
 
 
 
 

 
 

A COMPARATIVE STUDY ON POLYGONAL MESH SIMPLIFICATION 
ALGORITHMS 

 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 

 
BY 

 
 
 

MURAT YĐRCĐ 
 
 
 
 

 
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 
THE DEGREE OF MASTER OF SCIENCE 

IN 
ELECTRICAL AND ELECTRONICS ENGINEERING 

 
 
 

 
 

SEPTEMBER 2008 
 

 
 



Approval of the thesis: 
 

POLYGONAL MESH SIMPLIFICATION AND REGULAR REMESHING  
 

 
 
submitted by MURAT Y ĐRCĐ in partial fulfillment of the requirements for the 
degree of Master of Science in Electrical and Electronics Engineering 
Department, Middle East Technical University by 
 
 
Prof. Dr. Canan Özgen                      __________ 
Dean, Graduate School of Natural and Applied Sciences 

Prof. Dr. Đsmet Erkmen                      __________ 
Head of Department, Electrical and Electronics Engineering 
 
Assist. Prof. Dr. Đlkay Ulusoy                                 __________ 
Supervisor, Electrical and Electronics Engineering Dept., METU  
 
 
 
Examining Committee Members  
 
Prof. Dr. Yasemin Yardımcı Çetin                                        __________________ 
Informatics Institute, METU 
 
Assist. Prof. Dr. Đlkay Ulusoy                           __________________ 
Electrical and Electronics Engineering Dept., METU 
 
Assoc. Prof. Dr. Veysi Đşler                                      __________________ 
Computer Engineering Dept., METU 
 
Assist. Prof. Dr. Çağatay Candan                                          __________________ 
Electrical and Electronics Engineering Dept., METU 
 
Assist. Prof. Dr. Cüneyt F. Bazlamaçcı             __________________ 
Electrical and Electronics Engineering Dept., METU 
 
          Date:          01.09.2008          
 

 



 iii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also declare 
that, as required by these rules and conduct, I have fully cited and referenced all 
material and results that are not original to this work. 
 
 
 
              Name, Last name : Murat Yirci 
 
              Signature : 



 iv 

ABSTRACT 
 

 
A COMPARATIVE STUDY ON POLYGONAL MESH SIMPLIFICATION 

ALGORITHMS 

 
 
 

Yirci, Murat 

M.S., Department of Electrical and Electronics Engineering 

                     Supervisor: Assist. Prof. Dr. Đlkay Ulusoy 

 

September 2008, 115 pages 

 

Polygonal meshes are a common way of representing 3D surface models in many 

different areas of computer graphics and geometry processing. However, these 

models are becoming more and more complex which increases the cost of processing 

these models. In order to reduce this cost, mesh simplification algorithms are 

developed. Another important property of a polygonal mesh model is that whether it 

is regular or not. Regular meshes have many advantages over the irregular ones in 

terms of memory requirements, efficient processing, rendering etc. In this thesis 

work, both mesh simplification and regular remeshing algorithms are studied. 

Moreover, some of the popular mesh libraries are compared with respect to their 

approaches and performance to the mesh simplification. In addition, mesh models 

with disk topology are remeshed and converted to regular ones. 

 

 

Keywords: Polygonal Mesh Simplification, Regular Remeshing, 3D Models, Mesh 

Libraries 

 



 v 

ÖZ 
 
 

POLĐGONAL SADELEŞTĐRME ALGORĐTMALARININ 

KARŞILAŞTIRILMASI 

 

 

Yirci, Murat 

                   Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

       Tez Yöneticisi: Yrd. Doç. Dr. Đlkay Ulusoy 

 

Eylül 2008, 115 sayfa 

 

Poligonal yüzey modelleme üç boyutlu nesnelerin modellenmesinde sıkça kullanılan 

bir yöntemdir. Poligonal yüzey modelleri bilgisayar grafiği, bilgisayarla görme, tıbbi 

görüntüleme vb. alanlarda yaygın olarak kullanılmaktadır. Ancak, bu modellerin 

karmaşıklık düzeylerinin gün geçtikçe artması bu modellerin işlenmesinde zorluklar 

çıkarabilmektedir. Poligonal sadeleştirme algoritmaları kullanılarak bu modellerin 

karmaşıklık düzeyleri azaltılabilir. Poligonal yüzey modellerin bir diğer önemli 

özelliği de modelin yapısının düzgün olup olmadığıdır. Düzgün modellerin düzgün 

olmayan modellere göre hafızada daha az yer kaplama, daha kolay ve etkili işleme 

gibi birçok avantajı vardır. Bu tez çalışmasında poligonal yüzey modellerin 

sadeleştirilmesinde ve yeniden düzgün olarak modellenmesinde kullanılan 

algoritmalar incelenmiştir. Yapılan incelemelere ek olarak poligonal modellerin 

işlenmesinde yaygın olarak kullanılan kütüphaneler poligonal sadeleştirme açısından 

karşılaştırılmıştır. Son olarak da dairesel topolojiye sahip olan poligonal yüzey 

modellerin yeniden modellenmesi uygulama olarak geliştirilmi ştir.    

 

 

Anahtar Sözcükler: Poligonal Yüzey Sadeleştirme, Yeniden Düzgün Modelleme, 3B 

Modeller, Poligonal Yüzey Modelleme Kütüphaneleri 

 



 vi 

 

 

 

 

 

 

 

 

To My Parents 



 vii  

ACKNOWLEDGMENTS  
 
 
 
I would like to thank Assist. Prof. Dr. Đlkay Ulusoy for her valuable supervision, and 

patience. Her support on this thesis work increased my motivation to the top level and 

her guidance encouraged me to complete this thesis.  

 

I wish to thank my mother and father separately for their invaluable, affectionate 

support during my whole life. In addition, I would also like to thank to my sisters, and 

all my friends for giving me encouragement and patience during this thesis.  

 

I want to thank my colleagues and managers at ASELSAN for their continuous 

support on this research.  

 

Finally, I have very special thanks for my dear friend Çiğdem Alkan, for her precious 

support and patience during this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 viii

TABLE OF CONTENTS 

 
 
 

ABSTRACT................................................................................................................. iv 

ÖZ.................................................................................................................................. v 

ACKNOWLEDGMENTS...........................................................................................vii 

TABLE OF CONTENTS...........................................................................................viii 

LIST OF TABLES .......................................................................................................xi 

LIST OF FIGURES.....................................................................................................xii 

CHAPTERS 

     1. INTRODUCTION................................................................................................ 1 

     2. POLYGONAL MESHES..................................................................................... 5 

      2.1. DEFINITIONS................................................................................................... 5 

      2.1.1. Polygonal Meshes vs. Triangular Meshes............................................. 5 

      2.1.2. Manifold vs. Non-manifold Meshes...................................................... 6 

      2.1.3. Orientable vs. Non-orientable Meshes .................................................. 7 

      2.1.4. Genus and Euler Formula...................................................................... 8 

      2.1.4. Irregular, Semi-regular and Regular Meshes ........................................ 8 

     2.2. Mesh Representations and Data Structures................................................... 9 

      2.2.1. Mesh File Formats................................................................................. 9 

      2.2.2. Mesh Data Structures .......................................................................... 10 

      2.2.2.1. Triangle Soup Data Structure....................................................... 11 

      2.2.2.2. Shared Vertex Data Structure....................................................... 12 

      2.2.2.3. Winged-edge Data Structure ........................................................ 13 

      2.2.2.4. Half-edge Data Structure.............................................................. 15 

      2.2.2.5. Other Data Structures and a Simple Comparison......................... 16 

     2.3. Mesh Libraries............................................................................................. 17 

      2.3.1. VTK – Visualization Toolkit............................................................... 17 



 ix

      2.3.2. CGAL – Computational Geometry Algorithms Library ..................... 18 

      2.3.3. OpenMesh........................................................................................... 19 

     3. POLYGONAL MESH SIMPLIFICATION ALGORITHMS ........................... 20 

     3.1. Classification of Mesh Simplification Algorithms...................................... 21 

      3.1.1. Iterative Mesh Simplification Algorithms........................................... 22 

       3.1.1.1. Local Mesh Simplification Operators......................................... 23 

       3.1.1.2. Error Measurement Methods....................................................... 27 

      3.1.2. Single Pass Mesh Simplification Algorithms...................................... 35 

       3.1.2.1. Vertex Clustering ........................................................................ 35 

     4. POLYGONAL MESH SIMPLIFICATION ALGORITHMS EMBEDDED IN     

MESH LIBRARIES .................................................................................................... 38 

     4.1. Polygonal Mesh Simplification with VTK.................................................. 38 

      4.1.1. vtkDecimatePro................................................................................... 38 

      4.1.2. vtkQuadricDecimation ........................................................................ 41 

      4.1.3. vtkQuadricClustering .......................................................................... 42 

     4.2. Polygonal Mesh Simplification with CGAL............................................... 44 

      4.2.1. Lindstrom – Turk Strategy .................................................................. 44 

      4.2.2. Edge-length Midpoint Strategy ........................................................... 45 

     4.3. Polygonal Mesh Simplification with OpenMesh ........................................ 46 

      4.3.1. Quadric Module................................................................................... 47 

      4.3.2. Roundness Module.............................................................................. 47 

      4.3.3. Normal Flipping Module..................................................................... 48 

      4.3.4. Independent Sets Module .................................................................... 49 

      4.3.5. Progressive Mesh ................................................................................ 49 

     5. COMPARISON OF POLYGONAL MESH SIMPLIFICATION 

ALGORITHMS ON A LIBRARY BASIS ................................................................. 50 

     5.1. Comparison Strategy................................................................................... 50 

     5.2. Comparison of the Mesh Libraries with respect to their Approaches to 

Polygonal Mesh Simplification............................................................................... 52 



 x

     5.3. Comparison of the Algorithms with respect to their Performance and 

Execution Time ....................................................................................................... 54 

      5.3.1. Metro Tool........................................................................................... 54 

      5.3.2. Results for the Stanford Bunny Model................................................ 55 

      5.3.3. Results for the Bumpy Torus Model ................................................... 64 

      5.3.4. Summary of the Results and Recommendations................................. 72 

     6. REGULAR REMESHING................................................................................. 74 

      6.1. Implementation........................................................................................... 78 

      6.2. Results ........................................................................................................ 81 

     7. CONCLUSION AND FUTURE WORK........................................................... 93 

REFERENCES............................................................................................................ 95 

APPENDICES 

     A. K-SIMPLEX AND SIMPLICIAL COMPLEXES.......................................... 103 

     B. MESH FILE FORMAT EXAMPLES............................................................. 105 

     C. SAMPLE FIGURES FROM POLYGONAL MESH SIMPLIFICATION ..... 107 

     D. ACTUAL ERROR VALUES FOR THE STANFORD BUNNY MODEL.... 109 

     E. ACTUAL ERROR VALUES FOR THE BUMPY TORUS MODEL............ 111 

     F. A SAMPLE OUTPUT OF THE METRO TOOL............................................ 113 



 xi

LIST OF TABLES  
 

 

TABLES 

 

Table 1  - A simple comparison of mesh data structures ......................................... 17 

Table 2  - Polygonal Mesh Simplification with CGAL............................................. 53 

Table 3  - Polygonal Mesh Simplification with VTK ............................................... 53 

Table 4  - Polygonal Mesh Simplification with OpenMesh...................................... 54 

Table 5  - Best Three Performing Algorithms for Stanford Bunny Model ............... 72 

Table 6  - Best Three Performing Algorithms for Bumpy Torus Model .................. 72 

Table 7    - Comparison of Regular Remeshing Algorithm with the  

vtkQuadricDecimation at a 59% Reduction Rate ........................................ 91 

Table 8    - Actual Geometric Errors for Stanford Bunny Model ............................. 109 

Table 9    - Actual Geometric Errors for Bumpy Torus Model................................. 111 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xii

LIST OF FIGURES  
 
 
FIGURES 

 

Figure 1. Egea: an example of a triangular mesh [33]. .............................................6 

Figure 2. A non-manifold edge (a), and a non-manifold vertex (b)..........................7 

Figure 3. Möbius a non-orientable mesh...................................................................7 

Figure 4. Genus-0 (a), Genus-1 (b), Genus-2 (b) meshes. ........................................8 

Figure 5. Irregular (a), Semi-regular (b), and Regular (c) meshes............................9 

Figure 6. Winged-edge Data Structure....................................................................14 

Figure 7. Half-edge Data Structure. ........................................................................15 

Figure 8. Vertex decimation and a sample choice of re-triangulation. ...................24 

Figure 9. Full-edge collapse operation. ...................................................................25 

Figure 10. Half-edge collapse operation. ................................................................25 

Figure 11. Vertex-pair collapse operation...............................................................26 

Figure 12. Distance to average plane. .....................................................................28 

Figure 13. The set of supporting planes for 1V  and 2V . ..........................................30 

Figure 14. Inner and outer simplification envelops for a bunny model. .................35 

Figure 15. Partitioning a bounding box of a mesh model into cells in 2D..............36 

Figure 16. Vertex categories in vtkDecimatePro. ...................................................39 

Figure 17. Dihedral angle and a feature edge..........................................................40 

Figure 18. Distance to line error metric: a variance of the distance to average plane 

metric...............................................................................................................40 

Figure 19. Circumcircle of a triangleABC△ ...........................................................47 

Figure 20. Stanford Bunny model. ..........................................................................55 

Figure 21. Comparison of all mesh simplification algorithms with respect to the 

normalized maximum geometric error for the Stanford Bunny model. ..........56 

Figure 22. Comparison of the best mesh simplification algorithms from each library 

with respect to the normalized maximum geometric error for the Stanford Bunny 

model...............................................................................................................58 



 xiii

Figure 23. Comparison of CGAL mesh simplification algorithms with respect to the 

normalized maximum geometric error for the Stanford Bunny model. ..........58 

Figure 24. Comparison of VTK mesh simplification algorithms with respect to the 

normalized maximum geometric error for the Stanford Bunny model. ..........59 

Figure 25. Comparison of OpenMesh mesh simplification algorithms with respect to 

the normalized maximum geometric error for the Stanford Bunny model. ....59 

 Figure 26. Comparison of VTK mesh simplification algorithms with respect to the 

normalized mean geometric error for the Stanford Bunny model. .................61 

Figure 27. Comparison of CGAL mesh simplification algorithms with respect to the 

normalized mean geometric error for the Stanford Bunny model. .................61 

Figure 28. Comparison of OpenMesh mesh simplification algorithms with respect to 

the normalized mean geometric error for the Stanford Bunny model.............62 

Figure 29. Comparison of the best mesh simplification algorithms from each library 

with respect to the normalized mean geometric error for the Stanford Bunny 

model...............................................................................................................62 

Figure 30. Comparison of timing performance of mesh simplification algorithms for 

the Stanford Bunny model...............................................................................63 

Figure 31. Comparison of timing performance of mesh simplification algorithms from 

VTK library for the Stanford Bunny model. ...................................................64 

Figure 32. Bumpy Torus model. .............................................................................64 

Figure 33. Comparison of the best mesh simplification algorithms from each library 

and vtkQuadricDecimation with respect to the normalized maximum geometric 

error for the Bumpy Torus model. ..................................................................66 

Figure 34. Comparison of VTK mesh simplification algorithms with respect to the 

normalized maximum geometric error for the Bumpy Torus model. .............66 

Figure 35. Comparison of  OpenMesh mesh simplification algorithms with respect to 

the normalized maximum geometric error for the Bumpy Torus model. .......67 

Figure 36. Comparison of  CGAL mesh simplification algorithms with respect to the 

normalized maximum geometric error for the Bumpy Torus model. .............67 



 xiv

Figure 37. Comparison of the best mesh simplification algorithms from each library 

and vtkQuadricDecimation with vertex normals with respect to the normalized 

mean geometric error for the Bumpy Torus model.........................................68 

Figure 38. Comparison of  CGAL mesh simplification algorithms with respect to the 

normalized mean geometric error for the Bumpy Torus model......................69 

Figure 39. Comparison of  OpenMesh mesh simplification algorithms with respect to 

the normalized mean geometric error for the Bumpy Torus model. ...............69 

Figure 40. Comparison of  CGAL mesh simplification algorithms with respect to the 

normalized mean geometric error for the Bumpy Torus model......................70 

Figure 41. Comparison of timing performances of mesh simplification algortithms for 

the Bumpy Torus Model. ................................................................................71 

Figure 42. Comparison of timing performances of mesh simplification algorithms 

from VTK library for Bumpy Torus Model ....................................................71 

Figure 43. Obtaining a mesh with a disk topology by cutting. ...............................75 

Figure 44. Constructing geometry images. .............................................................76 

Figure 45. Reconstructing the regular mesh from a geometry image. ....................77 

Figure 46. A piecewise and bijective parameterization. .........................................77 

Figure 47. Barycentric coodintes. ...........................................................................80 

Figure 48. Nefertiti model: wireframe (a), shaded-1 (b), shaded-2 (c). ..................81 

Figure 49. Nefertiti model parameterized onto a 2D unit square............................82 

Figure 50. Point cloud, obtained by sampling (65x65) the parameterization domain 

for the Nefertiti model  ...................................................................................83 

Figure 51. A sample quadrangulation and triangulation of the Nefertiti model 

(Resolution: 33x33).........................................................................................83 

Figure 52. A sample quadrangulation and triangulation of the Nefertiti model 

(Resolution: 65x65).........................................................................................84 

Figure 53. Egea model, shaded with two different shaders ....................................85 

Figure 54. Parameterization of the Egea model onto a 2D unit square...................85 

Figure 55. Point cloud, obtained by sampling (129x129) the parameterization domain 

of the Egea model  ..........................................................................................86 



 xv

Figure 56. A sample triangulation (65x65) and quadrangulation (129x129) of the 

Egea model ......................................................................................................86 

Figure 57. Male face model, shaded with two different shaders.............................87 

Figure 58. Parameterization of the Male face model onto a 2D unit square...........88 

Figure 59. A sample triangulation (65x65) and quadrangulation (129x129) of the 

Male face model ..............................................................................................88 

Figure 60. Shading the regular Male face model ....................................................89 

Figure 61. face-YH model, shaded with two different shaders...............................89 

Figure 62. Parameterization of the face-YH model onto a 2D unit square. ............90 

Figure 63. A sample triangulation (65x65) and quadrangulation (129x129) of the 

face-YH model ................................................................................................90 

Figure 64. Error distribution for the face-YH model when simplified with regular 

remeshing algorithm........................................................................................92 

Figure 65. Error distribution for the face-YH model when simplified with 

vtkQuadricDecimation ....................................................................................92 

Figure 66. A simplice forming a simplicial complex............................................104 

Figure 67. A simplice not forming a simplicial complex......................................104 

Figure 68. A 3D tetrahedron. ................................................................................105 

Figure 69. Stanford Bunny model: shaded and wireframe models, original model(a) 

90% reduced model(b), 99% reduced model (c), CGAL Lindstrom-Turk 

algorithm is used for simplification. .............................................................107 

Figure 70. Bumpy Torus model: shaded and wireframe models, original model(a) 

90% reduced model(b), 99% reduced model (c), vtkQuadricDecimation 

algorithm is used for simplification ..............................................................108 

Figure 71. A sample visual output of metro tool for the Stanford Bunny model .115 

Figure 72. A sample visual output of metro tool for the Bumpy Torus model. ....115 

 

 



 

 1 

CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
Polygonal meshes are a common way of representing 3D surface models in many 

different areas of computer graphics and geometry processing [3]. Due to their 

popularity, polygonal meshes are widely supported by commercial graphics 

hardware and software. Polygonal models are generated in a number of different 

ways in different application domains. For instance, in computer vision laser range 

scanners are used to capture the geometry of the real world objects [68], whereas in 

scientific visualization iso-surfaces are extracted from volume data [32]. Moreover, 

in remote sensing height maps are constructed using the satellite photographs and 

in computer graphics and CAD systems modeling tools are utilized. Unfortunately, 

surface meshes obtained by using these methods rarely well suit the needs. Mostly, 

they are too complex or the quality is poor in some sense which require post-

processing. Polygonal mesh simplification and remeshing algorithms are among 

the most important mesh processing algorithms. 

 

With the evolution of modern technology devices, more and more complex surface 

mesh models have been generated. As the complexity of these models increases, 

the visual approximation to the real world objects gets better but there is a trade-off 

between the cost of processing these models and better visual approximation. In 

fact, for real-time interactive applications simpler models are acceptable most of 

the time without violating the expectations. As a result, complex models are 

needed to be reduced where the mesh simplification algorithms come in. 

Correspondingly, mesh simplification can be defined as the process of reducing the 

number of faces and vertices of a given input mesh while maintaining a faithful 

approximation to the original mesh. 

 



 

 2 

Regarding the importance of mesh simplification algorithms they have been 

studied a lot for years and since then a number of survey papers were published on 

the subject [3, 6, 31, 37, 38, 39, 40]. Based on these researches, mesh 

simplification algorithms can be classified into two main groups according to their 

approaches to the subject. Iterative algorithms [41, 42, 43, 44, 45, 48 ] can be 

placed into the first category in which a mesh element (vertex, face or edge) is 

removed once at a time. On the other hand, the second category of algorithms can 

be named as single pass algorithms which process the whole input mesh in a single 

step [50, 51]. 

 

There are two key issues for iterative mesh simplification  algorithms. The first one 

is the applied simplification operator which determines how to remove a mesh 

element and the second is the error calculation. Vertex removal scheme is first 

proposed by Schroeder at el. [41], but later, edge collapse and its variations 

become dominant operators such that today nearly all simplification algorithms use 

them. The second issue is the error calculation method that is used to determine 

which mesh element to remove at each step. There are a number of error 

calculation methods some of which only consider local changes such as distance to 

average plane [41], maximum supporting plane distance [45], and quadric error 

metrics [44], whereas Hausdorf distance [48] and simplification envelops [49] are 

considering the global changes. Generally, global error measurements give better 

results but when quality and timing requirements are considered, quadric error 

metric is much more promising than the others. 

 

Single pass algorithms process the input mesh as a whole and generate the 

simplified mesh without an iterative process. Vertex clustering algorithms [50, 51] 

are the most famous single pass algorithms, where the bounding box of the models 

are divided into small regions and all the vertices in a region are clustered to a new 

position depending on some error calculation. 

 



 

 3 

Since it is a very active research area, lots of mesh simplification algorithms are 

proposed some of which are easy to implement whereas some may not be as easy 

as the others. They are so commonly used algorithms such that some of them are 

embedded into the well known publicly available open source mesh libraries [24, 

25, 26]. Thus, developers working on different research areas can utilize these 

algorithms rather than implementing their own, which may be a very difficult task 

for a non-specialist. However, there is not any work done on comparison of mesh 

simplification algorithms that are implemented in these libraries. In this thesis, our 

aim is to study and compare the common mesh libraries in terms of their approach 

and performance to the mesh simplification problem. By this way, we try to fulfill 

this absence in the literature and supply a guidance for developers who are seeking 

for publicly available mesh libraries in order to implement polygonal mesh 

simplification. 

 

We used the metro tool [47] for measuring the geometric distance (both maximum 

and average) between the simplified and original models. There are also other tools 

[ 57, 58, 59] that can be used for the same job but metro is the first and widely 

accepted one among them.  Two models with different properties are selected for 

comparison and all algorithms are executed with nine different reduction rates. 

 

Besides the mesh simplification, remeshing of surface mesh models is also another 

key component for geometry processing and computer graphics. Remeshing can 

simply be defined as improving the quality of a mesh subject to some criteria. 

Different applications, of course, have different requirements. For example, 

numerical simulation applications such as finite element methods require well-

shaped (triangles with aspect ratio close to one) and regular triangles. In fact, 

regular meshes show uniform structures which are preferable by many 

applications. Moreover, regular meshes have many advantages over the irregular 

ones. They can be stored in two dimensional arrays which simplifies the efficient 

processing of  corresponding models. On the other hand, irregular meshes need 



 

 4 

some other expensive complex data structures. In addition, it has been shown that 

regular meshes are more suitable for rendering [61, 62, 63].  

 

Before the work of Gu et al. [61], automatic regular remeshing of arbitrary 

triangular meshes were not possible. He parameterized the input meshes on to a 

completely regular structure called geometry images and then reconstruct the 

original mesh by taking regular sampling points on the parameterization domain. In 

order to perform the parameterization step, the input meshes are cut and opened if 

their topology are not equivalent to disks. However, in our implementation, since 

we aimed the regular remeshing of human face models which are topologically 

equivalent to disks, the first part of the Gu’s algorithm is omitted in our 

application. 

 

In this thesis work, mesh simplification and regular remeshing algorithms are 

studied. In Chapter 1, an introduction to the subject of mesh simplification and 

regular remeshing is presented. Then, in Chapter 2, some general properties of 

polygonal meshes are described prior to further analysis of mesh simplification and 

regular remeshing. In Chapter 3, analysis and categorization of mesh simplification 

algorithms are performed. Moreover, mesh simplification algorithms that are 

embedded in mesh libraries are discussed in Chapter 4 which is followed by the 

comparison of these algorithms in Chapter 5. In Chapter 6, our solution to regular 

remeshing is explained and finally in Chapter 7,  conclusions and future works are 

considered. 

 

 

 

 



 

 5 

CHAPTER 2 
 
 

POLYGONAL MESHES 
 
 
 
2.1. Definitions 

 
Before going into the details of mesh simplification and regular remeshing 

algorithms some of the general terms about the meshes should be defined. Also, it 

should be noted that in this thesis work only orientable, 2-manifold triangular 

meshes are considered. 

 

2.1.1. Polygonal Meshes vs. Triangular Meshes  

 

A polygonal mesh is a piecewise linear surface approximation of a real world 

object in computer graphics. It is composed of vertices, edges and faces. The faces 

of the polygonal meshes are convex polygons. Triangular meshes (Figure-1) are a 

subset of  polygonal meshes where all of the faces are triangles. In this thesis work, 

only  triangular meshes will be considered, since every polygon can be triangulated 

[1], which means every polygonal mesh can be converted to a triangular mesh. 

 

More formally, Hoppe [2] defined a triangular mesh as follows: A triangular mesh 

M consists of a geometric and a topological (connectivity) component, which can 

be represented by a pair ( ),K P . K  is a simplicial complex with a set of vertices 

{ }1,..., mV v v=   and composed of subsets of its vertices. These subsets are known 

as simplices and three types of them are more meaningful for triangle meshes. 

These are 0-simplices { }i K∈  (vertices of a mesh), 1-simplices { },i j K∈  (edges 

of a mesh) and 2-simplices { }, ,i j k K∈  (faces of a mesh). For a definition of 

simplicial complexes and k-simplices see Appendix-A. { }1,..., mP p p=  is a set of 

3D position vectors and defines the geometry or the shape of the triangular mesh. 



 

 6 

The geometric embedding of a triangular mesh into 3R  is specified by associating 

a 3D position ip  to each vertex of the simplicial complex K  such that   

( ) ( ) ( ) ( )( ) 3:i i i i ip p v x v y v z v R= = ∈  [5]. 

 

 

 

 
Figure 1. Egea: an example of a triangular mesh [33]. 

 

 

2.1.2. Manifold vs. Non-manifold Meshes 
 

Manifold models are desirable for most of the mesh processing algorithms [6]. 

Many mesh simplification algorithms only accepts manifold input meshes. 

Manifold meshes are also required for finite element analysis and radiosity 

applications. 

 

A surface is 2-manifold if each point of the surface is locally homeomorphic 

(topologically equivalent) to a disk or a half-disk(at the boundaries). For the case 

of a triangular mesh, the definition given above can be interpreted as follows: A 

triangular mesh is 2-manifold if it does not contain a non-manifold edge or a non-



 

 7 

manifold vertex nor self-intersecting. A non-manifold edge (Figure-2a) is incident 

to more than two faces and a non-manifold vertex (Figure-2b) is shared by a 

number of  unconnected sets of triangles. 

 

 

 

 
Figure 2. A non-manifold edge (a), and a non-manifold vertex (b) 

 

 

2.1.3. Orientable vs. Non-orientable Meshes 
 

A connected 2-manifold mesh is orientable if it is two-sided, which means that one 

can distinguish the inner and outer sides of the mesh. On the contrary, if we can not 

distinguish the inner and the outer sides of a mesh (one sided), then it is non-

orientable. Spherical and cylindrical meshes are examples for orientable surfaces 

and möbius (Figure-3) and klein bottle are examples for non-orientable surfaces. 

 

 

 

 
Figure 3. Möbius: a non-orientable mesh 

 



 

 8 

2.1.4. Genus and Euler Formula 
 

Genus is a topologically invariant property of a surface and it is defined as the 

largest number of non-intersecting simple closed curves that can be drawn on the 

surface without separating it [7].  Roughly, it is the number of holes in the surface 

mesh. For example, sphere (Figure-4a) and cube are genus-0, torus (Figure-4b) is 

genus-1 and double torus (Figure-4c) is genus-2. 

 

 

 

 
Figure 4. Genus-0 (a), Genus-1 (b), and Genus-2 (b) meshes 

 

 

Euler [8] discovered the relation between faces, edges and vertices of a polyhedron 

and he stated that   2V E F− + = , where V, E, and F are the numbers of vertices, 

edges and faces respectively. This formula can be generalized to 

2(1 )V E F G− + = −  for surfaces with genus 0G ≠ . 

 

2.1.4. Irregular, Semi-regular and Regular Meshes 
 

The structure of a mesh can be irregular, semi-regular and regular. A vertex in a 

triangular mesh is called regular if it has 6 neighboring vertices for interior vertices 

or 4 for boundary vertices. These numbers are 4 and 3 for quadrangular meshes, 

respectively.  

 



 

 9 

In a regular mesh (Figure-5c) all the vertices are regular and they have a lot of 

advantages over the irregular and semi-regular meshes due to their regular 

connectivity (Chapter 6). Semi-regular meshes (Figure-5b) are obtained by regular 

subdivision of a coarse initial mesh. The subdivided mesh contains both regular 

and irregular vertices but regular ones are generally much more than the irregular 

ones. Irregular meshes (Figure-5a), on the other hand,  do not show any kind of 

regularities. 

 

 

 

 
Figure 5. Irregular (a), Semi-regular (b), and Regular (c) meshes 

 

 

2.2. Mesh Representations and Data Structures 

 

In order to get use of meshes, we need to consider how to store meshes and how to 

process them. The answer of the former question is the file formats and the latter 

one is the mesh data structures. 

 

2.2.1. Mesh File Formats 
 

As mentioned earlier (section 2.1.1) all meshes have two common features, one of 

which is the geometry (defines the three dimensional position vectors of the 

vertices) and the other is the topology (defines the connectivity between the 

vertices, i.e. how the vertices are connected). When storing a mesh, what is 



 

 10 

actually stored is the geometry and the connectivity of the mesh. Moreover, some 

meshes might have additional information, such as vertex normals, face normals, 

vertex colors and texture coordinates. 

 

There are over five hundred mesh file formats [9]. This number is big because 

nearly each program, institute or library generates its own mesh file format, so it is 

very difficult to describe all of them here. In fact, one can easily generate his own 

file format as long as he can decide how to describe the mesh features. The most 

popular file formats are Wavefronts Obj file format [10], OFF (Object File Format) 

[11], STL (Stereolithography) [12], VRML(Virtual Reality Modeling Language) 

[13], and PLY (Polygon File Format)[14].  

 

Most of the mesh file formats have both ASCII and binary versions. The ASCII 

version is more readable whereas the binary format is more compact. In Appendix-

B a simple tetrahedron is represented in OBJ, OFF, STL ASCII and STL Binary 

formats as an example. 

 

2.2.2. Mesh Data Structures 
 

Meshes are stored in files (section 2.2.1), but if we want to process them we need 

to parse and load these files into our program, i.e. load the meshes to data 

structures. By processing a mesh it is meant that editing (changing the geometry 

and/or topology) and/or rendering (drawing on a window) that mesh.  

 

Before choosing a data structure, one has to consider the topological and 

algorithmic requirements of the intended application [3]. Topological requirements 

are related with the kinds of meshes that will be represented by the data structure 

and the following questions should be answered: do we need to represent meshes 

with boundaries or closed meshes, manifold or non-manifold meshes, triangular or 

arbitrary polygonal meshes? Are the meshes regular, irregular or semi-regular? On 

the other hand, algorithmic requirements are seeking for the purpose of the user. 



 

 11 

Do we need to modify the mesh geometry or topology or just render the mesh? 

Answers of these questions determine the choice of underlying data structure.  

 

Most of the mesh processing algorithms require some sort of queries which we call 

them adjacency queries. Adjacency queries enable local and global traversal of 

meshes and some examples of  them are given below: 

 

o Which faces use this vertex? 

o Which edges use this vertex? 

o Which faces are adjacent to this face? 

o Which edges border this face? 

o Which vertices belong to this face? 

 

A mesh data structure should be capable of answering these questions in an 

efficient way. There are many different data structures developed for representing 

polygonal meshes. It is not possible to describe all of them here, but most 

important ones from primitive to complex are described in the following sections.  

 

2.2.2.1. Triangle Soup Data Structure 
 

The simplest and first come in mind data structure is the triangle soup. A triangle 

soup data structure can be constructed as follows: 

 
 
 // struct to store a vertex 
 struct Vertex  
 {  
  double x, y, z; 
 };   
 
      // struct to store a face 
 struct Face    
 { 
  Vertex v1, v2, v3; 
 }; 



 

 12 

 // geometry and connectivity  
 Face faceArray[NUM_FACES]; 
 

 

Triangle soup representation is not memory efficient since shared vertices are 

replicated. Also, connectivity information is not explicit, so adjacency queries have 

a high processing cost and take non-constant time. 

 

2.2.2.2. Shared Vertex Data Structure 
 

An improvement to the triangle soup data structure is the shared vertex 

representation. In this data structure, the memory drawback of triangle soup is 

overcome by storing vertex positions separately and giving references to the 

corresponding vertices from faces. These references may be pointers to vertices or 

integer indexes to vertex position arrays. One possible implementation of shared 

vertex data structure is given as follows: 

 

 

// struct to store a vertex 
struct Vertex  
{ 
 double x, y, z; 
}; 
 
// struct to store a face 
struct Face 
{  
 // indexes to vertex array 
 int v1, v2, v3; 
};  
 
// geometry of the mesh 
Vertex vertexArray[NUM_VERTICES];  
 
// connectivity of the mesh 
Face   faceArray[NUM_FACES]; 

 



 

 13 

In the shared vertex data structure the connectivity information is still implicit, so 

adjacency queries take non-constant time and they have a high processing cost. 

However, updating the geometric information of a mesh is easier with respect to 

triangle soup. 

 

2.2.2.3. Winged-edge Data Structure 
 

Triangle soup and shared vertex are face based data structures, i.e., the connectivity 

information is given in terms of faces which results in an implicit connectivity. In 

order to have an explicit connectivity information, edge-based data structures were 

developed. Baumgart developed the first edge-based data structure, the winged-

edge[15]. Winged-edge data structure is capable of only representing 2-manifold 

orientable meshes. 

 

In the winged-edge data structure all edges are directed and clockwise ordering is 

used for traversing a face when looking from outside of the mesh. Edges are at the 

center of the data structure and they are associated with eight references ( Figure-

6). These references are: two vertices (start and end), two faces (left and right) and 

four edges (left predecessor and successor, right predecessor and successor). Left 

successor and predecessor edges are used for traversing the left face and right 

successor and predecessor ones are used when traversing the right face. These four 

edges form the wing of the selected edge (bold one in Figure-6), that is why this 

data structure is called as winged-edge. For vertices and faces it is enough to store 

a reference to one of their adjacent edge.  

 

In the winged-edge data structure edge orientations are not globally consistent 

which means an edge is traversed in opposite directions when its left and right 

faces are traversed [16]. As a result, a case distinction (the calculation of 

orientation of an edge with respect to the traversed face) is necessary when 

traversing. 



 

 14 

 

 
Figure 6. Winged-edge Data Structure 

 

 

A sample implementation of a vertex, face and edge  structures are given below. A 

2-manifold, orientable mesh can be represented by these structures by organizing 

them in a linked list or dynamic array. 

 

 

// struct to store a winged-edge 
struct Wedge 
{  
 Vertex *vs, *ve; 
   Face   *lf, *rf; 
   Wedge  *ls, *lp, *rs, *rp; 
}; 
 
// struct to store a vertex  
struct Vertex  
{ 
 double x, y, z; 
 Wedge* edge 
}; 
  
// struct to store a face 
struct Face 
{ 
 Wedge* edge 
}; 

 



 

 15 

2.2.2.4. Half-edge Data Structure 
 

The half-edge data structure is designed to overcome the orientation problem in the 

winged-edge data structure. Remember that, calculation of an edge’s orientation 

with respect to the traversed face is necessary for winged-edge data structure which 

is inefficient. 

 

In the half-edge data structure each edge is split in two half-edges, in opposite 

orientations such that all half-edges are oriented consistently in counter clockwise 

order around each face [17], [18].  For each half-edge, a reference is stored for the 

pair half-edge, for the adjacent face, for the next half-edge and for the end-vertex 

(Figure-7). Moreover for each vertex a reference is kept for an outgoing half-edge 

and similarly for each face a reference for an adjacent half-edge is kept.  

 

 

 

 
Figure 7. Half-edge Data Structure 

 

 

The structure is capable of representing arbitrary 2-manifold orientable polygonal 

meshes and a sample implementation for the vertex, face and half-edge is given in 

the next page. A more complex implementation can be found in [19]. 

 



 

 16 

// struct to store a half-edge 
struct Hedge 
{ 
 Hedge *next, *pair; 
 Face* face; 
 Vertex *vert; 
}; 
 
// struct to store a vertex 
struct Vertex 
{ 
 double x, y, z; 
 Hedge* edge; 
}; 
 
// struct to store a face 
struct Face 
{ 
 Hedge* edge; 
}; 

 

 

Note that, the implementation given above realized the references in terms of 

pointers, but they may be realized in different ways also, for example indexes into 

data arrays can be used as well [3]. 

 

2.2.2.5. Other Data Structures and a Simple Comparison 
 

Quad-edge data structure developed by Gubias and Stolfi in 1985 [20] is a variant 

of winged-edge data structure. Besides, orientable and non-orientable 2-manifold 

meshes it can represent both the mesh and it’s duality at the same time. Directed 

edges data structure is based on the half-edges but it can only represent triangular 

meshes which may be preferred due to its efficient use of memory [3]. 

 

Up to now, some data structures are mentioned and most of them are used for 

representing 2-manifold meshes. In order to summarize their properties, a very 

simple comparison is done just for a summary in Table-1. 



 

 17 

Table 1. A Simple Comparison of Mesh Data Structures 
 

Data 
Structures 

Represent 
Manifold/Non-
Manifold 

Represent 
Orientable/Non-
Orientable 

Adjacency 
Queries 

Triangle Soup Both Both Inefficient 
Shared Vertex Both Both Inefficient 
Winged-edge Manifold Orientable Efficient 
Half-edge Manifold Orientable Efficient 
Quad-edge Manifold Both Efficient 
Directed-edge Manifold Orientable Efficient 

 

 

For data structures that are capable of representing non-manifold surface meshes 

see [22] and [23]. Among them, Radial-edge data structure is a popular one [21]. 

 

2.3. Mesh Libraries 

 

Implementing memory and time efficient, robust, easy to use and generic mesh 

data structures is not an easy task. As the computer graphics, computational 

geometry and other application domains have been using these data structures 

frequently, the community developed some open source and freely available mesh 

libraries. The most popular ones are: Visualization Toolkit (VTK) [24], 

Computational Geometry Algorithms Library (CGAL) [25], and OpenMesh [26]. 

These libraries do not only implement data structures but also they are equipped 

with a number of standard operations and algorithms such as mesh simplification, 

subdivision, delaunay triangulation, etc. 

 

2.3.1. VTK – Visualization Toolkit 
 

VTK is developed in C++, in an object oriented manner by the Kitware Company 

[27]. It is open source and freely available for non-commercial use. Besides the 

C++ class library VTK also includes interface layers for Tcl/Tk, Python and Java. 

The latest version of the library 5.0.4 is released in January, 2008 and it supports a 



 

 18 

wide variety of visualization, modeling and imaging algorithms such as mesh 

smoothing, contouring, simplification, cutting, delaunay triangulation, etc. [26], 

[28]. The library has two types of object models: graphics model and visualization 

model. The graphics model is used to visualize (rendering) data and the 

visualization model is responsible for implementing the algorithms [28]. 

 

VTK does not have a standard data structure such as winged-edge or half-edge. 

Instead, it has its own data structure based on data arrays. A very similar data 

structure is described in [41] and it is called as space-efficient vertex-triangle ring 

structure. In this data structure faces and vertices are kept in data arrays similar to 

shared vertex data structure but different than shared vertex, vertices have also 

indices to reach the faces which improves the efficiency [30]. VTK has also other 

data structures for different kinds of input data other than the irregular meshes. 

 

2.3.2. CGAL – Computational Geometry Algorithms Library 
 

The CGAL project started in 1996 as a consortium of seven sites in Europe and 

Israel [25]. The current project partners are Max Planck Institute for Computer 

Science (Germany), INRIA Sophia-Antipolis (France), Tel-Aviv University 

(Israel), Geometry Factory (France), ETH Zurich (Switzerland), Utrecht University 

(The Netherlands), Free University Berlin (Germany), Forth (Greece), and SciSoft 

(Argentina) and they released the latest version of CGAL 3.3.1 in August 2007.  

 

CGAL is open source and freely available for non-commercial use. It is 

implemented in C++ and it offers many data structures and algorithms for the 

computer graphics, computational geometry, scientific visualization, computer 

aided design and some other research areas. A complete feature list can be found in 

[29]. Similar to VTK, CGAL has also many data structures for different types of 

input data. However, only the way that CGAL handles the irregular polygonal 

meshes is important for the purpose of our work, which is the half-edge data 

structure. 



 

 19 

2.3.3. OpenMesh 
 
OpenMesh is a generic and efficient data structure for  representing  polygonal 

meshes [26]. It is developed in C++ at the Computer Graphics Group, RWTH 

Aachen and based on the half-edge data structure. OpenMesh’s latest stable release 

1.1.0 was made available in 2007 by the group. Like the other two libraries, 

OpenMesh is also open source and freely available and it provides some set of 

standard geometry processing algorithms such as smoothing and simplification. 

However, it has less number of algorithms with respect to other two library. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 20 

CHAPTER 3 
  
 

POLYGONAL MESH SIMPLIFICATION ALGORITHMS 
   
 
 

Advances in technology and growing expectation for realism in many application 

domain result in more complex polygonal meshes than we actually want [6, 31]. 

Especially, with the evolution of modern geometry acquisition devices such as 

laser scanners polygonal meshes with millions of vertices can easily be generated. 

The complexity of such polygonal meshes sometimes causes problems in 

rendering, processing and transferring of these models. Mesh simplification 

algorithms try to eliminate the redundant portions of  the meshes so that models 

can be rendered and processed for a lower cost without a significant loss in the 

models’ visual content. 

 

Mesh simplification algorithms are applied in many application areas, such as 

computer vision (range data is captured from range scanners), scientific 

visualization (iso-surfaces are extracted from volume data), remote sensing (terrain 

data is acquired from satellite photographs), geometric design and computer 

graphics (model representation and levels of detail) and finite element analysis 

(structural analysis of bridges, to simulate air flow around airplanes and to simulate 

electromagnetic fields) [31]. In all these areas developers use simplification mainly 

for three reasons [6]. These are: 

 

1. Eliminating the redundant geometry:  Mesh simplification algorithms 

are mostly used for eliminating the redundant geometry since redundancy 

of models results in loss of computation time. In scientific visualization, the 

output of the marching cubes algorithm [32] generates redundant triangles 

especially in the planar regions. Also before a finite element analysis the 

model under analysis may be subdivided first and than the redundant 

geometry can be removed later. 



 

 21 

 

2. Reducing the model size: Meshes with a high number of vertices and faces 

allocate a lot of disk and memory space. For example, in the Aim@Shape 

repository [33] there are some meshes above 150 mega bytes. In order to 

reduce the size of such meshes, mesh simplification algorithms can be 

applied as well as mesh compression algorithms. Generally, simplification 

algorithms are lossy, i.e. the process can not be reversed, but on the other 

hand there are also algorithms which compress the models without any loss 

of data [34]. By using simplification or compression algorithms, disk and 

memory requirement of a model can be reduced and network transmission 

speed can be increased. 

 

3. Improving the run-time performance:  For interactive applications such 

as video games, flight simulators and computer aided design real time 

performance is very important. For such applications, mesh models can be 

simplified to multiple levels of detail so that each object in the scene can be 

displayed on the screen as a function of  their relative distance to the 

viewer. When the object is closer to the viewer, it is rendered with a 

complex mesh. On the contrary, when it is farther  a simplified version of 

the same mesh is used. This technique is called multiresolution modeling or 

levels of detail and utilizes the fact that distant objects do not require more 

resolution than the closer objects [35, 36].  

 

3.1. Classification of Mesh Simplification Algorithms 

 
Many different  approaches and algorithms are proposed for mesh simplification in 

recent years which makes the classification of these algorithms very difficult. In 

fact, there are a number of papers classifying these algorithms in their own way. 

Luebke [6, 40] categorized mesh simplification algorithms with respect to the 

mechanism, view-dependence, error metric and topology. Erikson [39] also used a 

similar but less complex classification than Luebke. On the other hand, Heckbert 



 

 22 

and Garland [31] preferred to classify them according to the types of the input 

meshes: height fields and parametric surfaces, manifold surfaces and non-manifold 

surfaces. Moreover, Pauly [3] and Talton [38] used the fact that some algorithms 

are iterative and some are single step. Pauly also mentioned one more different 

approach as resampling algorithms. Cignoni et al. [37] listed a number of different 

approaches and then gave a taxonomy of the simplification algorithms based on the 

characterization of the input/output data domain, simplification goal, the strategy 

adopted to drive/evaluate mesh approximation and whether the simplification 

process follows an incremental approach or not.  

 

In this work, the top level classification of mesh simplification algorithms mostly 

depends on the work by [3, 38], i.e. simplification approaches are grouped into two 

categories: local approaches that iteratively simplify the input mesh by using a 

local topological operator and global approaches that are applied to the input mesh 

as a whole. Moreover, some parts of the other ideas from [31, 37, 39, 40] are 

placed in this main level classification. By this way, we believe that, the algorithms 

can be understood more easily. 

 

3.1.1. Iterative Mesh Simplification Algorithms 
 

Iterative mesh simplification algorithms remove one mesh element at a time. First, 

the cost of removing each element is calculated and depending on this calculation a 

priority queue is constructed. Then, the mesh element with the lowest error is 

deleted which results in a hole and a change in the geometry and connectivity of 

the mesh. After re-triangulating the resultant hole, the cost function is re-evaluated 

only for the nearby mesh elements that are affected by the removal and depending 

on this calculation the priority queue is reorganized. A very simple pseudo code for 

a general iterative mesh simplification algorithm is given in the next page. 

 

 

 



 

 23 

FOR each element  
 

Calculate the cost of removal of the current 
element 

 
END FOR 
 

WHILE stop condition is not met 
 

Select the element with the lowest cost 
 

Remove the selected element 
 

Re-triangulate the resultant hole  
 
FOR each element affected from the removal 
 

  Calculate the cost of removal of the 
     current element 
 
 END FOR 

 
END WHILE 

 

 

Here the term “element” is used as a vertex, an edge, a face or a patch (a group of a 

face) of a mesh. The type of the element depends on the algorithm itself and it is 

closely related with the simplification mechanism or local operator used by the 

algorithm. In addition, calculating the error of removal of an element is also 

algorithm dependent. As a result, most of the iterative algorithms have a common 

framework and they are distinguished by the local simplification operator they use 

and how they calculate the error. 

 

3.1.1.1. Local Mesh Simplification Operators 
 

There are several choices for the basic removal operation but most popular ones 

are vertex decimation and edge collapsing. Vertex decimation was first proposed 

by Schroeder [41] but later edge collapsing became more popular such that today 



 

 24 

nearly all iterative algorithms use some sort of edge collapsing. There are also 

other types of local operators such as triangle decimation and patch decimation but 

these are rarely used by algorithms since the major design goal is to keep the local 

operation as simple as possible [3]. Moreover, a triangle decimation can be thought 

as two edge collapse operations. 

 

Vertex Decimation 
 

Vertex decimation operates on a single vertex by deleting that vertex and re-

triangulating the resulting hole. Deleting a vertex with valence n (the number of 

neighboring vertices), leaves a n-sided hole. This hole can be triangulated more 

than one way and each triangulation will contain n-2 triangles [1]. As a result, at 

the end of deleting a vertex and its adjacent triangles from the mesh and re-

triangulating the created hole, the mesh is simplified by one vertex, two faces and 

three edges (Figure-8). Observe that Euler formula is invariable under this 

operation. 

 

 

 
Figure 8. Vertex decimation and a sample choice of re-triangulation 

 

 

Edge Collapse 
 

Edge collapse operation was first proposed by Hoppe [2] and then it became the 

most common local simplification operator. There are three variants of the edge 

collapse operator, full-edge collapse operator, half-edge collapse operator and 



 

 25 

vertex-pair collapse operator. Full-edge collapse operator simply abbreviated as 

edge collapse operator, takes two adjacent vertices and collapses the edge between 

them. The vertices at the ends of the collapsed edge are moved to a some new 

position (Figure-9). 

 

 

 

 
Figure 9. Full-edge collapse operation 

 

 

Half-edge collapse operator [42]  is a special case of the edge collapse operator and 

it collapses an edge to one of its end vertices (Figure-10), i.e. one of the end 

vertices is moved to the position of the other. The difference from edge collapse 

operation is that in half-edge collapse there is no freedom of selecting the position 

of  the vertex to which the edge collapses.  

 

 

 

 
Figure 10. Half-edge collapse operation 

 



 

 26 

Observe that half-edge collapse is also a subset of vertex decimation operator [35]. 

Remember that in vertex decimation at some stage a hole is generated. This hole 

can be triangulated in several ways and one of these triangulations is the same as a 

half-edge collapse. 

 

The last variant of the edge collapse operation is the vertex-pair collapse [43, 44] 

where two vertices are collapsed in to a new vertex even if they are not connected 

by an edge (Figure 11). This operation reduces the number of vertices by one but 

keep the number of triangles and edges constant. Thus, Euler formula becomes 

inconsistent with a mesh if a vertex-pair collapse is applied. On the contrary, edge 

collapse and half-edge collapse operations reduce  one vertex, two faces and three 

edges, and keep the mesh consistent with the Euler formula. 

 

 

 

 
Figure 11. Vertex-pair collapse operation 

 

 

Half-edge and edge collapse operations preserves the topology of a mesh but rarely 

an edge collapse operation may generate non-manifold topology. However, this 

behavior of edge collapse can be controlled and it can be prevented from 

generating non-manifold topology [35]. Vertex-pair collapse operation can connect 

unconnected portions of a mesh and changes the topology. Also, a genus can easily 

be closed by vertex-pair collapsing. 



 

 27 

Comparison of Local Mesh Simplification  Operators 
 

The edge collapse and the vertex-pair collapse operators has much more freedom 

in determining the new vertex position but this requires solving a continuous 

optimization problem. On the other hand, half-edge operator does not produce new 

vertex positions and keeps a subset of the vertices of the original mesh which 

makes it memory and time (in terms of computation) efficient. Vertex decimation 

would be as efficient as half-edge collapse if the retriangulation step were handled 

more easier. Choosing the way of  triangulation among the several ways is a 

discrete optimization problem.  

 

Edge collapse, half-edge collapse and vertex decimation operators preserve the 

topology of the input mesh. Topology preserving algorithms preserve the manifold 

connectivity and do not close the holes of the mesh. Preserving the topology is 

crucial for some application domains such as medical imaging and finite element 

analysis. On the contrary, real-time rendering systems rarely need to preserve the 

topology because they need drastic simplifications that topology preserving 

algorithms cannot satisfy.  

 

Edge collapse and its variants are easier to implement but since vertex-pair 

collapse operation generates non-manifold topology, a data structure that can 

handle non-manifold topology should be used and that may make vertex-pair 

collapse a bit hard to implement. Due to the re-triangulation step in 3D, the 

implementation of vertex decimation is not an easy task either. 

 

3.1.1.2. Error Measurement Methods 
 

Error measurements are used for selecting the candidate mesh element to apply a 

simplification operator such as vertex decimation or edge collapsing. These 

measures can be calculated locally or globally, i.e. the effect of removing an 

element is considered by looking at the local changes or global changes. 



 

 28 

Local Error Measurement Methods 
 

Distance to Average Plane 

 

The simplest error metric is based on the distance measure from a vertex (a 

potential vertex for removal) to an average plane (Figure-12) [41]. An average 

plane is constructed using the adjacent triangle normalsˆin , centers ix
�

 and areasiA  

(Equation 1 and 2). 

 

 

 
Figure 12. Distance to average plane 

 

 

The normal N
�

 of the average plane is calculated by the average of the adjacent 

triangle normals weighted by the triangle areas. 

 

 1 1 2 2
ˆˆ ˆˆ ˆ

..... ..... i ii i m m

T T T T i

n An A n An A n A
N

A A A A A
= + + + + + = ∑

∑
�

   and ˆ
N

N
N

=
�

�  (1) 

 

where  1 2 ..... .....T i mA A A A A= + + + + +  and m  is the total number of surrounding 

triangles. A point Χ
�

 of the average plane is also calculated by the average of the 

adjacent triangle centroids (ix
�

) weighted by the triangle areas. 

 

 1 1 2 2 ..... ..... i ii i m m

T T T T i

x Ax A x Ax A x A

A A A A A
Χ = + + + + + = ∑

∑

�� �� ��
 (2) 

 



 

 29 

Then the distance (d ) between the vertex and the average plane is calculated as 

 

 ˆ ( )d N v= • − Χ
��

 (3) 

 

where v
�

 is the position vector of the vertex. The error is proportional with the 

distance, i.e. error is low if distance is low and error is high if  distance is high.  

 

Distance to average plane error metric is mostly used for eliminating the redundant 

geometry in the planar regions and keeping the sharp features of meshes. This is 

why the distance is proportional with the error metric. This error metric is used by 

[41] with a vertex decimation operator. A vertex is selected for removal with the 

lowest error or with the lowest distance d  to the average plane.  

 

Maximum Supporting Plane Distance 

 

Another local error metric first used by Ronfard and Rossignac [45] is the 

maximum squared distance between a simplified vertex and supporting planes 

associated with that vertex. Ronfard and Rossignac utilizes this error metric with 

an edge collapse simplification operator. 

 

Each triangular face adjacent to a vertex defines a plane and we call each of these 

planes as a supporting plane for that vertex. Initially, in the original mesh, all 

vertices are associated with its own supporting planes. For example, the set of 

supporting planes 1( )Sp V  and 2( )Sp V  for vertices 1V  and 2V  in Figure-13 are as 

follows:  

 

1 1 2 3 4 5( ) { , , , , }Sp V t t t t t= , and 2 2 3 6 7 8 9( ) { , , , , , }Sp V t t t t t t=  

 



 

 30 

When an edge, let’s say 1 2VV  is collapsed, a simplified vertex, newV  is generated 

and the set of supporting planes for this new vertex is calculated as the union of 

supporting planes from the two edge vertices (Equation 4). This set of planes 

grows larger and larger as the new edges are collapsed. 

 

 1 2 1 2 3 4 5 6 7 8 9( ) ( ) ( ) { , , , , , , , , }newSp V Sp V Sp V t t t t t t t t t= =∪  (4) 

 
 

 
 

Figure 13. The set of supporting planes for 1V  and 2V  

 

 

The plane equation for a supporting plane kt  can be written as: 

 

 0k k k ka x b y c z d+ + + =  (5) 

 

where ˆ ( , , )k k k kn a b c=  is the unit normal of kt  and kd  is just a constant.  Using (5), 

a squared distance function 2( )kD v  which calculates the squared distance between 

the given plane and a vertex ( , , )v x y z= , can be defined as: 

 

 2 2( ) ( )k k k k kD v a x b y c z d= + + +  (6) 

 



 

 31 

Then the error for a potential edge collapse operation is determined by choosing 

the maximum of the squared distances between the supporting planes and the 

candidate new vertex:  

 

 2max ( )k newE D V=  (7) 

 

where E is the error and k is a positive integer such that ( )k newt Sp V∈ . 

 

Quadric Error Metric 

 

Similar to Ronfard and Rossignac [45], Garland also associated a set of planes with 

every vertex of a model [44, 46] but he replaced the maximum supporting plane 

distance error metric in [45] with the sum of squared supporting plane distances. 

Garland expressed this error metric in a quadric form and named it as quadric error 

metric. Quadric error metric is more compact and easy to calculate such that it is a 

quite popular error metric since then. 

 

The standard representation of a plane in (5) can be written as: 

 

 0Tn v d+ =  (8) 

 

where [ ]Tn a b c=  is the unit normal and d is a scalar constant. Given a plane in 

the form of (8) and a vertex [ ]Tv x y z=  equation (6) can be rewritten as: 

 

 2 2( ) ( )TD v n v d= +  (9) 

 

For a vertex v with an associated set of supporting planes, Garland [46] defined the 

error at this vertex as 

 



 

 32 

 2 2( ) ( )T
i i i

i i

E D v n v d= = +∑ ∑  (10) 

 

He also put the equation (9) in a new form:  

 

2 2( ) ( )TD v n v d= +  

          ( )( )T Tv n d n v d= + +  

          22T T Tv nn v dn v d= + +  
          2( ) 2( )T T Tv nn v dn v d= + +                    (11) 
 

where Tnn  is a 3x3 matrix (outer product matrix). Thus, a fundamental quadric 

2( , , )TQ nn dn d=  can be defined for a given plane in the form of (8) such that 

 

 2( ) ( ) 2( )T T TQ v v nn v dn v d= + +  (12) 

 

Garland used the term quadric because the iso-surfaces ( )Q v ε=  are quadric 

surfaces [46]. Furthermore, evaluating the quadric (12) for a plane is completely 

equivalent to evaluating the squared distance to that plane. As a result, the error 

equation (10) can be rewritten as 

 

 2 ( ) ( )i i
i i

E D v Q v= =∑ ∑  (13) 

 

In order to make the calculation of error is more easier, the quadric Q defined in 

(12) can be thought as a homogeneous matrix [44]:  

 

 

2

2

2 2

2

T

T

a ab ac ad

nn dn ab b bc bd
Q

dn d ac bc c cd

ad bd cd d

 
 

   = =    
 
  

 (14) 

 



 

 33 

Once the quadric matrix Q in (14) is calculated for a plane, ( )Q v  in (12) can be 

easily calculated by:  

 

 ( ) TQ v v Qv= ɶ ɶ  (15) 

 

where [ 1]Tv x y z=ɶ  is the vertex position in homogenous coordinates. 

 

This error metric can be used with all variations of edge-collapse simplification 

operator and a pair of vertices (1V  and 2V ) can be chosen for collapsing which will 

result in the lowest error. The quadric for the simplified vertex ( newV ) is calculated 

simply by adding the two quadrics: 

 

 1 2newQ Q Q= +  (16) 

 

and the error for the new vertex is: 

 

 T
new new new newE v Q v= ɶ ɶ  (17) 

 

By this representation of quadric error metric, the explicit calculation of squared 

distances in [45] is replaced by just adding two 4x4 matrices which results in a 

very fast algorithm relatively. 

 

Global Error Measurement Methods 
 

Hausdorf Distance 

 

Hausdorf distance is a way of calculating the distance between two point sets and 

since surfaces can be expressed as a set of continuous points, it also applies to 

surfaces. However, since a surface is composed of infinitely many points, 



 

 34 

calculating the Hausdorf distance is very expensive for surfaces. In order to 

overcome this problem, surfaces can be sampled in different ways to measure 

Hausdorf distances [47]. 

 

Hausdorf distance is used by [48] to control the approximation error between the 

original and simplified mesh models. At each step of the algorithm a vertex is 

removed from the mesh whose removal makes the lowest contribute to the overall 

Hausdorf distance without exceeding a predefined Hausdorf distance. 

 

Hausdorf distance between two point sets, A and B can be defined as follows [35]:  

 

 ( , ) max( ( , ), ( , ))H A B h A B h B A=  (18) 

 

where ( , )h A B  denotes the one-sided Hausdorf distance and it is defined as: 

 

 ( , ) max min
b Ba A

h A B a b
∈∈

= −  (19) 

 

Observe that when calculating the one-sided Hausdorf distance ( , )h A B , for each 

point in A the closest point in B is found and the maximum of these is taken as 

one-sided Hausdorf distance. One-sided Hausdorf distance is not symmetric, thus 

( , )h A B  is not necessarily equal to ( , )h B A .  

 

Simplification Envelops 

 

Simplification envelops [49] are two non self-intersecting offset surfaces 

constructed on each side of the original surface using a user specified offset 

(Figure-14). The surface is then simplified in the volume that is generated by two 

simplification envelops, thus the error is bounded globally. The amount of 

simplification is controlled by the offset used for constructing the simplification 

envelops. Moreover, this offset value can be changed in different regions of the 



 

 35 

original mesh, so that the user can have a control over which regions of an object 

should be approximated more and which ones should be less. 

 

 

 

 
Figure 14. Inner and outer simplification envelops for a bunny model [49] 

 

 

3.1.2. Single Pass Mesh Simplification Algorithms 
 

Single pass algorithms process the input mesh as a whole and generate the 

simplified mesh without an iterative process. Generally, iterative algorithms give 

better results but single pass algorithms are much faster than the iterative 

algorithms. Vertex clustering algorithms are the dominant algorithms among the 

single pass  algorithms. 

 

3.1.2.1. Vertex Clustering 
 

Vertex clustering simplification algorithm was first proposed by Rossignac and 

Borrel [50] in 1993 and since then several variations of the algorithm have been 

proposed. Simply, the original algorithm works as follows: first a weight is 

assigned to each vertex of the input mesh which shows the importance of that 

vertex. Then, the bounding space around the input mesh is partitioned into 3D cells 

according to a given resolution. An analogous of partitioning in 2D is shown in 



 

 36 

Figure-15. Vertices inside each cell is clustered to the most important vertex within 

that cell and  after removing the degenerate faces produced in the clustering step, 

the simplified mesh is obtained. 

 

 

 

 
Figure 15. Partitioning a bounding box of a mesh model into cells in 2D 

 

 

Rossignac and Borrel assigned higher importance to vertices attached to large faces 

(edges of large faces are longer than the others) and to vertices in regions of high 

curvature (the maximum angle between all pairs of attached edges to a vertex is 

small in regions of high curvature). Clearly, the level of the simplification can be 

determined by the resolution of the bounding grid. A coarse grid will simplify the 

input mesh drastically whereas a fine grid will perform minimal reduction. 

 

One of the key issues of the vertex clustering algorithms is that where to cluster the 

vertices within each cell should be decided. In the original algorithm, all vertices in 

each cell is clustered to the most important vertex. The importance of a vertex can 

be determined in many ways. Rossignac and Borrel gave high importance to the 

vertices near the large faces and near the high local curvature. Giving high 

importance to the boundary vertices may also be beneficial for keeping the 

boundary of the input mesh as constant. Another approach is that, instead of 

clustering all vertices within a cell to one of the vertices, a new place is chosen for 



 

 37 

clustering. Simple ideas such as taking the center of each cell, the average or 

median of vertices rarely results in good results [3]. Lindstrom [51] realized the 

fact that merging n vertices within a cell is equivalent to performing any sequence 

of (n-1) vertex-pair contractions until a single vertex remains within the cell. He 

then used a quadric error metric to determine the clustered vertex position. This 

quadric error metric is developed by Lindstrom and Turk [55] for controlling the 

volume and area changes of the original mesh. 

 

Vertex clustering algorithms are generally easy to implement and they are very fast 

with respect to the iterative algorithms [3]. Neither they require manifold topology 

for input meshes nor they preserve the topology. 

 

 
 

 

 

 
 

 

 
 

 

 

 

 

 

 

 
 
 



 

 38 

CHAPTER 4 
  
 

POLYGONAL MESH SIMPLIFICATION ALGORITHMS 
EMBEDDED IN MESH LIBRARIES 

   
 

 

Since polygonal meshes are very popular in computer graphics and geometry 

processing they are used widely which obligates the community to develop mesh 

processing libraries. Although there are a number of these libraries the most 

popular and common ones are: Visualization Toolkit (VTK) [24], Computational 

Geometry Algorithms Library (CGAL) [25], and OpenMesh [26]. These three 

libraries supply interfaces to implement some outstanding mesh simplification 

(both iterative and single pass) algorithms. 

 

4.1. Polygonal Mesh Simplification with VTK 

 

There are three different mesh simplification algorithms that come with the 

currently latest version (5.0.4) of Visualization Toolkit (VTK) library [24, 28]. 

Previously, the library was supporting four different algorithms but one of them 

vtkDecimate was discarded in the latest version. The remaining supported 

algorithms are: vtkDecimatePro, vtkQuadricDecimation and vtkQuadricClustering. 

 

4.1.1. vtkDecimatePro 
 

vtkDecimatePro algorithm is similar to the algorithm originally described in [41] 

with four major differences. First, this algorithm does not necessarily preserve the 

topology of the input mesh. Second, if the parameters of the algorithm are set 

accordingly, the algorithm guarantees to reach the user specified reduction rate. 

Third, edge collapse simplification operator is used instead of vertex decimation 

and finally, progressive mesh representations are used internally as described by 

Hoppe [52], but the algorithm only gives the final simplified mesh as output. 



 

 39 

vtkDecimatePro accepts only triangular meshes but it can be applied to other 

polygonal meshes once they are triangulated. 

 

The first step of vtkDecimatePro is the classification of input mesh vertices which 

characterizes the local geometry and topology of vertices. Each vertex is assigned 

one of five possible classifications: simple, complex, boundary, interior or corner 

vertex [41] (Figure-16).  

 

 

Simple Complex Boundary Interior Corner  

 
Figure 16. Vertex categories in vtkDecimatePro 

 
 
 
A simple vertex is surrounded by a complete cycle of  triangles, each of which 

shares a single edge with the vertex. Simple vertices can be further classified as 

interior or corner according to the geometry of the surrounding triangles. If the 

dihedral angle (the angle between two planes) between two adjacent triangles is 

greater than a user specified feature angle then a feature edge exists (Figure-17). If 

a simple vertex is used by feature edges then the vertex is either an interior edge 

vertex or a corner vertex. For an interior edge vertex the number of feature edges is 

exactly two, whereas for a corner vertex the number of feature edges is either one, 

three or more. Boundary vertices differ in simple vertices that the set of triangles 

does not form a complete cycle. Simple, interior, corner and boundary vertices are 

all manifold vertices and non-manifold vertices are called as complex vertices.  

 

 

 



 

 40 

 

 
Figure 17. Dihedral angle and a feature edge 

 

 

After classifying the vertices, they are inserted into a priority queue. The priority is 

based on the distance to average plane error metric. This error metric is used for 

simple and corner vertices and for boundary and interior vertices a variance of this 

metric, distance to edge is used (Figure-18). In this case, the distance to the line 

defined by the two vertices creating the boundary or feature edge is measured. 

While inserting the vertices in to the priority queue, vertices that can not be deleted 

are skipped. Mostly, these vertices are the non-manifold complex vertices and the 

sharp interior edge or corner vertices. Then each vertex in the priority queue is 

deleted one by one until the priority queue is empty. Next, if the desired reduction 

rate is not reached and the algorithm is allowed to modify the topology, the 

algorithm splits the mesh into separate pieces along sharp edges or at non-manifold 

vertices. Then the algorithm starts to evaluate these newly generated vertices as 

described previously until the desired reduction rate is achieved. 

 

 

 
Figure 18. Distance to line error metric: a variance of the distance to average plane 

metric 



 

 41 

vtkDecimatePro is a highly controllable algorithm such that the user can determine 

nearly all of the parameters of the algorithm. There are thirteen (13) different 

parameters that can be set, but six of them are more important than the others. The 

first parameter TargetReduction is the desired reduction rate whereas four of the 

remaining are PreserveTopology, Splitting, BoundaryVertexDeletion and 

MaximumError are used to control the topology modification. In order to modify 

the topology PreserveTopology should be disabled and Splitting and 

BoundaryVertexDeletion should be enabled. Moreover, MaximumError should be 

set to its maximum value which is VTK_DOUBLE_MAX. The remaining 

relatively important parameter is the AccumulateError. As the vertices are deleted 

the error may be accumulated similar to [44, 45], if AccumulateError parameter is 

enabled.  

 

4.1.2. vtkQuadricDecimation 
 

Similar to vtkDecimatePro, vtkQuadricDecimation is also an iterative mesh 

simplification algorithm. vtkQuadricDecimation used the quadric error metric as 

described by Garland [44, 46]. Later, Garland and Heckbert generalizes this 

approach to deal with appearance attributes such as vertex normals and texture 

coordinates [53]. Moreover, Hoppe improved this work of Garland and Heckbert in 

[54] and obtained better results. The algorithm vtkQuadricDecimation is based on 

the works of  both Garland and Hoppe and uses the edge collapse simplification 

operator.  

 

The algorithm operates similar to a classical iterative mesh simplification 

algorithm using an edge collapse operator and quadric error metric as a cost 

function. It stops execution until the desired level of reduction is reached or 

topological constraints prevent further reduction. Although it is written in the 

documentation of the algorithm that topological constraints may prevent further 

reduction, most of the time the user specified reduction rate is achieved and the 



 

 42 

topology of the input mesh is not preserved (non-manifold vertices and edges may 

be generated and holes may be closed).  

 

There are two main input parameters supplied by the user. These are 

TargetReduction and AttributeErrorMetric. TargetReduction is the desired 

reduction rate and AttributeErrorMetric is used to control the quadric error metric. 

If the user sets the AttributeErrorMetric parameter of the algorithm, then the mesh 

attributes are taken into account in the quadric error metric. The user can also 

select which attributes to consider and their corresponding weights in the error 

metric. 

 

4.1.3. vtkQuadricClustering 
 

vtkQuadricClustering is a vertex clustering algorithm and it is mostly based on the 

paper [51] by Lindstrom in which the clustered vertex position is determined by a 

quadric error metric. Remember that vtkDecimatePro and vtkQuadricDecimation 

only accept triangular meshes. On the other hand, vtkQuadricClustering accepts all 

types of meshes but it gives better results if the faces of the input mesh are convex 

polygons. 

 

vtkQuadricClustering starts with the decomposition of the bounding box of the 

input mesh into three dimensional cells. The resolution of the decomposition is 

either selected by the user or the algorithm determines the resolution by itself. 

After dividing the bounding box into cells, the algorithm determines which vertices 

are in which cells. If two or three vertices of a triangle fall in the same cell, the 

triangle is discarded. The other remaining triangles (all three vertices of these 

triangles fall in a different cell) are used to calculate the quadric of the cells. A cell 

quadric is defined as the sum of the quadrics of triangles those have a vertex inside 

that cell. Lindstrom defined the quadric of a triangle  1 2 3( , , )t x x x=  as follows [51]: 

 



 

 43 

 T
T

A b
Q nn

b c

− 
= = − 

 (20) 

 

 [ ]
1 2 2 3 3 1

1 2 3, ,

x x x x x x
n

x x x

× + × + × 
=  − 

 (21) 

 

where ix  is a position vector and n  is a 4-vector made up of area weighted triangle 

normal and the scalar triple product of its tree vertices. This quadric is constructed 

in a manner that it can be used to measure volume changes after an edge collapse. 

Remember that clustering all vertices within a cell to a vertex can be considered as 

a successive sequential vertex pair collapses [51]. 

   

After all triangles are processed and the quadric of  every cell is calculated, the 

representative vertex for each cell is computed using the quadric for that cell. This 

vertex position is either chosen among the vertices within each cell or a new vertex 

position is calculated. No matter which option is selected by the user, the vertex 

position is calculated in an optimal way such that the resultant vertex minimizes 

the volume distortion. 

 

vtkQuadricClustering can also be used for out-of-core simplification. That is, very 

huge meshes that can not be loaded into the main memory at once can be divided 

into multiple pieces and each piece is simplified individually. Then, the simplified 

pieces combined together and the simplified mesh is obtained. 

 

There are two main parameters for the algorithm: AutoAdjustNumberOfDivisions 

and UseInputPoints. If the user wants to determine the resolution of the 

decomposition step of the algorithm, she can disable the auto adjustment property 

of the algorithm and indicate the number of divisions along the three axes. 

Otherwise, the number of divisions are determined by the algorithm logically. The 

other parameter, UseInputPoints is used to select the behavioral of the algorithm 



 

 44 

when determining the representative vertex. If the parameter is enabled the position 

for the representative vertex is chosen among the vertices within each cell. 

Otherwise a new position is calculated. 

 
4.2. Polygonal Mesh Simplification with CGAL 

 

CGAL (version 3.3.1) mesh simplification package can only be used to simplify 

oriented manifold  triangular meshes using edge collapse simplification operator. 

The package has a generic iterative mesh simplification algorithm such that the 

user can select two types of different strategies: Lindstrom-Turk and Edge-Length 

Midpoint. The strategies differ from each other in cost function and vertex 

placement.  

 

Besides the strategy the user also has to determine one more mandatory parameter. 

This parameter is the stop predicate that stops the algorithm execution when a 

desired level of reduction is achieved as long as topology constraints are not 

violated (topology is preserved). Stop predicate can be selected as a ratio of edges 

between the simplified and the original meshes and also a direct number of desired 

edges may be given. One more choice about the execution of the algorithm is that 

whether to use enriched polyhedron or not. Enriched polyhedrons have an extra id 

field for both half-edges and vertices to store edge indexes. This selection does not 

change the quality of the simplified mesh but it speeds up the algorithm in most 

cases if input mesh is not very simple. 

 

4.2.1. Lindstrom – Turk Strategy 
 

The first algorithm in the library is named as Lindstrom-Turk strategy which is the 

implementation of the paper by Lindstrom and Turk [55, 56]. Lindstrom and Turk 

approach the problem of finding a vertex (replacement vertex) position for an edge 

collapse as a continuous optimization problem such that the chosen replacement 

vertex minimizes a cost function. Hoppe [2] also used optimization for mesh 



 

 45 

simplification  but his approach is related with the whole process of simplification. 

Hoppe’s energy function is composed of three components. The first component is 

used to minimize the squared distances between the vertices of the original and 

simplified meshes while the second one penalizes high number of vertices and the 

last one is the regularizing term helping to find a minimum.  

 

Lindstrom and Turk computed the replacement vertex position as the solution to a 

system of three linearly-independent linear equality constraints. First three 

constraints are determined by considering the volume and area preservation. Then 

using these constraints some other constraints are obtained by minimizing a 

quadric objective function [29]. Thus, more than three constraints are determined 

and among them three linearly-independent constraints are chosen with respect to 

an importance. If three linearly-independent constraints can not be found, then the 

edge will be discarded from collapsing. When three compatible constraints are 

found in the form of T
i ia v b= , then the replacement vertex position v  is computed 

as the solution to linear system: 

 

 1,Av b v A b−= =  (22) 

 

Observe that each constraint is a plane equation and ia  is the normal vector 

whereas ib  is a scalar. Combining the tree constraints a 3x3 matrix A and 3-vector 

b is generated. After finding the replacement vertex position, cost of collapsing the 

investigated edge is calculated as the weighted sum of optimization terms related 

with the area and volume preservation.  

 

4.2.2. Edge-length Midpoint Strategy 
 

Edge-Length Midpoint Strategy assigns higher importance to relatively long edges 

than the others and the replacement vertex position is chosen as the midpoint of the 

edge being collapsed. Since there is no optimization, and replacement vertex is 



 

 46 

calculated very easily, this strategy runs very fast, but on the other hand it may 

result in a poor quality.  

 

4.3. Polygonal Mesh Simplification with OpenMesh 

 

OpenMesh (version 1.9.5) mesh decimation framework has an iterative mesh 

simplification algorithm which can be modified by the user. The algorithm uses 

half-edge collapse operator for simplification and vertex to be removed is 

determined by decimating modules. There are five different decimating modules 

that can be selected and some of them can operate in two different modes: binary 

mode and non-binary mode. In the binary mode the decimating module returns 

LEGAL_COLLAPSE or ILLEGAL_COLLAPSE for a potential half-edge collapse 

with respect a user specified criterion. On the other hand, in the non-binary mode a 

floating point priority is calculated which is used to feed a priority queue. Mesh 

decimation framework allows to use more than one decimating module at the same 

time with some restrictions. The framework allows only one binary module. Every 

further module must be a binary module. Moreover, during the decimation binary 

modules are evaluated first, if a potential half-edge collapse passes the test of 

binary module then it is inserted to a priority queue whose priority is calculated by 

the non-binary module. 

 

Besides the triangular and manifold meshes OpenMesh mesh decimation 

framework  also accepts non-manifold and non-triangular meshes. However, the 

latter case requires a time consuming pre-processing. Faces that contain non-

manifold vertices and edges are considered as isolated faces and non-triangular 

faces are triangulated. 

 

 

 



 

 47 

4.3.1. Quadric Module 
 

Quadric decimating module can be used in both binary and non-binary modes. In 

the non-binary mode, quadric module computes half-edge collapse priority based 

on quadric error [44]. However, in the binary mode, the module allows the collapse 

if the calculated quadric error is not bigger than the user specified maximum 

quadric error. 

 

4.3.2. Roundness Module 
 

Roundness decimating module can be used in both binary and non-binary modes. 

In the non-binary mode the module returns a normalized roundness value 

associated with a potential half-edge collapse. Roundness is calculated for a each 

face that would be created after a half-edge collapse and minimum of them is 

returned. 

 

Roundness of a triangle ABC (Figure-19) is computed by dividing the radius of the 

circumcirle by the length of the shortest edge.  

 
 

 
min( , , ) 4 ( )min( , , )

r abc
Roundness

a b c A ABC a b c
= =  (23) 

 
 

 
 

Figure 19. Circumcircle of a triangle ABC△  
 



 

 48 

A roundness value can be calculated for every triangle and among them the 

minimum is achieved by the equilateral triangles. For all equilateral triangles 

roundness is 1 3 and this value can be used to normalize the roundness.  

 

 

 
1 3

NormalizedRoundness
Roundness

=  (24) 

 
 
Thus, for an equilateral triangle normalized roundness is equal to 1 and every other 

triangles have a normalized roundness smaller than 1. Considering these facts, 

normalize roundness can be used to measure the similarity of an arbitrary triangle 

with an equilateral one. If a triangle is close to an equilateral triangle, then its’ 

normalized roundness is close to 1, otherwise it is close to 0. Roundness 

decimating module tries to keep the well shaped triangles which are close to 

equilateral triangles. In the binary mode the normalized roundness returned for a 

potential half-edge collapse is tested against a user supplied minimum roundness. 

If the calculated normalized roundness is less than the minimum roundness than 

LEGAL_COLLAPSE is returned, otherwise ILLEGAL_COLLAPSE is returned. 

 

4.3.3. Normal Flipping Module 
 

Normal Flipping decimating module is only used in binary mode. The module 

returns LEGAL_COLLAPSE or ILLEGAL_COLLAPSE depending on the angular 

deviation between the face normals of the original faces and normals of the faces 

after the half-edge collapse. If each deviation is below a given threshold, then half-

edge collapse is allowed, otherwise it is not allowed. 

 

 

 



 

 49 

4.3.4. Independent Sets Module 
 

Independent Sets decimating module can only be used in binary mode and after a 

half-edge collapse operation is done, it locks the neighboring vertices around the 

remaining vertex to prevent further half-edge collapses. Thus, a half edge collapse 

is not allowed if it is related with a locked vertex. 

 

4.3.5. Progressive Mesh 
 

Progressive mesh decimating module does not contribute to the decimation but it 

collects information during the simplification process. Then, this information is 

written to a file so that the user can generate progressive mesh representation [52]. 

Using the generated file, original model can be entirely reconstructed. 

 

 
 

 

 



 

 50 

CHAPTER 5 
  
 

COMPARISON OF POLYGONAL MESH SIMPLIFICATION 
ALGORITHMS ON A LIBRARY BASIS 

   
 

 

5.1. Comparison Strategy 

 

Three commonly used mesh libraries VTK, CGAL and OpenMesh have a number 

of different polygonal mesh simplification algorithms. Nearly, all of these 

algorithms can be extensively modified which makes the comparison very difficult. 

Thus, although some of these algorithms can be parameterized in many ways, only 

the main lines of these algorithms are included in the comparison.  

 

VTK has three simplification packages (section 4.1). Two variations of  

vtkDecimatePro and vtkQuadricDecimation are taken into account and together 

with the vtkQuadricClustering, five different simplification methods are included 

in the comparison from VTK. In the first variation of vtkDecimatePro, accumulate 

error is not used whereas in the second one it is enabled and variations of  

vtkQuadricDecimation differ from each other whether mesh attributes (vertex 

normals) are taken into account or not. 

 

CGAL implements a mesh simplification framework where the user can select 

among two different strategies: Lindstrom-Turk Strategy and Edge-Length 

Midpoint Strategy. Both of these algorithms are included in the comparison.  

 

OpenMesh also has a mesh simplification framework where algorithms are 

implemented as decimating modules. There are five different modules but only two 

of them can be used alone (modules that can operate in the non-binary mode). 

Quadric module is included in the comparison alone but the other less promising 

non-binary module Roundness is used with the binary Normal Flipping decimating 



 

 51 

module. Normal Flipping module is started with a 5 degree of  flipping angle and if 

the desired reduction rate can not be achieved, the flipping angle is increased by 5 

degrees more until the desired level of reduction is achieved. The other remaining 

Progressive Mesh and Independent Sets modules are discarded. Progressive Mesh 

module is not a real decimating module since it only collects information about the 

simplification and Independent Sets module is not thought as useful as the others 

because locking the neighboring of a decimated vertex prevents simplification 

more than desired. 

 

All of the algorithms are mainly run on two different triangular surface mesh 

models. The first model is the Stanford Bunny model that has been used for a long 

time for testing nearly all kinds of mesh processing algorithms and it is freely 

available in the Stanford 3D scanning repository [70]. Bunny model has 34834 

vertices, 69451 faces and 104288 edges. The second model is the Bumpy Torus 

model that is available in the Aim@Shape model repository [33] and is composed 

of 16815 vertices, 33630 faces and 50445 edges.  Each algorithm is executed in 

nine different reduction rates and the obtained results are compared with the metro 

tool. Metro tool calculates the deviance between the original and simplified models 

in terms of maximum and mean geometric errors. The calculated errors are 

normalized by dividing the obtained results with the maximum of  the 

corresponding errors. 

 

While choosing the models for comparison, it is intended to select models with 

different properties from each other. By this way, the algorithms can be tested with 

different kinds of input mesh models. The first selected model, Stanford Bunny is 

twice as complex as the Bumpy Torus model. Moreover, Stanford Bunny is not a 

closed model and it has five boundaries with genus-0. On the other hand, Bumpy 

Torus is a closed mesh with genus-1 and the high curvature regions of the Bumpy 

Torus model is much more than the Stanford Bunny. Despite all these differences 

they have also some common properties such that both meshes are manifold, 

orientable and irregular. 



 

 52 

 

The selected reduction rates are started from “10%” and continues with “20%”, 

“30%”, “40%”, “50%”, “60%”, “70%”, “80%”, and “90%”. All rates are calculated 

in terms of face numbers of the models. Moreover, all of the algorithms are 

executed on a core duo 2.4 GHz, 3GB RAM, Windows XP system. 

 

5.2. Comparison of the Mesh Libraries with respect to their Approaches 

to Polygonal Mesh Simplification 

 
All of the simplification algorithms implemented in the concerned mesh libraries 

are a kind of iterative mesh simplification algorithm except vtkQuadricClustering 

which makes it unique. Also, it is the only algorithm that can be used in out-of core 

simplification. However, in this algorithm the user can not specify a desired 

reduction rate although the resolution of the simplified mesh may be controlled by 

choosing the appropriate parameters.  

 

Iterative algorithms are more or less different from each other in how they decide 

which vertex to be removed from the mesh.  In all these algorithms a reduction rate 

is specified but whether to achieve this rate or not is algorithm dependent. 

Generally, if an algorithm does not preserve the topology, the desired reduction 

rate is achieved all the time. These and some other properties of the algorithms 

have already been discussed in the previous sections but it may be helpful to 

summarize the behaviors of these algorithms in tables (Table-2, 3 and 4). 

 

CGAL and OpenMesh have a mesh simplification framework where the choice of 

desired algorithm is made by changing some parameters. On the other hand, in 

VTK each algorithm is implemented individually. OpenMesh differs from other 

libraries that it supplies five modules in two categories: binary and non-binary 

modules. Any of these modules can be grouped into a set (at least one non-binary 

module is required) and then used for a simplification.  One of the supplied 

modules in OpenMesh is the Progressive Mesh module which is not a true 



 

 53 

decimating module. It only collects information about the history of the 

simplification so that the original mesh can be reconstructed from this information 

[52]. vtkDecimatePro also utilizes the progressive meshes but it does not give this 

information to the user. 

 
 

Table 2. Polygonal Mesh Simplification with CGAL  
 

CGAL 

Algorithms Lindstrom-Turk Strategy 
Edge-Length Midpoint 
Strategy 

Triangular Triangular Input Mesh 
Type Manifold Manifold 
Preserve 
Topology 

Yes Yes 

Simplification 
Method 

Edge Collapse Edge Collapse 

Error Metric Shape  Preserving Opt.  Edge-length 
 

 

 

Table 3. Polygonal Mesh Simplification with VTK 
 

VTK 

Algorithms vtkDecimatePro 
vtkQuadricDe-
cimation 

vtkQuadricClus-
tering 

Triangular Triangular Polygonal 
Input Mesh 
Type Manifold   & 

Non-Manifold 
Manifold   & 
Non-Manifold 

Manifold   & 
Non-Manifold 

Preserve 
Topology 

Depends on the 
choice  

Not necessarily Not necessarily 

Simplification 
Method 

Edge Collapse Edge Collapse Vertex Clustering 

Error Metric 
Distance to 
plane and edge 

Quadric error 
metric (with 
attributes 
optionally)  

Shape preserving 
quadric error 
metric 

 
 
 
 
 



 

 54 

Table 4. Polygonal Mesh Simplification with OpenMesh 
 

OpenMesh 

Algorithms Quadric Module 
Roundness 
Module 

Normal Flipping 
Module  

Polygonal Polygonal Polygonal 
Input Mesh 
Type Manifold   & 

Non-Manifold 
Manifold   & 
Non-Manifold 

Manifold   & 
Non-Manifold 

Preserve 
Topology 

Yes Yes - 

Simplification 
Method 

Half-edge 
Collapse 

Half-edge 
collapse 

Half-edge 
collapse 

Error Metric 
Quadric error 
metric 

Roundness Normal flipping 

 

 

 

5.3. Comparison of the Algorithms with respect to their Performance 

and Execution Time 

 

5.3.1. Metro Tool 
 

As stated before, the main goal of mesh simplification is to produce a surface 

approximation while keeping the model’s visual content as similar as possible to 

the original. In order to measure the geometric difference between two meshes 

(describing the same surface at different levels of detail) two most common error 

metrics from function approximation is utilized. The first metric L∞  norm which is 

also known as Hausdorf distance is used to measure the maximum deviation 

between two models. On the other hand the second error metric 2L  norm provides 

a measure of average deviation. 

 

There are a few tools [47, 57, 58, 59] developed for measuring the geometric 

approximation error between two meshes. Among them the most popular and 

commonly used one is the metro tool [47]. Metro is a freely available tool and 



 

 55 

besides the numerical results it also visualizes the error by rendering the higher 

resolution mesh with a color for each vertex which is proportional to the error 

(Appendix-F). Metro begins with sampling the first input mesh by taking sampling 

points on the mesh surface and then calculates the distances between these 

sampling points and the second mesh. Then the roles change and the second mesh 

is sampled and distances are measured accordingly. Based on these distance 

calculations metro returns the mean and maximum errors between the two meshes. 

 

In this work, metro (version 4.06) is selected for comparing the simplification 

results by considering its popularity and acceptance from the community. All the 

parameters of the tool is left as default.  

 

5.3.2. Results for the Stanford Bunny Model 
 

The first model chosen for comparison is the Stanford Bunny model which is a 

very common model for testing different kinds of geometry processing algorithms 

including polygonal mesh simplification (Figure-20). It is freely available in the 

Stanford 3D Scanning Repository [70] and composed of 34834 vertices, 69451 

faces and 104288 edges. 

 

 

 

 
Figure 20. Stanford Bunny model 

 

 

 



 

 56 

Obtained results are visualized by drawing the related graphics. In all graphics, the 

x-axes are representing the number of faces in the model. In addition, markers are 

also used to indicate the reduction rates. For instance, the left most markers show 

the 90% reduction rate whereas the right most markers are to used indicate the 10% 

reduction rate. The y-axes on the other hand show the maximum or mean 

geometric error. The error values are normalized by dividing each error value by 

the corresponding maximum error values so that the visualization of the results are 

better. The actual error values for Stanford Bunny can be found in Appendix-D and 

some sample figures from the simplification can be seen in  Appendix-C. 

 

According to the obtained results for the maximum geometric error 

vtkQuadricDecimation algorithm shows the best performance in all percentages 

(Figure-21, 22).  

 

 

 
Figure 21. Comparison of all mesh simplification algorithms with respect to the 

normalized maximum geometric error for the Stanford Bunny model 



 

 57 

The second best performing algorithm on the Stanford Bunny model is the CGAL 

Lindstrom-Turk strategy which is very close to vtkQuadricDecimation. Moreover, 

vtkDecimatePro with error accumulation takes the third place although 

vtkQuadricDecimation with vertex normals is slightly better when the reduction 

rates are 10% and 30%. However, vtkDecimatePro with error accumulation is 

better for all remaining percentages. 

 

Once determining the first three best performing algorithms in terms of maximum 

geometric error, it is not very obvious to determine the other rankings. For 

example, in the remaining algorithms, for the 10%, 20% and 30% reduction rates 

vtkQuadricDecimation with vertex normals is better. However, its performance 

decreases very fast as the reduction rates increase. A similar behavior is observed 

for the vtkDecimatePro. For the 90% reduction rate vtkDecimatePro becomes the 

worst performing algorithm although it is very close to the third place algorithm 

(vtkDecimatePro with error accumulation)  in all remaining percentages.  

 

OpenMesh Quadric decimation module does not perform well enough even though 

it utilizes one of the best error measurement methods. On the contrary, CGAL 

Edge-length Midpoint performs beyond the expectation when considering its 

simple error metric.  On average, the two algorithm OpenMesh Roundness with 

Normal Flipping and vtkQuadricClustering give the worst results for the maximum 

geometric error (Figure-21). 

 

If each library is analyzed individually, for CGAL mesh simplification algorithms, 

Lindstrom-Turk strategy is better than Edge-length Midpoint strategy in all 

percentages (Figure-23). Similarly, for OpenMesh library (Figure-25) the Quadric 

decimating module and for VTK, vtkQuadricDecimation are the better ones in their 

own libraries. 

 

 



 

 58 

 

 
Figure 22. Comparison of the best mesh simplification algorithms from each 

library with respect to the normalized maximum geometric error for the Stanford 
Bunny model 

 

 
 

Figure 23. Comparison of CGAL mesh simplification algorithms with respect to 
the normalized  maximum geometric error for the Stanford Bunny model 



 

 59 

 

 
Figure 24. Comparison of VTK mesh simplification algorithms with respect to the 

normalized  maximum geometric error for the Stanford Bunny model 
 

 

 
Figure 25. Comparison of OpenMesh mesh simplification algorithms with respect 

to the normalized  maximum geometric error for the Stanford Bunny model 



 

 60 

As the mean geometric errors are compared, more smooth graphs are obtained with 

respect to the maximum geometric error graphs. Within each library, the best place 

does not change and vtkQuadricDecimation, CGAL Lindstrom-Turk and 

OpenMesh Quadric module again take the first places in their own libraries 

(Figure-26, 27, 28).  Surprisingly, vtkQuadricClustering gets higher in the ranking 

such that it takes the second place after the vtkQuadricDecimation in VTK library 

by considering the fact that other three algorithms in VTK perform better only in 

the 10% reduction rate. On the contrary, the other worst algorithm of the maximum 

geometric error, vtkQuadricDecimation with vertex normals does not make such an 

improvement and it gets the last place in the overall ranking. 

 

When the over all ranking is considered for the mean geometric error, there is a 

change in the first place and CGAL Lindstrom-Turk algorithm takes the first place 

from the vtkQuadricDecimation (the best performer with respect to maximum 

geometric error) (Figure-29). Moreover, OpenMesh Quadric module takes a step 

forward and becomes the third best performer which is unexpectedly in the lower 

rankings for the maximum geometric error.    

 

 



 

 61 

 

 
Figure 26. Comparison of  VTK mesh simplification algorithms with respect to the 

normalized  mean geometric error for the Stanford Bunny model 
 
 

 
 

Figure 27. Comparison of CGAL mesh simplification algorithms with respect to 
the normalized  mean geometric error for the Stanford Bunny model 



 

 62 

 

 
Figure 28. Comparison of OpenMesh mesh simplification algorithms with respect 

to the normalized  mean geometric error for the Stanford Bunny model 
 

 

Figure 29. Comparison of the best mesh simplification algorithms from each 
library with respect to the normalized mean geometric error for the Stanford Bunny 

model 
 



 

 63 

When the timing performance of the algorithms are considered, VTK library 

algorithms show an outstanding performance with respect to other libraries. CGAL 

library algorithms need the most amount of time, especially Lindstrom-Turk 

strategy is the worst algorithm in terms of timing requirements (Figure-30). This is 

mostly because of the error metric used, since a number of optimization problems 

are solved for determining the vertex position. However, It is expected that CGAL 

Edge-length Midpoint algorithm would be faster when considering its simple error 

measurement method. This may be caused by the inefficient implementation of the 

data structure in CGAL. OpenMesh algorithms are performing better than the 

CGALs’  although they use the same data structure, but all the same, they can not 

come nearer to the VTK algorithms. In Figure-31, the timing performances of VTK 

algorithms can be seen more clearly and all of them are differing from each other 

with seconds. Observe that the timing performance of vtkQuadricClustering is 

inversely proportional with the reduction rate as it is expected. 

 

 

 
Figure 30. Comparison of timing performances of mesh simplification algorithms 

for the Stanford Bunny model 



 

 64 

 

 
Figure 31. Comparison of timing performances of mesh simplification algorithms 

from VTK library for the Stanford Bunny model 
 

5.3.3. Results for the Bumpy Torus Model  
 

The second model selected for comparison is the Bumpy Torus model (Figure-32) 

[33] which is composed of 16815 vertices, 33630 faces and 50545 edges. Observe 

that, the high curvature nature of Bumpy Torus model makes it extraordinary.  

 

 

 
Figure 32. Bumpy Torus Model 

 



 

 65 

As in the analysis of Stanford Bunny model, error values are also normalized in a 

similar way and the actual error values calculated for the Bumpy Torus model can 

be found in Appendix-E. Moreover, x, y axes of the graphics and the markers are 

used in the same way as explained in the previous section. 

 

When maximum geometric error is considered for the Bumpy Torus model, 

vtkQuadricDecimation with vertex normals gives the best performance in all 

reduction rates except the 90% (Figure-33). At this reduction rate 

vtkQuadricDecimation is slightly better, but according to our consideration, this 

does not prevent vtkQuadricDecimation with vertex normals algorithm from taking 

the first place. This is probably because of the high curvature nature of the  Bumpy 

Torus model where considering the vertex normals makes the difference. The 

second best performing algorithm is the vtkQuadricDecimation except the 70% 

reduction rate. At 70% reduction rate both CGAL Lindstrom-Turk and  OpenMesh 

Quadric modules are better than the vtkQuadricDecimation (Figure 33-34). 

Moreover, It is not very easy to determine the third best performing algorithm 

since CGAL Lindstrom-Turk  and OpenMesh Quadric module performs better with 

respect to each other in some percentages. For example, CGAL Lindstrom-Turk 

gives better results at 30%, 60%, 70%, 80% and 90% whereas OpenMesh Quadric 

module is better at 10%, 20% 40% and 50% (Figure-33).  If we select the bottom 

two algorithms these can be the vtkDecimatePro and CGAL Edge-length Midpoint. 

 

The best algorithms from CGAL and OpenMesh do not differ from the Bunny 

model (Figure-35, 36). Indeed, only the performance of vtkQuadricDecimation 

with vertex normals increased significantly and it becomes the best performer in 

terms of maximum geometric error both in the overall ranking and in VTK. In 

addition, the performance of OpenMesh Quadric module also increases with 

respect to the Bunny Model since it competes with the CGAL Lindstrom-Turk for 

the third place in the overall ranking. Remember that CGAL Lindstrom Turk takes 

the second place for the Stanford Bunny model in the ranking with respect to the 

maximum geometric error.  



 

 66 

 

 
Figure 33. Comparison of best mesh simplification algorithms from each library 
and vtkQuadricDecimation with respect to the normalized maximum geometric 

error for the Bumpy Torus model 
 

 

Figure 34. Comparison of VTK mesh simplification algorithms with respect to the 
normalized  maximum geometric error for the Bumpy Torus model 



 

 67 

 
 

Figure 35. Comparison of OpenMesh mesh simplification algorithms with respect 
to the normalized  maximum geometric error for the Bumpy Torus model 

 
 

 
 

Figure 36. Comparison of CGAL mesh simplification algorithms with respect to 
the normalized  maximum geometric error for the Bumpy Torus model 

 



 

 68 

CGAL Lindstrom-Turk algorithm one more time becomes the best algorithm in 

terms of mean geometric error after the Bunny Model (Figure-37) except the 10% 

reduction rate. At this rate, vtkQuadricDecimation, vtkQuadricDecimation with 

vertex normals and OpenMesh Quadric module are better than Lindstrom-Turk. 

The second place also does not change and vtkQuadricDecimation gets the second 

rank. However, this time vtkQuadricDecimation with vertex normals is almost as 

good as the vtkQuadricDecimation such that their error values are almost 

equivalent and it gets the third place in the over all ranking. 

 

The graphs for the comparison of the algorithms with respect to the mean 

geometric error within their own library are given in Figure-38, 39 and 40. 

 
 
 

 
 

Figure 37. Comparison of best mesh simplification algorithms from each library 
and vtkQuadricDecimation with vertex normals with respect to the normalized 

mean geometric error for the Bumpy Torus model 
 



 

 69 

 
 

Figure 38. Comparison of CGAL mesh simplification algorithms with respect to 
the normalized  mean geometric error for the Bumpy Torus model 

 
 

 
 

Figure 39. Comparison of OpenMesh mesh simplification algorithms with respect 
to the normalized  mean geometric error for the Bumpy Torus model 

 



 

 70 

 
 

Figure 40. Comparison of VTK mesh simplification algorithms with respect to the 
normalized  mean geometric error for the Bumpy Torus model 

 
 

All of the algorithms show a similar timing performance when the results are 

compared with the those obtained for Stanford Bunny model. Again, VTK 

algorithms are outstanding and they are far more better than the CGAL and 

OpenMesh algorithms. Similarly, CGAL algorithms require the most amount of 

time for their execution (Figure-41). In order to analyze VTK algorithms 

separately, Figure-42 is provided. Observe that, some unexpected peaks are 

occurred  in the given graphics. This may be because of the non-uniform behaviors 

of the used operating system, since the measured times are very small.  

 

In Appendix-C some figures of the simplified Bumpy Torus model can be seen 

besides the Stanford Bunny model. 

 

 

 

 



 

 71 

 

 

 
Figure 41. Comparison of timing performances of mesh simplification algorithms 

for the Bumpy Torus model 
 

 

Figure 42. Comparison of timing performances of mesh simplification algorithms 
from VTK library for the Bumpy Torus model 



 

 72 

5.3.4. Summary of the Results and Recommendations 
 

We have compared nine different mesh simplification algorithms from three 

different mesh libraries over two different triangular mesh models. The evaluation 

is mainly based on the maximum and mean geometric errors between the 

simplified and original models. Moreover, the execution times of the algorithms 

are also considered. As described previously, all algorithms are executed for nine 

different reduction rates from 10% to 90%. Obtained results have already been 

discussed in the previous sections (sections 5.3.2, 5.3.3) but in order to summarize 

them in a tabular format the following tables may be helpful. 

 

 

Table 5. Best Three Performing Algorithms for Stanford Bunny Model 
 

Maximum Geometric Error Mean Geometric Error 

1. vtkQuadricDecimation 1. CGAL Lindstrom-Turk 

2. CGAL Lindstrom-Turk 2. vtkQuadricDecimation 

3. vtkDecimatePro with error 
    accumulation 

3. OpenMesh Quadric Module 

 

 

 

Table 6. Best Three Performing Algorithms for Bumpy Torus Model 
 

Maximum Geometric Error Mean Geometric Error 

1. vtkQuadricDecimation with 
    vertex normals 

1. CGAL Lindstrom-Turk 

2. vtkQuadricDecimation 2. vtkQuadricDecimation 

3. CGAL Lindstrom-Turk  /  
    OpenMesh Quadric Module  

3. vtkQuadricDecimation with  
    vertex normals 

 

 

 



 

 73 

If a developer wants to implement a mesh simplification algorithm without a 

significant effort, we will recommend utilizing one of the freely available open 

source mesh libraries. However, our evaluation reveals that choosing the best 

library for mesh simplification mostly depends on the needs of the developer. In 

section 5.2, we describe the main properties of the proposed mesh libraries, where 

we try to answer the questions of the following type: what kinds of input meshes 

are supported and does the algorithm preserve the topology ? Later, based on the 

results of carried experiments, we see that the performance of the mesh 

simplification algorithms change with respect to the applied input mesh. Moreover, 

different algorithms are better for the same model when maximum and mean 

geometric errors are considered.  

 

Regarding the issues listed in the above paragraph and obtained results so far,  if a 

mesh simplification algorithm is required that is keeping the average deviation 

between the simplified and original meshes at minimum, our recommendation will 

be the CGAL Lindstrom-Turk algorithm. On the other hand, for minimizing the 

maximum geometric error a good choice will be the vtkQuadricDecimation. 

Furthermore, if the input mesh is highly curved, vtkQuadricDecimation with vertex 

normals may be applied as well.  

 

Although CGAL Lindstrom-Turk algorithm is one of the best algorithms among 

the proposed ones, it needs the longest time for execution. Especially, for very 

large meshes, e.g. for a mesh with a million of faces, the execution time may reach 

to two to four hours. As a result, vtkQuadricDecimation algorithm can be offered 

to anyone due to its high quality results and speed.  

 

   

 

 

 

 



 

 74 

CHAPTER 6 
  
 

REGULAR REMESHING 
 

 

Remeshing is the process of improving the quality of a mesh while approximating 

the original mesh acceptably. It is used in many geometric modeling algorithms 

such as shape editing, animation, morphing and numerical simulation [3]. 

Obviously, different applications have different quality criteria and requirements. 

Alliez and his co-workers [60] classified the remeshing techniques into five 

categories based on their goal: structured, compatible, high quality, feature and 

error-driven remeshing. In this work, structured remeshing also known as regular 

remeshing is studied for triangular meshes with disk topology. 

 

Remember that in a triangular mesh a vertex is called regular if its valence (number 

of neighboring vertices) is equal to 6 for an interior vertex or 4 for a boundary 

vertex. In addition, we call a mesh regular if all vertices of the mesh are regular. 

Regular meshes offer certain advantages over irregular ones. First, complex data 

structures are not needed due to the fact that in a regular mesh the connectivity is 

implicit which means only the geometric information is loaded into the memory. 

This property of regular meshes improve the efficiency and facilitate the 

implementation of many algorithms such as mesh compression and morphing. 

Second, regular meshes has been shown to be useful for rendering (vertex 

caching), texture and other modulation mapping (normal, transparency mapping) 

and levels of detail generation [61, 62, 63].  

 

Gu [61] developed a method for regular remeshing of arbitrary triangular meshes 

and named his method as geometry images. He begins by parameterizing the input 

mesh on to a 2D square which requires the input mesh to be topologically 

equivalent to a disk. If this is not the case, the input mesh can be cut and opened 

(Figure-43). Then, the geometry of the input mesh is captured as a simple n x n 



 

 75 

array of [x y z] values by just taking sampling points on the parameterized domain 

and calculating the 3D equivalents of these points. The x, y, and z coordinates of 

points on the surface are then used to construct an image (geometry image) by 

assigning them to the red, green and blue components of corresponding pixels. By 

this way, a 3D mesh is represented with a 2D image  (Figure-44). 

 

 

 

 
Figure 43. Obtaining a mesh with a disk topology by cutting 

(http://research.microsoft.com/~hoppe/) 
 

 

Once a geometry image is constructed, signal processing techniques then can be 

used on these images. For example, geometry images can be encoded using 

traditional image compression algorithms such as wavelet based coders. Moreover, 

they may be transmitted to the graphics pipeline in a compressed form just like 

texture images [61]. And a regular mesh can be reconstructed from a geometry 

image by interpreting each pixel as a vertex, and connecting vertices which 

correspond to neighboring pixels into a regular grid of triangles or quadrangles 

(Figure-45). 

 

The cut algorithm described in the geometry images paper is a two step algorithm. 

In the first step, a topologically sufficient cut is found and an initial 

parameterization is created. In the second step, using the information from the first 

parameterization, the cut path is improved and a reparameterization is performed. 

The second step is iterated over and over until the cut path can not be improved 



 

 76 

anymore. In the iterative part of the algorithm shape-preserving parameterization 

of Floater [64] is used whereas for the final parameterization  geometric-stretch 

minimizing parameterization [65] is preferred. Floater parameterization is better 

for determining the extremal points (points with high curvature) but it introduces 

more distortion (angular and areal) than geometric-stretch minimizing 

parameterization. Once extremal points are identified the cut path is improved such 

that it passes over the extremal points so that the resultant distortion will be 

minimized. 

 

 

 

 
Figure 44. Constructing geometry images 

(Figure is reproduced and modified from [61]) 
 

 



 

 77 

The quality of the reconstructed mesh from a geometry image mostly depends on 

the parameterization step. Parameterization is the process of finding a one-to-one 

(bijective) and piecewise linear mapping from a 3D image onto a 2D domain. The 

map is piecewise linear, associating each triangle of the original mesh with a 

triangle in the parameterization domain (Figure-46). The other important goal of 

mesh parameterization is to obtain bijective (invertible) maps where each point on 

the domain corresponds to exactly one point of the mesh. Both of the mesh 

parameterization algorithms [64, 65] used in the construction of geometry images 

are bijective and piecewise linear.  

 

 

 

 
Figure 45. Reconstructing the regular mesh from a geometry image 

 

 

 

 

 
Figure 46. A piecewise and bijective parameterization 



 

 78 

Generally, all mesh parameterization methods try to obtain an isometric mapping 

which preserves the lengths (both area and angles), i.e. the length of any arc on the 

original mesh is equal to the corresponding arc in the parameterization domain. 

However, almost all the time isometric mappings can not be obtained for an 

arbitrary mesh. Thus, mesh parameterization algorithms either concentrates on  

minimizing the angle (conformal mappings) or area (authalic mappings) or both 

(distance minimizing mappings) of them [66]. Shape preserving parameterization 

of Floater mainly tries to minimize the angular distortion whereas geometric 

stretch parameterization minimizes distances.   

 

6.1. Implementation 

 

The motivation behind this work is the regular remeshing of human face models 

which are generally genus-0 and topologically equivalent to disks. Thus, the 

complex cutting algorithm in the geometry images is omitted. Moreover, regular 

models are directly constructed after the parameterization step without generating 

the geometry images and finally it is allowed to sample the geometry in any 

resolution in both directions. The steps for the implemented algorithm is given in 

below: 

 
Parameterize the input mesh onto a 2D square 

 
Sample the parameterized mesh (nxm) 

 
For each sampled point 

     
      Determine in which triangle the current 
      sampled point is 
     
      Calculate the barycentric coordinates in 
      the parameter domain 
     
      Use the barycentric coordinates to calculate 
      the corresponding point (x, y, z) in 3D 
 

End For 
 



 

 79 

     Construct the regular mesh by triangulating  
     or quadrangulating the calculated 3D points 
 
 
For the parameterization step of the algorithm, mesh parameterization package of 

CGAL library [25] is used. The package has 5 different parameterization methods 

and among them the Floater-Mean Value Coordinates Parameterization [67] is 

chosen since it is more promising than the others. Mean value coordinates 

parameterization is very similar to [64]. In fact, Floater approximates his shape-

preserving parameterization by using mean value coordinates at some step of the 

algorithm which gives very similar results while making the computational part of 

the shape-preserving algorithm more easier [67]. 

 

Once the parameterization is obtained (for each triangle/vertex in the 3D mesh a 

corresponding triangle/vertex is found in 2D), the next step is to sample the 

geometry in the parameterization domain. Since the parameterization is piecewise 

linear and bijective, we can compute the corresponding 3D points to the sampled 

points by using a linear interpolation. For the interpolation, barycentric coordinates 

in triangles are used by which a point’s position can be determined uniquely with 

respect to a triangle. Moreover, barycentric coordinates are also used for triangle 

inclusion test that is used to determine if a given point is inside a triangle or not. 

 

Consider three points 1P , 2P , and 3P  in a plane. If 1w , 2w , and 3w  are scalars such 

that 

 

 1 2 3 1w w w+ + =  (25) 

 

 then the point  

 

 1 1 2 2 3 3P w P w P w P= + +  (26) 

 



 

 80 

is a point on the plane of the triangle 1 2 3PP P△  and we say that 1 2 3[ , , ]w w w  are the 

barycentric coordinates of P  with respect to 1P , 2P , and 3P . Furthermore, the 

position of the point P  can be determined as follows (Figure 45): 

 

o The point P  is inside the triangle 1 2 3PP P△  if 1 2 30 , , 1w w w≤ ≤ . 

o The point P  is outside the triangle 1 2 3PP P△  if any of w ’s is less than 0 or 

greater than 1. 

o The point P  is on the edge of the triangle if one of the w ’s is equal to 0. 

o The point P  is on the vertex of the triangle  if two of the w ’s is equal to 0 

and the remaining one is equal to 1. 

 

 

 

 
Figure 47. Barycentric coordinates: p is inside the triangle ( 1 2 30 , , 1w w w≤ ≤ ), q is 

outside the triangle (2 0w < ) and r is on the edge 1 2PP  ( 3 0w = ) 

 

 

Equations  (25) and (26) can be used to construct a linear system: 

 

 
1

1 2 3
2

3

1 1 1 1

w
P P P P

w

w

 
     =    
    

 

 (27) 

 
and using the Cramer’s rule the linear system can be solved such that 



 

 81 

 1 1w A A= ,  2 2w A A= ,  3 3w A A=  (28) 

 

where A , 1A , 2A  and 3A  is the signed area of the triangles 1 2 3PP P△ , 2 3PP P△ , 

1 3PPP△  and 1 2PP P△  respectively (Figure 47). The signed areas are defined as 

follows: 

 

 1 2 3

1 1 1

P P P
A = , 2 3

1 1 1 1

P P P
A = , 1 3

2 1 1 1

P P P
A = , 1 2

3 1 1 1

P P P
A =  (29) 

 

Once the barycentric coordinates of a sampled point are calculated, i.e., 1w , 2w , 

and 3w  are found, the 3D equivalent of the point is calculated by using these 

coordinates and equation (26). After all points in 3D are found, it is very easy to 

triangulate or quadrangulate the points since they have a regular structure. 

 

6.2. Results 

 

The implemented regular remeshing algorithm is tested with four different face 

models with different resolutions. The first model, Nefertiti (Figure-48), is also the 

simplest one, composed of  299 vertices, 562 faces and 860 edges. Nefertiti model 

comes with the CGAL library [25] for testing algorithms on it. 

 

 

 

 
Figure 48. Nefertiti model: wireframe (a), shaded-1 (b) and shaded-2 (c)  

 



 

 82 

As it is described in section 6.1, we begin by parameterizing the input mesh onto a 

2D unit square. The parameterization of the Nefertiti model onto a 2D unit square 

is given in Figure-49. Observe that, in some of regions of the parameterization 

domain the density of the vertices are relatively high. These regions correspond to 

the high curvature regions of the original model. The model is then sampled in the 

parameterization domain and corresponding 3D points are calculated by a linear 

interpolation (Figure-50). Remember that barycentric coordinates are used for the 

linear interpolation and also for the triangle inclusion test.  The sampling resolution 

can be selected as desired but it gives better results when the two dimensions are 

selected equally. After getting the regular point cloud, the connectivity of these 

points can be constructed in three different ways. In the first way, faces of the 

regular mesh can be generated as quadrangles whereas the other two methods 

result in triangular meshes.  

 

In Figure-51, a sample quadrangulation and one of the two possible triangulations 

are shown for (33x33) resolution and a higher resolution (65x65) is shown in 

Figure-52. As the resolution of the sampling increases, more complex but regular 

mesh models can be obtained. 

 

 

 

 
Figure 49. Nefertiti model parameterized onto a 2D unit square 

 



 

 83 

 

 

Figure 50. Point cloud, obtained by sampling (65x65) the parameterization domain 
 
 
 
 
 

 

 

Figure-51. A sample quadrangulation and triangulation of the Nefertiti model 
(Resolution: 33x33) 

 

 



 

 84 

 

 

Figure 52. A sample quadrangulation and triangulation of the Nefertiti model 
(Resolution: 65x65) 

 

 

The second model that regular remeshing applied is the Egea model obtained from 

the Aim@Shape Repository [33] (Figure-53).  This model is nearly ten times 

complex than the Nefertiti model and composed of 3042 vertices, 5898 faces and 

8939 edges. The same procedures with the Nefertiti model are applied and the 

obtained results are shown in Figure-54 (parameterization domain), 55 (point cloud 

obtained) and 56 (65x65 triangulation and 129x129 quadrangulation). 

 

 

 

 

  

 

 



 

 85 

 
 

Figure 53. Egea model, shaded with two different shaders 
 

 

 

 

 
Figure 54. Parameterization of the Egea model onto a 2D unit square 

 



 

 86 

 

Figure 55. Point cloud, obtained by sampling (129x129) the parameterization 

domain of the Egea model 

 

 

 

 
Figure 56. A sample triangulation (65x65) and quadrangulation (129x129) of the 

Egea model 
 



 

 87 

The third model is a male face got from [68] (Figure-57). This model has 5321 

vertices, 10457 faces and 15777 edges. After applying the previously described 

steps,  similar results are obtained (Figure-58, 59).  Note that for this model the 

nose of the regularly remeshed models (Figure-59) are not good as the other 

models. This is because of  the high curvature in the nose. A highly curved region 

of the input mesh results in a relatively denser region in the parameterization 

domain, which hinders the adequate sampling to capture the geometry. However, 

this distortion may be negligible in most of the cases. In fact, if the obtained 

regular models are rendered, the distortion may not be even realized (Figure-60). 

Nevertheless, if the generated distortion is not acceptable, then this problem can be 

solved in two ways. First, the resolution of the sampling step can be increased. By 

this way, the distortion of  the highly curved parts will be reduced but which also 

increases the complexity of the obtained mesh. Second, the parameterization 

method of the applied algorithm can be changed with a better one [61].  

 

 

 

 
Figure 57. Male face model, shaded with two different shaders 

 



 

 88 

 

 
Figure 58. Parameterization of the Male face model onto a 2D unit square 

 
 
 
 

 

 

Figure 59. A sample triangulation (65x65) and quadrangulation (129x129) of the 
Male face model 

 



 

 89 

 

Figure 60. Shading the regular Male face model (65x65) 
 

 

The last model used for the regular remeshing is again a male face and got from 

[33] (Figure-61). This model is called as face-YH and it is the most complex model 

that is worked with such that it has 10199 vertices, 20000 faces and 30198 edges. 

The obtained results are illustrated in Figure-62 and 63.  

 
 

 

 
Figure 61. face-YH model, shaded with two different shaders 



 

 90 

 

 
Figure 62. Parameterization of the face-YH model onto a 2D unit square 

 

 

 

 
Figure 63. A sample triangulation (65x65) and quadrangulation (129x129) of the 

face-YH model 



 

 91 

Observe that if the input mesh is sampled such that the produced regular mesh has 

fewer vertices, then the regular remeshing method can also be thought as a 

simplification algorithm. For instance, for the face-YH model one of the sampling 

rates is chosen as 65x65 (Figure-61). This resolution rate produces a regular mesh 

with 4225 vertices, 8192 faces and 12416 edges which exactly corresponds to a 

59% reduced of the original mesh. Furthermore, regular remeshing algorithm can 

be compared with the other mesh simplification algorithms that are discussed in  

Chapters IV and V. Remember that one of the most efficient algorithms is the 

vtkQuadricDecimation algorithm both in terms of maximum and geometric errors 

and timing requirements. When vtkQuadricDecimation and regular remeshing 

algorithms are compared by using the metro tool,  we see that 

vtkQuadricDecimation performs better (Table-7). 

 

 

Table 7. Comparison of  Regular Remeshing Algorithm with the 
vtkQuadricDecimation at a 59% Reduction Rate 

 

Algorithm Max. Geometric Error Mean Geometric Error 

Regular Remeshing 2.647200 0.056288 

vtkQuadricDecimation 0.185284 0.011697 

 

 

In addition, if the visual outputs of the metro tool is analyzed, it can be seen that 

regular remeshing algorithm approximates the original model much more better in 

the smooth regions of the original model (Figure-62). The distortions on the 

relatively high curvature regions increases the geometric errors. On the other hand, 

vtkQuadricDecimation algorithm does not decimate the highly curved regions and 

distribute the error along the whole mesh (Figure-63) . 

 



 

 92 

 

 
Figure 64. Error distribution for the face-YH model when simplified with regular 

remeshing algorithm 
 
 
 

 

 
Figure 65. Error distribution for the face-YH model when simplified with 

vtkQuadricDecimation 



 

 93 

CHAPTER 7 
  
 

CONCLUSION AND FUTURE WORK 
 

 

In this thesis work, two important topics of mesh processing are studied: polygonal 

mesh simplification and regular remeshing of irregular polygonal meshes. The first 

topic, polygonal mesh simplification is a  very active subject and there are a lot of 

different algorithms proposed, which makes the classification of these algorithms 

very challenging. Among the possible classifications we adopted one of them and 

by utilizing the other works, a classification of ours is offered which may be 

thought as the combination of the previous works. 

 

Due to popularity of the subject, polygonal mesh simplification algorithms are 

implemented in a number of different mesh libraries. In order to provide a guide 

for commonly used mesh libraries in terms of mesh simplification, we compared 

the simplification algorithms from these libraries. Based on this evaluation, we 

concluded that there is no certain best algorithm since different algorithms may 

operate well on different input meshes. However, some of the algorithms are 

generally performing better than the others in terms of geometric error and 

execution time. Among them, vtkQuadricDecimation algorithm can be a good 

choice when considering its speed and results. 

 

In addition to this work, similar works can be repeated for the commercial mesh 

simplification packages and as well as for some other free programs. By this way, 

the performance of the mesh libraries by means of mesh simplification can be 

determined relatively. Moreover, since these algorithms are open source, they may 

be modified to get better algorithms. 

 

The second topic discussed in this work is the regular remeshing of the irregular 

polygonal meshes. The motivation behind this conversion is the advantages of the 



 

 94 

regular meshes for both processing and rendering. There exists only one method 

for such a conversion and in this work, an implementation  based on this algorithm 

is done and it is tested with the human face models. Moreover, regular remeshing 

algorithm is also considered as a mesh simplification algorithm for special cases 

and a comparison of the algorithm is performed with the dedicated mesh 

simplification algorithms.  

 

Our implementation of regular remeshing can only be capable of handling input 

meshes that are topologically equivalent to disks. This work can be expanded to 

handle an arbitrary irregular polygonal mesh. Moreover, since the quality of the 

obtained regular meshes mostly depend on the parameterization step of the 

algorithm, better parameterization methods can be utilized. 

 



 

 95 

REFERENCES 
 

 

[1] O’Rourke, Joseph. Computational Geometry in C, Second Ed., Cambridge 

University Press, 1998, pg. 12-13. 

 

[2]  Hoppe Hughes. Mesh Optimization, In Proceedings of ACM SIGGRAPH 93, 

pg. 19-26, 1993. 

 

[3] Botsch Mario and Pauly Mark. Geometric Modeling Based on Polygonal 

Meshes, ACM SIGGRAPH 2006 Courses. 

 

[4] William S. Massey.  A Basic Course in Algebraic Topology, Springer-Verlag, 

1991 

 

[5] Hoffmann M. Christoph. Geometric and Solid Modeling, Morgan Kaufmann 

Pub. 1989, pg. 49-53. 

 

[6] Luebke P. David. A Developer’s Survey of Polygonal Simplification 

Algorithms, IEEE Computer Graphics and Applications, 2001. 

 

[7] Weisstein, Eric W. "Genus." From MathWorld--A Wolfram Web Resource. 

Retrieved August 2008 from http://mathworld.wolfram.com/Genus.html 

 

[8] Hoffmann M. Christoph. Geometric and Solid Modeling, Morgan Kaufmann 

Pub. 1989, pg. 39-42. 

 

[9] 3D Object Converter. Retrieved August 2008 from http://web.axelero.hu/karpo/ 

 

[10] Wavefront’s Object File Format (OBJ File Format). Retrieved August 2008 

from http://local.wasp.uwa.edu.au/~pbourke/dataformats/obj/ 



 

 96 

 

[11] Object File Format (OFF File Format). Retrieved August 2008 from 

http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/off/ 

 

[12] Stereolithography File Format (STL File Format). Retrieved August 2008 

from http://mech.fsv.cvut.cz/~dr/papers/Lisbon04/node2.html 

 

[13] Virtual Reality Modeling Language (VRML). Retrieved August 2008 from 

http://mkrus.free.fr/CG/vrml.html 

 

[14] Polygon File Format (PLY File Format). Retrieved August 2008 from 

http://local.wasp.uwa.edu.au/~pbourke/dataformats/ply/ 

 

[15] Bruce G. Baumgart. A Polyhedron Representation for Computer Vision, 

National Computer Conference, Anaheim, CA, 1975, pg. 589-596. 

 

[16] Bischoff Stephan and Kobbelt Leif. Teaching Meshes, Subdivision and 

Multiresolution Techniques, Computer Aided Design, Volume 36, Issue 14, 

December 2004, pg. 1483-1500.  

 

[17] Weiler Kevin. Edge-Based Data Structures for Solid Modeling in Curved-

Surface Environments. IEEE Computer Graphics and Applications, 5(1):21-40, 

January 1985. 

 

[18] Kettner Lutz. Using Generic Programming for Designing a Data Structure for 

Polyhedral Surfaces, 14th Annual ACM Symposium on Computational Geometry, 

1998. 

 

[19] A Sample Half-edge Data Structure Implementation. Retrieved August 2008 

from http://www.holmes3d.net/graphics/dcel/ 

 



 

 97 

[20] Gubias Leonidas and Stolfi Jorge. Primitives for the Manipulation of General 

Subdivisions and the Computation of Voronoi Diagrams, ACM Transaction on 

Graphics, 4(3):74-123, July 1985. 

 

[21] Weiler Kevin. The Radial-edge Data Structure: A Topological Representation 

for Non-manifold Geometric Boundary Modeling, Geometric Modeling for CAD, 

1988. 

 

[22] Leila De Floriani and Annie Hui. Data Structures for Simplicial Complexes: 

An Analysis and a Comparison, Eurographics Symposium on Geometry 

Processing, 2005. 

 

[23] Leila De Floriani and Annie Hui. A Scalable Data Structure for Three-

Dimensional Non-manifold Objects, Symposium on Geometry Processing, pg. 72-

82, 2003. 

 

[24] Visualization Tookit Library (VTK). Retrieved August 2008 from 

http://www.vtk.org/ 

 

[25] Computational Geomerty Algorithms Library (CGAL). Retrieved August 

2008 from thttp://www.cgal.org/ 

 

[26] OpenMesh Library.  Retrieved August 2008 from http://www.openmesh.org/ 

 

[27] Kitware, Inc. Retrieved August 2008 from http://www.kitware.com/ 

 

[28] The Visualization Toolkit User’s Guide, 2004. 

 

[29] CGAL User and Reference Manual, Release 3.3.1 

 



 

 98 

[30] Schroeder Will, Martin Ken and Lorensen Bill. The Visualization Toolkit An 

Object-Oriented Approach To 3D Graphics, 3rd Edition. 

 

[31] Heckbert Paul S. and Garland Michael. Survey of Simplification Algorithms, 

In Proceedings of ACM SIGGRAPH 97. 

 

[32] Lorenson W. and Cline H. Marching Cubes: A High Resolution 3D Surface 

Reconstruction Algorithm, In Proceediings of ACM SIGGRAPH 87. 

 

[33] Aim@Shape Repository. Retrieved August 2008 from http://shapes.aim-at-

shape.net/ 

 

[34] Gotsman C., Gumhold S. and Kobbelt L.. Simplification and Compression of 

3D Meshes, In "Tutorials on Multiresolution in Geometric Modeling", A. Iske, E. 

Quak, M.S. Floater (Eds.), Springer, 2002. 

 

[35] Luebke D., Reddy M., Cohen Jonathan D., Varshney A., Watson B. and 

Huebner R. Level of Detail for 3D Graphics, Morgan Kaufmann, 2003. 

 

[36] Heckbert Paul S. and Garland Michael. Multiresolution Modeling for Fast 

Rendering,  In Proceedings of Graphics Interface, 1994.  

 

[37] Cignoni P., Montani C., Scopigno R. A Comparison of Mesh Simplification 

Algorithms, 1997. 

 

[38] Talton Jerry O. A Short Survey of Mesh Simplification Algorithms, 

University of  Illionis at Urbana-Champaign, Technical Report, 2004. 

 

[39] Erikson Carl. Polygonal Simplification: An Overview, UNC-Champel Hill 

Computer Science Technical Report TR96-016, 1996. 

 



 

 99 

[40] Luebke D. A Survey of Polygonal Simplification Algorithms, University of 

North Carolina, Technical Report TR97-045. 

 

[41] Schroeder William J., Zarge Jonathan A. and Lorensen William E. 

Decimation of Triangle Meshes, In proceedings of ACM SIGGRAPH 92, pg. 65-

70, 1992. 

 

[42] Kobbelt L., Campagna S., and Seidel H. Peter. A General Framework for 

Mesh Decimation, In proceedings of Graphics Interface 98, pg. 43-50, 1998. 

 

[43] Schroeder W. A Topology modifying progressive decimation algorithm. In 

IEEE Visualization 97 Conference Proceedings, pg. 205-212, 1997. 

 

[44] Garland M. and Heckbert Paul S. Surface Simplification Using Quadric Error 

Metrics. In Proceedings of  ACM SIGGRAPH 97, pg. 209-216, 1997. 

 

[45] Ronfard R. and Rossignac J. Full-Range Approximations of Triangulated 

Polyhedra, In Proceedings of Eurographics, Vol. 15, C-67, 1996. 

 

[46] Garland M. Quadric-based Polygonal Surface Simplification, Ph.D. Thesis, 

Carnegie Mellon University. 

 

[47] Cignoni P., Rochini C., and Scopigno R. Metro: Measuring Error on 

Simplified Surfaces, Technical Report B4-01-96, I.E.I.-C.N.R., Pisa, Italy, 1996. 

 

[48] Klein R., Liebich G., and Straßer W. Mesh Reduction with Error Control, In 

Proceedings of Visualization 96, pg. 311-318, 1996. 

 

[49] Cohen J., Varshney A., Manocha D., Turk G., Weber H., Agarwal P., Brooks 

F. and Wright W. Simplification Envelops, In Proceedings of ACM SIGGRAPH 

96, 1996. 



 

 100 

 

[50] Rossignac J. and Borrel P. Multi-resolution 3D Approximations for Rendering 

Complex Scenes, Geometric Modeling in Computer Graphics: Methods and 

Applications, Springer-Verlag, Berlin, New York, pg. 455-465, 1993. 

 

[51] Lindstrom P. Out-of-core Simplification of Large Polygonal Models, In 

Proceedings of ACM SIGGRAPH 00, pg. 259-262, 2000. 

 

[52] Hoppe H., Progressive Meshes, In Proceedings of  ACM SIGGRAPH  96,  pg. 

99-108 , 1996. 

 

[53] Garland M. and Heckbert Paul S. Simplifying Surfaces with Color and 

Texture using quadric error metrics. In Proceedings of Visualization 98, IEEE 

Computer Soc. Press, Oct. 1998, pg. 263-269, 1998. 

 

[54] Hoppe H. New Quadric Metric for Simplifying Meshes with Appearance 

Attributes. In Visualization 99, IEEE, pg. 59-66, 1999. 

 

[55] Lindstrom P. and Turk G. Fast and Memory Efficient Polygonal 

Simplification, In Proceedings of Visualization 98, IEEE Computer Soc. Press, 

Oct. 1998, pg. 279-286. 

 

[56] Lindstrom P. and Turk G. Evaluation of Memoryless Simplification, IEEE 

Transactions on Visualization and Computer Graphics, 5(2): 98-115, 1999.  

 

[57] Roy M., Foufou S. and Truchetet F. Mesh Comparison using Attribute 

Deviation Metric, In International Journey of Image and Graphics (IJIG), 4 (1), 

pages 127-140, January 2004. 

 



 

 101 

[58] Silva S., Maderia J. and Santos B. Sousa. POLYMECO: A Polygonal Mesh 

Comparison Tool, Ninth International Conference on Information Visualization 

2005, pg. 842-847. 

 

[59] Aspert N., Santa-Cruz D. and Ebrahmi T. MESH: Measuring Error Between 

Surfaces Using the Hausdorf Distance. In Proceedings of the IEEE International 

Conference on Multimedia and Expo 2002, vol. I, pg. 705-708. 

 

[60] Alliez P., Ucelli G., Gotsman C. and Attene M. Recent Advances in 

Remeshing of Surfaces, state-of-the-art report, 2005. 

 

[61] Gu X., Gortler S. J. and Hoppe H. Geometry Images. In Proceedings of ACM 

SIGGRAPH 2002, pg. 355-361. 

 

[62] Praun E. and Hoppe H. Spherical Parameterization and Remeshing, In 

Proceedings of ACM SIGGRAPH 2003, pg. 340-349. 

 

[63] Losasso F., Hoppe H., Schaefer S. and Warren J. Smooth Geometry Images,  

Eurographics Symposium on Geometry Processing 2003, pg. 138-145. 

 

[64] Floater M. Parameterization and Smooth Approximation of Surface 

Triangulations, CAGD 14, 3 (1997), pg. 231-250. 

 

[65] Sander P., Gortler S., Snyder J. and Hoppe H. Signal Specialized 

Parameterization, Microsoft Research MSR-TR-2002-27, January 2002. 

 

[66] Sheffer A., Praun E., and Rose K. Mesh Parameterization Methods and Their 

Applications, Foundations and Trends in Computer Graphics and Vision 2(2):105-

171, 2006. 

 

[67] Floater M. Mean Value Coordinates, CAGD, 20(1), 19-27, 2003. 



 

 102 

[68] Cyberware Inc. Retrieved August 2008 from http://www.cyberware.com/ 

 

[69] Shewchuk J.R. What is a Good Linear Element? Interpolation, Conditioning, 

and Quality Measures. In proceedings of 11th International Meshing Roundtable, 

2002. 

 

[70] The Stanford 3D Scanning Repository. Retrieved August 2008 from 

http://www-graphics.stanford.edu/data/3Dscanrep/ 



 

 103 

APPENDIX A 
  

 

K-SIMPLEX AND SIMPLICIAL COMPLEXES 
 

 

Hoffman [5] defines a k-simplex as follows: a k-simplex is the convex combination 

of k + 1 linearly independent points. The dimension of the k-simplex is k. It is 

obvious that a 0-simplex is a point, 1-simplex is a line segment and 2-simplex is a 

triangle. For example, consider a three distinct point p1, p2 and p3. The convex 

combination spanned by p1, p2 and p3 is the set 

 

( )( ) ( ){ }1 2 3 1 2 3, , 1 1 | 0 , 1p p p p p pλ λ µ µ λ µ= + − + − ≤ ≤  

                   ( ){ }3 1 21 | , ,0 1q p q p pµ µ µ= + − ∈ ≤ ≤  

 

Geometrically, if p1, p2 and p3 are collinear than then 1 2 3, ,p p p  is a triangle with 

vertices p1, p2 and p3. 

 

The boundary of a k-simplex S consists of all (k-d)-simplices contained in S, where 

k > 0. Every simplex in the boundary of S is a face of S. For instance, if S is a 2-

simplex (triangle), then the boundary of S is composed of 0-simplices (vertices) 

and 1-simplices (edges) which are also a face of S. A k-simplex contains exactly 

1

1

k

d

+ 
 + 

 d-simplices as faces.  

 

Hoffmann [5] also defines simplicial complexes as a set of finite simplices, 

satisfying the following conditions: 

 

o Let K be a simplicial complex and S is a simplex in K. Then, any face of a 

S is also in K.  



 

 104 

o The intersection of any two simplices 1 2,S S K∈  is either empty or is a 

simplex in K. 

 

Observe that in the second condition that, 1 2S S∩  is a face of both S1 and S2.  The 

dimension of a simplicial complex is defined as the maximum dimension of the 

simplices in it. Figure-66 and 67 show a sets of simplices one of which forms a 

simplicial complex whereas the other does not. 

 

 

 

 
Figure 66. A simplex forming a simplicial complex 

 

 

 

 
 

Figure 67. A simplex not forming a simplicial complex 
 
 

 

 

 

 



 

 105 

APPENDIX B 
  
 

MESH FILE FORMAT EXAMPLES 
 

 

 

 
Figure 68. A 3D tetrahedron 

 

 

The 3D tetra hedron shown in Figure-68 can be represented in different file 

formats as follows:   

 
o  .OBJ file format 

 
v 1.00 1.00 1.00 
v 2.00 1.00 1.00 
v 1.00 2.00 1.00 
v 1.00 1.00 2.00 
f 1 3 2 
f 1 4 3 
f 1 2 4 
f 2 3 4 

 
o . OFF file format 
 

OFF 
5 4 6 
0 0 0 
1 1 2 
1 2 1 
2 1 1 
1 1 1 



 

 106 

3 3 2 1 
3 4 3 1 
3 4 1 2 
3 4 2 3 
 

o STL ASCII format 
 

solid tetrahedron 
   facet normal 0.000000 0.000000 -1.000000 
      outer loop 
         vertex 1.000000 1.000000 1.000000 
         vertex 1.000000 2.000000 1.000000 
         vertex 2.000000 1.000000 1.000000 
      endloop 
   endfacet 
   facet normal -1.000000 0.000000 0.000000 
      outer loop 
         vertex 1.000000 1.000000 1.000000 
         vertex 1.000000 1.000000 2.000000 
         vertex 1.000000 2.000000 1.000000 
      endloop 
   endfacet 
   facet normal 0.000000 -1.000000 0.000000 
      outer loop 
         vertex 1.000000 1.000000 1.000000 
         vertex 2.000000 1.000000 1.000000 
         vertex 1.000000 1.000000 2.000000 
      endloop 
   endfacet 
   facet normal 0.577350 0.577350 0.577350 
      outer loop 
         vertex 2.000000 1.000000 1.000000 
         vertex 1.000000 2.000000 1.000000 
         vertex 1.000000 1.000000 2.000000 
      endloop 
   endfacet 

endsolid tetrahedron 
 
o STL Binary format 

 
56 43 47 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 04 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 80 BF 



 

 107 

APPENDIX C 
  
 
SAMPLE FIGURES FROM POLYGONAL MESH SIMPLIFICATION 

 
 

 

 
Figure 69. Stanford Bunny Model: shaded and wireframe models 

original model (a), 90% reduced model (b), 99% reduced model (c) 
CGAL Lindstrom – Turk algorithm is used for simplifications 



 

 108 

 

 
Figure 70. Bumpy Torus Model: shaded and wireframe models 

original model (a), 90% reduced model (b), 99% reduced model (c) 
vtkQuadricDecimation algorithm is used for simplifications 

 
 
 
 



 

 109 

APPENDIX D 
  
 
ACTUAL ERROR VALUES FOR THE STANFORD BUNNY MODEL 
 
 
 

Table 8. Actual Geometric Errors for Stanford Bunny Model 
 

Alg. Reduc. Rate Maximumum Error Mean Error 

vt
kD

ec
im

at
eP

ro
 10 

20 
30 
40 
50 
60 
70 
80 
90 

0.000248 
0.000333 
0.000469 
0.000484 
0.000484 
0.000684 
0.000687 
0.000711 
0.004713 

0.000004 
0.000008 
0.000012 
0.000017 
0.000023 
0.000031 
0.000042 
0.000072 
0.000245 

vt
kD

ec
im

at
eP

ro
 w

ith
 

er
ro

r 
ac

c.
 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.000248 
0.000268 
0.000383 
0.000493 
0.000493 
0.000493 
0.000602 
0.000627 
0.001812 

0.000004 
0.000008 
0.000012 
0.000016 
0.000021 
0.000027 
0.000038 
0.000065 
0.000181 

vt
kQ

ua
dr

ic
D

e
ci

m
at

io
n 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.000037 
0.000050 
0.000062 
0.000070 
0.000094 
0.000115 
0.000163 
0.000290 
0.000524 

0.000001 
0.000002 
0.000004 
0.000007 
0.000010 
0.000013 
0.000019 
0.000027 
0.000049 

vt
kQ

ua
dr

ic
D

e
ci

m
at

io
n 

w
ith

 v
er

te
x 

no
rm

al
s 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.000193 
0.000292 
0.000366 
0.000790 
0.001016 
0.001585 
0.001585 
0.002424 
0.003115 

0.000004 
0.000010 
0.000019 
0.000032 
0.000053 
0.000083 
0.000130 
0.000208 
0.000388 

 
 



 

 110 

(Table 8. continued) 
 

Alg. Reduc. Rate Maximumum Error Mean Error 

vt
kQ

ua
dr

ic
C

lu
st

er
in

g 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.000775 
0.001134 
0.001087 
0.001674 
0.001823 
0.001845 
0.001950 
0.002298 
0.003145 

0.000005 
0.000008 
0.000012 
0.000016 
0.000020 
0.000026 
0.000035 
0.000052 
0.000103 

C
G

A
L 

E
dg

e-
le

ng
th

 
M

id
po

in
t 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.000540 
0.000556 
0.000622 
0.000622 
0.000772 
0.001026 
0.001176 
0.001712 
0.002549 

0.000006 
0.000011 
0.000016 
0.000022 
0.000032 
0.000044 
0.000062 
0.000097 
0.000198 

C
G

A
L 

Li
nd

st
ro

m
-T

ur
k 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.000040 
0.000068 
0.000120 
0.000120 
0.000159 
0.000166 
0.000275 
0.000450 
0.000614 

0.000001 
0.000002 
0.000004 
0.000006 
0.000008 
0.000011 
0.000015 
0.000022 
0.000037 

O
pe

nM
es

h 
Q

ua
d

ric
 

M
od

ul
e 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.000783 
0.000783 
0.000842 
0.001136 
0.001136 
0.001336 
0.001336 
0.001336 
0.001901 

0.000001 
0.000002 
0.000004 
0.000007 
0.000011 
0.000016 
0.000023 
0.000037 
0.000071 

O
pe

nM
es

h 
R

ou
nd

ne
ss

 
w

ith
 N

or
m

al
 F

lip
pi

ng
 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.000921 
0.001175 
0.001175 
0.001412 
0.001537 
0.001537 
0.001716 
0.004585 
0.004496 

0.000003 
0.000006 
0.000010 
0.000015 
0.000022 
0.000036 
0.000056 
0.000119 
0.000256 



 

 111 

APPENDIX E 
 
 

ACTUAL ERROR VALUES FOR THE BUMPY TORUS MODEL 
 
 
 

Table 9. Actual Geometric Errors for Bumpy Torus Model 
 
 

Alg. Reduc. Rate Maximumum Error Mean Error 

vt
kD

ec
im

at
eP

ro
 10 

20 
30 
40 
50 
60 
70 
80 
90 

0.080670 
0.127255 
0.155406 
0.161423 
0.161400 
0.161400 
0.285699 
0.531355 
1.355316 

0.001731 
0.004055 
0.006285 
0.008665 
0.011603 
0.015993 
0.026186 
0.043176 
0.089026 

vt
kD

ec
im

at
eP

ro
 w

ith
 

er
ro

r 
ac

c.
 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.096902 
0.108504 
0.108504 
0.108504 
0.109406 
0.126558 
0.151020 
0.417685 
0.500582 

0.001583 
0.003384 
0.005329 
0.007515 
0.010333 
0.014858 
0.022565 
0.039623 
0.060295 

vt
kQ

ua
dr

ic
D

e
ci

m
at

io
n 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.019928 
0.019928 
0.024366 
0.028185 
0.032186 
0.043139 
0.103235 
0.103235 
0.149019 

0.000287 
0.000770 
0.001418 
0.002266 
0.003320 
0.004687 
0.006665 
0.010078 
0.019524 

vt
kQ

ua
dr

ic
D

e
ci

m
at

io
n 

w
ith

 v
er

te
x 

no
rm

al
s 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.012065 
0.016717 
0.021020 
0.028134 
0.029778 
0.039433 
0.061458 
0.078635 
0.149095 

0.000296 
0.000790 
0.001453 
0.002306 
0.003343 
0.004702 
0.006692 
0.010111 
0.019508 

 



 

 112 

(Table 9. continued) 
 
 

Alg. Reduc. Rate Maximumum Error Mean Error 

vt
kQ

ua
dr

ic
C

lu
st

er
in

g 
10 
20 
30 
40 
50 
60 
70 
80 
90 

0.079655 
0.073820 
0.079422 
0.098697 
0.110754 
0.155166 
0.216831 
0.238422 
0.687902 

0.001359 
0.002322 
0.003536 
0.004827 
0.006307 
0.008693 
0.011999 
0.018843 
0.038458 

C
G

A
L 

E
dg

e-
le

ng
th

 
M

id
po

in
t 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.115418 
0.161750 
0.228665 
0.248385 
0.248385 
0.256983 
0.298007 
0.352154 
0.668535 

0.001511 
0.003337 
0.005679 
0.008413 
0.011910 
0.017129 
0.025719 
0.041994 
0.089926 

C
G

A
L 

Li
nd

st
ro

m
-T

ur
k 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.036667 
0.039144 
0.045944 
0.064101 
0.064101 
0.075849 
0.080270 
0.124495 
0.325451 

0.000317 
0.000732 
0.001299 
0.001983 
0.002838 
0.003929 
0.005422 
0.008072 
0.015243 

O
pe

nM
es

h 
Q

ua
d

ric
 

M
od

ul
e 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.022744 
0.036708 
0.050539 
0.050235 
0.055351 
0.076547 
0.103148 
0.151889 
0.243354 

0.000313 
0.000933 
0.001866 
0.003151 
0.004842 
0.007182 
0.010831 
0.017472 
0.035349 

O
pe

nM
es

h 
R

ou
nd

ne
ss

 
w

ith
 N

or
m

al
 F

lip
pi

ng
 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.052768 
0.060556 
0.078205 
0.107309 
0.128119 
0.146445 
0.253227 
0.398908 
0.746391 

0.001228 
0.002899 
0.005211 
0.007921 
0.011282 
0.017084 
0.026413 
0.041322 
0.079289 



 

 113 

APPENDIX F 
  
 

A SAMPLE OUTPUT OF THE METRO TOOL 
 

 

Metro tool has both numerical and visual output (Figure - X).  Numerical output 

consists of the input mesh information and forward (distance from the first model 

to the second) and backward  (distance from the second model to the first one) 

distances. A sample numerical output of the metro tool is given below: 

 
 
          Metro V.4.06 

     http://vcg.isti.cnr.it 

   release date: Oct  3 2005 

------------------------------- 

 

read mesh `sb_original.off' 

read mesh `sb_cgalLT_0.2.off' 

 

Mesh info: 

M1: 'sb_original.off' 

          vertices   34834 
          faces       69451 
          area         0.1143 

         bbox (-0.0947  0.0330 -0.0619)-( 0.0610  0.1873  0.0588) 
bbox diagonal 0.250246 

 

  M2: 'sb_cgalLT_0.2.off' 

          vertices   27881 
          faces       55545 
          area         0.1143 
          bbox (-0.0947  0.0330 -0.0619)-( 0.0610  0.1873  0.0588) 
          bbox diagonal 0.250265 
 

 



 

 114 

Forward distance (M1 -> M2): 

target # samples         : 694510 
target # samples/area : 6078459.558555 
Vertex sampling 
Edge sampling 
Similar Triangles face sampling 

 

distances: 

     max : 0.000046 (0.000171  wrt bounding box diagonal) 
    mean : 0.000002 
     RMS : 0.000004 
 

# vertex samples  34834 
# edge samples  368517 
# area samples   256323 
# total samples  659674 
# samples per area unit:  5773569.467438 

 

Backward distance (M2 -> M1): 

target # samples      : 694510 
target # samples/area : 6077768.630400 
Vertex sampling 
Edge sampling 
Similar Triangles face sampling 

 

distances: 

  max : 0.000068 (0.000255  wrt bounding box diagonal) 
  mean : 0.000002 
  RMS  : 0.000004 
 

      # vertex samples       27881 
  # edge samples        335675 

                                      # area samples        303072 
                                      # total samples       666628 

  # samples per area unit:  5833768.767255 
 

 

Hausdorff distance : 0.000068 (0.000255  wrt bounding box diagonal) 

Computation time : 6407 ms 

      # samples/second  : 207008.262370 



 

 115 

Besides the numerical results metro can also give visual output (Figure-71, 72) by 

coloring the vertices of the original model with respect to the calculated error 

values at those vertices. The red regions can be considered as relatively low error 

regions whereas as the color deviates to yellow, green and blue then the 

corresponding error increases respectively. 

 
 
 

 

 
Figure 71. A sample visual output of the metro tool for the Stanford Bunny model 

 
 

 
 

Figure 72. A sample visual output of the metro tool for the Bumpy Torus model 


