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ABSTRACT 
 
 

ROBUST EXTRACTION OF SPARSE 3D POINTS FROM 
IMAGE SEQUENCES 

 

 
 

Vural, Elif 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. A. Aydın Alatan 

 
 

September 2008, 144 pages 
 
 
 

In this thesis, the extraction of sparse 3D points from calibrated image sequences 

is studied. The presented method for sparse 3D reconstruction is examined in two 

steps, where the first part addresses the problem of two-view reconstruction, and 

the second part is the extension of the two-view reconstruction algorithm to 

include multiple views. The examined two-view reconstruction method consists 

of some basic building blocks, such as feature detection and matching, epipolar 

geometry estimation, and the reconstruction of cameras and scene structure. 

Feature detection and matching is achieved by Scale Invariant Feature Transform 

(SIFT) method. For the estimation of epipolar geometry, the 7-point and 8-point 

algorithms are examined for Fundamental matrix (F-matrix) computation, while 

RANSAC and PROSAC are utilized for the robustness and accuracy for model 

estimation. In the final stage of two-view reconstruction, the camera projection 

matrices are computed from the F-matrix, and the locations of 3D scene points are 

estimated by triangulation; hence, determining the scene structure and cameras up 

to a projective transformation. The extension of the two-view reconstruction to 

multiple views is achieved by estimating the camera projection matrix of each 
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additional view from the already reconstructed matches, and then adding new 

points to the scene structure by triangulating the unreconstructed matches. Finally, 

the reconstruction is upgraded from projective to metric by a rectifying 

homography computed from the camera calibration information. In order to 

obtain a refined reconstruction, two different methods are suggested for the 

removal of erroneous points from the scene structure. In addition to the 

examination of the solution to the reconstruction problem, experiments have been 

conducted that compare the performances of competing algorithms used in 

various stages of reconstruction. In connection with sparse reconstruction, a rate-

distortion efficient piecewise planar scene representation algorithm that generates 

mesh models of scenes from reconstructed point clouds is examined, and its 

performance is evaluated through experiments. 

 
Keywords: Sparse 3D scene reconstruction, structure-from-motion.  
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ÖZ 
 
 

SEYREK 3B NOKTALARIN GÖRÜNTÜ DİZİLERİNDEN 
DAYANIKLI BİÇİMDE ÇIKARIMI 

 
 
 

Vural, Elif 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. A. Aydın Alatan 

 
 

Eylül 2008, 144 sayfa 
 
 

 
Bu tezde kalibre edilmiş görüntü dizilerinden 3B noktaların çıkarımı 

incelenmiştir. 3B sahne geriçatımı için önerilen yöntem, ilki iki görüntüden 

geriçatım problemi, ikincisi ise bunun çok sayıda görüntüye uyarlanması olmak 

üzere iki aşamada ele alınmıştır. İncelenen iki görüntüden geriçatım yöntemi; 

öznitelik tespiti ve eşleme, eşkutupsal geometri çıkarımı ve kamera ve sahne 

yapısının geriçatımı gibi temel bileşenlerden oluşmaktadır. Öznitelik tespiti ve 

eşleme, SIFT yöntemiyle gerçekleştirilmiştir. Eşkutupsal geometri çıkarımı ile 

ilgili olarak, temel matris hesaplanması amacıyla 7-nokta ve 8-nokta algoritmaları 

incelenmiş, ayrıca dayanıklı ve doğru model çıkarımı için RANSAC ve PROSAC 

kullanılmıştır. İki görüntüden geriçatım probleminin son basamağında ise, temel 

matristen kamera izdüşüm matrisleri hesaplanır ve üçgenleme yöntemiyle 3B 

sahne noktalarının yerleri saptanır; böylece sahne yapısı ve kameralar izdüşümsel 

bir dönüşümün belirsizlik sınırları dahilinde tespit edilmiş olur. İki görüntüden 

geriçatımın çoklu görüntülere uyarlanması, her yeni görüntü için, kamera izdüşüm 

matrisinin geriçatımı hâlihazırda gerçekleştirilmiş nokta çiftlerinden 

hesaplanması, ve daha sonra sahne yapısına henüz geriçatılmamış nokta çiftlerinin 
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üçgenlenerek eklenmesi ile gerçekleştirilir. Son olarak, kamera kalibrasyon 

bilgisinden elde edilen doğrultucu bir homografi ile geriçatımın izdüşümselden 

metriğe çevrimi sağlanır. Temiz bir geriçatım elde edebilmek amacıyla, yanlış 

noktaların sahneden çıkarılmasına yönelik iki ayrı yöntem önerilmiştir. Geriçatım 

probleminin çözümüne yönelik incelemelerin yanı sıra, geriçatımın çeşitli 

basamaklarında kullanılan rakip algoritmaların performanslarını karşılaştıran 

deneyler de yapılmıştır. Seyrek geriçatım problemiyle bağlantılı olacak şekilde, 

sahnenin geriçatılmış nokta bulutlarından örgü modelini oluşturan ve hız-

bozunum bağlamında verimli gösterimini hedefleyen bir algoritma incelenmiş, 

ayrıca algoritmanın performansı deneylerle irdelenmiştir. 

 

 

Anahtar kelimeler: Seyrek 3B sahne geriçatımı, hareketten-yapı. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 
 

In the last few decades, there has been growing interest in the extraction, 

transmission and display of 3D visual data. Although 2D imaging technologies 

still prevail in the current market, the effort made towards the deployment of 3D 

information in the related industrial fields is noteworthy. For example, 3D movies 

are becoming increasingly popular now, and there is demand for the modeling of 

real 3D scenes in virtual environments, to be used in many applications such as 

online databases, computer games or educational simulators. 

 

One of the popular research topics is the conversion of the already available 2D 

video content to 3D, in order to enable the usage of ordinary video data in several 

3D systems, such as free viewpoint television (FTV) and three dimensional 

television (3DTV). While a considerable amount of progress has been made 

towards the extraction of 3D structure from 2D image data, the problem of 

processing an ordinary 2D video to extract the 3D information in the captured 

scenes in a fully automatic manner is still a challenge. 

 

A visually meaningful representation of a scene requires the recovery of the 3D 

information on all scene surfaces, or the extraction of the dense depth map of the 

scene. While dense 3D reconstruction is a research field having this objective, 

sparse 3D reconstruction is another sub-field of the scene reconstruction problem, 
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where the output provided by a sparse 3D reconstruction algorithm is not a 3D 

surface but a 3D point cloud, which is infeasible to use directly in practical 

applications such as FTV or 3DTV. However, the importance of sparse 3D 

reconstruction lies in the fact that it is an effective tool for the extraction of 

camera poses and projection matrices from an already recorded uncontrollable 

data, which can provide useful information for the next step, namely, dense 

surface reconstruction. 

 

In this thesis, the problem of reconstructing a static 3D scene sparsely from an 

image sequence captured with a calibrated camera is studied.  In the presented 

sparse 3D reconstruction scheme, the internal calibration information for the 

viewing cameras is assumed to be known, where the goal is to retrieve the 3D 

locations of some sparsely selected scene points and the camera poses, i.e. the 

camera projection matrices of the viewing cameras, given an image sequence 

viewing the scene. 

 

1.1 Literature Review 
 

The problem of the extraction of 3D information from 2D visual data has been 

drawing quite much interest in the recent years. A considerable amount of work 

has been done in the literature related to this field, some of which deal with the 

problem of constructing a complete system that retrieves 3D information from 2D 

data, whereas some other works concentrate on separate stages of reconstruction. 

 

In [24], Pollefeys et al. present a successful example of a complete system that is 

capable of building the 3D model of a scene captured with an uncalibrated hand-

held camera. The system reconstructs the sparse scene structure and the camera 

poses from tracked or matched features and converts the projective reconstruction 

to metric through self-calibration. The dense scene structure is also estimated by 



 3

using stereo-matching tools, and the proposed system achieves highly satisfactory 

reconstruction results. 

 

A similar work is presented by İmre et al. [25], which reconstructs 3D scenes 

from broadcast videos. The feature detection, sparse reconstruction and self-

calibration steps are again included similar to the work of Pollefeys et al. [24], but 

the dense depth estimation is achieved with MRF-based techniques. A 

prioritization scheme is also proposed for registering the images to the 

reconstruction. 

 

The initial step for sparse reconstruction algorithms is detection of features. A 

combined corner and edge detection algorithm was proposed by Harris and 

Stephens in 1988 [3], which is now generally referred to as Harris corner detector, 

and widely used for feature detection in computer vision. A recent novelty in 

feature detection is Scale Invariant Feature Transform (SIFT) [4], proposed by 

Lowe, whose most prominent improvements on Harris corner detector is 

robustness against scale change and rotation. A convenient and accurate feature 

matching mechanism is also proposed with this algorithm. 

 

Another major stage of sparse reconstruction is the estimation of epipolar 

geometry from feature correspondences. 7-point and 8-point algorithms [1],[10] 

are known methods for the computation of the fundamental matrix, which models 

the epipolar geometry, from correspondences. 8-point algorithm has been initially 

proposed by Longuet-Higgins [10], and in [11] Hartley has shown that a simple 

normalization of correspondence coordinates brings significant improvements on 

the performance of the algorithm. 

 

In practical reconstruction problems, the estimation of epipolar geometry from 

correspondences also requires the utilization of an algorithm for efficient 

sampling of correspondences for the computation of the fundamental matrix. 

Random Sampling Consensus (RANSAC) [12], proposed by Fischler and Bolles 
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in 1981, is a well-known algorithm used for this purpose, which is designed for 

computing the correct model such that the solution is unaffected by gross errors in 

the input data. Many other algorithms resembling RANSAC have been developed 

in the following years, such as PROSAC [13], DEGENSAC [14] and MLESAC 

[15], each of which provides different improvements on the performance of 

RANSAC. 

 

1.2 Overview of the Thesis 
 

In this thesis, a solution is proposed to the problem of sparse reconstruction of a 

scene from an image sequence captured with a camera of known internal 

parameters. The reconstruction is achieved by first performing a two-view 

reconstruction of the scene, utilizing the first two images in the sequence, then 

extending the reconstruction to multiple views by registering the remaining 

frames. 

 

The two-view reconstruction procedure is composed of the following blocks: 

Firstly features are detected on both images and matched to obtain 

correspondences. Then the Fundamental matrix (F-matrix), which is the algebraic 

representation of the epipolar geometry between the two views, is computed from 

the correspondence pairs. In order to reconstruct the scene structure and the 

cameras, projective camera matrices are computed from the F-matrix, and then 

the matches which are consistent with the model are triangulated to find the 

locations of the corresponding 3D points up to a projective transformation. 

  

In order to upgrade the two-view reconstruction to include multiple views, 

features are detected in each additional image and matched to the features in the 

previous image. The projective camera matrices are computed from the already 

reconstructed matches, and then new points are added to the reconstruction by 

triangulating the matches that have not been reconstructed earlier. Finally, the 
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projective scene reconstruction is transformed to metric by using the camera 

calibration information. 

 

The sparse reconstruction of the scene is refined by removing the erroneous points 

from the scene with two different novel methods. Finally, a sparse bundle 

adjustment algorithm is utilized to optimize the camera poses and the 

reconstructed point locations. 

 

In addition to studying the sparse reconstruction problem, the rate-distortion 

efficient scene representation algorithm proposed by İmre [28] is examined, 

which is a method of upgrading the sparse reconstruction to a mesh-based dense 

reconstruction in a rate-distortion efficient manner. The performance of the 

examined algorithm is also investigated via experiments. 

 

1.3 Outline of the Thesis 
 

The organization of the thesis is as follows: In Chapter 2, the two-view 

reconstruction problem is discussed. Each of the building blocks of two-view 

reconstruction, namely, feature detection and matching, epipolar geometry 

estimation and reconstruction of the cameras and the structure, are examined in 

detail. The chapter ends with the results of some experiments comparing the 

performances of opponent algorithms used during reconstruction. 

 

In Chapter 3, multiple-view reconstruction is explained and reconstruction results 

for several image sequences are presented. The chapter continues with the 

discussion of two different methods for the elimination of outliers from the 

reconstruction. Finally, the optimization of the reconstruction parameters through 

a sparse bundle adjustment algorithm is explained. 
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Chapter 4 is devoted to the examination of the rate-distortion efficient piecewise 

planar scene representation algorithm proposed by İmre [28]. An overview of the 

algorithm is presented, as well as the results of some experiments on the 

performance of the algorithm. 

 

The thesis is concluded with the final discussions and comments in Chapter 5. 
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CHAPTER 2 

 

 

3D SPARSE RECONSTRUCTION OF A SCENE 
FROM TWO VIEWS 

 

 

 
In this chapter, the problem of sparse 3D metric reconstruction of a static scene 

from two views of the scene is studied. The purpose of the presented algorithm is 

to determine the 3D locations of some sparsely selected points in the scene, given 

two calibrated views of the scene, meaning that the internal parameters of the 

viewing cameras are available. In addition to obtaining a 3D point cloud 

representing the sparsely selected scene points, the camera poses are estimated as 

well. 

 

The organization of this chapter is as follows: In Section 2.1, an outline of the 

studied sparse 3D reconstruction method is presented and the main blocks of the 

algorithm are briefly examined. In Sections 2.2, 2.3 and 2.4, these building blocks 

are explained in detail, whereas the results of several experiments comparing the 

performances of competing algorithms used in sparse 3D reconstruction are 

discussed in Section 2.5. 

 

2.1 An Overview of Sparse 3D Reconstruction 
 

The studied method for sparse 3D reconstruction, which takes two images 

viewing the same scene as input, and constructs a 3D point cloud representing the 

scene as output, consists of three main blocks: 
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• Feature detection and matching 

• Epipolar geometry estimation 

• Reconstruction of the cameras and the structure.  

 

The overall structure of the reconstruction algorithm is illustrated in Figure 2.1.  

 

The first stage of reconstruction is feature extraction and matching. The purpose 

of sparse reconstruction is to obtain the 3D information only at some sparsely 

selected scene points. Therefore, a natural initial step for sparse 3D reconstruction 

is the determination of some salient interest points in both views, and matching 

these selected points to obtain correspondence pairs, which are called feature 

detection and feature matching respectively. The problem of feature detection and 

matching is discussed in Section 2.2. 

 

The next stage following the feature detection and matching is the estimation of 

the epipolar geometry relating the two views geometrically. The determination of 

epipolar geometry requires at least seven valid correspondence pairs (matches). 

Epipolar geometry is modeled by the F-matrix. 

 

The final stage of reconstruction is the estimation of the 3D scene structure and 

the camera poses. The F-matrix relating the two image planes gives clues about 

the camera poses, and it is possible to infer camera poses by utilizing the 

estimated epipolar geometry together with the internal camera calibration 

information. Once the camera poses, i.e. the projection matrices corresponding to 

the two cameras, are determined, it is possible to estimate the 3D locations of 

scene points, each of which corresponds to a match, via triangulation. 



 9

 
 

Figure 2.1: Main steps of sparse 3D reconstruction problem 
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2.2  Feature Detection and Matching 
 
 
In this work, the estimation of epipolar geometry, which geometrically relates the 

image planes belonging to two views, is achieved by utilization of correspondence 

pairs. A correspondence pair, i.e. a match, is a pair of 2D points which are the 

projections of the same 3D scene point, where one of the points lies on the first 

image plane, and the other on the second image plane. The illustration of a 

correspondence pair is given in Figure 2.2. 

 

The formation of such matches requires, firstly the determination of some 

specific, salient points on both images, which have some special characteristics 

distinguishing themselves from other image points. The determination of points 

with such properties is denoted as feature detection. Feature detection is followed 

by feature matching, which is the problem of forming a set of correspondence 

pairs, given two sets of features each belonging to one of the images. 

 

 

 

 
Figure 2.2: Illustration of a pair of matches. M denotes a 3D point in the scene, C and C' are the 
camera centers of the two viewing cameras, and (m,m') is the correspondence pair belonging to M 
[2]. 
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In the literature several methods have been developed for feature detection. In 

1988, Harris and Stephens proposed a corner detection algorithm [3] based on 

defining a cornerness measure as a function of image intensity gradients and 

determining the corners accordingly. Since then, Harris corner detector has been a 

popular and widely used tool for feature detection purposes. 

 

An important development in feature detection has been the introduction of Scale 

Invariant Feature Transform (SIFT) to the literature, which was proposed by 

Lowe in 2004 [4]. The most celebrated improvements provided by SIFT are 

invariance to scale and rotation, and accuracy in feature point localization and 

matching. However, the computational complexity of SIFT usually discourages 

its real-time utilization and restricts its usage to off-line applications. 

 

In this thesis, feature detection is achieved with Scale Invariant Feature 

Transform. SIFT is explained in Section 2.2.1, whereas a brief overview to Harris 

corner detector is given in Section 2.2.2. In order to assess the performance of 

SIFT, some experiments have been conducted comparing SIFT to Harris corner 

detector and KLT tracker [20], the results of which are presented in Section 2.5.1. 

 

2.2.1 Scale Invariant Feature Transform 
 

Scale Invariant Feature Transform (SIFT) is a method proposed by David Lowe 

[4], for the extraction of distinctive features from images. One great motivation 

behind the development of SIFT is the goal of assuring scale invariance in feature 

detection.  In order to perform feature detection with invariance to scale change, 

the image is searched for stable features at all possible scales.  

 

The approach adopted in SIFT is based on forming the scale space of an image by 

convolving the image with a sequence of 2D Gaussian functions at different 

scales, and computing difference-of-Gaussian-convolved (DoG-convolved) 



 12

images from the differences of Gaussian-convolved images at adjacent scales. 

The features, called keypoints, are then detected by searching the scale space 

extrema of the DoG-convolved images. 

 

Along with its amenability to computation, the reason behind the selection of this 

particular approach for feature detection has some mathematical aspects as well. 

Before the explanation of the theoretical content of SIFT, it may be helpful to 

review some main concepts from scale-space theory [6]. 

 

Given a continuous signal N:f → , the scale-space representation of f, 
N:L +× →  is defined as the solution to following differential equation 

known as the heat diffusion equation [6], 

 
N

2

1

1 1
2 2 i it x x

i
L L L∂ ∂

=

= ∇ = ∑       (2.1) 

 

with initial condition L( . ; 0) = f (.).  The family of solutions to the diffusion 

equation can equivalently be defined by convolution with Gaussian kernels of 

various width t, 

 

(.; ) (.; )* (.)L t g t f= ,       (2.2) 

 

where N:g +× →  is given by 

 

 
2 2
1 N( ... )/(2 )

N/2

1( ; )
(2 )

x x tg t e
tπ

− + +=x ,     (2.3) 

 

and 1 N( ,..., )x x=x . There are several mathematical results showing that within the 

class of linear transformations, Gaussian kernel is the unique kernel for generating 
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a scale-space satisfying some basic conditions such as linearity, shift invariance, 

etc. [6]. 

 

In 1983, Witkin showed that the detection of scale- invariant features in an image 

is achievable by using the scale-space of the image [5]. A property of scale-space 

is that the amplitude of the scale-space representation of a function generally 

decreases with scale [6]. In consistency with this observation, Lindeberg studied 

the scale-normalized Laplacian-of-Gaussian function 2 2Gσ ∇  to show that the 

normalization of the Laplacian with the factor 2σ  is required for scale invariance 

[7],[4]. 

 

It has been shown by experiments that the extrema of 2 2Gσ ∇  produce the most 

stable features compared to a range of other image functions [8],[4]. A critical 

property of the difference-of-Gaussian (DoG) function is that it provides a close 

approximation to the scale-normalized Laplacian-of-Gaussian function 2 2Gσ ∇  

[4]: 

 

Expressing the diffusion equation in terms of σ instead of t, the 2D Gaussian 

function is defined as 

 

2 2 2( )/2
2

1( , , )
2

x yG x y e σσ
πσ

− += ,     (2.4) 

 

and the following relations can be derived: 

 

2 ( , , ) ( , , )G G x y k G x yG
k

∂ σ σσ
∂σ σ σ

−
= ∇ ≈

−
    (2.5) 

 

Equation (2.5) yields the approximation: 
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2 2( , , ) ( , , ) ( 1)G x y k G x y k Gσ σ σ− ≈ − ∇ .    (2.6) 

 

Equation (2.6) shows that, if a constant factor of k is used between the scales of 

adjacent difference-of-Gaussian functions, i.e. the two nearby scales are always in 

the form of σ and kσ, then the difference-of-Gaussian function implicitly 

incorporates the scale normalization σ2 required for scale-invariance. Since the 

factor (k-1) is constant, it does not affect the extrema location. 

 

 

Detection and Localization of Features 

 

In order to detect features in an image, the first step is to obtain the scale-space 

L(x,y,σ) of the input image I(x,y) by convolving the input image with a variable-

scale Gaussian image: 

 

( , , ) ( , , )* ( , )L x y G x y I x yσ σ=      (2.7) 

 

The DoG-convolved images D(x,y,σ) can be computed from the difference of two 

scale-space images with adjacent scales differing by a factor of k:  

 

 
( , , ) ( ( , , ) ( , , ))* ( , )
( , , ) ( , , ) ( , , )

D x y G x y k G x y I x y
D x y L x y k L x y

σ σ σ
σ σ σ

= −
= −

   (2.8) 

 

For the construction of D(x,y,σ), first the input image I(x,y) is convolved with a 

sequence of Gaussian images G(x,y,σ) to obtain the scale-space images L(x,y,σ). 

The sequence of Gaussian images is organized in groups, called octaves, where in 

an octave of Gaussian images, the scale of each Gaussian is always k times the 

scale of the previous one. Each octave consists of s intervals, where s is an 

integer, and s and k are related by 1/2 sk = . For the ease of local extrema 

detection, s+3 images are produced for each octave. The DoG-convolved images 
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D(x,y,σ) are obtained by subtracting the scale-space images L(x,y,σ) with adjacent 

scales.   

 

When a whole octave of images is processed in this way to obtain DoG-

convolved images, the algorithm passes to the next octave. When passing from an 

octave to the next one, the last scale-space image of the octave is downsampled 

by two to obtain the first scale-space image of the next octave. The described 

process is depicted in Figure 2.3. 
 

 

 
 

Figure 2.3: In each octave, the input image is convolved with a sequence of Gaussian images 
where adjacent images have scales differing by a multiplicative factor of k. After each octave, the 
last (top) image in the octave is downsampled by two to obtain the first (bottom) image of the next 
octave.  After the scale-space of an image is obtained in this way by convolving with a sequence 
of Gaussian images, the DoG-convolved image sequence is obtained by subtracting the adjacent 
scale-space images in each octave [4]. 
 

 

Once the DoG-convolved images are constructed, the detection of features is 

achieved by searching the DoG-convolved images for local extrema. If the image 

intensity value at a pixel is the maximum or minimum among all of its 26 

neighbours, i.e. 8 neighbours on the same image and 9 neighbours on each of the 

two adjacent images, then that pixel is marked as a feature (keypoint) candidate, 

which is illustrated in Figure 2.4. 
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Figure 2.4: Detection of features by searching the DoG-convolved images: If the pixel marked 
with X has an intensity value greater than or smaller than all its 26 neighbours marked with green 
dots, then a feature candidate is detected at that pixel location [4]. 
 

 

 

The fact that SIFT detects features by searching for the extrema in the DoG-

convolved images, practically means that SIFT is in favour of image regions 

similar to a DoG (difference-of-Gaussian) function, whose shape resembles a ring 

or a Mexican hat. The intensity image and graphical representations of a 2D 

difference-of-Gaussian function are given in Figure 2.5. 

 

 

  
   (a)        (b) 
 
Figure 2.5: (a) The intensity image representation of a 2D DoG function (b) The graphical 
representation of a 2D DoG function 
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Since the scale-space of the input image is generated at various scales, SIFT is 

capable of detecting features at a wide range of scales. In order to clarify the 

scale-invariance property of SIFT better, some SIFT features that are obtained on 

a sample image are shown in Figure 2.6. The image intensity surfaces are also 

plotted in regions around the feature locations. It is noticeable from the plots that 

the image intensities around features resemble difference-of-Gaussian functions 

(or equivalently reversed DoG functions), and the scales at which features are 

detected show variation as well. 

 

 
 
Figure 2.6: Some SIFT features detected on a typical image, and the image intensity plots around 
feature locations 
 

 

Once feature candidates are determined, the next step is the accurate localization 

of features (keypoints). The approach of detecting keypoints by comparing pixels 

to their 26 nearest neighbours gives the keypoint locations only with pixel 

accuracy. The subpixel localization of a keypoint is realized by fitting a 3D 

quadratic function to the image intensity function around the keypoint at the 

corresponding DoG-convolved image, and determining the local extremum of the 

modeling function. Fitting function is obtained from the Taylor series expansion 

of the image intensity function around the origin, where the origin is assumed to 

be the center of the pixel the original keypoint resides at. The 3D quadratic fitting 
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function ˆ ( )D X  to the intensity function of the DoG-convolved image D(X) = 

D(x,y,σ)  is 

 

T T
0

1ˆ ( ) ( ) ( ) ( )
2

D D D D= + ∇ +
0 0X XX X X X H X ,   (2.9) 

 

where σ= 0 0 0( , , )x y0X  is the pixel-accurate keypoint location taken as the origin, 

X=(x,y,σ) is the offset from the origin, ∇ D
0X  is the gradient of the function D(X) 

at X0 , and D
0XH  is the Hessian matrix of the function D(X) at X0. The subpixel-

accurate location ˆ
0X  of the keypoint is obtained by finding the local extremum 

of ˆ ( )D X , which is given by [4] 

 

 −= − ∇1ˆ ( ) ( )D D
0 00 X XX H .      (2.10) 

 

If the distance of ˆ
0X  to X0 is larger than 0.5 pixels, then it is concluded that the 

pixel closest to the local extremum is not the one at location X0 , but another one. 

In this case, the interpolation is repeated by taking the origin as the center of the 

closest pixel to ˆ
0X  this time [4]. 

 

The classification of all keypoints obtained in this way as features may lead to the 

detection of unstable features. In order to prevent such situations, some 

mechanisms are required to eliminate unstable keypoints. The most 

straightforward check mechanism is to force the valid keypoints to have 

considerable image contrast.  Therefore, if the image intensity function value at 

the local extremum, ˆ( )D 0X , is below some threshold, the keypoint detected at 

that location is discarded. 
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As well as thresholding the intensity function, another tool is also utilized in order 

to eliminate unstable keypoints. The DoG-convolved image has high intensity 

values in edge regions; however, since the localization of a keypoint on an edge 

would be highly susceptible to noise, keypoints associated with edges are 

considered to be unstable. 

 

In order to check if a keypoint is associated with an edge, the principal curvatures 

of the DoG-convolved image at the keypoint location are examined, with the 

approach borrowed from the Harris corner detector [3]. On an edge, one of the 

principal curvatures has a high value and the other has a small value, whereas, on 

a stable keypoint the two principal curvatures are expected to be comparable. The 

principal curvatures of the function D(x,y,σ) are proportional to the eigenvalues of 

the following matrix H, computed at the location and scale of the keypoint: 

 

H = 
⎡ ⎤
⎢ ⎥
⎣ ⎦

xx xy

xy yy

D D

D D
       (2.11) 

  

Since the ratio of the two principal curvatures is of interest rather than their 

individual values, it is enough to compute the ratio of the two eigenvalues. 

Denoting the larger eigenvalue of H by α, the smaller one by β, and their ratio by 

r, the following identities are obtained: 

 

α β

αβ

= + = +

= − =2

Tr( )

Det( ) ( )

xx yy

xx yy xy

D D

D D D

H

H
     (2.12) 

α β β β
αβ β
+ + +

= = =
2 2 2 2

2

Tr( ) ( ) ( ) ( 1)

Det( )

r r

r r

H
H

    (2.13) 

 

The function + 2( 1) /r r  has a minimum if the two eigenvalues are equal, and is 

increasing with respect to r. Therefore, instead of computing r, 2Tr( ) / Det( )H H  

is computed, and the keypoint is discarded if this value exceeds a threshold, 
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which means that the ratio of the principal curvatures is high and the keypoint is 

likely to be on an edge [4]. 

 

 

Descriptor Vector Assignment 

 

The approach of SIFT for matching features is based on assigning a descriptor 

vector to each keypoint, which characterizes the keypoint, and then comparing the 

descriptor vectors of keypoints to match them. Therefore, the detection and 

localization of keypoints is followed by descriptor vector assignment. 

 

The first step of descriptor assignment is orientation assignment. Orientations of 

keypoints are assigned with respect to gradient magnitude and direction. Once the 

keypoint orientations are determined, then the descriptor vector of each keypoint 

is constructed relative to its orientation, which is the key to the rotation invariance 

property of SIFT. 

 

The orientation of a keypoint with coordinates (x0,y0,σ0) is computed from the 

scale-space image L(x,y,σ0') , where σ0' is the closest available scale to σ0. 

Computing the orientation from the image with the scale of the keypoint allows 

scale-invariance in feature matching. The magnitude m(x,y) and direction θ(x,y)  

of the gradient of the scale-space image L(x,y,σ0') at location (x,y) are computed 

from pixel differences: 

 

2 2

1

( , ) ( ( 1, ) ( 1, )) ( ( , 1) ( , 1))

( , ) tan (( ( , 1) ( , 1)) / ( ( 1, ) ( 1, )))

m x y L x y L x y L x y L x y

x y L x y L x y L x y L x yθ −

= + − − + + − −

= + − − + − −
 (2.14) 

 

The gradient is computed in an image region around the keypoint, and then an 

orientation histogram is created by using these gradient computations. The 360° 

range of directions is quantized in 10° intervals to allow 36 bins in the histogram. 
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When adding a gradient measurement to the histogram, the measurement is 

weighted by the magnitude of the gradient and a weighting factor, where the 

weighting factor is determined by a circular Gaussian function with a standard 

deviation of 1.5 times the scale of the keypoint.  

 

For the computation of the orientation of the keypoint, the highest peak in the 

orientation histogram is detected. In order to assign the orientation accurately, a 

parabola is fit to the histogram values at the bins corresponding to the peak and its 

two closest neighbours, and the peak position is interpolated, which determines 

the orientation of the keypoint. Occasionally, the orientation histogram might 

have more than one peak. If there are other peaks with values of at least 80% of 

the highest peak, then a separate keypoint is assigned for each of the peaks, which 

results in having several keypoints with the same location and scale but different 

orientations.  

 

Once the orientation of the keypoint is determined, the descriptor vector is 

computed in the following way: The gradient magnitude and directions are 

determined on sample locations around the keypoint as explained. In order to 

assure rotation-invariance, gradient directions are taken relative to the orientation 

of the keypoint. Figure 2.7(a) illustrates the measurement of gradients on sample 

image locations. 

 

Figure 2.7(a) shows the gradient measurements at sample locations on an 8x8 

grid. This 8×8 grid is grouped into four 4×4 grids as shown in (a), and an 

orientation histogram is obtained from each of these four grids as shown in Figure 

2.7(b). When forming the orientation histograms, the gradients are weighted by a 

circular Gaussian function with a standard deviation of half of the descriptor 

window width. The utilization of such a weighting function is useful in the sense 

that it lets the gradient measurements in image regions closer to the keypoint 

affect the descriptor more than more distant regions. Moreover, it also prevents 
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sudden changes in the descriptor due to the variations in keypoint localization. 

Each of the orientation histograms shown in Figure 2.7(b) has eight bins for 

gradient direction. The descriptor vector is obtained directly from these four 

orientation histograms by taking the value of each bin as an entry of the descriptor 

vector. 

 

 

 
  (a)             (b) 

 

Figure 2.7:  (a) Gradient measurements at sample locations on an 8×8 grid around the keypoint 
(b) 2×2 orientation histograms, each of which are obtained from a 4×4 grid [4] 
 

 

In the process depicted in Figure 2.7, an 8×8 grid is used to sample image 

intensity gradients around the keypoint, and the descriptor vector is obtained from 

four (2×2) orientation histograms. However, in the SIFT implementation used in 

this thesis, image gradients are sampled on a 16×16 grid, and descriptor vectors 

are obtained from 16 (4×4) orientation histograms each with 8 bins, which results 

in a descriptor vector length of 16×8=128. 
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Algorithm Overview: Feature detection with SIFT 

 

Input: An image  

Output: Feature points (keypoints) detected on the image and 

their descriptor vectors 

 

1. Obtain the scale-space of the input image by convolving with 

2D Gaussian functions at different scales. 

 

2. Subtract adjacent scale-space images to obtain the DoG-

convolved image sequence. 

 

3. Detect the extrema of the DoG-convolved image sequence and 

find the exact keypoint locations by using (2.9) and (2.10). 

 

4. Discard the extrema with too low contrast or too high edge 

response. 

 

5. Assign the orientations of the keypoints. 

 

6. Compute orientation histograms in regions around the keypoints 

as depicted in Figure 2.7, and fill in the descriptor vectors 

using the orientation histograms.  

 

 

Feature Matching 

 

Feature detection stage is completed with the assignment of a descriptor vector to 

each keypoint. Once features are detected in both views of the scene, it is very 

simple to obtain correspondence pairs (matches) by the descriptor vectors. 

 

Given a keypoint K1 belonging to the first image, its match K2 in the second 

image is determined by comparing the descriptor vectors of the keypoints in the 

second image to the descriptor vector of K1. The keypoint in the second image 

having the descriptor vector with the smallest Euclidean distance in 128  to the 
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descriptor vector of K1 is determined as its match K2. It might sometimes happen 

that the descriptor vectors of the two strongest match candidates, i.e. the two 

closest vectors, may have comparable distances to the vector of K1. This leads to 

an uncertainty in finding the correct match of K1. In order to prevent such 

uncertain matches, the ratio d1 / d2 is calculated, where d1 and d2 are the distances 

of the closest vector and the next closest vector to the vector of K1. The match is 

discarded if this ratio exceeds a predetermined threshold. Moreover, this ratio can 

also be regarded as a measure of the quality of the match, where a smaller ratio 

indicates a stronger match. 

 

It was explained previously in Section 2.2.1 that there may be multiple keypoints 

at the same location but with different scales or orientations. In this case, feature 

matching is done regardless of duplicate keypoints, but when all correspondence 

pairs are determined, the list of correspondences is scanned to check if all 

duplicate keypoints from the first image are matched to keypoints having the 

same location in the second image. If there is any contradiction among the 

duplicates of a keypoint, then all matches corresponding to that keypoint are 

discarded. After the correspondence list is revised in this way to eliminate all 

contradicting duplicates, the list is reorganized such that all duplicates of a 

keypoint are represented by a single one; hence, only one correspondence pair is 

associated with a certain location in the first image. 

 
 

Algorithm Overview: Feature matching with SIFT 

 

Input: Feature points (keypoints) and their descriptor vectors 

belonging to two different images  

Output: A list of correspondence pairs matching the features from 

the first and second images 

 

1. a. For each keypoint in the first image, find the keypoint in 

the second image with the closest descriptor vector. 
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   b. Add the match to the list of correspondences if the ratio 

of the distances of the two closest descriptor vectors is below 

some predefined threshold. 

 

2. Discard the matches associated with duplicates of a keypoint 

if there is any contradiction between the matching locations of 

the duplicates. 

 

3. Remove repeated matches from the list. 

 

 

Experimental Results 

 

The method of Scale Invariant Feature Transform is applied to two images from 

the Castle sequence to detect features and obtain matches. The results are 

presented in Figure 2.8. In (a) and (b) the features detected on the first and second 

images are shown. The matches obtained from these features are represented as 

lines drawn from the first image to the second in (c), whereas the figure in (d) 

shows the displacements of the feature locations between the first and the second 

images. 

 
 

2.2.2 Harris Corner Detector 
 
In 1988, Harris and Stephens developed a combined corner and edge detector that 

was to become one of the most popular feature detection tools in computer vision 

[3]. Being a widely used and accepted feature detection algorithm, Harris corner 

detector is regarded as a reference in this thesis to evaluate the performance of 

SIFT. In this section, some basic information about Harris corner detector is 

given. The performances of SIFT, Harris corner detector, and KLT tracker [20] 

are compared in Section 2.5.1. 
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         (a)      (b) 

 

 
(c) 

 

 
(d) 

 
Figure 2.8: (a) Features detected in the first image (b) Features detected in the second image (c) 
Correspondences between the first and second images (d) Displacements of features from the first 
to the second images 
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The algorithm of Harris corner detector is based on the following observation: 

Given a windowed image region, consider the average change in image intensity 

as the window is shifted in various directions. If the windowed region is flat, the 

change will be small with respect to the shift in all directions; if the region is an 

edge, the change will be small when shifted along the edge, and high in the 

opposite direction; and finally, if the region is a corner, then the change will be 

high in all directions. The change in average intensity E(x,y) with respect to the 

shift (x,y) is approximately 

 

[ ] [ ]=
T

( , )E x y x y x yM ,       (2.15) 

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑
∑ ∑

2

2

x x y
W W

x y y
W W

I I I

I I I
M ,  

 

where W is the windowed image region under search, and Ix and Iy are the partial 

derivatives of the image in x and y directions. The term E(x,y) in (2.15) is closely 

related to the image auto-correlation function, and the type of response at the 

windowed image region is associated with the two principal curvatures of the 

image auto-correlation. In order to have a corner in the searched region, the two 

principal curvatures must be close to each other. 

 

Observing that the eigenvalues of M, α and β, are proportional to the two 

principal curvatures [3], the following function R can be treated as a cornerness 

measure: 

 

= − ⋅ 2Det( ) Tr ( )R kM M       (2.16) 

 

where k is a constant, and Det(M) and Tr(M) are respectively the determinant and 

trace of the matrix M: 
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αβ

α β

= = −

= + = +

∑ ∑ ∑

∑ ∑

2 2 2

2 2

Det( ) ( )( ) ( )

Tr( )

x y x y
W W W

x y
W W

I I I I

I I

M

M
    (2.17) 

 

The function R, which takes high values when the two eigenvalues are 

comparable to each other and low values when they are disproportional, provides 

a practical mechanism for the detection of corners. If the value of R at a pixel is 

the maximum among its 8 closest neighbours and also positive, then that pixel is 

accepted as a corner. 

 

Performing feature detection by Harris corner detector as explained, feature 

matching can be achieved by comparing image intensity correlations of image 

patches taken around corner locations [9].  

 

2.3 Epipolar Geometry Estimation 
 

In order to obtain the sparse 3D structure of the scene from two views, the stage 

following feature detection and matching is the estimation of the epipolar 

geometry. Epipolar geometry is a geometric relation between two views, and is 

represented with the F-matrix.  

 

In this thesis, F-matrix is computed by using correspondence pairs. There are 

several works addressing the problem of estimating the epipolar geometry from 

point correspondences [1],[10],[11]. 8-point algorithm [10],[11] is a method for 

fundamental matrix computation from eight matches, whereas 7-point algorithm 

[1] is a similar tool that estimates the F-matrix from 7-correspondences. 

 

Another aspect of F-matrix computation from correspondence pairs is the problem 

of finding a suitable sampling strategy for forming sample sets from a large set of 

correspondences. The input to the epipolar geometry estimation stage is a set of 
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correspondences with many matches. However, the input set may also contain 

mismatches as well as correct matches, which raises the need for an efficient 

algorithm to choose good sample sets with the required number of 

correspondences from the input set, to be given to the F-matrix computation stage. 

RANSAC [12] is a widely used tool used for this purpose, which is based on 

computing models from randomly chosen sample sets until the correct model is 

found. On the other hand, PROSAC [13] is a modified version of RANSAC, 

which forms the sample sets not randomly but with respect to the quality of the 

matches. 

 

Before discussing the estimation of the F-matrix from correspondences, a brief 

review of some basic concepts from two-view geometry is presented. An 

overview of epipolar geometry [1] is given in Section 2.3.1. The problem of 

computing the F-matrix from correspondences, and the 7-point and 8-point 

algorithms are discussed in Section 2.3.2, whereas the studied methods for 

sampling the set of correspondences efficiently, i.e. RANSAC and PROSAC, are 

explained in Section 2.3.3. 

 

2.3.1  An Overview of Epipolar Geometry 
 

Consider a two-camera setup such as the one illustrated in Figure 2.9. Let X be a 

3D scene point, and C and C' be the centers of the first and second cameras, 

respectively. Then, the image of X in the first image plane will be the image point 

x, which is at the intersection of the line passing through X and C with the first 

image plane. The image of X on the second image plane, x', is obtained similarly.  

The scene point X, its projections x and x', and the camera centers C and C' are 

coplanar, and they lie in the plane π, which is called the epipolar plane. 

Obviously, an epipolar plane can be uniquely identified by a scene point and the 

camera centers, therefore, different epipolar planes are obtained if the position of 

the scene point is changed. 
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Figure 2.9: Illustration of a two-camera setup 

 

 

The line connecting the two camera centers C and C' is called the baseline. The 

points e and e', which are located at the intersections of the baseline and the image 

planes, are called epipoles. Epipoles are unique for a given setup, and are 

independent of the scene structure. 

 

The epipolar plane intersects each of the image planes along a line, and this line is 

called the epipolar line. In the illustration in Figure 2.9, the epipolar line 

corresponding to the scene point X in the first image plane is the line l (drawn 

dashed), which passes through x and e. The other epipolar line, l', is shown 

similarly on the second image plane. Different scene points (Xa, Xb,…) will in 

general be projected to different image points (xa, xb,… and xa', xb',..) on the 

image planes, and therefore will define different epipolar lines (la, lb,… and la', 

lb',…). However, all epipolar lines in the first image plane will be passing through 

the epipole e, and those in the second image plane through e'. Likewise, different 

epipolar planes (πa, πb,…) induced by different scene points (Xa, Xb,…) will all be 

intersecting along the baseline.  
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Now suppose that an image point x on the first image plane is given together with  

the two-view setup, and consider the problem of determining the image point x' 

on the second image plane which is the correct match of the image point x, 

meaning that x and x' must be the projections of the same scene point. The 

problem is illustrated in Figure 2.10. As shown in the figure, is not possible to 

determine a unique scene point corresponding to the image point x, since there are 

infinitely many scene points such as Xa and Xb on the ray passing through the 

camera center C and the image point x, all of which would be projected on x. 

However, since all candidate scene points, such as Xa and Xb, are collinear, their 

projections on the second image, such as xa' and xb', lie on the same line as well, 

namely, epipolar line, l'. Therefore, the problem of finding the match of a point x 

on the first image plane can be solved up to the level of mapping x to the epipolar 

line l', where the correct match of x, the point x', lies on the epipolar line l'. 

 

 
Figure 2.10: The problem of finding the match of x on the second image 

 

 

It is possible to write the relation x→ l', which maps every point in the first image 

to its corresponding epipolar line in the second image, in a matrix equation form 

[1]: 
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 ='l Fx ,        (2.18) 

 

where x and l' are 3×1 matrices representing the point x and the line l' in 2D 

homogeneous coordinates, and F is a 3×3 matrix. The matrix F in Equation (2.18) 

is called the fundamental matrix, and constitutes an algebraic representation of the 

epipolar geometry between the two cameras. 

 

The match of x in the second image, x', lies on the epipolar line l' corresponding 

to x, which can be formulated as 

 

 T 0=x' l' .        (2.19)  

 

Combining (2.18) and (2.19), one obtains: 

 

 T 0=x' Fx ,        (2.20) 

 

which is valid for all correspondences (x, x'). Therefore the fundamental matrix 

can be defined as a 3×3 matrix satisfying (2.20) for all correspondence pairs. 

 

Some basic properties of the fundamental matrix are the following [1]: 

 

• If F is the fundamental matrix relating the first image plane to the second, 

then FT is the fundamental matrix relating the second image plane to the 

first. 

• Given any point x in the first image, its corresponding epipolar line l' in 

the second image satisfies ='l Fx . 

• For any point x in the first image (other than the epipole e), the epipole of 

the second image e' lies on the epipolar line l' corresponding to x, which 

can be formulated by the equation T' ' 0=e l . Combining this with the 

previous property, the result T( ) 0=e' F x is obtained. Since this is valid for 
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every x, one gets T' 0=e F , which means that e' is the left null vector of F. 

Similarly, it can also be shown that e is the right null vector of F, i.e. 

Fe=0. 

• As F is a 3×3 matrix having one nontrivial null vector (from the previous 

property), it follows that F is of rank 2, and has 7 degrees of freedom. 

 

2.3.2 Computation of the Fundamental Matrix from 
Correspondences 

 
Computation of the fundamental matrix from a set of matches between two 

images is achieved by using the property of the F-matrix that T 0=x' Fx  for all 

matches (x,x'). Considering the entries of the F-matrix as unknowns and the point 

coordinates as known parameters, (2.20) can be put in the form of an equation 

system linear with respect to the F-matrix entries. Since each correspondence pair 

will define one equation, it is possible to solve the fundamental matrix linearly by 

using a sufficient number of correspondence pairs. 

 

The 7-point and 8-point algorithms [1],[10],[11] are two methods that provide a 

solution for estimating the fundamental matrix from correspondences. The two 

algorithms are similar in the sense that both are based on solving a linear equation 

system constructed from the matches as explained. However, the basic difference 

between these methods is that the fundamental matrix is implicitly required to be 

rank-2 in the 7-point algorithm, whereas the immediate output of the 8-point 

algorithm is not necessarily rank-2 and needs to be converted to the closest rank-2 

matrix to be a valid fundamental matrix.  

 

8-point algorithm has been originally developed by Longuet-Higgins for 

computing the essential matrix with calibrated cameras [10]. In [11], Hartley has 

shown that the normalization of point coordinates improves the performance of 

the 8-point algorithm significantly by reducing its susceptibility to noise.  
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The basic mathematical formulation for the computation of F-matrix from 

correspondences, which 8-point and 7-point algorithms both stem from, can be 

obtained in a simple way [1]: For a correspondence pair (x, x'), the image points x 

and x' can be expressed as column matrices in homogeneous coordinates as 

 

1

u
v
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x  ,  
'

' '
1

u
v
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x ,      (2.21) 

 

where u and v are respectively the horizontal and vertical coordinates of the image 

point x; and u' and v' are those of x'. 

 

Rewritten in an open form using homogeneous coordinates, the equation 
T 0=x' Fx  is equivalent to 

 

[ ]' ' ' ' ' ' 1 0u u u v u v u v v v u v =f ,   (2.22) 

 

where f is the 9×1 matrix composed of the entries of F written in row-major order. 

 

If there are n correspondence pairs, each of them will define an equation in the 

form of (2.22), which can be combined to yield the linear equation system 

 

1 1 1 1 1 1 1 1 1 1 1 1' ' ' ' ' ' 1
0

' ' ' ' ' ' 1n n n n n n n n n n n n

u u u v u v u v v v u v

u u u v u v u v v v u v

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

Af f . (2.23) 

 

The fundamental matrix F is obtained by solving Equation (2.23) for f. The rank 

of A and whether an exact solution exists depend on both the number of 

correspondences n, and the coordinate measurements, which will be explained 

when discussing the 7-point and the 8-point algorithms in the following sections. 
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2.3.2.1 Seven-Point Algorithm 
 
 
The minimum number of correspondences required for determining the F-matrix 

from (2.23) is seven. 7-point algorithm is a procedure for computing the F-matrix 

from seven correspondences. When there are seven correspondences, the matrix A 

in (2.23) will have dimensions 7×9. In the most likely case, A will be of rank 7, 

and have a two-dimensional null space. 

 

The null space of A is generated by two independent null vectors f1 and f2, and 

can be parameterized as (1 )α α+ −1 2f f , where α is a scalar. This leads to the 

result that the sought fundamental matrix F will be of the form (1 )α α+ −1 2F F , 

where F1 and F2 are the 3×3 matrices obtained by rearranging f1 and f2. 

Combining this result with the information that F is a rank-2 matrix, one can write 

 

 det( (1 ) ) 0α α+ − =1 2F F ,      (2.24) 

 

which is a third-degree polynomial equation in α, having either one or three real 

roots. Complex solutions are discarded if there are any, and each solution for α 

yields a solution for the fundamental matrix F as [1]:   

 

(1 )α α= + −1 2F F F        (2.25) 

 

2.3.2.2 Eight-Point Algorithm 
 

8-point algorithm is a method for computing the F-matrix from at least 8 

correspondences. In order to have an exact unique solution for f up to scale in 

equation (2.23), the matrix A must be of rank 8. If A is rank-8, (2.23) can be 

solved easily for f by determining the null vector of A. When the equation system 

is constructed with 8 correspondences, the most probable case is to have a rank-8 
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matrix.  However, 8-point algorithm allows the number of correspondences to be 

more than 8, as well, and in this case, A is not guaranteed to be rank-8 due to 

noise in correspondence coordinate measurements. Therefore, the algorithm 

follows a general procedure that can be applied to any n×9 matrix A, where 8n ≥ . 

 

If the linear system in (2.23) is constructed from n noisy correspondences for 

8n ≥ , A may have rank higher than 8, i.e. 9 as it has 9 columns. Therefore the 

system might not have an exact solution. In this case, a least squares solution is 

sought, which minimizes Af  subject to the condition 1=f . The solution to 

this minimization problem can be obtained by computing the singular value 

decomposition (SVD) of A, such that T=A USV , where U and V are orthogonal 

matrices, and S is a matrix containing the singular values of A on its diagonal 

entries. The least squares solution f to Af=0 is given by the column of V 

corresponding to the smallest singular value of A, which is usually the last 

column. 

 

When the matrix f is computed as a solution to (2.23) as explained, the required 

fundamental matrix F can be obtained from f by rearranging it in its original 3×3 

form. However, the fundamental matrix F estimated in this way need not be rank-

2, as this has not been imposed as a constraint in the performed calculations. 

Therefore the obtained solution for F must be explicitly converted to the closest 

rank-2 matrix F . This can be formulated as an optimization problem, where 

−F F  is minimized subject to det( ) 0=F . Again, it is possible to solve this 

minimization problem by singular value decomposition. The original matrix F is 

factorized as 

 

 
1

T
2

3

0 0
0 0
0 0

s
s

s

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

TF USV U V      (2.26) 
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where the singular values of F, i.e. s1, s2 and s3, are ordered as 1 2 3s s s≥ ≥ . In 

order to reduce the rank, S is modified to get S =diag(s1, s2, 0), and the rank-2 

approximation of F, denoted by F , is obtained as [1] 

 

 
1

T
2

0 0
0 0
0 0 0

s
s

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F U V  .      (2.27) 

 

 

2.3.2.3 Normalization of Correspondence Coordinates 
 
During the calculation of the fundamental matrix with 7-point and 8-point 

algorithms, the constructed equation system in (2.23) might become ill-

conditioned due to noise in image point coordinate measurements. In [11], it has 

been shown that a simple normalization of coordinates, composed merely of 

translation and scaling, improves the conditioning of the problem substantially 

and increases the stability of the result. 

 

During this normalization, the 2D image points are translated so that the centroid 

of points is moved to the origin. The translation is followed by a scaling so that 

the RMS of the distance of points to the origin becomes 2 . This procedure is 

done for the features in both images. Denoting the mean horizontal and vertical 

coordinates of features by mu and mv, and the RMS distance to the centroid by 

dRMS, the normalization applied to an image point can be represented as the linear 

transformation 

 

 =nx Tx ,        (2.28) 
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⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦1
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⎢ ⎥⎣ ⎦1
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vx ,  
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⎢ ⎥
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m
d d

m
d d

T , 

 

where x and xn are respectively the image point locations represented in 

homogeneous coordinates before and after normalization, and T is the 

transformation matrix.  

 

After the fundamental matrix is computed with the normalized correspondences, 

it is denormalized to give the solution of the original problem. The overall 

procedures for obtaining the F-matrix from correspondences with 7-point and 8-

point algorithms, including the normalization steps, are summarized as follows: 

 

 
Algorithm Overview: 7-Point Algorithm 

 

Input: Seven correspondence pairs (x, x') between two images 

Output: The fundamental matrix relating the two images 

 

1. Transform the coordinates of the points in both images (x and 

x') with respect to the transformation described in (2.28) to 

obtain the normalized coordinates xn and xn'.  

xn = Tx 

 xn'= T'x'  

 

2. Construct the linear equation system in (2.23), and obtain the 

two null vectors f1 and f2 of matrix A. 

 

3. Determine matrices F1 and F2 by rearranging the null vectors f1 

and f2. 
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4. Obtain the polynomial equation in (2.24) using F1 and F2, and 

solve for α. 

 

5. Determine the normalized fundamental matrix Fn corresponding to 

each solution for α from (2.25). 

 

6. Denormalize the normalized fundamental matrix Fn in order to 

obtain the original fundamental matrix F by the back-

transformation 

 F = T'T Fn T. 

 
 
Algorithm Overview: 8-Point Algorithm 

 

Input: Eight or more correspondence pairs (x, x') between two 

images 

Output: The fundamental matrix relating the two images 

 

1. Transform the coordinates of the points in both images (x and 

x') with respect to the transformation described in (2.28) to 

obtain the normalized coordinates xn and xn'.  

xn = Tx 

 xn'= T'x'  

 

2. Construct the linear equation system in (2.23), and determine 

the least squares solution for f by SVD. 

 

3. Determine the normalized fundamental matrix Fn by rearranging 

f. 

 

4. Compute the rank 2 approximation nF  of Fn from (2.26) and 

(2.27). 

 

5. Denormalize the normalized fundamental matrix nF  in order to 

obtain the original fundamental matrix F by the back-

transformation 
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 F = T'T nF  T. 

 
 

2.3.3 Sampling Strategies in Fundamental Matrix Estimation 
 

The 7-point and 8-point algorithms, which compute the fundamental matrix from 

seven and at least eight correspondences respectively, have been discussed in the 

previous section. However, the problem of estimating the epipolar geometry from 

a set of correspondences raises the question of which correspondences to use. For 

example, 7-point algorithm takes only seven correspondences as input; therefore, 

one must determine seven matches out of a large set of matches. 8-point algorithm 

allows more than eight points; however, it is not preferable to compute the F-

matrix directly from all matches, since the input set of matches usually contains 

mismatches as well. In the case that mismatches constitute a considerable 

percentage of all matches, the least squares solution for the F-matrix will be 

significantly contaminated by the incorrect data. These points lead to the necessity 

for a tool that will determine the correct matches while estimating the valid model 

efficiently at the same time. 

 

Random Sample Consensus (RANSAC) method was developed by Fischler and 

Bolles with this idea in 1981 [12] and has become a very popular tool to be used 

in such applications. In the following years, RANSAC has been the inspiration to 

many similar algorithms, such as PROSAC [13], DEGENSAC [14] and MLESAC 

[15], all of which are derived from RANSAC through some modifications. 

 

The epipolar geometry estimation stage of this thesis focuses on RANSAC and 

PROSAC. The algorithm of RANSAC is explained in Section 2.3.3.1, and 

PROSAC is discussed in Section 2.3.3.2. In order to compare the performances of 

the two algorithms experimentally, several tests have been conducted, and the 

results of these tests are presented in Section 2.5.2.  
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2.3.3.1 Random Sample Consensus (RANSAC) 
 
 
RANSAC (Random Sample Consensus) is an algorithm for fitting a model to 

experimental data containing considerable gross errors [12]. Unlike classical 

methods, such as least squares, which do not detect the erroneous data, RANSAC 

is a hypothesize-and-verify type of algorithm that estimates the model from a 

minimal subset of the data, and in this way tries to find the model consistent with 

as much of the data as possible. 

 

In the case of estimating the fundamental matrix from a set of correspondences, 

the algorithmic procedure carried out is the following: A minimal sample set is 

chosen randomly from the whole set of matches, i.e. a sample set of 7 

correspondences is formed if 7-point algorithm is to be applied, whereas 8 

correspondences are chosen in the case of 8-point algorithm. A fundamental 

matrix is computed from this sample set, and then the validity of the estimated F-

matrix is tested by checking the proportion of consistency with the estimated 

model among the whole input set. The matches consistent with the estimated F-

matrix are called inliers, and the disagreeing matches are denoted as outliers. 

Then another iteration is made with another randomly chosen sample set, and this 

procedure is repeated until an enough number of iterations are made. The 

estimation for the F-matrix is updated whenever the currently tested model yields 

the highest inlier ratio among the models tried up to that moment. 

 

The criterion used for determining whether a correspondence is consistent with a 

fundamental matrix is the Sampson error. Sampson error is a close approximation 

to geometric error and was first used by Sampson for conic fitting [16]. In the 

problem of fundamental matrix estimation, Sampson error can be defined as a 

function of a correspondence (x, x') and a fundamental matrix F, and is in the 

form [1] 
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  ,    (2.29) 

 
 
where x and x' are column matrices representing the correspondence in 

homogeneous coordinates, and the expressions (.)1 and (.)2 denote respectively the 

first and second entries of a column matrix. Sampson error is a measure of the 

compatibility of a match with a fundamental matrix, where the error decreases as 

the match agrees with the model better. If the correspondence is perfectly 

consistent with F, the term Tx' Fx  in the numerator of the expression in (2.29) 

vanishes; therefore, the Sampson error is zero. If the Sampson error computed for 

a match and a fundamental matrix is below some threshold, then the match is 

determined to be an inlier with respect to the model defined by the fundamental 

matrix, and an outlier otherwise.  

 

In addition to adopting the approach of choosing random minimal samples, 

RANSAC also incorporates an efficient termination mechanism. The number of 

iterations to be made is determined adaptively depending on the progress of the 

model estimation procedure. The input correspondence set contains both correct 

and false matches, which can be regarded as inliers and outliers with respect to 

the correct model. However, it is never possible to be absolutely sure that the 

correct model is obtained. Therefore, the termination decision is made in 

RANSAC to ensure with some probability that the best model ever estimated is 

the correct one. 

 

Denoting the number of inliers by I, and the number of all matches by N; the 

probability that a randomly chosen match is an inlier is PI = I/N. If the sample sets 

contain m correspondences, the probability of having all inliers in a sample set is 

approximately equal to m
IP . Therefore, the probability that at least one of the 

sample sets tested until the kth iteration is free of outliers is − −1 (1 )m k
IP , which 
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can be regarded as the probability of having found the correct model. Setting this 

probability to a predetermined constant η, one has 

 

 η = − −1 (1 )m k
IP  

 

Hence, the number of iterations kMAX to be made to ensure with a probability η 

that the correct model is estimated is 

 

 −η
=

−
log(1 )

log(1 )MAX m
I

k
P

.       (2.30) 

  

The upper bound for the number of iterations kMAX is updated, whenever the 

model is updated. When the number of iterations made reaches or exceeds kMAX, 

the algorithm terminates. It is possible to refine the final model further by 

determining the inliers with respect to the final model and recalculating the model 

from all inliers in an iterative manner.  

 

A possible improvement on RANSAC is the inclusion of the bucketing technique 

to the algorithm [17]. Since the sample sets are formed randomly, it may 

sometimes happen that the sample matches are confined to a restricted region of 

the image plane, which might reduce the reliability of the result. In order to 

prevent this, image planes are divided into equal regions, called buckets, and the 

members of a sample set are chosen such that no two of them belong to the same 

bucket in either image. 

 

The pseudo-code for RANSAC is the following: 

 
Algorithm Overview: Fundamental Matrix Estimation with RANSAC 

 

Input: A set of correspondences between two images 

Output: The fundamental matrix relating the two images 
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1. Initializations: 

   a. Set the number of iterations made to 0 (k=0). 

   b. Set the upper bound for the number of iterations to an 

initial value (kMAX=M). 

   c. Set the highest number of inliers to 0 (IMAX=0). 

 

2. While (k<kMAX) 

   a. Choose a random sample set. 

   b. Compute the fundamental matrix from the sample set. 

   c. Determine the number of inliers I by calculating the Sampson 

error for each match and classifying the match as an inlier if 

the error is below some predetermined threshold. 

   d. If (I>IMAX) 

 i.   Update the best model (F-matrix) obtained so far. 

 ii.  Set IMAX=I. 

 iii. Update kMAX with respect to (2.30). 
     e. Increment the number of iterations (k=k+1). 
 

3. Refine the final model: Repeat steps a-b until the model 

converges or an enough number of iterations are made. 

   a. Determine the inliers consistent with the model. 

   b. Recalculate the fundamental matrix from all inliers (8-point 

algorithm is to be used in this step since the number of inliers 

is usually more than 8). 

 

 

The RANSAC algorithm is tested on two views of a scene from the documentary 

video Planet Earth, to estimate the epipolar geometry between the views. The 

results are presented in Figure 2.11. In (a) and (b), the first and second views are 

shown, together with the detected (and matched) SIFT features. The features 

shown with blue dots are determined as inliers by RANSAC, whereas the red dots 

indicate outliers. In (c), the disparity vectors showing the displacement of the 

features between the first and the second views are drawn, where the inlier and 

outlier matches  are  again  indicated  with  blue  and  red colours  respectively. The  
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       (a)             (b) 
 

 

(c) 

 
(d) 

 

Figure 2.11: Epipolar geometry estimation with RANSAC: (a) First image (b) Second image (c) 
Displacement vectors of features (d) Epipolar lines in the second image and the corresponding 
points in the first image 
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epipolar lines on the second image are drawn in (d), where the line with each 

colour corresponds to the point in the first image having the same colour. 

 
The results given in Figure 2.11 prove the performance of RANSAC for detecting 

and discarding the outliers. Most of the outlier matches can be easily identified in 

(c) as false lines in discord with the general flow of disparity vectors; and it can 

be observed that RANSAC efficiently discriminates the outliers from inliers. 

Moreover, the matches detected on the TV channel logo, which are not part of the 

scene and thus inconsistent with the overall geometry, are also labeled 

successfully as outliers. The epipolar lines in (d) are consistent with the points 

marked in the first image, i.e. the matches of the selected points lie on the 

corresponding epipolar line, and the directions of the lines are also as expected, 

considering the camera motion between the two views. 

 

2.3.3.2 Progressive Sample Consensus (PROSAC) 
 

Progressive Sample Consensus (PROSAC) [13] is an algorithm proposed by 

Chum and Matas for estimating the model between two views from image 

correspondences. PROSAC is a modified version of RANSAC that is devised to 

achieve computational savings over RANSAC, while retaining its performance as 

far as the quality of the obtained model is concerned. 

 

PROSAC orders input correspondences due to some quality (similarity) measure, 

and forms sample sets in a manner that favours the correspondences with better 

scores, whereas RANSAC draws samples randomly. The approach of giving 

priority to matches with high similarity scores in PROSAC relies on the 

assumption that the similarity function of a match provides a good prediction 

about its correctness.  
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The quality measure used in ranking correspondences is the similarity function 

assigned to correspondences in the feature matching stage. The similarity function 

can be defined in various ways depending on the type of feature matcher: The 

intensity correlation around features may be an appropriate similarity measure if 

feature detection is achieved with Harris corner detector, whereas the most 

suitable quality measure in SIFT is the distance ratio, which is explained in 

Section 2.2.1.  

 

The procedure applied to estimate the model with PROSAC can be summarized 

as follows: Consider an input set of N correspondences denoted by UN, where the 

tentative matches in UN  are sorted with respect to a quality function q, such that 

for any ui, uj ∈ UN, q(ui) > q(uj) if  i < j. Since feature detection and matching is 

achieved with SIFT in this thesis, the quality function q is taken as 1-(d1/d2), 

where d1 and d2 are respectively the distances of the descriptor vectors of the first 

and second closest features in the second image to the descriptor vector of the 

feature in the first image. 

 

The subset of UN consisting of the top n correspondences with the highest quality 

is denoted by Un, and the sample sets consisting of m samples are denoted by M, 

where m depends on the fundamental matrix estimation method. PROSAC is 

similar to RANSAC in the sense that samples are drawn randomly from a 

hypothesis generation set and the correct model is obtained after trying a series of 

models computed from different sample sets. The hypothesis generation set is the 

whole set of matches in RANSAC, i.e. UN, whereas in PROSAC it is a growing 

set that initially consists of the top m correspondences and is gradually extended 

by adding new correspondences one by one in quality order throughout the 

iterations.  

 

The growth of hypothesis generation set is controlled with respect to the number 

of iterations made via a growth function g(k), which determines the size of the 
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hypothesis generation set n, as a function of the iteration number k. An example 

growth function is proposed in [13]; however, it is possible to define alternative 

growth functions, depending on the reliability of the quality function as a measure 

of the probability of the correctness of a match. 

 

Once the growth function g is defined, sample sets can be formed according to the 

relation 

 

 { }= ∪ '
( )k g k kM u M ,       (2.31) 

 

where Mk stands for the sample set chosen at the kth iteration, ug(k) is the 

correspondence with the quality order g(k), and Mk' is a subset of Ug(k)-1 formed by 

choosing m-1 samples from Ug(k)-1 randomly. The intention in constituting sample 

sets in this way is to give more chance to top-ranking correspondences when 

estimating the model, and try other correspondences in quality order if model 

estimation fails. 

 

Forming sample sets as explained, the rest of the algorithm is similar to 

RANSAC. Fundamental matrix is computed from the chosen sample set, and the 

validity of the computed model is tested by checking if the correspondences in the 

hypothesis generation set are consistent with the model.  The consistency of a 

correspondence with the model is again measured with the Sampson error, which 

is formulated in (2.23). A series of models are estimated and tested in a cycle, 

until some termination criteria are satisfied. The best model estimated until 

termination is the output of the algorithm. 

 

The termination decision in PROSAC is given with respect to two criteria; non-

randomness and maximality. These two concepts are explained as follows [13]: 
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1) Non-randomness: In order to terminate, the number of inliers in within the 

hypothesis generation set Un must satisfy the condition that the probability of 

classifying in of the correspondences as inliers among n correspondences by 

chance even if the model is incorrect is smaller than some threshold ψ. This 

constraint is imposed in order to prevent the algorithm from ending up with an 

incorrect model supported by fake inliers that are actually outliers supporting the 

model by chance. The probability of having i inliers among n correspondences for 

an incorrect model is 

 

 β β− − + −⎛ ⎞
= − ⎜ ⎟−⎝ ⎠

( ) (1 )R i m n i m
n

n m
P i

i m
,       (2.32) 

 

where β denotes the probability that an incorrect model is supported by a 

randomly chosen correspondence not in the sample set inducing that model. β can 

be estimated adaptively from the statistics obtained during the runtime of the 

algorithm. In order to check the non-randomness condition, for the size n of the 

hypothesis generation set, the minimum number of inliers min
ni  is calculated, 

where the probability of having a support of size min
ni  by chance due to an 

incorrect model is less than ψ . The term min
ni  is given by 

 

 
=

⎧ ⎫
= < ψ⎨ ⎬

⎩ ⎭
∑min min | ( )

n
R

n n
i j

i j P i ,       (2.33) 

 

where the function PR
n(i) is as defined in (2.32). In order to satisfy the non-

randomness condition for termination, the number of inliers in must satisfy 

≥ min
n ni i . 

 

2) Maximality: The maximality condition is a constraint on the number of 

iterations. A sufficient number of iterations must be done until termination to 
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ensure that the probability of having found the correct model is higher than some 

predetermined threshold. The maximality condition is actually the only 

termination criterion in RANSAC, and the number of iterations required for 

termination is given in (2.30). However, when calculating the required number of 

iterations in PROSAC, the ratio of inliers is evaluated not within the whole set of 

correspondences UN  as in RANSAC, but within the hypothesis generation set Un. 

 

The algorithm terminates only if both the non-randomness and the maximality 

conditions are satisfied. The whole procedure for estimating the fundamental 

matrix with PROSAC is summarized as follows: 

 
Algorithm Overview: Fundamental Matrix Estimation with PROSAC 

 

Input: A set of correspondences between two images sorted with 

respect to a quality function 

Output: The fundamental matrix relating the two images 

 

1. Initializations: 

   a. Set the number of iterations made to 0 (k=0). 

   b. Set the number of inliers to 0 (in=0). 

   c. Set the upper bound for the number of iterations to an 

initial value (kMAX=M). 

   d. Set the size of the hypothesis generation set to the sample 

size (n=m). 

   e. Set the minimum number of inliers to the sample size 

(inmin=m). 

 

2. While (k<kMAX or in<inmin) 

   a. Increment the number of iterations (k=k+1). 

   b. If the size of the hypothesis generation set requires an 

update due to the growth function 

     i.  Update n=g(k). 

     ii. Update inmin according to (2.33).    
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   c. Take un and m-1 random samples from Un-1 to form the sample 

set (except for the case n=m, where the sample set is the 

hypothesis generation set itself). 

   d. Compute the fundamental matrix from the sample set. 

   e. Determine the number of inliers in. 

   f. If the estimated model is the best model so far 

 i.  Update the model. 

 ii. Update kMAX with respect to (2.30). 
      
3. Refine the final model: Repeat steps a-b until the model 

converges or an enough number of iterations are made. 

   a. Determine the inliers consistent with the model. 

   b. Recalculate the fundamental matrix from all inliers. 

 

 

The performance of PROSAC is also tested on the Planet Earth sequence, the 

results of which are given in Figure 2.12. The features detected on the first and 

second images are shown respectively in (a) and (b). Displacement vectors of 

features between the two images are drawn in (c), and the epipolar lines on the 

second image are drawn in (d). Blue colour indicates inliers and red colour 

indicates outliers in (a), (b) and (c). 

 

The data used in this experiment is the same as that of the experiment done with 

RANSAC, whose results are presented in Figure 2.11. The plots given in Figure 

2.12 reveal that PROSAC is capable of discarding outliers successfully and 

estimating the correct model. The similarity of the results obtained with RANSAC 

and PROSAC is also impressive, which suggests that PROSAC performs as well 

as RANSAC in computing the correct model from a set of data contaminated with 

outliers. A more comprehensive comparison between PROSAC and RANSAC is 

made in Section 2.5.2. 
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    (a)              (b) 

 

 
 (c)  

   
(d) 

 

Figure 2.12: Epipolar geometry estimation with PROSAC: (a) First image (b) Second image (c) 
Displacement vectors of features (d) Epipolar lines on the second image and the corresponding 
points in the first image 
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2.4 Reconstruction of Cameras and Structure 
 
 
Following the discussions on feature detection and epipolar geometry estimation, 

the last stage to be examined regarding the two-view reconstruction problem is 

the reconstruction of the cameras and structure, which is the recovery of the 3D 

organization of the scene and the camera poses. In other words, the reconstruction 

problem is the determination of the 3D locations of scene points together with the 

positions and orientations of cameras, so that the solution explains the 

measurements on 2D correspondence coordinates. 

 

Once fundamental matrix is estimated, it is possible to recover the camera poses, 

i.e. camera projection matrices, up to a projective transformation directly from the 

fundamental matrix. The structure can then be reconstructed via triangulation, 

again up to a projective ambiguity, which means that it is possible to reconstruct 

the scene projectively, even if the two-camera system is uncalibrated. If internal 

calibration information is available, it is also possible to stratify the projective 

structure to get the metric reconstruction of the scene. 

 

In this thesis, the 3D metric reconstruction problem is solved in the explained 

manner, i.e. the cameras and scene structure are first reconstructed up to a 

projective transformation, and then upgraded to metric through the internal 

calibration information.  However, it is also possible to handle the same problem 

in different ways; for example, an alternative approach [9] is calculating the 

essential matrix from the fundamental and the internal calibration matrices, and 

then decomposing the essential matrix to obtain the rotation and translation 

parameters, which define the metric reconstruction directly. Instead of adopting 

such an approach, attaining metric reconstruction through projective is preferred 

in this thesis. This is due to the expectation of avoiding the error accumulating at 

the cost of an ideally metric representation, while new views are being added to 

the system in the multi-view reconstruction stage. 
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This section is organized as follows: In Section 2.4.1 some background 

information about projective geometry is presented in order to clarify the concepts 

referred to in the proceeding discussions. In Section 2.4.2 the projective 

reconstruction problem is discussed; and the procedure of upgrading the 

projective reconstruction to metric is explained in Section 2.4.3. 

 

 

2.4.1  An Overview of Projective Geometry 
 
 
A camera is defined as a mapping between the 3D world and the 2D image [1]. 

This mapping can be expressed via the relation 

 

 =x PX         (2.34) 

 

where P is the 3×4 projection matrix defining the camera, X is a 3D scene point, 

and x is the 2D projection of X on the image plane of the camera. Both X and x 

are represented in homogeneous coordinates. Figure 2.13 illustrates the projection 

of a 3D scene point onto an image plane via a pinhole camera. 

 

 
Figure 2.13: Projection of the 3D scene point X onto the image plane of the pinhole camera with 
center C, to obtain the 2D image point x. 
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Homogeneous coordinates of a point are obtained by adding a scale entry at the 

end of usual coordinates. For example, a 3D point with coordinates (X, Y, Z) can 

be expressed in homogeneous coordinates as (X, Y, Z, 1), or equivalently as (kX, 

kY, kZ, k) for any scalar k. Similarly a 2D point with coordinates (x, y) is 

expressed as (cx, cy, c) in homogeneous coordinates. Therefore, (2.34) can be 

rewritten as: 

 

 

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦

11 12 13 14

21 22 23 24

31 32 33 34

kX
cx P P P P

kY
cy P P P P

kZ
c P P P P

k

 

 

 

Projective Cameras 

 

The most general camera form is the projective camera. A projective camera 

maps 3D world points to 2D image points via the relation x=PX. A general 

projective camera is represented by an arbitrary 3×4 matrix of rank 3.  

 

 
 

Figure 2.14: Camera center, image plane, principal point and the principal axis 
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Since P is a rank-3 matrix with 3 rows and 4 columns, it has a one-dimensional 

null space. Moreover, the vector C generating the null space of P, such that 

PC=0, is the camera center of P represented in homogeneous coordinates. 

 

The principal axis is the line passing through the camera center C with direction 

perpendicular to the image plane. The intersection of the principal axis with the 

image plane is the principal point. 

 

 

Pinhole Camera Model 

 

A pinhole camera is a special form of projective camera that constitutes a simple 

model for most commercial cameras. The pinhole camera model maps a 3D point 

X to the 2D point x on the image plane, which is at the intersection of the line 

joining the camera center C to the scene point X. This mapping is illustrated in 

Figure 2.13.  

 

 
Figure 2.15: Projection of the scene point (X, Y, Z) to the image point (fX/Z, fY/Z) with a pinhole 
camera 
 
 
 
Denoting the focal length of the camera by f, which is defined as the distance 

between the camera center and the image plane, it is easy to establish the mapping 

between the 3D point (X, Y, Z) and its 2D projection (fX/Z, fY/Z) on the image 
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using basic geometry rules, where the 3D coordinates are represented with respect 

to the camera coordinate frame taking the camera center as origin, and the 2D 

coordinates are represented with respect to image coordinate frame. The 

projection of a 3D point to the image plane is explained in Figure 2.15. 
 
The mapping (X, Y, Z) → (fX/Z, fY/Z) assumes that the principal point is the origin 

of the image plane. In the general case where the principal point has coordinates 

(px, py), the mapping can be generalized as (X, Y, Z) → (fX/Z+px,  fY/Z+py). This 

can be expressed in a matrix equation of form x=PX as  

 

 

⎡ ⎤
+⎡ ⎤ ⎡ ⎤ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦

0 0

0 0

0 0 1 0
1

x x

y y

X
fX Zp f p

Y
fY Zp f p

Z
Z

,     (2.35) 

 

where the scene point (X, Y, Z) and the image point (fX/Z+px,  fY/Z+py) are 

expressed in homogeneous coordinates as X and x. Equation (2.35) can be 

rewritten as x=K[ I | 0]X, where K is  

 

 
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

0

0

0 0 1

x

y

f p

f pK .       (2.36) 

 

The matrix K is called the camera calibration matrix. In (2.35), the scene point X 

is represented with respect to the camera coordinate frame. However, sometimes 

it is necessary to represent X with respect to a different world coordinate frame. 

In the general case, the world coordinate frame and the camera coordinate frame 

are related via a rotation and translation. Therefore, the equation x=K[ I | 0]X is 

modified as follows so that X is represented with respect to the world coordinate 

frame instead of the camera coordinate frame: 

 



 58

 x=K[R|t]X        (2.37) 

 

In (2.37), K is the camera calibration matrix, and R and t are the rotation matrix 

and the translation vector defining the conversion between the camera and the 

world coordinate frames. 

 

To summarize, in addition to inheriting the generic properties of the projective 

camera, a pinhole camera must also be in the special form described in (2.37). 

 

Projective and Metric Reconstructions 

 

The purpose of two-view reconstruction is, given a set of correspondences {(xi, 

xi')}, to determine the projection matrices P and P' corresponding to the two 

cameras, and 3D scene points {Xi} satisfying  xi=PXi  and  xi'=P'Xi  for every i. 

 

In any reconstruction problem, where the scene structure and cameras are to be 

retrieved from image correspondences {(xi, xi')}, there exists a true reconstruction 

P , 'P  and { }iX , and it is possible to obtain the true reconstruction up to some 

type of transformation, such as a similarity transformation, affine transformation 

or a projective transformation. An affine transformation is a special type of 

projective transformation, and a similarity transformation is a special type of 

affine transformation. These 3D transformations are defined as follows [1]: 

 

A projective transformation in 3-space can be represented as Xp=TpX, where X is 

a 3D point in homogeneous coordinates, Xp is obtained from X via the projective 

transformation, and Tp is a 4×4 transformation matrix in the form 

 

 T v
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

p

A t
T

v
 ,       (2.38) 
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with A being a 3×3 invertible matrix, t=(tX, tY, tZ)T a 3×1 translation vector, v a 

general 3×1 vector and v a scalar  [1]. 

 

Similarly, an affine transformation in 3-space, Xa=TaX, is performed through a 

transformation matrix Ta of the form 

 

 ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

T 1a

A t
T

0
,        (2.39) 

 

where A is a 3×3 invertible matrix, t=(tX, tY, tZ)T is a 3×1 translation vector and 

0=(0, 0, 0)T is the 3×1 null vector. 

 

Finally, a similarity transformation in 3-space, Xs=TsX, is represented via a 

transformation matrix Ts of the form  

 

 ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

s T 1

sR t
T

0
 ,       (2.40) 

 

where R is a 3×3 rotation matrix, t=(tX, tY, tZ)T is a 3×1 translation vector, and s is 

a scalar representing scale change.  

 

A similarity transformation can be considered as a combination of rotation, 

translation and scale change. A similarity transformation preserves parallelisms, 

orthogonalities, distance ratios, and the image of the absolute conic (see Section 

2.4.3 for more detail), whereas an affine transformation preserves parallelisms, 

volume ratios and centroids. A projective transformation generally does not 

preserve any of these. Intersection and tangency of contacting surfaces are some 

of the invariant properties of a projective transformation. In order to visualize 

their effects, typical similarity, affine and projective transformations applied to a 

cubic object are illustrated in Figure 2.16. 
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  (a)               (b)           (c)              (d) 

 
Figure 2.16: 3D Transformations: (a) The original cubic object (b) Projective transformation (c) 
Affine transformation (d) Similarity transformation applied to the object 

 
 
In a reconstruction problem, if correspondence pairs are the only clues about the 

system, then for any reconstruction with projection matrices P, P' and a 3D point 

X satisfying  

 

x=PX 

x'=P'X, 

 

it is possible to obtain an equivalently valid reconstruction  

 

x=(PH)(H-1X) 

x'=(P'H)(H-1X) 

 

through any 4×4 invertible matrix H, where PH and P'H are the projection 

matrices and H-1X is the 3D scene point corresponding to the new reconstruction. 

This is known as projective ambiguity, and if the calibration is unknown for both 

cameras, the 3D points {Xi} and cameras can be determined only up to a 

projective transformation, which is called projective reconstruction [1]. 

 

A scene can be reconstructed projectively from only correspondences even if no 

other information is available about cameras. Additional information about the 

cameras may make it possible to refine the projective reconstruction to a more 

specific level. If camera calibration is known, i.e. internal calibration parameters 
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are available, the scene can be reconstructed up to a similarity transformation [1]. 

This type of reconstruction is called as a similarity reconstruction, and is referred 

to as Euclidean reconstruction or metric reconstruction in the literature as well. 

 

In this thesis, in order to reconstruct the scene, first the projective camera matrices 

are computed by using the fundamental matrix. Then the projective reconstruction 

of scene points are obtained via triangulation, where the 3D location of a scene 

point is determined by intersecting two rays, each of which passes through the 

camera center and the image of the scene point on the image plane. Finally, the 

obtained projective reconstruction is upgraded to achieve a metric reconstruction 

through a stratification matrix H, which is computed from the camera calibration 

matrix K. 

 

2.4.2 Projective Reconstruction of the Scene 
 

2.4.2.1 Determination of Projection Matrices 
 

As epipolar geometry estimation has already been achieved in the previous stage, 

the first part of the projective reconstruction of the scene is the determination of 

suitable projective camera matrices consistent with the fundamental matrix. 

 

It has been mentioned in the previous section that knowing the fundamental 

matrix determines the reconstruction up to a projective transformation. Given a 

fundamental matrix F relating the two views of a scene, the projection matrices P 

and P' corresponding to the two cameras must satisfy that P'TFP is skew-

symmetric [1]. 

 

A particular choice for P and P' consistent with F is the following, which satisfies 

the above property: 
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[ ]
[ ]×

=

=

|

[ ] |

P I 0

P' e' F e'
       (2.41) 

 

In (2.41), e' is the left null vector of F such that e'TF=0, and the notation [.]× 

denotes the cross matrix of a vector. The projective camera matrices are 

determined according to (2.41). 

 

2.4.2.2 Triangulation 
 

Once the projection matrices are determined, the next problem for the 

reconstruction is the computation of the 3D locations of scene points. In other 

words, given projection matrices P, P', and its projections on images x, x', the 3D 

location of the point X must be computed such that PX=x and P'X=x'. 

 

The reconstruction problem, whose algebraic formulation is as stated, physically 

corresponds to the problem of finding the intersection of two lines, each of which 

passes through the respective camera center and the projection on image plane. 

This process is called triangulation and is illustrated in Figure 2.17. 

  

 
Figure 2.17: The scene point is at the intersection of the rays back-projected from the image 
points. 
 

In the ideal case, where the image projection locations and projection matrices are 

noiseless and perfectly available, the two rays representing back-projections 
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intersect at a point in the 3-space, therefore, the location of the scene point can be 

easily determined. However, this is not the case in practical reconstruction 

problems, as measurement noise and computation errors are involved. If the 

correspondences x and x' do not satisfy the epipolar constraint (the condition 

x'TFx=0) perfectly, the rays do not meet at a point as depicted in Figure 2.18, and 

the optimal solution for the non-ideal reconstruction problem must be searched 

[1]. 

 

 
Figure 2.18: In practical problems, the back-projected rays do not intersect in space because of 
noise and errors. 
 
 
 
Idealization of Correspondence Coordinates 

 

In general, the noisy correspondence locations x and x' do not satisfy the epipolar 

constraint, and the correct locations of the correspondences x̂  and x̂' , such that 

=Tˆ ˆ' 0x Fx , are in a close neighbourhood of the noisy measurements. Therefore, 

triangulation of non-ideal correspondences is achievable through the solution of 

the optimization problem where the points x̂  and x̂'  are searched that minimize 

the function 

 

 = +2 2ˆ ˆ( , ) ( , ) ( ', ')C d dx x' x x x x       (2.42) 

 

subject to the condition =Tˆ ˆ' 0x Fx . The expression d( . , . ) in (2.42) denotes the  

Euclidean distance in 2D space. 
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Figure 2.19: Optimization of the noisy correspondence (x, x') to satisfy the epipolar constraint 

 

 

It is possible to determine the global minimum of the cost function in (2.42) with 

non-iterative methods [1]. The problem is illustrated in Figure 2.19. The idealized 

correspondence locations x̂  and x̂'  are sought such that x̂'  is on the epipolar line 

= ˆl' Fx , and x̂  is on the epipolar line = T ˆl F x' . However, any other 

correspondence pair chosen on the epipolar lines l and l' will also satisfy the 

epipolar constraint. Since the optimization problem stated in (2.42) requires the 

minimization of the distances between the idealized image points and the original 

measurements, the idealized correspondence locations x̂  and x̂'  are the closest 

points of the epipolar lines to x and x'. Therefore, the cost function in (2.42) is 

equivalent to  

 

= +2 2( , ) ( , ) ( ', ')C d dx x' x l x l ,      (2.43) 

 

where l and l' are to be chosen among all possible epipolar lines.  

 

The global minimum of the function in (2.43) can be obtained through the 

following procedure [1]:  Firstly, the pencil of epipolar lines in the first image are 

parameterized by a parameter t, so that the epipolar lines in the first image are 

expressed in the form l(t). Then the epipolar lines in the second image, l'(t), are 

computed from F, which makes it possible to write the cost function in (2.43) as a 

function of solely t. Finally the value of t that minimizes (2.43) is computed. 
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In order to simplify the solution of this minimization problem, the following 

substitutions are made: Firstly the image points x = (u, v, 1)T and x' = (u', v', 1)T 

are moved to the origin through the transformations 

 

 
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

1 0

0 1

0 0 1

u

vT  , 
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
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1 0 '

' 0 1 '

0 0 1

u

vT ,    (2.44) 

 

so that x = x' = (0, 0, 1)T in homogeneous coordinates. Secondly, the epipoles e 

and e' are normalized such that e = (e1, e2, e3)T and e' = (e'1, e'2, e'3)T, where 

e1
2+e2

2=1 and e'12+e'22=1. Then the epipoles are placed on the x-axis as e = (1, 0, 

e3 )T and e' = (1, 0, e'3 )T via the rotations 

  

 
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

1 2

2 1

0

0

0 0 1

e e

e eR ,  
⎡ ⎤
⎢ ⎥= −⎢ ⎥
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1 2

2 1

' ' 0

' ' 0

0 0 1

e e

e eR' .    (2.45) 

 

On account of these transformations, the original fundamental matrix F is updated 

as 

 

 1 T 1 T)− −=F R'(T' FT R ,      (2.46) 

 

which consequently has the special form  

 

 
3 3 3 3

3

3

' ' 'e e d e c e d
e b a b
e d c d

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

F .     (2.47) 

 

In order to parameterize the epipolar line l, l(t) is defined as the line passing 

through the epipole e = (1, 0, e3 )T and an arbitrary point (0, t, 1)T on the y-axis. 
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This parameterization yields l(t) = (te3, 1, -t)T, and the corresponding epipolar line 

l'(t) on the second image is obtained as l'(t) = F (0, t, 1)T = (-e3' (ct+d), at+b, 

ct+d)T. Combining these, the cost function defined in (2.43) can be reformulated 

in terms of the parameter t as [1] 

 

 +
= +

+ + + +

2 2

2 2 2 2 2
3 3

( )
( )

1 ( ) ' ( )

t ct d
C t

e t at b e ct d
.    (2.48) 

 

The minimum value of C(t) is found by setting its derivative to zero and solving 

for t. Deriving and reorganizing dC(t)/dt, one can show that the local minimum 

occurs at the value of t which satisfies 

 

 

= + + +

− − + + +

=

2 2 2 2
3

2 2 2
3

( ) (( ) ' ( ) )

( )(1 ) ( )( )

0

g t t at b e ct d

ad bc e t at b ct d     (2.49) 

 

The function g(t) in (2.49) is a 6th degree polynomial, and the minimum value of 

C(t) can be determined by computing the roots of g(t) and evaluating C(t) at the 

real roots. The asymptotic value of C(t) as →∞t  must also be checked.  

 

Once the optimum value of t is found, the optimal epipolar lines l and l' are 

obtained by evaluating l(t) and as l'(t) at the respective t value. Then the corrected 

coordinates x̂  and x̂'  are calculated as the closest points on these lines to x and 

x'. Applying the required back transformations, the original values of x̂  and x̂'  

are found.  

 
Triangulation with Idealized Correspondences 

 

Having obtained the idealized correspondence locations x̂  and x̂'  satisfying the 

epipolar constraint =Tˆ ˆ' 0x Fx , the last part of triangulation is the determination of 
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the location of the 3D scene point X. The value of X must be calculated which 

satisfies = ˆPX x  and = ˆ' 'P X x . 

 

The computation of X is easily achievable by forming a linear equation set in the 

form AX=0 and solving for X, which is called linear triangulation. To form the 

matrix A, firstly the equation = ˆPX x  is reorganized to eliminate the 

homogeneous scale factor as 

 

 
− =

− =

3T 1T

3T 2T

ˆ( ) ( ) 0

ˆ( ) ( ) 0

u

v

p X p X

p X p X
       

 

where =ˆ ˆ ˆ( , ,1)u vx , and piT denotes the ith  row of P. Writing the counterparts of 

these equations for the other image point x̂'  as well, one gets the equation system 

AX=0, where A is 
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.       (2.50) 

 

 

Once the A matrix is formed, the 3D location of the scene point X can be 

determined by solving the system AX=0. 

 

An overview of the aforementioned triangulation algorithm is the following: 
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Algorithm Overview: Optimal Triangulation 

 

Input: The projection matrices P, P' and the fundamental matrix F 

corresponding to two views, and the images x, x' of a 3D point X 

on these two views   

Output: The location of X in 3-space 

 

1. Translate the points x, x' to origin via the transformations 

given in (2.44). 

 

2. Normalize and place the epipoles e, e' on the x-axis via the 

rotations given in (2.45). 

 

3. Update F as in (2.46).  

 

4. Construct the polynomial in (2.49) by determining the 

coefficients from (2.47) 

 

5. Find the roots of the polynomial and determine the optimum 

value of t. 
 

6. Obtain the optimal epipolar lines l, l'; and determine the 

corrected coordinates x̂  and x̂' by finding the closest points on 

these lines to x and x'. 

 

7. Transform the coordinates x̂  and x̂' back for the original 

problem by replacing x̂  with T-1 RT x̂ , and x̂' with T'-1 R'T x̂'. 

 

8. Construct the matrix A in (2.50) and calculate the point X as 

the null vector of A. 
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2.4.3 Upgrading the Projective Reconstruction to Metric 
 

Once the projective camera matrices are constructed and 3D scene points are 

determined up to a projective transformation as explained in Section 2.4.2, the 

next step is upgrading the projective reconstruction to metric using the camera 

calibration information. Given a scene point Xp reconstructed projectively, and 

the images x, x' of Xp, upgrading the projective reconstruction to metric is 

possible by finding a 4×4 rectifying homography H in 3-space such that  

 

 
1

1

( )( )

' ' ( ' )( ) '

−

−

= = =

= = =
p p p p m m

p p p p m m

x P X P H H X P X

x P X P H H X P X
    (2.51) 

 

where =m pP P H  and =' 'm pP P H  are the stratified projection matrices 

conforming to the pinhole camera model, and −= 1
m pX H X  is the metric 

reconstruction for the 3D scene point of interest, which determines its true 

location up to a similarity transformation.  

 

A solution for the determination of H is presented in [1] as follows: Given a 

projective reconstruction {Pi, Xj}, where i and j denote the indices of the cameras 

and reconstructed points, such that the first camera matrix is P1=[ I | 0 ], it is 

possible to obtain a metric reconstruction {PiH, H-1Xj} through the following 

rectification matrix H: 

 

 ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

T 1

K 0
H

p K
,       (2.52) 

 

where K is the calibration matrix of the first camera, and the coordinates of the 

plane at infinity in the projective reconstruction are π∞ = (pT, 1)T. 
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Taking these relations into account, the problem of stratifying the projective 

reconstruction is reduced to the problem of determining the plane at infinity. The 

plane at infinity is defined as the plane in 3-space with the canonical position π∞ = 

(0, 0, 0, 1)T [1]. The criticality of π∞  arises from the fact that it is fixed under any 

affine transformation, but is moved by a projective transformation. It is the 

property of invariance under affine transformations that makes the plane at 

infinity beneficial in some reconstruction problems.  

 

It is possible to determine the coordinates of π∞ for a projective reconstruction by 

making use of the relation between the camera calibration matrix and the image of 

the absolute conic [1]. The absolute conic, denoted by ∞Ω , is a conic on π∞  such 

that any point X=(X1, X2, X3, X4)T on ∞Ω  satisfies: 

 

 
+ + =

=

2 2 2
1 2 3

4

0

0

X X X

X
       (2.53) 

 

As (2.53) reveals, the absolute conic is a conic that consists of purely imaginary 

points on the plane at infinity. An important property of ∞Ω  is that the image of 

the absolute conic, denoted by ω, is independent of the position of the camera, 

and depends only on the camera calibration matrix K. The relation between ω and 

K is given by [1] 

 

 ω −= T 1( )KK .        (2.54) 

 

From the image of the absolute conic, the plane at infinity can be determined with 

the following approach: It has been shown that [18], given two projection 

matrices of form P=[ I | 0] and P'=[ A | e' ], the fundamental matrix F relating the 

two views, and the images of a conic C, C' in two views, where e and e' denote 

the epipoles in the first and second images, it is possible to determine the plane π 
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on which the conic resides, up to a two-fold ambiguity. The plane π is in the form 

πT = (aT, 1)T, where a(μ) is  given by 

 

 ( ) ( )μ μ= − + T T( ) /a Ce A C'e' e' C'e' ,     (2.55) 

 

 and the two possible values for μ are determined from 

 

 μ ⎡ ⎤ ⎡ ⎤− = −⎣ ⎦ ⎣ ⎦
2 T T T T( ) ( )( ) ( ) ( ' ')( ' ')Te Ce C Ce Ce A e' C'e' C' C e C e A  (2.56) 

 

In order to find the plane at infinity, the conic images C and C' in equations 

(2.55) and (2.56) are chosen as the images of the absolute conic. Setting 

ω −= = = T 1( )C C' KK  in (2.56), one obtains two values for μ from (2.56). Each 

of the two values of μ in (2.56) defines a different solution for π∞ , which in turn 

yields two different metric reconstructions for the same projective reconstruction, 

where only one of the metric reconstructions will be the valid one. This ambiguity 

is associated with the twisted pair ambiguity [19], which states that for any valid 

metric reconstruction consisting of camera matrices and scene points, it is 

possible to define an alternative metric reconstruction that yields the same 

projections on the image planes. 

 

The procedure for refining a projective reconstruction to obtain a metric 

reconstruction is summarized as follows: 

 
Algorithm Overview: Upgrading a Projective Reconstruction to 

Metric 

 

Input: Two projective camera matrices of the form Pp=[I|0], 

Pp'=[A|e'], scene points {Xp} reconstructed projectively, the 

fundamental matrix F relating the two views, and the camera 

calibration matrix K 
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Output: Stratified metric reconstruction Pm, Pm', {Xm} determined 

up to a two-fold ambiguity 

 

1. Compute the image of the absolute conic, ω=(KKT)-1. 

 

2. Set C=C'=ω in (2.56) and calculate the two values of μ. 

 

3. For each value of μ, determine the corresponding plane at 

infinity using (2.55). 

 

4. Compute the rectifying homography H for each plane at infinity 

from (2.52). 

 

5. Obtain the metric reconstruction Pm=PpH, Pm'=Pp'H, Xm=H-1Xp for 

both values of H. 

 

2.4.4 Experimental Results 
 

The studied reconstruction algorithm, which first performs projective 

reconstruction using the fundamental matrix and correspondences, and then 

upgrades the projective reconstruction to metric, is applied to two images from 

the sequences Castle, Planet Earth and Krimm. In all experiments, feature 

detection is achieved via SIFT, and the epipolar geometry is estimated using the 

7-point algorithm and RANSAC. The results are presented in Figures 2.20, 2.21 

and 2.22. In each of the figures, (a) and (b) show the features detected (and 

matched) on the first and second images respectively, whereas in (c) the front 

view and in (d) the top view of the reconstructed scene are given. 
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       (a)                 (b) 

    
      (c)                 (d) 

 

Figure 2.20: Two-view reconstruction results for Castle 
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     (a)      (b) 

 
(c) 

 
(d) 

 

Figure 2.21: Two-view reconstruction results for Planet Earth 

 



 75

 

 

 

 

 

 

    
     (a)         (b) 

    
       (c)                (d) 

 

Figure 2.22: Two-view reconstruction results for Krimm 
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2.5 Experimental Comparison of Competing Algorithms 
Used in Sparse Reconstruction 

 

In this section, the results of some experiments comparing the performances of 

opponent algorithms to be used in sparse reconstruction are presented. In Section 

2.5.1, SIFT is evaluated by comparing its performance to those of Harris corner 

detector and KLT tracker from several aspects. In Section 2.5.2, the performances 

of RANSAC and PROSAC in epipolar geometry estimation are compared, and in 

Section 2.5.3, the comparison of the 7-point and 8-point algorithms is made. 

 

2.5.1 Experimental Comparison of SIFT, Harris Corner Detector 
and KLT Tracker 

 

In order to assess the value of SIFT as a feature detector, experiments have been 

conducted where SIFT is compared to two other well- known algorithms in the 

literature, namely the Harris corner detector [3] and the Kanade-Lukas-Tomasi 

(KLT) [20] tracker. 

 

KLT tracker is a tool for obtaining trajectories of feature points in an image 

sequence. The tracker initiates the trajectories by running Harris corner detector in 

the first frame of the sequence, and then estimates the displacements of these 

features in the proceeding frames with an optical-flow based approach, hence, 

obtains trajectories of features throughout the sequence. In the tests, the optical-

flow based tracker was used, which integrates a Kalman filter into the basic KLT 

tracker to improve its performance [28]. 

  

In the experiments, the performances of three algorithms were evaluated by the 

quality of the matches they provide. The algorithms were applied to video data to 

obtain matches in the following manner: 
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• SIFT and Harris corner detector: Two frames with 15-frame distance in 

between were chosen from the video sequence, and features were detected 

with the tested algorithms. The features detected by SIFT were matched 

via the feature matching tool of SIFT, whereas in the case of Harris corner 

detector, feature detection was achieved by searching the image intensity 

correlations around feature locations [9]. The outputs of the algorithms, 

which are lists of correspondences, were directly used in the test. 

• KLT tracker: The tracker was run on the whole sequence. In order to 

obtain correspondence lists belonging to the selected two frames, the 

related part of the trajectories corresponding to the selected frames were 

extracted.  

 

The tests provide a direct comparison between SIFT and Harris corner detector 

(combined with the intensity correlation based feature matching algorithm), as 

both are feature detection and matching tools operating on the same set of inputs, 

namely, two images extracted from the video. However, it must be remembered 

that, unlike SIFT and Harris corner detector, KLT tracker is a feature tracking 

algorithm which runs on a set of consecutive video frames. Hence, as far as the 

KLT tracker is concerned, the conducted experiments provide a comparison only 

between the two approaches for estimating the geometry between two video 

frames, one of which utilizes features and matches detected only on the selected 

frames, where the other achieves this via tracking the features benefiting from the 

whole set of frames between the selected two. 

 

During the experiments, the qualities of match lists were assessed by testing their 

amenability to epipolar geometry estimation. For this purpose, the correspondence 

lists were processed by RANSAC to estimate the fundamental matrix. The 

successes of the tested algorithms were compared with respect to the following 

criteria: 
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• Inlier / Total match number ratio: The capability of the feature detection 

algorithm affects the number of correct matches; therefore, the inlier/total 

match number ratio is a measure of the quality of the feature detection 

method. 

• Sampson error per inlier: Since Sampson error is a quantity that measures 

the consistency of a match with the epipolar geometry, a small average 

Sampson error indicates a high accuracy in the localization of the 

matching points. 

• Iteration number of RANSAC: RANSAC is an adaptive algorithm that 

determines its termination time depending on the success of the samples it 

draws. Therefore, the number of iterations should get smaller as the ratio 

of correct matches among the whole set increases. 

• Total variance of fundamental matrix entries: In order to make robust 

epipolar geometry estimation, the consistency in the determination 

fundamental matrix must be assured. Therefore the total variance of 

fundamental matrix entries can be used to assess the robustness of the 

epipolar geometry determined from the matches. 

 

For comparing the performances of the algorithms with respect to these criteria, a 

series of experiments have been conducted with several video data. In each 

experiment, a set of correspondences was obtained by the tested algorithm, and 

RANSAC was run on this set of correspondences 100 times. The inlier/total ratio, 

Sampson error per inlier and the iteration number was taken as the average of 

these 100 trials, and the total variance of the fundamental matrix was estimated 

using the observations of matrix entries during the trials. The upper bound for the 

number of iterations for RANSAC was set to 2000. 

 

In Table 2.1, a summary of the experiment results is presented. Blue and red 

colours indicate the superiority of SIFT and KLT tracker respectively. A sample 

frame from each video data is given in Figure 2.23. 
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Table 2.1: Experimental comparison of SIFT, Harris corner detector and KLT tracker: The 
columns from left to right indicate: Video data, Algorithm, Total number of correspondences, 
Number of inliers, Inlier/Total match number ratio, Sampson error per inlier, Number of iterations, 
Total variance of fundamental matrix entries 
 

Data Algorithm # Total cor. # Inliers I/T Ratio S. Error # Iter. F var. 

        

 SIFT 630 547.270 0.869 0.066 22.690 0.778 

Aegypt01 Tracker 1185 1147.740 0.969 0.039 8.910 0.750 

 Harris 767 376.680 0.491 0.089 1862.520 0.995 

        

 SIFT 179 157.250 0.878 0.061 20.880 0.750 

Aegypt02 Tracker 549 525.900 0.958 0.037 10.540 0.960 

 Harris 211 111.810 0.530 0.086 766.430 0.989 

        

 SIFT 630 547.320 0.869 0.080 38.100 0.979 

Krimm01 Tracker 5363 3719.610 0.694 0.983 194.130 0.959 

 Harris 1258 466.560 0.371 0.104 2000.000 0.990 

        

 SIFT 332 243.210 0.733 0.084 118.670 0.957 

Krimm02 Tracker 4519 2500.210 0.553 0.109 983.920 0.939 

 Harris 1203 299.350 0.249 0.102 2000.000 0.999 

        

 SIFT 361 268.840 0.745 0.091 83.080 0.806 

Krimm03 Tracker 4639 2964.150 0.639 0.105 332.260 0.994 

 Harris 1258 221.290 0.176 0.111 2000.000 0.956 

        

 SIFT 454 411.770 0.907 0.067 20.530 0.952 

Medusa Tracker 4780 2647.770 0.554 0.112 719.240 0.998 

 Harris 632 260.600 0.412 0.952 2000.000 0.998 
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(a) Aegypt01       (b) Aegypt02 

    
(c) Krimm01       (d) Krimm02 

    
  (e) Krimm03      (f) Medusa 

 
Figure 2.23: Sample frames from the video data used in the experiments 
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The results presented in Table 2.1 lead to the following observations: In all 

experiments, SIFT yields more inliers, a higher inlier/total match number ratio, a 

smaller average Sampson error and a smaller fundamental matrix total variance 

against Harris corner detector. Therefore the performance of SIFT is found out to 

be significantly better than that of Harris corner detector. However, it must also 

be noted that computational cost of SIFT is much higher than that of Harris corner 

detector. 

 

On the other hand, when the successes of SIFT and the tracker are compared, it is 

observed that none of the algorithms has an immediate superiority to the other. 

The tracker has produced a greater number of total correspondences and inliers 

than SIFT, but the inlier/total match number ratio is most of the time higher in 

SIFT. The average Sampson errors are close to each other, and in most 

experiments the iteration number of SIFT is smaller than that of tracker in a 

manner consistent with the inlier/total match number ratio. The total variances of 

the fundamental matrices are close to each other most of the time, and sometimes 

smaller in SIFT. Therefore an overall comment on the performances of SIFT and 

the tracker may be that tracker is better at providing a large number of inlier 

matches, and SIFT usually produces a higher inlier/total match number ratio. 

 

2.5.2 Experimental Comparison of RANSAC and PROSAC 
 
 
Being a well-known and frequently used method in the literature, RANSAC is 

taken as a reference to assess the performance of PROSAC. Therefore, a series of 

experiments have been made that compare RANSAC and PROSAC. 

 

In all experiments, the same input set of matches were given to RANSAC and 

PROSAC. The input sets of correspondences were produced by running SIFT on 

the images. The quality of the correspondence set, i.e. the ratio of correct matches 

among the whole set of matches, was adjusted by changing the matching 
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threshold of SIFT, i.e. the threshold for the distance ratio, which also enabled to 

control the inlier/total ratio during the experiments. The behaviours of the 

algorithms were examined and compared with respect to the following criteria: 

 

• Inlier/Total match number ratio at various values of SIFT matching 

threshold 

• The number of iterations at various values of inlier/total match number 

ratio 

• Sampson error per inlier at various values of inlier/total match number 

ratio 

• The total variance of fundamental matrix entries 

 

 
In each experiment, both algorithms were run 100 times. The inlier/total ratio, 

average Sampson error and the number of iterations were taken as the average of 

all trials, and the total variance of fundamental matrix entries was estimated from 

the models computed during these trials. Experiments were repeated for several 

video data, some sample frames belonging to which are given in Figure 2.23. In 

Figure 2.24, the inlier/total ratios obtained from PROSAC and RANSAC are 

presented for various values of SIFT matching threshold. Figures 2.25, 2.26 and 

2.27 show respectively the number of iterations, Sampson error per inlier and the 

total variance of fundamental matrix entries with respect to the inlier/total ratio. 

 
The plots presented in Figure 2.24 reveal that the inlier/total match number ratios 

yielded by RANSAC and PROSAC are close to each other for the same input sets 

of matches. At smaller values of SIFT matching threshold, the inlier/total match 

number ratio is in favour of RANSAC, however, as the matching threshold of 

SIFT increases, the difference between the algorithms is reduced, and finally 

PROSAC generally becomes slightly more advantageous at the highest matching 

threshold. 
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Figure 2.24: Inlier/Total match number ratios obtained at various SIFT matching thresholds for 
the data: (a) Aegypt01 (b) Aegypt02 (c) Krimm01 (d) Krimm02 (e) Krimm03 (f) Medusa, with 
RANSAC and PROSAC 
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Figure 2.25: Iteration numbers obtained at various values of inlier/total match number ratio for 
the data: (a) Aegypt01 (b) Aegypt02 (c) Krimm01 (d) Krimm02 (e) Krimm03 (f) Medusa, with 
RANSAC and PROSAC 
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Figure 2.26: Average Sampson errors obtained at various values of inlier/total match number ratio 
for the data: (a) Aegypt01 (b) Aegypt02 (c) Krimm01 (d) Krimm02 (e) Krimm03 (f) Medusa, with 
RANSAC and PROSAC 
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Figure 2.27: Sum of the variances of fundamental matrix entries at various values of inlier/total 
match number ratio for the data: (a) Aegypt01 (b) Aegypt02 (c) Krimm01 (d) Krimm02 (e) 
Krimm03 (f) Medusa, with RANSAC and PROSAC 
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The plots of Figure 2.25 demonstrate the most prominent advantage of PROSAC 

over RANSAC. It is seen that PROSAC terminates at a number of iterations much 

less than RANSAC for small values of the inlier/total ratio. However, at high 

values of the inlier/total ratio, the iteration number of RANSAC is below that of 

PROSAC, which is consistent with the reasoning that the randomly selecting 

strategy of RANSAC has more chances when the quality of the input set of 

correspondences increases. 

 

In Figures 2.26 and 2.27 some plots are given which compare RANSAC and 

PROSAC with respect to average Sampson error and total variance of the 

fundamental matrix. These plots suggest that none of the algorithms is superior to 

the other as far as these criteria are concerned. 

 

An overall conclusion drawn from these experiments can be stated as follows: 

The performances of PROSAC and RANSAC are in general similar, however, 

when the ratio of inliers to the whole set of correspondences is small, i.e. 

mismatches are likely to be observed, PROSAC terminates at a shorter time than 

RANSAC, which makes it more favourable for such occasions. 

 

2.5.3 Experimental Comparison of 7-point and 8-point 
Algorithms 

 

The final part of the comparative tests is the comparison of the performances of 

the 7-point and 8-point algorithms. In this setup of experiments, an input set of 

matches was obtained with SIFT, and the sampling strategy in epipolar geometry 

estimation was RANSAC, where the 7-point and 8-point algorithms were tested in 

the estimation of the F-matrix. The purpose of the experiments was to observe the 

effect of these algorithms on the estimated model, therefore, as in the previous 

experiments, the criteria used in the evaluation of the algorithms were: 
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• Inlier/Total match number ratio at various values of SIFT matching 

threshold 

• The number of iterations at various values of inlier/total match number 

ratio 

• Sampson error per inlier at various values of inlier/total match number 

ratio 

 

The results were again obtained as the average of 100 trials and the experiments 

were conducted on the same data as in the previous sections. During the iterations 

of RANSAC, model estimation was done with the algorithm under search, i.e. 

with either 7-point or 8-point algorithm. However, the final refinement of the 

model using all inliers was always achieved with the 8-point algorithm, as the 

seven point algorithm accepts only seven correspondences. 

 

In Figure 2.28, the plots showing the inlier/total match number ratios at several 

SIFT matching thresholds are presented, whereas Figures 2.29 and 2.30 show 

respectively the variations of the average Sampson error and the number of 

iterations with respect to the inlier/total match number ratios.  

 

The results of these experiments can be summarized as follows: The plots in 

Figure 2.28 show that the inlier/total match number ratios are in general very 

close for the 7-point and 8-point algorithms. However, the 7-point algorithm tends 

to give a slightly higher ratio of inliers for some data. On the other hand, Figure 

2.29 reveals that for all sequences, the average number of iterations made by the 

7-point algorithm is less than that of the 8-point algorithm. Finally, the plots in 

Figure 2.30 show that the two algorithms perform similar as far as the average 

Sampson error is concerned. 
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     (c)                 (d) 

  
     (e)                  (f) 

 

Figure 2.28: Inlier/Total match number ratios obtained at various SIFT matching thresholds for 
the data: (a) Aegypt01 (b) Aegypt02 (c) Krimm01 (d) Krimm02 (e) Krimm03 (f) Medusa, with 7-
point and 8-point algorithms 
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      (c)                   (d) 

 

  
     (e)                   (f) 

 
Figure 2.29: Iteration numbers obtained at various values of inlier/total match number ratio for 
the data: (a) Aegypt01 (b) Aegypt02 (c) Krimm01 (d) Krimm02 (e) Krimm03 (f) Medusa, with 7-
point and 8-point algorithms 
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Figure 2.30: Average Sampson errors obtained at various values of inlier/total match number ratio 
for the data: (a) Aegypt01 (b) Aegypt02 (c) Krimm01 (d) Krimm02 (e) Krimm03 (f) Medusa, with 
7-point and 8-point algorithms 
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These comparative tests suggest that the performances of 7-point and 8-point 

algorithms are similar, whereas the 7-point algorithm may give slightly better 

results. This observation is reasonable, considering the fact that the fundamental 

matrix is implicitly required to be rank-2 in the 7-point algorithm, whereas the 

original output of the 8-point algorithm is not necessarily rank-2, and is 

artificially converted to the closest rank-2 matrix, which might degrade the quality 

of the matrix. 
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CHAPTER 3 

 

 

3D SPARSE RECONSTRUCTION OF A SCENE 
FROM MULTIPLE VIEWS 

 
 

 
 

In this chapter, sparse reconstruction of a scene from multiple views is examined. 

The problem of estimating the structure and cameras from two views is addressed 

in Chapter 2, and multiple view reconstruction is achieved based on the method 

used in two-view reconstruction, with an approach similar to the one presented in 

[2]. In order to obtain the sparse 3D model of a scene from an image sequence, 

first an initial two-view reconstruction is performed from the first two images, 

and then this reconstruction is extended by estimating the camera poses for each 

additional view, and including the 3D points obtained from these views in the 

reconstruction. 

 

In addition to obtaining the sparse model of the scene, the problem of eliminating 

the erroneous points from the reconstruction is also studied in this chapter. Two 

methods are proposed for the elimination of outliers. After the outliers are 

discarded, the camera matrices and the locations of the reconstructed points are 

optimized through a sparse bundle adjustment algorithm. 

 

This chapter is organized as follows: In Section 3.1, the algorithm for 

reconstructing a scene from multiple views is explained. The elimination of 

outliers from the reconstruction is discussed in Section 3.2, and the optimization 

of reconstruction variables is explained in Section 3.3. 
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3.1 Multiple View Reconstruction 
 

3.1.1 Overview of the Multiple View Reconstruction Algorithm 
 
 
The procedure of reconstructing a scene from an image sequence can be 

summarized as follows: Firstly, an initial sparse 3D reconstruction is obtained by 

using the first two views of the image sequence, as explained in the previous 

chapter. This initial reconstruction provides the camera matrices of the first two 

views, features detected and matched in the first two views, and the locations of 

the 3D points corresponding to these matches. 

 

Having obtained an initial two-view reconstruction, the third view is added to the 

reconstruction as follows: First, features are detected on the third image, and the 

features belonging to the second and the third images are matched. Then, this set 

of matches is searched in order to find out the correspondences that have already 

been reconstructed. Such features in the third image, which are associated with a 

3D point, allow the deduction of the camera projection matrix of the third view, 

which is explained in more detail in Section 3.1.2. Once the projection matrix of 

the third view is computed, then the matches between the second and the third 

views which have not been associated with a 3D point are triangulated to 

reconstruct the corresponding points in 3-space. Adding these points to the 

reconstruction, the same procedure is repeated for the other views as well to insert 

them into the reconstruction. A block diagram explaining this process is given in 

Figure 3.1. 

 

Throughout the procedure depicted in Figure 3.1, the reconstruction is always 

achieved in a projective manner, and when the algorithm terminates, this whole 

projective reconstruction is converted to a metric one by stratifying all 3D points 

and camera matrices via the rectifying homographies obtained from the initial 

two-view reconstruction. In other words, given N images, the projective camera 
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matrices P1
p and P2

p belonging to the first and second views are chosen as 

[ ]= |1
pP I 0  and [ ]×= [ ] |2

pP e' F e' , where F is the fundamental matrix between 

these views and e' is the epipole of the second view. Then the projection matrices 

P3
p, … , PN

p and the scene points {Xi
p} are determined projectively, as 

summarized in Figure 3.1. Once the projective reconstruction is completed, the 

metric projection matrices P1
m, … , PN

m
 and the stratified scene points {Xi

m} are 

obtained as 

 

 
−

=

= 1

m p

m p

P P H

X H X

j j

i i
        (3.1) 

 

where H is the rectifying homography computed from the camera calibration 

matrix K as discussed in Section 2.4.3. 

 

The multiple view reconstruction algorithm studied in this work does not 

concentrate on the problem of determining the order in which the images in the 

input image sequence are inserted into the reconstruction. It is assumed that the 

image sequence is already ordered in a natural and reasonable way to allow the 

detection of a sufficient number of matches between consecutive images. 

Actually, a satisfactory reconstruction requires not only that the consecutive 

images share a considerable amount of common viewpoint to ease feature 

matching, but also that their viewing cameras should not be too close to each 

other, which may lead to an ill-conditioned reconstruction problem. A possible 

input image sequence for this reconstruction method may be a set of video frames 

extracted from the video at suitable intervals. 
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Figure 3.1: Outline of the multiple view reconstruction algorithm 
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3.1.2 Estimation of the Projection Matrix from 3D Points and 
Their 2D Projections 

 

As explained in Section 3.2.1, the insertion of a new frame to the reconstruction 

requires the estimation of the camera projection matrix of a view from a set of 

already reconstructed matches. In this section, the computation of the projection 

matrix is explained in detail. 

 

The detection of already reconstructed matches provides a set of 3D points {Xi} 

and their 2D projections {xi} on the view which is being integrated into the 

reconstruction. Denoting the camera projection matrix of this view by P, each pair 

of 3D-2D points (Xi, xi) must satisfy PXi = xi. This equation can be rearranged to 

obtain [1] 

 

 
⎡ ⎤

⎡ ⎤− ⎢ ⎥ =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦
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P 0
X 0 X

P

,     (3.2) 

 

where PiT is the ith row vector of P, and the point xi in homogeneous coordinates 

is 
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As (3.2) indicates, each projection pair (Xi, xi) defines two linear equations in the 

entries of P. Since P has 12 entries, it can be calculated from at least 6 of such 

pairs. It is also possible to compute P from all data with a least-squares solution. 

However, as in the fundamental matrix estimation problem, this is not a preferred 

approach, since the erroneous data such as mismatched pairs would contaminate 
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the solution. Therefore, the P matrix is estimated from minimal samples, i.e. 

samples containing 6 projection pairs, by using RANSAC. 

 

In the estimation of the projection matrix from 3D-2D projection pairs with 

RANSAC, the inlier and outlier pairs are determined with respect to the 

reprojection error. Given a pair (Xi, xi) and a projection matrix P, the reprojection 

error Ei is defined as 

 

 = 2( , )i i iE d x PX ,       (3.3) 

 

where d denotes the distance in 2D Euclidean space. If the reprojection error is 

below some predefined threshold, the pair is regarded as consistent with the 

projection matrix and classified as an inlier, and otherwise, as an outlier. 

 

When discussing fundamental matrix estimation in Section 2.3.2, it was explained 

that the normalization of coordinates is required for improving the conditioning of 

the equation system. A similar normalization is performed in the computation of 

the projection matrix as well. The centroid of the 2D and 3D points in the sample 

are moved to the origin by a translation, and then the points are scaled to make the 

RMS distance to the centroid 2  for 2D points, and 3  for 3D points. The 

transformation that results in these normalizations is given in (2.28) for the 2D 

image points. Similarly, the 3D scene points can be normalized through the 

transformation 
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where X is the original point, Xn is the normalized point, dRMS is the RMS 

distance to the centroid, and mX , mY and mZ  are the average of respectively the X, 

Y and Z coordinates of the 3D points in the sample. Denoting the transformation 

matrix for the 2D points as T2, the projection matrix P of the original problem is 

computed from the normalized projection matrix Pn by the back-transformation 

 

 −= 1
2 n 3P T P T .        (3.5) 

 

The procedure for estimating the projection matrix from a set of projection pairs 

is summarized as follows:  

 

 
Algorithm Overview: Computation of the Projection Matrix with 

RANSAC 

 

Input: A set of 3D-2D projection pairs (X,x) for an image 

Output: The camera projection matrix P for the image 

 

1. Initializations: 

   a. Set the number of iterations made to 0 (k=0). 

   b. Set the upper bound for the number of iterations to an 

initial value (kMAX=M). 

 

2. While (k<kMAX) 

   a. Choose a random sample set. 
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   b. Normalize the 2D points in the sample as in (2.28) and the 

3D samples as in (3.4). 

   c. Construct an equation system by using (3.2) and compute the 

projection matrix. 

   d. Denormalize the projection matrix by the back-

transformation in (3.5). 

   e. Calculate the reprojection error for all projection pairs 

and determine the inliers and outliers. 

   f. If the current model gives the highest number of inliers so 

far, update the model and the upper bound for the number of 

iterations kMAX.  

 

3. Refine the projection matrix iteratively from all inliers. 

 

3.1.3 Experimental Results 
 
The studied multiple view reconstruction method is tested on several image 

sequences, all of which are extracted from video data. 

 

In Figure 3.2, the reconstruction results for the Krimm sequence are presented. 

The original video is recorded from TV broadcast and the reconstruction 

algorithm is run on 8 frames that are selected from the video at equal intervals of 

10 frames. A sample video frame is given in Figure 3.2(a), and the front and top 

views of the reconstructed point cloud are shown respectively in (b) and (c). 

 

Another reconstruction experiment is achieved for the Cevo sequence, which is 

captured with a hand-held camera in an indoor environment. Reconstruction is 

performed on 10 frames extracted from the video at equal intervals of 50 frames. 

A sample frame is given in Figure 3.3(a), whereas (b), (c) and (d) show 

respectively the front, side and top views of the reconstructed scene. 
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      (a)                 (b) 

 
(c) 

 
Figure 3.2: Reconstruction results for the Krimm sequence: (a) A sample frame from the video 
(b) Front view of the reconstructed scene (c) Top view of the reconstructed scene 
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      (a)      (b) 

   
        (c)             (d) 

 

Figure 3.3: Reconstruction results for the Cevo sequence: (a) A sample frame from the video (b) 
Front view of the reconstructed scene (c) Side view of the reconstructed scene (d) Top view of the 
reconstructed scene 
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(a) 

 
     (b)  

 
 (c) 

 
Figure 3.4: Reconstruction results for Planet Earth I: (a) Sample video frame (b) Front view of 

the reconstructed scene (c) Above view of the reconstructed scene 
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(a) 

 
(b) 

 
(c) 

 
Figure 3.5: Reconstruction results for Planet Earth II: (a) Sample video frame (b) Close front 

view of the reconstructed scene (c) Overall upper view of the reconstructed scene 
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Finally, two different scenes from the documentary video Planet Earth are 

reconstructed with the studied algorithm. The first part, Planet Earth I, is 

reconstructed from 19 video frames taken with equal intervals of 30 frames, and 

the results are presented in Figure 3.4. A sample frame is given in (a), a close 

front view of the reconstructed scene is shown in (b), and an overall upper view of 

the scene is given in (c). 

 

The second part taken from the same documentary, Planet Earth II, is 

reconstructed using 11 frames from the video, again at equal intervals of 30 

frames. A sample video frame showing the scene is given in Figure 3.5(a). A 

rather detailed front view of the reconstructed scene is shown in (b), and an 

overall view of the scene is given in (c). The calibration information for this 

content is obtained by assuming the principle point to be at the center of the 

image plane, and adjusting the focal length  f  by trial and error. 

 

3.2 Removal of Outliers from the Reconstruction 
 
 
The studied method for sparse reconstruction is capable of extracting 3D point 

clouds from image sequences effectively. However, the reconstructed point cloud 

might sometimes be contaminated with erroneous points which actually do not 

belong to the scene, which usually happens when feature detection and matching 

is performed with rather loose thresholds. 

 

The occurrence of erroneous points may be due to the inaccuracies in feature 

detection, false matching, and several other error sources during the estimation of 

fundamental matrices and projection matrices. A common source of error is 

mismatches satisfying the epipolar constraint by coincidence, which in turn lead 

to the reconstruction of erroneous points that yield small reprojection and 

Sampson errors. Therefore, such points are hard to detect and eliminate via 

conventional methods. 
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In this work, it has been aimed to achieve the detection and elimination of such 

undesired erroneous points within the sparse reconstruction in two different ways. 

One of these methods is based on defining a suitable cost function in terms of the 

reconstructed point locations and image intensity functions, and then estimating 

the correct classification of the reconstructed points as inliers and outliers by 

minimizing the cost function, which is explained in Section 3.2.1. On the other 

hand, the other method tries to achieve outlier removal by detecting the spiky 

points that are away from their neighbours, and then searching the image intensity 

correlations around these points to determine whether the point is an inlier or not. 

This second method is discussed in Section 3.2.2. 

 

3.2.1 Outlier Elimination via Optimization 
 

The proposed method for the removal of outliers via optimization is based on the 

following observations: Given a reconstructed 3D point cloud representing a 

scene and two images of the scene; 

 

i) The intensity values at the reprojections of a valid 3D point on two image 

planes must be close to each other with the Lambertian surface assumption. 

 

ii) If the reprojection of a valid 3D point in one of the images and a neighbouring 

point in the same image have similar intensity values, then these two points must 

belong to the same part of the scene (same object, or surface, etc.). Therefore, the 

3D distance between the two points must be relatively small. 

 

In a manner inspired by the usage of Markov random fields in Bayesian methods 

for 2D motion estimation [21], these observations can be represented via a cost 

function. The discrimination of a valid 3D point (inlier) from an erroneous 3D 

point (outlier) is achieved through the minimization of the following function f: 
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where N is the number of reconstructed points; zi is the 3D location of the ith 

point; I1(zi) and I2(zi) are the intensity values at the reprojection of zi on the first 

and second image planes respectively; n(zi) denotes the set of points whose 

reprojections are the closest neighbours of the reprojection of zi; oi  is a Boolean 

function of zi such that 

 

 
⎧

= ⎨
⎩

0   if  is an inlier

  1   if  is an outlier 
i

i
i

z
o

z
 , 

 

and δT(x) is a modified delta function such that  

 

 δ
⎧

= ⎨
⎩

T ( )x
1    if  is in a predefined neighbourhood of 0

0   otherwise.

x

 

 

The classification of points as inliers and outliers is achieved through the 

minimization of  f  by searching the optimum configuration of oi values. The term 

f1 in (3.6) constrains the inliers to have reprojections in two images with similar 

intensities, which corresponds to the condition (i). Similarly, the term f2 is in 

association with the condition (ii), and it requires the 3D distances between two 

inlier points with neighbouring reprojections to be small, provided that the 

intensity  values  at  the  reprojections  of  these  points  are  close to each other. The  
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                 (a)             (b) 
 

   
                        (c)                 (d) 
 
Figure 3.6: Effect of outlier removal via optimization: (a) Original noisy reconstruction for Cevo 
sequence (b) Reconstruction for Cevo after outlier removal (c) Original noisy reconstruction for 
Krimm sequence (d) Reconstruction for Krimm after outlier removal  
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            (a)                  (b)  

     
         (c)                                  (d) 
 
Figure 3.7: Effect of outlier removal via optimization: (a) Detailed view from the original point 
cloud for Cevo (b) Cevo after outlier elimination (c) Detail from the original point cloud for 
Krimm (d) Krimm after outlier elimination 
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overall cost function f is a weighted sum of f1, f2 and f3, where the term f3 prevents 

the algorithm from declaring an unlimited number of points as outliers. Solution 

to (3.6) is a generalized optimization problem, where all the values of {oi} should 

be obtained together while minimizing the cost function in (3.6). However, since 

such an approach is computationally complex, the method of iterated conditional 

modes (ICM) [21] is utilized during the optimization procedure. ICM minimizes 

(3.6) in a sequential manner, while minimizing the cost function for a particular oi 

value at its each step. 

 

The proposed method for refining a sparse 3D point cloud is tested on the Krimm 

and Cevo sequences. The simulation results are given in Figure 3.6. In (a) and (c), 

the original noisy point clouds obtained from the sparse reconstruction of the 

scene are given for Cevo and Krimm respectively, whereas (b) and (d) show the 

same scenes after the outliers are detected and discarded. In Figure 3.7, typical 

regions of these scenes are shown in detail. The erroneous points in these regions, 

shown in red boxes, are marked manually before and after outlier elimination. The 

results show that the proposed algorithm is capable of eliminating the erroneous 

and noisy points. 

 

3.2.2 Intensity Correlation Based Outlier Elimination 
 
The second method developed for the removal of outliers from the scene is based 

on the following observation: In a reconstructed point cloud, the erroneous points 

usually appear as spikes that cause discontinuities in the distribution of point 

locations. This encourages the development of an algorithm that detects such 

spiky points by searching the 3D distances between the reconstructions of 

neighbouring image points. 
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  (a)             (b) 

 

   
                        (c)                 (d) 
 
Figure 3.8: Effect of intensity correlation based outlier removal: (a) Original noisy reconstruction 
for Cevo sequence (b) Reconstruction for Cevo after outlier removal (c) Original noisy 
reconstruction for Krimm sequence (d) Reconstruction for Krimm after outlier removal  
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            (a)                (b) 
  

           
         (c)                                     (d) 
 
Figure 3.9: Effect of intensity correlation based outlier removal: (a) Detailed view from the 
original point cloud for Cevo (b) Cevo after outlier elimination (c) Detail from the original point 
cloud for Krimm (d) Krimm after outlier elimination 
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With this approach, erroneous points are detected with the following procedure:  

Given an image sequence and a reconstructed point cloud, the validity of each 

scene point is searched by first reprojecting the points on one of the images, and 

then determining the closest neighbours of the point of interest on the image 

plane. If the average 3D distance between the point and its neighbours exceeds a 

predefined threshold, then that point is determined to be a point of discontinuity. 

On the other hand, a spiky point is not necessarily an erroneous point; therefore, 

the suspicious points detected as explained are examined further. For this reason, 

such undecided points are searched by computing the intensity correlations on 

image patches around the reprojections of these points throughout the whole 

image sequence. If the image intensity correlation between any two consecutive 

image patches is below some threshold, then the point is determined to be 

erroneous and discarded. 

 

The results obtained with this outlier elimination approach are presented in 

Figures 3.8 and 3.9. In Figure 3.8, the original noisy point clouds for the Cevo and 

Krimm sequences are given together with the point clouds after outlier removal. 

In Figure 3.9, again, some typical scene regions for these reconstructions are 

shown in detail, where outliers are marked manually before and after outlier 

removal. The results show that the majority of the outliers are removed 

efficiently, while inliers are retained. 

 
3.3 Sparse Bundle Adjustment of the Reconstruction 

Parameters 
 
 
When the sparse structure of a scene from an image sequence is reconstructed and 

erroneous points are removed, the last stage is the refinement of the 

reconstruction via optimization. 
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The sparse bundle adjustment algorithm, which is presented in [22] and provides 

a practical implementation of Levenberg-Marquardt algorithm [23] for a large 

number of reconstruction parameters, is utilized during the optimization of the 

reconstruction parameters. The optimization variables are the reconstructed point 

locations {Xi} and the projection matrix parameters {Pj} for each camera; and a 

cost function that constitutes an approximation of the reprojection error is 

minimized. 

 

For the implementation of the bundle adjustment algorithm, the camera projection 

matrices are decomposed into the rotation and translation parameters, and 

optimization is performed by the adjustment of these parameters. The reasons for 

representing the camera matrices in terms of the rotation and translation 

parameters in the optimization are the following:  

 

Firstly, another approach in the parametrization of the projection matrices, such as 

perturbing the matrix entries independently, is not preferred, since such a practice 

could lead to degradation in the quality as a metric reconstruction. In other words, 

the projection matrices obtained at the metric reconstruction step must still 

conform to the pinhole camera model in the bundle adjustment stage. 

 

Secondly, although the camera projection matrices yielded by the conversion to 

metric reconstruction must ideally fit the pinhole camera model, in practice, some 

computational errors, such as those in feature detection or fundamental matrix 

estimation prevent the final projection matrices from being ideal pinhole camera 

matrices. Therefore, decomposing the projection matrices to the closest rotation 

and translation parameters and taking them as the initial estimates in bundle 

adjustment serves the purpose of idealizing the projection matrices to fit the 

pinhole camera model and refining these parameters through optimization. 
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As explained in Section 2.4.1, an ideal pinhole camera matrix is in the form 

[ ]|K R t , where K is the camera calibration matrix, R is a rotation matrix and t is 

a vector representing the translation. However, the projection matrices obtained 

by metric reconstruction are in the form  

 

 ⎡ ⎤= ⎣ ⎦|j j jP K R t , 

 

where jR  is a matrix resembling a rotation matrix but not an ideal one. In order 

to set the initial estimate parameters of the sparse bundle adjustment algorithm, 

the matrices { jR } and { jt } are obtained by multiplying the projection matrices 

with K-1 and scaling properly afterwards. Then { jR } are converted to the nearest 

rotation matrices { jR } as discussed in Appendix A. After this conversion, the 

quaternion representations of the rotation matrices are computed as explained in 

Appendix B, so that a 4×1 quaternion vector jq  and a 3×1 translation vector jt  is 

extracted from each projection matrix jP . 

 

The optimization variables in sparse bundle adjustment are the entries of the 

quaternion and translation vectors for each camera, and the 3D locations of the 

reconstructed scene points. These parameters are initialized as explained, and 

then, optimized by the Levenberg-Marquardt algorithm, which is an adaptive 

optimization algorithm that swings between the steepest descent and Newton 

algorithms. 

 

Although the camera calibration information is assumed to be known in the 

reconstruction problem studied in this thesis, it is possible to have some errors in 

the camera calibration matrix. For example, calibration errors might occur when 

the available camera calibration matrix is provided by a self-calibration algorithm, 

or there may be impairments in the physical structure of the camera. Therefore, 



 116

the optimization of the camera calibration matrices has also been involved in this 

refinement stage by adjusting the two entries of the calibration matrix 

corresponding to the focal length, which are perturbed independently, since these 

two entries might be different from each other in practical cameras.  

 

 
Table 3.1: The effects of sparse bundle adjustment and the optimization of internal camera 
parameters on the reprojection error 
 

 
Original Error 

Error after the 

idealization of P 

matrices 

Error after 

SBA 

Error after SBA 

and optimization 

of K 

Cevo 0.044 2.850 0.263 0.243 

Planet Earth I 0.031 4.108 1.452 1.257 

Krimm 0.065 46.683 1.154 0.956 

   

 

The results given in Table 3.1 show the effect of sparse bundle adjustment on the 

reconstruction. The bundle adjustment algorithm is tested on the reconstructions 

of the Krimm, Cevo and the Planet Earth I sequences by computing the average 

reprojection error at several stages. The first column indicates the average 

reprojection errors calculated with the original reconstructions, which do not 

conform to the ideal pinhole camera model. The reprojection errors yielded by the 

idealized projection matrices that fit the pinhole camera model, which are also the 

initial values of the optimization, are given in the second column. The 

reprojection errors after optimization are presented in the third and fourth 

columns, where the values in the third column are obtained by adjusting only the 

rotation and translation parameters and point coordinates; whereas adjusting the 

calibration matrix (focal length) as well leads to the errors listed in the fourth 

column. 
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The results presented in Table 3.1 suggest the following: The reprojection error is 

quite small for the original reconstruction. However, there is a significant increase 

in the reprojection error, when the camera matrices are approximated by the 

closest pinhole cameras. Starting with these initial errors, the sparse bundle 

adjustment algorithm, i.e. the optimization of the scene point locations and the 

rotation and translation parameters of all cameras, decreases the reprojection error 

to a great extent. Adjusting the focal length parameters together with the bundle 

adjustment leads to a slight further decrease in the error. 

 

Although the utilized optimization algorithm seems to have a considerable 

contribution to the refinement of the reconstruction, it must be noted that the 

Levenberg-Marquardt algorithm is a gradient-descent type algorithm, and in order 

to have satisfactory results in the optimization stage, the algorithm must start from 

good initial estimates of the optimization variables, since the cost function, i.e. the 

total reprojection error, is a complicated function of the adjusted parameters. 
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CHAPTER 4 
 
 

MESH-BASED SCENE REPRESENTATION WITH 
APPLICATIONS TO VIDEO ENCODING 

 
  
 
The output of the sparse reconstruction algorithm presented in Chapters 2 and 3 is 

a 3D point cloud. Although sparse reconstruction provides an efficient tool for 

estimating the camera poses in an uncalibrated image sequence, its output is not 

amenable to direct usage in practical applications. In order to convert the sparse 

reconstruction to a visually more pleasant one, dense reconstruction must be 

achieved, which may be in the form of a dense depth map, as well as a mesh 

representation of the scene. 

 

This chapter is devoted to the examination and evaluation of the piecewise planar 

scene representation algorithm proposed by İmre [28], which aims to obtain a 

rate-distortion efficient mesh representation of a scene from a sparse point cloud. 

In Section 4.1, some introductory information about the algorithm and the mesh-

based scene representation problem is given, whereas a more detailed 

examination of the method is presented in Section 4.2.1. Finally, the results of 

some experiments investigating the performance of the algorithm are discussed in 

Section 4.2.2. 

 

4.1 Introduction 
 

The mesh representation of a scene is a natural means of upgrading a sparse point 

cloud to a dense reconstruction. The work of İmre [28] is based on obtaining a 

piecewise planar approximation of the scene surface, called a mesh, given 
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irregular samples from the surface, which are actually the 3D points obtained 

from sparse reconstruction and constitute the vertices of the mesh. The final goal 

of the algorithm is to construct a textured piecewise planar model of the scene 

consisting of triangular patches from a given point cloud, where the texture 

information is also provided by a given image of the scene. 

 

A key consideration in the design of the algorithm is the purpose of achieving this 

in a rate-distortion efficient way, where the term rate is associated with the 

number of vertices in the mesh structure, and the distortion measure is taken as 

the image intensity error between a known image of the scene and a one predicted 

from the reconstructed mesh. In such a scene representation problem, there is a 

natural trade-off between the number of vertices included in the structure, hence 

the quality of the representation, and data storage limitations. The goal of the 

algorithm presented in [28] is to find a compromise between these in an efficient 

and computationally feasible way. 

 

As well as the purpose of achieving dense 3D scene reconstruction, another 

motivation reason behind the development of such an algorithm is its direct 

applicability to video coding.  Since the method is based on minimizing the error 

between a known and a rendered image of the scene, it implicitly provides a tool 

for mesh-based frame prediction in video coding.  

 

4.2 Rate-Distortion Efficient Scene Representation 
 

4.2.1 Algorithm 
 
In this section, the algorithm of the rate-distortion efficient scene representation 

method presented in [28] is reviewed. Given a 3D point cloud, a reference and a 

target view of the scene, together with the camera projection matrices belonging 

to these views; the purpose of the algorithm is to construct a mesh representing 
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the scene, by adding the input 3D points in a sequential manner to the mesh. A 

critical aspect of the method is that, at each cycle, it aims to determine the most 

suitable point among the whole set to add to the mesh, such that the error in the 

prediction of the target view is minimized. 

 

Before the discussion of the point selection strategy of the algorithm, the 

procedures for mesh generation and rendering the predicted view must be 

overviewed. Given a 3D point cloud, the reconstruction of the mesh containing 

these points requires the determination of the connections between the points. In 

the studied algorithm, the piecewise planar model of the scene consists of 

triangular patches, and the construction of the triangles in 3-space is achieved 

indirectly in the 2D plane as follows: Firstly, the 3D scene points are projected 

onto the 2D image plane of the reference camera. Then the image region 

containing the 2D projections is divided into triangles by using the Delaunay 

triangulation algorithm [29],[30], which forms triangles from given vertices in a 

manner that the triangles resemble equilateral ones as much as possible. Once the 

triangulation in the 2D plane is achieved, the construction of the 3D piecewise 

planar model is obtained easily by lifting the triangulation to 3D, where 2D 

vertices are substituted with the corresponding 3D scene points. An example of 

Delaunay triangulation in 2D plane is depicted in Figure 4.1. 

 

 

 
 

Figure 4.1: Construction of triangles from a set of vertices in a 2D plane by Delaunay 
triangulation [28] 
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In order to predict the target view from the mesh and the reference view, the view 

of the model belonging to the target camera must be rendered. In a general 

rendering problem, where the reference and target camera matrices, the scene 

structure and the reference texture map are known, the value of the texture map 

corresponding to the target view can be obtained at each pixel by joining the 

camera center of the target view and the corresponding pixel with a line, 

intersecting the line with the 3D model to find the 3D point projecting to the pixel 

of interest, and then determining the intensity value of the reference texture map 

at the projection of this 3D point. 

 

If the scene is represented with a piecewise planar model, then the rendering 

problem can be approached as a mapping between the reference and the target 

views defined by a set of homographies, since two views of a planar scene are 

related via a homography [1]. It is possible to compute the 3×3 homography 

matrix Hi for each triangular patch, from the camera matrices Pr and Pt of the 

reference and the target cameras, and the plane normal of the patch ni [28]. The 

procedure of rendering the predicted view is illustrated in Figure 4.2. 

 

The rate-distortion efficient scene representation algorithm proposed in [28] 

operates with a coarse-to-fine approach. The algorithm first constructs an initial 

mesh with a minimal number of bounding points, and then refines this model in a 

sequential manner by adding a new vertex (a new 3D scene point) to the model at 

each iteration. The new vertex is selected with a specific rate-distortion efficient 

strategy, which will be explained shortly, and then integrated into the mesh 

structure, by inserting the projection of the vertex to the current 2D Delaunay 

triangulation corresponding to the 3D mesh model, and then updating the mesh 

accordingly. 
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Figure 4.2: The texture map of the target view can be obtained from the texture map of the 
reference view through a set of homographies, if the scene is represented with a piecewise planar 
model [28]. 
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Selection of the new vertex is achieved with the following strategy: Since the 

algorithm aims to operate in a rate-distortion efficient way, the vertex that 

provides the greatest decrease in the mean square error between the predicted and 

the known views of the target frame must be selected. Ideally, this requires 

constructing all possible meshes by trying all candidate vertices, computing the 

error for all meshes, and then choosing the vertex that yields the minimum error. 

However, this is computationally infeasible. Instead, the algorithm follows such a 

procedure: Firstly, the triangular patch where the vertex will be added is 

determined by computing the total prediction error in the image region associated 

with each patch, and then selecting the patch with the highest error. After the 

determination of the patch to be modified, the vertices whose projections lie on 

the projection of the selected patch are examined. Among these vertices, the one 

that conforms to the homography defined by the patch least is chosen as the new 

vertex to be added to the scene representation, where the conformance to the 

homography is determined by the symmetric transfer error d [1], 

 
1 2 2( ) ( )r t t rd −= − + −x H x x Hx ,     (4.1) 

 

where H is the homography matrix corresponding to the patch, and xr and xt are 

the projections of the 3D point on the reference and the target views respectively. 

 

At each cycle of the algorithm, a vertex is selected from the given input set as 

explained and the mesh is updated. The update in the scene representation is 

accepted if it decreases the prediction error. This process is repeated until the bit 

budget spared for the scene representation is consumed, or the prediction error 

converges. A final refinement of the reconstruction is possible through nonlinear 

optimization. 

 

The rate-distortion efficient scene representation algorithm proposed in [28] can 

be summarized as follows: 
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Algorithm Overview: Rate-Distortion Efficient Piecewise Planar 

Scene Representation 

 

Input: A set of 3D scene points, the camera projection matrices 

and texture maps of the reference and target views of the scene 

Output: A piecewise planar representation of the scene 

 

1. Construct an initial mesh with a minimum number of boundary 

points: 

   a. Determine the initial boundary points. 

   b. Project the points to the reference 2D image plane. 

   c. Perform Delaunay triangulation and lift the triangulation 

to 3D to obtain the mesh. 

   d. Determine the prediction error corresponding to each 

triangular patch. 

 

2. Until the prediction error converges or the bit budget is 

consumed: 

   a. Choose the patch with the highest prediction error (the 

mean square error between the rendered and the known target 

views) 

   b. Among the 3D points projecting on the same image region 

with the selected patch, choose the one which least fits the 

homography defined by the patch, by using (4.1). 

   c. Add the selected vertex to the mesh by first inserting its 

projection to the 2D triangulation, and then lifting the 2D 

triangulation to 3D. 

   d. Accept the update in the mesh if the prediction error is 

decreased. 

   e. Update the prediction errors belonging to the patches. 

 

3. Refine the scene representation with nonlinear optimization. 
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4.2.2 Experimental Results 
 
In order to assess the performance of the piecewise planar scene representation 

algorithm presented in [28], several experiments have been conducted. In these 

experiments, the vertex selection strategy of the studied algorithm has been 

compared to some other possible strategies in the sense of rate-distortion 

performance. In all experiments, the rate measure is taken to be the number of 

vertices used in the mesh structure, and the distortion is accepted as the mean 

square error between the predicted and the known texture maps of the target view. 

 

In the first set of experiments, the performance of the vertex selection strategy of 

the studied algorithm is compared to that of the random vertex selection strategy. 

To this aim, for a given input set of 3D points, the mesh is first constructed with 

the studied algorithm sequentially using the vertex selection approach examined 

in Section 4.2.1. Then, the mesh is constructed again from the same input set 

sequentially, but by adding a randomly selected vertex to the mesh at each cycle 

this time; such that the final mesh is the same as the one yielded by the studied 

algorithm, whereas intermediate meshes differ. 

 

The random mesh construction experiment is repeated 10 times. The results 

obtained with the vertex selection approach of the studied algorithm are shown 

together with the results of random vertex selection approach on the same graphs, 

where the MSE between the predicted and the known target views is plotted 

against the number of vertices. The experiment is conducted on the sparse 

reconstructions of four different data, namely, Venus, Cevo, Castle and Krimm. 

Sample frames from the data are given in Figure 4.3, and the graphs are presented 

in Figure 4.4. In each graph, the blue curve is yielded by the studied rate-

distortion efficient algorithm, whereas the red marks represent the states reached 

during the intermediate steps of mesh reconstruction with random vertex 

selection. 
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The graphs presented in Figure 4.4 suggest that the performance of the studied 

algorithm is quite acceptable. Actually, if the same experiment was conducted 

with a rate-distortion optimal algorithm, i.e. an algorithm that would always 

choose the best mesh yielding the smallest prediction error among all possible 

meshes for a given number of vertices, then all error measurements belonging to 

the randomly generated meshes would certainly lie above the curve generated by 

the rate-distortion optimal algorithm. In other words, the curve belonging to a 

rate-distortion optimal algorithm can be determined uniquely by taking the 

minimum possible value of the error for each vertex number. If the experiment 

results given in Figure 4.4 are interpreted with this point of view, it can be 

concluded that the performance of the studied rate-distortion efficient algorithm is 

indeed close to that of a rate-distortion optimal one, as the curve belonging to the 

examined algorithm constitutes the lower boundary for the random trials most of 

the time. 

 

As explained in Section 4.2.1, in each cycle, the algorithm selects the triangular 

patch with the worst prediction error, and then among the vertices corresponding 

to this patch, the vertex with least conformance to the homography defined by the 

patch is added to the mesh. It is the approach of selecting the triangular patch with 

the worst error, which is questioned in the second set of experiments. For this 

reason, the rate-distortion performance of the examined algorithm is compared to 

that of a modified algorithm, which chooses a random triangular patch at each 

cycle, and then selects a vertex from this patch with the same strategy, i.e. 

chooses the vertex with least conformance to the homography. Again, the 

experiment is repeated 10 times with the modified algorithm for each data, and 

the resulting graphs are presented in Figure 4.5. 

 

The plots presented in Figure 4.5 suggest the following: Firstly, as in the previous 

experiment, the studied rate-distortion efficient algorithm has been seen to 

outperform the modified algorithm that selects the triangular patches randomly, as 

the curve corresponding to the studied algorithm resides below the marks 
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generated by the modified algorithm most of the time. This confirms that the 

approach of selecting the triangular patch with the largest total prediction error in 

the examined algorithm is a proper strategy.  Another conclusion can also be 

drawn from this experiment, if the plots obtained in Figures 4.4 and 4.5 are 

compared. A fall in the general distribution of the red marks is easily noticeable. 

Assuming that the random vertex selection in the first experiment (presented in 

Figure 4.4) is equivalent to selecting a random triangle, and then selecting a 

random vertex from this triangle, it can be deduced that the selection of the vertex 

with least conformance to the homography, which makes the difference between 

the two experiments, is a suitable approach. 

 

The strategy of choosing the vertex that worst fits the homography is actually 

investigated further in another set of experiments. In this part, the performance of 

the examined rate-distortion efficient algorithm is compared to those of three 

other modified algorithms, where the modified algorithms select the triangular 

patch with the largest prediction error as in the examined algorithm, whereas the 

vertex selection from the chosen patch is achieved in each one of the algorithms 

by selecting the vertex with respectively the second, third, and fourth largest 

symmetric transfer errors. The resulting rate-distortion plots are presented in 

Figure 4.6.  

 

A natural expectation about this experiment is to have the rate-distortion 

performances of the compared strategies ordered such that the one that chooses 

the vertex with the highest error performs the best, and the one choosing the 

vertex with the fourth highest error performs the poorest. The results for Venus 

and Cevo are in general consistent with this expectation, whereas the plots 

obtained for Castle and Krimm are not. However, an explanation for this situation 

might be the following: Venus is a synthetic data where the camera projection 

matrices are perfectly available. Cevo is a real data, however, it is captured in a 

controlled environment, and the camera calibration matrix is available, therefore, 

the reconstruction achieved with this data can be considered to be reliable as well. 
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On the other hand, Krimm is a data captured from TV broadcast, and the camera 

calibration information for Krimm is obtained via a self-calibration algorithm, 

which might have caused the reconstruction to be affected by some calibration 

errors. Finally, although the calibration parameters are available for Castle, the 

scene contains some dominant planes, and it is known that such prominent planes 

in the scene structure are likely to cause errors in fundamental matrix estimation, 

consequently in the reconstruction [14]. Therefore, a possible explanation for the 

discrepancy between the graphs presented in Figure 4.6 might be that in (c) and 

(d), during the mesh generation and vertex selection phases, the algorithm might 

have been misled by some error sources, which may have affected the 

reconstruction of the point cloud given as input to the algorithm. 

 

In a final experiment, the performance of the rate-distortion efficient algorithm is 

compared to another one, which tries every possible candidate for the new vertex 

and chooses the one yielding the smallest prediction error at each cycle This 

modified algorithm can be considered to be a rate-distortion optimal one, in the 

sense that it selects the best possible vertex at each iteration. The experiment is 

conducted only on Venus, and the results are presented in Figure 4.7. The plots 

reveal that the algorithm choosing the optimal vertex performs better than the 

rate-distortion efficient algorithm in terms of the prediction error, which is an 

expected result. However, the rate-distortion curve yielded by the examined 

algorithm is fairly close to that of the optimal one, while its computational cost is 

significantly lower. Therefore, the overall performance of the studied rate-

distortion efficient scene representation algorithm can be considered to be quite 

acceptable. 
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      (a)              (b) 

    
      (c)               (d) 

 

Figure 4.3: Sample frames from the sequences used in the experiments: (a) Venus (b) Cevo (c) 
Castle (d) Krimm 
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      (a)      (b) 

 
     (c)      (d) 

 

Figure 4.4: Prediction errors obtained during the sequential construction of mesh-based scene 
representations for  (a) Venus  (b) Cevo (c) Castle (d) Krimm, with random vertex selection 
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       (a)         (b) 

 
        (c)          (d) 

 

Figure 4.5: Prediction errors obtained during the sequential construction of mesh-based scene 
representations for  (a) Venus  (b) Cevo (c) Castle (d) Krimm, with random triangular patch 
selection 
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        (a)      (b) 

 
       (c)      (d) 

 

Figure 4.6: Prediction errors obtained during the sequential construction of mesh-based scene 
representations for (a) Venus  (b) Cevo (c) Castle (d) Krimm, with different mechanisms of vertex 
selection from patches. 
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Figure 4.7: Prediction errors obtained during the sequential construction of mesh-based scene 
representation for Venus with optimal and rate-distortion efficient vertex selection algorithms. 
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CHAPTER 5 

 

 

CONCLUSIONS 

 

 

 
Retrieving 3D information from 2D image content is a challenging research 

subject in computer vision. This thesis addresses the problem of the extraction of 

a 3D point cloud from a calibrated image sequence. 

 

Being the initial step of sparse 3D reconstruction, feature detection and matching 

is achieved with the method of Scale Invariant Feature Transform (SIFT) [4] in 

this work. In order to evaluate the performance of SIFT, some experiments have 

been conducted for the comparison of SIFT, Harris corner detector [3] and KLT 

tracker [20]. These algorithms have been compared with respect to the 

amenability of the matches they provide to the epipolar geometry estimation. 

Among these three algorithms, KLT tracker has resulted to produce the largest 

number of matches consistent with the estimated model (inliers), whereas the ratio 

of the correct matches among all matches is the highest for SIFT. The smallest 

average Sampson error per inlier is also yielded by SIFT. The outcomes of the 

experiments confirm that SIFT is not only capable of accurate feature point 

localization, but also robust feature matching. 

 

Another basic stage in reconstruction is the estimation of the epipolar geometry 

relating the two views, which is represented with the fundamental matrix. 7-point 
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[1] and 8-point [11] algorithms are two major methods for the computation of the 

fundamental matrix from correspondences. These two algorithms have been tested 

through experiments, where the searched criteria are the inlier/total match number 

ratios, Sampson error per inlier and the number of iterations made in RANSAC. 

The two algorithms have turned out to give close results from these aspects. 

However, the performance of the 7-point algorithm tends to be slightly better than 

that of the 8-point algorithm in general. Considering this result together with the 

fact that 7-point algorithm computes the F-matrix from exactly 7 

correspondences, whereas the 8-point algorithm allows more correspondences as 

input, a reasonable strategy could be to utilize the 7-point algorithm during the 

iterations of RANSAC, and refine the final model by recalculating the F-matrix 

from all inliers with the 8-point algorithm. 

 

An important issue in estimating the epipolar geometry from correspondences is 

the exploitation of a suitable sampling strategy to allow the computation of the F-

matrix both effectively and accurately. RANSAC [12] and PROSAC [13] are two 

algorithms developed for this purpose. Again, the experiments have been 

conducted with several data in order to compare the performances of the two 

algorithms. As a consequence of these comparative tests, it has been concluded 

that the two algorithms perform almost the same as far as the accuracy and 

validity of the computed model is concerned. However, the major difference 

between the algorithms is their computation load. The experimental results 

suggest that at high values of the inlier/total match number ratio, RANSAC 

terminates faster, however, as the ratio of outliers among all matches increases, 

PROSAC brings significant computational savings over RANSAC. As a 

conclusion, in practical problems, it seems to be more advantageous to use 

PROSAC, if the input set of feature matches is likely to be contaminated with 

errors. However, RANSAC might be more preferable if the matches are accurate 

enough. 
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In the proposed solution to the multiple-view sparse reconstruction problem, the 

reconstruction of the scene and the cameras is achieved up to a projective 

transformation at first, and then transformed to a metric reconstruction through a 

rectifying homography computed from the camera calibration matrix. Although 

ideally the metric reconstruction of the cameras must conform to the pinhole 

camera model, the experiments with real data has shown that the computed metric 

reconstruction does not agree with the pinhole camera model thoroughly, but 

constitutes a close approximation, which is due to computation errors, inaccurate 

measurements, etc. Even if the original output of the reconstruction algorithm 

yields fairly small reprojection errors, it has been seen that the substitution of the 

camera matrices with their idealized approximations might lead to a considerable 

increase in the reprojection error. 

 

This problem is remedied to an extent by the utilization of a sparse bundle 

adjustment algorithm, which takes the idealized but inaccurate reconstruction as 

the initial estimate, and optimizes the reconstruction parameters. The 

experimental results show that the exploitation of the sparse bundle adjustment 

algorithm highly improves the reprojection error, and that it is even possible to 

reduce the error slightly more by including the optimization of some internal 

camera parameters in the algorithm as well. However, since the sparse bundle 

adjustment method is based on a gradient-descent type of optimization algorithm, 

the initial estimate is critical for the progress of optimization, as the algorithm 

might miss the optimum solution by getting trapped into a local minimum 

depending on the starting point. 

 

Another challenge in reconstruction is the occurrence of erroneous points in the 

reconstructed scene, caused by several error sources such as mismatches, and 

computation and measurement errors, the accumulations of which are observable 

especially for long image sequences. Two different methods have been proposed 

for the removal of outliers from the scene, one of which is based on the 

minimization of a cost function defined in terms of the reconstructed points and 
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image intensity functions, whereas the other algorithm aims to eliminate the 

outliers by detecting spiky points in the reconstruction and searching intensity 

correlations around these points. Experiments have shown that both methods are 

capable of discarding outliers effectively. However, the intensity correlation 

based algorithm might be more preferable if the reconstructed scene is in general 

correct but contains a few points with prominent errors, whereas the optimization 

based algorithm might perform better in scenes with distributed errors and noise. 

 

Finally, the piecewise planar scene representation algorithm proposed by İmre 

[28] is examined, and experiments have been conducted to evaluate its 

performance. The experimental results have shown that the algorithm is quite 

promising in the sense of rate-distortion efficiency; and its performance has been 

seen to be close to that of a rate-distortion optimal one, while the computational 

complexity of the algorithm is fairly acceptable. 
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APPENDIX A 
 
 
 
The problem of finding the nearest rotation matrix to a given matrix can be 

formulated as follows [26]: For 3 3×∈A , the nearest matrix with orthogonal 

columns to A is the matrix A+E, where 

 

{ }3 3 Targ min | , ( ) ( )×= ∈ + + =
E

E E E A E A E I .   (A.1) 

 

In [27], Fan and Hoffman has shown that for n n×∈A , where A has the polar 

decomposition A=UH, any matrix n n×∈Q  with orthogonal columns satisfies 

A - U ≤ A-Q . Therefore, the minimization problem in (A.1) can be solved by 

obtaining the polar decomposition of A. 

 

The polar decomposition is closely related to the singular value decomposition in 

the following way: 

 

 A = WSVT = (WVT )(VSVT ) = UH ,     (A.2) 

 

where WSVT is the singular value decomposition, and UH is the polar 

decomposition of A. Hence, the nearest rotation matrix to an 3×3 matrix A is the 

matrix U=WVT. 
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APPENDIX B 
 

 

The set of quaternions is a four-dimensional vector space over real numbers, with 

the operations addition, multiplication by a real number and a special quaternion 

multiplication. Quaternions provide a compact representation for the rotation of 

vectors in 3-space, where the unit quaternion q corresponding to a rotation of θ 

degrees around the axis ê = (ex ,ey ,ez )  is  

 

 q =

ex sin(θ / 2)

ey sin(θ / 2)

ez sin(θ / 2)

cos(θ / 2)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.       (B.1) 

 

Given a rotation matrix R, the unit quaternion q = q1 q2 q3 q4[ ]T  

representing the rotation can be obtained as: 

 

 

q4 = ±
1

2
1+ R11 + R22 + R33

q1 =
1

4q4

R32 − R23( )

q2 =
1

4q4

R13 − R31( )

q3 =
1

4q4

R21 − R12( )

     (B.2) 

 
Similarly, given a unit quaternion q = q1 q2 q3 q4[ ]T , the rotation matrix R 

corresponding to q is given by 

 



 140

 R =
1− 2q2

2 − 2q3
2 2(q1q2 − q3q4 ) 2(q1q3 + q2q4 )

2(q1q2 + q3q4 ) 1− 2q1
2 − 2q3

2 2(q2q3 − q1q4 )

2(q1q3 − q2q4 ) 2(q1q4 + q2q3) 1− 2q1
2 − 2q2

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.  (B.3) 
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