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ABSTRACT 
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AND CORRESPONDING PARAMETERS FROM IN VIVO EXPERIMENTAL 

DATA BY USING INVERSE FINITE ELEMENT METHOD 
 

 

Üsü, Kerem 

M.S., Department of Mechanical Engineering 

Supervisor      : Assist. Prof. Dr. Ergin Tönük 

 

September 2008, 299 pages 

 

 

The purpose of this thesis is to search for the best material model for soft biological 

tissues in general. Different sections of human body exhibit different responses like 

stress relaxation, creep, hysteresis and preconditioning to external loading 

conditions. These body sections can be assumed as viscoelastic, poroelastic or 

pseudoelastic. After making the choice of the material model from one of these for 

the current study, the finite element model and the material code to be used with this 

model have been created. The material code has also been tried on a simple finite 

element model before implementing to the real model to prove the fact that it is 

working properly. Then, the constants in the code which simulates the in vivo 

experimental data that was obtained by indenting the elliptic indenter tip into the 

forearm, medial part as close as possible, have been derived by inverse finite element 

method. Consequently, the characteristic behaviors of the soft tissue could be 

simulated. Despite the big size of the finite element model and very long submission 
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times (up to one day for preconditioning simulation), relaxation and creep behaviors 

could be simulated with the maximum normalized sum of square errors of 0.74 % 

and 0.43 %, respectively. The number of square errors for the hysteresis and 

preconditioning behaviors appeared as 2.56 % and 3.89 % which are also acceptable 

values. These values prove that these material models are well suited for the 

simulation of the behavior of soft biological tissues. By using different experimental 

data obtained from other sections of human body, simulation of the behavior of 

different soft tissues can be achieved by using these material models.  

 

 

Keywords: Soft Tissue, Viscoelastic, Inverse Finite Elements. 
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ÖZ 

 

 

YUMUŞAK DOKU MEKANİK MALZEME MODELİ VE MODEL 
PARAMETRELERİNİN CANLI DOKUDA VE YERİNDE DENEYLERDEN 

ELDE EDİLEN VERİLERLE EVRİK SONLU ELEMANLAR YÖNTEMİ 
KULLANILARAK KESTİRİLMESİ 

 

 

Üsü, Kerem 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi      : Yrd. Doç. Dr. Ergin Tönük 

 

Eylül 2008, 299 sayfa 

 

Bu tezin amacı genel olarak yumuşak biyolojik dokular için en iyi malzeme modelini 

araştırmaktır. İnsan vücudunun farklı bölgeleri dış yükleme durumlarına gerilim 

gevşemesi, sünme, histeris ve alışma gibi farklı tepkiler verirler. Bu bölgeler 

viskoelastik, poroelastik veya psödoelastik olarak kabul edilebilirler. Bu çalışmada, 

yumuşak doku malzemesi olarak bunlardan birinin seçimi yapıldıktam sonra, sonlu 

elemanlar modeli ve bu modelle beraber kullanılacak malzeme kodu meydana 

getirilmiştir. Malzeme kodunun uygun şekilde çalıştığı, gerçek modelden önce daha 

basit bir sonlu elemanlar modelinde denenerek ispatlanmıştır. Daha sonra, malzeme 

kodunun içerisindeki ön kolun orta kısmına eliptik uç ile yapılan basma deneyleri 

sonucu alınan deneysel veriyi mümkün olduğu kadar yakın kestiren katsayılar evrik 

sonlu elemanlar yöntemi kullanılarak elde edilmiştir. Sonuç olarak yumuşak 

dokunun karakteristik özellikleri kestirilebilmiştir. Sonlu elemanlar modelinin 

büyüklüğüne ve hesaplama sürelerinin uzunluğuna rağmen (alışma etkisinin 
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hesaplanmasında bir güne kadar), gevşeme ve sünme davranışları sırasıyla % 0.74 ve 

% 0.43 normalize edilmiş hata kareleri toplamı değerleriyle kestirilebilmiştir. 

Histeris ve alışma etkilerinin kestiriminde ise bu hata oranları kabul edilebilir olan % 

2.56 ve % 3.89 olarak ortaya çıkmıştır. Bu değerler, kullanılan malzeme modellerinin 

yumuşak biyolojik doku davranışının kestirimine uygun olduğunu göstermektedir. 

İnsan vücudunun farklı yerlerinden alınan yumuşak doku deney sonuçları 

kullanılarak farklı yumuşak dokuların davranışlarının kestirimi de bu malzeme 

modelleri kullanılarak yapılabilir. 

 

 

Anahtar Kelimeler: Yumuşak Doku, Viskoelastik, Evrik Sonlu Elemanlar. 
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CHAPTER 1 

 
 

INTRODUCTION 

 

 

Human beings are consistently in touch with their surrounding environment in all 

their life times. Sometimes they smell or listen to notice, or sometimes they touch. 

Even in a day, people have plenty of physical contacts with the materials around 

them unconsciously. For example they sit on a chair and do not stand for hours, or 

sleep on top of the same arm all the night. 

 

The outer surface of human body is mainly composed of soft tissues. So, most of the 

mechanical interactions with the surrounding environment is by these soft tissues. 

For example, short after one sits on his hip, it takes the shape of the place where he 

sat. When that person moves, the shape of his hip changes again and tries to adapt to 

its new position. When a person takes a long walk, the soles of his feet can be 

bruised due to harmonic force applied to them by the floor as a result of his weight. 

People who have paralysis have to lie on a bed for long hours. Because, it is 

impossible for them to move their body. In that case, the interaction between their 

tissues and the bed causes some bruises (which are called bed bruises). People who 

have prosthesis or orthesis are generally complainant about their bruises which 

happens due to interaction between their soft tissues and prosthesis or orthesis.   

 

For being able to identify these mechanical interactions between human body and the 

surrounding environment accurately, firstly the structure of the soft tissues must be 

known. How they react against different loadings must be known in detail and 

accurately. The determination of this is done by soft tissue experiments. There are 

three types of experiments:  
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In ex vivo experiments, polymer like materials which have similar characteristics 

with soft tissues are used instead of real soft tissues. So, this experiment type is the 

one which gives the least meaningful results. But using materials with known 

geometries makes this experiment type easier to be applied. In in vitro experiments, 

real but dead soft tissues which are cut out of a cadaver are used. The facts that the 

soft tissue is not in its original surrounding and it is not alive cause some 

characteristics to change. The results obtained by in vitro experiments are better than 

the ones obtained by ex vivo experiments, but not as satisfactory as in vivo 

experiments. Because, in vivo experiments are performed on a living human body 

when the soft tissue is alive. Consequently, this type of experiments gives the most 

accurate information about the mechanical behavior of the soft tissue. One 

disadvantage of this experiment type is the difficulty in performing due to complex 

geometry of soft tissues and the complex interaction of soft tissue with its 

surrounding. The experimental data used in this study was obtained by in vivo 

experiments applied on the forearm, medial part. 

 

The mechanical behavior of soft biological tissues can be simulated by using models 

and by developing mathematical equations. The aim of this approach is to get 

complete idea of the behavior of the biological materials under mechanical 

constraints. Then, this knowledge can be used to predict their behavior under those 

constraints.   

 

For the simulation of the mechanical behaviors of soft biological tissues, one needs 

to use the finite element theory. Finite element theory has frequently been used for 

the simulation of many material behaviors so far. By the usage of the material library 

within the context of finite element software, one can create the model and simulate 

its behavior in many conditions. For the common materials it is relatively easier to 

model the behavior, because these materials are available in the material library of 

the finite element software. However, biological tissues exhibit complex mechanical 

behaviors not easily accounted for in classic elastomeric constitutive models. For 

example, because of their oriented fibrous structures, they often exhibit pronounced 

mechanical anisotropy, nonlinear stress-strain relationships, large deformations and 
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strains, viscoelasticity, poroelasticity and strong mechanical coupling. In addition, 

biological soft tissues are comprised of a dense network of collagen and elastic fibers 

which can undergo large rotations and exhibit nonlinear stress-strain behavior that 

can induce complex behaviors at the macro scale not easily accounted for in classic 

material models (Sun et al., 2003).  

 

Despite a considerable number of investigations, it is difficult to find a satisfactory 

constitutive model for the nonlinear viscoelastic behavior of soft tissues. This can be 

explained by the following reasons: 

 

• Some models in the nonlinear theory of viscoelasticity were proposed by 

employing a mathematical apparatus, which is too general to be applied to 

real materials. These constitutive models include several unknown functions 

which are extremely difficult to be determined with the necessary level of 

accuracy by using the standard experiments. 

 

• The constitutive equations should be sufficiently simple in order to allow 

explicit solutions to be obtained at least for the simplest mechanical 

problems, such as uniaxial tension, or simple shear of a specimen. 

Unfortunately, this requirement rejects a number of models for the nonlinear 

viscoelastic behavior, since they do not even allow explicit inversion of the 

stress strain relationship. 

 

• While simulating the mechanical behavior of soft tissues, they were assumed 

to be in their natural state. But, some special conditions affect them and cause 

them behave different than natural state. For instance, cutting a vessel 

(physical phenomenon) has an influence on the blood pressure and therefore 

the function of other organs. On the contrary, the development of tumorous 

lesions (physiological phenomenon) modifies locally the tissue mechanical 

properties (Delingette, 1998). 

 



 

4 

• Consequently, for more complicated materials like soft biological tissues, one 

needs to create a special material law which should be able to mimic the 

stress-strain-time relations first because, the constitutive equations (see 

Chapter 2) of soft tissues are not like common materials as explained above. 

The development of these special constitutive equations (see Appendices A, 

B and C) and related material codes (see Appendices I, K and M) constituted 

the main part of this study. 

 

Then, these constitutive equations were used for the simulation of tissues. The 

constants in these material codes were identified by using inverse finite element 

method (see Appendix G).  

 

Testing methods that include comprehensive testing protocols which allow large 

variations in stress and strain states are required for accurate material parameter 

estimation when attempting to determine material constants for complex nonlinear 

constitutive models. 

 

If one examines the history of soft tissue simulation studies, he would not be able to 

find any model which can simulate all the characteristic behaviors of soft tissues. So 

far, many scientists have worked on soft tissue simulation. Some of them could only 

simulate the relaxation behavior and some others could simulate the creep response 

by using the relaxation data. Some tried to fit soft tissue responses to mathematical 

series and some tried to decrease the number of constants in these formulations. 

These studies in the literature will be presented in detail in the following chapters. In 

Chapter 2, some basic information about the constitutive equations will be given. In 

Chapters 3, 4, 5 and 6 soft tissue modeling studies which have been performed so far 

by using pseudoelasticity, viscoelasticity, hyperelasticity and poroelasticity will be 

presented, respectively. Chapter 7 examines some alternative material formulations 

not used for soft tissue modeling before. In Chapter 8, material and finite element 

models will be discussed deeply and the results will be presented in Chapter 9. 

Finally, conclusion remarks will be discussed in Chapter 10. 
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This study aims to simulate all the characteristic behaviors of soft biological tissues 

with only one constitutive equation with minimum possible change of material 

constant. 
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CHAPTER 2 

 
 

CONSTITUTIVE EQUATIONS 

 
 

Constitutive equations describe the stress-strain (or stress-strain-time history) 

relationship of a material under a general, three-dimensional stress field. Constitutive 

equations must be known before any structural analysis can be performed. In order to 

predict the mechanical response of biological soft tissues one has to know the 

material law (i.e. the constitutive equation) of the soft tissues. Yet, for all the 

biological materials, with the possible exception of the aorta, there is no single 

constitutive equation. This is partly due to the difficulties in testing and measuring 

biological tissues, and partly due to the difficulty in reducing the experimental data 

to a mathematical expression (Tong et al., 1976). 

 

It is not surprised that there are a great many constitutive equations describing an 

almost infinite variety of materials. What should be surprising, therefore, is the fact 

that three simple, idealized stress-strain relationships, namely, the nonviscous fluid, 

the Newtonian viscous fluid and the Hookean elastic solid, give a good description of 

the mechanical properties of many materials. They are the simplest laws that can be 

devised to relate the stress and strain, or strain rate. Within certain limits of strain and 

strain rate, air, water and many engineering structural materials can be described by 

these idealized equations. Most biological materials, however, cannot be described so 

simply (Fung, 1993). 

 

Since a constitutive equation describes a physical property of a material, it must be 

independent of any particular set of coordinates of reference with respect to which 

the components of various physical quantities (like stress and strain) are resolved. 

Therefore, tensors are used to express constitutive equations. 
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In the development of deformable body biomechanics, the most crucial step is the 

identification of the constitutive equations of the tissues involved. If the constitutive 

equations are known, then biomechanics problems can be formulated as 

mathematical problems and solutions can be definite. Without constitutive equations, 

biomechanics will remain qualitative in character. After the form of the constitutive 

equation is determined, the next step is to systematically collect data on the material 

constants of various tissues. Until a complete set of data on material constants is 

obtained, the power of biomechanics to predict the function of a soft tissue will be 

limited (Fung, 1984).   
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CHAPTER 3 

 
 

PSEUDO-ELASTIC MODELING 

 
 

The mechanical properties of most of the soft biological tissues are qualitatively 

similar. As an example, arteries are inelastic materials. They do not meet the 

definition of an elastic body. Elastic materials have a single-valued relationship 

between stress and strain (which also means that they have a single-valued 

relationship between force and displacement), but arteries show hysteresis when they 

are subjected to cycling loading and unloading. As shown in Figure 1, they are 

represented by different force-displacement curves in loading and unloading. The 

existence of the loop shows that the tissue is inelastic. Since the loop is repeatable 

one can treat the loading and unloading curves separately and borrow the method of 

the theory of elasticity to describe the mechanical properties (Fung, 1984).  

 

 

Displacement

F
or

ce

Loading

Unloading

Area between two curves 
appears as "work loss" which is 

also called as "hysteresis" 

 

Figure 1 - Basic Force-Displacement Curve for Inelastic Materials  
(adopted from Introduction to Biomechanics Lecture Notes, Tönük, E., 2006) 
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They show stress relaxation when held at a constant strain. They show creep when 

held at a constant stress. Those kinds of behaviors are shown in Figure 2a and 2b, 

respectively. They are anisotropic. Their stress-strain relationships are nonlinear. 

After all these factors, the problem of how to describe the mechanical properties of 

inelastic materials in a simple and accurate mathematical form becomes quite acute. 

A popular approach to nonlinear elasticity uses the incremental law: a linearized 

relationship between the incremental stresses and strains obtained by subjecting a 

material to a small perturbation about a condition of equilibrium. This approach was 

applied to the arteries in the 1950s but the elastic constants so determined are 

meaningful only if the initial state from which the perturbations are applied is 

known, and are applicable only to that state. It turns out that these incremental 

moduli are strongly dependent on the initial state of stress. A full documentation of 

this dependence is very difficult to do experimentally and has not been accomplished 

so far. The difficulty is not due to any lack of technology of recording or patience of 

the experimenter, but due to the viscoelastic character of the material (Fung, 1980). 

 

 

F
or

ce

Time

Reaction Force Decreases as 
time passes, so is the Stress. 

This is called "stress relaxation" 

  

Figure 2a - Force-Relaxation Curve for Viscoelastic Materials at Constant 
Displacement  

(adopted from Introduction to Biomechanics Lecture Notes, Tönük, E., 2006) 
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D
is

pl
ac

em
en

t

Time

Displacement Increases as 
time passes, so is the Strain. 

This is called "creep" 

 

Figure 2b - Creep Curve for Viscoelastic Materials at Constant Load 
(adopted from Introduction to Biomechanics Lecture Notes, Tönük, E., 2006) 

 

 

All experimenters agree that to test a biological soft tissue in any specified procedure 

of loading and unloading it is necessary to perform the loading cycle a number of 

times before the stress-strain relationship becomes repeatable (Fung, 1970, Bischoff 

et al, 1999, 2006, 2004, Abramowitch et al, 2004, Fulin et al, 2007). This process is 

called preconditioning (Mullin’s effect). A testing protocol such as loading and 

unloading at a constant rate or sinusoidal stretching and shortening must be selected.  

 

Focusing attention to preconditioned arteries subjected to cycling loading and 

unloading at constant strain rates, one can see that, by definition, the stress-strain 

relationship is well defined, repeatable, and predictable. For the loading branch and 

the unloading branch separately, the stress strain relationship is unique. Since stress 

and strain are uniquely related in each branch of a specific cyclic process, the 

material can be treated as one elastic material in loading (increasing strain), and 

another elastic material in unloading (decreasing strain). Thus the method of the 

theory of elasticity can be borrowed to handle an inelastic material and two different 
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equations for these two branches can be used. Because of the fact that inelastic 

materials are being dealt with, it is called pseudo-elasticity. 

 

Pseudo-elasticity is, therefore, not an intrinsic property of the material. It is a 

convenient description of the stress-strain relationship in specific cyclic loading. The 

usefulness of the concept of pseudo-elasticity is greatly enhanced because of the fact 

that it is rather insensitive to strain rate. The stress-strain relationships of some 

tissues have been tested in a range of strain rate covering a million-fold difference 

between the slowest and the fastest cycling, and the stresses at the same strain are 

usually found to differ by less than a factor of two (Fung et al, 1967, 1975, 1984, 

1993, 1994). 

 

The stiffness of soft biological tissues increases rapidly as tensile stresses increase 

because of the composite nature of the materials. These tissues are composed of 

collagen networks, elastin networks, smooth muscles, and ground substances. The 

fibers of collagen, elastin, and smooth muscles are curved: they gradually take up 

more and more stresses as they become straightened and stretched. Collagen fibers, 

when straight, have Young’s modulus which is two or three orders of magnitude 

higher than that of the elastin. Smooth muscle has very large hysteresis in cyclic 

deformation. The network configuration of these fibers, as embedded in the ground 

substance, changes with the strain. Speculations abound, but the details are not 

known very clearly (Fung, 1980, Dehoff, 1978, Henry et al, 2005).  

 

3.1. Pseudo-Strain Energy Function 

 

Biological specimens must be tested in a manner as close as to in vivo conditions as 

possible. By saying in vivo conditions one means that, the specimens must be as 

close as to physiological conditions. So, choosing the most appropriate method for 

testing becomes quite important. The shape and size of the specimens are limited by 

nature. Also the type of loading that can be imposed is often restricted due to the lack 
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of the accuracy of the testing apparatus. As a result of these factors, one has to be 

satisfied with certain approximations. 

 

By considering the body of the specimen tested two-dimensional, the circumferential 

and longitudinal coordinates are denoted by θ  and z as shown in Figure 3. Then, the 

stretch ratios in these directions are denoted by θλ  and zλ , the Green’s strains 

(referred to undeformed state) by θθE  and zzE , the Cauchy stresses (referred to 

deformed state) by θθσ  and zzσ , and the Kirchoff stresses (referred to undeformed 

state) by θθS  and zzS  (Malvern, 1969). 

     

 

 

Figure 3 - Representative Coordinate Directions of the Specimen 
(adopted from Introduction to the Mechanics of a Continuous Medium, Malvern, 

1969) 
 

 

Considering a periodic loading and unloading at a constant rate of stretching, 

Kirchoff stresses can be written in terms of Green’s strains as; 

 

ij

ij
E

W
S

∂

∂
=

)( 0ρ
………………………………………………………………………(1) 
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where; 0ρ  denotes the density of the material in the unstressed state and W denotes 

the strain energy per unit mass. In this formulation, the term W0ρ  is called pseudo- 

strain energy function. 

 

Pseudo-strain energy functions, however, do not have the thermodynamic meaning 

of the strain energy function, because they depend not only on preconditioning, but 

also on whether the process is loading or unloading. Nevertheless, the assumption of 

the existence of a strain energy function for either loading or unloading does simplify 

the mathematical problem of data reduction. The best strain energy function is the 

one which involves only a minimum number of material constants. Biological 

specimens vary a great deal, not only from animal to animal and specimen to 

specimen, but also for the same specimen as the strain history changes. An empirical 

expression that involves many material constants is likely to experience difficulty in 

determining these constants. In the selection of a proper form for the strain energy 

function, the common fact is; many biological materials are very flexible for quite a 

large range of deformation (with stretch ratios up to the order of 1.5 or 2.0), and then 

they become very stiff (Tong et al., 1976). 

 

There are many pseudo-strain energy functions in the literature used for different soft 

tissues some of which are mentioned below.  

 

3.1.1. Pseudo-Strain Energy Function for Arteries and Veins 

 

For arteries there are two forms of pseudo-strain energy function used much widely. 

These are the polynomials used by Patel, Vaishnav and their associates (1972), and 

exponential functions used by Fung et al. (1979). 

 

The polynomial form is; 
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322322

0 zzzzzzzzzz EGEEFEEEEDECEEBEAW ++++++= θθθθθθθθθθρ  

       ……………………………….(2) 

where; A, B, C, D, E, F and G are material constants (Fung, 1973). The exponential 

form is; 

 

]2[exp
2

4

2

2

2

10 zzzz EEaEaEa
C

W θθθθρ ++= …………………………...…………(3) 

 

where; C, 1a , 2a and 4a  are material constants (Fung et al., 1979). It is shown by 

experiments that both of the pseudo-strain energy function forms can fit experimental 

data quite well in the range of physiological stresses and strains. The correlation 

coefficients are usually better for equation (3) than for equation (2) (Vaishnav, 

1972). 

 

3.1.2. Pseudo-Strain Energy Function for Skin 

 

The skin is also an inelastic material, but after preconditioning the stress-strain loop 

becomes unique in cyclic loading and unloading, and it is insensitive to strain rate. 

Keeping these properties in mind, one can use equation (1) for skin, too. 

 

For the skin in a state of generalized plane stress, the pseudo-strain energy function 

proposed by Tong et al (1976) is the following; 

 

)],([exp),(0 EaFCEfW += αρ …………………………………....................(4) 

 

where; 

 

=),( Ef α 2
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111 )(2 EEEEEE ++++ αααα ......................................(5)
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2
111 )(2 EEaEEaEaEa ++++ .....................................(6) 
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11E  and 22E  are Green’s strains in the longitudinal direction 1X , and transverse 

direction 2X , respectively; 12E  and 21E  are shear strains in these directions; 

3214321 ,,,,,,, aaaC αααα  and 4a are material constants (Tong et al., 1976). 

 

Tong and Fung also examined the function ),( EaF  in the following form (Tong et 

al., 1976); 

 

2

2211522

2

114

3

222

3

111

2
2112322114

2
222

2
111 )(2),(

EEEEEE

EEaEEaEaEaEaF

γγγγ ++++

++++=
…………………………..(7) 

 

where; 5421 ,,, γγγγ are also constants to include the higher order terms in the 

equation. This improves the fitting between the theoretical expression and the 

experimental data.  

 

After further examination, Tong was able to obtain a good fit with the experimental 

data of the skin by expressing W as an exponential function of a polynomial of the 

second and third degree, omitting the first degree terms.  

 

Let the orthogonal coordinates 21 , xx  be chosen in the plane of the skin, with 1x  

pointing the longitudinal (head to tail) direction, and 3x  be perpendicular to 21 , xx . 

Then the normal stress 33S  and the shear stresses 1331 SS = , 2332 SS =  all vanish 

due to generalized plane stress case. Hence, if equation (1) applied, the pseudo-strain 

energy function W0ρ will not contain 2332133133 ,,,, EEEEE  because 033 =S  

implies 0)( 330 =∂∂ EWρ . Therefore, pseudo-strain energy function is only a 

function of 22
2

1211 ,, EEE  for two-dimensional specimens in a state of plane stress. 

It is shown by Fung (1965) that; 
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where; 2211 , EE  and 12E  are Green’s strains; 111 ax ∂∂=λ  and 222 ax ∂∂=λ  are the 

stretch ratios in the directions of 1x and 2x , respectively; 1a  and 2a  are the location 

of a particle in the undeformed state; 1x  and 2x  are the location of the same particle 

in the deformed state. The pseudo-strain energy function for the skin (for the two-

dimensional case by assuming the skin as orthotropic material) can be written shortly 

as; 
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where; α ’s , a ’s , γ ’s and c  are constants. Then stress-strain relationships can be 

obtained by equation (1) as; 
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where; 
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Since only tensile testing data are available, only those constants associated with 

tensile strains can be determined. That means, the shear strain 12E  is zero in all the 

experiments and consequently 3α  and 3a  cannot be determined. Remaining elastic 

coefficients to be determined ( )5421421421 ,,,,,,,,,, γγγγααα aaac  are defined 

by equation (10) as; 
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There are two situations explained below; 

 

i ) All the s'γ are set to zero. In this case there are seven constants to be determined, 

namely: 421421 ,,,,,, aaacααα . Using subscripts A, B, etc. to denote experimental 

data points A, B, etc. one chooses the following seven pieces of experimental 

information; 

 

( )
ASS 1111 =       at A……………………………………………..........................(17) 

( )ASS 2222 =       at A……………………………………………………………..(18) 
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α
      at C……………................(20) 

( )BSS 1111 =       at B……………………………………………………...............(21) 

( )BSS 2222 =       at B……………………………………………………...............(22) 

( )
DSS 2222 =       at D…………………………………………………..................(23) 

 

From equations (14) – (23) one can find; 
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where; 

 

( )
A

EES
E

S
X 








−−








−

∂

∂
= 224111111

11

11
1 ααα       at A……………………...(31) 

( )
C

EES
E

S
X 








−−








−

∂

∂
= 222114222

22

22
2 ααα       at C………………………(32) 
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2
111 2exp EEaEaEaX ++= …………………………………................(34) 

( )[ ]BA XEaEacSS 22211111 +−= …………………………………...…...............(35) 
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( )[ ]BB XEaEacSS 22211422 +−= ……………………………...………………..(36) 

( )[ ]DD XEaEacSS 22211422 +−= ……………………...……………………….(37) 

 

From the equations, an iteration scheme can be set up to determine the constants 

421421 ,,,,,, aaacααα . Starting with an initial guess of α ’s and sa ' , one may 

evaluate the updated sa '  from equations (24) – (26) and (31) – (33). The iteration 

process is continued with fixed α ’s until a set of convergent sa '  are obtained. Then 

equations (27) – (30) and (34) – (37) is used to evaluate the updated c’ s and α ’s. If 

α ’s converged, the iteration stops; otherwise, the updated α ’s and the current sa '  

are used to start the iteration again from equations (25) – (26) and (31) – (33).  

 

If the stresses (or strains) at points A and C are much higher than those at points B 

and D, an excellent guess of α ’s can be obtained by evaluating equations (28) – (39) 

and (35) – (37) with sa ' , set to zero.  

 

ii ) 1γ  and 2γ are set to zero and 4γ is set to equal 5γ . In this case, there are eight 

constants to be determined, namely: )(,,,,,,, 54421421 γγααα =aaac . Then in 

addition to conditions (19) – (23), one requires; 
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The special case where the experimental data ( ) ( ) 02222 == BA EE  will be 

considered. Then, all the equations for iteration are the same as those of equations 

(24) – (37), except that equations (25), (26) and (34) are replaced by; 
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and equation (37) is replaced by; 
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The iteration procedure is similar to that of case i. It should be noted that, 

since ( ) ( ) 02222 == BA EE , no initial guess of 1a  or 4a  is necessary. Once the initial 

guess of α ’s is made, 1a  can be evaluated from equation (24), 4γ  is then evaluated 

from equation (39), 4a  is evaluated from equation (40), and then 2a  is determined 

from equation (41) by iteration.  

 

It is found that the fit between these mathematical formulas and the experimental 

data is good. However, if one uses the constants in one experiment with a specific 

protocol and preconditioning to compute the stress-strain relationship in other 

experiments on the same specimen, but with a different protocol, the success is 

uniform. The agreement between the mathematical formula and the experimental 

data is still reasonable when 23.1=yλ , but in the case of 41.1=yλ  there is no 

correlation at all (Tong et al., 1976). 
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3.1.3. Pseudo-Strain Energy Function for Lung Parenchyma 

 

The Lung parenchyma is a big organ with a complex structure. Its shape looks like a 

foam rubber which means that it is a very soft tissue. Pseudo-strain energy function 

for the lung parenchyma is deduced by Hoppin et al. (1975) as; 
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where; ii ba , and ic  are material constants. This equation was obtained by applying 

triaxial loading on a lung tissue specimen of cubic geometry. So, stretch ratios in 

three directions are included in the equation. Also slabs of lung tissue were tested 

which was bathed in saline and subjected to cyclic biaxial loading at constant rate of 

stretching and strain. The experimental results were quite extensive. When equation 

(45) is applied to experimental data, the fitting is excellent; 

 

]2[exp 22114
2
222

2
1110 EEaEaEaCW ++=ρ  +  symmetric terms by permutation  

       ……………………………...(45)  

 

in which the last line means the sum of all terms obtained by cyclic permutation of 

the subscripts 1. 2 of E by 2, 3 and 3, 1. 

 

A major difference between equation (44) and (45) is that isotropy is assumed in the 

former but not in the latter. For fitting latter experimental data, the anisotropic 

expression leads to higher correlation coefficients (Fung, 1980). 
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3.1.4. Pseudo-Strain Energy Function for Mesentery and Muscles 

 

For the mesentery and muscles (in the passive state), Fung has shown that the 

following equation provides an excellent fit of the experimental data of uni-axial 

tension tests, except for a small region very near the state of zero stress (Fung, 1973, 

1967); 

 

βα += T
Ed

Td
…………………………………………………………................(46) 

 

where; T is the stress per unit original area; E  is the strain relative to an initially 

undeformed state; and βα ,  are constants determined experimentally. Integration of 

equation (46) yields a stress T as an exponential function of strain, E.  

 

3.1.5. Pseudo-Strain Energy Function for Lower Extremity Residual Limb   

 Tissues 

 

The bulk soft tissue was approximated as a single, homogeneous, isotropic (in the 

undeformed configuration), nonlinear elastic, incompressible material represented by 

the James-Green-Simpson strain energy density function (Mooney, 1940), as 

follows; 

 

( ) ( ) ( )3
3

2
21 33232 −+−+−= ICICICW ………………….………...............(47) 

 

where; W is the strain energy density (energy-per-unit undeformed volume); I is the 

invariant of Green-Lagrange strain tensor ( III == 21 ; the first and second strain 

invariants are equivalent for an incompressible material under axisymmetric loading 

conditions); iC  are the nonlinear elastic material coefficients to be determined 

(Tönük et al., 2003). 
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Equation (47) was used to simulate the nonlinear force displacement behavior of 

residual limb soft tissues, as measured during cyclic rate-controlled indentation. This 

model, one of the simplest phenomenological nonlinear elastic formulations 

available in the literature, was capable of simulating experimentally observed 

nonlinear compressive force displacement behavior of the residual limb bulk soft 

tissue of individuals with transtibial amputations.  

 

The individual soft tissue constituents (e.g., skin, fat, muscle) at the test location are 

modeled as a single, homogeneous, isotropic, nonlinear elastic material. The 

behavior of the individual constituents and their interaction with each other are not 

modeled. Other potential source of error for this model is the axisymmetric 

approximation of the indenter and residual limb geometry. Also, the frictionless 

contact assumption between the indenter tip and soft tissue during computer 

simulations can cause some errors. 

 

James-Green-Simpson equation is an elastic formulation. The time-dependent 

phenomena, such as creep and relaxation, as well as hysteresis during cyclic loading, 

have been observed for residual limb tissues. These behaviors cannot be simulated 

with the present elastic model. The compressive behavior of lower extremity soft 

tissues is nonlinear and viscoelastic. So, with the addition of viscoelastic material 

properties, a wide range of loading spectra can perhaps be simulated.  

 

Another of the disadvantages of this formulation is the fact that the material 

parameters do not have any physiological meaning. They are only constants for 

fitting the equation to the experimental data. 

 

3.1.6. Generalized Pseudo-Strain Energy Function 

 

There are many more forms of strain energy functions proposed for various tissues. 

Undoubtedly all forms proposed for rubber-like materials could and should be 

examined for biological applications, but it is known that the most popular ones do 
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not fit experimental data on the soft tissues like arteries, skin, lung parenchyma 

which were presented in this thesis. 

 

Fung proposed a generalized constitutive equation for the biological materials in the 

form of a strain energy function which can be written in tensor notation as follows 

(Fung, 1973); 

 

)...
2

1
(exp

2

1
0 +++= klijijklijijpqmnmnpqklijijkl EEEvEEEEW γββα …………..(48) 

 

Where; ijklα , mnpqβ , ijv , ijklγ , and 0β  are constants to be determined experimentally. 

In practice, the second term is used to express the behavior of the material at a high 

stress level, and the first term is used to remedy the situation at a lower stress level. 

 

3.2. The Effect of Strain Rate 

 

Strain energy functions are generally used to define perfectly elastic materials. Since 

soft biological tissues are treated as one elastic material in loading and another elastic 

material in unloading, one can borrow this method to describe these loading and 

unloading branches separately. But pseudo-elasticity has no generality; it can be 

defined only for a specific cyclic loading at a specific frequency after 

preconditioning. In practice, it is rather insensitive to strain rate and, therefore, has a 

certain degree of generality. Experiments show that it is a general feature of most 

biological soft tissues (such as muscle, the artery, the mesentery, the skin, the ureter) 

that the stress-strain relationship is rather insensitive to strain rate. 

 

Having a modest variation over a wide range of strain rates does not mean, of course, 

that the strain-rate effect is unimportant. There are occasions in which the 

characteristic strain-rate effect is certain limited ranges of frequencies can serve to 

identify the conditions of health in a tissue. Often theoretical and experimental 

results cannot be identified without taking the dynamic material characteristics into 
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account. But any theory of viscoelasticity of living tissues must account for the fact 

that the pseudo-elasticity of these tissues does not vary very much over a very wide 

range of strain rates (Fung, 1980). 

 

All the experiments and mathematical expressions of pseudo-elasticity presented 

above are limited to stresses and strains in physiological range (for example 

physiological range of circumferential stretch ratio for arteries lies in the range of 1.4 

to 1.8 (Fung, 1980)). They cannot be applied when the stress closes to the breaking 

point. Furthermore, virtually no data are available for soft tissues loaded in 

compression, because these tissues are very soft in the neighborhood of zero stress, 

and therefore buckle under small compressive stress.  

 

As a conclusion main advantages and disadvantages of modeling thye soft tissue 

material behavior with the pseudo-elastic constitutive equation can be summarized as 

follows: 

 

 Advantages: 

• Soft biological tissues are not elastic materials. It is hard to model 

the full behavior. Assuming loading and unloading branches as two 

different materials, there is seen a single-valued relationship between 

stress and strain which allows using the theory of elasticity. 

• Convenient for modeling almost all biological soft tissues, because 

the method of theory of elasticity can be borrowed for these inelastic 

materials. 

• The usefulness of the concept of pseudo-elasticity is greatly 

enhanced because of the fact that it is rather insensitive to strain rate.  

• The assumption of the existence of a strain energy function for either 

loading or unloading does simplify the mathematical problem of data 

reduction. 

• Bu virtue of the strain-rate insensitivity, pseudo-elasticity acquires a 

certain measure of independence.  
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 Disadvantages: 

• It is necessary to perform the loading cycle a number of times 

before the stress-strain relationship is repeatable which is called as 

preconditioning. 

• Pseudo-strain energy functions do not have the thermodynamic 

meaning of the strain energy function. 

• Pseudo-elasticity has no generality; it can be defined only for a 

 specific cyclic loading at a specific frequency after preconditioning. 

• If one uses the constants in one experiment with a specific protocol 

and preconditioning to compute the stress-strain relationship in 

other experiments on the same specimen, but with a different 

protocol, the success is uniform. 

• Elasticity allows modeling by considering the loading and unloading 

branches separately, but the soft tissue is not elastic at all. 

• The agreement between mathematical formulas and the 

experimental data is reasonable until a specific stretch ratio (about 

1.2 – 1.3).  
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CHAPTER 4 

 
 

VISCOELASTIC MODELING 

 
 

As mentioned in Chapter 3, soft biological tissues are not elastic. Viscoelasticity 

describes materials that exhibit both viscous and elastic characteristics. . Newtonian 

viscous fluids, like honey, resist shear flow and strain linearly with time when a 

stress is applied. Elastic materials strain instantaneously when stressed and just as 

quickly return to their original state once the stress is removed. Viscoelastic materials 

have elements of both of these properties and exhibit time dependent strain. Many 

viscoelastic materials exhibit rubber like behavior. They show hysteresis in the 

stress-strain curve with the area of the loop being equal to mechanical energy lost 

during the cycle as presented in Figure 1. 

 

Unlike purely elastic materials, a viscoelastic substance has an elastic component and 

a viscous component. The viscosity of a viscoelastic substance makes it strain rate 

dependent with time. Purely elastic materials do not dissipate mechanical energy 

(into heat) when a load is applied, then removed. However, a viscoelastic substance 

dissipates energy when a load is applied, then removed (Fung, 1994). 

 

4.1. Constitutive Models of Linear Viscoelasticity 

 

A mathematical model of viscoelasticity of a tissue must cover all features of 

hysteresis, relaxation, and creep. One of the most popular models of linear 

viscoelasticity is the Maxwell model of a spring in series with a dashpot (Figure 4a). 

The other is the Voigt model with a spring and dashpot in parallel (Figure 5a). A 

third is the Kelvin model which is a combination of a spring in parallel with a 
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Maxwell body (Figure 6a). None of these can represent a soft tissue, because when a 

material represented by any one of these models is subjected to a cyclic strain, the 

hysteresis will not be insensitive to strain rate: as frequency increases, the dashpot in 

the Maxwell body will move less and less at same load so the hysteresis decrease 

with frequency (Figure 4b). On the other hand, the Voigt body will let the dashpot 

take up more and more of the load so that the hysteresis increases with frequency 

(Figure 5b). For the Kelvin body there exist a characteristic frequency at which the 

hysteresis is a maximum (Figure 6b). None of these has the feature of nearly constant 

hysteresis as soft tissues do (Schwartz et al., 2005). 

 

4.1.1. Maxwell Model 

 

The Maxwell model can be represented by a purely linear viscous damper (dashpot) 

and a purely linear elastic spring connected in series, as shown in Figure 4a. The 

same force F is transmitted from the spring to the dashpot. This force produces a 

displacement µF  in the spring and a velocity ηF  in the dashpot. Then the 

velocity of the spring extension becomes µF& . The total velocity u&  is the sum of 

these two; 

 

ηµ

FF
u +=

&
& ………………………………………………………………………..(49) 

 

Obtained by using equation (49), the model can be represented by the following 

constitutive equation; 

 

td

d

td

d

td

d

td

d SDtotal σ

µη

σεεε 1
+=+= …………………………………...............(50) 
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where; totalε  is the total strain and Dε  and Sε  are strains at the damper and spring, 

respectively; σ  is the stress; µ  is the elastic modulus of the material and η  is the 

viscosity of the material. 

 

h µ
F

H

ln f

 

           Figure 4a - Maxwell Model              Figure 4b - Hysteresis-Frequency Curve                
                                                                                        of  Maxwell Model 

 

 

If the material having the Maxwell model is put under a constant strain, the stresses 

gradually relax to zero. When a material is put under a constant stress, the strain has 

two components. First, an elastic component occurs instantaneously, corresponding 

to the spring, and relaxes immediately upon release of the stress. The second is a 

viscous component that grows with time as long as the stress is applied.  

 

Furthermore, if the force is suddenly applied at the instant of time 0=t , the spring 

will be suddenly deformed to ( ) ( ) µ00 Fu = , but the initial dashpot deflection 

would be zero, because there is no time to deform. Thus, the initial condition for 

differential equation (49) is; 

 

( )
( )
µ

0
0

F
u = ……………………………………………………………………….(51) 
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The Maxwell model predicts that stress decays exponentially with time. It is 

important to note limitations of such a model, as it is unable to predict creep in 

materials based on a simple dashpot and spring connected in series. 

 

4.1.2. Voigt Model 

 

The Voigt model consists of a purely linear viscous damper (dashpot) and a purely 

linear elastic spring connected in parallel, as shown in Figure 5a. The spring and the 

dashpot have the same displacement. If the displacement is u, the velocity u& , and the 

spring and the dashpot will produce forces uµ  and u&η , respectively. The total force 

F is therefore; 

 

uuF &ηµ += ……………………………………………………………………..(52)  

 

Obtained by using equation (52), the constitutive equation of the Voigt model is 

expressed as a linear first-order differential equation; 

 

( ) ( ) ( )
td

td
tt

ε
ηεµσ += ………………………………………………………(53) 

 

h
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H
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Figure 5a - Voigt Model                               Figure 5b - Hysteresis-Frequency Curve 
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Upon application of a constant stress to a material having the Voigt model, the 

material deforms at a decreasing rate, asymptotically approaching the steady-state 

strain. When the stress is released, the material gradually relaxes to its undeformed 

initial state. At constant stress, the model is quite realistic as it predicts strain to tend 

to µσ  as time continues to infinity. Because of the fact that the dashpot and the 

spring are connected parallel, no deflection will occur in both of them if the force is 

applied suddenly. So, the appropriate initial condition is; 

 

( ) 00 =u …………………………………………………………………...............(54) 

 

Similar to the Maxwell model, the Voigt model also has limitations. The model is 

extremely good with modeling creep in materials; but with regards to relaxation the 

model is much less accurate. Further, it cannot model immediate elastic response 

which can be done by Kelvin model. 

 

4.1.3. Kelvin Model 

 

The Kelvin model effectively combines the Maxwell model and an elastic spring in 

parallel, as shown in Figure 6a. A viscous material is modeled as a spring and a 

dashpot in series both of which are in parallel with a lone spring. This time, let us 

break down the displacement 1u  (of the lower branch) into 2u  for the dashpot and 

′
2u  for the spring (of the upper branch), where as the total force F is the sum of the 

force 1F  from the spring (of the lower branch) and 2F  from the Maxwell element. 

Thus; 

 

′
+= 221 uuu ……………………………………………………………………..(55a) 

21 FFF += ……………………………………………………………………...(55b) 

111 uF µ= ………………………………………………………………...............(55c) 

′
== 2222 uuF µη & ……………………………………………………………….(55d) 
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Substituting equations (55c) and (55d) into (55b), we obtain; 

 

′
+= 2211 uuF µµ ………………………………………………………...............(56) 

 

Substituting the term ′
2u  obtained from equation (55a) into equation (56); 

 

( ) ( ) 2212121211 uuuuuF µµµµµ −+=−+= ……………………………….(57) 

 

Hence; 

 

( ) ( ) 2121

2

22121

2

uuuuFF &&& ηµµ
µ

η
µµµ

µ

η
+++−+=+ ……………………(58) 

 

Replacing the last term by ′
22 uµ  and using equation (55a), we obtain; 

 

uuFF &&








++=+

2

1
11

2

1
µ

µ
ηµ

µ

η
………………………………………...............(59) 

 

Equation (59) can also be written as; 

 

( )uuEFF R &&
σε ττ +=+ …………………………………………………………(60) 

 

where; 
2µ

η
τ ε =  is called the relaxation time for constant strain; 








+=

2

1

1

1
µ

µ

µ

η
τ σ  

is called the relaxation time for constant stress  and 0µ=RE  is called the relaxed 

elastic modulus. 

 

For a sudden applied force ( )0F  and displacement ( )0u , the initial condition is; 
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( ) ( )00 uEF R σε ττ = ………………………………………………………………(61) 

 

For the Kelvin model, the governing constitutive equation can also be given as; 

 

21

1
2

2

µµ

εµσ
σ

µ

η

η

µ

ε

+









−+

=
td

d
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d
……………………………………………….(62) 

F

H

ln f

m
1

m
2

h

 
Figure 6a - Kelvin Model                               Figure 6b - Hysteresis-Frequency 
                                                                                            Curve of Kelvin Model 

 

 

Under a constant stress, the modeled material will instantaneously deform to some 

strain, which is the elastic portion of the strain, and after that it will continue to 

deform and asymptotically approach a steady-state strain. This last portion is the 

viscous part of the strain. Kelvin model is more accurate than the Maxwell and Voigt 

models in predicting material responses, mathematically it returns inaccurate results 

for strain under specific loading conditions and is rather difficult to calculate 

(Malvern, 1969, Tönük, 2006). 
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4.1.4. Maxwell-Weichert Model 

 

A suitable model for soft tissues is the Maxwell-Weichert model, as shown in Figure 

7a. This model has an infinite number of springs and dashpots. In the corresponding 

hysteresis diagram shown in Figure 7b, there are an infinite number of bell-shaped 

curves which add up to a continuous curve of nearly constant height over a very wide 

range of frequencies. 

 

 

Figure 7a – Infinite Number of Springs and Dashpots 
(adopted from Introduction to the Mechanics of a Continuous Medium, Malvern, 

1969) 
 

H

ln f

 

Figure 7b - Hysteresis Diagram of Infinite Number of Springs and Dashpots 
(adopted from Introduction to the Mechanics of a Continuous Medium, Malvern, 

1969) 
 

 

It takes into account that relaxation does not occur at a single time, but at a 

distribution of times. Due to molecular segments of different lengths with shorter 

ones contributing less than longer ones, there is a varying time distribution. The 
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Maxwell-Weichert model shows this by having as many spring-dashpot Maxwell 

elements as are necessary to accurately represent the distribution (Malvern, 1969). 

 

 

 

4.1.5. Generalized Maxwell-Element 

 

The basic constitutive elements of linear viscoelasticity are an elastic spring called 

Hooke-element (Figure 8a) and a viscous Newton-element (Figure 8b). The elastic 

material constant µ  gives the linear relation (Kaliske et al., 1997); 

 

ee εµσ = ………………………………………………………………………….(63) 

 

between elastic stress eσ  and elastic strain eε . The viscous stress vσ  of the Newton-

element depends on the strain rate vε& . For the Newton-element these quantities are 

related linearly by the coefficient of viscosity η ; 

 

vv εησ &= ………………………………………………………………………….(64) 

 

analogously to the elastic Hooke-element. The viscosity η  can also be expressed in 

terms of the elastic constant µ ; 

 

µτη = …………………………………………………………………………….(65) 

 

by introducing the relaxation time τ . 
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Figure 8a - Hooke-               Figure 8b - Newton-                  Figure 8c - Maxwell- 
                   element                                   element                                       element 

 

 

The combination of Hooke-element and Newton-element in series yields the so-

called Maxwell-element (Figure 8c) where the total strain ε  consists of an additive 

combination ve εεε +=  of an elastic eε  and a viscous vε  component while the 

stress; 

 

ve εηεµσ &== …………………………………………………………...............(66) 

 

is the same in both rheological elements. Using the equation ve εεε += and 

equations (65) and (66), we can obtain; 

 

( )vv εε
τ

ε −=
1

& …………………………………………………………...............(67) 

 

At the state of equilibrium, i.e. 0=vε& , the viscous strain of a Maxwell-element 

converges to the total strain εε =v  and the elastic strain vanishes 0=eε . 

Alternatively, we get the fundamental differential equation; 

 

σ
η

σ
µ

ε
11

+= && ……………………………………………………………………(68) 
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If we carry out a relaxation test the Maxwell-element will deform at a constant strain, 

i.e., ( ) ( ) .0 constt == εε . In this case the solution of differential equation (68) 

yields; 

 









−=

τ
σ

t
c exp …………………………………...………………………………(69) 

 

By using the initial condition ( ) ( )00 εµσ = , the constant ( )0εµ=c  is determined. 

Thus, we get the solution; 

 

( ) ( )0exp ε
τ

µσ 







−=

t
t ………………………………………………………….(70) 

 

where, the relaxation function; 

 

( ) 







−=

τ
µ

t
tG exp ……………………………………………………………….(71) 

 

defines the specific viscoelastic characteristics of a material. At an infinite large time 

the stress is fully relaxed, i.e. ( ) .0=∞σ  

 

The preceding relaxation test of one Maxwell-element is easily applied to an 

extended viscoelastic formulation where a finite number of separate, Maxwell-

elements are arranged in parallel with an elastic Hooke-element (Figure 9). The 

stress relaxation for the generalized Maxwell-element is given by; 

 

( ) ( ) ( )0exp0
1

0 ε
τ

µεµσ ∑
=














−+=

N

j j

j

t
t  

          = ( ) ( )0εtG ………………………………………………………………..(72) 

 

where; 
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( ) ∑
=














−+=

N
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j

t
tG

1
0 exp

τ
µµ …………………………………………………..(73) 

 

defines the characteristic relaxation function of N Maxwell-elements. The time-

independent elastic part of the deformation is represented by the term 0µ  which is 

constant with respect to time. 
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Figure 9 - Generalized Maxwell-element 
(adopted from Biomechanics: Mechanical Properties of Living Tissues, Fung, 1993) 

 

 

The generalized Maxwell-model has been derived from basic considerations and the 

constitutive assumption has been proved to be valid for a large number of materials 

by experiments. 

 

Some scientists (Tönük et al., 2004) used generalized Maxwell-model with two 

dampers to simulate the relaxation and creep data of biological soft tissues. They 

used the following constitutive equation for relaxation; 

 

( ) ( )( ) ( )( ){ }21 111 210
ττ δδ tt eeFtF −− −−−−= ………………………….……………….(74) 
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where; ( )tF  is the force-relaxation response; t is time ( .1200 st ≤≤ ; 0=t  

corresponds to the end of initial loading and beginning of relaxation); 0F  is the 

reaction force at time 0=t ; 1δ  and 1τ  are the short-term relaxation magnitude and 

associated time constant; 2δ  and 2τ  are the long-term relaxation magnitude and 

associated time constant, respectively. The total tissue relaxation is therefore 

( )210 δδ +F . 

 

And the following one was used for creep; 

 

( ) ( )( ) ( )( ){ }21 111 210
ττ δδ ′−′− −′+−′+= tt eedtd …….………………...…………...............(75) 

 

where; ( )td  is the displacement-creep response; t is time ( .1200 st ≤≤ ; 0=t  

corresponds to the end of initial loading and beginning of creep); 0d  is the tissue 

indentation at time 0=t ; 1δ ′  and 1τ ′  are the short-term creep magnitude and 

associated time constant; 2δ ′  and 2τ ′  are the long-term creep magnitude and 

associated time constant, respectively. The total tissue creep is therefore ( )210 δδ ′+′d . 

 

4.2. Linear Elastic Tensor-Mass Method 

 

Some scientists used the linear elastic tensor-mass method which allows fast (real-

time) computation of nonlinear and viscoelastic mechanical forces and deformations 

for the simulation of biological soft tissues. They showed that most of the tissues are 

highly nonlinear, and that a viscoelastic constitutive model is most suitable for 

modeling deformations. The model they presented integrates physical nonlinearity 

and viscoelasticity into the tensor-mass framework while keeping a linear strain 

tensor (Schwartz et al., 2005). 
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4.3. Modeling Elastic and Viscous Behaviors Separately 

 

It is thought by some other scientists (Sanjeevi, 1982) that the stress (σ ) generated 

in a biological material can be represented as a combination of the Hookean stress 

εE      (E is a constant and ε  is the strain) and the Newtonian hydrodynamic viscous 

stress tddεη (η is a constant and dtdε  is the strain rate). Therefore; 

 

dt

d
E

ε
ηεσ += …………………………………………...………………………(76) 

 

By proposing this model, it is aimed to take both viscous and elastic components into 

account using a suitable procedure. Stress-relaxation and creep curves are tried to be 

predicted. 

 

For this type of modeling different amounts of strains (2%, 5%, 8%, etc.) are applied 

to the material. Then the stresses developed are allowed to decay for long enough to 

ensure that there is no further decay of stresses with time (Figure 10). By this figure 

using least-square technique, the elastic and the viscous components of the stress 

developed can be found as; 

 

2
21 εεσ EEelastic += ……………………………………………………………..(77) 

td

d

td

d
viscous

ε
εη

ε
ησ 21 += ………………………………………………...............(78) 

 

By using the experimental data, the complete viscoelastic equation can be found as; 

 

td

d

td

d ε
ε

ε
εεσ 2942.011.11012.55 2 ++−= ………………………………....(79) 

 

It can be seen that this equation is closely similar to the stress developed by a Voigt 

model responding to higher orders of strain levels. 
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Figure 10 - The Stress Decay at Small Strain Intervals 
(adopted from A Viscoelastic Model for the Mechanical Properties of Biological 

Materials, Sanjeevi, 1982) 
 

 

4.4. Haut and Little Equations 

 

Two approximate constitutive equations which have proved useful for characterizing 

the nonlinear viscoelastic behavior of polymers are proposed as candidate theories to 

characterize soft biological tissues (Dehoff, 1978). By using these equations, Haut 

and Little equations which represent the relaxation behavior of collagen can be 

derived.  

 

Haut and Little equation is known as; 

 

( ) ( )[ ] ( )
τ

τ

τλ
τλ

λ

σ
τσ d

d

d

d

d
tGt

et

∫ −=
0

)( ………………………………...............(80) 
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where; σ  is the nominal stress; eσ  is the elastic stress generated instantly when the 

tissue is subjected to a uniaxial step extension ratio ( )λ ; t is the present time in 

minutes; τ  is the time history in minutes; ( )tG  is a normalized relaxation function 

defined by Fung such that ( ) .10 =G  For small strains equation (80) can be 

rewritten as; 

 

( ) ( )[ ] ( )
τ

τ

τε
τε

ε

σ
τσ d

d

d

d

d
tGt

et

∫ −=
0

)( ……………………………..…………..(81) 

 

where; ε  is the uniaxial strain. 

 

Experimentally it is not possible to generate a step strain input. Instead of that, 

constant strain rate tests can be used if the material is insensitive to strain rate at high 

rates like biological soft tissues. Haut and Little used elastic stress and normalized 

relaxation function in the forms; 

 

2εσ Ce ′= ……………………………………………………………...................(82) 

( ) BtAtG ′+′= ln ……………………………………………………………….(83) 

 

where; C ′  is strain rate constant and; A′  and B′  are non-dimensional relaxation 

constants.  

 

For a relaxation strain history given by ( ) ( )tHt 0εε = , substituting equations (82) 

and (83) into equation (80) leads to; 

 

( ) [ ]1ln2
0 += tEt µεσ …………………………………………………...............(84)  

 

where; H is stress relaxation material function; CBE ′′= 2  and BA ′′=µ . E and µ  

were experimentally found equal to 210 /1023 cmdynx  and -0.23, respectively 

(Dehoff, 1978). 
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For a constant strain rate test for which tβε = , equation (80) becomes; 
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where; β  is strain rate. 

 

As mentioned before, this equation can be derived from two constitutive equations. 

The first one was suggested by Lianis (1963) which based on the finite linear theory 

of viscoelasticity. The second constitutive equation is an incompressible elastic fluid 

theory developed by Bernstein, Kearsley and Zapas (1963). These theories will not 

be analyzed in detail. Shortly it can be said that these theories are used to predict the 

relaxation behavior of polymers. They are capable of handling nonlinear, time 

dependent and multi-dimensional stress and strain histories for both isotropic and 

anisotropic materials. Many of the situations of interest in biological tissues can be 

treated as special cases of these continuum theories (Dehoff, 1978).  

 

4.5. Quasi-Linear Viscoelastic Model 

 

The quasi-linear viscoelastic theory introduced by Fung has been frequently used to 

model nonlinear time-dependent and history-dependent viscoelastic behavior of 

many soft tissues. It is common to use five constants to describe the instantaneous 

elastic response (constants A and B) and reduced relaxation function (constants C, 1τ  

and 2τ ) on experiments with finite ramp times followed by stress relaxation to 

equilibrium. However, a limitation is that the theory is based on a step change in 

strain which is not possible to perform experimentally. By taking into account the 

ramping phase of the experiment, the approach allows for viscoelastic properties to 

be determined independent of the strain rate applied. Thus, the results obtained from 

different laboratories and from different tissues may be compared (Abramowitch, 

2004).  
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In the quasi-linear viscoelastic theory, the reduced relaxation function, with constants 

C, 1τ  and 2τ , describes the time dependent stress relaxation of a tissue normalized 

by the stress at the time of a step input of strain.  

 

The quasi-linear viscoelastic theory assumes that the relation between stress σ  and 

strain ε  for a soft tissue in simple elongation can be expressed as (Sauren et al., 

1983, 1984); 

 

( ) ( )
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……………………………...……...............(86) 

 

where; ( )tσ is the stress at time t; ( )tG  is the reduced relaxation function that 

represents the time-dependent stress response of the tissue normalized by the stress at 

the time of the step input of strain; ( )εσ )(e  is the instantaneous elastic response, i.e., 

the maximum stress in response to an instantaneous step input of strain, ε . 

 

with ( ) =tσ 0 and ( ) 0=tε  for t < 0  

        ( ) .10 =G  

 

The dependence of stress on both strain and time is separately described by the 

nonlinear elastic response )()( εσ e  and the reduced relaxation function ( )tG , 

respectively. 

 

For soft tissues whose stress-strain relationship and hysteresis are not overly 

sensitive to strain rate, the following expression was proposed by Fung for ( )tG  

based upon a continuous spectrum of relaxation; 
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where; ( ) ∫
∞

−=
y

z dzzeyE1  is the first exponential integral; C is the dimensionless 

positive constant that determines the degree to which viscous effects are present; 1τ  

and 2τ  are time constants that govern the fast and slow viscous phenomena. An 

exponential approximation has been chosen to describe the instantaneous elastic 

response; 

 

( )1)()( −= εεσ Be eA ………………………………………………………………(88) 

 

where; A and B are material constants. 

 

The stress resulting from a ramp phase with a constant strain rate γ  over the times 

00 tt <<  can be written by substituting equations (87) and (88) into equation (86); 
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       ……………………………...(89) 

 

Similarly, the subsequent stress relaxation from 0t  to ∞=t  can be described as; 
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       ……………………………...(90) 

 

where; { }21 ,,,,, ττθ CBAt=  

 

By a preliminary analysis the initial guesses for the constants were determined. After 

some iteration, it was found that the algorithm is relatively insensitive to the initial 

guess; that is, the algorithm consistently converges to a unique solution. 
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It is necessary to check the variability of these constants if there is any systematic 

deviation between the model and the experimental data because of experimental 

noise, and numerical instabilities. Boot-strapping method was used to check the 

variability of the constants and as the result it was proved that there are relatively 

small variations in the constants between the model and the experimental data 

(variation of a constant was found to be smaller than 5 % with respect to its median 

value). Then the constants may be said to be insensitive to systematic deviations 

between the model and the experimental data due to experimental noise and 

numerical instabilities. 

 

While this theory is only an approximation and no approach can guarantee that the 

obtained constants are true, the fact that the strain history approach is able to estimate 

reasonable constants based on data with ramp time 1-2 orders of magnitude slower 

than previous studies is a significant advancement. Thus, issues associated with fast 

strain rates can be avoided (Abramowitch, 2004). 

  

As mentioned before, it is physically impossible to realize a true step change in 

strain. It is therefore assumed by some scientists that the stress response to a fast 

steplike change in strain (Figures 11a, b) can be used as a fair approximation of the 

response to a true step change. The steplike change in strain in an experiment means 

straining a sample from 0=ε  to 0εε =  at a high strain rate within a time interval 

[ ]st,0 , followed by maintaining 0εε =  during the time interval [ ]ms tt , . 

 

 

 

Figure 11a - Step Change in Strain           Figure 11b - Steplike Change in Strain 
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After the studies based on the steplike change in the strain, it was found that it is only 

possible to separate the elastic and time dependent effects in accordance with 

( ) ( ) ( )tGt e
0εσσ =  when there is a true step change in the strain. The accuracy of 

the determination of the constants 1τ , 2τ  and C , which describe the time-dependent 

behavior from a relaxation experiment depends greatly upon the time required to 

accomplish a sudden change in strain. This is not too unexpected because, during 

straining within a finite interval [ ]st,0 , a certain amount of relaxation can occur. 

 

4.6. Modeling Viscoelastic Behavior with Prony Series and Bailey Norton Law 

 

The viscoelastic behavior of soft biological tissues can also be simulated with Prony 

series and Bailey Norton Law. The constitutive equation using Prony series can be 

expressed as; 
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where; ∑
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l
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0),( τεε  nonlinear one 

while the following equation shows the Bailey-Norton Law; 

 

elcr εεε &&& += ………………………………………………………………………(92) 

 

where; mn
crcr tAσε =&   for creep 

and elel E εσ =   linear elastic 

and 2
elel E εσ =   nonlinear elastic 
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Equations (91) and (92) have been used to simulate creep, stress relaxation, constant 

strain rate loading, and cycling loading. They can simulate the same viscoelastic 

behavior with different respective model parameter constants such as iikk τ,,0  or 

.,, nmA  

 

As a conclusion main advantages and disadvantages of modeling soft biological 

tissues with a viscoelastic constitutive equation can be summarized as follows: 

 

 Advantages: 

• The real character of soft biological tissues is much closer to the 

viscoelastic behavior than the pseudo-elastic one, so it can be 

thought that modeling these tissues by treating them as viscoelastic 

will give the best result. However, it is not an advantage in fact, due 

to difficulties.  

• The Voigt model is extremely good with modeling creep in 

materials. 

• Kelvin model is more accurate than the Maxwell and Voigt models 

in predicting material responses. 

• The linear elastic tensor-mass method allows fast (real-time) 

computation of nonlinear and viscoelastic mechanical forces and 

deformations for the simulation of biological soft tissues. 

• Haut and Little equations are capable of handling nonlinear, time 

dependent and multi-dimensional stress and strain histories for both 

isotropic and anisotropic materials like soft tissues. 

• Quasi-linear viscoelastic theory can be used to model the time-

dependent and history-dependent viscoelastic behavior of many soft 

tissues. 

• By taking into account the ramping phase of the experiment, the 

quasi-linear viscoelastic theory approach allows for viscoelastic 

properties to be determined independent of the strain rate applied. 
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Thus, the results obtained from different laboratories and from 

different tissues may be compared. 

• The strain history approach based on the quasi-linear viscoelasticity 

enables us to fit the entire experiment, i.e., from the beginning of the 

ramping phase to the end of the stress relaxation. 

• The strain history approach of the quasi-linear viscoelastic theory is 

able to estimate reasonable constants based on data with ramp time 

1-2 orders of magnitude slower than previous studies. 

 

 Disadvantages: 

• It is rather complicated to model the materials which are viscoelastic 

compared to elastic ones. 

• Viscoelastic materials are distinguished from materials which are 

idealized as being purely elastic. They exhibit properties such as 

relaxation, creep and frequency-dependent stiffness and dissipative 

characteristics (Kaliske, 1997). 

• When a material represented by any one of the basic viscoelastic 

models (Maxwell, Voigt, or Kelvin) is subjected to a cyclic strain, 

the hysteresis will not be insensitive to strain rate. 

• The Maxwell model is unable to predict creep in materials based on 

a simple dashpot and spring connected in series. 

• The Voigt model is much less accurate for relaxation. 

• Viscoelastic materials show hysteresis in the stress-strain curve with 

the area of the loop being equal to the energy lost during the loading 

cycle. 

• A limitation of the quasi-linear viscoelastic theory is based on a step 

change in strain which is not possible to perform experimentally. 

• Since it is impossible to apply a step increase in strain, extensions 

are needed to be applied at relatively high rates. 

• It is difficult to apply the quasi-linear viscoelastic theory approach, 

because it is hard to measure these high strain rates accurately 
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CHAPTER 5 

 
 

HYPERELASTIC MODELING 

 
 

Tissue deformation can be very large due to low tissue stiffness and lack of physical 

constraints. As a result, deformation modeling of such organs often requires a 

treatment, which reflects nonlinear behavior. Some scientists (Samani et al., 2004) 

described an inversion technique to infer the hyperelastic parameters of breast tissues 

and used these parameters to create nonlinear finite element tissue deformation 

models. 

 

In order to model breast tissue deformation, a finite deformation formulation of 

elasticity is used where the geometry change in the tissue is assumed to be 

significant. Under static conditions, the equilibrium equations governing the tissue 

are; 
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………………………………………………………...............(93) 

 

where; ijσ  represents components of the stress tensor and if  denotes the body 

forces. For strain definition, the deformation gradient XxF ∂∂=  is defined where 

the variables x and X are deformed and undeformed positions of a point p, 

respectively. Using TFFB .= , the strain invariants can be defined as; 
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A constitutive equation for isotropic hyperelastic tissue undergoing finite strains can 

be obtained based on a selected strain energy function ( )321 ,, IIIU . By assuming 

breast tissue as isotropic incompressible material, there can be written a number of 

strain energy functions. The most broadly used one in modeling rubber can be 

simplified for tissue modeling as; 

 

( ) ( )∑
=+

−−=
N

ji

ji

ij IICW
1

21 33 ……………………………………………............(95) 

 

where; N = 2 is the most commonly used in rubber modeling; ijC  represent the 

hyperelastic parameters which characterize the intrinsic nonlinear elastic behavior of 

the tissue. The strain energy in equation (95) depends on the strain invariants 1I  and 

2I  while it is independent of 3I  (because for incompressible materials 213 1 III = ). 

This implies that the breast tissue is isotropic and incompressible. Based on the strain 

energy function W, the constitutive equation required for tissue deformation 

modeling can be obtained as follows; 
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where; σ  is the Cauchy’s stress tensor (related to the deformed area) and I is the 

identity matrix. To calculate tissue displacements, equations (93) through (96) must 

be solved simultaneously. This is done numerically using the finite element method. 

 

Tissue hyperelastic parameter calculation from force-displacement data which can be 

obtained from tissue indentation experiment is called an inverse problem. The aim 

here is to find a set of hyperelastic parameters such that the difference between the 

measured and calculated force-displacement data is a minimum. The force ( )ijc CF  

is a function of the hyperelastic parameters ijC  and can be calculated using a 

nonlinear finite element model. The finite element represents a nonlinear function 
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relating the forces ( )ijc CF  resulting from the tissue indentation simulation to the 

unknown hyperelastic parameters ijC . This problem can be classified as a constrained 

nonlinear least squares problem as follows; 

 

( ) ( )ijceij CFFCR −=  minimize ( )ijCf ……………………...............(97) 

( ) ( ) ( )ijij
T

ij CRCRCf .
2

1
=         subject to        ( ) uijl LCLL ≤≤ ……………….(98)  

 

where; eF  is the experimental force data; ( )ijCL  is a linear operator and lL  and uL  

are lower and upper bounds of  L, respectively. If a polynomial strain energy 

function (equation (95)) is used, given that ( )01106 CCE +=  for incompressible 

materials having infinitesimal strains, the following constraints can be used; 

 

( ) ul ECCE ≤+≤ 01106 …………………………………………………...............(99) 

 

where; lE  and uE are the lower and upper bound estimates of the tissue Young’ s 

modulus. 

 

In this study, to measure the hyperelastic parameters of breast tissues, a measurement 

system was developed that indents an unconstrained block of the tissue while 

measuring the resulting forces. Breast tissue specimens obtained from women who 

underwent breast reduction surgery were obtained and transported to the 

measurement laboratory within two hours after the surgery.  

 

To calculate the hyperelastic parameters of the tissue specimens, the force-

displacement experimental data obtained from the indentation test were inverted 

using an inversion technique. Unloading portion of the experiment was ignored in 

calculating the hyperelastic parameters. Using the loading portion as a representative 

of the force data ( )eF , the inversion technique was used to calculate the hyperelastic 

parameters of the tissue specimens. 
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The calculated hyperelastic parameters were found to be acceptable to calculate 

similar stress distributions as experiments. Fitting between the experimental results 

and calculated ones is passable. Although the focus of this research is the 

hyperelastic properties of the breast tissue, the proposed technique can be applied for 

other biological soft tissues as the prostate or liver. 
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CHAPTER 6 

 
 

POROELASTIC MODELING 

 
 

Poroelasticity is a method of modeling fluid flow within elastic porous materials, 

where the flow of the fluid and the deformation of the solid matrix are coupled. This 

has application to many fields in science and engineering such as soil consolidation, 

filtration and biological soft tissue modeling including cartilage, skin, myocardium 

and arterial walls (Berry et al., 1999). 

 

The theory of poroelastic materials is a model for fluid infiltrated porous solids. The 

basic ideas underlying the theory of porous elastic materials are that the pore fluid 

pressure contributes to the total stress in the porous matrix medium and that the pore 

fluid pressure alone can strain the porous matrix medium. There is fluid movement in 

a porous medium due to differences in pore fluid pressure created by different pore 

volume strains associated with the mechanical loading of the porous medium 

(Cowin, 2004). 

 

Bone is the main constituent of the skeletal system and differs from the connective 

tissues in rigidity and hardness. In the case of bone tissue the deformation of the 

porous medium has a significant effect on the movement of pore fluid, but the low 

pore fluid pressure has only a small effect on the deformation of the whole bone 

(Cowin, 2004). 

 

Poroelastic constitutive equations are generally used for hard materials or for soft 

biological materials but in in vitro conditions. Consequently, the poroelasticity 

approach has not been used much for in vivo soft biological tissue modeling due to 

difficulties in determining the model parameters. 
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CHAPTER 7 

 
 

ALTERNATIVE MATERIAL FORMULATIONS 

 
 

Biological materials are complex microstructurally and complex in their mechanical 

behaviors. To describe them with a single robust model is a formidable challenge 

(Oza et al., 2006). The goal of this study is to find the most appropriate material law 

to simulate hysterisis, preconditioning (Mullin’s effect) creep and relaxation 

behaviors of soft biological tissues with a reasonable size equation and with the same 

coefficients or if not possible with minimum possible change in coefficients. 

Therefore it worths examining other material formulations as well which have 

similar mechanical response to that of soft tissues. 

 

7.1. Thermoplastic Elastomers 

 

Thermoplastic elastomers are polymer materials that combine mechanical properties 

of vulcanized rubber (large deformations with elongations to break up to λ  = 10 and 

higher) with high-speed processability and recyclability (Drozdov et al., 2006). Uni-

axial tensile tests with constant strain rates at moderate finite deformations, creep and 

relaxation tests were applied at room temperature. A constitutive model is developed 

for the viscoelastic response of thermoplastic elastomers by treating them as 

incompressible heterogeneous transient network of strands. 

 

Here is a summary of testing protocol and modeling: 

 

Tensile relaxation tests were carried out at the elongation ratios λ  = 1.2, 1.4 and 1.6. 

In each relaxation test, a specimen was stretched with a constant cross-head speed of 
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50 mm/min up to a given elongation ratio λ  that was preserved constant during the 

relaxation time (the relaxation time 20=rt  min was used in all experiments). 

 

( ) ( )( )[ ] ( ) υυυκσ dptt ∫
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Γ−−−=
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exp11 …………………………………….(100) 

 

where; ( ) ( ) 0σσσ tt =  is the dimensionless tensile stress with t as the time and 0σ  

as the stress at the beginning of the relaxation process; κ  is a constant; 

( ) ( )υυ −=Γ exp  with υ  as the dimensionless activation energy; and ( )υp  is 

another function calculated by the following formula; 
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where; V and Σ  are constants to be adjusted; and 0p  is determined by the 

normalization condition, ( ) .1
0

=∫
∞

υυ dp  

 

Tensile creep tests were performed at the engineering tensile stresses σ  = 3.3 and 

4.2 MPa. In each creep test, a specimen was stretched with a constant cross-head 

speed of 50 mm/min up to a given longitudinal stress σ  that was preserved constant 

during the test (the creep time 20=ct  min was chosen). 
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where; ( ) ( ) ( )tttr pΛ= λ  with ( )tλ  as elongation ratio and ( )tpΛ  as another 

function to be calculated.  
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As seen in the formulations, there are functions in functions in almost all the 

equations. This property makes the estimation of constants rather difficult. Also, 

there are many thermodynamic coefficients to be known. For example, the 

dimensionless activation energy, υ  is calculated by the formula ( )0TkBωυ = , 

where; Bk  is Boltzmann’ s constant; 0T  is the reference temperature and ω  is the 

activation energy. To calculate the activation energy, one also needs two more 

constants called frequency factor and rate coefficient. But these constants are not 

known for the soft tissues, so these constants have to be estimated first. 

 

Another disadvantage of this formulation is the fact that it is based on the tensile 

tests. Creep and relaxation behaviors are simulated by using tensile experimental 

data. Since our study is based on compression tests which differ from tensile tests 

done on the soft tissues, these method is seen to be inappropriate for our formulation. 

 

7.2. Isothermal Nonlinear Viscoelastic Response in Polymers 

 

This model is based on the concept of transient networks, and treats a polymer as a 

system of nonlinear elastic springs, which break and emerge due to micro-Brownian 

motion of chains. The breakage and reformation rates for those springs are assumed 

to depend on some strain energy density (Drozdov, 1998). All those springs are 

assumed to be parallel to each other for simplicity. So, the stress would be the sum of 

all the stresses on individual springs. 

 

The viscoelastic behavior is described by an integral constitutive equation, where the 

relaxation functions satisfy partial differential equations with coefficients depending 

on the strain history. Adjustable parameters of the model are found by fitting 

experimental data for a number of polymers in tension at strains up to 400 percent. 

 

This formulation was mainly performed to estimate the effect of strain on relaxation 

time. It has been proved that increasing strain causes relaxation time to decrease but 

this feature is out of our scope. Also, stress-extension rate curves are simulated 
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which is not our goal in this study, either. Together with these factors, the fact that 

the tensile experiments are applied on the specimen makes this formulation 

inappropriate for our study. 

 

7.3. Rabotnov’s Equation for Materials with Memory 

 

There are some models for nonlinear time-dependent materials (called as materials 

with memory) that can also be used for relaxation and creep simulations. 

Development of these formulations can be summarized as follows: 

 

The material (polyoximethylene) was tested at creep conditions with three levels of 

stress and at relaxation conditions with three levels of strain (Suvorora et al., 2003). 

Nonlinear equation was constructed by assuming that all the nonlinearity may be 

gathered on the left hand side of the following equation; 

 

( ) ( ) ( ) ( ) ττστσεϕ dtKt
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……………………………………………..(103) 

 

where; ( )εϕ  may be interpreted as the instantaneous stress-strain curve (curve of 

instantaneous deformation). 

 

Experiments on creep were carried out at three levels of stress *σ = 74. 70 and 66 

MPa. The material was first loaded with a constant stress rate of σ&  = 0.8 MPa/s up 

to *σ  and the stress was then kept at this value. For this procedure, the final aspect 

of equation (103) appears as; 
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where; *t  is the beginning time of creep; k and α  are constants to be estimated. 

Testing data (the time at which the desired strain is reached) from three different 

stress levels are substituted into this equation and unknown constants are estimated.  

 

Experiments on relaxation, *ε = constant, were performed for three values of *ε : 3, 

6, 9 %. To reach these values of *ε , the specimens were loaded with constant loading 

rate (corresponding times *t = 1.25, 2.5 and 3.75 minutes). On reaching *ε , these 

values were kept constant for the rest of the test. Considering the relaxation behavior 

of the material at long times, *tt ≥ , equation (103) can finally be written as; 
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where;  

 

( )αβ −Γ= 1k  with Γ as the gamma-function;  
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Calculation of equation (105) can be performed either with the help of the tables of 

the α∃  integral functions, or with one of the symbolic computation softwares.  

  

By this method one can use the same constitutive equation with the same set of 

parameters to model various types of loadings. But there are two different equations 

for two different cases, creep and relaxation. There is no interrelation between them. 

Since our aim is to simulate creep and relaxation behaviors with one material 

formulation, this method does not seem to be appropriate for our study. 
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7.4. Polymers under Quasi-Static and Dynamic Loading 

 

Polymers are known to exhibit time-dependent mechanical behavior and also display 

highly nonlinear response during loading and unloading like biological soft tissues. 

Further, unlike metals, significant relaxation and creep phenomena may be observed 

even at room temperature. The mechanisms of inelastic deformation of polymers, 

which are explained by considering the molecular structure of the material, are 

different from that of metals. For example, the molecular chain flexibility and 

entanglement is believed to be related to inelastic deformation of polymers. This will 

result in a different response in tension and compression. Therefore, some of the 

constitutive modeling of polymeric materials are based on characteristics of micro-

structure of polymeric materials. One of the drawbacks of this method is that the 

developed models are complex and it is very complicated and time consuming to 

determine material parameters in such models (Khan et al., 2001). 

 

Here is a summary of modeling a commercial polymer, polytetrafluoroethylene, at 

room temperature under various complex loading and unloading conditions.  

 

In relaxation tests, the strain controlled constant strain rate loadings were interrupted 

by several relaxation segments both during the loading and the unloading periods. 

The engineering strains, or displacements, were held constant for several hours at 

different strain levels. The constant strain rate loading with the strain rate of 0.01/s 

was interrupted by relaxation segments by holding engineering strain, or 

displacement, constant for six hours at engineering strain levels of 0.0832 and 0.1832 

both during loading and unloading. During these holding periods, it is observed that 

there is a significant amount of relaxation. There is clear evidence that the stress 

decreased during the relaxation segments during the loading, while the stress 

increased during the holding segment during the unloading (Khan et al., 2001). 

 

In creep tests, the stress controlled constant stress rate loadings were interrupted by 

several creep segments. The engineering stresses, or loads, were held constant for 

several hours at different stress levels. The load controlled constant engineering 
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stress rate loading with the rate of 89 N/s was interrupted by several constant 

engineering stress segments. The controlled stress was held constant for six hours at 

engineering stress levels of 9.65 MPa, 14.82 MPa and 17.58 MPa during loading. 

During several 6-hour hold periods at constant stress, significant amounts of creep 

were observed, i.e. the strain increased by a fair amount during each constant 

engineering stress segments (Khan et al., 2001). 

 

The viscoelastic deformation is represented by a Kelvin model (fig. 6a). It means that 

the stress is decomposed into rate dependent equilibrium stress ( eσ ) in the spring 1µ  

and the rate dependent overstress ( vσ ) components in the spring 2µ  and the 

dashpotη , i.e. ve σσσ += . The strain in the Maxwell element and in the elastic 

spring parallel to the element, are the same, denoted by veε .  

 

So, the governing equation of this model can directly be written as; 

 

( ) veve εµµ
µ

η
εµσ

µ

η
σ && 21

2

1

2

++=+ …………………………………………(107) 

 

where; σ&  and veε&  are the stress and viscoelastic strain rates, respectively. 

 

The viscosity (η ) is not constant and has been found to be a decreasing function of 

strain rate in polymers. It was assumed to be a function of both strain and stress in 

order to accurately represent observed behavior of polymers, given as; 

 

( )( )b

ve

r
ve

a 2

0

1 ε

η
εη

&+
= …………………………………………………………..(108) 

 

where; r, a, b and 0η  are material constants. It can be seen from this equation that 

the viscosity increases with increasing strain. It should also be noted that the 

increasing strain rate causes viscosity to decrease. 
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Solution of equation (107) for relaxation by assuming .0 constve == εε  ( 0=veε& ) 

yields;  

 

( ) 01010
00

2

εµεµσσ ηε

µ

+−=
−

r

t

e …………………………...…………...............(109) 

  

where; 0σ  is the stress at the beginning of the relaxation process; t is relaxation time; 

0ε  is the viscoelastic strain from which the relaxation started. When time tends to 

infinity, stress is tending to the equilibrium stress which is 01 εµ . 

 

Solution of equation (107) for creep by assuming .0 const== σσ  (i.e. 0=σ& ) yields; 
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Modeling of relaxation and creep were done by a three-element Kelvin material. 

Experimental data could not be simulated well by this model, because it is believed 

that there is not enough parameter in this model to follow the material response 

accurately. A spring dashpot model with more elements is expected to be developed.  
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CHAPTER 8 

 
 

SOFT TISSUE MECHANICAL FINITE ELEMENT MODELS 

 
 

So far, almost all material models, either specifically developed for soft tissues or 

may be used to model the soft tissues as well available in the literature were 

analyzed. After each chapter, advantages and disadvantages of the models and 

methods presented were summarized. As a result, what can be seen is the fact that the 

most meaningful and successful models are the ones which rely on the theory of 

quasi-linear viscoelasticity (QLV). Because, as mentioned before; 

 

• The real character of soft biological tissues is much closer to the viscoelastic 

behavior; they show relaxation, creep, preconditioning and hysteresis 

behaviors which are typical characteristics of viscoelastic materials. 

• Viscoelasticity can be used under both isotropic and anisotropic conditions. 

• By taking into account the ramping phase of the experiment, the quasi-linear 

viscoelastic theory approach allows for viscoelastic properties to be 

determined independent of the strain rate applied. Thus, the results obtained 

from different laboratories and from different tissues may be compared.  

• For the time dependent and history dependent analysis of soft biological 

tissues, the best responses in the literature are the ones obtained by using the 

theory of QLV.  

 

By taking the QLV as a basis, three different material models for the simulation 

of mechanical behavior of soft biological tissues may be constituted, which are; 

 

1. QLV modeling by assuming soft tissue as an isotropic material. 

2. Enhanced QLV modeling by assuming soft tissue as an isotropic material. 
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3. Enhanced QLV modeling by assuming soft tissue as an anisotropic material. 

 

With the increasing number of these methods, modeling becomes more complicated, 

but the same amount accurate. Third one gives more accurate results than second 

one, because it assumes the soft tissue as an anisotropic material, and soft tissues are 

anisotropic in real life because of the structure of its constitutive elements (collagen 

fibers, muscles, skin, etc.). However, second one gives more accurate results than 

first one, because it also takes strain into account. The first one is only able to 

simulate the stress relaxation and the creep behaviors and only depends on time. 

 

8.1. QLV Modeling by Assuming Soft Tissue as an Isotropic Material 

 

As mentioned in Section 4.5, the QLV theory has been frequently used to model 

nonlinear time-dependent and history-dependent viscoelastic behavior of many soft 

tissues. According to this theory, the stress history equation can be written as; 

 

( ) ( )[ ]
∫ ∂

∂
−=

t e

dtGt
0

)( τ
τ

τεσ
τσ ………………………………............................(112) 

 

where; ( )tσ  is the nd2  Piola-Kirchoff stress depending on the time t; )(−G  is the 

reduced relaxation function (see Appendix D) and ( )−eσ  is the elastic stress 

function. The reduced relaxation function and the elastic stress function are;  

 

( )
( ) ( )[ ]

( )12

1121

ln1

1

ττ

ττ

C

tEtEC
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+
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= ..................................................................(113) 

 

( )[ ] ( )1−= ετεσ Be eA ………………………………………………..................(114) 

 

where; C, 1τ  and 2τ  are material parameters related to the level of viscous damping 

and the strain rates over which hysteresis is nearly constant, respectively; ( )−1E  is 
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the first exponential integral function; A and B are material parameters for 

instantaneous stress response (for the full derivation of the constitutive equations see 

Appendix A). 

 

8.1.1. Finite Element Modeling 

 

This work was aimed to identify the soft tissue material properties using in vivo 

indentation data by inverse finite element method. This simulation was done by using 

the finite element software MSC.Marc.Mentat 2005r2. The material library of this 

software does not contain such special and advanced material models therefore 

proposed material model was implemented by a user subroutine. Consequently, 

writing the correct subroutine constitutes the most important and time consuming 

part of this simulation (see Appendix I for the code of the subroutine). The user 

subroutine template hypela.f (see Appendix H) supplied with the software has been 

used as a basis and modified as given in Appendix I. This subroutine was written and 

compiled during simulation with the software Digital Fortran 6.0. The parameters in 

this subroutine were given casually (similar to the ones in the literature) and the 

subroutine has been checked with a simple three dimensional finite element model 

whether it works correctly (see Appendix J). The values of these parameters will be 

estimated by using the in vivo indenter data during this study. 

 

After the verification of the user subroutine, the finite element model was created by 

using the software MSC.Patran 2004. While creating the model, there are some rules 

must be obeyed. 

  

1. The model should have the capability of being indented up to 50 % of its 

thickness to be able to simulate experimental conditions. 

2. The displacements and principal strains on the nodes far from the 

deformation area must be at most the 3-4 % of the maximum values for 

this model. The displacements and strains smaller than that percentage are 
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accepted to be zero during the simulation processes therefore the material 

may safely be truncated after this point.  

3. The tissue under the indenter tip must have a fine mesh to simulate 

contact with indenter tip as well as to be able to model high stress and 

strain gradients that may exist here.  

4. The number of elements should be large enough to model the actual 

deformation accurately yet, should be limited to have reasonable run time. 

 

The axes of the ellipsoid indenter tip are (x-y-z) 8-2-2 milimeters. These are constant 

and not changed during the model creation processes.  

 

A. Modeling of tissue with MSC.Patran has firstly started with the following 

dimensions (x-y-z): 

 

 Tissue size (mm) : 20-8-20   

 Fine mesh region (mm) : 10-2.5-2.5 

 

This geometric model has been created with MSC.Patran and imported into 

MSC.Mentat to define other properties. The boundary conditions have been defined 

as fixed displacement along three mutually perpendicular coordinates at the bone 

contact and symmetry planes in x and z directions (i. e. fixed displacement along the 

normal of the symmetry planes) since this is a quarter model of the tissue (Figure 

12). 
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Figure 12 – Boundary Conditions of Model A 
 

 

Material properties have been chosen as hypoelastic for all materials to be able to use 

the subroutine written on hypela. 

 

For the initial evaluation of the model proposed, the contact bodies; the surface of the 

indenter tip has been chosen as rigid that has a velocity (and also an approach 

velocity) of 1mm/s in –y direction. The foremost elements of the tissue (in fine mesh 

zone) have been chosen as deformable body and contact situation has been set to 

touching. Total loadcase time has been set to 4 seconds in 80 equal time steps 

(increments). So, the rigid indenter tip will indent to the tissue 4 milimeters in total.  
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Large displacement and large strain-total Lagrange analysis options have been 

chosen and the model has been submitted with the user subroutine. 

 

When the program was finished sucessfully, the postprocessor has been opened and 

the model has been investigated. The main problem seen in this submission was the 

unexpected deformation of the elements in the fine mesh zone behind the indenter 

tip. This can be seen in Figure 13. Some of the elements in this zone could not 

deform any more after the 59th increment. These elements are seen in light color 

behind the indenter tip in Figure 13. In this figure, the colors represent the magnitude 

of deformation. In ideal case, there should be a progressive increase of the 

deformation as seen in Figure 14. Figure 13 shows the elements behind the indenter 

tip that could not be deformed after 59th increment of the analysis. 

 

 

 

 

 

Figure 13 - Unexpected Deformation in the Fine Mesh Zone of Model A 
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To rectify this situation, number of deformable contact elements has been increased 

in the direction of the rigid body motion. More elements have been chosen as 

deformable and the model has been submitted again.   

 

When analyzed, this unexpected deformation observed in the previous model seemed 

to disappear. As seen in Figure 14, there is no light colored element behind the 

indenter tip which represents the unexpected deformation. 

 

 

 

 

Figure 14 – Rectifying the Unexpected Deformation in the  
             Fine Mesh Zone of Model A 

 

 

As seen in Figure 14, there is a sudden deformation change along the z axes. The 

reason of this situation is the length of fine mesh zone in the z direction. To rectify 

this situation the fine mesh zone has been remodeled slightly larger in z direction 
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(Figure 15). It could not be enlarged very much not to increase the number of 

elements in the model that causes it to work very slowly.  

 

B. To decrease the sudden increase in the deformation along the z axis, the model has 

been modified with the following dimensions (x-y-z): 

 

 Tissue size (mm) : 20-8-20   

 Fine mesh region (mm) : 10-2.5-3 

 

 

 

 

Figure 15 – Increased Fine Mesh Length of Model B in z Direction 
 

 

 

By examining Figure 15, one can see that the fine mesh zone is larger in z direction, 

and so, the deformation increase in that direction is more progressive. This is the 

most appropriate form of the fine mesh zone. Making it larger causes the model to 
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run rather slowly. Surely, the best way is creating that area as large as possible and 

using the elements as small as possible to obtain more accurate results. But under 

technological constraints, one has to find the optimum model for simulation 

processes. 

 

As mentioned before, the displacements and principal strains on the nodes far from 

the deformation area must be at most the 3-4 % of the total values. The 

displacements and strains smaller than that percentage are accepted to be zero during 

the simulation processes. In this model, two key nodes (marked in Figure 16) have 

been analyzed whether they have displacements and strains under desired limits. The 

results are given in Table 1. 

 

 

 

 

Figure 16 – Nodes to be Analyzed 
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Table 1 – Displacement and Principal Strain Values at the Given Nodes for Model B 
 

NumberNode  1 2 

)(. mmntDisplacemeMax  6.653E-2 3.089E-1 

100
.

.
x

ModeltheinntDisplacemeMax

ntDisplacemeMax








 

1.663 % 7.723% 

StrainrincipalPMax.  8.324E-3 4.595E-2 

100
.

.
x

ModeltheinStrainrincipalPMax

StrainrincipalPMax








 

0.855 % 4.722 % 

 

 

As seen in Table 1, the values of principal strains and displacements are under the 

limits at node 1. But the values of displacements and principal strains could not stay 

under the limits of 3-4 % at node 2. For example the displacement at the node 2 is 

7.723 % of the maximum value in the model. These values are not acceptable and so, 

the model must be enlarged in x and z directions. The enlargement in the x direction 

should be more, because the values at the node 2 on the x-axis are deviating from the 

limits more than the values at the node 1 on the z-axis. As a result, one more model 

has been created by multiplying the lengths of z-axis with 2 and x-axis with 2.5. 

 

C. To decrease the values of displacements and strains at the nodes mentioned 

before, the new model has been created with the following dimensions (x-y-z) 

(Figure 17); 

 

 Tissue size (mm) : 50-8-40   

 Fine mesh region (mm) : 10-2.5-3 

 

As seen in Figure 17, this tissue is larger than the previous ones. Now, the 

displacements and principal strains can be checked whether they pass the limits. The 

results are presented in Table 2. 
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Figure 17 – The Finite Element Model for Model C 
 

 

Table 2 – Displacement and Principal Strain Values at the Given Nodes for Model C 
 

NumberNode  1 2 

)(. mmntDisplacemeMax  3.162E-2 1.565E-2 

100
.

.
x

ModeltheinntDisplacemeMax

ntDisplacemeMax








 

0.791 % 0.391 % 

StrainrincipalPMax.  5.678E-4 6.326E-3 

100
.

.
x

ModeltheinStrainrincipalPMax

StrainrincipalPMax








 

0.056 % 0.619 % 
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As seen in Table 2, all the displacement and principal strain values are well below 

the limits of 3-4 %.  

 

Before deciding this model as completely appropriate for the estimation of the 

parameters in the subroutine, two more tests have been applied on the model. In 

these tests, the indenter tip has been rotated 45° and 90° around y-axis and the 

simulation has also been applied in these orientations (Figures 18 and 19). The 

displacement and principal strain values at the marked nodes are given in Tables 3 

and 4, respectively. 

 

 

 

 

Figure 18 - The Finite Element Model of Model C with 45° Indenter Tip Orientation 
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Figure 19 - The Finite Element Model of Model C with 90° Indenter Tip Orientation 
 

 

Table 3 – Displacement and Principal Strain Values at the Given Nodes 
                 for Model C with 45° Indenter Tip Orientation  
 

NumberNode  1 2 

)(. mmntDisplacemeMax  6.401E-2 9.808E-2 

100
.

.
x

ModeltheinntDisplacemeMax

ntDisplacemeMax








 

1.6 % 2.452 % 

StrainrincipalPMax.  2.114E-4 3.346E-3 

100
.

.
x

ModeltheinStrainrincipalPMax

StrainrincipalPMax








 

0.022 % 0.345 % 
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Table 4 – Displacement and Principal Strain Values at the Given Nodes  
                 for Model C with 90° Indenter Tip Orientation  
 

NumberNode  1 2 

)(. mmntDisplacemeMax  1.125E-1 6.506E-2 

100
.

.
x

ModeltheinntDisplacemeMax

ntDisplacemeMax








 

2.813 % 1.627 % 

StrainrincipalPMax.  2.546E-3 2.191E-3 

100
.

.
x

ModeltheinStrainrincipalPMax

StrainrincipalPMax








 

0.214 % 0.184 % 

 

 

In Tables 3 and 4 all the values of displacements and principal strains are seen to be 

under the limits. So, the tissue can be assumed to have zero displacements and strains 

at the end of the model axes and this model can be used for the estimation of the 

parameters in the user subroutine. 

 

The last thing to do is to create different element sizes in the fine mesh region and 

comparing the results of indenter tip reaction force. The force should converge 

somewhere, and by also taking the submission time into account, the most 

appropriate one should be chosen for more accurate results. 

 

So far, the edge length of 0.5 mm has been used for the elements in the fine mesh 

zone. Four more models will be created with the edge lengths of 0.3, 0.4, 0.6 and 0.7 

mm and they will be compared for the best one. The time-indenter tip reaction force 

curves of these five models are seen in Figure 20. 
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Figure 20 – Time-Indenter Tip Reaction Force Curves for Different Element Edge 
Lengths in the Fine Mesh Region 

 

 

As seen in Figure 20, the force values are converging as the element edge lengths are 

getting smaller. In normal conditions, the best model to be used seems to be the one 

that has element edge length of 0.3 mm. But, choosing the element edge length of 0.4 

mm. instead of 0.3 mm. decreases the submission time about % 60. Since there is not 

a large difference between these two, the element edge length of 0.4mm is suitable 

for that study.  

 

As seen in equation (112), quasi-linear viscoelastic model only gives the response of 

stress with respect to time. But the change of stress with respect to strain is also 

needed to be able to model hysteresis (Figure 1). The following two methods have 

been modified from the basic quasi-linear viscoelasticity for this concept.  
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8.2. Enhanced QLV Modeling by Assuming Soft Tissue as an Isotropic Material  

 

As mentioned before, to be able to obtain stress response with respect to time 

together with strain, the basic quasi-linear viscoelastic model must be enhanced. This 

modeling procedure which also assumes the soft tissue as an isotropic material as in 

the previous one is done as follows;  

 

By using the one dimensional theory of quasi-linear viscoelasticity (presented in 

Chapter 8.1) the time dependent properties of soft tissue are directly incorporated 

into a hyperelastic model. 

 

The second Piola-Kirchoff stress written for the one dimensional quasi-linear 

viscoelasticity, which includes time dependent effects, is (Bischoff, 2006); 

 

( ) ∫ ∂

∂
−=

t e

QLV dtGt
0

)(, τ
τ

σ
τεσ …………………………………………………...(115) 

 

where; )(−G is the reduced relaxation function and ( )−eσ  is the elastic stress 

function. Note the subscript ‘QLV’ to explicitly indicate that this stress includes time 

dependent behavior according to the quasi-linear viscoelastic theory. 

 

For purposes here, the reduced relaxation function and the elastic stress function used 

are the same with the ones used in the previous chapter and given by the equations 

(113) and (114), respectively. 

 

So, the stress versus strain and time relationships along the three material axes can be 

written as; 

 

( )t
a

pT QLV ,
8

2
1

2

11 εσ
ε

Λ
+−= ………………………………………………………(116) 
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( )t
b

pT QLV ,
8

2
2

2

22 εσ
ε

Λ
+−= ………………………………………………………(117) 

( )t
c

pT QLV ,
8

2
3

2

33 εσ
ε

Λ
+−= ………………………………………………………(118) 

 

in which; ( )tQLV ,εσ  is the quasi-linear viscoelastic stress given by equation (115); p 

is hydrostatic pressure which is equal zero in our experiment conditions (for more 

detailed information about hydrostatic pressure, see Appendix E); a, b and c are unit 

cell aspect ratios and allow for anisotropic behavior; 1ε , 2ε and 3ε  are principal 

strains along three material directions and Λ  is fiber contour length determined by 

the equation; 

 

8

222 cba ++
=Λ ………………………………………………………………...(119) 

 

Since isotropic conditions are dealt in this model, we can assume acb == , so 

equation (119) becomes; 

 

2
222

8

3

8
a

aaa
=

++
=Λ ………………………………………………………..(120) 

 

With the substitution of this fiber contour length equation into equations (116), (117) 

and (118), the final form of the model is obtained as; 

 

( )tpT QLV ,
3

2
1

11 εσ
ε

+−= …………………………………………………………(121) 

( )tpT QLV ,
3

2
2

22 εσ
ε

+−= …………………………………………………………(122) 

( )tpT QLV ,
3

2
3

33 εσ
ε

+−= …………………………………………………………(123) 
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(The details of derivation of the constitutive equations are presented in Appendix B). 

 

8.2.1. Finite Element Modeling 

 

To be able to model the behavior of soft biological tissue, the parameters of the 

constitutive equation in the user subroutine must be estimated to simulate the 

experimental conditions (i.e. indenter reaction force-indenter displacement-time). 

These parameters are estimated by the inverse finite element modeling of the tissue 

and the indenter tip. Modeling was done by using the software MSC.Marc.Mentat 

2005r2. Enhanced QLV is not available in the material library of the software either. 

So, a new user subroutine was written (Appendix K). The parameters in this 

subroutine were given casually and the subroutine has been checked with a simple 

two dimensional finite element model whether it works correctly (Appendix L). The 

real values of these material parameters will be estimated by using experimental data. 

After the verification of the user subroutine, the model was created by using the 

software MSC.Patran 2004. The rules in Chapter 8.1.1 applies to this model, too. 

 

While modeling, the experiences gained in the previous sections have been used. The 

modeling has not been started by choosing only the foremost elements of the tissue 

(in fine mesh zone) as deformable not to cause an unexpected deformation given in 

Figure 13. Also, fine mesh zone has been selected larger in z direction not to cause 

sudden change in deformation in z direction as seen in Figure 14. 

 

A. By taking these constraints into account, the modeling has been started with the 

following dimensions (x-y-z):  

 

 Tissue size (mm) : 20-8-20   

 Fine mesh region (mm) : 10-2.5-3 

 

This geometric model has been created with MSC.Patran and imported into 

MSC.Mentat to define finite element model. The boundary conditions have been 
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defined as fixed displacement at the bone contact and symmetry planes in x and z 

directions (because this is a quarter model of the tissue) (Figure 21) 

 

 

 

 

Figure 21 – Boundary Conditions of the Model 
 

 

Material properties have been chosen as hypoelastic for all materials to be able to use 

the subroutine written on hypela. As the contact bodies; the surface of the indenter 

tip was chosen as a rigid body that has a velocity (and also an approach velocity) of 
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1mm/s in –y direction. The foremost elements of the tissue (in fine mesh zone) have 

been chosen as deformable and contact situation has been set to touching. 

 

Total loadcase time has been set to 4 seconds in 80 equal time steps (increments). So, 

the rigid indenter tip will indent to the tissue 4 milimeters in total.  

 

Large Displacement and Large Strain-Total Lagrange analysis options have been 

chosen and the model has been submitted with the user subroutine. 

 

As mentioned before, the displacements, principal strains and principal stresses on 

the nodes far from the deformation area must be at most the 3-4 % of the total values. 

The displacements, strains and stresses smaller than that percentage are accepted to 

be zero during the simulation processes. In this model, two key nodes (marked in 

Figure 21) have been analyzed whether they have displacements, strains and stresses 

under desired limits. The results are presented in Table 5. 

 

  

Table 5 – Displacement, Principal Strain and Principal Stress Values at the Given  
                 Nodes for Model A 

 

NumberNode  1 2 

)(. mmntDisplacemeMax  6.653E-2 0.3399 

100
.

.
x

ModeltheinntDisplacemeMax

ntDisplacemeMax








 

3.08 % 8.498% 

)(. MPaStressrincipalPMax  1.097E-6 1.976E-2 

100
.

.
x

ModeltheinStressrincipalPMax

StressrincipalPMax








 

1.191E-6 % 0.021 % 

StrainrincipalPMax.  8.324E-3 4.565E-2 

100
.

.
x

ModeltheinStrainrincipalPMax

StrainrincipalPMax








 

1.755 % 5.703 % 
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As seen in Table 5, the values of principal stresses are under the limits but the values 

of displacements and principal strains could not stay under the limits of 3-4 % in 

some conditions. For example the maximum principal strain at the node 2 is 5.703 % 

of the maximum value in the model. These values are not acceptable and so, the 

model must be enlarged in x and z directions. The enlargement in the x direction 

should be more, because the values at the node 2 on the x-axis are deviating from the 

limits more than the values at the node 1 on the z-axis. As a result, one more model 

has been created by multiplying the lengths z-axis with 2 and x-axis with 2.5. 

 

B. To decrease the values of displacements and strains at the nodes mentioned 

before, the new model has been created with the following dimensions (x-y-z) 

(Figure 17); 

 

 Tissue size (mm) : 50-8-40   

 Fine mesh region (mm) : 10-2.5-3 

 

As seen in Figure 17, this tissue is much larger than the previous ones. Now, the 

displacements and principal strains can be checked whether they were within the 

limits. The results are presented in Table 6. 
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Table 6 – Displacement, Principal Strain and Principal Stress Values at the Given  
                 Nodes for Model B 

 

NumberNode  1 2 

)(. mmntDisplacemeMax  5.941E-2 0.1118 

100
.

.
x

ModeltheinntDisplacemeMax

ntDisplacemeMax








 

1.485 % 2.795 % 

)(. MPaStressrincipalPMax  9.543E-9 2.267E-5 

100
.

.
x

ModeltheinStressrincipalPMax

StressrincipalPMax








 

5.441E-9 % 1.292E-5 % 

StrainrincipalPMax.  3.864E-3 1.043E-2 

100
.

.
x

ModeltheinStrainrincipalPMax

StrainrincipalPMax








 

0.383 % 1.034 % 

 

 

As seen in Table 6, all the displacement, principal strain and principal stress values 

are within the limits of 3-4 %.  

 

Before deciding this model as completely appropriate for the estimation of the 

parameters in the subroutine, two more tests have been applied on the model. In 

these tests, the indenter tip has been rotated 45° and 90° around y-axis and the 

simulation has also been applied in these orientations (Figures 18 and 19). The 

displacement, principal stress and principal strain values at the marked nodes are 

presented in Tables 7 and 8, respectively. 
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Table 7 – Displacement, Principal Strain and Principal Stress Values at the Given  
                 Nodes for Model B with 45° Indenter Tip Orientation  

 

NumberNode  1 2 

)(. mmntDisplacemeMax  0.1366 0.1222 

100
.

.
x

ModeltheinntDisplacemeMax

ntDisplacemeMax








 

3.415 % 3.055 % 

)(. MPaStressrincipalPMax  7.827E-8 8.756E-6 

100
.

.
x

ModeltheinStressrincipalPMax

StressrincipalPMax








 

1.734E-8 % 1.939E-6 % 

StrainrincipalPMax.  7.973E-3 9.874E-3 

100
.

.
x

ModeltheinStrainrincipalPMax

StrainrincipalPMax








 

0.805 % 0.996 % 

 

 

 

Table 8– Displacement, Principal Strain and Principal Stress Values at the Given  
                Nodes for Model B with 90° Indenter Tip Orientation  

 

NumberNode  1 2 

)(. mmntDisplacemeMax  3.565E-2 7.367E-2 

100
.

.
x

ModeltheinntDisplacemeMax

ntDisplacemeMax








 

0.892 % 1.842 % 

)(. MPaStressrincipalPMax  2.507E-8 3.084E-6 

100
.

.
x

ModeltheinStressrincipalPMax

StressrincipalPMax








 

4.023E-9 % 4.949E-7 % 

StrainrincipalPMax.  1.516E-3 6.023E-3 

100
.

.
x

ModeltheinStrainrincipalPMax

StrainrincipalPMax








 

0.126 % 0.499 % 
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In Tables 7 and 8 all the values of displacements, principal strains and principal 

stresses are seen to be under the limits. So, the tissue can be assumed to have zero 

displacements, principal strains and principal stresses at the end of the model axes 

and this model can be used for the estimation of the parameters in the user 

subroutine. 

 

The last thing to do is to create different element sizes in the fine mesh zone and 

comparing the results of indenter tip reaction force. The force should converge 

somewhere, and by also taking the submission time into account, the most 

appropriate one should be chosen for more accurate results. 

 

So far, the edge length of 0.5 mm has been used for the elements in the fine mesh 

zone. Four more models will be created with the element edge lengths of 0.3, 0.4, 0.6 

and 0.7 mm and they will be compared for the best one. The time-indenter tip 

reaction force curves of these five models are seen in Figure 22. 

 

 

 

 

Figure 22 – Time-Indenter Tip Reaction Force Curves for Different Element Edge 
Lengths in the More Intensive Element Area 
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As seen in the Figure 22, the force values were converging until the edge length of 

0.4 mm. The 0.7 mm. edge length elements are not suitable, because it does not give 

a good response as seen in the figure. This can be because of nonlinearities in the 

system, the difference between the two axes lengths of the fine mesh zone or the 

anisotropic shape of the indenter tip. The 0.3 mm. edge length elements are not 

converging and also it takes more than half an hour to conclude the submission of 

that model. As a result, the best edge length for the materials in the fine mesh zone 

can be chosen as 0.4 mm. In that model, there are 17612 elements and the 

submission takes about 14 minutes. This model is presented in Figure 23. 

 

 

 

 

Figure 23- The Last Shape of the Model 
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As seen in the equations from (121) to (123), this modeling gives the response of 

stress with respect to time and strain. But there is no term modeling anisotropy 

despite the fact that soft tissues are much likely to be anisotropic. The following last 

model assumes soft tissues as anisotropic and enhances the model one more step. 

 

8.3. Enhanced QLV Modeling by Assuming Soft Tissue as an Anisotropic    

       Material 

 

The final model within the context of this thesis is the one that is modified by using 

the model in Chapter 8.2. This time, the soft tissue is assumed to be anisotropic. 

There is a little change in the final form of the constitutive equations.   

 

Representing constitutive equations of this model had been given in the previous 

section as; 

 

( )t
a

pT QLV ,
8

2
1

2

11 εσ
ε

Λ
+−= ………………………………………………………(124) 

( )t
b

pT QLV ,
8

2
2

2

22 εσ
ε

Λ
+−= ………………………………………………………(125) 

( )t
c

pT QLV ,
8

2
3

2

33 εσ
ε

Λ
+−= ………………………………………………………(126) 

 

However, this time anisotropic conditions are dealt with and equation (120) cannot 

be used. Fiber contour length is calculated with equation (119). By taking the unit 

cell aspect ratios different from each other, one can also make this model consider 

the anisotropy in tissue. (The derivation of the constitutive equations is presented 

Appendix C).  
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8.3.1. Finite Element Modeling 

 

The user subroutine developed to model anisotropy (Appendix M) consists of three 

more material parameters (for detailed information see Appendix C). The same 

procedure was used here for creating the model and compiling the subroutine. The 

parameters in the subroutine were assigned casually and the subroutine has been 

checked with a simple two dimensional finite element model whether it works 

correctly (Appendix N). The values of these material parameters will be estimated by 

using experimental data and inverse finite element modeling. 

 

After the verification of the user subroutine, the model is created while considering 

the rules given in Chapter 8.1.1. However, there is one exception, instead of taking 

the limits of displacements, principal strains and principal stresses on the nodes far 

from the deformation area 3-4 % of the total values, for this model they were 

assumed to be under the limit of 1 % which is stricter than the previous ones.  

 

While modeling, the experiences gained in Chapter 8.1.1 have been used here, too. 

The modeling has not been started by choosing only the foremost elements of the 

tissue (in fine mesh zone) as deformable not to cause an unexpected deformation as 

seen in Figure 13. Also, the fine mesh zone has been taken larger in z direction not to 

cause sudden change in deformation in z direction as seen in Figure 14. 

 

A. By taking these constraints into account, the modeling has been started with the 

following dimensions (x-y-z):  

 

Tissue size (mm) : 20-8-20   

 Fine mesh region (mm) : 10-2.5-3 

 

The boundary conditions have been defined as fixed displacement in three mutually 

perpendicular at the bone contact and symmetry planes in x and z directions (because 

this is a quarter model of the tissue) (Figure 21) 
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Material properties have been chosen as hypoelastic for all materials to be able to use 

the subroutine hypela. 

 

As the contact bodies; the surface of the indenter tip has been chosen as rigid body 

that has a velocity (and also an approach velocity) of 1mm/s in –y direction. The 

foremost elements of the tissue (in fine mesh zone) have been chosen as deformable 

body and contact situation has been set to touching. 

 

Total loadcase time has been set to 4 seconds in 80 equal time steps (increments). So, 

the rigid indenter tip will indent to the tissue 4 milimeters in total.  

 

Large displacement and large strain-total Lagrange analysis options have been 

chosen and the model has been submitted with the user subroutine. 

 

As mentioned before, the displacements, principal strains and principal stresses on 

the nodes far from the deformation area must be at most the 1 % of the total values. 

The displacements, strains and stresses smaller than that percentage are accepted to 

be zero during the simulation processes. In this model, two key nodes (marked in 

Figure 21) have been analyzed whether they have displacements, strains and stresses 

under desired limits. The results are presented in Table 9. 
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Table 9 – Displacement, Principal Strain and Principal Stress Values at the Given  
                 Nodes for Model A 

 

NumberNode  1 2 

)(. mmntDisplacemeMax  2.143E-2 7.217E-2 

100
.

.
x

ModeltheinntDisplacemeMax

ntDisplacemeMax








 

0.536 % 1.804 % 

)(. MPaStressrincipalPMax  1.592E-4 1.833E-2 

100
.

.
x

ModeltheinStressrincipalPMax

StressrincipalPMax








 

2.726E-4 % 0.031 % 

StrainrincipalPMax.  2.163E-3 1.022E-2 

100
.

.
x

ModeltheinStrainrincipalPMax

StrainrincipalPMax








 

1.023 % 4.834 % 

 

 

As seen in Table 9, the values of principal stresses are under the limits but the values 

of displacements and principal strains could not stay under the limit of 1 % in some 

conditions. For example the maximum principal strain at the node 2 is 4.834 % of the 

maximum value in the model. These values are not acceptable and so, the model 

must be enlarged in x and z directions. The enlargement in the x direction should be 

more, because the values at the node 2 on the x-axis are deviating from the limits 

more than the values at the node 1 on the z-axis. As a result, one more model has 

been created by multiplying the lengths of z-axis with 2 and x-axis with 2.5. 

 

B. To decrease the values of displacements and strains at the nodes mentioned 

before, the new model has been created with the following dimensions (x-y-z) 

(Figure 17); 

 

 Tissue size(mm) : 50-8-40   

 Fine mesh region (mm) : 10-2.5-3 
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As presented in Figure 17, this tissue is larger than the previous ones. Now, the 

displacements and principal strains can be checked whether they exceed the limits. 

The results are given in Table 10. 

 

 

Table 10 – Displacement, Principal Strain and Principal Stress Values at the Given  
                   Nodes for Model B 

 

NumberNode  1 2 

)(. mmntDisplacemeMax  2.106E-2 2.43E-2 

100
.

.
x

ModeltheinntDisplacemeMax

ntDisplacemeMax








 

0.527 % 0.608 % 

)(. MPaStressrincipalPMax  4.326E-5 1.026E-4 

100
.

.
x

ModeltheinStressrincipalPMax

StressrincipalPMax








 

5.797E-5 % 1.375E-4 % 

StrainrincipalPMax.  1.39E-3 2.379E-3 

100
.

.
x

ModeltheinStrainrincipalPMax

StrainrincipalPMax








 

0.545 % 0.933 % 

 

 

As seen in Table 10, all the displacement, principal strain and principal stress values 

are within the limit of 1 %.  

 

Before deciding this model as completely appropriate for the estimation of the 

parameters in the subroutine, two more tests have been applied on the model. In 

these tests, the indenter tip has been rotated 45° and 90° around y-axis and the 

simulation has also been applied in these orientations (Figures 18 and 19). The 

displacement, principal stress and principal strain values at the marked nodes are 

given in Tables 11 and 12.  
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Table 11 – Displacement, Principal Strain and Principal Stress Values at the Given  
                   Nodes for Model B with 45° Indenter Tip Orientation  

 

NumberNode  1 2 

)(. mmntDisplacemeMax  1.944E-2 2.466E-2 

100
.

.
x

ModeltheinntDisplacemeMax

ntDisplacemeMax








 

0.486 % 0.617 % 

)(. MPaStressrincipalPMax  1.418E-4 6.034E-5 

100
.

.
x

ModeltheinStressrincipalPMax

StressrincipalPMax








 

4.348E-5 % 1.85E-5 % 

StrainrincipalPMax.  1.062E-3 2.058E-3 

100
.

.
x

ModeltheinStrainrincipalPMax

StrainrincipalPMax








 

0.591 % 1.145 % 

 

 

 

Table 12 – Displacement, Principal Strain and Principal Stress Values at the Given  
                   Nodes for Model B with 90° Indenter Tip Orientation  

 

NumberNode  1 2 

)(. mmntDisplacemeMax  3.667E-3 1.24E-2 

100
.

.
x

ModeltheinntDisplacemeMax

ntDisplacemeMax








 

0.092 % 0.31 % 

)(. MPaStressrincipalPMax  2.929E-6 1.356E-5 

100
.

.
x

ModeltheinStressrincipalPMax

StressrincipalPMax








 

6.083E-7 % 2.816E-6 % 

StrainrincipalPMax.  2.125E-4 1.086E-3 

100
.

.
x

ModeltheinStrainrincipalPMax

StrainrincipalPMax








 

0.109 % 0.558 % 
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In Tables 11 and 12 all the values of displacements, principal strains and principal 

stresses are seen to be under the limits. Only the principle strain at the node 2 at the 

indenter tip orientation of 45° is a little bit larger than % 1, but this is tolerable.  So, 

the tissue can be assumed to have zero displacements, principal strains and principal 

stresses at the end of the model axes and this model can be used for the estimation of 

the parameters in the user subroutine.  

 

The last thing to do is to create different mesh sizes in the fine mesh zone and 

compare the results of indenter tip reaction force. The force should converge 

somewhere, and by also taking the submission time into account, the most 

appropriate one should be chosen for more accurate results. 

 

So far, the edge length of 0.5 mm has been used for the elements in the fine mesh 

zone. Four more models will be created with the edge lengths of 0.3, 0.4, 0.6 and 0.7 

mm and they will be compared for the convergence. The time-indenter tip reaction 

force curves of these five models are seen in the Figure 24. 

 

 

 

 

Figure 24 – Time-Indenter Tip Reaction Force Curves for Different Element Edge 
Lengths in the Fine Mesh Region 
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In Figure 24, the change of the indenter tip reaction with time is seen. Three of these 

curves are very close to each other. These are the ones having the element edge 

lengths of 0.3, 0.5 and 0.7mm. The one having the element edge length of 0.6 mm is 

starting diverging at about first second. And the one having the element edge length 

of 0.4 mm is giving bad results between third and fourth seconds of the analysis time. 

So, these two are not good enough to be used. The other two curves representing the 

element edges of 0.3 and 0.7 mm. are also giving some bad responses that can be 

seen by looking carefully. This can be due to node separations at those increments as 

a result of tetrahedral meshing. Sudden changes in the reaction forces can also 

happen because of anisotropy. Different directions of the tissue have different 

stiffness and that can cause different sudden increases or decreases along those 

directions. Also it is more advantageous to use 0.5 mm instead of 0.3 mm edge 

length. Because the submission of 0.3 mm is lasting more than one hour, whereas the 

0.5 mm is lasting in about twelve minutes and they yield nearly the same result 

(convergence is satisfied). As a result, the best element edge length for the elements 

in the fine mesh zone has been chosen as 0.5 mm. This version of the model is 

presented in Figure 25. 
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Figure 25- The Model with the Elements of 0.5 mm Edge Length 
 

 

So far, the thickness of the tissue has been assumed as 8 mm for decreasing the 

calculation load of the finite element model. It was also observed that for the 

maximum displacement, maximum principal strain and maximum principal stress 

values to be assumed as disappeared (to have values within the limits), the tissue 

should be modeled with the lengths of 50 mm (6.25 times greater than the tissue 

thickness) in x direction and 40 mm (5 times greater than the tissue thickness) in z 

direction. In the real case (where the experiments were performed), the thickness of 

the tissue was about 40 mm. So, in that last step of the finite element model creation 

process, the model will be drawn with its real dimensions (250-40-200 mm). Since 

this model is five times greater than the previous one in all the material axes, the 

maximum displacement, maximum principal strain and maximum principal stress 
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values cannot be larger than the previous model. But, against all the possibilities, 

they will be calculated and the results will be presented in Table 13. The last version 

of the finite element model can be seen in Figure 26. 

 

 

Table 13 – Displacement, Principal Strain and Principal Stress Values at the Given  
                   Nodes for the Last Version of the Model  

 

NumberNode  1 2 

)(. mmntDisplacemeMax  1.112E-2 1.51E-2 

100
.

.
x

ModeltheinntDisplacemeMax

ntDisplacemeMax








 

0.278 % 0.378 % 

)(. MPaStressrincipalPMax  1.842E-5 7.664E-5 

100
.

.
x

ModeltheinStressrincipalPMax

StressrincipalPMax








 

2.468E-5 % 1.027E-4 % 

StrainrincipalPMax.  9.937E-4 1.88E-3 

100
.

.
x

ModeltheinStrainrincipalPMax

StrainrincipalPMax








 

0.39 % 0.737 % 

 

 

Table 13 summarizes the values of the maximum displacement, maximum principal 

strain and maximum principal stress values at nodes 1 and 2 which have been 

calculated by the third material model. The results of these material models are very 

close to each other, so, to obtain the values within the limits for this model is 

sufficient. As seen in the table, all the values of displacements, principal strains and 

principal stresses are under the limits. So, the tissue can be assumed to have zero 

displacements, principal strains and principal stresses at the end of the model axes 

and this final finite element model can be used for the estimation of the parameters in 

the user subroutine. 
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Figure 26- The Last Version of the Finite Element Model 
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CHAPTER 9 

 
 

RESULTS 

 

 

In this chapter, the results obtained by submitting the finite element model which 

was created in Chapter 8 will be presented. Each finite element model was submitted 

with the relevant material model (presented in detail in Appendices I, K and M, 

respectively). The constants in these material models were changed and best fit 

between the experimental data and the finite element solution was tried to be found. 

These procedures will be presented in the following subsections in detail.    

 

9.1. Simulation of Experimental Data with the QLV Model by Assuming Soft   

       Tissue as an Isotropic Material 

 

The simulation process was started with the quasi-linear isotropic material model. 

The material model for this simulation was presented in Appendix I. This material 

model was independent of strain. It involved the experiment time only, so, this model 

was only able to simulate relaxation and creep behaviors but not cyclic loading. 

Details are presented in the following subsections.  

 

9.1.1. Simulation of Relaxation Behavior 

 

Relaxation experiment data was available as indicated with the continuous line in 

Figure 27. This data was obtained by indenting (by the elliptic indenter tip with the 

dimensions of 8-2-2 mm in x, y and z axes, respectively) the soft tissue (forearm, 

medial part) which had a thickness of about 40 mm. The soft tissue was indented 20 
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mm (50 % of its thickness) with the indenter speed of 1 mm/s in 20 seconds. Then, 

this displacement was kept constant during 120 seconds and the relaxation behavior 

was observed. 

 

 

 

 

Figure 27 – Relaxation Curves for the Simulation of the First Model 
 

 

For the simulation of the experimental data, five finite element (FE) trials were 

performed which can be seen in Figure 27. The normalized sums of square errors 

(NSSE) for each trial were presented in Figure 28.  

 

In the first FE trial, the base material model (subroutine) which was presented in 

Appendix I was used. This trial was able to simulate the magnitude of the reaction 

force at the beginning of the relaxation period, but, the total amount of relaxation, 

which can be thought as the difference of reaction forces between the 20 th  and 140 th  

seconds, was seemed to be larger in the experimental data. The NSSE for this 

simulation was calculated as 31.82 %. The majority of this error was due to the 

deficiency in the amount of total relaxation magnitude which causes the long term 
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relaxation magnitude to deviate from the experimental data more and more as time 

passes. 

 

To increase the amount of total relaxation magnitude, the relaxation amplitude 

constant (C) in the material model was increased. So, in the second FE trial, the 

relaxation amplitude constant was taken to be 8 instead of 0.08. This procedure 

increased the magnitude of both short term and long term amounts of relaxation. But 

the increase in the long term relaxation amount was more than the short term 

relaxation amount. This caused the total relaxation amount to increase as seen in 

Figure 27. This FE trial was seemed to give reaction force magnitudes which are 

much less then the experimental data. A careful examination of the curve reveals that 

the curvature of this curve is similar to the experimental data curve than the previous 

trial. The NSSE for this simulation was calculated as 169.33 %. The majority of this 

error was due to the deviation of the magnitudes of the reaction forces from the 

experimental data. 

 

After obtaining the sufficient amount of total relaxation, the magnitudes of reaction 

forces should have been approached to the ones in the experimental data. To do that, 

the short term relaxation constant ( 1τ ) in the material model was increased. So, in the 

third FE trial, the short term relaxation constant was taken to be 4 seconds instead of 

0.8 seconds. As seen in Figure 27, by increasing the short term relaxation constant, 

the decrease in the relaxation magnitude could be obtained. The decrease of the short 

term relaxation period magnitude was a little bit larger than the decrease of the long 

term relaxation period magnitude. This was due to the fact that the short term 

relaxation constant was changed and so, short term relaxation behavior was affected 

more. The fitting between the FE trial 3 and the experimental data seemed to be 

better than the previous ones. In this trial, the NSSE was 4.46 % (see Figure 28). 

This was due to having relaxation magnitude less than the experimental data in the 

short term relaxation period and having relaxation magnitude more than the 

experimental data in the long term relaxation period.  
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Figure 28 – Normalized Sums of Square Errors for the Relaxation Simulation  
of the First Model 

 

 

To overcome the deviations in the long and short term relaxation periods, long and 

short term relaxation constants in the material model should have been changed 

appropriately. First, to obtain better fit in the long term relaxation period, the long 

term relaxation constant ( 2τ ) was changed in the fourth FE trial. The constant was 

increased from 1400 seconds to 10000 seconds. This increase caused the long term 

relaxation amount to decrease. As seen in the Figure 27, this FE trial had less 

relaxation amount than the previous one in the long term relaxation period. Now, the 

curvature of the FE trial 4 response seemed to be much similar to the experimental 

data. Last thing to do was to have more relaxation amount in the short term 

relaxation period. This could be achieved in the fifth FE trial by decreasing the short 

term relaxation constant from 4 seconds to 2.5 seconds. As seen in Figure 27, a great 

fit between the experimental data and finite element trial could be obtained after this 

trial. The proof of this great fit is the value of NSSE which was calculated as 0.47 %. 

The constants used in each finite element trial are summarized in Table 14. 
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Table 14 – Constants of the First Material Model (equation A59)                                  
                   Used in the Relaxation Simulation 
 

Trial A B C 
1τ  2τ  

FE1 1.96E-38 42 0.08 0.8 1400 

FE2 1.96E-38 42 8.0 0.8 1400 

FE3 1.96E-38 42 8.0 4.0 1400 

FE4 1.96E-38 42 8.0 4.0 10000 

FE5 1.96E-38 42 8.0 2.5 10000 

 

9.1.2. Simulation of Creep Behavior 

 

Creep experiment data was available as indicated with the continuous line in Figure 

29. This data was obtained by indenting (by the elliptic indenter tip with the 

dimensions of 8-2-2 mm in x, y and z axes, respectively) the soft tissue (forearm, 

medial part) which had a thickness of about 40 mm. The soft tissue was indented 

22.5 mm (56.25 % of its thickness) with the indenter speed of 1 mm/s in 22.5 

seconds until the reaction force reached to 5 N. Then, this reaction force which 

occurred at the end of the loading period was kept constant during 120 seconds and 

the creep behavior was observed. 
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Figure 29 - Creep Curves for the Simulation of the First Model 
 

 

For the simulation of the experimental data, three finite element (FE) trials were 

performed which can be seen in Figure 29. The normalized sums of square errors 

(NSSE) for each trial were presented in Figure 30.  

 

In the first FE trial, the material model which had been used for the last FE trial of 

the relaxation simulation procedure was used. This trial has given rather large 

magnitudes of displacement responses, i.e. the creep response occurred much more 

than the experimental data. This trial, which had the NSSE value of 190.05 % 

(Figure 30), can be seen in Figure 29.  

 

The total amount of creep response was then tried to be decreased by increasing the 

elastic constant (A) from 1.96E-38 MPa to 4E-38 MPa in the second trial. This 

procedure decreased the magnitude of creep response and made it approached to the 

experimental data. After this second trial, the NSSE value appeared as 1.58 % which 

means that the second trial gives much accurate responses than the first one. 
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Figure 30 - Normalized Sums of Square Errors for the Creep Simulation  
of the First Model 

 

 

To increase the accuracy of the simulation further, i.e. to decrease the value of 

NSSE, one more FE trial was performed. In this last trial (FE3), the elastic constant 

was increased a little bit more and it was made 4.455E-38 MPa. This procedure 

decreased the magnitude of creep response a little bit more and made it approached 

to the experimental data. After this third trial, the NSSE value appeared as 0.43 % 

which proves that there occurred a great fit between the finite element solution and 

the experimental data. The constants used in each finite element trial are summarized 

in Table 15. 
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Table 15 – Constants of the First Material Model (equation A59) 
                   Used in the Creep Simulation 
 

Trial A B C 
1τ  2τ  

FE1 1.96E-38 42 8.0 2.5 10000 

FE2 4.0E-38 42 8.0 2.5 10000 

FE3 4.455E-38 42 8.0 2.5 10000 

 

 

9.2. Simulation of Experimental Data with the Enhanced QLV Model by 

       Assuming Soft Tissue as an Isotropic Material 

 

The simulation process was carried on with the enhanced quasi-linear isotropic 

material model. The material model for this simulation was presented in Appendix 

K. This material model was dependent on both experiment time and strain, so, it was 

able to simulate relaxation and creep behaviors together with cyclic loading. Details 

are presented in the following subsections.  

 

9.2.1. Simulation of Relaxation Behavior 

 

Relaxation experiment data was available as indicated with the continuous line in 

Figure 31. This data was obtained by indenting (by the elliptic indenter tip with the 

dimensions of 8-2-2 mm in x, y and z axes, respectively) the soft tissue (forearm, 

medial part) which had a thickness of about 40 mm. The soft tissue was indented 20 

mm (50 % of its thickness) with the indenter speed of 1 mm/s in 20 seconds. Then, 

this displacement was kept constant during 120 seconds and the relaxation behavior 

was observed. 

 

For the simulation of the experimental data, six finite element (FE) trials were 

performed which can be seen in Figure 31. The normalized sums of square errors 

(NSSE) for each trial were presented in Figure 32.  
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In the first FE trial, the base material model (subroutine) which was presented in 

Appendix K was used. This trial was not able to simulate the magnitude of the 

reaction force at the beginning of the relaxation period. The reaction force for this 

simulation was starting from about 4.8 N, whereas the reaction force of the 

experimental data was starting from somewhere close to 4 N. (see Figure 31) The 

great majority of the NSSE of 399.29 % for this simulation was arising from this 

force difference. So, in the second FE trial, the short term relaxation constant ( 1τ ) 

was decreased from 8 seconds to 0.8 seconds. As seen in Figure 31, by decreasing 

the value of the short term relaxation constant, the reaction force at the beginning of 

the relaxation period could be simulated. This can also be seen from the value of 

NSSE which decreased to 30.45 % in one step. The majority of this error was due to 

the deficiency in the amount of total relaxation magnitude which causes the long 

term relaxation magnitude to deviate from the experimental data more and more as 

time passes. 

 

 

 

 

Figure 31 – Relaxation Curves for the Simulation of the Second Model 
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To increase the amount of total relaxation magnitude, the relaxation amplitude 

constant (C) in the material model was increased from 0.08 to 0.8 in the third FE 

trial. This procedure increased the magnitude of both short term and long term 

amounts of relaxation. The increase in the long term relaxation amount was more 

than the short term relaxation amount. This caused the total relaxation amount to 

increase as seen in Figure 31. This FE trial was seemed to yield reaction force 

magnitudes which are much less then the experimental data. A careful examination 

of the curve reveals that the curvature of this curve is similar to the experimental data 

curve than the previous trial. The NSSE for this simulation was calculated as 877.42 

%. The majority of this error was due to the deviation of the magnitudes of the 

reaction forces from the experimental data. 

 

For increasing the reaction force same magnitude for all of the simulation points, i.e. 

for decreasing the amount of total relaxation magnitude, the elastic constant (A) was 

increased from 9E-35 MPa to 1.67E-34 MPa in the fourth trial. After this trial, the 

simulation response of the reaction force was shifted upwards as seen in Figure 31. 

This process decreased the NSSE to 28.41 %.  

 

In the fifth FE trial, for decreasing the amount of relaxation in the long term 

relaxation period more than the short term relaxation period, the long term relaxation 

constant ( 2τ ) was increased from 140 seconds to 1400 seconds. Because, choosing a 

greater long term relaxation constant causes the long term relaxation to occur later. 

Consequently, this process caused the long term relaxation to decrease more than the 

short term relaxation.   

 

In the last FE trial, the short term relaxation constant was decreased one more step 

and was made 0.3 seconds to catch the experimental data. After that step, there 

occurred a great fit between the experimental data and simulation response which 

was proved by the NSSE value of 0.6 % given in Figure 32. The constants used in 

each finite element trial are summarized in Table 16. 
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Figure 32 - Normalized Sums of Square Errors for the Relaxation Simulation  
of the Second Model 

 

 

Table 16 – Constants of the Second Material Model (equation B21)                       
                   Used in the Relaxation Simulation 

 

Trial A B C 1τ  2τ  a b c 

FE1 9.0E-35 42 0.08 8.0 140 0.8 0.8 0.8 

FE2 9.0E-35 42 0.08 0.8 140 0.8 0.8 0.8 

FE3 9.0E-35 42 0.8 0.8 140 0.8 0.8 0.8 

FE4 1.67E-34 42 0.8 0.8 140 0.8 0.8 0.8 

FE5 1.67E-34 42 0.8 0.8 1400 0.8 0.8 0.8 

FE6 1.67E-34 42 0.8 0.3 1400 0.8 0.8 0.8 

 

 



 

110 

9.2.2. Simulation of Creep Behavior 

 

Creep experiment data was available as indicated with the continuous line in Figure 

33. This data was obtained by indenting (by the elliptic indenter tip with the 

dimensions of 8-2-2 mm in x, y and z axes, respectively) the soft tissue (forearm, 

medial part) which had a thickness of about 40 mm. The soft tissue was indented 

22.5 mm (56.25 % of its thickness) with the indenter speed of 1 mm/s in 22.5 

seconds until the reaction force reached to 5 N. Then, this reaction force which 

occurred at the end of the loading period was kept constant during 120 seconds and 

the creep behavior was observed. 

 

 

 

 

 

Figure 33 - Creep Curves for the Simulation of the Second Model 
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For the simulation of the experimental data, three finite element (FE) trials were 

performed which can be seen in Figure 33. The normalized sums of square errors 

(NSSE) for each trial were presented in Figure 34.  

 

In the first FE trial, the material model which had been used for the last FE trial of 

the relaxation simulation procedure was used. This trial has given a little bit smaller 

magnitudes of displacement responses, i.e. the creep response occurred less than the 

experimental data. This trial, which had the NSSE value of 6.36 % (Figure 34), can 

be seen in Figure 33.  

 

The total amount of creep response was then tried to be increased by decreasing the 

elastic constant (A) from 1.67E-34 MPa to 1.67E-35 MPa in the second trial. This 

procedure increased the magnitude of creep response and made it approached to the 

experimental data. After this second trial, the NSSE value appeared as 5.52 % which 

means that the second trial gives more accurate responses than the first one. 

 

 

 

 

Figure 34 - Normalized Sums of Square Errors for the Creep Simulation  
of the Second Model 
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To increase the accuracy of the simulation further, i.e. to decrease the value of 

NSSE, one more FE trial was performed. In this last trial (FE3), the elastic constant 

was decreased a little bit more and it was made 1.31E-36 MPa. This procedure 

increased the magnitude of creep response a little bit more and made it approached to 

the experimental data. After this third trial, the NSSE value appeared as 0.31 % 

which proves that there occurred a great fit between the finite element solution and 

the experimental data. The constants used in each finite element trial are summarized 

in Table 17. 

 

 

Table 17 – Constants of the Second Material Model (equation B21)                          
                   Used in the Creep Simulation 
 

Trial A B C 
1τ  2τ  a b c 

FE1 1.67E-34 42 0.8 0.3 1400 0.8 0.8 0.8 

FE2 1.67E-35 42 0.8 0.3 1400 0.8 0.8 0.8 

FE3 1.31E-36 42 0.8 0.3 1400 0.8 0.8 0.8 

 

 

9.2.3. Simulation of Hysteresis Behavior 

 

Hysteresis experiment data was available as indicated with the continuous lines in 

Figure 35 and Figure 39. This data was obtained by loading (by the elliptic indenter 

tip with the dimensions of 8-2-2 mm in x, y and z axes, respectively) the soft tissue 

(forearm, medial part) which had a thickness of about 40 mm. The soft tissue was 

loaded 15 mm (37.5 % of its thickness) with the indenter speed of 4 mm/s in 3.75 

seconds. Then, the tissue was unloaded with the same speed and the indenter tip 

returned to its original position when the experiment time is 7.5 seconds. Within this 

one cycle of loading and unloading, the change of reaction force with respect to time 

(Figure 35) and with respect to displacement (Figure 39) was observed. 
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For the simulation of the experimental data, five finite element (FE) trials were 

performed which can be seen in Figure 35 and Figure 39. The normalized sums of 

square errors (NSSE) for each trial of the reaction force simulation with respect to 

time were presented in Figure 36, Figure 37 and Figure 38 for loading and unloading 

periods, for loading period only and for unloading period only, respectively. The 

NSSE values for each trial of the reaction force simulation with respect to 

displacement were presented in Figure 40, Figure 41 and Figure 42 for loading and 

unloading periods, for loading period only and for unloading period only, 

respectively. 

 

 

 

 

Figure 35 – Hysteresis (Time - Reaction Force) Curves for the Simulation  
of the Second Model 

 

 

 

In the first finite element trial, the material model, which had been used in the last 

step of the simulation of relaxation behavior for this model was used. This model 

was not very successful in simulating the material behavior both in loading and 

unloading periods of the simulation as seen in Figures 35 and 39. The NSSE values 
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of 27.35 % given in Figure 36 and 27.1 % given in Figure 40 were the proof of that. 

But, by a more detailed examination of Figure 35, one can see that the simulation of 

the unloading period was better than the simulation of the loading period. The proof 

of that is given in Figure 37 and Figure 38 which presents the NSSE values in 

loading as 23.92 % and in unloading as 3.43 %. This can also be seen from Figure 41 

and Figure 42 with the NSSE values of 22.49 % in loading and 4.61 % in unloading, 

respectively. 

 

For the second FE trial of the simulation of hysteresis behavior, the material model, 

which had been used in the last step of the simulation of creep behavior for this 

model was used. This model presented very small values of the reaction force 

response during the experiment time (see Figure 35) which resulted in very large 

NSSE values as given in the Figures 36, 37 and 38. For increasing these reaction 

force values, the elastic material constant (A) was increased from 1.31E-36 MPa to 

2.033E-34 MPa in the third trial. This model was not very successful in simulating 

the material behavior both in loading and unloading periods of the simulation like the 

first one as seen in Figure 35. The NSSE value of 29.53 % given in Figure 36 and 

33.31 % given in Figure 40 were the proof of that. But, by a more detailed 

examination of Figure 35, one can see this time that the simulation of the loading 

period was better than the simulation of the unloading period. The proof of that is 

given in the Figure 37 and Figure 38 which presents the NSSE values in loading as 

1.97 % and in unloading as 27.56 %. This can also be seen from Figure 41 and 

Figure 42 with the NSSE values of 1.71 % in loading and 31.6 % in unloading, 

respectively. 
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Figure 36 – Normalized Sums of Square Errors for the Hysteresis (Time - Reaction 
Force) Simulation of the Second Model in Loading and Unloading 

 

 

 

 

Figure 37 - Normalized Sums of Square Errors for the Hysteresis  
(Time - Reaction Force) Simulation of the Second Model in Loading 
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Figure 38 - Normalized Sums of Square Errors for the Hysteresis  
(Time - Reaction Force) Simulation of the Second Model in Unloading 

 

 

 

The main source of these errors was thought to be due to the data acquisition speed 

of the experiment apparatus. By a carefully examination of Figure 35 and Figure 39, 

one can see the strangeness at the transition periods between the loading and the 

unloading periods. The indenter tip was stopped about 0.15 seconds after the loading 

period, and then started the unloading period. During this short experiment time, a 

sudden relaxation happened in the tissue. So, for being able to simulate this behavior, 

the simulation procedure was changed for the fourth and fifth trials as follows: 

 

The soft tissue was loaded 15 mm (37.5 % of its thickness) with the indenter speed of 

4 mm/s in 3.75 seconds. Then, this displacement was kept constant during 0.15 

seconds to allow for the relaxation behavior. Later, the tissue was unloaded and the 

indenter tip returned to its original position when the experiment time is 7.5 seconds. 
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In the fourth FE trial, the short term relaxation constant was decreased from 0.3 

second to 0.03 second to be able to simulate that sudden decrease in the reaction 

force. The relaxation behavior between the loading and the unloading periods was 

seemed to be simulated which can be seen from Figure 35 and Figure 39. But this 

time, the magnitude of the reaction forces appeared as larger than the experimental 

data. The NSSE value of 357.87 % given in Figure 36 and 293.81 % given in Figure 

40 are the proof of that. To decrease the magnitude of the reaction force, the elastic 

material constant (A) was increased once more from 2.033E-34 MPa to 3.21E-33 

MPa in the last FE trial. After that trial, a good fit between the experimental data and 

the finite element simulation could be obtained (see Figures 35 and 39), with the 

NSSE value of 2.03 % in the simulation of reaction force with respect to experiment 

time (see Figure 36) and with the NSSE value of 0.58 % in the simulation of the 

reaction force with respect to displacement (see Figure 40). The constants used in 

each finite element trial are summarized in Table 18. 

 

 

 

 

 Figure 39 - Hysteresis (Displacement - Reaction Force) Curves for the Simulation  
of the Second Model 
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Figure 40 – Normalized Sums of Square Errors for the Hysteresis (Displacement - 
Reaction Force) Simulation of the Second Model in Loading and Unloading 

 

 

 

 

Figure 41 – Normalized Sums of Square Errors for the Hysteresis  
(Displacement - Reaction Force) Simulation of the Second Model in Loading 
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Figure 42 – Normalized Sums of Square Errors for the Hysteresis  
(Displacement - Reaction Force) Simulation of the Second Model in Unloading 

 

 

 

Table 18 – Constants of the Second Material Model (equation B21)                           
                   Used in the Hysteresis Simulation 

 

Trial A B C 
1τ  2τ  a b c 

FE1 1.67E-34 42 0.8 0.3 1400 0.8 0.8 0.8 

FE2 1.31E-36 42 0.8 0.3 1400 0.8 0.8 0.8 

FE3 2.033E-34 42 0.8 0.3 1400 0.8 0.8 0.8 

FE4 2.033E-34 42 0.8 0.03 1400 0.8 0.8 0.8 

FE5 3.21E-33 42 0.8 0.03 1400 0.8 0.8 0.8 
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9.2.4. Simulation of Preconditioning (Mullin’s Effect) Behavior 

 

Preconditioning experiment data was available as indicated with the continuous line 

in Figure 43. This data was obtained by loading (by the elliptic indenter tip with the 

dimensions of 8-2-2 mm in x, y and z axes, respectively) the soft tissue (forearm, 

medial part) which had a thickness of about 40 mm. The soft tissue was loaded 15 

mm (37.5 % of its thickness) with the indenter speed of 4 mm/s in 3.75 seconds. 

Then, this displacement was kept constant during 0.15 seconds to allow for the 

relaxation behavior like in the hysteresis simulation. Later, the tissue was unloaded 

and the indenter tip returned to its original position when the experiment time is 7.5 

seconds. This loading and unloading cycle was repeated ten times and the change of 

reaction force with respect to time (Figure 43) was observed. 

 

The simulation of the experimental data was performed with the material model 

which had been used in the last trial for the simulation of the hysteresis behavior of 

this model. This simulation is concluded with the NSSE value of 3.69 % which can 

be assumed as acceptable for the preconditioning behavior. The constants used in the 

finite element trial are summarized in Table 19. 
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Figure 43 - Preconditioning (Mullin’s Effect) Curves for the Simulation  
of the Second Model 

 

 

 

Table 19 – Constants of the Second Material Model (equation B21)                      
                   Used in the Preconditioning Simulation 
 

Trial A B C 1τ  2τ  a b c 

FE5 3.21E-33 42 0.8 0.03 1400 0.8 0.8 0.8 

 

 

9.3. Simulation of Experimental Data with the Enhanced QLV Model by 

       Assuming Soft Tissue as an Anisotropic Material 

 

 

The last simulation process was performed with the enhanced quasi-linear 

anisotropic material model. The material model for this simulation was presented in 
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Appendix M. This material model was dependent on both experiment time and 

strain, so, it was able to simulate relaxation and creep behaviors together with cyclic 

loading. Difference of this model from the previous one is the fact that this model 

was created as anisotropic. The relaxation, creep and cyclic loading behaviors of the 

soft tissue was tried to be simulated by this anisotropic material model in this step. 

 

9.3.1. Simulation of Relaxation Behavior 

 
Relaxation experiment data was available as indicated with the continuous line in 

Figure 44. This data was obtained by indenting (by the elliptic indenter tip with the 

dimensions of 8-2-2 mm in x, y and z axes, respectively) the soft tissue (forearm, 

medial part) which had a thickness of about 40 mm. The soft tissue was indented 20 

mm (50 % of its thickness) with the indenter speed of 1 mm/s in 20 seconds. Then, 

this displacement was kept constant during 120 seconds and the relaxation behavior 

was observed. 

 
For the simulation of the experimental data, six finite element (FE) trials were 

performed which can be seen in Figure 44. The normalized sums of square errors 

(NSSE) for each trial were presented in Figure 45.  

 
In the first FE trial, the base material model (subroutine) which was presented in 

Appendix M was used. This trial was not able to simulate the magnitude of the 

reaction force at the beginning of the relaxation period. The reaction force for this 

simulation was starting from about 4.2 N, whereas the reaction force of the 

experimental data was starting from somewhere close to 4 N. The great majority of 

the NSSE of 86.86 % for this simulation was arising from this force difference. So, 

in the second FE trial, the short term relaxation constant ( 1τ ) was decreased from 8 

seconds to 4 seconds. As seen in Figure 44, by decreasing the value of the short term 

relaxation constant, the reaction force at the beginning of the relaxation period could 

be simulated. This can also be seen from the value of NSSE which decreased to 

46.91 % in one step. The majority of this error was due to the deficiency in the 
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amount of total relaxation magnitude which causes the long term relaxation 

magnitude to deviate from the experimental data more and more as time passes. 

 
 

 

 

Figure 44 – Relaxation Curves for the Simulation of the Third Model 
 

 

 

To increase the amount of total relaxation magnitude, the relaxation amplitude 

constant (C) in the material model was increased from 0.08 to 8 in the third FE trial. 

This procedure increased the magnitude of both short term and long term amounts of 

relaxation. The increase in the long term relaxation amount was more than the short 

term relaxation amount. This caused the total relaxation amount to increase as seen 

in Figure 44. In the fourth FE trial, the short term relaxation constant ( 1τ ) was 

increased from 4 seconds to 5 seconds to shift the left hand side of the relaxation 

curve upwards. As expected, also the right hand side of the relaxation curve was 

shifted by increasing the short term relaxation constant, but this is not as much as the 

increase of the left hand side. So, after this trial, the short term relaxation was 
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seemed to be simulated better (see Figure 44) which was proved with the NSSE 

value of 10.87 % given in Figure 45. 

 

 

 

 

Figure 45 - Normalized Sums of Square Errors for the Relaxation Simulation 
of the Third Model 

 

 

 

In the fifth FE trial, for decreasing the amount of relaxation in the long term 

relaxation period more than the short term relaxation period, i.e. for shifting the right 

hand side of the relaxation curve upwards more than the left hand side, the long term 

relaxation constant ( 2τ ) was increased from 1400 seconds to 14000 seconds. 

Because, choosing a greater long term relaxation constant causes the long term 

relaxation to occur later. Consequently, this process caused the long term relaxation 

to decrease more than the short term relaxation.   

 

In the last FE trial, the short term relaxation constant was decreased back to 4 

seconds to match the experimental data. After that step, there occurred a great fit 
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between the experimental data and simulation response which was proved by the 

NSSE value of 0.74 % given in Figure 45. The constants used in each finite element 

trial are summarized in Table 20. 

 

 

Table 20 – Constants of the Third Material Model (equation C19)                          
                   Used in the Relaxation Simulation 

 

Trial A B C 
1τ  2τ  a b c 

FE1 7.6E-37 42 0.08 8.0 1400 0.7 0.8 0.9 

FE2 7.6E-37 42 0.08 4.0 1400 0.7 0.8 0.9 

FE3 7.6E-37 42 8.0 4.0 1400 0.7 0.8 0.9 

FE4 7.6E-37 42 8.0 5.0 1400 0.7 0.8 0.9 

FE5 7.6E-37 42 8.0 5.0 14000 0.7 0.8 0.9 

FE6 7.6E-37 42 8.0 4.0 14000 0.7 0.8 0.9 

 

 

9.3.2. Simulation of Creep Behavior 

 

Creep experiment data was available as indicated with the continuous line in Figure 

46. This data was obtained by indenting (by the elliptic indenter tip with the 

dimensions of 8-2-2 mm in x, y and z axes, respectively) the soft tissue (forearm, 

medial part) which had a thickness of about 40 mm. The soft tissue was indented 

22.5 mm (56.25 % of its thickness) with the indenter speed of 1 mm/s in 22.5 

seconds until the reaction force reached to 5 N. Then, this reaction force which 

occurred at the end of the loading period was kept constant during 120 seconds and 

the creep behavior was observed. 
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For the simulation of the experimental data, three finite element (FE) trials were 

performed which can be seen in Figure 46. The normalized sums of square errors 

(NSSE) for each trial were presented in Figure 47. 

 

 

 

 

Figure 46 - Creep Curves for the Simulation of the Third Model 
 

 

In the first FE trial, the material model which had been used for the last FE trial of 

the relaxation simulation procedure was used. This trial has given a little bit smaller 

magnitudes of displacement responses, i.e. the creep response occurred less than the 

experimental data. This trial, which had the NSSE value of 3.98 % (Figure 47), can 

be seen in Figure 46.  

 

The total amount of creep response was then tried to be increased by decreasing the 

elastic constant (A) from 7.6E-37 MPa to 3.4E-37 MPa in the second trial. This 

procedure increased the magnitude of creep response and made it approached to the 
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experimental data. After this second trial, the NSSE value appeared as 0.79 % which 

means that the second trial gives more accurate responses than the first one. 

 

 

 

 

Figure 47 - Normalized Sums of Square Errors for the Creep Simulation  
of the Third Model 

 

 

To increase the accuracy of the simulation further, i.e. to decrease the value of 

NSSE, one more FE trial was performed. In this last trial (FE3), the elastic constant 

was decreased a little bit more and it was made 2.55E-37 MPa. This procedure 

increased the magnitude of creep response a little bit more and made it approached to 

the experimental data. After this third trial, the NSSE value appeared as 0.31 % 

which proves that there occurred a great fit between the finite element solution and 

the experimental data. The constants used in each finite element trial are summarized 

in Table 21. 
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Table 21 – Constants of the Third Material Model (equation C19)                              
                   Used in the Creep Simulation 
 

Trial A B C 
1τ  2τ  a b c 

FE1 7.6E-37 42 8.0 4.0 14000 0.7 0.8 0.9 

FE2 3.4E-37 42 8.0 4.0 14000 0.7 0.8 0.9 

FE3 2.55E-37 42 8.0 4.0 14000 0.7 0.8 0.9 

 

 

9.3.3. Simulation of Hysteresis Behavior 

 

Hysteresis experiment data was available as indicated with the continuous lines in 

Figure 48 and Figure 52. This data was obtained by loading (by the elliptic indenter 

tip with the dimensions of 8-2-2 mm in x, y and z axes, respectively) the soft tissue 

(forearm, medial part) which had a thickness of about 40 mm. The soft tissue was 

loaded 15 mm (37.5 % of its thickness) with the indenter speed of 4 mm/s in 3.75 

seconds. Then, the tissue was unloaded with the same speed and the indenter tip 

returned to its original position when the experiment time is 7.5 seconds. Within this 

one cycle of loading and unloading, the change of reaction force with respect to time 

(Figure 48) and with respect to displacement (Figure 52) was observed. 

 

For the simulation of the experimental data, five finite element (FE) trials were 

performed which can be seen in Figure 48 and Figure 52. The normalized sums of 

square errors (NSSE) for each trial of the reaction force simulation with respect to 

time were presented in Figure 49, Figure 50 and Figure 51 for loading and unloading 

periods, for loading period only and for unloading period only, respectively. The 

NSSE values for each trial of the reaction force simulation with respect to 

displacement were presented in Figure 53, Figure 54 and Figure 55 for loading and 

unloading periods, for loading period only and for unloading period only, 

respectively. 
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Figure 48 – Hysteresis (Time - Reaction Force) Curves for the Simulation  
of the Third Model 

 

 

 

In the first finite element trial, the material model, which had been used in the last 

step of the simulation of relaxation behavior for this model was used. This model 

was not very successful in simulating the material behavior both in loading and 

unloading periods of the simulation as seen in Figures 48 and 52. The NSSE values 

of 32.66 % given in Figure 49 and 31.7 % given in Figure 53 were the proof of that. 

A more detailed examination of Figure 48, one can see that the simulation of the 

unloading period was better than the simulation of the loading period. The proof of 

that is given in Figure 50 and Figure 51 which presents the NSSE values in loading 

as 30.41 % and in unloading as 2.26 %. This can also be seen from Figure 54 and 

Figure 55 with the NSSE values of 28.75 % in loading and 2.96 % in unloading, 

respectively. 

 

For the second FE trial of the simulation of hysteresis behavior, the material model, 

which had been used in the last step of the simulation of creep behavior for this 
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model was used. This model presented very small values of the reaction force 

response during the experiment time (see Figure 48) which resulted in very large 

NSSE values as given in the Figures 49, 50 and 51. For increasing these reaction 

force values, the elastic material constant (A) was increased from 2.55E-37 MPa to 

9.58E-37 MPa in the third trial. This model was not very successful in simulating the 

material behavior both in loading and unloading periods of the simulation like the 

first one as seen in Figure 48. The NSSE value of 29.86 % given in Figure 49 and 

33.64 % given in Figure 53 were the proof of that. A more detailed examination of 

Figure 48, one can see this time that the simulation of the loading period was better 

than the simulation of the unloading period. The proof of that is given in the Figure 

50 and Figure 51 which presents the NSSE values in loading as 2.06 % and in 

unloading as 27.8 %. This can also be seen from Figure 54 and Figure 55 with the 

NSSE values of 1.78 % in loading and 31.86 % in unloading, respectively. 

  

 

 

 

Figure 49 – Normalized Sums of Square Errors for the Hysteresis (Time - Reaction 
Force) Simulation of the Third Model in Loading and Unloading 
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Figure 50 - Normalized Sums of Square Errors for the Hysteresis  
(Time - Reaction Force) Simulation of the Third Model in Loading 

 

 

 

 

Figure 51 - Normalized Sums of Square Errors for the Hysteresis  
(Time - Reaction Force) Simulation of the Third Model in Unloading 
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The main source of these errors was thought to be due to the data acquisition speed 

of the experiment apparatus. By a carefully examination of Figure 48 and Figure 52, 

one can see the strangeness at the transition periods between the loading and the 

unloading periods. The indenter tip was stopped about 0.15 seconds after the loading 

period, and then started the unloading period. During this short time, a sudden 

relaxation happened in the tissue. So, for being able to simulate this behavior, the 

simulation procedure was changed for the fourth and fifth trials as follows: 

 

The soft tissue was loaded 15 mm (37.5 % of its thickness) with the indenter speed of 

4 mm/s in 3.75 seconds. Then, this displacement was kept constant during 0.15 

seconds to allow for the relaxation behavior. Later, the tissue was unloaded and the 

indenter tip returned to its original position when the experiment time is 7.5 seconds. 

 

In the fourth FE trial, the short term relaxation constant was decreased from 4 

seconds to 0.02 second to be able to simulate that sudden decrease in the reaction 

force. The relaxation behavior between the loading and the unloading periods was 

seemed to be simulated which can be seen from Figure 48 and Figure 52. But this 

time, the magnitude of the reaction forces appeared as larger than the experimental 

data. The NSSE value of 386.93 % given in Figure 49 and 362.12 % given in Figure 

53 are the proof of that. To decrease the magnitude of the reaction force, the elastic 

material constant (A) was increased once more from 9.58E-37 MPa to 1.61E-36 MPa 

in the last FE trial. After that trial, a good fit between the experimental data and the 

finite element simulation could be obtained (see Figures 48 and 52), with the NSSE 

value of 2.56 % in the simulation of reaction force with respect to experiment time 

(see Figure 49) and with the NSSE value of 2.93 % in the simulation of the reaction 

force with respect to displacement (see Figure 53). The constants used in each finite 

element trial are summarized in Table 22. 
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Figure 52 - Hysteresis (Displacement - Reaction Force) Curves for the Simulation  
of the Third Model 

 

 

 

Figure 53 – Normalized Sums of Square Errors for the Hysteresis (Displacement - 
Reaction Force) Simulation of the Third Model in Loading and Unloading 
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Figure 54 – Normalized Sums of Square Errors for the Hysteresis  
(Displacement - Reaction Force) Simulation of the Third Model in Loading 

 

 

 

 

Figure 55 – Normalized Sums of Square Errors for the Hysteresis  
(Displacement - Reaction Force) Simulation of the Third Model in Unloading 
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Table 22 – Constants of the Third Material Model (equation C19)                          
                   Used in the Hysteresis Simulation 

 

Trial A B C 
1τ  2τ  a b c 

FE1 7.6E-37 42 8.0 4.0 14000 0.7 0.8 0.9 

FE2 2.55E-37 42 8.0 4.0 14000 0.7 0.8 0.9 

FE3 9.58E-37 42 8.0 4.0 14000 0.7 0.8 0.9 

FE4 9.58E-37 42 8.0 0.02 14000 0.7 0.8 0.9 

FE5 1.61E-36 42 8.0 0.02 14000 0.7 0.8 0.9 

 

9.3.4. Simulation of Preconditioning (Mullin’s Effect) Behavior 

 

Preconditioning experiment data was available as indicated with the continuous line 

in Figure 56. This data was obtained by loading (by the elliptic indenter tip with the 

dimensions of 8-2-2 mm in x, y and z axes, respectively) the soft tissue (forearm, 

medial part) which had a thickness of about 40 mm. The soft tissue was loaded 15 

mm (37.5 % of its thickness) with the indenter speed of 4 mm/s in 3.75 seconds. 

Then, this displacement was kept constant during 0.15 seconds to allow for the 

relaxation behavior like in the hysteresis simulation. Later, the tissue was unloaded 

and the indenter tip returned to its original position when the experiment time is 7.5 

seconds. This loading and unloading cycle was repeated ten times and the change of 

reaction force with respect to time (Figure 56) was observed. 

 

The simulation of the experimental data was performed with the material model 

which had been used in the last trial for the simulation of the hysteresis behavior of 

this model. This simulation is concluded with the NSSE value of 3.89 % which can 

be assumed as acceptable for the preconditioning behavior. The constants used in the 

finite element trial are summarized in Table 23. 
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Figure 56 - Preconditioning (Mullin’s Effect) Curves for the Simulation  
of the Third Model 

 

 

Table 23 – Constants of the Third Material Model (equation C19)                              
                   Used in the Preconditioning Simulation 
 

Trial A B C 
1τ  2τ  a b c 

FE5 1.61E-36 42 8.0 0.02 14000 0.7 0.8 0.9 
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CHAPTER 10 

 
 

CONCLUSIONS 

 
 

For the simulation of the soft tissue mechanical behaviors like relaxation, creep, 

hysteresis and preconditioning three models were proposed. The finite element 

models have also been constructed and the constants in these material models were 

found by using inverse finite element method.  

 

The first model was created to simulate the relaxation and the creep behaviors of 

biological soft tissues. Since this model was not dependent on the strain, it was not 

able to simulate hysteresis and preconditioning. 

 

For the relaxation simulation of this model, five finite element solutions were tried. 

After iterations, the normalized sum of square errors was appeared to be 0.47 % 

which proves that this simulation is rather accurate and acceptable. 

 

For the creep simulation of the first model, three finite element solutions were tried. 

The initial guess for material parameters were the values obtained from the 

relaxation simulation. After two iterations, the normalized sum of square errors was 

appeared to be 0.43 % which proves that this simulation is rather accurate and 

acceptable.  

 

As a conclusion, it is possible to say that the first (quasi-linear viscoelastic) model 

which assumes soft tissue as an isotropic material is very successful in simulating the 

relaxation and the creep behaviors. By changing only one of the constants, both of 

the characteristic soft tissue behaviors could be simulated. The simulation of 

relaxation could be concluded with the NSSE value of 0.47 % while the simulation 
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of creep could be concluded with the NSSE value of 0.43 %. The change in the 

coefficient was 127.3 % which includes the contribution of experimental errors as 

well. 

 

The main shortcoming of the first model used in this study was the fact that it was 

not dependent on the strain which makes it impossible to simulate hysteresis and 

preconditioning behaviors. To overcome this shortcoming and be able to simulate 

both hysteresis and preconditioning together with relaxation and creep, the second 

and third quasi-linear viscoelastic models were proposed. The second material model 

is isotropic and the third one is anisotropic. 

 

The second model was proposed to simulate the relaxation and the creep behaviors 

together with the cyclic loading behavior of biological soft tissues. Since this model 

was dependent on the strain together with the experiment time, it was able to 

simulate relaxation and creep behaviors together with cyclic loading. 

 

For the relaxation simulation of this model, six finite element solutions were tried. In 

the first trial, the base model written in Appendix K was used. After five iterations, 

the normalized sum of square errors was appeared to be 0.6 % which proves that this 

simulation is rather accurate and acceptable. 

 

For the creep simulation of the second model, three finite element solutions were 

tried. The initial guess for material parameters were the values obtained from the 

relaxation simulation. After three iterations, the normalized sum of square errors was 

appeared to be 0.31 % which proves that this simulation is rather accurate and 

acceptable. 

 

For the hysteresis simulation of the second model, five finite element solutions were 

tried. In the first and second trials, the material models, which had been used in the 

last step of the relaxation simulation and in the last step of the creep simulation, were 

used, respectively. For the third trial, the elastic constant was increased to obtain 

larger reaction force responses than the second trial. In the fourth and fifth trials, the 
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simulation procedure was changed a little bit to obtain results as in the experiments. 

The short term relaxation constant was decreased in the fourth trial to be able to 

obtain sudden relaxation response as in the experiment between loading and 

unloading periods. In the last trial, the elastic constant was increased once more to 

obtain a better fit between the experimental data and the finite element solution. 

After the last finite element trial, the normalized sum of square errors was appeared 

to be 2.03 % for the simulation of the reaction force with respect to experiment time 

and 0.58 % for the simulation of the reaction force with respect to indenter tip 

displacement. These results prove that this simulation is rather accurate and 

acceptable for a hysteresis simulation. 

 

For the preconditioning simulation of the second model, the last material model 

which had been used in the simulation of the hysteresis behavior of this model was 

used. The normalized sum of square errors was appeared to be 3.69 % for the 

simulation of the reaction force with respect to experiment time. This result proves 

that this simulation is rather accurate and acceptable for a preconditioning 

simulation. 

 

As a conclusion, it is possible to say that the second (enhanced quasi-linear 

viscoelastic) model which assumes soft tissue as an isotropic material is very 

successful in simulating the relaxation and the creep behaviors. It can also be 

assumed as successful in simulating the hysteresis and preconditioning behaviors. 

Because, all these characteristic behaviors of soft biological tissue were tried to be 

simulated by only one material model. By changing the constants in the proper way, 

this material model could successfully be used for the simulation of the mechanical 

behaviors of the soft biological tissue. 

 

The main shortcoming of the second model used in this study was the fact that it was 

not an anisotropic model despite the fact that the original structure of the soft tissues 

is much likely to anisotropic. To overcome this situation and simulating the material 

constants by using an anisotropic model the third model was proposed. 
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The third model was created to simulate the relaxation and the creep behaviors 

together with the cyclic loading behavior of biological soft tissues buy using an 

anisotropic material model. Since this model was dependent on the strain together 

with the experiment time like the second model, it was also able to simulate 

relaxation and creep behaviors together with cyclic loading. 

 

For the relaxation simulation of this model, six finite element solutions were tried. In 

the first trial, the base model written in Appendix M was used. After five iterations, 

the normalized sum of square errors was appeared to be 0.74 % which proves that 

this simulation is rather accurate and acceptable. 

 

For the creep simulation of the third model, three finite element solutions were tried. 

The initial guess for material parameters were the values obtained from the 

relaxation simulation. After three iterations, the normalized sum of square errors was 

appeared to be 0.31 % which proves that this simulation is rather accurate and 

acceptable. 

 

For the hysteresis simulation of the third model, five finite element solutions were 

tried. In the first and second trials, the material models, which had been used in the 

last step of the relaxation simulation and in the last step of the creep simulation, were 

used, respectively. For the third trial, the elastic constant was increased to obtain 

larger reaction force responses than the second trial. In the fourth and fifth trials, the 

simulation procedure was changed a little bit to obtain results as in the experiments. 

The short term relaxation constant was decreased in the fourth trial to be able to 

obtain sudden relaxation response as in the experiment between loading and 

unloading periods. In the last trial, the elastic constant was increased once more to 

obtain a better fit between the experimental data and the finite element solution. 

After the last finite element trial, the normalized sum of square errors was appeared 

to be 2.56 % for the simulation of the reaction force with respect to experiment time 

and 2.93 % for the simulation of the reaction force with respect to indenter tip 

displacement. These results prove that this simulation is rather accurate and 

acceptable for a hysteresis simulation. 
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For the preconditioning simulation of the third model, the last material model which 

had been used in the simulation of the hysteresis behavior of this model was used. 

The normalized sum of square errors was appeared to be 3.89 % for the simulation of 

the reaction force with respect to experiment time. This result proves that this 

simulation is rather accurate and acceptable for a preconditioning simulation. 

 

As a conclusion, it is possible to say that the third (enhanced quasi-linear 

viscoelastic) model which assumes soft tissue as an anisotropic material is very 

successful in simulating the relaxation and the creep behaviors. It can also be 

assumed as successful in simulating the hysteresis and preconditioning behaviors. 

Because, all these characteristic behaviors of soft biological tissue were tried to be 

simulated by only one material model and with minimal change in material 

parameters. By changing the constants in the proper way, this material model could 

successfully be used for the simulation of the mechanical behaviors of the soft 

biological tissue. 

 

Is is also possible to simulate the experimental data by using another sets of 

constants within the material models. An alternative simulation of the relaxation 

behavior with the third model is presented in Appendix S. Here, the constants in the 

material model were given different values than the original simulation and the 

experimental data could also be simulated by these constants with the NSSE value of 

0.63 %. 

 

If one examines the history of soft tissue simulation studies, he would not be able to 

find any model which can simulate all the characteristic behaviors of soft tissues. So 

far, many scientists have worked on soft tissue simulation. Some of them could only 

simulate the relaxation behavior and some others could simulate the creep response 

by using the relaxation data. Some tried to fit soft tissue responses to mathematical 

series and some tried to decrease the number of constants in these formulations. This 

study was able to simulate all the characteristic behaviors of soft biological tissues 

with only one constitutive equation by some little changes in the material constants. 

By using these models, interaction between residual limb tissue and prosthetic socket 
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can be simulated which can be used for the future design of prosthetic socket. The 

interactions between feet and shoes of a person who has diabetes can be simulated 

which can be utilized for the future design of diabetic shoe. Also the interactions 

between bed and body of the person who has paralysis can be simulated which can 

be used for the future design of beds. 

 

The finite element models created for these three material models were not able to 

run in short times. One of the reasons of that was the type of analysis. In these 

models, there applied a contact analysis instead of determining a loading type and 

contact analyses last in much larger times than other linear analyses in finite element 

softwares because of geometric nonlinearities. Another reason of these long 

simulation times was the number of elements in the model. Especially for having 

good convergence in the contact area, this area was modeled as a fine mesh area with 

smaller and constant length elements which caused the number of element in the 

model to be about 27000. The more elements in the finite element analyses always 

mean the longer simulation times. One other reason of the long simulation times was 

the fact that the material models used for these analyses were not available in the 

material library of the finite element software. So, they were needed to be written by 

a compiler and compiled during each simulation which caused the simulation times 

to become much longer. Also using these nonlinear material models with large strain 

and large displacement conditions makes the simulation times much longer. The 

technological constraints can also be assumed as the reason of these long submission 

times. The computer with which these finite element analyses were performed had a 

single-cored processor with the CPU speed of 3.0 GHz. It had 1024 MB memory and 

120 GB of hard disc space. These specifications are far from the ones of a finite 

element computer and cause the simulation times to increase further. 

 

Consequently, these presented results of the finite element models could be obtained 

after very long simulation times. For relaxation and creep, the simulation times 

reached to one hour. For hysteresis simulations, the simulation times were about one 

and a half hours and for preconditioning these were almost sixteen hours. However, 

some of these simulations could not be concluded due to convergence errors because 
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of the structure of the model. To overcome this situation, a better finite element 

model can be created for working on a computer which has better specifications than 

the current one. This model can have more elements which are consequently smaller 

than the current one. Also creating these elements in the same size and creating them 

as hexahedral instead of tetrahedral can give more accurate results in the simulations. 

After creating that kind of model and being able to run it faster, more simulations 

could me performed by changing the constants in the material models again and 

again which helps the user to understand the effect of these constant better.  

 

Consequently, three material models were created and they were used in the 

simulations of three finite element models. The first one was able to simulate 

relaxation and creep but not cyclic loading. To also be able to simulate cyclic 

loading, the second model was created, but this model was not anisotropic like real 

soft biological tissues. To also include the anisotropy within the finite element 

analysis, the third material model was created. All these finite element model 

simulations proved that these material models are successful in simulating the 

mechanical behavior of soft biological tissues.  

 

By implementing the suggestions given for the future analyses of these material 

models, more accurate and acceptable results with smaller values of NSSE can be 

obtained. Also by using the experimental data obtained from other soft tissues of 

human body can be used to be simulated by these material models and the results can 

be compared. 
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APPENDIX A 

 
 

DERIVATION OF THE CONSTITUTIVE EQUATIONS FOR 

QLV MODELING BY ASSUMING SOFT TISSUE AS AN 

ISOTROPIC MATERIAL 

 
 

The time dependent nd2  Piola-Kirchoff stress can be written by using the one 

dimensional theory of QLV as; 

 

( ) ( )[ ]
∫ ∂

∂
−=

t e

dtGt
0

)( τ
τ

τεσ
τσ ………………………………………………….(A1) 

 

where; ( )tσ  is QLV stress at any time t; )(−G  is the reduced relaxation function 

and ( )−eσ  is the elastic stress function. Since the elastic stress function is a 

function of strain and time, equation (A1) can be rewritten as; 

 

( ) ( )[ ]
( )

( )
∫ ∂

∂

∂

∂
−=

t e

dtGt
0

)( τ
τ

τε

τε

τεσ
τσ ………………………………………….(A2) 

 

where; the term  
( )
τ

τε

∂

∂
 is called the strain rate and can be denoted with ε&  in the 

loading portion and it is equal to zero in the relaxation portion of the experiment. 

 

For purposes here, the reduced relaxation function was taken to be; 

 

( ) ( ) ( )[ ]
( )12
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So; 

( )






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
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tEtEC
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where; C is a material parameter related to the viscous damping; 1τ  and 2τ  are 

material parameters related to the strain rates over which hysteresis is nearly constant 

and 1E  is the first exponential integral function which is in the form; 

 

( ) ∫ ∫
∞ ∞ −−

==
1

1

x

uxt

du
u

e
dt

t

e
xE ………………………………………………………..(A5) 

 

The elastic stress function, )(εσ e  was assumed to be represented through the 

nonlinear elastic relationship; 

 

( )1)( −= εεσ Be eA …………………………………………………………….....(A6) 

 

where; A and B are material constants.  

 

So, the term 
( )[ ]

( )τε

τεσ

∂

∂ e

 in equation (A2) becomes; 

 

( )[ ]
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( )[ ]1−
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∂
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∂

∂ ε
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τεσ B
e

eA …………………………………………………….(A7) 

         εBABe= ……………………………………………………………..(A8) 

         τε&BABe= …………………………………………………………….(A9) 

 

Note that, the equation τεε &=  has been used in equation (A9) to make it able to be 

integrated over time. 
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Substituting equations (A4) and (A9) into equation (A2), the stress history from 0 to 

0t (beginning of relaxation) and from 0t  to the end of test period can be obtained as; 
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Note the stress response from 0t  to the end of the experiment includes the stress 

history up to 0t  plus the stress history from 0t  onward. However, since the strain rate 

from 0t  onward is zero, we are simply left with; 
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Since this study is dealing with the relaxation part of the experiment, derivation will 

go on from equation (A11). 

 

Rearranging and simplifying; 
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where;  
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a
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1

…………………………………………………...(A18) 

 

Substituting equation (A18) into equation (A15), one obtains; 
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The first exponential integral function is related to the general exponential integral 

function with the following formula; 

 

( ) ( )xExE i −−=1 ………………………………………………………………...(A20) 

 

where; ( )xE1  is the first exponential integral function and ( )xEi  is the general 

exponential integral function. 

 

Substituting equation (A20) into equations (A16) and (A17), one obtains; 
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And similarly; 
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Substituting equations (A19), (A21) and (A22) into equation (A14), one obtains; 
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where; 
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Changing variables in equations (A26) and (A27) as; 



 

158 

dxd

tx

ttxttx

tx

=⇒

+=⇒

−=⇒=−=⇒=

−=

τ

τ

ττ

τ

00;0
……………………………………...(A28) 

 

they become; 
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Formula:
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Applying the formula in equation (A31) to equations (A29) and (A30), one obtains; 
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and similarly; 
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Substituting equations (A32) and (A33) into equation (A25), one obtains; 
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where; 
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The exponential integral function is known by the equations as; 
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where; γ  is a constant called Euler-Mascheroni constant which is equal to 

0.5772156649… 
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By using the appropriate equation in (A43) within the equations from (A39) to (A42) 

one obtains; 
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As seen above, different equations were used for the calculation of exponential 

integral functions. In equations (A44), (A46) and (A47) the terms of the exponential 

integral functions are larger than two. So, the second line of the equation (A43) must 

be used for convergence. On the contrary, the exponential integral term of equation 

(A45) is smaller than two. So, this time the second line of the equation (A43) must 

be used for convergence. 
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In equations (A44) - (A47), only the first two or three terms of the expansion were 

taken into account. The real forms of those equations have infinite number of terms, 

but it is impossible to use all these terms in the expansion. So, minimum possible 

number of terms in the expansions of the exponential integral functions was taken 

into account not to increase the load of process.   

 

Using the truncated forms of the exponential integral functions bring on a very small 

error that is acceptable. However, the advantage of using the short forms of the 

equations reduces the model and allows for the easier and faster calculation of whole 

model. 

 

Substituting equations between (A44) and (A47) into equation (A38), one obtains; 
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Rearranging and simplifying, the final form of the equation can be obtained as; 
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where; 

 ( ) 25242322930 qqqqqq −+−=  

 27261231 qqqq +=  

 2842932 qqqq −=  
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APPENDIX B 

 
 

DERIVATION OF THE CONSTITUTIVE EQUATIONS FOR 

ENHANCED QLV MODELING BY ASSUMING SOFT TISSUE 

AS AN ISOTROPIC MATERIAL 

 
 

The stress history equation can be written by using the one dimensional theory of 

QLV as; 
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∂
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σ
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where; ( )tQLV ,εσ  is QLV stress at any time t and strain ε ; )(−G  is the reduced 

relaxation function and ( )−eσ  is the elastic stress function. Since the elastic stress 

function is a function of strain and time, equation (B1) can be rewritten as; 
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where; the term 
( )
τ

τε

∂

∂
 is called the strain rate and can be denoted with ε&  in the 

loading portion and it is equal to zero in the relaxation portion of the experiment. 

 

For purposes here, the reduced relaxation function was taken to be; 
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So; 
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where; C is a material parameter related to the viscous damping; 1τ  and 2τ  are 

material parameters related to the strain rates over which hysteresis is nearly constant 

and 1E  is the first exponential integral function which is in the form; 
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The elastic stress function )(εσ e  in equation (B2) is the following nonlinear 

function; 

 

( )1)( −= εεσ Be eA ……………………………………………………………….(B6) 

 

where; A and B are material constants.  

 

So, the term 
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 in equation (B2) becomes; 
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         τε&BABe= …………………………………………………………….(B9) 

 

Note that, the equation τεε &=  has been used in equation (B9) to make it able to be 

integrated over time. 
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Substituting equations (B4) and (B9) into equation (B2), the stress history from 0 to 

0t (beginning of relaxation) and from 0t  to the end of test period can be obtained as; 
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Note the stress response from 0t  to the end of the experiment includes the stress 

history up to 0t  plus the stress history from 0t  onward. However, since the stretch 

rate from 0t  onward is zero, we are simply left with; 
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Since this study is dealing with the relaxation part of the experiment, derivation will 

go on from equation (B11). 

 

Rearranging and abbreviating; 
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Concluding the intermediate operations on equation (B12) as in the Appendix A, 

finally one obtains; 
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where; 
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So far, the same model as in the previous one (Appendix A) have been used. To 

enhance this formulation, it was multiplied with strain and other constants allow for 

anisotropic behavior. That is; 
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11 ……………………………………………………………(B14) 

QLV
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QLV

c
pT σ

ε

Λ
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8

2
3

2

33 ……………………………………………………………(B16) 

 

where; 11T , 22T  and 33T  are stresses along the three material axes; p is hydrostatic 

pressure which is equal zero in our experiment conditions (for detailed information 

about hydrostatic pressure, see Appendix E); 1ε , 2ε and 3ε  are principal strains along 

three material directions; QLVσ is the quasi-linear viscoelastic stress calculated by 

the equation (B13) and Λ  is fiber contour length known by the equation; 

 

8

222 cba ++
=Λ ………………………………………………………………...(B17) 

 

where; a, b and c are material parameters that reflect the unit cell dimensions and 

allow for anisotropic behavior. But, this formulation does not deal with anisotropy. 

For isotropic case, acb == . Consequently, Λ  can be taken as one material 

parameter only (not depending on the three parameters a, b and c individually). So, 

equation (B17) becomes; 

 

2
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8
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++
=Λ ………………………………………………………..(B18) 

 

With the substitution of this fiber contour length equation into equations (B14), 

(B15) and (B16), the final form of the model is obtained as; 
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⇒ QLVT σ
ε

3

2
1

11 = …………………………………………………………………(B20) 

 

And similarly;  

 

⇒ QLVT σ
ε

3

2
2

22 = ………………………………………………………………...(B21) 

⇒ QLVT σ
ε

3

2
3

33 = …………………………………………………………………(B22) 

 

Purely quasi-linear viscoelastic model (formulated in Appendix A) is capable of 

simulating relaxation and creep behaviors. As a result of multiplication with the 

square of strain, we hope this model to simulate cyclic loading (hysteresis) and also 

preconditioning together with relaxation and creep. 
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APPENDIX C 

 
 

DERIVATION OF THE CONSTITUTIVE EQUATIONS FOR 

ENHANCED QLV MODELING BY ASSUMING SOFT TISSUE 

AS AN ANISOTROPIC MATERIAL 

 
 

The stress history equation can be written by using the one dimensional theory of 

QLV as; 

 

( ) ∫ ∂

∂
−=

t e

QLV dtGt
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)(, τ
τ

σ
τεσ ………………………………………………........(C1) 

 

where; ( )tQLV ,εσ  is QLV stress at any time t and strain ε ; )(−G  is the reduced 

relaxation function and ( )−eσ  is the elastic stress function. Since the elastic stress 

function is a function of strain and time, equation (C1) can be rewritten as; 
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where; the term 
( )
τ

τε

∂

∂
 is called the strain rate and can be denoted with ε&  in the 

loading portion and it is equal to zero in the relaxation portion of the experiment. 

 

For purposes here, the reduced relaxation function was taken to be; 
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So; 
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where; C is a material parameter related to the viscous damping; 1τ  and 2τ  are 

material parameters related to the strain rates over which hysteresis is nearly constant 

and 1E  is the first exponential integral function which is in the form; 
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The elastic stress function )(εσ e  in equation (C2) is the following nonlinear 

function; 

 

( )1)( −= εεσ Be eA ……………………………………………………………….(C6) 

 

where; A and B are material constants.  

 

So, the term 
( )[ ]

( )τε

τεσ

∂

∂ e

 in equation (C2) becomes; 
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τεσ B
e
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         εBABe= ……………………………………………………………..(C8) 

         τε&BABe= …………………………………………………………….(C9) 

 

Note that, the equation τεε &=  has been used in equation (C9) to make it able to be 

integrated over time. 
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Substituting equations (C4) and (C9) into equation (C2), the stress history from 0 to 

0t (beginning of relaxation) and from 0t  to the end of test period can be obtained as; 
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Note the stress response from 0t  to the end of the experiment includes the stress 

history up to 0t  plus the stress history from 0t  onward. However, since the stretch 

rate from 0t  onward is zero, we are simply left with; 
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Since this study is dealing with the relaxation part of the experiment, derivation will 

go on from equation (C11). 

 

Rearranging and abbreviating; 

 

( ) ∫ 



















 −−






 −+

+
=

0

0
1

1
2

1

12

1
ln1

t

B
QLV dtEtECe

C

AB
τ

τ
τ

τ
τ

ττ

ε
σ τε&&

… 

…………………………….(C12) 

 

Concluding the intermediate operations on equation (C12) as in the Appendix A, 

finally one obtains; 
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where; 
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This is the quasi-linear part of the model. To enhance this formulation, it was 

multiplied with strain and other constants allow for anisotropic behavior. That is; 
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where; 11T , 22T  and 33T  are stresses along the three material axes; p is hydrostatic 

pressure which is equal zero in our experiment conditions (for detailed information 

about hydrostatic pressure, see Appendix E); 1ε , 2ε and 3ε  are principal strains along 

three material directions; QLVσ is the quasi-linear viscoelastic stress calculated by 

the equation (C13) and Λ  is fiber contour length known by the equation; 

 

8
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where; a, b and c are material parameters that reflect the unit cell dimensions and 

allow for anisotropic behavior. Consequently, two more constants were needed to be 

used than the previous one to take anisotropy into account. After final abbreviations, 

equations (C14), (C15) and (C16) can be written as; 
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Purely quasi-linear viscoelastic model (formulated in Appendix A) is capable of 

simulating relaxation and creep behaviors. As a result of multiplication with the 

square of strain, we hope this model to simulate cyclic loading (hysteresis) and also 

preconditioning together with relaxation and creep. Also by using the constants a, b 

and c different than each other, we hope to model anisotropy of the soft biological 

tissues. 
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APPENDIX D 

 
 

REDUCED RELAXATION FUNCTION 

 
 

For simulation purposes of the soft biological tissues, the most commonly used 

method is quasi-linear viscoelasticity. According to this method, a reduced relaxation 

function is multiplied with the derivative of the elastic stress function with respect to 

time and the whole expression is integrated over time. 

 

In this section, two forms of the reduced relaxation function will be expressed. The 

first one has six material parameters but easy to be formulated; and the second one 

has only three material parameters but cannot be formulated as easy as the former 

one.  

 

The first form of the reduced relaxation function is; 

 

( ) thtdtb efeceatG −−− ++= ……………………………………………………..(D1) 

 

where; a and b represent the short term behavior; c and d represent the intermediate 

term behavior; f and h represent the long term behavior of the soft biological tissue. 

For the graphical illustration of the 6-parameter reduced relaxation function and 

effects of changing these constants on it, see Figures D1 – D7. In these curves, the 

responses calculated by the reduced relaxation function after a ramp strain is seen. 
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Figure D1 – 6-Parameter Reduced Relaxation Function 

 

 

 

 

Figure D2 – Effect of Changing the Constant ‘a’ on 6-Parameter Reduced Relaxation 

Function 
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Figure D3 – Effect of Changing the Constant ‘b’ on 6-Parameter Reduced Relaxation 

Function 

 

 

 

Figure D4 – Effect of Changing the Constant ‘c’ on 6-Parameter Reduced Relaxation 

Function 
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Figure D5 – Effect of Changing the Constant ‘d’ on 6-Parameter Reduced Relaxation 

Function 

 

 

 

Figure D6 – Effect of Changing the Constant ‘f’ on 6-Parameter Reduced Relaxation 

Function 
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Figure D7 – Effect of Changing the Constant ‘h’ on 6-Parameter Reduced Relaxation 

Function 

 

 

In Figure D1, the base response of the reduced relaxation function is seen. The 

parameters are as they are given in the figure and none of them has been changed. In 

the following figures, only one of the parameters is changed while the others are kept 

constant, and the effect of changing this parameter is observed. 

 

In Figure D2, the effect of changing the short term constant (a) on the reduced 

relaxation function is seen. Increasing the value of the short term constant causes the 

sudden relaxation to decrease. Figure D3 shows the effect of changing the short term 

exponential constant (b) on the reduced relaxation function. The sudden relaxation 

period decreases while the short term exponential constant increases.  

 

In Figure D4, the effect of changing the intermediate term constant (c) on the 

reduced relaxation function is seen. Increasing the value of the intermediate term 

constant causes the intermediate relaxation to increase, too. Figure D5 shows the 

effect of changing the intermediate term exponential constant (d) on the reduced 
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relaxation function. The intermediate relaxation period decreases while the 

intermediate term exponential constant increases. 

 

In Figure D6, the effect of changing the long term constant (f) on the reduced 

relaxation function is seen. Increasing the value of the long term constant causes the 

all relaxation curve to be shifted upward. Finally, Figure D7 shows the effect of 

changing the long term exponential constant (h) on the reduced relaxation function. 

The long relaxation period decreases while the long term exponential constant 

increases.  

 

This 6-parameter reduced relaxation function has so many constants which is not a 

desirable condition. So, it has not been preferred within the concept of this thesis. 

Instead, a 3-parameter reduced relaxation function has been used. As previously 

mentioned, it is harder to formulate this reduced relaxation function, but it requires 

less material parameters. 

 

This second form of the reduced relaxation function is; 
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where; C is a material parameter related to the viscous damping; 1τ  and 2τ  are 

material parameters related to the strain rates over which hysteresis is nearly constant 

and 1E  is the first exponential integral function which is in the form; 
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For the graphical illustration of the 3-parameter reduced relaxation function and 

effects of changing these constants on it, see Figures D8 – D11. In these curves, the 

responses calculated by the reduced relaxation function after a ramp strain is seen. 
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Figure D8 – 3-Parameter Reduced Relaxation Function 

 

 

 

 

Figure D9 – Effect of Changing the Constant ‘C’ on 3-Parameter Reduced Relaxation 

Function 
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Figure D10 – Effect of Changing the Constant ‘ 1τ ’ on 3-Parameter Reduced Relaxation 

Function 

 

 

 

 

Figure D11 – Effect of Changing the Constant ‘ 2τ ’ on 3-Parameter Reduced Relaxation 

Function 
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In Figure D8, the base response of the reduced relaxation function is seen. The 

parameters are as they are given in the figure and none of them has been changed. In 

the following figures, only one of the parameters is changed while the others are kept 

constant, and the effect of changing this parameter is observed. 

 

In Figure D9, the effect of changing the viscous damping parameter (C) on the 

reduced relaxation function is seen. As seen, increasing the value of the viscous 

damping constant causes all the relaxation amplitude to increase, too. Figure D10 

shows the effect of changing the short term constant ( 1τ ) on the reduced relaxation 

curve. Increasing the value of the short term constant causes the all relaxation curve 

to be shifted downwards. Finally, in Figure D11 the effect of changing the long term 

constant ( 2τ ) on the reduced relaxation curve is seen. Increasing the value of the 

long term relaxation constant causes the long term relaxation to increase, too. 

 

This 3-parameter reduced relaxation function has been used to model the time 

dependent response of a variety of biomaterials including ligament, bladder, and 

aortic valve (Dehoff, 2006).   
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APPENDIX E 

 
 

HYDROSTATIC PRESSURE 

 
 

Hydrostatic pressure, which appears in hydrostatic state of stress, is the pressure at a 

given depth in a static liquid. This pressure comes into being as a result of the weight 

of the liquid acting on a unit area plus any pressure acting on the surface of the 

liquid.  

 

hgPP atm ρ+= …………………………………………………………...(E1) 

 

where; atmP  is the atmospheric pressure; ρ  is the density of the liquid; g is the 

gravitational acceleration and h is the distance below the surface of the liquid. The 

term hgρ  is called the gage pressure which is due to the liquid alone.  

 

 

 

 

Figure E1 – Hydrostatic Pressure 
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The hydrostatic state of stress is also called the spherical state of stress. In that case, 

all the principal stresses are equal to the negative of the pressure and there is no shear 

stress on any plane, and any three mutually perpendicular directions may be selected 

as the principal directions (Malvern, 1969). 

 

Pressure is not really a vector even though it looks like a vector in Figure E1. The 

arrows indicate the direction of the force that the pressure would exert on a surface it 

is contact with. 

 

The hydrostatic pressure at a given depth is independent of direction; it is the same in 

all directions. This is another statement of the fact that the pressure is not a vector 

and thus has no direction associated with it when it is not in contact with some 

surface.  

 

The pressure on a submerged object is always perpendicular to the surface at each 

point on the surface.  

 

Hydrostatic state of stress is the only kind of stress that can exist in a fluid at rest. In 

some of soft tissue experiment procedures, the experiment is performed on the tissue 

when it is immersed into a liquid. In these conditions, the stress created by the liquid 

must be taken into account in the calculation the total stress. In the experiments 

performed within the context of this research, there was not such a case (no such an 

experiment condition like immersed into a liquid), so there was no hydrostatic stress 

other than the atmospheric pressure. However, since the tissue is always under 

atmospheric pressure, this state may assumed to be the reference state. 
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APPENDIX F 

 
 

EXPERIMENTAL APPARATUS: INDENTER 

 
 

One of the most important aspects of the modeling of soft biological tissues is the 

way the soft tissue experiments are performed. There are many types of experiments 

performed on the soft tissues. Uniaxial or multiaxial tensile experiments, 

compression experiments and indenter experiments are some examples of these. All 

these experimental procedures have some advantages and disadvantages. The most 

appropriate one for the specific study must be chosen. 

 

In this thesis, the data obtained by an indenter experiment was used to obtain 

material coefficients. In an indenter experiment, an indenter tip is pushed into the 

soft tissue by a step motor and the displacement of the tip is recorded together with 

the reaction force applied by the tissue on it (Figure F1). The indenter used in this 

study can perform in vivo experiments and supply tissue reaction force-tissue 

displacement-time data as stored in the computer. This apparatus can be used within 

a wide range of cyclic indentation speeds (0.1–14 mm/s). Nonlinear elastic and 

viscoelastic properties of soft tissues, mechanical energy lost in each loading and 

anisotropy in the plane of skin can be observed (Petekkaya, 2008). 

 

Three types of experiments can be performed by this apparatus. The first one of these 

is the cyclic loading. In cyclic loading experiments, the tissue is loaded until the 

desired displacement is accessed and then the loading is cut out. This procedure is 

repeated 10 times at a specific constant speed, because approximately in the first five 

cycles pre-conditioning (Mullin’s effect) are observed, consequently they are 

omitted. After the sixth cycle, repeatable results can be accessed. By cyclic loading 
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experiments; data about displacement - reaction force curve and orientation reaction 

of the soft tissue and mechanical energy lost during one cycle can be acquired. 

 

 

 

 

Figure F1 – Soft Tissue Experiment System 

 

 

The other type of experiment that can be performed is relaxation In relaxation 

experiments, the soft tissue can be subjected to a wide range of speeds of initial 

loading, after the desired displacement (or load) is reached, the deformation is kept 

constant (i.e. the motor is stopped) and the decrease of tissue reaction force 

(relaxation) can be observed. Relaxation experiments inform us about viscoelastic 

characteristics of the soft tissue. 

 

The last type of experiment that can be performed with the apparatus we used is 

creep. In creep experiments, as similar to the relaxation experiments the soft tissue 

can be subjected to a wide range of speed of initial loading, after the desired tissue 
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reaction force is reached this force is kept constant and displacement of the tissue 

(creep) is observed.. Creep experiments also inform us about viscoelastic 

characteristics of the soft tissue. 

 

The experiment apparatus used for collecting data for modeling the mechanical 

behavior of soft tissues has the following features: 

 

• The system is computer-controlled and the experiment results are 

stored in a computer. 

• The soft tissue can be loaded as displacement-controlled or speed-

controlled. 

• Cyclic loading, relaxation and creep experiments can be performed at 

different speeds. 

• The soft tissue can be loaded by different indenter tips having 

different geometries. 

• It has a simple design that allows use in clinical environment. 

• It allows modifications on the device or experimental protocols. 

 

The system is shown schematically at Figure F2. There are three main parts 

interacting with each other: laptop computer (which controls the system and stores 

the collected data), control box (which has electronic units inside it) and experiment 

unit (which performs soft tissue experiments).   
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Figure F2 - Soft Tissue Experiment System Sketch 

(adopted from Dizaltı Ampute Yumuşak Doku Mekanik Özelliklerinin Araştırılması 

için Deney Cihazı Tasarımı ve Üretimi, Tönük, E., 2008) 

 



 

194 

 

APPENDIX G 

 
 

INVERSE FINITE ELEMENT MODELING 

 
 

Finite element analyses have been used for the simulation of many mechanical 

problems for many years. For most of the actual complex engineering problems it is 

not possible to obtain exact results. Therefore, the physical natures of the problems 

are approximated to obtain an acceptable solution, i.e. acceptable accuracy in 

reasonable time and reasonable cost. This is the main concept of finite element 

analysis. 

 

Finite element models have also been used widely to compute soft-tissue 

deformations under mechanical constraints. They are well suited to compute accurate 

and complex deformations. Also visualization of finite elements is well suited for 

graphics hardware.  

 

A major impediment to building the accurate soft-tissue models is the lack of 

quantitative mechanical information suitable for finite element computation. The 

required information not only refers to the inner mechanical property of a given soft 

tissue but also includes contact with the surrounding tissues. In terms of 

computation, the former corresponds to the constitutive law of motion linking the 

stress tensor with the strain tensor, whereas the latter corresponds to the boundary 

conditions (Kauer et al, 2002). 

 

Finite-element based material identification methods have been used by many 

investigators to estimate material coefficients for biological tissues. These “inverse 

methods” assume a constitutive equation for the respective material and estimate the 
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material coefficient(s) by simulating force-deformation-time characteristics with a 

computer model (Kauer et all, 2002, Tönük et al, 2003, Fulin et all, 2007). 

 

In this study, a nonlinear finite-element analysis was used to simulate hysteresis, 

preconditioning, relaxation and creep data obtained during in vivo indentation. The 

finite element models facilitated estimation of an appropriate set of nonlinear 

viscoelastic material parameters of quasi-linear viscoelastic formulation, enhanced 

quasi-linear viscoelastic isotropic formulation and enhanced quasi-linear viscoelastic 

anisotropic formulation for bulk soft tissue.  

 

Identification of Material Characteristics by Inverse Finite Element Method 

 

It is not possible to implement standard material experiments on some materials. One 

of the methods to identify the coefficients of the constitutive equations for those 

materials is “inverse finite element” method. The following study is an example of 

that. In the study, the experiment results performed on the lower extremity residual 

limb tissue used for identification of nonlinear elastic and viscoelastic behavior of 

soft biological tissues. 

 

Soft tissue experiments were performed with two similar soft tissue systems. The 

first one is a system that has a cylindrical indenter tip of 2.5 mm radius presented by 

Vetrano et all in 1997. The second system has three cylindrical indenter tips of 3, 5 

and 7.5 mm radii and one spherical indenter tip of 15 mm. radius presented by 

Tönük, 2003. Both systems can perform cyclic loading, relaxation and creep 

experiments on soft tissues and both can acquire force-displacement-time data from 

these experiments.  

 

The finite element model of the tissue has been created as close as possible to the 

real tissue to identify the soft tissue material parameters. An axisymmetric finite 

element model has been used, because loading conditions and the situation of the soft 

tissue is like that. 
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The meshing of the soft tissue is done with gradually changing the mesh size in finite 

element model. The indenter tip and bone contact of soft tissue have been modeled 

with two different rigid surfaces (Figure G1). The contact surface between the 

indenter tip and the soft tissue has been modeled with a fine mesh than the other part 

of the soft tissue, because stress-strain change is maximum at that surface. The aim 

of that is to prevent calculation errors that can occur during deformation due to large 

displacements. As boundary conditions, the soft tissue displacement perpendicular to 

the symmetry axis has been set to ‘fixed’ and by assuming that the soft tissue is 

completely stuck on the bone, the contact between the bone and the soft tissue has 

been set to ‘fixed’ in all directions.   

 

 

 

 

Figure G1 – Finite Element Model 

(adopted from Dizaltı Ampute Yumuşak Doku Mekanik Özelliklerinin Araştırılması için 

Deney Cihazı Tasarımı ve Üretimi, Tönük, E., 2003) 
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As soft tissue material model James-Green-Simpson (third degree Mooney) has been 

chosen. This is an empirical material model and has been used to model the behavior 

of polymeric materials for long years. Because of the fact that the material model is 

empirical, the parameters do not posess any physical meanings. The constitutive 

equation of the model is given by; 

 

( ) ( ) ( )( ) ( ) ( )3
130

2
1202111201110 333333 −+−+−−+−+−= ICICIICICICW ……...(G1) 

 

where; 1I  and 2I  are first and second invariants of the Green’s finite strain tensor 

and ijC  are material constants to be determined. For axisymmetric models of 

incompressible materials, equation (G1) can be reduced to (Tönük et all, 2003); 
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For the cyclic loading experiments, inverse finite element analysis has been started 

with the initial values of CI = CJ = CK = 1 kPa. Indentation of the soft tissue by the 

indenter tip has been simulated with computer and soft tissue reaction force results 

have been compared with the ones obtained by experiments. These simulation results 

have been changed with respect to the difference between the simulation and 

experiment results. The results and material constants are given in Figure G2 and 

table G1, respectively. 

 



 

198 

 

 

Figure G2 – Identification of the Parameters of James-Green-Simpson Material by 

Finite Element Method 

(adopted from Dizaltı Ampute Yumuşak Doku Mekanik Özelliklerinin Araştırılması için 

Deney Cihazı Tasarımı ve Üretimi, Tönük, E., 2003) 

 

 

Table G1 – Material Constants Used in the Simulations and Sum of Error Squares 

(adopted from Dizaltı Ampute Yumuşak Doku Mekanik Özelliklerinin Araştırılması için 

Deney Cihazı Tasarımı ve Üretimi, Tönük, E., 2003) 

 

 [MPa] [-] 

Trial CI CJ CK 
Sum of Error 

Squares 

1 0,001 0,001 0,001 412,28% 

2 0,002 0,002 0,002 188,82% 

3 0,002 0,01 0,002 24,46% 

4 0,002 0,015 0,002 0,41% 
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In this experiment, only nonlinear characteristic of the material has been taken into 

account, viscoelastic characteristic has been ignored. For modeling the data obtained 

by relaxation and creep experiments, the relaxation form of the James-Green-

Simpson model given in equation (G3) (available in MSC.Marc) is used; 
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where; 0W  is instantaneous strain energy function and can be denoted as in equation 

(G2) for axisymmetric problem; δ1 and τ1 are short time relaxation magnitude and 

time constant; δ2 and τ2 are long time relaxation magnitude and time constant, 

respectively. 

 

For the initial values of time constants and relaxation magnitudes, the function given 

in equation (G4) is applied to the experimental data. By performing relaxation 

experiments, the constants CI, CJ ve CK (and W0) are obtained as in the cyclic 

loading experiments. 
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To fit the finite element results with the experiment results, magnitudes of relaxation 

have been changed. This can be seen in Figure G3. 
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Figure G3 – Identification of Viscoelastic Material Constants for Relaxation 

(adopted from Dizaltı Ampute Yumuşak Doku Mekanik Özelliklerinin Araştırılması için 

Deney Cihazı Tasarımı ve Üretimi, Tönük, E., 2003) 

 

 

In creep experiments, the function given in equation (G5) is applied to the 

experimental data. 
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where; δ1' and τ1' are short time creep magnitude and time constant; δ2' and τ2' are 

long time creep magnitude and time constant, respectively. These can be expressed 

in terms of relaxation constants assuming linear viscoelastic behavior as follows; 
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( ) '1 2212 τδ−δ−=τ ………………………………………………………………...(G9) 

 

To fit the finite element results with the experiment results, magnitudes of creep have 

been changed. This can be seen in figure G4. 

 

 

 

Figure G4 – Identification of Viscoelastic Material Constants for Creep 

(adopted from Dizaltı Ampute Yumuşak Doku Mekanik Özelliklerinin Araştırılması için 

Deney Cihazı Tasarımı ve Üretimi, Tönük, E., 2003) 

 

 

In inverse finite element methods, the first thing to do is to create the model, and 

then the constitutive equation which represents the material behavior is chosen. The 

initial guess of the material coefficients are selected arbitrarily. The model is 

submitted with these initial guess constants and results are compared with 
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experimental data. By changing the values of material coefficients, the best fit 

between the simulation and the experimental data is tried to be found. When this 

simulation becomes accurate enough with selected coefficients, the model is assumed 

to represent the behavior of the material. In this study, the constants of nonlinear and 

viscoelastic soft tissues have been identified by using experimental data by inverse 

finite element method.  

 

However, inverse finite element method has two disadvantages: 

 

• The material model must represent the behavior of that material 

especially for the ones which can not be represented by a linear elastic 

model. 

• Because of the fact that the material is not linear, finite element model 

can be divergent. Also, for some material models, due to nonlinearities in 

the model, uniqueness of the coefficients may not be guaranteed. 
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APPENDIX H 

 
 

USER SUBROUTINE TEMPLATE (hypela.f) 

 
 

      subroutine hypela(d,g,e,de,s,temp,dtemp,ngens,n,nn,kc,mats, 
     * ndi,nshear) 
c* * * * * * 
c 
c     user subroutine to define young's modulus and poisson's ratio 
c     as function of stress in non-linear elastic small strain 
c     material. 
c 
c     d        stress strain law to be formed by user 
c     g        change in stress due to temperature effects 
c     e        total strain 
c     de       increment of strain 
c     s        stress - should be updated by user 
c     temp     state variables 
c     dtemp    increment of state variables 
c     ngens    size of stress - strain law 
c     n        element number 
c     nn       integration point number 
c     kc       layer number 
c     mats     material i.d. 
c     ndi      number of direct components 
c     nshear   number of shear components 
c 
c* * * * * * 
      implicit real*8 (a-h,o-z) 
      dimension e(*),de(*),temp(*),dtemp(*),g(*),d(ngens,ngens),s(*) 
      dimension n(2),et(6) 
c 
      return 
      end 
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APPENDIX I 

 
 

USER SUBROUTINE FOR QLV MODELING BY ASSUMING 

SOFT TISSUE AS AN ISOTROPIC MATERIAL 

 
 

      subroutine hypela(d,g,e,de,s,temp,dtemp,ngens,n,nn,kc,mats, 
     * ndi,nshear) 
c* * * * * * 
c 
c     user subroutine to define young's modulus and poisson's ratio 
c     as function of stress in non-linear elastic small strain 
c     material. 
c 
c     d        stress strain law to be formed by user 
c     g        change in stress due to temperature effects 
c     e        total strain 
c     de       increment of strain 
c     s        stress - should be updated by user 
c     temp     state variables 
c     dtemp    increment of state variables 
c     ngens    size of stress - strain law 
c     n        element number 
c     nn       integration point number 
c     kc       layer number 
c     mats     material i.d. 
c     ndi      number of direct components 
c     nshear   number of shear components 
c 
c* * * * * * 
      implicit real*8 (a-h,o-z)   
 include '../marc_working_directory/concom' 
 include '../marc_working_directory/creeps' 
c ****** 
c 
c By including the common blocks concom and creeps, we include these  
c variables into the subroutine: 
c 
c cptim: time at beginning of increment 
c timinc: time increment 
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c ncycle: number of increment 
c 
c ****** 
      dimension e(3),de(3),temp(1),dtemp(1),g(1),d(ngens,ngens),s(3) 
      dimension n(2),et(3),ets(3) 
c ****** 
c 
c Since, this is a three dimensional model, we need three dimensional strain, 
c strain increment and stress values. This is done by setting these variables 
c three dimensional with dimension command. 
c 
c ****** 
 if (ncycle.eq.0) t=cptim+20.0d0 
 if (ncycle.eq.0) et(1)=e(1) 
 if (ncycle.eq.0) et(2)=e(2) 
 if (ncycle.eq.0) et(3)=e(3) 
 if (ncycle.gt.0) t=cptim+20.0d0+timinc  
 if (ncycle.gt.0) et(1)=e(1)+de(1) 
 if (ncycle.gt.0) et(2)=e(2)+de(2) 
 if (ncycle.gt.0) et(3)=e(3)+de(3) 
c ******  
c 
c To eliminate the errors (like dividing by zero or logarithm of zero) in the 
c calculation of some constants like q28 and q29, a new constant is created as 
c t0=18.4 and time of simulation is set to start from 20. 
c 
c ****** 
 ets(1)=et(1)**2.0d0 
 ets(2)=et(2)**2.0d0 
 ets(3)=et(3)**2.0d0 
c 
 a=1.96d-38 
 b=4.2d1 
 c=8.0d-2 
 T1=8.0d-1 
 T2=1.4d3 
 t0=1.84d1 
 epsdat=2.5d-2 
c ****** 
c 
c Constants in the subroutine are as they are explained in chapter A 
c 
c The user subroutine is written in double precision to be able to obtain more 
c accurate results. 
c 
c ****** 

q1=a/(1.0d0+c*log(T2/T1)) 
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 q2=b*epsdat 
 q3=q2*t0 
 q4=exp(q3) 
 q5=q4-1.0d0 
 q6=q4+1.0d0 
 q7=q2+(1.0d0/T1) 
 q8=q7+t0 
 q9=exp(q8) 
 q10=q2+(1.0d0/T2) 
 q11=q10*t0 
 q12=exp(q11) 
 q13=t0+T1 
 q14=q2*T1+1.0d0 
 q15=q14*t0 
 q16=q15+T1 
 q17=q2*T2+1.0d0 
 q18=q17*t0 
 q19=q18+T2 
 q20=0.57722d0-log(T2)+(t0/T2) 
 q21=log(T2)-0.57722d0 
c  
 q22=(T1/(t0-t))*((q13-t)/(t0-t)) 
 q23=(T1/(q15-q14*t))*((q16-q14*t)/(q15-q14*t)) 
 q24=(T1/t)*(1.0d0-(T1/t)) 
 q25=(T1/q14*t)*(1.0d0-(T1/q14*t)) 
 q26=(T2/(q18-q17*t))*((q19-q17*t)/(q18-q17*t)) 
 q27=(T2/q17*t)*(1.0d0-(T2/q17*t)) 
 q28=q20+log(t-t0)-(t/T2) 
 q29=q21+(t/T2)-log(t) 
 q30=q9*(q22-q23)+q24-q25 
 q31=q12*q26+q27 
 q32=q4*q28+q29 
c 
 sig=q1*(q5+c*((exp(-t/T1)*q30)+(exp(-t/T2)*q31)-q32)) 
c 
 do 100 i=1,ngens 
   do 110 j=1,ngens 
      d(i,j)=0.0d0 
110   continue 
100 continue 
c ****** 
c 
c Since there are no shear stresses in our experiment, the values of 
c  d(1,2)=d(2,1), d(1,3)=d(3,1) and d(2,3)=d(3,2) of the tangent stiffness are set 
c  to zero.   
c 
c ****** 
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 d(1,1)=sig 
 d(2,2)=d(1,1) 
 d(3,3)=d(1,1) 
c 
 do 120 k=1,3 
   s(k)=d(k,k)*ets(k) 
120     continue 
c ****** 
c  
c This quasi-linear viscoelastic formulation is expected to simulate the stress 
c relaxation and creep behaviors of soft biological tissues with time. So, the  
c constitutive equations of stresses were written in term of the only independent 
c variable time. Other constants are calculated by using the material  
c parameters. 
c  
c ****** 
      return 
      end 
 
 
 
 
This user subroutine allows the user to implement arbitrary material models in 

conjunction with the hypoelastic model definition option in MSC.Marc. MSC.Marc 

supplies hypela total mechanical strain (mechanical strain = total strain - thermal 

strain), the increment of mechanical strain, and other information. Stress, total 

mechanical strain and state variable arrays at the beginning of the increment (t = n) 

are passed to hypela with the incremental strain. The user is expected to calculate 

stresses S, tangent stiffness D, and state variables (if present) that correspond to the 

current strain at the end of the increment (t = n + 1).  

 
 
. 
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APPENDIX J 

 
 

VERIFICATION OF THE SUBROUTINE IN APPENDIX I  

WITH A SIMPLE 3D MODEL 

 
 

For the verification of the subroutine written in Appendix I, the three dimensional 

model seen in the Figure J1 was created. This specimen was 100 mm long with 

square cross section of 5 x 5 mm and had the material properties of hypoelastic 

materials in Mentat. The model had eight nodes, four of which are seen on the right 

hand side having fixed displacement boundary conditions along three material axes. 

Other four nodes are seen on the left hand side and three of them are linked (nodal 

tie) to the other one on which a position controlled boundary condition was applied. 

These nodes are only exposed to position controlled boundary condition for this 

model (as explained in section J.1) to prove that the subroutine is able to simulate 

relaxation and creep since, this material is expected to simulate relaxation and creep 

behaviors. 
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Figure J1 – Simple Three Dimensional Model 

 

 

J.1. Verification of Relaxation Simulation  

 

For the verification of the subroutine in relaxation simulation, the retained node of 

the specimen was applied to a displacement controlled boundary condition. It was 

firstly applied to tension and the specimen was lengthened 5 mm in five seconds 

which was applied in 50 time steps (increments) in x-direction. Then, the specimen 

was kept at that deformation for 120 seconds in 30 time steps to observe stress 

relaxation behavior (Figure J2). This model was submitted with the large 

displacement and large strain - total Lagrange analysis options by using the 

subroutine given in the Appendix I. 
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Figure J2 – Change of Displacement of the Retained Node with Time 

 

 

Figure J3 and J4 show the decrease of reaction force and stress with time, 

respectively. These decreases occurred while the displacement was kept constant. So, 

this simple simulation proves that the subroutine written in Appendix I is working 

properly while simulating relaxation. 
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Figure J3 – Decrease of Reaction Force with Time 

 

 

 

 

Figure J4 – Decrease of Stress (Relaxation) with Time 
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J.2. Verification of Creep Simulation  

 

For the verification of the subroutine in creep simulation, the retained node of the 

specimen was applied to displacement and load controlled boundary conditions. It 

was firstly applied to tension and the specimen was stretched 5 mm in five seconds 

which was applied in 50 time steps (increments) in x-direction. Then, the reaction 

force (in x-direction) occurred at fifth second was kept being applied constantly for 

120 more seconds in 30 increments and change of displacement with time was 

observed. This model was submitted with the large displacement and large strain - 

total Lagrange analysis options by using the subroutine given in the Appendix I. 

 

 

 

 

Figure J5 – Increase of Displacement (Creep) with Time 

 

 

Figure J5 shows the increase of displacement with time. This increase occurred while 

the reaction force was kept constant. So, this simple simulation proves that the 

subroutine written in Appendix I is working properly while simulating creep 

behavior. The next job to do is to implement this subroutine to the original soft tissue 

model and to estimate the real values of the parameters in it. 
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APPENDIX K 

 
 

USER SUBROUTINE FOR ENHANCED QLV MODELING BY 

ASSUMING SOFT TISSUE AS AN ISOTROPIC MATERIAL 

 
 
      subroutine hypela(d,g,e,de,s,temp,dtemp,ngens,n,nn,kc,mats, 
     * ndi,nshear) 
c* * * * * * 
c 
c     user subroutine to define young's modulus and poisson's ratio 
c     as function of stress in non-linear elastic small strain 
c     material. 
c 
c     d        stress strain law to be formed by user 
c     g        change in stress due to temperature effects 
c     e        total strain 
c     de       increment of strain 
c     s        stress - should be updated by user 
c     temp     state variables 
c     dtemp    increment of state variables 
c     ngens    size of stress - strain law 
c     n        element number 
c     nn       integration point number 
c     kc       layer number 
c     mats     material i.d. 
c     ndi      number of direct components 
c     nshear   number of shear components 
c 
c* * * * * * 
      implicit real*8 (a-h,o-z)   
 include '../marc_working_directory/concom' 
 include '../marc_working_directory/creeps' 
c ****** 
c 
c By including the common blocks concom and creeps, we include these  
c variables into the subroutine: 
c 
c cptim: time at beginning of increment 
c timinc: time increment 
c ncycle: number of increment 
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c 
c ****** 
      dimension e(3),de(3),temp(1),dtemp(1),g(1),d(ngens,ngens),s(3) 
      dimension n(2),et(3),ets(3) 
c ****** 
c 
c Since, this is a three dimensional model, we need three dimensional strain, 
c strain increment and stress values. This is done by setting these variables 
c three dimensional with dimension command.  
c 
c ****** 
 if (ncycle.eq.0) t=cptim+20.0d0 
 if (ncycle.eq.0) et(1)=e(1) 
 if (ncycle.gt.0) t=cptim+20.0d0+timinc  
 if (ncycle.gt.0) et(1)=e(1)+de(1) 
c ******  
c 
c To eliminate the errors (like dividing by zero or logarithm of zero) in the 
c calculation of some constants like q28 and q29, a new constant is created as 
c t0=18.4 and time of simulation is set to start from 20. 
c 
c ****** 
 et(2)=et(1)  
 et(3)=et(1)  
c ****** 
c 
c It can also be seen in this subroutine that, since this is an isotropic 
c formulation, all the principal strains must be equal to each other. This was 
c obtained by equating the strains along three material axes. 
c 
c ****** 
 ets(1)=et(1)**2.0d0 
 ets(2)=ets(1) 
 ets(3)=ets(1) 
c 
 a=9.0d-35 
 b=4.2d1 
 c=8.0d-2 
 T1=8.0d0 
 T2=1.4d2 
 t0=1.84d1 
 epsdat=2.5d-2 
 a1=b1 
 b1=8.0d-1 
 c1=b1 
c ****** 
c 
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c Constants in the subroutine are as they are explained in chapter B 
c 
c The user subroutine is written in double precision to be able to obtain more 
c accurate results. 
c 
c ****** 
 qlam=(a1*a1+b1*b1+c1*c1)/8.0d0 
 q1=a/(1.0d0+c*log(T2/T1)) 
 q2=b*epsdat 
 q3=q2*t0 
 q4=exp(q3) 
 q5=q4-1.0d0 
 q6=q4+1.0d0 
 q7=q2+(1.0d0/T1) 
 q8=q7+t0 
 q9=exp(q8) 
 q10=q2+(1.0d0/T2) 
 q11=q10*t0 
 q12=exp(q11) 
 q13=t0+T1 
 q14=q2*T1+1.0d0 
 q15=q14*t0 
 q16=q15+T1 
 q17=q2*T2+1.0d0 
 q18=q17*t0 
 q19=q18+T2 
 q20=0.57722d0-log(T2)+(t0/T2) 
 q21=log(T2)-0.57722d0 
c  
 q22=(T1/(t0-t))*((q13-t)/(t0-t)) 
 q23=(T1/(q15-q14*t))*((q16-q14*t)/(q15-q14*t)) 
 q24=(T1/t)*(1.0d0-(T1/t)) 
 q25=(T1/q14*t)*(1.0d0-(T1/q14*t)) 
 q26=(T2/(q18-q17*t))*((q19-q17*t)/(q18-q17*t)) 
 q27=(T2/q17*t)*(1.0d0-(T2/q17*t)) 
 q28=q20+log(t-t0)-(t/T2) 
 q29=q21+(t/T2)-log(t) 
 q30=q9*(q22-q23)+q24-q25 
 q31=q12*q26+q27 
 q32=q4*q28+q29 
c 
 sig=q1*(q5+c*((exp(-t/T1)*q30)+(exp(-t/T2)*q31)-q32)) 
 p=sig/(8.0d0*qlam) 
c 
 do 100 i=1,ngens 
   do 110 j=1,ngens 
      d(i,j)=0.0d0 
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110   continue 
100 continue 
c ****** 
c 
c Since there are no shear stresses in our experiment, the values of 
c  d(1,2)=d(2,1), d(1,3)=d(3,1) and d(2,3)=d(3,2) of the tangent stiffness are set 
c  to zero.   
c 
c ****** 
 d(1,1)=p*a1**2.0d0 
 d(2,2)=p*b1**2.0d0 
 d(3,3)=p*c1**2.0d0 
c 
 do 120 k=1,3 
   s(k)=d(k,k)*ets(k) 
120     continue 
c ****** 
c  
c This enhanced quasi-linear viscoelastic formulation is expected to simulate 
c the hysteresis, preconditioning, stress relaxation and creep behaviors of soft 
c biological tissues. So, the constitutive equations of stresses were written in 
c terms of the two independent variables strain and time. Other constants are  
c calculated by using the material parameters. 
c  
c ****** 
      return 
      end 
 
 
 
 
This user subroutine allows the user to implement arbitrary material models in 

conjunction with the hypoelastic model definition option in MSC.Marc. MSC.Marc 

supplies hypela total mechanical strain (mechanical strain = total strain - thermal 

strain), the increment of mechanical strain, and other information. Stress, total 

mechanical strain and state variable arrays at the beginning of the increment (t = n) 

are passed to hypela with the incremental strain. The user is expected to calculate 

stresses S, tangent stiffness D, and state variables (if present) that correspond to the 

current strain at the end of the increment (t = n + 1).  
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APPENDIX L 

 
 

VERIFICATION OF THE SUBROUTINE IN APPENDIX K  

WITH A SIMPLE 3D MODEL 

 
 
For the verification of the subroutine written in Appendix K, the three dimensional 

model seen in the Figure L1 was created. This specimen was 100 mm long with 

square cross section of 5 x 5 mm and has the material properties of hypoelastic 

materials in Mentat. The model had eight nodes, four of which are seen on the right 

hand side having fixed displacement boundary conditions along three material axes. 

Other four nodes are seen on the left hand side and three of them are linked (nodal 

tie) to the other one on which a position or load controlled boundary condition was 

applied. These nodes were exposed to different position or load controlled conditions 

(as explained in the following sections in detail) to prove that the subroutine is able 

to simulate hysteresis, preconditioning, relaxation and creep since, this subroutine is 

expected to simulate all these behaviors. 
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Figure L1 – Simple Three Dimensional Model 

 

 

L.1. Verification of Relaxation Simulation  

 

For the verification of the subroutine in relaxation simulation, the retained node of 

the specimen was applied to a displacement controlled boundary condition. It was 

firstly applied to tension and the specimen was lengthened 5 mm in five seconds 

which was applied in 50 time steps (increments) along x-direction. Then, the 

specimen was kept at that deformation for 120 seconds in 30 time steps to observe 

stress relaxation behavior (Figure L2). This model was submitted with the large 

displacement and large strain - total Lagrange analysis options by using the 

subroutine given in the Appendix K. 
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Figure L2 – Change of Displacement of the Retained Node with Time 

 

 

Figures L3 and L4 show the decrease of reaction force and stress with time, 

respectively. These decreases occurred while the displacement was kept constant. So, 

this simple simulation proves that the subroutine written in Appendix K is working 

properly while simulating relaxation behavior. 
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Figure L3 – Decrease of Reaction Force with Time 

 

 

 

 

Figure L4 – Decrease of Stress with Time (Relaxation) 
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L.2. Verification of Creep Simulation  

 

For the verification of the subroutine in creep simulation, the retained node of the 

specimen was applied to a displacement and then a load controlled boundary 

condition. The specimen was stretched 5 mm in five seconds which was applied in 

50 time steps (increments) in x-direction. Then, the reaction force (in x-direction) 

occurred at fifth second was kept being applied constantly for 120 more seconds in 

30 increments and change of displacement with time was observed. This model was 

submitted with the large displacement and large strain - total Lagrange analysis 

options by using the subroutine given in the Appendix K. 

 

 

 

 

Figure L5 – Increase of Displacement with Time (Creep) 

 

 

Figure L5 shows the increase of displacement with time. This increase occurred 

while the reaction force was kept constant. So, this simple simulation proves that the 
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subroutine written in Appendix K is working properly while simulating creep 

behavior. 

 

 

L.3. Verification of Hysteresis Simulation  

 

For the verification of the subroutine in hysteresis simulation, the retained node of 

the specimen was applied to a displacement controlled boundary condition. It was 

firstly applied to tension and the specimen was stretched 5 mm in five seconds which 

was applied in 25 time steps (increments) along x-direction. Then, the specimen was 

returned to its original shape with the application of compression with the same rate 

as tension. The difference between reaction force versus time curves and strain 

versus stress curves (hysteresis) in loading (tension) and unloading (compression) 

were observed. This model was submitted with the large displacement and Large 

Strain - Total Lagrange analysis options by using the subroutine given in the 

Appendix K. 

 

 

 

 

Figure L6 – Difference between Reaction Force vs. Time Curves 
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Figure L7 – Difference between Strain vs. Stress Curves (Hysteresis) 

 

 

Figures L6 and L7 show the difference between reaction force versus time curves 

and strain versus stress curves (hysteresis) in loading and unloading, respectively. 

Loading and unloading curves are not the same in Figure L6, but the difference can 

be seen much clearly in Figure L7. This difference between two curves is called 

hysteresis and appears as energy loss during cyclic loading. So, this simple 

simulation proves that the subroutine written in Appendix K is working properly 

while simulating hysteresis behavior. 

 

 

L.4. Verification of Preconditioning (Mullin’s Effect) Simulation  

 

For the verification of the subroutine in preconditioning simulation, the retained node 

of the specimen was applied a displacement controlled boundary condition. 

Displacement was applied and the specimen was stretched 5 mm in five seconds 

which was applied in 50 time steps (increments) along x-direction. Then, the 

specimen was returned to its original length with the application of displacement 
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with the same rate as tension. This cycle was repeated ten times and the difference 

between reaction force versus time curves and strain versus stress curves in loading 

(tension) and unloading (compression) in these cycles were observed. This model 

was submitted with the large displacement and Large Strain - Total Lagrange 

analysis options by using the subroutine given in the Appendix K. 

 

 

 

 

Figure L8 – Difference between Reaction Force vs. Time Curves (Preconditioning) 
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Figure L9 – Difference between Strain vs. Stress Curves (Preconditioning) 

 

 

Figures L8 and L9 show the difference between reaction force versus time curves 

and strain versus stress curves in loading and unloading. These curves are becoming 

repeatable after about seventh or eighth cycle which is called as preconditioning. So, 

this simple simulation proves that the subroutine written in Appendix K is working 

properly while simulating preconditioning behavior. 

 

So far, it was proved that the subroutine written in Appendix K is able to simulate all 

the behaviors. The next job to do is to implement this subroutine to the original soft 

tissue model and to estimate the real values of the parameters in it. 

 

 

 

 

 

 

 

 



 

226 

 

APPENDIX M 

 
 

USER SUBROUTINE FOR ENHANCED QLV MODELING BY 

ASSUMING SOFT TISSUE AS AN ISOTROPIC MATERIAL 

 
 
      subroutine hypela(d,g,e,de,s,temp,dtemp,ngens,n,nn,kc,mats, 
     * ndi,nshear) 
c* * * * * * 
c 
c     user subroutine to define young's modulus and poisson's ratio 
c     as function of stress in non-linear elastic small strain 
c     material. 
c 
c     d        stress strain law to be formed by user 
c     g        change in stress due to temperature effects 
c     e        total strain 
c     de       increment of strain 
c     s        stress - should be updated by user 
c     temp     state variables 
c     dtemp    increment of state variables 
c     ngens    size of stress - strain law 
c     n        element number 
c     nn       integration point number 
c     kc       layer number 
c     mats     material i.d. 
c     ndi      number of direct components 
c     nshear   number of shear components 
c 
c* * * * * * 
      implicit real*8 (a-h,o-z)   
 include '../marc_working_directory/concom' 
 include '../marc_working_directory/creeps' 
c ****** 
c 
c By including the common blocks concom and creeps, we include these  
c variables into the subroutine: 
c 
c cptim: time at beginning of increment 
c timinc: time increment 
c ncycle: number of increment 
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c 
c ****** 
      dimension e(3),de(3),temp(1),dtemp(1),g(1),d(ngens,ngens),s(3) 
      dimension n(2),et(3),ets(3)  
c ****** 
c 
c Since, this is a three dimensional model, we need three dimensional strain, 
c strain increment and stress values. This is done by setting these variables 
c three dimensional with dimension command.  
c 
c ****** 
 if (ncycle.eq.0) t=cptim+20.0d0 
 if (ncycle.eq.0) et(1)=e(1) 
 if (ncycle.eq.0) et(2)=e(2) 
 if (ncycle.eq.0) et(3)=e(3) 
 if (ncycle.gt.0) t=cptim+20.0d0+timinc  
 if (ncycle.gt.0) et(1)=e(1)+de(1) 
 if (ncycle.gt.0) et(2)=e(2)+de(2) 
 if (ncycle.gt.0) et(3)=e(3)+de(3) 
c ******  
c 
c To eliminate the errors (like dividing by zero or logarithm of zero) in the 
c calculation of some constants like q28 and q29, a new constant is created as 
c t0=18.4 and time of simulation is set to start from 20. 
c 
c ****** 
 ets(1)=et(1)**2.0d0 
 ets(2)=et(2)**2.0d0 
 ets(3)=et(3)**2.0d0 
c 
 a=7.6d-37 
 b=4.2d1 
 c=8.0d-2 
 T1=8.0d0 
 T2=1.4d3 
 t0=1.84d1 
 epsdat=2.5d-2 
 a1=7.0d-1 
 b1=8.0d-1 
 c1=9.0d-1 
c ****** 
c 
c Constants in the subroutine are as they are explained in chapter C 
c 
c The user subroutine is written in double precision to be able to obtain more 
c accurate results. 
c 
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c ****** 
 qlam=(a1*a1+b1*b1+c1*c1)/8.0d0 
 q1=a/(1.0d0+c*log(T2/T1)) 
 q2=b*epsdat 
 q3=q2*t0 
 q4=exp(q3) 
 q5=q4-1.0d0 
 q6=q4+1.0d0 
 q7=q2+(1.0d0/T1) 
 q8=q7+t0 
 q9=exp(q8) 
 q10=q2+(1.0d0/T2) 
 q11=q10*t0 
 q12=exp(q11) 
 q13=t0+T1 
 q14=q2*T1+1.0d0 
 q15=q14*t0 
 q16=q15+T1 
 q17=q2*T2+1.0d0 
 q18=q17*t0 
 q19=q18+T2 
 q20=0.57722d0-log(T2)+(t0/T2) 
 q21=log(T2)-0.57722d0 
c  
 q22=(T1/(t0-t))*((q13-t)/(t0-t)) 
 q23=(T1/(q15-q14*t))*((q16-q14*t)/(q15-q14*t)) 
 q24=(T1/t)*(1.0d0-(T1/t)) 
 q25=(T1/q14*t)*(1.0d0-(T1/q14*t)) 
 q26=(T2/(q18-q17*t))*((q19-q17*t)/(q18-q17*t)) 
 q27=(T2/q17*t)*(1.0d0-(T2/q17*t)) 
 q28=q20+log(t-t0)-(t/T2) 
 q29=q21+(t/T2)-log(t) 
 q30=q9*(q22-q23)+q24-q25 
 q31=q12*q26+q27 
 q32=q4*q28+q29 
c 
 sig=q1*(q5+c*((exp(-t/T1)*q30)+(exp(-t/T2)*q31)-q32)) 
 p=sig/(8.0d0*qlam) 
c 
 do 100 i=1,ngens 
   do 110 j=1,ngens 
      d(i,j)=0.0d0 
110   continue 
100 continue 
c ****** 
c 
c Since there are no shear stresses in our experiment, the values of 
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c  d(1,2)=d(2,1), d(1,3)=d(3,1) and d(2,3)=d(3,2) of the tangent stiffness are set 
c  to zero.   
c 
c ****** 
 d(1,1)=p*a1**2.0d0 
 d(2,2)=p*b1**2.0d0 
 d(3,3)=p*c1**2.0d0 
c 
 do 120 k=1,3 
   s(k)=d(k,k)*ets(k) 
120     continue 
c ****** 
c  
c This enhanced quasi-linear viscoelastic formulation is expected to simulate 
c the hysteresis, preconditioning, stress relaxation and creep behaviors of soft 
c biological tissues. So, the constitutive equations of stresses were written in 
c terms of the two independent variables strain and time. Other constants are  
c calculated by using the material parameters. 
c  
c ****** 
      return 
      end 
 
 
 
This user subroutine allows the user to implement arbitrary material models in 

conjunction with the hypoelastic model definition option in MSC.Marc. MSC.Marc 

supplies hypela total mechanical strain (mechanical strain = total strain - thermal 

strain), the increment of mechanical strain, and other information. Stress, total 

mechanical strain and state variable arrays at the beginning of the increment (t = n) 

are passed to hypela with the incremental strain. The user is expected to calculate 

stresses S, tangent stiffness D, and state variables (if present) that correspond to the 

current strain at the end of the increment (t = n + 1).  
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APPENDIX N 

 
 

VERIFICATION OF THE SUBROUTINE IN APPENDIX M  

WITH A SIMPLE 3D MODEL 

 
 

For the verification of the subroutine written in Appendix M, the three dimensional 

model seen in the Figure N1 was created. This specimen was 100 mm long with 

square cross section of 5 x 5 mm and had the material properties of hypoelastic 

materials in Mentat. The model had eight nodes, four of which are seen on the right 

hand side having fixed displacement boundary conditions along three material axes. 

Other four nodes are seen on the left hand side and three of them are linked (nodal 

tie) to the other one on which a position or load controlled boundary condition was 

applied. These nodes were exposed to different position or load controlled conditions 

(as explained in the following sections in detail) to prove that the subroutine is able 

to simulate hysteresis, preconditioning, relaxation and creep since, this subroutine is 

expected to simulate all these behaviors. 
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Figure N1 – Simple Three Dimensional Model 

 

 

N.1. Verification of Relaxation Simulation  

 

For the verification of the subroutine in relaxation simulation, the retained node of 

the specimen was applied to a displacement controlled boundary condition. It was 

firstly applied to tension and the specimen was lengthened 5 mm in five seconds 

which was applied in 50 time steps (increments) along x-direction. Then, the 

specimen was kept at that deformation for 120 seconds in 30 time steps to observe 

stress relaxation behavior (Figure N2). This model was submitted with the large 

displacement and large strain - total Lagrange analysis options by using the 

subroutine given in the Appendix M. 
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Figure N2 – Change of Displacement of the Retained Node with Time 

 

 

Figures N3 and N4 show the decrease of reaction force and stress with time, 

respectively. These decreases occurred while the displacement was kept constant. So, 

this simple simulation proves that the subroutine written in Appendix M is working 

properly while simulating relaxation behavior. 
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Figure N3 – Decrease of Reaction Force with Time 

 

 

 

 

Figure N4 – Decrease of Stress (Relaxation) with Time 
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N.2. Verification of Creep Simulation  

 

For the verification of the subroutine in creep simulation, the retained node of the 

specimen was applied to displacement and load controlled boundary conditions. It 

was firstly applied to tension and the specimen was lengthened 5 mm in five seconds 

which was applied in 50 time steps (increments) in x-direction. Then, the reaction 

force (in x-direction) occurred at fifth second was kept being applied constantly for 

120 more seconds in 30 increments and change of displacement with time was 

observed. This model was submitted with the large displacement and large strain - 

total Lagrange analysis options by using the subroutine given in the Appendix M. 

 

 

 

 

Figure N5 – Increase of Displacement (Creep) with Time 

 

 

Figure N5 shows the increase of displacement with time. This increase occurred 

while the reaction force was kept constant. So, this simple simulation proves that the 

subroutine written in Appendix M is working properly while simulating creep 

behavior. 
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N.3. Verification of Hysteresis Simulation  

 

For the verification of the subroutine in hysteresis simulation, the retained node of 

the specimen was applied to a displacement controlled boundary condition. It was 

firstly applied to tension and the specimen was lengthened 5 mm in five seconds 

which was applied in 25 time steps (increments) along x-direction. Then, the 

specimen was returned to its original shape with the application of compression with 

the same rate as tension. The difference between reaction force versus time curves 

and strain versus stress curves (hysteresis) in loading (tension) and unloading 

(compression) were observed. This model was submitted with the large displacement 

and large strain - total Lagrange analysis options by using the subroutine given in the 

Appendix M. 

 

 

 

 

Figure N6 – Difference between Reaction Force vs. Time Curves 
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Figure N7 – Difference between Strain vs. Stress Curves (Hysteresis) 

 

 

Figures N6 and N7 show the difference between reaction force versus time curves 

and strain versus stress curves (hysteresis) in loading and unloading, respectively. 

Loading and unloading curves are not the same in Figure N6, but the difference can 

be seen much clearly in Figure N7. This difference between two curves is called 

hysteresis and appears as energy loss during cyclic loading. So, this simple 

simulation proves that the subroutine written in Appendix M is working properly 

while simulating hysteresis behavior. 

 

 

N.4. Verification of Preconditioning (Mullin’s Effect) Simulation  

 

For the verification of the subroutine in preconditioning simulation, the retained node 

of the specimen was applied to a displacement controlled boundary condition. It was 

firstly applied to tension and the specimen was lengthened 5 mm in five seconds 

which was applied in 50 time steps (increments) along x-direction. Then, the 

specimen was returned to its original shape with the application of compression with 
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the same rate as tension. This cycle is repeated ten times and the difference between 

reaction force versus time curves and strain versus stress curves in loading (tension) 

and unloading (compression) in these cycles were observed. This model was 

submitted with the large displacement and Large Strain - Total Lagrange analysis 

options by using the subroutine given in the Appendix M. 

 

 

 

 

Figure N8 – Difference between Reaction Force vs. Time Curves (Preconditioning) 
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Figure N9 – Difference between Strain vs. Stress Curves (Preconditioning) 

 

 

Figures N8 and N9 show the difference between reaction force versus time curves 

and strain versus stress curves in loading and unloading. These curves are becoming 

repeatable after about seventh or eighth cycle which is called as preconditioning. So, 

this simple simulation proves that the subroutine written in Appendix M is working 

properly while simulating preconditioning behavior. 

 

So far, it was proved that the subroutine written in Appendix M is able to simulate all 

the behaviors. The next job to do is to implement this subroutine to the original soft 

tissue model and to estimate the real values of the parameters in it. 
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APPENDIX O 

 
 

CHAPTER IN A BOOK "ORTOPEDİ BİYOMEKANİĞİ" 

editors: İ. D. Akçalı, M. Gülşen,  K. Ün, to be published in 2009 
 
 
O.1. Yumuşak Doku Mekanik Modelleri 
 
 
O.1.1. Giriş 

 
İskelet sisteminin üzeri bir yumuşak doku tabakasıyla kaplı olduğu için insan 

bedeninin dış dünya ile olan mekanik etkileşimi hemen her zaman yumuşak dokular 

aracılığıyla olmaktadır. Öte yandan insan bedenini oluşturan dokulardan, kemik 

dışında kalan hemen tüm dokular yumuşak doku olarak adlandırılmaktadır. Yumuşak 

dokuların çeşitli kuvvetler altında nasıl bir mekanik davranış göstereceğinin önceden 

kestirilebilmesi veya mekanik davranışın bilgisayarda andırımının (simülasyonunun) 

yapılabilmesi için yumuşak doku mekanik davranışının ayrıntılı olarak bilinmesi ve 

bu davranışı temsil edecek bünye denklemleri ile bu denklemlere ait katsayıların 

belirlenmesi gerekir. Protez kovanı ile amputasyon güdüğü arasındaki mekanik 

etkileşimi bilgisayarda modelleyebilmek amacıyla güdük üzerindeki yumuşak 

dokuların modellenmesi [1-9], yemek borusunun modellenmesi [10], eklem 

kıkırdağının modellenmesi [11], bağlar ve kirişlerin modellenmesi [12], yumuşak 

doku mekanik davranışının bilinmesinin gerekliliğini gösteren bazı örneklerdir. Bu 

bölümün amacı, okurlarda yumuşak doku mekanik davranışının modellenmesi ve bu 

davranışın belirlenmesi ile ilgili yaygın olarak kullanılan yöntemler hakkında bir 

farkındalık yaratmak ve araştırmacılara ilgili kaynaklara yönetmektir.  

 
Mekanik açıdan, mühendislik malzemeleri ile karşılaştırıldığında, yumuşak dokuların 

davranışları daha karmaşıktır. Bu karmaşıklığın nedenleri arasında dokunun iki fazlı 

(katı ve sıvı) [13] veya kimi yazarlara göre daha fazla fazlı (katı ve iyonik çözeltiler 
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gibi) [14] olmasının yanı sıra kollajen, elastin gibi farklı ve karmaşık yapıtaşlarından 

oluşmuş olmasının [15, 16] da etkisi vardır. Yaşayan ve koşullara göre kendini 

uyarlayan biyolojik dokuların mekanik özelliklerinin de gerek çevreyle mekanik 

etkileşim sonucu, gerekse diğer etmenler nedeniyle zaman içinde değişmesi 

kaçınılmazdır. Öte yandan, biyolojik malzemelerin mekanik özelliklerinin çeşitli 

sınıflamalar kullanılarak çizelgeler halinde sunulmaya çalışılması da mühendislik 

malzemeleri kadar kesin ve güvenilir sonuçlar vermemiştir. Özellikle yumuşak 

dokularda, kullanılacak bünye denklemi konusunda araştırmacılar arasında genel 

kabul gören bir yaklaşım henüz yoktur. Araştırmacıların önemli bir bölümü, 

dokuların mekanik özelliklerinin kişiden kişiye önemli değişiklikler gösterdiğini ve 

gerçeğe yakın modelleme yapılabilmesi için geometrik (anatomik) özelliklerle 

birlikte kişiye özgü olarak belirlenmesi gerektiğini öne sürmüştür [7-9]. Yine 

yumuşak doku mekanik özellikleri üzerinde deneğin yaşının [17-20] ve sağlık 

durumunun [21-24] önemli etkisi olduğu şeklinde görüşler de vardır. 

 
Biyolojik dokuların yumuşak ve sert doku olarak ayrılması, mekanik davranışlar 

açısından da olanaklıdır. Kemik gibi sert dokular katı cisimler mekaniği kuramında 

“küçük gerinme” kuramına büyük ölçüde uydukları için gerek bünye denklemlerinin 

ve bu denklemlere ait katsayıların elde edilmesi, gerekse bilgisayar andırımları 

yumuşak dokulara göre daha kolaydır. Ancak unutulmamalıdır ki görece kolay bu 

yaklaşımda sert dokular çoğunlukla tek bir malzemeden oluşmuş sürekli bir ortam 

olarak modellenmektedir ve bu yaklaşımla ilgili kısıtlamaların dikkate alınması 

önemlidir. Öte taraftan, yumuşak doku olarak adlandırılan, kemik dışında kalan 

dokularda gerinmeler nadiren “küçük gerinme” kuramı ile modellenebilecek 

büyüklükte olur. Çoğu durumda, daha genel, karmaşık ve doğrusal olmayan “büyük 

gerinme” kuramının kullanılması gerekli olur. Ayrıca, doğrusal elastik malzeme 

modelleri (Hooke bünye denklemleri) de yumuşak dokuların mekanik davranışını 

modellemede çoğu zaman yetersiz kalır. Yine yumuşak dokularda, genellikle 

mühendislik malzemelerinde yok sayılabilecek düzeyde görülen alışma etkisi 

(preconditioning, Mullin’s effect, malzemenin ilk birkaç yüklemede daha direngen 

davranması, sonraki yüklemelerde direngenliğinin azalarak tekrar edilebilir bir 

gerilme-gerinim özelliğine kavuşması, Şekil O1), yükün artma ve azalma yönlerinde 
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görülen iki farklı direngenlik (ve bir yükleme-yük azaltma çeviriminde yok 

sayılamayacak düzeyde mekanik enerji kaybı, Şekil O2), sabit yer değiştirme (veya 

gerinme) altında tepki kuvvetinin (gerilmenin) azalması yani gevşeme (Şekil O3), 

sabit kuvvet (veya gerilme) altında yer değiştirmenin (veya gerinmenin) artması yani 

sünme (Şekil O4) etkilerinin görüldüğü birçok çalışmada belirtilmiştir [15]. 

 

 

 

 

Şekil O1 - Yumuşak Dokunun Peşpeşe Yapılan Yüklemelerde Gösterdiği 

Alışma Etkisi 

 
 

 
 

Şekil O2 - Yumuşak Dokunun Gerinmenin Artması ve Azalması 
Yönündeki Davranışı 
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Şekil O3 - Yumuşak Dokunun Sabit Gerinmede Gevşeme Davranışı 

 

 

 

 

Şekil O4 - Yumuşak Dokunun Sabit Gerilmede Sünme Davranışı 

 

 
O.1.2. Yumuşak Doku Deneyleri 

 

Tüm malzemelerde olduğu gibi yumuşak dokuların mekanik davranışının 

belirlenmesi ve bünye denklemlerinin oluşturulması için kullanılan yöntem 

deneyseldir. Yumuşak doku mekanik davranışını belirlemek için değişik deney 

yöntemleri vardır. Her bir yöntemin kendisine özgü üstünlükleri ve zayıflıkları 

bulunmaktadır. Bu üstünlük ve zayıflıklardan çalışma için önemli olanları 
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değerlendirilerek en uygun deney yöntemine karar verilmelidir. Bu deneylerden elde 

edilen mekanik yanıtlar arasında farklar olduğu karşılaştırmalı çalışmalar yapan 

çeşitli yazarlar tarafından rapor edilmiştir [25-27]. 

 

 

O.1.2.1. Eks-Vivo (Laboratuvar) Deneyleri 

 

Deney yapılacak doku yerinden çıkartılır ve laboratuvar ortamında,yaşam 

koşullarının benzetildiği bir ortamda, doku cansız bir durumda iken deney yapılır 

[27]. Deneyler laboratuvar ortamında yapıldığı için hem deney örneğinin geometrisi 

gerçeğe yakın olarak belirlenebilir, hem de deneyden daha iyi veriler elde edilebilir. 

Ancak doku kendi fizyolojik ortamından çıkartıldığı ve canlılığını yitirdiği için hem 

mekanik özelliklerinde bazı değişiklikler olabildiği gibi, doku fizyolojik mekanik 

gerilmeden arındırılmış olduğu için elde edilen mekanik yanıt dokunun kendi 

fizyolojik ortamındakinden farklı olabilir [28]. Buna karşın dokunun yaşam 

koşullarının benzetilmesi deney verilerinin ölü koşullarla karşılaştırıldığında daha iyi 

olmasını sağlamaktadır. 

 

 

O.1.2.2. İn-Vitro (Laboratuvar) Deneyleri 

 

İn-vitro deneyler de eks-vivo deneylerde olduğu gibi doku bulunduğu ortamdan 

çıkarılarak cansız bir durumda iken yapılır. Ancak dokunun yaşam koşulları 

benzetilmeye çalışılmaz. İn-vitro deneylerde özellikle yumuşak dokuların canlılığını 

yitirmesinden dolayı mekanik malzeme özelliklerinin önemli ölçüde değiştiği kanısı 

yaygındır [27]. 

 

 

O.1.2.3. İn-Situ (Cansız Denek Üzerinde) Deneyler 

 

İn-situ deneylerde yumuşak doku yerinde incelenir. Ancak organ canlı değildir. İn-

situ deneyler taze dondurulmuş veya fikse edilmiş kadavralarda da yapılabilir [26]. 
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Her durumda, incelenen doku canlılığını yitirmiş olacağı için mekanik özelliklerinin 

değiştiği düşünülmektedir. Öte taraftan, çoğunlukla deney örneğinin düzgün bir 

geometriye sahip olması sağlanamaz ve sınır koşulları tam olarak belirlenemez. 

 

 

O.1.2.4. İn-Vivo (Canlı Denek Üzerinde) Deneyler 

 

İn-vivo deneyler, doku denek üzerinde kendi fizyolojik koşullarındayken ve denek 

canlıyken yapılır. Girişimsel ve girişimsel olmayan iki yöntem vardır. İn-vivo 

deneylerin üstün yönü, üzerinde deney yapılacak doku ile çevre dokuların mekanik 

etkileşimlerinin deney sırasında da var olması ve dokunun canlı olması yoluyla, 

dokunun gerçek davranışına en yakın yanıtı vermesidir. Ancak, deneğin canlı olması 

nedeniyle etik kurallara uygun, deneğe zarar vermeyecek biçimde yapılmasına özen 

gösterilmelidir. Öte yandan, deney örneğinde düzgün bir geometri sağlamak olanaklı 

olmadığı gibi, deney bölgesindeki sınır koşullarını da gerçeğe yakın olarak 

belirleyebilmek her zaman olası değildir. 

 

 

O.1.2.4.1. Girişimsel İn Vivo Deneyler 

 

Girişimsel yöntemde dokuya kuvvet uygulanarak bu kuvvet sonucu dokuda oluşan 

yer değiştirme zaman bilgisiyle birlikte kaydedilir [29]. 

 

 

O.1.2.4.2. Girişimsel Olmayan İn Vivo Deneyler 

 

Girişimsel olmayan yöntemde dışarıdan dokuya bir yer değiştirme uygulanır ve doku 

içinde oluşan yer değiştirmeler tıbbi görüntüleme yöntemleriyle (manyetik 

rezonansla görüntüleme [22], ultrasonografi v.b.) ölçülür ve buradan da doku 

üzerinde oluşan gerinmeler hesaplanır [30]. 
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O.1.2.5. Yumuşak Doku Mekanik Malzeme Deney Sistemleri 

 

Yumuşak doku deneyleri standart malzeme deney sistemleri üzerinde yapılabileceği 

gibi, yumuşak doku deneyleri yapmak için özel olarak tasarlanmış sistemler de 

vardır. Bu bölümde her iki tip sistemden de kısaca söz edilecektir. 

 

 

O.1.2.5.1. Tek Eksenli Çekme Deneyleri 

 

Tek eksenli çekme deneyleri için uygun kapasitedeki bir çekme cihazı ile dokunun 

cihaza bağlanmasına uygun çeneler veya dokunun dikilebileceği uygun bir aparat 

yeterlidir. Genellikle kesit alanı dikdörtgen olan, düzgün geometrideki deney 

örnekleri hazırlanır. Zaman zaman cihazın çene yer değiştirmesi dokudaki uzama 

olarak kabul edilir, zaman zaman da doku üzerinde alınan iki referans noktasının yer 

değiştirmesi ölçülerek dokudaki uzama ve gerinme buradan hesaplanır. Tek eksenli 

çekme deneyleri yumuşak doku mekanik özelliklerinin belirlenmesinde kullanılsa da 

[31,32], Fung [15] tarafından yumuşak doku mekanik özelliklerini belirlemek için 

yeterli olmadığı belirtilmiştir. 

 

 

O.1.2.5.2. Çift Eksenli Çekme Deneyleri 

 

Çift eksenli çekme deneylerinde genellikle bu iş için özel olarak tasarlanmış bir 

deney sistemi aracılığıyla deney örneği birbirine dik iki eksende birden çekilir [33]. 

Her iki eksende de dokuya uygulanan kuvvet ve hareket eden çenelerin yer 

değiştirmesi ölçülür. Dokuda oluşan gerinmelerin hesaplanması için genellikle doku 

üzerine yüksüzken çizilen referans noktalarının hareketi izlenir. Buradan yer 

değiştirmeler ve gerinmeler hesaplanır. Çift eksenli deneylerde sınır koşullarını 

kontrol etmek tek eksenli deneylerden daha zordur. 
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O.1.2.5.3. Emme Kabı Deneyleri 

 
Çekme deneyleri için deney örneğinin organizmadan izole edilmesinin zorunluluğu 

nedeniyle deneylerin yerinde yapılabilmesi amacıyla geliştirilmiş bir yöntemdir. 

Temel olarak üzerinde deney yapılacak doku üzerine geometrisi bilinen bir kap 

yerleştirilip kabın içindeki hava boşaltılır ve dokuda oluşan şekil değiştirme ölçülür. 

Alexander [34] ve diğer araştırmacılar tarafından kullanılan yöntem dokunun 

mekanik özellikleri hakkında fikir verse de önemli kısıtlamaları vardır 

 

. 

O.1.2.5.4. Germe Deneyleri 

 
Germe deneyleri de çekme deneyleri gibi yapılır. Ancak germe deneylerindeki fark, 

dokunun çekme cihazının çenelerine bağlanması yerine doku boyutlarından daha 

büyük plakalara yapıştırılmasıdır. Germe deneylerinde kuvvet doku kalınlığının 

normaline dik yönde uygulanır. İn vitro yapılabildiği gibi [35] in vivo da [36] 

yapılabilmektedir. Tek eksenli olduğu için dokunun mekanik özellikleri hakkında 

kapsamlı bilgi vermediği düşünülmektedir [15]. 

 

 

O.1.2.5.5. Basma Deneyleri 

 
Basma deneyleri de germe deneylerine benzer biçimde ancak çenelere ait yüzeylerin 

dokuyu sıkıştırmasıyla yapılır. Basma deneylerinde doku serbest bırakılabilir ve 

basmanın etkisiyle yanal yönlerde genleşir (unconfined test) veya yanal yüzlerin 

genleşmesi kısıtlanabilir (confined test) [37]. Bu durumda doku sıvısının deney 

bölgesini terk edebilmesi için çenelerden birisi geçirgen yapılır. 

 

 

O.1.2.5.6. İndentör Deneyleri 

 
Yumuşak doku deneylerinde yaygın olarak kullanılan yöntemlerden birisidir. Tercih 

edilen geometrideki indentör ucu ile yumuşak doku bastırılırken ucun yer 
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değiştirmesi ve dokunun uca uyguladığı tepki kuvveti zamanla birlikte kaydedilir. 

Böylece in vivo yumuşak doku deneyleri de yapılabilir. Değişik indentör ucu 

geometrileri ile yumuşak dokunun serbest yüzeyi üzerinde bulunan anizotropinin de 

belirlenebileceği kuramsal olarak gösterilmiştir [38]. Ancak, bu deneylerle yumuşak 

dokuda bulunan tüm anizotropinin belirlenebilmesi olası değildir. 

 

 

O.1.2.6. Yumuşak Doku Mekanik Malzeme Modelleri 

 

O.1.2.6.1. Bünye Denklemleri 

 

Bünye denklemleri, ilgilenilen malzemenin gerilme-gerinme (veya çoğu zaman 

gerilme-gerinme-zaman) ilişkisini genel bir üç boyutlu gerilme altında veren 

denklemdir. Herhangi bir yapısal analiz yapılmadan önce, yapıyı oluşturan tüm 

malzemelerin bünye denklemlerinin bilinmesi zorunludur. Çevremizdeki çok farklı 

malzemeler için çok farklı bünye denklemleri bulunmaktadır. Uzun yıllardan beri 

kullanılagelen mühendislik malzemeleri için mekanik davranışlarını oldukça geniş 

koşullarda büyük bir hassasiyetle modelleyebilecek bünye denklemleri oluşturulmuş 

olmakla birlikte biyolojik malzemeler için genel kabul görmüş bünye denklemleri 

daha azdır. Bunun iki nedeninden birisi biyolojik dokularda deney yapmanın 

güçlüğü, diğeri ise yumuşak dokuların gösterdiği karmaşık mekanik yanıtın bir 

denklem ile ifade edilmesidir [39]. 

 

Çevremizdeki çok değişik malzemelerin önemli bir bölümünü üç ideal malzeme 

modeli (veya bunların bir bileşimi) ile belirli bir hassasiyette modelleyebiliriz. Bu üç 

ideal malzeme modeli ağdalı olmayan akışkan, doğrusal (Newton) ağdalı akışkan ve 

doğrusal elastik (Hooke) katı modelleridir. Ancak biyolojik dokuların önemli bir 

bölümü, fizyolojik koşullar altında, bu ideal modeller veya bunların bir bileşimi 

kullanılarak istenen hassasiyette modellenemez [15]. 

 

Bünye denklemleri malzemenin fiziksel yapısıyla ilgili olduğu için belirli bir 

koordinat takımına bağlı değildir ve deneylerle belirlenir. Esnemez katı cisim 
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biyomekaniği dışında, biyomekaniğin her alanında bünye denklemlerinin 

belirlenmesine gereksinim duyulur. Bünye denklemlerinin bilinmediği durumlarda 

biyomekanik niceliksel olamaz ancak niteliksel olabilir. Biyolojik yapılar için bünye 

denklemlerinin belirlenebilmesi için öncelikle yeterli miktarda verinin sistematik 

olarak toplanması gereklidir. Aksi durumda yapılan mekanik analizler ve 

biyomekanik kestirimler dokunun gerçek davranışını istenen hassasiyette 

modelleyemeyecektir [28]. 

 

 

O.1.2.6.2. Yalancı Elastik Malzeme Modelleri 

 

Yumuşak doku davranışı, çok küçük gerinmeler dışında doğrusal olmaktan uzaktır. 

Deney sırasında gerinmenin artışı sırasında izlenen kuvvet-yer değiştirme (veya 

gerilme-gerinme) eğrisi ile gerinmenin azalması yönünde izlenen kuvvet-yer 

değiştirme (veya gerilme-gerinme) eğrisi birbirinden belirli biçimde farklıdır (Şekil 

O2). Eğrinin şeklinin belirli frekans bantlarında belirgin biçimde değişmediği 

gösterilmiştir [28]. Bu nedenle basit bir yaklaşımla, gerinmenin artması yönünde bir 

elastik malzeme katsayısı seti, azalması yönünde başka bir elastik malzeme katsayısı 

seti kullanılmaktadır. Dokunun gerçek davranışı elastik olarak modellenemeyeceği 

için bu modele yalancı-elastik (pseudoelastic) denmiştir. Ancak yalancı-elastik 

malzeme modelleri zamana bağımlı davranışı gözardı ettiği için kullanım alanı 

sınırlıdır [40]. Yumuşak dokunun artan gerinimle birlikte artan direngenliği (veya 

teğet elastik modülü) başlangıçta yumaklanmış olarak duran kollajen ve elastin 

moleküllerinin artan gerinim ile açılmaları ve gerilmeleri ile ilintili olduğu 

düşünülmektedir [40]. Yumuşak dokunun doğrusal olmayan davranışını modellemek 

için yaygın olarak kullanılan yöntemlerden birisi de gerinme enerjisi (yoğunluğu) 

fonksiyonudur. Gerinme enerjisi fonksiyonu kullanılarak büyük gerinmeler için 

Kirchoff gerilmeleri Green gerinmeleri cinsinden şu şekilde ifade edilebilir: 
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Burada 0ρ  malzemenin ilk durumda (şekil değiştirmemiş durumda) kütle 

yoğunluğudur. Burada kullanılan gerinme enerjisi fonksiyonu termodinamik olarak 

anlamlı bir fonksiyon değildir, çünkü yumuşak dokunun alışma etkisi dışında işlemin 

gerinmenin artma veya azalma yönünde olmasına bağlı olarak katsayıları 

değişmektedir. Bununla beraber, bir yalancı-gerinme enerjisi fonksiyonunun varlığı 

problemin matematik olarak tanımlanmasını büyük ölçüde kolaylaştırmaktadır. 

Burada sözü edilen fonksiyonların bazı dokular için 1.5 bazıları içinse 2’ye kadar 

çıkabilen uzama oranları (son, şekil değiştirmiş uzunluğun ilk uzunluğa oranı) için 

gerçek doku ile uyumlu sonuç vermeleri beklenmektedir [39]. Literatürde özellikle 

yumuşak doku modellemek için, veya başka amaçlarla geliştirilmiş ama yumuşak 

dokuyu da başarıyla modelleyebilecek, değişik gerinme enerjisi fonksiyonları vardır. 

Bu fonksiyonların hemen tümü görüngüsel (phenomenological) olup dokuda görülen 

gerinmenin artışı ile direngenlikte meydana gelen artmanın mekanik nedenlerini 

modellememektedir. 

 

Vaishnav [41] tarafından kullanılan gerinme enerjisi fonksiyonu damarlar gibi 

silindirik yapılar içindir, silindirik koordinat sisteminde ifade edilmiştir ve bir 

polinom biçimindedir: 

 

322322
0 zzzzzzzzzz EGEEFEEEEDECEEBEAW ++++++= θθθθθθθθθθρ  

 

Burada A, B, C, D, E, F ve G malzeme sabitleri olup deneysel verinin fonksiyon 

tarafından kestirilen davranışa uyumunu sağlayacak biçimde belirlenir. 

 

Fung [42] tarafından önerilen fonksiyon ise üstel biçimdedir: 

 

]2[exp
2

4
2

2
2

10 zzzz EEaEaEa
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W θθθθρ ++=  

 

Burada C, 1a , 2a ve 4a  malzeme sabitleridir. Cilt için Tong [39] tarafından önerilen 

fonksiyon ise;  
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)],([exp),(0 EaFCEfW += αρ  
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biçimindedir. Burada 3214321 ,,,,,,, aaaC αααα  ve 4a malzeme sabitleri, 1X  ve 2X  

cildi oluşturan düzlem üzerindeki birbirine dik iki koordinat eksenidir. 

 

Tong [39] daha yüksek mertebeden terimler içermesi için denklemin aşağıdaki 

biçimini de denemiştir: 
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burada 5421 ,,, γγγγ  ek malzeme sabitleridir. 

 

Akciğer özekdokusu için Hoppin [43] tarafından önerilen fonksiyon ise aşağıda 

sunulmuştur: 
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Burada ii ba , ve ic  malzeme sabitleridir ve fonksiyon genel bir üç boyutlu gerilme 

durumu için geçerlidir. Ancak bu biçimin en büyük kısıtlaması malzemenin eşyönlü 

(izotropik) olduğu varsayımıdır. Bu varsayımı kaldırmak için önerilen biçim ise 

 

]2[exp 22114
2
222

2
1110 EEaEaEaCW ++=ρ + permütasyon ile simetrik terimler 

 

Mezenter ve kaslar için önerilen gerinme enerjisi fonksiyonu ise [42, 44] şöyledir: 
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βα += T
Ed

Td
 

 

Burada T birim alandaki çekme kuvveti, E gerinme, α ve β ise malzeme sabitleridir. 

Bu denklem gerilmesiz duruma çok yakın durumlar için iyi sonuç vermese de diğer 

tüm gerilmelerde istenen hassasiyette kestirim yapabilmektedir. 

 

Alt ekstremite yumuşak dokularının modellenebilmesi için Money [45] tarafından 

önerilen ve daha sonra değişik araştırmacılar tarafından terim sayısı arttırılarak daha 

çok kauçuk ve polimerik malzemelerin modellenmesinde yararlanılan malzeme 

modeli kullanılmıştır. Bu model 
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biçiminde ifade edilir. Burada 1I  ve 2I  Green-Lagrange büyük gerinme tensörünün 

ilk iki değişmezi (invariant), Cij ise malzeme sabitleridir. N sayısının aldığı değere 

bağlı olarak malzeme modeli isimlendirilir. Bu biçimdeki bir model Tönük [7] 

tarafından kullanılmış olan James-Green-Simpson modelinin eksenel simetrik ve 

sıkıştırılamaz malzemelere uygulanmış tipidir. 

 

( ) ( ) ( )32
333 −+−+−= ICICICW KJI  

 

Burada I sıkıştırılamaz malzeme için eksenel simetrik Green-Lagrange gerinme 

tensörünün tek bağımsız değişmezidir. 

 

 

O.1.2.6.3. Viskoelastik Malzeme Modelleri 

 

Viskoelastik malzemeler katılarla ağdalı sıvıların özelliklerini bir arada gösteren 

malzemelerdir. Bu malzemeler, katı ve sıvı özelliklerinin baskınlığına göre katıya 
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daha yakın veya sıvıya daha yakın davranabilirler. Viskoelastik malzemelerin tipik 

özellikleri, histerezis (malzemenin gerinmesi ve ardından ilk durumuna 

döndürülmesi sonucu belirgin biçimde mekanik enerji kaybı, gerinme artarken 

direngenliği daha yüksek azalırken düşük olması, Şekil O2’deki gibi), gevşeme (sabit 

gerinmede gerilmenin azalması, Şekil O3), sünme (sabit gerilmede gerinmenin 

artması, Şekil O4) ve gerinme hızına bağlı davranıştır. 

 

En temel iki tip viskoelastik malzeme modeli Maxwell ve Voigt modelleri olup tek 

boyutlu mekanik model olarak Şekil O5’deki gibi gösterilebilir. Burada yay, elastik 

davranışı; amortisör ise ağdalı davranışı temsil etmektedir. Maxwell modeli 

viskoelastik akışkanları modellemekte uygundur. Voigt modelinin tepkisi gerçek 

viskoelastik katılarla uyuşmadığı için en basit viskoelastik katı modeli için üç 

elemanlı (bazen Kelvin modeli olarak anılır) model (Şekil O6) önerilmiştir [46-52]. 

 

 

 

 

Şekil O5 - Temel Viskoelastik Malzeme Modellerinin Tek Boyutlu Mekanik 

Modelleri 
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Şekil O6 - Üç elemanlı (Kelvin) Viskoelastik Malzeme Modelinin İki 

Farklı Gösterimi 

 

 

Üç elemanlı modelde gerçek viskoelastik katılarda görülen anlık elastik yanıt 

görülebilmektedir. Bu modellerde gevşeme ve sünme davranışı tek bir üstel ifade ile 

temsil edilmektedir ve çoğu gerçek viskoelastik katının davranışı bu temsile 

uymamaktadır. Örneğin dizaltı amputasyon güdükleri üzerinde indentör ile yapılan 

deneylerden elde edilen yumuşak doku verisinde kısa ve uzun süreli iki sünme 

davranışı için üç elemanlı model yerine Şekil O7’ de gösterilen beş elemanlı bir 

model kullanılmıştır [8]. 
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Şekil O7 - Beş Elemanlı Viskoelastik Katı Modeli ve Bünye Denklemi 

 

 

Bu modelde doğrusal olmayan davranış için bir gerinme enerjisi fonksiyonu (W0) 

kullanılmıştır. Modelde iki gevşeme oranı (δ1 ve δ2) ile iki gevşeme zaman sabiti (τ1 

ve τ2) kullanılmıştır. Bu tür modeller gerçek davranışı modellemek üzere Prony serisi 

olarak genellenebilir: 

 

( ) i

tn

0 i
i 1

W t W 1 1 e

 −
 

τ 

=

  
  = − δ −

  
  

∑  

 

Bu tür modellerde iki temel kısıt, doku davranışının viskoelastik olduğu varsayımı ve 

elde edilen bünye denklemlerinin cebirsel değil diferansiyel olmasıdır. Yapılan 

deneylerde, viskoelastik malzeme varsayımının dar bir hız aralığında (veya 

frekansta) iyi sonuç verse de aralığın genişlemesi ile model hassasiyetinin düştüğü 

gösterilmiştir [15]. Öte yandan, malzemenin bünye denkleminin cebirsel yerine 
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diferansiyel olması, elastik malzemeye göre daha karmaşık bir bünye denkleminin 

çözülmesi gereği, sistem denklemlerini daha da karmaşık hale getirecektir. 

 

Schwartz [53] tarafından önerilen doğrusal elastik tensör-kütle yönteminde elde 

edilen tensör denklemleri gerçek zamanlı çözümlemeye izin verecek denli hızlı 

çözülebilmektedir. 

 

Sanjeevi [54] ise oluşan gerilmeyi elastik ve ağdalı etkilerden olmak üzere ayrı ayrı 

incelemiştir.  

 

DeHoff [55] ise Haut ve Little denklemlerini kullanarak kollajenin viskoelastik 

davranışını kestirmiştir. 

 

Fung [15] tarafından önerilen ve yumuşak doku modellemesi konusunda çok bilinen 

bir standart model olan yalancı-doğrusal viskoelastik teori (quasi-linear viscoelastic 

theory) doğrusal olmayan, zaman ve yükleme geçmişine bağlı yumuşak doku 

mekanik davranışını modellemek üzere pek çok araştırmacı tarafından başarı ile 

kullanılmıştır. Bu kurama göre gerilim ile gerinim arasındaki ilişki şu şekilde genel 

bir formül ile gösterilebilir: 

 

( ) ( ) ( )εσσ etGt *=  

 

Burada ( )tσ  gerilimin zamana bağlı değişimini, ( )tG  indirgenmiş gevşeme 

fonksiyonunu ve ( )εσ e  anlık elastik gerilim tepkisi fonksiyonunu ifade eder. Farklı 

( )tG  ve ( )εσ e  fonksiyonları kullanılarak farklı modellerin elde edilebilmesiyle 

birlikte literatürde en fazla kullanılanları şu şekildedir; 

 

( )
( ) ( )[ ]
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Buradaki indirgenmiş gevşeme fonksiyonu içerisinde üç parametre bulunmaktadır. 

Bunlardan 1τ  ile 2τ  sırasıyla kısa ve uzun dönem gevşeme davranışlarını kontrol 

ederken, C parametresi de gevşemenin genliğini belirlemektedir. İfade içerisindeki 

1E  birinci üstel integral fonksiyonudur ve şu şekilde tanımlanır: 

 

( )
z

1 y

e
E y dz

z

−
∞

= ∫  

 

Anlık elastik gerilim tepkisi fonksiyonunu içerisindeki iki parametre (A, B) ile 

birlikte toplam beş parametreli bir model oluşmaktadır. 

 

Bu denklemler kullanılarak elde edilen model ise şu şekildedir; 

 

( ) ( ) ( )
τ

τ

ε

ε
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Yumuşak doku mekanik yanıtını modellemede kullanılan bir başka yöntem ise 

Bailey Norton yasası ve Prony serisi yaklaşımıdır: 

 

( )
t

R

0

d
E t, dt

dt

ε
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it
R 0 i

i 1

E (t) k k e− τ
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R 0 i

i 1

E (t, ) k k e− τ

=

ε = ε +∑
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Burada ER(t) doğrusal, ER(t,ε) ise doğrusal olmayan gevşeme fonksiyonlarıdır. 

 

cr elε = ε + ε& & &  

 

ifadesi ise Bailey Norton yasasıdır. 
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O.1.2.6.4 Gözenekli-Elastik Malzeme Modelleri 

 

Gözenekli-elastik (poroelastik) malzeme modelleri, gözenekli bir elastik katı ortam 

içerisinde sıvı akışını modelleyen yaklaşımdır ve biyomekanikte zaman zaman 

yumuşak doku ve özellikle de eklem kıkırdaklarının modellenmesi için kullanılır. 

Katı üzerinde oluşan gerinmeler nedeniyle sıvı üzerinde oluşan basınç farkları 

sonucunda sıvı akışı olmaktadır [56]. Yumuşak dokunun iki fazlı modellenmesine 

yönelik Zhu [57] tarafından hazırlanan çalışmada modelleme ile ilgili ayrıntılar 

verilmiştir. Ün [58, 59] tarafından yumuşak doku mekanik davranışının 

modellenmesinde sonlu elemanlar andırımı kullanılmıştır. Ancak gerek modeldeki 

karmaşıklık gerekse model katsayılarının elde edilmesine yönelik zorluklar nedeniyle 

bugüne kadar yaygın kullanım alanı bulamamıştır. 

 

 

O.1.2.7 Yumuşak Doku Malzeme Sabitlerinin Belirlenmesi (Yumuşak Doku    

              Mekanik Karakterizasyonu) 

 

Bünye denklemlerindeki malzeme sabitlerinin belirlenebilmesi, ancak ilgili 

malzemeler üzerinde ayrıntılı deneyler yapmakla olasıdır. Yapılan deneylerin cinsine 

göre, eğer kontrollü ortamda ve basit bir geometrili deney örneği kullanılıyorsa 

cebirsel denklemlerle dokunun gerilme-gerinme-zaman özellikleri (bünye denklemi 

katsayıları) elde edilebilir. Ancak geometri karmaşıksa (örneğin indentör 

deneylerinde olduğu gibi indentör ucunun dokuyla teması, büyük yer değiştirmeler 

gibi) evrik yöntemlere (genellikle evrik sonlu elemanlar yöntemi) başvurulur. 

 

 

O.1.2.7.1 Analitik Yaklaşımlar 

 

Deney yapılan geometrinin basit olduğu veya basit geometrilerle modellenebildiği 

(genellikle yarı-sonsuz ortam) ve bununla beraber malzemenin bünye denkleminin de 

görece basit olduğu (genellikle doğrusal elastik veya doğrusal viskoelastik malzeme) 

ve tüm bunlara ek olarak gerinmelerin ve yer değiştirmelerin küçük olduğu çok 
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kısıtlı sayıdaki yumuşak doku deneyleri için mekanik davranış, içerisinde malzeme 

sabitinin de bulunduğu tek bir analitik denklem ile ifade edilebilmektedir. Bu 

durumda, analitik denklemden malzeme sabiti çözülerek deney sonucuna bağlı 

olarak sayısal değer kolaylıkla elde edilebilir [60, 61]. Ancak analitik yaklaşımlar, 

içerdikleri çok fazla kısıtlama nedeniyle çoğunlukla istenenlere yanıt 

verememektedir. 

 

 

O.1.2.7.2 Evrik Sonlu Elemanlar Modeli 

 

Evrik sonlu elemanlar modelinde, deney yapılan bölge ve yakın çevresinin sonlu 

elemanlar modeli hazırlanır. Gerekli sınır koşulları, deney sırasında uygulanan 

yükler, dokunun uyması beklenen bünye denklemi modele girilir. Ancak bünye 

denklemi ile ilgili katsayılar bilinmediği için başlangıç değerleri seçilir. Rastgele 

seçilen bu değerlerle sonlu elemanlar andırımı çalıştırılır, malzeme sabitleri rastgele 

seçilmiş dokunun tepkisi elde edilir. Üzerinde deney yapılmış gerçek dokunun 

malzeme sabitleri, rastgele seçilen malzeme sabitlerinden farklı olacağı için, 

bilgisayar anırımından elde edilen tepki de gerçek dokudan elde edilenden farklı 

olacaktır. Aradaki farkı kapatmak üzere bilgisayar andırımındaki malzeme sabitleri 

değiştirilerek andırım yeniden çalıştırılır. Andırımdan elde edilen tepki, gerçek 

dokudan deneysel olarak elde edilen tepkiye istenen ölçüde yaklaştığında, andırımda 

kullanılan malzeme sabitlerinin de gerçek yumuşak dokunun malzeme sabitlerine 

istenen ölçüde yaklaştığı varsayılır ve böylece yumuşak doku mekanik malzeme 

sabitleri istenen hassasiyetle kestirilebilir. 

 

Evrik sonlu elemanlar yönteminin kullanımı sırasında dikkat edilmesi gereken 

noktalar şunlardır: 

 

• Yumuşak dokunun uyması beklenen bünye denkleminin önceden bilindiği 

varsayılır. Eğer kullanılacak bünye denklemi üzerinde deney yapılan dokunun 

mekanik davranışını modellemede yetersiz kalırsa evrik sonlu elemanlar 

yönteminden bünye denkleminin değiştirilmesine yönelik bir bilgi edinilmez. 
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• Genellikle deney koşullarında yumuşak dokuda büyük gerinmeler, büyük yer 

değiştirmeler, başka bir cisme dokunma ve doğrusal olmayan bünye denklemleri 

gibi problemin yüksek derecede doğrusallıktan sapmasına neden olan kaynaklar 

vardır. Bu durumda, elde edilecek malzeme sabitleri kestiriminin tek (kapalı, 

dışbükey bir komşuluk içerisinde) olduğuna dikkat edilmelidir. 

 

Evrik yöntemlerle yumuşak doku mekanik özelliklerinin belirlenmesine ilişkin daha 

ayrıntılı bilgiler için Flynn [62] ve Tönük’ün [9] çalışmalarına başvurulabilir. 
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Özetçe: Yumuşak dokuların mekanik davranışı mühendislik malzemeleri ile 
karşılaştırıldığına, karmaşıktır. Alışma (Mullin etkisi) sünme, gevşeme, ve 
histeris gibi elastik malzemelerde gözlenmeyen davranışlar sergilerler. Bu 
davranışların modellenebilmesi için çeşitli bünye denklemleri önerilmiştir. 
Bunlardan birisi olan sanki-doğrusal viskoelastik model, yumuşak dokuların 
zamana bağlı ve doğrusal olmayan davranışını modellemede sıklıkla 
kullanılmıştır [1]. Bu çalışmada sanki-doğrusal viskoelastik model kullanılıp 
indentör deneyleri sonucu elde edilen verilerden faydalanılarak model 
katsayılarının bulunması amaçlanmıştır. Elde edilen katsayıların sonlu 
elemanlar analizi programında kullanılmasıyla oluşturulan modelin yumuşak 
doku mekanik davranışını kestirebileceği umulmaktadır. Ayrıca elde edilen 
katsayı setinin, başka laboratuarlarda başka sistemlerle ve farklı dokular 
üzerinde yapılan deneyler sonucu elde edilen katsayılarla kıyaslanabilecek bir 
kaynak olabileceği düşünülmektedir. 
  
Anahtar Sözcükler: yumuşak doku, sanki-doğrusal viskoelastik model, gevşeme.  
 
 
Abstract: Mechanical behavior of soft tissues complicated compared to 
engineering materials. They exhibit preconditioning (Mullin’s effect), 
relaxation, creep, and hysteresis which are not encountered in elastic materials. 
Many constitutive equations have been proposed to simulate soft tissue 
mechanical response. One of these, the quasi-linear viscoelastic model, has been 
frequently used to model the time-dependent and non-linear behavior of soft 
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tissues [1]. In this study, it is aimed to estimate the model parameters by 
utilizing the experimental data and by using the quasi-linear viscoelastic model. 
By integrating the model into a finite element code it is hoped that the soft tissue 
mechanical response could be modeled. Besides, the parameter set obtained is 
will be a reference to be compared with the different studies done in other 
laboratories by different experimental systems used on different soft tissues. 
 
Keywords: soft tissue, quasi-linear viscoelastic model, relaxation.  
 
 

I. GİRİŞ 
 
Biyolojik yumuşak dokular çok karmaşık davranış biçimlerine sahip malzemeler 
olarak bilinirler ve davranışını tam olarak kestirebilmek çok güçtür. Çevreleriyle 
mekanik etkileşimleri sonucu alışılageldik mühendislik malzemelerinden çok farklı 
tepkiler verirler. Yumuşak dokuların modellemesinin hassas olarak yapılabilmesi, 
onların bu davranışlarının en iyi biçimde bilinmesiyle mümkün olabilir. Yumuşak 
dokular; 

 
• gerilim-gerinim bağıntısı doğrusal değildir,  
• anizotropiktir,  
• elastik malzeme davranışına uymaz, 
• homojen değildir, 
• her döngüde (özellikle ilk döngülerde) aynı deplasman değerine karşı farklı tepki 

kuvveti değerleri gösterirler, fakat zamanla direngenlik azalarak tekrar edilebilir 
sonuçlar alınmaya başlanır (alışma, Mullin etkisi), (Şekil 1) [19], 

• her döngüde gerinimin artması ve azalması sırasında verdikleri gerilim – gerinim 
değerleri farklıdır, bu fark mekanik enerji kaybı olarak kendini gösterir (histeris), 
(Şekil 2) [19], 

• sabit gerinim altında sabit gerilim zamanla azalır (gevşeme), (Şekil 3) [19], 
• sabit gerilim altında gerinim zamanla artar (sünme), (Şekil 4) [19]. 
 
Yukarıda bahsedilen ve elastik malzemelerden çok farklı olan özellikleri 
kestirebilmek için çeşitli modeller oluşturulmuştur. Bunlarda bazıları derinin 
modellenmesi [2, 16, 18], üst ve alt bacağın modellenmesi [3, 4], atardamarların 
modellenmesi [5, 17, 18], kalp kapakçığının modellenmesi [6], akciğer dokusunun 
modellenmesi [7, 18], ayak tabanının modellenmesi [8], eklem kıkırdağının 
modellenmesi [9], bağların modellenmesi [10, 11, 15], göğüs dokusunun 
modellenmesi [12, 13] ve karaciğer dokusunun modellenmesi [14] verilebilir.  
 
Bu modellerin oluşturulmasında çeşitli yöntemler kullanılmıştır. Örneğin bazı bilim 
adamları dokunun yükleme ve boşaltma sırasında farklı tepkiler vermesi üzerine 
dokuyu yükleme sırasında bir elastik malzeme yük boşaltma sırasında başka bir 
elastik malzeme olarak modellemişlerdir. Böylelikle malzemeyi iki elastik 
malzemenin birleşimi olarak kabul etmiş ve görece daha yalın olan elastisite 
teorisinin kullanılmasını olanaklı kılmışlardır. Doku elastik olmamasına rağmen onu 
elastik malzeme kabul eden yönteme bu yüzden sanki-elastik modelleme denilmiştir 
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[5, 18]. Ancak, sanki-elastik malzeme modelleri zamana bağımlı davranışı (gevşeme 
ve sünme gibi) gözardı ettiği için kullanım alanı sınırlıdır. 

 

 
 

Şekil 1 – Yumuşak Dokunun Ard Arda Yapılan Yüklemelerde  
Gösterdiği Alışma Etkisi 

 
 

 
 

Şekil 2 – Yumuşak Dokunun Yükleme ve Yük Boşaltma Sırasındaki Davranışı 
 
 
 

 
 

Şekil 3 - Yumuşak Dokunun Sabit Gerinimde Gevşeme Davranışı 
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Şekil 4 - Yumuşak dokunun sabit gerilimde sünme davranışı 
 

 

Başka bir grup bilim insanı ise viskoelastik malzeme modelleri kullanarak yumuşak 
dokularda görülen histeris yani gerinim-gerilim tepkisinin gerilimin artışı ve azalışı 
yönlerinde farklı olması (Şekil 2), gevşeme (Şekil 3) ve sünme (Şekil 4) 
davranışlarını modellemeye çalışmışlardır [11, 14, 15].  

 
Günümüzde en yaygın olarak kullanılan yumuşak doku bünye denklemleri 
viskoelastik olanlardır. Bu modeller geliştirilerek sanki-doğrusal viskoelastik 
modeller geliştirilmiştir. Bu modelin temeli indirgenmiş gevşeme fonksiyonunun 
elastik gerilim fonksiyonunun zamana göre türeviyle çarpımının deney zamanında 
integralinin alınmasına dayanır. 

 
Yumuşak dokuların bu özellikleri deneyler sonucu ortaya çıkarılmıştır. Yumuşak 
doku mekanik yanıtının belirlenebilmesi için değişik deney yöntemleri kullanılmıştır. 
Her yöntemin kendine özgü avantaj ve dezavantajları vardır. Kullanım amacına göre 
bu deney tiplerinden en uygunu seçilmelidir. Deneylerle, yumuşak dokunun 
modellenmek istenen davranışı tespit edilir, bu davranışa en uygun bünye denklemi 
seçilir, deney sonuçları kullanılarak model içindeki parametreler hesaplanır ve son 
olarak modelin gerçek davranışı ne ölçüde ve hangi sınırlar içerisinde andırabildiği 
kontrol edilir.  
 
 

II. MATERYALLER ve YÖNTEMLER 
 
Sanki-Doğrusal Visko-elastik Model 

 
Gelişen bilgisayarlar ve hesaplama yöntemleri ile andırım programları sayesinde son 
yıllarda en sık ve başarılı biçimde kullanılan yöntem, yumuşak dokuların viskoelastik 
olarak modellenmesidir. Çünkü yumuşak dokular, neredeyse tüm viskoelastik 
malzeme davranışlarını sergilemektedirler. Dolayısıyla bu çalışmada da viskoelastik 
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malzeme modellerinin bir alt kolu olan sanki-doğrusal viskoelastik bünye 
denklemleri kullanılmıştır.  
 

Sanki-doğrusal viskoelastik modelin temeli indirgenmiş gevşeme fonksiyonunun 
elastik gerilim fonksiyonunun zamana göre türeviyle çarpımının deney zaman 
süresince integralinin alınmasına dayanır ve şu şekilde ifade edilir: 
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Burada; t zamanı; ( )tσ  gerilimin zamana göre değişimini; ( )−G  indirgenmiş gevşeme 

fonksiyonunu (Şekil 5); ε  gerinimi ve ( )εσ )(e  gerinime bağlı anlık elastik gerilim 

fonksiyonunu temsil eder.  
 

Bu çalışmada kullanılan ve literatürde bulunanlar arasında en az malzeme sabitine 
sahip olan indirgenmiş gevşeme fonksiyonu şu şekildedir: 
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Burada; C gevşemenin genliğini, 

1τ  ve 
2τ  sırasıyla kısa ve uzun dönem gevşeme 

davranışlarını kontrol eder. İfade içerisindeki ( )−1E  birinci üstel integral fonksiyonu 

olarak adlandırılır ve şu şekilde ifade edilir: 
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Şekil 5 – İndirgenmiş gevşeme fonksiyonu 
 
 
Şekil 5’de modelin ana elemanı olan indirgenmiş gevşeme fonksiyonunun C = 0.08, 
τ1 = 0.8 s ve τ2 = 1400 s parametreleri baz alınarak çizilmiş eğrisi sunulmuştur. 
Buradaki C katsayısı gevşemenin genliğini belirlediğinden büyültülmesi toplam 
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gevşeme miktarının artmasına, küçültülmesi de azalmasına neden olur. τ1 katsayısı 
kısa dönem gevşeme davranışını kontrol eder ve büyültülmesi ani gevşeme süresini 
uzatır. τ2 katsayısı uzun dönem gevşeme davranışını kontrol eder ve büyültülmesi 
uzun dönem gevşeme süresini uzatır. 
 

Gerilime bağlı anlık elastik gerilim fonksiyonu olarak aşağıdaki doğrusal olmayan 
üstel ifade kullanılmıştır: 
 

( )1)()( −= εεσ Be eA                                                              (4) 

 
Buradaki A ve B, diğer iki malzeme katsayısıdır. 
 
Gerekli ifadeler (1) numaralı denklemde yerine konularak modelin son şekli elde 
edilir. Modelin beş parametre (C, τ1, τ2, A, B) ile yumuşak doku mekanik yanıtını 
büyük ölçüde modelleyebileceği tahmin edilmektedir. 
 

 
III. SONUÇLAR 

 
Modelleme sırasında gerinim hızı sabit ve 0.03125 s-1 alınmıştır (bu değer, indentör 
deneyi sırasında ilk kalınlığı yaklaşık 32 mm olan dokuya indentörün 1 mm/s sabit 
hız ile basması sırasında oluşan gerinim hızıdır [19]). Kullanılan malzeme katsayı 
değerleri Tablo 1’de sunulmuştur. 
 
 
Tablo 1 – Modelde kullanılan katsayılar 

 
A B C τ1 τ2 
50 42 0.08 0.8 1400 

 
 

IV. TARTIŞMA 
 
İfadeler (1) numaralı denklemde yerine konulup zamana bağlı gerilim tepkisinin son 
hali oluşturulmuştur. Matlab 6.5 yazılımı kullanılarak sabit gerinim altında gerilim 
tepkisi Şekil 6’daki gibi elde edilmiştir. 
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Şekil 6 - Gevşeme davranışının modellenmesi 
 

 
Şekil 6’da, gevşeme davranışının, hızlı gevşemenin gerçekleştiği ilk 20 saniyelik 
periyodu sunulmuştur. Sanal deney sırasında, ilk 20 saniyede 1 mm/s ile yükleme 
yapılıp sonra 120 saniye beklenmiştir. 
 

Yapılan bu ilk denemeler, önerilen modelin, yumuşak dokulardan elde edilen 
deneysel verileri [19] modelleyebildiğini göstermiştir. Önerilen malzeme modelinin 
MSC.Marc 2003 sonlu elemanlar programına kullanıcı altprogramı aracılığıyla 
tanıtılması ile yumuşak doku deneysel verilerinden evrik sonlu elemanlar yöntemiyle 
[22] malzeme katsayılarının elde edilmesi ve bu katsayılar kullanılarak değişik 
durumların andırımlarının gerçekçi olarak yapılması olanaklı hale gelecektir. 
 
Oluşturulan bu model, az sayıda katsayıya sahip olması ve bu katsayıların karmaşık 
olmayan deneylerle elde edilebilmesi nedeniyle kolaylıkla kullanılabilmektedir. 
Literatürde önceden kullanılan benzer model ve parametre setlerine katkıda 
bulunacağı düşünülmektedir. 
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Özetçe: Literatürde bulunan neredeyse tüm yumuşak doku malzeme 
modellerinin gerçek davranışı modellemede yetersiz kaldığı yönler vardır. 
Bazıları sadece belirli bir davranış üzerine yoğunlaşır. Bazıları ise birden fazla 
davranışı tek bir modelle kestirebilmek için çok sayıda model katsayısı kullanır 
ve bu katsayıların deneylerle elde edilmesi zahmetli olur. Bu çalışmanın amacı 
mümkün olan en az model parametresi kullanarak mümkün olabildiği kadar 
fazla davranışı gerçeğe yakın modelleyebilmektir. Bu doğrultuda sanki-
doğrusal viskoelastik malzeme modeli geliştirilmiştir. Deneysel verilerden elde 
edilen sonuçlar ile model parametrelerinin belirlenmesi planlanmaktadır. 
Parametrelerin elde edilmesiyle oluşturulan modelin devirli yükleme, gevşeme, 
sünme ve alışma davranışlarını kestirebileceği umulmaktadır. 
  
Anahtar Sözcükler: yumuşak doku, geliştirilmiş sanki-doğrusal visko-elastik model, 
devirli yükleme, gevşeme, alışma.  
 
 
Abstract: Almost all of the soft tissue models in the literature have some 
deficiencies in modeling real soft tissue mechanical response. Some of them only 
focus in a specific behavior. Some others use many model parameters to be able 
to simulate more than one behavior in a single model however it is rather hard 
to determine these parameters experimentally. The aim of this study is, to model 
as many behavior of soft tissue as possible by using possible minimum number 
of model parameters. To achieve this, the quasi-linear viscoelastic model was 
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enhanced. The parameters of the model will be determined with the help of 
experimental data. The final form of the model, which will be obtained by 
substituting the model parameters into the model, is expected to simulate cyclic 
loading and unloading, relaxation, creep and preconditioning.  
 
Keywords: soft tissue, enhanced quasi-linear visco-elastic model, cyclic loading and 
unloading, relaxation, preconditioning.  
 
 

I. GİRİŞ 
 
İnsan vücudunun dış yüzeyi tamamen yumuşak dokularla örtülüdür ve çevreyle 
mekanik etkileşimin tümü bu yumuşak dokular aracılığıyla gerçekleştirilir. Bu 
fiziksel (başka bir deyişle mekanik) etkileşimlerin sonuçlarının doğru olarak 
kestirilebilmesi için öncelikle bu etkileşimleri gerçekleştiren yumuşak dokuların 
mekanik davranışı hakkında ayrıntılı bilgi sahibi olunmalıdır. Bunların, çeşitli kuvvet 
tip ve büyüklüklerine nasıl tepki vereceği mümkün olduğu kadar ayrıntılı ve doğru 
bilinmelidir. Bu bilgiler ışığında yumuşak doku mekanik davranışının bilgisayarda 
andırımı (simülasyonu) yapılabilir, etkileşimin istenen biçimde olması için gerekli 
değişiklikler üzerinde çalışılabilir. 

 
Derinin modellenmesi [1, 15, 17], üst ve alt bacağın modellenmesi [2, 3], 
atardamarların modellenmesi [4, 16, 17], kalp kapakçığının modellenmesi [5], 
akciğer dokusunun modellenmesi [6, 17], ayak tabanının modellenmesi [7], eklem 
kıkırdağının modellenmesi [8], bağların modellenmesi [9, 10, 14], göğüs dokusunun 
modellenmesi [11, 12], karaciğer dokusunun modellenmesi [13] yumuşak doku 
mekanik davranışının bilinmesinin gerekliliğini gösteren bazı örneklerdir. 

 
Yukarıda bahsedilen modeller yumuşak dokuların bazı tipik mekanik yanıtlarını 
ortaya çıkarmak için oluşturulmuştur. Bunlar; 

 
• Dokunun ilk birkaç yüklemede daha direngen davranması, sonraki yüklemelerde 

direngenliğinin azalarak tekrar edilebilir bir gerilim-gerinim özelliğine kavuşması 
(alışma, Mullin etkisi), (Şekil 1). 

• Yükleme ve yük boşaltma yönlerinde görülen iki farklı direngenlik ve bir 
yükleme - boşaltma çeviriminde ihmal edilemeyecek düzeyde mekanik enerji 
kaybı (histeris), (Şekil 2). 

• Sabit yer değiştirme (veya gerinim) altında tepki kuvvetinin (gerilimin) azalması 
yani gevşeme, (Şekil 3). 

• Sabit kuvvet (veya gerilim) altında yer değiştirmenin (veya gerinimin) artması 
yani sünme, (Şekil 4). 
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Şekil 1 – Yumuşak Dokunun Ard Arda Yapılan Yüklemelerde  
Gösterdiği Alışma Etkisi 

 
 

 
 

Şekil 2 – Yumuşak Dokunun Yükleme ve Yük Boşaltma Sırasındaki Davranışı 
 
 
 

 
 

Şekil 3 - Yumuşak Dokunun Sabit Gerinimde Gevşeme Davranışı 
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Şekil 4 - Yumuşak dokunun sabit gerilimde sünme davranışı 
 

 

Yumuşak dokuların bu özellikleri deneyler sonucu ortaya çıkarılmıştır. Yumuşak 
doku mekanik yanıtının belirlenebilmesi için değişik deney yöntemleri kullanılır. Her 
yöntemin kendine özgü avantaj ve dezavantajları vardır. Kullanım amacına göre bu 
deney tiplerinden en uygunu seçilmelidir.  
 
Yumuşak doku mekanik davranışını modellemek için kullanılan bünye 
denklemlerinden en yaygın kabul görenleri sanki-elastik malzeme modelleri [4, 15, 
17], ve bu çalışmada da kullanılan viskoelastik malzeme modelleridir [10, 13, 14]. 
 
Sanki-elastik malzeme modellerinde yumuşak doku, yükleme yönünde bir elastik 
malzeme, boşaltma yönünde başka bir elastik malzeme olarak modellenmiştir. 
Çünkü, Şekil 2’de de görüldüğü gibi doğrusal olmayan yumuşak dokunun davranışı 
yükleme sırasında farklı boşaltma sırasında farklı tepki kuvveti–yer değiştirme 
eğrileri ile temsil edilmektedir. Bu nedenle oldukça basit bir yaklaşımla, gerinmenin 
artması yönünde bir elastik malzeme katsayısı seti, azalması yönünde başka bir 
elastik malzeme katsayısı seti kullanılmaktadır. Dokunun gerçek davranışı elastik 
olarak modellenemeyeceği için bu modele sanki-elastik denmiştir. Ancak sanki-
elastik malzeme modelleri zamana bağımlı davranışı (gevşeme ve sünme gibi) 
gözardı ettiği için kullanım alanı sınırlıdır. 
 
Viskoelastik malzeme modelleri ise viskoelastik malzeme özellikleri olarak kabul 
edilen histeris (Şekil 2), gevşeme (Şekil 3) ve sünme (Şekil 4) davranışlarını 
modellemek için geliştirilmiştir. Son yıllarda en sık ve başarılı bir şekilde kullanılan 
model ise sanki-doğrusal viskoelastik modeldir. Bu modelin temeli indirgenmiş 
gevşeme fonksiyonunun elastik gerilim fonksiyonunun zamana göre türeviyle 
çarpımının deney zamanısüresince integralinin alınmasına dayanır.  
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II. MATERYALLER ve YÖNTEMLER 
 
Sanki-Doğrusal Visko-elastik Model 

 
Gelişen bilgisayarlar ve hesaplama yöntemleri ile andırım programları sayesinde son 
yıllarda en sık ve başarılı biçimde kullanılan yöntem, yumuşak dokuların visko-
elastik modellenmesidir. Çünkü yumuşak dokular, neredeyse tüm visko-elastik 
malzeme davranışlarını sergilemektedirler [23]. Dolayısıyla bu çalışmada da 
viskoelastik modellemenin bir alt kolu olan sanki-doğrusal viskoelastik 
modellemenin geliştirilmiş bir modelini kullanılmıştır.  

 
Sanki-doğrusal visko-elastik modelin temeli indirgenmiş gevşeme fonksiyonunun 
elastik gerilim fonksiyonunun zamana göre türeviyle çarpımının deney zamanında 
integrallenmesine dayanır ve şu şekilde ifade edilir: 
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Burada; t zamanı; ( )tσ  gerilimin zamana göre değişimini; ( )−G  indirgenmiş gevşeme 

fonksiyonunu; ε  gerinimi ve ( )εσ )(e  gerinime bağlı anlık elastik gerilim 

fonksiyonunu temsil eder.  
 
Bu çalışmada kullanılan ve literatürde kullanılanlar arasında en az malzeme sabitine 
sahip olan indirgenmiş gevşeme fonksiyonu şu şekildedir: 
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Burada; C gevşemenin genliğini, 

1τ  ve 
2τ  sırasıyla kısa ve uzun dönem gevşeme 

davranışlarını kontrol eder. İfade içerisindeki ( )−1E  birinci üstel integral fonksiyonu 

olarak adlandırılır ve şu şekilde ifade edilir: 
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Gerilime bağlı anlık elastik gerilim fonksiyonu olarak aşağıdaki doğrusal olmayan 
üstel ifade tercih edilmiştir: 
 

( )1)()( −= εεσ Be eA                                                              (4) 

 
Buradaki A ve B, diğer iki malzeme parametresidir [23].  
 
Bu aşamaya kadar temel durumdaki sanki-doğrusal viskoelastik model 
oluşturulmuştur. Gerekli ifadeler (1) numaralı denklemde yerine konularak modelin 
son şekli elde edilir. Model beş parametre (C, 1τ , 2τ , A, B) ile gevşeme davranışını 

modelleyebilmektedir.  
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Bu model temel alınarak geliştirilen model ise hem dokuda bulunan anizotropiyi göz 
önüne alır hem de zaman ile beraber gerinime de bağlıdır. Bu model; 
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denklemleri ile ifade edilir. Bu denklemlerde 

11T , 
22T  ve 

33T  üç malzeme eksenindeki 

gerilimler; 
1ε , 

2ε  ve 
3ε  üç malzeme eksenindeki asal gerinimler; a, b ve c 

anizotropiye izin veren birim hücre ölçüleridir. ( )tσ  ifadesi (1) numaralı denklem ile 

hesaplanan baz durumdaki sanki-doğrusal viskoelastik gerilimdir. Λ  aşağıdaki 
biçimde ifade edilir: 
 

8

222 cba ++
=Λ                                                                     (8) 

 
Anizotropinin modellenebilmesi için modele üç yeni parametre (a, b, c) eklenmiştir. 
Geliştirilen model sekiz parametrelidir. Gerekli ifadeler yerlerine koyulup 
integrasyon işlemi tamamlandıktan sonra A parametresi a, b ve c parametrelerinin 
içine alınarak model yedi parametreye indirgenebilir. 
 
 

III. SONUÇLAR 
 

Modellemeler sırasında gerinim hızı sabit ve 0.03125 s-1 alınmıştır (bu değer, 
indentör deneyi sırasında ilk kalınlığı yaklaşık 32 mm olan dokuya indentörün 1 
mm/s sabit hız ile basması sırasında oluşan gerinim hızıdır [22]). Kullanılan 
parametre değerleri Tablo 1’de sunulmuştur. 
 
 
Tablo 1 – Modelde kullanılan katsayılar 

 
C 

1τ  2τ  B a b c 

0.08 0.8 1400 42 3.1E-9 2.8E-9 2.6E-9 
 
 

IV. TARTIŞMA 
 

Yukarıda bahsedilen ve türetilen denklemlerden (5) numaralı olan kullanılarak 
modelin son hali oluşturulmuş ve Matlab 6.5 yazılımı kullanılarak Şekil 5-7’deki 
sonuçlar elde edilmiştir. 
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Şekil 5’te 20 saniyelik periyotlarla yapılan gerinim artışı ve azaltması işlemlerinin 
eğrileri görülmektedir. Alışma etkisi, yani ilk birkaç döngüden sonra tekrarlanabilir 
gerilim tepkisi şekilden görülebilir. 
 
 

 
 

Şekil 5 – Alışma Davranışının Modellenmesi 
 
 
Şekil 6’da yine gerinimin bu kez bir devirde artması ve azalması işlemleri görülüyor. 
Bu kez tekrar edilebilir sonuç alındıktan sonraki tek bir döngünün gerilim–gerinim 
eğrisi sunulmuştur. Bu grafikte bir devir sırasında kaybedilen mekanik enerji 
(histeris) iki eğrinin arasındaki alan olarak görülmektedir. 

 
Şekil 7’de, gevşeme davranışının, hızlı gevşemenin gerçekleştiği ilk 20 saniyelik 
periyodu sunulmuştur. Sanal deney sırasında, ilk 20 saniyede gerinim arttırılıp sonra 
120 saniye beklenmiştir. 

 
Yapılan bu ilk denemeler, önerilen modelin, yumuşak dokulardan elde edilen 
deneysel verileri [22] modelleyebildiğini göstermiştir. Önerilen malzeme modelinin 
MSC.Marc 2003 sonlu elemanlar programına kullanıcı altprogramı aracılığıyla 
tanıtılması ile yumuşak doku deneysel verilerinden evrik sonlu elemanlar yöntemiyle 
malzeme katsayılarının elde edilmesi ve bu katsayılar kullanılarak değişik 
durumların andırımlarının gerçekçi olarak yapılması olanaklı hale gelecektir.  
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Şekil 6 – Devirli yükleme davranışının modellenmesi 
 
 

 

 
 

Şekil 7 – Gevşeme davranışının modellenmesi 
 

 
Oluşturulan bu model, tek bir ifade ile yumuşak doku mekanik yanıtını ayrıntılı 

biçimde modelleyebilmesi ve az sayıda malzeme katsayısına bağlı olması nedeniyle 
literatürdeki yumuşak doku modellerine önemli bir katkıda bulunmaktadır. 
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Sanki-Doğrusal Viskoelastik Malzeme Modelleri 
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Bu çalışmanın amacı yumuşak biyolojik dokuların farklı deney protokollerindeki mekanik 
davranışlarını sanki-doğrusal viskoelastik malzeme modeli kullanarak mümkün olan en az 
malzeme sabiti değişimi ile andırmaktır. Yumuşak dokular yüklemeye doğrusal olmayan 
gerilim-gerinim davranışı, gevşeme, sünme, histeris ve alışma (Mullin etkisi) gibi alışılageldik 
mühendislik malzemelerinden farklı tepkiler verirler. Yumuşak dokular modelleme amaçlı 
olarak genelde sanki-elastik veya viskoelastik kabul edilirler. Bu çalışmada, indentör 
deneyleri sonucunda elde edilen yumuşak doku yer değiştirme-tepki kuvveti-zaman verileri 
kullanılarak deney bölgesi ve yakın çevresinin, sonlu elemanlar modeli oluşturulmuştur. 
Yumuşak doku malzeme modeli olarak viskoelastik malzeme modeli, rastgele başlangıç 
katsayıları ile kullanılmış, evrik sonlu elemanlar yöntemi aracılığıyla sonlu elemanlar 
andırımındaki yumuşak doku yer değiştirmesi-tepki kuvveti-zaman sonuçları deneysel 
sonuçlarla arzu edilen yakınlığa ulaşıncaya kadar malzeme katsayıları değiştirilmiştir. 
Andırım sonuçları, deneysel gevşeme ve sünme davranışlarını sırasıyla % 0.74 ve % 0.31 
normalize edilmiş hata kareleri toplamı değerleriyle modellemiştir. Bu değerler, kullanılan 
malzeme modelinin yumuşak biyolojik doku davranışının kestirimine uygun olduğunu ve elde 
edilen malzeme katsayılarının yumuşak dokuyu istenen hassasiyette temsil ettiğini 
göstermektedir. İndentör deney sonuçları ve burada sunulan yöntem kullanılarak insan 
bedeninin çevre ile mekanik etkileşimi kişiye ve dokuya özel olacak biçimde ve hassas olarak 
modellenebilir. 

 
Anahtar Kelimeler: Yumuşak Doku, Viskoelastik, Evrik Sonlu Elemanlar 
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GİRİŞ 
 
İnsanoğlu yaşamını devam ettirdiği sürece sürekli çevresi ile etkileşim içindedir. 
Bazen algılayabilmek için koklar ya da dinler; bazen de dokunur. Hiç farkında 
olmadan gün içerisinde defalarca cisimlerle fiziksel temasta bulunur. Örneğin bir 
koltuğa oturur ve saatlerce kalkmaz veya bütün gece aynı kolunun üzerinde uyur. 
 
İnsan vücudunun dışı büyük ölçüde yumuşak dokulardan oluşmuştur ve dolayısıyla 
fiziksel temasların çoğu bu yumuşak dokular aracılığıyla gerçekleştirilir. Örneğin, 
kalça üzerine oturulur ve zamanla kalça oturulan zeminin şeklini alır, en ufak bir 
kıpırdanma sonucu tekrar şekil değiştirir ve yeni pozisyonuna adapte olmaya çalışır; 
uzun yürüyüşler sonucunda vücut ağırlığından dolayı ayak tabanlarına uygulanan 
periyodik değişen kuvvet sonucu çeşitli yumuşak doku zedelenmeleri meydana 
gelebilir ve ağrı hissedilebilir. Felçli hastaların uzun süre hareketsiz yatmaları sonucu 
vücutlarıyla yatağın temas ettiği yerlerde yatak yaraları meydana gelir. Protez veya 
ortez kullanan kişiler bunların vücutlarıyla uyumsuzluklarından dolayı oluşan 
yaralardan şikayet ederler. 
 
İnsan vücudunda olan bu fiziksel etkileşimlerin mekanik sonuçlarının doğru olarak 
kestirilebilmesi için öncelikle bu etkileşimleri gerçekleştiren yumuşak dokuların 
mekanik davranışları hakkında bilgi sahibi olunmalıdır. Bunların, çeşitli kuvvet tip 
ve büyüklüklerine nasıl tepki vereceği mümkün olduğu kadar ayrıntılı ve doğru 
bilinmelidir. 
 
Yumuşak dokuların hangi kuvvete ne şekilde tepki vereceği deneylerle belirlenir. Bu 
deneyler ex vivo, in vitro ve in vivo olmak üzere üç şekilde yapılır [25].  
 
Ex vivo deneylerde, yumuşak doku yerine benzer karakteristik gösteren polimer 
benzeri malzemeler kullanılır. Dolayısıyla doğru sonuca en uzak deney tipidir. 
Bunun yanında bilindik geometrilere sahip numuneler kullanılarak deneyin yapılışı 
kolaylaştırılabilir. In vitro deneylerde ise kadavradan kesilip alınmış gerçek ama ölü 
yumuşak dokular kullanılır. Dokunun gerçek ortamında (vücudun bir parçası olarak) 
bulunmaması ve canlı olmaması mekanik özelliklerinin değişmesine sebep olur. 
Sonuçları ex vivo deneylere göre daha gerçekçi olsa da tatmin edici değildir. Son 
olarak bu çalışmada faydalanılan in vivo deneyler yumuşak doku kendi ortamında ve 
canlı haldeyken yapılır. Dolayısıyla, canlı dokunun kendi biyolojik çevresindeki 
mekanik davranışı hakkında en doğru bilgiler in vivo deneyler sonucu elde edilir. Bu 
deneylerin en büyük sakıncası ise dokuların karmaşık geometrisinden dolayı 
uygulanmalarının zor olması ve malzeme yasasını elde etmek için gerilim-gerinim-
zaman bağıntılarının elde edilmesi için ek işlemlere gereksinim duymasıdır. 
 
Yapılan deneyler sonucu elde edilen veriler, yumuşak doku mekanik özelliklerini 
modelleyen ve genellikle doğrusal olmayan karmaşık matematiksel denklemlerin 
katsayılarının bulunmasında kullanılmaktadır. 
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YUMUŞAK DOKU MEKANİK MALZEME MODELLERİ 
 
Yumuşak dokular üzerinde yapılan deneysel çalışmalar sonucu, onların genel olarak 
şu mekanik özellikleri gösterdiği gözlenmiştir: 

 
1. Mekanik davranışları büyük yer değiştirme ve büyük gerinmeler altında doğrusal 

elastik malzeme davranışından önemli oranda sapmaktadır (Şekil 1). 
2. Belirgin bir alışma davranışı (Mullin etkisi) sergilerler (ilk birkaç yüklemenin, 

daha sonra gelen ve tekrarlanabilen yüklemelerden sapması) (Şekil 2). 
3. Sabit deformasyon altında tutulduğunda yumuşak dokunun gösterdiği tepki 

kuvveti zamanla azalmaktadır (gevşeme) (Şekil 3). 
4. Sabit yükleme altında tutulduğunda yumuşak dokuda meydana gelen 

deformasyon zamanla artmaktadır (sünme) (Şekil 4).  
 
 
 

 
 

Şekil 1. Yumuşak Doku Devirli Yükleme Deneyi 
 

 
 
 

 
 

Şekil 2. Yumuşak Doku Alışma Deneyi 
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Şekil 3. Yumuşak Doku Gevşeme Deneyi 
 
 

 
Şekil 4. Yumuşak Doku Sünme Deneyi 

 
 
Yumuşak dokuların bu özelliklerini mümkün olabildiğince az katsayılı ve fazla 
karmaşık olmayan matematiksel denklemlerle modelleyebilmek yıllardır süregelen 
çalışmaların amacıdır. Bunun için çeşitli yöntemler denenmiştir. Bunlardan bazıları; 
derinin modellenmesi [2, 16, 18], üst ve alt bacağın modellenmesi [3, 4], 
atardamarların modellenmesi [5, 17, 18], kalp kapakçığının modellenmesi [6], 
akciğer dokusunun modellenmesi [7, 18], ayak tabanının modellenmesi [8], eklem 
kıkırdağının modellenmesi [9], bağların modellenmesi [10, 11, 15], göğüs dokusunun 
modellenmesi [12, 13] ve karaciğer dokusunun modellenmesi [14] olarak 
gösterilebilir. 

 
Bu modellemeler sırasında, aşağıda değinilen başlıca iki yaklaşım kullanılmıştır. 
 
1. Psödoelastik Model 
 
Şekil 1’de görüldüğü gibi yumuşak dokular yükleme ve boşaltma hareketlerinde 
farklı eğrilerle temsil edilirler. Tek bir döngü esnasında bu iki eğri arasında oluşan 
alan histeris olarak tanımlanır ve dokuların elastik olmadığının kanıtıdır (elastik 
malzemelerde yükleme ve boşaltma hareketleri tek eğri ile ifade edilir ve yükleme 
boşaltma döngüsünde mekanik enerji kaybı yoktur). 
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Psödoelastik modellemenin temeli, bu iki eğriyi ayrı ayrı ele almaya dayanır. 
Böylece iki farklı elastik malzeme varmış gibi düşünülüp elastisite teorileri 
kullanılarak mekanik davranış modellenebilir. 
 
Psödoelastik modellemenin en büyük avantajı, denklemlerin gerinme hızından 
bağımsız olmasıdır. Fakat her doku için ayrı bir sanki-elastik gerinme enerjisi 
fonksiyonunun oluşturulmasının gerekliliği, basit ve az katsayılı denklem oluşturma 
çalışmalarına tamamen ters düşmektedir. Literatürde bulunan, farklı yumuşak 
dokular için önerilmiş sanki-elastik gerinme enerjisi fonksiyonlarından birkaçı 
sunulmaktadır. 
 
Vaishnav [17] tarafından kullanılan gerinme enerjisi fonksiyonu damarlar gibi 
silindirik yapılar içindir, silindirik koordinat sisteminde ifade edilmiştir ve bir 
polinom biçimindedir: 
 

322322
0 zzzzzzzzzz EGEEFEEEEDECEEBEAW ++++++= θθθθθθθθθθρ           (1) 

 
Burada A, B, C, D, E, F ve G malzeme sabitleri olup deneysel verinin fonksiyon 
tarafından kestirilen davranışa uyumunu sağlayacak biçimde belirlenir. 
 
Akciğer özekdokusu için Hoppin [7] tarafından önerilen fonksiyon ise aşağıda 
sunulmuştur: 
 

( ) ( )

( )

4 2
2i 2i 2i 2i 2i 2i 2i 2i 2i

0 i 1 2 3 i 1 2 2 3 1 3
i 1 i 1

3
2 2 2 2i 2 2i 2 2i 2 2 2i 2 2i 2 2i

1 1 2 3 i 1 2 2 3 3 1 1 2 2 3 3 1
i 2

W a b

c c

= =

=

ρ = λ +λ +λ + λ λ +λ λ +λ λ

+ λ λ λ + λ λ +λ λ +λ λ +λ λ +λ λ +λ λ

∑ ∑

∑
                      (2) 

 
Burada ai, bi ve ci malzeme sabitleridir ve fonksiyon genel bir üç boyutlu gerilme 
durumu için geçerlidir. 
 
Mezenter ve kaslar için önerilen gerinme enerjisi fonksiyonu [26, 27] şöyledir: 

 

0

dT
W T

dE
ρ = α + β                                                               (3) 

 
Burada T birim alandaki çekme kuvveti, E gerinme, α ve β ise malzeme sabitleridir. 
Bu denklem gerilmesiz duruma çok yakın durumlar için iyi sonuç vermese de diğer 
tüm gerilmelerde istenen hassasiyette kestirim yapabilmektedir. 
 
Alt ekstremite yumuşak dokularının modellenebilmesi için Tönük [28] tarafından 
kullanılmış olan James-Green-Simpson modelinin eksenel simetrik ve sıkıştırılamaz 
malzemelere uygulanmış tipi şu şekildedir: 
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( ) ( ) ( )
2 3

I J KW C I 3 C I 3 C I 3= − + − + −                                                    (4) 

 
Burada I sıkıştırılamaz malzeme için eksenel simetrik Green-Lagrange gerinme 
tensörünün tek bağımsız değişmezi, Ci ise malzeme sabitleridir. 
 
Her doku vce her yükleme tipi ve hızı için ayrı bir psödo-elastik gerinme enerjisi 
fonksiyonunun oluşturulmasının gerekliliği, basit ve az katsayılı denklem oluşturma 
çalışmalarına ters düşmektedir. Bu sebeple, daha genel denklemler aracılığıyla 
yumuşak doku modellenmesine imkan veren viskoelastik malzeme modelleri 
geliştirilmiştir. 
 
2. Viskoelastik Model 
 
Viskoelastik malzemeler katılarla ağdalı sıvıların özelliklerini bir arada gösteren 
malzemelerdir. Bu malzemeler, katı veya sıvı özelliklerinin baskınlığına göre katıya 
daha yakın veya sıvıya daha yakın davranabilirler [25]. Viskoelastik malzeme 
mekanik davranışı yumuşak doku mekanik davranışına çok benzemektedir. Yumuşak 
dokular gibi histeris (Şekil 1), gevşeme (Şekil 3) ve sünme (Şekil 4) gibi tipik 
davranışları sergilerler. 
 
En temel iki tip viskoelastik malzeme modeli Maxwell ve Voigt modelleri olup tek 
boyutlu mekanik model olarak Şekil 5’deki gibi gösterilebilir. Burada yay, elastik 
davranışı; amortisör ise ağdalı davranışı temsil etmektedir. Maxwell modeli 
viskoelastik akışkanları modellemekte uygundur. Voigt modelinin tepkisi gerçek 
viskoelastik katılarla uyuşmadığı için en basit viskoelastik katı modeli için üç 
elemanlı (bazen Kelvin modeli olarak anılır) model (Şekil 6) önerilmiştir [25]. 

 
 

 

 
 
 

Şekil 5. Temel Viskoelastik Malzeme Modellerinin Tek Boyutlu Mekanik Modelleri 
 
 

Maxwell Modeli 

Voigt Modeli c 

c 

k 

k 
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Şekil 6. Üç Elemanlı (Kelvin) Viskoelastik Malzeme Modelinin İki Farklı Gösterimi 
 

 
Üç elemanlı modelde gerçek viskoelastik katılarda görülen anlık elastik yanıt 
görülebilmektedir. Bu modellerde gevşeme ve sünme davranışı tek bir üstel ifade ile 
temsil edilmektedir ve çoğu gerçek viskoelastik katının davranışı bu temsile 
uymamaktadır. Bu tür modellerdeki en büyük kısıt, elde edilen bünye denklemlerinin 
cebirsel değil diferansiyel olmasıdır. Bunun sonucunda, elastik malzemeye göre daha 
karmaşık bir bünye denkleminin çözülmesi gereği, sistem denklemlerini daha da 
karmaşık hale getirecektir. 
 
Fung [21] tarafından önerilen ve yumuşak doku modellemesi konusunda çok bilinen 
bir standart model olan sanki-doğrusal viskoelastik kuram (quasi-linear viscoelastic 
theory) doğrusal olmayan, zaman ve yükleme geçmişine bağlı yumuşak doku 
mekanik davranışını modellemek üzere pek çok araştırmacı tarafından başarı ile 
kullanılmıştır. Bu kurama göre gerilme ile gerinme arasındaki ilişki şu şekilde genel 
bir formül ile gösterilebilir: 

 
( ) ( ) ( )εσσ etGt *=                     (5) 

 
Burada ( )tσ  gerilimin zamana bağlı değişimini, ( )tG  indirgenmiş gevşeme 

fonksiyonunu ve ( )εσ e  anlık elastik gerilim tepkisi fonksiyonunu ifade eder. Farklı 

( )tG  ve ( )εσ e  fonksiyonları kullanılarak farklı modellerin elde edilebilmesiyle birlikte 

literatürde en fazla kullanılanları şu şekildedir; 
 

( )
( ) ( )[ ]

( )12

1121

ln1

1

ττ

ττ

C

tEtEC
tG

+

−+
=                   (6) 

 
( )1)()( −= εεσ Be eA                                       (7) 

 
Buradaki indirgenmiş gevşeme fonksiyonu içerisinde üç parametre bulunmaktadır. 
Bunlardan 1τ  ile 2τ  sırasıyla kısa ve uzun dönem gevşeme davranışlarını kontrol 

c k1 

k0 

c’ 

k1’ 

k2’ 
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ederken, C parametresi de gevşemenin genliğini belirlemektedir. İfade içerisindeki 

1E  birinci üstel integral fonksiyonudur ve şu şekilde tanımlanır: 

 

( )
z

1 y

e
E y dz

z

−
∞

= ∫                                              (8) 

 
Anlık elastik gerilme tepkisi fonksiyonunu içerisindeki iki parametre (A, B) ile 
birlikte toplam beş parametreli bir model oluşmaktadır. 

 
Bu denklemler kullanılarak elde edilen model ise şu şekildedir; 

 

( ) ( )
( )

τ
τ

ε

ε

εσ
τσ

τ

dtGt
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∂

∂

∂
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=

)(
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                        (9) 

 
 
EVRİK SONLU ELEMANLAR ANALİZİ 

 

In-vivo deneylerle elde edilen yer değiştirme-kuvvet-zaman ilişkileri malzeme 
kanununun belirlenmesi için gerinme-gerilme-zaman verisine kolaylıkla çevrilemez. 
Bu amaçla evrik sonlu elemanlar analizi kullanılmaktadır. 
 
Evrik sonlu elemanlar analizinde, deney yapılan bölge ve yakın çevresinin sonlu 
elemanlar modeli hazırlanır. Gerekli sınır koşulları, deney sırasında uygulanan 
yükler, dokunun uyması beklenen bünye denklemi modele girilir. Ancak bünye 
denklemi ile ilgili katsayılar bilinmediği için başlangıç değerleri rastgele seçilir. 
Rastgele seçilen bu değerlerle sonlu elemanlar andırımı çalıştırılır, malzeme sabitleri 
rastgele seçilmiş dokunun tepkisi elde edilir. Üzerinde deney yapılmış gerçek 
dokunun malzeme sabitleri, rastgele seçilen malzeme sabitlerinden farklı olacağı 
için, bilgisayar andırımından elde edilen tepki de gerçek dokudan elde edilenden 
farklı olacaktır. Aradaki farkı kapatmak üzere bilgisayar andırımındaki malzeme 
sabitleri değiştirilerek andırım yeniden çalıştırılır. Andırımdan elde edilen tepki, 
gerçek dokudan deneysel olarak elde edilen tepkiye istenen ölçüde yaklaştığında, 
andırımda kullanılan malzeme sabitlerinin de gerçek yumuşak dokunun malzeme 
sabitlerine istenen ölçüde yaklaştığı varsayılır ve böylece yumuşak doku mekanik 
malzeme sabitleri istenen hassasiyetle kestirilebilir [25]. 
 
Evrik sonlu elemanlar yönteminin kullanımı sırasında yumuşak dokunun uyması 
beklenen bünye denkleminin önceden bilindiği varsayılır. Eğer kullanılacak bünye 
denklemi deney yapılan dokunun mekanik davranışını modellemede yetersiz kalırsa 
evrik sonlu elemanlar yönteminden bünye denkleminin değiştirilmesine yönelik bir 
bilgi edinilemez. 
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İNDENTÖR DENEYLERİNDEN MALZEME KATSAYILARININ 
BELİRLENMESİ 
 
Bu çalışmada evrik sonlu elemanlar yöntemi ile sabitleri bulunan bünye denklemleri, 
viskoelastik malzeme modeli temel alınarak geliştirilmiştir. Buna göre (9) numaralı 
denklem geliştirilerek gerilmenin gerinme ve zamana bağlı tepkisini veren 
anizotropik denklemler oluşturulmuştur. Bu denklemler şu şekildedir: 
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Bu denklemlerde 

11T , 
22T  ve 

33T  üç asal eksenindeki gerilmeler; 
1ε , 

2ε  ve 
3ε  üç asal 

eksendeki gerinmeler; a, b ve c anizotropiye izin veren birim hücre ölçüleridir. ( )tσ  

ifadesi (9) numaralı denklem ile hesaplanan baz durumdaki sanki-doğrusal 
viskoelastik gerilimdir. Λ  aşağıdaki biçimde ifade edilir: 
 

8

222 cba ++
=Λ                                                          (13)                       

 
Yukarıda verilen bünye denklemleri kullanılarak yumuşak dokuların karakteristik 
özellikleri modellenmeye, yani deneysel veriler andırılmaya çalışılmıştır. Sonlu 
elemanlar andırımları sırasında model Patran 2005 ile oluşturulmuş ve gerekli sınır 
koşulları ile diğer tanımlamalar Marc/Mentat 2005r2 ile yapılmıştır. Modelin 
Marc/Mentat ile çalıştırılması sırasında ise malzeme modeli Digital Fortran 6.0 ile 
derlenerek kullanılmıştır. Her denemede malzeme modelinin kodu içerisindeki 
katsayı değerleri değiştirilmiştir.  
 
Andırma çalışmaları, gevşeme davranışı ile başlamıştır. Gevşeme davranışına ait 
deneysel veri (Şekil 7) eliptik indentör ucunun dokuya 1 mm/s sabit hızla 20 
saniyede 20 mm basılıp oluşan deplasmanın 120 saniye boyunca sabit tutulmasıyla 
elde edilmiştir. Aynı prosedür, oluşturulan sonlu elemanlar modeli ile de 
gerçekleştirilmiş ve altı sonlu elemanlar denemesi sonucunda deneysel veri yeterli 
doğrulukla andırılmıştır. Her deneme için zamana karşı oluşan tepki kuvveti eğrileri 
Şekil 7’de [29] görülmektedir. Ayrıca her sonlu elemanlar çözümünde kullanılan 
malzeme sabitleri Tablo 1’de [29] verilmiştir. 
 
İlk denemedeki (SE1) gevşeme periyodunun başında (t=20s) elde edilen tepki 
kuvveti değerini doğru olarak kestirebilmek için ikinci denemede (SE2) kısa dönem 
gevşeme katsayısı ( 1τ ) küçültülmüş ve gevşemenin başında oluşan tepki kuvveti 

andırılabilmiştir.  



 

291 

 

 
 

Şekil 7. Gevşeme Davranışının Modellenmesi 
 
 

Üçüncü adımda (SE3), gevşeme genlik sabiti (C) büyültülerek toplam gevşeme 
miktarı arttırılmıştır. Şekil 7’de görüldüğü gibi bu değişiklikten sonra hem kısa 
dönem hem de uzun dönem gevşeme miktarlarında artış olmuştur. Fakat, uzun 
dönem gevşeme miktarındaki artışın kısa dönemdekinden daha fazla olması, toplam 
gevşeme genliğinin artmasını sağlamıştır. Dördüncü denemede (SE4), kısa dönem 
gevşeme katsayısı bir miktar büyültülerek eğrinin solu sağından biraz daha fazla 
yukarıya kaldırılmış ve gevşemenin başlangıcındaki tepki kuvveti yeniden 
yakalanmıştır. 
 
Daha sonra uzun dönem gevşeme miktarını azaltmak, yani eğrinin sağ tarafını 
yukarıya kaldırmak için beşinci denemede (SE5) uzun dönem gevşeme katsayısı ( 2τ ) 

büyültülmüştür. Son olarak altıncı denemede (SE6) kısa dönem gevşeme katsayısı 
yeniden küçültülerek deneysel veri yeterli doğrulukla andırılabilmiştir ve % 0.74’lük 
hata kareleri toplamı (NSSE) elde edilmiştir [29]. 
 
 
Tablo 1- Gevşeme Davranışının Andırımında Kullanılan Malzeme Sabitleri 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 A B C 
1τ  2τ  

a b c 

SE1 7.6E-37 42 0.08 8.0 1400 0.7 0.8 0.9 

SE2 7.6E-37 42 0.08 4.0 1400 0.7 0.8 0.9 

SE3 7.6E-37 42 8.0 4.0 1400 0.7 0.8 0.9 

SE4 7.6E-37 42 8.0 5.0 1400 0.7 0.8 0.9 

SE5 7.6E-37 42 8.0 5.0 14000 0.7 0.8 0.9 

SE6 7.6E-37 42 8.0 4.0 14000 0.7 0.8 0.9 
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Gevşeme davranışı başarılı bir şekilde modellenebildikten sonra, aynı bünye 
denklemi ve malzeme katsayıları kullanılarak sünme davranışının andırımı 
yapılmıştır. Sünme davranışına ait deneysel veri (Şekil 8) eliptik indentör ucunun 
dokuya 1 mm/s sabit hızla 20 saniyede 20 mm basılıp, basma sonunda oluşan tepki 
kuvvetinin 120 saniye boyunca sabit tutulmasıyla elde edilmiştir. Aynı yöntem, 
oluşturulan sonlu elemanlar modeli ile de gerçekleştirilmiş ve üç sonlu elemanlar 
denemesi sonucunda deneysel veri yeterli doğrulukla andırılmıştır. Her deneme için 
zamana karşı oluşan tepki kuvveti eğrileri Şekil 8’de [29] görülmektedir. Ayrıca her 
sonlu elemanlar çözümünde kullanılan malzeme sabitleri Tablo 2’de [29] verilmiştir. 
 
 

 
 

Şekil 8. Sünme Davranışının Modellenmesi 
 
 

İlk denemede (SE1), gevşeme davranışını andıran son katsayı seti kullanılmıştır. Bu 
denemede Şekil 8’de de görüldüğü gibi yeterli miktarda sünme tepkisi elde 
edilememiştir. Dolayısıyla ikinci ve üçüncü denemelerde elastik malzeme katsayısı 
(A) azaltılarak deneydeki gibi sünme elde edilmeye çalışılmıştır. Son denemenin 
(SE3) ardından % 0.31 hata kareleri toplamı değeri ile bu andırım da başarıyla 
gerçekleştirilmiştir. 

 
 

Tablo 2- Sünme Davranışının Andırımında Kullanılan Malzeme Sabitleri 
 
 

 

 

 

 

SONUÇ 
 
Önerilen bu yeni malzeme modeli sayesinde gevşeme ve sünme davranışlarının her 
ikisi de tek bir bünye denklem kullanılarak ve sadece bir sabitin değeri değiştirilerek 
andırılabilmiştir. Bu değişim, malzeme modelinin her iki davranışı modellemede 

 A B C 
1τ  2τ  

a b c 

SE1 7.6E-37 42 8.0 4.0 14000 0.7 0.8 0.9 

SE2 3.4E-37 42 8.0 4.0 14000 0.7 0.8 0.9 

SE3 2.6E-37 42 8.0 4.0 14000 0.7 0.8 0.9 
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yetersiz kalması nedeniyle olabileceği gibi deneysel hatalar ve canlı yumuşak doku 
üzerinde deney yapılırken dokunun özelliklerindeki değişimler ve adaptasyon 
nedeniyle de olabilir. Gevşemenin modellenmesi % 0.74 ve sünmenin modellenmesi 
% 0.31 gibi çok küçük hata payları ile gerçekleştirilebilmiştir. Aynı şekilde yine bu 
malzeme modeli kullanılarak histeris ve alışma davranışlarının modellenebileceği 
düşünülmektedir. 
 
Yumuşak doku modellemesi ile ilgili literatür incelendiğinde, yazarların bilgisi 
dahilinde,  sünme ve gevşeme davranışların her ikisini tek bir bünye denklemi ve çok 
az katsayı değişikliği ile andırabilen modele rastlamak mümkün değildir. Bugüne 
kadar bazı bilim adamları sadece gevşeme davranışını modelleyebilmiş, bazıları da 
gevşeme andırımının sonuçlarından faydalanarak sünmeyi modelleyebilmiştir. 
Yumuşak doku mekanik davranışları matematiksel serilere uydurulmaya ve model 
içerisindeki sabitler azaltılmaya çalışılmıştır. Bu çalışma, tüm yumuşak doku 
davranışlarını tek bir model ve çok az sayıda sabit değişimi ile andırabilmesi 
bakımından önemlidir.  
 
Bu model kullanılarak; amputasyon güdüğü ile protez soketi arasında etkileşim 
modellenerek protez soketi tasarımında iyileştirme sağlanabilir; ayakkabı ile ayak 
arasındaki etkileşim modellenerek özellikle yaraları geç iyileşen diyabetli hastalar 
için ayakkabı tasarımında iyileştirme sağlanabilir; yatan hasta ile yatak arasındaki 
etkileşim modellenerek özellikle felçli hastalarda oluşan yatak yaralarını en az 
seviyeye indirmek için yatak tasarımına yenilikler getirilebilir. 
 
Gelişen teknolojinin de yardımıyla, çok daha ayrıntılı sonlu elemanlar modelleri 
oluşturularak, ve çok daha hassas deneyler sonucu daha doğru veriler elde edilerek, 
yumuşak doku davranışları daha da küçük hatalarla hassas olarak yapılabilir.  
 

TEŞEKKÜR 
 

Bu çalışmada kullanılan deney birimi ilk olarak TÜBİTAK MİSAG-183 kapsamında 
üretilmiş, Yüksek Lisans öğrencisi Ali Tolga Petekkaya tarafından geliştirilmiştir. 
Yazarlar, indentör için eliptik uçları özenle üreten Birant Makina’dan Makina 
Mühendisi Sayın Emir Birant’a ve yumuşak doku deneylerini yapan ODTÜ Makina 
Mühendisliği Bölümü yüksek lisans öğrencisi Ali Tolga Petekkaya’ya teşekkür eder. 

 
 

QUASI-LINEAR VISCOELASTIC MATERIAL MODELS TO MODEL THE 
MECHANICAL BEHAVIOR OF SOFT BIOLOGICAL TISSUES OBTAINED 
VIA IN VIVO INDENTOR EXPERIMENTS 
 
The purpose of this thesis is to simulate the mechanical behavior of soft biological 
tissues by using quasi-linear viscoelastic model with the minimum possible change in 
the coefficients. Different sections of human body exhibit different responses like 
stress relaxation, creep, hysteresis and preconditioning to external loading 
conditions. These body sections are generally assumed as pseudoelastic or 
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viscoelastic. After making the choice of the material model from one of these for the 
current study, the finite element model and the material model to be used with this 
model have been created. Then, the constants in the code which simulates the in vivo 
experimental data that was obtained by indenting the elliptic indenter tip into the 
forearm, medial part as close as possible, have been derived by inverse finite element 
method. Consequently, the characteristic behaviors of the soft tissue could be 
simulated. Despite the big size of the finite element model and very long submission 
times, relaxation and creep behaviors could be simulated with the maximum 
normalized sum of square errors of 0.74 % and 0.31 %, respectively. These values 
prove that this material model is well suited for the simulation of the behavior of soft 
biological tissues. By using different experimental data obtained from another 
sections of human body, simulation of the behavior of different soft tissues can be 
achieved by using this material model.  
 
 

Keywords: Soft Tissue, Viscoelastic, Inverse Finite Elements. 
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APPENDIX S 

 
 

POSSIBILITY OF SIMULATING THE EXPERIMENTAL DATA 

BY DIFFERENT SETS OF CONSTANTS WITHIN THE 

MATERIAL MODEL 

 
 

In Chapter 9, all the characteristic behaviors of the soft biological tissue were 

simulated by three material models. The constants in the material models were 

determined for the best fit between the models and experiments. However, these 

constants are not unique, i.e. the experimental data can be simulated by using 

different constant values. In this chapter, this will be proved with the simulation of 

the relaxation behavior with the third material model by using different constants 

than the ones used in the Chapter 9.3.1. 

 

Relaxation experiment data is the same as the original one used in Chapter 9.3.1. 

(continuous line in Figure S1). For the alternative simulation of the experimental 

data, six finite element (FE) trials were performed which can be seen in Figure S1. 

The normalized sums of square errors (NSSE) for each trial were presented in Figure 

S2.  

 

In the first FE trial, the base material model (subroutine) which was presented in 

Appendix M was used. This trial was not able to simulate the magnitude of the 

reaction force at the beginning of the relaxation period. The reaction force for this 

simulation was starting from about 4.2 N, whereas the reaction force of the 

experimental data was starting from somewhere close to 4 N. The great majority of 

the NSSE of 86.86 % for this simulation was arising from this force difference. So, 

in the second FE trial, the elastic constant (B), which had never been changed during 

the previous simulation processes, was decreased from 42 MPa to 41.974 MPa. As 
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seen in Figure S1, by decreasing the value of this elastic constant, the reaction force 

at the beginning of the relaxation period could be simulated. This can also be seen 

from the value of NSSE which decreased to 30.74 % in one step. The majority of this 

error was due to the deficiency in the amount of total relaxation magnitude which 

causes the long term relaxation magnitude to deviate from the experimental data 

more and more as time passes. 

 

 

 

 

Figure S1 – Relaxation Curves for the Alternative Simulation of the Third Model 

with Different Constants 

 

 

To increase the amount of total relaxation magnitude, the relaxation amplitude 

constant (C) in the material model was increased from 0.08 to 0.53 in the third FE 

trial. This procedure increased the magnitude of relaxation amount as seen in Figure 

S1. In the fourth FE trial, the long term relaxation constant ( 2τ ) was decreased from 

1400 seconds to 200 seconds and curvature of the relaxation curve was changed. 

Then, in the fifth FE trial, the relaxation amplitude constant was decreased to catch 

the real amount of relaxation amplitude again. 
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Figure S2 - Normalized Sums of Square Errors for the Alternative Relaxation 

Simulation of the Third Model with Different Constants 

 

 

The last finite element trial was performed to decrease the magnitude of reaction 

force for all the simulation points by decreasing the value of the other elastic 

constant (A). After that step, there occurred a great fit between the experimental data 

and simulation response which was proved by the NSSE value of 0.63 % given in 

Figure S2. The constants used in the original simulation (Chapter 9.3.1) and 

alternative simulation are summarized in Table S1. 

 

 

Table S1 – Constants of the Third Material Model Used in the Original and the  

                   Alternative Simulations of Relaxation Behavior 

 

Trial A B C 
1τ  2τ  a b c 

FE-original 7.6E-37 42 8.0 4.0 14000 0.7 0.8 0.9 

FE-alternative 7.1E-37 41.974 0.53 4.0 200 0.7 0.8 0.9 
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Consequently, what can be seen is the fact that the simulation of the mechanical 

behaviors of soft biological tissues can be performed by using different sets of 

constants within the material models. In this chapter, that was proved by simulating 

the relaxation behavior with the third material model by using another set of 

constants than the one used in the original simulation. This can also be applied to 

creep and cyclic loading simulations and the experimental data can be simulated by 

many different sets of constants with different NSSE values. 


