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ABSTRACT

INTERACTIONS OF LITHIUM-CARBON NANOSYSTEMS: MOLECULAR
DYNAMICS SIMULATIONS AND DENSITY FUNCTIONAL THEORY

CALCULATIONS

Peköz, Rengin

Ph.D., Department of Physics

Supervisor : Prof. Dr. Şakir Erkoç

September 2008, 88 pages

Single walled carbon nanotubes have been attracting interest for their electronic,

magnetic, chemical and mechanical properties. Moreover, since they are ideal

nano-containers, the adsorption and absorption properties provide them to be

used as Li/Li+ ion batteries. The capacity, rate capability and cycle life of

the batteries are the important points which must be improved to have better

results. In this thesis Li/Li+ ion doped carbon nano structures are investi-

gated theoretically in order to contribute to the lithium battery technology.

The present studied carbon nano structures are the fullerenes, single-walled car-

bon nanotubes, pristine and defected (Stone-Wales and mono-vacancy defected)

carbon nanocapsules. The Li/Li+ interactions with these nano structures have

been investigated using semi-empirical molecular orbital method at PM3 level,

density functional theory method with B3LYP exchange-correlation functional

using 3-21G or 6-31G basis sets. Furthermore, the systems have been investi-

gated by molecular dynamics simulations in which Tersoff potential and an em-

pirical many-body potential have been used to define the various interactions. In
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this thesis the optimized geometries, thermodynamical quantities, interfrontier

molecular orbital eigenvalues and dipole moments of the studied systems have

been reported.

Keywords: Carbon nanocage structures, density functional theory, molecular-

dynamics simulations.
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ÖZ

NANOSİSTEMLERDE LİTYUM-KARBON ETKİLEŞMELERİ: MOLEKÜLER
DİNAMİK MODELLEMELER VE YOĞUNLUK FONKSİYONU TEOREMİ

HESAPLARI

Peköz, Rengin

Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Şakir Erkoç

Eylül 2008, 88 sayfa

Tek duvarlı karbon nanotüpler elektronik, manyetik, kimyasal ve mekanik özellik-

lerinden dolayı ilgi çekiyorlar. Bundan başka, ideal nano-kaplar oldukları için,

dıştan ve içten emilim özellikleri Li/Li+ iyon pilleri olarak kullanılmalarını sağlar.

Pillerin kapasite, hız yeteneği ve devir ömrü daha iyi sonuçlar elde etmek için

geliştirilmesi gereken noktalardır. Bu tezde Li/Li+ iyon katkılanmış karbon

nano yapılar teorik olarak lityum pil teknolojisine katkıda bulunmak üzere in-

celenmiştir. Çalışılan nano yapılar fullerenler, tek duvarlı karbon nanotüpler,

hasarsız ve hatalı (Stone-Wales ve tek-boşluklu hatalı) karbon nanokapsüllerdir.

Bu sistemler ile Li/Li+ iyon etkileşmeleri yarı-empirik moleküler orbital meto-

dunda PM3 seviyesinde, yoğunluk fonksiyoneli teoremi metodunda B3LYP değişim-

korelasyon fonksiyoneli ile 3-21G ya da 6-31G temel setleri kullanılarak in-

celendi. Bundan başka, sistemler molekül dinamik modellemeler ile de ince-

lendi. Bu modellemelerde değişik etkileşmeler için Tersoff potansiyeli ile deney-

sel çok-parçacıklı sistemler için geliştirilmiş potansiyel kullanılmıştır. Bu tezde

çalışılan sistemlerin optimize edilmiş geometriler, termodinamik nicelikler, iç-
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sınır moleküler orbital enerji değerleri ve dipol momentleri verilmiştir.

Anahtar Kelimeler: Karbon nanokafes yapılar, yoğunluk fonksiyonel kuramı,

molekül-dinamiği modellemeleri
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CHAPTER 1

INTRODUCTION

Since their discoveries by Kroto [1] and Iijima [2], fullerenes and carbon nan-

otubes (CNTs) are attracting more and more interest among scientists and en-

gineers because of their electronic, magnetic [3], chemical [4], high-mechanical

strength and flexibility properties. Although many compounds from the fullerene

class have been discovered, the physical and chemical properties of C60 molecule

such as being the most stable one at room temperature, have been preferred

to study because of its suitability to large scale synthesis [5] and its ability to

be endohedrally doping [6,7]. Furthermore, endohedral metal atom doped C20

molecule has been investigated theoretically [8]. The space between and the

interiors of the nanotubes are ideal nano-containers for intercalation of foreign

atoms and molecules [9-15]. The adsorption and absorption properties of these

carbon structures provide applications such as hydrogen storage [16,17], nano-

catalyst [18], gas sensors [19], thermionic metal supplies [20], one-dimensional

nano junction and superconductors [21], and power devices such as Li and Li+

ion batteries [22-27].

The anode, cathode and electrolyte materials used in a battery affect the volt-

age, capacity, life of the battery and the safety. The lithium batteries have

lithium metal or lithium compounds as the anode material. For the lithium-

ion batteries, graphite has been the most popular material for the anode [28],

[29]. Lithium can migrate from anode to cathode (in the discharge process) and

from cathode the anode (in the charge process). The insertion/intercalation
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(extraction/deintercalation) is the lithium movement into (out of) the anode or

cathode. Under optimal conditions lithium intercalates into graphite to form

LiC6 and the use of graphite instead of metallic lithium causes a capacity reduc-

tion from 3860 mAh/g to 372 mAh/g [30]. The performance of these batteries

depends on the Li/C ratio and the mobility of the lithium. Higher energy den-

sity is obtained when the Li/C ratio is increased inside the host material.

Recently, CNTs have been thought of as promising candidates as anode material

of the batteries. The lithium ions can intercalate both to the channels between

the CNTs and to the interior of the CNTs themselves which results in a higher

energy density. In the experiments carried out by Gao et al. [31], the interca-

lation density reached up to Li2.6C6 after ball milling process. Moreover, it was

found that when the single-walled CNTs (SWCNTs) were chemically etched to

short segments it was observed that the specific lithium capacity increased from

LiC6 to LiC3 [24]. These improvements have attracted many researchers to in-

vestigate deeply the SWCNTs for the lithium-ion batteries both experimentally

and theoretically. The theoretical investigations performed by Garau et al. [32]

were basically on the possibilities of Li+ ion insertion through the open ends

of SWCNTs having different diameters. The first-principles calculations carried

out by Zhao et al. [33] explored the potential energy profiles of lithium confined

inside SWCNTs and they found that lithium had high mobility around the tube

axis. The first principles calculations of Li/Li+ ion adsorption on the side walls

of CNTs performed by Udomvech et al. [34] and found that the intercalated

Li/Li+ ion preferred to localize near the CNT side wall instead of at the tubule

length and the usage of larger diameter CNTs would have a drawback compared

to the small diameter tubes. Zhao et al. [35] investigated the diffusion of lithium

on the exteriors and the interiors of SWCNTs and they found that lithium could

got adsorbed on both the interior and the exterior surfaces of the tubes.

As they once thought to be, experiments showed that CNTs are not perfect

2



(defect-free) in reality [36,37]. Defects can appear during nanotube growth or can

be created by external actions. These defects can be classified into three groups:

topological (introduction of ring types other than hexagons), rehybridization

(ability of carbon atom to hybridize between sp2 and sp3), and incomplete

bonding defects [38]. The defect types are Stone-Wales (SW) defects, single

or multiple vacancies, adatom, impurity, and dislocation defects. It is a known

fact that the existence of defects affects the mechanical, electrical and thermal

properties of CNTs. It has been shown that the atomic vacancies can lower the

tensile strength by up to 85% [39]. Moreover, the conductivity changes through

the defective region of the CNT [40]. Moreover, single monoatomic vacancies

induce magnetic properties and defects can cause the thermal conductivity to

reduce. These defects have an important role in the diffusion process of lithium

ions through the nanotubes [41]. An ab initio study of Meunier et al. [30] in-

vestigated the lithium diffusion into different CNTs through the defective rings

and found that while lithium ions could enter the tubes through the topologi-

cal defects which are more than nine-sided rings, the lithium could not diffuse

through the side walls of the tubes. Nishidate et al. [42] studied the energetics

of lithium ion adsorption on SWCNTs and the change in total average voltage

caused by the lithium adsorption on the possible sides of the defective tubes

using density functional theory (DFT) calculations and found that the adsorp-

tion of lithium on SWCNTs was very feasible. Another theoretical investigation

was performed by Kar et al. [25] to explore the Li+ ion insertion through the

side-wall or through the cap region of the CNTs and it was found that the out-

side position of lithium ions were more favorable and as the size of the rings

increased insertion of lithium ions were easier.

As can be seen from the above paragraphs, in the literature there are many ex-

perimental and theoretical investigations related to the Li/Li+ ion interactions

with CNTs. However, up to our knowledge, the defect-free and defected car-

bon nanocapsule (CNC) systems with Li/Li+ doping have not been investigated.

The purpose of this thesis is to investigate these kind of systems in detail and
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to do our best to fill the blanks in the literature about these topics.

This thesis is divided into four chapters. In the second chapter, the theoretical

methods used in the investigations of the studied systems have been explained.

In the third chapter, a brief introduction to the systems and the results of the

studies will be presented. In the last chapter, a summary of this thesis will be

given.
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CHAPTER 2

THEORETICAL BACKGROUND ON THE

COMPUTATIONAL TOOLS

2.1 Computational Methods

In this thesis Molecular Mechanics, Quantum Mechanics Calculations and Molec-

ular Dynamics Simulations are performed. Therefore, this section is divided into

three subsections. Molecular mechanics is the simplest method among the others

since it uses the equations of vibrational spectroscopy in order to investigate the

potential energy surfaces and the structural properties of molecules. Quantum

mechanics methods include semi-empirical, ab initio and density functional the-

ory. In this thesis, since ab initio calculations have not been used, no theoretical

background for this method will be presented. Semi-empirical methods make

approximations to solve the Schrödinger equation by replacing the mathemati-

cal expressions with experimental values. On the other hand, density functional

theory solves the Schrödinger equation for the electron density not for a wave-

function.

The main advantage of using molecular mechanics or semi-empirical methods

over density functional theory is that these methods are very fast which gains

more importance as the system size increases. Furthermore, if the system is well-

parameterized the calculation results are found to be more closer to experiment

than small basis set used ab initio or density functional theories. The drawback
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of the molecular mechanics is that the calculations require parameters which is

time-consuming to develop.

2.1.1 Molecular Mechanics

In molecular mechanics, a force field defines the functional form of the potential

energy and the set of parameters for each type of atom in the system. The

molecular mechanics methods have separate functional forms such as MM+

which is the extension of MM2 [43, 44], AMBER [45], OPLS [46], and BIO+

[47]. In this thesis, MM+ is used for the optimization purposes because of the

fact that it works best for thermodynamical and structural properties of nonpo-

lar molecules. In general, a force field includes several interaction terms such as

bond stretching, bond angle bending, bond dipoles, dihedral motions, and van

der Waals interactions.

2.1.1.1 Bond stretching and bond angle bending

The atoms of a molecule may be thought as the collection of mutually indepen-

dent springs. Bond stretching is related to the deformation of a bond from its

equilibrium bond length. At very large deformations a Morse potential can be

used instead of a harmonic potential. However, because of the requirement of

excessive amounts of time, they are not preferred. For small displacements from

equilibrium a harmonic potential is given as:

Vbond =
∑

bonds

kr(r − r0)
2 (2.1)

where kr is the stretch force constant and r0 is the equilibrium distance.
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MM+ uses the following formula:

Vbond = 142.88
∑

bonds

1

2
Kr(r − r0)

2 [1− switch(a1, a2, a3)CS(r − r0)] (2.2)

where a1 = r− r0, a2 = −1
3
CS, a3 = −4

3
CS, and CS is set to -2.0 and the cutoff

function (switch) is defined as

switch(x, a, b) = 1 x ≤ a

switch(x, a, b) = 0 x ≥ b

switch(x, a, b) =
(b− x)2(b + 2x− 3a)

(b− a)3
a < x < b. (2.3)

The deformation of an angle from its ”natural” value is associated to the bond

angle bending. For small displacements from equilibrium the form of a harmonic

potential is used:

Vbond angle =
∑

angles

kθ(θ − θ0) (2.4)

where kθ is the bending force constant.

MM+ includes a sextic angle bending term for the angle bending which has the

following form:

Vbond angle = 0.044
∑

angles

1

2
Kθ(θ − θ0)

2[1 + SF (θ − θ0)
4] (2.5)

where the SF is the scale factor and the default value is 7.0×10−8.

2.1.1.2 Bond dipoles

Electrostatic charge-charge interactions or definition of a set of atomic charges

are not used in MM+ calculations. The electrostatic contribution is obtained

from a set of bond dipole moments which are associated with polar bonds. The

center of the dipole is the midpoint of the bond and the two dipoles µi and µj
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are separated by Rij (see Fig. 2.1). The dipole interaction potential is defined

as [43]:

Vdipole = 14.39ε
∑

ij∈polar bonds

µiµj[
cos χ− 3 cos αi cos αj

R3
ij

] (2.6)

where ε is the dielectric constant, χ is the angle between the two dipole vectors,

and αi and αj are the angles that the two dipole vectors make with the Rij

vector. Bond dipoles are given in units of Debyes.

Figure 2.1: Bond dipoles.

2.1.1.3 Dihedral motion

The dihedral potential in MM+ is given in the following equation [43]:

Vdihedrals =
∑

i

V1

2
(1 + cos φi) +

V2

2
(1− cos 2φi) +

V3

2
(1 + 3 cos φi) (2.7)

where the values of V1, V2, and V3 are in kcal/mol and φi is the phase angle.

The dihedral angle (torsional) rotation arises from the bonding of 4 atoms with

2 planes and shown in Fig. 2.2.

2.1.1.4 van der Waals interaction

The total interaction potential describes the sum of the repulsive and attractive

forces for a pair of atoms. Lennard-Jones potential (see Fig. 2.3) is the most
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Figure 2.2: Dihedral motions.

widely used interaction among the force fields. However, an exponential repul-

sion term with an attractive 1/R6 dispersion interaction is combined. The van

der Waals interaction potential is the following:

VvanderWaals =
∑

ij∈vdW

εij(2.90× 105e−12.5ρij − 2.25ρ−6
ij ) (2.8)

where ri (van der Waals radii for the atoms) and εij (hardness parameter deter-

mining the depth of the attractive well) are the basic parameters. The parame-

ters for a pair are calculated from individual atom parameters, such as:

r∗ij = r∗i + r∗j

εij =
√

εiεj

ρij =
Rij

r∗ij
. (2.9)

2.1.2 Semi-empirical Methods

Semi-empirical calculations use many parameters related to the type of the atom.

The carefully constructed quantum mechanical formulation is combined with

these empirical parameters which are compared with the experiment. Hyper-

Chem package supports ten semi-empirical self-consistent field (SCF) methods:
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Figure 2.3: The van der Waals (6-12) and hydrogen bond (10-12) potentials are
graphed. The AMBER force field uses the (10-12) potential.

complete neglect of differential overlap (CNDO), intermediate neglect of differ-

ential overlap (INDO), modified intermediate neglect of differential overlap (ver-

sion 3, use of d-orbitals) (MNDO(/3/d)), Austin model which is a modification

of MNDO (AM1), PM3 (parametric model number 3) is a reparameterization of

AM1 and based on the neglect of diatomic differential overlap approximation,

ZINDO/1 and ZINDO/S are modified version of INDO, and total neglect of dif-

ferential overlap (TNDO). In this thesis, PM3 calculations have been performed

using both HyperChem and Gaussian03 [48] packages. In order to run a semi-

empirical calculation certain options are needed which take part on the option

dialog boxes on the Setup menu of the package programs. In the following sub-

section, some of the options will be explained briefly.

2.1.2.1 Charge and spin multiplicity

The extra (net) charge given to the system specifies whether the system is a

neutral one, cation (positively charged), or anion (negatively charged) system.
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Multiplicity (total spin state) is calculated as 2S + 1, i.e., the total number of

unpaired electrons+1. Closed-shell systems have a multiplicity of one which

means it is a singlet state. When the molecule has one unpaired electron it is

a doublet with spin multiplicity two. In general, a system having two unpaired

electrons has a multiplicity of three, however, in some cases it can be a singlet

as in the case of a biradical.

2.1.2.2 Spin pairing

Unrestricted Hartree-Fock (UHF) and restricted Hartree-Fock (RHF) calcula-

tions are chosen according to the number of electrons in the system. While

UHF can be used for both closed-shell (singlets) and open-shell (doublets and

triplets) calculations, RHF is used for closed-shell calculations.

2.1.2.3 Convergence criteria

The precision of the self-consistent field (SCF) calculations is controlled by the

convergence limit and the iteration limit. Convergence limit is the difference in

total electronic energy between two successive SCF iterations. Iteration limit is

the maximum number of iterations permitted to reach the desired convergence

limit. The convergence limit in the single point energy calculations at PM3 level

performed using HyperChem package is taken to be 0.001 kcal/mol. Moreover,

the convergence on energy is set to 10−6 au. in the DFT calculations.
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2.1.3 The Hartree, Hartree-Fock and Hartree-Fock-Roothaan Methods

for the Many-Particle Schrödinger Equations

Hartree theory [49-51] is the fundamental to the traditional electronic structure

methods the aim of which is to solve the electronic Schrödinger equation. It

is an approximate method for obtaining the ground-state wavefunction and the

ground-state energy. Hartree and the other methods developed from Hartree

method are based on the many-electron wavefunction which depends on 3N

coordinates of all N electrons. The methods are grounded on the idea that 3N-

dimensional of N-electron wavefunction of the system can be approximated by

a single Slater determinant [52]. With the help of the variational principle N

coupled equations for the N spin orbitals can be derived and the solutions of

these equations produces the Hartree-Fock wavefunction and the energy of the

system can be obtained, which are the approximate results. In the following

parts, the details of the Hartree and the other methods will be presented briefly.

The interested readers are referred to Ref. [53] to follow up the material in

greater depth.

The many-body Hamiltonian for the time-independent Schrödinger equation is

in the following form:

Ĥe = T̂e + V̂ne + V̂ee + T̂n + V̂nn

= − h̄2

2m

N∑

i=1

∇2
i −

N∑

i=1

M∑

k=1

1

4πε0

Zke
2

|−→r i −−→R k|
+

1

2

N∑

i1 6=i2=1

1

4πε0

e2

|−→r i1 −−→r i2|

− h̄2

2Mk

M∑

k=1

∇2
k +

M∑

k1<k2

1

4πε0

Zk1Zk2e
2

|−→R k1 −−→R k2|
(2.10)

where He is the electronic Hamiltonian, N is the number of electrons, M is the

number of nuclei, T̂e is the kinetic energy of the electrons, V̂ne is the nuclei-

electron interaction, V̂ee is the electron-electron interaction, T̂n is the kinetic

energy of the nuclei, and V̂nn is the nuclei-nuclei interaction.

After constructing the many-body Hamiltonian, the first approach is the Born-
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Oppenheimer approximation [54] which states that the electrons move much

faster than the nuclei so that the motion of the nuclei can be separated from

the motion of electrons. The advantage of using this approximation is that since

it treats the nuclei as classical particles which contribute to the total energy

and give an electrostatic field in which the electrons move, but their effects

otherwise are ignored. When the Born-Oppenheimer approximation is taken

into account, the atomic unit conventions (h̄=me=e=1/4πε0=1) are applied

and for the time being the final term (V̂nn) is taken to be a constant for the

many-electron Hamiltonian, Eq. 2.10 takes the following form:

Ĥe = −1

2

N∑

i=1

∇2
i −

N∑

i=1

M∑

k=1

Zk

|−→r i −−→R k|
+

1

2

N∑

i1 6=i2=1

1

|−→r i1 −−→r i2|
. (2.11)

The Hamiltonian operator contains one- and two-electron operators,

ĥ1(~ri) = −1

2
∇2

i −
M∑

k=1

Zk

|−→r i −−→R k|
ĥ2(~ri, ~rj) =

1

|−→r i −−→r j|

Ĥe =
N∑

i=1

ĥ1(~ri) +
1

2

N∑

i6=j=1

ĥ2(~ri1 , ~ri2). (2.12)

An approximate solution to the electronic Schrödinger equation should be searched

ĤeΨe = EeΨe (2.13)

and the approximate solution to the wavefunction is

Ψe ' Φ. (2.14)

The important point is that the approximate wavefunction Φ should be so exact

that the calculated observables are accurate enough. One of the ways of con-

structing the approximate wavefunction is the Hartree approximation which is

a variational approach. The method is based on thinking of N electrons as oc-

cupying N different orbitals each of which can accommodate one electron. The
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approximate wavefunction can be written in terms of the individual orbitals (φi):

Φ(~x1, ~x2, ..., ~xN) = φ1(~x1) · φ2(~x2)...φN(~xN) (2.15)

with the constraint that all the individual orbitals are orthonormal. The defi-

ciency of the Hartee approximation is that it can not obey the Pauli-exclusion

principle which satisfies the antisymmetry property. The antisymmetry con-

ditions are satisfied by using the Hartree-Fock method [50, 55]. The required

antisymmetric wavefunction is found to be in the following form:

Φ(~x1, ~x2, ..., ~xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(~x1) φ2(~x1) · · · φN(~x1)

φ1(~x2) φ2(~x2) · · · φN(~x2)
...

...
. . .

...

φ1(~xN) φ2(~x1) · · · φN(~x1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.16)

where the factor 1/
√

N ! comes from the normalization. The determinant of Eq.

2.16 is the so-called Slater determinant. Hartree-Fock approximation depends

on the approximation of independent particles like the Hartree approximation.

Although Hartree-Fock method is not perfect, it includes a very important part

of the physics of most of the systems.

The expectation value of the Hamiltonian for the Slater determinant is

EHF = 〈Φ|Ĥe|Φ〉 =
N∑

i=1

〈φi|ĥ1|φi〉+
1

2

N∑

i,j=1

[〈φiφj|ĥ2|φiφj〉 − 〈φjφi|ĥ2|φiφj〉].
(2.17)

While finding the approximate wavefunction, the variational principle plays an

important role. It is crucial to notice that any change in the expectation value

of the Hamiltonian because of an infinitesimal change in any of the orbitals φk

should be zero, i.e.,

φk(~x) → φk(~x) + δφk(~x) ⇒ δ〈Φ|Ĥe|Φ〉 = 0. (2.18)

Moreover, the set of orbitals φk should be orthogonal throughout the minimiza-

tion process which should satisfy the following equation:

δF = δ


〈Φ|Ĥe|Φ〉 −

∑

i,j

λij(〈φi|φj〉)− δij


 = 0. (2.19)
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After calculating the changes of one- and two-body terms under an infinitesimal

variation of one of the orbitals, φk, the minimization condition δF=0 requires

the following in terms of integrals:

ĥ1φk(~x1) +
∑

i

{∫
φ∗i (~x2)ĥ2[φi(~x2)φk(~x1)]d~x2 −

∫
φ∗i (~x2)ĥ2[φi(~x1)φk(~x2)]d~x2

}

=
∑

i

λkiφi(~x1). (2.20)

The above equation (Eq. 2.20) can be rewritten using the orbital dependent

operators, Ĵi and K̂i, respectively, as

[
ĥ1 +

∑

i

(Ĵi − K̂i)

]
φk =

∑

i

λkiφi. (2.21)

The Coulomb operators, Ĵi, identify the classical electrostatic interactions be-

tween two charge distributions. The exchange operators is the result of the

requirement that the N-electron wavefunction is to be antisymmetric in the case

of interchanging two electrons. Then the Fock operator is defined as

F̂ = ĥ1 +
N∑

i=1

(Ĵi − K̂i) (2.22)

with the Fock operator Eq. 2.22 takes the form

F̂ φk =
N∑

i=1

λkiφi (2.23)

which has many solutions and each corresponding to the different sets of λki.

Then one can concentrate on the Lagrange multipliers obeying

λki = δk,iεk. (2.24)

In this case, the Hartree-Fock equations become a traditional eigenvalue problem

F̂ φk = εkφk. (2.25)

The Hartree-Fock equations resemble to the Schrödinger equation but the op-

erator is a Fock operator not a Hamiltonian operator. For each k, there is an

equivalent equation which is one for single particles and not for all N parti-

cles. The Hartree-Fock equations seem to be simple, however, when the precise
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forms of the operators are inserted they are used to have complicated integro-

differential equations. In 1951 Roothaan [56] suggested an alternative way of

finding an approximate wavefunction which is in the form of a Slater determi-

nant. He proposed to expand the orbitals in a set of fixed basis functions, that is,

instead of varying all orbitals in all points, only a finite variation was considered.

In Roothaan’s expansion, each orbital is written as

ψl(~x) =
Nb∑

p=1

χp(~x)cpl, (2.26)

where the basis function χ and Nb are chosen in advance and only the expansion

coefficients cpl are varied.

When this expansion is substituted to the Hartree-Fock equation and the mini-

mization is done, again an eigenvalue equation is obtained:

Nb∑

m=1



〈χp|ĥ1|χm〉+

N∑

i=1

Nb∑

n,q=1

cnic
∗
qi[〈χpχq|ĥ2|χmχn〉 − 〈χqχp|ĥ2|χmχn〉]



 cml

= εl

Nb∑

m=1

〈χp|χm〉cml (2.27)

which is called as the Hartree-Fock-Roothaan equations and may be solved using

standard matrix techniques in a self-consistent manner.

2.1.4 Density Functional Theory

DFT uses the electron density depending on 3 variables which is simpler than

the wavefunction approach. The history of DFT starts with Hohenberg and

Kohn theorem [57]. According to this theorem, the energy E of a molecular sys-

tem is a universal functional (E depends not only on simple variables but also

complicated function) of the electron density, i.e., E=E[ρ] and it is a ground

state theory. They showed that when the ρ is exact, the ground state energy

is exact, too. Hohenberg-Kohn theorems provide a formalistic proof to calcu-

late any ground state property but they do not provide any practical scheme
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for calculating them from the electron density. In 1965, the approach of Kohn

and Sham [58] provided the necessary information to calculate the ground state

properties from the electron density.

As it is stated before, solving the many-particle Schrödinger equation for the

ground state wavefunction even for small systems is a very difficult task. In-

stead of dealing with the electron wavefunction, electron density n(~r) provides

many simplifications to the problem. For a many-body system n(~r) is found

by calculating the expectation value of the single-particle density operator, i.e.,

n̂(~r), for the many-body wavefunction. The single-particle density operator is

given as:

n̂(~r) =
N∑

i=1

δ(~r − ~ri) (2.28)

and the corresponding density is calculated as:

n(~r) = 〈Ψ|n̂(~r)|Ψ〉 =
N∑

i=1

∫
δ(~r − ~ri)|Ψ(~r1, ..., ~rN)|2d~r1...~rN

= N
∫
|Ψ(~r, ..., ~rN)|2d~r2...~rN . (2.29)

Hohenberg and Kohn proved that the expression above for the electron density

can be reversed, i.e., for a given ground state density n(~r) it is possible to

calculate the corresponding ground-state wavefunction Φ(~r), which is equivalent

to say that Φ is a unique functional of the density. As a result the other ground

state observables are also functionals of n. The next procedure is to write the

many-body Schrödinger equation in terms of the electron density. Remembering

the Eq. 2.11, one can write the ground-state energy as a functional of density:

Ee = T [n(~r)] +
∫

Vext(~r)n(~r)d~r +
∫

VC(~r)n(~r)d~r + E ′
xc[n(~r)] (2.30)

where T is the kinetic energy term, VC is the classical electrostatic (Coulomb)

potential from the interaction of electrons which is found in the form:

VC(~r1) =
∫ ρ(~r2)

|~r2 − ~r1|d~r2 (2.31)
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and Vext is the external field potential which is the electrostatic field generated

by the nuclei having the following form:

Vext(~r) =
M∑

k=1

−Zk

|~Rk − ~r| . (2.32)

The last term in the Eq. 2.30, E’xc comes from the corrections made to the

Hartree-Fock method and named as the exchange-correlation energy. It is the

sum of the kinetic energy correction and the electron-electron energy correction.

In the Hartree-Fock method kinetic energy was calculated as the sum of the

kinetic energies of the Kohn-Sham orbitals however this is not the case for real

systems. Moreover, since the electron-electron term is written in terms of the

two-particle density not in terms of the single-particle density, it needs to be

made an approximation which is the assumption of considering the two electrons

completely uncorrelated so that the electron-electron term can be written in

terms of the single-particle density and the correction to this term is called as

the correlation energy. Exchange energy arises from the Pauli exclusion principle

and the correlation energy comes from the repulsion between electrons. The

explicit form of the Eq. 2.30 is written as

Ee =
1

2

N∑

n=1

∫
d~rφ∗n(~r)∇2φn(~r)d~r +

∫
n(~r)Vext(~r)d~r

+
1

2

∫ ∫
d~r1d~r2

n(~r1)n(~r2)

|~r1 − ~r2| + E ′
xc[n(~r)]. (2.33)

Another problem with the DFT is that the exact functionals for exchange and

correlation energies are not known except for the free electron gas and again

approximations play an important role in the calculation of the physical quanti-

ties. Local density approximation (LDA) [59] is probably the most widely used

one which models the exchange-correlation energy of an electron as if it is a

homogeneous electron gas [58, 60]. According to LDA the electron density is

constant in space, as a result of this Vxc can be calculated as a function of the

constant density. Vosko-Wilk-Nusair (VWN) [61], Perdew-Zunger 81 (PZ81)

[62], Lee-Yang-Parr (LYP) [63], and Perdew-Wang (PW92) [64] functionals are
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some of the examples for the LDA. For the case of nonuniform charge densities,

some deviations for the exchange-correlation energy can occur from the uniform

case. The generalized gradient approximation (GGA) which uses the gradient

of the charge density is used to correct this deviation. Some of the functionals

of GGA type are developed by Becke [65], Perdew [66], Perdew-Wang [67], and

Perdew-Burke-Ernzerhof (PBE-96) [68].

During the half of the 1980s, all DFT studies were carried out using one of the

available LDA for the exchange and correlation effects. After the middle of the

1980s, different nonlocal or gradient approximations were developed. It was the

beginning of 1990s that a new approach has been come out by Becke [69] which

combines the Hartree-Fock and DFT for the exchange effects and uses DFT for

the correlation effects. This approach is called as the hybrid method and it

is based on the adiabatic connection approach [70]. The most popular hybrid

methods are the Becke’s 3 parameter functional where the non-local correlation

is provided by the LYP expression (B3LYP) [71], the Becke’s 3 parameter func-

tional with Perdew 86 correlation functional (B3P86) [71, 72], and the Becke’s

3 parameter functional with PW91 correlation functional (B3PW91) [66, 73].

2.1.4.1 Basis sets

As it is mentioned before single electron orbitals φk should be expanded in a

set of pre-defined basis functions χi (Roothaan’s theorem). If a reliable result

is expected the choice of the basis function plays an important role in the cal-

culations because they describe the shape of the orbitals in an atom and the

positions of the electrons to the nucleus and to the each other. The pre-defined

basis function χ(~r) can be written as

χ(~r) = Rnl(r)Ylm(θ, φ) (2.34)
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where the function χ is assumed to belong to an atom placed at the origin and

Ylm is the spherical harmonic function. One should decide how to choose the

radial parts of χ. There are orbitals used for this purpose which are the Slater-

type [74], Gaussian-type, plane-wave, and augmented-wave orbitals [53]. In the

following, since the Gaussian-type orbitals are used in this thesis, they will be

explained briefly.

Gaussian-type orbitals (GTOs, Gaussian orbitals, or Gaussians) are the func-

tions used as atomic orbitals to calculate the electron orbitals. These type of

orbitals make easier the overlap and other integrals to solve than the Slater-type

orbitals. GTOs have the following form:

χ(~r) = χ~R,α,n,l,m(~r) = 2n+1 α(2n+1)/4

[(2n− 1)!!]1/2(2π)1/4
rn−1e−αr2

Ylm(θ, φ) (2.35)

where α is known as the exponent of the Gaussian function or an orbital coeffi-

cient. There are many basis sets composed of Gaussians. The smallest of these

basis sets is called the minimal basis set. For a minimal basis set a single basis

function is used on each atom. STO-nG [75, 76] (each STO is expanded in n

Gaussians) and STO 4-31G (the core electrons are described by expanding the

STOs in four Gaussians, the valance s and p orbitals are expanded in three and

one Gaussians, respectively) are the examples to the minimal basis sets. Since

minimal basis sets see all the electrons the same they are not used for research

just for qualitative purposes.

Another basis set type is the split valance basis sets which take into account

that the valance electrons are involved in bonding and chemical reactions. The

most popular split valance basis sets are found by Pople [77] and in the form of

X-YZG where X represents the number of primitive Gaussians consisting each

core atomic basis function, and each valance orbital is described by two contrac-

tions, one with Y primitives and the other with Z primitive (for example 3-21G

[78, 79] and 6-31G [80-83]).
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The minimal and split valance basis sets do not take into account the polariza-

tion and diffusion effects. If polarization effect is neglected an atom will not be

affected by the presence of the other one which does not happen to real systems.

As two atoms get closer, the shape of the orbitals are distorted. This polariza-

tion effect is added to the basis sets by an ”∗” symbol. As an example, writing

the electron configuration for the hydrogen atom shows that the electron is in

the s-orbital and a p-orbital does not exist. Addition of polarization means that

some of the 1s electron is in a p-orbital. The symbols ”∗” and ”∗∗” notation

means that (d) and (d,p) orbitals added to the calculations. Diffuse functions

are used when there is a probability of electrons being found away from the nu-

cleus which is the case for the anions and excited systems. Diffuse basis sets are

shown by a ”+” symbol. If they are doubly diffused indicated by a ”++” symbol.

2.1.5 Geometry Optimizations

Most of the calculations serve to find the optimized geometries of the molecules

for which the system has the minimum energy. For a potential energy V and

cartesian coordinates ~r, the following equation is satisfied:

∂V

∂~r
= 0. (2.36)

A geometry optimization calculation can be performed to find a potential energy

minimum or to get a new stable structure for the following single point, quantum

chemical calculations or molecular dynamics simulations. In the HyperChem

package program three types of optimization methods are available: steepest

descent [84], conjugate gradient (Fletcher-Reeves and Polak-Ribiere) and block

diagonal (Newton-Raphson). In this thesis steepest descent and Polak-Ribiere

algorithms have been used and will be explained in the following. For a detailed

information for the optimization techniques, the interested readers can consult
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to the Refs. [85-87].

2.1.5.1 Steepest (gradient) descent method

It is a first order minimization method and the simplest of the gradient methods.

It uses the negative gradient of the potential energy to find a local minimum

because the choice of the direction where the energy decreases is in the direction

of negative gradient. If the positive gradient is followed, one reaches a local

maximum of the energy which is known as the gradient ascent. The direction of

the movement, i.e., the gradient ~gi, is calculated as:

~gi = − ∇V (~ri)

|∇V (~ri)| . (2.37)

The minimum energy search starts at an arbitrary point and then move down

the gradient. The iterative procedure is given by:

~ri+1 = ~ri + λi~gi (2.38)

where λi is the step size.

This method is very simple and fast, however the convergence towards a mini-

mum is very slow. The process of the steepest descent method is illustrated in

Fig. 2.4 [43]. The energy minimum is located at point M and the starting point

is A. The importance of the step size can be seen in this figure. If the initial

step size is appropriate then the next point on the potential energy surface will

be the point B and then it follows the B-C path. However if the initial step size

is large, the next step will be the point D and then it goes to a point on the D-E

path which brings the position away from the minimum.

2.1.5.2 Conjugate gradient method with Polak-Ribiere algorithm

While the steepest descent method uses the gradient of the energy, conjugate

gradient methods use both the current gradient and the previous search direc-
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Figure 2.4: The steepest descent method searching for a minimum.

tion. The main advantage of the conjugate gradient methods over the steepest

descent is that they search the minimum in all directions. Because of using the

minimization history to find the gradient direction, it is faster than the steepest

descent method. The new gradient of the search is given as

~si+1 = ~gi+1 + bi+1~si (2.39)

where the coefficient b mixes the new gradient with the old step information.

The differences in the definition of the coefficient b yields different conjugate

gradient methods. For example, the Polak-Ribiere method uses the following

form:

bi+1 =
(~gi+1 − ~gi) · ~gi+1

~gi · ~gi

(2.40)

while the Fletcher-Reeves method uses the coefficient as:

bi+1 =
~gi+1 · ~gi+1

~gi · ~gi

. (2.41)

For non-quadratic functions Polak-Ribiere based algorithms found to give better

results [87].
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2.1.6 Molecular Dynamics

In the late 1950’s molecular dynamics (MD) simulation was introduced by Alder

and Wainwright [88, 89] to study the interactions of hard spheres and the first

realistic system (liquid water) was studied by Stillinger and Rahman [90] in

1974. MD simulations are based on the computation of the equilibrium and

transport properties of a classical many-body system where the classical implies

that the nuclear motion of the particles obeys the laws of Newtonian mechanics.

Performing a MD simulation is very similar to an experiment: first the model

system is chosen consisting of N particles, then the Newton’s equations of mo-

tion are solved until the system is equilibrated (i.e., there is no any change of

the properties of the system with time), and finally the actual measurements

are performed. In this section a brief introduction to MD simulations will be

provided, for a detailed investigation the following textbooks are very compli-

mentary [91-93].

A very simple MD program works as:

1. The initial positions and velocities to all particles in the system are as-

signed.

2. The forces on the particles are calculated.

3. The Newton’s equations of motions are integrated.

4. The averages of the measured quantities are calculated.

There are many potential functions which serve to describe the motion of each

particle the chose of which depends on the purpose and type of the calculation.

Empirical potentials (Brenner potential [94]), pair and many-body potentials

(Lennard-Jones potential [95], Tersoff potential [96]), semi-empirical potentials

and polarizable potentials are the potentials that can be used to calculate the
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forces. Moreover, ab-initio [97] and hybrid quantum mechanical methods can

be used in the MD simulations.

In this thesis, Tersoff potential and an empirical many-body potential [98] have

been used in the MD simulations. Tersoff potential have been used to model

the two- and three-body carbon interactions and C-Li, C-Li+, Li-Li and Li+-

Li+ interactions have been modeled by the by the many-body potential. The

total interaction energy is taken to be the sum of two-body and three-body

contributions:

Φ = φ2 + φ3. (2.42)

For the Tersoff potential, the explicit form of the two-body and three-body

energies are:

φ2 = A
N∑

i<j

U
(1)
ij (2.43)

φ3 = −B
N∑

i<j

U
(2)
ij


1 + βn




N∑

k 6=i,j

Wijk




n

−1/2n

(2.44)

where Uij and Wijk are the two-body and three-body interactions and the forms

are given as:

U
(1)
ij = fc(rij)exp(−λ1rij)

U
(2)
ij = fc(rij)exp(−λ2rij)

Wijk = fc(rik)g(θijk) (2.45)

where

fc(r) =





1 for r<R-D

1
2
− 1

2
sin[π

2
(r −R)/D] for R-D< r <R+D

0 for r>R+D

(2.46)
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and

g(θijk) = 1 +
c2

d2
− c2

d2 + (h− cos θijk)2
. (2.47)

The Tersoff potential parameters for carbon atom are: A=1393.6 eV, B=346.74

eV, λ1=3.4879 Å−1, λ2=2.2119 Å−1, β=1.5724×10−7, n=0.72751, c=38049,

d=4.3484, h=-0.57058, R=1.95 Å, and D=0.15 Å.

The potential energy function for C-Li, C-Li+, and Li-Li is given:

Uij =
A1

rλ1
ij

exp(−α1r
2
ij)−

A2

rλ2
ij

exp(−α2r
2
ij) (2.48)

where A1, A2, λ1, λ2, α1, and α2 are the parameters given in Table 2.1 [98, 99].

Table 2.1: Parameters of the pair potential energy functions (energy is in eV and
distance is in Å).

Parameter C-Li C-Li+ Li-Li
A1 12.6669958 38.4637591 13.8015320
A2 6.78888092 21.3476845 2.80900799
λ1 2.90177754 1.71241891 0.465222263
λ2 0.08715453 1.16453151 0.165690375
α1 0.0554067374 0.229357324 0.490324725
α2 0.0967419455 0.133259571 0.101058131

The potential energy function for Li+-Li+ interaction is taken as purely repulsive:

Uij =
a′

rij

exp(−b′rij) (2.49)

where a’ and b’ are the parameters (a’=0.5429457 eV Å, b’=0.0033331 Å−1)

[98, 99].

After calculating the interaction energies one can easily find the forces between

the particles. Now everything is ready for the integration of Newton’s equations
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of motion. The simplest way to construct an integrator is to expand the positions

and velocities in a Taylor series. These type of algorithms are named as Verlet

algorithm [100, 101]. For a small time step δt, the Taylor expansion is:

r(t + δt) = r(t) + v(t)δt +
a(t)

2
δt2 +

1

6

d3r

dt3
δt3 + O(δt4)... (2.50)

and in a similar manner

r(t− δt) = r(t)− v(t)δt +
a(t)

2
δt2 − 1

6

d3r

dt3
δt3 + O(δt4)... (2.51)

Addition of the Eq. 2.50 and 2.51 gives:

r(t + δt) = 2r(t)− r(t− δt) + a(t)δt2 + O(δt4). (2.52)

As can be seen form the Eq. 2.52, velocity is not needed while computing the

position of the particle, however, for the control of the energy conservation the

velocity is also required. Substraction of Eq. 2.51 from Eq. 2.50 and dividing

by the time step δt gives:

v(t) =
r(t + δt)− r(t− δt)

2δt
+ O(δt2). (2.53)

This velocity algorithm calculates the velocities at time step t, not at t+δt

or t+δt. The leap-frog algorithm [102] solves this problem. According to this

algorithm the velocity is calculated at half time steps which uses the acceleration

information at t and the previous velocity at (t-1
2
δt):

v
(
t +

1

2
δt

)
= v

(
t− 1

2
δt

)
+ a(t)δt (2.54)

and the position can be calculated using this velocity:

x(t + δt) = x(t) + v
(
t +

1

2
δt

)
δt. (2.55)

The last two equations shows that the velocity and the position of the particles

can not be determined simultaneously. The velocity at time t can be approxi-

mated as:

v(t) =
v(t + δt

2
) + v(t− δt

2
)

2
. (2.56)
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The ”velocity Verlet algorithm” is used to overcome this problem which stores

information from one time step using:

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)δt2 (2.57)

v(t +
δt

2
) = v(t) +

1

2
δta(t). (2.58)

a(t + δt) = − 1

m
∇V |r(t+δt) (2.59)

v(t + δt) = v(t +
δt

2
) +

1

2
a(t + δt)δt. (2.60)

2.2 Properties of Carbon Nano Structures

Carbon is one of the most interesting elements in the periodic table since it

is found in many different forms such as graphite, graphene, diamond, carbon

fibers, fullerens and carbon nanotubes. This variety in carbon arises from the

fact that it can form different types of valence bonds (hybridization).

It is very surprising that although the discovery of graphene [103] is very late

(in 2004) when compared with the other types of carbon, it is the starting point

for all other types. Graphene is a planar sheet of sp2-bonded carbon atoms in

the form of a honeycomb crystal lattice. The unit cell and the Brillouin zone of

the two-dimensional graphene is shown in Fig. 2.5 [104].

Figure 2.5: (a) The unit cell and (b) Brillouin zone of graphene are shown as the
dotted rhombus and the shaded hexagon, respectively.
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In the above figure, ~ai are the unit vectors in real space and ~bi are the reciprocal

lattice vectors. In the x,y coordinates, the unit vectors ~a1 and ~a2 are expressed

as:

~a1 =

(√
3a

2
,
a

2

)
, ~a2 =

(√
3a

2
,−a

2

)
(2.61)

where a=2.46 Å is the lattice constant of graphene. The reciprocal lattice vectors

are given as:

~b1 =

(
2π√
3a

,
2π

a

)
, ~b2 =

(
2π√
3a

,−2π

a

)
(2.62)

which has a lattice constant of 4π/
√

3a. The high symmetry points are the Γ,

K and M and the energy dispersion relation is calculated for the triangle formed

by these three symmetry points.

In 1985, Kroto [1] found C60 in molecular beam experiments the discovery of

that brought them the 1996 Nobel Prize in Chemistry. C60 is named as buck-

minsterfullerene because of the resemblance to the geodesic domes built by the

architect R. Buckminster Fuller. C60 has 12 pentagons and 20 hexagons as faces

like a football. The smallest possible fullerene is C20 the production of which

was a hard process because of the high curvature of the surface [105].

A single wall carbon nanotube (SWCNT) [2] is described as rolling-up a graphene

sheet on a seamless cylinder. Because of the large aspect ratio of the cylinder

(length to diameter ratio which can be as large as 104-105), these structures are

considered as one-dimensional nanostructures. A graphene sheet can be rolled

more than one way and the rolling up vector is defined as ~Ch=n~a1+m~a2≡(n,m)

where ~a1 and ~a2 are the primitive lattice vectors of the graphene and n,m are

integers as shown in Fig. 2.6 [104]. The length of the chiral vector is the

circumference of the cylinder and the angle between the chiral vector and the

the basis vector ~a1 is the chiral angle θ and it is defined as:

cos θ =
~Ch · ~a1

| ~Ch || ~a1 |
=

2n + m

2
√

n2 + m2 + nm
. (2.63)
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The diameter of the CNT, dt is calculated as L/π , where L is the circumferential

length of the tube:

dt = L/π, L =| ~Ch |=
√

~Ch · ~Ch = a
√

n2 + m2 + nm. (2.64)

The length of the translation vector defines the nanotube unit cell length and it

is perpendicular to ~Ch and parallel to the nanotube axis. The lattice vector can

be defined as:

~T = t1~a1 + t2~a2 ≡ (t1, t2) (2.65)

where t1 and t2 are integers.

There are three directions of the that the chiral vector can take which are named

as armchair, zigzag, and chiral and designated by (n,0), (n,n) and (n,m), respec-

tively. The names of these tubes come out from the shape of the cross-sectional

ring. Since the mirror images of the armchair and zigzag nanotubes have an

identical structure to the original ones they are classified as the achiral (sym-

morphic). On the other hand, chiral tubes have a spiral symmetry so they do

not have a mirror image. The chiral angles of the armchair tubes are equal to

30◦, zigzag tubes are 0◦, and the chiral tubes are 0◦ < |θ| < 30◦. The three types

of CNTs are shown in Fig. 2.7.

Figure 2.6: The conventional model describing a CNT formed from a graphene sheet.
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Figure 2.7: The armchair, zigzag and chiral nanotube a)(5,5), b)(9,0), c)(10,5) nan-
otube.
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CHAPTER 3

Li/Li+ ION DOPED CARBON NANOSYSTEMS

3.1 Li/Li+ Ion Interaction with Fullerenes and Single Walled Carbon

Nanotubes

In this section, Li atom and Li+ ion interactions with fullerenes (C20 and C60)

and SWCNTs (C(4,4), C(5,5), C(7,0), and C(8,0)) have been investigated by

performing molecular dynamics (MD) simulations [99]. All of the atoms in the

simulations were free to move and the canonical ensemble MD NVT [106] have

been proceeded. The temperature of the systems was kept constant at 1K and

one time step was taken as 10−16 seconds. Periodic boundary conditions were

not used in the simulations. More details of the MD simulations have been given

in Chapter 2.

The total number of carbon atoms in the C(4,4), C(5,5), C(7,0), and C(8,0) is

80, 100, 98, and 112, respectively. The initial distance between the Li-Li and

Li+-Li+ is 3 Å. The reason of this specific distance is the following: Li atoms give

their 2s electron to the carbon nanotube and then they are positively charged

[107]. The tubes are polarizable and they provide very good screening, hence

two Li atoms separated by more than 3 Å in the tube do not see each other.

Also in order to avoid forming clusters in the tube the distances between the

Li-Li are taken to be 3 Å in the optimization procedure. This can be seem that

the concentration of the Li/Li+ ion in the systems will be low however, Liu et

al. [107] found that C(6,0) tube could exothermally absorb at least 9 Li atoms
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Table 3.1: Calculated total potential energy (in eV) of the endohedral doped Li/Li+

ion systems.

System Energy System Energy System Energy
Li+@C20 -85.7 2Li+@C20 - 3Li+@C20 -
Li@C20 -146.3 2Li@C20 - 3Li@C20 -
Li+@C60 -363.3 2Li+@C60 -429.9 3Li+@C60 -
Li@C60 -438.9 2Li@C60 -558.2 3Li@C60 -
Li+@C(4, 4) -427.5 2Li+@C(4, 4) -477.6 3Li+@C(4, 4) -527.7
Li@C(4, 4) -510.3 2Li@C(4, 4) -591.0 3Li@C(4, 4) -772.8
Li+@C(5, 5) -505.2 2Li+@C(5, 5) -562.9 3Li+@C(5, 5) -629.8
Li@C(5, 5) -585.4 2Li@C(5, 5) -713.4 3Li@C(5, 5) -830.3
Li+@C(7, 0) -559.9 2Li+@C(7, 0) -632.6 3Li+@C(7, 0) -677.8
Li@C(7, 0) -634.6 2Li@C(7, 0) -771.4 3Li@C(7, 0) -891.7
Li+@C(8, 0) -634.3 2Li+@C(8, 0) -702.5 3Li+@C(8, 0) -732.2
Li@C(8, 0) -706.5 2Li@C(8, 0) -873.7 3Li@C(8, 0) -936.5

which is a high concentration.

Endohedral and exohedral doping of Li/Li+ ion into fullerenes and SWCNTs

have been studied in order to investigate the structural properties and the ener-

getics of these systems. It was found that endohedral doping is more favorable

than exohedral doping since, the energy of the systems with endohedral Li/Li+

ion doping is lower than the exohedral doping (see Tables 3.1 and 3.2). Lithium

atom doped systems have less energy than the lithium ion doped systems indi-

cating that the former is more stable than the latter.

The optimized geometries of endohedral Li+ ion doped fullerenes are shown in

Fig. 3.1. C20 molecule has the smallest radius among the fullerenes, so doping

of more than one Li/Li+ ion has caused deformation on the system. Similarly,

not more than two Li/Li+ ions could have been doped to C60 without any defor-

mation on the structure. For the minimum energy configuration of the systems,

Li/Li+ ion prefers to locate on the center of the fullerenes. The lowest-energy

structures for the endohedral Li+ ion doped SWCNTs are presented in Fig. 3.2.

As can be seen from the figure, Li/Li+ ion is located on the axis of the tube.
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Table 3.2: Calculated total potential energy (in eV) of the exohedral doped Li/Li+

ion systems.

System Energy System Energy System Energy
Li+@C20 -72.6 2Li+@C20 - 3Li+@C20 -
Li@C20 -89.9 2Li@C20 - 3Li@C20 -
Li+@C60 -325.2 2Li+@C60 3Li+@C60

Li@C60 -329.9 2Li@C60 -347.8 3Li@C60 -
Li+@C(4, 4) -356.4 2Li+@C(4, 4) -403.0 3Li+@C(4, 4) -420.6
Li@C(4, 4) -372.8 2Li@C(4, 4) -418.3 3Li@C(4, 4) -442.9
Li+@C(5, 5) -465.5 2Li+@C(5, 5) -494.1 3Li+@C(5, 5) -512.2
Li@C(5, 5) -482.4 2Li@C(5, 5) -508.4 3Li@C(5, 5) -532.1
Li+@C(7, 0) -525.2 2Li+@C(7, 0) -549.8 3Li+@C(7, 0) -565.7
Li@C(7, 0) -530.6 2Li@C(7, 0) -552.2 3Li@C(7, 0) -575.4
Li+@C(8, 0) -589.6 2Li+@C(8, 0) -609.6 3Li+@C(8, 0) -616.5
Li@C(8, 0) -601.2 2Li@C(8, 0) -618.4 3Li@C(8, 0) -642.3

Figure 3.1: The optimized geometries for the endohedral Li+ ion doped C20 and C60.
(Similar geometries are found for Li case.)

The pair potential energy profiles for C-Li, C-Li+ ion, and Li-Li are shown in

Fig. 3.3 and the minima occurs at about 2.1 Å, 2.5 Å, and 2.8 Å, respectively.

Moreover, there is a sharp decrease in energy below and a slow increase above

these minima. Also, C-Li interaction is stronger than the C-Li+ ion interaction,

which is consistent with the calculated total energy values of the systems.
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Figure 3.2: The optimized geometries for Li+ ion confined within C(4,4), C(5,5),
C(7,0), and C(8,0) SWCNTs. (Similar geometries are found for Li case.)

Figure 3.3: The pair potential profiles for C-Li, C-Li+ ion, and Li-Li.
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3.2 Li/Li+ Ion Doped Carbon Nanocapsules Studied with Semi-Empirical

MO Method at PM3 Level

In this section, the interaction of Li/Li+ ion with carbon nanocapsules will be

presented [108]. Carbon nanocapsules are formed by using SWCNTs the open

sides of which have been capped with half of the fullerenes (see Fig. 2.7). Li/Li+

ion doped armchair C(5,5) and zigzag C(9,0) carbon nanocapsules have been

investigated through the molecular mechanics and semi-empirical molecular or-

bital self-consistent-field (SCF) methods. Initially the geometries of the undoped

capsules have been optimized by using the molecular mechanics method with

MM+ force field which facilitated the further optimizations (PM3 type calcu-

lation). The optimized geometries of capsules have been doped with Li/Li+

ion and these systems have been optimized in their ground states. Polak-

Ribiere algorithm has been used as the conjugate gradient method. In order

to get sufficient accuracy in the calculations the SCF convergence limit was set

to 0.001 kcal/mol and the root-mean-square (RMS) gradient was set to 0.001

kcal/(Å mol). These computations have been performed using HyperChem pack-

age program. Moreover, molecular dynamics simulations have been performed

to find the optimized geometries of the systems and the corresponding total in-

teraction energies.

Carbon nanocapsules are formed by using C60 fullerene because the diameters

of the C(5,5) and C(9,0) tubes and the C60 are very close to each other. The

initial lengths of C(5,5) and C(9,0) capsules were 14.478 and 17.677 Å and the

initial diameters were 7.031 and 7.284 Å, respectively. The molecular properties

of the systems are presented in Table 3.3. After the optimization process of

the capsules doped with Li/Li+ ion, it was found that the length of the C(5,5)

and C(9,0) systems decreased about 0.35 and 0.49 Å, and the decrease in the

diameters was at about 0.19 and 0.24 Å, respectively. These diminishes on the

diameters and the lengths implies that the doping of Li/Li+ ion to the capsules

causes the capsules shrink slightly.
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Table 3.3: Molecular properties of the Li/Li+ ion doped C(5,5) and C(9,0) nanocapsule
systems.

Quantity Li@C(5,5) Li+@C(5,5) Li@C(9,0) Li+@C(9,0)
No. of C atoms 120 120 150 150
Length of capsule (Å) 14.136 14.111 17.191 17.198
Diameter of capsule (Å) 7.032 7.032 7.284 7.284
No. of electrons 481 480 601 600
No. of α electrons 241 240 301 300
No. of β electrons 240 - 300 -
Total no. of orbitals 484 484 604 604

Table 3.4: Calculated energy values (in kcal/mol) of the Li/Li+ ion doped C(5,5) and
C(9,0) nanocapsule systems.

Quantity Li@C(5,5) Li+@C(5,5) Li@C(9,0) Li+@C(9,0)
Total energy -327256.19 -327039.97 -409131.96 -408175.10
Binding energy -19324.97 -19108.75 -24248.48 -24034.04
Isolated atomic energy -307931.23 -307931.23 -384883.48 -384883.48
Electronic energy -6823215.78 -6851142.88 -9621611.84 -9642306.04
Core-core int. energy 6495959.59 6524102.90 9212479.88 9233388.52
Heat of formation 1220.24 1436.46 1423.43 1637.87

The total energy calculations with semi-empirical method at PM3 level reveal

that the total energies of the Li atom doped capsules are smaller (in magnitude)

than the total energies of the Li+ ion doped capsules which means that for both

of the systems lithium doped capsules are more stable than lithium ion doped

capsules. These results can be seen from the binding energy values (see Table.

3.4). The electronic energies of lithium ion doped capsules are found to be more

negative and the core-core interaction energies of lithium atom doped capsules

are smaller than that of lithium ion doped systems. All the systems are found

to have endothermic heat of formation values and the lithium ion doped systems

are found to be more endothermic than lithium atom doped systems.

The calculated molecular orbital eigenvalues such as the lowest occupied and the

highest unoccupied molecular orbital energies (LOMO and HUMO, respectively)
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Table 3.5: Calculated molecular orbital eigenvalues (in eV), dipole moments (in De-
byes) and the accumulated charges on the Li/Li+ ion for the C(5,5) and C(9,0)
nanocapsule systems.

Quantity Li@C(5,5) Li+@C(5,5) Li@C(9,0) Li+@C(9,0)
LOMO (α) -48.132 -50.954 -48.116 -50.584
HOMO (α) -7.137 -10.741 -7.807 -10.045
LUMO (α) -2.854 -5.952 -2.927 -6.093
Eg (α) 4.283 4.789 4.880 3.952
HUMO (α) 5.982 3.180 5.571 3.409
LOMO (β) -48.117 - -48.103 -
HOMO (β) -8.501 - -7.676 -
LUMO (β) -2.849 - -3.353 -
Eg (β) 5.652 - 4.323 -
HUMO (β) 6.065 - 5.590 -
Dipole moment 6.841 1.905 3.254 1.726
Charge on Li+ 0.666 0.675 0.641 0.688

as well as the frontier molecular orbital energies (the highest occupied HOMO

and the lowest unoccupied LUMO, respectively), the interfrontier molecular or-

bital energy gaps (LUMO-HOMO difference, Eg), and the dipole moments of

the studied systems are presented in Table 3.5. It can be inferred from the MO

energy values that both HOMO and LUMO energy levels of α-orbitals of lithium

ion doped systems are lower than that of the lithium atom doped systems. While

the LUMO energy level of β-orbitals of Li@C(5,5) system is higher than that of

Li@C(9,0), the HOMO energy level of β-orbitals of Li@C(5,5) system is lower

than that of Li@C(9,0). The Eg of α-orbital of Li@C(5,5) is lower than that of

Li+@C(5,5) and Li@C(9,0) but higher than that of Li+@C(9,0) and the energy

gap of the β-orbital of Li@C(5,5) is higher than that of Li@C(9,0). The cal-

culated dipole moment of the system gives information about the symmetry of

the structures. All of the systems have non-zero dipole moment values implying

the systems are asymmetric. Li@C(5,5) system has the largest dipole moment

since after the optimization the change in the position of the lithium atom is the

largest when compared with the other systems. The net accumulated charges

on Li/Li+ ion are given in Table 3.5.
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3D plots of HOMO, LUMO, charge density (CD) and electrostatic potential (EP)

of the systems are presented in Figs. 3.4-3.7. While HOMO of the Li@C(5,5)

system is localized on carbon atoms which are close to the lithium atom, LUMO

is totally localized on lithium atom. HOMO and LUMO of Li+@C(5,5) are lo-

calized on the surface of the capsule, the former aligned horizontally and the

latter aligned vertically. HOMO and LUMO of Li@C(9,0) system are localized

on different sides of the capsule. HOMO and LUMO of Li+@C(9,0) are localized

on the surface of the capsule but the former is more localized than the latter.

The 3D charge density distributions of the systems considered seem to be ho-

mogeneous, the electrons are localized in the vicinity of the surface atoms and

the interior of the capsules are charge free apart from the lithium sites. There

is a slight increase in EP in the vicinity of Li/Li+ ion. If lithium was closer

to surface the effects of this gradient would be observed more. Since lithium

has one valance electron which causes a net spin density on the corresponding

systems; the plot of the homogeneous spin densities are shown in Fig. 3.8.

LUMO

CD EP

HOMO

Figure 3.4: 3D plots of HOMO, LUMO, charge density (CD), and electrostatic po-
tential (EP) for the Li@C(5,5) capsule.

Molecular dynamics simulations have been performed to investigate the ener-

getics and the structural properties of the studied systems. The total energies
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CD EP

LUMOHOMO

Figure 3.5: 3D plots of HOMO, LUMO, charge density (CD), and electrostatic po-
tential (EP) for the Li+@C(5,5) capsule.

LUMO

EPCD

HOMO

Figure 3.6: 3D plots of HOMO, LUMO, charge density (CD), and electrostatic po-
tential (EP) for the Li@C(9,0) capsule.

are found to be -711.33, -629.30, -843.43, and -757.93 eV for the Li@C(5,5),

Li+@C(5,5), Li@C(9,0), and Li+@C(9,0) systems, respectively. The relaxed ge-

ometries are found to be very similar to the optimized geometries of PM3 results.
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CD EP

LUMOHOMO

Figure 3.7: 3D plots of HOMO, LUMO, charge density (CD), and electrostatic po-
tential (EP) for the Li+@C(9,0) capsule.

Li@C(9,0)Li@C(5,5)

Figure 3.8: 3D plots of spin densities of Li@C(5,5) and Li@C(9,0) systems.

3.3 The Structural and Electronic Properties of Stone-Wales and

Mono-Vacancy Defected Carbon Nanocapsules

The optimized geometries, electronic structures and some thermodynamical val-

ues of the Stone-Wales (SW) and mono-vacancy defected C(5,5) and C(9,0)

CNCs have been studied in their ground states [109]. The initial geometries

of the defected capsules have been optimized by applying molecular mechanics

method using MM+ force field. Then semi-empirical MO method at PM3 level

within the RHF formalism has been used for the further optimization using Hy-

perChem package. The SCF convergence limit and RMS gradient were set to

0.001 kcal/mol and0.001 kcal/(Å mol), respectively, in the calculations to get

sufficient structural optimization. The optimized geometries have been taken

and using Gaussian 03 package program further optimizations have been per-
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formed applying molecular mechanics method at UFF level and semi-empirical

MO method at PM3 level. The single point energy calculations of the final ge-

ometries of the optimized structures have been performed using DFT method

with B3LYP exchange-correlation functional with 3-21G basis set.

Stone-Wales defects are formed by the rotation of a C-C bond by 90◦ in the

hexagonal network which change four hexagons into two pentagons and two

heptagons and, which is also known as 5-7-7-5 defect. Vacancy defects result

from removing carbon atoms from the surface. When a single atom is removed

from the nanotube, two of three carbon atoms rebond and the third atom has

the dangling bond (DB) even after the relaxation, forming a pentagon ring cou-

pling with a DB left, and named as 5-1DB defect. The number of carbon atoms

in the systems is 120 and 119 for C(5,5) and 114 and 113 for C(9,0) with SW

and vacancy defects, respectively. The capsules having SW and vacancy type

defects are shown in Fig. 3.9.

The calculated energy values of the optimized (PM3 level with HyperChem pack-

age) systems are presented in Tables 3.6 and 3.7. The total energies per atom

of C(9,0) defected systems are smaller in magnitude than the total energies per

atom of the C(5,5) defected systems, which means that C(5,5) systems are more

stable than C(9,0) systems. The most stable system is the C(5,5) capsule with

0-type vacancy defect and the least stable system is the C(9,0) capsule with

B-type vacancy defect. These results can be validated by comparing the bind-

ing energies of the systems. For the C(5,5) and C(9,0) systems the electronic

energies of 0-type VD are more negative and the core-core interaction energies

are more repulsive than the other types of the VD capsules. The calculations

give endothermic heat of formation values for the studied systems.

The highest occupied and the lowest unoccupied molecular orbital energies,

namely HOMO and LUMO energies, the lowest occupied and the highest unoc-
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Table 3.6: Calculated energy values (in kcal/mol) of C(5,5) capsule systems (TE: total
energy, BE: binding energy, IAE: isolated atomic energy, EE: electronic energy, CCI:
core-core interaction, and HOF: heat of formation).

Quantity 0-type VD A-type VD B-type VD C-type VD SW defect
TE -327097.12 -324213.05 -324220.36 -324178.38 -327009.96
BE -19288.12 -18969.12 -18976.43 -18934.45 -19200.95
IAE -307809.00 -305243.93 -305243.93 -305243.93 -307809.00
EE -6828150.92 -6732122.99 -6732431.70 -6723875.78 -6819317.80
CCI 6501053.80 6407909.94 6408211.33 6399697.39 6492307.84
HOF 1218.69 1366.79 1359.48 1401.46 1305.85

Table 3.7: Calculated energy values (in kcal/mol) of C(9,0) capsule systems (TE: total
energy, BE: binding energy, IAE: isolated atomic energy, EE: electronic energy, CCI:
core-core interaction, and HOF: heat of formation).

Quantity 0-type VD A-type VD B-type VD C-type VD SW defect
TE -307824.67 -307824.67 -307786.68 -307833.77 -310668.45
BE -17971.19 -17971.19 -17933.20 -17980.29 -18249.89
IAE -289853.48 -289853.48 -289853.48 -289853.48 -292418.55
EE -6222789.06 -6222787.11 -6216046.90 -6214507.87 -6307316.99
CCI 5914964.39 5914962.44 5908260.22 5906674.10 5996648.54
HOF 1339.38 1339.38 1377.37 1330.28 1231.56
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VD 0−type

VD A−type

VD B−type

VD C−type

C(5,5) C(9,0)

SW

Figure 3.9: Stone-Wales and mono-vacancy defects for C(5,5) and C(9,0) nanocapsules
before the optimizations.

cupied molecular orbital energies, namely LOMO and HUMO energies, respec-

tively, and the interfrontier molecular orbital energy gap, that is LUMO-HOMO

energy difference, Eg, and the calculated dipole moment values of the defected

systems are given in Tables 3.8 and 3.9. The LOMO and HUMO energy values

of the different systems are very close to each other. The Eg of the C(9,0) de-

fected capsules are smaller than the Eg of the C(5,5) capsules. Moreover, B-type

vacancy defected C(5,5) capsule has the highest Eg value. The dipole moments

of the SW defected capsules are smaller than that of VD capsules because SW

defected systems are more symmetric than the VD systems. Furthermore, SW
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Table 3.8: Calculated molecular orbital energy eigenvalues (in a.u.) and the dipole
moments (µ) (in Debyes) of C(5,5) capsule systems.

Quantity 0-type VD A-type VD B-type VD C-type VD SW defect
LOMO 1.768 1.768 1.768 1.767 1.768
HOMO 0.305 0.305 0.311 0.301 0.292
LUMO 0.131 0.131 0.124 0.141 0.131
Eg 0.174 0.174 0.187 0.160 0.161
HUMO 0.200 0.200 0.201 0.201 0.200
µ 1.633 1.675 1.026 5.663 1.240

Table 3.9: Calculated molecular orbital energy eigenvalues (in a.u.) and the dipole
moments (µ) (in Debyes) of C(9,0) capsule systems.

Quantity 0-type VD A-type VD B-type VD C-type VD SW defect
LOMO 1.767 1.767 1.767 1.766 1.764
HOMO 0.302 0.302 0.297 0.301 0.292
LUMO 0.134 0.134 0.143 0.136 0.137
Eg 0.168 0.168 0.154 0.165 0.155
HUMO 0.200 0.200 0.200 0.200 0.203
µ 1.537 1.538 3.102 1.371 0.402

defected C(9,0) capsule has a smaller dipole moment than the C(5,5) capsule.

Further optimizations using semi-empirical MO method at PM3 level using

Gaussian 03 program have been performed and 3-dimensional plots of charge

by color, HOMO, LUMO, and total charge density (TCD) of the systems are

presented in Figs. 3.10-3.19. From the charge by color figures it can be seen

that positive and negative charges are accumulated on the defective regions of

the capsules. The figures of the total charge distribution show that the distri-

butions are homogenous except at the defected regions where there are outward

deformations because of the excess charges on these sides. While HOMO of

SW-defected C(5,5) capsule is mainly localized on the right side of the defect,

LUMO of the same type capsule is more uniformly distributed and the HOMO

aligned horizontally and the LUMO aligned vertically. Whereas HOMO of SW-

defected C(9,0) capsule is mainly localized on the defect region but distributed

to the other carbon atoms, LUMO are localized on the defect and on the right
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side of the defect. HOMO

charge density

LUMOHOMO

charge by color

Figure 3.10: 3D plots of charge distribution by color, total charge density, HOMO,
and LUMO for the SW defected C(5,5) capsule.

charge by color

HOMO LUMO

charge density

Figure 3.11: 3D plots of charge distribution by color, total charge density, HOMO,
and LUMO for the SW defected C(9,0) capsule.

and LUMO of C(5,5) capsule with 0-type VD are localized on the defect side

but while HOMO are distributed mainly on the left side of the capsule, LUMO

are distributed nearly to the whole capsule. Both the HOMO and LUMO of

the 0-type VD C(9,0) capsule are localized on the defected side and they are
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LUMOHOMO

charge density
charge by color

Figure 3.12: 3D plots of charge distribution by color, total charge density, HOMO,
and LUMO for the C(5,5) capsule with 0-type vacancy defect.

HOMO

charge density

LUMO

charge by color

Figure 3.13: 3D plots of charge distribution by color, total charge density, HOMO,
and LUMO for the C(9,0) capsule with 0-type vacancy defect.

distributed to the carbon atoms of the capsule. HOMO and LUMO of C(5,5)

capsule with A-type defect are localized on the defected regions but HOMO is

more distributed than LUMO on the surface of the capsule. LUMO of the A-

type VD C(9,0) capsule is more localized on the defected region than the HOMO

and both of them are distributed on the capsule. While HOMO of the C(5,5)

capsule with B-type VD is localized on the defected side, LUMO is distributed
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LUMO

charge density

HOMO

charge by color

Figure 3.14: 3D plots of charge distribution by color, total charge density, HOMO,
and LUMO for the C(5,5) capsule with A-type vacancy defect.

LUMOHOMO

charge by color charge density

Figure 3.15: 3D plots of charge distribution by color, total charge density, HOMO,
and LUMO for the C(9,0) capsule with A-type vacancy defect.

randomly on the surface. HOMO of the B-type VD C(9,0) capsule is more lo-

calized on the defected side than the LUMO and while the former is distributed

mainly on the middle of the capsule the latter preferred to distribute on the

one half of the capsule. Both HOMO and LUMO of C(5,5) capsule with C-type

defect are localized on the defect but HOMO are more distributed than LUMO
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HOMO LUMO

charge density
charge by color

Figure 3.16: 3D plots of charge distribution by color, total charge density, HOMO,
and LUMO for the C(5,5) capsule with B-type vacancy defect.

charge by color

HOMO

charge density

LUMO

Figure 3.17: 3D plots of charge distribution by color, total charge density, HOMO,
and LUMO for the C(9,0) capsule with B-type vacancy defect.

and the former have a horizontal alignment. For the C-type defect of C(9,0)

capsule, both HOMO and LUMO are distributed in a similar manner and the

localizations can be seen clearly on the defected regions.

Total energy values of the studied systems have been obtained using DFT
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LUMO

charge densitycharge by color

HOMO

Figure 3.18: 3D plots of charge distribution by color, total charge density, HOMO,
and LUMO for the C(5,5) capsule with C-type vacancy defect.

LUMO

charge density
charge by color

HOMO

Figure 3.19: 3D plots of charge distribution by color, total charge density, HOMO,
and LUMO for the C(9,0) capsule with C-type vacancy defect.

method with B3LYP functional and 3-21G basis set. The calculations show

that defect-free capsules are more stable than the defected ones (Table 3.10).

Among the VD structures the A-type and the 0-type ones are the most stable

for the C(5,5) and C(9,0) capsules. Molecular dynamics simulations gave the

same trend for the C(5,5) capsules however, for the C(9,0) capsules MD found
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Table 3.10: Calculated total energy values (in a.u.) of the C(5,5) and C(9,0) systems.
MD results (in eV) are given in paranthesis.

System C(5,5) C(9,0)
defect-free -4547.485 (-820.379) -4320.071 (-554.330)
0-type VD -4509.360 (-583.350) -4281.980 (-552.960)
A-type VD -4509.361 (-584.440) -4281.938 (-552.960)
B-type VD -4509.360 (-581.200) -4281.877 (-552.960)
C-type VD -4509.270 (-584.440) -4281.930 (-552.960)
SW type defect -4547.355 (-596.710) -4320.014 (-569.180)

Table 3.11: Defect formation energies per atom (in eV/atom) of the C(5,5) and C(9,0)
systems.

System C(5,5) C(9,0)
0-type VD 0.0523 0.0470
A-type VD 0.0522 0.0572
B-type VD 0.0523 0.0719
C-type VD 0.0728 0.0592
SW type defect 0.0295 0.0136

the same total energy values for the VD capsules. The formation energy/atom

values for the SW-defected and VD capsules are presented in Table 3.11 and

calculated as the following:

Ef (SW ) = [E(SW )− E(perfect)]/n

Ef (V D) = E(V D)/nV D − E(perfect)/n (3.1)

where E(SW), E(perfect) and E(VD) are the total energy of the SW-defected,

perfect and VD capsules, respectively, and n and nV D are the total number of

carbon atoms in the systems. The SW defect formation energies are smaller

than that of the VDs which implies that it is easier to form a SW defect on a

capsule. The SW defect formation energy/atom of the zigzag capsule is smaller

than that of the armchair capsule. While for the C(5,5) VD capsule C-type

defect has the highest defect formation energy, for the C(9,0) VD capsule B-

type defect has the highest defect formation energy. The calculated SW defect

formation energy (3.537 eV) is consistent with another study (3.5 eV) which is

performed by using ab initio DFT method [30].
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3.4 nLi/nLi+ Ion (n=1-4) Doped Defect-Free Carbon Nanocapsules

Studied with DFT method

The structural properties and the energetics of the endohedral nLi/nLi+ ion

(n=1-4) doped perfect (pristine, defect-free) capsules have been studied [110].

The optimization procedures of the systems have been carried out using semi-

empirical MO method at PM3 level and the energetics have been calculated with

the DFT method using B3LYP exchange-correlation functional and 6-31G basis

set. The main difference between this study and the study in section 2.2 is that

the size of the C(9,0) capsule is taken to be smaller for the present case in order

to facilitate the optimizations and the methods used to calculate the energetics

of the systems are different. The thermodynamical properties of the optimized

systems are obtained from the PM3 type single point energy calculations using

HyperChem program and the energetics are calculated using the Gaussian 03

program. The convergence on the energy was set to 10−6 au. and the RMS

density matrix was set to 10−8 au. Initially the lithium atoms and lithium ions

have been positioned on the midpoints of the central axis of the capsules and the

initial distance between lithium atoms was 3 Å in order to prevent from forming

clusters as mentioned before. Molecular dynamics simulations have been per-

formed for these systems however, reliable results could not have been obtained

as the lithium number increased. The reason could be due to the semi-empirical

force field used in the simulations.

The thermodynamical properties (total energy, binding energy, isolated atomic

energy, electronic energy, core-core interaction energy, and heat of formation

energy) of the nLi/nLi+ ion doped pristine C(5,5) and C(9,0) nanocapsules are

given in Tables 3.12 and 3.13, respectively. The results are obtained from the

semi-empirical method at PM3 level with single point energy calculations of the

optimized geometries. From the point of view of the total and binding ener-

gies, nLi atom doped capsules are more stable then nLi+ ion doped capsules for

both of the capsule systems. Moreover, heat of formation energies of the nLi+
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ion doped systems are larger than that of the nLi atom doped systems and the

positive values of the heat of formation energies mean that the processes are

endothermic. As the number of Li/Li+ increase in the capsules, the isolated

atomic energies and electronic energies become more negative (increase in mag-

nitude) and core-core interaction energies become more positive for both of the

type of the systems.

Table 3.12: Calculated energy values (in kcal/mol)(TE: total energy, BE: binding
energy, IAE: isolated atomic energy, EE: electronic energy, CCI: core-core interaction,
and HOF: heat of formation) of undoped and nLi and nLi+ ion doped pristine C(5,5)
optimized systems, where n=1-4 (single point/PM3 results).

Quantity TE BE IAE EE CCI HOF
undoped -327096.5 -19287.6 -307809.0 -6831305.5 6504208.9 1219.3
1Li@C(5,5) -327257.3 -19326.1 -307931.2 -6837140.2 6509882.9 1219.1
1Li+@C(5,5) -327039.2 -19107.9 -307931.2 -6854967.6 6527928.3 1437.2
2Li@C(5,5) -327267.5 -19214.0 -308053.5 -6878896.5 6551629.1 1369.6
2Li+@C(5,5) -326918.9 -18865.4 -308053.5 -6876645.1 6549726.2 1718.2
3Li@C(5,5) -327343.5 -19167.8 -308175.7 -6879801.4 6552457.9 1454.2
3Li+@C(5,5) -326732.4 -18556.7 -308175.7 -6896853.9 6570121.5 2065.3
4Li@C(5,5) -327464.7 -19166.8 -308297.9 -6919978.9 6592514.3 1493.7
4Li+@C(5,5) -326486.2 -18188.3 -308297.9 -6914968.5 6588482.3 2472.2

Table 3.13: Calculated energy values (in kcal/mol)(TE: total energy, BE: binding
energy, IAE: isolated atomic energy, EE: electronic energy, CCI: core-core interaction,
and HOF: heat of formation) of undoped and nLi and nLi+ ion doped pristine C(9,0)
optimized systems, where n=1-4 (single point/PM3 results).

Quantity TE BE IAE EE CCI HOF
undoped -310707.2 -18288.6 -292418.6 -6317533.8 6006826.6 1192.8
1Li@C(9,0) -310853.6 -18312.8 -292540.8 -6326905.3 6016051.7 1207.0
1Li+@C(9,0) -310650.9 -18110.2 -292540.8 -6340154.0 6029503.1 1409.7
2Li@C(9,0) -310889.6 -18226.6 -292663.0 -6364075.2 6053185.6 1331.7
2Li+@C(9,0) -310526.9 -17863.9 -292663.0 -6361431.1 6050904.2 1694.4
3Li@C(9,0) -311033.1 -18247.9 -292785.2 -6369911.2 6058878.0 1348.8
3Li+@C(9,0) -310340.8 -17555.6 -292785.2 -6380388.7 6070047.9 2041.1
4Li@C(9,0) -311101.5 -18194.0 -292907.4 -6405258.8 6094157.4 1441.1
4Li+@C(9,0) -310084.7 -17177.2 -292907.4 -6399220.7 6089136.0 2457.9

The calculated HOMO, LUMO, Eg and the dipole moment (µ) values are given

in Tables 3.14 and 3.15. While the Eg’s of nLi (n=1,2) doped C(5,5) and C(9,0)
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capsules are smaller than that of nLi+ ion (n=1,2) doped capsules, the opposite

is valid for the n=3,4 case. The trends of the Eg’s of the studied systems are

presented in Fig. 3.20. Furthermore, the HOMO and LUMO energies of the

nLi atom (n=1-4) doped capsules are larger (smaller in magnitude) than that

of the nLi+ ion (n=1-4) doped capsules. The dipole moments of the undoped

pristine capsules are zero since the capsules have a symmetric geometry after the

optimizations. The smallest dipole moment (0.025 Debye) among the studied

systems belongs to the 4Li+ ion doped C(5,5) capsule which is highly symmetric.

Table 3.14: Calculated HOMO, LUMO energies (in a.u.), HOMO-LUMO gap (Eg)
energies (in eV) and dipole moments (µ, in Debyes) of undoped and nLi/nLi+ ion
doped pristine C(5,5) systems (n=1-4). (DFT B3LYP/6-31G results.)

Quantity HOMO(α) LUMO(α) Eg(α) HOMO(β) LUMO(β) Eg(β) µ

undoped -0.189 -0.131 1.578 - - - 0.000
1Li -0.162 -0.121 1.116 -0.186 -0.139 1.279 1.301
1Li+ -0.282 -0.224 1.578 - - - 1.450
2Li -0.163 -0.130 0.898 - - - 0.463
2Li+ -0.373 -0.316 1.551 - - - 1.201
3Li -0.164 -0.120 1.197 -0.159 -0.138 0.571 2.086
3Li+ -0.465 -0.433 0.871 - - - 2.353
4Li -0.164 -0.118 1.252 - - - 0.638
4Li+ -0.556 -0.540 0.435 - - - 0.025

Table 3.15: Calculated HOMO, LUMO energies (in a.u.), HOMO-LUMO gap (Eg)
energies (in eV) and dipole moments (µ, in Debyes) of undoped and nLi/nLi+ ion
doped pristine C(9,0) systems (n=1-4). (DFT B3LYP/6-31G results.)

Quantity HOMO(α) LUMO(α) Eg(α) HOMO(β) LUMO(β) Eg(β) µ

undoped -0.188 -0.137 1.388 - - - 0.000
1Li -0.168 -0.122 1.252 -0.187 -0.145 1.143 1.377
1Li+ -0.283 -0.233 1.361 - - - 1.095
2Li -0.170 -0.144 0.708 - - - 1.074
2Li+ -0.377 -0.326 1.388 - - - 0.053
3Li -0.169 -0.125 1.197 -0.169 -0.136 0.898 1.826
3Li+ -0.471 -0.454 0.462 - - - 0.608
4Li -0.171 -0.123 1.306 - - - 0.357
4Li+ -0.563 -0.549 0.381 - - - 0.431
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Figure 3.20: The HOMO-LUMO gap (Eg) energy versus the number of Li/Li+ ion in
the pristine C(5,5) (left) and C(9,0) (right) capsules. (Squares are for the lithium ions
and triangles are for the lithium atoms.)

The 3D plots of the charge by color, HOMO and LUMO of the undoped and

nLi/nLi+ ion doped perfect C(5,5) and C(9,0) nanocapsules are presented in

Figs. 3.21-3.25. In the figures of charge distribution, green is for positive charges

and red is for negative charges. Fig. 3.21a shows that while the charge distribu-

tion of the undoped C(5,5) capsule is on the capping cross section, the charge

distribution of the undoped C(9,0) capsule is mainly on the tube region, not on

the capping region. The HOMO and LUMO localization of the capsules are very

low and distributed on the capsules. Figs. 3.22 and 3.23 show the charge by

color, HOMO and LUMO of nLi/nLi+ ion doped perfect C(5,5) capsules. From

the charge distributions, lithiums are positively charged which means they are

ionized and this result is consistent with the other studies [30, 35]. The HO-

MOs of the systems are delocalized on carbon atoms but the distribution is very

low. The LUMOs of the 2Li, 3Li+ ion, and 4Li+ ion cases are localized on the

lithiums. Figs. 3.24 and 3.25 show the charge by color, HOMO and LUMO of

nLi/nLi+ ion doped perfect C(9,0) capsules. The trends of the distributions are

the same with the C(5,5) undoped capsule system.

Total energy values of the pristine capsule systems, which are calculated by

performing DFT method with B3LYP/6-31G level, are presented in Table 3.16.

The lithium atom doped systems have less energy so they are more stable than

the lithium ion doped systems which is the expected result because the C-Li
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Figure 3.21: 3D plots of charge distribution by color, total charge density, HOMO,
and LUMO for the defect-free undoped C(5,5) (upper panel) and C(9,0) (lower panel)
capsule.

interaction is stronger than the C-Li+ ion interaction. The binding energies of

the systems are calculated using two different approaches: one with not paying

attention to the interaction between lithiums and the other with taking into

account the lithium interactions. The binding energies for the former and latter

cases are presented in Tables 3.17 and 3.18, respectively, and calculated as:

Eb = [E(nLi@CNC)− E(CNC)− n ∗ E(Li)]/n (3.2)

E ′
b = [E(nLi@CNC)− E(CNC)− E(nLi)]/n. (3.3)

where n is the number of Li/Li+ ion in the systems, E(nLi@CNC) is the total

energy of the capsule containing nLi/nLi+ ion, E(CNC) is the total energy of

the capsule, and E(Li) is the total energy of Li/Li+. According to the Table

3.17 (Li-Li interaction is ignored) the binding energy of Li atom doped cap-

sules are smaller (larger in magnitude) than the Li+ ion doped cases but not for

the 1Li@C(5,5) system. As the number of Li+ ions increase in the systems the

binding energy increases which implies that it is less favorable to dope lithium

ions into the capsules than to dope lithium atoms. When the Li-Li interac-

tions are considered, the binding energy properties of the systems change. The

binding energies of lithium ion doped capsules are more negative than that of

lithium atom doped capsules which implies that lithium ion doping is energet-

ically more favorable than lithium atom doping. On the other hand, for the

working principles of lithium batteries the movement/diffusion of the lithium is
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Figure 3.22: 3D plots of charge distribution by color (a), HOMO (b), and LUMO (c)
for the nLi@C(5,5) pristine capsules (n=1-4).

an important concept. Thus, lithium atoms move easily through the capsules

because of having low binding energies.

Table 3.16: Total energy values (in au) of the pristine C(5,5) and C(9,0) systems
undoped and doped with nLi/nLi+ ion (n=1-4) by applying B3LYP level of DFT
calculation using 6-31G basis set.

System C(5,5) C(9,0)
undoped -4571.693 -4343.069
1Li/1Li+ -4579.227/-4579.027 -4350.610/-4350.401
2Li/2Li+ -4586.740/-4586.261 -4358.130/-4357.634
3Li/3Li+ -4594.280/-4593.392 -4365.675/-4364.757
4Li/4Li+ -4601.837/-4600.418 -4373.228/-4371.788

3.5 Structural and Electronic Properties of nLi/nLi+ ion (n=1-3)

Doped Vacancy Defected Carbon Nanocapsules

The structural and electronic properties of lithium/lithium ion doped C(5,5)

armchair and C(9,0) zigzag carbon nanocapsules with mono-atom vacancy de-

fected structures have been studied using quantum chemical treatments and
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Figure 3.23: 3D plots of charge distribution by color (a), HOMO (b), and LUMO (c)
for the nLi+@C(5,5) pristine capsules (n=1-4).

Table 3.17: Binding energy values (Eb) per Li/Li+ ion (in eV/Li) of the pristine
C(5,5) and C(9,0) systems doped with nLi/nLi+ ion (n=1-4) by applying B3LYP
level of DFT calculation using 6-31G basis set. (Li-Li interactions are not considered;
from Eq. 3.2.)

System C(5,5) C(9,0)
1Li/1Li+ -1.183/-1.340 -1.360/-1.284
2Li/2Li+ -0.892/+0.018 -1.071/+0.052
3Li/3Li+ -1.033/+1.397 -1.209/+1.506
4Li/4Li+ -1.226/+2.809 -1.325/+2.856

Table 3.18: Binding energy values (Eb’) per Li/Li+ ion (in eV/Li) of the pristine
C(5,5) and C(9,0) systems doped with nLi/nLi+ ion (n=2-4) by applying B3LYP
level of DFT calculation using 6-31G basis set. (Li-Li interactions are considered;
from Eq. 3.3.)

System C(5,5) C(9,0)
2Li/2Li+ -0.618/-1.742 -0.752/-1.671
3Li/3Li+ -0.727/-2.179 -0.860/-2.297
4Li/4Li+ -0.872/-2.558 -1.006/-2.623
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Figure 3.24: 3D plots of charge distribution by color (a), HOMO (b), and LUMO (c)
for the nLi@C(9,0) pristine capsules (n=1-4).
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Figure 3.25: 3D plots of charge distribution by color (a), HOMO (b), and LUMO (c)
for the nLi+@C(9,0) pristine capsules (n=1-4).
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molecular dynamics simulations [111]. The optimization and the single point

energy calculation procedures for the present systems are the same with the

Li/Li+ ion doped defect free carbon nanocapsules (previous section). The struc-

tural and electronic properties of the mono-vacancy defected C(5,5) and C(9,0)

capsules are presented in section 2.3. Among four types of mono-vacancy de-

fects, A-type defected capsules are chosen for the Li/Li+ ion doping because

their defect formation energies and total energies are smaller than the other

types of the defects (see section 2.3).

Some thermodynamical properties of the systems such as total energy, binding

energy, isolated atomic energy, electronic energy, core-core interaction and heat

of formation are presented in Table 3.19. Since the single point energy cal-

culations performed with HyperChem did not converge for a few systems, the

related data can not be introduced. For the rest of the systems, lithium ion

doped defected capsules have more energy than lithium atom doped capsules

which means that lithium atom doped capsules are more stable. These con-

clusions can be derived from the binding energy data. Moreover, lithium atom

doped systems have less repulsive core-core interaction energy and less attractive

electronic energy. The systems have positive heat of formation values meaning

that the reactions are endothermic. Furthermore, lithium atom doped systems

are less endothermic than lithium ion doped systems.

Tables 3.20 and 3.21 presents the calculated dipole moments, HOMO and LUMO

energies and the MO energy gaps (Eg) of the C(5,5) and C(9,0) Li/Li+ ion doped

VD capsules, respectively. The HOMO and LUMO of the lithium atom doped

capsules are larger (smaller in magnitude) than that of the lithium ion doped

capsules. The reactivity of a system is also related to the MO energy gaps.

The lower the Eg, the greater the reactivity of the system. Since the Eg of

the undoped defected armchair capsule is higher than that of the undoped de-

fected zigzag capsule, the latter is more reactive than the former. While lithium
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Table 3.19: Calculated energy values (in kcal/mol)(TE: total energy, BE: binding
energy, IAE: isolated atomic energy, EE: electronic energy, CCI: core-core interaction,
and HOF: heat of formation) of nLi and nLi+ ion doped vacancy defected C(5,5) and
C(9,0) optimized systems, where n=1-3 (single point/PM3 results).

Quantity TE BE IAE EE CCI HOF
1Li@C(5,5) -324426.9 -19060.8 -305366.2 -6740652.3 6416225.3 1313.5
1Li+@C(5,5) -324172.6 -18806.5 -305366.2 -6756171.3 6431998.7 1567.9
2Li@C(5,5) -324383.3 -18894.9 -305488.4 -6762244.9 6437861.6 1517.8
2Li+@C(5,5) -324045.9 -18557.6 -305488.4 -6779523.2 6455477.2 1855.1
3Li+@C(5,5) -323869.1 -18258.5 -305610.6 -6796927.2 6473058.1 2192.7
1Li@C(9,0) -307983.6 -18007.9 -289975.7 -6225042.8 5917059.2 1341.1
1Li+@C(9,0) -307745.0 -17769.3 -289975.7 -6230995.2 5923250.2 1579.7
2Li@C(9,0) -308153.9 -18055.9 -290097.9 -6226902.3 5918748.5 1331.5
2Li+@C(9,0) -307604.7 -17506.8 -290097.9 -6239317.6 5931712.9 1880.6
3Li+@C(9,0) -307409.5 -17189.3 -290220.1 -6256006.2 5948596.7 2236.5

atom doped defected C(5,5) capsules have smaller Eg than that of lithium ion

doped defected C(5,5) capsules, lithium ion doped defected C(9,0) capsules have

smaller Eg energies than that of lithium atom doped defected C(9,0) capsules.

From these points of view, one can conclude that lithium atom doped C(5,5)

systems are more reactive than lithium ion doped C(5,5) systems and lithium

ion doped C(9,0) capsules are more reactive than lithium atom doped C(9,0)

capsules. For both of the defected capsule systems, HOMO and LUMO energy

levels of α-orbital of lithium ion doped systems are smaller than that of lithium

doped systems. While the Eg of α-orbitals of lithium ion doped C(5,5) defected

capsules are higher than that of lithium atom doped C(5,5) defected capsules,

the Eg of α-orbitals of lithium atom doped C(9,0) capsule systems have higher

energies than that of lithium ion doped defected C(9,0) capsules (see Fig. 3.26).

None of the dipole moments of the studied systems are zero since the systems

have no molecular symmetry.

3D plots of charge by color, HOMO, and LUMO of the nLi/nLi+ ion doped

vacancy-defected C(5,5) and C(9,0) capsule systems are shown in Figs. 3.27-

3.30. All of the Li atoms and Li+ ions are positively charged (green color on the

charge by color figures) and the defected sites are mostly negatively charged (red
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Table 3.20: Calculated HOMO, LUMO energies (in a.u.), HOMO-LUMO gap (Eg)
energies (in eV) and dipole moments (in Debyes) of the nLi/nLi+ ion doped C(5,5)
vacancy defected systems (n=1-3). (DFT B3LYP/6-31G results.)

Quantity HOMO(α) LUMO(α) Eg(α) HOMO(β) LUMO(β) Eg(β) µ

undoped -0.198 -0.136 1.687 - - - 1.131
1Li -0.178 -0.140 1.034 -0.182 -0.140 1.142 2.043
1Li+ -0.292 -0.237 1.496 - - - 0.819
2Li -0.159 -0.142 0.463 - - - 3.091
2Li+ -0.383 -0.331 1.415 - - - 1.030
3Li -0.165 -0.128 1.007 -0.175 -0.146 0.789 3.409
3Li+ -0.476 -0.422 1.469 - - - 1.823

Table 3.21: Calculated HOMO, LUMO energies (in a.u.) and HOMO-LUMO gap
(Eg) energies (in eV) and dipole moments (in Debyes) of the nLi/nLi+ ion doped
C(9,0) vacancy defected systems (n=1-3). (DFT B3LYP/6-31G results.)

Quantity HOMO(α) LUMO(α) Eg(α) HOMO(β) LUMO(β) Eg(β) µ

undoped -0.185 -0.152 0.898 - - - 1.919
1Li -0.182 -0.146 0.980 -0.182 -0.146 0.980 1.758
1Li+ -0.255 -0.254 0.027 - - - 3.773
2Li -0.168 -0.129 1.061 - - - 14.192
2Li+ -0.370 -0.349 0.571 - - - 0.524
3Li -0.173 -0.126 1.279 -0.182 -0.148 0.925 2.264
3Li+ -0.463 -0.443 0.544 - - - 1.706

color on the charge by color figures). The net charge accumulated on Li atoms

are larger than that of Li+ ions for the 1Li/1Li+@C(5,5) and 1Li/1Li+@C(9,0)

systems, which are 0.635/0.595 and 0.590/0.375, respectively. However, for the

other systems, the total charge on Li ions are larger than that of Li atoms. The

HOMO and LUMO distributions are similar for 1Li atom doped VD capsules,

they are localized on the surfaces of the capsules. Both of the HOMO of 1Li+ ion

doped capsules are localized mostly on the defected region. On the other hand,

LUMOs are localized on the surface of the capsules. LUMO of the 1Li+@C(5,5)

system aligned horizontally and 1Li+@C(9,0) system aligned vertically. While

the HOMO of the 2Li@C(5,5) system is localized on the defected region, the

LUMO of the same system and both HOMO and LUMO of the 2Li@C(9,0)

system are randomly distributed on the capsule surface. Whereas the HOMO
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Figure 3.26: The HOMO-LUMO gap (Eg) energy versus the number of Li/Li+ ion in
the vacancy defected C(5,5) (left) and C(9,0) (right) capsules. (Squares are for the
lithium ions and triangles are for the lithium atoms.)

of 2Li+@C(5,5) system is more uniformly distributed on the capsule than the

HOMO of 2Li+@C(9,0) system, the LUMOs of the same systems are localized on

the defected region. For the three lithium atom doped systems there is no sim-

ilarity. While the HOMO of the C(5,5) system is not significantly distributed

on the capsule, LUMO is localized on the defect. HOMO and LUMO of the

3Li@C(9,0) capsule are distributed on the capsule and the latter is especially on

the caps of the capsule. While the HOMO of 3Li+@C(5,5) system is horizontally

distributed on the capsule, the LUMO of the same system is localized mainly on

the Li ions and on the defect. For the 3Li+@C(9,0) capsule, HOMO is randomly

distributed on the capsule and LUMO is localized on the defected region.

The calculated total energy values of the defected doped capsules by applying

DFT method and MD simulations are given in Table 3.22. These two different

methods predict the same trend for both of the systems. Lithium atom doped

defected capsules have less energy which means that these systems are more

stable than lithium ion doped capsules. This is an expected result because C-Li

interaction is stronger than the C-Li+ interaction.

The calculated average binding energy per Li/Li+ ion is defined by two ways
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Figure 3.27: 3D plots of charge distribution by color (a), HOMO (b), and LUMO (c)
for the nLi atom (n=1-3) doped C(5,5) VD capsules.
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Figure 3.28: 3D plots of charge distribution by color (a), HOMO (b), and LUMO (c)
for the nLi+ ion (n=1-3) doped C(5,5) VD capsules.

as mentioned before in the previous section. Equations 3.2 and 3.3 have been

used for the calculations. Tables 3.23 and 3.24 present the average binding en-

ergies with the Li-Li interaction is not considered and with the Li-Li interaction

64



ca

1

2

3

b

Figure 3.29: 3D plots of charge distribution by color (a), HOMO (b), and LUMO (c)
for the nLi atom (n=1-3) doped C(9,0) VD capsules.

Table 3.22: Total energy values (in au) of the C(5,5) and C(9,0) systems doped with
nLi/nLi+ ion (n=1-3) by applying B3LYP level of DFT calculation using 6-31G basis
set. MD results (in eV) are given in parenthesis.

System C(5,5) C(9,0)
without Li/Li+ -4533.356 -4304.671

(-580.890) (-553.788)
1Li/1Li+ -4540.922 / -4540.699 -4312.269 / -4312.014

(-716.651)/ (-630.083) (-686.877)/ (-604.779)
2Li/2Li+ -4548.409 / -4547.922 -4319.864 / -4319.243

(-848.548)/ (-681.735) (-809.876)/ (-655.024)
3Li/3Li+ -4555.953 / -4555.064 -4327.319 / -4326.376

(-976.335)/ (-728.805) (-936.105)/ (-603.149)

considered, respectively. For the former case, it is energetically most favorable

to dope one lithium atom into the both capsules. The average binding energy

per lithium ion for 3Li+C(5,5) and 3Li+C(9,0) systems are 1.31 and 1.34 eV,

respectively, which means that it is unfavorable to dope three lithium ions into

the defected capsules. One can conclude that Li+ ion can move more easily than

Li atom from the binding energy point of view. When the Li-Li interactions are

65



1

2

3

a b c

Figure 3.30: 3D plots of charge distribution by color (a), HOMO (b), and LUMO (c)
for the nLi+ ion (n=1-3) doped C(9,0) VD capsules.

taken into account, the binding energy values are found to be very different than

the other case. For all the cases except 2Li+@C(9,0), the average binding energy

per lithium ion is larger in magnitude than the lithium atom, which means that

clusters of lithium ion doping is energetically more favorable than clusters of

lithium atom doping.

Table 3.23: Binding energy values per Li/Li+ ion (in eV/Li) of the C(5,5) and C(9,0)
systems doped with nLi/nLi+ ion (n=1-3) by applying B3LYP level of DFT calculation
using 6-31G basis set. (Li-Li interactions are not considered; from Eq. 3.2)

System C(5,5) C(9,0)
1Li/1Li+ -2.05/-1.62 -2.92/-1.59
2Li/2Li+ -0.98/+0.03 -2.87/-0.04
3Li/3Li+ -1.14/+1.31 -1.59/+1.34
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Table 3.24: Binding energy values per Li/Li+ ion (in eV/Li) of the C(5,5) and C(9,0)
systems doped with nLi/nLi+ ion (n=2,3) by applying B3LYP level of DFT calculation
using 6-31G basis set. (Li-Li interactions are considered; from Eq. 3.3)

System C(5,5) C(9,0)
2Li/2Li+ -0.54/-2.03 -2.46/-2.07
3Li/3Li+ -0.88/-2.23 -1.20/-2.20

3.6 Structural and Electronic Properties of nLi/nLi+ ion (n=1-4)

Doped Stone-Wales Defected Carbon Nanocapsules

In this section, the energetics and the structural properties of the undoped and

nLi/nLi+ ion (n=1-4) doped Stone-Wales defected C(5,5) and C(9,0) carbon

nanocapsules have been investigated using semi-empirical PM3 method for the

optimization purposes and DFT method with B3LYP/6-31G for the single point

energy calculations [110]. The detailed information for the SW-defected capsules

are given in section 2.3. Molecular dynamics simulations did not provide reliable

results for these studied systems as the number of lithiums increased so they are

not presented.

The thermodynamical properties of the optimized geometries are calculated with

semi-empirical MO PM3 method using the HyperChem package. The calculated

energies (total energy, binding energy, isolated atomic energy, electronic energy,

core-core interaction, and heat of formation) of the SW-defected capsules un-

doped and doped with nLi/nLi+ ion (n=1-4) are presented in Tables 3.25 and

3.26. From the point of view of the binding energy values, nLi atom doped cap-

sules are more stable then nLi+ ion doped capsules. The systems have endother-

mic heat of formation values. The Li+ ion doped systems are more endothermic

than Li atom doped systems. As the number of Li/Li+ increases the heat of

formation energies become more positive. Furthermore, Li atom doped systems

have less heat of formation energy than Li+ ion doped systems.
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Table 3.25: Calculated energy values (in kcal/mol)(TE: total energy, BE: binding
energy, IAE: isolated atomic energy, EE: electronic energy, CCI: core-core interaction,
and HOF: heat of formation) of undoped and nLi and nLi+ ion doped C(5,5) SW-
defected optimized systems, where n=1-4 (single point/PM3 results).

Quantity TE BE IAE EE CCI HOF
undoped -327009.3 -19200.3 -307809.0 -6822734.4 6495725.1 1306.5
1Li@C(5,5) -327194.5 -19263.3 -307931.2 -6828728.3 6501533.8 1281.9
1Li+@C(5,5) -326958.5 -19027.2 -307931.2 -6846016.9 6519058.4 1517.9
2Li@C(5,5) -327201.0 -19147.6 -308053.5 -6869340.9 6542139.9 1436.0
2Li+@C(5,5) -326836.7 -18783.3 -308053.5 -6867296.0 6540459.3 1800.3
3Li@C(5,5) -327295.3 -19119.7 -308175.7 -6876825.4 6549530.1 1502.4
3Li+@C(5,5) -326654.5 -18478.8 -308175.7 -6888425.8 6561771.4 2143.3
4Li@C(5,5) -327391.4 -19093.5 -308297.9 -6906540.8 6579149.5 1566.9
4Li+@C(5,5) -326411.3 -18113.4 -308297.9 -6908045.7 6581634.4 2547.0

Table 3.26: Calculated energy values (in kcal/mol)(TE: total energy, BE: binding
energy, IAE: isolated atomic energy, EE: electronic energy, CCI: core-core interaction,
and HOF: heat of formation) of undoped and nLi and nLi+ ion doped C(9,0) SW-
defected optimized systems, where n=1-4 (single point/PM3 results).

Quantity TE BE IAE EE CCI HOF
undoped -310666.5 -18247.9 -292418.6 -6313838.9 6003172.4 1233.5
1Li@C(9,0) -310816.9 -18276.1 -292540.8 -6318275.9 6007459.1 1243.8
1Li+@C(9,0) -310605.0 -18064.3 -292540.8 -6335361.4 6024756.4 1455.6
2Li@C(9,0) -310858.9 -18195.9 -292663.0 -6356328.6 6045469.8 1362.4
2Li+@C(9,0) -310489.2 -17826.2 -292663.0 -6354260.3 6043771.1 1732.1
3Li@C(9,0) -310951.1 -18165.9 -292785.2 -6361620.2 6050669.1 1430.8
3Li+@C(9,0) -310307.6 -17522.3 -292785.2 -6372146.1 6061838.6 2074.4
4Li@C(9,0) -311086.6 -18179.1 -292907.4 -6399632.3 6088545.8 1455.9
4Li+@C(9,0) -310059.1 -17151.6 -292907.4 -6391866.8 6081807.8 2483.5

The calculated molecular orbital eigenvalues such as HOMO, LUMO, the inter-

frontier molecular orbital energy gaps, that is LUMO-HOMO energy difference,

Eg (see also Fig. 3.31), and the calculated dipole moment values are given in

Tables 3.27 and 3.28 for C(5,5) and C(9,0) SW-defected capsules, respectively.

HOMO and LUMO energies of Li atom doped systems are larger than that of

the Li+ ion doped systems. 4Li+ ion doped C(9,0) has the largest dipole moment

value which indicates the highly asymmetric structure.
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Table 3.27: Calculated HOMO, LUMO energies (in a.u.), HOMO-LUMO gap (Eg)
energies (in eV) and dipole moments (µ in Debyes) of undoped and nLi/nLi+ ion
doped C(5,5) SW-defected systems (n=1-4). (DFT B3LYP/6-31G results.

Quantity HOMO(α) LUMO(α) Eg(α) HOMO(β) LUMO(β) Eg(β) µ

undoped -0.180 -0.137 1.170 - - - 1.028
1Li -0.170 -0.132 1.034 -0.177 -0.146 0.844 0.834
1Li+ -0.274 -0.233 1.197 - - - 1.709
2Li -0.172 -0.128 1.197 - - - 1.101
2Li+ -0.366 -0.324 1.143 - - - 0.917
3Li -0.167 -0.141 0.707 -0.166 -0.137 0.789 1.226
3Li+ -0.455 -0.422 0.898 - - - 2.119
4Li -0.172 -0.126 1.252 - - - 1.299
4Li+ -0.547 -0.528 0.517 - - - 2.892

Table 3.28: Calculated HOMO, LUMO energies (in a.u.), HOMO-LUMO gap (Eg)
energies (in eV) and dipole moments (µ in Debyes) of undoped and nLi/nLi+ ion
doped C(9,0) SW-defected systems (n=1-4). (DFT B3LYP/6-31G results.

Quantity HOMO(α) LUMO(α) Eg(α) HOMO(β) LUMO(β) Eg(β) µ

undoped -0.181 -0.137 1.197 - - - 0.091
1Li -0.168 -0.127 1.116 -0.179 -0.144 0.952 1.549
1Li+ -0.277 -0.232 1.225 - - - 0.632
2Li -0.171 -0.154 0.463 - - - 0.461
2Li+ -0.371 -0.326 1.225 - - - 0.840
3Li -0.170 -0.128 1.143 -0.165 -0.140 0.680 1.092
3Li+ -0.463 -0.461 0.054 - - - 0.690
4Li -0.171 -0.129 1.143 - - - 1.342
4Li+ -0.560 -0.542 0.490 - - - 2.961

3D plots of charge by color, HOMO and LUMO of the optimized SW-defected

undoped and doped capsules are presented in Figs. 3.32-3.36. The charge by

color figures for the undoped systems (see Fig. 3.32) show that the excess

charges are accumulated mainly on the defected regions. The localizations of

the HOMO and LUMO of the undoped capsules are very low and they are lo-

calized on the defected sides. Figs. 3.33 and 3.34 show the nLi/nLi+ ion doped

C(5,5) SW-defected capsules. For the 2Li, 3Li, 3Li+ ion, and 4Li+ ion doped

C(5,5) SW-defected capsules, LUMOs are localized on the lithiums and there is

no weight on the carbon atoms. HOMO distribution is very low and they are
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Figure 3.31: The HOMO-LUMO gap (Eg) energy versus the number of Li/Li+ ion in
the SW-defected C(5,5) (left) and C(9,0) (right) capsules. (Squares are for the lithium
ions and triangles are for the lithium atoms.)

delocalized on carbon atoms, not on lithiums. In Figs. 3.35 and 3.36, similar

properties of nLi/nLi+ ion doped C(9,0) SW-defected capsules with C(5,5) cap-

sules are presented. For the 2Li atom doped case, the distribution of HOMO

is smaller than the distribution of LUMO and both HOMO and LUMO are lo-

calized between the two lithium atoms. For the 4Li+ ion systems, HOMO and

LUMO are localized on the Li+ ions and both have very similar structures. For

the 3Li+ ion case, the LUMO is localized in between the lithium ions. The

HOMO and LUMO distribution of the other systems are delocalized on carbon

atoms. From the point of view of the Mulliken charge analysis it is shown that

lithiums are ionized, but not for one lithium atom at the 4Li@C(5,5) system,

which is consistent with the other results [30, 35]. For all the systems, the charge

accumulated on lithium ions are larger than that of lithium atoms.

Total energy values of the doped and undoped SW-defected capsule systems

are presented in Table 3.29. The lithium atom doped systems have less energy

(higher in magnitude) than the lithium ion doped systems which means that

lithium atom doped systems are more stable. The SW defect formation energy

is again calculated using:

Ef = E(SW )− E(pristine) (3.4)
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Figure 3.32: 3D plots of charge distribution by color (a), HOMO (b), and LUMO (c)
for the C(5,5) (upper panel) and C(9,0) pristine (lower panel) undoped SW-defected
capsules.

and the formation energies found to be 3.621 eV and 1.065 eV for the C(5,5)

and C(9,0) systems, respectively. Another DFT study [112] using the LDA and

GGA found the defect formation energy of C(5,5) SW defected CNT to be 3.90

eV and 4.23 eV, respectively. Meunier et al.[30] found the defect formation en-

ergy of C(5,5) tube to be 3.5 eV using ab initio calculations with LDA. The

differences between the defect formation energies arise because of the different

methods applied in the calculations and while the present calculations are per-

formed for capsule systems, the other calculations are for single walled tube

systems. Moreover, in the other studies the total number of carbon atoms are

not given so we can not calculate the defect formation energy per atom, which

would be a better result for the comparison purposes.

Table 3.29: Total energy values (in au) of the C(5,5) and C(9,0) SW-defected systems
undoped and doped with nLi/nLi+ ion (n=1-4) by applying B3LYP level of DFT
calculation using 6-31G basis set.

System C(5,5) C(9,0)
undoped -4571.560 -4343.010
1Li/1Li+ -4579.104/-4578.897 -4350.554/-4350.329
2Li/2Li+ -4586.621/-4586.130 -4358.076/-4357.580
3Li/3Li+ -4594.132/-4593.265 -4365.632/-4364.689
4Li/4Li+ -4601.706/-4600.306 -4373.201/-4371.756
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Figure 3.33: 3D plots of charge distribution by color (a), HOMO (b), and LUMO (c)
for the nLi@C(5,5) SW-defected capsules (n=1-4).

The binding energies of the systems are calculated with the same consideration

in section 2.4 using the Eq. 3.2 and Eq. 3.3. The binding energy values which

are calculated not considering the Li-Li interactions and taking into account the

Li-Li interactions are presented in Table 3.30 and 3.31, respectively. For the

former case, whereas the binding energy of one lithium atom doping is the same

for both of the SW-defected capsules, one lithium ion doped pristine C(9,0) cap-

sule has smaller binding energy than the one lithium ion doped C(5,5) pristine

capsule. Moreover, it is less favorable to dope lithium ions to the capsules than

to dope lithium atoms but not for 1Li+ ion doped pristine C(5,5) capsule. For

the latter case, binding energies of lithium atom doped capsules are less negative

than that of lithium ion doped capsules which implies that lithium ion doping

is energetically less favorable than lithium atom doping. Since the movement

of lithiums are important for the batteries, lithium atoms moves easily through

the capsules due to their low binding energies.
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Figure 3.34: 3D plots of charge distribution by color (a), HOMO (b), and LUMO (c)
for the nLi+@C(5,5) SW-defected capsules (n=1-4).

Table 3.30: Binding energy values (Eb) per Li/Li+ ion (in eV/Li) of the C(5,5) and
C(9,0) SW-defected systems doped with nLi/nLi+ ion (n=1-4) by applying B3LYP
level of DFT calculation using 6-31G basis set. (Li-Li interactions are not considered;
from Eq. 3.2.)

System C(5,5) C(9,0)
1Li/1Li+ -1.45/-1.43 -1.45/-0.92
2Li/2Li+ -1.08/-0.01 -1.15/-0.02
3Li/3Li+ -0.90/+1.34 -1.35/+1.58
4Li/4Li+ -1.24/+2.67 -1.55/+2.67

Table 3.31: Binding energy values (E′
b) per Li/Li+ ion (in eV/Li) of the C(5,5) and

C(9,0) SW-defected systems doped with nLi/nLi+ ion (n=2-4) by applying B3LYP
level of DFT calculation using 6-31G basis set. (Li-Li interactions are considered;
from Eq. 3.3.)

System C(5,5) C(9,0)
2Li/2Li+ -0.72/-1.95 -0.75/-1.75
3Li/3Li+ -0.51/-2.27 -0.94/-2.60
4Li/4Li+ -0.95/-2.47 -1.15/-2.64
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Figure 3.35: 3D plots of charge distribution by color (a), HOMO (b), and LUMO (c)
for the nLi@C(9,0) SW-defected capsules (n=1-4).

For the optimized systems, the C-C bond lengths of the SW-defected sites are

measured for the capsules (see Fig. 3.37). The C-C bond lengths of the SW-

defected site (C1-C2) for the C(5,5) and C(9,0) undoped capsules are 1.326

Å and 1.417 Å, respectively. When the nLi/nLi+ ions are doped, the C-C bond

lengths of 2Li and 3Li doped SW-defected C(9,0) capsule are decreased in a

small amount and for other cases, they increased (1.392 Å).
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Figure 3.36: 3D plots of charge distribution by color (a), HOMO (b), and LUMO (c)
for the nLi+@C(9,0) SW-defected capsules (n=1-4).

Figure 3.37: Fully relaxed structures of the SW-defected C(5,5) and C(9,0) capsules.
The compared C-C bond lengths are represented as C1-C2
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CHAPTER 4

CONCLUSION

From the technological point of view, Li/Li+ ion batteries are one of the promis-

ing materials for the battery technology. For the Li+ ion batteries, the most

popular material for the anode has been graphite. Recently, because of the

unique properties of carbon nanotubes such as the intercalation of foreign atoms

through the channels and to the interior of the tubes, single walled carbon nan-

otubes gained a great interest for a strong candidate for the anode material. As

well as the perfect structures, the defected carbon structures have been investi-

gated widely for their presence in nature.

In this thesis, Li/Li+ ion interaction with different carbon nano structures

such as fullerenes, SWCNTs, SW- and vacancy-defected and defect free car-

bon nanocapsules have been investigated theoretically using molecular mechan-

ics method with MM+ force field, semi-empirical self-consistent field molecular

orbital method at PM3 level and density functional theory calculations with

B3LYP exchange-correlation functional using 3-21G or 6-31G basis sets.

The aim of this thesis is to contribute to the lithium ion battery technology

by filling the missing parts in the literature. As the experimental studies are

expensive and the results can not be foreseen for most of the cases, it is very

important to model the experiments and see the results whether it is worth to

perform or not.
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Some of the important results of the calculations are summarized below:

• Without causing any deformation on the fullerene systems, it was not pos-

sible to dope more than one and two lithiums to the C20 and C60 molecules,

respectively.

• For all of the studied systems, the lithium atom doped systems have less

energy than the lithium ion doped systems, which means that the Li atom

doped systems are more stable than the Li+ ion doped systems.

• The systems are found to have endothermic heat of formation values and

lithium ion doped systems are calculated to be more endothermic than

lithium atom doped systems.

• The HOMO and LUMO energies of the lithium atom doped capsules are

larger than that of the lithium ion doped capsules.

• The interfrontier molecular orbital energy gaps, that is LUMO-HOMO

energy difference, of the nLi/nLi+ ion doped systems reveals that different

structures show different features as the number of Li/Li+ increases in the

nanocapsules. For the most of the Li ion doped capsules, the Eg do not

change much until two Li+ ions doped case then it starts to decrease.

• The defect-free capsules are found to be more stable than the defected

ones. Moreover, it is easier to form a SW defect on a capsule because of

its smaller formation energy.

• For the undoped SW and vacancy defected structures, the Eg of the C(9,0)

capsules are smaller than that of C(5,5) capsules.

• The charge distribution of the systems shows that there is a charge transfer

from Li/Li+ ions to carbon atoms of the nano structures.

• Two different methods have been used to calculate the binding energy

values per lithiums: One is with not considering the Li-Li interactions and
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the other is Li-Li interactions are taken into account. These two different

calculations predicted different binding energy values for the systems.

• As the number of lithiums increased in the defect-free CNC and SW-

defected doped CNC systems, the MD simulations could have not been

performed properly.

Moreover, lithium atom has a better charge transfer property than the Li+ ion

which is a very important case for battery working principles so lithium metal

is a candidate for the electrode material in the batteries.

In addition to these studies on the lithium battery technology, there are numer-

ous works that should be investigated. Experimentally, it was found that the

lithium intercalated into SWCNTs at the one third ratio which meant that more

Li/Li+ ion doped structures could be investigated. Furthermore, the effects of

the temperature and the electric field on Li/Li+ ion doping to the systems are

worth to investigate which are believed to yield interesting results. Moreover,

Li/Li+ ion doped heteronuclear capsules, such as BN, ZnO, and CBN, might

show interesting features; they worth to be investigated as further studies.
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[7] Türker, L., Erkoç, Ş., J. Mol. Struct. (Theochem) 638, 37 (2003).
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1. Ercan Yılmaz, Rengin Peköz, Cüneyt Can, ”Escape of photons and elec-

trons from an HPGe detector at 81 keV”, VIII. National Nuclear Sciences

and Technologies Congress”, 15-17 October 2003, Erciyes University, Kay-

seri, Turkey (Speaker).
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3. Rengin Peköz and Şakir Erkoç, ”Endohedral Li and Li+ doped fullerenes:

Molecular dynamics simulations”, NANO-TR-II Nanoscience and Nan-

otechnology, 3-5 May 2006, METU, Ankara, Turkey (Poster).

PROCEEDINGS PRESENTED IN INTERNATIONAL MEETINGS
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