnic Institute and 

State University (Blacksburg, Virginia, USA) and they called as WHORL-1 and 

WHORL-2. WHORL-1 is a tabletop style spherical air bearing and WHORL-2 is a 

dumbbell style spherical air bearing [7]. Other examples for test setups are IACS-1 

(Integrated Attitude Control System) and IACS-2 that appertain to Georgia Institute 

of Technology (Atlanta, USA) [8][9]. The details about these investigated satellite 

test setup are given in the Appendix D. These foregoing examples are given in order 

to show the wide usage areas of the Kalman filter in aerospace fields.  
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The objective of this thesis is twofold. The first one is to generate Kalman filter 

based attitude determination system simulation for satellites including all required 

subcomponents such as satellite motion model, environmental disturbances model, 

sensor measurements model and attitude determination algorithms. The second one is 

to implement the algorithms for a ground based satellite control test setup. The 

original contributions in this thesis are developing a multimode attitude 

determination system for a hypothetical LEO satellite, which contains the sensor 

availability flag logic and comparing the performance of these different modes by 

applying Monte Carlo simulations. An additional contribution is to design a 

sufficiently accurate attitude determination system for satellite attitude control test 

setups by using different type of estimation algorithms instead to use additional 

reference sensor. 

 

This thesis consists of three main chapters. Chapter 2 gives all the components that 

are required for the design of a satellite attitude determination system such as 

satellite motion model, disturbances torques model and sensor measurement models. 

The details of the several coordinate systems used in order to define the satellite’s 

motion and attitude parameterization, the definition and notations used in this thesis 

are given in Appendix A. 

 

Chapter 3 presents the details of the Kalman filter theory. EKF algorithms are 

formulated for different stages of mission phases such as angular rate estimation 

during detumbling phase of the satellite, coarse and accurate full state estimation 

during regular orbital phase. The performance of these different modes are 

investigated and compared at the end of this chapter. 

 

Chapter 4 presents the Kalman filter based attitude determination system prepared 

for satellite attitude control test setup. Here, the capability of the sensor suite used is 

different then a usual satellite. The performance comparison between two different 

filter types, EKF and UKF, is given in this chapter. This chapter and related 
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Appendix D contain the general information about the satellite test setups existing on 

the some institutes and universities.  

 

Finally, Chapter 5 summarizes the conclusions of all the studies performed in this 

thesis and provides recommendations for the future research. 
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CHAPTER 2 
 
 
 

2 SATELLITE SIMULATION MODEL 
 
 
This section presents the components of the simulation code developed for the design 

of a satellite attitude determination system. First the satellite motion model is given, 

and then the disturbance torques that act on satellites are modeled. Next, the satellite 

orbit propagator model, sun position model and Earth magnetic filed model are 

given. These are used for sensors measurements. In addition sensor models also are 

presented in detail considering all type of the measurement noises. Then, satellite 

attitude determination system structure and the Kalman filter’s details are explained. 

Finally the results obtained from the simulations of the attitude determination 

algorithms are presented.  

 
 

2.1 Satellite Rotational Motion Model 
 
A mathematical model of the satellite attitude motion is derived in this section. This 

model can be considered into two sections: one is the dynamics of the satellite which 

describes the behavior under the effects of the external forces; the other is the 

kinematics of the satellite which defines the relation between the Body frame and the 

Orbit frame, the attitude of the satellite. 

 
 

2.1.1 Dynamic Equations 
 

The dynamics of the satellite is given by Euler’s equations of motion. In order to 

derive to dynamic equations, a rigid body in a circular orbit is considered. At the 

following  
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Figure 2-1, the ECI frame, the ORB frame and the BODY frame for an orbiting 

satellite are illustrated [10].  

 
 

Figure 2-1: Axis Frames 

 
The rotational equation of motion of a rigid body with an angular momentum H  in a 

circular orbit is given by: 

 

B
B

B
IB

BI

H
dt
Hd

dt
Hd τω =×+=  (2.1.1)

 

as ωIH =   and 0=I , the following equation is obtained: 

 

BB
IB

B
IB

B
IB II τωωω =×+  (2.1.2)
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where I  is the inertial moments matrix, B
IBω  is the angular velocity of the BODY 

frame relative to the ECI frame expressed in the BODY frame and Bτ  is the total 

torque acting on the satellite.   

 

The dynamics of the satellite can be reformulated by using the diad notation as: 

 

( )BB
IB

B
IB

B
IB II τωωω +−= − ~1  (2.1.3)

 

where; 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

0
0

0
~

x
B
IBy

B
IB

x
B
IBz

B
IB

y
B
IBz

B
IB

B
IB

ωω
ωω

ωω
ω  (2.1.4)

 
The torques, Bτ , acting on the satellite can be divided into disturbances and control 

torques [11]: 

 

ctrlaeromagsolggctrldist
B ττττττττ ++++=+=  (2.1.5)

 
 

1. Disturbances Torques  

a. Gravity Gradient Torque 

b. Solar Radiation Torque 

c. Magnetic Field Torque 

d. Aerodynamics Torque 

2. Control Torques 

 

The detailed explanations about the disturbances torques are given in the Section 2.2. 
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2.1.2 Kinematics Equations 
 
The kinematics propagation of the satellite is done by using the quaternion 

representation. The following differential equation is given for the formulation of the 

satellite’s attitude [10]: 

 

qq B
OBΩ=

2
1

 (2.1.6)

 

where;  

⎥
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⎥

⎦
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⎢
⎢
⎢
⎢
⎢

⎣

⎡
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−
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=Ω
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0
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B
OBy

B
OBx

B
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z
B
OBx

B
OBy

B
OB

y
B
OBx

B
OBz

B
OB

x
B
OBy

B
OBz

B
OB

ωωω
ωωω
ωωω
ωωω

 (2.1.7)

 
here, B

OBω  is the angular velocities from BODY frame with respect to the ORBIT 

frame, expressed in BODY frame. 

 

The body angular rates referenced to the orbit following coordinates can be obtained 

from the inertially referenced body rates as follows: 

 
O
IO

B
O

B
IB

B
OB C ωωω −=  (2.1.8)

 
 

where B
OC  is the DCM from orbital frame to body frame, and [ ]T

O
O
IO 00 ωω −= is 

the known angular velocity of the Orbit frame relative to the ECI frame, expressed in 

Orbit frame. This velocity depends on the altitude of the orbit, and can be calculated 

according to 3/ RGM eO =ω  where G  is the gravitational constant of the Earth, 

eM  is the mass of the Earth and R  is the distance from the centre of the Earth to the 

satellite. Finally the angular body rates obtained can be written as: 
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B
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ω
ω
ω

ω
ω
ω

ω  (2.1.9)

 
 

2.1.3 Satellite Specifications 
 
The hypothetical satellite model used in this report has a shape of rectangular prism 

with the dimensions HxWxL = 2.0x1.7x1.5 meters and weight of 200 kg. A rough 

calculation of the inertial moments is done with the assumption that the satellite 

structure has a uniform mass distribution. The inertia matrix then is: 

 

 

 
 

Figure 2-2: Satellite Dimensions 
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The orbital parameters selected for this virtual satellite are given in the following 

table: 

 

Table 2-1: Orbital Parameters of the Hypothetical Satellite 

 
Inclination(i): 97.8° 

Eccentricity(e): 0° (circular orbit) 

Altitude(h): km650  

Semi Major Axis(a): ( ) kmhREarth 6506378 +=+  

 

 

The satellite dynamics module that defines the satellite rotational motion model 

containing dynamics and kinematics is prepared by Matlab/SIMULINK. This 

module with its inputs and outputs is given in the following Figure 2-3.  

 

 
 

Figure 2-3: Satellite Rotational Motion Model 

 

 

2.2 Disturbances Torques 
 
In a Low Earth orbit, the spacecraft is exposed to several external torques caused by 

the space environment conditions. These disturbance torques arise from the gravity 

gradient force, solar radiation pressure, magnetic field and aerodynamic forces. The 
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magnitude of these torques depends on the spacecraft’s orbital altitude, geometry, 

orientation, and mass properties. The most significant of these are gravity gradient 

torques. Depending on the satellite dimensions, the solar radiation, and magnetic 

field torques can be also taken into consideration on the model, but generally 

aerodynamic forces are not a design issue for most Low Earth Orbit (LEO) satellites 

above an altitude of 250 km [11].  

 

The detailed descriptions and the calculation methods for the torques mentioned 

above are given in the following subchapters. The figures that show the magnitude of 

these torques and the block diagram of the disturbance model created for simulations 

also are included this following subchapters. 

 
 

2.2.1 Gravity Gradient Torque 
 
The Gravity Gradient torque is the one of the largest torque source that affects a LEO 

satellite; therefore, the solution of most satellite dynamics and control problems 

requires a consideration of this gravitational torque source. This disturbance, created 

by the distance between the opposite ends of the spacecraft, makes a small difference 

in the force acting on those end points. As a result, a torque occurs about the 

spacecraft's center of mass. This Gravity Gradient torque is expressed in dyadic form 

as [12]: 

 

OOOgg kIk ...3 2 ×= ωτ  (2.2.1)

 
where;  Oω  is the orbital mean motion and Ok  is the unit vector along the Z axis of 

the ORB frame ( OZ ) expressed as: 

BBBO kCjCiCk ... 332313 ++=  (2.2.2)

 

here, { }BBB kji ,,  are the unit vectors of the BODY frame. 
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Finally the Gravity Gradient torque can be written in dyadic form as follows: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
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⎦
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⎢

⎣

⎡

−
−

−
==

33

23

13

1323

1333

2333
22 ..

0
0

0
..3..~..3

C
C
C

I
CC

CC
CC

kIk OOOOgg ωωτ  (2.2.3)

 

where B
OCC ≡  is DCM from ORB frame to BODY frame. 
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Figure 2-4: Gravity Gradient Torque 

 
 

The above Figure 2-4 shows the values of the Gravity Gradient torque acting on the 

satellite during the 1 orbital period navigation. As seen on the Figure 2-4, the 

magnitude of this torque is of the order Nm510− . 

 
 

2.2.2 Solar Radiation Torque 
 
The distance between the satellite's center of pressure and its center of gravity causes 

the solar radiation pressure torque. While solar radiation reflected off by the sun, the 

satellite will create a torque about its center of gravity. On an Earth orbiting satellite 
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these disturbances are cyclic over an orbital period and are a function of the 

spacecraft's reflectivity.  

 

The Solar Radiation torque can be calculated using the following equation [11]: 

( )gpssol CCF −=τ  (2.2.4)

 

where; 

( ) )cos(1 iqA
C
F

F s
s +=  (2.2.5)

 

and, 

Fs = solar constant (1358 W/m2) 

C = speed of light, (3.0E8 m/s) 

As = surface area, (0.6993 m²) 

Cps = center of solar pressure 

Cg = center of gravity 

q = reflectance factor, (0.6 worst case) 

i = angle of incidence of the sun (degrees) 

 
 

In order to calculate the solar radiation torque for the virtual satellite model given in 

the foregoing Section 2.1.3, formula are governed by taking into consideration the 

sun light position vector with respect to satellite.  
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Figure 2-5: Sun Light Position Vector with respect to Satellite 

 

The sun lights will create solar torques depending on the angle of incidence of the 

related surface of the satellite. The position angles α  and β  can be calculated by 

using the position vector of the sun with respect to the spacecraft 

[ ]TzyxSCS SSSv =/ . This sun position information will be obtained by using the 

Ephemeris reference model (See Section 2.3.1): 

 

( )xy SS /tan 1−=α  (2.2.6)

( )zS1sin−=β  (2.2.7)

( )

( )

( ) dzqA
C
F

dyqA
C
F

dxqA
C
F

Z
s

zsol

Y
s

ysol

X
s

xsol

)sin(1

)sin(1

)cos(1

_

_

_

βτ

ατ

ατ

+=

+=

+=

 (2.2.8)

     

where, ZYX AAA ,,  are the surface areas and dzdydx ,,  are the diagonal distances of 

these surfaces. These diagonal distances are taken as the distance between center of 

gravity and center solar pressure for the purpose of simulating the worst conditions. 
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Figure 2-6: Solar Radiation Torque 

 

Solar Radiation torque acting on the hypothetical satellite is given in the above 

Figure 2-6 and its magnitude is of the order Nm510−  which is similar to the 

calculated Gravity Gradient torque magnitudes. 

 
 

2.2.3 Magnetic Field Torque 
 
The interactions between the spacecraft residual magnetic dipole and the Earth’s 

magnetic field create Magnetic Field torque. For the preliminary design a 2.1 mA  

residual dipole is selected as a good approximation for a small satellite.  

 

The calculations were made using the following equation [11]: 

3

2..
R
MDBDmag ==τ  (2.2.9)

 

where; 

D = residual dipole (amp.m2) 

B = Earth magnetic field (Tesla) 

M = magnetic moment of the Earth, (7.96E15 tesla.m3) 

R = radius of orbit (m) 
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Figure 2-7: Magnetic Field Torque 

 

Earth magnetic field value will be obtained by using Magnetic Model, presented in 

the Section 2.3.2. Magnetic Field torque acting on a satellite with 2.1 mA  residual 

dipole at the orbital conditions stated in Table 2-1  is given in the Figure 2-7 and the 

magnitude of this torque is about Nm510− , similar to the Gravity Gradient and Solar 

Radiation torques. 

 
 

2.2.4 Aerodynamics Torque 
 
Aerodynamics torque is the results of the atmospheric drag acting on the satellite. 

Especially for LEO satellites this torques can be quite significant (with magnitudes 

up to Nm410− ), but at altitudes above 600 km these torques are negligible. 

 

This torques is difficult to calculate because parameters such as cross sectional area 

can change rapidly with time depending on the attitude of the satellite. And also, 

atmospheric density varies significantly with solar activity. Torque calculations were 

made using the following equations [11]: 

 

( )gpaaero CCF −=τ  (2.2.10)
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where; 
 

( )2...5.0 VACF dρ=  (2.2.11)

  
and; 
 

Cd = coefficient of drag 

A = cross-sectional area (m2) 

V = spacecraft velocity (m/s) 

Cpa = center of aerodynamic pressure 

Cg = center of gravity 

ρ = atmospheric density (kg/m3) 
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Figure 2-8: Aerodynamic Torques 

 
 

Aerodynamics torque calculated for 1 orbital period for hypothetical satellite’s 

orbital parameters defined in Table 2-1 is given in the following Figure 2-8. 

Magnitude obtained for this torque is of the order Nm710−  which is 2 orders of 

magnitude smaller than the other disturbances torques. As mentioned above, 

according to the results obtained it can be stated that Aerodynamic torque is the 

smaller torque acting to the satellite when its altitude is about 600 km -700 km.    
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2.2.5 Total Disturbances Torque 
 
The model including all of the disturbance torques is generated in order to simulate 

the space environment of the LEO satellite. The block diagram of this model is given 

in the following Figure 2-9. 

 

The total disturbances torques acting on the hypothetical satellite is shown in Figure 

2-10. 

 

 

 
Figure 2-9: Disturbances Model 
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Figure 2-10: Total Disturbance Torques 

 

It may be observed from the above results that the most dominant torques are the 

Gravity Gradient and Magnetic Field torques. It is also seen that for altitude around 

600-700 km, the aerodynamics torques has no significance. As a result, the total 

magnitude of the disturbances torques is of the order Nm410− .  

 
 

2.3 Reference Models 
 
In order to determine the attitude of the satellite from the reference sensors, it is 

needed to know the satellite’s orbit and its position in orbit. It is necessary to know 

the rotational relationship between the ECEF frame, in which the Earth magnetic 

field vector is given, the ECI frame, in which the Sun position vector is given and the 

ORB frame in which the measurements are taken by the reference sensors attached to 

the body frame. Therefore an Orbit Propagator Model is constructed to obtain the 

attitude relations mentioned above. Furthermore, reference sensors such as sun 

sensors and magnetometers require reference models to compare the measured data 

with. For the purpose of defining the measurements of the sensors Sun Position 

Model and Earth Magnetic Field Model are also created. The block diagram that 

shows the input and output relations between these models are given in Figure 2-11. 
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Figure 2-11: Reference Models 

 
In the following subchapters the detailed explanations about these reference models 

are given. 

 
 

2.3.1 Orbit Propagator Model 
 
The physical laws describing the motion of planets were first described by Johann 

Kepler. Kepler’s three laws state that: 

 

1. The orbit of each planet is an ellipse, with the Sun at one of the foci. 

2. The line joining the planet to the Sun sweeps out equal areas in equal times. 

3. The square of the period of a planet is proportional to the cube of its mean 

distance from the Sun. 

 

Kepler’s laws are the basis for the Keplerian elements, called also orbital elements, 

which are used in predicting a satellite’s orbit and position. The Earth is at one focus 

of the ellipse. The two foci coincide with the center in the case of the circular orbit 

and as a result, the Earth takes its place at the center of the ellipse [10]. 

  

The Orbit Propagator Model used in the simulation is given in Keplerian elements. 

See Figure 2-12 and Figure 2-13 for visual description of all the Keplerian elements: 
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1. Orbital Inclination 

2. Right Ascension of Ascending Node (R.A.A.N.) 

3. Argument of Perigee 

4. Eccentricity 

5. Mean Motion 

6. Mean Anomaly 

 

 

 
Figure 2-12: The Keplerian Elements [10] 

 
 
 

 
Figure 2-13: The Keplerian Elements in plane [10] 
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These elements describe the position of the satellite at a specific time. The most 

widely used format for this time is called epoch (Julian Date) that gives the year and 

day of the year as a decimal number. Based on this time, the ascension of the zero 

meridians (θ), can also be calculated. Using Eq. (A.3.3), with λ = θ, the rotation 

between ECI and ECEF reference frame given by: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−==

100
0cossin
0sincos

, θθ
θθ

θIz
I
E CC  (2.3.1)

 
The following four Keplerian elements specify the orientation of the orbital plane, 

the orientation of the orbit ellipse in the orbital plane, and the shape of the orbit 

ellipse [10]:  

 
 
Orbital Inclination (i): 

 

The inclination is the angle between the orbital and equatorial plane. By convention, 

inclination is a number between 0 and 180 degrees. Orbits with inclination near 0 

degrees are called equatorial orbits and orbits with inclination near 90 degrees are 

called polar. The intersection of the equatorial plane and the orbital plane is a line 

which is called the line of nodes. The line of nodes is more thoroughly described 

below.  

 

Right Ascension of Ascending Node (Ω): 

 

The line of nodes intersects the equatorial plane two places: One of them the satellite 

passes from south to north, this is called the ascending node and the other node 

where the satellite passes from north to south is called the descending node. The 

angle between the ascending node and the vernal equinox is called the right 

ascension of ascending node. By convention, the right ascension of ascending node is 
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between 0 and 360 degrees. The combination of the right ascension of ascending 

node and the inclination defines the orbital plane in which the elliptic orbit lies. 

 

Argument of Perigee (ω): 

 

In the ellipse, the closest point to the focus point, in which the earth lies, is called 

perigee, and the farthest point from the earth is called apogee. The angle between the 

line from perigee through the center of the earth to the apogee and the line of nodes 

is the argument of perigee. This angle is defined as the angle from the ascending 

node and by convention it is between 0 and 360 degrees. 

 

Eccentricity (e): 

 

The eccentricity is given as 

2

2

1
a
be −=  (2.3.2)

 

where a  is the semimajor-axis and b  is the semiminor-axis. The semimajor-axis is 

half the distance between the apogee and the perigee, and semiminor-axis half the 

length between the edges perpendicular to a . For an ellipse, e  is between 0 and 1. 

For a perfect circle ba = and thus 0=e . 

 

The following Keplerian elements is time varying and specify the position of the 

satellite in orbit using the previous four elements describing above [4]  

 
 
Mean Motion (n): 
 
The mean motion is the average angular velocity describes the size of the ellipse. It is 

related to the semimajor-axis using Kepler’s third law: 
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3a
n eμ

=  (2.3.3)

 

where ee MG.=μ , G  is the Earth’s gravitational constant and eM  is the mass of the 

Earth.  

 
 
Mean Anomaly (M): 
 
Mean Anomaly defines the position of the satellite in the ellipse. It is an angle that 

marches uniformly in time from 0 to 360 degrees during one revolution. It is defined 

to be 0 degrees at perigee and 180 degrees at apogee.  

 

There is an important point to note that in a non-circular ellipse, this angle does not 

give the direction towards the satellite except at perigee and apogee. This is because 

satellite does not have a constant angular velocity. 

 

The different anomalies used are shown in Figure 2-13. The direction from the earth 

center towards the satellite is called true anomaly ( v ) and the direction from the 

center of the ellipse towards the point on a circle is called eccentric anomaly ( E ). 

The relationship between true anomaly and eccentric anomaly is 

 

Ee
eEv

cos1
coscos
−

−
=  (2.3.4)

Ee
Eev

cos1
sin1sin

2

−
−

=  (2.3.5)

     
And the relationship between mean anomaly and eccentric anomaly is 
 

)(sin tEeEM −=  (2.3.6)

 
The orbit propagotor model can now be made by using the cahnge of the mean 

anomaly in time. The prediction of the future position becomes relatively straight 
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forward tahnks to keplerian elements for a single point in time. Given the Keplerian 

elements for a time, 0t , a prediction of the orbit is 

 

tntMttM ⋅+=+ )()( 00  (2.3.7)

 
where t  is the time passed since 0t .  Equation (2.3.7) describes the motion of the 

spacecraft in ECOF, coordinates. To transform this to ECEF frame it is required to 

solve Kepler’s equation which relates the eccentric anomaly to the mean anomaly. 

 

)(sin)()( tEetMtE ⋅+=  (2.3.8)

  

This equation can be solved iteratively such as: 

 

ii EeME sin1 +=+  (2.3.9)

 

It is taken 00 =E  for the initial condition as does Newton method and finally the 

following solution is obtained: 

 

i

ii
ii Ee

EEeM
EE

cos1
sin

1 −
−+

+=+  (2.3.10)

 
Finally, the vector from the center of the Earth to the satellite expressed in the ECOF 

is formulated by using the eccentric anomaly as follows: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

0
sin1

cos
2 Ee

eE
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The orbit propagator can now be implemented in ECI frame and ECEF frame using 

the rotation in Eq. (A.3.1) and Eq. (A.3.2)  
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( ) ( ) ( ) OC
zxz

OCI
OC

I rCiCCrCr ω−−Ω−==  (2.3.12)

( ) ( ) ( ) OC
zxz

OCE
OC

E rCiCCrCr ωθ −−+Ω−==  (2.3.13)

   

where Ω is the Right Ascension of Ascending Node, i is the inclination of the 

satellite, ω is Argument of Perigee and θ is the ascension of the zero meridians. 

 

An orbit propagator based only on the Keplerian elements will degrade in accuracy 

over time. In order to prevent from this error, certain improvements utilizing known 

irregularities can be made. The biggest source of degradation is the nonspherical 

shape of the Earth.. The deformation is often parameterized by the geopotentional 

function as described in Wertz and Larson (1999), which uses the deformation 

coefficients iJ  for thi  order deformations. The other error sources which are less 

influence on the perturbations of the spacecraft’s orbit can be listed as gravitational 

forces from the sun and the moon, tidal earth and ocean, and different 

electromagnetic radiations [13]. In the following sub-sections the descriptions of 

these perturbations are given respectively: 

 
 
Perturbations due to the nonspherical Earth 
 
The earth has not a perfect spherical shape; actually it has a bulge at the equator, is 

flattened at the poles and is slightly pear-shaped. This imperfect form leads to 

perturbations in all Keplerian elements. In the second order deformation of the Earth 

it is considered that the Earth is partly flattened, and leads to the largest perturbations 

in the Keplerian elements. According to the Lagrange planetary equations, the 

flattening factor 2J is governed by using the time derivatives functions of the right 

ascension of the ascending node and the argument of perigee: 

 



   27

( ) 2222

2
2

1
cos

2
3 J

ea
inaeJ

−
−=Ω  (2.3.14a)

( ) 2222

2
2

2
1

1cos5
4
3 J

ea
inaeJ

−

−
=ω  (2.3.14b)

    

where ea  is the Earth radius, and the numerical value of 2J  for the Earth is 

31008284.1 −⋅ .  

 

Perturbations due to the sun and the moon 
 
The Sun and the moon cause periodic variations in all Keplerian elements. There are 

only secular perturbations to the right ascension of the ascending node and the 

argument of perigee. An approximation is suggested by Wertz and Larson (1999) for 

nearly circular orbits as [13]: 

 

n
i

sun
cos00154.0−=Ω  (2.3.15)

n
i

moon
cos00338.0−=Ω  (2.3.16)

and 

n
i

sun
1cos500077.0

2 −
=ω  (2.3.17)

n
i

moon
1cos500169.0

2 −
=ω  (2.3.18)

     
where n  is the number of the revolution per day and Ω  and ω  units are given in 

degree/day. 

 
Perturbations due to the atmospheric drag 
 
The atmospheric drag is a force which causes acceleration in the opposite direction 

of the spacecraft’s velocity. The magnitude of this acceleration depends on the 
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velocity V , mass m , cross section area A , drag coefficient DC of the satellite and on 

the density of the atmosphere ρ . This relation is given by the following formula: 

 

2

2
1 V

m
ACa D

D ρ−=  (2.3.19)

     

The atmospheric drag is a breaking force and it causes the energy loss of the satellite 

in orbit. This energy loss leads to a decrease in orbital height, but the magnitude is a 

very low rates. Therefore this effect is not included in orbit propagator model. 

 

Perturbations due to the solar radiation 
 
The acceleration caused by the solar radiation creates the perturbations on satellite’s 

orbit. The magnitude of this acceleration is given as: 

 

( )
m
AraR +⋅−= − 1105.4 6  (2.3.20)

  

where r  is the reflection factor between 0 and 1, A  is the cross section area and m is 

the mass. The magnitude of these perturbations is less for lower orbit, for this reason 

it is not included on the orbit propagator model.  

 

The improved orbit propagator; that all perturbations are included; can be 

reformulated in ECEF frame as follows: 
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 (2.3.21)
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The position of the satellite can be indicated also in spherical coordinate system by 

using the radius Er ,  latitude Φ  and longitude λ  parameters. The radius of the 

satellite orbit can be computed as Eq. (2.3.22) by using the position vector given in 

the Eq. (2.3.21). After that latitude and longitude values are calculated by the 

trigonometric functions given below (Eq. (2.3.23) & Eq. (2.3.24)): 

 

 

 
Figure 2-14: Satellite Position in Spherical Coordinates 

 

 
 

( ) ( ) ( )222 E
z

E
y

E
x

E rrrr ++=  (2.3.22)

( )EE
z rr /sin 1−=Φ  (2.3.23)

( )E
x

E
y rr /tan 1−=λ  (2.3.24)

 

This orbit propagator model will also degrade with time, but this degradation is not 

as fast as the simple orbit propagator. It is possible to update this model with the 

accurate Keplerian elements in order to keep it accurate [10]  
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Figure 2-15: Orbit Propagator Model Block Diagram 

 
 
The simulation module of the orbit propagator model is prepared in 

Matlab/SIMULINK. This module with its inputs and outputs is given in the 

foregoing Figure 2-15 

 
 

2.3.2 Sun Position Model 
 
It is known that the sun sensor measures the direction and/or intensity of the lights, 

origin from the Sun, in body frame of the satellite. In order to utilize the measured 

body frame sun vector, the sun vector in orbit frame must be known in such a way 

that the rotation between the two could be calculated. For the computation of the sun 
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vector, the sun movement with respect to the Earth is modeled given the classical 

orbital parameters as a two body problem.  

 
Sun position with respect to the Earth is calculated by using the classical orbit 

parameters for the Earth’s movement around the sun and reference time denoted 

epoch (Julian Date). As a first step, by using the Kepler’s equation the eccentric 

anomaly Ψ  is calculated from the mean anomaly M  and the eccentricity e . 

 

)sin(Ψ−Ψ= eM  (2.3.25)

 

In order to find Ψ , the solution of the Kepler’s equation has to be sought for 

iteratively. In fact,  there is no closed form solution but for very near circular orbit 

suggest a series expansion that results in the following approximation [14] 

 

)cos1(sin MeMeM ⋅+⋅⋅+=Ψ  (2.3.26)

 

Since the Earth’s orbit around the Sun has a very small eccentricity, the approach 

given above is sufficiently accurate [14].  After calculation of the eccentric anomaly, 

the following equations are used to compute the true anomaly: 

 

( )eaRRx −Ψ=Θ= coscos  (2.3.27)

( )Ψ−=Θ= sin1sin 2eaRRy  (2.3.28)

( )xy RR /tan 1−=Θ  (2.3.29)

 
and the distance from Earth to Sun is found as: 
 
 

22
yx RRR +=  (2.3.30)

 
From the knowledge of the argument at perihelion ω and the true anomaly Θ , the 

suns longitude is calculated as below: 
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ω+Θ=sunlon  (2.3.31)

 

The coordinates of the sun position expressed in rectangular coordinates in elliptic 

plane system can be given as: 
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 (2.3.32)

     

and finally these rectangular coordinates expressed in inertial geocentric coordinate 

system can be written as follows: 
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 (2.3.33)

 

The simulation module of the sun position model, prepared by Matlab/SIMULINK, 

is given with its inputs and outputs in the following Figure 2-16. 

 

 

 
Figure 2-16: Sun Position Model Block Diagram 
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This sun position model will be used to get the direction of the sun light with respect 

to satellite and simulate the sun sensor measurements as indicated in the beginning of 

this subchapter. However there is one lighter source that effects the measurements of 

sun sensor called Earth Albedo. Earth Albedo is the reflection of the suns energy 

from the Earth. This effect seen on the sun sensor measurements should be taken into 

consideration in order to get more accurate attitude knowledge. Implementation of 

combining the sun model and Earth Albedo model is not considered in this thesis; it 

should be done as part of future work.  

 
 

2.3.3 Earth Magnetic Field Model 
 
In order to determinate the magnetic vector and compare this vector with 

magnetometer measurements, the earth’s magnetic field must be known. As seen on  

Figure 2-17, the magnetic field is highly varying over the Earth’s surface, hence 

usage of the high-resolution lookup-table, where each entry represents the magnetic 

field at that given position, would demand a very large memory on board a satellite’s 

microcontroller. Therefore, a model called International Geomagnetic Reference 

Field (IGRF) model is used to obtain the Earth’s magnetic filed values at a specific 

satellite’s orbital position.  

 

 

 
 

Figure 2-17:  Magnitude of the Earth’s Magnetic Field [14] 
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IGRF is an attempt by the International Association of Geomagnetism and 

Aeronomy (2003), IAGA, to provide a model acceptable to a variety of users. It 

gives a reasonable approximation of the Earth’s magnetic field originating from the 

Earth’s core. The IGRF specifies the numerical coefficients of a truncated spherical 

harmonic series at any given time and position. The IGRF model is specified every 5 

years, for epochs 2000.0, 2005.0 etc. IAGA released the 10th Generation 

International Geomagnetic Reference Field, the latest version of a standard 

mathematical description of the Earth's main magnetic field. IAGA decided in 2001 

that the main-field coefficients of the IGRF from the year 2000 onwards should 

extend to degree n_max=13 and be quoted to 0.1 nT precision. Pre-2000 coefficients 

extend to degree 10 or 8 and are quoted to 1 nT precision. The predictive secular 

variation coefficients for the upcoming five-year epoch are given to degree 8 with a 

precision of 0.1 nT/year [14]. 

 

The IGRF model consists of a set of spherical harmonic coefficients called Gauss 

coefficients, m
ng  and m

nh , in a truncated series expansion of a geomagnetic potential 

function of internal origin given in the following Eq. (2.3.34). 
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=
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=
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⎞

⎜
⎝
⎛=  (2.3.34)

 

where V is the geomagnetic scalar potential, a  is the mean radius of Earth (6371.2 

km) and φλ,,r  are the geocentric spherical coordinates: r  is the distance from the 

centre of the Earth, λ s the longitude eastward from Greenwich, φ  is the colatitudes 

equal 90◦ minus the latitude. The maximum spherical harmonic degree of the 

expansion is N. )cos(φm
nP  is the Schmidt quasi-normalized associated Legendre 

functions of degree n  and order m , where n ≥ 1 and m ≤ n.  

 

Magnetic field estimation can be made by using IGRF model and the orbit 

propagator model together. As the IGRF model is rotating with the Earth, it is given 
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in ECEF frame. The magnetic field in earth centered orbit frame is defined by using 

the inverted rotation given in Eq. (2.3.13): 

 

( ) ( ) ( )( ) ECEF
zxz

OC MAGCiCCMAG
1−

−−+Ω−= ωθ  (3.3.35)

( ) ( ) ( ) ECEF
zxz

OC MAGCiCCMAG θω −Ω=⇒  (3.3.36)

 
where ECEFMAG  is the resulting vector obtained from the IGRF model. 

 

Finally, a rotation from Earth centered orbit frame to orbit frame is done by the 

following transformation: 
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where v  is the true anomaly. 

 

The three components of the magnetic field in orbit frame for 5 orbits navigation, 

based on orbit data from the enhanced orbit estimator, are shown in the following 

Figure 2-18. The y axis of the orbit frame point in more or less the same direction all 

the time, and this cause the small variation on the y component of the magnetic field 

vector. 
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Figure 2-18: The Earth’s Magnetic Field from IGRF Model 

 
 
  

 
 

Figure 2-19: Earth Magnetic Field Model Block Diagram 

 
 
The simulation module of the Earth Magnetic Field Model is prepared on 

Matlab/SIMULINK. This created block diagram can be seen in the following  

Figure 2-19 with its inputs and outputs. 
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2.4 Sensor Measurements Models 
 
In this section, the detailed explanations about the mathematical measurement model 

of the sensors, which are used on the spacecraft to obtain its angular velocity and 

attitude, are given. The main targets of constituting the measurement model of the 

sensors are to simulate the sensors’ measurements, to obtain the performance of these 

sensors and to see the accuracy of the attitude determination system.  

 

Generally, the attitude determination system of a LEO satellite consists of inertial 

sensors and reference sensors. In this thesis, sensor systems of the hypothetical 

satellite, which specifications are given in Section 2.1.3, is composed of one inertial 

sensor (three axis rate gyroscope) and three reference sensors (three axis 

magnetometers, three axis sun sensor and 3 axis star tracker). The details about the 

measurements model of these sensors are given in the following subchapters. 

 
 

2.4.1 Rate Gyroscopes 
 
A gyroscope is an instrument which uses a spinning mass with a high velocity for the 

purpose of sensing and responding to changes in the inertial orientation of its spin 

axis [12]. Nowadays, the usage of the new technological product, called Micro-

Electro-Mechanical Systems (MEMS) based rate gyros also become widespread. 

 
Rate Gyros are usually the basic sensor of an automatic control system for either 

angular velocity control or attitude control. Rate Gyros measures the angular velocity 

of the vehicle with respect to the inertial reference frame [15]. For perfect 

measurement, without noises and errors, its output may be defined as follows: 

 
B
IBperfectMEAS ωω =_  (2.4.1)

 
It is clear that the real measurements will not be perfect; therefore the simulation of 

the Rate Gyros measurement model is created that includes various errors. In the 

following Table 2-2, the error parameters defined for Rate Gyros are given and the 
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explanations about these parameters are listed respectively in the following 

subchapters. 

Table 2-2: Error Parameters of the Rate Gyros Model 

 
a. Turn on Bias 
b.1. Bias Stability 
   2. The Correlation  Time of the Bias Stability 
c.1. Random Walk 
   2. Bandwidth of the random walk 
d. Scale Factor Error 
e. Misalignment Error 

 

2.4.1.1 Turn On Bias 
 
Turn on Bias error is modeled as a Gaussian distribution and defined with 1σ 

standard deviation value. This bias is computed at the beginning of the simulation, 

when sec00 =t , and then it is taken constant during the simulation. The block 

diagram of the Turn on Bias model created on Matlab/SIMULINK is given in the 

following Figure 2-20 [16].  

 
 

 
Figure 2-20: Rate Gyro Turn on Bias Error Model 

 
 

2.4.1.2 Bias Stability 
 
Bias is a long term average of the data and it has no meaning in terms of a single data 

point. Thus, a long sequence of data must be taken and the average of these data 

must be computed in order to determine the bias. A Bias Stability term refers to 

changes in the bias measurements [17].    
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In the computation of bias stability, the time sequence is also an important parameter 

when collecting the measurements. The rate gyros outputs are read at a fixed 

frequency denoted τ  and the variance of the measurements are computed depending 

on this τ. This parameter  τ  is called as The Correlation Time of the Bias Stability.  

 
The block diagram of the Bias Stability model created on Matlab/SIMULINK can be 

seen in the following Figure 2-21. In this model the correlation time value is taken as 

20 seconds [17].  

 

 
Figure 2-21: Bias Stability Error Model 

 

2.4.1.3 Random Walk 
 
The Allan Variance parameter, which is related to the bias stability error parameter, 

should be stated before explaining the Random Walk (RW) error. In order to obtain a 

quantitative measure of how much the bias stability value of the rate gyro 

measurements change at that particular value of averaging time (correlation time) τ, 

the Allan Variance equation is derived [17]:  

 

( ) ( ) ( )2
1

2 )()(
12

1 ∑ −
−

= +
i

ii yy
n

AVAR τττ  (2.4.2)

 

where ( )τAVAR  is the Allan Variance as a function of the averaging time τ; iy )(τ  is 

the average value of the measurement in set i ; and n is the total number of 

measurements. After computing the ( )τAVAR  values for the different averaging time 
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τ, a graph the ( )τAVAR  results as a function of τ. Figure 2-22 shows the results for 

this data, along with the error in the calculation. For clarity, the ( )τAVAR  data is 

plotted on a log-log scale [17].    
 
For the short correlation times τ , the Allan Variance is dominated by the noise in the 

sensor. There is a direct correlation between the standard deviation σ  (the noise) of 

the output vs. time with the slope of the Allan Variance at small τ . This is also 

referred to as Angle Random Walk (ARW) [17].  

 

As seen in the Allan Variance plot (Figure 2-22), a better measure of the bias is 

obtained by increasing the correlation time τ . However at some point, an interesting 

behavior on the measurements error happens as theτ  increases. At some point the 

Allan Variance starts to increase again because of the Rate Random Walk (RRW) in 

the sensor, this is an inherent instability in the output of the sensor. The standard 

definition of bias instability used by inertial sensor manufacturers is the minimum 

point on the Allan Variance curve. This is the best stability that can be achieved with 

a fully modeled sensor and active bias estimation [17].  

 

 

 
Figure 2-22: The Allan Variance Result for The Rate Gyros Data [14] 
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In the rate gyro measurement model used in this thesis, the Random Walk is taken as 

a Gaussian distribution white noise and defined with 1σ standard deviation value. 

The converter equation used to obtain 1σ value from RW is formulated as follows: 

  

( )

⎟
⎠
⎞

⎜
⎝
⎛=

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠

⎞
⎜
⎝

⎛
=⎟

⎠

⎞
⎜
⎝

⎛
=

≡≡

hrHz
yz

Hzhr
y

hrhr
y

hr
yz

zNoiseWhiteyRW

deg160

sec/1sec60degsec3600degdeg

1_; σ

 
(2.4.3)

 
where Hz  is the Bandwidth of the measurements taken. 
 
The block diagram of the Random Walk model created on Matlab/SIMULINK is 

given in the following Figure 2-23. 

 
 

 
Figure 2-23: Random Walk Error Model 

 
 

2.4.1.4 Scale Factor Error 
 
The Scale Factor Error is a kind of error that depends on the measured values. This 

error is defined as a Gaussian distribution and the 1σ standard deviation value is 

given in the product specification sheets. Therefore, this error is computed at the 

beginning of the simulation, when sec00 =t , by considering the 1σ error 

distribution. The following Figure 2-24 shows the block diagram of the Scale Factor 

Error model created on Matlab/SIMULINK. 
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Figure 2-24: Scale Factor Error Model 

 
 

2.4.1.5 Misalignment Error 
 
The sensor Misalignment Error is kind of manufacturing error and it occurs because 

of the no coincidence between the sensor axis frame and the measurement axis 

frames. The block diagram model created for the misalignment error has the same 

structure with the scale factor error; therefore Figure 2-24 describes also the 

misalignment error model. 

 

The Rate Gyros Measurement Model is created by using all the error types defined 

above, and the block diagram of this model can be seen in the Figure 2-25.  

 
 

 
Figure 2-25: Rate Gyro Measurement Model Block Diagram 
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Rate Gyro selected for the simulations of the satellite attitude determination system 

is a Fiber Optic Gyro of the Northrop Grumman called FOG200. The specification 

sheet of this product is given in the Appendix B.1. The values of the error determined 

depending on the specification document of the product are listed in the following 

Table 2-3. 

 

Table 2-3: NG FOG-200 specifications 

 
RG PARAMETERS  NG FOG 200 
a. Turn on Bias (deg/hr) 0.01 
b.1. Bias Stability (deg/hr) 0.25 ,   3 (over temp.) 

   2. The Correlation   Time 
       of the Bias Stability (sec) 

20 

c.1. Random Walk (deg/rt-hr) 0.012 
   2. Bandwidth of the  
       random walk (Hz) 

500  

d. Scale Factor Error (ppm) 100,   2000 (over temp.) 
e. Misalignment Error (mrad) 10 

 
 

2.4.2 Sun Sensor 
 
Sun sensors are the most widely used sensor type in the attitude determination and 

control system of the spacecrafts because of the several factors: for most 

applications, the Sun can be considered as a point-source because the angular radius 

of the Sun is nearly orbit independent and sufficiently small (0.267 deg at 1 AU); this 

independence simplifies both sensor design and attitude determination algorithms; 

Sun is sufficiently bright to permit the use of simple, reliable equipment without 

discriminating among sources; and their power consumption is low [15].  

 

The Sun sensor measures the Sun position vector with respect to the satellite axis 

frames. From the knowledge of the Sun and satellite orbital locations, the current and 

expected measurements can be compared to determine the attitude of the satellite. 

The Sun position vector is computed by using the Sun position model described in 

Section 2.3.2. 
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The Sun sensor measurements are simulated by using the attitude matrix of the 

satellite. The measurement noise for this sensor is defined as a Gaussian distribution 

with 1σ standard deviation. 

 

SUN
OB

Omeas vSCS +⋅=  (2.4.4)

 
where; measS  is the measurement vector that gives the Sun position vector, OS  is the 

vector of the Sun position defined in orbital reference frame, B
OC  is the attitude 

matrix from orbital frame to body frame, SUNv  is the measurement noise vector of the 

Sun sensor.  

 

The simulation module formed on Matlab/SIMULINK for the Sun sensor is given in 

Figure 2-26. This block diagram shows related inputs and outputs of the Sun Sensor 

Measurement Model. 

 

 
Figure 2-26: Sun Sensor Measurement Model Block Diagram 

 

Sun Sensor selected for the simulations of the satellite attitude determination system 

is a product of Optical Energy Technologies (Model 0.5 Sun Sensor). The 

specification sheet of this product is given in the Appendix B.2. This Sun sensor is 2 

axis sensor which has a accuracy 05.0 with a 0100 of Field of View (FoV). In order to 

obtain 3 axis reference knowledge 2 unit of this sensor are used in the satellite 

attitude determination simulations. 

 
 



   45

2.4.3 Magnetometers 
 
Magnetometers are widely used in the attitude sensor system of the spacecrafts for a 

variety of reasons: they provide both the direction and magnitude of the magnetic 

field as they are reference sensors; they are lightweight and their power consumption 

is low, have a wide operating temperature and they have no moving parts [15]. 

 
However, magnetometers are not accurate sensor because the magnetic field is not 

completely known and the models used to estimate the magnetic field magnitude and 

direction at the spacecraft’s position may have substantial errors. Furthermore, 

because the Earth’s magnetic field magnitude decrease depending on the distance 

from the Earth (as 3/1 r ), the total magnetic field measurement are dominated by the 

residual spacecraft magnetic biases. Because of this effect, the magnetometers are 

not effective for the spacecraft at altitudes above 1000 km [15].  

 

Magnetometer measures the magnitude of the magnetic field with respect to the 

spacecraft axis frames. In practice, in order to determine the attitude of the 

spacecraft, these measurements are compared with the magnitude of the magnetic 

field known with respect to orbital reference frame. Magnetic field values defined in 

orbital reference frame are computed by using the IGRF model and Orbit Propagator 

that detailed descriptions are given in the Section 2.3.3.  

 

The magnetometer measurements are formulated using the attitude matrix that gives 

the rotation information between the satellite and orbital reference frames and the 

measurement noises defined as a Gaussian distribution with 1σ standard deviation 

value. 

 

MAG
OB

Omeas vMAGCMAG +⋅=  (2.4.5)

 
where measMAG  is the vector of the magnetometer measurements, OMAG  is the 
vector of the magnetic field values defined in orbital reference frame, B

OC  is the 
attitude matrix from orbital frame to body frame, MAGv  is the vector of the 
measurement noises.  
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The simulation module of the Magnetometer is prepared on Matlab/SIMULINK. 

This created block diagram is given in the following Figure 2-27 with its inputs and 

outputs. 

 

 
Figure 2-27: Magnetometer Measurement Model Block Diagram 

 
 
 
Magnetometer selected for the simulations of the satellite attitude determination 

system is a product of Zarm Technik. The specification sheet of this product is given 

in the Appendix B.3. The values of the error determined depending on the 

specification document of the product are listed in the following Table 2-4. 

 
Table 2-4: Magnetometer Specifications 

 
MAG PARAMETERS  ZARM 
Range +/- 64e-6 T 
Scale Factor App. 0.5e-9 T 
Resolution/Noise 100e-12 T @ 1Hz 

5e-9 T@ 50 Hz 
Accuracy 0.64e-6 T 
Alignment 1 deg 
Sampling rate 50 Hz 

 
 

2.4.4 Star Sensor 
 
Star sensor measures the star directions in the satellite body axis frame. This sensor 

provides attitude information by comparing its measurements with known star 

directions from its star catalog. Star sensors are the most accurate sensors used in the 
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attitude system. It is possible to obtain accuracy in arc-second range. However, they 

are expensive, heavy and they need more power then most other sensors. 

Furthermore, they need extensive computation. The usage of the star sensors also 

suffers due to the obscuration and interference from the Sun, the Earth, and other 

bright sources. However, in spite of these disadvantages, the accuracy and the 

versatility of the star sensors have led to applications in a variety of different 

spacecraft attitude environments [15].  

 

Since the star sensor fuses the measurements of stars directions, it is possible to 

obtain the quaternion direction, as output. Therefore, in the star sensor measurement 

model the quaternion knowledge obtained from the satellite kinematics model is 

used. In order to simulate the real measurements, a Gaussian distribution white noise 

is added to the quaternion values. Consequently, quaternion measurements are 

formulated as follows: 

 

qmeas vqq +=  (2.4.6)

 
where; measq  is the measured quaternion, q  is the real quaternion and qv  is the white 

noise with σ1  variance value. The block diagram of the Star sensor measurement 

model can be seen in the following Figure 2-28 with its inputs and outputs. This 

simulation module is prepared on Matlab/SIMULINK. 

 

 

 
Figure 2-28: Star Sensor Measurement Model Block Diagram 
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Star Sensor selected for the simulations of the satellite attitude determination system 

is a product of Jena Optronik.  

 

Table 2-5: Star Sensor Specifications 

 
STAR SENSOR ASTRO 15 
Star Accuracy: Bias (1 sigma) 2.5 arcsec 
Star Accuracy: Noise (1 sigma) 2.5 arcsec 
LOS Accuracy:   
    pitch & yaw  (1 sigma) 1 arcsec 
    roll (1 sigma) 10 arcsec 

 
 

The specification sheet of this product is given in the Appendix B.3. The errors 

determined depending on the specification document of the product are listed in the 

Table 2-5. 
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CHAPTER 3 
 
 
 

3 KALMAN FILTER BASED SATELLITE ATTITUDE 
DETERMINATION 

 
 
This chapter presents a Kalman filter based satellite attitude determination system 

designed for the hypothetical LEO satellite defined in the previous chapter. In first 

section the general information about Kalman filter is given, afterwards the theory of 

the Kalman filter with detailed explanations about different types of the Kalman 

filters are given. Then, Satellite Attitude Determination System Structure created for 

a LEO Satellite is presented. In the last section, the sensor fusion algorithms of the 

attitude determination modes which are related to the sensor activation situation are 

explained in details. Finally simulation results are given for different orbit navigation 

and attitude scenarios. 

 
 

3.1 Kalman Filter Theory and Modeling 
 
This section describes the derivation of the Kalman filter using the system models 

and measurement models. Kalman filter contains different structures depending on 

the linearity and nonlinearity of the system and measurements. In the following 

subsections the explanations about the linear Kalman filter, Linear Discrete Kalman 

filter, and Extended Kalman filter is given in details. 

 
 

3.1.1 Linear Continuous Kalman Filter 
 
In this section the Kalman Filter is derived using continuous-time models and 

measurements and this derivation approach provides some unique perspectives that 

are especially useful for small sampling intervals. However, due to the extensive use 
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of digital computers in today’s time, the continuous-time Kalman filter is not widely 

used in practice [4]. 

 
Consider the following truth linear system model and linear measurement model 

defined in continuous time: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )x t F t x t B t u t G t w t= + +  (3.1.1a)

( ) ( ) ( ) ( )y t H t x t v t= +  (3.1.1b)

 
 

where ( )x t  is the 1×n  state vector, ( )F t  is the n n×  state matrix of the system, 

( )H t  is the m m×  measurement matrix, ( )w t  and ( )v t  are zero-mean Gaussian white 

noise processes with covariances given by: 

 

{ }( ) ( ) ( ) ( )TE w t w Q t tτ δ τ= − ; (3.1.2a)

{ }( ) ( ) ( ) ( )TE v t v R t tτ δ τ= −  (3.1.2b)

where, 
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t  is the Kroneker expression. (3.1.2c)

{ }( ) ( ) 0TE v t w τ =  (3.1.2d)

 
 
The last equation implies that ( )w t  and ( )v t  are uncorrelated. The Kalman Filter 

structure for the estimation of the states and outputs is given by the following 

equations: 

 

[ ]ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x t F t x t B t u t K t y t H t x t= + + −  (3.1.3a)

)(ˆ)()(ˆ txtHty =  (3.1.3b)
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The dynamics of the state vector estimation error parameters ( ˆ( ) ( ) ( )x t x t x t= − ) can 

be reformulated by using the Eq. (3.1.1) and Eq. (3.1.3) as follows: 

 

( ) ( ) ( ) ( )x t E t x t z t= +  (3.1.4)

 
where; 
 

( ) ( ) ( ) ( )E t F t K t H t= −  (3.1.5)

( ) ( ) ( ) ( ) ( )z t G t w t K t v t= − +  (3.1.6)

 

When using the matrix exponential solution for the Eq. (3.1.6), the following 

expression is obtained for the state propagation: 

 

0 0 0

0

( ) ( , ) ( ) ( , ) ( )
t

t

x t t t x t t t z dτ τ= Φ + Φ∫  (3.1.7)

 

Here, it is noted that ( )u t  cancels in the error state. Since the system error ( )w t  and 

measurement error ( )v t  are uncorrelated the following expression is obtained as the 

covariance matrix of the measurement error: 

 

{ } ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TE z t z G t Q t G t K t R t K t tτ δ τ⎡ ⎤= + −⎣ ⎦  (3.1.8)

 

The state error covariance is defined by 

 

{ }( ) ( ) ( )TP t E x t x t≡  (3.1.9)

 
As a result, using the Eq. (3.1.7) and Eq. (3.1.8) the time derivative expression of the 

covariance matrix is obtained. The simplified form of this expression is given as 

follows: 
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[ ] [ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T

T T

P t F t K t H t P t P t F t K t H t

G t Q t G t K t R t K t

= − + −

+ +
 (3.1.10)

 
In order to determine the Kalman gain ( )K t , the minimization on Eq. (3.1.10) with 

respect to ( )K t  is done. The necessary conditions lead to: 

 

0 2 ( ) ( ) 2 ( ) ( )
( )

TJ K t R t P t H t
K t
∂

= = −
∂

 (3.1.11)

 

Solving Eq. (3.1.11) for ( )K t , the following expression is obtained: 

1( ) ( ) ( ) ( )TK t P t H t R t−=  (3.1.12)

 

By substituting this gain expression into Eq. (3.1.10), the following expression 

known as the continuous Riccati Equation is obtained 

 
1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t F t P t P t F t P t H t R t H t P t G t Q t G t−= + − +  (3.1.13)

 
 
 

Table 3-1: Continuous-time Linear Kalman Filter [4] 

 
Model ( ) ( ) ( ) ( ) ( ) ( ) ( )x t F t x t B t u t G t w t= + + , ( )w t ~ (0, ( ))N Q t  

( ) ( ) ( ) ( )y t H t x t v t= + , ( )v t ~ (0, ( ))N R t  
Initialize 0 0ˆ ˆ( )x t x=  

{ }0 0 0( ) ( )TP E x t x t=  

Gain 1( ) ( ) ( ) ( )TK t P t H t R t−=  
Covariance 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TP t F t P t P t F t P t H t R t H t P t G t Q t G t−= + − +  
Estimate [ ]ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x t F t x t B t u t K t y t H t x t= + + −  

 
 

A summary of the continuous-time Kalman filter is given in the Table 3-1. At first 

step state and error covariance are initialized. Then, the Kalman gain is calculated 



   53

with the initial covariance value. Next, the covariance and estimated states are 

numerically integrated using the continuous-time measurement. The integration of 

the estimated state and covariance continues until the final measurement time is 

reached. 

 
 

3.1.2 Linear Discrete Kalman Filter 
 
In this section the Kalman Filter is derived assuming that both the models and 

measurements are available in discrete-time form. The truth linear system model and 

linear measurement model for this discrete-time case is given by [4]: 

 

kkkkkkk wuxx Ψ+Γ+Φ=+1  (3.1.14a)

kkkk vxHy +=~  (3.1.14b)

 

where kw  and kv  are assumed as zero-mean Gaussian white noise processes with 

covariances given by: 

 

{ } kjk
T

jk RvvE δ=  (3.1.15a)

{ } kjk
T

jk QwwE δ=  (3.1.15b)

where; 
⎩
⎨
⎧

≠
=

=
jk
jk

kj ;0
;1

δ  (3.1.15c)

{ } 0=T
jk wvE  (3.1.15d)

 
This Kroneker delta requirement preserves the block diagonal structure of the 

covariance and weight matrices, and it is also assumed that kv  and kw  are 

uncorrelated.  
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The propagation of the current estimate and the update of the state by using the 

Kalman gain and measurements are done by using the equations given below: 

 

kkkkk uxx Γ+Φ= +−
+ ˆˆ 1  (3.1.16a)

[ ]−−
+

+
+ −+= kkkkkk xHyKxx ˆ~ˆˆ 11  (3.1.16b)

 

The state error covariance matrix is defined by using the following expression: 

 

{ }T
kkk xxEP −−− ≡ ~~ ; { }T

kkk xxEP −
+

−
+

−
+ ≡ 111

~~ ; 

 { }T
kkk xxEP +++ ≡ ~~ ; { }T

kkk xxEP +
+

+
+

+
+ ≡ 111

~~  
(3.1.17a)

kkk xxx −≡ −− ˆ~ ;   111 ˆ~
+

−
+

−
+ −≡ kkk xxx ; 

kkk xxx −≡ ++ ˆ~ ;   111 ˆ~
+

+
+

+
+ −≡ kkk xxx ; 

(3.1.17b)

 
The expressions given in Eq. (3.1.17b) are the state errors using in the state 

prediction and state update. Here, the aim is to derive an expression for both −
+1kP  

and +
+1kP , and also an optimal expression for the Kalman gain kK . Since eqn. 

(3.1.16a) is not a direct function of the gain kK , it is fairly straightforward to derive 

the expression −
+1kP . After substituting the Eq. (3.1.14a) and Eq. (3.1.16a) into Eq. 

(3.1.17b), than the following expression for −
+1kP  is obtained: 

 

{ }
{ } { }
{ } { }T

k
T

kkk
T

k
T

kkk

T
k

T
kkk

T
k

T
kkk

T
kkk

wwExwE

wxExxE

xxEP

ΨΨ+ΦΨ−

ΨΦ−ΦΦ=

≡

+
+

+
+

+
+

+
+

−
+

−
+

−
+

1

111

111

~

~~~

~~

 (3.1.18)

 
After carrying out certain simplifications, finally the following expression is obtained 

for the state covariance propagation: 
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T
kkk

T
kkkk QPP ΨΨ+ΦΦ= +−

+1  (3.1.19)

 

The next step is to obtain an expression for the state covariance update. For this 

purpose the state propagation and the measurement update equations are used. This 

derivation for the expression for +
kP  is listed in the following set of equations: 

 

( ) kkkkkkkkkk xvKxHKxHKIx −++−= −+ ˆ~  (3.1.20)

{ }
( ) ( ){ }
( ){ } ( ){ }
{ }T

k
T

kkk

T
kk

T
kkk

T
k

T
kkkk

T
kk

T
kkkk

T
kkk

KvvKE

HKIxvKEKvxHKIE

HKIxxHKIE

xxEP

+

−+−+

−−=

≡

−−

−−

+++

~~

~~

~~

 (3.1.21a)

Since  kv  and −
kx~  are uncorrelated  ⇒  { } { } 0~~ == −− T

kk
T

kk xvEvxE  (3.1.21b)

[ ] [ ] T
kkk

T
kkkkkk KRKHKIPHKIP +−−= −+  (3.1.22)

 
In order to determine the Kalman gain kK , the minimization on Eq. (3.1.22) with 

respect to kK  is done. The necessary conditions lead to: 

 

( ) kk
T

kkkk
k

RKHPHKI
K
J 220 +−−==

∂
∂ −  (3.1.23)

[ ] 1−−− += k
T

kkk
T

kkk RHPHHPK  (3.1.24)

 

Substituting Eq. (3.1.24) into Eq. (3.1.22), the simplified expression for the state 

covariance update is obtained: 

 

[ ] −+ −= kkkk PHKIP  (3.1.25)
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The above Eq. (3.1.25) infer that while the propagation step in Eq. (3.1.19) increase 

the covariance; in the opposite side, the update stage of the discrete-time Kalman 

filter decreases the covariance. This observation is instinctively consistent since in 

general more measurements improve the state estimate [4].   

 

A further expression for the state update can be derived by using Kalman gain, real 

measurements and expected measurements as follows:  

 

[ ] [ ]−−−+ −−=+−= kkkkkkkkkkk xHyKxyKxHKIx ˆ~ˆ~ˆˆ  (3.1.26)

 
 

A summary for the algorithms of the discrete-time Kalman filter is given in Table 

3-2. First, the initialization for the state and covariance are done. If a measurement is 

available, the state and covariance are updates by using Kalman gain values and the 

propagation of the state estimate and covariance are calculated for the next step. If a 

measurement is not available, state and covariance are propagated and this process is 

repeated until the new measurement is available. 

 
 

Table 3-2: Discrete-time Linear Kalman Filter [4] 

 
Model 

kkkkkkk wuxx Ψ+Γ+Φ=+1 ,    ),0(~ kk QNw  

kkkk vxHy +=~ ,    ),0(~ kk RNv  
Initialize 0 0ˆ ˆ( )x t x=  

{ }0 0 0( ) ( )TP E x t x t=  

Gain [ ] 1−−− += k
T

kkk
T

kkk RHPHHPK  
Update [ ]−−+ −−= kkkkkk xHyKxx ˆ~ˆˆ  

[ ] −+ −= kkkk PHKIP  
Propagation 

kkkkk uxx Γ+Φ= +−
+ ˆˆ 1  

T
kkk

T
kkkk QPP ΨΨ+ΦΦ= +−

+1  
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3.1.3 Extended Kalman Filter 
 
As described above, the Kalman filter addresses the general problem of trying to 

estimate the states of a linear discrete-time process; however a large class of 

estimation problem involves nonlinear models. A vast majority of such nonlinear 

applications use a Kalman filter that linearizes about the current mean and 

covariance, and this type of filter is called as an Extended Kalman filter (EKF) [18]. 

 

In order to derive the algorithm for EKF, first the discrete nonlinear system and 

measurement model are expressed as follows: 

 

( )kwuxfx kkkk ,,, 11 ++ =  (3.1.27a)

( )kvxhy kkk ,,~ =  (3.1.27b)

 
 
where, random variables kw  and kv  again represent zeros-mean Gaussian  process 

and measurement noise. In practice the values of the noise kw  and kv  are unknown 

at each step time. However, the state and measurement vector can be defined without 

considering these values: 

 

( )kuxfx kkk ,0,,ˆ~
11 ++ =  (3.1.28a)

( )kxhy kk ,0,~~ =  (3.1.28b)

 

The main difference between the linear and extended Kalman filter is in use of the 

linearized system and measurement model on the steps of the filtering algorithm. The 

linearization is done by using first-order Taylor series expansion. The first-order 

expansion of the system and measurement model is given as follows: 

  

( ) ( ) [ ]kk
x

kkkk xx
x
fkuxfkuxf

k

−
∂
∂

+≅ ++ ,,,, 11  (3.1.29a)



   58

( ) ( ) [ ]kk
x

kk xx
x
hkxhkxh

k

−
∂
∂

+≅ ,,  (3.1.29b)

 

The propagation of the current estimate and covariance matrix are done by using the 

following equations: 

 

( ) ( ) +
+

++−
+ +=+= ∫ kk

k

k
kkkk xdtFIdtkxfxx ˆ.,ˆˆˆ

1

1  (3.1.30)

( ) ( ) QdtFIPdtFIP T
kkkk +++= +−

+ ..1  (3.1.31)

 
where;  
 

( )
+

+

∂
∂

=
k

kk
k x

kxfF
ˆ

,ˆ
 (3.1.32)

 
Then Kalman gain kK  is computed when the measurement is available. In this 

computation the linearized measurement model is used: 

 

[ ] 1−−− += k
T

kkk
T

kkk RHPHHPK  (3.1.33)

( )
−
+

−
+

∂
∂

=
1

1

ˆ
,ˆ

k

kk
k x

kxh
H  (3.1.34)

 

In order to determine the error between the actual measurement and expected 

measurement the innovation step is executed: 

  

−
+−= 1ˆ~

kkk xHye  (3.1.35)

 

Finally the expressions that provide the state update and covariance update is given 

as follows: 
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kkkk eKxx −= −
+

+
+ 11 ˆˆ  (3.1.36)

[ ] −
+

+
+ −= 11 kkkk PHKIP  (3.1.37)

 
The following Table 3-3 summarizes the procedures of the EKF. Fist the 

initialization is done for both state and covariance matrix. Then, Kalman gain is 

computed when the measurement is available. After computing the error between the 

real measurements and expected measurements, the state update and covariance 

update steps are implemented. 

 
 

Table 3-3: Discrete-time Extended Kalman Filter [4] 

 
Model 

kkkkkkk wuxx Ψ+Γ+Φ=+1 ,    ),0(~ kk QNw  

kkkk vxHy +=~ ,    ),0(~ kk RNv  
Initialize 0 0ˆ ˆ( )x t x=  

{ }0 0 0( ) ( )TP E x t x t=  

Gain [ ] 1−−− += k
T

kkk
T

kkk RHPHHPK  
Update [ ]−−+ −−= kkkkkk xHyKxx ˆ~ˆˆ  

[ ] −+ −= kkkk PHKIP  
Propagation 

kkkkk uxx Γ+Φ= +−
+ ˆˆ 1  

T
kkk

T
kkkk QPP ΨΨ+ΦΦ= +−

+1  
 
 
It is clear that extended Kalman filter works well only in the region where the first-

order Taylor series linearization sufficiently approximates the nonlinear behavior of 

the system. For this reason, when the estimated initial state is far from the true state, 

instabilities may occur in estimation process. To overcome these instabilities EKF 

can be reconfigured by adding the second-order terms in Taylor series, but in that 

case the computational burden becomes important factor. Therefore in practice this 

standard EKF has remained the most popular method for nonlinear estimation 

problems. Other filters (like Unscented and Particle Kalman filters) are investigated 

only when the performance of the standard EKF is not sufficient, and the quantity or 

the performance of the sensors is limited [4]. 
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In this thesis EKF is used for satellite attitude determination algorithms and several 

sensor measurements are fused through EKF. The details about this system are given 

in the following sub-chapters. However, for a satellite test setup system, it is 

experienced that the performance of the EKF is insufficient because of the constraint 

on the sensor types used. Therefore the Unscented Kalman filter (UKF) algorithm is 

studied on this test setup system. The details about the satellite test setup and UKF 

are presented in Chapter 4.  

 
 

3.1.4 Filter Tuning 
 
The performance of the Kalman filter depends on the filter tuning: the selection of 

the covariances matrices 0P , Q  and R. Filter tuning has two main objectives: to 

obtain maximum estimation accuracy and to converge to an accurate estimate timely 

[3]. The 0P  matrix determines the rapidity of the initial convergence and this matrix 

has no contribution on the steady-state performance of the filter. A 0P  matrix with 

large entries, compared to the Q  and R , provide a rapid initial convergence on 

estimation. In filter, the tradeoff between the rapid tracking of disturbance noise 

induced state variations is determined by the selection of the covariance matrices Q  

and R  [3]. These matrices filter also the measurement noises. The Q  and R  also 

determine the filter stability in steady-state condition. Generally the values of Q  is 

selected as the one hundredth or one thousandth of the 0P ; and the measurement 

noise level determines the value of R  matrix.  

 
 

3.2 Satellite Attitude Determination System Structure 
 
This section presents Kalman filter based satellite Attitude Determination System 

(ADS) structure that processes the sensor measurements to obtain attitude knowledge 

of the spacecraft. The block diagram of the ADS constituted for the hypothetical 

LEO satellite is given in Figure 3-1. 
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Figure 3-1: Satellite Attitude Determination Block Diagram 

 
 
In this system the standard extended Kalman filter is applied to the sensor outputs in 

order to fuse different types of measurements and to acquire the angular rates and the 

attitude of the vehicle. The sensor packet of this system contains rate gyroscopes, 

magnetometers, sun sensors and a star sensor (see Section 2.4). 

 
ADS contains six different modes which are created with respect to the different 

sensors combinations by considering sensor outputs rates and sensor availability at 

different orbital positions and at different mission phases (coarse or accurate attitude 

determination). For instance, the initial detumbling phase of the satellite after the 

separation from the launcher is taken into consideration. During this phase the only 

sensor can be used is the magnetometer and the main aim is to damp the satellite’s 

motion, to control the angular rates. For this reason an attitude determination mode 

that estimates satellite’s angular rates is prepared. Furthermore, when the star sensor 
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is exposed to the Sun lights directly, it is not possible to obtain measurements from 

star sensor. For this reason during this period star sensor is closed and attitude 

estimation filters are fed by other sensors measurements. On the other hand, when 

satellite is in the eclipse of the Earth, it is not possible to use Sun sensor. During the 

eclipse periods star sensor provides accurate attitude measurements by working 

together with the rate gyroscopes and the magnetometer. 

 

The modes prepared for the satellite ADS, the function of the related mode, the 

sensor used and the state estimated are summarized in the following Table 3-4. 

 

Table 3-4: Satellite ADS Modes 

 
Function ADS  

Mode 
Sensor Used Estimated  

State Vector 
Angular Rate 
 Estimation: 

Mode-1 Magnetometer B
OBx ω̂ˆ =  

Coarse Full State 
 Estimation: 

Mode-2 Rate Gyros [ ]TB
IB qx ˆˆˆ ω=  

Coarse Full State 
 Estimation: 

Mode-3 Rate Gyros +  
Magnetometer [ ]TB

IB qx ˆˆˆ ω=  

Coarse Full State 
 Estimation: 

Mode-4 Rate Gyros +  
Sun Sensor [ ]TB

IB qx ˆˆˆ ω=  

Accurate  Full State 
 Estimation: 

Mode-5 Rate Gyros +  
Magnetometer + Sun Sensor [ ]TB

IB qx ˆˆˆ ω=  

Accurate  Full State 
 Estimation: 

Mode-6 Rate Gyros + Star Sensor [ ]TB
IB qx ˆˆˆ ω=  

 
 
In the ADS structure, sensor availability is flagged for each sensor. Related flag 

values is equal to one when sensor is available and give an outputs, otherwise it gives 

always zeros values. Furthermore, a sub-module named ADS mode selection is 

prepared in order to select suitable ADS mode depending on the sensor availability 

knowledge’s during the orbit navigation. This module output feed the Kalman Filters 

module and suitable Kalman filter algorithm is run. The details about the ADS 

modes are given respectively on the following subsections. 

 
 



   63

3.3 Angular Rate Estimation at Detumbling Mode  
 
This section presents an extended Kalman filter algorithm that estimate the 

approximate angular rate of the satellite from magnetometer measurements. This 

estimator is planed for the initial detumbling phase of the satellite’s life after 

separation from the launcher. The rate gyroscopes normally provide direct 

measurements of the body angular rate. However, these sensors are rarely used due 

to their power and cost constraints [2]. For this reason in this phase angular rate 

estimation is done using only magnetometer measurements. Magnetometers measure 

the geomagnetic field vector with respect to the satellite’s body. The rate of change 

of these vectors relative to the body axes are used to extract the body angular rates. 

In the following explanations, first the system model is given. Then, measurement 

model and next the EKF steps are given in details. 

 
 
System Model: 
 
The dynamic model given in Eq. (2.1.3) is used in this EKF and this expression can 

be rewritten as follows. This expression can be also redefined in terms of the orbit 

referenced body angular rates by using the Eq. (2.1.8) as follows: 

 

( )BB
IB

B
IB

B
IB II τωωω +−= − ~1  (3.3.1)

( ) O
IO

B
O

BB
IB

B
IB

O
IO

B
O

B
IB

B
OB CIIC ωτωωωωω −+−=−= − ~1  (3.3.2)

 
The last term in the Eq. (3.3.2), O

IO
B
OC ω , is normally in the same order of magnitude 

as the disturbance torques. Therefore, it is modeled as system noise with the 

disturbance torques acting on the satellites. 

 
The discrete-time system model which will be used in the EKF can be rewritten as 

follows: 

 

kkkkkk
B
OBk suxx +Γ+Φ== +

+
−
+ ˆˆ 11 ω  (3.3.3)
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with, 

( )dtFI kk .+=Φ  (3.3.4)

( )
+

+

∂
∂

=
k

kk
k x

kxf
F

ˆ
,ˆ

 (3.3.5)

dtIk .1−=Γ  (3.3.6)

),0( QNsk =  (3.3.7)

 

where Q  is the discrete zero mean system noise covariance matrix 

 
 
Measurement Model: 
 
In EKF, the measurement model is formed by making use of the small-angle 

approximation of the direction cosine matrix: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
≈

1
1

1
)(

φθ
φψ
θψ

kC B
O

 (3.3.8)

 

By reducing the sampling rate dt , it is possible to acquire small rotations between 

two successive sampling instances. Furthermore, it can be assumed almost constant 

angular rates during sampling period k , and as a result of this the direction cosine 

matrix can be redefined by using these small roll, pitch and yaw rotation angles as 

given in the following expression: 

 

dtk

dtk

dtk

z
B
OBk

y
B
OBk

x
B
OBk

).(

).(

).(

ωψ

ωθ

ωφ

≈

≈

≈

 (3.3.9)

{ })()( 33 kIkC B
OBx

B
O ωΛ+≈  (3.3.10)
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(3.3.11)

 
In this algorithm, the relationship between two successive magnetic filed 

measurement vectors is taken as the angular rate measurement and this relation can 

be formulated as follows: 

 

)1().()( −= kvkCkv MAG
B
OMAG  (3.3.12)

 

The measurement model defined for these successive measurements is defined as: 

 

)()()()(~ kmkxkHvky MAG +== δ  (3.3.13)

 

with, ),0()( RNkm = and R  is the discrete zero mean measurement noise covariance 

matrix. 

 

Finally the measurement matrix used in EKF is derived by using the following steps: 

 

[ ]
{ } )1(.)(

)1(.)(

)1()1().(

)1()(

33

−Λ=

−−=

−−−=

−−=

kvk

kvIkC

kvkvkC

kvkvv

MAG
B
OB

MAGx
B
O

MAGMAG
B
O

MAGMAGMAG

ω

δ

 (3.3.14)
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⎥
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⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−

−−−
=

∂
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(3.3.15)
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Extended Kalman Filter Algorithm: 
 
Here, the EKF steps for ADS Mode-1 are given. Actually these explanations are just 

a repetition of the algorithm given at Section 3.1.3 for EKF. The first two steps are 

running each sampling time and when the measurements come from the 

magnetometer the following steps are executed.  

 

1. State vector propagation using Eq. (3.3.2) 

kkkkkk suxx +Γ+Φ= +−
+ ˆˆ 1  

 

2. Covariance matrix propagation using Eq. (3.1.31) 

QPP T
kkkk +ΦΦ= +−

+1  

 

3. Kalman Gain computation using Eq. (3.1.33) 

[ ] 1−−− += k
T

kkk
T

kkk RHPHHPK  

 

4. Innovation computation using Eq. (3.1.35) 

−
+−= 1ˆ~

kkk xHye  

 

5. State Update using Eq. (3.1.36) 

[ ]−
+

−
+

+
+ −−= 111 ˆ~ˆˆ kkkkkk xHyKxx  

 

6. Covariance Update using Eq. (3.1.37) 

[ ] −
+

+
+ −= 11 kkkk PHKIP  
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Simulation Results: 

 

The simulation of the Kalman Filter Based Satellite ADS is run for Mode-1 for 20 

minutes at 1 Hz sampling time and the results that show the performance of the 

estimation are given in the following figures. In this simulation sampling time for the 

magnetometer measurements is also taken as 1 Hz.  

 

The real and estimated body angular rates and estimation errors can be seen in the 

following Figure 3-2. These results show that the estimation error does not 

exceed sec/2.0 o  for all three components of the angular rates. 

 

In order to point out the performance of the Mode-1, Monte Carlo analysis is also 

performed to the system. The results of the Monte Carlo analysis provides to 

determine the statically distribution characteristics of the estimation error. The mean 

X̂μ  and standard deviation X̂σ  of the estimation errors are computed recursively 

between the estimation convergence time (150 sec) and simulation end time (1200 

sec) for each simulation. In total, 20 simulations are run to determine the estimation 

performance. The results obtained for each simulation are given in the Figure 3-3. 

The results given in the Table 3-5 are obtained by computing the mean values of X̂μ  

and X̂σ  obtained at the end time for each simulation. 
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Figure 3-2: Mode-1 Real and Estimated Angular Rates 

 
 
 

 
Figure 3-3: Mode-1 Std. Dev. and Mean of the Angular Rate Estimation Error 
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Table 3-5: Mode-1 Statistical Results of the Estimation Error 

 
 

X̂μ sec)/(o  X̂σ sec)/(o  

.ˆ _ errB
XOBω 0.000 0.090 

.ˆ _ errB
YOBω  0.016 0.094 

.ˆ _ errB
ZOBω  -0.026 0.085 

 
 

Consequently, from the results of Mode-1 given above, it is observed that the 

estimated parameters converge to the real one with an acceptable accuracy and this 

convergence time is approximately 150 seconds. The estimation error after the 

convergence is in the band interval of sec/2.0 o± . Regarding to the statistical 

computations, some amount of bias is seen on the estimation of B
YOB _ω  and B

ZOB _ω ; 

however, the standard deviation for all three components of the B
OBω  is about 

approximately sec/09.0 o  and these results shows that Mode-1 perform a successful 

estimation for detumbling phase of the satellite. 

 

 

3.4 Coarse Full State Estimation 
 
In this section, three EKF based estimators are presented that estimate the inertially 

referenced body angular rates ( B
IBω ) and the attitude (quaternions q ) of the satellite 

by using rate gyroscope, magnetometer and sun sensor measurements for suitable 

coarse attitude determination. These sensor combinations do not require too much 

power.  

 

All of the three estimators use rate gyros as the inertial sensor while for Mode-2 rate 

gyro is the only sensor available. Mode-3 includes a magnetometer used as a 

reference sensor in addition to rate gyros. This latter mode is suitable for the eclipse 

periods of the satellite. Mode-4 may be used when sun sensor is available. Thus, 

Mode-4 fuses the measurements from the rate gyros and Sun sensor.  
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The detailed explanations about these three modes are given in the following 

sections. First, the system model which is common for all these modes are explained. 

Then, the measurements models related to the particular ADS modes are given. 

Finally the simulation results are presented. 

 
 
System Model: 
 
The dynamic and kinematics model given in Eq. (2.1.3) and Eq. (2.1.6) can be 

rewritten as follows: 

 

( )BB
IB

B
IB

B
IB II τωωω +−= − ~1  (3.3.16)

qq B
OBΩ=

2
1  (3.3.17)

 

The discrete-time system model which will be used in the EKF is formulated as 

follows: 

 

[ ] kkkkk
TB

IBk suxqx +Γ+Φ== +−
+ ˆˆ 1 ω  (3.3.18)

 
with, ( )dtFI kk .+=Φ ; ( ) ++ ∂∂= kkkk xkxfF ˆ/,ˆ  ; dtIk .1−=Γ  and ),0( QNsk =  where 

Q  is the discrete zero mean system noise covariance matrix as before. 

 

 

Measurement Model:  
 
Rate gyros measure directly the inertial referenced body angular rates B

IBω , so the 
measurement model in discrete-time can be defined as follows: 
 

( )( ) ( ) , , ( ) ( ) ( )B
RG IB RG k k RG RGmeasy k k h x v k H k x k m kω= = = +  (3.3.19)
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with [ ] TB
IB kqkkx )()()( ω= is the state vector,  )(kH RG  is the measurement matrix 

for rate gyros ( ) −
+

−
+ ∂∂= 11 ˆ/,ˆ)( kkRGRG xkxhkH . Here, ),0()( RGRG RNkm =  is the 

discrete zero mean measurement noise with RGR  covariance matrix of the rate gyros. 

Then the measurement matrix RGH  is: 

 

[ ]4333 0 xxRG IH =  (3.3.20)

 

 

Magnetometer measures directly the magnitude of the magnetic field with respect to 

the satellite body axis frames (see Section 2.4.3). Magnetic field direction vector 

expressed in orbital reference frame ( OMAG ) are computed by using the IGRF 

model and the measurement model defined in body frame are created by using the 

rotation matrix from orbit to body. 

 

MAG
OB

OmeasMAG vMAGCMAGky +⋅==)(~

( ) )()()(,, kmkxkHkvxh MAGMAGkkMAG +==  
(3.3.21)

 
 

where, ),0()( MAGMAG RNkm =  is the discrete zero mean measurement noise with 

MAGR  covariance matrix of the magnetometer. The MAGH  is extracted by the 

linearization of the measurement model as follows: 

 
[ ]MAGMAGMAGMAGxMAG HHHHH 43210 33=  (3.3.22a)

O
MAG MAG

qqq
qqq
qqq

H
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⎥
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Sun sensor measures the Sun position vector defined in the satellite body axis 

frames and the unit Sun position vector expressed in orbital reference frame ( OS ) is 

computed by using the Sun position model (see Section 2.4.2). The measurement 

model defined in body frame are formed by using the rotation matrix from orbit to 

body as follows 

 

SUN
OB

OmeasSUN vSCSky +⋅==)(~

( ) )()()(,, kmkxkHkvxh SUNSUNkkSUN +==  
(3.3.23)

 

As seen from this last equation, measurement models of the Sun sensor and 

magnetometer have the same structure. So, the measurement matrix SUNH  can be 

expressed by rearranging the MAGH  as follows: 

 

[ ]SUNSUNSUNSUNxSUN HHHHH 43210 33=  (3.3.24a)
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Extended Kalman Filter Algorithm: 
 
The EKF used for ADS Mode-2, Mode-3 and for Mode-4 has the same structure with 

the steps given in Section 3.3 which is based on the algorithm explained in section 

3.1.3. The main difference between these ADS modes are the measurement matrix 

and the measurement noise covariance matrix that is related to the sensors used. In 

the following equations the measurement and noise covariance matrix for each 

coarse ADS modes are listed respectively. 

 

RGXMOD RIR .332_ =  (3.3.25)

RGMOD HH =2_  (3.3.26)

⎥
⎦

⎤
⎢
⎣

⎡
=

MAGXX

XRGX
MOD RI

RI
R

.0
0.

3333

3333
3_  (3.3.27)

⎥
⎦

⎤
⎢
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⎡
=

MAG

RG
MOD H

H
H 3_  (3.3.28)

⎥
⎦

⎤
⎢
⎣

⎡
=

SUNXX

XRGX
MOD RI

RI
R

.0
0.

3333

3333
4_  (3.3.29)

⎥
⎦

⎤
⎢
⎣

⎡
=

SUN

RG
MOD H

H
H 4_  (3.3.30)

 
 
 
Simulation Results: 
 
The Satellite ADS simulation is run at 5 Hz sampling time for 300 seconds at each 

coarse attitude determination modes. Results obtained for each mode are given 

separately in the following sections. The measurement sampling time for the each 

sensor also is selected as 5 Hz. 
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Mod-2 Results 
 
ADS Mode-2 use only rate gyros measurement to estimate the state vector. The real 

and estimated states and estimation errors are given respectively in the following 

Figure 3-4, Figure 3-5 and Figure 3-6.   
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Figure 3-4: Mode-2 Real and Estimated Angular Rates 
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Figure 3-5: Mode-2 Real and Estimated Quaternions 
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Figure 3-6: Mode-2 Real and Estimated RPY Angles 

 

 

Regarding to the Mod-2’s estimation results, it can be clearly seen that it is not 

possible to accurately estimate the attitude by using only rate gyros measurements 

when the initial values of the real and estimated states are different. Therefore Monte 

Carlo analysis is applied only to the estimated angular rates for this Mode-2. The 

statistical results are taken by repeating the simulation 20 times for Mode-2.  The 

mean X̂μ , and the standard deviation X̂σ  of the estimation errors are given in the 

Figure 3-7, Figure 3-8 and Table 3-6. 
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Figure 3-7: Mode-2 Mean of the Angular Rate Estimation Error 

 
 

 
Figure 3-8: Mode-2 Standard Deviation of the Angular Rate Estimation Error 
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Table 3-6: Mode-2 Statistical Results of the Estimation Error 

 
 

X̂μ sec)/(o  X̂σ sec)/(o  

.ˆ _ errB
XIBω  0.000 0.0125 

.ˆ _ errB
YIBω  0.000 0.0097 

.ˆ _ errB
ZIBω  0.000 0.0163 

 
 

Consequently, Mode-2 shows a good estimation performance for only angular rate 

estimation. It is observed that the accurate attitude estimation can not be realized 

without using a reference sensor. The only possibility to get also good attitude 

estimation in Mode-2, is to have the same initial values for real and estimated states. 

Regarding to the results, it is seen that the convergence time for angular rate 

estimation is approximately 5 seconds. The angular rate estimation error is in the 

band interval of sec/03.0 o± . From the statistical computations, standard deviation of 

the estimation error is obtained approximately sec/015.0 o . 

 

 

Mod-3 Results 
 
ADS Mode-3 use rate gyros as an inertial sensor and magnetometer as a reference 

sensor in the estimation of the angular rate and attitude of the satellite. In order to 

examining the performance of Mode-3, a motion profile containing sinusoidal part 

followed by a fixed attitude part is used. The initial attitude angles are given as 
o20=== ψθφ . The real and estimated states and estimation errors under this 

defined motion profile are given respectively in the following Figure 3-9, Figure 

3-10 and Figure 3-11. 
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Figure 3-9: Mode-3 Real and Estimated Angular Rates 
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Figure 3-10: Mode-3 Real and Estimated Quaternions 
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Figure 3-11: Mode-3 Real and Estimated RPY Angles 

 

Regarding to the Mod-3’s simulation results, it is seen that the performance of the 

attitude estimation is not successful. The only relatively satisfactory estimation is 

obtained in pitch angleθ , but during the attitude hold motion the estimation start to 

diverge from the real values. This divergence can be seen also in the yaw angleψ . 

The roll angle φ  estimation obtained is very noisy. The inaccuracy of attitude 

estimation has a negative effect on the angular rate estimation. Since the pitch angle 

estimation is better compared to the other attitude angles’ estimation, the B
YIB _ω̂  also 

is stable. However different estimation error behaviors are obtained for the others 

angular rates during the sinusoidal changing attitude and fixed attitude profiles. 

 

Monte Carlo analysis is applied and the statistical results are calculated during 

simulations. Each simulation is repeated 20 times for Mode-3. The mean X̂μ  and the 

standard deviation X̂σ  values of the estimation errors are given in the following 

figures and Table 3-7. 
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Figure 3-12: Mode-3 Mean of the Angular Rates Estimation Error 

 

 
 
 

 
 

Figure 3-13: Mode-3 Standard Deviation of the Angular Rates Estimation Error 
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Figure 3-14: Mode-3 Mean of the Quaternions Estimation Error 

 
 
 
 

 
 

Figure 3-15: Mode-3 Standard Deviation of the Quaternions Estimation Error 
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Figure 3-16: Mode-3 Mean of the RPY Angles Estimation Error 

 

 
 
 

 
 

Figure 3-17: Mode-3 Standard Deviation of the RPY Angles Estimation Error 
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Table 3-7: Mode-3 Statistical Results of the Estimation Error 

 
 Sinusoidal Motion Fixed Attitude 

errX̂  X̂μ  X̂σ  X̂μ  X̂σ  

.ˆ _ errB
XIBω sec)/(o  0.000 0.0082 0.000 0.0006 

.ˆ _ errB
YIBω sec)/(o  0.000 0.0095 0.000 0.0007 

.ˆ _ errB
ZIBω sec)/(o  0.000 0.0108 0.000 0.0005 

errq1ˆ  -0.1785 0.0067 -0.1728 0.0072 

errq2ˆ  -0.0138 0.0268 0.0057 0.0283 

errq3ˆ  -0.0317 0.0467 -0.0645 0.0381 

errq4ˆ  -0.0199 0.0256 0.0139 0.0080 

errφ̂ )(o  -20.8956 1.4281 -19.6820 2.0353 

errθ̂ )(o  -0.6059 2.5354 -1.7041 3.0326 

errψ̂ )(o  -3.3871 5.1887 -3.3795 5.0734 

 
 

Consequently, Mode-3 results point out that the magnetometer is not sufficient to 

obtain a successful attitude estimation performance. The results of the Monte Carlo 

analysis also show the estimation performance statistically and it is seen that 

magnetometer measurements provide better attitude estimation for the pitch and yaw 

angles. The reason of the bias problem on the roll angle estimation may be the type 

of the orbit selected for the hypothetical satellite and as this satellite navigates in a 

nearly polar orbit, the magnetic filed measurements may cause accuracy problems on 

this roll axis which is nearly parallel to the polar axis of the Earth. It can be also 

expressed that one reference sensor is not sufficient to preserve the convergence in 

case of the attitude hold motion. 

 
 
Mod-4 Results 
 

ADS Mode-4 uses rate gyros as inertial sensors and a Sun sensor as the reference 

sensor. Sinusoidal changing attitude and fixed attitude motion profiles are used again 

The initial attitude angles are given as o20=== ψθφ . The real and estimated states 
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and estimation errors under this defined motion profile are given respectively in the 

Figure 3-18, Figure 3-19 and Figure 3-20. 
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Figure 3-18: Mode-4 Real and Estimated Angular Rates 
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Figure 3-19: Mode-4 Real and Estimated Quaternions 
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Figure 3-20: Mode-4 Real and Estimated RPY Angles 

 
 

The results of Mode-4 show that by using Sun sensor as a reference source, a 

sufficient performance for coarse attitude estimation is obtained, since Sun sensors 

are more accurate sensors then magnetometers. However, the divergence problem for 

the attitude hold motion can be seen also in Mode-4. This problem can be resolved 

by using more than one reference sensor in ADS. This situation is studied in Mode-5 

below.  

 

Statistical results also are taken by running the Monte Carlo analysis 20 times for 

Mode-4. The mean X̂μ  and the standard deviation X̂σ  of the estimation errors are 

given in the following Figure 3-21 to Figure 3-26 and Table 3-8. 
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Figure 3-21: Mode-4 Mean of the Angular Rates Estimation Error 

 
 
 
 

 

 
 

Figure 3-22: Mode-4 Standard Deviation of the Angular Rates Estimation Error 
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Figure 3-23: Mode-4 Mean of the Quaternions Estimation Error 

 
 
 
 

 
 

Figure 3-24: Mode-4 Standard Deviation of the Quaternions Estimation Error 
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Figure 3-25: Mode-4 Mean of the RPY Estimation Error 

 
 
 
 

 
 

Figure 3-26: Mode-4 Standard Deviation of the RPY Estimation Error 
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Table 3-8: Mode-4 Statistical Results of the Estimation Error 

 
 Sinusoidal Motion Fixed Attitude 

errX̂  X̂μ  X̂σ  X̂μ  X̂σ  

.ˆ _ errB
XIBω sec)/(o  0.000 0.0091 0.000 0.0006 

.ˆ _ errB
YIBω sec)/(o  0.000 0.0115 0.000 0.0007 

.ˆ _ errB
ZIBω sec)/(o  0.000 0.0117 0.000 0.0005 

errq1ˆ  -0.0046 0.0131 -0.0219 0.0107 

errq2ˆ  -0.0022 0.0122 -0.0037 0.0013 

errq3ˆ  0.0040 0.0099 0.0171 0.0072 

errq4ˆ  -0.0044 0.0017 -0.0035 0.0006 

errφ̂ )(o  -0.3304 1.9001 -2.8894 1.4371 

errθ̂ )(o  -0.6710 1.5964 -1.1922 0.3186 

errψ̂ )(o  0.3708 1.4419 2.5908 1.0659 

 
 
As a result, Mode-4 provides a successful attitude estimation performance for coarse 

state estimation.  

 

Consequently, regarding to the simulations results obtained for Mod-2, Mode-3 and 

Mode-4, it can be stated that rate gyros are sufficient to estimate the body angular 

rates, but for the attitude estimation a reference sensor is necessary. Magnetometer 

does not provide a sufficiently accurate attitude determination due its noisy 

measurements. Sun sensor is a more accurate sensor then magnetometer and 

therefore the estimation performance obtained by using this sensor is better. 

However, the divergence problem for the attitude hold motion may not be prevented 

by using an accurate reference sensor alone. The reason of this insufficiency may be 

the lack of the attitude knowledge for the some type of the rotations; observability 

problems may occur depending on the rotation and measurement axis and this may 

cause the divergence problems. In the following sections, more than one reference 

sensor cases will be examined.  
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3.5 Accurate Full State Estimation 
 
In this section, two EKF based estimators are presented to be used for more accurate 

attitude determination. The first EKF, Mode-5, fuses the rate gyros with 

magnetometer and Sun sensor measurements. The second one, Mode-6, uses star 

sensor measurements instead of sun sensor. 

 

In the following sections, first the common system model is given; then, the 

measurements models related to the ADS modes are presented. Finally the 

application of the EKF steps is repeated. 

 

 

System Model: 

 

The system model used in EKF for Mode-5 and Mode-6 is the common system that 

explains in the previous Section 3.4. The dynamic and kinematics model of the 

satellite can be seen in the Eqs. (3.3.16, 3.3.17, 3.3.18). 

 

 

Measurement Model:  

 

The measurements model (the rate gyros, magnetometer and sun sensor models) used 

in EKF for the Mode-5 and Mode-6 can be seen with details in previous Section 3.4. 

Here the additional sensor used is the star sensor and its measurement model is given 

in the equations listed below. 

 

Star Sensor selected for the ADS gives directly the attitude measurements, the 

measured quaternions as outputs. The measurements model in discrete-time can be 

defined as follows: 

 

( )( ) ( ) , , ( ) ( ) ( )ST meas ST k k ST STy k q k h x v k H k x k m k= = = +  (3.3.31)
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with [ ] TB
IB kqkkx )()()( ω= is the state vector,  ( )STH k  is the measurement matrix 

for star sensor ( )1 1ˆ ˆ( ) , /ST ST k kH k h x k x− −
+ += ∂ ∂ . Here, ( ) (0, )ST STm k N R=  is the discrete 

zero mean measurement noise with STR  covariance matrix of the rate gyros. After 

linearization of the measurement equation, measurement matrix STH  is obtained as 

follows: 

 

[ ]4 3 4 40ST x xH I=  (3.3.32)

 
 
 

Extended Kalman Filter Algorithm: 

 

The EKF used for ADS Mode-5 and Mode-6 has the same structure with the steps 

given in Section 3.3 which is based on the algorithm explained in Section 3.1.3. The 

main difference between these accurate ADS modes are the measurement matrix and 

the measurement noise covariance matrix that is related to the sensors used. 

Following equations gives the measurement and noise covariance matrix for each 

accurate ADS modes respectively. 

 
3 3 3 3 3 3

_ 5 3 3 3 3 3 3

3 3 3 3 3 3

. 0 0
0 . 0
0 0 .

X RG X X

MOD X X MAG X

X X X SUN

I R
R I R

I R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.3.33)
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Simulation Results: 

 

The Satellite ADS simulation sampling time and measurement sampling time for the 

each sensor is selected as 5 Hz. Results are obtained by running the simulations 

during 300 seconds and these results are given separately in the following sub-

sections. 

 

Mod-5 Results 

 

ADS Mode-5 use rate gyro, magnetometer and sun sensor measurements in the 

estimation of the angular rates and attitude of the satellite. As applied in previous 

sections, a motion profile containing the sinusoidal and fixed attitude is tested. The 

initial attitude angles are given as 
o20=== ψθφ . The real and estimated states and 

estimation errors are given respectively in the following Figure 3-27, Figure 3-28 and 

Figure 3-29. 
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Figure 3-27: Mode-5 Real and Estimated Angular Rates 
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Figure 3-28: Mode-5 Real and Estimated Quaternions 
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Figure 3-29: Mode-5 Real and Estimated RPY Angles 
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In this mode a very accurate attitude determination is achieved by using two 

reference sensors. The accuracy and the divergence problem on the estimation, seen 

in Mod-3 and Mod-4, are not observed in this mode due to two reference sensors. 

 

Statistical results are taken by running Monte Carlo simulation 20 times. The mean 

X̂μ  and the standard deviation X̂σ  of the estimation errors are given in the Figure 

3-30 to Figure 3-35 and Table 3-9.  

 
 

 
Figure 3-30: Mode-5 Mean of the Angular Rates Estimation Error 

 
 
 
 

 
Figure 3-31: Mode-5 Standard Deviation of the Angular Rates Estimation Error 
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Figure 3-32: Mode-5 Mean of the Quaternions Estimation Error 

 
 
 
 

 
Figure 3-33: Mode-5 Standard Deviation of the Quaternions Estimation Error 
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Figure 3-34: Mode-5 Mean of the RPY Estimation Error 

 
 
 
 

 
 

Figure 3-35: Mode-5 Standard Deviation of the RPY Estimation Error 
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Table 3-9: Mode-5 Statistical Results of the Estimation Error 

 
 Sinusoidal Motion Fixed Attitude 

errX̂  X̂μ  X̂σ  X̂μ  X̂σ  

.ˆ _ errB
XIBω sec)/(o  0.000 0.0103 0.000 0.0006 

.ˆ _ errB
YIBω sec)/(o  0.000 0.0160 

 
0.000 0.0007 

.ˆ _ errB
ZIBω sec)/(o  0.000 0.0075 0.000 0.0007 

errq1ˆ  0.000 0.0004 0.000 0.0003 

errq2ˆ  0.000 0.0003 0.000 0.0002 

errq3ˆ  0.000 0.0002 0.000 0.0002 

errq4ˆ  0.000 0.0001 0.000 0.0001 

errφ̂ )(o  0.0204 0.2696 -0.0054 0.0327 

errθ̂ )(o  0.0240 0.2611 -0.0045 0.0311 

errψ̂ )(o  0.0257 0.2597 0.0015 0.0181 

 
 

Consequently, Mod-5 results show that the accurate full state estimation is obtained 

by using one inertial and two reference sensors. Second reference sensor prevents the 

divergence in the estimation by using Mode-3 and Mode-4 that occurs in the case of 

the attitude hold maneuver. Mode-5 attitude estimation error is in the band interval of 

0.5o±  for a sinusoidal motion defined in simulations. This error values decrease 

when the satellite does an attitude hold maneuver and this value is approximately 

0.05o± .  

 

 

Mod-6 Results 
 
ADS Mode-6 use rate gyro and star sensor measurements for the accurate full state 

estimation. In his part same motion profile is used as before. The initial attitude 

angles are o20=== ψθφ . The real and estimated states and estimation errors under 

this defined motion profile are given respectively in the following Figure 3-36, 

Figure 3-37 and Figure 3-38. 
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Figure 3-36: Mode-6 Real and Estimated Angular Rates 
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Figure 3-37: Mode-6 Real and Estimated Quaternions 
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Figure 3-38: Mode-6 Real and Estimated RPY Angles 

 
 

Consequently, the simulation results obtained for Mod-6 demonstrates extremely 

accurate attitude determination since one inertial sensor and one very accurate 

reference sensor, which both has a linear measurement models, are used together in 

ADS. It means that since satellite’s states are measured directly by accurate sensors, 

good state estimation is obtained. The results of the Monte Carlo analysis are given 

in the figures Figure 3-39 to Figure 3-44 and in Table 3-10 for sinusoidal attitude and 

fixed attitude profiles. 
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Figure 3-39: Mode-6 Mean of the Angular Rates Estimation Error 

 

 
 
 

 
 

Figure 3-40:  Mode-6 Standard Deviation of the Angular Rates Estimation Error 
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Figure 3-41: Mode-6 Mean of the Quaternions Estimation Error 

 
 
 
 

 
 

Figure 3-42: Mode-6 Standard Deviation of the Quaternions Estimation Error 
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Figure 3-43: Mode-6 Mean of the RPY Angles Estimation Error 

 
 
 
 

 
 

Figure 3-44: Mode-6 Standard Deviation of the RPY Angles Estimation Error 
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Table 3-10: Mode-6 Statistical Results of the Estimation Error 

 
 Sinusoidal Motion Fixed Attitude 

errX̂  X̂μ  X̂σ  X̂μ  X̂σ  

.ˆ _ errB
XIBω sec)/(o  0.000 0.0105 0.000 0.0007 

.ˆ _ errB
YIBω sec)/(o  0.000 0.0116 0.000 0.0007 

.ˆ _ errB
ZIBω sec)/(o  0.000 0.0128 0.000 0.0006 

errq1ˆ  0.000 3e-5 0.000 2.5e-5 

errq2ˆ  0.000 3e-5 0.000 2.0e-5 

errq3ˆ  0.000 3e-5 0.000 2.5e-5 

errq4ˆ  0.000 1e-5 0.000 1e-5 

errφ̂ )(o  0.0228 0.2641 -0.0016 0.0020 

errθ̂ )(o  0.0226 0.2506 -0.0037 0.0029 

errψ̂ )(o  0.0227 0.2628 -0.0017 0.0020 

 

 

As a result, Mode-6 provides very accurate attitude estimation. Attitude estimation 

error is in the band interval of 0.4 o±  for a sinusoidal motion. This error values 

decrease to 0.005o±  for an attitude hold maneuver. Monte Carlo analysis show that 

the standard deviation values of the attitude estimation is approximately 0.26 o± for 

sinusoidal motion profile and approximately 0.003o±  for attitude hold maneuver 

profile and the mean values of the errors shows that there is no divergence problem 

on the state estimation.  

 

Regarding to the results of the Mode-5 and Mode-6, it can be concluded that highly 

accurate full state estimation can be achieved by using one inertial and more than one 

reference sensors. These reference sensors give the components of the direction 

vector as measurement; however the rotation of the satellite about that direction is 

unknown and as a result the divergence problem occurs on estimation and estimation 

error increases. In order to resolve this observability problem, it is necessary to use a 

second reference sensor; but in that case the mounting location and the direction of 

the source of the second sensor will become an important parameter that must be 
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taken into consideration. The divergence problem and bad estimation will occur 

again when the measured direction vectors of these two sensors become parallel to 

each other. On the other hand, as seen at Mode-6, it is possible to obtain a perfect full 

state estimation by using one accurate inertial and one accurate attitude sensor if the 

measurement model is linear ( yyH I= ), these sensors measure directly the full state. 

Here, it is suitable to remember the working principal of the star sensor. As mention 

in the section 2.4.4, star sensor measures star coordinates by comparing its 

measurements with known star directions from its star catalog.  

 
 

3.6 A Multimode Attitude Determination System 
 
This section presents ADS mode selection module and gives the performance of the 

ADS during the orbit navigations. Here the motivation is to generate an ADS which 

uses various sensors according to their availability. For this reason sensor flag logic 

is created for each sensor that is based on the availability of the sensor. This flag 

logic gives one as output when sensor is available at its measurement frequency and 

it gives zeros for other cases. 

 

A sub-module named ADS mode selection is prepared that selects suitable Kalman 

Filter algorithm depending on the sensors activity and it sends the ADS Mode 

knowledge as output to the Kalman Filter Module. Here, sun sensor and star sensor 

availability are related to the satellite orbital position. For instance, sun sensor flag is 

zero when the satellite is in the Earth eclipse and on the contrary star sensor flag is 

zero for the cases that sensor is exposed to the sun light. 

 
This autonomous ADS simulation is run for 1 orbital time period (approximately 100 

minutes) at 5 Hz (sampling time dt≡ ). Different measurements rates are appointed 

to each sensor: measurement sampling rate for the rate gyros is 0.2 sec. ( )1dt × , for 

magnetometer it is 1 sec ( )5dt × , for sun sensor it is 0.4 sec ( )2dt × , and finally for 

star sensor it is 0.6 sec ( )3dt × . The graphics that show the sensor flag values and the 

selected ADS mode values is given at the following Figure 3-45. 
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Figure 3-45: Sensor Flags and Selected ADS Mode 

 
 

Regarding to the selected ADS mode number, related Kalman Filter algorithms is 

run; then the estimated state x̂  values and the system covariance matrix P  are 

conserved between the mode transition, and they are used as initial inputs to the next 

ADS mode. The working principal of this module is simulated on the following 

figures. The Figure 3-46 shows the selection of the ADS mode and related KF 

algorithms when rate gyro and magnetometer give measurements. The second Figure 

3-47 shows the situation and mode transition phases when Sun sensor becomes 

active and give a measurement. From these figures, it can be seen that the outputs x̂  

and P  are used as initial inputs to the next selected ADS mode. 
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Figure 3-46:  Mode Selection Scenario-1 

 

 

 

 

Figure 3-47:  Mode Selection Scenario-2 

 

 

In order to determine the performance of the autonomous ADS during one orbital 

period time, a motion profile scenario that contains several attitude maneuvers is 

formed. In the Figure 3-48 the simulation results of the attitude estimation are given 

for this motion profile.  
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Figure 3-48: Attitude Estimation Performance For Several Successive Maneuvers  

 
 

Regarding to the results, it can be concluded that the successful attitude 

determination is obtained by the multimode ADS. For this kind of motion profile that 

contains successive attitude maneuvers, the attitude estimation error is approximately 

0.2 o± when star sensor is not used. When the star sensor is available, the estimation 

error decreases to approximately 0.01o± . Actually, these numbers do not show the 

estimation performance clearly. Note that Monte Carlo simulation results given in 

the previous sections are the true performance of each mode. However by using a 

multimode AS, the initial convergence problem is alleviated.  
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3.7 Conclusion 
 
In this third section, Kalman Filter Based Attitude Determination System is presented 

and it is shown that to increase the attitude determination accuracy different 

reference sensors shall be used. A multimode attitude determination is also 

demonstrated successfully. 
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CHAPTER 4 
 
 
 

4 ATTITUDE DETERMINATION FOR THE SATELLITE 
ATTITUDE CONTROL TEST SETUP 

 
 
 
This chapter presents the Kalman filter based attitude determination system prepared 

for the satellite control test setup. Here, the main objective is to generate a cost-

effective, relatively accurate and stable attitude determination system by using only 

an Inertial Measurement Unit (IMU) including 3 axis rate gyros and 3 axis 

accelerometer. For this purpose two different Kalman filters are prepared; the first 

one is based on extended Kalman filter and the second one is based on unscented 

Kalman filter algorithms.  

 

In the following sections the information about the satellite test setups, the details 

about the rotational motion model test setup, the sensor measurement models used, 

the attitude determination system structure and the results and of the estimation 

algorithms are given and discussed respectively. 

 

In this thesis, a test setup model is created named Satellite Attitude Determination 

and Control Test Setup (SACoTS) and the following sections contain its rotational 

motion model, its sensor measurement models and the attitude determination 

algorithms prepared specially for SACoTS depending on the sensors used. 

 

4.1 SACoTS Simulation Model 
 
In this section, rotational motion model of a ground based satellite test setup is 

derived. Basically the dynamics and kinematics equations are similar to the satellite’s 

motion equations that given in Section 3.1. However there are some differences 

because of the gravity and the environment effects. The main difference is the torque 
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acting on the system due to the eccentricity between the center of gravity (CG) and 

center of rotation (CR). The air bearing table has a 3 axis rotational freedom on a one 

point called CR and in reality the CG never coincides with the CR due to the mass 

distribution which is not uniform on the air bearing table. The second difference is  

to the environmental characteristics. The disturbance torques level caused by the 

space environment has some differences with the disturbance level existing on the 

ground, in a laboratory environment. These two differences are taken in to 

consideration on the SACoTS simulation model. The axis frames used in the 

SACoTS are given in the following Figure 4-1. 

 

 

 
Figure 4-1:  Axis Frames used for SACoTS  

 
 

Here, , ,i i iX Y Z  is the Earth-Centered Inertial (ECI) Reference Frame, , ,e e eX Y Z  is the 

Earth-Centered Earth fixed (ECEF) Reference Frame, , ,b b bX Y Z  is the SACoTS 

Body Axis Reference Frame that is fixed on the SACoTS and , ,n n nX Y Z  is the 

Navigation Reference Frame fixed on the SACoTS that coincide with the center of 

the Body Reference Frame. This navigation frame can also be considered as the 
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orbital referenced frame that used on the satellite system but there is only one 

difference between them; in SACoTS condition, this navigation frame is fixed on the 

Earth, on the laboratory. 

 
The dynamics model of the SACoTS is derived by using the Euler’s equations of 

motion and the kinematics model is expressed by using the quaternions 

representation. The dynamic equations of this system can be reformulated as follows:  

 

( )B
EXT

B
INT

B
IB

B
IB

B
IB II ττωωω ++−= − ~1  (4.1.1)

 
where B

IBω~  is the dyadic form of the angular rates, I  is the inertial matrix, B
INTτ  and 

B
EXTτ  are the internal and external torques acting to the system. B

INTτ  occurs due to 

eccentricity between the CG and CR of the air bearing table. The aerodynamics and 

other unknown torques can be classified as external toque sources. B
INTτ  can be 

defined as follows: 

 

gMreccecc
B
INT ×== ττ  (4.1.2)

 

where eccr  is the distance vector between the CG and CR, M is the total mass and g  

is the gravity vector. 

 

SACoTS kinematics model defined by quaternions representation is given as follows. 

In this kinematics model the angular rates of the body are expressed with respect to 

the navigation axis frame because the attitude of the air bearing table will be defined 

in this navigation frame. The turn rate of the Earth and the coordinates of the 

SACoTS in terms of longitude and latitude are used in the attitude expressions as 

follows: 

qq B
NBΩ=

2
1  (4.13)

N
IE

B
N

B
IB

B
NB C ωωω −=  (4.1.4)
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where B
NC  is the direction cosine matrix from navigation frame to body frame and 

N
IEω  is the Earth turn rate expressed in navigation frame. This expression can be 

written by using the latitude value of the SACoTS as follows: 

 

[ ]T
EE

N
IE Φ−Φ= sin0cos ωωω  (4.1.5)

 

where Eω  is the Earth turn rate and Φ  is the latitude of the SACoTS. 

 

The dynamic and kinematics models of the SACoTS are formed in Matlab Simulink 

by using the equations given below and the block diagram of these models can be 

seen in the Figure 4-2. The physical propertied of the SACoTS are given in the 

following Table 4-1. 

 

 
Figure 4-2: SACoTS Rotational Motion Model 

 
 

Table 4-1: SACoTS Parameters 

 
Mass (m): kg150  
Inertia Matrix (I):  

2.
2005.195.0
05.1158.0
95.08.012
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⎥
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⎡
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4.2 SACoTS Sensor Measurements Models 
 
In this section, explanations about the mathematical model of the sensors used on 

SACoTS are given. The main sensor of this test setup is an Inertial Measurement 

Unit (IMU) that contains 3 axis rate gyros and 3 axis accelerometers. In SACoTS 

simulations, the same rate gyroscopes measurement model given in the Section 2.4.1 

is used. Therefore, this section represents only the 3 axis accelerometer measurement 

model. The specifications of the sensor used on this system are given at the end of 

this section. 

 
A vehicle that moves on the Earth is exposed also to the gravitational force. For this 

reason the total force acting on a vehicle can be expressed as follows: 

  

fmgmamF +==  (4.2.1)

 

where, g  is the gravitational acceleration and f  is the acceleration produced by 

forces other than gravitational field. An accelerometer is insensitive to the 

gravitational acceleration and therefore, it gives an output proportional to the non-

gravitational force per unit mass f  to which the sensor is exposed along its sensitive 

axis. This force is called as specific force exerted on the sensor. For instance, taking 

the case of an accelerometer that is falling freely within gravitational field. In this 

situation the output of the sensor will be zeros because the specific force is equal to 

zero, ga = . Conversely, in the case where the sensor is held stationary, the specific 

force is not zero and the sensor will give only the gravitational force gf −=  as 

output. It is clear therefore, that knowledge of gravitational field is essential to enable 

the measurement provided by the accelerometer to be related to the inertial 

acceleration. Furthermore, the output of the sensor is related also to the attitude of 

the vehicle for the 3 axis measurements because the accelerometers sense g  

depending on their measurement axis.   

 
In addition to this, the accelerometer will also measure the Coriolis force and 

centrifugal force when the vehicle has an angular rate and angular acceleration if the 
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sensor is not mounted on the mass center of the vehicle. The measurement errors 

occurred by these kinds of forces are called as methodical errors and the other errors 

caused by the sensor such as noises, biases, are called as instrumental errors. These 

errors are listed in the following Table 4-2 as follows: 

 

Table 4-2:  Accelerometer Error Parameters 

 
a. Methodical Errors 
    a.1. Angular Rate Effect 
    a.2. Angular Acceleration Effect 
b. Instrumental Errors 
    b.1. Turn on Bias 
    b.2. i.  Bias Stability 
           ii. Bias Stability Correlation Time  
    b.3. i.  Random Walk 
           ii. Random Walk Band Width 
    b.4. Scale Factor Error 
    b.5. Alignment Error 

 
 
The three axis accelerometer measurement equation that gives perfect measurements 

(without noise) is formulated by considering the methodical error as follows: 

 

( ) ( ) kCgrttrtrrtz TB
NACCACCACC −×+×+×+= )()()(2)( ωωωω  (4.2.2)

 

where, )(tω  is the inertial referenced body angular rates, ACCr  is the coordinate 

vector that define the mounting location of the accelerometer with respect to center 

of mass of the vehicle and it is assumed to be fixed, thus  02 =×+ rr ω ,  N
BC  is the 

direction cosine matrix from body frame to navigation frame and k  is the unit vector 

at the gravitational force direction. The measurement equation in matrix form can be 

reformulated by adding the instrumental noises as follows: 

 

( ) ( ) [ ]
ACCACC

ACC
TTB

NACCACCACC

wxh

wCgrrtz

+=

+−+=

)(

100~~~)( ωωω  (4.2.3)
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Accelerometer instrumental error parameters listed in the Table 4-2 have the same 

characteristics with error model that given for rate gyroscopes in Section 3.4.1. 

However, there is only one difference about the conversion from random walk to 

white noise parameter. The converter that provides the transformation from random 

walk error to white noise error with 1σ standard variation is given by the following 

equation: 

 

RW y≡ ;  

_ (1 )White Noise z σ≡  

⎟
⎠
⎞

⎜
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⎛==⎟⎟
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(4.2.4)

 

where, the unit given as Hz is the bandwidth of the random walk error. 

 

The block diagram of the accelerometer measurement model including all the error 

types defined above is given in the following Figure 4-3.  

 

 
Figure 4-3:  Block Diagram of the Accelerometer Measurement Model 
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IMU selected for the attitude determination system of the SACoTS is the product of 

the Crossbow Inc. called VG700AB which is a combination of the 3 axis fiber optic 

gyros and 3 axis MEMS (Micro Electromechanical Sensor) accelerometers. The 

specification sheet of this product is given in the Appendix C. The values of the error 

determined depending on the specification document of the product are listed in the 

following Table 4-3. 

 

 
Table 4-3:  The Specifications of the IMU 

 
PARAMETERS RATE GYROS ACCELEROMETERS 
Turn on Bias 20 / hr  ( 3σ ) 12 mg  ( 3σ ) 
Bias Stability 20 / hr  ( 3σ ) 12 mg  ( 3σ ) 
Bias Stability Correlation Time  20 s   20 s   
Random Walk 0.4 / hr  1 ( / ) /m s hr  
Random Walk Band Width 100 Hz 100 Hz 
Scale Factor Error %2 %1 
Alignment Error 1mrad 1mrad 
Resolution 0.025 / s  0.6 mg  
Range 200 / s±  4 g±  

 
 
 

4.3 SACoTS Attitude Determination System and Algorithms  
 
This sub-chapter presents Kalman filter based Attitude Determination System (ADS) 

of the Satellite Attitude Control Test Setup. The objective of this system is to obtain 

attitude knowledge of the test setup by processing the IMU measurements. The block 

diagram of the ADS constituted for a SACoTS is given in the Figure 4-4. 
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Figure 4-4:  SACoTS Attitude Determination System Block Diagram 

 
 

Two separate Kalman filters are implemented: Extended Kalman filter (EKF) 

algorithm and Unscented Kalman Filter (UKF) algorithm. 

 

The following sections contain the detailed explanations about UKF algorithms, the 

results of the EKF, UKF and their comparison (The EKF’s explanations can be seen 

in the Section 3.1.3). 

 
 

4.3.1 Unscented Kalman Filter 
 
This section contains the explanations about UKF. The structure of this unscented 

filter is based to estimate a fixed number of parameters which have Gaussian 

distribution characteristics than to estimate an arbitrary nonlinear function [4][5].  

 

The UKF is presented for discrete-time nonlinear systems and measurement models. 

The equations that define the system state vector and measurements are given as 

follows: 

 



   118

( )( / 1) ( / ), ( 1), 1 ( )x k k f x k k u k k w k+ = + + +  (4.3.1a)

)()1),1(),1(()1( kvkkukxhky ++++=+  (4.3.1b)

 

where ( )1),1(),/( ++ kkukkxf  is the process model, ( )x k  is the state vector of the 

system at time step k , ( 1)u k +  is the input vector and ( )w k  is the process noise. In 

the measurement equation )1( +ky  is the observation vector, 

( )1),1(),1( +++ kkukxh  is the observation model, ( )v k  is the measurement noise. 

 

The noises ( )w k  and ( )v k  added to the system and measurement model respectively 

are assumed as Gaussian uncorrelated white noises. The expression of their 

covariances can be formulated as follows: 

 

( ) ( ) ( )T
ijE w i w j Q iδ⎡ ⎤ =⎣ ⎦  (4.3.2a)

( ) ( ) ( )T
ijE v i v j R iδ⎡ ⎤ =⎣ ⎦  (4.3.2b)

( ) ( ) 0TE w i v j⎡ ⎤ =⎣ ⎦  (4.3.2c)

 

The Kalman filter update equations for the estimated state vector ( 1/ 1)x k k+ +  and 

for the covariance matrix ( 1/ 1)P k k+ +  are given by the following expressions: 

 

ˆ ˆ( 1/ 1) ( 1/ ) ( ). ( )x k k x k k K k kυ+ + = + +  (4.3.3)

( 1/ 1) ( 1/ ) ( 1) ( 1/ ) ( 1)TP k k P k k K k P k k K kυυ+ + = + − + + +  (4.3.4)

 

where ( )kυ  is the innovation process given by; 

)1),1(),1/(ˆ()1()1(ˆ)1()1( +++−+=+−+=+ kkukkxhkykykykυ  (4.3.5)
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The covariance matrix expression of the innovation process ( )kυ  is given by; 

( 1/ ) ( 1/ ) ( 1)zzP k k P k k R kυυ + = + + +  (4.3.6)

 

where ( 1/ )zzP k k+ is the covariance matrix of the measurements and ( 1)R k +  is the 

covariance matrix of the measurement errors. 

 

The equation that gives the Kalman filter gain is formulated as follows: 

 

1( 1) ( 1/ ) ( 1/ )xzK k P k k P k kυυ
−+ = + +  (4.3.7)

 

where  ( 1/ )xzP k k+  is the cross-correlation matrix between the state vector and 

measurement vector. 

 

The prediction of the system covariance matrix is given by; 

 

( 1/ ) ( ) ( / ) ( ) ( )TP k k k P k k k Q k+ = Φ Φ +  (4.3.8)

 

where ( )kΦ  is the Jacobian matrix of the system equation  

 

The basic steps of the developed UKF are listed in the following part. The estimated 

state vector ˆ( / )x k k  and system covariance matrix ( / )P k k  are computed at time step 

k  by using the equations given above. The objective of the UKF algorithm is to 

obtain the propagated values of ˆ( 1/ )x k k+ , ( 1/ )P k k+  and calculate the Kalman gain 

( 1)K k + . The UKF algorithm’s steps are listed below: 

 
1. Computation of the translated sigma σ  points by using ( / )P k k  matrix 

( / )k kσ ← 2n columns from ( ) ( / )n P k kκ± +  (4.3.9)
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0 ˆ( / ) ( / )X k k x k k=  (4.3.10)

ˆ( / ) ( / ) ( / )i iX k k k k x k kσ= +  (4.3.11)

 

2. Computation of the weights 

0W
n

κ
κ

=
+

 (4.3.12a)

1
2( )iW

n κ
=

+
 (4.3.12b)

 

3. Computation of the predicted mean 

( )( 1/ ) ( / ), ( ),i iX k k f X k k u k k+ =  for  0 2i n≤ ≤  (4.3.13)

2

0

ˆ( 1/ ) ( 1/ )
n

i i
i

x k k W X k k
=

+ = +∑  (4.3.14)

 

4. Computation of the predicted covariance 

[ ][ ]
2

0

ˆ ˆ( 1/ ) ( 1/ ) ( 1/ ) ( 1/ ) ( 1/ )
n

T
i i i

i
P k k W X k k x k k X k k x k k

=

+ = + − + + − +∑  (4.3.15)

 

5. Computation of the predicted observations 

( )kkukkXhkkY ii ),(),/1()/1( +=+  (4.3.16a)

∑
=

+=+
n

i
ii kkYWkky

2

0
)/1()/1(ˆ  (4.3.16b)

 

6. Computation of the observation’s covariance 

[ ][ ]

[ ][ ]T
i

n

i
ii

T
yy

kkYkkYkkYkkYW

kkykkYkkykkYWkkP

)/1()/1()/1()/1(

)/1(ˆ)/1()/1(ˆ)/1()/1(

0

2

1
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+−++−++

+−++−+=+

∑
=

 (4.3.17)
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7. Finally, computation of the cross correlation matrix 

[ ][ ]

[ ][ ]T
i

n

i
ii

T
xy

kkYkkYkkXkkXW

kkykkYkkxkkXWkkP

)/1()/1()/1()/1(

)/1(ˆ)/1()/1(ˆ)/1()/1(

0

2

1
0

000

+−++−++

+−++−+=+

∑
=

 

(4.3.18)

 

The filter gain is then computed by substituting eqn. (4.3.16), (4.3.17) and (4.3.18) 

into (4.3.7). The state vector ˆ( 1/ 1)x k k+ +  is updated by using Eq. (4.3.3) with 

Kalman gain and innovation values. The covariance matrix of the innovation process 

is computed by using eqn. (4.3.6) and (4.3.17). 

 

The values of the weights, it means that the selection of the κ  value affects directly 

the estimation performance. The appropriate choice of the κ  reinforces the 

estimation performance since the magnitude of the higher order errors are reduced, 

consequently the estimation error can be diminished by tuning the κ  parameter [5]. 

The following Section 4.3.2 contains the implementations and the results of the EKF 

and UKF on the SACoTS in order to estimate the full state (angular rates and 

attitude) by using the IMU as a main sensor. 

 
 

4.3.2 Full State Estimation of SACoTS 
 
In this section, two types of Kalman filter used in the SACoTS Attitude 

Determination System are presented. Basically, two different full state estimation 

modes are prepared depending on the structure of the EKF and UKF algorithms. First 

EKF is applied to the system. Next UKF is implemented in order to obtain more 

accurate estimation performance. A summary of these modes, sensors and filter types 

used are given in the following Table 4-4. 
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Table 4-4: SACoTS ADS Modes 

 
SACoTS ADS Modes Sensors Estimated State 

Vector 
Kalman 
Filter 

Mode-S1 RG + ACC [ ]TB
IB qx ˆˆˆ ω=  EKF 

Mode -S2 RG +  ACC [ ]TB
IB qx ˆˆˆ ω=  UKF 

 
 

Monte Carlo analysis is implemented to the SACoTS system in order to determine 

the performance of the EKF and UKF by pointing out the statistical distribution 

characteristics of the estimation error of the angular rates and attitude. This Monte 

Carlo analysis is applied to the system given at Figure 4-4 after that estimation 

converged (approx. 10sec). Than, the mean values Xμ , and the standard deviation 

values Xσ  of the estimation error are obtained by running the system 5 minutes and 

20 times for related ADS mode. A motion profile containing the sinusoidal and fixed 

attitude are selected for the purpose of determining the performance of the filter for 

both rich and fixed motion. The common system model, the explanation of the ADS 

modes including sensor measurement models and filter algorithms are given 

respectively in the following sections. 

 

System Model: 

 

System model used in filter is derived from SACoTS motion model. The following 

equations are used to predict the estimated state vector and covariance matrix. 

 

1. State vector prediction 

The system model is used on the prediction of the estimated state. The rotational 

motion and attitude differential equations in discrete time are given as follows: 

 

( )∫
+

+ +=
1

,,,1 ,ˆˆˆ
k

k
kkkkkkk dtkxfxx  (4.3.19)

 



   123

where,  

[ ]TB
IB qx ˆˆˆ ω=  (4.3.20)

( )BB
IB

B
IB

B
IB II τωωω +−= − ˆ~̂ˆ 1 ;  let ωω ˆˆ ≡B

IB  (4.3.21a)

dt
k

k
kkkkkk ∫

+

++ +=
1

,1,,1 ˆˆˆ ωωω  (4.3.21b)

qq B
NB ˆˆ

2
1ˆ Ω=  (4.3.22a)

dtqqq
k

k
kkkkkk ∫

+

++ +=
1

,1,,1 ˆˆˆ  (4.3.22b)

 

2. Covariance matrix prediction 

The linearized system model is used on the prediction of the system covariance 

matrix and this matrix is propagated by adding the system noise covariance matrix as 

follows: 

 

QPP T
kkkkkkkk +ΦΦ= +++ ,1,,1,1  (4.3.23)

 

where,  

 

( )tFI kkkk Δ+≈Φ ++ .,1,1  (4.3.24)

( )1,
1,

1,

ˆ ,
ˆ

k k k
k k

k k

f x k
F

x
+

+
+

∂
=

∂
 (4.3.25)

 

Hereafter this point, the measurement models, steps of the Kalman filters and the 

results of the simulations are given respectively for each SACoTS ADS mode. 
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4.3.2.1 SACoTS ADS Mode-s1 
 
This section presents the measurement model used in EKF, the steps of the EKF 

algorithms and the simulation results. The estimates stated vector is [ ]TB
IB qx ˆˆˆ ω=  

that given in the Eq. (4.320) and the sensor packet is IMU containing 3 axis rate 

gyros and 3 axis accelerometers.  

 

Measurement Model:  

 

The measurements equations are derived from the rate gyros and accelerometers 

models given in the following equations:   

 

( )RG RG vz v h xω β η= + = + +  (4.3.26)

( ) [0 0 1] ( )T T
ACC acc acc ACCz r r gA w h x wω ω ω= + − + = +  (4.3.27)

 
 
 
Extended Kalman Filter Algorithm: 

 

In this section the steps of the EKF algorithms are not given again in order to avoid 

repetition. The detailed explanations about the EKF steps can be seen at section 

3.1.3. Here, the sensor noise covariance matrix and measurement matrix used in EKF 

are given respectively for rate gyros and accelerometers. 

 

3 3 3 3
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3 3 3 3

. 0
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3 4 1 2

4 3 2 1

1 2 3 4

ˆ ˆ ˆ ˆ
( ) ˆ ˆ ˆ ˆ2
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 (4.3.30)
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 (4.3.31)

 
 

Simulation Results: 

 

The SACoTS ADS Mode-s1 simulation is run at 10 Hz sampling time during 5 

minutes. The measurement sampling time for the each sensor also is selected as 10 

Hz. The real and estimated states and estimation errors are given respectively in the 

following Figure 4-5, Figure 4-6 and Figure 4-7. 
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Figure 4-5: Mode-s1 Real and Estimated Angular Rates 
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Figure 4-6: Mode-s1 Real and Estimated Quaternions 
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Figure 4-7: Mode-s1 Real and Estimated RPY Angles 

 
 

The results of Mode-s1 show that the estimation errors for both roll (φ ) and pitch 

(θ ) angles are about o5.0  and it can be accepted as a successful performance for this 
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level of accuracy and for nonexistence of the divergence problem during the attitude 

hold maneuver. However, there is a significant bias problem on the third axis, yaw 

(ψ ) angle estimation. This bias occurs due to the absence of reference measurement 

on third axis. As mentioned above in section 4.3, three axis accelerometers are used 

as a reference sensor by comparing the direction of measured acceleration vector and 

the direction of the gravity vector; but it is impossible to measure the rotation around 

the gravity vector. An additional reference sensor mounted on this third axis shall 

overcome this problem. 

 
The statistical analysis called Monte Carlo analysis also is implemented to the 

system in order to determine the exact estimation performance of Mod-s1. The 

statistical results are taken by running simulation 20 times for 5 minutes at 10 Hz. 

The mean X̂μ , and the standard deviation X̂σ  of the estimation errors are given in 

the Figure 4-8 to Figure 4-13 and Table 4-5. 

 

 

 
Figure 4-8: Mode-s1 Mean of the Angular Rate Estimation Error 
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Figure 4-9: Mode-s1 Standard Deviation of the Angular Rate Estimation Error 

 
 
 
 

 
Figure 4-10: Mode-s1 Mean of the Quaternions Estimation Error 
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Figure 4-11: Mode-s1 Standard Deviation of the Quaternions Estimation Error 

 
 
 
 
 

 
Figure 4-12: Mode-s1 Mean of the RPY Angles Estimation Error 
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Figure 4-13: Mode-s1 Standard Deviation of the RPY Angles Estimation Error 

 
 
 

Table 4-5: Mode-s1 Statistical Results of the Estimation Error 

 
 Sinusoidal Motion Fixed Attitude 

errX̂  X̂μ  X̂σ  X̂μ  X̂σ  

.ˆ _ errB
XIBω sec)/(o  0.0000 0.0040 0.0005 0.0038 

.ˆ _ errB
YIBω sec)/(o  0.0002 0.0040  -0.0004 0.0040 

.ˆ _ errB
ZIBω sec)/(o  0.0002 0.0040 0.0003 0.0034 

errq1ˆ  -0.0006 0.0031 -0.0070 0.0017 

errq2ˆ  -0.0003 0.0027 0.0047 0.0017 

errq3ˆ  -0.0158 0.0096 -0.0362 0.0007 

errq4ˆ  -0.0003 0.0022 0.0045 0.0004 

errφ̂ )(o  -0.0116 0.3141 
 

0.0683 0.2161 

errθ̂ )(o  -0.0041 0.3183 -0.0320 0.1933 

errψ̂ )(o  -1.8384 1.1190 -4.3171 0.1113 

 
 

Consequently Monte Carlo results point out that the estimation performance for this 

Mode-s1 is successful by using only IMU, and there are no divergence and instability 

problems on the estimation. However, it can be clearly observed that there is a 

substantial error on the yaw (ψ ) angle estimation since there is no reference sensor 
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along this third axis. EKF results have different estimation accuracy for different 

motion types. In order to avoid this problem an additional reference sensor that uses 

a different kind of reference source can be added to the system. Here it must stated 

that the mounting position of this second sensor on the system and the position of the 

reference source are very important. For example when a sun sensor is selected as a 

second reference sensor, the light source of this sensor should not be mounted on the 

same direction with gravity vector, otherwise the absence of the measurement 

problem will occur again for the third axis measurements.  

 

The bias problem that occurs on the yaw angle estimation is studied to compensate 

by using a more complex estimation algorithms called UKF in Mode-s2. The details 

and the results of this Mode-s2 are given in the following section. 

 
 

4.3.2.2 SACoTS ADS Mode-s2 
 

This section presents the measurement model used in UKF, the steps of the UKF 

algorithms and the estimation performance of this filter. Here, again the subject is to 

estimate state vector [ ]TB
IB qx ˆˆˆ ω=  by using IMU measurements.  

 

Measurement Model:  

 

UKF is an algorithm that provides to use nonlinear measurement models in the filter 

(See Section 4.4.1). These linear and nonlinear sensor measurement equations are 

derived for each sigma points that used in UKF. The rate gyros and accelerometer 

measurement models and UKF predicted observations expression are listed again in 

the following equations 
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where, ),1(ˆ kkX i +  are the sigma point derived from ˆ( / ) ( / ) ( / )i iX k k k k x k kσ= +  Eq. 

(4.3.11). 

 

Unscented Kalman Filter Algorithm: 

 

The details about the UKF formulization is given in the Section 4.3.1 and for this 

reason, here only the sensor noise covariance matrix is given by the following 

equation: 
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Simulation Results: 

 

The SACoTS ADS simulation is run at 10 Hz sampling time during 5 minutes for 

Mode-s2. The real and estimated states and estimation errors are given respectively 

in the following Figure 4-14, Figure 4-15 and Figure 4-16. 
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Figure 4-14: Mode-s2 Real and Estimated Angular Rates 
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Figure 4-15: Mode-s2 Real and Estimated Quaternions 
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Figure 4-16: Mode-s2 Real and Estimated RPY Angles 

 
 

Regarding to the Mod-s2 simulation results, it can be seen that UKF has a successful 

estimation performance since there is no divergence or high level accuracy problem 

on the estimation. Furthermore, UKF does not display a large error in the yaw angle 

ψ  estimation. Here one additional advantage of the UKF also is obtained from the 

simulation results: Since the UKF uses nonlinear system model and nonlinear 

measurement model on the computations, the estimation error signal does not show 

different behaviors for different maneuver types. Here, the same orders of errors are 

obtained for both sinusoidal and attitude hold maneuver and these values are 

approximately o5.0  for each attitude angles. 

 

Monte Carlo analysis is implemented to the system and the statistical results are 

taken by running simulation 20 times for Mode-s2. The mean X̂μ  and the standard 

deviation X̂σ  of the estimation errors are given in the figures Figure 4-17 to Figure 

4-22 and Table 4-6.  
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Figure 4-17: Mode-s2 Mean of the Angular Rate Estimation Error 

 
 
 
 

 

 
Figure 4-18: Mode-s2 Standard Deviation of the Angular Rate Estimation Error 
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Figure 4-19: Mode-s2 Mean of the Quaternions Estimation Error 

 
 
 
 

 

 
Figure 4-20: Mode-s2 Standard Deviation of the Quaternions Estimation Error 
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Figure 4-21: Mode-s2 Mean of the RPY Angles Estimation Error 

 
 
 
 

 
Figure 4-22: Mode-s2 Standard Deviation of the RPY Angles Estimation Error 
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Consequently Monte Carlo results show that the estimation performance for this 

Mode-s2 is successful for both sinusoidal and fixed attitude motion profile since 

there are no divergence, instability and offset problems on state estimation. A better 

estimation performance is achieved due to the usage of the nonlinear system and 

measurements model on the UKF algorithms and by tuning the UKF parameter κ  

the bias problem on the yaw angle estimation is resolved. 

 
 

Table 4-6: Mode-s2 Statistical Results of the Estimation Error 

 
 Sinusoidal Motion Fixed Attitude 

errX̂  X̂μ  X̂σ  X̂μ  X̂σ  

.ˆ _ errB
XIBω sec)/(o  0.0001 0.0061 

 
0.0007 0.0037 

.ˆ _ errB
YIBω sec)/(o  -0.0001 0.0060 0.0000 0.0041 

.ˆ _ errB
ZIBω sec)/(o  -0.0001 0.0060 

 
0.0002 0.0034 

errq1ˆ  -0.0007 0.0023 
 

-0.0006 0.0024 

errq2ˆ  0.0002 0.0022 
 

-0.0002 0.0022 

errq3ˆ  0.0017 0.0036 
 

0.0006 0.0030 

errq4ˆ  0.0000 0.0007 
 

0.0000 0.0008 

errφ̂ )(o  -0.0875 
 

0.2974 
 

-0.0886 0.3537 

errθ̂ )(o  0.0188 
 

0.2428 
 

-0.0238 0.2855 

errψ̂ )(o  0.1986 
 

0.4327 
 

0.0977 0.3844 

 
 

A comparison between the EKF and UKF algorithms used on the SACoTS system is 

given in the following conclusion section with some comments.  

 
 

4.4 Conclusion  
 
In this chapter, Kalman Filter Based Attitude Determination System that is 

implemented for Satellite Attitude Control Test Setup is presented. This chapter 
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contains also SACoTS motion model, IMU measurement model used in the system 

and the attitude determination algorithms.  

 

In the ADS system of the SACoTS, two types of Kalman filters, EKF and UKF are 

implemented to the system. The main objective of this chapter was to determine the 

performance comparison between these filters and to obtain relatively accurate 

estimation without using additional reference sensor on the system. The results 

obtained from the statistical analysis of the EKF and UKF are summarized in the 

following Table 4-7 in order to compare the performance of these two filters. 

 
 

Table 4-7: The Performance Comparison Table of the EKF and UKF 

 
Sinusoidal Motion Profile Fixed Attitude   

X̂μ  

)(o  
EKF 

X̂μ  

)(o  
UKF 

X̂σ  

)(o  
EKF 

X̂σ  
)(o

 
 UKF 

X̂μ  

)(o  
EKF 

X̂μ  

)(o  
UKF 

X̂σ  

)(o  
EKF 

X̂σ  
)(o

  
UKF 

errφ̂  -0.0116 -0.0875 0.3141 0.2974 0.0683 -0.0886 0.2161 0.3537 

errθ̂  -0.0041 0.0188 0.3183 0.2428 -0.0320 -0.0238 0.1933 0.2855 

errψ̂  -1.8384 0.1986 1.1190 0.4327 -4.3171 0.0977 0.1113 0.3844 

 

 

The performances of the EKF and UKF are considered for both sinusoidal motion 

profile and fixed attitude. For sinusoidal motion profile, it can be seen that the EKF 

results are successful for roll angle and pitch angle estimation. The mean values of 

the estimation error are nearly zeros and the standard deviation of the estimation 

errors is about o32.0  for these first two attitude angles. However, the EKF is not 

sufficient for the yaw angle estimation. A constant offset is obtained on the 

estimation ( o85.1≈ ) and an instability also can be observed as the σ  values of the 

yaw angle estimation which is o12.1≈ . For attitude hold maneuvers, the estimation 

performance on roll and pitch angle increase to o20.0≈ , but on the contrary, an 

augmentation of the bias values on the yaw angle estimation is observed ( o3.4≈ ) 

even if the related σ  is decrease to o1.0≈  values. 
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The UKF estimation performance also is appreciated for both sinusoidal and attitude 

hold maneuver. Regarding to the statistical results, it is seen that UKF improves the 

estimation performance for sinusoidal motion profile. Especially, the bias problem 

occurred on the yaw angle estimation is resolved by using the additional tuning 

parameters of the UKF algorithm. The bias values of the estimation errors can be 

accepted as less than o1.0  for roll and pitch angle, o2.0  for yaw angle. The standard 

deviation values of the estimation errors also decrease to o3.0<  for roll and pitch 

angle, o5.0<  for yaw angle. For the attitude hold maneuver also there is a clear 

improvement on the bias problem that occurred on the yaw angle estimation. It is 

also observed that there is a little increment on the estimation error for all three 

attitude angles when considering the σ  values. However, one important result 

obtained for UKF is that the performance of this filter is similar regardless of the 

motion types. Depending on the simulation results, it is seen that very close 

estimation errors characteristics are obtained for both kinds of the motion profiles. 

As mentioned above in section 4.3.1, EKF contains only first order Taylor series 

expansion in order to simulate the behavior of the nonlinear systems and 

measurements, but UKF uses the nonlinear models and this provides an advantage 

for nonlinear systems. 

 

Consequently, regarding to the simulation results obtained for both EKF and UKF, it 

may be stated that UKF algorithms improves the estimation performance compared 

to the EKF. This improvement is achieved thanks to the usage of the nonlinear 

system and nonlinear motion models in the filter.  

 

 
 
 



   141

CHAPTER 5 
 
 
 

5 CONCLUSION 
 
 
The purpose of this thesis was to generate a Kalman filter based attitude 

determination algorithms for a hypothetical LEO satellite and for a ground based 

satellite attitude control test setup.  

 
In order to estimate the angular rates of the satellite during the initial detumbling 

phase, and additionally to estimate the attitude during to orbital navigation, six 

different Kalman filter estimation algorithms, depending on six different sensor 

combinations called modes, are created. The performance of each mode is computed 

by applying Monte Carlo simulations and the success of various modes are compared 

to each other. The two important inferences are obtained from the results of the 

satellite ADS simulations. The first one is about the angular rate estimation at 

detumbling mode. Here the important point is the sampling rate of the system. Since 

the magnetometer measurements are very noisy compared to the other reference 

sensors, the sampling rate is chosen 1 Hz with a goal to catch the difference between 

two successive measurements. The rotation frequency of the satellite, the 

measurement frequency of the sensor and the frequency of the estimation system, all 

together are important factors that affect the estimation performance. For this reason 

it is very important to select the right sampling rate for the system. The second 

inference is about the reference sensor used in the system. Some reference sensors do 

not provide a sufficient attitude determination due to the absence of the sufficient 

measurement knowledge. It is shown that when satellite rotation vector and 

measured vector direction become parallel to each other, it is impossible to measure 

the rotation angle around this axis accurately. Furthermore, a divergence problem on 

estimation also occurs for the fixed attitude motions. These problems can only be 

resolved by adding another reference sensor to the system which use different 

measurements source. Finally, it can be stated that a powerful attitude determination 
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system for a hypothetical LEO satellite is created and it is shown that extended 

Kalman filter is an efficient method to fuse the sensor measurements to estimate the 

states of the spacecraft. 

 
In the second part of this thesis, a cost-effective and relatively accurate attitude 

determination system is created for the satellite attitude control test setup by using 

only an IMU as a sensor suite. Two different types of Kalman filter algorithms, EKF 

and UKF, are implemented to this system. Here, the main objective was to obtain 

sufficiently accurate estimation performance without using an additional reference 

sensor on the system. Regarding to the simulation results, it is observed that UKF 

algorithms improves the estimation performance compared to the EKF due to the 

usage of the nonlinear system and nonlinear motion model in this filter.  

 

In the future, other filtering methods and algorithms shall be examined. Their 

estimation accuracy versus the computational loads introduced as well as the 

associated convergence and divergence problems shall be investigated. 
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APPENDIX A 
 

A.  DEFINITIONS AND NOTATIONS 
 
 
Several different coordinate systems are used in order to describe the motion and the 

attitude of the satellite and to simulate the satellite’s environment. Also, some 

notational expressions are required to define the orientation of the satellite, to 

develop the mathematics behind the sensor measurements and to build the Kalman 

Filters used at sensor fusion algorithms.  

 

In this appendix, detailed explanations are given related to these references frames 

notations and to the mathematical tools used in this report. 

 

A.1   Reference Frames 
 
The detailed explanations of the different coordinate systems used throughout this 

report are given in this appendix. It is necessary to define these references frames 

with a view to represent the motion and the attitude of the spacecraft. Each Cartesian 

coordinate reference frames used in this document are an orthogonal, right-handed 

axis set [13].   

 

A.1.1   Earth-Centered Inertial (ECI) Reference Frames 
 
The ECI frame is assumed to be a non-accelerated frame used for navigation, which 

is fixed in space with respect to the fixed star defined by the axes iii ZYX ,, .  The 

origin of the ECI is located at the center of the Earth with the z-axis pointing towards 

the North Pole. The x-axis is in the vernal equinox direction, the point where the 

plane of the Earth’s orbit about the Sun, crosses the Equator going from south to 

north. The y-axis completes the right hand Cartesian coordinate system. The motions 

of the satellite, the velocity of the Orbit frame and the motion of the Sun is directly 

compared to this frame. The frame is denoted I  [10]. 
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A.1.2   Earth-Centered Earth Fixed (ECEF) Reference Frame 
 
The ECEF frame has its origin at the center of the Earth and axes which are fixed 

with respect to the Earth ( eee ZYX ,, ). The x-axis lies along the intersection of the 

plane of the Greenwich meridian with the Earth’s equatorial plane. The y-axis 

completes the right hand system. The earth frame rotates, with respect to the inertial 

frame, at a rate srade /102921.7 5−×=ω  ( )/h15.0417  about the z-axis. The ECEF 

frame can be used to express the geomagnetic field around the Earth, along with an 

orbit estimator to create a reference model. The frame is denoted E  [10]. 

 

A.1.3   Orbit (ORB) Reference Frame 
 
The ORB frame has its origin at the mass center the satellite, defined by the axes 

ooo ZYX ,, . This origin rotates relative to the ECI frame, with a rate of oω  depending 

on the altitude of the orbit. The z-axis lies towards the center of the Earth. The x-axis 

points in the direction of motion tangentially to the orbit.  It is important to note that 

the tangent is perpendicular to the radius vector only in case of a circular orbit. In 

case of a elliptic orbits, the x-axis does not align with the satellite’s velocity vector. 

The y-axis completes the right hand system. The satellite attitude is described in this 

frame. The orbit reference frame is denoted O  [10].  

 

A.1.4   Earth-Centered Orbit (ECOF) Reference Frame 
 
This is the frame in which the Keplerian elements are defined. The axes of this frame 

are expresses as ocococ ZYX ,, .  The ECOF frame has its origin at the center of the 

Earth. The x-axis lies towards perigee, y-axis along the semiminor-axis and z-axis 

perpendicular to the orbit plane. The earth centered orbit frame is denoted OC  [10]. 
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A.1.5   Body (BODY) Reference Frame 
 
The body reference frame is a right orthogonal axes system fixed in the center of the 

satellite body and defined by the axes bbb ZYX ,, . This body frame shares it’s origin 

with the orbit frame and is denoted B . The nadir side of the satellite (z-axis) 

intended to point towards the Earth, and the last two axes, x-axis and y-axis, 

coincides with x-axis and y-axis of the Orbit frame when the satellite has an attitude 

of 0o in roll, pitch and yaw. The satellite dynamic equations are expressed in this 

coordinate system [10] [13]. 

 
 

A.2   Attitude Representation 
 
The formulation of satellite attitude dynamics involves knowledge of kinematics of a 

rigid body. Kinematics describes the orientation of a body which has a rotational 

motion. There are various mathematical representations used to define this 

orientation with respect to a reference frame. Through this section, three attitude 

representation methods are described. It is important to note that the attitude 

knowledge defined with each method can be stored within a computer and can be 

updated as the satellite rotates using the measurements of turn provided by the rate 

gyros [20].  

 

 

A.2.1   Direction Cosine Matrix 
 
The Direction Cosine Matrix is a 33×  rotation matrix which describes the 

orientation between two frames. The rotation matrix C  from frame A  to B  is 

denoted B
AC  or ABC / . Consider  reference frames A  and B  with a right-hand set of 

three orthogonal unit vectors. Basis vectors { }321 ,, bbb  of B  are expressed in terms of 

basis vectors { }321 ,, aaa  of A  as follows: 
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where jiij abC ⋅≡  is the cosine of the angle between ib  and ja , and ijC  is simply 

called the direction cosine. Eq. (A.2.1) can be rewriten in a matrix form as follows: 
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where ABC /  is called Direction Cosine Matrix (DCM). DCM is also called the 

Rotation Matrix or Coordinate Transformation Matrix. 

 

The rotation matrix is also an orthonormal matrix because each set of basis vectors of 

A  and B consists of orthogonal unit vectors and it is also orthogonal matrix because 

the product of T
ABAB CC // .  is an identity matrix. So this orthonormallity can be 

expressed as follows [12]: 

  

( ) ( )T
BABAAB CCC /

1
// == −  (A.2.3)

 
 

A.2.2   Euler Angles 
 
Euler angles method is a transformation from one coordinate frame to another and it 

is defined by three successive rotations about diferent axes taken in turn. For 

example, a transformation from  references axis to a new coordinate frame may be 

expressed as follows: 
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a. Rotation through angle ψ  about reference z -axis 
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b. Rotation through angle θ  about reference y -axis 
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c. Rotation through angle φ  about reference x -axis 
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where φθψ ,,  are referred to as the Euler rotation angles. 

 
For instance, a transformation from A  reference frame to B  referrence frame may 

be expressed as the product of these three separate transformation as follows: 

 

123 CCCC B
A =  (A.2.7)

 
Similarly, the inverse transformation will give the rotation information from B  

reference frame to A  reference frame, expressed as follows [20]:  

 
TTTA

B CCCC 321=  (A.2.8)
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A.2.3   Quaternions 
 
Although the Euler angles representation has a clear physical interpretation, 

unfortunately there is always a possibility to be at a singularity because of the 

trigonometric expressions which exist in the transformation matrix. To overcome the 

problem with singularities in the attitude representation, quaternions are used in 

computations. 

 

The quaternion attitude representation allows a transformation from one coordinate 

frame to another to be efected by a single rotation )(γ  about a vector )(μ  defined in 

the reference frame. The quaternion is a four element vector representation, the 

elements of which are functions of the orientation of a vector and the magnitude of 

the rotation. 
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The unit quaternions satisfy the constraint qTq = 1, or 
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For instance, a transformation from B  reference frame to A  referrence frame by 

using quaternions can be given as follows [20]:  
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A.2.4   Relationships Between DCM, Euler Angles and Quaternions  
 
As seen in the previous sections, the direction cosines may be expressed in terms of 

Euler angles or quaternions. In the following Eq. (2.2.13), the relationship between 

DCM, Euler angles and quaternions for the rotation from frame B  to A  is given: 

 

( ) ( )
( ) ( )
( ) ( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−−+−
−+−+−+
+−+−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+−+

++−
=

2
4

2
3

2
2

2
141324231

4132
2

4
2

3
2

2
2

14321

42314321
2

4
2

3
2

2
2

1

22
22
22

qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq

cccss
ssccssssccsc

cscsscsssccc
C A

B

θφθφθ
ψθφψφψθφψφψθ

ψθφψφψθφψφψθ

 (A.2.13)

 

When the elements of the above Eq. (A.2.13) are compared, it can be noticed that 

Euler angles may be expressed in terms of direction cosines or quaternions, and also 

similarly, the quaternion elements may be written directly in terms of Euler angles or 

direction cosines. In the following equations some of these relationships are 

summarized [20]:  
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Quaternions expressed in terms of Direction Cosines 
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Quaternions expressed in terms of Euler angles 
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Euler angles expressed in terms of direction cosines 

 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

−

−

11

211

31
1

33

321

tan

sin

tan

A
B

A
B

A
B

A
B

A
B

C
C

C

C
C

ψ

θ

φ

 (A.2.16)

 
 
 

A.3   Transformation Between Different Frames 
 
The different rotations between frames used in this report are described in this 

section. It is necessary to define these transformations with a view to obtain the 

different sensor measurements done in different frames [10]. 
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A.3.1   Transformation From ECOF to ECI and ECEF Frames 
 
The rotation between these frames can be required for the orbit estimator model and 

for the comparison of the some kind of reference sensors measurements with their 

respective reference model. In the following equations the rotation matrix from 

ECOF to ECI and ECEF are given. 

 

( ) ( ) ( )ω−−Ω−= zxz
I
OC CiCCC  (A.3.1)

( ) ( ) ( )ωθ −−+Ω−= zxz
E
OC CiCCC  (A.3.2)

    
where Ω  is the Right Ascension of Ascending Node, i  is the inclination of the 

satellite, ω  is Argument of Perigee and θ  is the ascension of the zero meridian. 

xC and zC  are the different simple rotations defined by Eq. (A.2.4) and Eq. (A.2.6), 

respectively. 

 
 

A.3.2   Transformation From ECEF to ECI Frame 
 
The rotation of the ECEF relative to the ECI is a rotation through angle te .ωλ =  

(longitude position) about reference coincident IZ  and EZ  axes, where ωe is the 

Earth rotation rate and t is the time passed since the ECEF and ECI frame were 

aligned. This rotation can be expressed as follows: 
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A.3.3   Transformation From ECI to ORB Frame 
 
The rotation from ECI to ORB frame is dependent on the satellite rotation velocity 

Oω . The ORB is rotated an angle L  about IY axis and it is expressed as 
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tLL o .0 ω+= . Here 0L  is the latitude position of the satellite and t is the time since 

last passing of 0 lattitude. This rotation can be expresses as: 
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An addition -90 degree turn is needed about IY  axis to obtain the Orbit frame relative 

to the ECI frame. This motivates the following rotation:  
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the combination of the Eq. (A.3.4) and Eq. (A.3.5) gives the total rotation which is 

necessary to transform a vector given in ECI frame to an ORB frame representation: 
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where L  represent the latitude position of the satellite.  

 
 

A.3.4   Transformation From ECEF to ORB Frame 
 
The rotation from ECEF to ORB frame is dependent on the latitude and longtitude 

position of the satellite. This rotation can be expressed by the combination of the 

following rotations: 
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So the total rotation which is used to transform a vector from ECEF to ORB can be 

written as: 
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A.3.5   Transformation From ORB to BODY Frame 
 
The rotation matrix used frequently in this report with a view to obtain the attitude of 

the satellite is the transformation between Orbital frame and Body frame expressed 

in quaternion parameters. Using Eq. (A.2.12), rotation matrix from BODY frame to 

ORB frame can be  expressed as follows: 

 

 
 

(A.3.9) 
 
 

 

 

Similarly, rotation from ORB frame to BODY frame can be written by using the 

orthonormallity property of the matrix (Eq. (2.2.3)): 
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A.4   Kinematics Differential Equations 
 
In preceding sections the problem of describing the attitude of a rigid body with 

respect to a reference frame is studied. In this section, the kinematics, in which the 
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relative orientation between two reference frames is time dependent, is presented by 

using the kinematics differential equations. Kinematics differential equations may be 

derived by propagating the attitude representations with time and these propagations 

are formulated as follows [12] [20]:  

  
 
Propagation of the direction cosine matrix with time: 

 
The propagation of the direction cosine matrix is given as follows: 
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here, B

OBΩ  is the skew-symmetric matrix form of the angular rate vector 

[ ]Tzyx
B
OB ωωωω = , which represents the turn rate of the B-frame with respect to 

O-frame expressed in body axes. 

 
 
 
 
Propagation of the Euler angles with time: 

 
The propagation of the body rates depending on the Euler angles is formulated as 

follows: 
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The above equation can be rearranged and expressed in component form. As a result 

Euler angles rate expression related to the body rates can be written as follows:  
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Propagation of the quaternions with time: 
 
Quaternions are propagated in accordance with the following equation: 
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APPENDIX B 
 

B.   SENSORS USED ON SATELLITE ADS SIMULATIONS 
 
 
This appendix contains the product specification sheets of the sensors used on the 

satellite attitude determination system simulations.  

 

B.1   Rate Gyroscopes 
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B.2   Sun Sensor  
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B.3   Magnetometer  

 
 



   163
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B.3   Star Sensor  
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APPENDIX C 
 
 

C.   SENSORS USED ON SACOTS 
 
 
This appendix contains the product specification sheet of the IMU used on the 

satellite attitude control test setup simulations. 
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APPENDIX D 
 
 

D.   THREE AXIS SATELLITE ATTITUDE CONTROL TEST 
SETUPS 

 
This appendix presents the details about the satellites test setups that are mentioned 

on the Section 4.1. The characteristics of the investigated test setups are listed as 

follows: 

 

D.1 TASS (Three Axis Satellite Simulators) 
 
TASS and TASS-2 are the three axis satellite test simulator that exist at Naval 

Postgraduate School (Monterey, California). TASS is the first generation of the 

satellite simulator. Attitude determination of the TASS contains one 3 axis rate 

gyros, one 3 axis sun sensor and one 3 axis magnetometer. The signal processing 

algorithms are used because of the high level noises occurred on the sensor 

measurements. Two light sources are used in order to obtain three axis attitude 

information from the sun sensor, one of them provide the roll and pitch angles 

measurements, the other provide the yaw angle measurement. Here, it is seen that it 

is very difficult to adjust the sun sensor and it is important to select the right light 

sources for acquiring a correct measurements. It is also stated that magnetometer is 

never used during the tests because of its noisy measurements. 

 

The second generation of TASS, called TASS-2, contains more complex sensor 

system in order to obtain accurate attitude knowledge. In this test setup one Inertial 

Measurement Unit (including 3 axis rate gyro and 3 axis accelerometer), 3 axis 

magnetometer, 3 axis inclinometer and 3 axis sun sensor are used. The following 

figures show the configuration of the TASS and TASS-2 respectively [6] 
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Figure App.D.1: TASS [6] Figure App.D.2 TASS-2 [6] 

 

D.2 WHORL-1 and WHORL-2 
 
WHORL-1 and WHORL-2 are the test setups used to carry out the formation flight 

tests. These test setups belong to Virginia Polytechnic Institute and State University 

(Blacksburg, Virginia, USA). WHORL-1 is a tabletop style and WHORL-2 is a 

dumbbell style spherical air bearing. The dumbbell style provides more rotational 

freedom in three axis as seen on the following figures. The only sensor used in both 

of the system is the Inertial Measurement Unit containing 3 axis rate gyros and 

accelerometer. Here rate gyros are used as inertial sensor and accelerometers are 

used as reference sensor by comparing its measurements with the gravity vector 

direction [7]. 

 

 
 

Figure App.D.3: WHORL-1 and WHORL-2 [7] 
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D.3 IACS-1 and IACS-2 
 
IACS-1 (Integrated Attitude Control System) and IACS-2 are respectively the first 

and the second generation satellite test setups of the Georgia Institute of Technology. 

The sensor system of the first generation contains only a dynamic measurement unit- 

attitude heading referenced sensor (DMU-AHRS [Crossbow Technologies, Inc]) 

including 3 axis rate gyros, accelerometer and magnetometer. In the IACS-2 sensor 

packet is completely different. A 3 axis rate gyros (RG02-32) is used as inertial 

sensor and reference sensors packet contains 3 axis magnetometer (Humphrey 

(Goodrich Sensor Systems) FM02-0101), 2 axis sun sensor (by ACEi, Corp.). the 

following figures show the configuration of the IACS-1 and IACS-2 respectively [8] 

[9]. 

 

 

 
 

Figure App.D.4: IACS-1 and IACS-2 [8][9] 


