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ABSTRACT

MODELING THE WATER QUALITY OF LAKE EYMIR USING ARTIFICIAL NEURAL
NETWORKS (ANN) AND ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)

ASLAN, Mubhittin
M.S., Department of Environmental Engineering

Supervisor: Assoc. Prof. Dr. Aysegiil AKSOY

November 2008, 122 pages

Lakes present in arid regions of Central Anatolia need further attention with regard
to water quality. In most cases, mathematical modeling is a helpful tool that might
be used to predict the DO concentration of a lake. Deterministic models are
frequently used to describe the system behavior. However most ecological systems
are so complex and unstable. In case, the deterministic models have high chance of
failure due to absence of priori information. For such cases black box models might
be essential. In this study DO in Eymir Lake located in Ankara was modeled by using
both Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference System
(ANFIS). Phosphate, Orthophospate, pH, Chlorophyll-a, Temperature, Alkalinity,
Nitrate, Total Kjeldahl Nitrogen, Wind, Precipitation, Air Temperature were the
input parameters of ANN and ANFIS. The aims of these modeling studies were: to

develop models with ANN to predict DO concentration in Lake Eymir with high
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fidelity to actual DO data, to compare the success (prediction capacity) of ANN and
ANFIS on DO modeling, to determine the degree of dependence of different

parameters on DO. For modeling studies “Matlab R 2007b” software was used.

The results indicated that ANN has high prediction capacity of DO and ANFIS has
low with respect to ANN. Failure of ANFIS was due to low functionality of Matlab
ANFIS Graphical User Interface. For ANN Modeling effect of meteorological data on
DO data on surface of the lake was successfully described and summer month super

saturation DO concentrations were successfully predicted.

Keywords: Lake Eymir, artificial intelligence, artificial neural network, modeling,

fuzzy logic.
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EYMIR GOLU’NDE SU KALITESINiN YAPAY SiNiR AGLARI (YSA) VE ADAPTIF
SINIRSEL BULANIK iLISKISEL SISTEM (ASBIS) iLE MODELLENMESI

ASLAN, Mubhittin
Y. Lisans, Cevre Muhendisligi Bolimu

Tez Yoneticisi: Dog. Dr. Ayseglil AKSOY

Kasim 2008, 122 sayfa

ic Anadolu’nun karasal bélgelerinde bulunan géllere su kalitesi anlaminda 6zel
onem verilmesi gerekmektedir. Genel olarak matematiksel modelleme Cozlinmis
Oksijen (CO) modellemesi icin sikca basvurulan bir yéntemdir. Bu kapsamda
deterministik modeller sistem davraniginin agiklanmasi igin sikhkla kullanilir. Fakat
ekolojik sistemlerin karmasik ve karmasik vyapilari deterministik modellerin
basarisizhigina neden olabilmektedir. Bu gibi durumlarda teorik tabanli modeller
guvenli oncul bilgi eksikligine baglh olarak hata yapabilirler. Diger taraftan, karmasik
algoritma yapilari ve disuk glivenli oncil bilgi gereksinimleri géz 6niline alindiginda

kara-kutu modellerin kullanilmasi daha iyi sonuglar verebilmektedir.

Bu calismada Ankara’da yer alan Eymir Géli’nde dlgiilen CO verileri YSA ve ASBIS

modelleme araglari kullanilarak modellenmistir. Elde edilen ve kullanilan giris
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verileri Fosfor, Fosfat, pH, Klorofil-a, Sicaklik, Alkalinite, Nitrat, Toplam Kjeldhal
Azotu, Rizgar, Yagis ve Hava Sicakhgi verileridir. Modelleme ¢alismasinin amaglari;
goldeki CO verisinin miimkiin mevcut ekosistem ile yiiksek 6l¢ciide dogruluk icerecek
bicimde tahmin eden bir YSA modeli gelistirmek, ekolojik modelleme araclari olarak
YSA ve ASBiS’in ayni sartlar altinda karsilastiriimasi ve CO tizerinde diger su kalitesi
parametrelerinin etki 6l¢lslintin ortaya konulmasi. Modelleme ¢alismalari sirasinda

yazilim olarak Matlab R 2007b kullaniimistir.

Calismanin sonucunda, YSA modellemesi CO tahmininde basariya ulasirken ASBIS
modelleme calismasinda ayni basari gézlenmemistir. ASBIS’in basarisiz olmasinin
sebebi Matlab ASBIS Kullanici Arayiiziiniin fonksiyonellikten uzak olmasidir.
Ayrica¥YSA Modelleme calismasinda meteorolojik verilerin gél yiizeyindeki CO

tizerine etkileri ve yaz aylarindaki asriri CO yiikselmesi aciklanabilmistir.

Anahtar Kelimeler : Eymir GOll, yapay zeka, yapay sinir aglari, modelleme, bulanik

mantik.
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CHAPTER 1

INTRODUCTION

Lake Eymir is one of the few natural recreational lakes in Ankara. It has been
taken under environmental protection by Environmental Protection Agency for
Special Areas (EPASA) of Turkey since 22" December 1990. The lake suffers from
eutrophication and drought conditions (Elahdab, 2003; Tan & Beklioglu, 2005;
Altinbilek et al., 1995). Water quality problems have been observed in many ways
(Elahdab, 2003; Altinbilek et al, 1995, Karakog et al, 2003, Tan & Beklioglu, 2005).
However, one of the most significant problems associated also with eutrophication
is the declined dissolved oxygen (DO) concentrations in summer months. Several
water quality monitoring and assessment studies have been conducted in the lake
(Elahdab, 2003; Altinbilek et al, 1995, Karakog et al, 2003, Tan & Beklioglu, 2005).
However, these studies were not an integrated part of a continuous long term
monitoring and only a number of parameters were considered. May be as a result

of lack of data, no water quality modeling studies has been performed.

Water quality modeling is not a new issue for the lake ecosystems. However
many of these studies have been carried out with deterministic models (Ates et al,
2007). Deterministic models rely on a theoretical basis and several assumptions are
used to define a system. Therefore, these models can have the pitfall of being just
the abstraction of the real situation in a system. On the other hand, the
assumptions used in a deterministic model can be far from representing the real

situation.

Mathematical modeling problems are often classified into black box or white
box models, according to how much a priori information is available for the system

(MacKay, 2004). A black-box model is a system where there is no a priori
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information available. A white-box model (also called glass box or clear box) is a
system where all necessary information is available. Practically all systems are
somewhere between the black-box and white-box models. Therefore, these

terminologies are used only as an intuitive guide.

If there is no a priori information, we would try to use as general functions
as possible to cover all different mechanisms in a sytem. An often used approach
for black-box models are the neural networks which usually do not assume almost
anything about the system and incoming data. The main advantage of black-box
models is their ability to learn the system from system’s own data. This ability
makes the model unique for a system and this uniqueness minimizes the level of

affection degree of assumptions.

Human intelligence uses existing knowledge to reduce the number of
choices in order to raise the effectiveness of a simulation model manipulation
(Chau, 2004). As in traditional model calibration, each time, merely one or two
parameters are altered disregarding the synergistic effects of them. This is because
if many parameters are altered at the same time, it is easy to get lost in the
manipulation direction. However, artificial intelligence techniques are capable to

mimic this behavior as well as to complement the deficiency.

In this study, two black-box modeling tools; Artificial Neural Networks (ANN)
and Adaptive Neuro Fuzzy Inference System (ANFIS) are used to model the DO
concentrations in Lake Eymir are useful in modeling the systems where the
interrelationship between system components is not well known. ANNs are
mathematical models that mimic the human brain. They make use of the massively
parallel local processing and distributed representation that are believed to exist in
the brain. Inherent of many specific disciplines (psychology, mathematics,
neuroscience, physics, engineering, computer science, philosophy, linguistics and
biology) neural network theory helps us to create intelligent systems that can learn
any phenomena and create good solutions to problems that have never been

introduced before (Karul, 1999).



ANFIS bases on the main idea of fuzzy control or modeling. Fuzzy modeling
has proven to be very successful method in building a model that mimics a human
control expert who is capable of controlling a plant without thinking in a
mathematical model. The control expert specifies his control actions in the form of
linguistic rules. These control rules are translated into the framework of fuzzy set
theory providing a calculus which can simulate the behavior of the control expert
(Nauck et al, 1993). In brief, the main purpose of usage of fuzzy logic is to create a
mathematical decision making system that is more close to human decision making

via linguistic rules or representative membership functions.

ANNs offer the possibility to solve the tuning problem. The combination of
ANNs and fuzzy controllers in ANFIS assembles the advantages of both approaches
and avoids the drawbacks of them individually. Although an ANN is able to learn
from given data, the trained ANN is generally regarded as a black box. Neither it is
possible to extract structural knowledge from the trained neural network, nor can
we integrate special information about the problem into the ANN in order to
simplify the learning procedure. On the other hand, a fuzzy controller is designed to
work with knowledge in the form of rules. But there exist no formal framework for
the choice of parameters and the optimization of parameters has to be done

manually (Nauck et al, 1993).

Under the light of brief information given above and insufficient water
quality data of Eymir for a traditional deterministic water quality model simulations,
ANN and ANFIS were utilized to model the DO concentrations. The scope of this
study focused on comparing of these black-box models in describing the variation in
DO concentrations in Lake Eymir. For this purpose, a water quality monitoring
program was conducted in Lake Eymir in March 2005 to November 2005. The data

obtained from that study was used as the input to the ANN and ANFIS models.



CHAPTER 2

LITERATURE REVIEW & THEORETICAL BACKGROUND

2.1 Limnology and Dissolved Oxygen

Limnology is the study of lakes, rivers, and wetlands. More specifically has
long been preeminent work on energy and material flow, in the manipulation of
large enclosures and whole systems, as well as in the use of experimental stream
channels and ecosystem modeling. As inferred from the definition limnology is the
way science to assess the ecological/biological balance issues in surface freshwater
systems. Historically, most biological limnologists have addressed themselves
primarily to the study of competitive and predator-prey interactions. Even so, the
energy and nutrients that make biological interactions possible are ultimately
derived from beyond the shoreline. The light energy needed for photosynthesis and
subsequent flow of energy and nutrients from plants to animals is, together with
heat energy, obtained via atmosphere. The nutrients necessary for growth are
ultimately derived from terrestrial drainage basins, with a sometimes important
contribution from beyond delivered atmosphere. Much terrestrial-derived organic
matter reaches aquatic systems and supplements that produced by aquatic plants.
As a result biological/ecological properties are consequently the result not only of
biological interactions below the waterline but by properties and attributes at
higher levels in the hierarchy which increasingly modified by human impacts.
Human activities increasingly impact both the stage and the actors themselves.
Both fundamental and applied research complements this by measuring the impact
of various degrees of human activity on aquatic systems that provides the basis of

environmental management (Kallf, 2002).
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2.1.1 Dissolved Oxygen as an Ecological Parameter

DO levels in aquatic systems probably reveal more about their metabolism
than any other single measurement. Concentrations reflect the momentary balance
between oxygen supply from the atmosphere and photosynthesis in one hand, and
the metabolic processes that consume oxygen on the other (Kallf, 2002).

Hutchinson (1957) says that:

“A skilled limnologist can probably learn more about the nature of lake
from a series of oxygen determinations than from any other kind of

chemical data.”

As inferred from the Hutchinson’s words, DO is one of the typical parameter
that has crucial effect on a lake’s ecosystem and water quality. As given below, DO
may have significant impact on the survival of fish species (Thomann and Mueller,
1987). In below, “warm waters” refer to temperatures greater than 20 °C and “cold
waters” to temperature range between 15 and 20 °C. The DO values represent the

minimum level required values.

1. Salmonid Waters (coldwater):
a. Embryo and larval stages.
No Production Impairment =11
Slight Production Impairment =
Moderate Production Impairment =
Severe Production Impairment =
Acute Production Limit =

(o2 I NI oo Vo]

b. Other life stages
No Production Impairment =
Slight Production Impairment =
Moderate Production Impairment =
Severe Production Impairment =
Acute Production Limit =

w ~ U1 O 0

2. Non - salmoid waters (warm waters).

a. Early Life Stages
No Production Impairment = 6.5



Slight Production Impairment = 55
Moderate Production Impairment =5
Severe Production Impairment = 45
Acute Production Limit = 4
b. No Production Impairment =6
Slight Production Impairment =5
Moderate Production Impairment = 4
Severe Production Impairment = 3.5
Acute Production Limit = 3

2.1.1.1 Solubility of Oxygen in Water

The solubility of DO in water is primarily determined by water temperature.
At standard pressure, about 14.62 mg/L can be held in distilled water at 0 oc,
declining to 11.29 mg/L at 10 °C. At 25 °C 8.26 mg/l of DO is attainable in
equilibrium with water-saturated air at standard pressure (Kallf, 2002). As it could
be inferred from the Kalff’s analyses, the saturated DO in freshwaters would be
inversely proportional with the temperature of water. As well as the temperature
of water, pressure effects the DO concentration. The solubility of any gas in a
volume of liquid is proportional to the pressure that the gas exerts (Henry’s Law).
Therefore, the solubility of DO declines with decreasing barometric pressure.

Salinity also decreases the DO saturation value (Thomann and Mueller, 1987).

The amount of DO that can be held in water in equilibrium with the
atmosphere at a particular temperature, pressure and salinity is known as the
saturation or equilibrium concentration, the concentration observed in nature is
often expressed as a percentage of this value (Kallf, 2002). In freshwaters, there are
various sources and sinks of DO. Sources of DO are reaeration from atmosphere,
photosynthetic oxygen production, DO in incoming tributaries or effluents, DO input
from wind driven turbulence. The sinks of DO are oxidation of carbonaceous waste
material, oxidation of nitrogenous waste material, oxygen demand of sediments,
and use of oxygen for respiration by aquatic plants (Thoman and Mueller, 1987). In
addition to these direct factors, nutrient concentrations may indirectly impact DO

by enhancing algal growth. Especially, for an eutrophic lake in the summer time,
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drastic increase in DO observed in the epilimnion is an occasional situation (Chapra,

1997)

2.2  Water Quality of Lakes and Water Quality Modeling

Water quality in lakes and reservoirs is subject to the natural degradation
and the impacts of societal development. These factors, especially human activities
give rise to eutrophication problem (Kallf, 2002). The water quality of a lake is often
described by the trophic state. Lakes are classified as oligotrophic, mesotrophic or
eutrophic, depending on the availability of nutrients and the productivity of the
water in terms of living species. Oligotrophic lakes are usually more aesthetically
pleasing than eutrophic lakes. Water quality is generally more suitable for a wider
range of uses. Highly eutrophic bodies often are subject to algal blooms due to

excess in nutrient concentration in the lake and DO deficiency (Chapra, 1997).

When we look at the hydraulic behavior of lakes, they behave as non-ideal
(arbitrary flow) reactors with long hydraulic residence times. Even small lakes may
have residence times of ten years. This means that the hydraulic aspects have little
effect on such systems compared to river systems. Major perturbations are caused
by wind and ambient air temperature (Tchobanoglous et al., 1987). Temperature
variation and density variation may be considered as synonymous in most cases.
Since temperature is simple to measure, it is used as a fundamental parameter

rather than the density.

Lakes gain and lose energy through the surface because of shear forces from
wind, solar heating, and radiant cooling. In warm weather, vertical convention
currents are formed because of differential cooling and heating during the day and
night. Gradually, the water at lower levels become significantly cooler and denser
than that at the surface, and convective forces are damped out except in a surface

layer (epilimnion), which may be a few meters deep. Although the epilimnion is well



mixed, the lower layer (hypolimnion) is weakly mixed and usually has distinct

gradients in nutrient and oxygen concentrations (Tchobanoglous et al., 1987).

2.2.1 Turnover

A lake’s vertical thermal regime has dual significance for the water quality
modeler. Temperature has a strong influence on the rates of chemical and
biological reactions. (Chapra, 1997) The thermal regime of temperate lakes is
primarily the result of the interplay of two processes: (1) heat and momentum
transfer of across the lake’s surface and (2) the force of gravity acting on density

differences within lake (Chapra, 1997).

The epilimnion temperatures may approach to 4 °C, while the hypolimnion is
lower than 4 °C. At this temperature the density of epilimnion become greater than
lower part and an unstable situation occurs. Small perturbations, as from wind
shear, result in a turnover of the lake contents, and for a period the lake is
completely mixed. After mixing, the entire content of the lake will be less than 4 °C,
and the lake will restratify with the colder water near the surface. This is called “fall
turnover”. A “spring turnover” also occurs as the water warms on the surface, the
maximum density develops as temperatures approach 4 °C, and instability develops

(Tchobanoglous et al., 1987).

Turnover affects the water quality; (1) by changing the nutrient and
temperature distribution and (2) by supplying the mixing of the bottom materials
with upper portions in the lake throughout the volume. Quite often, nutrients
accumulate in the lower depths, either in the sediment or due to lower biological
activity. When nutrients are brought to the surface as a result of turnover, with the
availability of sunlight and higher temperatures, algal production can be increased.

This, in turn, would enhance eutrophication (Tchobanoglous et al., 1987).

Stratification allows the reservoir to be operated with respect to the
temperature, and destratification (turnover) destroys this ability to control the
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system. Normally, stratification develops over a period of a few weeks, and the

times of a year that instabilities develop are not critical (Tchobanoglous et al, 1987).

When stratification occurs in a relatively shallow lake, reservoir, or
impoundment, it is often possible that the oxygen resources will be affected
because of algal growth, bacterial activity, bacterial activity and the oxygen

demands of bottom mud (Tchobanoglous et al, 1987).

2.2.2 Significance of Water Quality Modeling in Lakes

The extreme difficulty in lake modeling forces the question of why it must be
done. As in other ecosystems, the reaction of an ecosystem to a change in
conditions in many cases would not be instantaneous. Therefore, real-time water
quality control is not possible. Response times of lakes are long; many variables are
uncontrollable or hard to measure. Moreover, natural factors such as weather
conditions play an important role in the water quality. Models might be used to
answer three very important question; (1) Why has the current situation
developed? (2) What is likely to happen to lake water quality and organism
populations in the future? (3) What will happen if the conditions are changed by a
new discharge, removal of a present discharge or a change in discharge quality? The
answers to these questions allow public to make plans or choices. Lakes are
vulnerable resources and maintenance of the water quality in lakes is essential
(Tchobanoglous et al, 1987). Modeling is a critical tool in achieving the better

management and therefore preservation of the lakes.



2.3 Artificial Neural Networks

2.3.1 General

The essence of ANNs stemmed from the basics of a biological neuron. The
biological neuron is the basic unit of the brain and works on the principle of a logical
processing unit. The types of neurons are mainly: 1) interneuron cells, which
process locally and have their input and output connections at about 100 microns;
2) output cells that connect different regions of the brain to each other, namely,

connect the brain to muscles or connect other organs to brain (Beale et al, 1988).

McCulloch and Pitts (1943) designed systems that are generally regarded as
the first ANNs (McCullogh et al., 1943). The weights on a McCulloch-Pitts neuron
are set so that the neuron performs a particularly simple logic function while with
different neurons perform different functions (Fausett, 1994). Then, Hebb (1949)
designed the first learning law for ANNs. The perceptron which are large classes of
ANNSs, was firstly introduced by Rosenblatt (1958; 1959; 1962). In the era of 1970s,
the associative neural nets were dealt and developed by Kohonen (1972) and
Anderson (1968; 1972). The back-propagation algorithm, which was used in this
study, was firstly introduced by Werbos (1972) and developed by Rumelhart et al.
(1986) and McClelland et al., (1988).

An ANN is an information processing system that has certain performance
characteristics in common with biological neural networks (Fausett, 1994). In

addition to this Hetch-Nielsen defined a neural network as (Chitra, 1993):

"

. a computing system made up of a number of simple highly
interconnected processing elements, which processes information by

its dynamic state response to external inputs”

10



An ANN has four common assumptions:
e Information processing occurs at many simple elements called neurons,
e Signals are passed between neurons over connection links,
e Each connection link has an associated weight, which, in a typical neural
net, multiplies the signal transmitted,
e Each neuron applies an activation function (usually non-linear) to its net
input (sum of weighed input signals) to determine its output signal (Fausett,

1994).

2.3.2 Basic Concepts of ANNs

The ability to learn is a fundamental trait of intelligence. Although a precise
definition of learning process is difficult to formulate, a learning process in ANN
context can be viewed as the problem of updating network architecture and
connection weights so that a network can efficiently perform a task. The network
usually must learn the connection weights from available training patterns and

these patterns should be representative of the system to be modeled

The basic model, which is analogous to a biological neuron, is shown in Figure 2.1.
This model, which is called a perceptron simply performs a weighted sum of inputs
(a linear combination), compares this to a threshold value in the processing unit and
turns on if this value is exceeded, otherwise it stays as off. Since the inputs are
passed through the model neuron to produce the output once, the system is known

as a feed forward one (Tapkin, 2004).
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Figure 2.1 Outline of the Perceptron Model

The ANN architecture is a little bit complex from the perceptron model. Figure 2.2
illustrates a typical ANN. An ANN, whether it is feed-forward or feed-back, must
have at least three layers. The first layer is the input layer in which the input data is
introduced to the model. The second layer is the hidden layer which processes the
input data in the input layer. In hidden layer, activation function is applied on
neurons. The number of hidden layer might be more than one. Finally the output

layer is the component of the network that contains the output data of the model.

—
—

| | | \ |
INPUT InPUT HIDDEN LAYER OUTPUT  guTtPUT
LAYER LAYER

Figure 2.2 Typical Model of a Feed-Forward Neural Network
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A connection between the nodes in different layers is called an interlayer
connection. A connection between the nodes within the same layer is called an
interlayer connection. A connection pointing from a node to itself is called a self-
connection. In addition, a connection between nodes in distant (nonadjacent) layers
is called a supralayer connection. The term connectivity refers to how nodes are
connected. For example, full connectivity often means that every node in one layer
is connected to every node in its adjacent layer. A high order connection is a
connection that combines inputs from more than one node, often by multiplication.

The number of the inputs determines the order of the connection (Simon, 1994).

An ANN is characterized by (1) its pattern of connections between the
neurons (called its architecture), (2) its method of determining the weights on the

connections (called its training or learning algorithm), and (3) its activation function.

Each neuron is connected to other neurons by means of directed
communication links, each with an associated weight. The weights represent the
information being used by the network to solve a problem (Fausett, 1994).
Connection weights can be real numbers or integers. They can be confined to a
range. They are adjustable during network training, but some can be fixed

deliberately. When training is completed, all of them should be fixed (Tapkin, 2004).

In accordance with the structural classification there are ultimately two
types of neural networks: feed-forward and recurrent feed-back networks. In the
most common family of feed-forward networks, called multilayer perceptron,
neurons are organized into layers that have unidirectional connections between
them. Different connection patterns yield different network behaviors. Generally
speaking, feed-forward networks are static, that is, they produce only one set of
output values rather than a sequence of values from a given input. Different
network architectures require appropriate learning algorithms. In recurrent
feedback networks, the inputs of each layer can be affected by the outputs from
previous layers. In addition, self feed-back is allowed. The inputs of the network

13



consist of both external inputs and the network outputs with some delays (Konar,

1999).

2.3.3 Learning in ANNs

The learning procedures of ANNs can be classified into supervised and
unsupervised learning. Supervised learning requires an external teacher to control
the learning and incorporate the global information. The teacher may be a training
data set or an observer who grades the performance. Examples of supervised
learning algorithms are the least mean square (LMS) algorithm, and radial basis
function network (Fausett, 1994). In supervised learning, the ANN is trained to have
the optimal agreement between the ANN output and the training data set. In
environmental modeling applications, the training data set can be composed of
environmental quality observations. In training of the ANN, the value of the
weights in the connections between the neurons is modified according to the

input/output samples.

When there is no external teacher, the system must organize itself by
internal criteria and local information designed into the network. Unsupervised
learning is sometimes referred to as the self-organized learning, i.e. learning to
classify without being taught. In this category, only the samples are available and
the network classifies the input patterns into different groups. Kohonen network is

an example of unsupervised learning (Konar, 1999).

2.3.4 ANN:s as Function Predictor

As it is known from mathematics, function is a mathematical expression that
creates relationship between two or more variables. This relationship is constructed
between dependent and independent variables by calibration of some constants.

The number and type of constants are dependent on the type of function. In
14



nature, there are vast amounts of processes that are complex. Therefore, these

processes cannot be explained by simple linear relationships.

Dependent variables, independent variables and calibration of a typical
model correspond to input data, output data and training, respectively, in the ANN
terminology. However, in ANN modeling approaches, the trained network should
also be tested for its generalization (Tapkin, 2004). That is practically to check
whether the ANN model established a functional relationship between the input

and output data rather than memorizing the behavior.

ANNSs are trained essentially by sequentially altering the connection weights
between the neurons after each pattern is presented to the network. This process
continues until an error term of the computed output value with the target output
value is minimized. This error term is generally the average of the sum of the
squared errors. ANNs become better predictor as more patterns are presented to

the network during the training process (Tapkin, 2004).

2.3.5 Neural Networks in Lake or Reservoir Water Quality Modeling

ANNs have been applied in a number of studies focusing on the modeling of
the water quality in lakes or reservoirs. Elhatip and Kémir (2008) modeled the
water quality in the reservoir of Mamasin Dam. The results illustrated the ability of
ANNSs to predict the output values. The output was the water quality parameters of

the recharge and discharge areas at the Mamasin Dam site.

Li et al. (2007), applied back-propagation ANN technique to Lake Dianchi,
located in southwest of China. In that study, they tried to predict the Microcystis
spp. population using the typical water quality parameters as inputs. They obtained
a correlation coefficient (R?) of 0.911 between the measured and predicted data of

Microcystis spp..

Another study was conducted by Karul in 1999. In this study, Karul (1999)

applied ANNs as lake management tool. An optimum neural network topology was
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determined. Several water quality parameters obtained from Keban Dam, Mogan
and Eymir Lakes were trained with the optimum topology. The output was
chlorophyll-a concentration. TP, NOs-N, NHs3-N, water temperature, electrical
conductivity, pH, turbidity, secchi depth and suspended solids were used as the
inputs. and Chlorophyll-a was the output of the system. A regression coefficient of

0.92 was obtained (Karul, 1999).

Talib and Recknagel (2008) studied the algal dynamics of two Dutch lakes
using recurrent ANNs and hybrid evolutionary algorithm. The results indicated that
20 years of efficient nutrient limitation and 10 years of food web biomanipulation

limited the population of algae.

2.4 Adaptive Neuro-Fuzzy Inference System (ANFIS)

2.4.1 General

The fuzzy system and neural networks are complementary technologies. The
most important reason for combining fuzzy systems with neural networks is to use
learning capability of neural network. While the learning capability is an advantage
from the view point of a fuzzy system, from the viewpoint of a neural network there
are additional advantages to a combined system. Because a neuron-fuzzy system is
based on linguistic rules, we can easily integrate prior knowledge in to the system,
and this can substantially shorten the learning process. One of the popular
integrated systems is a ANFIS (Adaptive Neuro- Fuzzy Inference System), which is
about taking a fuzzy inference system and backpropagation algorithm (Lin and Lee,

1996 and Jang.et.al, 1997).

Unlike the traditional hard computing, soft computing methods that utilize
fuzzy logic is aimed at an accommodation with pervasive imprecision of the real

world. The guiding principle of soft computing is to exploit the tolerance for

16



imprecision, uncertainty, and partial truth to achieve tractability, robustness, and
low solution cost. In coming years, soft computing will likely to play an increasingly
important role in the conception and design of systems whose MIQ (Machine 1Q) is
much higher than that of systems designed by conventional methods. Among
various combinations of methodologies in soft computing, the one that has the
highest visibility is fuzzy logic and neurocomputing, leading to so called neuro-fuzzy
systems. Neuro-fuzzy systems are multi-layer feed forward adaptive networks that

realize the basic elements of fuzzy logic (Matlab Tutorial, 2006).

2.4.2 Basics of Fuzzy Logic

Fuzzy logic can be considered as a logical system that provides a model for
modes of human reasoning that are approximations rather than exact” (Rutkowska,
2002). The concept of fuzziness was first proposed by Zadeh (1965). He aimed to
describe complex and complicated systems using fuzzy approximation and
introduced fuzzy sets. Zadeh (1971) says that as the complexity of a system
increases, our ability to make precision and yet significant statements about the
behavior diminishes until a threshold is reached beyond which precise and

significance become almost mutually exclusive characteristics.

Fuzzy Logic starts with the concept of a fuzzy set. A fuzzy set is a set without
a crisp, clearly defined boundary. It can contain elements with only a partial degree
of membership. Fuzzy sets differ from classical sets by the acceptance level of an
element to a set. A classical set is a set such that any given element is completely
included or not. Therefore, of any subject, one thing must be either asserted or
denied. 1t was Aristotle who first formulated the Law of the Excluded Middle, which

says X must be either in set A or in set-not-A (Matlab Tutorial, 2006).
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For example, let us consider a set A of tall person. In classical terms the set is
considered crisp and may be defined as a number greater than 170 cm which can be
expressed as:

A{x| x> 170}, (2.1)

According to the definition, if x is greater than 170, the x will belong to set A;
otherwise x does not belong to the set. However, it is unsuitable that this method in
the transition zone, like the heights of 169.9 cm and 170.1 cm, will be result in
undesired behavior even almost identical properties. These difficulties can be
avoided by generalizing the binary view to the notion of membership in the view of
fuzzy sets. We allow a degree of membership which may assume all values between
0 and 1. The value 1 stands for complete membership of the set, while 0 means that

an object does not belong to the set at all. (Jeon, 2007)

It should be noted that the example above represents a tricky situation. This
is due to the fact that when we make decisions, individual perceptions and cultural
background are taken into account. These will likely impact how we define which
days constitute the weekend. But, this is exactly the point. Therefore, in such a
situation yes-no logic may not be useful. Fuzzy reasoning becomes valuable exactly
when we talk about how people really perceive the concept of weekend as opposed
to a simple classification (Matlab Tutorial, 2006). In fuzzy logic, the truth of any

statement becomes a matter of degree.

The above example is a linguistic description. However, fuzzy logic should be
mapped into a mathematical form for computational purposes. The explanation of

the fuzzy set and crisp set on mathematical grounds is as follows:

A fuzzy set is a simple extension of the definition of a classical set in which
the characteristic function is permitted to have any values between 0 and 1 (Castillo

and Melin, 2000). A fuzzy set A in X can be defined as a set of ordered pairs:

A= {((x, uA(x))|x € X)} (2.2)
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where La(x) is called membership function for the fuzzy set A. It maps x to a

membership grade between 0 and 1. In common, three types of membership

functions are known which are triangular, trapezoidal and Gaussian. The

formulations used for these membership functions are depicted in Figure 2.4

Triangular membership functions:

n,anSb
triangle (x;a,b,c) =< ._ 2.3
glel ) —, b<xs<c 23
c—b
0, c<x

Gaussian membership functions: MFs:
_=9?

20
gaussian(x;c,0) = e (2.5)

classical (crisp) set 4
1.0 T —-=—=—=———=—=— g

fuzzy set A

membership
funetion i x)

0.0

]
T

Figure 2.3. Difference between Crisp and Fuzzy Set (Matlab Tutorial, 2006)

19



Triangular

o o o
N [a7] oo

Degree of membership

o
]

Degrae of mermbership

/L

=
=

=
o

=
=

=
)

Trapezuidai

o = o
= o o

Degree of membership

[=]
b

Ul

Gaussian

Figure 2.4 Types of Membership Functions (Yilmaz, 2003)

The most important thing to realize about fuzzy reasoning is the fact that it
is a superset of standard Boolean logic. In other words, if we keep the fuzzy values

at their extremes of 1 (completely true), and 0 (completely false), standard logical

operations will hold as given in Figure 2.5.

- a0 o »
- 2 = 2
-~ o owo|d

AND

A B AorB

0 0 0

0 1 1

1 0 1

1 1 1
OR

not A

NOT

Figure 2.5 Boolean Logic Operators (Matlab Tutorial, 2006)

Remembering that in fuzzy logic the truth of any statement is a matter of
degree, how will these truth tables be altered? The input values can be real
numbers between 0 and 1. What function will preserve the results of the AND truth
table (for example) and also extend to all real numbers between 0 and 1? One

answer is the min operation. That is, resolve the statement A AND B, where A and B
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are limited to the range (0,1), by using the function min(A,B). Using the same
reasoning, we can replace the OR operation with the max function, so that A OR B
becomes equivalent to max(A,B). Finally, the operation NOT A becomes equivalent
to the operation 1-A. Notice how the truth table above is completely unchanged by

this substitution.

A B minia,B) A B max(a,B) A 1-A
0 ¥ ¥ 0 0 0 0 1
0 1 0 0 1 1 1 1]
1 0 0 1 0 1
1 1 1 1 1 1

AND OR NOT

Figure 2.6 Fuzzy Logic Operators (Matlab Tutorial, 2006)

Another important concept for fuzzy logic is if-then rules. A fuzzy if-then rule (fuzzy

rule, fuzzy implication, or fuzzy conditional statement) is expressed as follow:

If xisAthenyisB

where A and B linguistic values defined by fuzzy sets. “x is A” is called “antecedent”
or “premise”, while “y is B” is called the “consequence” or “conclusion” (Castillo and

Melin 2000). Some of the if-then rule examples can be given below:

e If pressure is high, then volume is small.

¢ If the speed is low AND the distance is small, then the force on brake should be

small.

We can give a similar example for DO in a lake
¢ If temperature is high AND salinity is high, then DO should be small.
21



2.4.3 Fuzzy Reasoning and Fuzzy Inference Systems (FIS)

So many new concepts were described above but a system approach was not
developed yet. The concept, fuzzy reasoning is the key concept that gives us the
procedure of operational steps in fuzzy logic. Jang et al. (1993) explains the fuzzy

reasoning steps as follows:

1. “Input variables are compared with the membership functions on the
premise part to obtain the membership values of each linguistic label

(fuzzification).

2. The membership values on the premise part are combined through specific
fuzzy set operations such as: min, max, or multiplication to get firing

strength (weight) of each rule.

3. The qualified consequent (either fuzzy or crisp) is generated depending on

the firing strength.

4. The qualified consequents are aggregated to produce crisp output according
to the defined methods such as: centroid of area, bisector of area, mean of

maximum, smallest of maximum and largest of maximum (defuzification)”.

Fuzzy systems (Fuzzy Inference Systems) are made of a knowledge base and
reasoning mechanism is called the fuzzy inference engine. A fuzzy inference engine
combines fuzzy if-then rules into a mapping from the inputs of the system into its
outputs, using fuzzy reasoning methods. (Czogala et al, 2000) Fuzzy inference is the
process of formulating the mapping from a given input to an output using fuzzy
logic. The mapping then provides a basis from which decisions can be made, or
patterns discerned. Fuzzy Inference Systems (FIS) are popular computing
frameworks based on the concepts of fuzzy set theory, which have been applied

with success in many fields like control, decision support, system identification, etc.
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Their success is mainly due to their closeness to human perception and

reasoning, as well as their intuitive handling and simplicity, which are important

factors for acceptance and usability of the systems (Matlab Tutorial, 2006). The

most common and oldest FIS was developed by Mamdani et al. (1975). Mamdani

type FIS is also called the Transparent Mamdani FIS. Another important type of FIS

was developed by Takagi and Sugeno (1985).

The main steps followed in Mamdani FIS are described below:

1.

2.

3.

Fuzzification of Crisp Input: In this initial step, the crisp input values are fired
into membership functions and their respective membership degrees are
determined. (As described before the membership degree is always

between 0 and 1.)

Application of Fuzzy Operator: In this step the Fuzzy Operators (please recall
AND, OR, NOT = min, max, 1-A transformation) are applied to the fuzzified
input values. It is important that for this operation at least two fuzzified

input are needed. At the end of this operation only one value is obtained.

Application of Implication Method (If Then Rules): After a single output if
fired from the fuzzy operator by comparing at least two inputs, the if-then
rule or implication is applied. At this stage the system that is created by the
first two steps is called antecedent. After antecedent is created the
consequent is formed with implication. The consequent is also a
membership function that measures the linguistic membership degree of
the final decision. Recall that if x is A then y is B. The output of the

implication method is a fuzzy set that is used in the 4t step.

In some systems the A decision might be weighed between 0 and 1. As
noted earlier, fuzzy logic is the modeling of linguistic values and for an FIS it

is common that there is more than one A decision with regard to number of

23



different linguistics inputs. At this point although we have a single value
after the second step, this value might be desired to be more efficient or less

efficient with respect to its assigned weight.

4. Summation (Aggregation) of output Fuzzy Sets: It is common that more one
implication is applied and this means that more than one fuzzy set is
obtained. In order to get a one crisp input, we need one fuzzy set. Because

of this, the output fuzzy sets are geometrically aggregated.

5. Defuzzification: In fact this processes the opposite of the first one. Here, the
output fuzzy set is transformed into a single crisp value. There are several
methods to achieve this. The most convenient one is Centroid Calculation

which returns the center of the area under the fuzzy set curve.

The following figure (Figure 2.7) depicts a simple FIS implementation. In this a
restaurant customer is trying to decide on the tip that she/he should give while

considering the service quality and taste of meal.

2. Apply
forery 3, Agp
1. Fuzzify inpufs: operation i 3
FONE = E (ming
1 = \w- _\allcnd ] Ac,'eap
T3 T 0% 25% T
| I service is poor ar food is rancid then tip = cheap |
| Averans|
2- rulle 2 has ‘
no dependency J \
mood on ingul 2
0 10 0% 25% 0% 259
| L service is good then tip = average
excellent
) : ] T o 5 2t
o 1o ) i o 25% 0% 28% o Ay
| ¥ service is excelant ar food is delicious then tip = generous | aggregaiion
mathod (max)
service = 3 foocd =8
input 1 input 2 I_/_V_\
“» 5. Drafucsily
e AEay, LCantroidl
tip = 16.79% [ 28%
output

Figure 2.7 Example Fuzzy Inference System (FIS) (Matlab Tutorial, 2006)
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2.4.4 Adaptive Neuro Fuzzy Inference System (ANFIS)

In the previous chapter the Mamdani FIS was described because of its simple
character and it is easy to understand. On the other hand, ANFIS was built on Takagi
— Sugeno FIS Model by Jang et al. (Jang et al., 1993; Takagi et al., 1985). The main
difference between Mamdani FIS and ANFIS arises at the end of the third stage
given for the Mamdani FIS. The difference of Takagi- Sugeno model is that each rule
has a crisp output, and the overall output is determined as weighted average of the

single rules output.

In ANFIS, the output of each rule can be a linear combination of input variables plus
a constant term or can be only a constant term. The final output is the weighted
average of each rule’s output. Basic ANFIS architecture that has two inputs x and y
and one output z is shown in Figure 2.8. The rule base contains two Takagi-Sugeno

if-then rules as follows:
Rulel > IfxisA;and yis B;, then fi=pix+qiy+r;

Rule2 2 IfxisA,and yis By, then f,=pox + gy + r;

Layer 1 Laver 2 Laver 3 Layar 4 Layer 3

LA A S |

.
b

Figure 2.8 Basic ANFIS Structure
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Yilmaz (2003) describes the typical ANFIS structure as follows:

The neural network structure contains 5 layers excluding the input layer (Layer 0):
1. Layer 0, the input layer, has n nodes where n is the number of inputs to the
system.
2. Layer 1is the fuzzification layer in which each node represents a

membership value to a linguistic term as a Gaussian function with the mean:

x
1+|(

where a; b, c¢; are parameters for the function. These are adaptive
parameters. Their values are adapted by means of the back-propagation
algorithm during the learning stage. As the values of the parameters change,
the membership function of the linguistic term A; changes. These

parameters are called premise parameters.

In that layer there exist n x p nodes where n is the number of input variables
and p is the number of membership fuctions. Also it is possible that for an
input variable the number of membership functions can be modified. In
addition, as well as the Gaussian membership function, other types of

membership functions are applicable.

3. In Layer 2, each node provides the strength of the rule by means of

multiplication operator. It performs min (AND) operation.

w; = g, (x0) * pp, (1) (2.7)

Every node in this layer computes the multiplication of the values and gives
the product as the output as in Equation 1. The membership values

represented by Mai(Xo) and [si(x1) are multiplied in order to find the firing
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strength of a rule where the variable xo has linguistic value of A;, and x; has

linguistic value of B;, in the antecedent part of Rule i.

There are p" nodes denoting the number of rules in Layer 2. Each node

represents the antecedent part of rule (if part of an if-then rule).

Layer 3 is the normalization layer which normalizes the strength of all rules

according to the below equation

W; = (2.8)

R .
Yj=1Wj

where w; is the firing strength of the i™ rule which was computed in Layer 2.
Node i computes the ratio of the i™ rule’s firing strength to the sum of all

rule’s firing strengths. There are p” nodes in this layer.

Layer 4 is a layer of adaptive nodes. Every node in this layer computes a
linear function where the function coefficients are adapted by using the

error function of the multi-layer feed-forward neural network.

w;fi = wi(poXo + D1X1 + D2) (2.9)

pi’s are the parameters where i = n +1 and n is the number of inputs to the
system (i.e. number of nodes in Layer 0). This equation was given for two

inputs. Finally w; is the output of Layer 3.

These parameters are updated by a learning step. The least squares
approximation is used in ANFIS. In a temporal model, back-propagation
algorithm is used for training.

Layer 5 is the output layer whose function is the summation of net outputs

of the nodes in Layer 4. The output is computed as.

— Xiwifi
Y. W, f, = 2wt (2.10)

Xiwi
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where w; f; is the output of node / in Layer 4. It denotes the consequent part of rule
i. The overall output of the neuro-fuzzy system is the summation of the rule

consequents (Yilmaz, 2003).

ANFIS uses a hybrid learning algorithm in order to train the network. For the
parameters in layer 1, back-propagation algorithm is used. For the training of the
parameters in Layer 4, a variation of least squares approximation is used (Yilmaz,

2003).

In this study, MATLAB Fuzzy Logic Toolbox ANFIS GUI (Figure 2.9) was used as a
modeling tool. ANFIS GUI is one of the most effective tools for ANFIS Modeling.
However with respect theoretical explanation above, MATLAB ANFIS GUI has some
limited constraints which are:

1. Be first or zero™ order Sugeno-type systems.

2. Have a single output, obtained using weighted average defuzzification. All
output membership functions must be of the same type and either be linear
or constant.

3. Have no rule sharing. Different rules cannot share the same output
membership function, namely the number of output membership functions
must be equal to the number of rules.

4. Have unity weight for each rule (Matlab Tutorial, 2006).
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Anfis Editor: Untitled

Figure 2.9 Graphical User Interface (GUI) of ANFIS

29



CHAPTER 3

MATERIALS AND METHODS

In this section the materials used and methods applied were described in a
chronological order. The whole study that was conducted for this study employed

three different steps. These are:

e Data Collection and Laboratory Studies
e Modeling of DO in Lake Eymir using ANN
e Modeling of DO in Lake Eymir using ANFIS

3.1 Lake Eymir

Lake Eymir is located 20 km south of Ankara. It has been declared as an
environmentally protected area in 1990. The lake area changes between 1.05-1.25
km? depending on the depth of water. The lake area of Lake Eymir, with its average

depth of about 3 m, is classified as a shallow lake (Tan and Beklioglu, 2005).

Eymir is hydrologically connected to Lake Mogan via concrete lined channel
which is located in the southwest of Eymir. Lake Mogan, Kislakci Stream (a
perennial stream at the northern end), and groundwater sources feed the lake. The
excess water of the lake drains into imrahor Creek at the north (Altinbilek et al.,

1995).

There have been several pollution sources that impacted the water quality in
the lake. The pollution of the Lake was primarily due to discharge of wastewaters of
Golbasi district, the wastewaters coming from the sewage treatment plant of TEIAS
(Turkish Electricity Transmission Company), and the Kislak¢i Creek. In order to
improve the water quality of the lake some actions had been taken. In 1994, the

slaughterhouse that was discharging to an area close to the lake was shut down.
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The TEIAS residency was connected to the Golbasi sewerage system. In addition, in
1995, a 25833 m of bypass line was put in service by ASKI (Ankara Water and
Sewage Directorate) in order to avoid the wastewaters of the Golbasi district from
entering the lake. However, since the pumps were not operated adequately, Lake
Eymir continued to be a receiving body for the Golbasi wastewaters (Altinbilek et

al,. 1995).

As a result of loading of the lake with pollutants, the lake exhibits eutrophic
character (Altinbilek et al,. 1995; Elahdab, 2006). The drought conditions observed
in recent years resulted in severe deterioration of the water quality in the lake

(Elahdab, 2006).

3.2 Data Collection & Laboratory Studies

The water quality data used in modeling of DO was collected within this
study. Both in-situ measurements and laboratory analysis were conducted. The
water quality parameters measured were: temperature (°c), pH, electrical
conductivity (uS/cm), alkalinity (mg/L as CaCOs), PO,; (mg/l), total phosphorus (TP)
(mg/1), NO3-N (mg/I), TKN (mg/l), chlorophyll-a (ug/l), and DO (mg/l). In addition,
meteorological data including maximum wind speed (knot), average wind speed
(knot), maximum precipitation (mm), and Average precipitation (mm), ambient air
temperature (°C) were obtained from the meteorological station at Golbasi Police
College operated by the General Directorate of Meteorological Works. Water
temperature, pH, conductivity, chlorophyll-a (ug/L) and DO (mg/L) were measured
at the site by YSI 6600 EDS Sonde Probe. NOs-N, TP, PO,-P, alkalinity, and TKN were
determined by taking samples from the lake and analyzing the samples at the
laboratory. Four observation points were selected based on previous works
(Altinbilek et al., 1995). These points are illustrated on Figure 3.1. At each point
samples were taken at three different depths. These depths are surface, middle and
bottom. The exact depths of these points were determined according to the depth

at the relevant point. As a result, the total number of measurement points was
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twelve. The measurements and laboratory analysis were carried out in the year of
2005 between months of March and October. In this seven months time, the
measurement and sample collection studies were carried out in fifteen different
dates. These dates are 26" of March, 13" and 22" of April, 6" and 26" of May, 8"
of June, 1%, 13" and 25" of July, 8" and 22™ of August, 5" and 19" of September,
3" and 19" of October. Although Secchi Depth, Photosynthetically Active Radiation
(PAR) parameters were also measured on some dates, they were not included in the

modeling studies due to missing data on some dates.
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Pointer 39°49'12.27° N 32°49711 70" elev 974 m Streaming ||]]11]]] 1003% Eyealt, 358 km
Figure 3.1 Satellite Photograph of Lake Eymir and Sample Points

3.1.1 Field Study

The field study was employed not only for the collection of samples for
laboratory analysis, but also to conduct in-situ measurements. As stated before,

temperature, pH, conductivity and DO were measured at the site by YSI 6600 EDS
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(Figure 3.2), a multiparameter water quality sonde. This instrument can measure
DO, turbidity, temperature, depth, Chlorophyll-a, oxidation-reduction potential,

conductivity and pH in the water temperature range of -5 to +45 °C.

Table 3.1 Data Sampling Dates & Data Types

PARAMETER IN-SITU LABRATORY STATE METEROLOGICAL
MEASUREMENT ANALYSIS INSTITUTE
Alkalinity (mg/L as CaCO3) X
Chlorophyll (pg/L) X
Conductivity (ms/sec) X
NO3- (mg/L) X
PO4 (mg/L) X
Precip._Ave (mm) X
Precip._Max (mm) X
TKN (mg/L) X
Temp (0C) X
Total-P (mg/L) X
Wind_ave (knot) X
Wind_max (knot) X
pH X
Dissolved Oxygen (mg/L) X

YSI 6600 automatically records data in user specified time intervals.

The

sonde was calibrated for conductivity and pH using the standard solutions before it

was taken to the site. DO calibration was performed at the site. The time interval

for data recording was set to two seconds, and the probe was suspended into the

water very slowly and data was recorded until it hit to the bottom of the lake. Then,

the data was transferred to a regular PC or a laptop by using Eco-Watch Software

which is supplied by YSI with the sonde. Since measurements were obtained in a
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very short time compared to laboratory analysis, it was possible to get in-situ
measurements at all sampling points in a sampling study. It took about 5-10

minutes to obtain in-situ data at each sampling point after the sonde was released.

During in-situ measurements, the sonde recorded the depth of water. Then
based on that instant information, the mid-depth was determined. Then samples
were taken from the surface, mid-depth and bottom of the lake. Samples were
taken using the Van Dorn sampling instrument (Figure 3.3). The apparatus was
setup and lowered to the specified depth. Then, its messenger was dropped to
close the caps of the cylindrical container, resulting in the entrapment of about 3
liters of lake water. Then, the apparatus was pulled out of water, and the sample
was emptied into sample containers. These containers were immediately put in a
cooler and kept away from direct sun. In the laboratory, sample containers were

transferred into another large capacity cooler.

Figure 3.2 YSI 6600 EDS Water Quality Sonde
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Figure 3.3 Van Dorn Sampling Apparatus

3.1.2 Laboratory Studies

On every sampling date, the twelve samples taken from the lake were brought to
the METU Environmental Engineering Department Chemistry Laboratory in coolers
approximately in the noon time. In determination of the water quality parameter
values, experiments were conducted three times for each sample. In analysis of the
samples, Standard Methods were employed. Table 3.2 presents the methods used

for analysis. The results of the measurements are given in Appendix A.

Table 3.2 Parameter Analysis Methods

PARAMETER METHOD

Alkalinity (mg/L as CaCOs) Standard Methods: 2320

NO3-N (mg/L) Colorimetric Brucine Method (method 352.1) (U.S
EPA, 1971)

PO4-P (mg/L) Standard Methods: 4500 - P (E")

TKN (mg/L) Standard Methods: 4500 — N, Nitrogen (Organic)
(8%)

TP (mg/L) Standard Methods: 4500 - P (E")

NH5-N (mg/L) Standard Methods: 4500 — NH; (Band C*)

(1) Ascorbic Acid Method.

(2) Macro-Kjeldahl Method

(3) Distillation and titrimetric method.

. Standard Methods 2004 Edition was used.
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3.1.3 Eutrophic Determination of Lake Eymir

The trophic state of lakes are classified according to their biological
productivities:

e Oligotrophic Lakes — Low Biological Productivity

e Mesotrophic Lakes — Moderate Level Biological Productivity

e Eutrophic Lakes — High Level Biological Productivity

e Hypereutophic Lakes — Highest Level of Productivity.

In the context of this study the eutrophic determination of Lake Eymir was
conducted according to the Carlson Trophic Index calculations. (Carlson et al, 1996)
The following formulas were suggested by Carlson et al in order to evaluate the

Carlson Trophic State Index (TSI);

TSI(SD) = 60 - 14.41 In(SD) (3.1)
TSI(CHL) = 9.81 In(CHL) + 30.6 (3.2)
TSI(TP) = 14.42 In(TP) + 4.15 (3.3)
where;

SD = Secchi Depth (m), CHL: Chlorophyll-a Concentration (upg/L), TP: Total
Phosphorus Concentration (ug/L) (Carlson, 1977)

Under the light of Carlson’s approach TSI (CHL) and TSI (TP) was calculated
by using annual avarege data of Lake Eymir. The annual average TP and Chl-a was
calculated as: 510 pg/L and 76 pg/L. According to this data TSI values were
calculated as:

TSI (CHL) = 9.81 * In (76 pg/L) + 30.6 = 73.20

TSI (TP) = 14.42 * In(510 ug/L) + 4.15 = 94.05

According to TSI(CHL) Lake Eymir is hypereutrophic and with regard to TSI (TP)
Lake Eymir is beyond hypereutrophic.
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Table 3.3 TSI Based Trophic State Classification (Carlson, 1996)

Chl sSD TP
TSI Attributes
(ug/L) (m) (ug/L)
Oligotrophy: Clear water, oxvgen
=30 =0.95 =8 <h throughout the vear in the
hypolimnion
3040 (09526 8.4 6.12 Hypolimnia Dfl‘ shallower lakes may
become anoxic
Mesotrophy: Water moderately
40-50 (26-73 4-2 12-24 clear; increasing probability of
hyvpolimnetic anoxia during summer
5060 7320 21 24.48 Eutrophy: Anoxic hypolimnia,
macrophyte problems possible
6070 10.56 0.5.1 18.96 Blue-green algae dominate, algal
scums and macrophyte problems
0.25- Hypereuatrophy: (light limited
70-80 |36-1355 U‘-; 06-192 productivity). Dense algae and
. macrophytes
=80 =155 <0.25 192-384  |Algal scums, few macrophytes

3.2 Modeling Studies with Artificial Neural Networks

3.2.1 Back-propagation Algorithm and Over-fitting

In this study, back-propagation algorithm was used while training the ANN.
Back-propagation is a training method used for prediction problems associated with
input/output pairs. Let us think that in a system there are various parameters that
describe the system and we desire to construct a relationship structure in which we

try to understand the relation of a unique parameter to other ones.
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problem a feed-forward neural net that is trained with back-propagation algorithm

is the essential solution.

Why back-propagation is an essential solution of prediction of real data?
Since, “the main additional specialty of back-propagation algorithm with respect to
classical feed-forward networks is the continuous update of multiplier weights in
order to minimize the absolute error between real and predicted output values.
Figure 3.4 depicts a typical backpropagation ANN algorithm. In this study, MATLAB
Neural Network Toolbox was used for network training and ANN buildup purposes.
The output of the ANN was DO (mg/l). DO is the ultimate indicator of the water

quality which can be easily monitored” (Chapra, 1997).

xi —> @)

1 ] K

Figure 3.4 Typical Backpropagation ANN Structure

At this point in order to give more clarification regarding bakc-propagation
algorithm the example that is used by Fausett will be given. The steps followed in
gradient descent back-propagation algorithm is as follows: During feed-forward,
each input unit (X;) receives an input signal and broadcasts this signal to each of the
hidden units 71, Z,... Z,. Each hidden unit, then, computes its activation and sends its
signal (z;) to each output unit. Each output unit (Yi) computes its activation (yx) to

form the response of the net signal for the given input pattern.
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During training, each output unit, compares its computed activation y, with
its target value (tx) to determine the associated error for that pattern. Based on this
error, the factor 64 (k = 1, 2... m) is computed. & is used to distribute the error at
the output unit Yy back to all units in the previous layer (the hidden units that are
connected to Yy). It is also used (later) to update the weights between the output
and the hidden layer. In a similar manner, the factor §;, (j=1, 2... p) is computed for
each hidden unit Z. It is not necessary to propagate the error back to the input
layer, but §; is used to update the weights between the hidden layer and the input

layer.

After all the 6 factors have been determined, the weights for all layers are
adjusted simultaneously. The adjustment to the weight wj (from hidden unit Z; to
output unit Y;) is based on the factor 6 and the activation z; of the hidden unit Z;.
The adjustment to the weight v;; (from input unit to X; to hidden unit Z)) is based on

the factor 6; and the activation x; of the input unit.

The algorithm is as follows:

Step O. Initialize weights
(Set to small random values).
Step 1. While stopping conditions is false, do steps 2 — 9.
Step 2. For each training pair, do steps 3 — 8.
Feedforward
Step 3. Each input unit (X;, i =1, 2,. . . ., n) receives

input signal x; & broadcasts this signal to all
units in the layer above (the hidden units).

Step 4. Each hidden unit (Z, j=1, 2, . . . ,p) sums its
weighed input signals,
z_in; = voj + Y1 X;Vjj
applies its activation function to compute its
output signal,
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Step 5.

zi=f(z_in)

and sends this signal to all units in the layer
above (output units).

Each output unit (Y, k=1,2,........ , m) sums its
weighed input signals,

o — p
y_INg = Woy + Zj=1 ZiWj

and applies its activation function to complete
its output signal,

ik = fly_ing)

Back-propagation of Error

Step 6.

Step 7

Each output unit (Y, k=1,...... , m) receives a
target pattern corresponding to the input
training pattern, computes its error information
term,

8k = (te—yi) f (y_ink)

calculates its weight correction term (used to
update wj; later),

Aij = aékz,-

calculates its bias correction term (used to
update wy later.)

AWOk = ouSk

Each hidden unit (2;,j=1, 2, ... ., p) sumsits
delta inputs (from in the layers above),

5_inj = Z;cnzl (Sijk
multiplies by the derivative of its activation

function to calculate its error information term,
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6j= 6_I'I'ij/(2_l.nj),

calculates its weight correction term (used to
update vj later)

AV,'j = Ol(SjX,‘

and calculates its bias correction term (used to
update vg; later),

AVoj = CY(Sj

Update of weight and biases
Step 8 Each output unit (Y, k=1,...... , m) updates
its bias and weights (j=0, ........ , P);

wik(new) = wi(old) + Awj

Each hiddenunit (Z,j=1,...... , p) updates its
bias and weights (i=0, ........ ,n);

vi(new) = vj(old) + Av;;

Step 9 Test stopping conditions (Fausett, 1994)

Only a single run cycle of this algorithm from Step 1 to 9 is called an epoch.
While training ANN, the stopping conditions must be determined. For most cases,
reaching the desired level of error is -the common stopping criteria and for most
cases zero (0) error is desired. Another stopping criterion arises from one drawback
of ANN structure. This drawback is the danger of data memorization or over fitting

of the neural network.

Over fitting often occurs during neural network training (Tzafestas, 1996).
The error on the training set is driven to a very small value, but when new data is

presented to the network the error is large (Li, 2007). This is called data
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memorization such that network loses its generalization ability. In order to
overcome this drawback Cross-Validation (Amari, 1997) and regularization (Girosi,
1995) are used. In this study, cross-validation was actively used. In the cross-
validation technique the available sample data is divided into three subsets, the
training subset, the validation subset, and the testing subset. The training set is used
for computing the gradient and updating the network weights. The validation set is
used to monitor the generalization error. The error on the validation set is
monitored during the training process. When the network begins to overfit the
data, the error on the validation set will typically begin to rise (Li, 2007). As
validation error increases, the training will be stopped. Finally the testing subset is

used to verify the performance of the network.

3.2.2 Training with Artificial Neural Network

3.2.2.1 Data Grouping

In order to model DO in Lake Eymir, the measured water quality and
meteorological data was used as the input to the ANN model. Prediction of DO was
employed for the surface and the average DO (arithmetic averages of DO
measurements for the surface, middle and bottom depths). Modeling of the
surface data is important since DO at surface can be distinctively different due to
algal activity. Lake Eymir is a eutrophic lake and algal blooms are also observed on
the surface of the water. None of the deterministic models can specially deal with
surface algal blooms or predict the impact of turnover on DO. The likelihood of
turnover increases with high winds, sudden changes in ambient air temperature
that would change or break the temperature or density stratification in the lake.
However, no general rules can be set for the occurrence of turnover (Chapra,
1997). For example, there is no information in literature which states the absolute
temperature difference in the epilimnion and hypolimnion or wind speed which
results in turnover. This can be specific for a lake. Actually, this situation makes

ANNs and ANFIS interesting for DO prediction at the surface or in the lake. As well
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as the surface DO, the average DO in the lake was modeled. The average DO is

more representative of the general state of the lake.

For surface and average DO models, the input and output data arrays were
prepared. For each measured parameter, the measurements were listed for four
observation points in the chronological order of sampling. As a result, for each
input array, 60 data points were created. As a result, 14 input vectors (x;) and one

output vector (t) were generated. Grouped data table is given in Appendix A.

3.2.2.2 Input Parameter Selection

In prediction of DO using ANNs different parameter sets were used as the
input to the model. It is expected that the sensitivity of DO to different input
parameters will be different. It is natural that while some parameters have strong
correlation with DO some have weak. In this context different combination of input
parameters were tested for prediction of DO. In order to do so prior study was
carried. Simply a prior “linear ranking” procedure was done. First of all the
choronological averages of every single data measured or analyzed from different
sampling points and depths were calculated. After that linear correlation
coefficients between DO and every other parameter was calculated for each depth
for each sampling point. Then identical correlation coefficients were summed up for
each parameter. According to the summations a prior prediction was tried to be
made on determination on input combination structures. The results of Linear

Ranking Procedure is depicted in Tables 3.4 and 3.5.
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Table 3.4 Linear Ranking Procure: Linear Correlation Coefficients with DO (mg/I)

PLS PLM P1LB P2S P2M P2B P3S P3M P3B P4S PAM P4B

Alk. 0.619 0.213 0.064 0.672 0.451 0.086 0.633 0.569 0.094 0.555 0.114 0.114
Chl-a 0.419 0.163 0.277 0.283 0.167 0.314 0.164 0.447 0.092 0.211 0.122 0.122
Cond. 0.108 0.264 0.344 0.335 0.264 0.159 0.236 0.362 0.066 0.093 0.117 0.117
NO3 0.176 0.050 0.382 0.220 0.072 0.522 0.077 0.126 0.390 0.011 0.189 0.189
PO4 0.583 0375 0.109 0.572 0.546 0.033 0.422 0.598 0.051 0.390 0.152 0.152

Precp._Ave 0.057 0.125 0.371 0.166 0.051 0.173 0.244 0.069 0.265 0.172 0.013 0.013

Precip._Max 0.057 0.125 0.371 0.166 0.051 0.173 0.244 0.069 0.265 0.172 0.013 0.013

TKN 0.062 0.077 0.304 0451 0.201 0366 0420 0390 0.302 0.207 0.049 0.049
Temp 0.405 0.229 0369 0371 0.056 0.701 0335 0.060 0.763 0.257 0.212 0.212
TotalP 0.416 0.328 0.144 0.324 0406 0.192 0.312 0414 0.176 0.213 0.091 0.091

Wind_ave 0.272 0.091 0.122 0.334 0360 0.080 0.323 0.408 0.037 0.355 0.167 0.167
Wind_max 0.360 0.078 0.166 0.287 0.451 0.091 0.272 0.536 0.124 0.317 0.083 0.083
pH 0.445 0.037 0.227 0.553 0.355 0.042 0.359 0.505 0.105 0.356 0.119 0.119

Table 3.5 Linear Ranking Procure: Summation and Ranking

Parameter Summation Final
Ranking
Alkalinity 4.184 Alkalinity
Chllorophyl 2.778 PO4
Conductivity 2.464 Temp
NO3 2.408 Chlorophyl
PO4 3.982 Total_P
Precip._Ave 1.719 pH
Precip._Max 1.719 TKN
TKN 2.877 Wind_max
Temp 3.972 Wind_ave
TotalP 3.108 NO3
Wind_ave 2.715 Conductivity
Wind_max 2.847 Precip_max
pH 3.221 Precip_ave

While creating the input combinations, it was assumed that nutrient data
(NOs-N, PO4-P, TP, and TKN) may impact algal activity therefore DO concentrations.
In the second assumption only the forms of nutrients (NOs-N and PO4-P) the algae
can utilize are assumed to be the major input set. The major inputs of the first
assumption was called as Core A, and the second assumption Core B. Then other
eight parameter arrays, including other parameter measurements and
meteorological data, were added to these core input groups one by one starting
from the parameter of highest rank.. While doing this addition first water quality
data (alkalinity, chlorophyll-a, temperature, pH and conductivity) and
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meteorological data (daily maximum precipitation, daily maximum wind speed,

ambient air temperature) were added to the input of ANN. As a result following

input data groups were constructed:

Al
A2
A3
A4
A5
A6
A7

A8

A9

B.1
B.2
B.3
B.4
B.5
B.6
B.7

B.8

B.9

TKN, NO5-N, TP, PO4-P(Core A)

Core A + alkalinity

Core A + alkalinity + temperature

Core A + alkalinity + temperature + pH

Core A + alkalinity + temperature + pH + chlorophyll-a

Core A + alkalinity + temperature + pH + chlorophyll-a + conductivity
Core A + alkalinity + temperature + pH + chlorophyll + conductivity +
precipitation

Core A + alkalinity + temperature + pH + chlorophyll + conductivity +
precipitation + wind

Core A + alkalinity + temperature + pH + chlorophyll + conductivity +

precipitation + wind + ambient air temp

NOs-N, PO4-P (CoreB)

Core B + alkalinity

Core B + alkalinity + temperature

Core B + alkalinity + temperature + pH

Core B + alkalinity + temperature + pH + chlorophyll-a

Core B + alkalinity + temperature + pH + chlorophyll-a + conductivity
Core B + alkalinity + temperature + pH + chlorophyll-a + conductivity +
precipitation

Core B + alkalinity + temperature + pH + chlorophyll-a + conductivity +
precipitation + wind

Core B + alkalinity + temperature + pH + chlorophyll-a + conductivity +

precipitation + wind + ambient air temp
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3.2.2.3 Data Initialization

After creating the input vector and output vectors, the data representation for ANN
was carried out. The data representation was made by normalizing the input data
and back normalizing the output data. This method was applied in order to convert
the input and output values into representative range of values for the computation
using ANNs. In order to do this “norm01.m” and “unnorm01.m” m-files that work
under MATLAB was used. In order to generate these files, similar files created by
Moral (2004) were utilized. These files are the integrated parts of the network
training matrix. These MATLAB files normalizes the data into either [0 1] or [-1 +1]
range. “norm01.m” script converts the data into [0 1] range, while the built-in

premnmx function converts the data into the [-1 +1] range.

3.2.2.4 Training

When the normalized input vectors were created, the training was carried out with
the script developed by Moral (2004). A script is a series of computerized
commands. Therefore, using a script it is possible to conduct a series of actions
automatically instead of using one at-a-time manual actions. The script for
automating training of ANNs (Moral, 2004; Moral et al., 2008) works under MATLAB
Neural Network Toolbox (MNNT). For training of ANNs a three multilayer network
(one input, one hidden and one output layers) was used. While training there were
two stopping conditions. These are zero (0) error condition between the predicted
and observed DO, and data over fitting (memorization) condition. In order to
activate the over fitting condition, the input arrays each consisting of 60 elements
were divided into three parts chronologically. The first 30 data was used for
training, following 15 for validation and last 15 for testing. The validation set was
used to check the over fitting condition. Twelve different back-propagation
algorithms that was supplied by MNNT was used during network training. The

names of these algorithms are given in Table 3.3 (Matlab Tutorial, 2006). After one
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of the stopping conditions is fulfilled the output data was back normalized to obtain

the DO concentrations and performance analyses were carried out.

Table 3.6 Training Functions Used for ANN Training

Training Functions

Brief Explanation

trainbfg
trainbr
traincgb

traincgf

traincgp
traingd
traingda

traingdm

traingdx

trainlm
trainoss

trainscg

BFGS Quasi-Newton backpropagation
Bayesian Regularization backpropagation
Conjugate Gradient backpropagation with Powell-Bale restarts

Conjugate Gradient backpropagation with Fletcher-Reeves
updates

Conjugate Gradient backpropagation with Polak-Ribiere updates
Gradient — descent backpropagation

Gradient descent with adaptive learning rate backpropagation
Gradient descent with momentum backpropagation

Gradient descent with adaptive learning rate and momentum
backpropagation

Levenberg — Marquardt backpropagation
One step secant backpropagation

Scaled conjugate gradient backpropagation

The other important point is the selection of transfer functions. For network

training two different transfer function were tested. These were tansig (Hyperbolic

tangent sigmoid transfer function — Figure 3.5) and logsig (Log-sigmoid transfer

function Figure 3.5).
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a = lagsig(n) a = tansigin)
Log-Sigmoid Transfer Function Tan-Sigmoid Transfer Function

Figure 3.5 Activation Functions “Logsig” and “Tansig” (Matlab ANN Tutorial)

Another ANN parameter selected to construct the ANN DO model was the
number of neurons in the hidden layer. 1 to 99 hidden neurons were tested to
construct the ANN models. In summary, the following combinations were tested to

generate the best ANN architecture for DO modeling.

Input parameter combinations = 18 combination
Back-propagation algorithms for training of ANNs = 11 combinations

Transfer function = 2 transfer function (tansig and logsig)

P w N oRE

Number of hidden neurons in the hidden layer = 1 to 99

For each combination three runs were conducted. Procedure was repeated for
surface and average DO models. As a result, for ANN modeling part of this study 18
x 11 x2 x99 x 3 x 2 =235,224 ANN training runs were employed in search for the

ANN model with the highest performance.

3.2.2.5 Testing Performance and Sensitivity Analysis

The script used for training of ANN models of different architectures applied
an automatic performance analysis of the networks based on the linear correlation
coefficient (R). R measures the strength and direction of a linear relationship

between two variables. The script used for ANN model training checked the R value

48



for each ANN model and stored the information of the network that exhibited an R

value greater than 0.75. Therefore, an initial screening of different ANN models

were conducted. Then, the screened ANN models were further examined to decide

which one is the best. For this purpose, visual inspection of time-series plots of

measured and predicted DO, plots of observed versus predicted DO, and statistical

analysis were employed. For the performance analysis, the following parameters

were calculated for each ANN model.

Absolute Max Error for test, validation and whole arrays = |max (t;, — yi)|

Arithmetic average of absolute errors test, validation and whole array -

1

P Teal(te = i)l

R? value from curve fitting of predicted versus real DO values for test,
validation and whole arrays .

Mean Absolute Error for test, validation and whole arrays -2 While
E, = y"t—‘t" « 100 then MAE = %zggﬂm
k

Mean Square Error test, validation and whole arrays > MSE =

1
5216((;1(% — i)?

After calculation of five performance parameters, the determination of the

best input combination for surface and average data was conducted. In order to do

this, the following methodology was followed:

1.

First of all each performance parameter calculated for the average and
surface DO data was mapped in the range of zero (0) to one (1) by using the

following equation:

A-min
N=——— (3.4)
max—min
where N : Mapped value of parameter A between Oto 1
A : Actual Performance parameter in array

max : max value of respective performance parameter
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min  : min value of respective performance parameter
2. Then, for each input combination, the equation below was applied on

performance parameters mapped to the range of 0 to 1:

F:Corr.Coeff(R) — Max.Error — Average Error — MSE  (3.5)

where F : Total Performance Parameter

MAE and R? were nor included in the total performance parameter since they did

not supply additional information in determination of F.

In addition, in order to analyze the dominancy of the individual parameters
on DO, a series of sensitivity analysis were carried out. In sensitivity analysis, the
network structure that predicted the real DO data successfully was used. In a
network that exhibited good performance according to statistical analysis, the
values of each input array was increased by %30, and %50. Similarly, input values
were decreased by %30, and %50. Then, the results (output DO) was compared with
the DO values obtained without the modification of the input array to see the level
of deviation. If a change in one of the parameter arrays resulted in a meaningful
deviation in the average DO values, then it was concluded that the model was

sensitive to that parameter.

3.2.3 Modeling with ANFIS

As it was stated earlier, one of the ultimate aims of this study is to compare the
performances of ANN and ANFIS for modeling of DO in Lake Eymir. In modeling of
the DO using ANFIS, only the average DO modeling approach was utilized. Not all
input array combinations but selected ones were tested for modeling. using ANFIS.
In DO modeling with ANFIS, the MATLAB Fuzzy Logic Toolbox and ANFIS Graphical
User Interface was used. While modeling the following procedure was applied. For
the mathematical details of the ANFIS, please refer to Chapter 2.
50



1. Some successful input combinations an ANN Model was determined.

2. Then the input data arrays were divided into three as it was done in ANN
Models in order to facilitate the training, validation and testing.
Chronologically first 30 data were used for training, following 15 were used
for checking (validation) and final 15 were used for testing purposes.

3. The type of membership functions to be tested was determined. The
membership function types used by ANFIS are given in Table 3.4.

4. The hybrid learning algorithm was selected as the learning algorithm of
ANFIS. The hybrid algorithm was the combination of simple back-
propagation and Levenberg-Marquad. Subtractive clustering opportunity of
ANFIS GUI was used as the ANFIS structure.

5. While applying subtractive clustering for each input parameter, ANFIS
software can apply 1 to 30 membership functions in one cluster. In
modeling, all of the number of membership functions were tested.

6. After the outputs were obtained, the performance of modeling was
reviewed as it was done for ANN Models (See Section 3.2.2.5).

7. At the end, a comparison table was prepared in order to illustrate the

comparison between ANN and ANFIS.

Table 3.7 Membership Functions Used for ANFIS Training (Matlab Tutorial, 2006)

Membership Brief Explanation
Functions
gbellmf Generalized bell-shaped built-in membership function
gaussmf Gaussian curve built-in membership function
gauss2mf Gaussian combination membership function
dsigmf Built-in membership function composed of difference

between two
sigmoidal membership functions

psigmf Built-in membership function composed of product of
two
sigmoidally shaped membership functions
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CHAPTER 4

RESULTS AND DISCUSSION

As stated in the Chapter 3; the modeling studies were conducted under

two phases: ANN Phase and ANFIS Phase.

4.1 Results of ANN Modeling

The ANN models that had an R value of 0.75 or higher were screened out
both for surface and average DO models based on R for the whole data. For all of
these screened ANN models, five performance determination parameters (See
Section 3.2.2.5) were calculated to check the DO prediction capability of ANN
models that used different input data sets. Although five different performance
parameters were calculated, the threshold for screening was selected based on R.
This was due to the fact that the script used for ANN model screening was making
the selection based on this parameter. As it might be recalled, while running the
ANN models, the input data arrays were divided into three as training, validation
and test sets. Although model screening was performed taking the R value of the
whole data set (training, validation and test sets), an important performance
indicator can be only the performance for the test data (the last 15 chronological
data) since this set is never used for training of the ANN. Therefore, if the model
predictions for the test set is successful, then performance of the ANN models can
be attributed as successful. As a result, in this study whole data set and test data
set were used for screening and prediction performance, respectively. The
performance parameter values for the validation set are given just as information.
The ANN model structures that had the best performance with respect to test set
are given in Table 4.1. The performance for the validation set and whole

(training+validation+test) set are depicted in Tables 4.2 and 4.3, respectively.
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Table 4.1 Best Results of ANN Modeling: Results for Test Array

TEST ARRAY
Max Average Correlation

Error Error R2 Coefficient MAE MSE

Al TRAINRP Logsig 63 8.448 3.818 0.772 0.879 0.27 19.058
A2 TRAINRP Logsig 10 8.473 2.786 0.848 0.921 0.166 12.318
A3 TRAINBFG | Tansig 2 12.697 3.988 0.666 0.816 0.216 28.047
A4 TRAINCGP | Logsig 62 9.866 3.978 0.757 0.87 0.254 21.388
A5 TRAINOSS | Logsig 19 9.827 2.385 0.899 0.948 0.155 11.892
S | A6 TRAINGDM | Logsig 35 8.553 2.491 0.866 0.93 0.132 12.826
E A7 TRAINCGB | Logsig 85 7.484 2.623 0.881 0.939 0.174 11.696
2 | A8 TRAINCGB | Logsig 34 7.48 2.778 0.898 0.948 0.169 12.521
A9 TRAINGDX | Logsig 20 7.496 2.582 0.895 0.946 0.208 10.86
B4 TRAINSCG | Logsig 19 12.561 3.813 0.691 0.831 0.27 25.288
B5 TRAINCGP | Logsig 26 7.42 3.186 0.832 0.912 0.205 13.915
B6 TRAINCGF | Logsig 59 10.107 3.194 0.881 0.938 0.178 18.373
B7 TRAINCGP | Logsig 80 8.732 2.989 0.878 0.937 0.182 14.801
B8 TRAINBFG | Logsig 88 9.115 2.674 0.829 0.91 0.137 16.144
B9 TRAINCGB | Logsig 52 10.647 3.796 0.804 0.897 0.219 24.328

Number PERFORMANCE PARAMETERS
Training | Activation | of Hidden Max Average Correlation

w Algorithm | Function | Neurons Error Error R2 Coefficient MAE MSE
g |AS TRAINLM | Logsig 38 5.396 1.597 0.818 0.904 0.16 13.577
£ |A6 TRAINLM | Logsig 57 3.876 1.85 0.66 0.813 0.187 11.001
< a9 TRAINLM | Logsig 94 14.739 4.68 0.679 0.824 0.411 62.482
B5 TRAINLM | Logsig 19 4.97 2.415 0.683 0.826 0.258 7.533
B6 TRAINSCG | Tansig 28 5.264 2.809 0.598 0.774 0.31 9.497




Table 4.2 Best Results of ANN Modeling: Results for Validation Array

Number PERFORMANCE PARAMETERS
Input Training | Activation | of Hidden | Max Average Correlation
Combination | Algorithm | Function | Neurons |Error Error R2 Coefficient | MAE MSE
Al TRAINRP Logsig 63 11.255 3.676 0.011 0.104 0.294 22.711
A2 TRAINRP Logsig 10 8.359 3.833 0.188 0.433 0.292 22.675
A3 TRAINBFG | Tansig 2 8.587 3.418 0.122 0.349 0.256 18.615
A4 TRAINCGP | Logsig 62 7.751 2.414 0.462 0.680 0.204 11.109
= A5 TRAINOSS | Logsig 19 14.143 4.036 0.011 0.104 0.318 29.667
E A6 TRAINGDM | Logsig 35 15.479 5.036 0.294 0.543 0.364 39.292
g (A7 TRAINCGB | Logsig 85 9.870 4.013 0.165 0.406 0.306 22.541
MDY TRAINCGB | Logsig 34 9.060 3.856 0.408 0.639 0.242 21.362
A9 TRAINGDX | Logsig 20 11.561 5.452 0.660 0.812 0.352 46.533
B4 TRAINSCG | Logsig 19 11.455 4.061 0.150 0.388 0.285 27.106
B5 TRAINCGP | Logsig 26 10.234 4.396 0.270 0.520 0.405 27.750
B6 TRAINCGF | Logsig 59 9.437 3.192 0.474 0.688 0.324 17.994
B7 TRAINCGP | Logsig 80 14.889 6.089 0.509 0.714 0.670 54.061
B8 TRAINBFG | Logsig 88 17.586 4.954 0.160 0.400 0.458 44.524
B9 TRAINCGB | Logsig 52 9.852 3.392 0.164 0.405 0.269 19.595
Number PERFORMANCE PARAMETERS
Training | Activation | of Hidden | Max Average Correlation
) Algorithm | Function | Neurons | Error Error R2 Coefficient | MAE MSE
é A5 TRAINLM Logsig 38 3.723 1.772 0.699 0.836 0.144 4.426
g A6 TRAINLM Logsig 57 7.262 2.705 0.482 0.694 0.266 10.953
< A9 TRAINLM | Logsig 94 4.553 2.220 0.564 0.751 0.238 7.360
B5 TRAINLM | Logsig 19 15.246 4.736 0.007 0.083 0.579 35.353
B6 TRAINSCG | Tansig 28 11.920 4.378 0.327 0.572 0.376 29.250




Table 4.3 Best Results of ANN Modeling: Results for Whole (Training+Validation+Test) Array

WHOLE ARRAY
PERFORMANCE PARAMETERS
Input Training | Activation Number of Hidden Max | Average Correlation
Combination | Algorithm | Function Neurons Error Error R2 | Coefficient | MAE | MSE
Al TRAINRP Logsig 63 11.255 2.530 | 0.602 0.776 0.210 | 12.509
A2 TRAINRP Logsig 10 8.473 3.591 | 0.604 0.777 0.275 | 18.231
A3 TRAINBFG Tansig 2 12.697 | 2.837 | 0.576 0.759 0.196 | 14.205
A4 TRAINCGP Logsig 62 9.866 2.835 | 0.573 0.757 0.215 | 13.618
w A5 TRAINOSS Logsig 19 14.143 2.335 |0.613 0.783 0.182 | 12.239
< A6 TRAINGDM | Logsig 35 15.479 | 2.980 | 0.577 0.760 0.210 | 17.507
g A7 TRAINCGB Logsig 85 9.870 3.129 | 0.656 0.810 0.236 | 15.725
v A8 TRAINCGB Logsig 34 9.135 2.487 | 0.660 0.812 0.173 | 11.321
A9 TRAINGDX Logsig 20 11.561 2.448 | 0.704 0.839 0.185 | 15.163
B4 TRAINSCG Logsig 19 12.561 2.611 | 0.576 0.759 0.192 | 14.319
B5 TRAINCGP Logsig 26 10.234 | 3.201 | 0.624 0.790 0.227 | 15.466
B6 TRAINCGF Logsig 59 10.107 | 2.871 | 0.610 0.781 0.197 | 14.370
B7 TRAINCGP Logsig 80 14.889 | 3.310 | 0.603 0.776 0.229 | 20.193
B8 TRAINBFG Logsig 88 17.586 | 2.400 | 0.566 0.752 0.166 | 15.838
B9 TRAINCGB Logsig 52 10.647 | 2.641 | 0.584 0.764 0.189 | 13.896
Number of Hidden PERFORMANCE PARAMETERS
Training | Activation Neurons Max | Average Correlation
o Algorithm | Function Error Error R2 | Coefficient | MAE | MSE
g A5 TRAINLM Logsig 38 7.262 1.499 | 0.644 0.802 0.151 | 10.738
<>t A6 TRAINLM Logsig 57 4.553 1.092 | 0.705 0.840 0.111 | 8.217
A9 TRAINLM Logsig 94 14.739 | 3.245 | 0.500 0.707 0.311 | 33.597
B5 TRAINLM Logsig 19 7.126 1.547 | 0.600 0.774 0.159 | 4.978
B6 TRAINSCG Tansig 28 6.328 1.689 | 0.578 0.760 0.172 | 4.828




When we examine the results obtained for the whole data (training,
validation and test sets, Table 4.3), surface DO modeling resulted in more ANN
models that exhibited an R greater than 0.75 compared to average DO models. This
behavior may also be seen when the ANN models were examined based on the
success of simulation in terms of R for the test data only (Table 4.1). It must be
emphasized that the observation data was used as is without applying any type of
prior filtering for removal of inconsistent measurements. In addition, it is possible
that particulates entrapped in the sampler when sampling from the bottom of the
lake might have caused deviation from the actual concentrations in the water
column at some sampling days or points. This might be the case for middle
sampling points in the lake. Any bias introduced in terms of depth of sampling
would be insignificant for surface data compared to average data, where three
different depths are used for calculations. When Tables 4.1, 4.2, and 4.3 were
examined, it was seen that use of R or similarly R® to determine the best ANN
surface and average DO models were not sufficient. For example, the ANN model
with the minimum error values (maximum error, average error, MAE and MSE) did
not necessarily associated with the ANN model exhibiting the highest correlation.
As a result, F values were used to find out the best ANN model to predict the
surface and average DO values. For this purpose, first the performance parameter
values were mapped into the range of 1 to 0 as discussed in the previous chapter to
minimize the impact and dominance of order of magnitude difference in different
parameters on the F value. The mapped performance parameter and F values are
shown in Tables 4.4, and 4.5, for the test, and whole data sets, respectively. As it
can be inferred from Equation 3.5, the errors had a minus sign and R had a plus sign.
So the rule was set as “the ANN model with the greater F is better”. The best ANN
models determined based on the F values are summarized in Table 4.6 for the

average and surface DO predictions.
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Table 4.4 Mapped Results of ANN Modeling: Results for Test Array

Number PERFORMANCE PARAMETERS
Input Training | Activation | of Hidden Max Average Correlation
Combination | Algorithm | Function | Neurons Error Error R2 Coefficient MAE MSE F
Al TRAINRP Logsig 63 0,195 0,894 0,455 0,477 1,000 0,477 -1,088
A2 TRAINRP Logsig 10 0,200 0,250 0,781 0,795 0,246 0,085 0,261
A3 TRAINBFG Tansig 2 1,000 1,000 0,000 0,000 0,609 1,000 -3,000
A4 TRAINCGP Logsig 62 0,464 0,994 0,391 0,409 0,884 0,613 -1,661
W A5 TRAINOSS Logsig 19 0,456 0,000 1,000 1,000 0,167 0,060 0,484
g A6 TRAINGDM | Logsig 35 0,215 0,066 0,858 0,864 0,000 0,114 0,468
% A7 TRAINCGB Logsig 85 0,012 0,148 0,923 0,932 0,304 0,049 0,723
@ A8 TRAINCGB Logsig 34 0,011 0,245 0,996 1,000 0,268 0,097 0,647
A9 TRAINGDX Logsig 20 0,014 0,123 0,983 0,985 0,551 0,000 0,848
B4 TRAINSCG Logsig 19 0,974 0,891 0,107 0,114 1,000 0,839 -2,591
B5 TRAINCGP Logsig 26 0,000 0,500 0,712 0,727 0,529 0,178 0,050
B6 TRAINCGF Logsig 59 0,509 0,505 0,923 0,924 0,333 0,437 -0,527
B7 TRAINCGP Logsig 80 0,249 0,377 0,910 0,917 0,362 0,229 0,062
B8 TRAINBFG Logsig 88 0,321 0,180 0,700 0,712 0,036 0,307 -0,097
B9 TRAINCGB Logsig 52 0,612 0,880 0,592 0,614 0,630 0,784 -1,662
Number PERFORMANCE PARAMETERS F
Training | Activation | of Hidden Max Average Correlation
w Algorithm | Function | Neurons Error Error R2 Coefficient MAE MSE RESULTS
% A5 TRAINLM Logsig 38 0,140 0,000 1,000 1,000 0,000 0,110 0,750
u A6 TRAINLM Logsig 57 0,000 0,082 0,282 0,300 0,108 0,063 0,155
< A9 TRAINLM Logsig 94 1,000 1,000 0,368 0,385 1,000 1,000 -2,615
B5 TRAINLM Logsig 19 0,101 0,265 0,386 0,400 0,390 0,000 0,034
B6 TRAINSCG Tansig 28 0,128 0,393 0,000 0,000 0,598 0,036 -0,557




Table 4.5 Mapped Results of ANN Modeling: Results for Whole (Training+Validation+Test) Array

NORMALIZED WHOLE ARRAY
Number PERFORMANCE PARAMETERS
Input Training | Activation | of Hidden Max Average Correlation
Combination | Algorithm | Function | Neurons Error Error R2 Coefficient MAE MSE F
Al TRAINRP Logsig 63 0.305 0.155 0.261 0.272 0.402 0.134 -0,323
A2 TRAINCGP Logsig 62 0.000 1.000 0.274 0.285 1.000 0.779 -1,494
A3 TRAINBFG Tansig 2 0.464 0.400 0.071 0.075 0.274 0.325 -1,113
A4 TRAINLM Logsig 83 0.153 0.398 0.051 0.054 0.447 0.259 -0,756
w A5 TRAINBR Logsig 18 0.622 0.000 0.338 0.350 0.143 0.103 -0,376
:<: A6 TRAINGDM | Logsig 71 0.769 0.513 0.081 0.085 0.401 0.697 -1,895
= A7 TRAINLM Logsig 68 0.153 0.632 0.649 0.661 0.645 0.496 -0,621
n A8 TRAINLM Logsig 58 0.073 0.121 0.679 0.691 0.064 0.000 0,497
A9 TRAINGDX Logsig 20 0.339 0.090 1.000 1.000 0.173 0.433 0,138
B4 TRAINRP Logsig 79 0.449 0.220 0.073 0.077 0.235 0.338 -0,930
B5 TRAINBR Logsig 54 0.193 0.690 0.420 0.433 0.561 0.467 -0,917
B6 TRAINCGB Logsig 44 0.179 0.427 0.316 0.328 0.280 0.344 -0,622
B7 TRAINOSS Logsig 72 0.704 0.776 0.265 0.276 0.574 1.000 -2,204
B8 TRAINCGP Logsig 12 1.000 0.052 0.000 0.000 0.000 0.509 -1,561
B9 TRAINOSS Logsig 67 0.239 0.244 0.126 0.132 0.210 0.290 -0,641
Number PERFORMANCE PARAMETERS
Training | Activation | of Hidden Max Average Correlation
w Algorithm | Function | Neurons Error Error R2 Coefficient MAE MSE F
S A5 TRAINLM Logsig 38 0.266 0.189 0.702 0.714 0.200 0.205 0,054
s A6 TRAINLM Logsig 57 0.000 0.000 1.000 1.000 0.000 0.118 0,882
< A9 TRAINLM Logsig 94 1.000 1.000 0.000 0.000 1.000 1.000 -3,000
B5 TRAINBR Logsig 93 0.253 0.211 0.486 0.507 0.242 0.005 0,037
B6 TRAINSCG Tansig 28 0.174 0.277 0.380 0.398 0.305 0.000 -0,053




Table 4.6 Success Order of Input Combinations for ANN Considering (F) Values

AVERAGE SURFACE
Success
Order 1st 2nd 1st 2nd
TEST A5 A6 A9 A7
WHOLE A6 A5 A8 A9

Examination of Tables 4.4 and 4.5 reveals that for surface DO modeling,
input combinations A9 and A8 were better among other input combinations based
on the F values for the test and whole data sets, respectively. For input data sets
A8 and A9, the common input parameters were TKN, NOs-N, TP, PO4-P, alkalinity,
temperature, pH, Chl-a, conductivity, precipitation, and wind were common. A9
had an additional input of ambient air temperature. Performance parameter
values for A9 for the test set was such that R was 0.946 (the highest value), and
error parameters had comparably less quantities compared to other input
combinations (Table 4.1). When whole data set was considered, R was 0.812, with
relatively low error quantities for ANN model that used the input combination given

by A8.

Figure 4.1 depicts the time-series plots of observed and predicted DO at the
surface of the lake for A8. Figure 4.2 shows the linear regression plot of ANN model
A8 for surface DO. Figures 4.3 and 4.4 depict the time series and linear regression
plots of surface DO, respectively, for ANN model A9. When the linear regression
plots for A8 and A9 are compared, the best line for A9 is closer to the theoretical

best line.
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Pred & Obs DO (mg/l) vs Date w/ trainogb01 (# of HNs:34)
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Figure 4.1 “Predicted DO vs. Real DO” Graph of Surface A8 Data Combination (Training
Algorithm: traincgb; Actv. Func.: logsig + logsig; No. of HD: 34)

Regression analysis for (traincgb01) (# of HNs:34)
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Figure 4.2 “Linear Regression” Graph of Surface A8 Data Combination (Training Algorithm:
traincgb; Actv. Func.: logsig + logsig; No. of HD: 34)
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Pred & Obs DO (mg/l) vs Date w/ traingdx01 (# of HNs:20)
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Figure 4.3 “Predicted DO vs. Real DO” Graph of Surface A9 Data Combination (Training
Algorithm: traingdx; Actv. Func.: logsig + logsig; No. of HD: 20)

Regression analysis for (traingdxo1) (# of HNs:20)
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Figure 4.4 “Linear Regression” Graph of Surface A9 Data Combination (Training Algorithm:
traingdx; Actv. Func.: logsig + logsig; No. of HD: 20)
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In overall, ANN models that used increasing number of input parameters
exhibited high R and R? values in modeling of the surface DO. Especially, addition of
meteorological inputs such as precipitation, wind speed and ambient temperature
had positive impact on surface DO predictions. It is known that shallow lakes can be
impacted by weather conditions more than the deep lakes. In most shallow lakes
wind is a driving force for turnover and also reaeration (Chapra, 1997). ANN
modeling results indicated that for Lake Eymir, these parameters can be as
important as the other water quality parameters in determination of the DO
concentrations. It must be noted that inclusion of Chl-a as an input significantly

improved the DO predictions at the surface, which is expected.

The visual inspection of Figures 4.1 and 4.3 reveal that, ANN models were
successful in predicting the supersaturation conditions covered in the period
representing the time frame for the test data. In time-series plots, data after the
45" day represents the test data. Although the ANN models were trained using the
data of the first 30 days, ANN models were able to capture the supersaturation
conditions at the surface in the period considered for the testing of ANN models.
Therefore, ANN models were able to simulate extreme conditions and able to
capture the behavior in the lake using a limited number of input parameters. This

was the case not only for the best ANN models but also for the others (Appendix A).

Extreme conditions are hard to simulate in deterministic models unless a
high number of parameters and calibrated reaction rate constants are used. In Lake
Eymir, extremely high DO concentrations are observed at the surface of the lake in
summer months due to algal blooms (Elahdab, 2004). Results obtained in this study
showed that ANN models were responsive to seasonal behavior of DO
concentrations. In addition, ANN was able to establish the non-linear relationship

between DO and given input parameters.

ANN modeling was employed for the prediction of average DO in the Lake
Eymir as well. In ANN modeling of the average DO in Lake Eymir, the number of
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successful ANN models that exhibited an R greater than 0.75 was less compared to
surface DO models. As stated in Table 4.6, the best ANN input combinations for the
average DO predictions were A5 and A6, when test and whole data sets were
considered, respectively, based on the F values. For the whole array, A6 exhibited
the highest R as 0.840 with A6. Compared to other input combinations given in
Table 4.3, A6 had the best maximum error, average error, RZ, R, and mean absolute
error values. On the other hand, if test data was considered, the highest R was
0.904 obtained for A5. ANN model A5 had the best average error, mean absolute
error, R* and R values compared to other ANN models that had an R value greater
than 0.75. The time series and linear regression plots for A5 are given in Figures 4.5
and 4.6, respectively. Similar plots for A6 are depicted in Figures 4.7 and 4.8,

respectively.

A5 input combination includes Core A nutrients, alkalinity, pH, temperature
and Chl-a. A6 additionally includes the conductivity parameter. Conductivity is a
measure of ions present in the water that can conduct electricity. It is known that
algal activity may impact conductivity. In this regard, average DO is highly
dependent on input data related with algal growth. This is an expected result due
to the hypereutrophic state of the Lake Eymir. For average DO, there was no
significant improvement in DO predictions with the addition of meteorological
input. Therefore, for average DO, the parameters related with the water column
were adequate for prediction of DO. Therefore, in ANN modeling, it is important to
use the input data that may have major impact on the mechanism that is being

simulated.
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Pred & Obs DO (mg/l) vs Date w/ trainlm01 (# of HNs:38)
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Figure 4.5 “Predicted DO vs. Real DO” Graph of Average A5 Data Combination (Training
Algorithm: trainlm; Actv. Func.: logsig + logsig; No. of HD: 38)

Regression analysis for (trainlm01) (# of HNs:38)
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Figure 4.6 “Linear Regression” Graph of Average A5 Data Combination (Training Algorithm:
trainlm; Actv. Func.: logsig + logsig; No. of HD: 38)
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Pred & Obs DO (mg/l) vs Date w/ trainlm01 (# of HNs:57)
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Figure 4.7 “Predicted DO vs. Real DO” Graph of Average A6 Data Combination (Training
Algorithm: trainlm; Actv. Func.: logsig + logsig; No. of HD: 57)

Regression analysis for (trainlm01) (# of HNs:57)
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Figure 4.8 “Linear Regression” Graph of Average A6 Data Combination (Training Algorithm:
trainlm; Actv. Func.: logsig + logsig; No. of HD: 57)
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When screened ANN models for surface and average DO modeling were
examined, it was seen that Core A input data combinations exhibited better
performance compared to Core B input data combinations. In Core B, only NOs-N
and PO;-P are used as the nutrient data. Algae can readily utilize NOs-N, NH4-N and
PO4-P for growth (Chapra, 1997). TKN parameter used in Core A includes NH4-N. In
addition organic P and N would eventually be converted into inorganic forms the
algae can utilize for growth. These organic portions are included in the TKN and TP
parameters to an extent. Therefore, in general, inclusion of these parameters in
Core A groups positively impacted the outcome of ANN models for predicting the
surface DO. In Table 4.7, the impact of different core parameter groups on the
outcome in terms of R values for different ANN input combinations are shown for

the test and whole data sets for surface and average DO modeling.

Table 4.7 Comparison of Identical A and B Input Combinations on Correlation Coefficient

(R) Basis
Correlation Coefficients for Test
Correlation Coefficients for Whole Array Array
Al 0.757 0.759 B4 Ad| 0.87 0.831 |B4
W A5 0.783 0.790 B5 A5 0.948 0.912 |B5
E A6 0.760 0.781 B6 A6| 0.93 0.938 |B6
a A7 0.810 0.776 B7 A7] 0.939 0.937 |B7
A8 0.812 0.752 B8 A8 0.948 0.91 B8
A9 0.839 0.764 B9 A9 | 0.946 0.897 |B9
A5 0.802 0.774 B5 A5 0.904 0.826 |B5
AVERAGE
A6 0.840 0.760 B6 A6| 0.813 0.774 |B6

4.1.1 Results for Reduced Input Data Array

All parameters in data combinations are made up of arrays that had 60
elements. This 60 data were originated from sequential order of data of 4 sampling
data of 15 different dates. This approach was used in order to increase the data
used for training. In order to observe the performance of ANN modeling in

predicting the average and surface DO for the average concentrations in the lake,
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averages of measurements at the four sampling points for a sampling date were
calculated. Therefore, the total number of data was reduced to 15. Runs were
repeated for 15 data points in total. The best result for whole array and test array
for input combinations whose overall R values was over 0.75 are given in Tables 4.8

and 4.9.

Table 4.8 Best Results of ANN Modeling: Results for Reduced Whole Array

REDUCED WHOLE ARRAY
Input Training | Activation Correlation | Max | Average
Combination | Algorithm | Function R2 | Coefficient | Error Error | MAE | MSE
Al RP Logsig N/A N/A N/A N/A N/A | N/A
A2 CGP Logsig | 0,680 0,824 7,583 | 2,370 |0,145]|12,307
A3 BFG Tansig | 0,627 0,792 7,409 | 2,041 |0,131]| 8,917
A4 LM Logsig | 0,840 0,917 5504 | 1,214 |0,080| 3,807
A5 BR Logsig | 0,725 0,851 7,005 | 2,098 |0,135]| 8,298
§ A6 GDM Logsig | 0,659 0,812 6,138 | 2,513 |0,195| 8,999
o
< A7 LM Logsig | 0,815 0,903 4,412 | 1,270 |0,100 | 4,611
2 A8 LM Logsig | 0,846 0,920 5630 | 1,492 |0,099| 5,069
A9 GDX Logsig | 0,600 0,775 5,480 | 2,545 |0,203| 9,669
B4 RP Logsig | 0,640 0,800 7,953 | 1,904 |0,129]| 8,523
B5 BR Logsig | 0,772 0,879 10,156 | 2,693 |0,174 | 13,537
B6 CGB Logsig | 0,827 0,909 3,463 | 1,642 |0,133| 4,428
B7 0SS Logsig | 0,584 0,764 5,838 | 2,775 |0,215] 10,363
B8 CGP Logsig | 0,854 0,924 6,660 | 1,322 |0,097 | 4,288
B9 0SS Logsig | 0,863 0,929 2,842 | 1,636 |0,120| 3,249
Training | Activation Correlation | Max | Average
Algorithm | Function R2 | Coefficient | Error Error | MAE | MSE
w A3 CGB Logsig | 0,694 0,833 3,508 | 0,923 |0,090| 2,234
§ A5 LM Logsig | 0,583 0,764 3,613 | 1,409 |0,158| 3,236
<>,; A6 LM Logsig | 0,833 0,912 2,987 | 0,643 |0,069| 1,348
A9 LM Logsig | 0,831 0,911 2,318 | 0,807 |0,078| 1,359
B5 BR Logsig | 0,751 0,866 5118 | 1,016 |0,111| 2,911
B6 SCG Tansig | 0,777 0,881 3,091 | 0,889 |0,091| 1,710
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Table 4.9 Best Results of ANN Modeling: Results for Reduced Test Array

REDUCED TEST ARRAY
Input Training | Activation Correlation Max | Average
Combination | Algorithm | Function R? Coefficient | Error Error MAE | MSE
Al RP Logsig N/A N/A N/A N/A N/A N/A
A2 CGP Logsig 0,656 0,810 7,583 4,899 | 0,278 | 30,060
A3 BFG Tansig 0,716 0,846 6,131 3,008 | 0,157 | 13,907
Ad LM Logsig 0,862 0,928 5,504 2,186 | 0,115 | 8,931
A5 BR Logsig 0,723 0,850 7,005 4,395 | 0,256 | 23,397
§ A6 GDM Logsig 0,798 0,893 6,138 3,604 | 0,295 | 16,527
w
g A7 LM Logsig 0,761 0,873 4,412 3,321 | 0,261 | 13,860
@ A8 LM Logsig 0,993 0,996 5,630 2,667 | 0,131 | 11,318
A9 GDX Logsig 0,677 0,823 5,480 3,983 | 0,287 | 17,928
B4 RP Logsig 0,781 0,884 5,614 2,896 | 0,196 | 13,545
B5 BR Logsig 0,991 0,996 10,156 | 4,969 | 0,261 | 36,393
B6 CGB Logsig 0,895 0,946 3,368 2,570 | 0,201 | 7,888
B7 0SS Logsig 0,677 0,823 5,838 3,758 | 0,296 | 17,792
B8 CGP Logsig 0,968 0,984 1,921 1,298 | 0,100 | 1,845
B9 0SS Logsig 0,990 0,995 2,334 1,716 | 0,123 | 3,099
Training | Activation Correlation Max | Average
Algorithm | Function R2 Coefficient | Error Error MAE | MSE
w A3 CGB Logsig 0,425 0,652 2,963 1,808 | 0,181 | 3,880
g A5 LM Logsig 0,463 0,680 3,255 2,213 | 0,237 | 5,569
E A6 LM Logsig 0,877 0,936 1,172 0,891 | 0,091 | 0,887
A9 LM Logsig 0,823 0,907 2,318 1,275 | 0,122 | 2,443
B5 BR Logsig 0,970 0,985 1,327 0,825 | 0,085 | 0,896
B6 SCG Tansig 0,706 0,840 2,630 1,559 | 0,162 | 2,855

As it was conducted for the non-reduced arrays the mapping procedure
(calculation of F values) was also carried out for results of reduced input
combinations. The followed procedure was exactly same with the procedure that
was applied to the non-reduced data. (See Section 3.2.2.5) The results of mapped
data and F values for test set and whole set are depicted in Tables 4.10 and 4.11
respectively. Moreover when the Tables 4.10 and 4.12 are examined, according to F

values Table 4.# depicts the success ranking of input combinations.
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Table 4.10 Mapped Results of ANN Modeling: Results for Reduced Whole Array

MAPPED WHOLE ARRAY
Input Training Activation Correlation | Max | Average
Combination | Algorithm Function R2 | Coefficient | Error Error MAE | MSE F
Al RP Logsig N/A N/A N/A N/A N/A | N/A
A2 CGP Logsig 0,344 0,364 0,648 | 0,740 | 0,481 |0,880 | -1,905
A3 BFG Tansig | 0,154 0,170 0,624 | 0,529 |0,378|0,551 | -1,535
A4 LM Logsig | 0,918 0,927 0,364 | 0,000 | 0,000 | 0,054 | 0,509
A5 BR Logsig 0,505 0,527 0,569 | 0,566 | 0,407 | 0,491 | -1,099
§ A6 GDM Logsig 0,269 0,291 0,451| 0,832 |0,852 0,559 | -1,550
'g A7 LM Logsig 0,828 0,842 0,215| 0,036 |0,148 |0,132 | 0,459
v A8 LM Logsig 0,939 0,945 0,381 | 0,178 |0,141|0,177 | 0,209
A9 GDX Logsig | 0,057 0,067 0,361 | 0,853 |0,911]0,624 | -1,771
B4 RP Logsig | 0,201 0,218 0,699 | 0,442 |0,363]|0,513 | -1,435
B5 BR Logsig 0,674 0,697 1,000 | 0,947 | 0,696 | 1,000 | -2,250
B6 CGB Logsig 0,871 0,879 0,085 | 0,274 |0,393|0,115 | 0,405
B7 0SS Logsig 0,000 0,000 0,410 | 1,000 | 1,000 |0,691 | -2,101
B8 CGP Logsig 0,968 0,970 0,522 | 0,069 |0,126|0,101 | 0,278
B9 0SS Logsig | 1,000 1,000 0,000 | 0,270 | 0,296 | 0,000 | 0,730
Training Activation Correlation | Max | Average
Algorithm Function R2 | Coefficient | Error Error MAE | MSE F
- A3 CGB Logsig 0,444 0,466 0,425| 0,366 | 0,236 | 0,469 | -0,794
g A5 LM Logsig 0,000 0,000 0,462 | 1,000 | 1,000 | 1,000 | -2,462
5 A6 LM Logsig 1,000 1,000 0,239 | 0,000 | 0,000 |0,000| 0,761
A9 LM Logsig 0,992 0,993 0,000 [ 0,213 0,101 | 0,006 | 0,774
B5 BR Logsig 0,672 0,689 1,000 | 0,487 |0,472]0,828 | -1,625
B6 SCG Tansig | 0,776 0,791 0,276 | 0,320 | 0,247 | 0,192 | 0,003
Table 4.11 Mapped Results of ANN Modeling: Results for Reduced Test Array
Mapped Test ARRAY
Input Training | Activation Correlation | Max | Average
Combination | Algorithm | Function R2 Coefficient | Error Error MAE MSE F
Al RP Logsig N/A N/A N/A N/A N/A | N/A
A2 CGP Logsig 0,000 0,000 0,688 0,981 0,911 | 0,817 | -2,485
A3 BFG Tansig 0,178 0,194 0,511 0,466 0,292 | 0,349 |-1,133
A4 LM Logsig 0,611 0,634 0,435 0,242 0,075 | 0,205 | -0,248
w A5 BR Logsig 0,199 0,215 0,617 | 0,844 | 0,798 | 0,624 | -1,870
E A6 GDM Logsig 0,421 0,446 0,512 0,628 0,997 | 0,425 | -1,119
g A7 LM Logsig 0,312 0,339 0,302 0,551 0,821 | 0,348 | -0,863
» A8 LM Logsig 1,000 1,000 0,450 0,373 0,160 | 0,274 | -0,098
A9 GDX Logsig 0,062 0,070 0,432 | 0,731 | 0,956 | 0,466 | -1,559
B4 RP Logsig 0,371 0,398 0,448 0,435 0,490 | 0,339 | -0,824
B5 BR Logsig 0,994 1,000 1,000 1,000 0,822 | 1,000 | -2,000
B6 CGB Logsig 0,709 0,731 0,176 0,347 0,517 | 0,175 | 0,034
B7 0SS Logsig 0,062 0,070 0,476 0,670 1,000 | 0,462 | -1,538
BS CGP Logsig 0,926 0,935 0,000 | 0,000 | 0,000 | 0,000 | 0,935
B9 0SS Logsig 0,991 0,995 0,050 0,114 0,117 | 0,036 | 0,794
Input Training | Activation Correlation | Max | Average
Combination | Algorithm | Function R2 Coefficient | Error Error MAE MSE F
] A3 CGB Logsig 0,000 0,000 0,860 | 0,708 | 0,632 | 0,639 | -2,207
g A5 LM Logsig 0,070 0,084 1,000 1,000 1,000 | 1,000 | -2,916
E A6 LM Logsig 0,829 0,853 0,000 0,047 0,038 | 0,000 | 0,806
A9 LM Logsig 0,730 0,766 0,550 0,324 0,245 | 0,332 | -0,441
B5 BR Logsig 1,000 1,000 0,074 | 0,000 | 0,000 | 0,002 | 0,924
B6 SCG Tansig 0,516 0,565 0,700 0,529 0,510 | 0,420 | -1,085

69




Table 4.12 Success Order of Reduced Input Combinations Considering (F) Values

AVERAGE SURFACE
Success
Order 1st 2nd 1st 2nd
TEST B5 A6 B8 B9
WHOLE A9 A6 B9 A4

After conducting the required analysis the reduced data sets gave successful
results when the results of Tables 4.8 and 4.9 are examined. Especially when the
results of test set is assessed the correlation coefficients are in the order of 0.8 and
0.9, so this situation shows consistency with the results of non-reduced data arrays.
It is known that small amount of data creates challenge during training of a neural
net. However obtaining such high results for reduced data arrays ,as it was obtained
in non-reduced ones, shows the consistency of ANN system. Since, in this case the
data was reduced but the chronological data behavior was not altered and the sets
of training, validation and test sets were specified in the same quarterly manner as

it was done in non-reduced case.

From the comparison perspective between input combinations considering
F values calculated, the results of test set gave very reasonable results that
successful input combinations of surface data (B8 and B9) includes meterological
data and successful input combinations of average data (B5 and A6 is not. This
result again shows that meteorological factor are dominantly effective on surface

DO but not so directly effective on interior dynamics of lake from DO perspective.

In order to support the evaluation expressed in the previous paragraphs the

plots of best input combinations are given between Figures of 4.9 and 4.16
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Pred & Obs DO (mg/l) vs Date w/ trainbr01 (# of HNs:91)
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Figure 4.9 “Predicted DO vs Real DO” Graph of Reduced Average B5 Data Combination
(Training Algorithm: trainrp; Actv. Func.: logsig + logsig; No. of HD: 91)

Regression analysis for (trainbr01) (# of HNs:91)
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Figure 4.10 “Linear Regression” Graph of Reduced Average B5 Data Combination (Training
Algorithm: trainrp; Actv. Func.: logsig + logsig; No. of HD: 91)
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Pred & Obs DO (mg/l) vs Date w/ lrainlm01 (# of HNs:60)
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Figure 4.11 “Predicted DO vs Real DO” Graph of Reduced Average A9 Data Combination
(Training Algorithm: trainlm; Actv. Func.: logsig + logsig; No. of HD: 60)

Regression analysis for (train|m01) (# of HNs:60)
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Figure 4.12 “Linear Regression” Graph of Reduced Average A9 Data Combination (Training
Algorithm: trainlm; Actv. Func.: logsig + logsig; No. of HD: 60)
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Pred & Obs DO (mg/l) vs Date w/ lraincgp01 (# of HNs:02)
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Figure 4.13 “Predicted DO vs Real DO” Graph of Reduced Surface B8 Data Combination
(Training Algorithm: traincgp; Actv. Func.: logsig + logsig; No. of HD: 02)

Regression analysis for (traincgpu1) (# of HNs:02)
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Figure 4.14 “Linear Regression” Graph of Reduced Surface B8 Data Combination (Training
Algorithm: traincgp; Actv. Func.: logsig + logsig; No. of HD: 02)
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Pred & Obs DO (mg/l) vs Date w/ trainosso1 (# of HNs:38)
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Figure 4.15 “Predicted DO vs Real DO” Graph of Reduced Surface B9 Data Combination
(Training Algorithm: trainoss; Actv. Func.: logsig + logsig; No. of HD: 38)

Regression analysis for (1rainosso1) (# of HNs:38)
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Figure 4.16 “Linear Regression” Graph of Reduced Surface B9 Data Combination (Training
Algorithm: trainoss; Actv. Func.: logsig + logsig; No. of HD: 38)
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4.1.2 Sensitivity Analysis

After these general considerations a detailed consideration on individual
parameters was made. By this way the parameters which are controlling the
eutrophication period tried to be determined with Sensitivity Analysis. In sensitivity
analysis average A6 input combination was used since that it was one of the most

successful one in ANN Modeling.

A simple method for sensitivity analysis was chosen. The important
parameters in A6 data combination were increased by 30% and 50% and they were
declined by %30 and %50. After that the newly established data structures were
modeled with exactly the same structure with the original data set. The
determination on individual parameters was carried out by comparing the overall
averages of the DO data. The chronological average of observed DO data is 10.122

mg/I. The averages and deviations are depicted in Table 4.13.

Table 4.13 Sensitivity Results of ANN Model for A6 Data Combination (average data)

Parameter Change | Average DO | Percent Deviation

+30% N/A N/A

-30% 10.322 1.97%

CHL-A +50% 9.832 -2.88%

-50% 9.832 -2.88%

+30% 10.245 1.20%

NO3 -30% 10.024 -0.98%

+50% 10.058 -0.64%

-50% 11.166 10.31%

+30% 9.615 -5.01%

oH -30% 9,498 -6.17%

+50% 10.409 2.83%

-50% 10.983 8.50%

+30% 10.554 4.26%

PO4 -30% 9.835 -2.84%

+50% 10.605 4.77%

-50% 10.423 2.96%

+30% 9.502 -6.13%

Temperature -30% 10.234 1.10%

+50% 9.651 -4.66%

-50% 10.059 -0.63%

+30% 10.007 -1.14%

TKN -30% 10.107 -0.16%

+50% 9.676 -4.41%

-50% 10.578 4.49%

+30% 10.681 5.51%

Total P -30% 9.754 -3.64%

+50% 10.506 3.79%

-50% 10.058 -0.64%
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When we look at the Table 4.5 the following interpretations are derived.
Generally when we look at the “Percent Deviation” the rows that have 3% deviation
was depicted as bold and the interpretations were made by using them. Because in
such a complex system deviation below 3% might cause wrongly directed

interpretations.

First of all we have + 10,31% deviation when the NOs is decreased as 50%.
Similarly as the TKN was declined as 50%, the average DO concentration of lake had
tendency of 4,49 percent increase. In brief the DO Concentration is inversely
proportional with Nitrogen containing species. Normally this situation is an
unexpected occurrence that shows low sensitivity of model on Nitrogen containing

parameters.

On the other hand, the phosphorus included species had a direct
proportionality with DO. For instance when POy is increased 30% and 50%, the DO
was also increased 4.26% and 4.77% respectively. Similarly when Total P values
were increased by 30% and 50%, average DO concentrations were also increased as
5.51% and 3.79%. This situation is an expected event that the model that was

developed is sensitive to phosphorus including parameters.

Apart from nutrients the alterations on DO with temperature is also
reasonable. According to results DO is decreasing by 6.13% when temp is increased
as by 30% and similarly average DO is decreasing by 4.66% as temperature is
increased as 50%. By considering the direct chemical relationship with DO and temp
in lake ecosystem and knowing their inverse proportional character, this result

shows how the ANN model sensitive to temp and phosphorus containing structures.

For other parameter no concrete interpretation could be produced. To
summarize when phosphorus containing parameters and temperature parameter
are taken into account; their change and effect of this change on DO the
eutrophication process is limited to phosphorus concentration and effect of
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temperature is undeniable as normally. Also lack of other interpretations on other

parameters shows the inadequacy of the model on its realistic ability.

4.2 Results of ANFIS Modeling

For modeling with ANFIS input combinations of A3, A4, A6, A9 and B3, B4,
B6, B9 were selected. The aim behind this selection raised from trail of input
combinations that have different characteristics. As it can be inferred A9 and B9 are
the input combinations that have meteorological parameters. On the other hand A3
and A4 has nutrients and temperature. Besides A6 has Chlorophyll-a with respect to
A3 and A4. Theoretically effect of Chlorophyll-a on DO is undeniable and by
selection of A6-B6 with A3-B3 and A4-B4 was thought to determine the effect of
Chlorophyll-a on DO with nutrients and temperature. Also selection of A4-B4 with
respect to A3-B3 was conducted in order to evaluate the effect of pH on DO. Finally

A9-B9 were selected in order to assess the effect of weather conditions on DO.

60 data in the input data arrays were used in ANFIS modeling. The data was
divided in to three sections (training+validation+test) in the same manner similar to
ANNs (30+15+15). This consistent data separation with ANN modeling provided a
base for comparison of the results obtained with ANN and ANFIS models. MATLAB
R2007b Fuzzy Logic Toolbox ANFIS GUI was the software that executed the model.
As stated earlier, the execution of the ANFIS model was not as easy as ANN
Modeling due to the lack of a script such as the one used for ANN model
development. The script used for ANN model development (Moral et al.., 2008)
provided an automatic screening of ANNs with different structures efficiently.
However, ANFIS GUI of MATLAB Fuzzy Logic Toolbox was not designed to create
models in an automated way, rather the trial-and-error approach was used to find
the best model. Therefore, each time the ANFIS parameters were changed
manually, one-by-one. Besides the choices of ANFIS structure types, membership
function types, training algorithm alternatives of ANFIS GUI were limited compared

to ANN.
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The modeling methodology of ANFIS has been depicted in Chapter 3. (See

Section 3.2.3). The results of ANFIS Modeling are given in Tables 4.10 to 4.10. The

normalization method that was applied to ANN Modeling results for comparison

between input combinations was also applied to ANFIS Model in same manner

described in “Section 4.1” and the results are depicted in Table 4.14. to 4.18.

Table 4.14 Best Results of ANFIS Modeling Test Array

TEST ARRAY
# of MF
Input Membership In One Correlation Max | Average
Combination Function Cluster Coefficient Error Error R2 | MAE | MSE
A3 GBELL 30 0.252 3.596 | 1.248 |0.064|0.256|13.028
A4 GAUSS 30 -0.206 5.714 | 3.612 |0.042|0.274|25.634
A6 GAUSS 27 -0.500 4.873 | 1.637 |0.250|0.333 |24.848
A9 DSIG 28 0.129 13.813 | 1.551 |0.017|0.378|26.246
B3 GAUSS 30 -0.537 2.754 | 1.069 |0.288|0.348]|20.567
B4 GAUSS 30 0.537 4.283 | 1.860 |0.288|0.208 | 10.354
B6 GBELL 23 0.024 4.690 | 1.179 |0.001|0.306 |16.228
B9 DSIG 29 0.225 2.922 | 0.365 |0.051|0.312]|13.722
Table 4.15 Best Results of ANFIS Modeling Validation Array
VALIDATION ARRAY
# of MF
Input Membership | In One | Correlation| Max | Average
Combination Function Cluster | Coefficient | Error Error R2 MAE MSE
A3 GBELL 30 0.734 5.901 3.737 | 0.538 | 0.260 | 8.603
Ad GAUSS 30 0.764 6.708 | 4.067 | 0.584 | 0.257 | 8.367
A6 GAUSS 27 0.077 5.454 | 2517 | 0.006 | 0.385 | 21.053
A9 DSIG 28 0.177 5.415 2.300 | 0.031 | 0.371 | 18.648
B3 GAUSS 30 0.632 3.402 1.638 | 0.399 | 0.261 | 8.723
B4 GAUSS 30 0.381 2,922 | 0.942 | 0.145 | 0.327 | 12.301
B6 GBELL 23 0.228 5.447 2.308 | 0.052 | 0.372 | 17.976
B9 DSIG 29 0.018 5.417 2.613 | 0.000 | 0.405 | 22.690
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Table 4.16 Best Results of ANFIS Modeling: Whole Array

WHOLE ARRAY
# of MF

Input Membership | In One | Correlation | Max | Average
Combination Function Cluster | Coefficient | Error Error R2 | MAE | MSE

A3 GBELL 30 0.690 5.901 | 2.416 |0.475|0.129| 5.408

A4 GAUSS 30 0.581 6.708 | 3.090 |0.338|0.133| 8.500

A6 GAUSS 27 0.250 5.454 | 2.209 |0.062|0.180 | 11.475

A9 DSIG 28 0.370 13.813 | 2.132 |0.137|0.188 | 11.223

B3 GAUSS 30 0.533 4.809 | 1.846 |0.284|0.152 | 7.323

B4 GAUSS 30 0.652 4.810 | 1.870 |0.426|0.134 | 5.664

B6 GBELL 23 0.450 5.447 | 2.042 |0.203|0.170| 8.551

B9 DSIG 29 0.395 5.417 | 1.914 |0.156|0.179| 9.103

Table 4.17 Mapped Results of ANFIS Modeling: Test Array
PERFORMANCE PARAMETERS (MAPPED VERSION)
TEST ARRAY
# of
MF In
Input Membership | One | Correlation| Max | Average
Combination | Function | Cluster | Coefficient | Error | Error R2 | MAE | MSE F

A3 GBELL 30 0.219 0.076 | 0.272 |0.219|0.284| 0.168 -0,297
A4 GAUSS 30 0.145 0.268 | 1.000 |0.145|0.387| 0.62 -2,084
A6 GAUSS 27 0.867 0.192| 0.392 |0.867|0.733| 0.912 -0,629
A9 DSIG 28 0.056 1.000| 0.365 |0.056|1.000 | 1.000 -2,309
B3 GAUSS 30 1.000 0.000| 0.217 |1.000|0.824| 0.643 0,141
B4 GAUSS 30 1.000 0.138| 0.461 |1.000 |0.000| 0.000 0,401
B6 GBELL 23 0.000 0.175| 0.251 |0.000 |0.576| 0.370 -0,795
B9 DSIG 29 0.174 0.015| 0.000 |0.174|0.611| 0.212 -0,053
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Table 4.18 Mapped Results of ANFIS Modeling: Whole Array

PERFORMANCE PARAMETERS (NORMALIZED VERSION)

VALIDATION ARRAY
# of
MF In
Input Membership| One | Correlation | Max | Average
Combination | Function | Cluster | Coefficient | Error | Error R2 | MAE | MSE F

A3 GBELL 30 1.000 0.121 0.458 1.000 | 0.000 |0.000 0,421
A4 GAUSS 30 0.754 0.211 1.000 0.667 | 0.065 |0.510 -0,967
A6 GAUSS 27 0.000 0.072 0.292 0.000 | 0.866 |1.000 -1,363
A9 DSIG 28 0.272 1.000 0.230 0.180 | 1.000 |0.959 -1,916
B3 GAUSS 30 0.644 0.000 0.000 0.537 | 0.400 |0.316 0,328
B4 GAUSS 30 0.915 0.000 0.019 0.879 | 0.082 | 0.042 0,854
B6 GBELL 23 0.456 0.071 0.157 0.340 | 0.695 |0.518 -0,290
B9 DSIG 29 0.330 0.068 0.054 0.227 | 0.859 | 0.609 -0,401

After calculation of (F) values and comparison of them for test, validation

and whole arrays gave the results that are depicted in Table 4.19:

Table 4.19 Success Order of Input Combinations Considering (F) Values

AVERAGE
Success
Order 1st 2nd 3rd
TEST B4 B3 A6
WHOLE B4 B3 B9

As it can be inferred from the performance parameters that depicted in
Tables 4.14 to 4.16, the performance of ANFIS was so low in terms of prediction
performance of DO compared to ANNs. Within the Core A group input sets, A3 and
A4 resulted in R values of 0.79 and 0.64, respectively. R for B3 and B4 were 0.58 and
0.71, respectively. The reasons behind pure DO predictions with ANFIS may be due
to software limitations of ANFIS GUI, lack of a script that may constrain the efforts
to develop a successful model, and user errors due to low degree of user-
friendliness of ANFIS GUI. Figures 4.17 to 4.31 depict the linear regression and

time-series for DO profiles obtained for ANFIS models.
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Predicted DO (mg/L) vs Observed DO (mg/L) for A3 Inp.

Comb.
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Figure 4.17 “Predicted DO vs. Real DO” Graph of Average A3 Data Combination
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Figure 4.18 “Linear Regression” Graph of Average A3 Data Combination
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Predicted DO (mg/L) vs Observed DO (mg/L) for A4 Inp.

Comb.
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Figure 4.19 “Predicted DO vs. Real DO” Graph of Average A4 Data Combination
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Figure 4.20 “Linear Regression” Graph of Average A4 Data Combination
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Predicted DO (mg/L) vs Observed DO (mg/L) for A6 Inp. Comb.
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Figure 4.21 “Predicted DO vs. Real DO” Graph of Average A6 Data Combination
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Figure 4.22 “Linear Regression” Graph of Average A6 Data Combination
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Figure 4.23 “Predicted DO vs. Real DO” Graph of Average A9 Data Combination
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Figure 4.24 “Linear Regression” Graph of Average A9 Data Combination
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Predicted DO (mg/L) vs Observed DO (mg/L) for B3 Inp. Comb.
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Figure 4.25 “Predicted DO vs. Real DO” Graph of Average B3 Data Combination
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Figure 4.26 “Linear Regression” Graph of Average B3 Data Combination
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Figure 4.27 “Predicted DO vs. Real DO” Graph of Average B4 Data Combination
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Figure 4.28 “Linear Regression” Graph of Average B4 Data Combination
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Figure 4.29 “Predicted DO vs. Real DO” Graph of Average B6 Data Combination
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Figure 4.30 “Linear Regression” Graph of Average B6 Data Combination
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Predicted DO (mg/L) vs Observed DO (mg/L) for B9 Inp. Comb.
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Figure 4.31 “Predicted DO vs. Real DO” Graph of Average B6 Data Combination
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Figure 4.32 “Linear Regression” Graph of Average B6 Data Combination
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As it could be informed from the graphs of “Predicted DO vs. Observed DO”
the prediction of training set (first 30) is fully overlapping with observed data. This
situation is an expected case but this high performance overlapping does not say
something about the overall performance of the model. When we look at the
performances of validation and test set visually from graphs, so many times the real
trend of DO could not be caught by prediction data except A9 and B9 input
combination. Although the correlation coefficients of test data or whole data is so
low the summer month super saturation DO concentration was predicted with a
little latency. This particular result shows that ANFIS or ANFIS similar modeling tools
that are capable of combining neural nets and fuzzy logic could give very high
prediction performance. But a further study is needed on development of a script
that automatically carries out the epochs. This automation enables trying high

number of epochs in a short time with a low degree supervision.

From the (F) values perspective (normalization of performance parameter
for comparative purpose); B3, B4 and A3 data become successful in terms of
prediction performance with respect to other input combinations. From this point
although the general prediction performance of ANFIS is so low, effect of nutrients,

pH and temperature have a strong effect on DO concentrations in lake.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The results of this study indicated that it is possible to predict the DO levels
in Lake Eymir using limited number of input parameters. ANN models were
successful in capturing the extreme DO super saturation values observed in summer
months. The typical deterministic models used for DO predictions may not handle
these extreme situations or may require extensive calibration and verification work.
However, it is possible to develop a DO model specific to the conditions in Lake
Eymir. Probably, this is one of the biggest advantages of ANNs over traditional
modeling techniques. R values obtained for DO predictions in this study are
comparable with the values stated in literature for studies performed to predict

different parameters in a lake.

The results of ANFIS DO models were not as successful as expected. ANN
appeared to be more successful that ANFIS when correlation coefficients and other
error showing parameters were considered. Unfortunately the correlation
coefficients of for the whole array and correlations for the test array were very
poor. These results may be due to insufficient data and use of the same

membership function for all input parameters.

5.2 Recommendations for future study

The ANN models generated in this study can be used to develop an artificial

measurement instrument. For example, the ANN model can be integrated to the
90



code of an in-situ measurement device to predict DO based on other parameters.
This may especially be useful for prediction of parameters other than DO that is

hard to measure.

There are parameters that have a role on the DO balance of a lake.
Therefore, in future studies, inclusion of more input parameters may result in better

representation of the system in the lake.

The results obtained in this study for the ANFIS models were not conclusive.
DO modeling using ANFIS should be studied further to make a solid comparison
between the outcomes of the ANN and ANFIS models. In addition, similar to the
one used for ANN model development, an automatic architecture building script for
ANFIS can be written to test more ANFIS parameter combinations rather than using

the trial-and-error approach.
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APPENDIX A

(RESULTANT GRAPHS OF ANN MODELING)

Pred & Obs DO (mg/l) vs Date w/ trainrp,1(# of HNs:63)
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Figure A.1 “Predicted DO vs. Real DO” Graph of Surface A1l Data Combination (Training

Algorithm: trainrp; Act. Func.: logsig + logsig; No. of HD: 63)

Regression analysis for (trainrp,1) (# of HNs:63)
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Figure A.2 “Linear Regression” Graph of Surface A1 Data Combination (Training

Algorithm: trainrp; Actv. Func.: logsig + logsig; No. of HD: 63)
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Pred & Obs DO (mg/l) vs Date w/ traincgpo1 (# of HNs:62)
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Figure A.3 “Predicted DO vs. Real DO” Graph of Surface A2 Data Combination (Training

Algorithm: traincgp; Actv. Func.: logsig + logsig; No. of HD: 62)

Regression analysis for (traincgp01) (# of HNs:62)
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Figure A.4 “Linear Regression” Graph of Surface A2 Data Combination (Training Algorithm:

traincgp; Actv. Func.: logsig + logsig; No. of HD: 62)
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Pred & Obs DO (mg/l) vs Date w/ trainbfgn1 (# of HNs:02)
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Figure A.5 “Predicted DO vs. Real DO” Graph of Surface A3 Data Combination (Training

Algorithm: trainbfg; Actv. Func.: tansig + tansig; No. of HD: 2)

Regression analysis for (trainbfg01) (# of HNs:02)
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Figure A.6 “Linear Regression” Graph of Surface A3 Data Combination (Training Algorithm:
trainbfg; Actv. Func.: tansig + tansig; No. of HD: 2)
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Pred & Obs DO (mg/l) vs Date w/ trainlm01 (# of HNs:83)
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Figure A.7 “Predicted DO vs. Real DO” Graph of Surface A4 Data Combination (Training
Algorithm: trainlm; Actv. Func.: logsig + logsig; No. of HD: 83)

Regression analysis for (lrainlm01) (# of HNs:83)
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Figure A.8 “Linear Regression” Graph of Surface A4 Data Combination (Training Algorithm:
trainlm; Actv. Func.: logsig + logsig; No. of HD: 83)
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Pred & Obs DO (mg/l) vs Date w/ train05501 (# of HNs:19)
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Figure A.9 “Predicted DO vs. Real DO” Graph of Surface A5 Data Combination (Training
Algorithm: trainoss; Actv. Func.: logsig + logsig; No. of HD: 19)

Regression analysis for (trainosso1) (# of HNs:19)
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Figure A.10 “Linear Regression” Graph of Surface A5 Data Combination (Training Algorithm:
trainoss; Actv. Func.: logsig + logsig; No. of HD: 19)
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Pred & Obs DO (mg/l) vs Date w/ traingdm01 (# of HNs:35)
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Figure A.11 “Predicted DO vs. Real DO” Graph of Surface A6 Data Combination (Training
Algorithm: traingdm; Actv. Func.: logsig + logsig; No. of HD: 35)

Regression analysis for (traingdm01) (# of HNs:35)
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Figure A.12 “Linear Regression” Graph of Surface A6 Data Combination (Training Algorithm:
traingdm; Actv. Func.: logsig + logsig; No. of HD: 35)
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Pred & Obs DO (mg/l) vs Date w/ trainscgo1 (# of HNs:19)
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Figure A.13 “Predicted DO vs. Real DO” Graph of Surface B4 Data Combination (Training
Algorithm: trainscg; Actv. Func.: logsig + logsig; No. of HD: 19)

Regression analysis for (lrainscgo1) (# of HNs:19)
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Figure A.14 “Linear Regression” Graph of Surface B4 Data Combination (Training Algorithm:
trainscg; Actv. Func.: logsig + logsig; No. of HD: 19)
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Pred & Obs DO (mg/l) vs Date w/ traincgpo‘l (# of HNs:26)
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Figure A.15 “Predicted DO vs. Real DO” Graph of Surface B5 Data Combination (Training

Algorithm: traincgp; Actv. Func.: logsig + logsig; No. of HD: 26)

Regression analysis for (trainogpo1) (# of HNs:26)
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Figure A.16 “Linear Regression” Graph of Surface B5 Data Combination (Training Algorithm:
traincgp; Actv. Func.: logsig + logsig; No. of HD: 26)
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Pred & Obs DO (mg/l) vs Date w/ trainogf01 (# of HNs:59)
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Figure A.17 “Predicted DO vs. Real DO” Graph of Surface B6 Data Combination (Training

Algorithm: traincgf; Actv. Func.: logsig + logsig; No. of HD: 59)

Regression analysis for (traincgfo1) (# of HNs:59)
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Figure A.18 “Linear Regression” Graph of Surface B6 Data Combination (Training Algorithm:
traincgf; Actv. Func.: logsig + logsig; No. of HD: 59)
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Pred & Obs DO (mg/l) vs Date w/ traincgp01 (# of HNs:80)
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Figure A.19 “Predicted DO vs. Real DO” Graph of Surface B7 Data Combination (Training

Algorithm: traincgp; Actv. Func.: logsig + logsig; No. of HD: 80)

Regression analysis for (traincgp01) (# of HNs:80)
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Figure A.20 “Linear Regression ” Graph of Surface B7 Data Combination (Training

Algorithm: traincgp; Actv. Func.: logsig + logsig; No. of HD: 80)
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Pred & Obs DO (mg/l) vs Date w/ trainbfgc‘l (# of HNs:88)
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Figure A.21 “Predicted DO vs. Real DO” Graph of Surface B8 Data Combination (Training
Algorithm: trainbfg; Actv. Func.: logsig + logsig; No. of HD: 88)

Regression analysis for (trainbfgo1) (# of HNs:88)
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Figure A.22 “Linear Regression” Graph of Surface B8 Data Combination (Training Algorithm:

trainbfg; Actv. Func.: logsig + logsig; No. of HD: 88)
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Pred & Obs DO (mg/l) vs Date w/ traincgb01 (# of HNs:52)
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Figure A.23 “Predicted DO vs. Real DO” Graph of Surface B9 Data Combination (Training

Algorithm: traincgb; Actv. Func.: logsig + logsig; No. of HD: 52)

Regression analysis for (traincgbo‘l) (# of HNs:52)
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Figure A.24 “Linear Regression” Graph of Surface B9 Data Combination (Training Algorithm:

traincgb; Actv. Func.: logsig + logsig; No. of HD: 52)
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Pred & Obs DO (mg/l) vs Date w/ trainlrno‘l (# of HNs:94)
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Figure A.25 “Predicted DO vs. Real DO” Graph of Average A9 Data Combination (Training
Algorithm: trainlm; Actv. Func.: logsig + logsig; No. of HD: 94)

Regression analysis for (trainImG1) (# of HNs:94)
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Figure A.26 “Linear Regression” Graph of Average A9 Data Combination (Training

Algorithm: trainlm; Actv. Func.: logsig + logsig; No. of HD: 94)
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Pred & Obs DO (mg/l) vs Date w/lrainlm01 (# of HNs:19)
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Figure A.27 “Predicted DO vs. Real DO” Graph of Average B5 Data Combination (Training
Algorithm: trainlm; Actv. Func.: logsig + logsig; No. of HD: 19)

Regression analysis for (trainlm01) (# of HNs:19)
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Figure A.28 “Linear Regression” Graph of Average B5 Data Combination (Training
Algorithm: trainlm; Actv. Func.: logsig + logsig; No. of HD: 19)
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Pred & Obs DO (mg/l) vs Date w/ trainscg01 (# of HNs:28)
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Figure A.29 “Predicted DO vs. Real DO” Graph of Average B6 Data Combination (Training
Algorithm: trainlm; Actv. Func.: tansig + tansig; No. of HD: 28)

Regression analysis for (trainscgo1) (# of HNs:28)
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Figure A.30 “Linear Regression” Graph of Average B6 Data Combination (Training

Algorithm: trainlm; Actv. Func.: tansig + tansig; No. of HD: 28)
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Point

APPENDIX B

DATA USED DURING MODELING STUDIES

Chl-a
(ng/1)

Cond.
(ms/cm)

Table B.1 Surface Data

Do
(mg/1)

TKN
(mg/1)

NO3
(mg/1)

Total

(mg/1)

PO4
(mg/1)

Alkalinity
(mg/I as
Caco3)

Precipitation
(Max)mm

Ambient
air temp

" 1 9.17 |8.27 | 1.10 2.79 |12.25| 0.12 | 0.07 | 0.37 | 0.39 | 572.00 0.00 10.00 | 15.00
§ 2 9.30 |8.23| 1.00 2.76 |10.80 | 0.25 | 0.75 | 0.39 | 0.37 | 580.00 0.00 10.00 | 15.00
§ 3 9.86 | 8.04 | 11.10 | 2.82 |12.25| 0.27 | 0.90 | 0.39 | 0.36 | 558.00 0.00 10.00 | 15.00
o 4 9.96 | 7.73 | 8.00 2.80 | 13.63 | 2.50 | 0.50 | 0.33 | 0.32 | 580.00 0.00 10.00 | 15.00
0 1 |13.53[8.31| 3.20 2.77 |13.90 | 0.35 | 0.11 | 0.35 | 0.34 | 582.00 0.00 13.00 | 23.20
2, 2 |13.35[831| 64.00 | 2.78 |14.33 | 0.48 | 0.91 | 0.35 | 0.35 | 578.00 0.00 13.00 | 23.20
§ 3 |14.03 837 430 2.77 |15.03 | 0.46 | 0.89 | 0.35 | 0.35 | 638.00 0.00 13.00 | 23.20
| 4 |1440827| 1290 | 2.76 | 16.55 | 2.75 | 0.92 | 0.35 | 0.33 | 610.00 0.00 13.00 | 23.20
0 1 |14.09 848 | 1450 | 2.76 |11.26 | 0.67 | 0.83 | 0.44 | 0.41 | 664.00 5.00 19.00 | 19.30
3_ 2 |1465(836| 170 2.78 |12.16 | 0.67 | 0.90 | 0.43 | 0.41 | 648.00 5.00 19.00 | 19.30
§ 3 |15.43|8.37| 0.80 2.78 |11.12 | 0.73 | 0.85 | 0.43 | 0.40 | 620.00 5.00 19.00 | 19.30
(aV]

4 |16.75|8.30| 0.20 2.77 |11.49 | 3.11 | 1.00 | 0.42 | 0.39 | 658.00 5.00 19.00 | 19.30
0 1 |14.86|8.74| 2.00 291 [10.30 | 1.23 | 0.11 | 0.52 | 0.48 | 645.00 0.00 16.00 | 24.80
8 2 |15.57 | 857 | 2.10 2.89 [12.48 | 1.12 | 0.11 | 0.51 | 0.48 | 660.00 0.00 16.00 | 24.80
é 3 |15.69|8.71| 2.20 293 |10.14 | 1.34 | 0.62 | 0.53 | 0.48 | 635.00 0.00 16.00 | 24.80
o

4 |1593|8.71| 2.90 294 | 9.32 | 0.78 | 0.02 | 0.55 | 0.50 | 653.00 0.00 16.00 | 24.80
0 1 |20.63|8.10| 1.90 2.74 |10.76 | 0.00 | 0.20 | 0.63 | 0.56 | 646.00 0.00 12.00 | 27.50
8 2 |20.65|810| 1.90 2.74 |10.61 | 0.00 | 0.29 | 0.67 | 0.57 | 630.00 0.00 12.00 | 27.50
é 3 |20.61|8.10| 1.90 2.72 | 9.41 | 0.00 | 0.29 | 0.62 | 0.56 | 646.00 0.00 12.00 | 27.50
o~

4 |20.83|8.10| 2.70 2.72 | 14.00 | 0.00 | 0.20 | 0.61 | 0.51 | 668.00 0.00 12.00 | 27.50
0 1 |22.09|8.35| 1.00 2.87 [10.95 | 0.00 | 0.11 | 0.78 | 0.63 | 676.00 0.00 9.00 | 29.10
S 2 |22.82(842| 6.10 2.86 |10.09 | 0.00 | 0.29 | 0.86 | 0.64 | 590.00 0.00 9.00 | 29.10
§ 3 |23.77|845| 1990 | 2.85 |12.45| 0.00 | 0.20 | 0.68 | 0.58 | 708.00 0.00 9.00 | 29.10
o

4 |2550(9.92| 8.30 2.86 |17.83 | 0.00 | 0.11 | 0.72 | 0.51 | 700.00 0.00 9.00 | 29.10
0 1 |24.90|8.74| 2.40 291 |10.34 | 0.00 | 0.07 | 0.73 | 0.56 | 656.00 0.00 11.00 | 27.40
2, 2 |2543[8.77| 30.60 | 2.92 | 9.55 | 0.00 | 0.10 | 0.74 | 0.52 | 654.00 0.00 11.00 | 27.40
E 3 |24.03|875| 28.20 | 2.90 | 9.18 | 0.00 | 0.07 | 0.73 | 0.54 | 660.00 0.00 11.00 | 27.40
° 4 |25.20(8.77| 0.20 291 | 8.26 | 0.00 | 0.07 | 0.72 | 0.55 | 644.00 0.00 11.00 | 27.40
0 1 |25988.89| 5.80 2.96 |11.51 | 0.06 | 0.06 | 0.67 | 0.57 | 638.00 0.00 16.00 | 33.00
2, 2 |26.52[892| 0.90 2.97 |14.27 | 0.22 | 0.05 | 0.70 | 0.59 | 628.00 0.00 16.00 | 33.00
E 3 |26.85|892| 5.00 2.97 |13.01 | 0.28 | 0.06 | 0.67 | 0.59 | 606.00 0.00 16.00 | 33.00
| 4 |27.28|891| 1930 | 2.98 | 13.80 | 0.45 | 0.07 | 0.67 | 0.57 | 650.00 0.00 16.00 | 33.00
0 1 |25.80[9.38|22496| 2.92 |17.58 | 0.50 | 0.13 | 0.40 | 0.18 | 622.00 2.00 12.00 | 27.60
3_ 2 [26.75[9.46 | 63.60 | 2.92 |22.19 | 0.81 | 0.14 | 0.41 | 0.17 | 594.00 2.00 12.00 | 27.60
E 3 |27.33|9.43| 51.50 | 2.93 |[18.39 | 0.81 | 0.11 | 0.39 | 0.19 | 632.00 2.00 12.00 | 27.60
(aV]

4 |27.71|9.47 | 62.10 | 2.92 |20.01| 0.81 | 0.15 | 0.38 | 0.16 | 594.00 2.00 12.00 | 27.60
§ 1 |24.739.44|186.77 | 2.94 |13.55| 1.29 | 0.19 | 0.42 | 0.21 | 542.00 0.80 7.00 | 27.20
g 2 |26.719.62| 0.60 2.94 |12.40 | 1.06 | 0.32 | 0.51 | 0.19 | 594.00 0.80 7.00 | 27.20
B | 3 |26.00|9.58 |404.20 | 2.94 | 9.56 | 0.76 | 0.26 | 0.48 | 0.20 | 658.00 0.80 7.00 | 27.20
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4 |26.32|9.58 |313.30| 2.95 | 6.51 | 1.57 | 0.24 | 0.43 | 0.18 | 620.00 0.80 7.00 | 27.20
0 1 |24.02 |9.66 17430 | 2.93 |16.70 | 0.11 | 0.35 | 0.39 | 0.03 | 276.00 0.00 7.00 | 30.70
8_ 2 2416 [9.70 118,60 | 2.94 |21.03 | 0.11 | 0.39 | 0.45 | 0.02 | 228.00 0.00 7.00 | 30.70
§ 3 |25.81]9.60|782.30 | 2.94 |18.09 | 0.31 | 0.31 | 0.42 | 0.05 | 294.00 0.00 7.00 | 30.70
(o]

4 126.99|9.71|180.90 | 2.93 |21.09|0.17 | 0.52 | 0.47 | 0.03 | 238.00 0.00 7.00 | 30.70
0 1 |24.02|9.66 17433 | 293 |17.04 | 1.18 | 0.55 | 0.34 | 0.01 | 402.00 0.00 9.00 | 19.00
8_ 2 [2424[9.72 112570 | 293 |25.95|2.24 | 0.19 | 0.32 | 0.04 | 408.00 0.00 9.00 | 19.00
§ 3 [25.81]9.60|782.30 | 2.94 |18.09 | 2.35 | 0.20 | 0.34 | 0.09 | 408.00 0.00 9.00 | 19.00
o

4 126.99|9.71]180.90 | 2.93 |21.09| 2.80 | 0.15 ] 0.46 | 0.22 | 420.00 0.00 9.00 | 19.00
0 1 12059 |9.52|161.50 | 3.03 |13.24| 2.07 | 0.20 | 0.25 | 0.02 | 450.00 0.00 8.00 | 26.50
S 2 [21.97[9.78|107.60 | 3.02 |30.44 | 1.62 | 0.24 | 0.38 | 0.02 | 440.00 0.00 8.00 | 26.50
§ 3 [2240(9.73| 11.60 | 3.03 |[27.49 | 2.04 | 0.48 | 0.33 | 0.02 | 444.00 0.00 8.00 | 26.50
—

4 |22.36|9.86| 49.60 | 2.99 |35.87 | 2.24 | 0.42 | 0.66 | 0.02 | 456.00 0.00 8.00 | 26.50
0 1 |17.61|9.60|164.40 | 3.01 |12.17 | 0.62 | 0.51 | 0.20 | 0.02 | 424.00 26.00 10.00 | 15.40
2. 2 |18.49[9.57)158.10 | 3.02 |11.41)|1.62 | 0.63 | 0.19 | 0.02 | 568.00 26.00 10.00 | 15.40
E 3 [18.739.56 | 408.60 | 3.02 | 9.04 | 0.17 | 0.74 | 0.30 | 0.02 | 596.00 26.00 10.00 | 15.40
° 4 |18.83|9.61 |563.20 | 3.02 |11.61| 0.45| 0.87 | 0.38 | 0.02 | 590.00 26.00 10.00 | 15.40
n 1 |13.18 |9.98 | 354.80 | 3.05 |10.28 | 1.62 | 0.22 | 0.27 | 0.01 | 576.00 0.00 9.00 | 6.30
§_ 2 [13.61 [9.93|251.10 | 3.05 |10.02 | 1.74 | 0.20 | 0.25 | 0.01 | 584.00 0.00 9.00 | 6.30
E 3 |[13.60[9.85|158.10 | 3.05 | 8.45 | 2.13 | 0.34 | 0.23 | 0.02 | 604.00 0.00 9.00 | 6.30
- 4 |13.14|9.92 | 469.80 | 3.05 |10.55| 1.46 | 0.53 | 0.25 | 0.01 | 574.00 0.00 9.00 | 6.30
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Chl-a

(ng/l)

Cond.
(ms/cm)

Table B.2 Average Data

Do
(mg/l)

TKN

NO3

Total

(mg/l)

Po4

Alkalinity
(mg/I as
Caco3)

Precipitation
(Max)mm

Ambient
air temp

©

9 1 8.81 | 7.78 | 2.00 2.78 [11.19]0.14 | 0.23 | 0.26 | 0.26 | 565.33 0.00 10.00 | 15.00
8_ 2 8.66 |8.22| 1.40 2.77 [10.10]0.55|0.75 ] 0.42 | 0.40 | 576.67 0.00 10.00 | 15.00
§ 3 891 | 799 | 4.67 2.82 [10.62|0.29 | 0.76 | 0.41 | 0.39 | 566.67 0.00 10.00 | 15.00
o~

4 | 973 |7.73| 7.57 2.78 [10.90| 1.07 | 0.86 | 0.33 | 0.33 | 572.00 0.00 10.00 | 15.00
) 1 ]1231(8.23| 11.23 | 2.77 |10.89| 0.52 | 0.61 | 0.39 | 0.37 | 586.00 0.00 13.00 | 23.20
8 2 |11.97]8.27 | 2663 2.76 |[13.83]0.87 | 0.87 | 0.39 | 0.38 | 558.67 0.00 13.00 | 23.20
§ 3 [12.68 831 3.93 2.77 [13.44]0.55 | 0.87 | 0.48 | 0.47 | 604.00 0.00 13.00 | 23.20
-

4 [13.72 825 11.67 | 2.75 |12.39| 1.32 | 0.96 | 0.49 | 0.45 | 600.00 0.00 13.00 | 23.20
9 1 |13.72[8.41| 557 269 | 7.48 | 0.84 | 0.90 | 0.52 | 0.50 | 640.67 5.00 19.00 | 19.30
8_ 2 |13.93|8.29| 1.73 2.71 | 855 | 1.10 | 0.88 | 0.49 | 0.47 | 625.67 5.00 19.00 | 19.30
§ 3 |14.68|8.32| 0.70 272 | 7.61 [ 0.73 1094 ]| 0.43 | 0.41 | 620.00 5.00 19.00 | 19.30
| 4 |1515|823] 077 454 | 7.23 | 167 | 0.87 | 0.46 | 0.43 | 621.33 5.00 19.00 | 19.30
9 1 |14.45|8.74| 2750 | 291 | 8.68 | 1.27 | 0.30 | 0.59 | 0.55 | 628.33 0.00 16.00 | 24.80
8_ 2 |14.78 1857 | 187 2.89 | 897 | 1.27 | 0.11 ] 0.54 | 0.50 | 652.00 0.00 16.00 | 24.80
é 3 11473871 1.97 290 | 7.93 [ 1.01]0.70 | 0.52 | 0.47 | 636.67 0.00 16.00 | 24.80
| 4 |1573|871] 230 294 | 7.87 | 1.08 | 0.14 | 0.56 | 0.50 | 624.33 0.00 16.00 | 24.80
) 1 |2050(8.12| 7.77 2.71 | 8.29 | 0.00 | 0.20 | 0.64 | 0.57 | 659.33 0.00 12.00 | 27.50
8 2 [2030]8.10| 1.87 2.73 | 9.37 [ 0.00|0.29 | 0.70 | 0.63 | 669.33 0.00 12.00 | 27.50
é 3 |19.75|8.10| 3.03 2.68 | 7.00 | 0.00 | 0.29 | 0.66 | 0.58 | 654.00 0.00 12.00 | 27.50
o~

4 |20.57[8.10| 22.40 | 2.74 |10.92 | 0.00 | 0.20 | 0.71 | 0.62 | 682.67 0.00 12.00 | 27.50
9 1 |21.25|8.35| 12.00 | 8.74 | 9.77 | 0.00 | 0.10 | 0.86 | 0.69 | 636.67 0.00 9.00 | 29.10
8_ 2 |21.40(8.30]| 5.53 2.84 | 9.13 | 0.00 | 0.29 | 0.81 | 0.65 | 574.00 0.00 9.00 | 29.10
§ 3 |21.57|8.25] 1517 | 2.83 | 9.36 | 0.00 | 0.20 | 0.75 | 0.63 | 697.33 0.00 9.00 | 29.10
| 4 |2259|869| 1860 | 2.85 |13.41]0.00 | 0.11 | 0.91 | 0.69 | 676.67 0.00 9.00 | 29.10
) 1 |2456|8.70| 17.79 | 2.82 | 9.37 | 0.00 | 0.08 | 0.73 | 0.54 | 652.67 0.00 11.00 | 27.40
8_ 2 [2296)854| 1290 | 2.85 | 6.67 [ 0.00 | 0.10 | 0.77 | 0.55 | 644.67 0.00 11.00 | 27.40
§ 3 |22.27|850| 11.03 | 2.83 | 6.45 | 0.00 | 0.21 | 1.20 | 0.86 | 642.67 0.00 11.00 | 27.40
° | 4 |2390]862]| 2.00 2.87 | 6.38 | 0.19 | 0.07 | 0.85 | 0.66 | 639.00 0.00 11.00 | 27.40
) 1 |25.73[8.89| 6.40 296 [11.88|0.15|0.09 | 0.67 | 0.57 | 632.00 0.00 16.00 | 33.00
8 2 [26.15]891| 5.00 296 |14.48|0.28 | 0.06 | 0.69 | 0.59 | 622.67 0.00 16.00 | 33.00
E 3 [26.24 890 | 7.43 2.96 [13.720.32 | 0.06 | 0.68 | 0.59 | 600.00 0.00 16.00 | 33.00
-

4 [27.12[891| 16.20 | 2.98 |14.22| 0.43 | 0.07 | 0.67 | 0.57 | 640.67 0.00 16.00 | 33.00
9 1 ]25.69(9.21[103.09| 2.94 |15.22|0.34 | 0.13 | 0.49 | 0.32 | 628.00 2.00 12.00 | 27.60
8_ 2 [2579]9.14| 3793 | 294 |15.84|0.85 | 0.09 | 0.55 | 0.39 | 620.67 2.00 12.00 | 27.60
§ 3 |26.10(9.11) 3393 | 295 [14.06|0.73 | 0.11 | 0.54 | 0.40 | 611.33 2.00 12.00 | 27.60
| 4 |26.76|9.20| 40.80 | 2.94 |17.27]| 0.62 | 0.13 | 0.48 | 0.31 | 622.67 2.00 12.00 | 27.60
9 1 |23.66]9.29[161.02| 2.87 | 7.96 | 1.17 | 0.21 | 0.41 | 0.23 | 589.33 0.80 7.00 | 27.20
8_ 2 24191899 | 4177 | 293 | 731 [ 134 [0.20 | 0.45 | 0.24 | 622.67 0.80 7.00 | 27.20
§ 3 |24.05|9.07|209.90| 2.94 | 539 | 1.05]|0.17 | 0.47 | 0.30 | 662.00 0.80 7.00 | 27.20
S| 4 |2497|9.21|168.33| 2.88 | 4.86 | 1.58 | 0.26 | 0.45 | 0.23 | 638.00 0.80 7.00 | 27.20
) 1 |2357|733(13353| 2.89 |11.11|0.14 | 0.40 | 0.72 | 0.15 | 226.17 0.00 7.00 | 30.70
8 2 [2296)9.08| 61.70 | 2.92 |10.42]0.15]0.58 | 0.38 | 0.03 | 276.00 0.00 7.00 | 30.70
§ 3 |23.66|9.26 | 298.67 | 2.96 | 8.41 | 0.29 | 0.41 | 0.68 | 0.26 | 268.67 0.00 7.00 | 30.70
o~

4 |24.52[9.49(103.97| 2.93 |10.28| 0.15 | 0.33 | 0.41 | 0.14 | 266.67 0.00 7.00 | 30.70
9 1 ]2222(9.36[102.48| 2.85 |11.12|1.25| 0.45 | 0.51 | 0.11 | 400.00 0.00 9.00 | 19.00
8_ 2 |21.37(9.12] 69.60 | 2.91 |10.84| 1.94 | 0.20 | 0.31 | 0.03 | 405.33 0.00 9.00 | 19.00
§. 3 |22.00|9.06]|289.13| 2.93 | 7.40 | 2.17 | 0.18 | 0.35 | 0.12 | 410.00 0.00 9.00 | 19.00
| 4 |21.95|938|341.07| 2.96 | 8.55 | 2.80 | 0.12 | 0.48 | 0.25 | 426.00 0.00 9.00 | 19.00
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) 1 ]19.2319.38 (14047 | 2.95 | 877 | 2.11|0.11 | 0.26 | 0.05 | 451.33 0.00 8.00 | 26.50
8 2 [20.0219.44|107.43| 296 |13.69|1.88 | 0.14 | 0.27 | 0.06 | 447.33 0.00 8.00 | 26.50
§ 3 [20.269.24| 3937 | 2.98 |13.10] 2.24 | 0.24 | 0.24 | 0.06 | 455.33 0.00 8.00 | 26.50
—

4 |20.58 [9.55| 48.87 | 2.98 |21.35|2.39 | 0.27 | 0.42 | 0.05 | 446.00 0.00 8.00 | 26.50
9 1 |17.31]9.60|105.93| 3.01 |11.52|0.75| 0.78 | 0.21 | 0.01 | 449.33 26.00 10.00 | 15.40
8_ 2 |18.05|9.221147.87| 2.93 | 7.68 | 1.68 | 0.58 | 0.22 | 0.02 | 572.00 26.00 10.00 | 15.40
§ 3 |18.30|9.43]|227.07| 297 | 592 | 1.16 | 0.64 | 0.27 | 0.02 | 615.33 26.00 10.00 | 15.40
| 4 |1830|9.42|335.20| 2.90 | 8.47 | 1.30 | 0.62 | 0.34 | 0.04 | 554.67 26.00 10.00 | 15.40
n 1 [12.8219.89(239.40| 2.97 | 869 | 1.96 | 0.23 | 0.37 | 0.04 | 593.33 0.00 9.00 | 6.30
§ 2 [13.55]9.94 (23840 | 296 | 840 [ 1.90 | 0.19 | 0.25 | 0.01 | 598.00 0.00 9.00 | 6.30
E 3 |13.53|9.76|165.73 | 3.02 | 6.35 | 1.94 | 0.29 | 0.21 | 0.02 | 593.33 0.00 9.00 | 6.30
B 4 112,83 /9.86|343.93| 2.88 | 9.25 | 1.53 | 0.42 | 0.25 | 0.02 | 584.67 0.00 9.00 | 6.30
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APPENDIX C

MATLAB SCRIPT THAT USED IN ANN TRAINING

Script that Has One Hidden Layer

echo off
fortr={"bfg';'br' ;'cgb’;'cgf';'cgp’;'gdm’;'gdx";'Im" ;'0ss';'rp" ;'scg'};
trspaces={" ;"' ;" ;" Utttk
[numfl numf2]=size(fortr);
tn=(norm01(TarAll))’;
% spacesl={' %
% spaces2={' 'Y
r=0;
for all=1:1
pn = eval(char(strcat(['(norm01(Orginp'],[num2str(all,'%02d")1,['))";'1)));
[R,Q] = size(pn);
iitr = 1:30;
jiival = 31:45;
iitst =46:1:60;
validation.P = pn(:,iival);
validation.T = tn(:,iival);
testing.P = pn(;,iitst);
testing.T = tn(:,iitst);
ptr = pn(,iitr);

ttr = tn(:,iitr);

for y= 1:numfl % defines which training function will be used... after '_' shows which input

matrix used.
DizinYarat(y)=strcat(['mkdir
Anettrain'],[fortr(y)],['_'],strcat([num2str(all,'%02d")]),[trspaces(y)],[';']);
DizinYaratti(y,:)=char(DizinYarat(y));
eval(DizinYaratti(y,:));
end
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for j= 1:numfl %changing the training function
fori=1:99 % changing number of hidden neurons in the net...

if all==1

NetOlustur(i)=strcat(['nettrain'],[fortr(j)],[num2str(i,'%02d")],['_'],strcat([num2str(all,'%02d")]),[
'=newff(minmax(ptr),['], ...
num2str(i,'%02d"),[ '
1],{"logsig","logsig"},"train"],[fortr(j)],['");'], [trspaces(j,:)],[trspaces(j,:)]);
NetOlusturdu(i,:)=char(NetOlustur(i));
eval(NetOlusturdu(i,:));

elseif all==2 | all>=8

NetOlustur(i)=strcat(['nettrain'],[fortr(j)],[num2str(i,'%02d")],['_'],strcat([num2str(all,'%02d")]),[
'=newff(minmax(ptr),['], ...
num2str(i,'%02d"),[ '
1],{"logsig","logsig"},"train'],[fortr(j)],['");'], [trspaces(j,:)],[trspaces(j,:)],spaces2(1,:));
NetOlusturdu(i,:)=char(NetOlustur(i));
eval(NetOlusturdul(i,:));

else

NetOlustur(i)=strcat(['nettrain'],[fortr(j)],[num2str(i,'%02d")],['_'],strcat([num2str(all,'%02d')]),[
'=newff(minmax(ptr),['], ...
num2str(i,'%02d"),[ '
1],{"logsig","logsig","logsig"},"train'],[fortr(j)],['"");'], [trspaces(j,:)], [trspaces(j,:)]);
NetOlusturdu(i,:)=char(NetOlustur(i));
eval(NetOlusturdu(i,:));
end
NetAyarlal(i)=strcat(['nettrain'],[fortr(j)],
num2str(i,'%02d"),['_'],strcat([num2str(all,'%02d")]),[".trainParam.epochs=10000;',...
‘nettrain'], [fortr(j)],
num2str(i,'%02d"),[' _'],strcat([num2str(all,'%02d')]),['.trainParam.goal=0.000;'],...
[trspaces(j,:)], [trspaces(j,:)]);
NetAyarlandil(i,:)=char(NetAyarlal(i));
eval(NetAyarlandil(i,:));

% asagidaki Egit te ptr, ttr, validation, testing degisecek...
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Egit(i)=strcat(
['[nettrain'],[fortr(j)],[num2str(i,'%02d")],['_'],strcat([num2str(all,'%02d")]),[', trres'],[fortr(j)],...
[num2str(i,'%02d")],['_'],strcat([num2str(all,'%02d')]),[ '1=train(nettrain'],[fortr(j)],
[num2str(i,'%02d")],[' _',...
strcat([num2str(all,'%02d")]),[',ptr,ttr,[],[],validation,testing);
clf;close(gcf);'], [trspaces(j,:)], [trspaces(j,:)],[trspaces(j,:)]);
Egitti(i,:)=char(Egit(i));
eval(Egitti(i,:));
% asagidaki Dene de pn, OrgOutAll degisecek...
Dene(i)=strcat(['[restrain'],[fortr(j)], num2str(i,'%02d"),['_'],strcat([num2str(all,'%02d")]),
['1'],['=sim(nettrain' ],[fortr(j)], ...
num2str(i,'%02d"),['_'],strcat([num2str(all,'%02d")]),[',pn);'],['Prestrain'],[fortr(j)],
num2str(i,'%02d"),[' '],...
strcat([num2str(all,'%02d")]),['= unnorm01(TarAll
'1,[', restrain'],[fortr(j)], [num2str(i,'%02d")],["_],...
strcat([num2str(all,'%02d")]),[');'],[trspaces(j,:)],[trspaces(j,:)], [trspaces(j,:)],[trspaces(j,:)]);
Denedi(i,:)=char(Dene(i));
eval(Denedi(i,:));
%
HesaplaCizdir3(i)=strcat(['fig'],[fortr(j)],
[num2str(i,'%02d")],[' _'],strcat([num2str(all,'%02d')]),['Reg=figure;],...
['[m'],[fortr(j)],num2str(i,'%02d"), [',b"],[fortr(j)],
num2str(i,'%02d"),[',r'],[fortr(j)],num2str(i,'%02d"),...
['|=postreg(Prestrain'],[fortr(j)], ...
num2str(i,'%02d"),['_'],strcat([num2str(all,'%02d")]),['", TarAll',,[');'],['title(''Regression
analysis for (train'l,...
fortr(j),['_'],strcat([num2str(all,'%02d")]),[')'],[' (# of HNs:'],[num2str(i,'%02d")],[')
");'],trspaces(j),...
trspaces(j),trspaces(j),trspaces(j),trspaces(j),trspaces(j));
Hesapladi3(i,:)=char(HesaplaCizdir3(i));
eval(Hesapladi3(i,:));

regresValue=eval(char(strcat(['r'],[fortr(j)],num2str(i,'%02d"))));

if regresValue>=0.75
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Kaydet3(i)=strcat(['print("-r300","-
djpeg"," \nettrain'],[fortr(j)],['_'],strcat([num2str(all,'%02d")]),...
['\fig'],[fortr(j)],num2str(i,'%02d"),['Reg"" ');'],['close(gcf);'],trspaces(j),trspaces(j));
Kaydetti3(i,:)=char(Kaydet3(i));
eval(Kaydetti3(i,:));

HesaplaCizdirl(i)=strcat(['fig'],[fortr(j)],

num2str(i,'%02d"),[' '],strcat([num2str(all,'%02d')]),...
['=figure; plot(trres'],[fortr(j)], num2str(i,'%02d'), ['_'],strcat([num2str(all,'%02d")]),...
['.epoch,trres'], [fortr(j)], num2str(i,'%02d'),[' '],strcat([num2str(all,'%02d")]), ...
['.perf,"r", trres'],[fortr(j)],num2str(i,'%02d"),['_'],strcat([num2str(all,'%02d")]), ...
['.epoch,trres'], [fortr(j)], num2str(i,'%02d"), ['_'],strcat([num2str(all,'%02d")]),...
[.vperf,":g" trres'],[fortr(j)],num2str(i,'%02d'),['_'],strcat([num2str(all,'%02d")]),...
['.epoch,trres'], [fortr(j)], num2str(i,'%02d"),["_'],strcat([num2str(all,'%02d")]),...

['.tperf,"-.b");'],['xlabel("# of epoch");],...

[trspaces(j,:)],[trspaces(j,:)],[trspaces(],:)],[trspaces(j,:)],[trspaces(j,:)],[trspaces(j,:)],[trspaces(j,:)]);
Hesapladil(i,:)=char(HesaplaCizdir1(i));

eval(Hesapladil(i,:));

HesaplaCizdirl1(i)=strcat(['title("MSE vs. # of Epochs (train']
S[fortr(j)1,['_"],strcat([num2str(all,'%02d")]),...
['1,[" (# of HNs:'],num2str(i,'%02d"),[')");'], ...
[trspaces(j)],['legend("'Training",""Validation","Test",0); ylabel("'"Mean Squared Error");']);
Hesapladill(i,:)=char(HesaplaCizdirl1(i));
eval(Hesapladill(i,:));

Kaydet1(i)=strcat(['print("-r300","-
djpeg"," \nettrain'],[fortr(j)],[' '],strcat([num2str(all,'%02d")]),['\fig'],[fortr(j)], ...

num2str(i,'%02d"),[' _'],strcat([num2str(all,'%02d')]),[""");close(gcf);'],[trspaces(j,:)],[trspaces(j,:)]);
Kaydettil(i,:)=char(Kaydet1(i));
eval(Kaydettil(i,:));

DATE=[1:1:60];
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HesaplaCizdir2(i)=strcat(['fig'],[fortr(j)], num2str(i,'%02d"),['OwP'], ['=figure;
plot(DATE,Prestrain'],[fortr(j)],...
num2str(i,'%02d"),[' _'],strcat([num2str(all,'%02d")]),[',".-r" '],[',DATE,TarAll,"-b");'],...
['legend("'Predicted","Observed",0); '],['ylabel(''DO (mg/)");'],['xlabel("'Date");],...
['title("Pred & Obs DO (mg/l) vs. Date w/ train
"1, [fortr(j)],['_'],strcat([num2str(all,'%02d')]),...
['(# of HNs:',num2str(i,'%02d'),')");"],[trspaces(j)],[trspaces(j)], [trspaces(]j)]);
Hesapladi2(i,:)=char(HesaplaCizdir2(i));
eval(Hesapladi2(i,:));
% kontrol et... OWP ne olacak?
Kaydet2(i)=strcat(['print(''-r300","-
djpeg"," \nettrain'],[fortr(j)],['_'],strcat([num2str(all,'%02d")]),['\fig'], [fortr(j)], ...
num2str(i,'%02d"),['OwP'""'); close(gcf);'],[trspaces(j)],[trspaces(j)]);
Kaydetti2(i,:)=char(Kaydet2(i));
eval(Kaydetti2(i,:));

end
%  hesaplacizdir3 bolunecek buradan r alinacak, kendilerinin regression kismi tum resim
cizimlerinin
%  ustune yerlestirilecek ki bosuna anlamsiz cizimler icin zaman harcanmasin..
Kaydet4(i)=strcat([ 'save .\nettrain'],[fortr(j)] ,['_'],strcat([num2str(all,'%02d")]),
['\nettrain'],[fortr(j)],num2str(i,'%02d"),...
['_'],strcat([num2str(all,'%02d')]),[' net* Prestrain* restrain®* trres*'],[' m'],fortr(j),['*'],['
b'],fortr(j),...
['* r']fortr(j),['*'],[';close(gcf);'],['clear net* Prestrain* restrain* trres* fig* m'],fortr(j),['*
b'],fortr(j),...
['*
r'],fortr(j),['*'], trspaces(j),trspaces(j),trspaces(j),trspaces(j),trspaces(j),trspaces(j),trspaces(j),trspaces(
i)
Kaydetti4(i,:)=char(Kaydet4(i));
eval(Kaydetti4(i,:));
end
end

end
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Normalization Fuction (norm01.m)

% Normalize the given column vector to the range 0-1 using
% x_norm[i]=(x[i]-x_min)/(x_max-x_min)
function [D]=norm01(A)
[QR]=size(A);
tr=zeros(Q,R);
fori=1:Q

alt=min(A(i,:));

ust=max(A(i,:));

for j=1:R

tr(i,j)=((A(i,j)-alt)/(ust-alt));

end

end

D=tr';

Inverse Normalization Fuction (unnorm01.m)

% Rewind the Normalized matrix from the given source matrix unnormalize.
function [D]=unnorm01(A,B)
[Q R]=size(A);
tr=zeros(Q,R);
fori=1:Q
alt=min(A(i,:));
ust=max(A(i,:));
forj=1:R
tr(i,j)=(B(i,j)* (ust-alt)+alt);
end
end

D=tr'
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