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ABSTRACT

A COMPARATIVE STUDY ON POLYGONAL MESH SIMPLIFICATION
ALGORITHMS

Yirci, Murat
M.S., Department of Electrical and Electronics Eegring

Supervisor: Assist. Prof. Dkay Ulusoy

September 2008, 115 pages

Polygonal meshes are a common way of represeniingusdface models in many
different areas of computer graphics and geometocgssing. However, these
models are becoming more and more complex whiateases the cost of processing
these models. In order to reduce this cost, mesipldication algorithms are

developed. Another important property of a polydanash model is that whether it
is regular or not. Regular meshes have many adyesitaver the irregular ones in
terms of memory requirements, efficient processimmdering etc. In this thesis
work, both mesh simplification and regular remeghialgorithms are studied.
Moreover, some of the popular mesh libraries anapared with respect to their
approaches and performance to the mesh simpldicatn addition, mesh models

with disk topology are remeshed and convertedgaleg ones.

Keywords: Polygonal Mesh Simplification, Regularnkeshing, 3D Models, Mesh

Libraries
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POLIGONAL SADELESTIRME ALGORITMALARININ
KARSILASTIRILMASI

Yirci, Murat
Yuksek Lisans, Elektrik ve Elekiik Muhendislgi Bolim
Tez Yoneticisi: Yrd. Dog. Dilkay Ulusoy

Eylul 2008, 115 sayfa

Poligonal yiizey modelleme tg¢ boyutlu nesnelerin eledmesinde sikga kullanilan
bir yontemdir. Poligonal ylzey modelleri bilgisaygnafigi, bilgisayarla gorme, tibbi
goruntileme vb. alanlarda yaygin olarak kullaniltadk. Ancak, bu modellerin
karmaiklik dizeylerinin giin gectikce artmasi bu modatieslenmesinde zorluklar
cikarabilmektedir. Poligonal sadgfieme algoritmalari kullanilarak bu modellerin
karmaiklik duzeyleri azaltilabilir. Poligonal ytzey mdbin bir diger 6nemili
Ozelligi de modelin yapisinin dizgin olup olmadir. Dizgin modellerin dizgin
olmayan modellere gore hafizada daha az yer kapldataa kolay ve etkilisleme
gibi bircok avantaji vardir. Bu tez cghasinda poligonal ylzey modellerin
sadelgtiriimesinde ve yeniden dizgun olarak modellenmasinkullanilan
algoritmalar incelenngtir. Yapilan incelemelere ek olarak poligonal mdeieh
islenmesinde yaygin olarak kullanilan kitiphaneldigpoal sadelgirme acisindan
karsilastiriimistir. Son olarak da dairesel topolojiye sahip olasligonal ylzey

modellerin yeniden modellenmesi uygulama olaraksgelmi stir.

Anahtar Sozcikler: Poligonal Yizey Sagalene, Yeniden Diuzgin Modelleme, 3B
Modeller, Poligonal Yizey Modelleme Kutliiphaneleri
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CHAPTER 1

INTRODUCTION

Polygonal meshes are a common way of represenbngugface models in many
different areas of computer graphics and geometoggssing [3]. Due to their

popularity, polygonal meshes are widely supportgd dommercial graphics

hardware and software. Polygonal models are gesteiata number of different

ways in different application domains. For instgnoecomputer vision laser range
scanners are used to capture the geometry of éhevoeld objects [68], whereas in
scientific visualization iso-surfaces are extradtedn volume data [32]. Moreover,

in remote sensing height maps are constructed ukangatellite photographs and
in computer graphics and CAD systems modeling tamsutilized. Unfortunately,

surface meshes obtained by using these methodg veek suit the needs. Mostly,

they are too complex or the quality is poor in sose@se which require post-
processing. Polygonal mesh simplification and rdnmegg algorithms are among
the most important mesh processing algorithms.

With the evolution of modern technology devicesyenand more complex surface
mesh models have been generated. As the compleixityese models increases,
the visual approximation to the real world objegés better but there is a trade-off
between the cost of processing these models aner besual approximation. In
fact, for real-time interactive applications simpiaodels are acceptable most of
the time without violating the expectations. As esult, complex models are
needed to be reduced where the mesh simplificatitgorithms come in.
Correspondingly, mesh simplification can be defiasdhe process of reducing the
number of faces and vertices of a given input mekle maintaining a faithful

approximation to the original mesh.



Regarding the importance of mesh simplificationoathms they have been

studied a lot for years and since then a numbsunfey papers were published on
the subject [3, 6, 31, 37, 38, 39, 40]. Based omsehresearches, mesh
simplification algorithms can be classified intootwain groups according to their
approaches to the subject. Iterative algorithms B2, 43, 44, 45, 48 ] can be
placed into the first category in which a mesh @epimn(vertex, face or edge) is
removed once at a time. On the other hand, thendecategory of algorithms can

be named as single pass algorithms which processtible input mesh in a single
step [50, 51].

There are two key issues for iterative mesh singglifon algorithms. The first one
is the applied simplification operator which deteres how to remove a mesh
element and the second is the error calculationteXeremoval scheme is first
proposed by Schroeder at el. [41], but later, edgapse and its variations
become dominant operators such that today nedrynaplification algorithms use
them. The second issue is the error calculatiorhookthat is used to determine
which mesh element to remove at each step. Thezeaanumber of error
calculation methods some of which only consideal@hanges such as distance to
average plane [41], maximum supporting plane degtgd5], and quadric error
metrics [44], whereas Hausdorf distance [48] amdapéfication envelops [49] are
considering the global changes. Generally, globareneasurements give better
results but when quality and timing requirements eonsidered, quadric error

metric is much more promising than the others.

Single pass algorithms process the input mesh agha@e and generate the
simplified mesh without an iterative process. Vertkistering algorithms [50, 51]

are the most famous single pass algorithms, winerédunding box of the models
are divided into small regions and all the vertizea region are clustered to a new

position depending on some error calculation.



Since it is a very active research area, lots oshr@mplification algorithms are
proposed some of which are easy to implement wheseme may not be as easy
as the others. They are so commonly used algoriguol that some of them are
embedded into the well known publicly available m@®urce mesh libraries [24,
25, 26]. Thus, developers working on different egsh areas can utilize these
algorithms rather than implementing their own, vidhimay be a very difficult task
for a non-specialist. However, there is not anykwdone on comparison of mesh
simplification algorithms that are implemented rege libraries. In this thesis, our
aim is to study and compare the common mesh ldgsan terms of their approach
and performance to the mesh simplification problBythis way, we try to fulfill
this absence in the literature and supply a guigldocdevelopers who are seeking
for publicly available mesh libraries in order tmpglement polygonal mesh

simplification.

We used the metro tool [47] for measuring the gddmdistance (both maximum
and average) between the simplified and originadlel® There are also other tools
[ 57, 58, 59] that can be used for the same jobnbetro is the first and widely
accepted one among them. Two models with diffepeaperties are selected for

comparison and all algorithms are executed witle wiifferent reduction rates.

Besides the mesh simplification, remeshing of sgrfamesh models is also another
key component for geometry processing and compyrgohics. Remeshing can
simply be defined as improving the quality of a mesibject to some criteria.
Different applications, of course, have differemquirements. For example,
numerical simulation applications such as finiteneént methods require well-
shaped (triangles with aspect ratio close to oma) egular triangles. In fact,
regular meshes show uniform structures which arefepgble by many
applications. Moreover, regular meshes have mamgradges over the irregular
ones. They can be stored in two dimensional amdysh simplifies the efficient
processing of corresponding models. On the otla@dhirregular meshes need



some other expensive complex data structures. ditia, it has been shown that

regular meshes are more suitable for renderinggd8163].

Before the work of Gu et al. [61], automatic reguteameshing of arbitrary
triangular meshes were not possible. He parametetize input meshes on to a
completely regular structure called geometry imagad then reconstruct the
original mesh by taking regular sampling pointgtos parameterization domain. In
order to perform the parameterization step, thetimpeshes are cut and opened if
their topology are not equivalent to disks. Howewerour implementation, since
we aimed the regular remeshing of human face moaklsh are topologically
equivalent to disks, the first part of the Gu’s althm is omitted in our

application.

In this thesis work, mesh simplification and regutameshing algorithms are
studied. In Chapter 1, an introduction to the scibgd mesh simplification and
regular remeshing is presented. Then, in Chapteyoge general properties of
polygonal meshes are described prior to furthelyaisaof mesh simplification and
regular remeshing. In Chapter 3, analysis and oatsgion of mesh simplification
algorithms are performed. Moreover, mesh simpliftca algorithms that are
embedded in mesh libraries are discussed in Chdptdnich is followed by the
comparison of these algorithms in Chapter 5. Ingf#ra6, our solution to regular
remeshing is explained and finally in Chapter énatusions and future works are

considered.



CHAPTER 2

POLYGONAL MESHES

2.1. Definitions

Before going into the details of mesh simplificati@and regular remeshing
algorithms some of the general terms about the eseshould be defined. Also, it
should be noted that in this thesis work only daéfe, 2-manifold triangular

meshes are considered.
2.1.1. Polygonal Meshes vs. Triangular Meshes

A polygonal mesh is a piecewise linear surface @gpration of a real world
object in computer graphics. It is composed ofigest, edges and faces. The faces
of the polygonal meshes are convex polygons. Tukmgneshes (Figure-1) are a
subset of polygonal meshes where all of the facegriangles. In this thesis work,
only triangular meshes will be considered, singare polygon can be triangulated

[1], which means every polygonal mesh can be cdesdp a triangular mesh.

More formally, Hoppe [2] defined a triangular meshfollows: A triangular mesh

M consists of a geometric and a topological (cotimigg) component, which can

be represented by a pdiK,P). K is a simplicial complex with a set of vertices

V ={v,....v,} and composed of subsets of its vertices. Thelssetsiare known

m

as simplices and three types of them are more megfmifor triangle meshes.

These are 0-simpliceli} 0K (vertices of a mesh), 1-simplicgs j} DK (edges
of a mesh) and 2-simplice{s', j,k} 0K (faces of a mesh). For a definition of

simplicial complexes and k-simplices see AppendixFA={ pl,...,pm} is a set of

3D position vectors and defines the geometry orstiegpe of the triangular mesh.
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The geometric embedding of a triangular mesh Rtids specified by associating

a 3D position p to each vertex of the simplicial compleK such that

p = p(v)=(x(v) y(v) 2(v))OR [

Figure 1. Egea: an example of a triangular mesh [33

2.1.2. Manifold vs. Non-manifold Meshes

Manifold models are desirable for most of the mpshcessing algorithms [6].
Many mesh simplification algorithms only accepts nif@d input meshes.
Manifold meshes are also required for finite eletmanalysis and radiosity
applications.

A surface is 2-manifold if each point of the sudais locally homeomorphic
(topologically equivalent) to a disk or a half-diakthe boundaries). For the case
of a triangular mesh, the definition given above te interpreted as follows: A

triangular mesh is 2-manifold if it does not contai non-manifold edge or a non-



manifold vertex nor self-intersecting. A non-matdf@dge (Figure-2a) is incident
to more than two faces and a non-manifold vertegufie-2b) is shared by a

number of unconnected sets of triangles.

& 5

(@) (b)

Figure 2. A non-manifold edge (a), and a non-maaiertex (b)

2.1.3. Orientable vs. Non-orientable Meshes

A connected 2-manifold mesh is orientable if iM®-sided, which means that one
can distinguish the inner and outer sides of thelm@n the contrary, if we can not
distinguish the inner and the outer sides of a nesle sided), then it is non-
orientable. Spherical and cylindrical meshes am@Tgtes for orientable surfaces

and mobius (Figure-3) and klein bottle are examfdeson-orientable surfaces.

Figure 3. Md6bius: a non-orientable mesh



2.1.4. Genus and Euler Formula

Genus is a topologically invariant property of aface and it is defined as the
largest number of non-intersecting simple closedesithat can be drawn on the
surface without separating it [7]. Roughly, itle number of holes in the surface
mesh. For example, sphere (Figure-4a) and cubgeames-0, torus (Figure-4b) is

genus-1 and double torus (Figure-4c) is genus-2.

QoD

(€)

Figure 4. Genus-0 (a), Genus-1 (b), and Genus-&h@shes

Euler [8] discovered the relation between facegesdnd vertices of a polyhedron
and he stated thatv —E+F =2, where V, E, and F are the numbers of vertices,
edges and faces respectively. This formula can benemlized to
V-E+F =2(1-G) for surfaces with genu& 0.

2.1.4. Irregular, Semi-regular and Regular Meshes

The structure of a mesh can be irregular, semitaeqnd regular. A vertex in a
triangular mesh is called regular if it has 6 neigting vertices for interior vertices
or 4 for boundary vertices. These numbers are 43afat quadrangular meshes,
respectively.



In a regular mesh (Figure-5c) all the vertices ragular and they have a lot of
advantages over the irregular and semi-regular esestue to their regular
connectivity (Chapter 6). Semi-regular meshes (feégib) are obtained by regular
subdivision of a coarse initial mesh. The subdiglicleesh contains both regular
and irregular vertices but regular ones are gelyemaich more than the irregular
ones. Irregular meshes (Figure-5a), on the othed,hado not show any kind of

regularities.

(a) (b) (c)

Figure 5. Irregular (a), Semi-regular (b), and Rag(c) meshes

2.2. Mesh Representations and Data Structures

In order to get use of meshes, we need to conbmlerto store meshes and how to
process them. The answer of the former questidheidile formats and the latter

one is the mesh data structures.

2.2.1. Mesh File Formats

As mentioned earlier (section 2.1.1) all mesheshaw common features, one of
which is the geometry (defines the three dimensigusition vectors of the
vertices) and the other is the topology (defines donnectivity between the

vertices, i.e. how the vertices are connected). Wh®ring a mesh, what is



actually stored is the geometry and the connegtoitthe mesh. Moreover, some
meshes might have additional information, such extex normals, face normals,

vertex colors and texture coordinates.

There are over five hundred mesh file formats [Hjis number is big because
nearly each program, institute or library genera@geswn mesh file format, so it is
very difficult to describe all of them here. In faone can easily generate his own
file format as long as he can decide how to deedtie mesh features. The most
popular file formats are Wavefronts Obj file fornja0], OFF (Object File Format)
[11], STL (Stereolithography) [12], VRML(Virtual Rdity Modeling Language)
[13], and PLY (Polygon File Format)[14].

Most of the mesh file formats have both ASCII amdaby versions. The ASCII
version is more readable whereas the binary forsn@iore compact. In Appendix-
B a simple tetrahedron is represented in OBJ, GHHK, ASCIl and STL Binary

formats as an example.

2.2.2. Mesh Data Structures

Meshes are stored in files (section 2.2.1), bwteéfwant to process them we need
to parse and load these files into our program, load the meshes to data
structures. By processing a mesh it is meant tiiging (changing the geometry

and/or topology) and/or rendering (drawing on adein) that mesh.

Before choosing a data structure, one has to censide topological and
algorithmic requirements of the intended applica{®]. Topological requirements
are related with the kinds of meshes that will &eresented by the data structure
and the following questions should be answeredwdmeed to represent meshes
with boundaries or closed meshes, manifold or nanifald meshes, triangular or
arbitrary polygonal meshes? Are the meshes regulagular or semi-regular? On
the other hand, algorithmic requirements are segefan the purpose of the user.
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Do we need to modify the mesh geometry or topologyust render the mesh?

Answers of these questions determine the choicedérlying data structure.

Most of the mesh processing algorithms require ssoneof queries which we call
them adjacency queries. Adjacency queries enalola land global traversal of

meshes and some examples of them are given below:

Which faces use this vertex?

Which edges use this vertex?

Which faces are adjacent to this face?
Which edges border this face?

o O O O o

Which vertices belong to this face?

A mesh data structure should be capable of ansgvdhese questions in an
efficient way. There are many different data stnes developed for representing
polygonal meshes. It is not possible to descrideotlthem here, but most

important ones from primitive to complex are ddsed in the following sections.

2.2.2.1. Triangle Soup Data Structure

The simplest and first come in mind data structartéhe triangle soup. A triangle

soup data structure can be constructed as follows:

/] struct to store a vertex
struct Vertex

double x, vy, z;

b

// struct to store a face
struct Face

{
b

Vertex vl1, v2, v3;

11



/'l geonetry and connectivity
Face faceArray[ NUM FACES];

Triangle soup representation is not memory efficisimce shared vertices are
replicated. Also, connectivity information is notpdicit, so adjacency queries have

a high processing cost and take non-constant time.

2.2.2.2. Shared Vertex Data Structure

An improvement to the triangle soup data structisethe shared vertex
representation. In this data structure, the mentvayvback of triangle soup is
overcome by storing vertex positions separately giihg references to the
corresponding vertices from faces. These referemagsbe pointers to vertices or
integer indexes to vertex position arrays. One iptsssmplementation of shared

vertex data structure is given as follows:

/] struct to store a vertex
struct Vertex

double x, vy, z;

b

// struct to store a face
struct Face

{

/1l indexes to vertex array
int vl, v2, v3;

b

/'l geonetry of the nesh
Vertex vertexArray[ NUM VERTI CES] ;

/'l connectivity of the nesh
Face faceArray[ NUM FACES] ;

12



In the shared vertex data structure the connegtinformation is still implicit, so
adjacency queries take non-constant time and tleg la high processing cost.
However, updating the geometric information of asmes easier with respect to

triangle soup.

2.2.2.3. Wnged-edge Data Structure

Triangle soup and shared vertex are face basedttataures, i.e., the connectivity
information is given in terms of faces which resuit an implicit connectivity. In
order to have an explicit connectivity informati@uge-based data structures were
developed. Baumgart developed the first edge-bds¢al structure, the winged-
edge[15]. Winged-edge data structure is capablenbf representing 2-manifold

orientable meshes.

In the winged-edge data structure all edges aexidid and clockwise ordering is
used for traversing a face when looking from owfithe mesh. Edges are at the
center of the data structure and they are assdciaté eight references ( Figure-
6). These references are: two vertices (start ad}l évo faces (left and right) and
four edges (left predecessor and successor, rigiaiepessor and successor). Left
successor and predecessor edges are used forsingvéne left face and right
successor and predecessor ones are used whersitiguee right face. These four
edges form the wing of the selected edge (boldinrfagure-6), that is why this
data structure is called as winged-edge. For \e=tand faces it is enough to store

a reference to one of their adjacent edge.

In the winged-edge data structure edge orientatamesnot globally consistent
which means an edge is traversed in opposite drectwhen its left and right
faces are traversed [16]. As a result, a casendigin (the calculation of
orientation of an edge with respect to the trawkrfce) is necessary when

traversing.
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Successor
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Predecessor
Edge

Start End

Vertex Vertex
Right Right
Predecessor Successor
Edge Edge

Figure 6. Winged-edge Data Structure

A sample implementation of a vertex, face and edfyactures are given below. A
2-manifold, orientable mesh can be representechbset structures by organizing

them in a linked list or dynamic array.

/] struct to store a w nged-edge
struct Wedge

{

Vertex *vs, *ve;

Face *[f, *rf;

Wedge *Is, *lp, *rs, *rp;
}s

|/ struct to store a vertex
struct Vertex

double x, vy, z;
Wedge* edge
1

/] struct to store a face
struct Face

{
b

Wedge* edge

14



2.2.2.4. Half-edge Data Structure

The half-edge data structure is designed to oveedwa orientation problem in the
winged-edge data structure. Remember that, calonlatf an edge’s orientation
with respect to the traversed face is necessanyifuyed-edge data structure which

is inefficient.

In the half-edge data structure each edge is splitvo half-edges, in opposite
orientations such that all half-edges are oriemt@ukistently in counter clockwise
order around each face [17], [18]. For each hddfes a reference is stored for the
pair half-edge, for the adjacent face, for the rreadf-edge and for the end-vertex
(Figure-7). Moreover for each vertex a referenckejst for an outgoing half-edge

and similarly for each face a reference for an@hahalf-edge is kept.

Figure 7. Half-edge Data Structure

The structure is capable of representing arbittarganifold orientable polygonal
meshes and a sample implementation for the veider,and half-edge is given in

the next page. A more complex implementation cafobed in [19].
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/1l struct to store a half-edge
struct Hedge

{
Hedge *next, *pair;
Face* face;
Vertex *vert;

i

/] struct to store a vertex
struct Vertex

double x, vy, z;
Hedge* edge;
1

/] struct to store a face
struct Face

{
b

Hedge* edge;

Note that, the implementation given above realitteel references in terms of
pointers, but they may be realized in different svaiso, for example indexes into

data arrays can be used as well [3].

2.2.2.5. Other Data Structures and a Simple Compason

Quad-edge data structure developed by Gubias aifil i8t1985 [20] is a variant

of winged-edge data structure. Besides, orientahlti non-orientable 2-manifold
meshes it can represent both the mesh and it'stglalthe same time. Directed
edges data structure is based on the half-edge$ cart only represent triangular

meshes which may be preferred due to its effiaisetof memory [3].
Up to now, some data structures are mentioned avst of them are used for

representing 2-manifold meshes. In order to sunmeatheir properties, a very

simple comparison is done just for a summary inl§-db
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Table 1. A Simple Comparison of Mesh Data Structure

Data Represent Re_present Adjacency
Structures Man!fold/Non- Or!entable/Non- Queries
Manifold Orientable

Triangle Soup| Both Both Inefficient
Shared Vertex] Both Both Inefficien
Winged-edge | Manifold Orientable Efficient
Half-edge Manifold Orientable Efficient
Quad-edge Manifold Both Efficient
Directed-edge| Manifold Orientable Efficient

For data structures that are capable of repregentm-manifold surface meshes

see [22] and [23]. Among them, Radial-edge datacgire is a popular one [21].

2.3. Mesh Libraries

Implementing memory and time efficient, robust, ye&®s use and generic mesh
data structures is not an easy task. As the commuragphics, computational
geometry and other application domains have beéng ubese data structures
frequently, the community developed some open soand freely available mesh
libraries. The most popular ones are: Visualizatidnolkit (VTK) [24],
Computational Geometry Algorithms Library (CGAL)SR and OpenMesh [26].
These libraries do not only implement data stresusut also they are equipped
with a number of standard operations and algoriteoth as mesh simplification,

subdivision, delaunay triangulation, etc.

2.3.1. VTK — Visualization Toolkit

VTK is developed in C++, in an object oriented mamnhy the Kitware Company
[27]. It is open source and freely available fonrammmercial use. Besides the
C++ class library VTK also includes interface les/éor Tcl/Tk, Python and Java.

The latest version of the library 5.0.4 is releasedanuary, 2008 and it supports a
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wide variety of visualization, modeling and imagia¢gorithms such as mesh
smoothing, contouring, simplification, cutting, dehay triangulation, etc. [26],
[28]. The library has two types of object modelsaghics model and visualization
model. The graphics model is used to visualize deeng) data and the
visualization model is responsible for implementihg algorithms [28].

VTK does not have a standard data structure suchiraged-edge or half-edge.
Instead, it has its own data structure based oa dahys. A very similar data
structure is described in [41] and it is calledspace-efficient vertex-triangle ring
structure. In this data structure faces and vestare kept in data arrays similar to
shared vertex data structure but different thamreshaertex, vertices have also
indices to reach the faces which improves the iefiity [30]. VTK has also other

data structures for different kinds of input datfaeo than the irregular meshes.

2.3.2. CGAL — Computational Geometry Algorithms Library

The CGAL project started in 1996 as a consortiunsedfen sites in Europe and
Israel [25]. The current project partners are Mdangk Institute for Computer
Science (Germany), INRIA Sophia-Antipolis (Francélel-Aviv University
(Israel), Geometry Factory (France), ETH Zurich {3erland), Utrecht University
(The Netherlands), Free University Berlin (Germarigrth (Greece), and SciSoft
(Argentina) and they released the latest versic@@AL 3.3.1 in August 2007.

CGAL is open source and freely available for nomowercial use. It is
implemented in C++ and it offers many data strietuand algorithms for the
computer graphics, computational geometry, scientidsualization, computer
aided design and some other research areas. A etanipature list can be found in
[29]. Similar to VTK, CGAL has also many data stures for different types of
input data. However, only the way that CGAL handies irregular polygonal
meshes is important for the purpose of our workjctvhs the half-edge data

structure.
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2.3.3. OpenMesh

OpenMesh is a generic and efficient data structore representing polygonal
meshes [26]. It is developed in C++ at the Comp@esphics Group, RWTH
Aachen and based on the half-edge data structyeni@esh’s latest stable release
1.1.0 was made available in 2007 by the group. lilk@ other two libraries,
OpenMesh is also open source and freely availahdeitaprovides some set of
standard geometry processing algorithms such a®tiimg and simplification.

However, it has less number of algorithms with ee$po other two library.
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CHAPTER 3

POLYGONAL MESH SIMPLIFICATION ALGORITHMS

Advances in technology and growing expectationréalism in many application
domain result in more complex polygonal meshes tharactually want [6, 31].
Especially, with the evolution of modern geometoguaisition devices such as
laser scanners polygonal meshes with millions ofices can easily be generated.
The complexity of such polygonal meshes sometimags&s problems in
rendering, processing and transferring of these eflsodMesh simplification
algorithms try to eliminate the redundant portiafs the meshes so that models
can be rendered and processed for a lower cosoutith significant loss in the

models’ visual content.

Mesh simplification algorithms are applied in maagplication areas, such as
computer vision (range data is captured from rarsganners), scientific
visualization (iso-surfaces are extracted from mwudata), remote sensing (terrain
data is acquired from satellite photographs), geomelesign and computer
graphics (model representation and levels of detaitl finite element analysis
(structural analysis of bridges, to simulate awflaround airplanes and to simulate
electromagnetic fields) [31]. In all these areagetliapers use simplification mainly
for three reasons [6]. These are:

1. Eliminating the redundant geometry: Mesh simplification algorithms
are mostly used for eliminating the redundant gg¢om&nce redundancy
of models results in loss of computation time. diestific visualization, the
output of the marching cubes algorithm [32] geresaedundant triangles
especially in the planar regions. Also before atdirelement analysis the
model under analysis may be subdivided first amah tthe redundant
geometry can be removed later.
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2. Reducing the model sizeMeshes with a high number of vertices and faces
allocate a lot of disk and memory space. For examplthe Aim@Shape
repository [33] there are some meshes above 15@ mggs. In order to
reduce the size of such meshes, mesh simplificagorithms can be
applied as well as mesh compression algorithmsefadéy, simplification
algorithms are lossy, i.e. the process can notbersed, but on the other
hand there are also algorithms which compress thgefa without any loss
of data [34]. By using simplification or compressialgorithms, disk and
memory requirement of a model can be reduced atwionle transmission

speed can be increased.

3. Improving the run-time performance: For interactive applications such
as video games, flight simulators and computer chidesign real time
performance is very important. For such applicajanesh models can be
simplified to multiple levels of detail so that éaabject in the scene can be
displayed on the screen as a function of theiatired distance to the
viewer. When the object is closer to the viewerjsitrendered with a
complex mesh. On the contrary, when it is fartleesimplified version of
the same mesh is used. This technique is calletdresdlution modeling or
levels of detail and utilizes the fact that distabjects do not require more
resolution than the closer objects [35, 36].

3.1. Classification of Mesh Simplification Algorithms

Many different approaches and algorithms are pgegdor mesh simplification in
recent years which makes the classification ofdhegorithms very difficult. In

fact, there are a number of papers classifyingettagorithms in their own way.
Luebke [6, 40] categorized mesh simplification aigons with respect to the
mechanism, view-dependence, error metric and tggolarikson [39] also used a

similar but less complex classification than Lueb®a the other hand, Heckbert
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and Garland [31] preferred to classify them accaydio the types of the input
meshes: height fields and parametric surfaces,foldrsurfaces and non-manifold
surfaces. Moreover, Pauly [3] and Talton [38] u#eel fact that some algorithms
are iterative and some are single step. Pauly ralsotioned one more different
approach as resampling algorithms. Cignoni et3l] [isted a number of different
approaches and then gave a taxonomy of the sieggtdidin algorithms based on the
characterization of the input/output data domaimpgfication goal, the strategy
adopted to drive/evaluate mesh approximation anethdn the simplification

process follows an incremental approach or not.

In this work, the top level classification of mesimplification algorithms mostly
depends on the work by [3, 38], i.e. simplificat@pproaches are grouped into two
categories: local approaches that iteratively simghe input mesh by using a
local topological operator and global approaches déine applied to the input mesh
as a whole. Moreover, some parts of the other idieam [31, 37, 39, 40] are
placed in this main level classification. By thiayywe believe that, the algorithms

can be understood more easily.

3.1.1. Iterative Mesh Simplification Algorithms

Iterative mesh simplification algorithms remove gnesh element at a time. First,
the cost of removing each element is calculatedd@peénding on this calculation a
priority queue is constructed. Then, the mesh eimeth the lowest error is

deleted which results in a hole and a change irgdwnetry and connectivity of
the mesh. After re-triangulating the resultant htdte cost function is re-evaluated
only for the nearby mesh elements that are affeloyetthe removal and depending
on this calculation the priority queue is reorgadizA very simple pseudo code for

a general iterative mesh simplification algorittergiven in the next page.
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FOR each el enent

Cal cul ate the cost of renoval of the current
el enent

END FOR
WHI LE stop condition is not net
Select the element with the | owest cost
Renmove the sel ected el enent
Re-triangul ate the resultant hole
FOR each el enent affected fromthe renoval

Cal cul ate the cost of renoval of the
current el ement

END FOR

END WHI LE

Here the term “element” is used as a vertex, ae,ealface or a patch (a group of a
face) of a mesh. The type of the element dependtemlgorithm itself and it is
closely related with the simplification mechanismlacal operator used by the
algorithm. In addition, calculating the error ofmeval of an element is also
algorithm dependent. As a result, most of the tileeaalgorithms have a common
framework and they are distinguished by the logapsfication operator they use

and how they calculate the error.

3.1.1.1. Local Mesh Simplification Operators

There are several choices for the basic removalatipa but most popular ones
are vertex decimation and edge collapsing. Vergoindation was first proposed

by Schroeder [41] but later edge collapsing becamee popular such that today
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nearly all iterative algorithms use some sort ofjeedollapsing. There are also
other types of local operators such as trianglénaigtton and patch decimation but
these are rarely used by algorithms since the nakgsign goal is to keep the local
operation as simple as possible [3]. Moreoveriaagle decimation can be thought
as two edge collapse operations.

Vertex Decimation

Vertex decimation operates on a single vertex betug that vertex and re-

triangulating the resulting hole. Deleting a verteith valence n (the number of
neighboring vertices), leaves a n-sided hole. Huke can be triangulated more
than one way and each triangulation will contaif triangles [1]. As a result, at
the end of deleting a vertex and its adjacent gl from the mesh and re-
triangulating the created hole, the mesh is singgliby one vertex, two faces and
three edges (Figure-8). Observe that Euler formalainvariable under this

operation.

Figure 8. Vertex decimation and a sample choiae-@fiangulation

Edge Collapse

Edge collapse operation was first proposed by Hdgpand then it became the
most common local simplification operator. There #iree variants of the edge

collapse operator, full-edge collapse operatorf-édde collapse operator and
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vertex-pair collapse operator. Full-edge collapperator simply abbreviated as
edge collapse operator, takes two adjacent verdindscollapses the edge between
them. The vertices at the ends of the collapse@ edg moved to a some new

position (Figure-9).

Figure 9. Full-edge collapse operation

Half-edge collapse operator [42] is a special cddbe edge collapse operator and
it collapses an edge to one of its end verticegufer10), i.e. one of the end

vertices is moved to the position of the other. Tifeerence from edge collapse

operation is that in half-edge collapse there igreaedom of selecting the position

of the vertex to which the edge collapses.

Figure 10. Half-edge collapse operation
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Observe that half-edge collapse is also a subsetrtéx decimation operator [35].
Remember that in vertex decimation at some stdgeleris generated. This hole
can be triangulated in several ways and one oktlreangulations is the same as a

half-edge collapse.

The last variant of the edge collapse operatiaimesvertex-pair collapse [43, 44]
where two vertices are collapsed in to a new vegtgen if they are not connected
by an edge (Figure 11). This operation reducesitimber of vertices by one but
keep the number of triangles and edges constanis, TRuler formula becomes
inconsistent with a mesh if a vertex-pair collagsapplied. On the contrary, edge
collapse and half-edge collapse operations reduoe vertex, two faces and three

edges, and keep the mesh consistent with the Eutaula.

Figure 11. Vertex-pair collapse operation

Half-edge and edge collapse operations preseree®piology of a mesh but rarely
an edge collapse operation may generate non-mdniégology. However, this
behavior of edge collapse can be controlled andait be prevented from
generating non-manifold topology [35]. Vertex-pamilapse operation can connect
unconnected portions of a mesh and changes thiogpp®lso, a genus can easily

be closed by vertex-pair collapsing.
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Comparison of Local Mesh Simplification Operators

The edge collapse and the vertex-pair collapseab@er has much more freedom
in determining the new vertex position but this uiegs solving a continuous
optimization problem. On the other hand, half-edgerator does not produce new
vertex positions and keeps a subset of the vertfethe original mesh which
makes it memory and time (in terms of computatiefficient. Vertex decimation
would be as efficient as half-edge collapse ifrgtgiangulation step were handled
more easier. Choosing the way of triangulation mgnthe several ways is a

discrete optimization problem.

Edge collapse, half-edge collapse and vertex deémmaperators preserve the
topology of the input mesh. Topology preservingathms preserve the manifold
connectivity and do not close the holes of the mé&slserving the topology is
crucial for some application domains such as médncaging and finite element
analysis. On the contrary, real-time renderingeyst rarely need to preserve the
topology because they need drastic simplificatidhat topology preserving

algorithms cannot satisfy.

Edge collapse and its variants are easier to imghénbut since vertex-pair
collapse operation generates non-manifold topolagydata structure that can
handle non-manifold topology should be used and thay make vertex-pair
collapse a bit hard to implement. Due to the ra@agulation step in 3D, the

implementation of vertex decimation is not an €as¥ either.

3.1.1.2. Error Measurement Methods

Error measurements are used for selecting the datedmesh element to apply a
simplification operator such as vertex decimatian easlge collapsing. These
measures can be calculated locally or globally, the effect of removing an

element is considered by looking at the local clearay global changes.
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Local Error Measurement Methods

Distance to Average Plane

The simplest error metric is based on the distameasure from a vertex (a
potential vertex for removal) to an average plafgure-12) [41]. An average

plane is constructed using the adjacent triangtenatsn , centersx and areas)

(Equation 1 and 2).

P
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Figure 12. Distance to average plane

The normalN of the average plane is calculated by the avecdghe adjacent

triangle normals weighted by the triangle areas.

where A, =A+A+...+A+...+A, andm is the total number of surrounding

triangles. A pointX of the average plane is also calculated by theageeof the

adjacent triangle centroids () weighted by the triangle areas.

X=%+XZA2+ AL K RL @)

28



Then the distanced() between the vertex and the average plane islascuas

d=

N+ (v=X) 3)

where vV is the position vector of the vertex. The erroprsportional with the

distance, i.e. error is low if distance is low adbr is high if distance is high.

Distance to average plane error metric is mosthduer eliminating the redundant
geometry in the planar regions and keeping thepsfeatures of meshes. This is
why the distance is proportional with the error meetThis error metric is used by
[41] with a vertex decimation operator. A vertexsedected for removal with the

lowest error or with the lowest distandeto the average plane.

Maxi mum Supporting Plane Distance

Another local error metric first used by RonfarddaRossignac [45] is the
maximum squared distance between a simplified xested supporting planes
associated with that vertex. Ronfard and Rossigniizes this error metric with

an edge collapse simplification operator.

Each triangular face adjacent to a vertex definpkaae and we call each of these
planes as a supporting plane for that vertex.dlhyti in the original mesh, all
vertices are associated with its own supportingigga For example, the set of

supporting planesp(V;) and S(V,) for verticesV, andV, in Figure-13 are as

follows:

SM) ={t, t, tyt,td, and p(V,) ={t, ty tot,tyt g
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When an edge, let’s s4y1V2| is collapsed, a simplified verte¥,,, is generated

and the set of supporting planes for this new xerecalculated as the union of
supporting planes from the two edge vertices (Hgna#). This set of planes

grows larger and larger as the new edges are seltap

PVe) = PM)UPV,) ={t, t, ottt ottt § (4)

Figure 13. The set of supporting planes¥prandV,

The plane equation for a supporting plapean be written as:

ax+by+gz+d =0 ()

wheref, =(a.,b,,c,) is the unit normal of, andd, is just a constant. Using (5),

a squared distance functid,’(v) which calculates the squared distance between

the given plane and a vertex= (X, Yy, z), can be defined as:

D (V) = (ax+hy+cz+d,)* (6)
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Then the error for a potential edge collapse omerds determined by choosing
the maximum of the squared distances between thposiing planes and the

candidate new vertex:

E= ma'XDk2 (vnew) (7)

where E is the error and k is a positive integehghatt, 0 Sp(V,,,,) -

Quadric Error Metric

Similar to Ronfard and Rossignac [45], Garland alssociated a set of planes with
every vertex of a model [44, 46] but he replacesl tleaximum supporting plane
distance error metric in [45] with the sum of sathsupporting plane distances.
Garland expressed this error metric in a quadmifand named it as quadric error
metric. Quadric error metric is more compact arglyda calculate such that it is a

quite popular error metric since then.

The standard representation of a plane in (5) eanriiten as:

n'v+d=0 (8)

wheren=[a b ¢ is the unit normal and d is a scalar constante®& plane in

the form of (8) and a vertex=[x y 27" equation (6) can be rewritten as:

D*(v) = (n"v+d)* 9)

For a vertex v with an associated set of suppogiages, Garland [46] defined the

error at this vertex as
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E=) D (V=2 (n'v+d)’ (10)

He also put the equation (9) in a new form:

D?(v) =(n"v+d)?
=(v'n+d)(n"v+d)
=vinn'v+2dn"v+d?
=v' (nn")v+2(dn) v+d? (11)

where nn' is a 3x3 matrix (outer product matrix). Thus, adamental quadric

Q=(nn",dn,d?) can be defined for a given plane in the form ¢fs{@ch that
Q(v) =v' (nn")v+ 2(dn)" v+d? (12)

Garland used the term quadric because the isoea#f@ ¢ )=& are quadric
surfaces [46]. Furthermore, evaluating the quagtit) for a plane is completely
equivalent to evaluating the squared distance &b plane. As a result, the error

equation (10) can be rewritten as

E=Y DX =Y.Q) (13)

In order to make the calculation of error is moasier, the quadric Q defined in

(12) can be thought as a homogeneous matrix [44]:

a’ ab ac ad
nn" dn| |ab b’ bc bd (14)
ac bc ¢ cd

ad bd cd d?
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Once the quadric matrix Q in (14) is calculated doplane,Q(v) in (12) can be

easily calculated by:

Q(v) =v'QV (15)

whereV=[x y z 1] is the vertex position in homogenous coordinates.

This error metric can be used with all variatiorisedge-collapse simplification

operator and a pair of verticeg (andV,) can be chosen for collapsing which will
result in the lowest error. The quadric for the @lified vertex {,,) is calculated

simply by adding the two quadrics:

Qnew = Ql + QZ (16)

and the error for the new vertex is:

E., =V.Q.V (17)

new new new

By this representation of quadric error metric, &xplicit calculation of squared
distances in [45] is replaced by just adding twd 4matrices which results in a

very fast algorithm relatively.

Global Error Measurement Methods

Hausdorf Distance

Hausdorf distance is a way of calculating the distabetween two point sets and
since surfaces can be expressed as a set of comsimqoints, it also applies to

surfaces. However, since a surface is composednfifitely many points,
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calculating the Hausdorf distance is very expendive surfaces. In order to
overcome this problem, surfaces can be sampledffereht ways to measure

Hausdorf distances [47].

Hausdorf distance is used by [48] to control thprapimation error between the

original and simplified mesh models. At each stéghe algorithm a vertex is

removed from the mesh whose removal makes the taveedribute to the overall

Hausdorf distance without exceeding a predefinedgsHarf distance.

Hausdorf distance between two point sets, A andrBbe defined as follows [35]:
H(AB)=maxh(A.B)hB A)) (18)

where h(A, B) denotes the one-sided Hausdorf distance andidfised as:

h(A, B) = max Lruléd|a ~b| (19)

Observe that when calculating the one-sided Ha@ististance h(A, B), for each

point in A the closest point in B is found and tneximum of these is taken as
one-sided Hausdorf distance. One-sided Hausdatdrdie is not symmetric, thus

h(A, B) is not necessarily equal tdB, A) .

Smplification Envelops

Simplification envelops [49] are two non self-irgecting offset surfaces
constructed on each side of the original surfadegua user specified offset
(Figure-14). The surface is then simplified in tridume that is generated by two
simplification envelops, thus the error is boundgidbally. The amount of
simplification is controlled by the offset used foonstructing the simplification
envelops. Moreover, this offset value can be chdngedifferent regions of the
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original mesh, so that the user can have a coatr®t which regions of an object

should be approximated more and which ones shauldds.

Figure 14. Inner and outer simplification envelémsa bunny model [49]

3.1.2. Single Pass Mesh Simplification Algorithms

Single pass algorithms process the input mesh agha@e and generate the
simplified mesh without an iterative process. Gathgr iterative algorithms give
better results but single pass algorithms are miadter than the iterative
algorithms. Vertex clustering algorithms are thendwant algorithms among the
single pass algorithms.

3.1.2.1. Vertex Clustering

Vertex clustering simplification algorithm was tirproposed by Rossignac and
Borrel [50] in 1993 and since then several vari&giof the algorithm have been
proposed. Simply, the original algorithm works adloiws: first a weight is
assigned to each vertex of the input mesh whiclwshihe importance of that
vertex. Then, the bounding space around the ingshns partitioned into 3D cells
according to a given resolution. An analogous dtifi@ning in 2D is shown in

35



Figure-15. Vertices inside each cell is clustemethe most important vertex within
that cell and after removing the degenerate faceduced in the clustering step,

the simplified mesh is obtained.

-

<
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~

s

Figure 15. Partitioning a bounding box of a mesldetanto cells in 2D

Rossignac and Borrel assigned higher importaneertices attached to large faces
(edges of large faces are longer than the othest@vertices in regions of high
curvature (the maximum angle between all pairsttaiched edges to a vertex is
small in regions of high curvature). Clearly, tleedl of the simplification can be
determined by the resolution of the bounding ghiccoarse grid will simplify the

input mesh drastically whereas a fine grid willfpem minimal reduction.

One of the key issues of the vertex clusteringratlgms is that where to cluster the
vertices within each cell should be decided. Indhginal algorithm, all vertices in
each cell is clustered to the most important verfd»xe importance of a vertex can
be determined in many ways. Rossignac and Bornet ¢iégh importance to the
vertices near the large faces and near the highl logrvature. Giving high
importance to the boundary vertices may also beefimal for keeping the
boundary of the input mesh as constant. Anothercagh is that, instead of

clustering all vertices within a cell to one of thertices, a new place is chosen for
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clustering. Simple ideas such as taking the ceotesach cell, the average or
median of vertices rarely results in good resudfs Lindstrom [51] realized the
fact that merging n vertices within a cell is eq@nt to performing any sequence
of (n-1) vertex-pair contractions until a singlerte& remains within the cell. He
then used a quadric error metric to determine thstered vertex position. This
qguadric error metric is developed by Lindstrom dnak [55] for controlling the

volume and area changes of the original mesh.
Vertex clustering algorithms are generally easyrtplement and they are very fast

with respect to the iterative algorithms [3]. Neitlthey require manifold topology

for input meshes nor they preserve the topology.
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CHAPTER 4

POLYGONAL MESH SIMPLIFICATION ALGORITHMS
EMBEDDED IN MESH LIBRARIES

Since polygonal meshes are very popular in compgtaphics and geometry
processing they are used widely which obligatescttramunity to develop mesh
processing libraries. Although there are a numblethese libraries the most
popular and common ones are: Visualization ToqWitK) [24], Computational

Geometry Algorithms Library (CGAL) [25], and Openbke [26]. These three
libraries supply interfaces to implement some auding mesh simplification

(both iterative and single pass) algorithms.

4.1. Polygonal Mesh Simplification with VTK

There are three different mesh simplification alfpons that come with the
currently latest version (5.0.4) of Visualizatiomalkit (VTK) library [24, 28].

Previously, the library was supporting four diffierealgorithms but one of them
vtkDecimate was discarded in the latest versione Thmaining supported

algorithms are: vtkDecimatePro, vtkQuadricDecimatimd vtkQuadricClustering.

4.1.1. vtkDecimatePro

vtkDecimatePro algorithm is similar to the algomitloriginally described in [41]
with four major differences. First, this algorithihoes not necessarily preserve the
topology of the input mesh. Second, if the parameté the algorithm are set
accordingly, the algorithm guarantees to reachus$er specified reduction rate.
Third, edge collapse simplification operator is dusestead of vertex decimation
and finally, progressive mesh representations aeel unternally as described by

Hoppe [52], but the algorithm only gives the firmmplified mesh as output.
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vtkDecimatePro accepts only triangular meshes bwan be applied to other

polygonal meshes once they are triangulated.

The first step of vtkDecimatePro is the classifmatof input mesh vertices which
characterizes the local geometry and topology dices. Each vertex is assigned
one of five possible classifications: simple, coexplboundary, interior or corner
vertex [41] (Figure-16).

BB B XK

Simple Complex Boundary Interior Corner

Figure 16. Vertex categories in vtkDecimatePro

A simple vertex is surrounded by a complete cydletoangles, each of which
shares a single edge with the vertex. Simple \e=titan be further classified as
interior or corner according to the geometry of gugrounding triangles. If the
dihedral angle (the angle between two planes) tvwe/o adjacent triangles is
greater than a user specified feature angle tHeatare edge exists (Figure-17). If
a simple vertex is used by feature edges then ¢hex is either an interior edge
vertex or a corner vertex. For an interior edgaexethe number of feature edges is
exactly two, whereas for a corner vertex the nunabdéeature edges is either one,
three or more. Boundary vertices differ in simpétices that the set of triangles
does not form a complete cycle. Simple, interiorner and boundary vertices are
all manifold vertices and non-manifold vertices eafled as complex vertices.
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Figure 17. Dihedral angle and a feature edge

After classifying the vertices, they are insertetbia priority queue. The priority is
based on the distance to average plane error métris error metric is used for
simple and corner vertices and for boundary aretimt vertices a variance of this
metric, distance to edge is used (Figure-18). iIs thse, the distance to the line
defined by the two vertices creating the boundaryeature edge is measured.
While inserting the vertices in to the priority gqee vertices that can not be deleted
are skipped. Mostly, these vertices are the nonHidrcomplex vertices and the
sharp interior edge or corner vertices. Then eaatex in the priority queue is
deleted one by one until the priority queue is gmpeext, if the desired reduction
rate is not reached and the algorithm is allowedniadify the topology, the
algorithm splits the mesh into separate piecesgadtrarp edges or at non-manifold
vertices. Then the algorithm starts to evaluatsdheewly generated vertices as
described previously until the desired reductide ra achieved.

Figure 18. Distance to line error metric: a varaot the distance to average plane
metric
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vtkDecimatePro is a highly controllable algorithoch that the user can determine
nearly all of the parameters of the algorithm. Ehare thirteen (13) different
parameters that can be set, but six of them are mgoortant than the others. The
first parameter TargetReduction is the desired ctoln rate whereas four of the
remaining are PreserveTopology, Splitting, BoundaryexDeletion and
MaximumError are used to control the topology migdiion. In order to modify
the topology PreserveTopology should be disabledd adplitting and
BoundaryVertexDeletion should be enabled. MoreoMaximumError should be
set to its maximum value which is VTK_DOUBLE_MAX.h& remaining
relatively important parameter is the AccumulateErAs the vertices are deleted
the error may be accumulated similar to [44, 45RdcumulateError parameter is

enabled.

4.1.2. vtkQuadricDecimation

Similar to vtkDecimatePro, vtkQuadricDecimation @so an iterative mesh
simplification algorithm. vtkQuadricDecimation uséte quadric error metric as
described by Garland [44, 46]. Later, Garland areckBert generalizes this
approach to deal with appearance attributes suctedex normals and texture
coordinates [53]. Moreover, Hoppe improved this kvofr Garland and Heckbert in
[54] and obtained better results. The algorithmQuidricDecimation is based on
the works of both Garland and Hoppe and uses dige eollapse simplification

operator.

The algorithm operates similar to a classical tteea mesh simplification
algorithm using an edge collapse operator and quaror metric as a cost
function. It stops execution until the desired lewé reduction is reached or
topological constraints prevent further reductiéidthough it is written in the
documentation of the algorithm that topological stomints may prevent further

reduction, most of the time the user specified céda rate is achieved and the
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topology of the input mesh is not preserved (nomifold vertices and edges may

be generated and holes may be closed).

There are two main input parameters supplied by tser. These are
TargetReduction and AttributeErrorMetric. TargetRettbn is the desired
reduction rate and AttributeErrorMetric is usecctmtrol the quadric error metric.
If the user sets the AttributeErrorMetric parametethe algorithm, then the mesh
attributes are taken into account in the quadrioremetric. The user can also
select which attributes to consider and their gpoading weights in the error

metric.

4.1.3. vtkQuadricClustering

vtkQuadricClustering is a vertex clustering algomtand it is mostly based on the
paper [51] by Lindstrom in which the clustered e&rposition is determined by a
qguadric error metric. Remember that vtkDecimateftd vtkQuadricDecimation
only accept triangular meshes. On the other hak@uadricClustering accepts all
types of meshes but it gives better results iffdoes of the input mesh are convex
polygons.

vtkQuadricClustering starts with the decompositafnthe bounding box of the
input mesh into three dimensional cells. The resmiuof the decomposition is
either selected by the user or the algorithm detessnthe resolution by itself.
After dividing the bounding box into cells, the atghm determines which vertices
are in which cells. If two or three vertices ofrengle fall in the same cell, the
triangle is discarded. The other remaining triasglall three vertices of these
triangles fall in a different cell) are used toatahte the quadric of the cells. A cell
guadric is defined as the sum of the quadricsiafd@es those have a vertex inside

that cell. Lindstrom defined the quadric of a tgln t = (X, X,,X;) as follows [51]:
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Q :( A _bJ =nn' (20)

nz(xﬂ.xx2+x2xx3+x3xle (21)

_[Xl’ Xz’Xs]

where x is a position vector and is a 4-vector made up of area weighted triangle

normal and the scalar triple product of its tredtiges. This quadric is constructed
in a manner that it can be used to measure vollraeges after an edge collapse.
Remember that clustering all vertices within a telh vertex can be considered as

a successive sequential vertex pair collapses [51].

After all triangles are processed and the quadricewery cell is calculated, the
representative vertex for each cell is computedguie quadric for that cell. This
vertex position is either chosen among the vertiaésin each cell or a new vertex
position is calculated. No matter which option édested by the user, the vertex
position is calculated in an optimal way such tthet resultant vertex minimizes

the volume distortion.

vtkQuadricClustering can also be used for out-oBc@mplification. That is, very
huge meshes that can not be loaded into the mammonyeat once can be divided
into multiple pieces and each piece is simplifiedividually. Then, the simplified

pieces combined together and the simplified mesiiagined.

There are two main parameters for the algorithmtoAdjustNumberOfDivisions
and UselnputPoints. If the user wants to determine resolution of the
decomposition step of the algorithm, she can dés#id auto adjustment property
of the algorithm and indicate the number of diwisioalong the three axes.
Otherwise, the number of divisions are determingdthle algorithm logically. The

other parameter, UselnputPoints is used to sehecbehavioral of the algorithm
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when determining the representative vertex. Ifighemeter is enabled the position
for the representative vertex is chosen among theices within each cell.

Otherwise a new position is calculated.

4.2. Polygonal Mesh Simplification with CGAL

CGAL (version 3.3.1) mesh simplification package @mly be used to simplify
oriented manifold triangular meshes using edgépsé simplification operator.
The package has a generic iterative mesh simgldicaalgorithm such that the
user can select two types of different stratedigsdstrom-Turk and Edge-Length
Midpoint. The strategies differ from each other dost function and vertex

placement.

Besides the strategy the user also has to detewnmenore mandatory parameter.
This parameter is the stop predicate that stopsatperithm execution when a
desired level of reduction is achieved as long @mlbgy constraints are not
violated (topology is preserved). Stop predicate loa selected as a ratio of edges
between the simplified and the original meshesaisd a direct number of desired
edges may be given. One more choice about the gaeaf the algorithm is that
whether to use enriched polyhedron or not. Enrigh&@ghedrons have an extra id
field for both half-edges and vertices to storeeeiglexes. This selection does not
change the quality of the simplified mesh but i€egs up the algorithm in most

cases if input mesh is not very simple.

4.2.1. Lindstrom — Turk Strategy

The first algorithm in the library is named as Lstrdm-Turk strategy which is the
implementation of the paper by Lindstrom and Ti%,[56]. Lindstrom and Turk

approach the problem of finding a vertex (replacenvertex) position for an edge
collapse as a continuous optimization problem dhelt the chosen replacement

vertex minimizes a cost function. Hoppe [2] alsediptimization for mesh
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simplification but his approach is related witle tlthole process of simplification.
Hoppe’s energy function is composed of three corapt® The first component is
used to minimize the squared distances betweewdtiges of the original and
simplified meshes while the second one penalizgls humber of vertices and the

last one is the regularizing term helping to finchi@imum.

Lindstrom and Turk computed the replacement veptasition as the solution to a
system of three linearly-independent linear equakbnstraints. First three

constraints are determined by considering the velamd area preservation. Then
using these constraints some other constraintsobtained by minimizing a

guadric objective function [29]. Thus, more thaneth constraints are determined
and among them three linearly-independent conssraire chosen with respect to
an importance. If three linearly-independent cansts can not be found, then the
edge will be discarded from collapsing. When thceenpatible constraints are

found in the form ofa'v =N, then the replacement vertex positieris computed

as the solution to linear system:

Av=Db,v=A"b (22)

Observe that each constraint is a plane equati@h anis the normal vector
whereash is a scalar. Combining the tree constraints arBagix A and 3-vector

b is generated. After finding the replacement vepesition, cost of collapsing the
investigated edge is calculated as the weighted @uaptimization terms related

with the area and volume preservation.

4.2.2. Edge-length Midpoint Strategy

Edge-Length Midpoint Strategy assigns higher imgoaee to relatively long edges
than the others and the replacement vertex posgiohosen as the midpoint of the

edge being collapsed. Since there is no optimiaatamd replacement vertex is
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calculated very easily, this strategy runs very, fast on the other hand it may

result in a poor quality.

4.3. Polygonal Mesh Simplification with OpenMesh

OpenMesh (version 1.9.5) mesh decimation framewwak an iterative mesh
simplification algorithm which can be modified biyet user. The algorithm uses
half-edge collapse operator for simplification amdrtex to be removed is
determined by decimating modules. There are fivierdint decimating modules
that can be selected and some of them can operaidifferent modes: binary
mode and non-binary mode. In the binary mode th@nu®ing module returns
LEGAL_COLLAPSE or ILLEGAL_COLLAPSE for a potentilalf-edge collapse
with respect a user specified criterion. On theepttand, in the non-binary mode a
floating point priority is calculated which is uséal feed a priority queue. Mesh
decimation framework allows to use more than or@naating module at the same
time with some restrictions. The framework allowsyoone binary module. Every
further module must be a binary module. Moreoverjrdy the decimation binary
modules are evaluated first, if a potential half@edollapse passes the test of
binary module then it is inserted to a priority qaevhose priority is calculated by

the non-binary module.

Besides the triangular and manifold meshes OpenMessh decimation
framework also accepts non-manifold and non-tugergmeshes. However, the
latter case requires a time consuming pre-procgss$taces that contain non-
manifold vertices and edges are considered astésblaces and non-triangular

faces are triangulated.
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4.3.1. Quadric Module

Quadric decimating module can be used in both piaad non-binary modes. In
the non-binary mode, quadric module computes tddkecollapse priority based
on quadric error [44]. However, in the binary motihes module allows the collapse
if the calculated quadric error is not bigger ththe user specified maximum

qguadric error.

4.3.2. Roundness Module

Roundness decimating module can be used in bo#rband non-binary modes.
In the non-binary mode the module returns a nomzedli roundness value
associated with a potential half-edge collapse.ndoass is calculated for a each
face that would be created after a half-edge cedlapnd minimum of them is

returned.

Roundness of a triangle ABC (Figure-19) is computediividing the radius of the

circumcirle by the length of the shortest edge.

r abc

Roundness = — = ,
min(a,b,c) 4A(ABC)min@b c)

(23)

Figure 19. Circumcircle of a triangleABC
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A roundness value can be calculated for every gtearand among them the

minimum is achieved by the equilateral trianglesr Rll equilateral triangles

roundness is/\/é and this value can be used to normalize the roessin

V3

(24)
Roundness

Roundness,, jized =

Thus, for an equilateral triangle normalized rouesinis equal to 1 and every other
triangles have a normalized roundness smaller tha@Gonsidering these facts,
normalize roundness can be used to measure thiarsiynof an arbitrary triangle
with an equilateral one. If a triangle is closeato equilateral triangle, then its’
normalized roundness is close to 1, otherwise itclzse to 0. Roundness
decimating module tries to keep the well shapeanglies which are close to
equilateral triangles. In the binary mode the ndized roundness returned for a
potential half-edge collapse is tested againstea sispplied minimum roundness.
If the calculated normalized roundness is less thenminimum roundness than
LEGAL_COLLAPSE is returned, otherwise ILLEGAL_COLIBSE is returned.

4.3.3. Normal Flipping Module

Normal Flipping decimating module is only used imary mode. The module
returns LEGAL_COLLAPSE or ILLEGAL_COLLAPSE dependion the angular
deviation between the face normals of the origifaaks and normals of the faces
after the half-edge collapse. If each deviatiobegkw a given threshold, then half-

edge collapse is allowed, otherwise it is not a#dw
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4.3.4. Independent Sets Module

Independent Sets decimating module can only be usbohary mode and after a

half-edge collapse operation is done, it locksnbeghboring vertices around the

remaining vertex to prevent further half-edge qudles. Thus, a half edge collapse
is not allowed if it is related with a locked vette

4.3.5. Progressive Mesh

Progressive mesh decimating module does not coigrito the decimation but it
collects information during the simplification pess. Then, this information is
written to a file so that the user can generatgnassive mesh representation [52].

Using the generated file, original model can bérelytreconstructed.
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CHAPTER 5

COMPARISON OF POLYGONAL MESH SIMPLIFICATION
ALGORITHMS ON A LIBRARY BASIS

5.1. Comparison Strategy

Three commonly used mesh libraries VTK, CGAL ancedesh have a number
of different polygonal mesh simplification algomtis. Nearly, all of these
algorithms can be extensively modified which matkescomparison very difficult.
Thus, although some of these algorithms can benggaized in many ways, only

the main lines of these algorithms are includethexcomparison.

VTK has three simplification packages (section 4.Two variations of

vtkDecimatePro and vtkQuadricDecimation are takaio iaccount and together
with the vtkQuadricClustering, five different sinfdation methods are included
in the comparison from VTK. In the first variatiah vtkDecimatePro, accumulate
error is not used whereas in the second one itnabled and variations of
vtkQuadricDecimation differ from each other whetheesh attributes (vertex

normals) are taken into account or not.

CGAL implements a mesh simplification framework wdehe user can select
among two different strategies: Lindstrom-Turk &gy and Edge-Length
Midpoint Strategy. Both of these algorithms arduded in the comparison.

OpenMesh also has a mesh simplification framewoltker® algorithms are
implemented as decimating modules. There are fiferent modules but only two
of them can be used alone (modules that can operdtee non-binary mode).
Quadric module is included in the comparison alboethe other less promising

non-binary module Roundness is used with the bihamymal Flipping decimating
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module. Normal Flipping module is started with dégree of flipping angle and if
the desired reduction rate can not be achieved]igeng angle is increased by 5
degrees more until the desired level of reductsadhieved. The other remaining
Progressive Mesh and Independent Sets modulessmarakd. Progressive Mesh
module is not a real decimating module since iy aollects information about the
simplification and Independent Sets module is hought as useful as the others
because locking the neighboring of a decimatedexeprevents simplification

more than desired.

All of the algorithms are mainly run on two diffetetriangular surface mesh
models. The first model is the Stanford Bunny mdtat has been used for a long
time for testing nearly all kinds of mesh procegsaigorithms and it is freely
available in the Stanford 3D scanning repositpt9]. Bunny model has 34834
vertices, 69451 faces and 104288 edges. The seunoddl is the Bumpy Torus
model that is available in the Aim@Shape model sépoy [33] and is composed
of 16815 vertices, 33630 faces and 50445 edgesh Blgorithm is executed in
nine different reduction rates and the obtainedltesre compared with the metro
tool. Metro tool calculates the deviance betweendtiginal and simplified models
in terms of maximum and mean geometric errors. Chakulated errors are
normalized by dividing the obtained results withe tmaximum of the

corresponding errors.

While choosing the models for comparison, it isentted to select models with
different properties from each other. By this widng algorithms can be tested with
different kinds of input mesh models. The firstestééd model, Stanford Bunny is
twice as complex as the Bumpy Torus model. MorgoS8&nford Bunny is not a
closed model and it has five boundaries with geghu®n the other hand, Bumpy
Torus is a closed mesh with genus-1 and the highatwre regions of the Bumpy
Torus model is much more than the Stanford Bunrgsfdile all these differences
they have also some common properties such thdt matshes are manifold,

orientable and irregular.
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The selected reduction rates are started from “1@#&f continues with “20%",
“30%”", “40%", “50%", “60%", “70%", “80%", and “90%". All rates are calculated
in terms of face numbers of the models. Moreovéir,ofthe algorithms are
executed on a core duo 2.4 GHz, 3GB RAM, Windowss}{$tem.

5.2. Comparison of the Mesh Libraries with respecto their Approaches

to Polygonal Mesh Simplification

All of the simplification algorithms implemented the concerned mesh libraries
are a kind of iterative mesh simplification algbnt except vtkQuadricClustering
which makes it unique. Also, it is the only algbnt that can be used in out-of core
simplification. However, in this algorithm the usean not specify a desired
reduction rate although the resolution of the sifiggl mesh may be controlled by
choosing the appropriate parameters.

Iterative algorithms are more or less differentrireach other in how they decide
which vertex to be removed from the mesh. Inkadke algorithms a reduction rate
is specified but whether to achieve this rate ot isoalgorithm dependent.

Generally, if an algorithm does not preserve theology, the desired reduction
rate is achieved all the time. These and some qifwgerties of the algorithms

have already been discussed in the previous sechah it may be helpful to

summarize the behaviors of these algorithms iregplable-2, 3 and 4).

CGAL and OpenMesh have a mesh simplification fraor&wvhere the choice of
desired algorithm is made by changing some parame@n the other hand, in
VTK each algorithm is implemented individually. Opéesh differs from other
libraries that it supplies five modules in two agiges: binary and non-binary
modules. Any of these modules can be grouped irsiet dat least one non-binary
module is required) and then used for a simplificat One of the supplied

modules in OpenMesh is the Progressive Mesh modidilieh is not a true
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decimating module. It only collects information abothe history of the
simplification so that the original mesh can beorestructed from this information
[52]. vtkDecimatePro also utilizes the progressiveshes but it does not give this

information to the user.

Table 2. Polygonal Mesh Simplification with CGAL

CGAL
Algorithms Lindstrom-Turk StrategyEdge'Length Midpoint
Strategy
Input Mesh Triangular Triangular
Type Manifold Manifold
Preserve Yes Yes
Topology
Simplification
Method Edge Collapse Edge Collapse
Error Metric Shape Preserving Opt Edge-length

Table 3. Polygonal Mesh Simplification with VTK

VTK
Algorithms vtkDecimatePr¢ vf[kQu_adrche- vtk_QuadrlcCIus-
cimation tering
Input Mesh Trlar?gular Trla'ngular Pollygonal
Type Manifold & Manifold & | Manifold &
Non-Manifold | Non-Manifold | Non-Manifold
Preserve Depends on the . .
: Not necessarily Not necessarily
Topology choice
Simplification "
Method Edge Collapse | Edge Collapse Vertex Clustering
Quadric error .
. Distance to metric (with Shape_ preserving
Error Metric . guadric error
plane and edge| attributes :
. metric
optionally)
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Table 4. Polygonal Mesh Simplification with OpenMes

OpenMesh
. . Roundness Normal Flipping
Algorithms Quadric Modulg Module Module
Input Mesh Polygonal Pol)'/gonal Po!ygonal
Type Manifold & Manifold & | Manifold &
Non-Manifold | Non-Manifold | Non-Manifold
Preserve
Yes Yes -
Topology
Simplification | Half-edge Half-edge Half-edge
Method Collapse collapse collapse
Error Metric Quat_jrlc €ITOT | Roundness Normal flipping
metric

5.3. Comparison of the Algorithms with respect toleir Performance

and Execution Time

5.3.1. Metro Tool

As stated before, the main goal of mesh simpliiicais to produce a surface
approximation while keeping the model’'s visual @mttas similar as possible to
the original. In order to measure the geometritet#hce between two meshes
(describing the same surface at different leveldedfil) two most common error

metrics from function approximation is utilized. & first metricL, norm which is

also known as Hausdorf distance is used to meabtigremaximum deviation

between two models. On the other hand the secand metric L, norm provides

a measure of average deviation.

There are a few tools [47, 57, 58, 59] developedni@asuring the geometric
approximation error between two meshes. Among thleen most popular and

commonly used one is the metro tool [47]. Metraai$reely available tool and
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besides the numerical results it also visualizesdtror by rendering the higher
resolution mesh with a color for each vertex whishproportional to the error
(Appendix-F). Metro begins with sampling the fingput mesh by taking sampling
points on the mesh surface and then calculatesdiftances between these
sampling points and the second mesh. Then the cbi®sge and the second mesh
is sampled and distances are measured accordiBglyed on these distance

calculations metro returns the mean and maximunrshetween the two meshes.

In this work, metro (version 4.06) is selected émmparing the simplification
results by considering its popularity and accepainem the community. All the

parameters of the tool is left as default.

5.3.2. Results for the Stanford Bunny Model

The first model chosen for comparison is the StahBunny model which is a
very common model for testing different kinds obgeetry processing algorithms
including polygonal mesh simplification (Figure-20) is freely available in the
Stanford 3D Scanning Repository [70] and compose84@34 vertices, 69451
faces and 104288 edges.

Figure 20. Stanford Bunny model
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Obtained results are visualized by drawing thetedlgraphics. In all graphics, the
x-axes are representing the number of faces imib@el. In addition, markers are
also used to indicate the reduction rates. Foants, the left most markers show
the 90% reduction rate whereas the right most maike to used indicate the 10%
reduction rate. The y-axes on the other hand shwmsv rhaximum or mean
geometric error. The error values are normalizedlividing each error value by
the corresponding maximum error values so thavigalization of the results are
better. The actual error values for Stanford Bucawy be found in Appendix-D and

some sample figures from the simplification carséen in Appendix-C.
According to the obtained results for the maximuneorgetric error

vtkQuadricDecimation algorithm shows the best penénce in all percentages
(Figure-21, 22).
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Figure 21. Comparison of all mesh simplificatiogaithms with respect to the
normalized maximum geometric error for the StanButhny model
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The second best performing algorithm on the StanBunny model is the CGAL
Lindstrom-Turk strategy which is very close to vtkdricDecimation. Moreover,
vtkDecimatePro with error accumulation takes therdthplace although
vtkQuadricDecimation with vertex normals is slighbletter when the reduction
rates are 10% and 30%. However, vtkDecimatePro estbr accumulation is

better for all remaining percentages.

Once determining the first three best performirgpathms in terms of maximum
geometric error, it is not very obvious to deterenithe other rankings. For
example, in the remaining algorithms, for the 1@%% and 30% reduction rates
vtkQuadricDecimation with vertex normals is bettelowever, its performance
decreases very fast as the reduction rates incréasienilar behavior is observed
for the vtkDecimatePro. For the 90% reduction rdt®ecimatePro becomes the
worst performing algorithm although it is very aot the third place algorithm

(vtkDecimatePro with error accumulation) in alm&ning percentages.

OpenMesh Quadric decimation module does not perfeethenough even though
it utilizes one of the best error measurement nmigth®n the contrary, CGAL
Edge-length Midpoint performs beyond the expectatiwhen considering its
simple error metric. On average, the two algoritBpmenMesh Roundness with
Normal Flipping and vtkQuadricClustering give therst results for the maximum
geometric error (Figure-21).

If each library is analyzed individually, for CGAhesh simplification algorithms,
Lindstrom-Turk strategy is better than Edge-lendfidpoint strategy in all

percentages (Figure-23). Similarly, for OpenMesinalry (Figure-25) the Quadric
decimating module and for VTK, vtkQuadricDecimateme the better ones in their

own libraries.
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Figure 22. Comparison of the best mesh simplificatlgorithms from each
library with respect to the normalized maximum getne error for the Stanford
Bunny model
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Figure 23. Comparison of CGAL mesh simplificatidgaaithms with respect to
the normalized maximum geometric error for thenfted Bunny model
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Figure 24. Comparison of VTK mesh simplificatiog@iithms with respect to the
normalized maximum geometric error for the StashiBunny model
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Figure 25. Comparison of OpenMesh mesh simplifocatiigorithms with respect
to the normalized maximum geometric error for $tenford Bunny model

59



As the mean geometric errors are compared, moretbngoaphs are obtained with
respect to the maximum geometric error graphs. Wehch library, the best place
does not change and vtkQuadricDecimation, CGAL s&iran-Turk and
OpenMesh Quadric module again take the first placesheir own libraries
(Figure-26, 27, 28). Surprisingly, vtkQuadricCrréng gets higher in the ranking
such that it takes the second place after the \d@kigcDecimation in VTK library
by considering the fact that other three algorithm¥TK perform better only in
the 10% reduction rate. On the contrary, the otf@st algorithm of the maximum
geometric error, vtkQuadricDecimation with vertextmals does not make such an

improvement and it gets the last place in the dveaaking.

When the over all ranking is considered for the mgaometric error, there is a
change in the first place and CGAL Lindstrom-Tulgiagithm takes the first place
from the vtkQuadricDecimation (the best performathwespect to maximum
geometric error) (Figure-29). Moreover, OpenMeshadyic module takes a step
forward and becomes the third best performer wisamnexpectedly in the lower

rankings for the maximum geometric error.
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Figure 26. Comparison of VTK mesh simplificatidgaithms with respect to the
normalized mean geometric error for the Stanfandrid/ model
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Figure 27. Comparison of CGAL mesh simplificatidgaaithms with respect to
the normalized mean geometric error for the StahBunny model
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Figure 28. Comparison of OpenMesh mesh simplifocatiigorithms with respect
to the normalized mean geometric error for thefétal Bunny model
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Figure 29. Comparison of the best mesh simplificatlgorithms from each
library with respect to the normalized mean geoineiror for the Stanford Bunny
model
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When the timing performance of the algorithms aomsaered, VTK library
algorithms show an outstanding performance witpeesto other libraries. CGAL
library algorithms need the most amount of timepeeglly Lindstrom-Turk
strategy is the worst algorithm in terms of timmeguirements (Figure-30). This is
mostly because of the error metric used, sincenabeu of optimization problems
are solved for determining the vertex position. ldeer, It is expected that CGAL
Edge-length Midpoint algorithm would be faster wleemsidering its simple error
measurement method. This may be caused by thécieetfimplementation of the
data structure in CGAL. OpenMesh algorithms arefgoering better than the
CGALs’ although they use the same data structureall the same, they can not
come nearer to the VTK algorithms. In Figure-3%, timing performances of VTK
algorithms can be seen more clearly and all of theendiffering from each other
with seconds. Observe that the timing performantcetkQuadricClustering is
inversely proportional with the reduction rate tas expected.
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Figure 30. Comparison of timing performances of m&mplification algorithms
for the Stanford Bunny model
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Figure 31. Comparison of timing performances of m&mplification algorithms
from VTK library for the Stanford Bunny model

5.3.3. Results for the Bumpy Torus Model

The second model selected for comparison is the@uhorus model (Figure-32)
[33] which is composed of 16815 vertices, 33630 facels58%45 edges. Observe
that, the high curvature nature of Bumpy Torus nhaukes it extraordinary.

Figure 32. Bumpy Torus Model
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As in the analysis of Stanford Bunny model, erralues are also normalized in a
similar way and the actual error values calculdtedhe Bumpy Torus model can
be found in Appendix-E. Moreover, X, y axes of fraphics and the markers are

used in the same way as explained in the previectsos.

When maximum geometric error is considered for Bwempy Torus model,
vtkQuadricDecimation with vertex normals gives thest performance in all
reduction rates except the 90% (Figure-33). At thisduction rate
vtkQuadricDecimation is slightly better, but acdagito our consideration, this
does not prevent vtkQuadricDecimation with vertexnmals algorithm from taking
the first place. This is probably because of tlghtourvature nature of the Bumpy
Torus model where considering the vertex normal&emahe difference. The
second best performing algorithm is the vtkQuadewihation except the 70%
reduction rate. At 70% reduction rate both CGALdstrom-Turk and OpenMesh
Quadric modules are better than the vtkQuadricDatton (Figure 33-34).
Moreover, It is not very easy to determine thedHnest performing algorithm
since CGAL Lindstrom-Turk and OpenMesh Quadric megerforms better with
respect to each other in some percentages. Forppxa@GAL Lindstrom-Turk
gives better results at 30%, 60%, 70%, 80% and @O%reas OpenMesh Quadric
module is better at 10%, 20% 40% and 50% (Figuje-3Bwe select the bottom
two algorithms these can be the vtkDecimatePro@GBAL Edge-length Midpoint.

The best algorithms from CGAL and OpenMesh do nfierdfrom the Bunny
model (Figure-35, 36). Indeed, only the performan€evtkQuadricDecimation
with vertex normals increased significantly anddicomes the best performer in
terms of maximum geometric error both in the overahking and in VTK. In
addition, the performance of OpenMesh Quadric modalso increases with
respect to the Bunny Model since it competes With@GAL Lindstrom-Turk for
the third place in the overall ranking. Remembat tBGAL Lindstrom Turk takes
the second place for the Stanford Bunny model enrtinking with respect to the

maximum geometric error.
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Figure 33. Comparison of best mesh simplificatigoathms from each library
and vtkQuadricDecimation with respect to the noreeal maximum geometric
error for the Bumpy Torus model
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Figure 34. Comparison of VTK mesh simplificatiog@iithms with respect to the
normalized maximum geometric error for the Bumpyus model
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Figure 35. Comparison of OpenMesh mesh simplifocatiigorithms with respect
to the normalized maximum geometric error for Buenpy Torus model
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CGAL Lindstrom-Turk algorithm one more time beconthe best algorithm in
terms of mean geometric error after the Bunny MdBejure-37) except the 10%
reduction rate. At this rate, vtkQuadricDecimatiatikQuadricDecimation with
vertex normals and OpenMesh Quadric module areerbdtan Lindstrom-Turk.
The second place also does not change and vtk@Deaimation gets the second
rank. However, this time vtkQuadricDecimation witbrtex normals is almost as
good as the vtkQuadricDecimation such that thenorewvalues are almost

equivalent and it gets the third place in the @leranking.

The graphs for the comparison of the algorithmshwiéspect to the mean

geometric error within their own library are givienFigure-38, 39 and 40.
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Figure 37. Comparison of best mesh simplificatigoathms from each library
and vtkQuadricDecimation with vertex normals wigspect to the normalized
mean geometric error for the Bumpy Torus model
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Figure 38. Comparison of CGAL mesh simplificatidgaaithms with respect to
the normalized mean geometric error for the Bumprus model
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Figure 39. Comparison of OpenMesh mesh simplifocatilgorithms with respect
to the normalized mean geometric error for the puyforus model
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Figure 40. Comparison of VTK mesh simplificatiog@iithms with respect to the
normalized mean geometric error for the Bumpy Sanodel

All of the algorithms show a similar timing perfoamce when the results are
compared with the those obtained for Stanford Bummgdel. Again, VTK
algorithms are outstanding and they are far morteibé¢han the CGAL and
OpenMesh algorithms. Similarly, CGAL algorithms uee the most amount of
time for their execution (Figure-41). In order tmadyze VTK algorithms
separately, Figure-42 is provided. Observe thatmesainexpected peaks are
occurred in the given graphics. This may be bexafishe non-uniform behaviors

of the used operating system, since the measures tare very small.

In Appendix-C some figures of the simplified Bumpgrus model can be seen

besides the Stanford Bunny model.
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Figure 41. Comparison of timing performances of m&mplification algorithms
for the Bumpy Torus model
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Figure 42. Comparison of timing performances of m&mplification algorithms
from VTK library for the Bumpy Torus model
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5.3.4. Summary of the Results and Recommendations

We have compared nine different mesh simplificatelgorithms from three
different mesh libraries over two different triategumesh models. The evaluation
is mainly based on the maximum and mean geometriorse between the
simplified and original models. Moreover, the exemu times of the algorithms
are also considered. As described previously,lgirdhms are executed for nine
different reduction rates from 10% to 90%. Obtaimedults have already been
discussed in the previous sections (sections 553323) but in order to summarize

them in a tabular format the following tables mayhelpful.

Table 5. Best Three Performing Algorithms for StadfBunny Model

Maximum Geometric Error Mean Geometric Error
1. vtkQuadricDecimation 1. CGAL Lindstrom-Turk
2. CGAL Lindstrom-Turk 2. vtkQuadricDecimation

3. vtkDecimatePro with error

) 3. OpenMesh Quadric Module
accumulation

Table 6. Best Three Performing Algorithms for Bunimrus Model

Maximum Geometric Error Mean Geometric Error

1. vtkQuadricDecimation with

1. CGAL Lindstrom-Turk
vertex normals

2. vtkQuadricDecimation 2. vtkQuadricDecimation

3. CGAL Lindstrom-Turk /| 3 ytkQuadricDecimation with
OpenMesh Quadric Module|  yertex normals
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If a developer wants to implement a mesh simpliftca algorithm without a

significant effort, we will recommend utilizing on& the freely available open
source mesh libraries. However, our evaluation aksvehat choosing the best
library for mesh simplification mostly depends ¢ theeds of the developer. In
section 5.2, we describe the main properties optioposed mesh libraries, where
we try to answer the questions of the followingetypvhat kinds of input meshes
are supported and does the algorithm preserveoff@agy ? Later, based on the
results of carried experiments, we see that thdopeance of the mesh
simplification algorithms change with respect te #pplied input mesh. Moreover,
different algorithms are better for the same modbken maximum and mean

geometric errors are considered.

Regarding the issues listed in the above paragrapiobtained results so far, if a
mesh simplification algorithm is required that iseking the average deviation
between the simplified and original meshes at mimmour recommendation will
be the CGAL Lindstrom-Turk algorithm. On the otheand, for minimizing the
maximum geometric error a good choice will be th&QuadricDecimation.
Furthermore, if the input mesh is highly curvekQuadricDecimation with vertex

normals may be applied as well.

Although CGAL Lindstrom-Turk algorithm is one ofelbest algorithms among
the proposed ones, it needs the longest time fecwgon. Especially, for very
large meshes, e.g. for a mesh with a million oéfathe execution time may reach
to two to four hours. As a result, vtkQuadricDedlima algorithm can be offered

to anyone due to its high quality results and speed
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CHAPTER 6

REGULAR REMESHING

Remeshing is the process of improving the qualitg smesh while approximating
the original mesh acceptably. It is used in mangngetric modeling algorithms
such as shape editing, animation, morphing and roatesimulation [3].
Obviously, different applications have differentatjty criteria and requirements.
Alliez and his co-workers [60] classified the reimeg techniques into five
categories based on their goal: structured, coiplpathigh quality, feature and
error-driven remeshing. In this work, structurecheshing also known as regular

remeshing is studied for triangular meshes witk thpology.

Remember that in a triangular mesh a vertex igdattgular if its valence (number
of neighboring vertices) is equal to 6 for an imewnertex or 4 for a boundary
vertex. In addition, we call a mesh regular if &rtices of the mesh are regular.
Regular meshes offer certain advantages over laegmes. First, complex data
structures are not needed due to the fact thatreagalar mesh the connectivity is
implicit which means only the geometric informati@nloaded into the memory.
This property of regular meshes improve the efficie and facilitate the

implementation of many algorithms such as mesh cessmon and morphing.

Second, regular meshes has been shown to be usefulendering (vertex

caching), texture and other modulation mapping rfrady transparency mapping)

and levels of detail generation [61, 62, 63].

Gu [61] developed a method for regular remeshingrbftrary triangular meshes
and named his method as geometry images. He blegiparameterizing the input
mesh on to a 2D square which requires the inputhntesbe topologically
equivalent to a disk. If this is not the case, itipput mesh can be cut and opened
(Figure-43). Then, the geometry of the input mesleaptured as a simple n x n
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array of [x y z] values by just taking sampling mtsi on the parameterized domain
and calculating the 3D equivalents of these poifite X, y, and z coordinates of
points on the surface are then used to construéimage (geometry image) by

assigning them to the red, green and blue compsrdrdorresponding pixels. By

this way, a 3D mesh is represented with a 2D im@gigure-44).

Figure 43. Obtaining a mesh with a disk topologychbiting
(http://research.microsoft.com/~hoppe/

Once a geometry image is constructed, signal psougdechniques then can be
used on these images. For example, geometry imegesbe encoded using
traditional image compression algorithms such ageled based coders. Moreover,
they may be transmitted to the graphics pipelin@ icompressed form just like
texture images [61]. And a regular mesh can benstoacted from a geometry
image by interpreting each pixel as a vertex, andnecting vertices which

correspond to neighboring pixels into a regulad gf triangles or quadrangles
(Figure-45).

The cut algorithm described in the geometry imggggser is a two step algorithm.
In the first step, a topologically sufficient cus ifound and an initial
parameterization is created. In the second stepg tise information from the first
parameterization, the cut path is improved andparemeterization is performed.
The second step is iterated over and over untilctiigpath can not be improved
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anymore. In the iterative part of the algorithm Eh@reserving parameterization
of Floater [64] is used whereas for the final pagterization geometric-stretch
minimizing parameterization [65] is preferred. Rkraparameterization is better
for determining the extremal points (points witlgticurvature) but it introduces
more distortion (angular and areal) than geometretch minimizing
parameterization. Once extremal points are idexatifhe cut path is improved such
that it passes over the extremal points so thatréisaltant distortion will be
minimized.

|

FRE

[r.g.bIFIx.y,

Figure 44. Constructing geometry images
(Figure is reproduced and modified from [61])
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The quality of the reconstructed mesh from a gepmatage mostly depends on
the parameterization step. Parameterization igptbeess of finding a one-to-one
(bijective) and piecewise linear mapping from aigiage onto a 2D domain. The
map is piecewise linear, associating each triamgléhe original mesh with a
triangle in the parameterization domain (Figure-4&)e other important goal of
mesh parameterization is to obtain bijective (itilaé¥) maps where each point on
the domain corresponds to exactly one point of niesh. Both of the mesh
parameterization algorithms [64, 65] used in thestaction of geometry images

are bijective and piecewise linear.

Figure 45. Reconstructing the regular mesh froreaetry image

Figure 46. A piecewise and bijective parameterizati
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Generally, all mesh parameterization methods trghitain an isometric mapping
which preserves the lengths (both area and angles)he length of any arc on the
original mesh is equal to the corresponding arthan parameterization domain.
However, almost all the time isometric mappings cext be obtained for an
arbitrary mesh. Thus, mesh parameterization algost either concentrates on
minimizing the angle (conformal mappings) or araatlialic mappings) or both
(distance minimizing mappings) of them [66]. Shapeserving parameterization
of Floater mainly tries to minimize the angulartdifon whereas geometric

stretch parameterization minimizes distances.

6.1. Implementation

The motivation behind this work is the regular rehiag of human face models
which are generally genus-0 and topologically egl@int to disks. Thus, the
complex cutting algorithm in the geometry image®nsitted. Moreover, regular
models are directly constructed after the paranzation step without generating
the geometry images and finally it is allowed tonp&e the geometry in any
resolution in both directions. The steps for thelemented algorithm is given in

below:
Paraneterize the input nmesh onto a 2D square
Sanpl e the paraneterized nesh (nxm

For each sanpl ed poi nt

Determ ne in which triangle the current
sanpl ed point is

Cal cul ate the barycentric coordinates in
t he paraneter domain

Use the barycentric coordinates to cal cul ate
t he corresponding point (x, y, z) in 3D

End For
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Construct the regular nesh by triangul ating
or quadrangul ating the cal cul ated 3D points

For the parameterization step of the algorithm, hmesrameterization package of
CGAL library [25] is used. The package has 5 ddfdgrparameterization methods
and among them the Floater-Mean Value Coordinatganketerization [67] is

chosen since it is more promising than the oth&san value coordinates
parameterization is very similar to [64]. In faBlpater approximates his shape-
preserving parameterization by using mean valuedboates at some step of the
algorithm which gives very similar results while kivag the computational part of

the shape-preserving algorithm more easier [67].

Once the parameterization is obtained (for ea@ngte/vertex in the 3D mesh a
corresponding triangle/vertex is found in 2D), thext step is to sample the
geometry in the parameterization domain. Sinceprameterization is piecewise
linear and bijective, we can compute the correspmn8D points to the sampled
points by using a linear interpolation. For theempblation, barycentric coordinates
in triangles are used by which a point’s positiam e determined uniquely with
respect to a triangle. Moreover, barycentric cawatis are also used for triangle
inclusion test that is used to determine if a gigemt is inside a triangle or not.

Consider three pointg, P,, and P, in a plane. Ifw,, w,, andw, are scalars such

that

W +wW, +w; =1 (25)

then the point

P=wP +w,P,+w,P, (26)
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is a point on the plane of the triangl®P,P, and we say th&tw, w,, w,] are the
barycentric coordinates oP with respect toR, PB,, and P,. Furthermore, the

position of the pointP can be determined as follows (Figure 45):

0 The pointP is inside the triangle BP,P, if 0<w,w, ,w, < 1.

0 The pointP is outside the triangle BR,P, if any of w’s is less than 0 or
greater than 1.

o The pointP is on the edge of the triangle if one of thés is equal to O.

o The pointP is on the vertex of the triangle if two of the's is equal to 0

and the remaining one is equal to 1.

Figure 47. Barycentric coordinates: p is insidettfegle O<w,,w,,w,< 1), q is
outside the trianglew, <0) and r is on the edd&P,| (w, =0)

Equations (25) and (26) can be used to constrlicear system:
prR) 2| (P
17273 W. = 27
(1 1 1) 1\t @7
W3

and using the Cramer’s rule the linear system easobved such that
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W= ASA W= ASA W= ASA (28)

where A, A, A and A is the signed area of the triangle&P,P,, aPPR,R;,

aBPPR, and aBP,P respectively (Figure 47). The signed areas aréne@fas

follows:

HPZPS
111

RPP,
111

111 11

Jpee

RP F]’J (29)

Once the barycentric coordinates of a sampled @atcalculated, i.ew,, w,,
and w, are found, the 3D equivalent of the point is clted by using these

coordinates and equation (26). After all point3ih are found, it is very easy to

triangulate or quadrangulate the points since tiae a regular structure.
6.2. Results

The implemented regular remeshing algorithm isetéstith four different face

models with different resolutions. The first modgéfertiti (Figure-48), is also the
simplest one, composed of 299 vertices, 562 fands360 edges. Nefertiti model
comes with the CGAL library [25] for testing algthiins on it.

(c)

Figure 48. Nefertiti model: wireframe (a), shadefb)land shaded-2 (c)
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As it is described in section 6.1, we begin by peeterizing the input mesh onto a
2D unit square. The parameterization of the Nefartodel onto a 2D unit square
is given in Figure-49. Observe that, in some ofiaeg of the parameterization
domain the density of the vertices are relativaghhThese regions correspond to
the high curvature regions of the original modéie Tnodel is then sampled in the
parameterization domain and corresponding 3D pangscalculated by a linear
interpolation (Figure-50). Remember that barycentoordinates are used for the
linear interpolation and also for the triangle ugibn test. The sampling resolution
can be selected as desired but it gives bettettsestien the two dimensions are
selected equally. After getting the regular poildud, the connectivity of these

points can be constructed in three different waysthe first way, faces of the

regular mesh can be generated as quadrangles whigreaother two methods

result in triangular meshes.

In Figure-51, a sample quadrangulation and oné@two possible triangulations
are shown for (33x33) resolution and a higher rggmt (65x65) is shown in
Figure-52. As the resolution of the sampling insesa more complex but regular
mesh models can be obtained.

Figure 49. Nefertiti model parameterized onto al@id square
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Figure 50. Point cloud, obtained by sampling (69x%68 parameterization domain

Figure-51. A sample quadrangulation and triangoitataf the Nefertiti model

(Resolution: 33x33)
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Figure 52. A sample quadrangulation and triangohetif the Nefertiti model

(Resolution: 65x65)

The second model that regular remeshing applidtei€£gea model obtained from

the Aim@Shape Repository [33] (Figure-53).
complex than the Nefertiti model and composed @f23@ertices, 5898 faces and

Thisdelois nearly ten times

8939 edges. The same procedures with the Neferbotiel are applied and the
obtained results are shown in Figure-54 (paranesteoin domain), 55 (point cloud

obtained) and 56 (65x65 triangulation and 129xli2&dgangulation).
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Figure 54. Parameterization of the Egea model ar&#D unit square
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Figure 55. Point cloud, obtained by sampling (12Z31the parameterization

domain of the Egea model

S

Figure 56. A sample triangulation (65x65) and gaadulation (129x129) of the
Egea model
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The third model is a male face got from [68] (Fe&s7). This model has 5321

vertices, 10457 faces and 15777 edges. After ampliie previously described

steps, similar results are obtained (Figure-58, 99ote that for this model the

nose of the regularly remeshed models (Figure-38) rmt good as the other

models. This is because of the high curvaturdénrniose. A highly curved region

of the input mesh results in a relatively densegiae in the parameterization

domain, which hinders the adequate sampling toucaghe geometry. However,

this distortion may be negligible in most of theses. In fact, if the obtained

regular models are rendered, the distortion maybeotven realized (Figure-60).

Nevertheless, if the generated distortion is noeptable, then this problem can be
solved in two ways. First, the resolution of thenpéing step can be increased. By
this way, the distortion of the highly curved gawiill be reduced but which also

increases the complexity of the obtained mesh. i8kcthe parameterization

method of the applied algorithm can be changed avitetter one [61].

Figure 57. Male face model, shaded with two difféi€haders
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Figure 59. A sample triangulation (65x65) and qaadulation (129x129) of the

Male face model

88



Figure 60. Shading the regular Male face model §6%x

The last model used for the regular remeshing &@nag male face and got from
[33] (Figure-61). This model is called as face-Yiktiat is the most complex model
that is worked with such that it has 10199 verti@3¥00 faces and 30198 edges.
The obtained results are illustrated in Figure-6@ @3.

Figure 61. face-YH model, shaded with two differenaders
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Observe that if the input mesh is sampled suchtieaproduced regular mesh has
fewer vertices, then the regular remeshing methad also be thought as a
simplification algorithm. For instance, for the &a¥H model one of the sampling
rates is chosen as 65x65 (Figure-61). This resolutate produces a regular mesh
with 4225 vertices, 8192 faces and 12416 edgeshwixactly corresponds to a
59% reduced of the original mesh. Furthermore, leegemeshing algorithm can
be compared with the other mesh simplification atgms that are discussed in
Chapters IV and V. Remember that one of the mdstiait algorithms is the
vtkQuadricDecimation algorithm both in terms of nmaMm and geometric errors
and timing requirements. When vtkQuadricDecimateomd regular remeshing
algorithms are compared by using the metro tool, e wgee that

vtkQuadricDecimation performs better (Table-7).

Table 7. Comparison of Regular Remeshing Algorithith the
vtkQuadricDecimation at a 59% Reduction Rate

Algorithm Max. Geometric Errof Mean Geometric Error
Regular Remeshing 2.647200 0.056288
vtkQuadricDecimation 0.185284 0.011697

In addition, if the visual outputs of the metro lte®analyzed, it can be seen that
regular remeshing algorithm approximates the oaigmodel much more better in
the smooth regions of the original model (Figurg-6Phe distortions on the
relatively high curvature regions increases thenggac errors. On the other hand,
vtkQuadricDecimation algorithm does not decimate ltighly curved regions and

distribute the error along the whole mesh (Figusg-6

91



Figure 64. Error distribution for the face-YH moddien simplified with regular
remeshing algorithm

Figure 65. Error distribution for the face-YH moddten simplified with
vtkQuadricDecimation

92



CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis work, two important topics of meshqgessing are studied: polygonal
mesh simplification and regular remeshing of irlagpolygonal meshes. The first
topic, polygonal mesh simplification is a veryiaetsubject and there are a lot of
different algorithms proposed, which makes thesi&ation of these algorithms
very challenging. Among the possible classificasiove adopted one of them and
by utilizing the other works, a classification ofire is offered which may be

thought as the combination of the previous works.

Due to popularity of the subject, polygonal mesmgification algorithms are
implemented in a number of different mesh librariesorder to provide a guide
for commonly used mesh libraries in terms of mastpkfication, we compared
the simplification algorithms from these librariddased on this evaluation, we
concluded that there is no certain best algoritimeesdifferent algorithms may
operate well on different input meshes. Howevemeoof the algorithms are
generally performing better than the others in teraf geometric error and
execution time. Among them, vtkQuadricDecimatiogoaithm can be a good

choice when considering its speed and results.

In addition to this work, similar works can be refex for the commercial mesh
simplification packages and as well as for somerotitee programs. By this way,
the performance of the mesh libraries by means eshrsimplification can be
determined relatively. Moreover, since these ators are open source, they may

be modified to get better algorithms.

The second topic discussed in this work is the leegemeshing of the irregular
polygonal meshes. The motivation behind this cosiveris the advantages of the

93



regular meshes for both processing and renderihngrelexists only one method
for such a conversion and in this work, an impletagon based on this algorithm
is done and it is tested with the human face modétseover, regular remeshing
algorithm is also considered as a mesh simplificelgorithm for special cases
and a comparison of the algorithm is performed witie dedicated mesh

simplification algorithms.

Our implementation of regular remeshing can onlychpable of handling input
meshes that are topologically equivalent to digkss work can be expanded to
handle an arbitrary irregular polygonal mesh. Meegp since the quality of the
obtained regular meshes mostly depend on the pszemation step of the

algorithm, better parameterization methods cantitiead.
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APPENDIX A
K-SIMPLEX AND SIMPLICIAL COMPLEXES

Hoffman [5] defines a k-simplex as follows: a k-piex is the convex combination
of k + 1 linearly independent points. The dimensainthe k-simplex is k. It is
obvious that a O-simplex is a point, 1-simplex ina segment and 2-simplex is a
triangle. For example, consider a three distindhtpp,, p, and p. The convex

combination spanned by,p,; and g is the set

(P P ) ={ (AP (1-2) o) i+ (1- ) py 0 4 < )

={uq+(1—,U) P; |qD<p1,p2> 0= p< 1’

Geometrically, if p, p, and p are collinear than thebpl, p,, p3> is a triangle with

vertices p, p; and p.

The boundary of a k-simplex S consists of all (ksuiplices contained in S, where
k > 0. Every simplex in the boundary of S is a fat&. For instance, if S is a 2-
simplex (triangle), then the boundary of S is cosgubof O-simplices (vertices)

and 1-simplices (edges) which are also a face & k.simplex contains exactly

k+1 N
( j d-simplices as faces.
d+1

Hoffmann [5] also defines simplicial complexes asset of finite simplices,

satisfying the following conditions:

o Let K be a simplicial complex and S is a simpleXinThen, any face of a

Sis also in K.
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0 The intersection of any two simplice§,S,[JK is either empty or is a

simplex in K.

Observe that in the second condition tifatn S, is a face of bothSand $. The

dimension of a simplicial complex is defined as thaximum dimension of the
simplices in it. Figure-66 and 67 show a sets ofplices one of which forms a

simplicial complex whereas the other does not.

Figure 66. A simplex forming a simplicial complex

Figure 67. A simplex not forming a simplicial corapl
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APPENDIX B

MESH FILE FORMAT EXAMPLES

Figure 68. A 3D tetrahedron

The 3D tetra hedron shown in Figure-68 can be ssmted in different file

formats as follows:

o .OBJ file format

v 1.00 1.00 1.00
v 2.00 1.00 1.00
v 1.00 2.00 1.00
v 1.00 1.00 2.00
f132
f143
f124
f234

o . OFF file format

OFF
546
000
112
121
211
111
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3321
3431
3412
3423

0 STL ASCII format

solid tetrahedron
facet normal 0.000000 0.000000 -1.000000
outer loop
vertex 1.000000 1.000000 1.000000
vertex 1.000000 2.000000 1.000000
vertex 2.000000 1.000000 1.000000
endloop
endfacet
facet normal -1.000000 0.000000 0.000000
outer loop
vertex 1.000000 1.000000 1.000000
vertex 1.000000 1.000000 2.000000
vertex 1.000000 2.000000 1.000000
endloop
endfacet
facet normal 0.000000 -1.000000 0.000000
outer loop
vertex 1.000000 1.000000 1.000000
vertex 2.000000 1.000000 1.000000
vertex 1.000000 1.000000 2.000000
endloop
endfacet
facet normal 0.577350 0.577350 0.577350
outer loop
vertex 2.000000 1.000000 1.000000
vertex 1.000000 2.000000 1.000000
vertex 1.000000 1.000000 2.000000
endloop
endfacet
endsolid tetrahedron

o0 STL Binary format

56 43 47 20 20 20 20 20 20 20 20 20 20 20 20 220220 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 220220 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 220220 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 220220 04 00 00
00 00 00 00 00 00 00 00 00 00 00 00 80 BF
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APPENDIX C

SAMPLE FIGURES FROM POLYGONAL MESH SIMPLIFICATION

(c)

Figure 69. Stanford Bunny Model: shaded and wire&anodels
original model (a), 90% reduced model (b), 99% oedumodel (c)
CGAL Lindstrom — Turk algorithm is used for simpiétions
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Figure 70. Bumpy Torus Model: shaded and wireframoelels
original model (a), 90% reduced model (b), 99% oedumodel (c)
vtkQuadricDecimation algorithm is used for simgigtions
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APPENDIX D

ACTUAL ERROR VALUES FOR THE STANFORD BUNNY MODEL

Table 8. Actual Geometric Errors for Stanford Buivhgdel

Alg. Reduc. Rate| Maximumum Errqr Mean Error
o 10 0. 000248 0. 000004
5 20 0. 000333 0. 000008
Q 30 0. 000469 0. 000012
s 40 0. 000484 0. 000017
% 50 0. 000484 0. 000023
) 60 0. 000684 0. 000031
Q 70 0. 000687 0. 000042
g 80 0. 000711 0. 000072

90 0. 004713 0. 000245

‘g 10 0. 000248 0. 000004

o 20 0. 000268 0. 000008

T g 30 0. 000383 0. 000012

Ol 40 0. 000493 0. 000016

T 50 0. 000493 0. 000021

% = 60 0. 000493 0. 000027

o @ 70 0. 000602 0. 000038

Q 80 0. 000627 0. 000065

= 90 0. 001812 0. 000181
% 10 0. 000037 0. 000001
= 20 0. 000050 0. 000002
) 30 0. 000062 0. 000004
3 40 0. 000070 0. 000007
3] 50 0. 000094 0. 000010
S 60 0. 000115 0. 000013
S 70 0. 000163 0. 000019
o 80 0. 000290 0. 000027
é 90 0. 000524 0. 000049

ow

= © 10 0. 000193 0. 000004

c E 20 0. 000292 0. 000010

‘S O 30 0. 000366 0. 000019

3 : 40 0. 000790 0. 000032

o 50 0. 001016 0. 000053

S o 60 0. 001585 0. 000083

c > 70 0. 001585 0. 000130

o= 80 0. 002424 0. 000208

é 2 90 0. 003115 0. 000388
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(Table 8. continued)

Alg. | Reduc. Rate| Maximumum Errgr Mean Error
Q)
£ 10 0. 000775 0. 000005
Q 20 0.001134 0. 000008
a 30 0. 001087 0. 000012
O 40 0.001674 0. 000016
R 50 0. 001823 0. 000020
g 60 0. 001845 0. 000026
S 70 0. 001950 0. 000035
Q 80 0. 002298 0. 000052
= 90 0. 003145 0. 000103
% 10 0. 000540 0. 000006
c 20 0. 000556 0. 000011
L. 30 0. 000622 0. 000016
g,-% 40 0. 000622 0. 000022
S a 50 0. 000772 0. 000032
'iIJ g 60 0. 001026 0. 000044
< 70 0.001176 0. 000062
O] 80 0.001712 0. 000097
©) 90 0. 002549 0. 000198
= 10 0. 000040 0. 000001
. 20 0. 000068 0. 000002
g 30 0. 000120 0. 000004
= 40 0. 000120 0. 000006
e 50 0. 000159 0. 000008
.5 60 0. 000166 0. 000011
. 70 0. 000275 0. 000015
< 80 0. 000450 0. 000022
8 90 0. 000614 0. 000037
Q
s 10 0. 000783 0. 000001
< 20 0. 000783 0. 000002
oo 30 0. 000842 0. 000004
S 40 0. 001136 0. 000007
83 50 0.001136 0. 000011
S s 60 0. 001336 0. 000016
s 70 0. 001336 0. 000023
o 80 0. 001336 0. 000037
8 90 0. 001901 0. 000071
(O]
S £ 10 0. 000921 0. 000003
c e 20 0.001175 0. 000006
oI 30 0. 001175 0. 000010
o — 40 0. 001412 0. 000015
< c 50 0. 001537 0. 000022
Q5 60 0. 001537 0. 000036
=z 70 0.001716 0. 000056
o S 80 0. 004585 0. 000119
8'; 90 0. 004496 0. 000256
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APPENDIX E

ACTUAL ERROR VALUES FOR THE BUMPY TORUS MODEL

Table 9. Actual Geometric Errors for Bumpy Torusddb

Alg. Reduc. Rate| Maximumum Errar Mean Error
o 10 0. 080670 0. 001731
a 20 0. 127255 0. 004055
Q 30 0. 155406 0. 006285
© 40 0.161423 0. 008665
E 50 0. 161400 0. 011603
@ 60 0. 161400 0. 015993
Q 70 0. 285699 0. 026186
g 80 0.531355 0. 043176

90 1. 355316 0. 089026

*g 10 0. 096902 0. 001583

5 20 0. 108504 0. 003384

T g 30 0. 108504 0. 005329

[CR 40 0. 108504 0. 007515

T 50 0. 109406 0. 010333

g = 60 0. 126558 0. 014858

o @ 70 0. 151020 0. 022565

Q 80 0.417685 0. 039623

g 90 0. 500582 0. 060295
-% 10 0.019928 0. 000287
= 20 0.019928 0. 000770
'S 30 0. 024366 0. 001418
8 40 0. 028185 0. 002266
3] 50 0. 032186 0. 003320
S 60 0. 043139 0. 004687
5 70 0.103235 0. 006665
o 80 0.103235 0. 010078
é 90 0.149019 0. 019524

o wn

=S 10 0. 012065 0. 000296

c E 20 0.016717 0. 000790

‘S O 30 0. 021020 0. 001453

8 i 40 0.028134 0. 002306

oQ 50 0.029778 0. 003343

S & 60 0. 039433 0. 004702

< > 70 0. 061458 0. 006692

o k= 80 0.078635 0.010111

é 2 90 0. 149095 0. 019508
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(Table 9. continued)

Alg. Reduc. Rate| Maximumum Erragr Mean Error
Q)
£ 10 0. 079655 0. 001359
Q 20 0. 073820 0. 002322
a 30 0.079422 0. 003536
S 40 0. 098697 0. 004827
8 50 0. 110754 0. 006307
S 60 0. 155166 0. 008693
S 70 0.216831 0. 011999
Q 80 0. 238422 0. 018843
= 90 0. 687902 0. 038458
= 10 0.115418 0.001511
c 20 0. 161750 0. 003337
QL 30 0. 228665 0. 005679
0 .S 40 0. 248385 0. 008413
xsii=Y 50 0. 248385 0.011910
- g 60 0. 256983 0.017129
< 70 0. 298007 0. 025719
0) 80 0. 352154 0. 041994
) 90 0. 668535 0. 089926
2 10 0. 036667 0. 000317
- 20 0. 039144 0. 000732
£ 30 0. 045944 0. 001299
= 40 0. 064101 0. 001983
3e 50 0. 064101 0. 002838
s 60 0. 075849 0. 003929
- 70 0. 080270 0. 005422
< 80 0. 124495 0. 008072
8 90 0. 325451 0. 015243
i
= 10 0. 022744 0. 000313
@ 20 0. 036708 0. 000933
o 30 0. 050539 0. 001866
= 40 0. 050235 0. 003151
235 50 0. 055351 0. 004842
s s 60 0. 076547 0. 007182
S 70 0.103148 0. 010831
S 80 0. 151889 0. 017472
8 90 0. 243354 0. 035349
LD
£ < 10 0. 052768 0. 001228
c g 20 0. 060556 0. 002899
ST 30 0. 078205 0. 005211
X — 40 0. 107309 0. 007921
< 2 50 0.128119 0.011282
= 60 0. 146445 0. 017084
=z 70 0. 253227 0.026413
O S 80 0. 398908 0. 041322
5= 90 0. 746391 0. 079289
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APPENDIX F

A SAMPLE OUTPUT OF THE METRO TOOL

Metro tool has both numerical and visual outpug(fe - X). Numerical output
consists of the input mesh information and forwaidtance from the first model
to the second) and backward (distance from thergeeodel to the first one)

distances. A sample numerical output of the metobis given below:

Metro V.4.06
http://vcg.isti.cnr.it
release date: Oct 3 2005

read mesh “sb_original.off’

read mesh ‘sb_cgalLT_0.2.off'

Mesh info:
M1: 'sb_original.off’

vertices 34834

faces 69451

area 0.1143

bbox (-0.0947 0.0330 -0.0619)-( 0.06128@3 0.0588)
bbox diagonal 0.250246

M2: 'sb_cgalLT_0.2.off'

vertices 27881

faces 55545

area 0.1143

bbox (-0.0947 0.0330 -0.0619)-( 0.061.2873 0.0588)
bbox diagonal 0.250265
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Forward distance (M1 -> M2):

target # samples 1 694510

target # samples/area : 6078459.558555
Vertex sampling

Edge sampling

Similar Triangles face sampling

distances:

max :0.000046 (0.000171 wrt bounding boxydieal)
mean :0.000002
RMS :0.000004

# vertex samples 34834

# edge samples 368517

# area samples 256323

# total samples 659674

# samples per area unit: 5773569.467438

Backward distance (M2 -> M1):

target # samples  : 694510

target # samples/area : 6077768.630400
Vertex sampling

Edge sampling

Similar Triangles face sampling

distances:

Hausdorff distance

Computation time

max : 0.000068 (0.000255 wrt bounding box diadjpn
mean : 0.000002
RMS : 0.000004

# vertex samples 27881
# edge samples 335675
# area samaple 303072
# total saegl 666628

# samples per area unit: 5833768.767255

:0.000068 (0.000255 wrt bounding box diagonal)
: 6407 ms

# samples/second : 207008.262370
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Besides the numerical results metro can also gsaVloutput (Figure-71, 72) by
coloring the vertices of the original model withspect to the calculated error
values at those vertices. The red regions can bsidered as relatively low error
regions whereas as the color deviates to yellovgergrand blue then the

corresponding error increases respectively.

Figure 72. A sample visual output of the metro foolthe Bumpy Torus model
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