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ABSTRACT 

NONLINEAR CONTROLLER DESIGNS FOR A REACTION WHEEL ACTUATED OBSERVATORY 

SATELLITE 

Doruk, Reşat Özgür 

PhD, Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Erol Kocaoğlan 

June 2008, 143 Pages 

 

In this research, nonlinear attitude controllers are designed for a low earth 

orbit satellite intended to be used in observatory missions. The attitude is represented 

by the Modified Rodriguez Parameters (MRP) which is a minimal representation 

providing a fully invertible kinematics. As a difference from the classical satellite 

models existent in the literature, the model of this work incorporates the dynamics of 

the reaction wheel (actuator) including a brushless dc motor which is armature 

controlled. The total model has four group of state vectors which are the attitude, 

body rates, actuator torque and velocity. The main control approach of this 

research is developed by utilizing integrator back - stepping which provides a 

recursive stabilization methodology to the designer. For performance comparison, a 

second controller based on input output feedback linearization (IOFL) is presented. 

Both of the approaches produce a torque demand law and this is used for 

generating a desired reaction wheel velocity command. A reaction wheel controller 

uses the motor as the actuator and produces the necessary amount of the torque 

according to the desired wheel velocity command. In addition for the back - 

stepping based approach, a stability analysis against the external disturbance 

torques is also provided. Simulations are presented for validating the performance 

and robustness of the proposed controllers.    

Keywords: Back - stepping, feedback linearization, attitude control, satellite, reaction 

wheel 
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ÖZ  

TEPKİ TEKERİ İLE HAREKET EDEN GÖZLEM UYDULARI İÇİN DOĞRUSAL OLMAYAN 

DENETLEÇ TASARIMLARI 

Doruk, Reşat Özgür 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Erol Kocaoğlan 

Haziran 2008, 143 Sayfa 

 

Bu çalışmada, alçak yörüngeli görüntüleme uyduları için doğrusal olmayan 

yönelim denetleci tasarımları yapılmaktadır. Kullanılmakta olan uydu modeli 

Değiştirilmiş Rodriguez Parametreleri ile modellenmiş olup kaynaklarda sıklıkla 

rastlanan klasik uydu modelinden farklı olarak motor dahil olmak üzere tepki 

tekerlerinin etkilerini de içermektedir. Değiştirilmiş Rodriguez Parametreleri sürekli 

tersinir bir kinematik sağlaması açısından önemlidir. Kullanılmakta olan motor armatür 

kontrollü olup tüm sistemde yönelim, gövde hızları, tork ve tepki tekeri hızı olmak 

üzere dört grup durum vektörü söz konusudur. Yönelim kontrolü için temel olarak 

seçilen yaklaşım tasarımcıya tüm durum vektörlerini teker teker inceleme olanağı 

sunan geri adımlamalı denetleç tasarım yöntemini kullanmaktadır. Bunun yanı sıra, 

benzetimlerde karşılaştırma amacı ile geri beslemeye dayalı doğrusallaştırma 

yöntemine dayalı ikinci bir yaklaşıma da değinilmektedir. Her iki yaklaşımda öncelikle 

gerekli yönelimlere ulaşılabilmesini sağlayan bir gerekli tork değeri üretecektir. Bu 

bilgi, ölçerlerden gelen yönelim ve açısal hız bilgileri kullanılmak suretiyle tümlenerek 

tepki tekeri hız komutu üretilir. Tepki tekeri sistemini kontrol eden algoritma bu değeri 

kullanarak motorlardan gerekli torku üretilmesini sağlar. Geri adımlamalı yaklaşım için 

bozucu dış etkilere karşı kararlılığı analiz eden basit bir matematiksel yaklaşımda 

sunulacaktır. Ayrıca her iki yaklaşım için performansların analizine yönelik benzetimler 

gerçekleştirilmiş olup, yaklaşımların karşılaştırılmasıda bu safhada yapılmıştır.      

Anahtar Kelimeler: Geri adımlamalı denetleç, geri beslemeye dayalı 

doğrusallaştırma, yönelim denetimi, tepki tekeri   
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CHAPTER 1                                                    

INTRODUCTION 

1.1 Purpose 

Satellites became an important application area of the new technological 

developments. They are used in many fields starting from telecommunications to 

defense technologies. For a successful operation the satellite should be stabilized at 

a given attitude. Thus attitude control is an important part of the space technology 

research. The low earth orbit satellites (LEO) are subject to some disturbances 

originating from earth and space environment. Because of that, the robustness 

characteristics of the stabilizing controller are one of the most important aspects of 

the attitude control approaches. In addition to that, the satellite or spacecraft 

models are constructed using the nominal values of parameters. In realistic 

conditions, the values of the model parameters may deviate from the nominals. The 

aim of this research is to develop nonlinear controllers for attitude stabilization of low 

earth orbit satellites, analyze their robustness and performances through theoretical 

and simulation based analyses.  

1.2 Satellite Attitude Control: A historical perspective 

There has been much research on satellite attitude control after the first 

artificial satellite Sputnik – I had started its mission in space in the year 1957. In this 

section, a literature survey will be provided for presenting the developing research in 

the past 50 years. 

One of the oldest studies in the attitude control research is the work done by 

[Froelich (1959)] where reaction wheels are used for actuation. To support the 

operation of reaction wheels a mass ejection mechanism is utilized. The aim of this 

device is to compensate for the initial disturbances and removes the unwanted 

momentum stored in the reaction wheels. In [Sepahban (1964)] a practical attitude 

control approach was presented. Digital differential analyzer techniques are used in 

the derivation of the attitude control law. An analog computer is used for simulating 

the dynamics of the controlled vehicle. It is claimed that the designed digital 

controller is an example of true optimal control.  
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The study by [Showman (1967)], is an example of applying gimbaled star 

trackers to obtain useful attitude control signals. The amount of deviation in the 

gimbals from their commanded angles is used in the computation of the attitude 

error. In the work of [Porcelli (1967)], a simplified model of a rigid rotating body is 

given together with two suboptimal control laws. One of the control laws have a 

more complex mechanism but requires less fuel than the other. These controllers 

assume that limited thrust available. For the case of unlimited thrust , the approach 

provides two minimum fuel optimal controllers. The paper by [Dunn (1968)] provides 

a minimum energy controller in presence small external disturbance torques. The 

actuators are reaction thrusters with variable impulses. The limit cycle issues and 

corresponding fuel consumption rates are also discussed.  

Another research on satellite attitude control was [Arnesen (1968)]. This work 

is an example of active magnetic coils as actuators. The laboratory demonstrations 

show that the best possible configuration for three axis satellite attitude control is the 

usage of magnetic coils for two axes and one reaction wheel or thruster for the 

remaining axis. [Childs (1969)] is an optimal attitude control study where necessary 

conditions are developed for fuel optimal attitude control laws for spin stabilized axi -  

symmetric spacecraft. The control torques are generated by a gimbaled reaction jet 

system.  

[Fearnsides (1970)] is another fuel mode optimal control study where the 

correlation between the lower bound of the fuel consumption and the structure of 

the disturbance torques are investigated. The study by [Harvey (1972)] discusses the 

limit cycle bounds on attitude control systems. The attitude control system is of the on 

– off type and a bounding curve that insures the cyclic behaviour on the roll 

dynamics is derived. In [Isley (1975)], a ground based adaptive attitude control work 

is presented. In that research, the attitude control algorithm is set up in a 

minicomputer system in the ground station. The information exchange between the 

ground station and the geosynchronous satellite is performed by RF command and 

telemetry links.  

The work by [Larson (1977)] deals with an optimal Linear Quadratic Gaussian 

(LQG) control and estimation approach. The spacecraft has flexible appandages 

and the results point out the modeling errors. The spacecraft model is 15th order 

where as the investigated estimators are second, fourth and sixth order. [Pande 

(1979)]  discusses the utilization of solar pressure in attitude control in the pitch plane. 

The importance of the controller is that there are no mass expulsion techniques 

involved in the control algorithm so the lifespan of the vehicle increased.  
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[Joshi (1980)] proposes a model damping scheme for large space structures, 

which is important for achieving stability of the attitude control system. The controller 

uses a number of angular momentum control devices for damping enhancement. 

The closed loop system is claimed to be stable in the sense of Lyapunov. The work of 

[Crouch (1984)] studies the solution of the attitude control problem by geometric 

control theory. The work analyzes the controllability of the plant in the gas jet and 

momentum wheel actuation cases. In the case of the momentum wheels three 

independent actuators are needed for stable and accurate three axis attitude 

control.  

[Sahjendra (1984)] discusses the asymptotic reproducibility (to track a given 

function asymptotically). The theoretical results are applied to a nonlinear satellite 

attitude control problem. [Dwyer (1985)] discusses an optimal solution to the attitude 

control problem. The spacecraft uses momentum transfer devices in actuation and 

pointwise minimization of sum of the squares of the norms of the states in the 

discretized linear plant and the linear system inputs.  

An attitude control application on the satellites with flexible components is 

presented by [Monaco (1985)]. The control law implements a static state feedback 

on the linear plant obtained by feedback linearization.  

An adaptive control scheme is provided by [Singh (1986)] where a model 

reference controller is developed which does not need any information concerning 

satellite model parameters and disturbance torques. The control law feeds attitude 

errors, the rate of change of attitude errors and compensator states. A robust control 

law based on nonlinear invertibility and linear feedback theory is provided by [Singh 

(1987)] where robustness against parametric uncertainties are obtained by 

incorporating a servo compensator.  

Another work by [Singh (1987)] solves the large angle attitude control 

problem by adaptive control. The study assumes that there are unknowns in various 

parameters of the spacecraft and disturbance torques. The controllers enable the 

spacecraft to do large maneuvers in spite of the uncertainties in the system. A linear 

attitude control study is performed by [Iyer (1987)] where matrix fraction descriptions 

are used to produce minimal controllable and observable linear satellite models. 

Observers and output feedback controllers are designed using those models and 

the authors claim that precise attitude control law is achieved.  

The work by [Singh (1989)] presents a variable structure control law that feeds 

the attitudes defined in Euler angles back to the controller in presence of 



 
4 

uncertainty. The actuators are reaction jets. The authors claim that precise attitude 

control can be achieved. [Weiss (1989)] discusses a generic attitude control 

problem. The controller has an inner rate feedback loop and an outer attitude 

feedback loop. The controllers are of proportional or proportional plus integral type. 

An intelligent attitude control implementation incorporating artificial intelligence 

theories is presented by [Murgesan (1989)]. These approaches provide power of 

reasoning, judgement, learning, self – modification, adaptability and fault tolerance.  

In [Mobasser (1990)], the combination of sun sensors and digital signal 

processing tools are utilized to design an attitude control system the purpose of 

which is to point the vehicle point towards the sun. the deviations from the sun axis 

are detected as attitude errors and appropriate actions are taken to correct the 

orientation of the spacecraft.    

[Iyer (1990)] has implemented an adaptive nonlinear control system for 

driving gyrotorquers. It is working without the necessity of the system parameters and 

disturbance information. The controller only uses the tracking error and its derivative 

for the feedback and is claimed to be successful. Some attitude control guidelines 

are given in the work by [Wen (1991)] including attitude representations, error 

definitions, kinematics, dynamics and Lyapunov function candidates. The work by 

[Nicosia (1992)] introduces a controlling mechanism which operates by only 

measuring the roll, pitch and yaw components of the attitude. A nonlinear observer 

is designed for reconstructing all of the necessary state variables. The nonlinear 

servomechanism theory is applied by [Huang (1994)] and the result is claimed to be 

better than the feedback linearization for sinusoidal disturbances and parametric 

uncertainties. In the work by [Tsiotras (1994a &1995a)], the problem of attitude 

stabilization is considered. The control is actuated through two pairs of gas jets. Those 

actuators provide two control torques orthogonal to the axis of symmetry. 

[Dracopoulos (1994)] investigates the application of locally predictive networks to an 

adaptive attitude control problem. The network is trained by using small history of the 

system states up to the present time and some set of control inputs. After the training 

is successfully completed a genetic algorithm is used to find a suitable input from a 

hypothetical set of control inputs.  

A system parameter independent quaternion (attitude) and angular velocity 

feedback control law is proposed by [Joshi (1995)] which is claimed to be robust 

against modeling uncertainties. The resultant control system is shown to be 

asymptotically stable. [Godhavn (1995)] presents a continuous feedback controller. 

In this work, some measurements are sampled due to the non – differentiability of the 
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exponential stabilizers. The design by [Greval (1995)] does not need any gyroscopic 

measurement and estimates the velocities from the apparent motion of the stars on 

the focal plane. The attitudes are computed by the usage of a square root 

Extended Kalman Filter (SQEKF). [Wisniewski (1996)] develops a linear control system 

based on the Floquet theory of periodic systems. The main clue is the periodicity of 

the earth’s geomagnetic field. In the same text, there also exists some applications 

on sliding mode control. Another sliding mode application is the work by [Crassidis 

(1996)] in which the Modified Rodriguez Parameters (MRP) are used as the attitude 

representation.  

An optimization study is the research of [Schaub (1996)] which focuses on 

near minimum time and near minimum fuel solution of the attitude control problem. 

An asymptotically stable nonlinear observer is designed for attitude estimation. In 

[Tsiotras (1994b & 1996)] a Lyapunov function involving quadratic and logarithmic 

terms is utilized for obtaining linear controllers in terms of kinematical parameters. 

Stereographical projections are used for obtaining two additional parameters in the 

rotation group. Tsiotras [(1996)] has used a specific Lyapunov function which is 

quadratic in angular velocities and logarithmic in attitude. An optimal control 

scheme is obtained from solution of a quadratic cost where the overall control 

performance is claimed better for Modified Rodriguez Parameters. [Crassidis (1997)] 

applies predicitive control theory on attitude control. Another application of sliding 

mode attitude control is the [McDuffie (1997)]’s work which is based on decoupled 

sliding mode approach. It is claimed that, the controller sliding manifold is 

guarantees the globally stable asymptotic convergence and the full order sliding 

mode observer avoids the noise due to the differentiation of quaternion attitude 

error.  

The method of State Dependent Riccati Equation is an interesting approach 

for designing nonlinear control laws by somehow treating the system equations as 

linear. By that way the properties of linear quadratic (LQR) or other optimal control 

methods based on the solution of Riccati equations can be approximated in certain 

conditions. A typical solution for attitude control problem based on that approach is 

shown in [Parrish (1997)]. In [Zeng (1997)] two nonlinear controllers are designed for 

the comparison of Modified Rodriguez Parameters and Euler angles in attitude 

control. The work of [Kim (1998)] provides a solution for the asymptotical instability 

issue of the sliding mode control in presence of external disturbance torques 

(Disturbance accommodating sliding mode control). Hall [(1998)] uses thrusters and 

momentum wheels as actuators in their attitude control approach. 
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 An application of backstepping control is presented in [Wang (1998)]. The 

backstepping concept is used for partitioning the system into an inner and outer 

loop. The outer loop makes use of a virtual input and its stability is achieved through 

La Salle theorem. The inner control loop is designed by sliding – mode theory. In the 

study of [Tsiotras (1998)] passivity properties of the attitude modeling system are 

utilized to derive control laws that are linear and asymptotically stable. The 

comparative study of [Kim (1998)] analyzes time optimal control and sliding mode 

control techniques in satellite application. It is argued that the time optimal solution 

had a better settling time. [Charbonnel (1999)] is an implementation of the linear H∞  

control technique where the problem is solved by LMI algorithms. They have 

analyzed the robustness of the achieved system by defining different structured 

singular value bounds and using mixed µ – analysis procedure.  

A comparative study is provided by [Won (1999)] in which the 

implementations of 
2

H , H∞ and mixed 
2/

H ∞ methods are presented. This is a useful 

resource for gaining insight about the mentioned control approaches. An 

implementation of the Lyapunov nonlinear control theory is done by [Long (1999)] 

which involves data acquisition from the sun in the generation of the control 

commands. Kristic [(1999)] has developed a scheme for avoiding the solution of 

Hamilton – Jacobi – Isaacs inequality of optimal control by using an inverse 

optimality approach. The required control Lyapunov function and the resultant 

control law are obtained through integrator backstepping. A combination of sliding 

mode and optimization techniques are presented by [Crassidis (1999)]. In that case, 

a utilization of a simple term in the control law leads to a maneuvering of the 

reference trajectory in the shortest available distance. The sliding surfaces are 

designed through optimal control theories and the stability of the resultant control 

system are analyzed by Lyapunov functions. In the study by [Shen (1999)], the 

problem of minimum – time orientation of the axisymmetric rigid spacecraft by 

special methods of optimization are considered. Schaub [(1999)] designs an 

adaptive control law for attitude tracking of the space craft. The open loop 

nonlinear control law leads to a linear system in the closed loop (in terms of the 

attitude) where the control action can be in either PD or PID form. The adaptive 

nature of the linear controller removes the necessity of knowing the inertia matrix 

and the external disturbances. Caccavale’s [(1999)] paper addresses the attitude 

tracking problem in the case of unknown velocity information. That is solved by two 

approaches. In the first one a second order model based observer is adopted for 

estimating the angular velocity of the satellite body. In the second case, a lead filter 
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is used for this purpose. [Kristiansen (2000)] designs PD and LQG (linear quadratic 

Gaussian) controllers for satellite attitude control and applies them to different 

combinations of actuators. The actuators are magnetic coils and reaction wheels. In 

[Hull (2000)], two nonlinear controllers are designed. The first one is based on 

integrator backstepping and feedback linearization which is formulated as a robust 

nonlinear recursive algorithm. The second one is a learning control example that 

updates the control input iteratively without the necessity of the system parameters 

and inverse dynamics. Costic [(2000)] has designed a quaternion based adaptive 

attitude controller without the need of an angular velocity feedback. The proposed 

output feedback controller is proven to be asymptotically stable. In [Tsiotras (2000)], 

a problem similar to that of [Tsiotras (1994a &1995a)] is solved but in this case there is 

a maximum limit on the level of the input torques. The paper by [Crassidis (2000)] has 

combined optimal and variable structure control approaches to obtain a shortest 

distance attitude maneuver control.  

The report written by [Walchko (2000)] concentrates on application of fuzzy 

logic combined with sliding mode control. An online optimization procedure for the 

tuning of the controller and reinforcement learning procedure for the adaptation is 

developed. A nonlinear H∞  controller implementation is presented by [Show (2001)]. 

The controller is obtained by the analytical solution of the Hamilton – Jacobi – Isaacs 

inequality and prescribed level of 
2

L  gain performances are claimed to be 

achieved for the closed loop. The study uses quaternion as the attitude 

representation. In the work of [Park (2001)] a nonlinear controller having a class of 

relaxed feedback control laws is proposed. The implementation uses the Modified 

Rodriguez Parameters and the Cayley – Rodriguez Parameters for attitude 

representation. In [Tsiotras (2001)], a simultaneous attitude and power profile 

tracking action is achieved by using more than three non coplanar energy and 

momentum wheels. In order to prevent the singularities in energy transformations 

and to minimize the gyroscopic effects the total momentum of the wheels are 

zeroed by the usage of a specially developed momentum management algorithm. 

Another magnetic control research was made by [Makovec (2001)] which proposes 

two linear controller designs. These are a PD and a linear quadratic regulator. They 

are examined for different spacecraft configurations. The paper by [Wu (2001)] 

proposes an H∞ solution for the attitude control problem without the necessity of the 

solution of the Hamilton – Jacobi – Bellmann and Riccati equations. The research by 

[Akella (2001)] presents a velocity free controller by using the results from [Battiloti 

(1996) & Tsiotras (1998)]. An adaptive scheme proposed by [Wong (2001)] uses an 
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algorithm for velocity estimation from attitude information. The authors claim that the 

attitude and the angular velocity tracking errors are converging in spite of the 

unknown spacecraft inertia. A fuzzy neural bang – bang control is proposed by 

[Tongchet (2001)] in which the bang – bang control scheme is implemented in fuzzly 

logic and the neural network serves as a support unit. In [Nam (2001)], LMI based 

H∞ output feedback control is combined with fuzzy logic for attitude stabilization of 

a flexible satellite. By that way, precise pointing capability is obtained in parameter 

varying space missions because the controller is reformulated on the fuzzy cells. 

[Fauske (2002)] is presents a complete discussion on satellite attitude control. The 

work presents operational control modes such as detumbling, spin stabilization and 

inverted boom recovery. It is intended for practical satellite application NCUBE 

(Norwegian Student Satellite). The research of [Silani (2002)] is an example of model 

predictive control based on linear satellite models. They use only magnetic actuators 

as control torque transmission.  In [Myung (2002)], the nonlinear version of predictive 

control for three axis attitude control is discussed. The conventional predictive 

control approach is modified for attaining disturbance identification capability. The 

work of [Bang (2002)] provides a control approach which stabilizes the attitude 

tracking system using the moment of inertia of the satellite body. The nutational 

motion caused by the momentum wheel is controlled by a mechanism based on 

the product of inertia between the orthogonal body axes. The nutational motion is a 

periodic motion whose frequency is dependent upon the magnitude of angular 

momentum of the wheel and moment of inertia of spacecraft body. The 

methodology is applied to a bias momentum spacecraft which is a popular 

stabilizing method. In this approach a single momentum wheel is oriented along the 

normal orbit direction. The purpose of the wheel itself is to retain a certain level of 

angular momentum and its speed is varied for controlling the pitch error. The 

momentum wheel causes a stiffness effect on the roll – yaw plane which brings a 

disturbance accommodating capability.   

An adaptive backstepping control approach is derived by [Singh (2002)] that 

utilizes the solar radiation as a torque generating source. Two large reflective 

surfaces are used for the generation of the solar radiation torques. Yoon [(2002)] 

presents an application of variable speed control moment gyroscopes (VSCMG). 

The difference between the conventional control moment gyroscope (CMG) 

application is that the VSCMG’s have variable spin velocities whereas the CMG’s 

have constant spin velocities. The gimbal rates are used for the generation of the 

reference tracking torques. In contrast, the wheel accelerations are used for 
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controlling both the attitude and power. Kim [(2001, 2002 & 2006)] have used the 

model error control synthesis approach in attitude control. The latter one has 

employed an optimal nonlinear estimator to determine the error corrections and 

provide them to the nominal controller. All of the proposals make use of the 

approximate receding horizon control technique and optimization. The research by 

[Lappas (2002)] investigates the difference between the single gimbal control 

moment gyros and reaction wheels in satellite operation. Another optimal intelligent 

approach comes from [Sadati (2002)] in which case a radial basis function neural 

network is combined with a classical PD controller for initial stabilization of the 

satellite. The neural network is employed as self organizing and self learning optimal 

controller. The research by [Skelton (2003)] concentrates on the derivation and 

validation of mixed control moment gyroscope and momentum wheel control laws. 

Large angular maneuvers are obtained by generating the output torques through a 

feed forward control mechanism. The momentum wheel control laws are designed 

by feedback linearization and Lyapunov theories.  

The thesis work by [Walchko (2003)] investigates the usage of sliding mode 

theory in robust nonlinear attitude control. It has a detailed discussion of 

disturbances such as solar snap and fuel slosh. Thienel [(2003)] designed a nonlinear 

control law that is combined with a nonlinear observer for estimating the unknown 

constant gyro biases. The estimation results converge exponentially to the true 

values and the rate of convergence is proven to be quite fast. A stochastic analysis 

is presented for investigating the effects of the measurement noises. The research by 

[Hall (2003)] proposes an attitude control system involving both thrusters and 

reaction wheels. Three control laws are proposed. The first two are derived using 

bang – bang control and they drive the thrusters. The reaction wheels are used for 

error corrections. The last one uses a linear feedback for the wheels and nonlinear 

feedback for the thrusters. Akella [(2003)] uses the Lyapunov’s indirect method in 

attitude control and claims that the attitude regulation errors can be controllable by 

the usage of inclinometers and rate gyroscopes.  

A backstepping application on attitude control is done by [Kim (2003)]. The 

poor properties of the simple linear backstepping control are improved by selection 

of a nonlinear tracking function. Careful gain selection and Lyapunov redesign 

outcomes a successful performance. The approach of [Wisniewski (2004)] makes use 

of the periodicity of the earth’s geomagnetic field to implement a 

periodic 2H controller that actuates the satellite only by magneto – torquer. The 

synthesis of the controller is performed through linear matrix inequalities (LMI). 
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[Topland (2004)] is another application involving classical control approaches 

mainly. The applications range from simple linear LQR to basic sliding mode theory. 

This work is  intended for a practical application on ESEO (European Student Earth 

Orbiter) Project. The works of [Antonsen (2004), Overby (2004) and Blindheim (2004)] 

are again mainly classical attitude control projects. Those projects including 

[Topland (2004)] have applications using thrusters as actuators. [Bang (2004a)] 

provides a constraint based optimal control law on a linear satellite model and 

resulted in a controller equivalent to linear quadratic regulator (LQR) with additional 

robustness and disturbance rejection. The research by [Bang (2004b)] focuses on the 

feedback linearization technique combined with sliding mode theory to obtain an 

attitude and rate tracking control law. One other research by [Tsai (2004)] utilizes the 

method of eigenstructure assignment and linear exponential quadratic regulator 

with loop transfer recovery (LEQR/LTR). The combination of the two algorithms 

provides prescribed stability and overcomes the disadvantages of those methods. 

Another property of the proposed methodology is the unification of time – domain, 

frequency domain and robust decoupling design techniques in one procedure.  

A stochastic control system design study [Won (2004)] uses parametric robust 

risk – sensitive control theory. It is an extension to the parametric robust linear 

quadratic Gaussian (PRLQG) approach of [Lin (1992)]. In Lovera’s paper [(2004)], the 

problem of inertial pointing of a spacecraft with magnetic actuators is addressed 

and an almost global solution is proposed based on static attitude and rate 

feedback. The work of [Yamashita (2004)] introduces a robust control design. The 

controller is of proportional plus derivative (PD) type. There is a higher frequency 

vibration filter and a disturbance compensator for suppressing several disturbing 

effects on the satellite body. [Tafazoli (2004, 2005)] has investigated a flexible satellite 

control application in which feedback linearization is used to divide the system to a 

controllable and observable linear part and a nonlinear unobservable internal 

system. The controller design is shown to be asymptotically stable by Lyapunov 

theory. Sharma [(2004)] has proposed an optimal attitude controller based on 

Hamilton Jacobi Isaacs inequality. An infinite horizon optimal control problem that 

has feed forward and feedback control torques for reducing the performance index 

with quadratic cost functions. In [Tandale (2004)] a modified adaptive control 

strategy is developed for preventing parameter drift due to the trajectory tracking 

errors resulting from the control saturation. During the saturation the reference 

trajectory is modified so that the original reference trajectory is approximated closely 

without exceeding the control limits.  
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A hybrid control scheme is proposed by [Guan (2004)] that is composed of 

input output feedback linearization (IOFL) and fuzzy control. The main function of the 

adaptive fuzzy control is to compensate for the plant uncertainties so that the 

robustness of the overall system is increased. The projects by [Krogstad (2005) and 

Ruud (2005)] deals with the coordinated control of the satellite clusters (also called 

as formation flying). The control design projects are based on mainly classical control 

theories. The work by [Hegrenæs (2005)] applies an approach called as explicit 

linear predictive control to attitude tracking. They solve the problem by multi – 

parametric quadratic programming which provides power and CPU effective results. 

A robust linear control technique is presented in [Chiappa (2005)] which utilizes the µ 

– iteration technique to the attitude control problem. By that way the robustness of 

the controller can be improved. The controller designed by [Prieto (2005)] has 

manipulated the linear H∞ technique. The problem is solved by linear matrix 

inequalities (LMI) and the authors claimed that the resultant controller has a wide 

robustness margin.  

Direct application of the integrator backstepping control approach is 

performed by [Kristiansen (2005)] and the design is proven to be asymptotically 

stable in the sense of Lyapunov. The actuator uses one reaction wheel and four 

thruster mechanisms. [Luo (2005)] has solved the optimal attitude control problem 

without the necessity of the analytical solution of the Hamiton – Jacobi – Isaacs 

inequality. This is achieved through an inverse optimality approach and division of 

the control process through integrator backstepping. A nonlinear adaptive scheme 

was presented by [Mothlag (2005)]. To increase the robustness and tracking 

performance they have used a mechanism for reducing the uncertainty and 

estimating a bound for the present uncertainties. It is claimed to be more robust then 

the parameter adaptive controllers. In [Bondhus (2005)] a nonlinear attitude 

observer is constructed by the usage of vectorial backstepping design. The function 

of the observer is to estimate the angular velocity. . In [Bang (2005)], sliding mode 

control is utilized for application on flexible satellite model. The controller initially 

designed for the rigid spacecraft and then extra degree of freedom is provided for 

reshaping the closed loop response of the system. The work by [Bajodah (2005)] uses 

a pseudo inversion technique for producing a pointwise – linear parameterization of 

the nonlinear control solutions. The pseudo inversion of the controller coefficient 

leads to two parts residing in the null and range spaces of the controller matrix. The 

part corresponding to the null space contains the pseudo control vector which 

parameterizes all the control variables necessary.  
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A velocity free control solution for general attitude tracking problem is 

proposed by [Gohary (2005)] in which the passive properties of the Euler dynamic 

equations and the structural properties of the kinematical equation are used to drive 

optimal control laws. Again an angular velocity estimation mechanism is used for 

achieving the goals. Jan [(2005)] have proposed a conceptual design framework for 

a practical satellite called as ROCSAT – 3. The necessary control modes are 

considered which are detumbling, dark sub mode, sun sub mode and normal 

operation. Simulation results are also presented in the proposal. The research by 

[Park (2005)] concentrates on the robust optimal control approach for three axis 

attitude control of a satellite. A worst case design is proposed initially which assumes 

the disturbances are at maximum level and the control torque is at the minimum 

level. After achieving the desired robust control law, a minimax approach is applied 

for investigating the optimality of the proposed control law. Gohary [(2006)] 

investigates the effect of friction on the control performance of the attitude 

controller. The attitude is controlled by a rotor system which has an internal friction 

and it is claimed that the form of the controller (especially linearity and nonlinearity) 

is affected from the characteristics of the friction as well as the selected Lyapunov 

functions. In [Guan (2006)] the sliding mode technique is incorporated into the 

framework of [Guan (2004)]. The paper by [Wang (2006)] introduces an approach in 

which the dynamics and kinematics of the satellite are expressed in terms of the 

attitude quaternion. Then a controller is designed as a proportional plus integral plus 

derivative type. The overall product is proclaimed to be a high precision controller. 

[Xi (2006)] presents a nonlinear attitude controller based on recursive passivation 

based on backstepping. The resultant control structure has PID like feedback control 

terms and some feedforward terms that compensates for the plant dynamics. [Li 

(2006)] has made the modified Rodriguez version of [Show (2001)]. [Kaplan (2006) & 

Karataş (2006)] are two studies based on the BILSAT – I design by Turkish Scientific 

and Technological Research Council. They have proposed linear and nonlinear 

control techniques and simulated them on BILSAT – I. The controllers are mostly of 

classical type. An optimization based example is given by [Lai (2007)] that uses 

constrained nonlinear programming. In this case, the number of the control steps is 

assumed to be fixed initially and the sampling period is accepted as an optimization 

variable. Also genetic algorithms are used for generating the initial feasible solutions.   
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1.3 Purpose of this Research  

In this thesis, nonlinear attitude controllers are introduced for observatory 

satellites. The purpose of a satellite attitude controller is to track a given attitude 

trajectory with minimum error while requiring a reasonably low torque. In the 

literature there are numerous studies that use a sixth order nonlinear model based on 

newtons second law of motion. Those models take an actuation torque as the 

system input. As a difference from them, the one used in this research involves the 

actuator model. The actuator is composed of three reaction wheels each driven by 

a brushless dc motor. Thus the order of the complete plant is equal to twelve with 

four state vectors. Those are the attitude, body frame angular velocity, reaction 

wheel torque (or the motor torque)  and reaction wheel angular velocity where 

each vector has a dimension equal to three. Two control laws are derived in the 

controller design processes. The first one is the demanded torque generator law 

which is the necessary amount of torque that should be applied on the satellite 

body to track the desired attitude. The second control law is a reaction wheel 

velocity control law (speed controller) that produces the necessary motor input 

voltage to spin the reaction wheels in the desired velocity. That leads to a torque 

exertion on the satellite body. The demanded torque generator law serves as a 

reference input to the speed controller through the reaction wheel velocity 

command generator. The reaction wheel velocity command is generated by 

integrating the reaction wheel velocity differential equation using the demanded 

torque, measured and estimated values of attitude, body and reaction wheel 

angular velocities. In the design process it is assumed that all the state variables are 

directly measurable. In the actual implementation those signals are estimated from 

the measurements of the gyroscopes, sun sensors, star tracking, earth sensor, inertial 

navigation systems or global positioning systems.    

The approaches presented in this research are based on integrator back - 

stepping and input output feedback linearization (IOFL) methodologies.   

1.4 Satellite Modeling 

The mathematical model is an important issue in attitude control since it 

describes everything related to the motion of a satellite body. As a very complex 

nonlinear model they have some limitations. The main limitation comes from the 

attitude representations. In the literature survey of Section 1.2 four types of attitude 

representations are mentioned. The basic attitude representation is the Euler angle 
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vector that is used in some studies. It has a basic singularity at the rotations of 90� in 

the pitch plane. This is a big obstacle for real time applications. So most of the 

researchers prefer the quaternion where there is no real singularity. However 

quaternion is not a minimal representation (it is four dimensional). Another alternative 

is the three dimensional Cayley – Rodriguez parameters or the so called Gibbs 

vector that has a singularity at 180± � . Lastly, there is another minimal kinematical 

parameter called as the Modified Rodriguez Parameters (MRP). That provides a 

singularity at 360± �  of rotations. One of the advantages of that representation is the 

fully invertible kinematical matrix in the propagation equation. This is helpful for 

implementing feedback linearized control laws. The details of attitude kinematics 

including various representations are presented in Appendix A.  

Another issue is related to the actuators. The actuator is the bridge between 

the controller and the satellite body. In the literature, mostly noted actuators are 

thrusters, magnetic actuators, momentum and reaction wheels. The difference 

between the latter two is that reaction wheel is nominally a zero speed device and 

momentum wheel is an high speed device. The reaction wheel is operated when a 

rotation is required for the satellite body and it is a light weight body. Whereas a 

momentum wheel is heavier and faster operating device. Both of them are used in 

high precision operations however momentum wheel can also provide spin 

stabilization [Svartveit (2003)] during rotation about one axis. A comparison of those 

actuators is given in Table 1.1.  

Type of the Actuator Advantages Disadvantages 

Thrusters Fast 
Fuel consumption 

increases 

Magnetic Actuators Cheap 
Low Altitude, Slow, 

Structural Singularity 

Reaction Wheel Precision Expensive & Weight 

Momentum Wheel Precision 

Expensive, heavier than 

reaction wheel, high 

speed so power 

consumption increases. 

Table 1-1 Comparison of the Actuators [Svartveit (2003)] 
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As it can be understood from the table above, a precise satellite 

manipulation requires the usage of the reaction or momentum wheel. Even they 

introduce weight to the satellite body this will not be a serious problem because the 

observatory satellite maneuver is quite slow. As it is mentioned in Section 1.3 the 

reaction wheel is considered as an integral part of the satellite during mathematical 

modeling. A basic model is presented in [Topland (2004)] where angular velocity of 

the reaction wheel is included as a state vector.  

1.5 Backstepping 

Back - stepping is a special approach of control. The method stabilizes the 

entire plant recursively starting from the state variables that are to be tracked by the 

closed loop system. The order of recursion depends on the number of sub - state 

vectors formed as a result of partitions along the full plant state vector. This partition 

can be performed according to the design requirements and the physical properties 

of the plant dynamic variables. In the satellite model used in this research, this 

grouping can be done easily since the model is formed by combining four vector 

differential equations. Those are the dynamics of attitude represented in MRP, body 

coordinate angular velocity, reaction wheel motor torque and velocity. So starting 

from the attitude vector four steps are necessary for the completion of the attitude 

tracking system. For the velocity controlled approach, the distinct procedures are 

prepared for demanded torque generator and speed controller. The link between 

those are provided by the reaction wheel velocity command generator that uses 

the control law derived by the attitude control process. The demanded torque and 

corresponding motor input voltage laws are obtained in the second and fourth steps 

of the back - stepping procedure. The remaining steps are for the manipulation of 

the non – tracked states (body angular velocity and motor torque). In each step a 

control Lyapunov function (CLF or ( )V x ) on the corresponding state vector is 

proposed. The negative definiteness of the rate of change of the CLF ( )( )V x�  is 

ensured through cancellation of the nonlinearities in the satellite model. The CLF’s 

and their derivatives can be selected in quadratic forms. An important advantage 

of nonlinearity cancellation is that always negative definite CLF derivatives can be 

obtained. So a globally stable closed loop is obtained. For the theoretical 

development [Fossen (1997)] and [Skjetne (2004)] are helpful resources. An 

application of recursive back - stepping theory to satellite attitude control is 

presented in [Kristiansen (2005)] where quaternion is preferred as the attitude 
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representation. That work constitutes a skeleton for this research however the model 

and the controller structure in consideration is quite different.  

1.6 Input Output Feedback Linearization (IOFL) 

The basic principles of feedback linearization are presented in [Isidori (1989)]. 

Like that of the back - stepping theory IOFL also involves a nonlinearity cancellation. 

As a difference, this method generates a double integrator linear system. As it is 

known, the double integrator plant is both controllable and observable. One can 

apply any desired linear control methodology to the resultant linear plant to obtain 

the desired controller structure. There is no recursive nature of feedback linearization. 

Because of that, all of the system could not be linearized if the vector relative 

degree of the output is less than the order (size of the state vector) of the plant. In 

the satellite nonlinear model of this research a similar issue is existent. In this work, 

there are two cascaded controllers which are full relative degree systems so there is 

no problem of non – linearized dynamics in the IOFL based approach.    

1.7 Input to State Stability against Disturbance Torques 
(ISSADT) 

The closed loop stability of the approaches described in the last two sections 

are obtained from the results of the Lyapunov theory. However, this is only adequate 

for the initial design purposes since it is accepted that there are no external 

disturbance torques existent on the satellite body. In actual operation, there are 

some external torques exerted on the satellite body from the environment. The most 

widely known disturbance torques are gravity gradient of the earth, atmospheric 

drag and some photonic forces exerted by the sun rays. In normal conditions, the 

level of those torques could be much more smaller than the actuator torque 

however this does not mean that there will be no abnormal situations during the 

operation. So an analytical approach is provided in order to tune the control gains 

for attaining stability against the disturbance torques. The analysis is performed by 

assuming that the external disturbances are inputs to the closed loop system. By that 

way, input to state stability analysis techniques could be utilized to deduce 

information on stability against the disturbance torques. The analysis is performed by 

rewrititng the control Lyapunov functions in the form of inequalities. The properties of 

vector norms provide the basic tools required for that analysis. In this way, the 

analysis can be performed in the dissipative sense [Sonntag (1995)]. Some input to 

state stability definitions are presented in Chapter 3.    
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1.8 Outline 

The organization of this research report can be summarized as shown below: 

Chapter 2: In this chapter the mathematical model of the satellite that will be 

used throughout this work is presented. The mathematical model includes the 

kinematical and dynamical equations, reaction wheel and motor dynamics.  

Chapter 3: The theoretical background of the back - stepping and feedback 

linearization methods are presented in this chapter. The back - stepping problem is 

discussed by solving a small example problem. In the last section, the input to state 

stability problem is also introduced (ISSADT).  

Chapter 4: The back - stepping approach presented in Chapter 3 is applied 

to the model presented in Chapter 2. In this chapter, the attitude and wheel velocity 

control laws are presented. The stability of the closed loop against the disturbance 

torques are analyzed using input – to – state stability analysis methods presented in 

Chapter 3.  

Chapter 5: In this chapter the attitude control problem is solved by input 

output feedback linearization and the functions to be used in the simulations are 

prepared.   

Chapter 6: The designs presented in Chapter 4 and Chapter 5 are completed 

here in numerical basis. Simulations are performed in order to verify the controllers 

and check robustness against parametric uncertainties in the satellite and motor 

models. The results of both approaches are presented in forms of figures for easier 

comparison.    

Chapter 7: The concluding remarks and future plans related to the research 

are presented.   

Appendix A:  An introduction to the general attitude kinematics is provided 

1.9 Contributions 

1. The back - stepping theory is applied to an attitude control problem where 

the attitude is represented in terms of the Modified Rodriguez Parameters. 

That constitutes a contribution to the control literature that covers the back - 

stepping theory.  

2. The satellite model of this research is different from the frequently used sixth 

order kinematical – dynamical pair due to its inclusion of the reaction wheel 
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dynamics. So one has a 12th order model where the reaction wheel velocity 

and torque are included as state variables. This allows the designer to 

implement both an attitude controller including a motor speed control 

system. In reaction wheel systems manufacturers, the wheels are either 

torque or speed controlled. This is another contribution to the literature 

concerning the practical issues.  

3. A method for analyzing the stability of the controlled satellite models against 

the external disturbance torques is proposed. The approach is based on 

input to state stability theory in the dissipative sense. The effectiveness of this 

approach is also investigated on back - stepping and IOFL attitude 

controllers and showed that it is too conservative for IOFL configuration.   

1.10 Publications from This Work 

1. Doruk, R.Ö., Kocaoğlan, E., Satellite attitude control by MRP based back 

stepping, Aircraft Engineering & Aerospace Technology, Vol 80, Issue 1, 2008    
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CHAPTER 2                                                              

ATTITUDE DYNAMICS OF THE SATELLITE 

2.1 Introduction 

In this chapter, the nonlinear model of the satellite that is used throughout this 

research is introduced. The model has some differences from the classical sixth order 

models used in the relevant literature. The obvious difference is the addition of the 

reaction wheel dynamics including the model of three brushless DC motors. 

Secondly, the Modified Rodriguez Parameters are preferred instead of the widely 

used quaternion since they have some advantages over the quaternion and Euler 

angles considering the nature of the nonlinear control approaches of this work.  

2.2 Coordinate Axes 

There are basically three coordinate axes that are used for positional 

referencing in satellite attitude control. Those are earth centered inertial (ECI), orbit 

frame and body coordinate axes systems. Their definitions are presented below: 

2.2.1 Earth Centered Inertial (ECI) Coordinate System 

This is the primary coordinate axes system, the origin of which is on the center 

of mass of the earth. Its direction is fixed relative to the solar system. The Z axis is 

directed towards the north celestial pole, X axis has a direction towards the vernal 

equinox and Y axis forms the equatorial plane together with the X axis. It is denoted 

by i  in the variables throughout this text. It is shown in Figure 2-1. 

2.2.2 Orbit Frame (Coordinate Axes) System 

The satellites orbiting around the earth uses the orbit frame as the reference 

point. Its Z axis points the center of earth, X axis directs towards the motional 

direction of the satellite and Y axis completes the coordinate axis system according 

to the right hand rule. It is perpendicular to the orbital plane. The orbit coordinate 

system is denoted by o . It is shown in Figure 2-2.    
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Figure 2-1 Earth centered inertial (ECI) frame (courtesy of [Antonsen (2004)]) 

 

Figure 2-2 The orbit and body reference frames (courtesy of [Antonsen 
(2004)]) 
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2.2.3 Body Coordinate System 

The origin of the body frame is centered at the center of mass of the satellite 

body. Axes of this frame are rotating with the satellite. The rotation around the X, Y 

and Z axes of the body frame is called as roll, pitch and yaw respectively (Figure 

2-3). It is denoted by b . 

 

Figure 2-3 The roll, pitch and yaw rotations around the body axes (courtesy of 
[Antonsen (2004)]) 

2.3 The Kinematics 

The kinematics of the satellite model is the part that is related with the 

attitude and angular velocities. In terms of the Modified Rodriguez Parameters the 

attitude differential kinematic equation is shown below [Shuster (1993)]: 

 ( ) b

ob
=σ G σ ω�    (2.1) 

In the above representation [ ]1 2 3

T
σ σ σ=σ  is the attitude vector in terms of the 

Modified Rodriguez Parameters, [ ]
Tb

ob
p q r=ω  is the body coordinate angular 

velocity vector represented in body frame with respect to the orbit frame [Topland 

(2004)]. The matrix ( )G σ  is a fully invertible kinematical matrix defined as: 
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×
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Tσ σ
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where ( )S σ  is the skew symmetric matrix operator defined by the following 

expression: 
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v S v  (2.3) 

The conversion between the real attitude vector (more truly speaking the roll, 

pitch and yaw angles) and the modified Rodriguez parameters are performed 

through the rotation quaternion. Details concerning those transformations are 

presented in the Appendix A. Here, only the results are given for convenience.    

2.3.1 Conversion from Euler Angles to MRP 

 Each of the MRP can be expressed in terms of the rotation quaternion 

elements as shown below: 

 , 1, 2,3
1

i

i i
ε

σ
η

= ∀ =
+

 (2.4) 

In the above, the rotation quaternion is an element of the four dimensional real 

space and can be mathematically be expressed in several forms one of which is the 

vector form as [ ]1 2 3, , ,
T

ε ε ε η=q . In this case, unit quaternion is a unity norm vector i.e. 

1=q . To express a rotation, the quaternion should be normalized to unit norm. There 

is a possibility of instability when the scalar part 1η = −  so the it should be replaced 

with the equivalent quaternion = −q q  [Turner (2002)]. The quaternion can be 

obtained from the Euler angles according to (2.5).  
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2.3.2 Conversion from MRP to Euler Angles 

This case is the reverse of the procedure defined in 2.3.1. The first step is the 

conversion of the MRP to the rotation quaternion. The necessary relationship for that 

operation is presented below: 

 

2 2 2

1 2 3

1

2

3

1

2

2

2

σ σ σ

σ

σ

σ

 − − −
 
 =
 
 
  

q  (2.6) 

In the above it is again a must to normalize q . The second step is to convert the 

above formed quaternion into Euler angles as shown in the following: 

 

( )

( )
[ ]( )
( )

( )

1 2 31

2 2

1 3

1

2 3 1

3 1 21

2 2

2 3

2
tan

1 2

sin 2

2
tan

1 2

ηε ε ε

ε εφ

θ ηε ε ε

ψ ηε ε ε

ε ε

−

−

−

 +
 

− +  
   = +  
    + 
 

− +  

 (2.7) 

The conversion given above is intended for the visualization of the satellite body 

motion. This restriction is due to the limitations coming from the trigonometric 

functions used in the transformation (2.7) as the inverse sine and tangent functions 

are valid in the range 
2 2

π πγ− < < .   

Completion of the kinematical derivation requires an additional kinematical term 

which is the rotation matrix. For the rotations from the orbit frame to the body frame, 

it is defined in terms of the MRP as shown in below: 

 

( )
( )

( )

( ) ( )
[ ]

2 2 2 2

1 2 3 1 2 3 1 3 2

2 2 2 2

2 1 3 1 2 3 2 3 12

2 2 2 2

3 1 2 3 2 1 1 2 3

1 2 3

4 8 4 8 4

1
8 4 4 8 4

8 4 8 4 4

1 , 1

b

o

T T

b

o

σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ

 − − + Σ + Σ − Σ
 
 = − Σ − + − + Σ − Σ
 Λ
 + Σ − Σ − − + + Σ 

Σ = − Λ = +

=

R

σ σ σ σ

R c c c

(2.8) 

2.4 The Non – Uniqueness Problem in Attitude Kinematics 

Like that of the rotation quaternion the Modified Rodriguez Parameter 

representation is not unique. In the quaternion case, there is an equivalent set 

defined by = −q q  exists. This means that the quaternions q and −q  represent the 
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same rotations. A similar situation exists in the MRP. One can find this relation by 

following the conversion formulas in Section 2.3.1 (the detailed derivation is given in 

[Shuster (1993)]). As a result it can be obtained that      

 
1

and 
T

−σ σ
σ σ

 (2.9) 

represents the same rotation and equivalent to q  and −q respectively. In order to 

solve this ambiguity many algorithms use a switching approach that is shown below: 

 
1

1

T

T

if

otherwise

 ≤


= 
−


σ σ σ

σ
σ

σ σ

 (2.10) 

As a result of the above manipulation the magnitude of the attitude is limited in the 

region ( )1≤σ . That corresponds to a total rotation of 180≤φ � . The details 

concerning the derivation of various attitude representations are provided as a 

summary in Appendix A.     

2.5 Dynamics of Satellite Model 

The dynamics of the satellite model is derived by using three dimensional 

Newtonian dynamics. Before going into the three dimensional derivation a one 

dimensional graphical depiction of the satellite body is helpful in the understanding 

of the interaction between the satellite body and the reaction wheel actuators. 

Such a representation is presented in Figure 2-4.  

The satellite body is activated by the reaction wheel mounted on the center 

of gravity of the satellite body (the figure is provided for description purposes so it is 

not to scale). The reaction wheel is driven by a brushless dc motor that provides the 

input torque 
a
τ . This is an internal torque viewed from the satellite body. An external 

torque 
e
τ  is exerted on the satellite body. This can be either thrust or sum of 

disturbance torques sourced from the surrounding space (or both). For complete 

control, at least three reaction wheels are required if no other attitude control 

hardware is used. In this research, three reaction wheels are mounted on the center 

of gravity of the satellite body. The axis of rotation of each reaction wheel rotor is 

aligned with the satellite body fixed coordinate frame. Since the reaction wheels 

rotors are operating only in the axial direction no transversal components are taken 

into consideration. 
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Figure 2-4 a one dimensional depiction of the satellite body with the reaction wheel 

Currently, it is possible to derive the satellite model in three dimensional space. To do 

that a three dimensional graphical depiction is provided in Figure 2-5 

In the representation above the key variables and symbols are described below: 

:
i

O  is the origin of the inertial reference frame 

:bO  is the origin of the body reference frame 

:
i

F  is the symbol depicting the inertial reference frame 

:
b

F  is the symbol depicting the body reference frame 

:b

ib
ω  is the angular velocity of the satellite body with respect to the inertial reference 

frame 

:sω  is the angular velocity of the reaction wheel rotors with respect to the body 

reference frame 

:
r
ω  is the angular velocity of the reaction wheel rotors with respect to the inertial 

reference frame ( )b

r ib s= +ω ω ω  

:
s

h  is the angular momentum of the reaction wheel rotors relative to the body 

reference frame 
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:h  is the absolute angular momentum of the satellite body (with respect to the 

inertial reference frame) 

:
a

h  is the absolute angular momentum of the reaction wheel rotors (with respect to 

the inertial reference frame) 

Before proceeding it is convenient to present the assumptions used in the derivation 

of the satellite model used in this research: 

1. Reaction wheels are mounted on the center of mass of the satellite body 

2. The translational motion of the satellite along the system orbit is not taken into 

account. 

3. The velocity of the reaction wheels are small and they have approximately 

zero velocity in most of the operational time. Thus they have almost zero 

mean velocity 

4. The rate of change of the body axes angular velocities are very small.  

5. Due to the above assumptions the transversal components of the reaction 

wheel moment of inertia are not effective on the operation of the wheels 

and thus neglected. So the remaining parameters of the satellite model are 

presented in the following:   

:
s

I  is the mass moment of inertia of the reaction wheel rotors (transversal 

components are not existent as explained in the above assumptions) and shown 

below: 

 

0 0

0 0

0 0

s

s s

s

i

i

i

 
 =  
  

I  (2.11)  

:I  is the mass moment of the inertia of the satellite body (symmetric matrix) 

 
xx xy xz

xy yy yz

xz yz zz

I I I

I I I

I I I

 
 

=  
 
 

I  (2.12) 

The derivation of the satellite model starts with the definition of the relative 

angularmomentum of the reaction wheel rotors: 

 
s s s

=h I ω  (2.13) 

The body contribution to the total angular momentum is: 
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 b

b ib
=h Iω  (2.14) 

So the absolute angular momentum of the satellite body is: 

 b

b s ib s s
= + = +h h h Iω I ω  (2.15) 

The absolute angular momentum of the reaction wheel rotors are: 

 ( )b

a s ib s s r= + =h I ω ω I ω  (2.16) 

Since the body fixed frame is rotating with an angular velocity of b

ib
ω , the angular 

momentum derivative is affected. Mathematically, that is expressed as shown 

below: 

 ( )b b

e ib e ib
= + × = +h τ ω h τ S ω h�  (2.17) 

x

y

z

Ob

sz

sx
sy

x

y

z

Oi

x

z

y

ib
b

Reaction wheel rotors 

(there are three reaction 

wheels)

SATELLITE BODY

Inertial Frame

BODY FRAME

e

ax

ay

az

 

Figure 2-5 A depiction of the satellite body with three reaction wheel components 

The absolute angular momentum of the satellite body is affected from the external 

torque ( )e
τ . For the angular momentum of the reaction wheel rotors a similar 

expression is written as: 
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 ( )a a r a a r a
= + × = +h τ ω h τ S ω h�  (2.18) 

Substituting from (2.16): 

 ( )a a r a a r s r
= + × = +h τ ω h τ S ω I ω�  (2.19) 

For the 
s

I  given in (2.11) the term ( )r s r
S ω I ω  becomes zero so the above dynamics 

reduces to 

 
a a

=h τ�  (2.20) 

Before continuing, it is convenient to rewrite the absolute angular momentum 

equations together as shown below: 

 
( ){ }b b

e ib ib s s

a a

= + +

=

h τ S ω Iω I ω

h τ

�

�
 (2.21) 

The next step is to obtain the above derivatives once again by direct differentiation 

of the angular momentum definitions given in (2.15) and (2.16). That is: 

 
b

ib s s

b

a s ib s s

= +

= +

h Iω I ω

h I ω I ω

� � �

� � �
 (2.22) 

In order to make the derivation easier one can write the above representation in 

matrix form: 

 
b

s ib

s sa s

    
=    
    

I Ih ω

I Ih ω

� �

� �
 (2.23) 

Taking the inverse of the above linear equation yields: 

 
1 b

s ib

s s a s

−
    

=    
     

I I h ω

I I h ω

� �

� �
 (2.24) 

and,  

 
( ){ }1 b b b

e ib ib s ss ib

s s sa

−  + +   
=    

     

τ S ω Iω I ωI I ω

I I ωτ

�

�
 (2.25) 

As a result: 

 
( ){ }1 1

1 1 1

b b b
e ib ib s s ib

s sa

− −

− − −

 + +   −
=    

− +      

τ S ω Iω I ωJ J ω

J I J ωτ

�

�
 (2.26) 

The dynamic equations of motion of the satellite in this research are obtained as: 
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( ){ }

( ){ } ( )

1 1

1 1 1

b b b

ib ib ib s s e a

b b

s ib ib s s e s a

− −

− − −

 = + + − 

 = − + + + + 

ω J S ω Iω I ω τ J τ

ω J S ω Iω I ω τ I J τ

�

�
 (2.27) 

As it is obviously seen, the above dynamics is based on the angular velocity of the 

body with respect to the earth centered inertial coordinate axes ( )b

ibω . As one need 

the angular velocity in the body frame referenced at the orbit frame ( )b

obω  the 

dynamical state equations are formed as (using the fact b b b o

ob ib o io
= −ω ω R ω ): 

 

( ) ( )
( )

( )( )
( )

1

1

1

1 1

b b b o b b o

ob ob o io ob o io s s e

b b o b o

a ob o io o io

b b o b b o

s ob o io ob o io s s e

s a

−

−

−

− −

  = − + + + +  

− + −

  = − − + + + +  

+ +

ω J S ω R ω I ω R ω I ω τ

J τ S ω R ω R ω

ω J S ω R ω I ω R ω I ω τ

I J τ

�

�

�
 (2.28) 

In this research the orbital angular velocity vector is assumed constant and equal to 

the [ ]0 0
To

io oω= −ω . So the equations are simplified to: 

( )( ) ( )

( )( )

1 1

2 2 2

1 1 1

2 2

b b b b

ob ob o ob o s e a ob o

b b

s ob o ob o s e s a

ω ω ω

ω ω

− −

− − −

  = − − − + + − −  

    = − − − − + + + +    

s

s

ω J S ω c I ω c I ω τ J τ S ω c

ω J S ω c I ω c I ω τ J I τ

�

�
 (2.29) 

The exogenous disturbance torque includes several components. Most common 

ones are the gravitational ( )gravτ , aerodynamic ( )aero
τ , solar pressure ( )sun

τ  and 

magnetic ( )mag
τ  disturbance torques. Total disturbance action on the satellite  is 

expressed as ( )e grav aero sun mag= + + +τ τ τ τ τ . In this research, the gravitational 

component of the disturbance is taken into consideration and expressed 

mathematically as: 

 ( )2

3 3
3

grav o
ω=τ S c Ic  (2.30) 

The terms 
2 3

&c c  are represented in the expression of rotation matrix in the equation 

(2.8). The aerodynamic torque is negligible in this work since the dimension of the 

satellite is so small. The same is valid for the magnetic and sun pressure. So in this 

research the disturbance torque is modeled as the gravitational torque in (2.30) and 

a constant disturbance torque that models any possible disturbance that may be 

existent during operation.  
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2.6 A Model for the Brushless DC Motor of the Reaction 
Wheel 

The reaction wheel dynamics in the last section is derived from momentum 

relationships and taking the rotor torque as a system input. However, this leads to a 

redundancy since the torque input affects both of the rate variables ( b

ob
ω  or 

s
ω ). The 

reaction wheel dynamics present the interaction between the actuator (reaction 

wheel rotors) and the torque supplying motor. In order to complete the model it is 

convenient to add the mathematics of a brushless dc motor. Since there are three 

reaction wheels in the satellite, there will be three dc motors and they are modeled 

as [Kristiansen (2000)]: 

 

1 1

1 1

1 1

x x xx x

x E s a

x x x

y y y y y

y E s a

y y y

z z zz z

z E s a

z z z

di R
i K U

dt L L L

di R
i K U

dt L L L

di R
i K U

dt L L L

ω

ω

ω

= − + +

= − + +

= − + +

 (2.31) 

 

x x

a T x

y y

a T y

z z

a T z

K i

K i

K i

τ

τ

τ

=

=

=

 (2.32) 

In the vectoral form, (2.31) is rewritten as: 

 
� �

1
0 0 0 0 0 0

1
0 0 0 0 0 0

1
0 00 0 0 0a s

L E

x

x E

x x x x
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y yE
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y y yz

z z s
z
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zz z

R K

L L L
i i

R Kd
i i

dt L L L
i i

R K

LL L

ω

ω

ω

    
    
                   = −   + +                         
    
        

I ω

LR K

�� �������� ���������

�
a

x

a

y

a

z

a

a L a E s a

U

U

U

 
 
 
 
 

= − + +

U

I R I K ω LU

� ���

�

(2.33) 

and (2.32) is rewritten as 
a T a

=τ K I  where 
T

K  is: 

 

0 0

0 0

0 0

x

T

y

T T

z

T

K

K

K

 
 

=  
 
 

K  (2.34) 

The definitions of the parameters are: 

, ,
:

x y z
R   Armature resistance 
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, ,

:
x y z

L   Armature inductance 

, , :x y z

T
K   Torque constant 

 , , :x y z

E
K  EMF constant 

, ,
:

x y z
i   Armature current 

, , :x y z

a
U   Input Voltage 

:
s
ω   Reaction wheel rotor velocity 

:
a
τ  Reaction wheel torque (defined as a state) 

After the substitution of the torque output vector (2.32) into (2.33): 

 1

a T L T a T E s T a

−= − + +τ K R K τ K K ω K LU�  (2.35) 

The model assumes that the reaction wheel motors are armature controlled.  

2.7 The Usage of the Model in Attitude Control 

In the attitude control the model body angular velocity can be defined 

either in the ECI frame ( )b

ib
ω  or in the orbit frame ( )b

ob
ω . The common variables are 

attitude ( )σ  and reaction wheel velocity ( )s
ω . In backstepping control ( )b

ibω  is 

preferred as the state vector for an easier procedure. However, ( )b

obω  is fed back to 

the controller since the attitude information is obtained in reference to the orbit 

frame. In feedback linearization case, ( )b

obω  is chosen as the state vector due to the 

non – recursive nature of the IOFL technique. For both configurations the following 

nonlinear system representation is used:  

( ) ( ) ( )= + +x f x g x u p x w�  (2.36) 

The elements of the above representation are given below: 

For demanded torque generator: 
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( )

( )
( ){ }

( ) ( )

( ) ( )
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3 3 3 3

1 1
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,

TT
T b

ib

b

ib o

b b

ib ib s s

a e

ω

−

× ×

− −

 =   

 +
 =
  − +  

   
= =   −   

= =

x σ ω

G σ ω c
f x

J S ω Iω I ω

0 0
g x p x

J J

u τ w τ

 (2.37) 

For the speed controller: 

 
( )

( )( ) ( )

( ) ( )

1 1 1

1

1
3 3

3 3

,

,

T
T T

s a

b b

ib ib s s s a

T L T a T E s

T

a e

− − −

−

−
×

×

 =  

  − − + + +  =
 − + 

 − 
= =   
   

= =

x ω τ

J S ω Iω I ω I J τ
f x

K R K τ K K ω

0 J
g x p x

K L 0

u U w τ

 (2.38) 

If the body angular velocity is expressed in the orbit frame then the same 

components of the nonlinear model is: 

For the demanded torque generator: 

 

( )

( )
( )

( ) ( ) ( )

( ) ( )

1

2 2 2

3 3 3 3

1 1
,

,

T
TT b

ob

b

ob

b b b

ob o ob o s s ob o

a e

ω ω ω−

× ×

− −

 =   

 
 =

   − − − + −   

   
= =   −   

= =

x σ ω

G σ ω
f x

J S ω c I ω c I ω S ω c

0 0
g x p x

J J

u τ w τ

 (2.39) 

 
( )

( )( )

( ) ( )

1 1 1

2 2

1

1
3 3

3 3

,

,

TT T

s a

b b

ob o ob o s s a

T L T a T E s

T

a e

ω ω− − −

−

−
×

×

 =  

     − − − − + + +     =
 − + 

 − 
= =   
   

= =

s

x ω τ

J S ω c I ω c I ω J I τ
f x

K R K τ K K ω

0 J
g x p x

K L 0

u U w τ

 (2.40) 

The models given in the equations (2.37) to (2.40) are presented in separated forms 

i.e. the demanded torque generator and reaction wheel velocity dynamics are 

given in separated forms. The reason for this is that the overall attitude controller is 

designed in a cascaded form where the two sub – controllers are designed by using 

the separated models given in this chapter.                               
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CHAPTER 3                                                         

THEORETICAL BACKGROUND 

3.1 Introduction 

The purpose of this chapter is to present the theoretical background behind 

the attitude control approaches of this research. The theory of backstepping and 

input output feedback linearization (IOFL) are presented in a form suited for attitude 

control. To do that descriptive generalized system models are used. The 

implementation of those theoretical tools are presented in Chapters 4 and 5.  

3.2 Theory behind Backstepping 

Backstepping is a modular method of control. Descriptively, it is a recursive 

(or step by step) completion of the design process. This is generally performed 

through a partition of the state vector of the dynamical plant model. The sub – states 

obtained from that partition are stabilized one by one in each step.  

3.2.1 An Example for a Generic Nonlinear System 

The models used in the design procedures of this work should be in affine 

form such as the one shown below: 

 
( )

( ) ( )
1 1 1 2

2 2 1 2,

=

= +

x f x x

x f x x g x u

�

�
 (3.1) 

where ( ) ( )2

1, 2 1 2 1
, , , ,

T
m m T T n m m m m m= × × ∈ ∈ = ∈ ∈ ∈ x u x x x g x f x� � � � �  and ( )2 1 2,

m∈f x x � . 

It is assumed that ( )1 1f x and ( )g x  are invertible matrices. The example is designed as 

a tracking problem where ( )1
tx  should track the desired trajectory defined by ( )1d

tx .  

3.2.2 Back - stepping Transformation 

The back - stepping transformation is a state transformation mechanism to 

obtain the states of the closed loop after the solution of the problem. For tracking 

problems it will be convenient to select the new state variables as the additive errors 

of the states [Skjetne (2004)]. For the current example, the new state variables are 

obtained from the following transformation: 
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 1 1 1

2 2 1

d= −

= −

z x x

z x α
 (3.2) 

where the new term 
1
α is an artificial command input to produce an internal control 

loop. The next step is to differentiate them with respect to time and substitute the 

necessary functions from the system equation in (3.1).  

3.2.3 Backstepping Control [Fossen (1997), Skjetne (2004)] 

Differentiating the first virtual state variable 
1

z  and substituting the first 

equation from (3.1) leads to: 

 ( )1 1 1 1 1 1 2 1d d d= − = + −z x x f z x x x� � � �  (3.3) 

Then substitute 
2x  from (3.2) to obtain: 

 ( )( )1 1 1 1 2 1 1d d
= + + −z f z x z α x� �  (3.4) 

For the sake of simplicity the term ( )1 1 1d
+f z x  will be written as ( )1 1

f x  

throughout this section. The actual control design procedure starts with the definition 

of the Lyapunov function corresponding to 
1

z . This can be a quadratic Lyapunov 

function like shown below: 

 
1 1 1

1

2

TV = z z  (3.5) 

and, 

 
1 1 1 1 1

1 1

2 2

T TV = +z z z z� � �  (3.6) 

So substituting
1

z� from (3.4) yields: 

 ( ) ( ) ( )( )1 1 2 1 1 1 1 1 1 1 2 1 1

1 1

2 2

T T T T T

d dV  = + − + + −   α z f x x z z f x z α x� � �  (3.7) 

A useful expansion of the above function is shown below: 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2

1 1 1 1

2 2 2 2

T T T T T T T

d dV  = − + − + +   α f x x z z f x α x z f x z z f x z� � �  (3.8) 

To obtain a stable dynamics on variable 
1

z  one should obtain a negative 

definite quadratic function of 
1

z . The remaining part (the terms involving 
2

z ) is 

eliminated in the second step. One can do the following for this purpose: 
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( )

( )

1 1 1 1 1 1

1 1 1 1 1 1

&

T T T T

d

d

− = −

− = −

α f x x z K

f x α x K z

�

�

 (3.9) 

This is the replacement of the term ( )1 1 1 1d
−f x α x�  (and thus its transposed version in the 

other half) with 
1 1

−K z . One can solve for 
1
α here and obtain: 

 ( ) ( )1 1

1 1 1 1 1 1 1 1d

− −= −α f x x f x K z�  (3.10) 

As a result the Lyapunov derivative is: 

 ( ) ( )1 1 1 1 2 1 1 1 1 1 1 2

1 1

2 2

T T T TV = − + +z K z z f x z z f x z�  (3.11)  

As it could be understood from the above, the matrix 
1

K  should be symmetric and 

positive definite. Now one can continue through the second step starting with the 

differentiation of the second virtual variable 
2

z : 

 2 2 1

2 2 1

= −

= −

z x α

z x α�� �
 (3.12) 

Substitute from the system equation in (3.1) and obtain: 

 ( ) ( )2 2 1 2 1 1 1
,= + + −z f x z α g x u α��  (3.13) 

Similar to (3.4) the term ( )2 1 2 1
, +f x z α  will be written as ( )2 1 2

,f x x . The second 

Lyapunov function (on 
2

z ) can also be a quadratic Lyapunov function like that of 
1

z  

(first step) and is added to 
1

V . That is: 

 
2 1 2 2 2

1

2

T
V V= + z P z  (3.14) 

with 
2

P  being positive definite. Differentiating 
2

V and substituting from (3.13) yields: 

 
( ) ( )

( ) ( ){ } ( ) ( ){ }

2 1 1 1 2 1 1 1 1 1 1 2

2 1 2 1 2 2 2 2 2 1 2 1

1 1

2 2

1 1
, ,

2 2

T T T T

T T T T T

V = − + +

+ + − + + −

z K z z f x z z f x z

u g x f x x α P z z P f x x g x u α

�

� �

 (3.15) 

and,  

          
( ) ( ) ( ){ }

( ) ( ) ( ){ }

2 1 1 1 2 2 1 2 2 1 2 1 1 1 2

2 2 2 1 2 2 2 1 1 1 1

1
,

2

1
,

2

T T T T T T

T T

V = − + + − + +

+ − +

z K z u g x P f x x P α P z f x z

z P f x x P g x u P α f x z

� �

�

                        (3.16) 
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Like in the first step of the procedure it is required to replace the non quadratic terms 

in the above function with negative definite terms so one can do the following: 

 
( ) ( ) ( )

( ) ( ) ( )
2 2 1 2 2 2 1 1 1 1 2 2

2 2 1 2 2 1 2 1 1 1 2 2

,

,

T

T T T T T T

+ − + = −

+ − + = −

P f x x P g x u P α f x z K z

u g x P f x x P α P z f x z K

�

�
 (3.17) 

And the control input u can now be obtained as shown in below: 

 ( ) ( ) ( ) ( ){ }11

2 2 2 2 2 1 2 1 1 1 2 1,
T−−= − + + −u g x P K z P f x x f x z P α�  (3.18) 

So the total Lyapunov derivative is: 

 
2 1 1 1 2 2 2

T TV = − −z K z z K z�  (3.19) 

If 
2

K  is a symmetric and positive definite matrix, the closed loop system is globally 

stable.  

An important point here is the time derivative of 
1α . One should be careful here that 

direct differentiation of this variable through numerical algorithms embedded on 

DSP microcontroller board should be avoided (differentiation degrades the signal to 

noise ratio). So the differentiated value of 
1
α should be obtained through the system 

state equation. This can be done by for example: 

 1

1

∂
=

∂

α
α x

x
� �  (3.20) 

where x�  is replaced by the right hand side of the state equation in (3.1). Lastly, the 

closed loop system equations are: 

 
( )

( )
1 1 1 2 1 1

1 1

2 2 2 2 2 1 1 1

T− −

= +

= − −

z f x z K z

z P K z P f x z

�

�
 (3.21) 

The aim of the example given in this section is to present the main procedure 

of backstepping. Of course in the realistic applications, the selection of the 

Lyapunov functions and control inputs may be different. They could be changed 

according to the design requirements. In the next section basic theory behind the 

feedback linearization will be introduced. In the control laws of (3.10) and (3.18) the 

state variables 
1

x , 
2

x  and the errors 
1 2
,z z  are computed from the sensing system (i.e. 

gyroscopes and attitude determination circuitry).    
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3.3 The Basic Theory of Feedback Linearization 

As it is understood from its name the method of feedback linearization is 

intended to obtain a linear system as a result of a nonlinear feedback. However, 

there exists no partition of the state like that of the back - stepping. In this section the 

basics of feedback linearization is presented for building the framework necessary 

for attitude control.  

3.3.1 The Notion of the Vector Relative Degree 

The vector relative degree is a measure between the input and output of a 

nonlinear system. Mathematically, it is the number of successive differentiations of 

the output where the plant input vector appears first time. Qualitatively, it is 

equivalent to the pole – zero difference in linear systems (more truly speaking the 

difference between the number of poles and zeros). In order to simplify the 

description, first of all single – input single – output (SISO) systems are considered. 

Consider the following nonlinear (SISO) system: 

 
( ) ( )

( )

f g u

y h

= +

=

x x x

x

�
 (3.22) 

where n∈x � . 

Definition 3.1: The nonlinear system of (3.22) is said to have relative degree of r  in 

the neighborhood of 
0x if the following conditions are satisfied: 

1. ( ) ( ) ( ) ( )2 2 0r

g g f g f g f
L h L L h L L h L L h−= = = =x x x x  identically in the neighborhood of 

0
=x x .  

2. ( )1 0r

g f
L L h− ≠x  at 

0
=x x . 

The term fL h  is the Lie derivative of the function ( )h x  over the vector field ( )f x  

which is mathematically defined by: 

 
( ) ( ) ( )

( ) ( ){ } ( )1

f

r r

f f

L h h

L h L h−

∂ 
=  

∂ 

∂
=

∂

x x f x
x

x x f x
x

 (3.23) 

One should note that the higher order derivatives are defined as recursive 

expressions. For cross Lie derivatives a similar identity could be written i.e: 
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 ( ) ( ){ } ( )g f fL L h L h
∂

=
∂

x x g x
x

 (3.24)    

For multi – input and multi – output (MIMO) systems like the one shown below 

the relative degree is defined for each output as 
i

r  and the sum 
1 2 m

r r r r= + + +…  is 

called as the total relative degree.    

 

( ) ( )

( ) ( ) ( ) ( ) ( ) [ ]

( ) ( ) [ ]

1

1 1

1

, 1

, ,

, 1 , ,

m

i i

i

T

m m

T

i i m

n

u i m

u u

y h i m h h

=

= + =

= + = =  

= = = =

∈

∑x f x g x

x f x g x u g x g x g x u

x y h x h

x

� …

� … …

… …

�

 (3.25) 

Definition 3.2: Let the nonlinear system of (3.25) has smallest relative degree of 
i

r  for 

output 
i

y  in the neighborhood of point
0

x . Then one can write the following: 

 ( ) ( )1
i

i i

i

r
r r

i f i g f ir

d
y L h L L h

dt

−= +x x u  (3.26) 

In the above the term ( )1 1ir m

g f iL L h
− ×∈x � and for all outputs the following matrix is 

obtained: 

 ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 2

2 2 2

1 2

1 2

1 1 1

1 1 1

1 1 1

2 2 2

1 1 1

m

m

m m m

m

r r r

g f g f g f

r r r

g f g f g f

r r r

g f m g f m g f m

L L h L L h L L h

L L h L L h L L h

L L h L L h L L h

− − −

− − −

− − −

 
 
 

=  
 
 
 

x x x

x x x
A x

x x x

…

…


 
 
 


…

 (3.27) 

This is called as decoupling matrix. Compiling those, one can make the definition for 

the MIMO vector relative degree in the neighborhood of a point 0x as: 

1. Each output of the nonlinear system (3.25) has relative degree of 
i

r  

according to Definition 3.1.  

2. The decoupling matrix ( )A x  should be invertible in the neighborhood of 
0

x . 

Once the vector relative degree of the considered nonlinear system for each 

output is found, it will be easy to proceed to the linearization process. Here, the total 

relative degree r  is important. If r n=  , the system is said to be of full relative degree, 

however if r n<  then the system is not full relative degree and has an internal 

nonlinear dynamics. If that is not stable, one can not say that the feedback 

linearization procedure is successfully completed.        
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3.3.2 Feedback Linearization Procedure 

The feedback linearization procedure begins with the definition of the normal 

variables vector 
i
φ  as shown in the following: 

 

1i

i

f i

i

r

f

h

L h

L
−

 
 
 =
 
 
  

φ



 (3.28) 

As one can understood from the notation each normal variable formed according 

to the representation above corresponds to each output. Each entry of a normal 

variable vector has the lie derivative of the relevant output variable 
i iy h=  up to the 

order 1
i

r −  where 
i

r  is the vector relative degree of the output 
i

y .  

For all of the outputs of the nonlinear model given in (3.25) the vectors defined in 

(3.28) are compiled into a new vector denoted as 1 2

T
T T T

m
 =  φ φ φ φ… . For the 

sake of simplicity the representation in (3.28) is rewritten in a more formal way as 

shown below: 

 

1

2

1i

i

i

i

i

f i

i

r i

f r

h

L h

L

ξ

ξ

ξ−

  
  
  = =
  
  

      

φ

 


 (3.29) 

In order to proceed one should differentiate all of the elements of the above vector 

as presented in the following:     

1

1

1

1 1

0 0

2

2 1

0 0

2 3 2 2

3 1

0 0

The zeros in these equations are

d

m

m

m

i

i f i g i g i m

i

f i f i g f i g f i m

i

f i f i g f i g f i m

d d
h L h L h u L h u

dt dt

d d
L h L h L L h u L L h u

dt dt

d d
L h L h L L h u L L h u

dt dt

ξ

ξ

ξ


= = + + +




= = + + + 


= = + + +



…
��� �����

…
����� �����

…
����� �����

1

1 1 1

1

0, 1, , 2

ue to the relative degree

m

i i i i

i m

j

g f i i

r r r ri

r f i f i g f i g f i m

L L h j r

d d
L h L h L L h u L L h u

dt dt
ξ − − −

= = −

= = + + +

…




…

 (3.30) 

Only the last equation in the above has components of input which is a natural result 

of the relative degree concept. If the last equation is rewritten for all outputs one has  

the following set of differential equations (they are also packed into matrix from):   
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1 1 1 1

1 1

2 2 2 2

2 1

1

1

2

1 1 11

1 1

1 1 12

2 1

1 1 1

1

1

1

1

2

m

m

m m m m

m m

r r r r

r f f i g f i g f i m

r r r r

r f f i g f i g f i m

r r r rm

r f m f i g f i g f i m

r

f

r

f

d d
L h L h L L h u L L h u

dt dt

d d
L h L h L L h u L L h u

dt dt

d d
L h L h L L h u L L h u

dt dt

L h

L hd

dt

ξ

ξ

ξ

− − −

− − −

− − −

−

−


= = + + + 


= = + + + 

=


= = + + + 

…

…




…

1 1 11

1 2

2 2 22

1 2

1 2

1 1 1

1 1 1 11

1 1 1

2 2 2 22

1 1 1 1

m

m

m m m m m

m

r r rr
g f g f g ff

r r rr

g f g f g ff

r r r r r
mf m f m g f m g f m g f m

L L h L L h L L h uL h

L L h L L h L L h uL h

uL h L h L L h L L h L L h

− − −

− − −

− − − −

      
      
      = +       
      
           

�

�



 
 
 
 � 


�

 (3.31) 

So final form of the above equations with the desriptive symbols ( )( ), ,A x b v  written 

for easier presentation is given as: 

 

1 1 1

1

1 1 1
1

1 21

22

12

21

32

1 1

1

1 1 11

1 1 11

12

2

mi

m

m

m

ii

ii

r r ri

f i g f i g f i mr

r r rr
g f g f g fr f

rr

g fr f

rm
f mr

L h L L h u L L h u

L L h L L h L L hL h

L LL h

L h

ξξ

ξξ

ξ

ξ

ξ

ξ

− −

− − −

−

   
   
   =
   
   

+ + +     

   
   
   = +   
   
     

b

�

�





� …

� �

�





�
�����

( )

�

2 2

2

1 2

1

1 1

2 2 2 2

1 1 1

m

m m m

m

r r

g f g f

r r r
mg f m g f m g f m

u

h L L h L L h u

uL L h L L h L L h

− −

− − −

   
   
   
   
   
    

u
A x

�



 
 � 


�
�������������������

 (3.32) 

If one applies the control input: 

 ( )[ ]1−= − +u A x b v  (3.33) 

(where v  is an external control input like [ ]1 2

T

nv v v=v � ) to (3.32), the remaining 

is a controllable and observable linear system like shown in (3.34). 

One can use the above resultant linear system to design a controller setting the 

vector v  as system input. The result is a set of double integrator systems the number 

of which is equal to the order of the plant output. Here, any desired linear control 

method can be utilized for completing the feedback linearized controller.  
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�

1

2

1

1

1

2

1

2

1

2

2

2

1

2

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0

m

r

r

m

m

m

r

ξ

ξ

ξ

ξ

ξ

ξ

ξ

ξ

ξ

 
 
 
 
 
 
 
 
 
 
  = 
 
 
 
 
 
 
 
 
 
  
ξ�

� … … … …
� … … …


 
 
 
 � 
 
 
 
 
 
 
 
 
 

�

� … … … …
� … … …


 
 
 
 
 
 
 
 � 
 
 
 
 
 

� … …







�

�




�

1

2

1

1

1

2

1

2

1

2

2

2

1

2

0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0
m

L

r

r

m

m

m

r

ξ

ξ

ξ

ξ

ξ

ξ

ξ

ξ

ξ

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

A








 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 


… … … … … …

… … … … …


 
 
 
 
 
 
 
 
 
 
 
 
 � 


… …
��������������������������

�

1

2

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

L

m

v

v

v

  
  
  
  

   
   
   
   
    
    
    +    
    
    
   
   
   
   
   
   
   
   

v

Bξ






























 













���������

 (3.34) 

 The controller design process is easier if the resultant linear system corresponding to 

a single output 
i

y  is represented as shown below: 

 

11

22

0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0

0 0 0 0 0 1
ii

ii

ii

i

ii

rr

v

ξξ

ξξ

ξξ

      
      
      = +
      
      
        

�

� …



 … 

� …

 (3.35) 

The above is a controllable and observable linear time invariant system.  

3.4 Input to State Stability 

 Input to state stability theories can provide useful tools in analyzing a closed 

loop system against external disturbances. In this section information related to input 

to state stability are presented.  

3.4.1 Definition Concerning Input – To – State Stability  

Here, some definitions about robust stability is presented. Those definitions are 

referenced throughout this work. The first definitions are about the class K and class 

KL functions. 

Definition 3.3: A function [ ) [ ): 0, 0,aα → ∞
 is said to be of class K if it is strictly 

increasing and ( )0 0α =
. 
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Definition 3.4: A continuous function [ ) [ ) [ ): 0, 0, 0,aβ × ∞ → ∞  is said to be of class KL if 

for each fixed y  the function ( ),x yβ  belongs to class K with respect to x  and for 

each fixed x  the function ( ),x yβ  is decreasing with y  and ( ), 0,x y yβ → → ∞ . 

Definition 3.5: Let =x 0  is an equilibrium point of ( )=x f x�  and let ( )V x  is a 

continuously differentiable function from a domain D  to �  with the following 

properties: 

 
( ) ( ) { }

( ) [ ]

0 0 & 0

0

V V

V

= > ∀ ∈ −  

< ∀ ∈

x x D 0

x x D�
 (3.36) 

If the above condition is satisfied the point =x 0  is a stable point.  

Definition 3.6: Let =x 0  be an equilibrium point for ( )=x f x� . and let ( )V x  is a 

continuously differentiable function from a domain D  to �  (containing the origin 

=x 0 ) such that ( ) 0V <x�  in D  except =x 0 . Also assume that there exist a set 

[ ] ( ){ }| 0V∈ ∈ =S x D x�  and suppose that no analytical solution stays identically in the 

set S  other than =x 0  then the origin is asymptotically stable.      

Definition 3.7: Let =x 0  be an equilibrium point for ( )=x f x� . and let ( )V x  is a 

continuously differentiable function from a domain n�  to �  (containing the origin 

=x 0 ) such that ( ) 0V <x�  in n�  except =x 0 . Also assume that there exist a set 

( ){ }| 0
n

V∈ ∈ =S x x��  and suppose that no analytical solution stays identically in the 

set S  other than =x 0  then the origin is globally asymptotically stable.    

Definition 3.8 [Khalil (1996)] The system ( ),=x f x w�  is said to be input to state stable for 

bounded ( )0
tx  and ( )w t  if the following is satisfied: 

 ( ) ( )( ) ( )
0

0 0, sup
t t

t t t t w
τ

β γ τ
≤ ≤

 
≤ − +  

 
x x  (3.37) 

where β is class KL and γ is a class K function. There is also another definition of input 

– to – state stability [Sontag (1995)] which is given next. 
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Definition 3.9: [Sonntag (1995)] The system ( ),=x f x w�  is said to be input to state 

stable if the following is satisfied: 

 ( ) ( ) ( )
( ),

, , ,
n m

V

V

δ

β α
∂

≤ − ∈ ∈
∂

w x

f x w w x x w
x

�

� �
������������

 (3.38) 

( )V x  is a positive definite Lyapunov function (storage function), α and β are class K 

functions. The above can also be thought as a dissipation inequality where ( )V x  is 

the storage function and ( ),δ w x  is the supply function. In fact the above definition 

has a relationship with the global asymptotic stability since when the input is zero (i.e. 

w = 0 ) (3.38) becomes: 

 ( ) ( )
( )

,0

V

V

δ

α
∂

≤ −
∂

x

f x x
x

�

����������
 (3.39) 

Since α  is of class K, the above is a negative definite function so the above implies 

that the system ( ),=x f x 0�  is a globally asymptotically stable (GAS) system. So one 

can state that in order to discuss about the input to state stability property first of all 

the non – disturbed system (i.e. w = 0 ) should be globally asymptotically stable.  

The inequality in (3.38) states that the Lyapunov function to be used in the stability 

analysis of the system ( ),=x f x w�  should satisfy the constraints given in that inequality 

in order to have stability for bounded inputs w . By that way along the trajectories of 

the system  ( ),=x f x w�  the derivative of the Lyapunov function ( )V x  is bounded by 

the term ( ) ( )β α−w x . This property is called as the existence of the Lyapunov 

function in the dissipation form [Grüne (2004)]. 
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CHAPTER 4                                                          

ATTITUDE CONTROL BY BACKSTEPPING 

4.1 Introduction 

In this chapter, an attitude control system based on back - stepping is 

proposed. The purpose of this controller is to track the attitude of the satellite to the 

desired trajectory. Robustness issues are considered by reformulating the problem for 

input to state stability against the disturbance torques.  

4.2 Attitude Error Formulations 

In the attitude control research there are two approaches of attitude error 

representation. The first of which is the additive approach which has just the same 

definition as the classical control error ( )e d= −σ σ σ . The other one is derived from 

some cross product operations and called as multiplicative error definition 

(Appendix A presents some information on the derivation of attitude errors). That is:  

 
( )

( )( )
1 1 2

1 2

T T

d d d d

e T T T

d d d

   − − − +   =
+ +

σ σ σ σ σ σ S σ σ
σ

σ σ σ σ σ σ
 (4.1) 

In fact the correct error definition is the multiplicative version (above 

representation) since the attitude displacement is of the rotational type. In some 

research such as [Bar – Itzhack (1984), Schaub (1999)] additive attitude error 

definitions are used. The actual error definition shown in (4.1) brings computational 

complexity to application. Thus, in this research the additive error definition is 

preferred for controller design purposes however in simulations the actual error 

definition is applied.  

4.3 The Back – Stepping Design Procedure 

Before entering into the procedure in the detail it is convenient to rewrite the 

dynamic model and state the problem. the satellite’s dynamic model was: 

For the demanded torque generator: 
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( )

( )
( ){ }

( ) ( )

( ) ( )

2

1

3 3 3 3

1 1
,

,

TT
T b

ib

b

ib o

b b

ib ib s s

a e

ω

−

× ×

− −

 =   

 +
 =
  − +  

   
= =   −   

= =

x σ ω

G σ ω c
f x

J S ω Iω I ω

0 0
g x p x

J J

u τ w τ

 (4.2) 

For the reaction wheel velocity controller: 

 
( )

( )( ) ( )

( ) ( )

1 1 1

1

1
3 3

3 3

,

,

T
T T

s a

b b

ib ib s s s a

T L T a T E s

T

a e

− − −

−

−
×

×

 =  

  − − + + +  =
 − + 

 − 
= =   
   

= =

x ω τ

J S ω Iω I ω I J τ
f x

K R K τ K K ω

0 J
g x p x

K L 0

u U w τ

 (4.3) 

The problem is to force the attitude variable σ  to track the desired trajectory 

provided by the variable 
d
σ . Shortly this is a tracking controller problem.  

The back – stepping approach starts simply by partitioning the satellite model 

state into sub – state vectors according to its characteristics. In each step, the 

corresponding sub – state vector is stabilized using Lyapunov theory of nonlinear 

control. The total number of steps is equal to the number of sub – states. In this work, 

the states are grouped as: 

1. Attitude Vector (3 components) 

2. Body angular velocities (3 components) 

3. Reaction wheel velocity (3 components) 

4. Reaction wheel torque (3 components) 

So the back - stepping control design procedure for the satellite model of this 

research requires four steps. Since the attitude control structure involves a cascaded 

structure, the first two steps are included in the derivation of the demanded torque 

generator and the last two are included in the speed controller design. For each 

step, a new virtual state variable is defined and they constitute the states of the 

closed loop system.   
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4.3.1 Step – I (Demanded Torque Generator) 

Since the problem is of tracking type, one has to define the first virtual state 

variable 
1

z  as the attitude tracking error defined as shown below (based on additive 

error definition): 

 
1 d

= −z σ σ  (4.4) 

So it is not inconvenient to think that this goal of this step is to deal with the attitude 

error dynamics. Then one should take its time derivative for continuing ( )0
d

=σ� : 

 ( )1

b

ob
= =z σ G σ ω� �  (4.5) 

Although one is working on the first step, the procedure requires the second back - 

stepping vector to complete the Lyapunov function. That forms a link between the 

first and second steps:  

 
1 2

b

ob
= +ω α z  (4.6) 

where 1α  is a virtual control input that is derived in the proceeding discussions and 

2
z  is the second back - stepping state vector. Substituting (4.6) into (4.5) one can 

obtain: 

 ( )( )1 1 2
= +z G σ α z�  (4.7) 

Now one can select a quadratic Lyapunov function as: 

 
1 1 1

1

2

TV = z z  (4.8) 

the time derivative of which is: 

 
1 1 1 1 1

1 1

2 2

T TV = +z z z z� � �  (4.9) 

Substituting from (4.7) will yield: 

 
( ) ( ) ( )( )

( ) ( ) ( ) ( )

1 1 2 1 1 1 2

1 1 1 1 2 1 1 2

1 1

2 2

1 1 1 1

2 2 2 2

T T T T

T T T T T T

V    = + + +  

   = + + +  

α z G σ z z G σ α z

α G σ z z G σ α z G σ z z G σ z

�

 (4.10) 

By selecting a virtual control input 
1
α as: 

 ( )1 1 1

T= −α G σ K z  (4.11) 
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where 
1

K  is diagonal and positive definite matrix ( )1 1 3 3 1
, 0k st k×= >K I . The 

corresponding Lyapunov derivative 
1V� is obtained as: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ } ( ) ( )

1 1 1 1 1 1 1 2 1 1 2

1 1 1 1 2 1 1 2

1 1 1 1

2 2 2 2

1 1 1

2 2 2

T T T T T T T

T T T T T T

V = − − + +

= − + + +

z G σ G σ K z z K G σ G σ z z G σ z z G σ z

z G σ G σ K K G σ G σ z z G σ z z G σ z

�

 (4.12) 

In the above the quadratic term related to the variable 
1

z  is negative definite 

(symmetric and positive definite inner matrix). So the goal of the first step is 

achieved. The remaining cross term i.e. ( ) ( ){ }2 1 1 2
1

2
T T T+z G σ z z G σ z  is eliminated in the 

next step. An interesting property of the term ( ) ( )TG σ G σ is that the product is 

diagonal and in form of 
3 3

s ×I  where 
( )

2

1

16

T

s
+

=
σ σ

. This relationship can be found by 

direct manipulation.   

4.3.2 Step – II (Demanded Torque Generator) 

In the second step, the dynamics related to the second virtual state variable 

2
z is stabilized. To do that, the second back - stepping state variable is rewritten from 

the back - stepping transformation [Skjetne (2004)]: 

 
2 1

b

ob
= −z ω α  (4.13) 

From the relation between body angular velocity with respect to orbit plane and 

inertial frame (ECI) one can write: 

 
2

b b

ob ib o
ω= +ω ω c  (4.14) 

Combining (4.13) and (4.14) will yield: 

 
2 2 1

b

ib o
ω= + −z ω c α  (4.15) 

Knowing that ( )2 2

b

ob=c S c ω� and differentiating the above leads to: 

 ( )2 2 1

b b

ib o ob
ω= + −z ω S c ω α� ��  (4.16) 

For the sake of simplicity it is convenient to multiply the above by the inertia like 

matrix J : 

 ( )2 2 1

b b

ib o ob
ω= + −Jz Jω JS c ω Jα� ��  (4.17) 

And from (2.27): 
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 ( ) ( ) ( )2 2 1

b b b

ib ib s s e a o obω= − + + − + −Jz S ω Iω I ω τ τ JS c ω Jα��  (4.18) 

One can call 
a
τ  as 

ar
τ  in order to emphasize that the torque demand law derived in 

this section is a demanded (or requested) torque that is to be supplied to the 

reaction wheel velocity command generator. 

 ( ) ( ) ( )2 2 1

b b b

ib ib s s e ar o obω= − + + − + −Jz S ω Iω I ω τ τ JS c ω Jα��  (4.19) 

Now one should construct the second part of the Lyapunov function as: 

 
2 1 2 2

1

2

T
V V= + z Jz  (4.20) 

the derivative of which is: 

 2 1 2 2 2 2

1 1

2 2

T T
V V= + +z Jz z Jz� � � �  (4.21) 

Substitute 
1

V� from Eq. (4.12) to obtain: 

 

( ) ( ) ( ) ( ){ }

( ) ( )

( ) ( ) ( ) ( ){ }

( ) ( )

2 1 1 1 1

2 1 1 2 2 2 2 2

1 1 1 1

2 1 2 2 1 2

1

2

1 1 1 1

2 2 2 2

1

2

1 1

2 2

T T T

T T T T T

T T T

T T T T

V = − + +

+ + + +

= − + +

   + + + +   

z G σ G σ K K G σ G σ z

z G σ z z G σ z z Jz z Jz

z G σ G σ K K G σ G σ z

z J z G σ z z G σ z Jz

�

� �

� �

 (4.22) 

Substituting from (4.19) yields: 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 1 1 1

3 2 1 1 2

2 1 3 2 1

1

2

1

2

1

2

T T T

T T
b T b T T T b T T T T T

ib s s ib e ar o ob

T T b b b

ib ib s s e ar o ob

V

ω

ω

= − + +

 + − + + − − + − + +
  

 + − + + − − + −
 

z G σ G σ K K G σ G σ z

Iω I ω S ω τ τ z ω S c J α J z G σ z

z G σ z S ω Iω I ω τ τ z JS c ω Jα

�

�

�

 (4.23) 

In order to proceed one has to find a way to convert the terms related to the 

variable 
2

z  to some negative definite quadratic functions so that the dynamics 

related to 1z  and 2z  become globally stable. The equations below illustrate a 

possible manipulation for that purpose.    
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( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

2 2

2 2

2 1 1 1 1

2 1 1 2

2 1 2 1

1

2

1

2

1

2

T

T T T

T T
b T b T T b T T T T T

ib s s ib e ar o ob

T T b b b

ib ib s s e ar o ob

V

ω

ω

−

−

= − + +

 + − + + − + − + +
  

 + − + + − + − 

z K

K z

z G σ G σ K K G σ G σ z

Iω I ω S ω τ τ ω S c J α J z G σ z

z G σ z S ω Iω I ω τ τ JS c ω Jα

�

�
���������������������������������

�
������� �������� ��������������

 (4.24) 

Note that, the first bracketed term is the transposed version of the second one.  By 

replacing the bracketed terms with the corresponding gain terms (
2

K  is symmetric 

and positive definite) as shown in the above (they are shown under the bracketed 

terms) one can obtain the torque demand law as shown in the following: 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 2 1 2 2

2 2 1 2 1

T b b b

ib ib s s e ar o ob

T b b b

ar ib ib s s o ob

ω

ω

− + + − + − = −

= + − + + −

G σ z S ω Iω I ω τ τ JS c ω Jα K z

τ K z G σ z S ω Iω I ω JS c ω Jα

�

�
 (4.25) 

The above torque demand law serves as the demanded torque to be supplied into 

the motor control unit. So it is more convenient to write the above law as: 

 ( ) ( ) ( ) ( )2 2 1 2 1

T b b b

ar ib ib s s o obω= + − + + −τ K z G σ z S ω Iω I ω JS c ω Jα�  (4.26) 

where 
ar
τ  denoted the demanded (or the requested) torque from the reaction 

wheel control unit. That is designed in the third and fourth steps. The actual torque 

input 
a
τ  is drawn out of the DC motor. In (4.26) the reaction wheel velocity 

s
ω  is 

treated as an external signal and provided through gyroscopic measurement.         

The control law in (4.26) yields 
2

V�  as: 

 

( ) ( ) ( ) ( ){ }
2 2 2

2 1 1 1 1 2 2 2 2 2 2

2 2

1 1 1

2 2 2

1 1

2 2

T

T T T T T

T T

e e

V

−

= − + − − +

+ +

z K z

z G σ G σ K K G σ G σ z z K z z K z

τ z z τ

�

���������
 (4.27) 

Neglecting the disturbance torques 
e
τ  the above Lyapunov function provides a 

stable control law (torque command) generator.   

In the above Lyapunov derivative equation there exist some terms including the 

disturbance torque vector eτ . Obviously disturbing terms can deviate 
i

V�  from 

negative definiteness. All the comments about stability in the current and 

proceeding design sections assume that the disturbances torques are zero. Their 

effects on stability and performance will be investigated in Section 4.6. So without 
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the disturbances (4.27) is a negative definite Lyapunov derivative and the closed 

loop dynamics of 
1 2
&z z  is globally stable.  

Before going into the details of the third step, the reaction wheel velocity command 

generator should be presented. This is a differential equation taking the requested 

torque from (4.26) and produces the reaction wheel velocity after an integration 

process. That is: 

 ( ) ( ) ( ){ }1 1 1

0

t

b b

sr ib ib s s s ar dt
− − −= + + +∫ω J S ω Iω I ω I J τ  (4.28) 

The variable 
sr

ω  is supplied as a reaction wheel velocity command to the third step. 

4.3.3 Step – III (Speed Control) 

In the current and proceeding step the motor control unit is designed. The 

motor control unit involves the torque and reaction wheel velocities as the state 

vectors. This step’s purpose is to provide a control law for the torque tracking 

mechanism:  

 
3 s sr

= −z ω ω  (4.29) 

As done in the first step, one should differentiate the above error definition in order to 

use in the formation of the control Lyapunov functions: 

 3 s sr= −z ω ω� ��  (4.30) 

Substituting from the satellite model and using (4.28) yield (after some cancellations): 

 ( ){ }1 1 1

3 s a ar e

− − −= + − −z I J τ τ J τ�  (4.31) 

One can multiply the above by J  in order to make the proceeding analysis easier: 

 ( ){ }1

3 3 3s a ar e

−
×= + − −Jz JI I τ τ τ�  (4.32) 

The Lyapunov function of this step can be defined as shown in the following: 

 
3 2 3 3

1

2

T
V V= + z Jz  (4.33) 

and, 

 
3 2 3 3 3 3

1 1

2 2

T T
V V= + +z Jz z Jz� � � �  (4.34) 

Substituting from (4.32) enables one to obtain: 
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( ) ( ){ }

( ) ( ){ }

1 1

3 2 3 3 3 3 3

1 1

3 3 3 3 3

1

2

1

2

T T
T T T

a s ar s e

T

s a s ar e

V V − −
× ×

− −
× ×

= + + − + − +

+ + − + −

τ JI I τ JI I τ z

z JI I τ JI I τ τ

� �

 (4.35) 

Before proceeding it is convenient here to define the fourth virtual state variable as: 

 
4 2a= −z τ α  (4.36) 

where 
2
α  is a virtual control variable (this forms an internal control loop and may be 

taught as a virtual torque command). The reaction wheel torque 
a
τ  is replaced by 

4 2a
= +τ z α  for linking the third and fourth steps. That is: 

 
( ) ( ) ( ){ }

( ) ( ) ( ){ }

1 1 1

3 4 3 3 2 3 3 3 3 3

1 1 1

3 3 3 4 3 3 2 3 3

1

2

1

2

T T T
T T T T

s s ar s e

T

s s s ar e

V − − −
× × ×

− − −
× × ×

= + + + − + − +

+ + + + − + −

z JI I α JI I τ JI I τ z

z JI I z JI I α JI I τ τ

�

 (4.37) 

Just like in the second step, the terms in the brackets above except ( )1

3 3 4s

−
×+JI I z  and 

e
τ  are changed by a term like 

3 3
−K z  (

3
K  is positive definite and symmetric 

preferably in the form 
3 3 3 3

k ×=K I  where 
3

0k > ) to obtain a negative definite 
3

V� .  So: 

 ( ) ( )1 1

3 3 3 3 2 3 3s s ar

− −
× ×− = + − +K z JI I α JI I τ  (4.38) 

So the virtual control input 
2
α  is obtained as shown below: 

 ( )
1

1

2 3 3 3 3s ar

−−
×= − + +α JI I K z τ  (4.39) 

The resultant Lyapunov function derivative is:  

 ( ) ( )1 1

3 3 3 3 3 3 4 3 3 3 3 3 3 4

1 1 1 1

2 2 2 2

T
T T T T T

e e s sV
− −

× ×= − − − + + + +z K z τ z z τ z JI I z z JI I z�    (4.40) 

4.3.4 Step – IV (Speed Control) 

This step starts with the differentiation of the last additional state variable 

which is defined in (4.36). That is: 

 
4 2a

= −z τ α�� �  (4.41) 

For the sake of simplicity one can multiply the above by 1 1

T L T

− −K R K  and obtain the 

following: 

 1 1 1 1 1 1

4 2T L T T L T a T L T

− − − − − −= −K R K z K R K τ K R K α�� �  (4.42) 

A Lyapunov function can be selected as: 
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 1 1

4 3 4 4

1

2

T

T L TV V
− −= + z K R K z  (4.43) 

and its time derivative is: 

 1 1 1 1

4 3 4 4 4 4

1 1

2 2

T T

T L T T L TV V
− − − −= + +z K R K z z K R K z� � � �  (4.44) 

Substituting from (2.35), (4.40) and (4.42) yields: 

 

( ) ( )

{ }

{ }

( )

1 1

4 3 3 3 4 3 3 3 3 3 3 4

1 1 1 1

2 4

1 1 1 1

4 2

3 3 3

1 1 1

3 3 3 2

1 1

2 2

1

2

1

2

1

2

T
T T T

s s

T T T T

a s T L E a T L T L T

T

a T L E s T L a T L T

T

T T T T T

s a s T L E a T L

V
− −

× ×

− − − −

− − − −

− − −
×

= − + + + + +

+ − + + −

+ − + + −

= − +

+ + − + + −

z K z z JI I z z JI I z

τ ω K R K U K R L α K R K z

z τ K R K ω K R LU K R K α

z K z

z JI I τ ω K R K U K R L α K

�

�

�

�{ }

( ){ }

1 1

4

1 1 1 1 1

4 3 3 3 2

1

2

T L T

T
T

s a T L E s T L a T L T

− −

− − − − −
×+ + − + + −

R K z

z JI I z τ K R K ω K R LU K R K α�

 (4.45) 

The terms inside the brackets can be replaced by 
4 4

−K z  (where 
4

K  has the same 

properties as that of 
3

K  again preferably in the form 
4 4 3 3 4

, 0k k×= >K I )  to make the 

function 
4

V�  negative definite. As a result: 

 ( )1 1 1 1 1

4 4 3 3 3 2

T

s a T L E s T L a T L T

− − − − −

×− = + − + + −K z JI I z τ K R K ω K R LU K R K α�  (4.46) 

The solution for the motor input voltage is obtained from the above as: 

 ( ){ }1 1 1 1 1 1

4 4 3 3 3 2

T

a L T s a T L E s T L T

− − − − − −

×= − − + + − +U L R K K z JI I z τ K R K ω K R K α�  (4.47) 

As a result the Lyapunov function corresponding to the reaction wheel speed 

controller is written as: 

 

4 4 4

4 3 3 3 4 4 4 4 4 4 3 3

1 1 1 1

2 2 2 2
T

T T T T T

e eV

−

= − − − − −

z K z

z K z z K z z K z τ z z τ�

���������
 (4.48) 

which provides a stable speed control system (neglecting the disturbance torque 

inputs).  

The third and fourth steps constitude a wheel speed control loop which is 

feeding information from the attitude estimator and gyroscopes attached on the 

satellite body and reaction wheels. The attitude and satellite body angular velocities 
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are assumed as external signals. The actuation torque is generated by holding the 

reaction wheel velocity at the necessary value produced by (4.28).      

4.4 Application Issues 

Considering the control laws generated up to this point, there are some 

important issues related to the implementation. The most important one is the 

computation of the derivative of virtual command 
1
α  namely ( )1

α� . In the real time 

coding, direct differentiation of 
1
α  should be avoided because of the robustness 

issues. So to do that one can use the readily available attitude derivative in the 

kinematical equation. Using all that information the differentiation algorithm can be 

presented as follows:  

 
( )

( ) ( )
1 1 1

1 1 1 1 1

T

T T

= −

= − −

α G σ K z

α G σ K z G σ K z�� �
 (4.49) 

The time derivative of the matrix ( )G σ�  can be computed by taking the derivative of 

the kinematics equation in (2.2) as shown below: 
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( ) { }
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3 3
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3 3
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×
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σ σ σ σ
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ω G σ σ σ G σ ω
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�

� �
� � �  (4.50) 

A similar case is the derivative of 
2
α variable which was: 

 ( )
1

1

2 3 3 3 3s ar

−−

×= − + +α JI I K z τ  (4.51) 

The time derivative of the above is: 

 ( )
1

1

2 3 3 3 3s ar

−−

×= − + +α JI I K z τ� � �  (4.52) 

where 
3

z�  is computed from (4.31) after deleting the disturbance torque term 
e
τ  and 

arτ�  is computed as: 

( )( ) ( ) ( ) ( ) ( )2 2 2 2 1

b b b b b b

ar ib ib s s ib ib s s o ib o ibω ω= − + − + + + −τ K z S ω Iω I ω S ω Iω I ω JS c ω JS c ω Jα� � � � � ��� �  (4.53) 
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( ) ( ) ( )
( ) ( ) ( ) ( )
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 (4.54) 
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 (4.55) 

The term 
2

z�  is computed from (4.16) and the other terms ,b b

ib ob
ω ω� �  and 

s
ω� are 

computed using the nonlinear model of the satellite (excluding the disturbance 

torques).   

Another applicational issue is the reference trajectory generation. It is useful 

to provide a reference trajectory generator which has adjustable features. Especially 

the transient part of the reference trajectory should not be too fast in order not to 

load the actuator too much. So a trajectory smoothing function at the reference 

input of the attitude controller (demanded torque generator) is recommended. A 

useful example for this purpose is the standard second order system function. In 

Laplace domain this can be shown as:   

 ( )
( )
( )

2

2 2
2

trajn

sm

refn n

s
G s

ss s

θω

θζω ω
= =

+ +
 (4.56) 

where ( )ref
sθ  is the reference attitude function, ( )traj

sθ  is the reference trajectory 

that is to be supplied to the demanded torque generator law, 
n

ω  is the natural 

frequency and ζ  is the damping ratio of the transfer function .To have a smooth 

trajectory ζ  can be selected as unity. For practical purposes, the reference attitude 

can be provided as a step function, namely ( ) ( )0ref
t u tθ θ= . The state space 

representation of (4.56) is: 

 
( )
( )

( )
( )

( )2 2

0 1 0

2

traj traj

ref

traj trajn n n

t td
t

t tdt

θ θ
θ

θ θω ζω ω

      
= +      − −      

� �  (4.57) 

So ( ) ( ),traj trajt tθ θ� and ( )traj tθ��  can easily be computed from the above well known 

state equation if necessary. 
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4.5 Final Structure of the Control 

The final form of the back - stepping control can be expressed as shown in 

(4.58). It should be stressed again that the derivatives of the state variables b

ib
ω  (or 

b

ob
ω ) found in those control laws should not be differentiated numerically instead 

they should be continued from the dynamical model equations presented in (4.2) 

and (4.3). 
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Reaction Wheel Velocity Controller:
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 (4.58)  
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4.6 Stability Analysis 

In this section, the back - stepping attitude controller is analyzed for input – to 

– state stability. The main purpose is to investigate the stability of the back – stepping 

controller against the external disturbance torques. For that purpose the definitions in 

3.4.1 is utilized. The analysis is performed separately for the attitude (first and second 

steps) and the wheel speed (third and fourth steps) controllers. So it is convenient to 

write the Lyapunov functions 
2

V�  and 
4

V�  as:  
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e e
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e
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z K z
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���������

(4.59) 
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���������  (4.60) 

4.6.1 Analysis of the Demanded Torque Generator 

In order to proceed one should remember the following property of vector norms: 

 ( ) ( ) 2 0
T T T T T T T T= − − + = − + ≥x - y x - y x x x y y x y y x x x y y y  (4.61) 

Since 
2T =x x x , one can say that: 
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x y x y

x y x y

x y x y

 (4.62) 

Using the above property, the equation (4.59) can be rewritten as an inequality: 

 ( ) ( ) ( ) ( ){ }
2 2

1 1 1 1 2 2 2 2

1

2

T T T T T

eL ≤ − + − + +z G σ G σ K K G σ G σ z z K z z τ�  (4.63) 

It is obvious that 
2 2

2 2

T =z z  so the above is rewritten as: 

 ( ) ( ) ( ) ( ){ } 2 2

1 1 1 1 2 2 2 2

1

2

T T T T

eL ≤ − + − + +z G σ G σ K K G σ G σ z z K z z τ�  (4.64) 
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A very important property of the matrix eigenspace is: 

 ( ) ( )min max

T T Tλ λ≤ ≤A x x x Ax A x x  (4.65) 

Applying the above property to (4.64) results in: 

( ) ( ) ( ) ( ) ( ) { }2 2 2

1 1 1 1 1 1 2 min 2 2

1 1

2 2

T T T T

e
L λ≤ − − − + +z G σ G σ K z z K G σ G σ z z K τ z�  (4.66) 

and 

( ) ( )( ) ( ) ( )( ) ( ){ }2 2 2 2

1 min 1 1 min 1 min 2 2

1 1
1

2 2

T T

e
L λ λ λ≤ − − − − +z G σ G σ K z K G σ G σ K z τ�  (4.67) 

The last inequality can be written in a simplified form considering 1 2

T
T T =  z z z  as 

presented in the following: 

 ( )2 2

1 eL M≤ − +z τ�  (4.68) 

where 1M is a constant and can be selected as shown below (this can be inferred 

from (4.67) easily): 

 ( ) ( )( ) ( ) ( )( ){ } ( ){ }min 1 min 1 min 2

1
min , 1

2

T T
M λ λ λ

 
= + −  

K G σ G σ G σ G σ K K  (4.69) 

By the virtue of [Khalil (1996)], the system is said to be input – to – state stable if 

1
0M > . Because of that in addition to the positive definiteness of 

1, 2
K ’s the values of 

( )min 2
λ K  should be greater than unity. The product ( ) ( )TG σ G σ  is a diagonal matrix 

and written as: 

 ( ) ( ) ( ) ( )
( )

2

3 3

1

16

T

T T

×

+
= =

σ σ
G σ G σ G σ G σ I  (4.70) 

The above is an interesting result of the matrix ( )G σ . The above is infact a diagonal 

matrix with equal entries and is monotonically increasing from ( )1
16 @ 0=σ  to infinity. 

So one can easily deduce that the minimum value of ( ) ( )TG σ G σ is equal to 1
16

. 

With the selection of 
1 1 3 3

k ×=K I  the following identity can be written: 

 ( ) ( )( ) ( ) ( )( ){ }min 1 min 1 1

1
0.0625

2

T T
kλ λ+ =K G σ G σ G σ G σ K  (4.71) 
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If one desires to have the value of 
1

M  to be greater than unity, an example selection 

can be ( )1 2
20, 2.5k k= = . In this case the value of is { }1

min 0.0625 20, 2.5 1 1.25M = − =i . 

Other details concerning the application are given in Chapter 6.   

4.6.2 Analysis of the Speed Controller 

A similar operation on two vectors x  and y  like that of (4.61) yields the 

following result: 
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 (4.72) 

Using the above rule, the Lyapunov function derivative on (4.60) can be rewritten as: 

 
2 2
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eL ≤ − − + +z K z z K z z τ�  (4.73) 

The eigenvalue inequality rule in (4.65) enables one to modify the above inequality 

as: 
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 (4.74) 

The last inequality can be written in the following form: 

 ( )2 2

2 eL M≤ − +z τ�  (4.75) 

with the acceptance that 
3 4

T
T T =  z z z . The value of the variable 

2
M  is: 

 ( ){ } ( )2 min 3 min 4min 1 ,M λ λ = − K K  (4.76) 

2
M should be positive in order to have a stable closed loop against the disturbance 

torques. The selection criteria of this case is simpler than that of the demanded 

torque generator. For 
3,4 3, 4 3 3

k ×=K I , one should satisfy 
3

1k >  and 
4

0k >  in order that 

2
0M > . In the case of 

2
1M > , the condition can be 

3
2k >  and 

4
1k > . For the details 

of application one can refer to Chapter 6.     
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4.7 The Stability of Wheel Velocity Command Generator: 

As it is stated in the Section 4.3.2 the required actuation torque is generated 

by integrating the noise free part of the reaction wheel dynamics. The reaction 

wheel dynamical equation shown below: 

 ( )( ) ( )1 1 1b b

s ib ib s s s ar

− − −= + + +ω J S ω Iω I ω I J τ�  (4.77) 

Is not a stable system as can be understood from its linearized version shown below: 

 ( )1 bs

ib s

s

−∂
=

∂

ω
J S ω I

ω

�
 (4.78) 

Since the skew symmetric matrix ( )b

ibS ω  is structurally singular the above should have 

at least one eigenvalue at the origin. That will be the same for the  product 

( )1 b

ib s

−
J S ω I . So the linearized system should be considered as unstable in the vicinity 

of the linearization point. Structural singularity means that the linearized system is 

unstable in each linearization point. So the nonlinear system in (4.77) should be 

considered as unstable. In fact this is normal since the reaction wheels are free 

running mechanical structures that spins at a certain velocity according to the 

torque supplied by the brushless dc motors. The reaction wheel velocity command 

generator is an artificial system that operates as a part of the control computer 

software to produce the necessary reaction wheel velocity according to the 

requested torque from the demanded torque generator. So it is convenient to put a 

velocity limiter to the reference input of the reaction wheel speed controller.    
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CHAPTER 5                                                           

ATTITUDE CONTROL WITH FEEDBACK LINEARIZATION 

5.1 Introduction 

In this chapter, the second method of attitude control in this work which is the 

input output feedback linearization (IOFL) is presented. In this case there exists no 

partition of the model state vector into sub – states due to the non – recursive nature 

of feedback linearization method. Both the demanded torque generator and the 

reaction wheel velocity controllers are designed by IOFL method.   

5.2 Preparing for IOFL Attitude Control 

Since the feedback linearization requires the usage of affine nonlinear 

models it is convenient to use the nonlinear model in (2.39) and (2.40).  The model 

which is required for the development of the demanded torque generator is 

repeated here for convenience:  
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 (5.1) 

The procedure starts with the attitude dynamics in (5.1) (to be used in the 

development of the demanded torque generator). The first step of the input output 

feedback linearization is to compute the total relative degree of the nonlinear 

system in (5.1). As the output of the system is the attitude vector (i.e. ( ) =h x σ ) then  
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                                                                     (5.2) 
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So the relative degree should be at least one for each output ( )i i
h σ= . Now 

processing further: 
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 (5.3) 

Compiling the above into a single equation yields: 
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And, 

( ) ( )( ) ( ) ( )( )
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3 31
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ob obL L
σ ×

−

×

−
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G σ 0
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                                      (5.5)                                                             

The symbol ×  represents don’t care entries where their contents have no meaning 

since they are multiplied by zero. The matrix ( )G σ  is always invertible so the above 

identity will never be zero. In addition to that one should also check the determinant 

of the matrix: 

 ( ) ( ) 1−= −A x G σ J  (5.6) 

The above expression is obtained simply by using (3.27) and the results from (5.3), 

(5.4) and (5.5). Since ( )G σ  and 1−J  are fully invertible matrices ( )A x  is said to be 

invertible. So, it can be concluded that the relative degree of the nonlinear satellite 

model of (5.1) is equal to two for each output. So the total relative degree is equal to 

six. So the nonlinear system in (5.1) can be completely linearized.   

The normal variables are selected for each output as defined in (3.28)  and 

combined into the vector φ  (as defined in section 3.3.2) as shown below: 
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The Jacobian of the above vector function can be computed after some 

elementary row operations: 
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As expected, the above matrix is invertible which is the basic requirement of a 

diffeomorphism.  

5.3 Construction of the IOFL Demanded Torque Generator 

In this section the feedback control laws are generated using the outcome of 

the previous section. As it is stated in 3.3.2, the feedback linearization controller is 

implemented by using the following feedback: 

 

( )[ ]

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ){ } ( )

1

1 1

1

2

1

2 2
2
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3

3

a

f

b

f ob

f

L

L

L

σ

σ
σ

σ

σ
σ

−

− −

= − +

= −

 ∂∂  
  ∂ ∂   

 ∂∂ ∂   
= = =    ∂ ∂ ∂   
   ∂∂  

  
∂ ∂   

τ A x b v

A x JG σ

f x f x
x x

b f x f x G σ ω f x
x x x

f x f x
x x

 (5.9) 

The Jacobian matrices associated with  ( ) b

ob
G σ ω   can be analytically computed by 

getting use of the derivations in [Crassidis (1996)]. First of all, the Jacobian in (5.9) 

should be expanded as shown in the following: 

 ( ){ } ( ){ } ( ){ }b b b

ob ob obb

ob

 ∂ ∂ ∂
=  

∂ ∂ ∂ 
G σ ω G σ ω G σ ω

x σ ω
 (5.10) 
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The components of the above are computed as done in below: 

 
( ){ } ( ) ( ) ( ) ( )

( ){ } ( )

3 3

1

2

T T
b b b T b b

ob ob ob ob ob

b

obb

ob

×

∂  = − − +  ∂

∂
=

∂

G σ ω σ ω ω σ S ω ω σI
σ

G σ ω G σ
ω

                        (5.11) 

So the vector b  can be obtained as: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }

3 3 3 3
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1
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×

−

  = − − +    

 = − − + +  

  + − − − + −  

b σ ω ω σ S ω ω σI G σ 0 f x

b σ ω ω σ S ω ω σI G σ ω

G σ J S ω c I ω c I ω S ω c

 (5.12) 

Then the whole linearizing control law is: 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

3 3

1

2 2 2

1

2

T T
b b T b b b

a ob ob ob ob ob

b b b

ob o ob o s s ob oω ω ω

−

×

−

 = − − + +  

  + − − − + − −  

τ JG σ σ ω ω σ S ω ω σI G σ ω

S ω c I ω c I ω JS ω c JG σ v

 (5.13) 

The vector v is an artificial control input like: 

 
1

2

3

v

v

v

 
 =  
  

v  (5.14) 

The application of the linearizing feedback control law presented in (5.13) 

yields a controllable and observable linear system in terms of the normal variables in 

(5.7). Since, the relative degree of the satellite model for each output is same and 

equal to two, the product consists of three second order linear state equations 

(incorporating the normal variables) corresponding to each relevant plant (satellite) 

output. In fact, each linear system is a double integrator. Mathematical expressions 

for those systems is: 

 1 1

2 2

0 1 0

0 0 1

i i

ii i

d
v

dt

ξ ξ

ξ ξ

      
= +      
      

 (5.15) 

For the sake of simplicity it is convenient to represent the state variables of the above 

system as 
1 2

&i i

i i
ξ α ξ β= = . By that way one can get rid of the confusing terms. The 

whole linearized system is: 
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12 2

1 1

22 2
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33 3
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3 3
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0 0 0 0 0 0 1 0 0
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v
d

v
dt

v

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

      
      
        
        = +        
               
      

            
v

 (5.16) 

Now that the resultant linear systems are available, one can proceed with 

the generation of the final control law on the input v . As it is stated before, the linear 

systems corresponding to each output ( )i
σ  are identical so a design for one output 

is adequate. One can start the designs by defining a tracking error on the states: 

 i

i

d

i i

d

i i

e

e

α

β

α α

β β

= −

= −
 (5.17) 

In the above, the symbols , ,d

i i i
α α β  and d

i
β  are: 

 

1 2&
i i

i i i i

d d

i i

d d

i i

ξ α σ ξ β σ

α σ

β σ

= = = =

=

=

�

�

 (5.18)   

In this research, it is assumed that the desired input is constant (in other words it is 

adequately smooth such that the first and second derivatives can be assumed as 

zero). So the elements of (5.18) can be rewritten as: 

 

1 2&

0

0

i

i i

i i i i

d d

i i

d d

i i

d d

i i

ieβ

ξ α σ ξ β σ

α σ

β σ

α σ

β

= = = =

=
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= =

=

�

�

� �

 (5.19) 

If one differentiates (5.17) the result is obtained as: 

 i

i

d

i i i

d

i i i

e

e

α

β

α α α

β β β

= − =

= − =

� ��

��
 (5.20) 

Knowing that (5.15) can be rewritten as shown below: 

 
0 1 0

0 0 1

i i

i

i i

d
v

dt

α α

β β

      
= +      
      

 (5.21) 
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Since the above plant contains an integrator there is no need to include an artificial 

integrator into the linear controller. So one can propose a controller of the following 

form: 

 

( ) ( )

( ) ( )

1 2

1 2

1 2 1

1 2 1

d

i i i i i i

d

i i i i i i

d

i i i i i i i

i d
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i

v k k

v k k

v k k k

v k k k

α σ σ

α α β

α β α

α
α

β

= − − −

= − − −

= − − +

 
 = − +  

 

�

 (5.22) 

The above control law converts (5.21) into the following: 

 1 2 1
0 1 0 0

0 0 1 1

i i i d

i i i i

i i i

d
k k k

dt

α α α
α

β β β

          
 = − +           

          
 (5.23) 

and, 
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1 2

0 1 0

1
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β β

       
= +       − −       

 (5.24) 

Considering (5.19) and (5.20) the error state equation can be rewritten as: 
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 +     
= +      − −          

 (5.25) 

So as a result the error dynamics is obtained as: 
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d
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i

e ed
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e

e
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β β

α

β

σ σ

σ

    
=    − −       

= −

= �

 (5.26) 

The first element of the state vector 
i

eα  represents the attitude tracking error and the 

second one 
i

eβ is the rate of change of the attitude (since the derivative of the 

desired attitude is assumed as zero). For a practical application the above proposal 

is adequate. The parameters 1

i
k  and 2

i
k  can be tuned by any desired linear control 

techniques such as linear quadratic regulator (LQR).  
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5.4 The Reaction Wheel Velocity Command Generator 

The reaction wheel velocity command generation is exactly the same as that 

of the back - stepping case presented in Section 4.3.2.   

5.5 The Wheel Speed Control System 

The reaction wheel speed control system uses the following differential 

equations for modeling the reaction wheel and actuator dynamics: 

 
( )( ) ( )1 1 1

1

b b

s ib ib s s e s a

a T L T a T E s T a

− − −

−

 = − − + + + + 

= − + +

ω J S ω Iω I ω τ I J τ

τ K R K τ K K ω K LU

�

�
 (5.27) 

The output for the above system is the reaction wheel velocity ( )s
ω . The first step in 

this section is the computation of the vector relative degree for each component of 

the output vector 
s

ω . As it can be easily deduced from (5.27) that when one takes 

the derivative of 
sω  twice the input voltage vector 

aU  is obtained first time. So the 

vector relative degree for each of the outputs are equal to two. The total relative 

degree of the plant is equal to six. The control law generation procedure is almost 

similar to that of the demanded torque generation law.  

The necessary procedure starts with the reformation of the plant state equations as 

nonlinear affine form: 
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0 J
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u U w τ
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 (5.28) 

The decoupling matrix ( )A x  for this case can be computed as shown below: 
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 (5.29) 

The second step is the computation of the ( )b x  vector which is shown below: 
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 (5.30) 

As a result the linearizing feedback control law on 
a

U  is obtained as: 

( ) ( ) ( ) ( ) ( ) ( ){ }
{ } ( )

1
1 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1

b b b b
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 (5.31) 

The final linear system is a double integrator as expected and shown as: 

 
0 1 0
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d
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      
= +      
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 (5.32) 

where i

s
ω  is one of the components of 

T
x y z

s s s s
ω ω ω =  ω  and 

i
v  [ ]( )1 2 3

T
v v v=v  is 

an external control input whose law is designed by the linear control part of this 

procedure.  The linear controller design will exactly be the same as that of the 

demanded torque generator if one makes the substitution i

i s
α ω=  and i

i s
β ω= � . The 

control input 
i

v  is obtained as: 

 ( ) ( )1 2i i i

i i s sr i sv k kω ω ω= − − − �  (5.33) 
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where i

sr
ω  is the thi  component of the desired reaction wheel velocity command 

that is generated by (4.28). The controller gains 1

i
k  and 2

i
k  are computed by the 

process described in Section 5.3. The variable i

s
ω�  is produced directly from the 

reaction wheel velocity dynamics (excluding the torque 
e
τ ) in (5.27). Following the 

derivation presented in the Section 5.3 with the designation of i

i s
α ω=  and i

i s
β ω= �  

and using the assumptions in (5.19) the closed loop actuator dynamics is obtained 

as shown below: 
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= −

= �

 (5.34) 

The first element of the state vector 
i

eα  represents the reaction wheel velocity 

tracking error and the second one 
i

eβ is the rate of change of the reaction wheel 

velocity (since the derivative of the velocity command is assumed as zero). For a 

practical application the above proposal is adequate. The parameters 1

i
k  and 2

i
k  

can be tuned by any desired linear control techniques such as linear quadratic 

regulator (LQR).  

5.6 The Linear Quadratic Regulator 

The linear quadratic regulator (LQR) is a simple method of optimization based 

controller design technique where a quadratic performance index is minimized by 

the algorithm. General form of the performance index is: 

 ( )
0

T TJ dt

∞

= +∫ x Qx u Ru  (5.35) 

for a linear system of the form: 

 n

m

= +

∈

∈

x Ax Bu

x

u

�

�

�

 (5.36) 

where the feedback input is = −u Kx . The control gain m n×∈K �  is 1 T−=K R B P and 

n n×∈P �  is a symmetric and positive definite matrix the solution of which is found 

from the Riccati equation presented below: 

 1T T−+ − = −A P P A P B R B P Q  (5.37) 
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In all above n n×∈Q �  and m m×∈R �  are also symmetric and positive definite matrices. 

The closed loop system is obtained as ( )= −x A BK x� . For the attitude control problem 

presented in this chapter, the elements of the controller design process are: 

 

0 1 0
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0 0 1
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a s
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x Ax Bu

x

u

A B

Q R

�

 (5.38) 

The performance of the IOFL based controller is investigated through the 

simulations presented in the next chapter.   
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CHAPTER 6                                                            

NUMERICAL APPLICATIONS AND SIMULATIONS 

6.1 Motivation 

In this chapter, the theoretical and applicational information presented in  

Chapter 4 and Chapter 5 is simulated for a realistic satellite application. The selected 

model belongs to BILSAT – I satellite designed by cooperation between Surrey 

Satellite Technology Limited (University of Surrey - UK) and Space Technologies 

Research Institute of Turkish Scientific and Technological Research Council (TUBITAK). 

This satellite was launched from Russia in 2003 and has been involved in 

experimental observation processes performed by the institute. 

6.2 The Parameters of BILSAT – I 

The BILSAT – I is a microsatellite whose photograph is shown in Figure 6-1. Its 

parameters are presented in Table 6-1. 

 

Figure 6-1 A photograph of BILSAT satellite before launch 
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Moment of Inertia: 

xx xy xz

nom

xy yy yz

xz yz zz

I I I

I I I

I I I

 − −
 

= − − 
 − − 

I  

2 2

2

2 2

2

9.8194 , 9.7030 ,

9.7309

0.0721 , 0.2893 ,

0.1011

xx yy

zz

xy xz

yz

I kg m I kg m

I kg m

I kg m I kg m

I kg m

= ⋅ = ⋅

= ⋅

= ⋅ = ⋅

= ⋅

 

Mass of the Satellite:                                120m kg=  

Satellite Orbital Velocity:                     0.0010831 / sec
o

radω =  

The Full Orbit Time:                                     5801.2sec
o

t =  

Moment of Inertia of the Wheels:  

1

2

3

0 0

0 0

0 0

s

s s

s

I

I

I

 
 

=  
 
  

I  

1 2 3

2
0.008

s s s
I I I kg m= = = ⋅  

 

Total Inertia Matrix: 9.8114  - 0.0721 -0.2893

-0.0721 9.695 -0.1011  

-0.2892 -0.1011 9.7229

 
 =  
  

J  

Maximum Torque available from  

the Wheels:  

max
0.02 N mτ = ⋅  

Maximum Wheel Speed:   max 5000
s

rpmω =  

Motor Armature Resistance: 0.696 Ω  

Motor Armature Inductance: 528.8 Hµ  

Motor Torque Constant: 0.038 Nm
A

 

Motor Back – EMF Constant: 0.038 V
rad s

 

Motor Friction Constant: 05
1.604 10 Nm

rad s
−⋅  

Table 6-1 Parameters of BILSAT 
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6.3 Implementation of Back - stepping 

The implementation of back – stepping requires the selection of proper 

control gains (i.e. the four matrix gains 
1 2 3 4
, , ,K K K K ). A larger gain selection may 

lead to larger torque demand which is not desirable. Another restriction on control 

gain selection comes from the input to state stability condition derived in (4.68) and 

(4.69) as the coefficient of 
2

z  should be negative to obtain input to state stability in 

the dissipative sense. In this research, the control gain matrices are in diagonal form 

as shown in the following:   

11 21 31 41

1 12 2 22 3 32 4 42

13 23 33 43

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

0 0 0 0 0 0 0 0

0 0 , 0 0 , 0 0 , 0 0

0 0 0 0 0 0 0 0

&

K K K K

K K K K

K K K K

K K K k

K K K k

K K K k

K K K k

       
       

= = = =       
              

= = =

= = =

= = =

= = =

K K K K

(6.1) 

In order to complete the design procedure one should select the control gains 

according to the input to state stability restrictions presented in Section 4.6. Two such 

control gains are presented in the table given below: 

Table 6-2 The control gain sets for back - stepping simulations 

1
k  

2
k  

3
k  

4
k  

1 2
,M M  

20 2.5 2.5 1.5 1.25/1.5 

40 3.6 3.6 2.5 2.5/2.5 

10 1.7 1.7 0.7 0.625/0.7 

5 1.4 1.4 0.4 0.3125/0.4 

160 11 11 10 10/10 

320 21 2.5 1.5 20/1.5 

Table 6-3 Control gains for back - stepping attitude control simulation 

In this chapter, the simulation results concerning the second case (which is shaded in 

the table above) is presented in the proceeding sections. 
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6.4 Simulation Outline 

The simulation outline describes the initial and final conditions of the nonlinear 

satellite attitude simulation. The simulation is composed of single – run   and a multi – 

run phases. In a single – run simulation a target attitude is defined and the satellite is 

forced to track towards the given target. There are no parametric uncertainties 

existent in the simulation environment. The purpose is solely to verify the control laws 

derived in this work. In contrast, the multi – run simulations involve parametric 

uncertainties in the satellite inertias (including the reaction wheel inertias) and motor 

electrical parameters. Simulations are repeated several times and the results are 

superimposed on the same figures in order to analyze the performance deviations of 

the attitude controller during a realistic operation. In this research, a number of 100 

consecutive simulations are planned for the multi – run phase.  

The natural frequency of the smoothing system in (4.56) is selected as 

0.02 secn radω =  in a critically damped condition ( )1ζ = . By that way the settling 

time of the desired trajectory is about 380  seconds (about 7%  of the full orbit time). 

In the multi – run simulations, it is mentioned that there are parametric 

uncertainties in the satellite and actuator models which have to be taken into 

account. The unknown portion in inertia can be modeled by using a uniformly 

distributed random variable 
ii

δ  in the interval { }0.10,0.10−  (Doruk, [2005]). The 

uncertainty representation is: 

 ( )1
actual nom= + ∆I I I  (6.2) 

where, 

 
xx xy xz

xy yy yz

xz yz zz

I I I

I I I

I I I

δ δ δ

δ δ δ

δ δ δ

 − −
 

∆ = − − 
 − − 

I  (6.3) 

The uncertainties in the motor parameters (armature resistance and inductance, 

torque and back emf constants) are modeled in a similar fashion. For those, same 

level of uncertainty is assumed and is existent on the nominal value of the parameter 

in the following form: 

 ( )1nom

m m
P P Pδ= +  (6.4) 
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where 
m

P  and nom

m
P  are the actual and nominal value of the interested motor 

parameter. Pδ  represents the unknown percentage of the uncertainty (accepted in 

multiplicative form).    

The initial and final conditions of the example simulations are: 

The Initial Conditions: 0 0 00 , 0 , 0φ θ ψ= = =� � �  

Target (final) orientation of the satellites: 20 , 40 , 60ref ref refφ θ ψ= = =� � �  

6.4.1 Results of the Single Run Simulations 

In this section the results of a single run simulation for the second case in Table 

6-3 is presented starting from Figure 6-2. The results of the other cases are not 

presented since thay have produced almost similar results. The dynamic model in 

(2.27) and (2.35) are simulated in closed loop. The controllers used in this simulation 

are given in (4.58).     

 

Figure 6-2 Desired attitude trajectory in degrees (Single Run)  
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Figure 6-3 Desired trajectory represented in MRP (Single Run) 

 

Figure 6-4 Attitude tracking error represented in MRP (Single Run) 
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Figure 6-5 Reaction wheel torque requirement (Single Run) 

 

Figure 6-6 Angular velocity of the satellite body (Single Run) 
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Figure 6-7 Reaction wheel velocity command (Single Run) 

 

Figure 6-8 Reaction wheel velocity error (Single Run) 
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Figure 6-9 Reaction wheel velocity represented in revolutions per minute (Single Run)  

The single – run simulation results shows an applicable characteristic in 

uncertainty free environment. The important variables in this case are the attitude 

errors, torque requirements and reaction wheel velocities. According to the results, 

the torque requirement and wheel velocitiy are far below the maximum value that 

can be exerted by the reaction wheel motor. The attitude tracking errors are 

converging to zero as expected. Shortly one can say that the simulation results 

successfully verified that the controller is working as expected.   

Nevertheless, those results may only be useful for controller verification. In a 

real case, one should take care of the parametrical uncertainties existent on both 

the satellite body and the motor armature parameters.  

6.4.2 Results of Multi – Run Simulations 

In this section the results of the multi – run simulation corresponding to the 

second case of Table 6-3 are presented. Since the uncertainties can occur in several 

configurations (there are more than 15 parameters in the satellite model), the 

simulation should be repeated several times to obtain reliable information of 

robustness against parametric uncertainties. In each simulation, a different level of 
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deviation is added on the nominal value of the considered parameter (by using the 

uncertainty models in (6.2) and (6.3).  

The desired attitude trajectory in terms of MRP and Euler angles are not drawn again 

since they have already been plotted in the single – run simulations section. 

 

Figure 6-10 Attitude error variation in MRP (Multi Run) 

 

Figure 6-11 Attitude error variation in Euler angles (Multi Run)                                                                



 
80 

 

Figure 6-12 Torque demand variation (Multi Run) 

 

Figure 6-13 Reaction wheel velocity demand variation (Multi Run) 
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Figure 6-14 Reaction wheel velocity error (Multi Run) 

 

Figure 6-15 Reaction wheel velocity in revolutions per minute (Multi Run) 
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According to the multi – run simulation results the uncertainties existent in the 

satellite parameters and the actuator does not affect the stability of the proposed 

back - stepping controller. The constant disturbance torque does not have any 

destabilizing effects on the controller’s performance.      

6.5 Simulation of Feedback Linearization 

In this section, a numerical application on attitude control by input output 

feedback linearization (IOFL) is presented. The dynamic model in (2.27) and (2.35) 

are simulated in closed loop. The controllers used in this simulation are given in (5.13), 

(5.22), (5.31) and (5.33).    The LQR for this case are presented as shown below: 

For the demanded torque generator 
,a b

q  is replaced by 
1, 2

q  and 0
s

q = . 

For the demanded torque generator 
,a b

q  is replaced by 
3, 4

q  and 0
s

q = . 

The '
i

q s  used here have no relationship with the quaternion representation.    

In the first trial the input weighting coefficient R  is taken as unity. The coefficients of 

Hata! Başvuru kaynağı bulunamadı. assumes that R is always equal to unity. 

However, as it is also indicated in the table given below, some of the cases become 

unstable during the simulations. In addition to that in multi – run simulation with the 

same conditions as that of the back - stepping case none of the cases can handle 

the uncertainties in the actuator motor parameters. Because of that, some 

additional trials have been performed with different R  values.    

Table 6-4 Gains for Feedback Linearization Case (with 1R = ) 

CASE 
1

q  
2

q  
3

q  
4

q  RESULT 

1 0.001 81 10−⋅  0.1 81 10−⋅  OK 

2 0.1 81 10−⋅  0.1 81 10−⋅  UNSTABLE 

3 1  81 10−⋅  0.1 81 10−⋅  UNSTABLE 

4 0.001 81 10−⋅  1  81 10−⋅  OK 

5 0.001 81 10−⋅  5  81 10−⋅  OK 

6 0.1 81 10−⋅  5  81 10−⋅  OK 

7 1  81 10−⋅  5  81 10−⋅  UNSTABLE 

8 1  81 10−⋅  10  81 10−⋅  UNSTABLE 

9 1  81 10−⋅  10  81 10−⋅  OK 
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In some of the trials the motor uncertainties can be handled, one such case uses the 

following controller gains: 

 

1

8

2

8

1

100

10

0

10

s

q

q

q

R

−

=

=

=

=

 (6.5) 

for the demanded torque generator whereas for the reaction wheel speed 

controller: 

 

5

3

8

4

2

10

10

0

1

s

q

q

q

R

−

=

=

=

=

 (6.6) 

In the next section the results of the simulations concerning the controller 

configurations given above are given. The resultant control gains for (6.5) and (6.6) 

are [ ]1 0.001 0.044721K =  and  [ ]2 316.23 25.149K =  respectively. 

6.5.1 Single Run Simulations for IOFL based Attitude Control 

In this section the single run simulation results concerning the attitude 

controller based on the input output feedback linearization approach. The desired 

attitude trajectories are same as that of the back - stepping based simulation.    

 

Figure 6-16 Attitude error in MRP (Single Run)  
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Figure 6-17 Attitude error in Euler angles (Single Run)  

 

Figure 6-18 Torque demand (Single Run)  
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Figure 6-19 Reaction wheel velocity demand (Single Run)  

 

Figure 6-20 Reaction wheel velocity error (Single Run)  
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Figure 6-21 Reaction wheel velocity in revolutions per minute (Single Run)  

The results showed that free of parametric uncertainties and with the properly 

selected quadratic performance indices (refer to Hata! Başvuru kaynağı 

bulunamadı.) the IOFL based approach can provide an applicable configuration 

however one should perform a more realistic simulation including parametric 

uncertainties in satellite inertia and motor parameters. This is performed in the next 

section.    

6.5.2 Multi Run Simulations for IOFL based Attitude Control 

In this section the results of the multi – run simulations for IOFL control case 

corresponding to the conditions given in (6.5) and (6.6).  
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Figure 6-22 Attitude error in MRP (Multi Run) 

 

Figure 6-23 Attitude error in Euler angles (Multi Run) 
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Figure 6-24 Torque demand (Multi Run)  

 

Figure 6-25 Reaction wheel velocity demand (Multi Run) 
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Figure 6-26 Reaction wheel velocity error (Multi Run) 

 

Figure 6-27 Reaction wheel velocity in revolutions per minute (Multi Run) 
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The multi – run simulations show that the IOFL controllers are robust against 

the satellite body and reaction wheel inertia uncertainties provided that the 

quadratic performance index coefficients 
1

q , 
3

q , 
1

R  and 
2

R  are selected properly.  

The motor uncertainties can also be handled by the last configuration. However, this 

configuration requires comparably larger gains for the reaction wheel speed control 

system. In the following two figures the results of the last simulation repeated with an 

elongated time span (to 320000 seconds) are given. The purpose of this is to show 

whether the reaction wheel velocity and its tracking error converges or not.  

 

Figure 6-28 Reaction wheel velocity demand (Multi Run – time span 320000 seconds) 
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Figure 6-29 Reaction wheel velocity error (Multi Run – time span 320000 seconds) 

As one can understand from the last presentation the reaction wheel velocity 

and its tracking error converges to values around zero after a very long time about 

90000 seconds (about 25 hours). From the normal simulation curves it is undertstood 

that the controllers are operating properly but the reaction wheel operates longer 

than that of the back - stepping based controller. Because of that, the energy 

demands of the proposed IOFL based controller may be larger than that of the back 

- stepping based controller.   

6.6 Long Range Simulation 

The purpose of long range simulations is to demonstrate the behavior of the 

attitude controllers when the target attitude is leading to a rotation where the 

Modified Rodriguez Parameters are approaching to the singular ranges. The MRP are 

singular at 360± �  of rotations which means that the MRP have infinite range of values 

i.e. −∞ < < ∞σ . The test is performed by using the initial and final values of attitude (in 

terms of Modified Rodriguez Parameters) in Table 6-5. The corresponding angle of 

rotation is found from the formula 
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Table 6-5 The long range test information 

Case Nr. Initial Attitude Final Attitude 
Angle of rotation 
about the axis of 

rotation  

1 [ ]0
1 1 1= − − −σ  [ ]1 1 1

f
=σ  180 180− →� �  

2 [ ]0
2 2 2= − − −σ  [ ]2 2 2

f
=σ  253.74 253.74− →� �  

3 [ ]0
4 4 4= − − −σ  [ ]4 4 4

f
=σ  303.86 303.86− →� �  

 

The simulation results are presented in the form of figures just like that of the single run 

simulations presented in this chapter. The long range simulations are performed using 

the back – stepping controllers.  

6.6.1 Results for the Case 1 

 

Figure 6-30 Desired attitude trajectory for the long range simulations Case 1 
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Figure 6-31 Attitude tracking error for the long range simulations Case 1 

 

Figure 6-32 Torque demand for the long range simulations Case 1 
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Figure 6-33 Reaction wheel velocity command for the long range simulations Case 1 

 

Figure 6-34 Reaction wheel velocity error for the long range simulations Case 1 
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6.6.2 Results of the Case 2: 

 

Figure 6-35 Desired attitude trajectory for the long range simulations Case 2 

 

Figure 6-36 Attitude tracking error for the long range simulations Case 2 
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Figure 6-37 Torque demand for the long range simulations Case 2 

 

Figure 6-38 Reaction wheel velocity command for the long range simulations Case 2 
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Figure 6-39 Reaction wheel velocity for the long range simulations Case 2 

6.6.3 Results of the Case 3: 

 

Figure 6-40 Desired attitude trajectory for the long range simulations Case 3 
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Figure 6-41 Attitude tracking error for the long range simulations Case 3 

 

Figure 6-42 Torque demand for the long range simulations Case 3 
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Figure 6-43 Reaction wheel command for the long range simulations Case 3 

 

Figure 6-44 Reaction wheel velocity error for the long range simulations Case 3 
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6.6.4 Comments 

According to the results one can conclude that as the total angle of rotation 

increases the system produces unwanted responses such as the impulsive figures in 

the torque demand. This occurs especially in the third case where the total angle of 

rotation is the highest. This justifies the fact that as the angle of rotation increases the 

MRP approaches to singularity and the system has to consume more energy. In 

addition to that the numerical operations used in the simulation frameworks 

produces ill conditioned states due to the growing values of attitude and related 

system variables. This result also validates that numerical inversion and differentiation 

(not used here but will worsen everything further) should be avoided as much as 

possible for realistic application. 
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CHAPTER 7                                                  

CONCLUSION & FUTURE   WORK 

7.1 Summary 

In this work, some approaches intended for satellite attitude control are 

proposed. The attitude is modeled by the Modified Rodriguez Parameters (MRP) 

instead of quaternion since it is a minimal representation and provides fully invertible 

kinematics. Two controllers are proposed which are based on integrator back - 

stepping and input output feedback linearization (IOFL). The method of back - 

stepping is a recursive approach which provides the derivation of the control laws 

after the selection of a Lyapunov function whereas in many conventional and 

modern control approaches the Lyapunov function is used for analysis only. Thus the 

stability of the controller is verified in the design step already. Another reason for the 

selection of the current methodology is due to the affinity of the satellite model 

where back - stepping is one of the most applicable approaches for those type of 

systems. Both the attitude dynamics and the reaction wheel dynamics are full 

relative degree and proper systems where the inversion of portions of the model is 

easier than many other plants. The back - stepping approach combined with the 

MRP provides a new contribution to the literature since there exists no similar 

approach except the one based on quaternion [Kristiansen (2005)]. In addition, the 

control approach  of this research is also different in the way that it also incorporates 

the dynamics of the actuation element which is the reaction wheel and its driver 

motor. As a result, a cascaded controller framework is developed. That is also a 

contribution to the attitude control literature. Another contribution is the proposed 

analytical stability analysis approach that is based on Lyapunov theory. It is applied 

on the back - stepping based controller in order to analyze the stability of the 

controller against the disturbance torques coming from space.  A comparison is 

made with the IOFL based attitude control in order to understand the differences of 

the two control approaches in performance. Both of the controller proposals are 

examined using single (free of uncertainties) and multi – run (parametric 

uncertainties involved) simulations.        

During the development phase, it is assumed that the satellite is operating in 

the normal stabilization mode (i.e. the detumbling phase is completed). The satellite 
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is actuated by three reaction wheels mounted on the satellite body and they are 

driven by three brushless dc motors. The study is divided into two sections which 

involves the design of demanded torque generator and speed controllers 

respectively. The demanded torque generator produces a torque reference which is 

required to track the satellite to the desired trajectory and it is used for generation of 

a reaction wheel velocity command to be used by the speed controller. The speed 

controller tracks the given velocity command and exerts a torque on the satellite 

body. The integrator back - stepping stabilizes the satellite attitude recursively. This 

nature enables one to consider each state vector (attitude, body angular rates, 

torque and reaction wheel angular velocity vectors – having three components 

each) separately. The back - stepping procedure has two steps for the demanded 

torque generator and two steps for the speed controller. Each individual step defines 

a new artificial state vector which constitutes the state vectors of the closed loop 

system. The first and third ones are the attitude and reaction wheel velocity errors. 

Initial stability analysis is made through the Lyapunov functions selected in each of 

the design steps. The procedure assumes no external disturbances acting on the 

satellite body for the design phase. In this context, the closed loop is globally stable 

in the sense of Lyapunov. During design and analysis, multiplicative properties of the 

MRP kinematical matrix ( )G σ  brought a very useful advantage since the product 

( ) ( )TG σ G σ is exactly a diagonal and positive definite matrix. Stability analysis 

becomes quite easier by getting use of that property. It is also used in the stability 

analysis against the disturbance torques since norm based inequalities are used in 

the analysis. This is an important advantage of using MRP kinematics over other 

attitude representations.          

The second method that is preferred for the attitude control approach is the 

input output feedback linearization (IOFL). Like back - stepping this methodology has 

also nonlinearity elimination characteristics and it results in a double integrator linear 

system. Linear quadratic theory is applied to the remaining linear systems and the 

design is completed. The same approach is used both for the demanded torque 

generator and the speed controller. The stability against the disturbance torques are 

made through the multi – run simulations. This is performed by providing constant 

disturbances to the external torque inputs of the dynamic model during the 

simulations.           
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7.2 Simulations 

For both of the control approaches two types of simulations are planned. 

Those are the single and multi – run simulations where the former one results a single 

plot of the necessary variables and aims at checking whether the generated control 

law has been performing as expected. No uncertainities are involved in this type of 

simulation. The latter one incorporates parametric uncertainties in the inertia and 

motor armature parameters. Since the uncertainties are provided as random 

deviations from the nominal parameter values, it is required that the simulation to be 

repeated several times. In this work, the determined number of runs is equal to 100. 

By this way a healthier information could be collected concerning the deviations 

from the ideal operational characteristics.  

For the back - stepping based approach six sets of control gain parameters 

are selected according to the rules derived from the stability analysis (against the 

disturbance torques) presented in Chapter 4. Both the single and multi run 

simulations show that the back - stepping based approach is working successfully. It 

is robust against both the satellite body and motor armature parameter inertias as 

well as the constant disturbance torque provided during the simulation.      

For the feedback linearization case, at first nine sets of linear quadratic 

performance indices with unity input weight are investigated. The basic result, is that 

the reaction wheel velocity controller should considerably be faster than the 

demanded torque generator in order to have stable operation. In the multi – run 

simulations the IOFL based controller is not successful in presence of motor armature 

parametric uncertainties. When the control gains of the reaction wheel velocity 

controller increased further this problem is solved. However, the required level of the 

reaction wheel velocity controller gains are quite large. This may not be a 

problematic case for a realistic operation but generally it is not desired.         

In stable back - stepping and IOFL simulations, the level of reaction wheel 

torques and angular velocities are far below 0.02 N m⋅  and 5000rpm  respectively 

which are the maximum possible values that can be provided by the reaction wheel 

motors.    

According to the obtained results, the IOFL based attitude controller 

designed in this research is not as robust as the back - stepping based approach. 

The design is very sensitive to the parametric uncertainties existent on the motor 

model. A very small deviation may lead to oscillations and instabilities in the closed 

loop. This issue is existent even if there is no disturbance torques and uncertainties in 
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the inertial parameters of the satellite body. Therefore, it is not safe to use such a 

controller in realistic applications.  

7.3 Future Work  

1. In the IOFL controller design the linear quadratic regulator (LQR) theory is 

used to stabilize the double integrator linear system obtained after feedback. 

Different control approaches can be explored and this may result in a more 

satisfactory controller.  

2. The theoretical robustness analysis approach used in the analysis of back – 

stepping based attitude controller is based on dissipative input to state 

stability (ISS) criterion [Sonntag (1995), Khalil (1996)]. It is not applied to the 

IOFL based approach because it did not give any suitable results. Different 

approaches may be helpful in the analysis of the IOFL based approach in 

obtaining meaningful results.  

3. Another alternative may be to use back - stepping in the demanded torque 

generator and IOFL in the reaction wheel velocity controller sections. That 

could decrease the computational complexity of the overall application. 

However, the design should be verified by simulations in order to find whether 

the controller is stable for all control gain. 

4. An adaptive design may solve the ambiguities in the control design 

approaches (both for back - stepping and IOFL based approaches) such as 

the sensitivities to parametric uncertainties. Those types of the controllers 

generally does not require the model to be explicitly known. So these 

controllers may be more robust than their deterministic versions.     

5. In the back - stepping approach the Control Lyapunov Functions are 

selected as quadratic functions which makes the computational process 

easier. However, the Lyapunov function can be selected in any form 

provided that it is a positive definite function. So other studies can be 

performed by using different Lyapunov functions and forming new control 

laws. A comparative study could be helpful for further development and 

serves as a guidance for the attitude controller developers. Another 

approach concerning this issue is the usage of angular momentum terms as 

states and forming the Lyapunov function in terms of angular momentum 

terms as done in [Hall (1998)].  
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6. The simulation environment in this research is based on the MATLAB Simulink 

which consumes too much computational resources which limits the noise 

modeling capacity. A solution to this issue can be iteration of the the overall 

system equations by an algorithm written in C language. By that way 

different noise models such as the fuel slosh can also be incorporated into 

simulation environment without exhausting the computational resources. Also 

the simulation runs much faster than the Simulink based versions.       
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APPENDIX A                                                                     

A SUMMARY OF ATTITUDE REPRESENTATIONS 

In this appendix, a summary of the general attitude representations are 

presented. Some of those attitude representations are used throughout this research. 

Information presented here is a combined summary of [Shuster (1993), Wertz (1985)]. 

The discussion starts with the review of vector properties.  

A.1 Properties of vectors in 3 – D space: 

A.1.1 Properties of scalar products 
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A.1.2 Properties of cross products 
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A.1.3 Right Handed Orthonormal Bases 

A three dimensional vector is generally rewritten as: 

 
1 1 2 2 3 3

v v v= + +v e e e  (A.3) 

where ( )1 2 3
, ,e e e  are linearly independent basis vectors. These basis vectors are 

classified as orthonormal if the following is valid: 
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where 
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δ  is Kronecker delta which is: 
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The elements of the triple ( )1 2 3
, ,e e e  will be of right handed type if 

( )i j k ijk× =∈e e ei  where 
ijk

∈ is called as Levi Civita symbol and it has the following 

property: 

 123 231 312

132 213 321
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1

∈ =∈ =∈ =

∈ =∈ =∈ = −
 (A.6) 

all other elements are vanished. This symbol has also the property given below: 
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One can represent two vectors u and v  in terms of ( )1 2 3
, ,e e e  as shown in the below: 
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In matrix form: 

 
1 2 3
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and, 
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A general dot product is rewritten as: 

 
3 3 3
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And a simple cross product is expanded as: 

 
3

1

i j ijk k

k =

× = ∈∑e e e  (A.12) 

For the general case: 

 

3

1

3 3 3

1 1 1

i j ijk k

k

ijk i j k

i j k

u v

=

= = =

× = ∈

× = ∈

∑

∑∑∑

e e e

u v e

 (A.13) 

So in the matrix form the cross product of the vectors u and v  are written as: 

 ( )× =u v S u v  (A.14) 

where ( )S u is the skew symmetric matrix former and expressed as shown in the 

following: 
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 ( )
1 3 2

2 3 1

3 2 1

0

, 0

0

v v v

v v v

v v v

−   
   

= = −   
   −   

v S v  (A.15) 

Some other properties concerning vector products and skew symmetric matrices 

are: 

 

( ) ( )

( ) ( )

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) [ ]( )

3 3

23

0

T

T

T T

T T

×

= −

= −

=

= − +

= −

− = − = ×

+ = − × ×

S u S u

S u v S v u

S u u

S u S v u v I vu

S u u S u

S u S v S v S u vu uv S u v

uv S w S w vu S u v w

1. 

2. 

3. 

4. 

5. 

6. 

7. 

i  (A.16) 

The Grossmann and Jacobi identities are: 

 
( ) ( ) ( )

( ) ( ) ( ) 0

× × = −

× × + × × + × × =

a b c a c b a b c

a b c b c a c a b

i i
 (A.17) 

A.1.4 Orthogonal transformations: 

A vector x  can be represented in terms of different orthonormal bases. If one 

defines two spaces aE and bE  spanned by the bases ( )1 2 3
, ,

a a a
e e e  and ( )1 2 3

, ,
b b b

e e e  

respectively (
i

e ’s are all unit vectors). If the vector x  can be defined as an element 

of the space aE then it is expressed as: 

 
1 1 2 2 3 3

a a a a a ax x x= + +x e e e  (A.18) 

Similarly for the space bE : 

 
1 1 2 2 3 3

b b b b b bx x x= + +x e e e  (A.19) 

The basis vectors can be written in terms of each other as: 

 

3

1

3
'

1

b a

i ij j

j

a b

i ij j

j

C

C

=

=

=

=

∑

∑

e e

e e

 (A.20) 

where: 

 
'

b a

ij i j

a b

ij i j

C

C

=

=

e e

e e

i

i
 (A.21) 

The direct result of the above facts is '
T

ij ij
C C   =    or ' T=C C . In geometrical 

point of view the elements 
ij

C and '

ij
C  are the cosines of the angles between two 

sets of axes. Thus, they are also called as direction cosines in kinematics. Similarly, C  
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and 'C  are the direction cosine matrices. Since it is known that the components of a 

vector can be extracted by scalar (dot) multiplication with the basis vectors (i.e 

a a b b

i i i i
x x= =e x e x and i i ) one can also write: 

 

3

1

3
'

1

b a

i ij j

j

a b

i ij j

j

x C x

x C x

=

=

=

=

∑

∑
 (A.22) 

If the vectors ax  and bx  are expressed as 
1 2 3

T
a a a ax x x =  x and 

1 2 3

T
b b b bx x x =  x  then the following can be written: 

 
b a

a T b

=

=

x Cx

x C x
 (A.23) 

The direction cosine matrix has a property that is 
3 3

T

×
=C C I or 

3 3

T

×
=CC I . This 

also means that 1 T− =C C  and 1
T =C C . So the determinant of the matrix C  is either 1  

or 1− . If 1=C , it will represent a rotation matrix. In this case one can denote it by 

( )=R R C . In the case of 1= −C , it is an improper direction cosine matrix and does 

not have any meaning in kinematics.  

A.2 Rotation Matrices and Composition 

The rotation matrix is important in representing transformation from one 

position to another in the three dimensional space. Generally rotations involve more 

than one axis (axis of rotation) so the concept of rotational composition should be 

discussed. Composition can be explained as the combination of two or more 

successive rotations around two or more different axes.  

A.2.1 Introduction to the rotational composition: 

Consider a rotational motion depicted by the diagram shown below: 

 

 

Figure 1 Diagram depicting two successive rotations 
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According to Figure 1, =y Px , =z Ry  and =z RPx . The composition of 

successive set of rotations is also a rotation. There are some important properties of 

rotation matrices related with dot and cross products which are given below: 

 
( ) ( )

( ) ( ) ( )

=

× = ×

Ru Rv u v

Ru Rv R u v

i i
 (A.24) 

A.2.2 Rotation matrices and angular rotation 

In this section rotation matrices around specific axes are presented. Consider 

a rotation around the axis represented by the unit vector 
3

e  (or more commonly z ) 

which is illustrated in Figure 2. 

 

1

ae

2

ae

3

ae

1

b
e

2

be

3

be

γ

γ

γ

 

Figure 2 Rotation around 
3

e axis 

 

So the resultant rotation in terms of trigonometric functions is: 

 

1 1 2

2 1 2

3 3

cos sin

sin cos

b a a

b a a

b a

e e e

e e e

e e

γ γ

γ γ

= +

= − +

=

 (A.25) 
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So in matrix form the rotation around [ ]3
0 0 1

T
=e is represented in matrix form as 

shown in below: 

 ( )3

cos sin 0

, sin cos 0

0 0 1

γ γ

γ γ γ

 
 

= − 
  

R e  (A.26) 

If two vectors are represented as done in (A.18) (in terms of the bases of the 

vector space aE  and bE ), the relationship between bx  and ax  for a rotation around 

the [ ]3
0 0 1

T
=e  unit vector can be written as: 

 ( )3
,

b aγ=x R e x  (A.27) 

Similarly the rotations around the axes represented by [ ]1
1 0 0

T
=e  and  

[ ]2
0 1 0

T
=e : 

 

( )

( )

1

2

1 0 0

, 0 cos sin

0 sin cos

cos 0 sin

, 0 1 0

sin 0 cos

γ γ γ

γ γ

γ γ

γ

γ γ

 
 =  
 − 

− 
 =  
  

R e

R e

 (A.28) 

By doing some manipulations one can write the followings: 

 

( )

( )

( )

3 1 1 2 1 3 1

3 2 2 1 2 3 2

3 3 3

, cos sin cos sin

, cos sin cos sin

,

γ γ γ γ γ

γ γ γ γ γ

γ

= − = − ×

= + = − ×

=

R e e e e e e e

R e e e e e e e

R e e e

 (A.29) 

So by analogy the followings can also be written: 

 
( ) ( )

( )

, cos sin cos sin

,

γ γ γ γ γ

γ

⊥ ⊥ ⊥ ⊥ ⊥= − × = −

=

R n v v n v v S n v

R n n n
 (A.30) 

where ⊥v is orthogonal projection of v  on plane perpendicular to n . So a general 

rotation of angle γ  around n  is represented by:  

 ( ) ( ), cos sinγ γ γ
⊥ ⊥ ⊥

= + −R n v v v S n v  (A.31) 

Since T

⊥
=v nn v  or ( )2

⊥
=v S n v  the above equation can be rewritten as: 

 ( ) ( ) ( )2
, cos sin

Tγ γ γ= − −R n v nn v S n v S n v  (A.32) 

A further manipulation leads to: 

 

( ) ( ) ( ) ( )

( )

2

3 3

11 12 13

21 22 23

31 32 33

, sin 1 cos

,

R R R

R R R

R R R

γ γ γ

γ

×
= − + −

 
 =  
  

R n I S n S n

R n
 (A.33) 
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If one demands the rotational angle γ  from the rotation matrix ( ),γR n the following 

can be obtained: 

 

 ( )
1

cos 1
2

trγ = −R  (A.34) 

And the rotational axis vector n  is obtained back as: 

 
23 32

31 13

12 21

1

2sin

R R

R R

R R
γ

− 
 

= − 
 − 

n  (A.35) 

The equation in (A.33) is also called as Euler’s formula.  

A.3 Euler Angles 

Consider the illustration shown in Figure 3. This figure depicts the following rotational 

sequence: 

1. An angle of ψ  around the axis based on the unit vector 
3

e  

2. An angle of θ  around the axis based on the unit vector 
2

e  

3. An angle of φ  around the axis based on the unit vector 
1

e  

 

Figure 3 Euler angle rotation sequence 
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Figure 4 Another illustration for Figure 3 

 

The rotational composition corresponding to Figure 3 is: 

 

( ) ( ) ( ) ( )1 2 3 1 2 3
, , , , , , , ,

1 0 0 cos 0 sin cos sin 0

0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1

cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos

c

φ θ ψ φ θ ψ

θ θ ψ ψ

φ φ ψ ψ

φ φ θ θ

θ ψ θ ψ θ

φ θ ψ φ ψ φ θ ψ φ ψ φ θ

=

−     
     

=      
     −     

−

= − −

R e e e R e R e R e

os sin cos sin sin cos sin sin sin cos cos cosφ θ ψ φ ψ φ θ ψ φ ψ φ θ

 
 
 
 + − 

 (A.36) 

In kinematics this approach is also called as roll – pitch – yaw sequence. This is 

a preferred angular representation in aerospace applications. There are also other 

representations which are obtained by changing the rotation sequence. The 

generic rotation matrix is formed by: 

 ( ) ( ) ( ) ( ), , , , , , , ,i j k i j kφ θ ψ φ θ ψ=R e e e R e R e R e  (A.37) 

However, there is a restriction that two consecutive rotation sequence should 

not be equal i.e. i j≠  and j k≠ . Because of that, there exist 12 different 

representations that include six symmetric and six asymmetric representations. The 

relationships that enable one to obtain the triple ( ), ,φ θ ψ  from the rotation matrix in 

(A.36) are shown below: 

 { }

1 23

33

1

13

1 12

11

tan

sin

tan

R

R

R

R

R

φ

θ

ψ

−

−

−

 
=  

 

= −

 
=  

 

 (A.38) 

Some more discussion can be found in [Shuster (1993), Diebel (2006)]. The 

Euler angle representation is not a commonly used attitude representation in the 

aerospace literature due to the computational burdens that is brought by them. The 

most common issue is the singularities associated with the Euler angle 

representations. In order to represent the attitude completely one should employ at 

least two sets of Euler angles. This increases the computational burdens. 

A.4 Quaternion Representation 

In order to resolve the singularities in the Euler angle representation, the 

quaternion approach is proposed. It is a virtual representation, which can be 
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represented as 
1 2 3

ε ε ε η= + + +q i j k  (like a complex number). It does not have to have 

a unit magnitude (i.e. 2 2 2 2

1 2 3
1ε ε ε η= + + + =q ) but in order to define rotations with 

the quaternion one has to represent it in the normalized form which can be 

performed by: 

 =
q

q
q

�
 (A.39) 

In attitude control problems the quaternion is often represented as a four 

dimensional vector [ ] [ ]1 2 3
,

T
η ε ε ε η= =q ε  with its elements:  

 1

2

3

cos
2

sin
2

γ
η

ε
γ

ε

ε

=

 
 

= =  
  

ε n

 (A.40) 

where γ  is the angle of rotation and n  is the unit vector representing the axis of 

rotation. As it is understood from (A.40) the “rotation quaternion” is a unit norm 

element (for example a vector) in four dimensional space. The rotation matrix in 

terms of the quaternion parameters can be obtained by doing some manipulations 

on the Euler’s rotation formula in (A.33) which is rewritten here for convenience.  

 ( ) ( ) ( ) ( )3 3
, cos 1 cos sin

Tγ γ γ γ
×

= + − −R n I nn S n  (A.41) 

Using (A.40) and after doing some manipulations (especially trigonometric 

half angle relationships) the quaternion rotation matrix is found as shown below: 

 ( ) ( ) ( )2

0 3 3 0
2 2

T T
q q×= − + −R q q q I qq S q  (A.42) 

 ( )

2 2 2 2

1 2 3 1 2 3 1 3 2

2 2 2 2

1 2 3 1 2 3 2 3 1

2 2 2 2

1 3 2 2 3 1 1 2 3

2 2 2 2

2 2 2 2

2 2 2 2

η ε ε ε ε ε ηε ε ε ηε

ε ε ηε η ε ε ε ε ε ηε

ε ε ηε ε ε ηε η ε ε ε

 + − − + −
 

= − − + − + 
 + − − − + 

R q  (A.43) 

Due to the unity of the norm of the rotation quaternion, one can also write the 

following: 

 

2 2 2 2

1 2 3

2

3

1 4

1
1

4

tr

tr

tr

η ε ε ε

η

η

= − − −

+ =

= ± +

R

R

R

 (A.44) 

The components of ε  can be computed from (A.43) as: 
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( )

( )

( )

1 23 32

2 31 13

3 12 21

1

4

1

4

1

4

R R

R R

R R

ε
η

ε
η

ε
η

= −

= −

= −

 (A.45) 

The above conversion is valid only for 0η ≠ . If that is not the case then there will be 

numerical accuracy problems as 0η → . To solve this problem, there are other sets of 

equations that do the same back computation. Those are: 

 

( )

( )

( )

1 11 22 33

2 12 21

1

3 13 31

1

23 32

1

1
1

2

1

4

1

4

1

4

R R R

R R

R R

R R

ε

ε
ε

ε
ε

η
ε

= ± + − −

= +

= +

= −

 (A.46) 

 

( )

( )

( )

3 11 22 33

1 31 13

3

2 32 23

3

12 21

3

1
1

2

1

4

1

4

1

4

R R R

R R

R R

R R

ε

ε
ε

ε
ε

η
ε

= ± − − +

= +

= +

= −

 (A.47) 

 

( )

( )

( )

2 11 22 33

1 21 12

2

3 23 32

2

31 13

2

1
1

2

1

4

1

4

1

4

R R R

R R

R R

R R

ε

ε
ε

ε
ε

η
ε

= ± − + −

= +

= +

= −

 (A.48) 

The best accuracy is obtained if one of the computational approaches of  

(A.44) to (A.48) which has the largest argument inside the square root is preferred. 

The computational software package MATLAB uses the same approach.  

A.4.1 Conversion between quaternion and Euler angles 

The conversion relationships from Euler angles to rotation quaternion can be 

obtained by applying the following procedure. First of all the rotation quaternion 

vector is rewritten for representing a general rotation: 
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� � �
1 2 3

cos
2

0 0 0cos
2 sin cos

1 0 0 2 20 sin sin sin
0 1 02 2 2

0 sin sin
2 20 0 1

0

sin
2

γ

γ
γ γ

η γ γ γ

γ γ

γ

 
 

                              = + + + = =                                       
 
 

e e e

ε
n

 (A.49) 

Since the compositions of rotations are also rotations, the following can be written for 

the rotation quaternion: 

 
µ η µ η            

= ⊗            
            

R R R
µ ε µ ε

 (A.50) 

The sign ⊗  denotes the quaternion product which is defined as: 

 
µ η µη

µ η

−     
⊗ =     + − ×     

µ ε

µ ε ε µ µ ε

i
 (A.51) 

So one can thought this conversion as first computing the rotation matrix in 

terms of the Euler angles and then finding the argument of the resultant matrix in 

terms of the quaternion. This is done through a triple quaternion product that is 

described as shown: 

 

cos cos cos
2 2 2

0 0
sin , ,

2 0
sin

0 2
sin

0 0 2

φ θ ψ

µ φ η χ

θ

ψ

     
     
     

          
= = =          

          
     
          

µ ε χ
 (A.52) 

In the above [ ],
T

µ µ denotes a rotation of angle φ  around the axis
1

e , [ ],
T

η ε denotes a 

rotation of angle θ  around the axis 
2

e  and  [ ],
T

χ χ denotes a rotation of angle ψ  

around the axis 
3

e . By using the associative property of quaternion product: 

 
final

ε µ η χ µ η χ µ η χ                         
= ⊗ ⊗ = ⊗ ⊗ = ⊗ ⊗                      

                         ε µ ε χ µ ε χ µ ε χ
 (A.53) 

Substituting (A.52) into (A.53) yields: 

 1

2

3

cos cos cos sin sin sin
2 2 2 2 2 2

sin cos cos cos sin sin
2 2 2 2 2 2

cos sin cos sin cos sin
2 2 2 2 2 2

sin cos cos sin sin cos
2 2 2 2 2 2

φ θ ψ φ θ ψ

η φ θ ψ φ θ ψ
ε

ε φ θ ψ φ θ ψ

ε
ψ φ θ φ θ ψ

 
+ 

    −     =     +    
 
 −
 

 (A.54) 
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For the reverse operation i.e. conversion from quaternion to Euler angle can 

be obtained directly from the rotation matrices written in terms of both parameters. 

So one can easily have the following relations: 

 { } { }

1 123 2 3 1

2 2 2 2

33 1 2 3

1 1

13 1 3 2

1 1 1 2 312

2 2 2 2

11 1 2 3

2 2
tan tan

sin sin 2 2

2 2
tan tan

R

R

R

R

R

ε ε ηε
φ

η ε ε ε

θ ε ε ηε

ε ε ηε
ψ

η ε ε ε

− −

− −

− −

   +
= =   

− − +   

= − = − −

   +
= =   

+ − −   

 (A.55) 

A.5 The Gibbs Vector 

The Gibbs (or Rodriguez) vector is a derivative of quaternion representation 

that is defined by: 

 
1

2

3

sin
2

tan
2

cos
2

γρ
γ

ρ
γ η

ρ

 
 

= = = = 
  

ε
ρ n n  (A.56) 

A.5.1 Conversion between quaternion and the Gibbs Vector 

Since the Gibbs vector is related to quaternion by simple trigonometric 

identities, basic trigonometric function conversion routines can be utilized for 

obtaining the attitude conversion rules between quaternion and Gibbs vector. The 

rightmost term in (A.56) is the formula of conversion from quaternion to Gibbs vector. 

The reverse operation is simply obtained from trigonometric identities as: 

 
11

1
T

η   
= ±   

   +ε ρρ ρ
 (A.57) 

A.5.2 Rotation matrix in terms of Gibbs vector 

Rotation matrix in terms of Gibbs vector is easily obtained by using (A.57) and 

(A.42) as shown below: 

 ( ) ( ){ }3 3

1
1 2 2

1

T T

T ×
 = − + − +

R ρ ρ ρ I ρρ S ρ
ρ ρ

 (A.58) 

 ( )

2 2 2

1 2 3 1 2 3 1 3 2

2 2 2

1 2 3 1 2 3 2 3 1

2 2 2

1 3 2 2 3 1 1 2 3

1 2 2 2 2
1

2 2 1 2 2
1

2 2 2 2 1

T

ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ

 + − − + −
 

= − − + − + +  + − − − + 

R ρ
ρ ρ

 (A.59) 

Back transformation from the rotation matrix to the Gibbs vector is simply performed 

by: 
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( )

23 32

31 13

12 21

1

1

R R

R R
tr

R R

− 
 

= − +
 − 

ρ
R

 (A.60) 

The composition rule for the Gibbs vector can be derived from the quaternion 

composition rule (A.51) as: 

 
1

′ ′+ − ×
′′ =

′−

ρ ρ ρ ρ
ρ

ρ ρi
 (A.61) 

A diagram showing the composition rule above is given in Figure 5. 

  

 

Figure 5 Gibbs vector composition 

A.6 Cayley – Klein parameters 

The Cayley – Klein parameters are derived from the quaternion vector by 

forming the Cayley - Klein matrix as shown in the following: 

 3 2 1

2 1 3

j ja b

j jc d

η ε ε εη

ε ε η ε

− −      
= =       + +      

Q
ε

 (A.62) 

where j  is the “complex number” or 1− . A property of the above matrix is: 

 
*

2 2

1 *

T

T

×

−

=

=

Q Q I

Q Q
 (A.63) 

The determinant of Q  is equal to 2T η+ε ε  which is unity. Another obvious property is 

related with composition that is: 

 
µ η µ η            

= ⊗            
            

Q Q Q
µ ε µ ε

 (A.64) 

Vectors are represented as matrices in Cayley – Klein representation. For example a 

vector [ ]1 2 3

T
v v v=v is expressed in matrix form as: 

 3 1 2

1 2 3

v v jv

v jv v

− 
=  + − 

V  (A.65) 

where ( ) ( )2 2 2 2

1 2 3
det v v v= − + + = −V v . The matrix Q  can be used in deriving rotation 

matrices as given below: 

 *T

I b
=V QV Q  (A.66) 

Where the subscripts b and i denote the body and inertial frames respectively. In this 

transformation: 

1. Hermitian property 

2. Trace 
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3. Determinant 

4. Orthogonality 

Properties are all preserved. So the transformation is equivalent to quaternion 

rotational transformation. 

A.7 Modified Rodriguez Parameters (MRP) 

This representation of attitude is a minimal representation first appeared in 

[Wiener (1962)]. It is represented by the following trigonometric identity: 

 
sin

4
tan

4
cos

4

γ
γ

γ
= =σ n n  (A.67) 

Multiplying the denominator and numerator of the above by 2cos
4

γ
 and using the 

double angle formulations in trigonometry one can obtain the equations shown 

below: 

 
2

2cos sin sin sin
4 4 2 2

1
2cos cos 2cos 1 cos

4 4 4 2

γ γ γ γ

γ γ γ γ η
= = = =

+
+

ε
σ  (A.68) 

The above is obviously the approach of conversion from quaternion to MRP vector. 

The reverse operation can be performed easily by noting that: 

 

2 2

2

2 2 2

2 sec 1 tan
2 14 4

cos cos 1 1
2 4 1

sec sec 1 tan
4 4 4

T

T

γ γ
γ γ

η
γ γ γ

− −
−

= = − = − = = =
+

+

σ σ

σ σ
 (A.69) 

From (A.68) ( )1 η= +ε σ . Thus: 

 
1 2

1 1

T

T T
η

−
= + = + =

+ +

σ σ σ
ε σ σ σ σ

σ σ σ σ
 (A.70) 

As it can be easily understood from (A.67) the MRP representation, have a 

singularity at rotations of 2π± radians. Because of that, the representation can be 

modified for rotations of 2γ π− radians. That is shown below: 

 

( )
( )
( )

2

sin sin cos cos sin
tan

cos cos cos cos cos

sin cos cos sin cos
2 4 2 4 2 4

tan tan cot
4 4 2 4

cos cos sin sin sin
4 2 4 2 4

tan
1 4

cot
4

tan tan
4 4

α β α β α β
α β

α β α β α β

γ π γ π γ
γ π γ π γ

γ π γ π γ

γ
γ

γ γ

− −
− = =

− +

−
−   

= − = = − = −   
    +

− = − = −

 (A.71) 
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Then: 

 
2

cos
2 4

tan cot
4 4

sin
4

tan
1 4

cot
4

tan tan
4 4

cos sin
4 2

1
sin 1 cos

4 2

T

γ
γ π γ

γ

γ
γ

γ γ

γ γ

γ γ η

− 
′ = = − = − 

 

− = − = − = −

−
= − = − =

−
−

σ n n n

σ
n n n

σ σ

ε
n n

 (A.72) 

As it is obviously seen from the above computation σ  and ′σ  corresponds to 

T
Tη  ε  and 

T
Tη −  ε  respectively. This means the attitudes represented by σ  and 

′σ  are equivalent. In order to resolve the singularity in MRP representation one can 

use the following switching mechanism: 

 
1

T

processed

T

if

otherwise

 <


=  −



σ σ σ

σ σ

σ σ

 (A.73) 

As a result of the rule, the angle of rotation is limited in π γ π− ≤ ≤ .  

A.7.1 Rotation matrix 

The rotation matrix in terms of the Modified Rodriguez Parameters are derived 

from the quaternion rotation matrix in (A.42). The matrix defined in (A.42) is modified 

by using the properties given in (A.16). One of those properties is 

( ) ( )2

3 3

T

×= − +S u u u I uui  and by utilizing this property, the standard quaternion rotation 

matrix is rewritten as:  

 
( ) ( ) ( )

( ) ( )

2

3 3

2

3 3

2 2

2 2

T Tη η

η

×

×

= − + −

= + −

R ε ε ε I εε S ε

I S ε S ε
 (A.74) 

And by direct substitution of (A.69) and (A.70) the rotation matrix in terms of MRP’s 

are obtained as shown below: 

 ( )
( )

( )

( ) ( )

( )

2

3 3 2 2

4 18

1 1

T

T T
×

−
= + −

+ +

σ σ S σS σ
R σ I

σ σ σ σ
 (A.75) 
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A.7.2 MRP Composition Rule 

The composition rule for the Modified Rodriguez Parameters can be derived 

from the quaternion composition rules like the Gibbs vector. Before proceeding, it 

will be convenient to write the following: 

 

1

1

2

1

1

1

2

1

T

x x

T

x x

x

T

x x

T

y y

T

y y

y

T

y y

µ

η

−
=

+

=
+

−
=

+

=
+

σ σ

σ σ

σ
µ

σ σ

σ σ

σ σ

σ
ε

σ σ

 (A.76) 

Applying the quaternion composition rule in (A.50) yields: 

( )
( )( )

( )
( )( ) ( ) ( )

1 41

1 1 1

2 1 2 1 4

1 1 1 1 1 1

T TT
y y x yx x

T T T

x x y y x x

T T

x x y y y x x y

T T T T T T

x x y y x x y y x x y y

χ µ η

 −−
− 

+ + +      
= ⊗ =       

− − ×       
+ − 

+ + + + + + 

σ σ σ σσ σ

σ σ σ σ σ σ

χ µ ε σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ

 (A.77) 

Finally conversion back into MRP yields the following: 

 
( ) ( )
1

1 1 2

1 2

z

T T

x x y y y x x y

z T T T

x x y y x y

χ
=

+

− + − − ×
=

+ +

χ
σ

σ σ σ σ σ σ σ σ
σ

σ σ σ σ σ σ

 (A.78) 

The composition rules are used for deriving the attitude tracking errors in the 

simulations.  

A.8 Kinematical Differential Equation 

In this section, the differential kinematics that is used for attitude motion is 

presented. Some of the equations can be derived from the axis – angular differential 

equation shown below: 

 
( )

1
cot

2 2

γ

γ

=

  
= × − × ×  

  

n ω

n n ω n n ω

� i

�
 (A.79) 

A.8.1 The Kinematical Differential Equation for Rotation Matrix 

The kinematical equation for the rotation matrices is an important model for 

the derivation of the kinematical differential equations for various attitude 
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representations. The derivation of kinematics equation for the rotation matrices can 

be started with the following definition: 

 ( ) ( ) ( )t t t t t+ ∆ = + ∆R Φ R  (A.80) 

One should note that the above definition is based on the composition rule for 

attitude definitions. Another important here is that the matrix ( )t t+ ∆Φ should also be 

a matrix and for small values of t∆ the value ( )tΦ  should also be sufficiently small. 

One can express ( )t t+ ∆Φ as shown in the following: 

 ( ) ( )( ) ( )( )2

3 3
t t t t×+ ∆ = − ∆ + ∆Φ I S χ O χ  (A.81) 

where ( )t∆χ  is a positional three dimensional vector having the following property: 

 ( )
0

lim 0
t

t
∆ →

∆ →χ  (A.82) 

and ( )( )2

t∆O χ  defines the higher order terms. Using the standard definition of the 

derivative: 

 

( ) ( )
( )( ) ( ) ( )( ){ }

( ) ( )( ) ( )

( )
( )

2

0

0

1
lim

lim

t

t

t t t
t t t

t t

t t t

t
t

t

∆ →

∆ →

+ ∆ −
= − ∆ + ∆

∆ ∆

= −

∆
=

∆

R R
S χ R O χ

R S ω R

χ
ω

�  (A.83) 

For the case of spinning space bodies, the velocity term ( )tω  represents the body 

coordinate frame angular velocity. 

A.8.2 Quaternion 

The kinematics of the attitude quaternion is derived in a way similar to the 

rotation matrix differential equation and presented in [Shuster (1993)]. So only the 

results are given here: 

 

( )3 3

1

2

1

2

T

I

η

η ×

= −

= +  

ε ω

ε S ε ω

�

�

 (A.84) 

A.8.3 Gibbs Vector 

The kinematics of the Gibbs vector follows from that of the quaternion and 

expressed as: 

 ( ){ }
1

2
= − × +ρ ω ω ρ ω ρ ρ� i  (A.85) 
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A.8.4 Cayley Klein Parameters 

Since the Cayley – Klein parameters are thought of a matrix representation 

for quaternion the kinematics is also a matrix differential equation. So one can write: 

 

( )

( )

1

2

,

x

z x y

y

x y z

z

j

j

ω
ω ω ω

ω
ω ω ω

ω

=

 
−   = =   + −    

H Γ ω H

Γ ω ω

�

 (A.86) 

As easily understood, the matrix Γ  Hermitian symmetric ( )T∗ =Γ Γ .  

A.8.5 Modified Rodriguez Parameters (MRP) 

Like that of the Gibbs vector the kinematical differential equation of the MRP 

vector follows from the quaternion and written as: 

 ( ){ }1
1 2 2

4

T = − − × + σ σ σ ω ω σ ω σ σ� i  (A.87) 

For further information and details of the derivations, the following references could 

be read [Shuster (1993), Diebel (2006), Wiener (1962)]. 

A.8.6 Euler Angles 

The Euler Angle kinematics vary according to the selected Euler angle set 

from the twelve different rotation sequences. In this appendix, the kinematics related 

used in the MATLAB Aerospace Toolbox. The relationship between the body fixed 

angular velocity vector and the time derivatives of the Euler angles are given by the 

transformation: 

 

1

1 0 0 0 1 0 0 cos 0 sin 0

0 0 cos sin 0 cos sin 0 1 0 0

0 0 sin cos 0 0 sin cos sin 0 cos

b
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φ θ θ φ
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   −           
              = = + + =              
              − −              
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 
 
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1 sin tan cos tan

0 cos sin

sin cos
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cos cos
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p

q
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φ θ φ θ

φ φ
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θ θ

 
   
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(A.88) 
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