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ABSTRACT

IDENTIFICATION OF SOFT TISSUE MECHANICAL MATERIAL MODEL
AND CORRESPONDING PARAMETERS FROM IN VIVO EXPERIMENTAL
DATA BY USING INVERSE FINITE ELEMENT METHOD

Usii, Kerem
M.S., Department of Mechanical Engineering

Supervisor  : Assist. Prof. Dr. Ergin Toniik

September 2008, 299 pages

The purpose of this thesis is to search for the best material model for soft biological
tissues in general. Different sections of human body exhibit different responses like
stress relaxation, creep, hysteresis and preconditioning to external loading
conditions. These body sections can be assumed as viscoelastic, poroelastic or
pseudoelastic. After making the choice of the material model from one of these for
the current study, the finite element model and the material code to be used with this
model have been created. The material code has also been tried on a simple finite
element model before implementing to the real model to prove the fact that it is
working properly. Then, the constants in the code which simulates the in vivo
experimental data that was obtained by indenting the elliptic indenter tip into the
forearm, medial part as close as possible, have been derived by inverse finite element
method. Consequently, the characteristic behaviors of the soft tissue could be

simulated. Despite the big size of the finite element model and very long submission

v



times (up to one day for preconditioning simulation), relaxation and creep behaviors
could be simulated with the maximum normalized sum of square errors of 0.74 %
and 0.43 %, respectively. The number of square errors for the hysteresis and
preconditioning behaviors appeared as 2.56 % and 3.89 % which are also acceptable
values. These values prove that these material models are well suited for the
simulation of the behavior of soft biological tissues. By using different experimental
data obtained from other sections of human body, simulation of the behavior of

different soft tissues can be achieved by using these material models.

Keywords: Soft Tissue, Viscoelastic, Inverse Finite Elements.
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YUMUSAK DOKU MEKANIK MALZEME MODELi VE MODEL
PARAMETRELERININ CANLI DOKUDA VE YERINDE DENEYLERDEN
ELDE EDILEN VERILERLE EVRIK SONLU ELEMANLAR YONTEMI
KULLANILARAK KESTIRILMESI

Usii, Kerem
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Yoneticisi  : Yrd. Dog. Dr. Ergin Toniik

Eyliil 2008, 299 sayfa

Bu tezin amaci genel olarak yumusak biyolojik dokular i¢in en iyi malzeme modelini
aragtirmaktir. Insan viicudunun farkli bolgeleri dis yiikleme durumlarina gerilim
gevsemesi, siinme, histeris ve alisma gibi farkli tepkiler verirler. Bu bolgeler
viskoelastik, poroelastik veya psddoelastik olarak kabul edilebilirler. Bu calismada,
yumusak doku malzemesi olarak bunlardan birinin se¢imi yapildiktam sonra, sonlu
elemanlar modeli ve bu modelle beraber kullanilacak malzeme kodu meydana
getirilmistir. Malzeme kodunun uygun sekilde calistigi, gercek modelden 6nce daha
basit bir sonlu elemanlar modelinde denenerek ispatlanmistir. Daha sonra, malzeme
kodunun igerisindeki 6n kolun orta kismina eliptik u¢ ile yapilan basma deneyleri
sonucu alinan deneysel veriyi miimkiin oldugu kadar yakin kestiren katsayilar evrik
sonlu elemanlar yontemi kullanilarak elde edilmistir. Sonu¢ olarak yumusak
dokunun karakteristik ©zellikleri kestirilebilmistir. Sonlu elemanlar modelinin

biiyiikliigline ve hesaplama siirelerinin uzunluguna ragmen (aligma etkisinin
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hesaplanmasinda bir giine kadar), gevseme ve siinme davraniglari sirasiyla % 0.74 ve
% 0.43 normalize edilmis hata kareleri toplami degerleriyle kestirilebilmistir.
Histeris ve alisma etkilerinin kestiriminde ise bu hata oranlar1 kabul edilebilir olan %
2.56 ve % 3.89 olarak ortaya cikmistir. Bu degerler, kullanilan malzeme modellerinin
yumusak biyolojik doku davramigimin kestirimine uygun oldugunu gostermektedir.
Insan viicudunun farkli yerlerinden alinan yumusak doku deney sonuglar
kullanilarak farkli yumusak dokularin davramiglarinin kestirimi de bu malzeme

modelleri kullanilarak yapilabilir.

Anahtar Kelimeler: Yumusak Doku, Viskoelastik, Evrik Sonlu Elemanlar.
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CHAPTER 1

INTRODUCTION

Human beings are consistently in touch with their surrounding environment in all
their life times. Sometimes they smell or listen to notice, or sometimes they touch.
Even in a day, people have plenty of physical contacts with the materials around
them unconsciously. For example they sit on a chair and do not stand for hours, or

sleep on top of the same arm all the night.

The outer surface of human body is mainly composed of soft tissues. So, most of the
mechanical interactions with the surrounding environment is by these soft tissues.
For example, short after one sits on his hip, it takes the shape of the place where he
sat. When that person moves, the shape of his hip changes again and tries to adapt to
its new position. When a person takes a long walk, the soles of his feet can be
bruised due to harmonic force applied to them by the floor as a result of his weight.
People who have paralysis have to lie on a bed for long hours. Because, it is
impossible for them to move their body. In that case, the interaction between their
tissues and the bed causes some bruises (which are called bed bruises). People who
have prosthesis or orthesis are generally complainant about their bruises which

happens due to interaction between their soft tissues and prosthesis or orthesis.

For being able to identify these mechanical interactions between human body and the
surrounding environment accurately, firstly the structure of the soft tissues must be
known. How they react against different loadings must be known in detail and
accurately. The determination of this is done by soft tissue experiments. There are

three types of experiments:



In ex vivo experiments, polymer like materials which have similar characteristics
with soft tissues are used instead of real soft tissues. So, this experiment type is the
one which gives the least meaningful results. But using materials with known
geometries makes this experiment type easier to be applied. In in vitro experiments,
real but dead soft tissues which are cut out of a cadaver are used. The facts that the
soft tissue is not in its original surrounding and it is not alive cause some
characteristics to change. The results obtained by in vitro experiments are better than
the ones obtained by ex vivo experiments, but not as satisfactory as in vivo
experiments. Because, in vivo experiments are performed on a living human body
when the soft tissue is alive. Consequently, this type of experiments gives the most
accurate information about the mechanical behavior of the soft tissue. One
disadvantage of this experiment type is the difficulty in performing due to complex
geometry of soft tissues and the complex interaction of soft tissue with its
surrounding. The experimental data used in this study was obtained by in vivo

experiments applied on the forearm, medial part.

The mechanical behavior of soft biological tissues can be simulated by using models
and by developing mathematical equations. The aim of this approach is to get
complete idea of the behavior of the biological materials under mechanical
constraints. Then, this knowledge can be used to predict their behavior under those

constraints.

For the simulation of the mechanical behaviors of soft biological tissues, one needs
to use the finite element theory. Finite element theory has frequently been used for
the simulation of many material behaviors so far. By the usage of the material library
within the context of finite element software, one can create the model and simulate
its behavior in many conditions. For the common materials it is relatively easier to
model the behavior, because these materials are available in the material library of
the finite element software. However, biological tissues exhibit complex mechanical
behaviors not easily accounted for in classic elastomeric constitutive models. For
example, because of their oriented fibrous structures, they often exhibit pronounced

mechanical anisotropy, nonlinear stress-strain relationships, large deformations and



strains, viscoelasticity, poroelasticity and strong mechanical coupling. In addition,

biological soft tissues are comprised of a dense network of collagen and elastic fibers

which can undergo large rotations and exhibit nonlinear stress-strain behavior that

can induce complex behaviors at the macro scale not easily accounted for in classic

material models (Sun et al., 2003).

Despite a considerable number of investigations, it is difficult to find a satisfactory

constitutive model for the nonlinear viscoelastic behavior of soft tissues. This can be

explained by the following reasons:

Some models in the nonlinear theory of viscoelasticity were proposed by
employing a mathematical apparatus, which is too general to be applied to
real materials. These constitutive models include several unknown functions
which are extremely difficult to be determined with the necessary level of

accuracy by using the standard experiments.

The constitutive equations should be sufficiently simple in order to allow
explicit solutions to be obtained at least for the simplest mechanical
problems, such as uniaxial tension, or simple shear of a specimen.
Unfortunately, this requirement rejects a number of models for the nonlinear
viscoelastic behavior, since they do not even allow explicit inversion of the

stress strain relationship.

While simulating the mechanical behavior of soft tissues, they were assumed
to be in their natural state. But, some special conditions affect them and cause
them behave different than natural state. For instance, cutting a vessel
(physical phenomenon) has an influence on the blood pressure and therefore
the function of other organs. On the contrary, the development of tumorous
lesions (physiological phenomenon) modifies locally the tissue mechanical

properties (Delingette, 1998).



¢ Consequently, for more complicated materials like soft biological tissues, one
needs to create a special material law which should be able to mimic the
stress-strain-time relations first because, the constitutive equations (see
Chapter 2) of soft tissues are not like common materials as explained above.
The development of these special constitutive equations (see Appendices A,
B and C) and related material codes (see Appendices I, K and M) constituted

the main part of this study.

Then, these constitutive equations were used for the simulation of tissues. The
constants in these material codes were identified by using inverse finite element

method (see Appendix G).

Testing methods that include comprehensive testing protocols which allow large
variations in stress and strain states are required for accurate material parameter
estimation when attempting to determine material constants for complex nonlinear

constitutive models.

If one examines the history of soft tissue simulation studies, he would not be able to
find any model which can simulate all the characteristic behaviors of soft tissues. So
far, many scientists have worked on soft tissue simulation. Some of them could only
simulate the relaxation behavior and some others could simulate the creep response
by using the relaxation data. Some tried to fit soft tissue responses to mathematical
series and some tried to decrease the number of constants in these formulations.
These studies in the literature will be presented in detail in the following chapters. In
Chapter 2, some basic information about the constitutive equations will be given. In
Chapters 3, 4, 5 and 6 soft tissue modeling studies which have been performed so far
by using pseudoelasticity, viscoelasticity, hyperelasticity and poroelasticity will be
presented, respectively. Chapter 7 examines some alternative material formulations
not used for soft tissue modeling before. In Chapter 8, material and finite element
models will be discussed deeply and the results will be presented in Chapter 9.

Finally, conclusion remarks will be discussed in Chapter 10.



This study aims to simulate all the characteristic behaviors of soft biological tissues
with only one constitutive equation with minimum possible change of material

constant.



CHAPTER 2

CONSTITUTIVE EQUATIONS

Constitutive equations describe the stress-strain (or stress-strain-time history)
relationship of a material under a general, three-dimensional stress field. Constitutive
equations must be known before any structural analysis can be performed. In order to
predict the mechanical response of biological soft tissues one has to know the
material law (i.e. the constitutive equation) of the soft tissues. Yet, for all the
biological materials, with the possible exception of the aorta, there is no single
constitutive equation. This is partly due to the difficulties in testing and measuring
biological tissues, and partly due to the difficulty in reducing the experimental data

to a mathematical expression (Tong et al., 1976).

It is not surprised that there are a great many constitutive equations describing an
almost infinite variety of materials. What should be surprising, therefore, is the fact
that three simple, idealized stress-strain relationships, namely, the nonviscous fluid,
the Newtonian viscous fluid and the Hookean elastic solid, give a good description of
the mechanical properties of many materials. They are the simplest laws that can be
devised to relate the stress and strain, or strain rate. Within certain limits of strain and
strain rate, air, water and many engineering structural materials can be described by
these idealized equations. Most biological materials, however, cannot be described so

simply (Fung, 1993).

Since a constitutive equation describes a physical property of a material, it must be
independent of any particular set of coordinates of reference with respect to which
the components of various physical quantities (like stress and strain) are resolved.

Therefore, tensors are used to express constitutive equations.



In the development of deformable body biomechanics, the most crucial step is the
identification of the constitutive equations of the tissues involved. If the constitutive
equations are known, then biomechanics problems can be formulated as
mathematical problems and solutions can be definite. Without constitutive equations,
biomechanics will remain qualitative in character. After the form of the constitutive
equation is determined, the next step is to systematically collect data on the material
constants of various tissues. Until a complete set of data on material constants is
obtained, the power of biomechanics to predict the function of a soft tissue will be

limited (Fung, 1984).



CHAPTER 3

PSEUDO-ELASTIC MODELING

The mechanical properties of most of the soft biological tissues are qualitatively

similar. As an example, arteries are inelastic materials. They do not meet the

definition of an elastic body. Elastic materials have a single-valued relationship

between stress and strain (which also means that they have a single-valued

relationship between force and displacement), but arteries show hysteresis when they

are subjected to cycling loading and unloading. As shown in Figure 1, they are

represented by different force-displacement curves in loading and unloading. The

existence of the loop shows that the tissue is inelastic. Since the loop is repeatable

one can treat the loading and unloading curves separately and borrow the method of

the theory of elasticity to describe the mechanical properties (Fung, 1984).

Force

Area between two curves
appears as "work loss" which is
also called as "hysteresis"

_ Loading

Unloading

Displacement

Figure 1 - Basic Force-Displacement Curve for Inelastic Materials
(adopted from Introduction to Biomechanics Lecture Notes, Toniik, E., 2006)



They show stress relaxation when held at a constant strain. They show creep when
held at a constant stress. Those kinds of behaviors are shown in Figure 2a and 2b,
respectively. They are anisotropic. Their stress-strain relationships are nonlinear.
After all these factors, the problem of how to describe the mechanical properties of
inelastic materials in a simple and accurate mathematical form becomes quite acute.
A popular approach to nonlinear elasticity uses the incremental law: a linearized
relationship between the incremental stresses and strains obtained by subjecting a
material to a small perturbation about a condition of equilibrium. This approach was
applied to the arteries in the 1950s but the elastic constants so determined are
meaningful only if the initial state from which the perturbations are applied is
known, and are applicable only to that state. It turns out that these incremental
moduli are strongly dependent on the initial state of stress. A full documentation of
this dependence is very difficult to do experimentally and has not been accomplished
so far. The difficulty is not due to any lack of technology of recording or patience of

the experimenter, but due to the viscoelastic character of the material (Fung, 1980).

Reaction Force Decreases as
time passes, so is the Stress.
This is called "stress relaxation'

Force

Time

Figure 2a - Force-Relaxation Curve for Viscoelastic Materials at Constant

Displacement
(adopted from Introduction to Biomechanics Lecture Notes, Toniik, E., 2006)



Displacement Increases as
time passes, so is the Strain.
This is called "creep"

Displacement

Time

Figure 2b - Creep Curve for Viscoelastic Materials at Constant L.oad
(adopted from Introduction to Biomechanics Lecture Notes, Toniik, E., 2006)

All experimenters agree that to test a biological soft tissue in any specified procedure
of loading and unloading it is necessary to perform the loading cycle a number of
times before the stress-strain relationship becomes repeatable (Fung, 1970, Bischoff
et al, 1999, 2006, 2004, Abramowitch et al, 2004, Fulin et al, 2007). This process is
called preconditioning (Mullin’s effect). A testing protocol such as loading and

unloading at a constant rate or sinusoidal stretching and shortening must be selected.

Focusing attention to preconditioned arteries subjected to cycling loading and
unloading at constant strain rates, one can see that, by definition, the stress-strain
relationship is well defined, repeatable, and predictable. For the loading branch and
the unloading branch separately, the stress strain relationship is unique. Since stress
and strain are uniquely related in each branch of a specific cyclic process, the
material can be treated as one elastic material in loading (increasing strain), and
another elastic material in unloading (decreasing strain). Thus the method of the

theory of elasticity can be borrowed to handle an inelastic material and two different

10



equations for these two branches can be used. Because of the fact that inelastic

materials are being dealt with, it is called pseudo-elasticity.

Pseudo-elasticity 1is, therefore, not an intrinsic property of the material. It is a
convenient description of the stress-strain relationship in specific cyclic loading. The
usefulness of the concept of pseudo-elasticity is greatly enhanced because of the fact
that it is rather insensitive to strain rate. The stress-strain relationships of some
tissues have been tested in a range of strain rate covering a million-fold difference
between the slowest and the fastest cycling, and the stresses at the same strain are
usually found to differ by less than a factor of two (Fung et al, 1967, 1975, 1984,
1993, 1994).

The stiffness of soft biological tissues increases rapidly as tensile stresses increase
because of the composite nature of the materials. These tissues are composed of
collagen networks, elastin networks, smooth muscles, and ground substances. The
fibers of collagen, elastin, and smooth muscles are curved: they gradually take up
more and more stresses as they become straightened and stretched. Collagen fibers,
when straight, have Young’s modulus which is two or three orders of magnitude
higher than that of the elastin. Smooth muscle has very large hysteresis in cyclic
deformation. The network configuration of these fibers, as embedded in the ground
substance, changes with the strain. Speculations abound, but the details are not

known very clearly (Fung, 1980, Dehoff, 1978, Henry et al, 2005).

3.1. Pseudo-Strain Energy Function

Biological specimens must be tested in a manner as close as to in vivo conditions as
possible. By saying in vivo conditions one means that, the specimens must be as
close as to physiological conditions. So, choosing the most appropriate method for
testing becomes quite important. The shape and size of the specimens are limited by

nature. Also the type of loading that can be imposed is often restricted due to the lack

11



of the accuracy of the testing apparatus. As a result of these factors, one has to be

satisfied with certain approximations.

By considering the body of the specimen tested two-dimensional, the circumferential
and longitudinal coordinates are denoted by @ and z as shown in Figure 3. Then, the

stretch ratios in these directions are denoted by A, and A, the Green’s strains
(referred to undeformed state) by E,, and E_, the Cauchy stresses (referred to
deformed state) by o, and o, and the Kirchoff stresses (referred to undeformed

state) by S, and S_ (Malvern, 1969).

Figure 3 - Representative Coordinate Directions of the Specimen
(adopted from Introduction to the Mechanics of a Continuous Medium, Malvern,
1969)

Considering a periodic loading and unloading at a constant rate of stretching,

Kirchoff stresses can be written in terms of Green’s strains as;

s =2&W)
Y

12



where; p, denotes the density of the material in the unstressed state and W denotes
the strain energy per unit mass. In this formulation, the term p, W is called pseudo-

strain energy function.

Pseudo-strain energy functions, however, do not have the thermodynamic meaning
of the strain energy function, because they depend not only on preconditioning, but
also on whether the process is loading or unloading. Nevertheless, the assumption of
the existence of a strain energy function for either loading or unloading does simplify
the mathematical problem of data reduction. The best strain energy function is the
one which involves only a minimum number of material constants. Biological
specimens vary a great deal, not only from animal to animal and specimen to
specimen, but also for the same specimen as the strain history changes. An empirical
expression that involves many material constants is likely to experience difficulty in
determining these constants. In the selection of a proper form for the strain energy
function, the common fact is; many biological materials are very flexible for quite a
large range of deformation (with stretch ratios up to the order of 1.5 or 2.0), and then

they become very stiff (Tong et al., 1976).

There are many pseudo-strain energy functions in the literature used for different soft

tissues some of which are mentioned below.

3.1.1. Pseudo-Strain Energy Function for Arteries and Veins

For arteries there are two forms of pseudo-strain energy function used much widely.
These are the polynomials used by Patel, Vaishnav and their associates (1972), and

exponential functions used by Fung et al. (1979).

The polynomial form is;

13



PoW = AE,’ +BE,,E_+CE_’+DE, +EE,  E_+FE,E_'+GE_’

..................................... 2)
where; A, B, C, D, E, F and G are material constants (Fung, 1973). The exponential
form is;

_C 2 2
poW = 5 expla, Epy +a, E"+2a,EQE T.oooviviiiiiiiiii 3)

where; C, a,, a,and a, are material constants (Fung et al., 1979). It is shown by
experiments that both of the pseudo-strain energy function forms can fit experimental
data quite well in the range of physiological stresses and strains. The correlation

coefficients are usually better for equation (3) than for equation (2) (Vaishnav,

1972).

3.1.2. Pseudo-Strain Energy Function for Skin

The skin is also an inelastic material, but after preconditioning the stress-strain loop
becomes unique in cyclic loading and unloading, and it is insensitive to strain rate.

Keeping these properties in mind, one can use equation (1) for skin, too.

For the skin in a state of generalized plane stress, the pseudo-strain energy function

proposed by Tong et al (1976) is the following;

PoW = f(AE) + CexXpLF (A, E)].cccoiiiiieieiiiieeeeeeee ()
where;

f(O,E)= @ E\ +0,Ey +20, E) Eyy +0 (Epy + Ep))? oo (5)
F(a,E)= a,E," + a, Epy + 20, ) Eyy + a3 (Ejy +Ep)) e (6)

14



E,, and E,, are Green’s strains in the longitudinal direction X,, and transverse

11
direction X,, respectively; E,, and E, are shear strains in these directions;

C,o,,0,,04,0,,q,,a, ,a, and a,are material constants (Tong et al., 1976).

Tong and Fung also examined the function F(a,E) in the following form (Tong et

al., 1976);

F(a,E)=a,E,’+a,E,," +2a, E,  E), +a,(E,, +E, )’

3 3 2 2
TNE L Ey Y E T Ey Y EGE,
where; 7,,7,.,7,,¥s are also constants to include the higher order terms in the

equation. This improves the fitting between the theoretical expression and the

experimental data.

After further examination, Tong was able to obtain a good fit with the experimental
data of the skin by expressing W as an exponential function of a polynomial of the

second and third degree, omitting the first degree terms.

Let the orthogonal coordinates x,, x, be chosen in the plane of the skin, with x,
pointing the longitudinal (head to tail) direction, and x, be perpendicular to x,, x, .
Then the normal stress S;; and the shear stresses S,, = S,;, S;, = §,; all vanish

due to generalized plane stress case. Hence, if equation (1) applied, the pseudo-strain

energy function p,W will not contain E,;, E, , E;, E,,, E,; because S, =0
implies d(p,W)/dE,; = 0. Therefore, pseudo-strain energy function is only a

function of E,,, E,, E,, for two-dimensional specimens in a state of plane stress.

It is shown by Fung (1965) that;
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1

_ L
E, = (£ -1
Em:%(z;—l) .................................................................. (8)

1(dx, dx
E,=— ‘ :
2\ da, da,

where; E,,, E,, and E,, are Green’s strains; A4, =dx,/da, and 4,=0x,/da, are the
stretch ratios in the directions of x, and x,, respectively; a, and a, are the location
of a particle in the undeformed state; x, and x, are the location of the same particle

in the deformed state. The pseudo-strain energy function for the skin (for the two-

dimensional case by assuming the skin as orthotropic material) can be written shortly

as;

1
W = 5 (¢,E + &, E;, + &, E} + 20, E,|E,,)
1
+ E cexp(aq, Elz1 + a, E222 + a, Elz2 + 2a,E E,
b P E + Y ES A Vi E E )y + Vs By EL) oo 9)

where; a’s, a’s, ¥’s and ¢ are constants. Then stress-strain relationships can be

obtained by equation (1) as;

ow
S11 :a—Ell:alEll +054E22 +CA1X
0
Sy =W B 4 G Ey 4 CALX oo (10)
0E,,
ow
S12 :EZQ3E12 +CCl3E12X
where;
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A

1 =

3 1
a E,+a,E, + SN E + y,E,E, + 37 E i, 1)

3 1
A= a,E, +a,E,+ PRL E, + S El A Vo E Epyeeeiiiaeeiiaee (12)

X =expla,E} +a,E}, +a,E}, +2a,E,E,,

+ 7 E131 + 7 Egz + 7 E121 E, +7E, Ezgz]

Since only tensile testing data are available, only those constants associated with

tensile strains can be determined. That means, the shear strain E,, is zero in all the
experiments and consequently ¢; and a, cannot be determined. Remaining elastic
coefficients to be determined (@, @,, @, , ¢, a,,a,,a,, ¥,»¥,» V- ¥s) are defined

by equation (10) as;

28

— =g +cla, +3VE |+ Y, Epy +2A7 1 X coiiiiiiie e, (14)
0E,,

0

ﬁ=a2+c[a2+372E22+75En+2A§]X ....................................... 15)
0E,,

0S 28

ﬁ:a—éﬁ:%+c[a4+74E11+75E22+2A1A2]X ............................ (16)

There are two situations explained below;

i )All the y's are set to zero. In this case there are seven constants to be determined,
namely: ¢, @, , ,, c, a,, a,, a,. Using subscripts A, B, etc. to denote experimental

data points A, B, etc. one chooses the following seven pieces of experimental

information;
Sy=(Sy),  atA (17)
S, =(85), AL Ao, (18)
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98y _[9Su BE Ao (19)
9E, (9E, ),

I
05,/9E, — & :[ 08,/ ~ &, j A Cvvvvneeeeneeenenn(20)
S, —a,e, —a,e, S, —a,e — e, ).

Sy =(8,), AL B, (1)
Sy, =(85), AL B, (22)
Sy = (80))  AED it (23)

From equations (14) — (23) one can find;

a,=05[(X,—(E,+a,Epla) 1E, +a,E,/la]l;  atA............. (24)

a,=05[X,—(E, +a,E, /a,) ' 1[Eyp +a,E,/a,]¢  atC.....oocvnn... (25)

a
a, = a, KX3EH - aZEzzj/(E11 - XSEZZ)} e (26)
1 A

=[S, = E, —,Ep) /(@ B, + @, Ep)X 4 eeeeoeeeoeoeeeecesessssen27)

o, = [S,(E,), =S, (En), 1/ [(En), (E)y = (En)y (B (28)
Ay = [(Sy =@ Ep ) Eny Lyeeeoeeeo e, (29)
= [(S, =@ Ep ) Epy Jyeeeeooeeeeoieeee e (30)
where;

X, = KBSZZ - azj / (S, -, E, -, E, )} atC..oooeei (32)
C

0E,,
X,= [(Sp-a,E, —,E,)/ (S, — 4 E,, —a,Ey,)],  atA................ (33)
X zexp(a1 E +a, E}, +2a4E11E22)(34)

Sa=[S —cla By + @ Ep)X |yooeiioiiiiiiiiiiiennnn(35)
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Sp = [Szz _C(a4 E, +a, Ezz)X]

)RR KR EE R R RPD

Sp = [Szz _C(a4 E, +a, Ezz)X]

) R R RE

From the equations, an iteration scheme can be set up to determine the constants
a,a,,a,,c,a, a,, a,. Starting with an initial guess of & ’s and a's, one may
evaluate the updated a's from equations (24) — (26) and (31) — (33). The iteration
process is continued with fixed & ’s until a set of convergent a' s are obtained. Then
equations (27) — (30) and (34) — (37) is used to evaluate the updated ¢’ s and « ’s. If

a’s converged, the iteration stops; otherwise, the updated & ’s and the current a' s

are used to start the iteration again from equations (25) — (26) and (31) — (33).

If the stresses (or strains) at points A and C are much higher than those at points B
and D, an excellent guess of & ’s can be obtained by evaluating equations (28) — (39)

and (35) — (37) with a's, set to zero.

ii ) ¥, and y,are set to zero and Y, is set to equal y.. In this case, there are eight
constants to be determined, namely: «,,,,,,c,a,,a,,a,,Y,(=Y;). Then in

addition to conditions (19) — (23), one requires;

ﬂ:{ﬂj AU A oo (38)
oE, \0E, ),

The special case where the experimental data (E22 ) N :(E22 )B =0 will be

considered. Then, all the equations for iteration are the same as those of equations

(24) — (37), except that equations (25), (26) and (34) are replaced by;

ﬁ:z{En{aS”/aE—“_““j— (1+ 24, EIZI)XS} e eeeen(39)

a, Sy - Ey A
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1 B}
a,=05{X, -[1+(y,E,/a,) [E,, + a, E,,/a, +7, (EHE22 + 2E121j/a2] "

1 ,
*(E,, +a,E, |a,+7, (EHE22 + 2E121j/a2 3 atCoiiieiieeiin 41)

X =expla, EX + a, E + E\Ep[2a, + 7, (Eyy + Ep)eveeoeoeiieeen (42)

and equation (37) is replaced by;

1
S, = {522 - c(a4 E,+a,E, + 3% E)+7, EHEZZJX} e (43)

D

The iteration procedure is similar to that of case i. It should be noted that,
since (E22 ) A:(E22 )B =0, no initial guess of a, or a, is necessary. Once the initial
guess of &’s is made, a, can be evaluated from equation (24), ¥, is then evaluated
from equation (39), a, is evaluated from equation (40), and then a, is determined

from equation (41) by iteration.

It is found that the fit between these mathematical formulas and the experimental
data is good. However, if one uses the constants in one experiment with a specific
protocol and preconditioning to compute the stress-strain relationship in other
experiments on the same specimen, but with a different protocol, the success is
uniform. The agreement between the mathematical formula and the experimental

data is still reasonable when/ly =1.23, but in the case of /1}, =1.41 there is no

correlation at all (Tong et al., 1976).
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3.1.3. Pseudo-Strain Energy Function for Lung Parenchyma

The Lung parenchyma is a big organ with a complex structure. Its shape looks like a
foam rubber which means that it is a very soft tissue. Pseudo-strain energy function

for the lung parenchyma is deduced by Hoppin et al. (1975) as;

4 2
PoW = a (K + B+ ) + 2 b, (AR + BB+ L) + e, B A A4

i=1 i=1

+g‘:f(’ﬁi’1§+’1§iﬂ§+ﬂ§iﬂﬁ+fﬁi+1§ﬂ§i+ﬂ§ﬂﬁf) .......................... (44)

where; a,, b, and ¢, are material constants. This equation was obtained by applying

triaxial loading on a lung tissue specimen of cubic geometry. So, stretch ratios in
three directions are included in the equation. Also slabs of lung tissue were tested
which was bathed in saline and subjected to cyclic biaxial loading at constant rate of
stretching and strain. The experimental results were quite extensive. When equation

(45) is applied to experimental data, the fitting is excellent;
pPoW =Cexpla E +a, E5,+2a, E, E,,] + symmetric terms by permutation

in which the last line means the sum of all terms obtained by cyclic permutation of

the subscripts 1. 2 of Eby 2, 3 and 3, 1.
A major difference between equation (44) and (45) is that isotropy is assumed in the

former but not in the latter. For fitting latter experimental data, the anisotropic

expression leads to higher correlation coefficients (Fung, 1980).
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3.1.4. Pseudo-Strain Energy Function for Mesentery and Muscles

For the mesentery and muscles (in the passive state), Fung has shown that the
following equation provides an excellent fit of the experimental data of uni-axial
tension tests, except for a small region very near the state of zero stress (Fung, 1973,

1967);

where; T is the stress per unit original area; £ is the strain relative to an initially

undeformed state; and « , f are constants determined experimentally. Integration of

equation (46) yields a stress T as an exponential function of strain, E.

3.1.5. Pseudo-Strain Energy Function for Lower Extremity Residual Limb

Tissues

The bulk soft tissue was approximated as a single, homogeneous, isotropic (in the
undeformed configuration), nonlinear elastic, incompressible material represented by
the James-Green-Simpson strain energy density function (Mooney, 1940), as

follows;

W=2C(I-3)+2C,(I =3 +Cy(I =3) oo ()

where; W is the strain energy density (energy-per-unit undeformed volume); [ is the

invariant of Green-Lagrange strain tensor ( /, = I, = [ ; the first and second strain

invariants are equivalent for an incompressible material under axisymmetric loading

conditions); C, are the nonlinear elastic material coefficients to be determined

(Toniik et al., 2003).
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Equation (47) was used to simulate the nonlinear force displacement behavior of
residual limb soft tissues, as measured during cyclic rate-controlled indentation. This
model, one of the simplest phenomenological nonlinear elastic formulations
available in the literature, was capable of simulating experimentally observed
nonlinear compressive force displacement behavior of the residual limb bulk soft

tissue of individuals with transtibial amputations.

The individual soft tissue constituents (e.g., skin, fat, muscle) at the test location are
modeled as a single, homogeneous, isotropic, nonlinear elastic material. The
behavior of the individual constituents and their interaction with each other are not
modeled. Other potential source of error for this model is the axisymmetric
approximation of the indenter and residual limb geometry. Also, the frictionless
contact assumption between the indenter tip and soft tissue during computer

simulations can cause some errors.

James-Green-Simpson equation is an elastic formulation. The time-dependent
phenomena, such as creep and relaxation, as well as hysteresis during cyclic loading,
have been observed for residual limb tissues. These behaviors cannot be simulated
with the present elastic model. The compressive behavior of lower extremity soft
tissues is nonlinear and viscoelastic. So, with the addition of viscoelastic material

properties, a wide range of loading spectra can perhaps be simulated.
Another of the disadvantages of this formulation is the fact that the material

parameters do not have any physiological meaning. They are only constants for

fitting the equation to the experimental data.

3.1.6. Generalized Pseudo-Strain Energy Function

There are many more forms of strain energy functions proposed for various tissues.
Undoubtedly all forms proposed for rubber-like materials could and should be

examined for biological applications, but it is known that the most popular ones do
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not fit experimental data on the soft tissues like arteries, skin, lung parenchyma

which were presented in this thesis.

Fung proposed a generalized constitutive equation for the biological materials in the
form of a strain energy function which can be written in tensor notation as follows

(Fung, 1973);

L

1 1
W= 5 iy E; Eyy + By Brnpg Esn E g €Xp (v, E; + 5 Vi By Exg o) covvvinnns (48)

Where; @,y;» Bopg> Vij» V- @and B, are constants to be determined experimentally.

In practice, the second term is used to express the behavior of the material at a high

stress level, and the first term is used to remedy the situation at a lower stress level.

3.2. The Effect of Strain Rate

Strain energy functions are generally used to define perfectly elastic materials. Since
soft biological tissues are treated as one elastic material in loading and another elastic
material in unloading, one can borrow this method to describe these loading and
unloading branches separately. But pseudo-elasticity has no generality; it can be
defined only for a specific cyclic loading at a specific frequency after
preconditioning. In practice, it is rather insensitive to strain rate and, therefore, has a
certain degree of generality. Experiments show that it is a general feature of most
biological soft tissues (such as muscle, the artery, the mesentery, the skin, the ureter)

that the stress-strain relationship is rather insensitive to strain rate.

Having a modest variation over a wide range of strain rates does not mean, of course,
that the strain-rate effect is unimportant. There are occasions in which the
characteristic strain-rate effect is certain limited ranges of frequencies can serve to
identify the conditions of health in a tissue. Often theoretical and experimental

results cannot be identified without taking the dynamic material characteristics into
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account. But any theory of viscoelasticity of living tissues must account for the fact
that the pseudo-elasticity of these tissues does not vary very much over a very wide

range of strain rates (Fung, 1980).

All the experiments and mathematical expressions of pseudo-elasticity presented
above are limited to stresses and strains in physiological range (for example
physiological range of circumferential stretch ratio for arteries lies in the range of 1.4
to 1.8 (Fung, 1980)). They cannot be applied when the stress closes to the breaking
point. Furthermore, virtually no data are available for soft tissues loaded in
compression, because these tissues are very soft in the neighborhood of zero stress,

and therefore buckle under small compressive stress.

As a conclusion main advantages and disadvantages of modeling thye soft tissue
material behavior with the pseudo-elastic constitutive equation can be summarized as

follows:

Advantages:

e Soft biological tissues are not elastic materials. It is hard to model
the full behavior. Assuming loading and unloading branches as two
different materials, there is seen a single-valued relationship between
stress and strain which allows using the theory of elasticity.

e Convenient for modeling almost all biological soft tissues, because
the method of theory of elasticity can be borrowed for these inelastic
materials.

e The usefulness of the concept of pseudo-elasticity is greatly
enhanced because of the fact that it is rather insensitive to strain rate.

e The assumption of the existence of a strain energy function for either
loading or unloading does simplify the mathematical problem of data
reduction.

® Bu virtue of the strain-rate insensitivity, pseudo-elasticity acquires a

certain measure of independence.
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Disadvantages:

It is necessary to perform the loading cycle a number of times
before the stress-strain relationship is repeatable which is called as
preconditioning.

Pseudo-strain energy functions do not have the thermodynamic
meaning of the strain energy function.

Pseudo-elasticity has no generality; it can be defined only for a
specific cyclic loading at a specific frequency after preconditioning.

If one uses the constants in one experiment with a specific protocol
and preconditioning to compute the stress-strain relationship in
other experiments on the same specimen, but with a different
protocol, the success is uniform.

Elasticity allows modeling by considering the loading and unloading
branches separately, but the soft tissue is not elastic at all.

The agreement between mathematical formulas and the
experimental data is reasonable until a specific stretch ratio (about

12-13).
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CHAPTER 4

VISCOELASTIC MODELING

As mentioned in Chapter 3, soft biological tissues are not elastic. Viscoelasticity
describes materials that exhibit both viscous and elastic characteristics. . Newtonian
viscous fluids, like honey, resist shear flow and strain linearly with time when a
stress is applied. Elastic materials strain instantaneously when stressed and just as
quickly return to their original state once the stress is removed. Viscoelastic materials
have elements of both of these properties and exhibit time dependent strain. Many
viscoelastic materials exhibit rubber like behavior. They show hysteresis in the
stress-strain curve with the area of the loop being equal to mechanical energy lost

during the cycle as presented in Figure 1.

Unlike purely elastic materials, a viscoelastic substance has an elastic component and
a viscous component. The viscosity of a viscoelastic substance makes it strain rate
dependent with time. Purely elastic materials do not dissipate mechanical energy
(into heat) when a load is applied, then removed. However, a viscoelastic substance

dissipates energy when a load is applied, then removed (Fung, 1994).

4.1. Constitutive Models of Linear Viscoelasticity

A mathematical model of viscoelasticity of a tissue must cover all features of
hysteresis, relaxation, and creep. One of the most popular models of linear
viscoelasticity is the Maxwell model of a spring in series with a dashpot (Figure 4a).
The other is the Voigt model with a spring and dashpot in parallel (Figure Sa). A

third is the Kelvin model which is a combination of a spring in parallel with a
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Maxwell body (Figure 6a). None of these can represent a soft tissue, because when a
material represented by any one of these models is subjected to a cyclic strain, the
hysteresis will not be insensitive to strain rate: as frequency increases, the dashpot in
the Maxwell body will move less and less at same load so the hysteresis decrease
with frequency (Figure 4b). On the other hand, the Voigt body will let the dashpot
take up more and more of the load so that the hysteresis increases with frequency
(Figure 5b). For the Kelvin body there exist a characteristic frequency at which the
hysteresis is a maximum (Figure 6b). None of these has the feature of nearly constant

hysteresis as soft tissues do (Schwartz et al., 2005).

4.1.1. Maxwell Model

The Maxwell model can be represented by a purely linear viscous damper (dashpot)
and a purely linear elastic spring connected in series, as shown in Figure 4a. The
same force F is transmitted from the spring to the dashpot. This force produces a

displacement F/u in the spring and a velocity F/n in the dashpot. Then the

velocity of the spring extension becomes F / M. The total velocity u# is the sum of

these two;

Obtained by using equation (49), the model can be represented by the following
constitutive equation;

de,,, _ de, N de; _ g+ld0'

cevreerneennen(50)
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where; €,,, 1s the total strain and &,, and & are strains at the damper and spring,
respectively; o 1is the stress; u is the elastic modulus of the material and 7 is the

viscosity of the material.

H
7 M
——"VV"\\——F
Inf
Figure 4a - Maxwell Model Figure 4b - Hysteresis-Frequency Curve

of Maxwell Model

If the material having the Maxwell model is put under a constant strain, the stresses
gradually relax to zero. When a material is put under a constant stress, the strain has
two components. First, an elastic component occurs instantaneously, corresponding
to the spring, and relaxes immediately upon release of the stress. The second is a

viscous component that grows with time as long as the stress is applied.

Furthermore, if the force is suddenly applied at the instant of time # = 0, the spring
will be suddenly deformed to u(0)= F(0)/u, but the initial dashpot deflection

would be zero, because there is no time to deform. Thus, the initial condition for

differential equation (49) is;
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The Maxwell model predicts that stress decays exponentially with time. It is
important to note limitations of such a model, as it is unable to predict creep in

materials based on a simple dashpot and spring connected in series.

4.1.2. Voigt Model

The Voigt model consists of a purely linear viscous damper (dashpot) and a purely
linear elastic spring connected in parallel, as shown in Figure 5a. The spring and the
dashpot have the same displacement. If the displacement is u, the velocity # , and the

spring and the dashpot will produce forces gu and 7n7u, respectively. The total force

F is therefore;

Obtained by using equation (52), the constitutive equation of the Voigt model is

expressed as a linear first-order differential equation;

delt
o(1) = ue(t) +n e (53)
dt
H

n

T

L

Iz — F
AN —
In f

Figure Sa - Voigt Model Figure Sb - Hysteresis-Frequency Curve
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Upon application of a constant stress to a material having the Voigt model, the
material deforms at a decreasing rate, asymptotically approaching the steady-state
strain. When the stress is released, the material gradually relaxes to its undeformed
initial state. At constant stress, the model is quite realistic as it predicts strain to tend

to o /4 as time continues to infinity. Because of the fact that the dashpot and the

spring are connected parallel, no deflection will occur in both of them if the force is

applied suddenly. So, the appropriate initial condition is;

Similar to the Maxwell model, the Voigt model also has limitations. The model is
extremely good with modeling creep in materials; but with regards to relaxation the
model is much less accurate. Further, it cannot model immediate elastic response

which can be done by Kelvin model.

4.1.3. Kelvin Model

The Kelvin model effectively combines the Maxwell model and an elastic spring in
parallel, as shown in Figure 6a. A viscous material is modeled as a spring and a
dashpot in series both of which are in parallel with a lone spring. This time, let us

break down the displacement u, (of the lower branch) into u, for the dashpot and

’

u, for the spring (of the upper branch), where as the total force F is the sum of the

force F, from the spring (of the lower branch) and F, from the Maxwell element.

Thus;

T (55a)
F = F A Fy o (55b)
FLom Uy, (55¢)
F, =My = [yl e (55d)
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Substituting equations (55¢) and (55d) into (55b), we obtain;

Substituting the term u, obtained from equation (55a) into equation (56);

Fo=gu, + i, (y —uy) = (f, + )ity = ytty oo (57)

Hence;

F+—LF=(u +u)u, y2u2+ﬂ Ly F L )iy A+ Ty e (58)
2 2

’

Replacing the last term by 4, u, and using equation (55a), we obtain;

F+lF=ypu, +77{1+ﬂju(59)

2 2

Equation (59) can also be written as;

FAr, F=E (4T, 0) i (60)
where; 7, = s called the relaxation time for constant strain; T, = l(l + &j
My H Hy

is called the relaxation time for constant stress and E, = u, is called the relaxed

elastic modulus.

For a sudden applied force F(0) and displacement x(0), the initial condition is;
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T, F(0) = Ep 7, 10(0) (61)

For the Kelvin model, the governing constitutive equation can also be given as;

ﬂz[ﬂdﬁ o ng

dt
N 62)
dt M+ My
H
77 Mo
T
[ F
AN
H
Inf
Figure 6a - Kelvin Model Figure 6b - Hysteresis-Frequency
Curve of Kelvin Model

Under a constant stress, the modeled material will instantaneously deform to some
strain, which is the elastic portion of the strain, and after that it will continue to
deform and asymptotically approach a steady-state strain. This last portion is the
viscous part of the strain. Kelvin model is more accurate than the Maxwell and Voigt
models in predicting material responses, mathematically it returns inaccurate results
for strain under specific loading conditions and is rather difficult to calculate

(Malvern, 1969, Toniik, 2006).
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4.1.4. Maxwell-Weichert Model

A suitable model for soft tissues is the Maxwell-Weichert model, as shown in Figure
7a. This model has an infinite number of springs and dashpots. In the corresponding
hysteresis diagram shown in Figure 7b, there are an infinite number of bell-shaped
curves which add up to a continuous curve of nearly constant height over a very wide

range of frequencies.

F%m Ef [F EkF

Figure 7a — Infinite Number of Springs and Dashpots
(adopted from Introduction to the Mechanics of a Continuous Medium, Malvern,
1969)

Inf

Figure 7b - Hysteresis Diagram of Infinite Number of Springs and Dashpots

(adopted from Introduction to the Mechanics of a Continuous Medium, Malvern,
1969)

It takes into account that relaxation does not occur at a single time, but at a
distribution of times. Due to molecular segments of different lengths with shorter

ones contributing less than longer ones, there is a varying time distribution. The
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Maxwell-Weichert model shows this by having as many spring-dashpot Maxwell

elements as are necessary to accurately represent the distribution (Malvern, 1969).

4.1.5. Generalized Maxwell-Element

The basic constitutive elements of linear viscoelasticity are an elastic spring called
Hooke-element (Figure 8a) and a viscous Newton-element (Figure 8b). The elastic

material constant g gives the linear relation (Kaliske et al., 1997);

between elastic stress o° and elastic strain £€°. The viscous stress ¢’ of the Newton-

element depends on the strain rate £". For the Newton-element these quantities are

related linearly by the coefficient of viscosity 7;

analogously to the elastic Hooke-element. The viscosity 77 can also be expressed in

terms of the elastic constant u;

by introducing the relaxation time 7 .
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Figure 8a - Hooke- Figure 8b - Newton- Figure 8c - Maxwell-
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The combination of Hooke-element and Newton-element in series yields the so-

called Maxwell-element (Figure 8c) where the total strain £ consists of an additive
combination € = £° + £" of an elastic €° and a viscous &" component while the

stress;

O = JLE =€ e (66)

is the same in both rheological elements. Using the equation € = &° + £"and

equations (65) and (66), we can obtain;

At the state of equilibrium, i.e.&" =0, the viscous strain of a Maxwell-element

converges to the total strain &£" =& and the elastic strain vanishese® =0.

Alternatively, we get the fundamental differential equation;
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If we carry out a relaxation test the Maxwell-element will deform at a constant strain,
ie., €(0)=e(t)=const.. In this case the solution of differential equation (68)

yields;

By using the initial condition & (0) =  £(0), the constant ¢ = £ (0) is determined.

Thus, we get the solution;

defines the specific viscoelastic characteristics of a material. At an infinite large time

the stress is fully relaxed, i.e. & (c0) = 0.

The preceding relaxation test of one Maxwell-element is easily applied to an
extended viscoelastic formulation where a finite number of separate, Maxwell-
elements are arranged in parallel with an elastic Hooke-element (Figure 9). The

stress relaxation for the generalized Maxwell-element is given by;

where;
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defines the characteristic relaxation function of N Maxwell-elements. The time-

independent elastic part of the deformation is represented by the term g, which is

constant with respect to time.

1

Figure 9 - Generalized Maxwell-element
(adopted from Biomechanics: Mechanical Properties of Living Tissues, Fung, 1993)

The generalized Maxwell-model has been derived from basic considerations and the
constitutive assumption has been proved to be valid for a large number of materials

by experiments.
Some scientists (Toniik et al., 2004) used generalized Maxwell-model with two

dampers to simulate the relaxation and creep data of biological soft tissues. They

used the following constitutive equation for relaxation;

F()=F,1=6,(1=e" )= 8,(1=e™™ . ..ooooeoee oo (74)
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where; F(r) is the force-relaxation response; ¢ is time (0<t<120s.; =0
corresponds to the end of initial loading and beginning of relaxation); F, is the
reaction force at time # =0; 6, and 7, are the short-term relaxation magnitude and
associated time constant; 0, and 7, are the long-term relaxation magnitude and

associated time constant, respectively. The total tissue relaxation is therefore

F,(5,+5,).
And the following one was used for creep;
d(1)=d {1+6/ (1= )+ 81— oo (T5)

where; d(r) is the displacement-creep response; ¢ is time (0 <7 <120s.; r=0
corresponds to the end of initial loading and beginning of creep); d,, is the tissue
indentation at time t+=0; J, and 7, are the short-term creep magnitude and
associated time constant; ¢, and 7, are the long-term creep magnitude and

associated time constant, respectively. The total tissue creep is therefore d,, (] + &, ).

4.2. Linear Elastic Tensor-Mass Method

Some scientists used the linear elastic tensor-mass method which allows fast (real-
time) computation of nonlinear and viscoelastic mechanical forces and deformations
for the simulation of biological soft tissues. They showed that most of the tissues are
highly nonlinear, and that a viscoelastic constitutive model is most suitable for
modeling deformations. The model they presented integrates physical nonlinearity
and viscoelasticity into the tensor-mass framework while keeping a linear strain

tensor (Schwartz et al., 2005).
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4.3. Modeling Elastic and Viscous Behaviors Separately

It is thought by some other scientists (Sanjeevi, 1982) that the stress (o) generated
in a biological material can be represented as a combination of the Hookean stress
Ee (Eisaconstant and € is the strain) and the Newtonian hydrodynamic viscous

stress 77 de/d t(nis a constant and de/dt is the strain rate). Therefore;

de
O = E € 4 11 i e 76
”d; (76)

By proposing this model, it is aimed to take both viscous and elastic components into
account using a suitable procedure. Stress-relaxation and creep curves are tried to be

predicted.

For this type of modeling different amounts of strains (2%, 5%, 8%, etc.) are applied
to the material. Then the stresses developed are allowed to decay for long enough to
ensure that there is no further decay of stresses with time (Figure 10). By this figure
using least-square technique, the elastic and the viscous components of the stress

developed can be found as;

O stpie = B €+ Ey €7 oo e (77
de de

O ivoons = T T 10 € e, 78

viscous 771 d[ 772 d[ ( )

By using the experimental data, the complete viscoelastic equation can be found as;

o =55126—110.11e% + 042 2€ 4206 L€ (79)

dt dt

It can be seen that this equation is closely similar to the stress developed by a Voigt

model responding to higher orders of strain levels.
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Figure 10 - The Stress Decay at Small Strain Intervals
(adopted from A Viscoelastic Model for the Mechanical Properties of Biological
Materials, Sanjeevi, 1982)

4.4. Haut and Little Equations

Two approximate constitutive equations which have proved useful for characterizing
the nonlinear viscoelastic behavior of polymers are proposed as candidate theories to
characterize soft biological tissues (Dehoff, 1978). By using these equations, Haut
and Little equations which represent the relaxation behavior of collagen can be

derived.

Haut and Little equation is known as;

dA(7)
drt

a(:)sz(t—r)% [A(z)] AT oo (80)
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where; o is the nominal stress; ¢ is the elastic stress generated instantly when the
tissue is subjected to a uniaxial step extension ratio (4); ¢ is the present time in
minutes; 7 is the time history in minutes; G () is a normalized relaxation function
defined by Fung such that G(0)=1. For small strains equation (80) can be

rewritten as;

a(t)=£G(t—T)%[8(T)] dfl(:)dr ................................................. 1)

where; &£ is the uniaxial strain.

Experimentally it is not possible to generate a step strain input. Instead of that,
constant strain rate tests can be used if the material is insensitive to strain rate at high
rates like biological soft tissues. Haut and Little used elastic stress and normalized

relaxation function in the forms;

O = O e, (82)
G(1)= A INE 4 B oo (83)

where; C’ is strain rate constant and; A" and B’ are non-dimensional relaxation

constants.

For a relaxation strain history given by e(t ) =& H (¢ ), substituting equations (82)

and (83) into equation (80) leads to;

o(t)=E& e + 1), (84)
where; H is stress relaxation material function; £ =2B’C” and u = A’/B’. Eand u

were experimentally found equal to 23x10" dyn/cm’ and -0.23, respectively

(Dehoff, 1978).
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For a constant strain rate test for which € = S, equation (80) becomes;

olr)

Il
™
~
- 1
—_
+
=
VR
—

5
| ™
|
w
\
0
N—
| |
P
0
<
N

where; [ is strain rate.

As mentioned before, this equation can be derived from two constitutive equations.
The first one was suggested by Lianis (1963) which based on the finite linear theory
of viscoelasticity. The second constitutive equation is an incompressible elastic fluid
theory developed by Bernstein, Kearsley and Zapas (1963). These theories will not
be analyzed in detail. Shortly it can be said that these theories are used to predict the
relaxation behavior of polymers. They are capable of handling nonlinear, time
dependent and multi-dimensional stress and strain histories for both isotropic and
anisotropic materials. Many of the situations of interest in biological tissues can be

treated as special cases of these continuum theories (Dehoff, 1978).

4.5. Quasi-Linear Viscoelastic Model

The quasi-linear viscoelastic theory introduced by Fung has been frequently used to
model nonlinear time-dependent and history-dependent viscoelastic behavior of
many soft tissues. It is common to use five constants to describe the instantaneous

elastic response (constants A and B) and reduced relaxation function (constants C, 7,
and7,) on experiments with finite ramp times followed by stress relaxation to

equilibrium. However, a limitation is that the theory is based on a step change in
strain which is not possible to perform experimentally. By taking into account the
ramping phase of the experiment, the approach allows for viscoelastic properties to
be determined independent of the strain rate applied. Thus, the results obtained from
different laboratories and from different tissues may be compared (Abramowitch,

2004).
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In the quasi-linear viscoelastic theory, the reduced relaxation function, with constants

C, 7, and 7,, describes the time dependent stress relaxation of a tissue normalized

by the stress at the time of a step input of strain.

The quasi-linear viscoelastic theory assumes that the relation between stress o and
strain € for a soft tissue in simple elongation can be expressed as (Sauren et al.,

1983, 1984);

o(t) = jG(t—f) Ma—gdr(%)

where; o(7) is the stress at time #; G(¢) is the reduced relaxation function that
represents the time-dependent stress response of the tissue normalized by the stress at
the time of the step input of strain; o'“'( ) is the instantaneous elastic response, i.e.,

the maximum stress in response to an instantaneous step input of strain, €.

with o(t) =0 and £(7) =0 fort<0
G(0)=1.

The dependence of stress on both strain and time is separately described by the
nonlinear elastic response o (¢) and the reduced relaxation function G(1),

respectively.

For soft tissues whose stress-strain relationship and hysteresis are not overly

sensitive to strain rate, the following expression was proposed by Fung for G(t)

based upon a continuous spectrum of relaxation;

— 1+C[E1(t/72)_E1(t/71)]
Gl1)= 1+Cn(z, /1)
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where; E, (y)= Jmefz / z dz 1s the first exponential integral; C is the dimensionless
y

positive constant that determines the degree to which viscous effects are present; 7,
and 7, are time constants that govern the fast and slow viscous phenomena. An

exponential approximation has been chosen to describe the instantaneous elastic

response;

where; A and B are material constants.

The stress resulting from a ramp phase with a constant strain rate 7 over the times

0 < t <t, can be written by substituting equations (87) and (88) into equation (86);

Iy

ABy 8
6)= 1+ C(E[(t—7)7t,] —E[(t-7)/T "ot
( ) 1+C1n(1'2/1'1)-([{ ( 1[( ) 2] 1[( )/ 1])}€
.................................... (89)
Similarly, the subsequent stress relaxation from 7, to ¢ = e can be described as;
ABy T B
= 1+C(E[(t-7)/7,] —E[(t—-7)/T "ot
(6) Hcm(%mt{{ (E[(1-2)it,] - E[(=7) /1)) e
.................................... 90)

where; 6 = {t,A,B,C,Tl,Tz}

By a preliminary analysis the initial guesses for the constants were determined. After
some iteration, it was found that the algorithm is relatively insensitive to the initial

guess; that is, the algorithm consistently converges to a unique solution.
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It is necessary to check the variability of these constants if there is any systematic
deviation between the model and the experimental data because of experimental
noise, and numerical instabilities. Boot-strapping method was used to check the
variability of the constants and as the result it was proved that there are relatively
small variations in the constants between the model and the experimental data
(variation of a constant was found to be smaller than 5 % with respect to its median
value). Then the constants may be said to be insensitive to systematic deviations
between the model and the experimental data due to experimental noise and

numerical instabilities.

While this theory is only an approximation and no approach can guarantee that the
obtained constants are true, the fact that the strain history approach is able to estimate
reasonable constants based on data with ramp time 1-2 orders of magnitude slower
than previous studies is a significant advancement. Thus, issues associated with fast

strain rates can be avoided (Abramowitch, 2004).

As mentioned before, it is physically impossible to realize a true step change in
strain. It is therefore assumed by some scientists that the stress response to a fast
steplike change in strain (Figures 11a, b) can be used as a fair approximation of the
response to a true step change. The steplike change in strain in an experiment means

straining a sample from € =0 to & = &, at a high strain rate within a time interval

[O, ts], followed by maintaining & = &, during the time interval [ts .-

e e
e &L
0 t 0 tl\ tm t
Figure 11a - Step Change in Strain Figure 11b - Steplike Change in Strain
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After the studies based on the steplike change in the strain, it was found that it is only

possible to separate the elastic and time dependent effects in accordance with

o(t)=0° (80) G (1) when there is a true step change in the strain. The accuracy of

the determination of the constants 7,, 7, and C, which describe the time-dependent
behavior from a relaxation experiment depends greatly upon the time required to
accomplish a sudden change in strain. This is not too unexpected because, during

straining within a finite interval [0, 7, ], a certain amount of relaxation can occur.

4.6. Modeling Viscoelastic Behavior with Prony Series and Bailey Norton Law

The viscoelastic behavior of soft biological tissues can also be simulated with Prony
series and Bailey Norton Law. The constitutive equation using Prony series can be

expressed as;

!
where; E, (1) =k, + D_k, e linear elastic

i=1

!
and E, (t,€)=kye+ Y k,e’" nonlinear one

i=1

while the following equation shows the Bailey-Norton Law;

where; £, = Ao 1" for creep
and 0, = E¢, linear elastic
and o, = E€., nonlinear elastic
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Equations (91) and (92) have been used to simulate creep, stress relaxation, constant

strain rate loading, and cycling loading. They can simulate the same viscoelastic

behavior with different respective model parameter constants such as &, k;, 7, or

A, m,n.

As a conclusion main advantages and disadvantages of modeling soft biological

tissues with a viscoelastic constitutive equation can be summarized as follows:

Advantages:

The real character of soft biological tissues is much closer to the
viscoelastic behavior than the pseudo-elastic one, so it can be
thought that modeling these tissues by treating them as viscoelastic
will give the best result. However, it is not an advantage in fact, due
to difficulties.

The Voigt model is extremely good with modeling creep in
materials.

Kelvin model is more accurate than the Maxwell and Voigt models
in predicting material responses.

The linear elastic tensor-mass method allows fast (real-time)
computation of nonlinear and viscoelastic mechanical forces and
deformations for the simulation of biological soft tissues.

Haut and Little equations are capable of handling nonlinear, time
dependent and multi-dimensional stress and strain histories for both
isotropic and anisotropic materials like soft tissues.

Quasi-linear viscoelastic theory can be used to model the time-
dependent and history-dependent viscoelastic behavior of many soft
tissues.

By taking into account the ramping phase of the experiment, the
quasi-linear viscoelastic theory approach allows for viscoelastic

properties to be determined independent of the strain rate applied.
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Thus, the results obtained from different laboratories and from
different tissues may be compared.

The strain history approach based on the quasi-linear viscoelasticity
enables us to fit the entire experiment, i.e., from the beginning of the
ramping phase to the end of the stress relaxation.

The strain history approach of the quasi-linear viscoelastic theory is
able to estimate reasonable constants based on data with ramp time

1-2 orders of magnitude slower than previous studies.

Disadvantages:

It is rather complicated to model the materials which are viscoelastic
compared to elastic ones.

Viscoelastic materials are distinguished from materials which are
idealized as being purely elastic. They exhibit properties such as
relaxation, creep and frequency-dependent stiffness and dissipative
characteristics (Kaliske, 1997).

When a material represented by any one of the basic viscoelastic
models (Maxwell, Voigt, or Kelvin) is subjected to a cyclic strain,
the hysteresis will not be insensitive to strain rate.

The Maxwell model is unable to predict creep in materials based on
a simple dashpot and spring connected in series.

The Voigt model is much less accurate for relaxation.

Viscoelastic materials show hysteresis in the stress-strain curve with
the area of the loop being equal to the energy lost during the loading
cycle.

A limitation of the quasi-linear viscoelastic theory is based on a step
change in strain which is not possible to perform experimentally.
Since it is impossible to apply a step increase in strain, extensions
are needed to be applied at relatively high rates.

It is difficult to apply the quasi-linear viscoelastic theory approach,

because it is hard to measure these high strain rates accurately
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CHAPTER 5

HYPERELASTIC MODELING

Tissue deformation can be very large due to low tissue stiffness and lack of physical
constraints. As a result, deformation modeling of such organs often requires a
treatment, which reflects nonlinear behavior. Some scientists (Samani et al., 2004)
described an inversion technique to infer the hyperelastic parameters of breast tissues
and used these parameters to create nonlinear finite element tissue deformation

models.

In order to model breast tissue deformation, a finite deformation formulation of
elasticity is used where the geometry change in the tissue is assumed to be
significant. Under static conditions, the equilibrium equations governing the tissue

are;

ij=1 OX;

where; o represents components of the stress tensor and f; denotes the body

forces. For strain definition, the deformation gradient F = ox / 0X is defined where
the variables x and X are deformed and undeformed positions of a point p,

respectively. Using B = F.F", the strain invariants can be defined as;

1, =tr(B)
L= (12 =17 (BuB)) oo (94)
I, = det(F)
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A constitutive equation for isotropic hyperelastic tissue undergoing finite strains can
be obtained based on a selected strain energy function U (II,I 2,13). By assuming
breast tissue as isotropic incompressible material, there can be written a number of

strain energy functions. The most broadly used one in modeling rubber can be

simplified for tissue modeling as;

where; N = 2 is the most commonly used in rubber modeling; C;; represent the

hyperelastic parameters which characterize the intrinsic nonlinear elastic behavior of
the tissue. The strain energy in equation (95) depends on the strain invariants /, and
I, while it is independent of I, (because for incompressible materials I,=1/1,1, ).
This implies that the breast tissue is isotropic and incompressible. Based on the strain

energy function W, the constitutive equation required for tissue deformation

modeling can be obtained as follows;

o= 2 aW+IlaW B—a—WB.B+I3a—WI ............................ (96)
JI, L\91, a1, o1, o1,

where; o is the Cauchy’s stress tensor (related to the deformed area) and [/ is the
identity matrix. To calculate tissue displacements, equations (93) through (96) must

be solved simultaneously. This is done numerically using the finite element method.

Tissue hyperelastic parameter calculation from force-displacement data which can be
obtained from tissue indentation experiment is called an inverse problem. The aim
here is to find a set of hyperelastic parameters such that the difference between the

measured and calculated force-displacement data is a minimum. The force F, (Cij)
is a function of the hyperelastic parameters C; and can be calculated using a

nonlinear finite element model. The finite element represents a nonlinear function
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relating the forces F, (Cij) resulting from the tissue indentation simulation to the
unknown hyperelastic parameters C;; . This problem can be classified as a constrained

nonlinear least squares problem as follows;

R(c,)=F -F (c,)  minimize  £(C)oiiiiiiiiiiiiiiinn(97)
7lc,)= %RT (c,)r(c,)  subjectto L, <L(C,)S L, oo, (98)

where; F, is the experimental force data; L(Cij) is a linear operator and L, and L,
are lower and upper bounds of L, respectively. If a polynomial strain energy
function (equation (95)) is used, given that E = 6(C,, + C,,) for incompressible

materials having infinitesimal strains, the following constraints can be used;

where; E, and E, are the lower and upper bound estimates of the tissue Young’ s

modulus.

In this study, to measure the hyperelastic parameters of breast tissues, a measurement
system was developed that indents an unconstrained block of the tissue while
measuring the resulting forces. Breast tissue specimens obtained from women who
underwent breast reduction surgery were obtained and transported to the

measurement laboratory within two hours after the surgery.

To calculate the hyperelastic parameters of the tissue specimens, the force-
displacement experimental data obtained from the indentation test were inverted
using an inversion technique. Unloading portion of the experiment was ignored in
calculating the hyperelastic parameters. Using the loading portion as a representative

of the force data F ), the inversion technique was used to calculate the hyperelastic

parameters of the tissue specimens.
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The calculated hyperelastic parameters were found to be acceptable to calculate
similar stress distributions as experiments. Fitting between the experimental results
and calculated ones is passable. Although the focus of this research is the
hyperelastic properties of the breast tissue, the proposed technique can be applied for

other biological soft tissues as the prostate or liver.
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CHAPTER 6

POROELASTIC MODELING

Poroelasticity is a method of modeling fluid flow within elastic porous materials,
where the flow of the fluid and the deformation of the solid matrix are coupled. This
has application to many fields in science and engineering such as soil consolidation,
filtration and biological soft tissue modeling including cartilage, skin, myocardium

and arterial walls (Berry et al., 1999).

The theory of poroelastic materials is a model for fluid infiltrated porous solids. The
basic ideas underlying the theory of porous elastic materials are that the pore fluid
pressure contributes to the total stress in the porous matrix medium and that the pore
fluid pressure alone can strain the porous matrix medium. There is fluid movement in
a porous medium due to differences in pore fluid pressure created by different pore
volume strains associated with the mechanical loading of the porous medium

(Cowin, 2004).

Bone is the main constituent of the skeletal system and differs from the connective
tissues in rigidity and hardness. In the case of bone tissue the deformation of the
porous medium has a significant effect on the movement of pore fluid, but the low
pore fluid pressure has only a small effect on the deformation of the whole bone

(Cowin, 2004).

Poroelastic constitutive equations are generally used for hard materials or for soft
biological materials but in in vitro conditions. Consequently, the poroelasticity
approach has not been used much for in vivo soft biological tissue modeling due to

difficulties in determining the model parameters.
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CHAPTER 7

ALTERNATIVE MATERIAL FORMULATIONS

Biological materials are complex microstructurally and complex in their mechanical
behaviors. To describe them with a single robust model is a formidable challenge
(Oza et al., 2006). The goal of this study is to find the most appropriate material law
to simulate hysterisis, preconditioning (Mullin’s effect) creep and relaxation
behaviors of soft biological tissues with a reasonable size equation and with the same
coefficients or if not possible with minimum possible change in coefficients.
Therefore it worths examining other material formulations as well which have

similar mechanical response to that of soft tissues.

7.1. Thermoplastic Elastomers

Thermoplastic elastomers are polymer materials that combine mechanical properties
of vulcanized rubber (large deformations with elongations to break up to 4 = 10 and
higher) with high-speed processability and recyclability (Drozdov et al., 2006). Uni-
axial tensile tests with constant strain rates at moderate finite deformations, creep and
relaxation tests were applied at room temperature. A constitutive model is developed
for the viscoelastic response of thermoplastic elastomers by treating them as

incompressible heterogeneous transient network of strands.

Here is a summary of testing protocol and modeling:

Tensile relaxation tests were carried out at the elongation ratios 4 = 1.2, 1.4 and 1.6.

In each relaxation test, a specimen was stretched with a constant cross-head speed of
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50 mm/min up to a given elongation ratio A that was preserved constant during the

relaxation time (the relaxation time 7, =20 min was used in all experiments).

g(t)=1- Kj: [1—exp(=T(0) 1) p(0)dV ..o (100)

where; & (t) = a(t) / 0, is the dimensionless tensile stress with 7 as the time and o,

as the stress at the beginning of the relaxation process; &k is a constant;

['(v) = exp(-v) with v as the dimensionless activation energy; and p(v) is

another function calculated by the following formula;

where; V and X are constants to be adjusted; and p, is determined by the

normalization condition, J.: p(v)dv =1.

Tensile creep tests were performed at the engineering tensile stresses ¢ = 3.3 and
4.2 MPa. In each creep test, a specimen was stretched with a constant cross-head

speed of 50 mm/min up to a given longitudinal stress o that was preserved constant

during the test (the creep time ¢, =20 min was chosen).

dr oy 1-Alt) dA
E(r) A0 E(r) ..................................................................... (102)

p

where; r(r) = ﬂ,(t)/Ap(t) with A(¢) as elongation ratio and Ap(t) as another

function to be calculated.
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As seen in the formulations, there are functions in functions in almost all the
equations. This property makes the estimation of constants rather difficult. Also,
there are many thermodynamic coefficients to be known. For example, the

dimensionless activation energy, v is calculated by the formula v = @/ (kB TO),
where; k, is Boltzmann’ s constant; 7, is the reference temperature and @ is the

activation energy. To calculate the activation energy, one also needs two more
constants called frequency factor and rate coefficient. But these constants are not

known for the soft tissues, so these constants have to be estimated first.

Another disadvantage of this formulation is the fact that it is based on the tensile
tests. Creep and relaxation behaviors are simulated by using tensile experimental
data. Since our study is based on compression tests which differ from tensile tests

done on the soft tissues, these method is seen to be inappropriate for our formulation.

7.2. Isothermal Nonlinear Viscoelastic Response in Polymers

This model is based on the concept of transient networks, and treats a polymer as a
system of nonlinear elastic springs, which break and emerge due to micro-Brownian
motion of chains. The breakage and reformation rates for those springs are assumed
to depend on some strain energy density (Drozdov, 1998). All those springs are
assumed to be parallel to each other for simplicity. So, the stress would be the sum of

all the stresses on individual springs.

The viscoelastic behavior is described by an integral constitutive equation, where the
relaxation functions satisfy partial differential equations with coefficients depending
on the strain history. Adjustable parameters of the model are found by fitting

experimental data for a number of polymers in tension at strains up to 400 percent.
This formulation was mainly performed to estimate the effect of strain on relaxation

time. It has been proved that increasing strain causes relaxation time to decrease but

this feature is out of our scope. Also, stress-extension rate curves are simulated
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which is not our goal in this study, either. Together with these factors, the fact that
the tensile experiments are applied on the specimen makes this formulation

inappropriate for our study.

7.3. Rabotnov’s Equation for Materials with Memory

There are some models for nonlinear time-dependent materials (called as materials
with memory) that can also be used for relaxation and creep simulations.

Development of these formulations can be summarized as follows:

The material (polyoximethylene) was tested at creep conditions with three levels of
stress and at relaxation conditions with three levels of strain (Suvorora et al., 2003).
Nonlinear equation was constructed by assuming that all the nonlinearity may be

gathered on the left hand side of the following equation;

p(e)=0o(r) + jo K(t = 2)(2)dT eoveoeeoeoeeeeeeeeeeeeee e, (103)
where; (p(e‘) may be interpreted as the instantaneous stress-strain curve (curve of

instantaneous deformation).

Experiments on creep were carried out at three levels of stress o = 74. 70 and 66

MPa. The material was first loaded with a constant stress rate of ¢ = 0.8 MPa/s up

to o and the stress was then kept at this value. For this procedure, the final aspect

of equation (103) appears as;

—0'*+k—o-* - (+a)le-¢) _r
ole)=0 + (1+a)(e-1) [l IH (104)
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where; t* is the beginning time of creep; k and « are constants to be estimated.
Testing data (the time at which the desired strain is reached) from three different

stress levels are substituted into this equation and unknown constants are estimated.

Experiments on relaxation, £’ = constant, were performed for three values of e 3,
6, 9 %. To reach these values of £, the specimens were loaded with constant loading
rate (corresponding times ¢ = 1.25, 2.5 and 3.75 minutes). On reaching &, these
values were kept constant for the rest of the test. Considering the relaxation behavior

of the material at long times, ¢ > ¢, equation (103) can finally be written as;

o= go(e)[l - ﬂjlot 3,(=p.1t- T)dl’}(lOS)

where;

pB=k (1 — ) with I as the gamma-function;

g Lyt
3“(_ﬁ’t)_;r[(1—a)(n+1)] .................................................... (106)

Calculation of equation (105) can be performed either with the help of the tables of

the 3, integral functions, or with one of the symbolic computation softwares.

By this method one can use the same constitutive equation with the same set of
parameters to model various types of loadings. But there are two different equations
for two different cases, creep and relaxation. There is no interrelation between them.
Since our aim is to simulate creep and relaxation behaviors with one material

formulation, this method does not seem to be appropriate for our study.
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7.4. Polymers under Quasi-Static and Dynamic Loading

Polymers are known to exhibit time-dependent mechanical behavior and also display
highly nonlinear response during loading and unloading like biological soft tissues.
Further, unlike metals, significant relaxation and creep phenomena may be observed
even at room temperature. The mechanisms of inelastic deformation of polymers,
which are explained by considering the molecular structure of the material, are
different from that of metals. For example, the molecular chain flexibility and
entanglement is believed to be related to inelastic deformation of polymers. This will
result in a different response in tension and compression. Therefore, some of the
constitutive modeling of polymeric materials are based on characteristics of micro-
structure of polymeric materials. One of the drawbacks of this method is that the
developed models are complex and it is very complicated and time consuming to

determine material parameters in such models (Khan et al., 2001).

Here is a summary of modeling a commercial polymer, polytetrafluoroethylene, at

room temperature under various complex loading and unloading conditions.

In relaxation tests, the strain controlled constant strain rate loadings were interrupted
by several relaxation segments both during the loading and the unloading periods.
The engineering strains, or displacements, were held constant for several hours at
different strain levels. The constant strain rate loading with the strain rate of 0.01/s
was interrupted by relaxation segments by holding engineering strain, or
displacement, constant for six hours at engineering strain levels of 0.0832 and 0.1832
both during loading and unloading. During these holding periods, it is observed that
there is a significant amount of relaxation. There is clear evidence that the stress
decreased during the relaxation segments during the loading, while the stress

increased during the holding segment during the unloading (Khan et al., 2001).
In creep tests, the stress controlled constant stress rate loadings were interrupted by

several creep segments. The engineering stresses, or loads, were held constant for

several hours at different stress levels. The load controlled constant engineering
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stress rate loading with the rate of 89 N/s was interrupted by several constant
engineering stress segments. The controlled stress was held constant for six hours at
engineering stress levels of 9.65 MPa, 14.82 MPa and 17.58 MPa during loading.
During several 6-hour hold periods at constant stress, significant amounts of creep
were observed, i.e. the strain increased by a fair amount during each constant

engineering stress segments (Khan et al., 2001).

The viscoelastic deformation is represented by a Kelvin model (fig. 6a). It means that

the stress 1s decomposed into rate dependent equilibrium stress (o,) in the spring g,
and the rate dependent overstress (o,) components in the spring x4, and the
dashpotn7, i.e. 0 =0, + 0,. The strain in the Maxwell element and in the elastic

spring parallel to the element, are the same, denoted by ¢, .

So, the governing equation of this model can directly be written as;

where; ¢ and £, are the stress and viscoelastic strain rates, respectively.

The viscosity (77) is not constant and has been found to be a decreasing function of

strain rate in polymers. It was assumed to be a function of both strain and stress in

order to accurately represent observed behavior of polymers, given as;

where; r, a, b and 1), are material constants. It can be seen from this equation that

the viscosity increases with increasing strain. It should also be noted that the

increasing strain rate causes viscosity to decrease.
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Solution of equation (107) for relaxation by assuming & =&, =const. (¢,=0)

yields;

sl
O=(0, =, &) e ™ + [ & .cccooeiiiiieeeee e (109)

where; o, is the stress at the beginning of the relaxation process; ¢ is relaxation time;
&, 1s the viscoelastic strain from which the relaxation started. When time tends to

infinity, stress is tending to the equilibrium stress which is x4, &, .

Solution of equation (107) for creep by assuming ¢ = o, =const. (i.e. 6 =0) yields;

£, = el __ [”1 e gj SOV (110)
L+ (ae,p) \ mu

Modeling of relaxation and creep were done by a three-element Kelvin material.
Experimental data could not be simulated well by this model, because it is believed
that there is not enough parameter in this model to follow the material response

accurately. A spring dashpot model with more elements is expected to be developed.
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CHAPTER 8

SOFT TISSUE MECHANICAL FINITE ELEMENT MODELS

So far, almost all material models, either specifically developed for soft tissues or
may be used to model the soft tissues as well available in the literature were
analyzed. After each chapter, advantages and disadvantages of the models and
methods presented were summarized. As a result, what can be seen is the fact that the
most meaningful and successful models are the ones which rely on the theory of

quasi-linear viscoelasticity (QLV). Because, as mentioned before;

e The real character of soft biological tissues is much closer to the viscoelastic
behavior; they show relaxation, creep, preconditioning and hysteresis
behaviors which are typical characteristics of viscoelastic materials.

e Viscoelasticity can be used under both isotropic and anisotropic conditions.

e By taking into account the ramping phase of the experiment, the quasi-linear
viscoelastic theory approach allows for viscoelastic properties to be
determined independent of the strain rate applied. Thus, the results obtained
from different laboratories and from different tissues may be compared.

e For the time dependent and history dependent analysis of soft biological
tissues, the best responses in the literature are the ones obtained by using the

theory of QLV.

By taking the QLV as a basis, three different material models for the simulation

of mechanical behavior of soft biological tissues may be constituted, which are;

1. QLV modeling by assuming soft tissue as an isotropic material.
2. Enhanced QLV modeling by assuming soft tissue as an isotropic material.
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3. Enhanced QLV modeling by assuming soft tissue as an anisotropic material.

With the increasing number of these methods, modeling becomes more complicated,
but the same amount accurate. Third one gives more accurate results than second
one, because it assumes the soft tissue as an anisotropic material, and soft tissues are
anisotropic in real life because of the structure of its constitutive elements (collagen
fibers, muscles, skin, etc.). However, second one gives more accurate results than
first one, because it also takes strain into account. The first one is only able to

simulate the stress relaxation and the creep behaviors and only depends on time.

8.1. QLV Modeling by Assuming Soft Tissue as an Isotropic Material

As mentioned in Section 4.5, the QLV theory has been frequently used to model
nonlinear time-dependent and history-dependent viscoelastic behavior of many soft

tissues. According to this theory, the stress history equation can be written as;

9o [e()]

o7 4 (112)

a(t):jG(t—T)

where; (1) is the 2" Piola-Kirchoff stress depending on the time 7; G (—) is the

reduced relaxation function (see Appendix D) and o°(—) is the elastic stress

function. The reduced relaxation function and the elastic stress function are;

_1+C[E1(t/72)_E1(t/71)]
Glr)= 1+Cn(z,/7,)

G Le(T)]2 A€ = 1) oo (114)

where; C, 7, and 7, are material parameters related to the level of viscous damping

and the strain rates over which hysteresis is nearly constant, respectively; E, (—) is
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the first exponential integral function; A and B are material parameters for
instantaneous stress response (for the full derivation of the constitutive equations see

Appendix A).

8.1.1. Finite Element Modeling

This work was aimed to identify the soft tissue material properties using in vivo
indentation data by inverse finite element method. This simulation was done by using
the finite element software MSC.Marc.Mentat 2005r2. The material library of this
software does not contain such special and advanced material models therefore
proposed material model was implemented by a user subroutine. Consequently,
writing the correct subroutine constitutes the most important and time consuming
part of this simulation (see Appendix I for the code of the subroutine). The user
subroutine template hypela.f (see Appendix H) supplied with the software has been
used as a basis and modified as given in Appendix L. This subroutine was written and
compiled during simulation with the software Digital Fortran 6.0. The parameters in
this subroutine were given casually (similar to the ones in the literature) and the
subroutine has been checked with a simple three dimensional finite element model
whether it works correctly (see Appendix J). The values of these parameters will be

estimated by using the in vivo indenter data during this study.

After the verification of the user subroutine, the finite element model was created by
using the software MSC.Patran 2004. While creating the model, there are some rules

must be obeyed.

1. The model should have the capability of being indented up to 50 % of its
thickness to be able to simulate experimental conditions.

2. The displacements and principal strains on the nodes far from the
deformation area must be at most the 3-4 % of the maximum values for

this model. The displacements and strains smaller than that percentage are
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accepted to be zero during the simulation processes therefore the material
may safely be truncated after this point.

3. The tissue under the indenter tip must have a fine mesh to simulate
contact with indenter tip as well as to be able to model high stress and
strain gradients that may exist here.

4. The number of elements should be large enough to model the actual

deformation accurately yet, should be limited to have reasonable run time.

The axes of the ellipsoid indenter tip are (x-y-z) 8-2-2 milimeters. These are constant

and not changed during the model creation processes.

A. Modeling of tissue with MSC.Patran has firstly started with the following

dimensions (x-y-z):

Tissue size (mm) : 20-8-20
Fine mesh region (mm) : 10-2.5-2.5

This geometric model has been created with MSC.Patran and imported into
MSC.Mentat to define other properties. The boundary conditions have been defined
as fixed displacement along three mutually perpendicular coordinates at the bone
contact and symmetry planes in x and z directions (i. e. fixed displacement along the
normal of the symmetry planes) since this is a quarter model of the tissue (Figure

12).
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Figure 12 — Boundary Conditions of Model A

Material properties have been chosen as hypoelastic for all materials to be able to use

the subroutine written on hypela.

For the initial evaluation of the model proposed, the contact bodies; the surface of the
indenter tip has been chosen as rigid that has a velocity (and also an approach
velocity) of 1mm/s in —y direction. The foremost elements of the tissue (in fine mesh
zone) have been chosen as deformable body and contact situation has been set to
touching. Total loadcase time has been set to 4 seconds in 80 equal time steps

(increments). So, the rigid indenter tip will indent to the tissue 4 milimeters in total.
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Large displacement and large strain-total Lagrange analysis options have been

chosen and the model has been submitted with the user subroutine.

When the program was finished sucessfully, the postprocessor has been opened and
the model has been investigated. The main problem seen in this submission was the
unexpected deformation of the elements in the fine mesh zone behind the indenter
tip. This can be seen in Figure 13. Some of the elements in this zone could not
deform any more after the 59" increment. These elements are seen in light color
behind the indenter tip in Figure 13. In this figure, the colors represent the magnitude
of deformation. In ideal case, there should be a progressive increase of the
deformation as seen in Figure 14. Figure 13 shows the elements behind the indenter

tip that could not be deformed after 59™ increment of the analysis.

Figure 13 - Unexpected Deformation in the Fine Mesh Zone of Model A
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To rectify this situation, number of deformable contact elements has been increased
in the direction of the rigid body motion. More elements have been chosen as

deformable and the model has been submitted again.

When analyzed, this unexpected deformation observed in the previous model seemed
to disappear. As seen in Figure 14, there is no light colored element behind the

indenter tip which represents the unexpected deformation.

Figure 14 — Rectifying the Unexpected Deformation in the
Fine Mesh Zone of Model A

As seen in Figure 14, there is a sudden deformation change along the z axes. The
reason of this situation is the length of fine mesh zone in the z direction. To rectify

this situation the fine mesh zone has been remodeled slightly larger in z direction
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(Figure 15). It could not be enlarged very much not to increase the number of

elements in the model that causes it to work very slowly.

B. To decrease the sudden increase in the deformation along the z axis, the model has

been modified with the following dimensions (x-y-z):

Tissue size (mm) : 20-8-20

Fine mesh region (mm) : 10-2.5-3

Figure 15 — Increased Fine Mesh Length of Model B in z Direction

By examining Figure 15, one can see that the fine mesh zone is larger in z direction,
and so, the deformation increase in that direction is more progressive. This is the

most appropriate form of the fine mesh zone. Making it larger causes the model to
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run rather slowly. Surely, the best way is creating that area as large as possible and
using the elements as small as possible to obtain more accurate results. But under
technological constraints, one has to find the optimum model for simulation

Pprocesses.

As mentioned before, the displacements and principal strains on the nodes far from
the deformation area must be at most the 3-4 % of the total values. The
displacements and strains smaller than that percentage are accepted to be zero during
the simulation processes. In this model, two key nodes (marked in Figure 16) have
been analyzed whether they have displacements and strains under desired limits. The

results are given in Table 1.

sFrmetry_o

SFrmetrT_x

node 1

node 2

Figure 16 — Nodes to be Analyzed
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Table 1 — Displacement and Principal Strain Values at the Given Nodes for Model B

Node Number 1 2
Max. Displacement (mm) 6.653E-2 3.089E-1
Max. Displacement 100 1.663 % 7.723%
Max.Displacement in the Model
Max. Principal Strain 8.324E-3 4.595E-2
Max. Principal Strain 4100 0.855 % 4.722 %
Max. Principal Strain in the Model

As seen in Table 1, the values of principal strains and displacements are under the
limits at node 1. But the values of displacements and principal strains could not stay
under the limits of 3-4 % at node 2. For example the displacement at the node 2 is
7.723 % of the maximum value in the model. These values are not acceptable and so,
the model must be enlarged in x and z directions. The enlargement in the x direction
should be more, because the values at the node 2 on the x-axis are deviating from the
limits more than the values at the node 1 on the z-axis. As a result, one more model

has been created by multiplying the lengths of z-axis with 2 and x-axis with 2.5.

C. To decrease the values of displacements and strains at the nodes mentioned
before, the new model has been created with the following dimensions (x-y-z)

(Figure 17);

Tissue size (mm) : 50-8-40

Fine mesh region (mm) : 10-2.5-3
As seen in Figure 17, this tissue is larger than the previous ones. Now, the

displacements and principal strains can be checked whether they pass the limits. The

results are presented in Table 2.
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Figure 17 — The Finite Element Model for Model C

hode 2

Table 2 — Displacement and Principal Strain Values at the Given Nodes for Model C

NodeNumber

1 2
Max. Displacement (mm) 3.162E-2 1.565E-2
[ Max. Displacement jxlOO 0.791 % 0.391 %
Max.Displacement in the Model
Max. Principal Strain 5.678E-4 6.326E-3
0.056 % 0.619 %

Max. Principal Strain 100
Max. Principal Strain in the Model
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As seen in Table 2, all the displacement and principal strain values are well below

the limits of 3-4 %.

Before deciding this model as completely appropriate for the estimation of the
parameters in the subroutine, two more tests have been applied on the model. In
these tests, the indenter tip has been rotated 45° and 90° around y-axis and the
simulation has also been applied in these orientations (Figures 18 and 19). The
displacement and principal strain values at the marked nodes are given in Tables 3

and 4, respectively.

syrmetry_=

syrmetET_K

node 1

Figure 18 - The Finite Element Model of Model C with 45° Indenter Tip Orientation
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Figure 19 - The Finite Element Model of Model C with 90° Indenter Tip Orientation

Table 3 — Displacement and Principal Strain Values at the Given Nodes
for Model C with 45° Indenter Tip Orientation

Node Number 1 2
Max. Displacement (mm) 6.401E-2 9.808E-2
Max. Displacement 4100 1.6 % 2.452 %
Max.Displacement in the Model
Max. Principal Strain 2.114E-4 3.346E-3
Max. Principal Strain 100 0.022 % 0.345 %
Max. Principal Strain in the Model
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Table 4 — Displacement and Principal Strain Values at the Given Nodes
for Model C with 90° Indenter Tip Orientation

NodeNumber 1 2
Max. Displacement (mm) 1.125E-1 6.506E-2
[ Max. Displacement jxlOO 2.813 % 1.627 %
Max.Displacement in the Model
Max. Principal Strain 2.546E-3 2.191E-3
0.214 % 0.184 %

[ Max. Principal Strain

— — x100
Max. Principal Strain in the Model

In Tables 3 and 4 all the values of displacements and principal strains are seen to be
under the limits. So, the tissue can be assumed to have zero displacements and strains
at the end of the model axes and this model can be used for the estimation of the

parameters in the user subroutine.

The last thing to do is to create different element sizes in the fine mesh region and
comparing the results of indenter tip reaction force. The force should converge
somewhere, and by also taking the submission time into account, the most

appropriate one should be chosen for more accurate results.

So far, the edge length of 0.5 mm has been used for the elements in the fine mesh
zone. Four more models will be created with the edge lengths of 0.3, 0.4, 0.6 and 0.7
mm and they will be compared for the best one. The time-indenter tip reaction force

curves of these five models are seen in Figure 20.
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Figure 20 — Time-Indenter Tip Reaction Force Curves for Different Element Edge
Lengths in the Fine Mesh Region

As seen in Figure 20, the force values are converging as the element edge lengths are
getting smaller. In normal conditions, the best model to be used seems to be the one
that has element edge length of 0.3 mm. But, choosing the element edge length of 0.4
mm. instead of 0.3 mm. decreases the submission time about % 60. Since there is not
a large difference between these two, the element edge length of 0.4mm is suitable

for that study.

As seen in equation (112), quasi-linear viscoelastic model only gives the response of
stress with respect to time. But the change of stress with respect to strain is also
needed to be able to model hysteresis (Figure 1). The following two methods have

been modified from the basic quasi-linear viscoelasticity for this concept.
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8.2. Enhanced QLYV Modeling by Assuming Soft Tissue as an Isotropic Material

As mentioned before, to be able to obtain stress response with respect to time
together with strain, the basic quasi-linear viscoelastic model must be enhanced. This
modeling procedure which also assumes the soft tissue as an isotropic material as in

the previous one is done as follows;

By using the one dimensional theory of quasi-linear viscoelasticity (presented in
Chapter 8.1) the time dependent properties of soft tissue are directly incorporated

into a hyperelastic model.

The second Piola-Kirchoff stress written for the one dimensional quasi-linear

viscoelasticity, which includes time dependent effects, is (Bischoff, 2006);

do¢

AT oo e 115
or ¢ (115

Oy (e,t):IG(t—f)

where; G(—)is the reduced relaxation function and (=) is the elastic stress

function. Note the subscript ‘QLV’ to explicitly indicate that this stress includes time

dependent behavior according to the quasi-linear viscoelastic theory.
For purposes here, the reduced relaxation function and the elastic stress function used
are the same with the ones used in the previous chapter and given by the equations

(113) and (114), respectively.

So, the stress versus strain and time relationships along the three material axes can be

written as;

a
T, =—p+8—A10'QLV (E18) e (116)
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in which; o,,, (£,1) is the quasi-linear viscoelastic stress given by equation (115); p
is hydrostatic pressure which is equal zero in our experiment conditions (for more
detailed information about hydrostatic pressure, see Appendix E); a, b and ¢ are unit

cell aspect ratios and allow for anisotropic behavior; &, &,and &, are principal

strains along three material directions and A is fiber contour length determined by

the equation;

Since isotropic conditions are dealt in this model, we can assume b=c=a, SO

equation (119) becomes;

With the substitution of this fiber contour length equation into equations (116), (117)

and (118), the final form of the model is obtained as;

T ==p+—0, (E) (121)
2

Ty ==P+ 20, (E.8) e (122)
2

Ty =—p+—0y (E1) o (123)
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(The details of derivation of the constitutive equations are presented in Appendix B).

8.2.1. Finite Element Modeling

To be able to model the behavior of soft biological tissue, the parameters of the
constitutive equation in the user subroutine must be estimated to simulate the
experimental conditions (i.e. indenter reaction force-indenter displacement-time).
These parameters are estimated by the inverse finite element modeling of the tissue
and the indenter tip. Modeling was done by using the software MSC.Marc.Mentat
200512. Enhanced QLYV is not available in the material library of the software either.
So, a new user subroutine was written (Appendix K). The parameters in this
subroutine were given casually and the subroutine has been checked with a simple
two dimensional finite element model whether it works correctly (Appendix L). The
real values of these material parameters will be estimated by using experimental data.
After the verification of the user subroutine, the model was created by using the

software MSC.Patran 2004. The rules in Chapter 8.1.1 applies to this model, too.

While modeling, the experiences gained in the previous sections have been used. The
modeling has not been started by choosing only the foremost elements of the tissue
(in fine mesh zone) as deformable not to cause an unexpected deformation given in
Figure 13. Also, fine mesh zone has been selected larger in z direction not to cause

sudden change in deformation in z direction as seen in Figure 14.

A. By taking these constraints into account, the modeling has been started with the

following dimensions (x-y-z):

Tissue size (mm) : 20-8-20

Fine mesh region (mm) : 10-2.5-3

This geometric model has been created with MSC.Patran and imported into

MSC.Mentat to define finite element model. The boundary conditions have been
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defined as fixed displacement at the bone contact and symmetry planes in x and z

directions (because this is a quarter model of the tissue) (Figure 21)

=TImetErT_®

STmme b ET_M

node 1

node 2

Figure 21 — Boundary Conditions of the Model

Material properties have been chosen as hypoelastic for all materials to be able to use
the subroutine written on hypela. As the contact bodies; the surface of the indenter

tip was chosen as a rigid body that has a velocity (and also an approach velocity) of
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Imm/s in —y direction. The foremost elements of the tissue (in fine mesh zone) have

been chosen as deformable and contact situation has been set to touching.

Total loadcase time has been set to 4 seconds in 80 equal time steps (increments). So,

the rigid indenter tip will indent to the tissue 4 milimeters in total.

Large Displacement and Large Strain-Total Lagrange analysis options have been

chosen and the model has been submitted with the user subroutine.

As mentioned before, the displacements, principal strains and principal stresses on
the nodes far from the deformation area must be at most the 3-4 % of the total values.
The displacements, strains and stresses smaller than that percentage are accepted to
be zero during the simulation processes. In this model, two key nodes (marked in
Figure 21) have been analyzed whether they have displacements, strains and stresses

under desired limits. The results are presented in Table 5.

Table 5 — Displacement, Principal Strain and Principal Stress Values at the Given

Nodes for Model A
NodeNumber 1 2
Max. Displacement (mm) 6.653E-2 0.3399
Max. Displacement 4100 3.08 % 8.498%
Max.Displacement in theModel
Max. Principal Stress (MPa) 1.097E-6 1.976E-2
Max. Principal Stress 100 LI91E-6 % 0.021 %
Max. Principal Stress in the Model
Max. Principal Strain 8.324E-3 4.565E-2
Max. Principal Strain 4100 1755 % 5.703 %
Max. Principal Strain in the Model
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As seen in Table 5, the values of principal stresses are under the limits but the values
of displacements and principal strains could not stay under the limits of 3-4 % in
some conditions. For example the maximum principal strain at the node 2 is 5.703 %
of the maximum value in the model. These values are not acceptable and so, the
model must be enlarged in x and z directions. The enlargement in the x direction
should be more, because the values at the node 2 on the x-axis are deviating from the
limits more than the values at the node 1 on the z-axis. As a result, one more model

has been created by multiplying the lengths z-axis with 2 and x-axis with 2.5.

B. To decrease the values of displacements and strains at the nodes mentioned
before, the new model has been created with the following dimensions (x-y-z)

(Figure 17);

Tissue size (mm) : 50-8-40

Fine mesh region (mm) : 10-2.5-3
As seen in Figure 17, this tissue is much larger than the previous ones. Now, the

displacements and principal strains can be checked whether they were within the

limits. The results are presented in Table 6.
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Table 6 — Displacement, Principal Strain and Principal Stress Values at the Given

Nodes for Model B
NodeNumber 1 2
Max. Displacement (mm) 5.941E-2 0.1118
Max. Displacement 4100 1.485 % 2.795 %
Max.Displacement in the Model
Max. Principal Stress (MPa) 9.543E-9 2.267E-5
Max. Principal Stress 100 S 441E-9 % 1.292E-5 %
Max. Principal Stress in the Model
Max. Principal Strain 3.864E-3 1.043E-2
Max. Principal Strain 100 0.383 % 1.034 %
Max. Principal Strain in the Model

As seen in Table 6, all the displacement, principal strain and principal stress values

are within the limits of 3-4 %.

Before deciding this model as completely appropriate for the estimation of the

parameters in the subroutine, two more tests have been applied on the model. In

these tests, the indenter tip has been rotated 45° and 90° around y-axis and the

simulation has also been applied in these orientations (Figures 18 and 19). The

displacement, principal stress and principal strain values at the marked nodes are

presented in Tables 7 and 8, respectively.
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Table 7 — Displacement, Principal Strain and Principal Stress Values at the Given

Nodes for Model B with 45° Indenter Tip Orientation

NodeNumber 1 2
Max. Displacement (mm) 0.1366 0.1222
Max. Displacement 4100 3.415 % 3.055 %
Max.Displacement in the Model
Max. Principal Stress (MPa) 7.827E-8 8.756E-6
Max. Principal Stress 100 1.734E-8 % 1.939E-6 %
Max. Principal Stress in the Model
Max. Principal Strain 7.973E-3 9.874E-3
Max. Principal Strain 100 0.805 % 0.996 %
Max. Principal Strain in the Model

Table 8- Displacement, Principal Strain and Principal Stress Values at the Given

Nodes for Model B with 90° Indenter Tip Orientation

Node Number 1 2
Max. Displacement (mm) 3.565E-2 7.367E-2
Max. Displacement 4100 0.892 % 1.842 %
Max.Displacement in the Model
Max. Principal Stress (MPa) 2.507E-8 3.084E-6
Max. Principal Stress 100 4.023E-9 % 4.949E-7 %
Max. Principal Stress in the Model
Max. Principal Strain 1.516E-3 6.023E-3
Max. Principal Strain 4100 0.126 % 0.499 %
Max. Principal Strain in the Model
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In Tables 7 and 8 all the values of displacements, principal strains and principal
stresses are seen to be under the limits. So, the tissue can be assumed to have zero
displacements, principal strains and principal stresses at the end of the model axes
and this model can be used for the estimation of the parameters in the user

subroutine.

The last thing to do is to create different element sizes in the fine mesh zone and
comparing the results of indenter tip reaction force. The force should converge
somewhere, and by also taking the submission time into account, the most

appropriate one should be chosen for more accurate results.

So far, the edge length of 0.5 mm has been used for the elements in the fine mesh
zone. Four more models will be created with the element edge lengths of 0.3, 0.4, 0.6
and 0.7 mm and they will be compared for the best one. The time-indenter tip

reaction force curves of these five models are seen in Figure 22.

Indenter Tip Reaction Force (N}
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Figure 22 — Time-Indenter Tip Reaction Force Curves for Different Element Edge
Lengths in the More Intensive Element Area
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As seen in the Figure 22, the force values were converging until the edge length of
0.4 mm. The 0.7 mm. edge length elements are not suitable, because it does not give
a good response as seen in the figure. This can be because of nonlinearities in the
system, the difference between the two axes lengths of the fine mesh zone or the
anisotropic shape of the indenter tip. The 0.3 mm. edge length elements are not
converging and also it takes more than half an hour to conclude the submission of
that model. As a result, the best edge length for the materials in the fine mesh zone
can be chosen as 0.4 mm. In that model, there are 17612 elements and the

submission takes about 14 minutes. This model is presented in Figure 23.
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Figure 23- The Last Shape of the Model
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As seen in the equations from (121) to (123), this modeling gives the response of
stress with respect to time and strain. But there is no term modeling anisotropy
despite the fact that soft tissues are much likely to be anisotropic. The following last

model assumes soft tissues as anisotropic and enhances the model one more step.

8.3. Enhanced QLYV Modeling by Assuming Soft Tissue as an Anisotropic

Material

The final model within the context of this thesis is the one that is modified by using
the model in Chapter 8.2. This time, the soft tissue is assumed to be anisotropic.

There is a little change in the final form of the constitutive equations.

Representing constitutive equations of this model had been given in the previous

section as;

282

Ty =—p+——0 (E.1) o (124)
282

Ty =—p+—20,, (E1) i (125)
2.2
c° &

w =Pt 20y (E01) e (126)

However, this time anisotropic conditions are dealt with and equation (120) cannot
be used. Fiber contour length is calculated with equation (119). By taking the unit
cell aspect ratios different from each other, one can also make this model consider
the anisotropy in tissue. (The derivation of the constitutive equations is presented

Appendix C).
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8.3.1. Finite Element Modeling

The user subroutine developed to model anisotropy (Appendix M) consists of three
more material parameters (for detailed information see Appendix C). The same
procedure was used here for creating the model and compiling the subroutine. The
parameters in the subroutine were assigned casually and the subroutine has been
checked with a simple two dimensional finite element model whether it works
correctly (Appendix N). The values of these material parameters will be estimated by

using experimental data and inverse finite element modeling.

After the verification of the user subroutine, the model is created while considering
the rules given in Chapter 8.1.1. However, there is one exception, instead of taking
the limits of displacements, principal strains and principal stresses on the nodes far
from the deformation area 3-4 % of the total values, for this model they were

assumed to be under the limit of 1 % which is stricter than the previous ones.

While modeling, the experiences gained in Chapter 8.1.1 have been used here, too.
The modeling has not been started by choosing only the foremost elements of the
tissue (in fine mesh zone) as deformable not to cause an unexpected deformation as
seen in Figure 13. Also, the fine mesh zone has been taken larger in z direction not to

cause sudden change in deformation in z direction as seen in Figure 14.

A. By taking these constraints into account, the modeling has been started with the

following dimensions (x-y-z):

Tissue size (mm) : 20-8-20

Fine mesh region (mm) : 10-2.5-3
The boundary conditions have been defined as fixed displacement in three mutually

perpendicular at the bone contact and symmetry planes in x and z directions (because

this is a quarter model of the tissue) (Figure 21)
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Material properties have been chosen as hypoelastic for all materials to be able to use

the subroutine hypela.

As the contact bodies; the surface of the indenter tip has been chosen as rigid body
that has a velocity (and also an approach velocity) of 1mm/s in —y direction. The
foremost elements of the tissue (in fine mesh zone) have been chosen as deformable

body and contact situation has been set to fouching.

Total loadcase time has been set to 4 seconds in 80 equal time steps (increments). So,

the rigid indenter tip will indent to the tissue 4 milimeters in total.

Large displacement and large strain-total Lagrange analysis options have been

chosen and the model has been submitted with the user subroutine.

As mentioned before, the displacements, principal strains and principal stresses on
the nodes far from the deformation area must be at most the 1 % of the total values.
The displacements, strains and stresses smaller than that percentage are accepted to
be zero during the simulation processes. In this model, two key nodes (marked in
Figure 21) have been analyzed whether they have displacements, strains and stresses

under desired limits. The results are presented in Table 9.
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Table 9 — Displacement, Principal Strain and Principal Stress Values at the Given

Nodes for Model A
NodeNumber 1 2
Max. Displacement (mm) 2.143E-2 7.217E-2
Max. Displacement 4100 0.536 % 1.804 %
Max.Displacement in the Model
Max. Principal Stress (MPa) 1.592E-4 1.833E-2
Max. Principal Stress 100 2.726E-4 % 0.031 %
Max. Principal Stress in the Model
Max. Principal Strain 2.163E-3 1.022E-2
Max. Principal Strain 100 1.023 % 4.834 %
Max. Principal Strain in the Model

As seen in Table 9, the values of principal stresses are under the limits but the values

of displacements and principal strains could not stay under the limit of 1 % in some

conditions. For example the maximum principal strain at the node 2 is 4.834 % of the

maximum value in the model. These values are not acceptable and so, the model

must be enlarged in x and z directions. The enlargement in the x direction should be

more, because the values at the node 2 on the x-axis are deviating from the limits

more than the values at the node 1 on the z-axis. As a result, one more model has

been created by multiplying the lengths of z-axis with 2 and x-axis with 2.5.

B. To decrease the values of displacements and strains at the nodes mentioned

before, the new model has been created with the following dimensions (x-y-z)

(Figure 17);

Tissue size(mm) : 50-8-40

Fine mesh region (mm) : 10-2.5-3
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As presented in Figure 17, this tissue is larger than the previous ones. Now, the

displacements and principal strains can be checked whether they exceed the limits.

The results are given in Table 10.

Table 10 — Displacement, Principal Strain and Principal Stress Values at the Given

Nodes for Model B
NodeNumber 1 2
Max. Displacement (mm) 2.106E-2 2.43E-2
[ Max. Displacement }Cl 00 0.527 % 0.608 %
Max.Displacement in theModel
Max. Principal Stress (MPa) 4.326E-5 1.026E-4
[ Max. Principal Stress jxl 00 S.797E-5 % 1.375E-4 %
Max. Principal Stress in the Model
Max. Principal Strain 1.39E-3 2.379E-3
0.545 % 0.933 %

Max. Principal Strain 100
Max. Principal Strain in the Model

As seen in Table 10, all the displacement, principal strain and principal stress values

are within the limit of 1 %.

Before deciding this model as completely appropriate for the estimation of the

parameters in the subroutine, two more tests have been applied on the model. In

these tests, the indenter tip has been rotated 45° and 90° around y-axis and the

simulation has also been applied in these orientations (Figures 18 and 19). The

displacement, principal stress and principal strain values at the marked nodes are

given in Tables 11 and 12.
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Table 11 — Displacement, Principal Strain and Principal Stress Values at the Given

Nodes for Model B with 45° Indenter Tip Orientation

NodeNumber 1 2
Max. Displacement (mm) 1.944E-2 2.466E-2
[ Max. Displacement jxlOO 0.486 % 0.617 %
Max.Displacement in the Model
Max. Principal Stress (MPa) 1.418E-4 6.034E-5
[ Max. Principal Stress jxlOO 4.348E-5 % 1.85E-5 %
Max. Principal Stress in the Model

Max. Principal Strain 1.062E-3 2.058E-3

0.591 % 1.145 %

Max. Principal Strain 100
Max. Principal Strain in the Model

Table 12 — Displacement, Principal Strain and Principal Stress Values at the Given

Nodes for Model B with 90° Indenter Tip Orientation

Max. Principal Strain 4100
Max. Principal Strain in the Model

Node Number 1 2
Max. Displacement (mm) 3.667E-3 1.24E-2
[ Max. Displacement jxl 00 0.092 % 0.31 %
Max.Displacement in the Model
Max. Principal Stress (MPa) 2.929E-6 1.356E-5
[ Max. Principal Stress jxl 00 6.083E-7 % 2.816E-6 %
Max. Principal Stress in the Model

Max. Principal Strain 2.125E-4 1.086E-3
0.109 % 0.558 %




In Tables 11 and 12 all the values of displacements, principal strains and principal
stresses are seen to be under the limits. Only the principle strain at the node 2 at the
indenter tip orientation of 45° is a little bit larger than % 1, but this is tolerable. So,
the tissue can be assumed to have zero displacements, principal strains and principal
stresses at the end of the model axes and this model can be used for the estimation of

the parameters in the user subroutine.

The last thing to do is to create different mesh sizes in the fine mesh zone and
compare the results of indenter tip reaction force. The force should converge
somewhere, and by also taking the submission time into account, the most

appropriate one should be chosen for more accurate results.

So far, the edge length of 0.5 mm has been used for the elements in the fine mesh
zone. Four more models will be created with the edge lengths of 0.3, 0.4, 0.6 and 0.7
mm and they will be compared for the convergence. The time-indenter tip reaction

force curves of these five models are seen in the Figure 24.
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Figure 24 — Time-Indenter Tip Reaction Force Curves for Different Element Edge
Lengths in the Fine Mesh Region
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In Figure 24, the change of the indenter tip reaction with time is seen. Three of these
curves are very close to each other. These are the ones having the element edge
lengths of 0.3, 0.5 and 0.7mm. The one having the element edge length of 0.6 mm is
starting diverging at about first second. And the one having the element edge length
of 0.4 mm is giving bad results between third and fourth seconds of the analysis time.
So, these two are not good enough to be used. The other two curves representing the
element edges of 0.3 and 0.7 mm. are also giving some bad responses that can be
seen by looking carefully. This can be due to node separations at those increments as
a result of tetrahedral meshing. Sudden changes in the reaction forces can also
happen because of anisotropy. Different directions of the tissue have different
stiffness and that can cause different sudden increases or decreases along those
directions. Also it is more advantageous to use 0.5 mm instead of 0.3 mm edge
length. Because the submission of 0.3 mm is lasting more than one hour, whereas the
0.5 mm is lasting in about twelve minutes and they yield nearly the same result
(convergence is satisfied). As a result, the best element edge length for the elements
in the fine mesh zone has been chosen as 0.5 mm. This version of the model is

presented in Figure 25.
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Figure 25- The Model with the Elements of 0.5 mm Edge Length

So far, the thickness of the tissue has been assumed as 8 mm for decreasing the
calculation load of the finite element model. It was also observed that for the
maximum displacement, maximum principal strain and maximum principal stress
values to be assumed as disappeared (to have values within the limits), the tissue
should be modeled with the lengths of 50 mm (6.25 times greater than the tissue
thickness) in x direction and 40 mm (5 times greater than the tissue thickness) in z
direction. In the real case (where the experiments were performed), the thickness of
the tissue was about 40 mm. So, in that last step of the finite element model creation
process, the model will be drawn with its real dimensions (250-40-200 mm). Since
this model is five times greater than the previous one in all the material axes, the

maximum displacement, maximum principal strain and maximum principal stress
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values cannot be larger than the previous model. But, against all the possibilities,

they will be calculated and the results will be presented in Table 13. The last version

of the finite element model can be seen in Figure 26.

Table 13 — Displacement, Principal Strain and Principal Stress Values at the Given

Nodes for the Last Version of the Model

NodeNumber 1 2
Max. Displacement (mm) 1.112E-2 1.51E-2
[ Max. Displacement }Cl 00 0.278 % 0.378 %
Max.Displacement in theModel
Max. Principal Stress (MPa) 1.842E-5 7.664E-5
[ Max. Principal Stress jxlOO 2.468E-5 % 1.O27E-4 %

Max. Principal Stress in the Model

Max. Principal Strain 9.937E-4 1.88E-3

0.39 % 0.737 %

Max. Principal Strain 100
Max. Principal Strain in the Model

Table 13 summarizes the values of the maximum displacement, maximum principal

strain and maximum principal stress values at nodes 1 and 2 which have been

calculated by the third material model. The results of these material models are very

close to each other, so, to obtain the values within the limits for this model is

sufficient. As seen in the table, all the values of displacements, principal strains and

principal stresses are under the limits. So, the tissue can be assumed to have zero

displacements, principal strains and principal stresses at the end of the model axes

and this final finite element model can be used for the estimation of the parameters in

the user subroutine.
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Figure 26- The Last Version of the Finite Element Model
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CHAPTER 9

RESULTS

In this chapter, the results obtained by submitting the finite element model which
was created in Chapter 8 will be presented. Each finite element model was submitted
with the relevant material model (presented in detail in Appendices I, K and M,
respectively). The constants in these material models were changed and best fit
between the experimental data and the finite element solution was tried to be found.

These procedures will be presented in the following subsections in detail.

9.1. Simulation of Experimental Data with the QLY Model by Assuming Soft

Tissue as an Isotropic Material

The simulation process was started with the quasi-linear isotropic material model.
The material model for this simulation was presented in Appendix I. This material
model was independent of strain. It involved the experiment time only, so, this model
was only able to simulate relaxation and creep behaviors but not cyclic loading.

Details are presented in the following subsections.

9.1.1. Simulation of Relaxation Behavior

Relaxation experiment data was available as indicated with the continuous line in
Figure 27. This data was obtained by indenting (by the elliptic indenter tip with the
dimensions of 8-2-2 mm in X, y and z axes, respectively) the soft tissue (forearm,

medial part) which had a thickness of about 40 mm. The soft tissue was indented 20
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mm (50 % of its thickness) with the indenter speed of 1 mm/s in 20 seconds. Then,
this displacement was kept constant during 120 seconds and the relaxation behavior

was observed.

Reaction Force (N)
ha

Time (s)

Exp Data = FE1 = FEZ o FE3 & FE4 « FE5

Figure 27 — Relaxation Curves for the Simulation of the First Model

For the simulation of the experimental data, five finite element (FE) trials were
performed which can be seen in Figure 27. The normalized sums of square errors

(NSSE) for each trial were presented in Figure 28.

In the first FE trial, the base material model (subroutine) which was presented in
Appendix I was used. This trial was able to simulate the magnitude of the reaction
force at the beginning of the relaxation period, but, the total amount of relaxation,
which can be thought as the difference of reaction forces between the 20” and 140"
seconds, was seemed to be larger in the experimental data. The NSSE for this
simulation was calculated as 31.82 %. The majority of this error was due to the

deficiency in the amount of total relaxation magnitude which causes the long term
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relaxation magnitude to deviate from the experimental data more and more as time

passes.

To increase the amount of total relaxation magnitude, the relaxation amplitude
constant (C) in the material model was increased. So, in the second FE trial, the
relaxation amplitude constant was taken to be 8 instead of 0.08. This procedure
increased the magnitude of both short term and long term amounts of relaxation. But
the increase in the long term relaxation amount was more than the short term
relaxation amount. This caused the total relaxation amount to increase as seen in
Figure 27. This FE trial was seemed to give reaction force magnitudes which are
much less then the experimental data. A careful examination of the curve reveals that
the curvature of this curve is similar to the experimental data curve than the previous
trial. The NSSE for this simulation was calculated as 169.33 %. The majority of this
error was due to the deviation of the magnitudes of the reaction forces from the

experimental data.

After obtaining the sufficient amount of total relaxation, the magnitudes of reaction
forces should have been approached to the ones in the experimental data. To do that,

the short term relaxation constant (7, ) in the material model was increased. So, in the

third FE trial, the short term relaxation constant was taken to be 4 seconds instead of
0.8 seconds. As seen in Figure 27, by increasing the short term relaxation constant,
the decrease in the relaxation magnitude could be obtained. The decrease of the short
term relaxation period magnitude was a little bit larger than the decrease of the long
term relaxation period magnitude. This was due to the fact that the short term
relaxation constant was changed and so, short term relaxation behavior was affected
more. The fitting between the FE trial 3 and the experimental data seemed to be
better than the previous ones. In this trial, the NSSE was 4.46 % (see Figure 28).
This was due to having relaxation magnitude less than the experimental data in the
short term relaxation period and having relaxation magnitude more than the

experimental data in the long term relaxation period.
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Figure 28 — Normalized Sums of Square Errors for the Relaxation Simulation
of the First Model

To overcome the deviations in the long and short term relaxation periods, long and
short term relaxation constants in the material model should have been changed
appropriately. First, to obtain better fit in the long term relaxation period, the long

term relaxation constant (7,) was changed in the fourth FE trial. The constant was

increased from 1400 seconds to 10000 seconds. This increase caused the long term
relaxation amount to decrease. As seen in the Figure 27, this FE trial had less
relaxation amount than the previous one in the long term relaxation period. Now, the
curvature of the FE trial 4 response seemed to be much similar to the experimental
data. Last thing to do was to have more relaxation amount in the short term
relaxation period. This could be achieved in the fifth FE trial by decreasing the short
term relaxation constant from 4 seconds to 2.5 seconds. As seen in Figure 27, a great
fit between the experimental data and finite element trial could be obtained after this
trial. The proof of this great fit is the value of NSSE which was calculated as 0.47 %.

The constants used in each finite element trial are summarized in Table 14.
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Table 14 — Constants of the First Material Model (equation A59)

Used in the Relaxation Simulation

Trial A B C 7, 7,

FE1 1.96E-38 42 0.08 0.8 1400
FE2 1.96E-38 42 8.0 0.8 1400
FE3 1.96E-38 42 8.0 4.0 1400
FE4 1.96E-38 42 8.0 4.0 10000
FE5 1.96E-38 42 8.0 2.5 10000

9.1.2. Simulation of Creep Behavior

Creep experiment data was available as indicated with the continuous line in Figure

29. This data was obtained by indenting (by the elliptic indenter tip with the

dimensions of 8-2-2 mm in X, y and z axes, respectively) the soft tissue (forearm,

medial part) which had a thickness of about 40 mm. The soft tissue was indented

22.5 mm (56.25 % of its thickness) with the indenter speed of 1 mm/s in 22.5

seconds until the reaction force reached to 5 N. Then, this reaction force which

occurred at the end of the loading period was kept constant during 120 seconds and

the creep behavior was observed.
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Figure 29 - Creep Curves for the Simulation of the First Model

For the simulation of the experimental data, three finite element (FE) trials were
performed which can be seen in Figure 29. The normalized sums of square errors

(NSSE) for each trial were presented in Figure 30.

In the first FE trial, the material model which had been used for the last FE trial of
the relaxation simulation procedure was used. This trial has given rather large
magnitudes of displacement responses, i.e. the creep response occurred much more
than the experimental data. This trial, which had the NSSE value of 190.05 %
(Figure 30), can be seen in Figure 29.

The total amount of creep response was then tried to be decreased by increasing the
elastic constant (A) from 1.96E-38 MPa to 4E-38 MPa in the second trial. This
procedure decreased the magnitude of creep response and made it approached to the
experimental data. After this second trial, the NSSE value appeared as 1.58 % which

means that the second trial gives much accurate responses than the first one.
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Figure 30 - Normalized Sums of Square Errors for the Creep Simulation
of the First Model

To increase the accuracy of the simulation further, i.e. to decrease the value of
NSSE, one more FE trial was performed. In this last trial (FE3), the elastic constant
was increased a little bit more and it was made 4.455E-38 MPa. This procedure
decreased the magnitude of creep response a little bit more and made it approached
to the experimental data. After this third trial, the NSSE value appeared as 0.43 %
which proves that there occurred a great fit between the finite element solution and
the experimental data. The constants used in each finite element trial are summarized

in Table 15.
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Table 15 — Constants of the First Material Model (equation A59)
Used in the Creep Simulation

Trial A B C T, T,

FE1 1.96E-38 42 8.0 2.5 10000
FE2 4.0E-38 42 8.0 2.5 10000
FE3 4.455E-38 42 8.0 2.5 10000

9.2. Simulation of Experimental Data with the Enhanced QLYV Model by

Assuming Soft Tissue as an Isotropic Material

The simulation process was carried on with the enhanced quasi-linear isotropic
material model. The material model for this simulation was presented in Appendix
K. This material model was dependent on both experiment time and strain, so, it was
able to simulate relaxation and creep behaviors together with cyclic loading. Details

are presented in the following subsections.

9.2.1. Simulation of Relaxation Behavior

Relaxation experiment data was available as indicated with the continuous line in
Figure 31. This data was obtained by indenting (by the elliptic indenter tip with the
dimensions of 8-2-2 mm in X, y and z axes, respectively) the soft tissue (forearm,
medial part) which had a thickness of about 40 mm. The soft tissue was indented 20
mm (50 % of its thickness) with the indenter speed of 1 mm/s in 20 seconds. Then,
this displacement was kept constant during 120 seconds and the relaxation behavior

was observed.
For the simulation of the experimental data, six finite element (FE) trials were

performed which can be seen in Figure 31. The normalized sums of square errors

(NSSE) for each trial were presented in Figure 32.
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In the first FE trial, the base material model (subroutine) which was presented in
Appendix K was used. This trial was not able to simulate the magnitude of the
reaction force at the beginning of the relaxation period. The reaction force for this
simulation was starting from about 4.8 N, whereas the reaction force of the
experimental data was starting from somewhere close to 4 N. (see Figure 31) The
great majority of the NSSE of 399.29 % for this simulation was arising from this

force difference. So, in the second FE trial, the short term relaxation constant (7,)

was decreased from 8 seconds to 0.8 seconds. As seen in Figure 31, by decreasing
the value of the short term relaxation constant, the reaction force at the beginning of
the relaxation period could be simulated. This can also be seen from the value of
NSSE which decreased to 30.45 % in one step. The majority of this error was due to
the deficiency in the amount of total relaxation magnitude which causes the long
term relaxation magnitude to deviate from the experimental data more and more as

time passes.
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Figure 31 — Relaxation Curves for the Simulation of the Second Model
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To increase the amount of total relaxation magnitude, the relaxation amplitude
constant (C) in the material model was increased from 0.08 to 0.8 in the third FE
trial. This procedure increased the magnitude of both short term and long term
amounts of relaxation. The increase in the long term relaxation amount was more
than the short term relaxation amount. This caused the total relaxation amount to
increase as seen in Figure 31. This FE trial was seemed to yield reaction force
magnitudes which are much less then the experimental data. A careful examination
of the curve reveals that the curvature of this curve is similar to the experimental data
curve than the previous trial. The NSSE for this simulation was calculated as 877.42
%. The majority of this error was due to the deviation of the magnitudes of the

reaction forces from the experimental data.

For increasing the reaction force same magnitude for all of the simulation points, i.e.
for decreasing the amount of total relaxation magnitude, the elastic constant (A) was
increased from 9E-35 MPa to 1.67E-34 MPa in the fourth trial. After this trial, the
simulation response of the reaction force was shifted upwards as seen in Figure 31.

This process decreased the NSSE to 28.41 %.

In the fifth FE trial, for decreasing the amount of relaxation in the long term
relaxation period more than the short term relaxation period, the long term relaxation

constant (7, ) was increased from 140 seconds to 1400 seconds. Because, choosing a

greater long term relaxation constant causes the long term relaxation to occur later.
Consequently, this process caused the long term relaxation to decrease more than the

short term relaxation.

In the last FE trial, the short term relaxation constant was decreased one more step
and was made 0.3 seconds to catch the experimental data. After that step, there
occurred a great fit between the experimental data and simulation response which
was proved by the NSSE value of 0.6 % given in Figure 32. The constants used in

each finite element trial are summarized in Table 16.
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Table 16 — Constants of the Second Material Model (equation B21)
Used in the Relaxation Simulation

Trial A B C 7 7, a | b | ¢
FE1 9.0E-35 42 0.08 8.0 140 0.8 0.8 0.8
FE2 9.0E-35 42 0.08 0.8 140 0.8 0.8 0.8
FE3 9.0E-35 42 0.8 0.8 140 0.8 0.8 0.8
FE4 1.67E-34 42 0.8 0.8 140 0.8 0.8 0.8
FE5 1.67E-34 42 0.8 0.8 1400 0.8 0.8 0.8
FE6 1.67E-34 42 0.8 0.3 1400 0.8 0.8 0.8

109



9.2.2. Simulation of Creep Behavior

Creep experiment data was available as indicated with the continuous line in Figure
33. This data was obtained by indenting (by the elliptic indenter tip with the
dimensions of 8-2-2 mm in x, y and z axes, respectively) the soft tissue (forearm,
medial part) which had a thickness of about 40 mm. The soft tissue was indented
22.5 mm (56.25 % of its thickness) with the indenter speed of 1 mm/s in 22.5
seconds until the reaction force reached to 5 N. Then, this reaction force which
occurred at the end of the loading period was kept constant during 120 seconds and

the creep behavior was observed.

30

26 1

[ R < IO O O - - O O O O O - O O O - R R .

20 1

Displacement (mm)
o

Time (s)

——Exp.Data o FE1 & FE2 e+ FE3

Figure 33 - Creep Curves for the Simulation of the Second Model
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For the simulation of the experimental data, three finite element (FE) trials were
performed which can be seen in Figure 33. The normalized sums of square errors

(NSSE) for each trial were presented in Figure 34.

In the first FE trial, the material model which had been used for the last FE trial of
the relaxation simulation procedure was used. This trial has given a little bit smaller
magnitudes of displacement responses, i.e. the creep response occurred less than the
experimental data. This trial, which had the NSSE value of 6.36 % (Figure 34), can

be seen in Figure 33.

The total amount of creep response was then tried to be increased by decreasing the
elastic constant (A) from 1.67E-34 MPa to 1.67E-35 MPa in the second trial. This
procedure increased the magnitude of creep response and made it approached to the
experimental data. After this second trial, the NSSE value appeared as 5.52 % which

means that the second trial gives more accurate responses than the first one.
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Figure 34 - Normalized Sums of Square Errors for the Creep Simulation
of the Second Model
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To increase the accuracy of the simulation further, i.e. to decrease the value of
NSSE, one more FE trial was performed. In this last trial (FE3), the elastic constant
was decreased a little bit more and it was made 1.31E-36 MPa. This procedure
increased the magnitude of creep response a little bit more and made it approached to
the experimental data. After this third trial, the NSSE value appeared as 0.31 %
which proves that there occurred a great fit between the finite element solution and
the experimental data. The constants used in each finite element trial are summarized

in Table 17.

Table 17 — Constants of the Second Material Model (equation B21)
Used in the Creep Simulation

Trial A B C T, 7, a b c
FE1 1.67E-34 42 0.8 0.3 1400 0.8 0.8 0.8
FE2 1.67E-35 42 0.8 0.3 1400 0.8 0.8 0.8
FE3 1.31E-36 42 0.8 0.3 1400 0.8 0.8 0.8

9.2.3. Simulation of Hysteresis Behavior

Hysteresis experiment data was available as indicated with the continuous lines in
Figure 35 and Figure 39. This data was obtained by loading (by the elliptic indenter
tip with the dimensions of 8-2-2 mm in X, y and z axes, respectively) the soft tissue
(forearm, medial part) which had a thickness of about 40 mm. The soft tissue was
loaded 15 mm (37.5 % of its thickness) with the indenter speed of 4 mm/s in 3.75
seconds. Then, the tissue was unloaded with the same speed and the indenter tip
returned to its original position when the experiment time is 7.5 seconds. Within this
one cycle of loading and unloading, the change of reaction force with respect to time

(Figure 35) and with respect to displacement (Figure 39) was observed.
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For the simulation of the experimental data, five finite element (FE) trials were
performed which can be seen in Figure 35 and Figure 39. The normalized sums of
square errors (NSSE) for each trial of the reaction force simulation with respect to
time were presented in Figure 36, Figure 37 and Figure 38 for loading and unloading
periods, for loading period only and for unloading period only, respectively. The
NSSE values for each trial of the reaction force simulation with respect to
displacement were presented in Figure 40, Figure 41 and Figure 42 for loading and
unloading periods, for loading period only and for unloading period only,

respectively.
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Figure 35 — Hysteresis (Time - Reaction Force) Curves for the Simulation
of the Second Model

In the first finite element trial, the material model, which had been used in the last
step of the simulation of relaxation behavior for this model was used. This model
was not very successful in simulating the material behavior both in loading and

unloading periods of the simulation as seen in Figures 35 and 39. The NSSE values
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of 27.35 % given in Figure 36 and 27.1 % given in Figure 40 were the proof of that.
But, by a more detailed examination of Figure 35, one can see that the simulation of
the unloading period was better than the simulation of the loading period. The proof
of that is given in Figure 37 and Figure 38 which presents the NSSE values in
loading as 23.92 % and in unloading as 3.43 %. This can also be seen from Figure 41
and Figure 42 with the NSSE values of 22.49 % in loading and 4.61 % in unloading,

respectively.

For the second FE trial of the simulation of hysteresis behavior, the material model,
which had been used in the last step of the simulation of creep behavior for this
model was used. This model presented very small values of the reaction force
response during the experiment time (see Figure 35) which resulted in very large
NSSE values as given in the Figures 36, 37 and 38. For increasing these reaction
force values, the elastic material constant (A) was increased from 1.31E-36 MPa to
2.033E-34 MPa in the third trial. This model was not very successful in simulating
the material behavior both in loading and unloading periods of the simulation like the
first one as seen in Figure 35. The NSSE value of 29.53 % given in Figure 36 and
3331 % given in Figure 40 were the proof of that. But, by a more detailed
examination of Figure 35, one can see this time that the simulation of the loading
period was better than the simulation of the unloading period. The proof of that is
given in the Figure 37 and Figure 38 which presents the NSSE values in loading as
1.97 % and in unloading as 27.56 %. This can also be seen from Figure 41 and
Figure 42 with the NSSE values of 1.71 % in loading and 31.6 % in unloading,

respectively.
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Figure 38 - Normalized Sums of Square Errors for the Hysteresis
(Time - Reaction Force) Simulation of the Second Model in Unloading

The main source of these errors was thought to be due to the data acquisition speed
of the experiment apparatus. By a carefully examination of Figure 35 and Figure 39,
one can see the strangeness at the transition periods between the loading and the
unloading periods. The indenter tip was stopped about 0.15 seconds after the loading
period, and then started the unloading period. During this short experiment time, a
sudden relaxation happened in the tissue. So, for being able to simulate this behavior,

the simulation procedure was changed for the fourth and fifth trials as follows:

The soft tissue was loaded 15 mm (37.5 % of its thickness) with the indenter speed of
4 mm/s in 3.75 seconds. Then, this displacement was kept constant during 0.15
seconds to allow for the relaxation behavior. Later, the tissue was unloaded and the

indenter tip returned to its original position when the experiment time is 7.5 seconds.
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In the fourth FE trial, the short term relaxation constant was decreased from 0.3
second to 0.03 second to be able to simulate that sudden decrease in the reaction
force. The relaxation behavior between the loading and the unloading periods was
seemed to be simulated which can be seen from Figure 35 and Figure 39. But this
time, the magnitude of the reaction forces appeared as larger than the experimental
data. The NSSE value of 357.87 % given in Figure 36 and 293.81 % given in Figure
40 are the proof of that. To decrease the magnitude of the reaction force, the elastic
material constant (A) was increased once more from 2.033E-34 MPa to 3.21E-33
MPa in the last FE trial. After that trial, a good fit between the experimental data and
the finite element simulation could be obtained (see Figures 35 and 39), with the
NSSE value of 2.03 % in the simulation of reaction force with respect to experiment
time (see Figure 36) and with the NSSE value of 0.58 % in the simulation of the
reaction force with respect to displacement (see Figure 40). The constants used in

each finite element trial are summarized in Table 18.
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Figure 39 - Hysteresis (Displacement - Reaction Force) Curves for the Simulation
of the Second Model
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Table 18 — Constants of the Second Material Model (equation B21)
Used in the Hysteresis Simulation

Trial A B | C 7 , a | b | ¢
FE1 1.67E-34 42 0.8 0.3 1400 0.8 0.8 0.8
FE2 1.31E-36 42 0.8 0.3 1400 0.8 0.8 0.8
FE3 2.033E-34 42 0.8 0.3 1400 0.8 0.8 0.8
FE4 2.033E-34 42 0.8 0.03 1400 0.8 0.8 0.8
FE5 3.21E-33 42 0.8 0.03 1400 0.8 0.8 0.8
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9.2.4. Simulation of Preconditioning (Mullin’s Effect) Behavior

Preconditioning experiment data was available as indicated with the continuous line
in Figure 43. This data was obtained by loading (by the elliptic indenter tip with the
dimensions of 8-2-2 mm in X, y and z axes, respectively) the soft tissue (forearm,
medial part) which had a thickness of about 40 mm. The soft tissue was loaded 15
mm (37.5 % of its thickness) with the indenter speed of 4 mm/s in 3.75 seconds.
Then, this displacement was kept constant during 0.15 seconds to allow for the
relaxation behavior like in the hysteresis simulation. Later, the tissue was unloaded
and the indenter tip returned to its original position when the experiment time is 7.5
seconds. This loading and unloading cycle was repeated ten times and the change of

reaction force with respect to time (Figure 43) was observed.

The simulation of the experimental data was performed with the material model
which had been used in the last trial for the simulation of the hysteresis behavior of
this model. This simulation is concluded with the NSSE value of 3.69 % which can
be assumed as acceptable for the preconditioning behavior. The constants used in the

finite element trial are summarized in Table 19.
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Table 19 — Constants of the Second Material Model (equation B21)

Used in the Preconditioning Simulation

Trial

A

B

C

7

&

(on

[e]

FES

3.21E-33

42

0.8

0.03

1400

0.8

0.8

0.8

9.3. Simulation of Experimental Data with the Enhanced QLYV Model by

Assuming Soft Tissue as an Anisotropic Material

The last simulation process was performed with the enhanced quasi-linear

anisotropic material model. The material model for this simulation was presented in
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Appendix M. This material model was dependent on both experiment time and
strain, so, it was able to simulate relaxation and creep behaviors together with cyclic
loading. Difference of this model from the previous one is the fact that this model
was created as anisotropic. The relaxation, creep and cyclic loading behaviors of the

soft tissue was tried to be simulated by this anisotropic material model in this step.

9.3.1. Simulation of Relaxation Behavior

Relaxation experiment data was available as indicated with the continuous line in
Figure 44. This data was obtained by indenting (by the elliptic indenter tip with the
dimensions of 8-2-2 mm in X, y and z axes, respectively) the soft tissue (forearm,
medial part) which had a thickness of about 40 mm. The soft tissue was indented 20
mm (50 % of its thickness) with the indenter speed of 1 mm/s in 20 seconds. Then,
this displacement was kept constant during 120 seconds and the relaxation behavior

was observed.

For the simulation of the experimental data, six finite element (FE) trials were
performed which can be seen in Figure 44. The normalized sums of square errors

(NSSE) for each trial were presented in Figure 45.

In the first FE trial, the base material model (subroutine) which was presented in
Appendix M was used. This trial was not able to simulate the magnitude of the
reaction force at the beginning of the relaxation period. The reaction force for this
simulation was starting from about 4.2 N, whereas the reaction force of the
experimental data was starting from somewhere close to 4 N. The great majority of
the NSSE of 86.86 % for this simulation was arising from this force difference. So,
in the second FE trial, the short term relaxation constant (7,) was decreased from 8
seconds to 4 seconds. As seen in Figure 44, by decreasing the value of the short term
relaxation constant, the reaction force at the beginning of the relaxation period could
be simulated. This can also be seen from the value of NSSE which decreased to

4691 % in one step. The majority of this error was due to the deficiency in the
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amount of total relaxation magnitude which causes the long term relaxation

magnitude to deviate from the experimental data more and more as time passes.
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Figure 44 — Relaxation Curves for the Simulation of the Third Model

To increase the amount of total relaxation magnitude, the relaxation amplitude
constant (C) in the material model was increased from 0.08 to 8 in the third FE trial.
This procedure increased the magnitude of both short term and long term amounts of
relaxation. The increase in the long term relaxation amount was more than the short
term relaxation amount. This caused the total relaxation amount to increase as seen
in Figure 44. In the fourth FE trial, the short term relaxation constant (7,) was
increased from 4 seconds to 5 seconds to shift the left hand side of the relaxation
curve upwards. As expected, also the right hand side of the relaxation curve was
shifted by increasing the short term relaxation constant, but this is not as much as the

increase of the left hand side. So, after this trial, the short term relaxation was
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seemed to be simulated better (see Figure 44) which was proved with the NSSE
value of 10.87 % given in Figure 45.
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Figure 45 - Normalized Sums of Square Errors for the Relaxation Simulation
of the Third Model

In the fifth FE trial, for decreasing the amount of relaxation in the long term
relaxation period more than the short term relaxation period, i.e. for shifting the right
hand side of the relaxation curve upwards more than the left hand side, the long term

relaxation constant (7,) was increased from 1400 seconds to 14000 seconds.

Because, choosing a greater long term relaxation constant causes the long term
relaxation to occur later. Consequently, this process caused the long term relaxation

to decrease more than the short term relaxation.

In the last FE trial, the short term relaxation constant was decreased back to 4

seconds to match the experimental data. After that step, there occurred a great fit
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between the experimental data and simulation response which was proved by the

NSSE value of 0.74 % given in Figure 45. The constants used in each finite element

trial are summarized in Table 20.

Table 20 — Constants of the Third Material Model (equation C19)
Used in the Relaxation Simulation

Trial A B C 7 7, a | b c
FE1 7.6E-37 42 0.08 8.0 1400 0.7 0.8 0.9
FE2 7.6E-37 42 0.08 4.0 1400 0.7 0.8 0.9
FE3 7.6E-37 42 8.0 4.0 1400 0.7 0.8 0.9
FE4 7.6E-37 42 8.0 5.0 1400 0.7 0.8 0.9
FE5 7.6E-37 42 8.0 5.0 14000 0.7 0.8 0.9
FE6 7.6E-37 42 8.0 4.0 14000 0.7 0.8 0.9

9.3.2. Simulation of Creep Behavior

Creep experiment data was available as indicated with the continuous line in Figure

46. This data was obtained by indenting (by the elliptic indenter tip with the

dimensions of 8-2-2 mm in X, y and z axes, respectively) the soft tissue (forearm,

medial part) which had a thickness of about 40 mm. The soft tissue was indented

22.5 mm (56.25 % of its thickness) with the indenter speed of 1 mm/s in 22.5

seconds until the reaction force reached to 5 N. Then, this reaction force which

occurred at the end of the loading period was kept constant during 120 seconds and

the creep behavior was observed.
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For the simulation of the experimental data, three finite element (FE) trials were
performed which can be seen in Figure 46. The normalized sums of square errors

(NSSE) for each trial were presented in Figure 47.
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Figure 46 - Creep Curves for the Simulation of the Third Model

In the first FE trial, the material model which had been used for the last FE trial of
the relaxation simulation procedure was used. This trial has given a little bit smaller
magnitudes of displacement responses, i.e. the creep response occurred less than the
experimental data. This trial, which had the NSSE value of 3.98 % (Figure 47), can

be seen in Figure 46.
The total amount of creep response was then tried to be increased by decreasing the

elastic constant (A) from 7.6E-37 MPa to 3.4E-37 MPa in the second trial. This

procedure increased the magnitude of creep response and made it approached to the
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experimental data. After this second trial, the NSSE value appeared as 0.79 % which

means that the second trial gives more accurate responses than the first one.
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Figure 47 - Normalized Sums of Square Errors for the Creep Simulation
of the Third Model

To increase the accuracy of the simulation further, i.e. to decrease the value of

NSSE, one more FE trial was performed. In this last trial (FE3), the elastic constant

was decreased a little bit more and it was made 2.55E-37 MPa. This procedure

increased the magnitude of creep response a little bit more and made it approached to

the experimental data. After this third trial, the NSSE value appeared as 0.31 %

which proves that there occurred a great fit between the finite element solution and

the experimental data. The constants used in each finite element trial are summarized

in Table 21.
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Table 21 — Constants of the Third Material Model (equation C19)
Used in the Creep Simulation

e
[on
10

Trial A B C 7, T,

FE1 7.6E-37 42 8.0 4.0 14000 0.7 0.8 0.9

FE2 3.4E-37 42 8.0 4.0 14000 0.7 0.8 0.9

FE3 2.55E-37 42 8.0 4.0 14000 0.7 0.8 0.9

9.3.3. Simulation of Hysteresis Behavior

Hysteresis experiment data was available as indicated with the continuous lines in
Figure 48 and Figure 52. This data was obtained by loading (by the elliptic indenter
tip with the dimensions of 8-2-2 mm in X, y and z axes, respectively) the soft tissue
(forearm, medial part) which had a thickness of about 40 mm. The soft tissue was
loaded 15 mm (37.5 % of its thickness) with the indenter speed of 4 mm/s in 3.75
seconds. Then, the tissue was unloaded with the same speed and the indenter tip
returned to its original position when the experiment time is 7.5 seconds. Within this
one cycle of loading and unloading, the change of reaction force with respect to time

(Figure 48) and with respect to displacement (Figure 52) was observed.

For the simulation of the experimental data, five finite element (FE) trials were
performed which can be seen in Figure 48 and Figure 52. The normalized sums of
square errors (NSSE) for each trial of the reaction force simulation with respect to
time were presented in Figure 49, Figure 50 and Figure 51 for loading and unloading
periods, for loading period only and for unloading period only, respectively. The
NSSE values for each trial of the reaction force simulation with respect to
displacement were presented in Figure 53, Figure 54 and Figure 55 for loading and
unloading periods, for loading period only and for unloading period only,

respectively.
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Figure 48 — Hysteresis (Time - Reaction Force) Curves for the Simulation
of the Third Model

In the first finite element trial, the material model, which had been used in the last
step of the simulation of relaxation behavior for this model was used. This model
was not very successful in simulating the material behavior both in loading and
unloading periods of the simulation as seen in Figures 48 and 52. The NSSE values
of 32.66 % given in Figure 49 and 31.7 % given in Figure 53 were the proof of that.
A more detailed examination of Figure 48, one can see that the simulation of the
unloading period was better than the simulation of the loading period. The proof of
that is given in Figure 50 and Figure 51 which presents the NSSE values in loading
as 30.41 % and in unloading as 2.26 %. This can also be seen from Figure 54 and
Figure 55 with the NSSE values of 28.75 % in loading and 2.96 % in unloading,

respectively.

For the second FE trial of the simulation of hysteresis behavior, the material model,

which had been used in the last step of the simulation of creep behavior for this
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model was used. This model presented very small values of the reaction force
response during the experiment time (see Figure 48) which resulted in very large
NSSE values as given in the Figures 49, 50 and 51. For increasing these reaction
force values, the elastic material constant (A) was increased from 2.55E-37 MPa to
9.58E-37 MPa in the third trial. This model was not very successful in simulating the
material behavior both in loading and unloading periods of the simulation like the
first one as seen in Figure 48. The NSSE value of 29.86 % given in Figure 49 and
33.64 % given in Figure 53 were the proof of that. A more detailed examination of
Figure 48, one can see this time that the simulation of the loading period was better
than the simulation of the unloading period. The proof of that is given in the Figure
50 and Figure 51 which presents the NSSE values in loading as 2.06 % and in
unloading as 27.8 %. This can also be seen from Figure 54 and Figure 55 with the
NSSE values of 1.78 % in loading and 31.86 % in unloading, respectively.
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Figure 49 — Normalized Sums of Square Errors for the Hysteresis (Time - Reaction
Force) Simulation of the Third Model in Loading and Unloading
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Figure 50 - Normalized Sums of Square Errors for the Hysteresis
(Time - Reaction Force) Simulation of the Third Model in Loading
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Figure 51 - Normalized Sums of Square Errors for the Hysteresis
(Time - Reaction Force) Simulation of the Third Model in Unloading
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The main source of these errors was thought to be due to the data acquisition speed
of the experiment apparatus. By a carefully examination of Figure 48 and Figure 52,
one can see the strangeness at the transition periods between the loading and the
unloading periods. The indenter tip was stopped about 0.15 seconds after the loading
period, and then started the unloading period. During this short time, a sudden
relaxation happened in the tissue. So, for being able to simulate this behavior, the

simulation procedure was changed for the fourth and fifth trials as follows:

The soft tissue was loaded 15 mm (37.5 % of its thickness) with the indenter speed of
4 mm/s in 3.75 seconds. Then, this displacement was kept constant during 0.15
seconds to allow for the relaxation behavior. Later, the tissue was unloaded and the

indenter tip returned to its original position when the experiment time is 7.5 seconds.

In the fourth FE trial, the short term relaxation constant was decreased from 4
seconds to 0.02 second to be able to simulate that sudden decrease in the reaction
force. The relaxation behavior between the loading and the unloading periods was
seemed to be simulated which can be seen from Figure 48 and Figure 52. But this
time, the magnitude of the reaction forces appeared as larger than the experimental
data. The NSSE value of 386.93 % given in Figure 49 and 362.12 % given in Figure
53 are the proof of that. To decrease the magnitude of the reaction force, the elastic
material constant (A) was increased once more from 9.58E-37 MPa to 1.61E-36 MPa
in the last FE trial. After that trial, a good fit between the experimental data and the
finite element simulation could be obtained (see Figures 48 and 52), with the NSSE
value of 2.56 % in the simulation of reaction force with respect to experiment time
(see Figure 49) and with the NSSE value of 2.93 % in the simulation of the reaction
force with respect to displacement (see Figure 53). The constants used in each finite

element trial are summarized in Table 22.
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of the Third Model
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133



3500%

30,00%

25 0%

2000%

15 00%

10,00%

500%

1.78%

000%

Figure 54 — Normalized Sums of Square Errors for the Hysteresis
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Table 22 — Constants of the Third Material Model (equation C19)
Used in the Hysteresis Simulation

Trial A B C 7, 7, a b ¢

FEI 7.6E-37 | 42 8.0 4.0 14000 | 0.7 | 08 | 09
FE2 255E-37 | 42 8.0 4.0 14000 | 0.7 | 08 | 09
FE3 9.58E-37 42 8.0 4.0 14000 | 0.7 | 0.8 0.9

FE4 9.58E-37 42 8.0 0.02 14000 | 0.7 0.8 0.9

FES 1.61E-36 42 8.0 0.02 14000 | 0.7 0.8 0.9

9.3.4. Simulation of Preconditioning (Mullin’s Effect) Behavior

Preconditioning experiment data was available as indicated with the continuous line
in Figure 56. This data was obtained by loading (by the elliptic indenter tip with the
dimensions of 8-2-2 mm in X, y and z axes, respectively) the soft tissue (forearm,
medial part) which had a thickness of about 40 mm. The soft tissue was loaded 15
mm (37.5 % of its thickness) with the indenter speed of 4 mm/s in 3.75 seconds.
Then, this displacement was kept constant during 0.15 seconds to allow for the
relaxation behavior like in the hysteresis simulation. Later, the tissue was unloaded
and the indenter tip returned to its original position when the experiment time is 7.5
seconds. This loading and unloading cycle was repeated ten times and the change of

reaction force with respect to time (Figure 56) was observed.

The simulation of the experimental data was performed with the material model
which had been used in the last trial for the simulation of the hysteresis behavior of
this model. This simulation is concluded with the NSSE value of 3.89 % which can
be assumed as acceptable for the preconditioning behavior. The constants used in the

finite element trial are summarized in Table 23.
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Table 23 — Constants of the Third Material Model (equation C19)
Used in the Preconditioning Simulation

Trial A B C T, T,

|
oy
10

FES5 1.61E-36 42 8.0 0.02 14000 0.7 | 0.8 0.9
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CHAPTER 10

CONCLUSIONS

For the simulation of the soft tissue mechanical behaviors like relaxation, creep,
hysteresis and preconditioning three models were proposed. The finite element
models have also been constructed and the constants in these material models were

found by using inverse finite element method.

The first model was created to simulate the relaxation and the creep behaviors of
biological soft tissues. Since this model was not dependent on the strain, it was not

able to simulate hysteresis and preconditioning.

For the relaxation simulation of this model, five finite element solutions were tried.
After iterations, the normalized sum of square errors was appeared to be 0.47 %

which proves that this simulation is rather accurate and acceptable.

For the creep simulation of the first model, three finite element solutions were tried.
The initial guess for material parameters were the values obtained from the
relaxation simulation. After two iterations, the normalized sum of square errors was
appeared to be 0.43 % which proves that this simulation is rather accurate and

acceptable.

As a conclusion, it is possible to say that the first (quasi-linear viscoelastic) model
which assumes soft tissue as an isotropic material is very successful in simulating the
relaxation and the creep behaviors. By changing only one of the constants, both of
the characteristic soft tissue behaviors could be simulated. The simulation of

relaxation could be concluded with the NSSE value of 0.47 % while the simulation
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of creep could be concluded with the NSSE value of 0.43 %. The change in the
coefficient was 127.3 % which includes the contribution of experimental errors as

well.

The main shortcoming of the first model used in this study was the fact that it was
not dependent on the strain which makes it impossible to simulate hysteresis and
preconditioning behaviors. To overcome this shortcoming and be able to simulate
both hysteresis and preconditioning together with relaxation and creep, the second
and third quasi-linear viscoelastic models were proposed. The second material model

is isotropic and the third one is anisotropic.

The second model was proposed to simulate the relaxation and the creep behaviors
together with the cyclic loading behavior of biological soft tissues. Since this model
was dependent on the strain together with the experiment time, it was able to

simulate relaxation and creep behaviors together with cyclic loading.

For the relaxation simulation of this model, six finite element solutions were tried. In
the first trial, the base model written in Appendix K was used. After five iterations,
the normalized sum of square errors was appeared to be 0.6 % which proves that this

simulation is rather accurate and acceptable.

For the creep simulation of the second model, three finite element solutions were
tried. The initial guess for material parameters were the values obtained from the
relaxation simulation. After three iterations, the normalized sum of square errors was
appeared to be 0.31 % which proves that this simulation is rather accurate and

acceptable.

For the hysteresis simulation of the second model, five finite element solutions were
tried. In the first and second trials, the material models, which had been used in the
last step of the relaxation simulation and in the last step of the creep simulation, were
used, respectively. For the third trial, the elastic constant was increased to obtain

larger reaction force responses than the second trial. In the fourth and fifth trials, the
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simulation procedure was changed a little bit to obtain results as in the experiments.
The short term relaxation constant was decreased in the fourth trial to be able to
obtain sudden relaxation response as in the experiment between loading and
unloading periods. In the last trial, the elastic constant was increased once more to
obtain a better fit between the experimental data and the finite element solution.
After the last finite element trial, the normalized sum of square errors was appeared
to be 2.03 % for the simulation of the reaction force with respect to experiment time
and 0.58 % for the simulation of the reaction force with respect to indenter tip
displacement. These results prove that this simulation is rather accurate and

acceptable for a hysteresis simulation.

For the preconditioning simulation of the second model, the last material model
which had been used in the simulation of the hysteresis behavior of this model was
used. The normalized sum of square errors was appeared to be 3.69 % for the
simulation of the reaction force with respect to experiment time. This result proves
that this simulation is rather accurate and acceptable for a preconditioning

simulation.

As a conclusion, it is possible to say that the second (enhanced quasi-linear
viscoelastic) model which assumes soft tissue as an isotropic material is very
successful in simulating the relaxation and the creep behaviors. It can also be
assumed as successful in simulating the hysteresis and preconditioning behaviors.
Because, all these characteristic behaviors of soft biological tissue were tried to be
simulated by only one material model. By changing the constants in the proper way,
this material model could successfully be used for the simulation of the mechanical

behaviors of the soft biological tissue.

The main shortcoming of the second model used in this study was the fact that it was
not an anisotropic model despite the fact that the original structure of the soft tissues
is much likely to anisotropic. To overcome this situation and simulating the material

constants by using an anisotropic model the third model was proposed.
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The third model was created to simulate the relaxation and the creep behaviors
together with the cyclic loading behavior of biological soft tissues buy using an
anisotropic material model. Since this model was dependent on the strain together
with the experiment time like the second model, it was also able to simulate

relaxation and creep behaviors together with cyclic loading.

For the relaxation simulation of this model, six finite element solutions were tried. In
the first trial, the base model written in Appendix M was used. After five iterations,
the normalized sum of square errors was appeared to be 0.74 % which proves that

this simulation is rather accurate and acceptable.

For the creep simulation of the third model, three finite element solutions were tried.
The initial guess for material parameters were the values obtained from the
relaxation simulation. After three iterations, the normalized sum of square errors was
appeared to be 0.31 % which proves that this simulation is rather accurate and

acceptable.

For the hysteresis simulation of the third model, five finite element solutions were
tried. In the first and second trials, the material models, which had been used in the
last step of the relaxation simulation and in the last step of the creep simulation, were
used, respectively. For the third trial, the elastic constant was increased to obtain
larger reaction force responses than the second trial. In the fourth and fifth trials, the
simulation procedure was changed a little bit to obtain results as in the experiments.
The short term relaxation constant was decreased in the fourth trial to be able to
obtain sudden relaxation response as in the experiment between loading and
unloading periods. In the last trial, the elastic constant was increased once more to
obtain a better fit between the experimental data and the finite element solution.
After the last finite element trial, the normalized sum of square errors was appeared
to be 2.56 % for the simulation of the reaction force with respect to experiment time
and 2.93 % for the simulation of the reaction force with respect to indenter tip
displacement. These results prove that this simulation is rather accurate and

acceptable for a hysteresis simulation.
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For the preconditioning simulation of the third model, the last material model which
had been used in the simulation of the hysteresis behavior of this model was used.
The normalized sum of square errors was appeared to be 3.89 % for the simulation of
the reaction force with respect to experiment time. This result proves that this

simulation is rather accurate and acceptable for a preconditioning simulation.

As a conclusion, it is possible to say that the third (enhanced quasi-linear
viscoelastic) model which assumes soft tissue as an anisotropic material is very
successful in simulating the relaxation and the creep behaviors. It can also be
assumed as successful in simulating the hysteresis and preconditioning behaviors.
Because, all these characteristic behaviors of soft biological tissue were tried to be
simulated by only one material model and with minimal change in material
parameters. By changing the constants in the proper way, this material model could
successfully be used for the simulation of the mechanical behaviors of the soft

biological tissue.

Is is also possible to simulate the experimental data by using another sets of
constants within the material models. An alternative simulation of the relaxation
behavior with the third model is presented in Appendix S. Here, the constants in the
material model were given different values than the original simulation and the
experimental data could also be simulated by these constants with the NSSE value of

0.63 %.

If one examines the history of soft tissue simulation studies, he would not be able to
find any model which can simulate all the characteristic behaviors of soft tissues. So
far, many scientists have worked on soft tissue simulation. Some of them could only
simulate the relaxation behavior and some others could simulate the creep response
by using the relaxation data. Some tried to fit soft tissue responses to mathematical
series and some tried to decrease the number of constants in these formulations. This
study was able to simulate all the characteristic behaviors of soft biological tissues
with only one constitutive equation by some little changes in the material constants.

By using these models, interaction between residual limb tissue and prosthetic socket
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can be simulated which can be used for the future design of prosthetic socket. The
interactions between feet and shoes of a person who has diabetes can be simulated
which can be utilized for the future design of diabetic shoe. Also the interactions
between bed and body of the person who has paralysis can be simulated which can

be used for the future design of beds.

The finite element models created for these three material models were not able to
run in short times. One of the reasons of that was the type of analysis. In these
models, there applied a contact analysis instead of determining a loading type and
contact analyses last in much larger times than other linear analyses in finite element
softwares because of geometric nonlinearities. Another reason of these long
simulation times was the number of elements in the model. Especially for having
good convergence in the contact area, this area was modeled as a fine mesh area with
smaller and constant length elements which caused the number of element in the
model to be about 27000. The more elements in the finite element analyses always
mean the longer simulation times. One other reason of the long simulation times was
the fact that the material models used for these analyses were not available in the
material library of the finite element software. So, they were needed to be written by
a compiler and compiled during each simulation which caused the simulation times
to become much longer. Also using these nonlinear material models with large strain
and large displacement conditions makes the simulation times much longer. The
technological constraints can also be assumed as the reason of these long submission
times. The computer with which these finite element analyses were performed had a
single-cored processor with the CPU speed of 3.0 GHz. It had 1024 MB memory and
120 GB of hard disc space. These specifications are far from the ones of a finite

element computer and cause the simulation times to increase further.

Consequently, these presented results of the finite element models could be obtained
after very long simulation times. For relaxation and creep, the simulation times
reached to one hour. For hysteresis simulations, the simulation times were about one
and a half hours and for preconditioning these were almost sixteen hours. However,

some of these simulations could not be concluded due to convergence errors because
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of the structure of the model. To overcome this situation, a better finite element
model can be created for working on a computer which has better specifications than
the current one. This model can have more elements which are consequently smaller
than the current one. Also creating these elements in the same size and creating them
as hexahedral instead of tetrahedral can give more accurate results in the simulations.
After creating that kind of model and being able to run it faster, more simulations
could me performed by changing the constants in the material models again and

again which helps the user to understand the effect of these constant better.

Consequently, three material models were created and they were used in the
simulations of three finite element models. The first one was able to simulate
relaxation and creep but not cyclic loading. To also be able to simulate cyclic
loading, the second model was created, but this model was not anisotropic like real
soft biological tissues. To also include the anisotropy within the finite element
analysis, the third material model was created. All these finite element model
simulations proved that these material models are successful in simulating the

mechanical behavior of soft biological tissues.

By implementing the suggestions given for the future analyses of these material
models, more accurate and acceptable results with smaller values of NSSE can be
obtained. Also by using the experimental data obtained from other soft tissues of
human body can be used to be simulated by these material models and the results can

be compared.
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APPENDIX A

DERIVATION OF THE CONSTITUTIVE EQUATIONS FOR
QLV MODELING BY ASSUMING SOFT TISSUE AS AN
ISOTROPIC MATERIAL

The time dependent 2" Piola-Kirchoff stress can be written by using the one

dimensional theory of QLV as;

oo [e(r)]

a(z)sz(z—r) AT oo, (A1)

where; o () is QLV stress at any time #; G (—) is the reduced relaxation function

and o°(—) is the elastic stress function. Since the elastic stress function is a

function of strain and time, equation (A1) can be rewritten as;

a(t):jG(t—r) a"aj(gf(f))] a%(;)d ................................................. (A2)
oe(r)

is called the strain rate and can be denoted with £ in the

where; the term
T

loading portion and it is equal to zero in the relaxation portion of the experiment.

For purposes here, the reduced relaxation function was taken to be;

_1+C[E1(t/72)_E1(t/71)]
G(1)= L Cln(a g) (A3)
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i 23 i G2
1+ Cln(%j

where; C is a material parameter related to the viscous damping; 7, and 7, are

G(1-1)=

material parameters related to the strain rates over which hysteresis is nearly constant

and E, is the first exponential integral function which is in the form;

E,(x)=] e; di=| %du ................................................................. (A5)
1 x

The elastic stress function, 0 (£) was assumed to be represented through the

nonlinear elastic relationship;
G E) = A% = 1) e (A6)

where; A and B are material constants.

oo [e(r)]
oe(7)

So, the term in equation (A2) becomes;

do‘[e(z)] _ 9 Ao~ 1)

o LA = L] A7
de(r)  oe (A7)
= A (A8)
= ABE T (A9)

Note that, the equation £ = £z has been used in equation (A9) to make it able to be

integrated over time.
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Substituting equations (A4) and (A9) into equation (A2), the stress history from 0 to

t, (beginning of relaxation) and from ¢, to the end of test period can be obtained as;

R CCATGA)

o(0si<t,)=[ 1+Cin(z, /7,

0

Note the stress response from ¢, to the end of the experiment includes the stress
history up to ¢, plus the stress history from 7, onward. However, since the strain rate

from ¢, onward is zero, we are simply left with;

1+ C[El(f—%zj—El(t_%lﬂ

O'(f>to):_'. 1+Cn(z, /7))

0

Since this study is dealing with the relaxation part of the experiment, derivation will

go on from equation (A11).
Rearranging and simplifying;

I

O'(t):1+ Cﬁi/q){lem{H C[El(f—%zj—El(f_%lﬂ} Ao (A12)

ABé . . ( _ ) Bér ( _ )
- dr+C|[ e E t7 dr—C[ " E t7 dr
1+C1n(2'2/2'1){".€ ;‘:e : 7, -([e : (4

0

_ ABé
1+Cln(z, /1)

[1,+C(L, =L))o, (A14)
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where;

V=[P AT (A15)
0
| B”E(f—f jdr ....................................................... Al6
) {e \ "%, (A16)
I — B”E(f—f )dr ....................................................... Al7
. {e 1A (A17)
Formula: J.e”’“ AX = e, (A18)
a

fy ) 1 )
11 :J'eBerdT:_eBer
Bé
0

The first exponential integral function is related to the general exponential integral

function with the following formula;

where; El(x) is the first exponential integral function and Ei(x) is the general

exponential integral function.

Substituting equation (A20) into equations (A16) and (A17), one obtains;

fy

I, :J'eBé’El(f_%zjdz':—]leBé’Ei(_(t_%)df
0

0
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fy

I, =—|e®E| 71 jd ......................................................... A21
= I, {e [ % 7 (A21)

And similarly;

fy

I,=—|e*E| T—1 jd .......................................................... A22
= I E[e ,( %1 T ( )

Substituting equations (A19), (A21) and (A22) into equation (A14), one obtains;

' [_J'eBérEi(T—% jdr}
ABé e” —1 0 2
olt)= — +c|> T (A23)
1+Cln(z,/7)|| Bé yo
- —J.eB”Ei(T_/de
Tl
— 0 -
f BE-TE(T_/)(ZT
. Bét, J.e ! T
__ ABe e =l el R | IO (A24)
1+Cin(z,/7,)|| Bé no
—J.e ”E,(T_/ jdr
TZ
L 0
ABeé [ e™ -1
= FC(L, = L) e, A25
1+C1n(2'2/11)_[ Bé j (4 5)} (A23)

where;

Iy

I, :jeB”E,(T—%JdT ...................................................... (A26)

0

Iy

I :jeB”E,(T—%zjdr ....................................................... (A27)

0

Changing variables in equations (A26) and (A27) as;
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............................................. A28
= T=Xx+t ( )
= dr=dx
they become;

_ n Bé(x+t) X _ Bé‘ttqit Béx X
L= | E,(A)dx " [ E,(A)dx .................................. (A29)

Formula:

[ E (az)de == L UV VUUUUURUUT (A31)

Applying the formula in equation (A31) to equations (A29) and (A30), one obtains;

to—t

__ _Bér Béx X,
I,=e je Ei(%l)dx

-t

to—t

. PE, ( %1 )— E,-KBS + %IH )

Bé

x=—t

and similarly;

to—t

I, = jeB”Ei(% jdx
2

—t
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A e ] TR T TP A33
Be (A33)
Substituting equations (A32) and (A33) into equation (A25), one obtains;
Béx X _ . 1
| B ()| )]
Bé
. Béty
o(r)= ABé (e - 1J+C =
T & to—t
1+Cln 2 Béx B . 1
(TJ et ek (%zj EIHBSJF%JX}
Bé
................................. (A34)
_ _ B“E(x j—EKBﬁ ! j }
ABé  |[ " -1 e[ © %1 ’ %l g
o(r)= s |7 C1 52
T £ £ Béx .
1+Cln| -2 - E(x j+E,KBg+ 1 j }
’ n{rl J ‘ l %2 l %2 * x=—t
.................................. (A35)
Béx X _ X
SEArA
: Béty Bét r
o(t)= ABé (e _ IJJFC; -E, (B€+%_jx} ............ (A36)
1+Cln (TZJ € € - 1
g +E, (B€+%_ jx}
- 2 =1t
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r - \to—t

o(1)=——A (P _1)rcer | - E

o(f)=— A {(eBétQ —1)+Ce® [P (F—F,)~F, +F,] i‘:t } .................. (A38)

where;

The exponential integral function is known by the equations as;

(ax)  (ax)’ | (ax)’
In|ax|+ y+ax+ + + +... for |ax|<2
2.2 331 4.4
E(ax)=4 _ 7777 (A43)
1 1 2 3! 4!
G —t ... for |ax| >2

ax (ax)2 (a)c)3 (a)c)4 (a)c)5

where; ¥ is a constant called Euler-Mascheroni constant which is equal to

0.5772156649...
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By using the appropriate equation in (A43) within the equations from (A39) to (A42)

one obtains;

— (Bé+%2)x 7’-2 Tz ’ A47
=e (Bé‘fz )x + (Bé‘Tz ) | (A47)

As seen above, different equations were used for the calculation of exponential
integral functions. In equations (A44), (A46) and (A47) the terms of the exponential
integral functions are larger than two. So, the second line of the equation (A43) must
be used for convergence. On the contrary, the exponential integral term of equation
(A45) is smaller than two. So, this time the second line of the equation (A43) must

be used for convergence.
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In equations (A44) - (A47), only the first two or three terms of the expansion were

taken into account. The real forms of those equations have infinite number of terms,

but it is impossible to use all these terms in the expansion. So, minimum possible

number of terms in the expansions of the exponential integral functions was taken

into account not to increase the load of process.

Using the truncated forms of the exponential integral functions bring on a very small

error that is acceptable. However, the advantage of using the short forms of the

equations reduces the model and allows for the easier and faster calculation of whole

model.

Substituting equations between (A44) and (A47) into equation (A38), one obtains;

eBé‘x e% ﬂ
X

+

7

R

2

(eBé’(’ —1)+ Ce®|—e

(Bs%Jx[

L %z)x[

(eBétO _1)+ CeBét

(Bér, +1)x

(2

{

(Bér, +1

2}

|

(Bér, +1)x

*[(

2

Bér, +1

Va7
e
(Bér, +1

_6%2[
(Bér, +1)x

2

| M((

Bér, +1

2

)

o

(Bér, +1)xﬂ

]

= |to—t

==t
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X
2
0'(1):714 (eB'“ét“ —1)+ Ce| P —e%‘[ - 4 +( . 4 ] ]
l+Cln ( j (Bér, +1)x | (Bér, +1)x
' |

b2
T 2
+e%3 2 + 2
(Bér, +1)x | (Bér, +1)x
................................. (A50)
/U@ ) I
X X T, T,
O'(l)= A (eBe‘z(7 _ )+CeBe +x) S, T] J|: : 7 :|
1+Cln(72J (Bér, +1 (Bér, +1)x
T, A 7,
+e -
Bgz'2 +1 (Bgz'2 +1)x || .
................................. (AS1)
Al oao]
6(2‘) _ A (eBéto _1)+ C o Be(is) X X (B.ET1 + l)x (B.ET1 +1)x
T X
1+Cln| 2 Yo % S P 3 S 3
n[ﬂJ e [(BSTZ+1)XJ|:1+(B£’TZ+I))C:| n T, 4 o]
................................. (A52)
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(eBé"‘ —1)+ C

Tl
t,—t

]_[ (Béz, +1)(t, 1)

Tl Tl

]{“(ng 1), 1)

J

7

et Hew

7,

][1 (Bér, +1)1

t

|

oL :
[ (Bér, +1)(z, —1)

7, 7,

][1 " Ber, 1), _1)}

+[(

Béz-z-+ 1)t

][1 - (Béz-z‘+ 1)t

J

—ePh {ln[t_t"]+y+t”_t}+ln[t]+y—t
7, 7, 7, T,
................................. (A56)
e,{L\ g [ 7 ][‘113_1]_[ 7 ]|:‘115_[114t:| +(le(l_71j_[71]|:l_ 7 :|
’ L=t )\t —t Qs — Gt )L 9is — st t t Gt G4t
o(t)=q, {as+Cy -
+e f{m[ Lo ]|:qlg_q”t:|+[12]|:l— L :| —f{4|:f{:o +1n(t—to)_t:|+f121+lnt_t
Qs =4t )L Gis —dir T q;t qt 7, 7,
................................. (A57)
where;
Bé‘-%—i 1,
q,= A g,=e 7 (]_eq“
' 1+Cln(r,/7,) .
q, = B¢ 49 =1, +7
q, = Bét, = q,t, q,, =Bét,+1=¢q,7, +1
44 = e =g 95 = (B€T1 + 1)t0 =4l
‘15:€Bét0 -l=q,-1 ‘I16:(Bé71+1)t0+71:‘115"'71

go=e"" +1=¢, +1

.1 1
CI7:B€+_:CI2+_
7 7

.1
qs = [Bg"'_jto =4q;1,
7

q,;, = Bét, +1=¢q,7, +1

qis = (Béfz + 1)t0 =471

o = (Bgfz +1)t0 +7,=q3 17,
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[mi}q
7

t
q,=¢ =e" g =Y+ —Int,
2
.1 1
Go=Bé+—=q,+— g, =y —Inz,
2 2

!
qn :{Bg"'f_jto =4l

2

t

O-(I)=Q1 {%"‘C{e Z[% (%2“123)"‘%4 —q25]+e 72(%2 q26+CI27)_Q4 qx +q29}}"““(A58)

where;

[ 7 j[CIn_[j _[ 7, j{CIw_CInt}
Sl — Gy =

L=t )\ h—t Gis — Q7 t ) Qs — D7t

T — t T T

s :[ 1 j{%s 14 } 4 :[ 2 j{l_ 2 }

Gis — qual )| Gis — Gial qi7t G t

7 T .
fj(l__lj ng = qzo + ln(t _t())__

(2

T, T t
- Gr = ¢y +Int——
m tj{ ‘114J : T,

Rearranging and simplifying, the final form of the equation can be obtained as;
o‘([):ql [q5+C(erl Gy +372 qs +q32]:l .................................................. (A59)

where;
43 =49 (‘122 - %3)"‘ 94 —Yq>s
93 =912 9% T 49x

93 =429 — 44903
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APPENDIX B

DERIVATION OF THE CONSTITUTIVE EQUATIONS FOR
ENHANCED QLV MODELING BY ASSUMING SOFT TISSUE
AS AN ISOTROPIC MATERIAL

The stress history equation can be written by using the one dimensional theory of

QLYV as;

t a e
C oy (e,t):jG(t—r) aaT
0

where; oLy (e,t) is QLV stress at any time ¢ and strain €; G (—) is the reduced

relaxation function and ¢ (- ) is the elastic stress function. Since the elastic stress

function is a function of strain and time, equation (B1) can be rewritten as;

o‘le(r)]oe(r) ;
de(r) or

Oy (e,t):jG(t—f) J

()

or

where; the term is called the strain rate and can be denoted with € in the

loading portion and it is equal to zero in the relaxation portion of the experiment.

For purposes here, the reduced relaxation function was taken to be;

_1+C[E1(t/72)_E1(t/71)]
G(1)= L Cn(a Jp) (B3)
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So;

(o)Al
ecn(®])

where; C is a material parameter related to the viscous damping; 7, and 7, are

G(1-1)= oo (B4)

material parameters related to the strain rates over which hysteresis is nearly constant

and E, is the first exponential integral function which is in the form;

The elastic stress function o¢°(g€) in equation (B2) is the following nonlinear

function;
GE) = A% = 1) oo, (B6)

where; A and B are material constants.

So, the term m in equation (B2) becomes;
oe(7)
do‘[e(z)] _ 3 1, (s
VN e | | ST B7
de(r)  oe e )] 7
= ABE (B8)
= ABE T (B9)

Note that, the equation £ = £z has been used in equation (B9) to make it able to be

integrated over time.
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Substituting equations (B4) and (B9) into equation (B2), the stress history from 0 to

t, (beginning of relaxation) and from ¢, to the end of test period can be obtained as;

t 1+C[E1(f‘%2)‘El(t_%lﬂ

ABe®" ¢dr .....(B10
1+Cn(z, /7)) (B10)

Note the stress response from ¢, to the end of the experiment includes the stress
history up to f#, plus the stress history from 7, onward. However, since the stretch

rate from ¢, onward is zero, we are simply left with;

e C[El(t_%zj - El(t_%”

o t>1,,€)=
QLV( 0 ) .([ 1+Cln(T2/Tl)

ABe" £dt ............ (B11)

Since this study is dealing with the relaxation part of the experiment, derivation will

go on from equation (B11).

Rearranging and abbreviating;

T =15 Cﬁﬁiz/a)zem{l+ C[El(f_%zj—El(f—%lj} dr

Concluding the intermediate operations on equation (B12) as in the Appendix A,

finally one obtains;

Oov =4, q5+C[e g, te gy +q32J ......................................... (B13)
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where;

_ A
h 1+Cln(,/7,)
q,=Bé¢
q; = Bét, = g,t,
q4 — eBé‘t(, — e‘h
[Bé+ijt(,
qy =€ o=t

L1 1
‘110:B€+T_:‘12+_

2 7’-2

.1
91 =(B€+T—Jt0 =4l

2

1
[Bé+—j t
— 72

6112 =e — 6411

4 =14, +7
q,, =Bét, +1=¢q,7,+1

415 = (Béﬂ + 1)10 =4yl

916 = (BéT1 +1)t0 +7,=¢5+7

q,;, = Bét, +1=¢q,7, +1

dis = (Béfz + 1)t() =471

o = (Béfz +1)to +7,=q3t7,

_ Iy
Gy =Y+——Int,
7,

Bét,
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So far, the same model as in the previous one (Appendix A) have been used. To
enhance this formulation, it was multiplied with strain and other constants allow for

anisotropic behavior. That is;

S (B14)
282

P (B15)
2,2
c° &

Ty = = Oy e (B16)

where; T,,, T,, and T, are stresses along the three material axes; p is hydrostatic
pressure which is equal zero in our experiment conditions (for detailed information
about hydrostatic pressure, see Appendix E); €, &€, and &, are principal strains along

three material directions; o, is the quasi-linear viscoelastic stress calculated by

the equation (B13) and A is fiber contour length known by the equation;

where; a, b and ¢ are material parameters that reflect the unit cell dimensions and
allow for anisotropic behavior. But, this formulation does not deal with anisotropy.
For isotropic case, b=c=a. Consequently, A can be taken as one material
parameter only (not depending on the three parameters a, b and c¢ individually). So,

equation (B17) becomes;

With the substitution of this fiber contour length equation into equations (B14),
(B15) and (B16), the final form of the model is obtained as;
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T, =-p+ A Opy = 3 O Ly o eemeeme et e e (B19)
8| ~a’
(5]
82
=T, —?IO'QLV ........................................................................... (B20)
And similarly;
2
5 Ty =0 gy et (B21)
82
=T, = ?SO'QLV ........................................................................... (B22)

Purely quasi-linear viscoelastic model (formulated in Appendix A) is capable of
simulating relaxation and creep behaviors. As a result of multiplication with the
square of strain, we hope this model to simulate cyclic loading (hysteresis) and also

preconditioning together with relaxation and creep.
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APPENDIX C

DERIVATION OF THE CONSTITUTIVE EQUATIONS FOR
ENHANCED QLV MODELING BY ASSUMING SOFT TISSUE
AS AN ANISOTROPIC MATERIAL

The stress history equation can be written by using the one dimensional theory of

QLYV as;

4

Jdo
o7

O oy (e,z):jG(z—r)

where; oLy (8,1‘) is QLV stress at any time ¢ and strain €; G (—) is the reduced

relaxation function and ¢ (- ) is the elastic stress function. Since the elastic stress

function is a function of strain and time, equation (C1) can be rewritten as;

o‘le(r)]oe(r) ;
de(r) or

Oy (g,t):_[G(t—f) J

()

or

where; the term is called the strain rate and can be denoted with € in the

loading portion and it is equal to zero in the relaxation portion of the experiment.

For purposes here, the reduced relaxation function was taken to be;

_1+C[E1(t/72)_E1(t/71)]
G(1)= L Cn(a, [p) (C3)
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So;

G G2 |
eon(®])

where; C is a material parameter related to the viscous damping; 7, and 7, are

G(1-1)= U (67

material parameters related to the strain rates over which hysteresis is nearly constant

and E, is the first exponential integral function which is in the form;

The elastic stress function ¢°(€) in equation (C2) is the following nonlinear

function;
G (€)= A% = 1), (C6)

where; A and B are material constants.

So, the term M in equation (C2) becomes;
oe(7)
do‘ [e(z)] _ 3 [, ( se
——=—]A = C7
de(r)  oe [ e )] (€7
= ABe T (C8)
= ABe T (C9)

Note that, the equation £ = £z has been used in equation (C9) to make it able to be

integrated over time.
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Substituting equations (C4) and (C9) into equation (C2), the stress history from 0 to

t, (beginning of relaxation) and from ¢, to the end of test period can be obtained as;

I CARIGA

ABe®" &dr .....(C10)
) 1+Cn(z, /7))

Note the stress response from ¢, to the end of the experiment includes the stress
history up to ¢, plus the stress history from #, onward. However, since the stretch

rate from ¢, onward is zero, we are simply left with;

i) -m (7))

o t>1,,€)=
QLV( 0 ) .([ 1+Cln(T2/Tl)

ABe® édt ..o (C11)

Since this study is dealing with the relaxation part of the experiment, derivation will

go on from equation (C11).

Rearranging and abbreviating;

ABé

O'QLV=1+Cln(fz/Tl)_([eB”{l+C[E("%J—El("%lﬂ} gr ..

Concluding the intermediate operations on equation (C12) as in the Appendix A,

finally one obtains;

Ooy =4, q5+C[e gy, t+e gy +q32J ......................................... (C13)

175



where;

A
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This is the quasi-linear part of the model. To enhance this formulation, it was

multiplied with strain and other constants allow for anisotropic behavior. That is;

2812
T,=-p+ SA O Ly v e e eem ettt (C14)
T,, —p+b;—i§agw ..................................................................... (C15)
T,=-p+ 082/8\32 B iy et (C16)
where; T,,, T,, and T, are stresses along the three material axes; p is hydrostatic

pressure which is equal zero in our experiment conditions (for detailed information

about hydrostatic pressure, see Appendix E); €, &€, and &, are principal strains along
three material directions; o, is the quasi-linear viscoelastic stress calculated by

the equation (C13) and A is fiber contour length known by the equation;

where; a, b and ¢ are material parameters that reflect the unit cell dimensions and
allow for anisotropic behavior. Consequently, two more constants were needed to be
used than the previous one to take anisotropy into account. After final abbreviations,

equations (C14), (C15) and (C16) can be written as;
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Purely quasi-linear viscoelastic model (formulated in Appendix A) is capable of
simulating relaxation and creep behaviors. As a result of multiplication with the
square of strain, we hope this model to simulate cyclic loading (hysteresis) and also
preconditioning together with relaxation and creep. Also by using the constants a, b

and c different than each other, we hope to model anisotropy of the soft biological

tissues.
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APPENDIX D

REDUCED RELAXATION FUNCTION

For simulation purposes of the soft biological tissues, the most commonly used
method is quasi-linear viscoelasticity. According to this method, a reduced relaxation
function is multiplied with the derivative of the elastic stress function with respect to

time and the whole expression is integrated over time.

In this section, two forms of the reduced relaxation function will be expressed. The
first one has six material parameters but easy to be formulated; and the second one
has only three material parameters but cannot be formulated as easy as the former

one.

The first form of the reduced relaxation function is;

where; a and b represent the short term behavior; ¢ and d represent the intermediate
term behavior; f and 4 represent the long term behavior of the soft biological tissue.
For the graphical illustration of the 6-parameter reduced relaxation function and
effects of changing these constants on it, see Figures D1 — D7. In these curves, the

responses calculated by the reduced relaxation function after a ramp strain is seen.
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In Figure D1, the base response of the reduced relaxation function is seen. The
parameters are as they are given in the figure and none of them has been changed. In
the following figures, only one of the parameters is changed while the others are kept

constant, and the effect of changing this parameter is observed.

In Figure D2, the effect of changing the short term constant (a) on the reduced
relaxation function is seen. Increasing the value of the short term constant causes the
sudden relaxation to decrease. Figure D3 shows the effect of changing the short term
exponential constant (b) on the reduced relaxation function. The sudden relaxation

period decreases while the short term exponential constant increases.

In Figure D4, the effect of changing the intermediate term constant (c¢) on the
reduced relaxation function is seen. Increasing the value of the intermediate term
constant causes the intermediate relaxation to increase, too. Figure D5 shows the

effect of changing the intermediate term exponential constant (d) on the reduced
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relaxation function. The intermediate relaxation period decreases while the

intermediate term exponential constant increases.

In Figure D6, the effect of changing the long term constant (f) on the reduced
relaxation function is seen. Increasing the value of the long term constant causes the
all relaxation curve to be shifted upward. Finally, Figure D7 shows the effect of
changing the long term exponential constant (%) on the reduced relaxation function.
The long relaxation period decreases while the long term exponential constant

increases.

This 6-parameter reduced relaxation function has so many constants which is not a
desirable condition. So, it has not been preferred within the concept of this thesis.
Instead, a 3-parameter reduced relaxation function has been used. As previously
mentioned, it is harder to formulate this reduced relaxation function, but it requires

less material parameters.

This second form of the reduced relaxation function is;

_1+C[E1(t/72)_E1(t/71)]
G(1)= L Cln(a g) s (D2)

where; C is a material parameter related to the viscous damping; 7, and 7, are

material parameters related to the strain rates over which hysteresis is nearly constant

and E| is the first exponential integral function which is in the form;

For the graphical illustration of the 3-parameter reduced relaxation function and
effects of changing these constants on it, see Figures D8 — D11. In these curves, the

responses calculated by the reduced relaxation function after a ramp strain is seen.
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In Figure D8, the base response of the reduced relaxation function is seen. The
parameters are as they are given in the figure and none of them has been changed. In
the following figures, only one of the parameters is changed while the others are kept

constant, and the effect of changing this parameter is observed.

In Figure D9, the effect of changing the viscous damping parameter (C) on the
reduced relaxation function is seen. As seen, increasing the value of the viscous
damping constant causes all the relaxation amplitude to increase, too. Figure D10
shows the effect of changing the short term constant (7,) on the reduced relaxation
curve. Increasing the value of the short term constant causes the all relaxation curve
to be shifted downwards. Finally, in Figure D11 the effect of changing the long term

constant (7,) on the reduced relaxation curve is seen. Increasing the value of the

long term relaxation constant causes the long term relaxation to increase, too.
This 3-parameter reduced relaxation function has been used to model the time

dependent response of a variety of biomaterials including ligament, bladder, and

aortic valve (Dehoff, 2006).

187



APPENDIX E

HYDROSTATIC PRESSURE

Hydrostatic pressure, which appears in hydrostatic state of stress, is the pressure at a
given depth in a static liquid. This pressure comes into being as a result of the weight
of the liquid acting on a unit area plus any pressure acting on the surface of the

liquid.

P=P P8R e (El)

where; P is the atmospheric pressure; p is the density of the liquid; g is the

atm
gravitational acceleration and /4 is the distance below the surface of the liquid. The

term p gh is called the gage pressure which is due to the liquid alone.

Figure E1 — Hydrostatic Pressure
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The hydrostatic state of stress is also called the spherical state of stress. In that case,
all the principal stresses are equal to the negative of the pressure and there is no shear
stress on any plane, and any three mutually perpendicular directions may be selected

as the principal directions (Malvern, 1969).

Pressure is not really a vector even though it looks like a vector in Figure E1. The
arrows indicate the direction of the force that the pressure would exert on a surface it

is contact with.

The hydrostatic pressure at a given depth is independent of direction; it is the same in
all directions. This is another statement of the fact that the pressure is not a vector
and thus has no direction associated with it when it is not in contact with some

surface.

The pressure on a submerged object is always perpendicular to the surface at each

point on the surface.

Hydrostatic state of stress is the only kind of stress that can exist in a fluid at rest. In
some of soft tissue experiment procedures, the experiment is performed on the tissue
when it is immersed into a liquid. In these conditions, the stress created by the liquid
must be taken into account in the calculation the total stress. In the experiments
performed within the context of this research, there was not such a case (no such an
experiment condition like immersed into a liquid), so there was no hydrostatic stress
other than the atmospheric pressure. However, since the tissue is always under

atmospheric pressure, this state may assumed to be the reference state.
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APPENDIX F

EXPERIMENTAL APPARATUS: INDENTER

One of the most important aspects of the modeling of soft biological tissues is the
way the soft tissue experiments are performed. There are many types of experiments
performed on the soft tissues. Uniaxial or multiaxial tensile experiments,
compression experiments and indenter experiments are some examples of these. All
these experimental procedures have some advantages and disadvantages. The most

appropriate one for the specific study must be chosen.

In this thesis, the data obtained by an indenter experiment was used to obtain
material coefficients. In an indenter experiment, an indenter tip is pushed into the
soft tissue by a step motor and the displacement of the tip is recorded together with
the reaction force applied by the tissue on it (Figure F1). The indenter used in this
study can perform in vivo experiments and supply tissue reaction force-tissue
displacement-time data as stored in the computer. This apparatus can be used within
a wide range of cyclic indentation speeds (0.1-14 mm/s). Nonlinear elastic and
viscoelastic properties of soft tissues, mechanical energy lost in each loading and

anisotropy in the plane of skin can be observed (Petekkaya, 2008).

Three types of experiments can be performed by this apparatus. The first one of these
is the cyclic loading. In cyclic loading experiments, the tissue is loaded until the
desired displacement is accessed and then the loading is cut out. This procedure is
repeated 10 times at a specific constant speed, because approximately in the first five
cycles pre-conditioning (Mullin’s effect) are observed, consequently they are

omitted. After the sixth cycle, repeatable results can be accessed. By cyclic loading
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experiments; data about displacement - reaction force curve and orientation reaction

of the soft tissue and mechanical energy lost during one cycle can be acquired.

CONTROL
BOX

]

\
\

Figure F1 — Soft Tissue Experiment System

The other type of experiment that can be performed is relaxation In relaxation
experiments, the soft tissue can be subjected to a wide range of speeds of initial
loading, after the desired displacement (or load) is reached, the deformation is kept
constant (i.e. the motor is stopped) and the decrease of tissue reaction force
(relaxation) can be observed. Relaxation experiments inform us about viscoelastic

characteristics of the soft tissue.
The last type of experiment that can be performed with the apparatus we used is

creep. In creep experiments, as similar to the relaxation experiments the soft tissue

can be subjected to a wide range of speed of initial loading, after the desired tissue
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reaction force is reached this force is kept constant and displacement of the tissue
(creep) is observed.. Creep experiments also inform us about viscoelastic

characteristics of the soft tissue.

The experiment apparatus used for collecting data for modeling the mechanical

behavior of soft tissues has the following features:

e The system is computer-controlled and the experiment results are
stored in a computer.

e The soft tissue can be loaded as displacement-controlled or speed-
controlled.

e C(Cyclic loading, relaxation and creep experiments can be performed at
different speeds.

e The soft tissue can be loaded by different indenter tips having
different geometries.

e ]t has a simple design that allows use in clinical environment.

¢ ]t allows modifications on the device or experimental protocols.

The system is shown schematically at Figure F2. There are three main parts
interacting with each other: laptop computer (which controls the system and stores
the collected data), control box (which has electronic units inside it) and experiment

unit (which performs soft tissue experiments).
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(adopted from Dizalti Ampute Yumusak Doku Mekanik Ozelliklerinin Arastirilmast

icin Deney Cihazi Tasarumi ve Uretimi, Toniik, E., 2008)
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APPENDIX G

INVERSE FINITE ELEMENT MODELING

Finite element analyses have been used for the simulation of many mechanical
problems for many years. For most of the actual complex engineering problems it is
not possible to obtain exact results. Therefore, the physical natures of the problems
are approximated to obtain an acceptable solution, i.e. acceptable accuracy in
reasonable time and reasonable cost. This is the main concept of finite element

analysis.

Finite element models have also been used widely to compute soft-tissue
deformations under mechanical constraints. They are well suited to compute accurate
and complex deformations. Also visualization of finite elements is well suited for

graphics hardware.

A major impediment to building the accurate soft-tissue models is the lack of
quantitative mechanical information suitable for finite element computation. The
required information not only refers to the inner mechanical property of a given soft
tissue but also includes contact with the surrounding tissues. In terms of
computation, the former corresponds to the constitutive law of motion linking the
stress tensor with the strain tensor, whereas the latter corresponds to the boundary

conditions (Kauer et al, 2002).
Finite-element based material identification methods have been used by many

investigators to estimate material coefficients for biological tissues. These “inverse

methods” assume a constitutive equation for the respective material and estimate the
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material coefficient(s) by simulating force-deformation-time characteristics with a

computer model (Kauer et all, 2002, Toniik et al, 2003, Fulin et all, 2007).

In this study, a nonlinear finite-element analysis was used to simulate hysteresis,
preconditioning, relaxation and creep data obtained during in vivo indentation. The
finite element models facilitated estimation of an appropriate set of nonlinear
viscoelastic material parameters of quasi-linear viscoelastic formulation, enhanced
quasi-linear viscoelastic isotropic formulation and enhanced quasi-linear viscoelastic

anisotropic formulation for bulk soft tissue.

Identification of Material Characteristics by Inverse Finite Element Method

It is not possible to implement standard material experiments on some materials. One
of the methods to identify the coefficients of the constitutive equations for those
materials is “inverse finite element” method. The following study is an example of
that. In the study, the experiment results performed on the lower extremity residual
limb tissue used for identification of nonlinear elastic and viscoelastic behavior of

soft biological tissues.

Soft tissue experiments were performed with two similar soft tissue systems. The
first one is a system that has a cylindrical indenter tip of 2.5 mm radius presented by
Vetrano et all in 1997. The second system has three cylindrical indenter tips of 3, 5
and 7.5 mm radii and one spherical indenter tip of 15 mm. radius presented by
Toniik, 2003. Both systems can perform cyclic loading, relaxation and creep
experiments on soft tissues and both can acquire force-displacement-time data from

these experiments.

The finite element model of the tissue has been created as close as possible to the
real tissue to identify the soft tissue material parameters. An axisymmetric finite
element model has been used, because loading conditions and the situation of the soft

tissue is like that.
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The meshing of the soft tissue is done with gradually changing the mesh size in finite
element model. The indenter tip and bone contact of soft tissue have been modeled
with two different rigid surfaces (Figure G1). The contact surface between the
indenter tip and the soft tissue has been modeled with a fine mesh than the other part
of the soft tissue, because stress-strain change is maximum at that surface. The aim
of that is to prevent calculation errors that can occur during deformation due to large
displacements. As boundary conditions, the soft tissue displacement perpendicular to
the symmetry axis has been set to ‘fixed’ and by assuming that the soft tissue is
completely stuck on the bone, the contact between the bone and the soft tissue has

been set to ‘fixed’ in all directions.

I
Z

Indenter
Tip

Symmetry

Axis

Soft Tissue

s S o >
Tt 1' ] Bone r

Figure G1 - Finite Element Model
(adopted from Dizalti Ampute Yumusak Doku Mekanik Ozelliklerinin Arastirilmast igin
Deney Cihazi Tasarimi ve Uretimi, Toniik, E., 2003)
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As soft tissue material model James-Green-Simpson (third degree Mooney) has been
chosen. This is an empirical material model and has been used to model the behavior
of polymeric materials for long years. Because of the fact that the material model is
empirical, the parameters do not posess any physical meanings. The constitutive

equation of the model is given by;

W =C,(I, -3)+C,, (I, =3)+C, (1, =301, = 3)+ Cyy (1, = 3)* + C;, (I, = 3) ........(G])

where; I, and [, are first and second invariants of the Green’s finite strain tensor
and C; are material constants to be determined. For axisymmetric models of

incompressible materials, equation (G1) can be reduced to (Toniik et all, 2003);

W=C,(I-3)+C,(I=3) +C(I=3) e (G2)
C, =C,+Cy,

where; C,=C,,+C,,
Cy =Cy

For the cyclic loading experiments, inverse finite element analysis has been started
with the initial values of C; = Cy = Cg = 1 kPa. Indentation of the soft tissue by the
indenter tip has been simulated with computer and soft tissue reaction force results
have been compared with the ones obtained by experiments. These simulation results
have been changed with respect to the difference between the simulation and
experiment results. The results and material constants are given in Figure G2 and

table G1, respectively.
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Figure G2 - Identification of the Parameters of James-Green-Simpson Material by

Finite Element Method

(adopted from Dizalti Ampute Yumusak Doku Mekanik Ozelliklerinin Arastirilmast igin

Deney Cihazi Tasarimi ve Uretimi, Toniik, E., 2003)

Table G1 — Material Constants Used in the Simulations and Sum of Error Squares

(adopted from Dizalti Ampute Yumusak Doku Mekanik Ozelliklerinin Arastirilmast igin

Deney Cihazi Tasarimi ve Uretimi, Toniik, E., 2003)

[MPa] [-]
. Sum of Error
Trial C] C J CK Squares
1 0,001 0,001 0,001 412,28%
2 0,002 0,002 0,002 188,82%
3 0,002 0,01 0,002 24.46%
4 0,002 0,015 0,002 0,41%
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In this experiment, only nonlinear characteristic of the material has been taken into
account, viscoelastic characteristic has been ignored. For modeling the data obtained
by relaxation and creep experiments, the relaxation form of the James-Green-

Simpson model given in equation (G3) (available in MSC.Marc) is used;

-t

w(t)=w,[1-8 1—e[fTJ -5, 1—e[;7tj e (GD)

where; W, is instantaneous strain energy function and can be denoted as in equation

(G2) for axisymmetric problem; 8, and T; are short time relaxation magnitude and
time constant; &, and T, are long time relaxation magnitude and time constant,

respectively.

For the initial values of time constants and relaxation magnitudes, the function given
in equation (G4) is applied to the experimental data. By performing relaxation
experiments, the constants Cj, Cy ve Cx (and Wj) are obtained as in the cyclic

loading experiments.

-t

F(t)=F,|1-9, 1—e[le -3, 1—e[%j ............................................... (G4)

To fit the finite element results with the experiment results, magnitudes of relaxation

have been changed. This can be seen in Figure G3.
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Figure G3 - Identification of Viscoelastic Material Constants for Relaxation
(adopted from Dizalti Ampute Yumusak Doku Mekanik Ozelliklerinin Arastirilmast igin
Deney Cihazi Tasarimi ve Uretimi, Tonilk, E., 2003)

In creep experiments, the function given in equation (G5) is applied to the

experimental data.

d(t):d0 1+8, 1_e[TI’J +8,] 1_6[%J

where; &' and T;' are short time creep magnitude and time constant; &,' and T,' are
long time creep magnitude and time constant, respectively. These can be expressed

in terms of relaxation constants assuming linear viscoelastic behavior as follows;
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T = (=8, = 8, T, oo, (G8)

Ty = (1=, = 8, )Ty e (G9)

To fit the finite element results with the experiment results, magnitudes of creep have

been changed. This can be seen in figure G4.
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Figure G4 - Identification of Viscoelastic Material Constants for Creep
(adopted from Dizalti Ampute Yumusak Doku Mekanik Ozelliklerinin Arastirilmast igin
Deney Cihazi Tasarimi ve Uretimi, Toniik, E., 2003)

In inverse finite element methods, the first thing to do is to create the model, and
then the constitutive equation which represents the material behavior is chosen. The
initial guess of the material coefficients are selected arbitrarily. The model is

submitted with these initial guess constants and results are compared with
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experimental data. By changing the values of material coefficients, the best fit
between the simulation and the experimental data is tried to be found. When this
simulation becomes accurate enough with selected coefficients, the model is assumed
to represent the behavior of the material. In this study, the constants of nonlinear and
viscoelastic soft tissues have been identified by using experimental data by inverse

finite element method.

However, inverse finite element method has two disadvantages:

e The material model must represent the behavior of that material
especially for the ones which can not be represented by a linear elastic
model.

e Because of the fact that the material is not linear, finite element model
can be divergent. Also, for some material models, due to nonlinearities in

the model, uniqueness of the coefficients may not be guaranteed.
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APPENDIX H

USER SUBROUTINE TEMPLATE (hypela.f)

subroutine hypela(d,g,e,de,s,temp,dtemp,ngens,n,nn,kc,mats,

* ndi,nshear)
C* sk ok ok ok ok

user subroutine to define young's modulus and poisson's ratio
as function of stress in non-linear elastic small strain
material.

d stress strain law to be formed by user
g change in stress due to temperature effects
e total strain

de  increment of strain

S stress - should be updated by user
temp state variables

dtemp increment of state variables

ngens size of stress - strain law

n element number

nn  integration point number

ke layer number

mats material i.d.

ndi  number of direct components

nshear number of shear components

O 00 0000006000000 O0O0O06O06O0

C* kok ok ok ok
implicit real*8 (a-h,o0-z)
dimension e(*),de(*),temp(*),dtemp(*),g(*),d(ngens,ngens),s(*)
dimension n(2),et(6)

return
end
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APPENDIX 1

USER SUBROUTINE FOR QLV MODELING BY ASSUMING
SOFT TISSUE AS AN ISOTROPIC MATERIAL

subroutine hypela(d,g,e,de,s,temp,dtemp,ngens,n,nn,kc,mats,

* ndi,nshear)
C*:k* kok sk

user subroutine to define young's modulus and poisson's ratio
as function of stress in non-linear elastic small strain
material.

d stress strain law to be formed by user
g change in stress due to temperature effects
e total strain

de  increment of strain

S stress - should be updated by user
temp  state variables

dtemp increment of state variables

ngens size of stress - strain law

n element number

nn  integration point number

ke layer number

mats material i.d.

ndi  number of direct components

nshear number of shear components

O 00000000600 O0O0O0O0O0O0O06O060O0

C*:k* kok sk
implicit real*8 (a-h,o0-z)
include '../marc_working_directory/concom'

include '../marc_working_directory/creeps'
skskoskesteskesk

By including the common blocks concom and creeps, we include these
variables into the subroutine:

cptim: time at beginning of increment
timinc: time increment

O o0 000060
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(e}

(e}

O 0006000

O o0 o0 00060

O o0 o000 06060

ncycle: number of increment

skskoskesteskesk

dimension e(3),de(3),temp(1),dtemp(1),g(1),d(ngens,ngens),s(3)

dimension n(2),et(3),ets(3)
skskoskooksksk

Since, this is a three dimensional model, we need three dimensional strain,
strain increment and stress values. This is done by setting these variables
three dimensional with dimension command.

skskoskooksksk

if (ncycle.eq.0) t=cptim+20.0d0

if (ncycle.eq.0) et(1)=e(1)

if (ncycle.eq.0) et(2)=e(2)

if (ncycle.eq.0) et(3)=e(3)

if (ncycle.gt.0) t=cptim+20.0d0+timinc
if (ncycle.gt.0) et(1)=e(1)+de(1)

if (ncycle.gt.0) et(2)=e(2)+de(2)

if (ncycle.gt.0) et(3)=e(3)+de(3)

skskostesteskesk

To eliminate the errors (like dividing by zero or logarithm of zero) in the
calculation of some constants like q28 and q29, a new constant is created as
t0=18.4 and time of simulation is set to start from 20.

skskoskesteskesk

ets(1)=et(1)**2.0d0
ets(2)=et(2)**2.0d0
ets(3)=et(3)**2.0d0

a=1.96d-38
b=4.2d1
c=8.0d-2
T1=8.0d-1
T2=1.4d3
t0=1.84d1
epsdat=2.5d-2

skskoskesteskesk

Constants in the subroutine are as they are explained in chapter A

The user subroutine is written in double precision to be able to obtain more
accurate results.

skskoskesteskesk

ql=a/(1.0d0+c*log(T2/T1))



110
100

O 00 0006

gq2=b*epsdat

q3=q2*t0

q4=exp(q3)
q5=q4-1.0d0
q6=q4+1.0d0
q7=q2+(1.0d0/T1)
q8=q7+t0

q9=exp(q8)
q10=q2+(1.0d0/T2)
ql1=q10*t0
ql2=exp(qll)
ql3=t0+T1
ql14=q2*T1+1.0d0
ql5=q14*t0
ql6=q15+T1
ql7=q2*T2+1.0d0
ql18=q17*t0
ql9=q18+T2
q20=0.57722d0-log(T2)+(t0/T2)
q21=log(T2)-0.57722d0

q22=(T1/(t0-t))*((q13-t)/(t0-t))
q23=(T1/(q15-q14*t))*((q16-q14*t)/(q15-q14*t))
q24=(T1/t)*(1.0d0-(T1/t))
q25=(T1/q14*t)*(1.0d0-(T1/q14*t))
q26=(T2/(q18-q17*t))*((q19-q17*t)/(q18-q17*t))
q27=(T2/q17*t)*(1.0d0-(T2/q17*t))
q28=q20+log(t-t0)-(t/T2)

q29=q21+(t/T2)-log(t)
q30=q9%*(q22-q23)+q24-q25

q31=q12*q26+q27

q32=qg4*q28+q29

sig=q1*(g5+c*((exp(-t/T1)*q30)+(exp(-t/T2)*q31)-q32))

do 100 i=1,ngens
do 110 j=1,ngens
d(i,j)=0.0d0
continue

continue
skekskekskek

Since there are no shear stresses in our experiment, the values of
d(1,2)=d(2,1), d(1,3)=d(3,1) and d(2,3)=d(3,2) of the tangent stiffness are set
to zero.

skskoskesteskesk
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d(1,1)=sig
d(2,2)=d(1,1)
d(3,3)=d(1,1)

do 120 k=1,3
s(k)=d(k . k)*ets(k)

120  continue
skekskekskek

c
c
c This quasi-linear viscoelastic formulation is expected to simulate the stress
c relaxation and creep behaviors of soft biological tissues with time. So, the
c constitutive equations of stresses were written in term of the only independent
c variable time. Other constants are calculated by using the material
c parameters.
c
C skskoskesteskesk

return

end

This user subroutine allows the user to implement arbitrary material models in
conjunction with the hypoelastic model definition option in MSC.Marc. MSC.Marc
supplies hypela total mechanical strain (mechanical strain = total strain - thermal
strain), the increment of mechanical strain, and other information. Stress, total
mechanical strain and state variable arrays at the beginning of the increment (t = n)
are passed to hypela with the incremental strain. The user is expected to calculate
stresses S, tangent stiffness D, and state variables (if present) that correspond to the

current strain at the end of the increment (t =n + 1).
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APPENDIX J

VERIFICATION OF THE SUBROUTINE IN APPENDIX I

WITH A SIMPLE 3D MODEL

For the verification of the subroutine written in Appendix I, the three dimensional
model seen in the Figure J1 was created. This specimen was 100 mm long with
square cross section of 5 x 5 mm and had the material properties of hypoelastic
materials in Mentat. The model had eight nodes, four of which are seen on the right
hand side having fixed displacement boundary conditions along three material axes.
Other four nodes are seen on the left hand side and three of them are linked (nodal
tie) to the other one on which a position controlled boundary condition was applied.
These nodes are only exposed to position controlled boundary condition for this
model (as explained in section J.1) to prove that the subroutine is able to simulate
relaxation and creep since, this material is expected to simulate relaxation and creep

behaviors.
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fixed displacement

retamed_node_BC .
- = fixed_displacement

Retained Node

retained_node_BC

Figure J1 — Simple Three Dimensional Model

J.1. Verification of Relaxation Simulation

For the verification of the subroutine in relaxation simulation, the retained node of
the specimen was applied to a displacement controlled boundary condition. It was
firstly applied to tension and the specimen was lengthened 5 mm in five seconds
which was applied in 50 time steps (increments) in x-direction. Then, the specimen
was kept at that deformation for 120 seconds in 30 time steps to observe stress
relaxation behavior (Figure J2). This model was submitted with the large
displacement and large strain - total Lagrange analysis options by using the

subroutine given in the Appendix L.
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Figure J2 — Change of Displacement of the Retained Node with Time

Figure J3 and J4 show the decrease of reaction force and stress with time,
respectively. These decreases occurred while the displacement was kept constant. So,

this simple simulation proves that the subroutine written in Appendix I is working

properly while simulating relaxation.
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Figure J4 — Decrease of Stress (Relaxation) with Time
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J.2. Verification of Creep Simulation

For the verification of the subroutine in creep simulation, the retained node of the
specimen was applied to displacement and load controlled boundary conditions. It
was firstly applied to tension and the specimen was stretched 5 mm in five seconds
which was applied in 50 time steps (increments) in x-direction. Then, the reaction
force (in x-direction) occurred at fifth second was kept being applied constantly for
120 more seconds in 30 increments and change of displacement with time was
observed. This model was submitted with the large displacement and large strain -

total Lagrange analysis options by using the subroutine given in the Appendix L.
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Figure J5 — Increase of Displacement (Creep) with Time

Figure J5 shows the increase of displacement with time. This increase occurred while
the reaction force was kept constant. So, this simple simulation proves that the
subroutine written in Appendix [ is working properly while simulating creep
behavior. The next job to do is to implement this subroutine to the original soft tissue

model and to estimate the real values of the parameters in it.
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APPENDIX K

USER SUBROUTINE FOR ENHANCED QLV MODELING BY
ASSUMING SOFT TISSUE AS AN ISOTROPIC MATERIAL

subroutine hypela(d,g,e,de,s,temp,dtemp,ngens,n,nn,kc,mats,

* ndi,nshear)
C*:k* kok sk

user subroutine to define young's modulus and poisson's ratio
as function of stress in non-linear elastic small strain
material.

d stress strain law to be formed by user
g change in stress due to temperature effects
e total strain

de  increment of strain

S stress - should be updated by user
temp state variables

dtemp increment of state variables

ngens size of stress - strain law

n element number

nn  integration point number

ke layer number

mats material i.d.

ndi  number of direct components

nshear number of shear components

O 00 0000600060000 000000060

C*:k* kok sk
implicit real*8 (a-h,o0-z)
include '../marc_working_directory/concom'

include '../marc_working_directory/creeps'
skskostesteskesk

By including the common blocks concom and creeps, we include these
variables into the subroutine:

cptim: time at beginning of increment
timinc: time increment
ncycle: number of increment

O 0000 0606o0
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(e}

skskoskesteskesk

dimension e(3),de(3),temp(1),dtemp(1),g(1),d(ngens,ngens),s(3)
dimension n(2),et(3),ets(3)

O o0 o0 00060

O o0 o0 o000

O o0 o0 00060

skskostesteskesk

Since, this is a three dimensional model, we need three dimensional strain,
strain increment and stress values. This is done by setting these variables
three dimensional with dimension command.

skskeskeskoskeok

if (ncycle.eq.0) t=cptim+20.0d0

if (ncycle.eq.0) et(1)=e(1)

if (ncycle.gt.0) t=cptim+20.0d0+timinc
if (ncycle.gt.0) et(1)=e(1)+de(1)

skskostesteskesk

To eliminate the errors (like dividing by zero or logarithm of zero) in the
calculation of some constants like q28 and q29, a new constant is created as
t0=18.4 and time of simulation is set to start from 20.

skskoskesteskesk

et(2)=et(1)
et(3)=et(1)

skskoskesteskesk

It can also be seen in this subroutine that, since this is an isotropic
formulation, all the principal strains must be equal to each other. This was
obtained by equating the strains along three material axes.

ets(1)=et(1)**2.0d0
ets(2)=ets(1)
ets(3)=ets(1)

a=9.0d-35
b=4.2d1
c=8.0d-2
T1=8.0d0
T2=1.4d2
t0=1.84d1
epsdat=2.5d-2
al=bl
b1=8.0d-1
cl=bl

skskoskesteskesk
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O 00 0006

Constants in the subroutine are as they are explained in chapter B

The user subroutine is written in double precision to be able to obtain more

accurate results.

skskoskesteskesk

glam=(al*al+b1*bl+c1*c1)/8.0d0
ql=a/(1.0d0+c*log(T2/T1))
q2=b*epsdat

q3=q2*t0

q4=exp(q3)

q5=q4-1.0d0

q6=q4+1.0d0
q7=q2+(1.0d0/T1)
q8=q7+t0

q9=exp(q8)
q10=q2+(1.0d0/T2)
ql1=q10*t0

ql2=exp(qll)

ql3=t0+T1
ql4=q2*T1+1.0d0
ql5=q14*t0

ql6=q15+T1
ql7=q2*T2+1.0d0
ql18=q17*t0

ql9=q18+T2
q20=0.57722d0-log(T2)+(t0/T2)
q21=1og(T2)-0.57722d0

q22=(T1/(t0-t))*((q13-t)/(t0-t))
q23=(T1/(q15-q14*t))*((q16-q14*t)/(q15-q14*t))
q24=(T1/t)*(1.0d0-(T1/t))
q25=(T1/q14*t)*(1.0d0-(T1/q14*t))
q26=(T2/(q18-q17*t))*((q19-q17*t)/(q18-q17*t))
q27=(T2/q17*t)*(1.0d0-(T2/q17*t))
q28=q20+log(t-t0)-(t/T2)

q29=q21+(t/T2)-log(t)
q30=q9%*(q22-q23)+q24-q25

q31=q12*q26+q27

q32=qg4*q28+q29

sig=q1*(q5+c*((exp(-t/T1)*q30)+(exp(-t/T2)*q31)-q32))

p=sig/(8.0d0*qlam)

do 100 i=1,ngens
do 110 j=1,ngens
d(i,j)=0.0d0
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110 continue
100  continue

C skskoskesteskesk

c

c Since there are no shear stresses in our experiment, the values of

c d(1,2)=d(2,1), d(1,3)=d(3,1) and d(2,3)=d(3,2) of the tangent stiffness are set
c to zero.

c

C skskoskesteskesk

d(1,1)=p*al**2.0d0
d(2,2)=p*b1**2.0d0
d(3,3)=p*c1**2.0d0

do 120 k=13
s(k)=d(kk)*ets(k)

120  continue
skekskekskek

This enhanced quasi-linear viscoelastic formulation is expected to simulate

the hysteresis, preconditioning, stress relaxation and creep behaviors of soft
biological tissues. So, the constitutive equations of stresses were written in

terms of the two independent variables strain and time. Other constants are

calculated by using the material parameters.

skskoskesteskesk

O 000006000

return
end

This user subroutine allows the user to implement arbitrary material models in
conjunction with the hypoelastic model definition option in MSC.Marc. MSC.Marc
supplies hypela total mechanical strain (mechanical strain = total strain - thermal
strain), the increment of mechanical strain, and other information. Stress, total
mechanical strain and state variable arrays at the beginning of the increment (t = n)
are passed to hypela with the incremental strain. The user is expected to calculate
stresses S, tangent stiffness D, and state variables (if present) that correspond to the

current strain at the end of the increment (t =n + 1).
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APPENDIX L

VERIFICATION OF THE SUBROUTINE IN APPENDIX K

WITH A SIMPLE 3D MODEL

For the verification of the subroutine written in Appendix K, the three dimensional
model seen in the Figure L1 was created. This specimen was 100 mm long with
square cross section of 5 x 5 mm and has the material properties of hypoelastic
materials in Mentat. The model had eight nodes, four of which are seen on the right
hand side having fixed displacement boundary conditions along three material axes.
Other four nodes are seen on the left hand side and three of them are linked (nodal
tie) to the other one on which a position or load controlled boundary condition was
applied. These nodes were exposed to different position or load controlled conditions
(as explained in the following sections in detail) to prove that the subroutine is able
to simulate hysteresis, preconditioning, relaxation and creep since, this subroutine is

expected to simulate all these behaviors.
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fixed displacement

retamed_node_BC .
- = fixed_displacement

Retained Node

retained_node_BC

Figure L1 - Simple Three Dimensional Model

L.1. Verification of Relaxation Simulation

For the verification of the subroutine in relaxation simulation, the retained node of
the specimen was applied to a displacement controlled boundary condition. It was
firstly applied to tension and the specimen was lengthened 5 mm in five seconds
which was applied in 50 time steps (increments) along x-direction. Then, the
specimen was kept at that deformation for 120 seconds in 30 time steps to observe
stress relaxation behavior (Figure 1.2). This model was submitted with the large
displacement and large strain - total Lagrange analysis options by using the

subroutine given in the Appendix K.
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Figure L2 — Change of Displacement of the Retained Node with Time

Figures L3 and 14 show the decrease of reaction force and stress with time,
respectively. These decreases occurred while the displacement was kept constant. So,

this simple simulation proves that the subroutine written in Appendix K is working

properly while simulating relaxation behavior.
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Figure L4 — Decrease of Stress with Time (Relaxation)
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L.2. Verification of Creep Simulation

For the verification of the subroutine in creep simulation, the retained node of the
specimen was applied to a displacement and then a load controlled boundary
condition. The specimen was stretched 5 mm in five seconds which was applied in
50 time steps (increments) in x-direction. Then, the reaction force (in x-direction)
occurred at fifth second was kept being applied constantly for 120 more seconds in
30 increments and change of displacement with time was observed. This model was

submitted with the large displacement and large strain - total Lagrange analysis

options by using the subroutine given in the Appendix K.
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Figure LS — Increase of Displacement with Time (Creep)

Figure LS shows the increase of displacement with time. This increase occurred

while the reaction force was kept constant. So, this simple simulation proves that the
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subroutine written in Appendix K is working properly while simulating creep

behavior.

L.3. Verification of Hysteresis Simulation

For the verification of the subroutine in hysteresis simulation, the retained node of
the specimen was applied to a displacement controlled boundary condition. It was
firstly applied to tension and the specimen was stretched 5 mm in five seconds which
was applied in 25 time steps (increments) along x-direction. Then, the specimen was
returned to its original shape with the application of compression with the same rate
as tension. The difference between reaction force versus time curves and strain
versus stress curves (hysteresis) in loading (tension) and unloading (compression)
were observed. This model was submitted with the large displacement and Large
Strain - Total Lagrange analysis options by using the subroutine given in the

Appendix K.
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Figure L6 — Difference between Reaction Force vs. Time Curves
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Figure L7 — Difference between Strain vs. Stress Curves (Hysteresis)

Figures L6 and L7 show the difference between reaction force versus time curves
and strain versus stress curves (hysteresis) in loading and unloading, respectively.
Loading and unloading curves are not the same in Figure L6, but the difference can
be seen much clearly in Figure L7. This difference between two curves is called
hysteresis and appears as energy loss during cyclic loading. So, this simple
simulation proves that the subroutine written in Appendix K is working properly

while simulating hysteresis behavior.

L.4. Verification of Preconditioning (Mullin’s Effect) Simulation

For the verification of the subroutine in preconditioning simulation, the retained node
of the specimen was applied a displacement controlled boundary condition.
Displacement was applied and the specimen was stretched 5 mm in five seconds
which was applied in 50 time steps (increments) along x-direction. Then, the

specimen was returned to its original length with the application of displacement
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with the same rate as tension. This cycle was repeated ten times and the difference
between reaction force versus time curves and strain versus stress curves in loading
(tension) and unloading (compression) in these cycles were observed. This model
was submitted with the large displacement and Large Strain - Total Lagrange

analysis options by using the subroutine given in the Appendix K.
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Figure L8 — Difference between Reaction Force vs. Time Curves (Preconditioning)
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Figures L8 and L9 show the difference between reaction force versus time curves
and strain versus stress curves in loading and unloading. These curves are becoming
repeatable after about seventh or eighth cycle which is called as preconditioning. So,
this simple simulation proves that the subroutine written in Appendix K is working

properly while simulating preconditioning behavior.
So far, it was proved that the subroutine written in Appendix K is able to simulate all

the behaviors. The next job to do is to implement this subroutine to the original soft

tissue model and to estimate the real values of the parameters in it.
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APPENDIX M

USER SUBROUTINE FOR ENHANCED QLV MODELING BY
ASSUMING SOFT TISSUE AS AN ISOTROPIC MATERIAL

subroutine hypela(d,g,e,de,s,temp,dtemp,ngens,n,nn,kc,mats,

* ndi,nshear)
C*:k* kok sk

user subroutine to define young's modulus and poisson's ratio
as function of stress in non-linear elastic small strain
material.

d stress strain law to be formed by user
g change in stress due to temperature effects
e total strain

de  increment of strain

S stress - should be updated by user
temp state variables

dtemp increment of state variables

ngens size of stress - strain law

n element number

nn  integration point number

ke layer number

mats material i.d.

ndi  number of direct components

nshear number of shear components

O 00 0000600060000 000000060

C*:k* kok sk
implicit real*8 (a-h,o0-z)
include '../marc_working_directory/concom'

include '../marc_working_directory/creeps'
skskostesteskesk

By including the common blocks concom and creeps, we include these
variables into the subroutine:

cptim: time at beginning of increment
timinc: time increment
ncycle: number of increment

O 0000 0606o0
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(e}

skskoskesteskesk

dimension e(3),de(3),temp(1),dtemp(1),g(1),d(ngens,ngens),s(3)
dimension n(2),et(3),ets(3)

O o0 o0 00060

O o0 o0 o0 0060

O o0 o0 o0 0060

skskostesteskesk

Since, this is a three dimensional model, we need three dimensional strain,
strain increment and stress values. This is done by setting these variables
three dimensional with dimension command.

skskoskooksksk

if (ncycle.eq.0) t=cptim+20.0d0

if (ncycle.eq.0) et(1)=e(1)

if (ncycle.eq.0) et(2)=e(2)

if (ncycle.eq.0) et(3)=e(3)

if (ncycle.gt.0) t=cptim+20.0d0+timinc
if (ncycle.gt.0) et(1)=e(1)+de(1)

if (ncycle.gt.0) et(2)=e(2)+de(2)

if (ncycle.gt.0) et(3)=e(3)+de(3)

skskoskesteskesk

To eliminate the errors (like dividing by zero or logarithm of zero) in the
calculation of some constants like q28 and q29, a new constant is created as
t0=18.4 and time of simulation is set to start from 20.

skskoskesteskesk

ets(1)=et(1)**2.0d0
ets(2)=et(2)**2.0d0
ets(3)=et(3)**2.0d0

a=7.6d-37
b=4.2d1
c=8.0d-2
T1=8.0d0
T2=1.4d3
t0=1.84d1
epsdat=2.5d-2
al=7.0d-1
b1=8.0d-1
c1=9.0d-1

skskoskesteskesk

Constants in the subroutine are as they are explained in chapter C

The user subroutine is written in double precision to be able to obtain more
accurate results.



110
100

skskostesteskesk

glam=(al*al+b1*bl+c1*c1)/8.0d0
ql=a/(1.0d0+c*log(T2/T1))
q2=b*epsdat

q3=q2*t0

q4=exp(q3)

q5=q4-1.0d0

q6=q4+1.0d0
q7=q2+(1.0d0/T1)
q8=q7+t0

q9=exp(q8)
q10=q2+(1.0d0/T2)
ql1=q10*t0

ql2=exp(qll)

ql3=t0+T1
ql14=q2*T1+1.0d0
ql5=q14*t0

ql6=q15+T1
ql7=q2*T2+1.0d0
ql18=q17*t0

ql9=q18+T2
q20=0.57722d0-log(T2)+(t0/T2)
q21=1og(T2)-0.57722d0

q22=(T1/(t0-t))*((q13-t)/(t0-t))
q23=(T1/(q15-q14*t))*((q16-q14*t)/(q15-q14*t))
q24=(T1/t)*(1.0d0-(T1/t))
q25=(T1/q14*t)*(1.0d0-(T1/q14*t))
q26=(T2/(q18-q17*t))*((q19-q17*t)/(q18-q17*t))
q27=(T2/q17*t)*(1.0d0-(T2/q17*t))
q28=q20+log(t-t0)-(t/T2)

q29=q21+(t/T2)-log(t)
q30=q9*(q22-q23)+q24-q25

q31=q12*q26+q27

q32=qg4*q28+q29

sig=q1*(q5+c*((exp(-t/T1)*q30)+(exp(-t/T2)*q31)-q32))
p=sig/(8.0d0*qlam)

do 100 i=1,ngens
do 110 j=1,ngens
d(i,j)=0.0d0
continue

continue
skekskekskek

Since there are no shear stresses in our experiment, the values of
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d(1,2)=d(2,1), d(1,3)=d(3,1) and d(2,3)=d(3,2) of the tangent stiffness are set
to zero.

O o0 o o0

skskoskesteskesk

d(1,1)=p*al**2.0d0
d(2,2)=p*b1**2.0d0
d(3,3)=p*c1**2.0d0

do 120 k=1,3
s(k)=d(kk)*ets(k)

120  continue
skekskekskek

This enhanced quasi-linear viscoelastic formulation is expected to simulate

the hysteresis, preconditioning, stress relaxation and creep behaviors of soft
biological tissues. So, the constitutive equations of stresses were written in

terms of the two independent variables strain and time. Other constants are

calculated by using the material parameters.

O 00 000060606

skskoskesteskesk

return
end

This user subroutine allows the user to implement arbitrary material models in
conjunction with the hypoelastic model definition option in MSC.Marc. MSC.Marc
supplies hypela total mechanical strain (mechanical strain = total strain - thermal
strain), the increment of mechanical strain, and other information. Stress, total
mechanical strain and state variable arrays at the beginning of the increment (t = n)
are passed to hypela with the incremental strain. The user is expected to calculate
stresses S, tangent stiffness D, and state variables (if present) that correspond to the

current strain at the end of the increment (t =n + 1).
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APPENDIX N

VERIFICATION OF THE SUBROUTINE IN APPENDIX M

WITH A SIMPLE 3D MODEL

For the verification of the subroutine written in Appendix M, the three dimensional
model seen in the Figure N1 was created. This specimen was 100 mm long with
square cross section of 5 x 5 mm and had the material properties of hypoelastic
materials in Mentat. The model had eight nodes, four of which are seen on the right
hand side having fixed displacement boundary conditions along three material axes.
Other four nodes are seen on the left hand side and three of them are linked (nodal
tie) to the other one on which a position or load controlled boundary condition was
applied. These nodes were exposed to different position or load controlled conditions
(as explained in the following sections in detail) to prove that the subroutine is able
to simulate hysteresis, preconditioning, relaxation and creep since, this subroutine is

expected to simulate all these behaviors.
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retamed_node_BC .
- = fixed_displacement

Retained Node

retained_node_BC

Figure N1 - Simple Three Dimensional Model

N.1. Verification of Relaxation Simulation

For the verification of the subroutine in relaxation simulation, the retained node of
the specimen was applied to a displacement controlled boundary condition. It was
firstly applied to tension and the specimen was lengthened 5 mm in five seconds
which was applied in 50 time steps (increments) along x-direction. Then, the
specimen was kept at that deformation for 120 seconds in 30 time steps to observe
stress relaxation behavior (Figure N2). This model was submitted with the large
displacement and large strain - total Lagrange analysis options by using the

subroutine given in the Appendix M.
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Figure N2 - Change of Displacement of the Retained Node with Time

Figures N3 and N4 show the decrease of reaction force and stress with time,
respectively. These decreases occurred while the displacement was kept constant. So,

this simple simulation proves that the subroutine written in Appendix M is working

properly while simulating relaxation behavior.
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N.2. Verification of Creep Simulation

For the verification of the subroutine in creep simulation, the retained node of the
specimen was applied to displacement and load controlled boundary conditions. It
was firstly applied to tension and the specimen was lengthened 5 mm in five seconds
which was applied in 50 time steps (increments) in x-direction. Then, the reaction
force (in x-direction) occurred at fifth second was kept being applied constantly for
120 more seconds in 30 increments and change of displacement with time was
observed. This model was submitted with the large displacement and large strain -

total Lagrange analysis options by using the subroutine given in the Appendix M.
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Figure NS — Increase of Displacement (Creep) with Time

Figure N5 shows the increase of displacement with time. This increase occurred
while the reaction force was kept constant. So, this simple simulation proves that the
subroutine written in Appendix M is working properly while simulating creep

behavior.
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N.3. Verification of Hysteresis Simulation

For the verification of the subroutine in hysteresis simulation, the retained node of
the specimen was applied to a displacement controlled boundary condition. It was
firstly applied to tension and the specimen was lengthened 5 mm in five seconds
which was applied in 25 time steps (increments) along x-direction. Then, the
specimen was returned to its original shape with the application of compression with
the same rate as tension. The difference between reaction force versus time curves
and strain versus stress curves (hysteresis) in loading (tension) and unloading
(compression) were observed. This model was submitted with the large displacement
and large strain - total Lagrange analysis options by using the subroutine given in the

Appendix M.
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Figure N6 — Difference between Reaction Force vs. Time Curves
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Figure N7 — Difference between Strain vs. Stress Curves (Hysteresis)

Figures N6 and N7 show the difference between reaction force versus time curves
and strain versus stress curves (hysteresis) in loading and unloading, respectively.
Loading and unloading curves are not the same in Figure N6, but the difference can
be seen much clearly in Figure N7. This difference between two curves is called
hysteresis and appears as energy loss during cyclic loading. So, this simple
simulation proves that the subroutine written in Appendix M is working properly

while simulating hysteresis behavior.

N.4. Verification of Preconditioning (Mullin’s Effect) Simulation

For the verification of the subroutine in preconditioning simulation, the retained node
of the specimen was applied to a displacement controlled boundary condition. It was
firstly applied to tension and the specimen was lengthened 5 mm in five seconds
which was applied in 50 time steps (increments) along x-direction. Then, the

specimen was returned to its original shape with the application of compression with

236



the same rate as tension. This cycle is repeated ten times and the difference between
reaction force versus time curves and strain versus stress curves in loading (tension)
and unloading (compression) in these cycles were observed. This model was
submitted with the large displacement and Large Strain - Total Lagrange analysis

options by using the subroutine given in the Appendix M.
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Figure N8 — Difference between Reaction Force vs. Time Curves (Preconditioning)
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Figure N9 — Difference between Strain vs. Stress Curves (Preconditioning)

Figures N8 and N9 show the difference between reaction force versus time curves
and strain versus stress curves in loading and unloading. These curves are becoming
repeatable after about seventh or eighth cycle which is called as preconditioning. So,
this simple simulation proves that the subroutine written in Appendix M is working

properly while simulating preconditioning behavior.
So far, it was proved that the subroutine written in Appendix M is able to simulate all

the behaviors. The next job to do is to implement this subroutine to the original soft

tissue model and to estimate the real values of the parameters in it.
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APPENDIX O

CHAPTER IN A BOOK "ORTOPEDIi BiYOMEKANIGi"

editors: I. D. Akcah, M. Giilsen, K. Un, to be published in 2009

0O.1. Yumusak Doku Mekanik Modelleri

0.1.1. Giris

Iskelet sisteminin iizeri bir yumusak doku tabakasiyla kapli oldugu icin insan
bedeninin dig diinya ile olan mekanik etkilesimi hemen her zaman yumusak dokular
araciligiyla olmaktadir. Ote yandan insan bedenini olusturan dokulardan, kemik
disinda kalan hemen tiim dokular yumusak doku olarak adlandirilmaktadir. Yumusak
dokularin cesitli kuvvetler altinda nasil bir mekanik davranig géstereceginin 6nceden
kestirilebilmesi veya mekanik davranisin bilgisayarda andiriminin (simiilasyonunun)
yapilabilmesi i¢in yumusak doku mekanik davranisinin ayrintili olarak bilinmesi ve
bu davranigi temsil edecek biinye denklemleri ile bu denklemlere ait katsayilarin
belirlenmesi gerekir. Protez kovami ile amputasyon giidiigli arasindaki mekanik
etkilesimi bilgisayarda modelleyebilmek amaciyla giidiik iizerindeki yumusak
dokularin modellenmesi [1-9], yemek borusunun modellenmesi [10], eklem
kikirdaginin modellenmesi [11], baglar ve kirislerin modellenmesi [12], yumusak
doku mekanik davraniginin bilinmesinin gerekliligini gosteren bazi drneklerdir. Bu
boliimiin amaci, okurlarda yumusak doku mekanik davranisinin modellenmesi ve bu
davranigin belirlenmesi ile ilgili yaygin olarak kullanilan ydntemler hakkinda bir

farkindalik yaratmak ve aragtirmacilara ilgili kaynaklara yonetmektir.

Mekanik acidan, mithendislik malzemeleri ile karsilastirildiginda, yumusak dokularin
davraniglar1 daha karmasiktir. Bu karmagikligin nedenleri arasinda dokunun iki fazli

(kat1 ve s1v1) [13] veya kimi yazarlara gore daha fazla fazli (kat1 ve iyonik ¢ozeltiler
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gibi) [14] olmasinin yamn sira kollajen, elastin gibi farkli ve karmasik yapitaslarindan
olusmus olmasinin [15, 16] da etkisi vardir. Yasayan ve kosullara gore kendini
uyarlayan biyolojik dokularin mekanik Ozelliklerinin de gerek cevreyle mekanik
etkilesim sonucu, gerekse diger etmenler nedeniyle zaman iginde degismesi
kacimilmazdir. Ote yandan, biyolojik malzemelerin mekanik ozelliklerinin gesitli
simiflamalar kullamilarak cizelgeler halinde sunulmaya c¢alisilmasi da miihendislik
malzemeleri kadar kesin ve giivenilir sonuglar vermemistir. Ozellikle yumusak
dokularda, kullanilacak biinye denklemi konusunda arastirmacilar arasinda genel
kabul goren bir yaklasim heniiz yoktur. Arastrmaciarin 6nemli bir bolimi,
dokularin mekanik 6zelliklerinin kisiden kisiye énemli degisiklikler gosterdigini ve
gercege yakin modelleme yapilabilmesi icin geometrik (anatomik) ozelliklerle
birlikte kisiye ©0zgii olarak belirlenmesi gerektigini 6ne siirmiistiir [7-9]. Yine
yumusak doku mekanik o©zellikleri lizerinde denegin yasimin [17-20] ve saglik

durumunun [21-24] 6nemli etkisi oldugu seklinde goriisler de vardir.

Biyolojik dokularm yumusak ve sert doku olarak ayrilmasi, mekanik davranislar
acisindan da olanaklidir. Kemik gibi sert dokular kat1 cisimler mekanigi kuraminda
“kiiciik gerinme” kuramina biiyiik 6lciide uyduklar i¢in gerek biinye denklemlerinin
ve bu denklemlere ait katsayilarin elde edilmesi, gerekse bilgisayar andirimlari
yumusak dokulara gore daha kolaydir. Ancak unutulmamalidir ki gorece kolay bu
yaklagimda sert dokular cogunlukla tek bir malzemeden olugmus siirekli bir ortam
olarak modellenmektedir ve bu yaklagimla ilgili kisitlamalarin dikkate alinmasi
onemlidir. Ote taraftan, yumusak doku olarak adlandirilan, kemik disinda kalan
dokularda gerinmeler nadiren “kiiclik gerinme” kurami ile modellenebilecek
biiyiikliikte olur. Cogu durumda, daha genel, karmagsik ve dogrusal olmayan “biiyiik
gerinme” kuraminin kullanilmasi gerekli olur. Ayrica, dogrusal elastik malzeme
modelleri (Hooke biinye denklemleri) de yumusak dokularin mekanik davranigini
modellemede c¢ogu zaman yetersiz kalir. Yine yumusak dokularda, genellikle
miihendislik malzemelerinde yok sayilabilecek diizeyde goriilen alisma etkisi
(preconditioning, Mullin’s effect, malzemenin ilk birka¢ yiiklemede daha direngen
davranmasi, sonraki yiliklemelerde direngenliginin azalarak tekrar edilebilir bir

gerilme-gerinim 6zelligine kavusmasi, Sekil O1), yiikiin artma ve azalma yonlerinde
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goriilen iki farkli direngenlik (ve bir yiikleme-yiikk azaltma ceviriminde yok
sayllamayacak diizeyde mekanik enerji kaybi, Sekil O2), sabit yer degistirme (veya
gerinme) altinda tepki kuvvetinin (gerilmenin) azalmasi yani gevseme (Sekil O3),
sabit kuvvet (veya gerilme) altinda yer degistirmenin (veya gerinmenin) artmasi yani

stinme (Sekil O4) etkilerinin goriildiigii bir¢ok caligmada belirtilmistir [15].

Kuvvet
Ly

Zaman

Sekil O1 - Yumusak Dokunun Pespese Yapilan Yiiklemelerde Gosterdigi
Alisma Etkisi

Kuvvet
A A

Gerinim Artigi
Gerinim Azalmasi

\ \
t t
Yer Degistirme

Sekil 02 - Yumugak Dokunun Gerinmenin Artmasi ve Azalmasi
Yoniindeki Davranigi
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Kuvvet

T+
Zaman

Sekil O3 - Yumugak Dokunun Sabit Gerinmede Gevseme Davranigi

Yer Degistirme

t
Zaman

Sekil 04 - Yumusgak Dokunun Sabit Gerilmede Siinme Davranigi

0.1.2. Yumusak Doku Deneyleri

Tiim malzemelerde oldugu gibi yumusak dokularin mekanik davraniginin
belirlenmesi ve biinye denklemlerinin olusturulmast icin kullanilan yOntem
deneyseldir. Yumusak doku mekanik davramigsini belirlemek icin degisik deney
yontemleri vardir. Her bir yontemin kendisine ozgii iistiinliikleri ve zayifliklari

bulunmaktadir. Bu iistiinliik ve zayifliklardan caligma icin ©Onemli olanlari
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degerlendirilerek en uygun deney yontemine karar verilmelidir. Bu deneylerden elde
edilen mekanik yanitlar arasinda farklar oldugu karsilastirmali calismalar yapan

cesitli yazarlar tarafindan rapor edilmistir [25-27].

0.1.2.1. Eks-Vivo (Laboratuvar) Deneyleri

Deney yapilacak doku yerinden c¢ikartilir ve laboratuvar ortaminda,yasam
kosullarimin benzetildigi bir ortamda, doku cansiz bir durumda iken deney yapilir
[27]. Deneyler laboratuvar ortaminda yapildigi icin hem deney Srneginin geometrisi
gercege yakin olarak belirlenebilir, hem de deneyden daha iyi veriler elde edilebilir.
Ancak doku kendi fizyolojik ortamindan ¢ikartildig1 ve canliliint yitirdigi icin hem
mekanik Ozelliklerinde baz1 degisiklikler olabildigi gibi, doku fizyolojik mekanik
gerilmeden armdirilmis oldugu icin elde edilen mekanik yanit dokunun kendi
fizyolojik ortamindakinden farkli olabilir [28]. Buna karsin dokunun yasam
kosullarinin benzetilmesi deney verilerinin 6lii kosullarla karsilastirildiginda daha iyi

olmasim saglamaktadir.

0.1.2.2. in-Vitro (Laboratuvar) Deneyleri

In-vitro deneyler de eks-vivo deneylerde oldugu gibi doku bulundugu ortamdan
cikarilarak cansiz bir durumda iken yapilir. Ancak dokunun yasam kosullari
benzetilmeye ¢aligilmaz. In-vitro deneylerde 6zellikle yumusak dokularin canliligint
yitirmesinden dolayr mekanik malzeme &zelliklerinin 6nemli Sl¢iide degistigi kanisi
yaygindir [27].

0.1.2.3. in-Situ (Cansiz Denek Uzerinde) Deneyler

In-situ deneylerde yumusak doku yerinde incelenir. Ancak organ canli degildir. In-

situ deneyler taze dondurulmus veya fikse edilmis kadavralarda da yapilabilir [26].
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Her durumda, incelenen doku canliligini yitirmis olacagi i¢cin mekanik ozelliklerinin
degistigi diisiiniilmektedir. Ote taraftan, cogunlukla deney Orneginin diizgiin bir

geometriye sahip olmasi saglanamaz ve sinir kosullar1 tam olarak belirlenemez.

0.1.2.4. in-Vivo (Canli Denek Uzerinde) Deneyler

In-vivo deneyler, doku denek iizerinde kendi fizyolojik kosullarindayken ve denek
canliyken yapilir. Girisimsel ve girisimsel olmayan iki yontem vardir. In-vivo
deneylerin iistiin yonii, lizerinde deney yapilacak doku ile ¢evre dokularin mekanik
etkilesimlerinin deney sirasinda da var olmasi ve dokunun canli olmasi yoluyla,
dokunun gercek davranisina en yakin yanit1 vermesidir. Ancak, denegin canli olmasi
nedeniyle etik kurallara uygun, denege zarar vermeyecek bicimde yapilmasina 6zen
gosterilmelidir. Ote yandan, deney drneginde diizgiin bir geometri saglamak olanakli
olmadig1 gibi, deney bolgesindeki sinir kosullarimi da gercege yakin olarak

belirleyebilmek her zaman olas1 degildir.

0.1.2.4.1. Girisimsel In Vivo Deneyler

Girisimsel yontemde dokuya kuvvet uygulanarak bu kuvvet sonucu dokuda olusan
yer degistirme zaman bilgisiyle birlikte kaydedilir [29].

0.1.2.4.2. Girisimsel Olmayan In Vivo Deneyler

Girisimsel olmayan yontemde disaridan dokuya bir yer degistirme uygulanir ve doku
icinde olusan yer degistirmeler tibbi goriintiileme yontemleriyle (manyetik

rezonansla goriintilleme [22], ultrasonografi v.b.) Olciiliir ve buradan da doku

izerinde olusan gerinmeler hesaplanir [30].
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0.1.2.5. Yumusak Doku Mekanik Malzeme Deney Sistemleri

Yumusak doku deneyleri standart malzeme deney sistemleri iizerinde yapilabilecegi
gibi, yumusak doku deneyleri yapmak i¢in 6zel olarak tasarlanmis sistemler de

vardir. Bu boliimde her iki tip sistemden de kisaca soz edilecektir.

0.1.2.5.1. Tek Eksenli Cekme Deneyleri

Tek eksenli cekme deneyleri i¢in uygun kapasitedeki bir cekme cihazi ile dokunun
cihaza baglanmasina uygun ceneler veya dokunun dikilebilecegi uygun bir aparat
yeterlidir. Genellikle kesit alani dikdortgen olan, diizgiin geometrideki deney
ornekleri hazirlanir. Zaman zaman cihazin ¢ene yer degistirmesi dokudaki uzama
olarak kabul edilir, zaman zaman da doku iizerinde alinan iki referans noktasinin yer
degistirmesi Ol¢iilerek dokudaki uzama ve gerinme buradan hesaplanir. Tek eksenli
cekme deneyleri yumusak doku mekanik 6zelliklerinin belirlenmesinde kullanilsa da
[31,32], Fung [15] tarafindan yumusak doku mekanik 6zelliklerini belirlemek i¢in

yeterli olmadigr belirtilmistir.

0.1.2.5.2. Cift Eksenli Cekme Deneyleri

Cift eksenli cekme deneylerinde genellikle bu is icin 6zel olarak tasarlanmis bir
deney sistemi araciligiyla deney 6rnegi birbirine dik iki eksende birden ¢ekilir [33].
Her iki eksende de dokuya uygulanan kuvvet ve hareket eden cenelerin yer
degistirmesi Olciiliir. Dokuda olusan gerinmelerin hesaplanmasi i¢in genellikle doku
izerine yiiksiizken cizilen referans noktalarinin hareketi izlenir. Buradan yer
degistirmeler ve gerinmeler hesaplanir. Cift eksenli deneylerde smr kosullarmi

kontrol etmek tek eksenli deneylerden daha zordur.
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0.1.2.5.3. Emme Kabi Deneyleri

Cekme deneyleri icin deney Orneginin organizmadan izole edilmesinin zorunlulugu
nedeniyle deneylerin yerinde yapilabilmesi amaciyla gelistirilmis bir yontemdir.
Temel olarak iizerinde deney yapilacak doku {izerine geometrisi bilinen bir kap
yerlestirilip kabin i¢indeki hava bosaltilir ve dokuda olusan sekil degistirme olciiliir.
Alexander [34] ve diger arastirmacilar tarafindan kullanilan yontem dokunun

mekanik 6zellikleri hakkinda fikir verse de onemli kisitlamalar1 vardir

0.1.2.5.4. Germe Deneyleri

Germe deneyleri de ¢gekme deneyleri gibi yapilir. Ancak germe deneylerindeki fark,
dokunun ¢ekme cihazinin cenelerine baglanmasi yerine doku boyutlarindan daha
biiyilk plakalara yapistirilmasidir. Germe deneylerinde kuvvet doku kalinligimin
normaline dik yonde uygulamr. In vitro yapilabildigi gibi [35] in vivo da [36]
yapilabilmektedir. Tek eksenli oldugu i¢in dokunun mekanik 6zellikleri hakkinda

kapsaml bilgi vermedigi diistiniilmektedir [15].

0.1.2.5.5. Basma Deneyleri

Basma deneyleri de germe deneylerine benzer bigimde ancak ¢enelere ait yiizeylerin
dokuyu sikistirmasiyla yapilir. Basma deneylerinde doku serbest birakilabilir ve
basmanin etkisiyle yanal yonlerde genlesir (unconfined test) veya yanal yiizlerin
genlesmesi kisitlanabilir (confined test) [37]. Bu durumda doku sivisinin deney

bolgesini terk edebilmesi icin ¢enelerden birisi gegirgen yapilir.

0.1.2.5.6. indentor Deneyleri

Yumusak doku deneylerinde yaygin olarak kullanilan yontemlerden birisidir. Tercih

edilen geometrideki indentdr ucu ile yumusak doku bastirilirken ucun yer
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degistirmesi ve dokunun uca uyguladig: tepki kuvveti zamanla birlikte kaydedilir.
Boylece in vivo yumusak doku deneyleri de yapilabilir. Degisik indentdr ucu
geometrileri ile yumusak dokunun serbest yiizeyi iizerinde bulunan anizotropinin de
belirlenebilecegi kuramsal olarak gosterilmistir [38]. Ancak, bu deneylerle yumusak

dokuda bulunan tiim anizotropinin belirlenebilmesi olas1 degildir.

0.1.2.6. Yumusak Doku Mekanik Malzeme Modelleri

0.1.2.6.1. Biinye Denklemleri

Biinye denklemleri, ilgilenilen malzemenin gerilme-gerinme (veya c¢ogu zaman
gerilme-gerinme-zaman) iligkisini genel bir {ic boyutlu gerilme altinda veren
denklemdir. Herhangi bir yapisal analiz yapilmadan Once, yapiyr olusturan tiim
malzemelerin biinye denklemlerinin bilinmesi zorunludur. Cevremizdeki ¢ok farkli
malzemeler i¢in ¢ok farkli biinye denklemleri bulunmaktadir. Uzun yillardan beri
kullanilagelen miihendislik malzemeleri icin mekanik davraniglarini olduk¢a genis
kosullarda biiyiik bir hassasiyetle modelleyebilecek biinye denklemleri olusturulmus
olmakla birlikte biyolojik malzemeler i¢in genel kabul goérmiis biinye denklemleri
daha azdir. Bunun iki nedeninden birisi biyolojik dokularda deney yapmanin
giicliigli, digeri ise yumusak dokularin gosterdigi karmasik mekanik yanitin bir

denklem ile ifade edilmesidir [39].

Cevremizdeki ¢ok degisik malzemelerin onemli bir boliimiinii {i¢ ideal malzeme
modeli (veya bunlarin bir bilesimi) ile belirli bir hassasiyette modelleyebiliriz. Bu ii¢
ideal malzeme modeli agdali olmayan akiskan, dogrusal (Newton) agdali akiskan ve
dogrusal elastik (Hooke) katt modelleridir. Ancak biyolojik dokularm &nemli bir
boliimii, fizyolojik kosullar altinda, bu ideal modeller veya bunlarin bir bilesimi

kullanilarak istenen hassasiyette modellenemez [15].

Biinye denklemleri malzemenin fiziksel yapisiyla ilgili oldugu i¢in belirli bir

koordinat takimina bagli degildir ve deneylerle belirlenir. Esnemez kati cisim
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biyomekanigi disinda, biyomekanigin her alaninda biinye denklemlerinin
belirlenmesine gereksinim duyulur. Biinye denklemlerinin bilinmedigi durumlarda
biyomekanik niceliksel olamaz ancak niteliksel olabilir. Biyolojik yapilar i¢in biinye
denklemlerinin belirlenebilmesi i¢in Oncelikle yeterli miktarda verinin sistematik
olarak toplanmasi gereklidir. Aksi durumda yapilan mekanik analizler ve
biyomekanik kestirimler dokunun gercek davranigini istenen hassasiyette

modelleyemeyecektir [28].

0.1.2.6.2. Yalanc1 Elastik Malzeme Modelleri

Yumusak doku davranisi, ¢ok kiiciik gerinmeler disinda dogrusal olmaktan uzaktir.
Deney sirasinda gerinmenin artigi swrasinda izlenen kuvvet-yer degistirme (veya
gerilme-gerinme) egrisi ile gerinmenin azalmasi yOniinde izlenen kuvvet-yer
degistirme (veya gerilme-gerinme) egrisi birbirinden belirli bicimde farklidir (Sekil
02). Egrinin seklinin belirli frekans bantlarinda belirgin bicimde degismedigi
gosterilmistir [28]. Bu nedenle basit bir yaklagimla, gerinmenin artmasi yoniinde bir
elastik malzeme katsayisi seti, azalmasi yoniinde baska bir elastik malzeme katsayisi
seti kullanilmaktadir. Dokunun gercek davranisi elastik olarak modellenemeyecegi
icin bu modele yalanci-elastik (pseudoelastic) denmistir. Ancak yalanci-elastik
malzeme modelleri zamana bagimhi davramsi gozardi ettigi icin kullamim alani
sinirlidir [40]. Yumusak dokunun artan gerinimle birlikte artan direngenligi (veya
teget elastik modiili) baslangicta yumaklanmis olarak duran kollajen ve elastin
molekiillerinin artan gerinim ile ag¢ilmalar1 ve gerilmeleri ile ilintili oldugu
diistiniilmektedir [40]. Yumusak dokunun dogrusal olmayan davranisint modellemek
icin yaygin olarak kullanilan yontemlerden birisi de gerinme enerjisi (yogunlugu)
fonksiyonudur. Gerinme enerjisi fonksiyonu kullanilarak biiylik gerinmeler igin

Kirchoff gerilmeleri Green gerinmeleri cinsinden su sekilde ifade edilebilir:

g _ 9 W)
" 9E,
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Burada p, malzemenin ilk durumda (sekil degistirmemis durumda) kiitle

yogunlugudur. Burada kullanilan gerinme enerjisi fonksiyonu termodinamik olarak
anlamli bir fonksiyon degildir, ¢iinkii yumusak dokunun aligma etkisi diginda islemin
gerinmenin artma veya azalma yoOniinde olmasina baghh olarak katsayilar
degismektedir. Bununla beraber, bir yalanci-gerinme enerjisi fonksiyonunun varligi
problemin matematik olarak tanimlanmasim biiyiik Olciide kolaylastirmaktadir.
Burada sozii edilen fonksiyonlarin bazi dokular icin 1.5 bazilar1 icinse 2’ye kadar
cikabilen uzama oranlar1 (son, sekil degistirmis uzunlugun ilk uzunluga orani) igin
gercek doku ile uyumlu sonug¢ vermeleri beklenmektedir [39]. Literatiirde 6zellikle
yumusak doku modellemek icin, veya baska amaclarla gelistirilmis ama yumusak
dokuyu da basariyla modelleyebilecek, degisik gerinme enerjisi fonksiyonlar1 vardir.
Bu fonksiyonlarin hemen tiimii goriingiisel (phenomenological) olup dokuda goriilen
gerinmenin artis1 ile direngenlikte meydana gelen artmanin mekanik nedenlerini

modellememektedir.

Vaishnav [41] tarafindan kullanilan gerinme enerjisi fonksiyonu damarlar gibi
silindirik yapilar i¢indir, silindirik koordinat sisteminde ifade edilmistir ve bir
polinom bi¢imindedir:

PoW =AE, +BE,E_+CE_+DE,’ +EE, E_+FE,E_+GE_’

Burada A, B, C, D, E, F ve G malzeme sabitleri olup deneysel verinin fonksiyon

tarafindan kestirilen davranigsa uyumunu saglayacak bicimde belirlenir.

Fung [42] tarafindan 6nerilen fonksiyon ise iistel bigimdedir:
_C 2 2
P W = E expla, Ey +a, E"+2a,E,E_]

Burada C, q,, a,ve a, malzeme sabitleridir. Cilt i¢in Tong [39] tarafindan 6nerilen

fonksiyon ise;
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poW = f(&,E) + Cexp| F (a,E)]
f(@.E)= & E\ +, Ey,’ +20, By Eyy + 0, (Ejy +Ey))’

F(a,E)= a,E,’ +a,E,,;"’ + 2a, E, E,, + a,(E,, +E,,)’

bi¢imindedir. Burada C,«, ,,,a;,, ,a,,a,,a, ve a,malzeme sabitleri, X, ve X,

cildi olusturan diizlem iizerindeki birbirine dik iki koordinat eksenidir.

Tong [39] daha yiiksek mertebeden terimler icermesi i¢cin denklemin asagidaki

bicimini de denemistir:

F(a,E)=a,E,’+a,E,," +2a, E,  E), +a,(E,, +E, )’

2

3 3 2
THEN A1 Ey +V, EEn+ Y EGEy,
burada ¥, 7,, ¥4, ¥s ek malzeme sabitleridir.

Akciger 6zekdokusu icin Hoppin [43] tarafindan Onerilen fonksiyon ise asagida

sunulmustur:

4 2
PoW =D a, (B + B +5) + Y b (A + BB+ B ) + e, A A4

i=1 i=1

i=2
Burada q,, b, ve ¢, malzeme sabitleridir ve fonksiyon genel bir ii¢ boyutlu gerilme
durumu i¢in gecerlidir. Ancak bu bicimin en biiylik kisitlamasi malzemenin esyonlii
(izotropik) oldugu varsaymmidir. Bu varsayimi kaldirmak i¢in 6nerilen bigcim ise

Py W = Cexpla, E +a, Ey,+2a, E, E,,] + permiitasyon ile simetrik terimler

Mezenter ve kaslar icin 6nerilen gerinme enerjisi fonksiyonu ise [42, 44] soyledir:
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dT
— =aT +
dE p

Burada T birim alandaki ¢cekme kuvveti, E gerinme, o ve B ise malzeme sabitleridir.
Bu denklem gerilmesiz duruma ¢ok yakin durumlar icin iyi sonu¢ vermese de diger

tiim gerilmelerde istenen hassasiyette kestirim yapabilmektedir.

Alt ekstremite yumusak dokularinin modellenebilmesi i¢in Money [45] tarafindan
Onerilen ve daha sonra degisik arastirmacilar tarafindan terim sayisi arttirtlarak daha
cok kauguk ve polimerik malzemelerin modellenmesinde yararlanmilan malzeme

modeli kullanilmigtir. Bu model

W= 36,0, -3)(1,-3)

i+j=1

biciminde ifade edilir. Burada I, ve I, Green-Lagrange biiyiik gerinme tensoriiniin

ilk iki degismezi (invariant), Cij ise malzeme sabitleridir. N sayisimin aldigi degere
bagli olarak malzeme modeli isimlendirilir. Bu bicimdeki bir model Toniik [7]
tarafindan kullanilmis olan James-Green-Simpson modelinin eksenel simetrik ve

sikistirilamaz malzemelere uygulanmis tipidir.

3

W=c,(I-3)+C,(I-3)+C,(1-3)

Burada [ sikistirilamaz malzeme icin eksenel simetrik Green-Lagrange gerinme

tensoriiniin tek bagimsiz degismezidir.

0.1.2.6.3. Viskoelastik Malzeme Modelleri

Viskoelastik malzemeler katilarla agdali sivilarin 6zelliklerini bir arada gosteren

malzemelerdir. Bu malzemeler, kat1 ve sivi1 Ozelliklerinin baskinlifina gore katiya
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daha yakin veya siviya daha yakin davranabilirler. Viskoelastik malzemelerin tipik
ozellikleri, histerezis (malzemenin gerinmesi ve ardindan ilk durumuna
dondiiriilmesi sonucu belirgin bi¢cimde mekanik enerji kaybi, gerinme artarken
direngenligi daha yiiksek azalirken diisiik olmasi, Sekil O2’deki gibi), gevseme (sabit
gerinmede gerilmenin azalmasi, Sekil O3), siinme (sabit gerilmede gerinmenin

artmasi, Sekil O4) ve gerinme hizina baglh davranistir.

En temel iki tip viskoelastik malzeme modeli Maxwell ve Voigt modelleri olup tek
boyutlu mekanik model olarak Sekil O5’deki gibi gosterilebilir. Burada yay, elastik
davranigi; amortisor ise agdali davranisi temsil etmektedir. Maxwell modeli
viskoelastik akigkanlart modellemekte uygundur. Voigt modelinin tepkisi gergek
viskoelastik katilarla uyusmadigr i¢in en basit viskoelastik kati modeli i¢in {i¢

elemanli (bazen Kelvin modeli olarak anilir) model (Sekil O6) 6nerilmistir [46-52].

| . I (o Voigt Modeli

o
Maxwell Modeli

Sekil OS - Temel Viskoelastik Malzeme Modellerinin Tek Boyutlu Mekanik
Modelleri
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ko’

7

Sekil 06 - U¢ elemanli (Kelvin) Viskoelastik Malzeme Modelinin iki

Farkli GOsterimi

Uc elemanh modelde gergek viskoelastik katilarda goriilen anlik elastik yanit
goriilebilmektedir. Bu modellerde gevseme ve siinme davranisi tek bir iistel ifade ile
temsil edilmektedir ve cogu gercek viskoelastik katinin davranist bu temsile
uymamaktadir. Ornegin dizaltt amputasyon giidiikleri iizerinde indentor ile yapilan
deneylerden elde edilen yumusak doku verisinde kisa ve uzun siireli iki siinme
davranis1 i¢in ili¢ elemanli model yerine Sekil O7’ de gosterilen bes elemanli bir

model kullanilmastir [8].

253



Sekil O7 - Beg Elemanli Viskoelastik Kati Modeli ve Biinye Denklemi

Bu modelde dogrusal olmayan davranis icin bir gerinme enerjisi fonksiyonu (Wy)
kullanilmustir. Modelde iki gevseme orani (8; ve 95) ile iki gevseme zaman sabiti (T,
ve To) kullanilmigtir. Bu tiir modeller gercek davranist modellemek iizere Prony serisi

olarak genellenebilir:

W(t)=W, 1—211“8i 1—e[%:)

i=1

Bu tiir modellerde iki temel kisit, doku davraniginin viskoelastik oldugu varsayimi ve
elde edilen biinye denklemlerinin cebirsel degil diferansiyel olmasidir. Yapilan
deneylerde, viskoelastik malzeme varsayiminin dar bir iz araliginda (veya
frekansta) iyi sonug¢ verse de araligin genislemesi ile model hassasiyetinin diistiigii

gosterilmistir [15]. Ote yandan, malzemenin biinye denkleminin cebirsel yerine
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diferansiyel olmasi, elastik malzemeye gore daha karmagsik bir biinye denkleminin

coziilmesi geregi, sistem denklemlerini daha da karmasik hale getirecektir.

Schwartz [53] tarafindan Onerilen dogrusal elastik tensor-kiitle yonteminde elde
edilen tensor denklemleri gercek zamanli ¢oziimlemeye izin verecek denli hizli

¢oziilebilmektedir.

Sanjeevi [54] ise olusan gerilmeyi elastik ve agdali etkilerden olmak {izere ayr1 ayri

incelemistir.

DeHoff [55] ise Haut ve Little denklemlerini kullanarak kollajenin viskoelastik

davranigini kestirmistir.

Fung [15] tarafindan Onerilen ve yumusak doku modellemesi konusunda cok bilinen
bir standart model olan yalanci-dogrusal viskoelastik teori (quasi-linear viscoelastic
theory) dogrusal olmayan, zaman ve yiikleme ge¢misine bagh yumusak doku
mekanik davranigimi modellemek iizere pek c¢ok arastirmaci tarafindan basari ile
kullanilmistir. Bu kurama gore gerilim ile gerinim arasindaki iliski su sekilde genel

bir formiil ile gosterilebilir:
o(1) =G(1)* o (e)

Burada o(r) gerilimin zamana bagli degisimini, G(¢) indirgenmis gevseme
fonksiyonunu ve ¢ ¢(¢e) anlik elastik gerilim tepkisi fonksiyonunu ifade eder. Farkli

G(t) ve o°(e) fonksiyonlar: kullanilarak farkli modellerin elde edilebilmesiyle

birlikte literatiirde en fazla kullanilanlar1 su sekildedir;

— 1+C[E1(t/72)_E1(t/71)]
6{r)= 1+Cin(z,/7,)

o (&) = Ale™ -1)
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Buradaki indirgenmis gevseme fonksiyonu igerisinde {i¢ parametre bulunmaktadir.
Bunlardan 7, ile 7, swrasiyla kisa ve uzun donem gevseme davraniglarin1 kontrol
ederken, C parametresi de gevsemenin genligini belirlemektedir. Ifade icerisindeki

E, birinci iistel integral fonksiyonudur ve su sekilde tanimlanir:

Anlik elastik gerilim tepkisi fonksiyonunu igerisindeki iki parametre (A, B) ile

birlikte toplam bes parametreli bir model olusmaktadir.

Bu denklemler kullanilarak elde edilen model ise su sekildedir;

Yumusak doku mekanik yanitini modellemede kullanilan bir baska yontem ise

Bailey Norton yasasi ve Prony serisi yaklagimidir:

‘ de
6= |Eg(t,e)—dt
-([ : dt

/
Eg()=k,+> ke ™"
i=1
/
Eq(te) =kge+ Y ke ™
i=1
Burada Eg(t) dogrusal, Eg(t,€) ise dogrusal olmayan gevseme fonksiyonlaridir.

E=¢€, +E

ifadesi ise Bailey Norton yasasidir.
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0.1.2.6.4 Gozenekli-Elastik Malzeme Modelleri

Gozenekli-elastik (poroelastik) malzeme modelleri, gdzenekli bir elastik kat1 ortam
icerisinde sivi akisimi modelleyen yaklagimdir ve biyomekanikte zaman zaman
yumusak doku ve Ozellikle de eklem kikirdaklarinin modellenmesi i¢in kullanilir.
Kat1 lizerinde olusan gerinmeler nedeniyle sivi iizerinde olusan basing farklari
sonucunda sivi akisi olmaktadir [56]. Yumusak dokunun iki fazli modellenmesine
yonelik Zhu [57] tarafindan hazirlanan ¢alismada modelleme ile ilgili ayrintilar
verilmistir. Un [58, 59] tarafindan yumusak doku mekanik davranisinin
modellenmesinde sonlu elemanlar andirimi kullanilmistir. Ancak gerek modeldeki
karmasiklik gerekse model katsayilarinin elde edilmesine yonelik zorluklar nedeniyle

bugiine kadar yaygin kullanim alan1 bulamamustir.

0.1.2.7 Yumusak Doku Malzeme Sabitlerinin Belirlenmesi (Yumusak Doku

Mekanik Karakterizasyonu)

Biinye denklemlerindeki malzeme sabitlerinin belirlenebilmesi, ancak ilgili
malzemeler iizerinde ayrintili deneyler yapmakla olasidir. Yapilan deneylerin cinsine
gore, eger kontrollii ortamda ve basit bir geometrili deney Ornegi kullaniliyorsa
cebirsel denklemlerle dokunun gerilme-gerinme-zaman &zellikleri (biinye denklemi
katsayilar1) elde edilebilir. Ancak geometri karmagiksa (6rnegin indentor
deneylerinde oldugu gibi indentdr ucunun dokuyla temasi, biiylik yer degistirmeler

gibi) evrik yontemlere (genellikle evrik sonlu elemanlar yontemi) bagvurulur.

0.1.2.7.1 Analitik Yaklasimlar

Deney yapilan geometrinin basit oldugu veya basit geometrilerle modellenebildigi
(genellikle yari-sonsuz ortam) ve bununla beraber malzemenin biinye denkleminin de
gorece basit oldugu (genellikle dogrusal elastik veya dogrusal viskoelastik malzeme)

ve tim bunlara ek olarak gerinmelerin ve yer degistirmelerin kiiciik oldugu cok
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kisitl sayidaki yumusak doku deneyleri icin mekanik davranis, icerisinde malzeme
sabitinin de bulundugu tek bir analitik denklem ile ifade edilebilmektedir. Bu
durumda, analitik denklemden malzeme sabiti ¢oziilerek deney sonucuna bagh
olarak sayisal deger kolaylikla elde edilebilir [60, 61]. Ancak analitik yaklasimlar,
icerdikleri ¢ok fazla kisitlama nedeniyle cogunlukla istenenlere yanit

verememektedir.

0.1.2.7.2 Evrik Sonlu Elemanlar Modeli

Evrik sonlu elemanlar modelinde, deney yapilan bolge ve yakin g¢evresinin sonlu
elemanlar modeli hazirlanir. Gerekli sinir kosullari, deney sirasinda uygulanan
yiikler, dokunun uymasi beklenen biinye denklemi modele girilir. Ancak biinye
denklemi ile ilgili katsayilar bilinmedigi i¢in baslangi¢ degerleri secilir. Rastgele
secilen bu degerlerle sonlu elemanlar andirimi ¢alistirilir, malzeme sabitleri rastgele
secilmis dokunun tepkisi elde edilir. Uzerinde deney yapilmis gercek dokunun
malzeme sabitleri, rastgele se¢ilen malzeme sabitlerinden farkli olacag igin,
bilgisayar anirmmindan elde edilen tepki de ger¢ek dokudan elde edilenden farkli
olacaktir. Aradaki farki kapatmak ilizere bilgisayar andirimindaki malzeme sabitleri
degistirilerek andirim yeniden calistirilir. Andirnmdan elde edilen tepki, gergek
dokudan deneysel olarak elde edilen tepkiye istenen Ol¢iide yaklastiginda, andirimda
kullanilan malzeme sabitlerinin de gercek yumusak dokunun malzeme sabitlerine
istenen Olclide yaklastigi varsayilir ve bodylece yumusak doku mekanik malzeme

sabitleri istenen hassasiyetle kestirilebilir.

Evrik sonlu elemanlar yonteminin kullanimi sirasinda dikkat edilmesi gereken

noktalar sunlardir:

® Yumusak dokunun uymasi beklenen biinye denkleminin 6nceden bilindigi
varsayilir. Eger kullanilacak biinye denklemi iizerinde deney yapilan dokunun
mekanik davramigimt modellemede yetersiz kalirsa evrik sonlu elemanlar

yonteminden biinye denkleminin degistirilmesine yonelik bir bilgi edinilmez.
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e Genellikle deney kosullarinda yumusak dokuda biiyiik gerinmeler, biiyiik yer
degistirmeler, baska bir cisme dokunma ve dogrusal olmayan biinye denklemleri
gibi problemin yiiksek derecede dogrusalliktan sapmasina neden olan kaynaklar
vardir. Bu durumda, elde edilecek malzeme sabitleri kestiriminin tek (kapali,

digbiikey bir komsuluk igerisinde) olduguna dikkat edilmelidir.

Evrik yontemlerle yumusak doku mekanik 6zelliklerinin belirlenmesine iligkin daha

ayrmtil bilgiler i¢in Flynn [62] ve Toniik’iin [9] caligmalaria basvurulabilir.
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Ozetce: Yumusak dokularin mekanik davramsi miihendislik malzemeleri ile
karsilastirildigina, karmasiktir. Alisma (Mullin etkisi) siinme, gevseme, ve
histeris gibi elastik malzemelerde gozlenmeyen davramslar sergilerler. Bu
davramslarin modellenebilmesi icin cesitli biinye denklemleri Onerilmistir.
Bunlardan birisi olan sanki-dogrusal viskoelastik model, yaumusak dokularin
zamana bagh ve dogrusal olmayan davramsini modellemede sikhikla
kullamlmugtir [1]. Bu cahismada sanki-dogrusal viskoelastik model kullanilip
indentor deneyleri sonucu elde edilen verilerden faydalamlarak model
katsayllarimin bulunmas1 amaclanmistir. Elde edilen katsayilarin sonlu
elemanlar analizi programinda kullamilmasiyla olusturulan modelin yomusak
doku mekanik davranisim Kestirebilecegi umulmaktadir. Ayrica elde edilen
katsayr setinin, baska laboratuarlarda baska sistemlerle ve farkh dokular
iizerinde yapilan deneyler sonucu elde edilen katsayilarla kiyaslanabilecek bir
kaynak olabilecegi diisiiniilmektedir.

Anahtar Sozciikler: yumusak doku, sanki-dogrusal viskoelastik model, gevseme.

Abstract: Mechanical behavior of soft tissues complicated compared to
engineering materials. They exhibit preconditioning (Mullin’s effect),
relaxation, creep, and hysteresis which are not encountered in elastic materials.
Many -constitutive equations have been proposed to simulate soft tissue
mechanical response. One of these, the quasi-linear viscoelastic model, has been
frequently used to model the time-dependent and non-linear behavior of soft
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tissues [1]. In this study, it is aimed to estimate the model parameters by
utilizing the experimental data and by using the quasi-linear viscoelastic model.
By integrating the model into a finite element code it is hoped that the soft tissue
mechanical response could be modeled. Besides, the parameter set obtained is
will be a reference to be compared with the different studies done in other
laboratories by different experimental systems used on different soft tissues.

Keywords: soft tissue, quasi-linear viscoelastic model, relaxation.

L. GIRIS

Biyolojik yumusak dokular cok karmasik davranmig bicimlerine sahip malzemeler
olarak bilinirler ve davranigin1 tam olarak kestirebilmek cok giictiir. Cevreleriyle
mekanik etkilesimleri sonucu alisilageldik miihendislik malzemelerinden ¢ok farkli
tepkiler verirler. Yumusak dokularin modellemesinin hassas olarak yapilabilmesi,
onlarin bu davraniglarinin en iyi bicimde bilinmesiyle miimkiin olabilir. Yumusak
dokular;

gerilim-gerinim bagintist dogrusal degildir,

anizotropiktir,

elastik malzeme davranisina uymaz,

homojen degildir,

her dongiide (6zellikle ilk dongiilerde) ayn1 deplasman degerine kars: farkl tepki

kuvveti degerleri gosterirler, fakat zamanla direngenlik azalarak tekrar edilebilir

sonug¢lar alinmaya baglanir (aligma, Mullin etkisi), (Sekil 1) [19],

e her dongiide gerinimin artmasi ve azalmasi sirasinda verdikleri gerilim — gerinim
degerleri farklidir, bu fark mekanik enerji kayb1 olarak kendini gosterir (histeris),
(Sekil 2) [19],

e gsabit gerinim altinda sabit gerilim zamanla azalir (gevseme), (Sekil 3) [19],

e gabit gerilim altinda gerinim zamanla artar (siinme), (Sekil 4) [19].

Yukarida bahsedilen ve elastik malzemelerden cok farkli olan o©zellikleri
kestirebilmek icin c¢esitli modeller olusturulmustur. Bunlarda bazilar1 derinin
modellenmesi [2, 16, 18], iist ve alt bacagin modellenmesi [3, 4], atardamarlarin
modellenmesi [5, 17, 18], kalp kapakciginin modellenmesi [6], akciger dokusunun
modellenmesi [7, 18], ayak tabanimmin modellenmesi [8], eklem kikirdaginin
modellenmesi [9], baglarin modellenmesi [10, 11, 15], gogiis dokusunun
modellenmesi [12, 13] ve karaciger dokusunun modellenmesi [14] verilebilir.

Bu modellerin olusturulmasinda cesitli yontemler kullanilmistir. Ornegin bazi bilim
adamlart dokunun yiikleme ve bosaltma sirasinda farkli tepkiler vermesi iizerine
dokuyu yiikleme sirasinda bir elastik malzeme yiik bosaltma sirasinda baska bir
elastik malzeme olarak modellemiglerdir. Boylelikle malzemeyi iki elastik
malzemenin birlesimi olarak kabul etmis ve gorece daha yalin olan elastisite
teorisinin kullanilmasini olanakli kilmiglardir. Doku elastik olmamasina ragmen onu
elastik malzeme kabul eden yonteme bu ylizden sanki-elastik modelleme denilmistir
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[5, 18]. Ancak, sanki-elastik malzeme modelleri zamana bagimli davranisi (gevseme
ve siinme gibi) gdzardi ettigi i¢in kullanim alan1 sinirhidir.

Kuvvet

Zaman

Sekil 1 — Yumusak Dokunun Ard Arda Yapilan Yiiklemelerde
Gosterdigi Alisma Etkisi

Gerinim Artisy

} t
Yer Degigtirme,

Sekil 2 — Yumusak Dokunun Yiikleme ve Yiik Bosaltma Sirasindaki Davranist

Kuvvet
I

| |
t t
Zaman

Sekil 3 - Yumusak Dokunun Sabit Gerinimde Gevseme Davranisi
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Yer Degistirme

|
t
Zaman

Sekil 4 - Yumusak dokunun sabit gerilimde siinme davramsi

Bagka bir grup bilim insamni ise viskoelastik malzeme modelleri kullanarak yumusak
dokularda goriilen histeris yani gerinim-gerilim tepkisinin gerilimin artis1 ve azaligi
yonlerinde farkli olmasi (Sekil 2), gevseme (Sekil 3) ve siinme (Sekil 4)
davraniglarint modellemeye ¢alismiglardir [11, 14, 15].

Giinlimiizde en yaygin olarak kullanilan yumusak doku biinye denklemleri
viskoelastik olanlardir. Bu modeller gelistirilerek sanki-dogrusal viskoelastik
modeller gelistirilmistir. Bu modelin temeli indirgenmis gevseme fonksiyonunun
elastik gerilim fonksiyonunun zamana gore tiireviyle ¢arpiminin deney zamaninda
integralinin alinmasina dayanir.

Yumusak dokularin bu 6zellikleri deneyler sonucu ortaya c¢ikarilmistir. Yumusak
doku mekanik yanitinin belirlenebilmesi icin degisik deney yontemleri kullanilmistir.
Her yontemin kendine 6zgii avantaj ve dezavantajlar1 vardir. Kullanim amacina gore
bu deney tiplerinden en uygunu secilmelidir. Deneylerle, yumusak dokunun
modellenmek istenen davranisi tespit edilir, bu davranisa en uygun biinye denklemi
secilir, deney sonuglart kullanilarak model i¢indeki parametreler hesaplanir ve son
olarak modelin gercek davranisi1 ne Olgiide ve hangi sinirlar igerisinde andirabildigi
kontrol edilir.

II. MATERYALLER ve YONTEMLER
Sanki-Dogrusal Visko-elastik Model
Gelisen bilgisayarlar ve hesaplama yontemleri ile andirim programlar1 sayesinde son
yillarda en sik ve basarili bigimde kullanilan yontem, yumusak dokularin viskoelastik

olarak modellenmesidir. Ciinkii yumusak dokular, neredeyse tiim viskoelastik
malzeme davraniglarini sergilemektedirler. Dolayisiyla bu ¢alismada da viskoelastik
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malzeme modellerinin bir alt kolu olan sanki-dogrusal viskoelastik biinye
denklemleri kullanilmistir.

Sanki-dogrusal viskoelastik modelin temeli indirgenmis gevseme fonksiyonunun
elastik gerilim fonksiyonunun zamana goOre tiireviyle carpiminin deney zaman
siiresince integralinin alinmasina dayanir ve su sekilde ifade edilir:

o) = [6(-0) 2012, (1)

Burada; r zamani; o(;) gerilimin zamana gore degisimini; G(-) indirgenmis gevseme
fonksiyonunu (Sekil 5); ¢ gerinimi ve & (¢) gerinime bagh anlik elastik gerilim
fonksiyonunu temsil eder.

Bu c¢alismada kullanilan ve literatiirde bulunanlar arasinda en az malzeme sabitine
sahip olan indirgenmis gevseme fonksiyonu su sekildedir:

_1+C[E1(t/72)_E1(t/71)] 2
Gl1) = 1+Cln(z, /1) @

Burada; C gevsemenin genligini, 7 ve 7, sirasiyla kisa ve uzun donem gevseme
davramglarim kontrol eder. Ifade icerisindeki E, (-) birinci iistel integral fonksiyonu
olarak adlandirilir ve su sekilde ifade edilir:

E(y)=[ e[z dz 3

C=0.08
7,=0.8
T2 =1400

[ 20 40 60 80 100 120 140
zaman (s)

Sekil 5 — Indirgenmis gevseme fonksiyonu

Sekil 5’de modelin ana elemani1 olan indirgenmis gevseme fonksiyonunun C = 0.08,
T = 0.8 s ve T, = 1400 s parametreleri baz alinarak cizilmis egrisi sunulmustur.
Buradaki C katsayis1 gevsemenin genligini belirlediginden biiyiiltiilmesi toplam
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gevseme miktarinin artmasina, kiiciiltiilmesi de azalmasina neden olur. T, katsayisi
kisa donem gevseme davramisini kontrol eder ve biiyiiltiilmesi ani gevseme siiresini
uzatir. T, katsayist uzun déonem gevseme davranisim kontrol eder ve biiyiiltiilmesi
uzun donem gevseme siiresini uzatir.

Gerilime baglh anlik elastik gerilim fonksiyonu olarak asagidaki dogrusal olmayan
tistel ifade kullanilmigtir:

o9 (&) = Ale* - 1) C))
Buradaki A ve B, diger iki malzeme katsayisidir.

Gerekli ifadeler (1) numarali denklemde yerine konularak modelin son sekli elde
edilir. Modelin beg parametre (C, Ti, T2, A, B) ile yumusak doku mekanik yanitini
biiyiik 6lciide modelleyebilecegi tahmin edilmektedir.

III. SONUCLAR

Modelleme sirasinda gerinim hizi sabit ve 0.03125 s almmustir (bu deger, indentor
deneyi swrasinda ilk kalinlig1 yaklasik 32 mm olan dokuya indentdriin 1 mm/s sabit

hiz ile basmas1 sirasinda olusan gerinim hizidir [19]). Kullanilan malzeme katsay1
degerleri Tablo 1’de sunulmustur.

Tablo 1 — Modelde kullanilan katsayilar

A B C T1 T
50 42 0.08 0.8 1400
IV. TARTISMA

Ifadeler (1) numarah denklemde yerine konulup zamana bagli gerilim tepkisinin son
hali olusturulmustur. Matlab 6.5 yazilimi kullanilarak sabit gerinim altinda gerilim
tepkisi Sekil 6’daki gibi elde edilmistir.
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Sekil 6 - Gevseme davranisinin modellenmesi

Sekil 6°da, gevseme davranisinin, hizli gevsemenin gerceklestigi ilk 20 saniyelik
periyodu sunulmustur. Sanal deney sirasinda, ilk 20 saniyede 1 mm/s ile yiikleme
yapilip sonra 120 saniye beklenmistir.

Yapilan bu ilk denemeler, onerilen modelin, yumusak dokulardan elde edilen
deneysel verileri [19] modelleyebildigini gostermistir. Onerilen malzeme modelinin
MSC.Marc 2003 sonlu elemanlar programina kullanici altprogrami araciligiyla
tanitilmasi ile yumusak doku deneysel verilerinden evrik sonlu elemanlar yontemiyle
[22] malzeme katsayillarimin elde edilmesi ve bu katsayilar kullanilarak degisik
durumlarin andinnmlarmin gercekg¢i olarak yapilmasi olanakli hale gelecektir.

Olusturulan bu model, az sayida katsayiya sahip olmasi ve bu katsayilarin karmasik
olmayan deneylerle elde edilebilmesi nedeniyle kolaylikla kullanilabilmektedir.
Literatiirde ©Onceden kullanilan benzer model ve parametre setlerine katkida
bulunacag diistiniilmektedir.
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~ YUMUSAK DOKU BE'JNYE DENKLEMLERi II:
GELISTIRILMIS SANKI-DOGRUSAL VISKOELASTIK MODEL
Constitutive Equations for Soft Tissues II: Enhanced Quasi-linear Viscoelastic
Model

Kerem Usii', Ergin Toniik'*
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' Orta Dogu Teknik _['.'Jniversitesi, Makina Miihendisligi B6liimii, Ankara, Tiirkiye
? Orta Dogu Teknik Universitesi, Biyomedikal Miihendisligi Lisansiistii Programu,
Ankara, Tiirkiye

Ozetce: Literatiirde bulunan neredeyse tiim yumusak doku malzeme
modellerinin gercek davramisi modellemede yetersiz kaldigi1 yonler vardir.
Bazilan sadece belirli bir davranis iizerine yogunlasir. Bazilar: ise birden fazla
davramsi tek bir modelle kestirebilmek icin ¢cok sayida model katsayis1 kullanir
ve bu katsayillarin deneylerle elde edilmesi zahmetli olur. Bu calismanin amaci
miimkiin olan en az model parametresi kullanarak miimkiin olabildigi kadar
fazla davrams1 gercege yakin modelleyebilmektir. Bu dogrultuda sanki-
dogrusal viskoelastik malzeme modeli gelistirilmistir. Deneysel verilerden elde
edilen sonuclar ile model parametrelerinin belirlenmesi planlanmaktadir.
Parametrelerin elde edilmesiyle olusturulan modelin devirli yiikleme, gevseme,
siinme ve alisma davranislarini kestirebilecegi umulmaktadir.

Anahtar Sozciikler: yumusak doku, gelistirilmis sanki-dogrusal visko-elastik model,
devirli yiikleme, gevseme, aligsma.

Abstract: Almost all of the soft tissue models in the literature have some
deficiencies in modeling real soft tissue mechanical response. Some of them only
focus in a specific behavior. Some others use many model parameters to be able
to simulate more than one behavior in a single model however it is rather hard
to determine these parameters experimentally. The aim of this study is, to model
as many behavior of soft tissue as possible by using possible minimum number
of model parameters. To achieve this, the quasi-linear viscoelastic model was
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enhanced. The parameters of the model will be determined with the help of
experimental data. The final form of the model, which will be obtained by
substituting the model parameters into the model, is expected to simulate cyclic
loading and unloading, relaxation, creep and preconditioning.

Keywords: soft tissue, enhanced quasi-linear visco-elastic model, cyclic loading and
unloading, relaxation, preconditioning.

L. GIRIS

Insan viicudunun dis yiizeyi tamamen yumusak dokularla ortiiliidiir ve gevreyle
mekanik etkilesimin tiimii bu yumusak dokular aracilifiyla gerceklestirilir. Bu
fiziksel (baska bir deyisle mekanik) etkilesimlerin sonuclarinin dogru olarak
kestirilebilmesi i¢in Oncelikle bu etkilesimleri gerceklestiren yumusak dokularin
mekanik davrams1 hakkinda ayrintil bilgi sahibi olunmalidir. Bunlarin, ¢esitli kuvvet
tip ve biiyiikliiklerine nasil tepki verecegi miimkiin oldugu kadar ayrintili ve dogru
bilinmelidir. Bu bilgiler 1s1ginda yumusak doku mekanik davraniginin bilgisayarda
andirim (simiilasyonu) yapilabilir, etkilesimin istenen bi¢cimde olmasi i¢in gerekli
degisiklikler tizerinde calisilabilir.

Derinin modellenmesi [1, 15, 17], iist ve alt bacagin modellenmesi [2, 3],
atardamarlarin modellenmesi [4, 16, 17], kalp kapak¢iginin modellenmesi [5],
akciger dokusunun modellenmesi [6, 17], ayak tabaninin modellenmesi [7], eklem
kikirdaginin modellenmesi [8], baglarin modellenmesi [9, 10, 14], g6giis dokusunun
modellenmesi [11, 12], karaciger dokusunun modellenmesi [13] yumusak doku
mekanik davramiginin bilinmesinin gerekliligini gdsteren bazi érneklerdir.

Yukarida bahsedilen modeller yumusak dokularm bazi tipik mekanik yanitlarini
ortaya ¢ikarmak i¢in olusturulmustur. Bunlar;

e Dokunun ilk birka¢ yiiklemede daha direngen davranmasi, sonraki yiiklemelerde
direngenliginin azalarak tekrar edilebilir bir gerilim-gerinim 6zelligine kavusmasi
(alisma, Mullin etkisi), (Sekil 1).

e Yikleme ve yiikk bosaltma yonlerinde goriilen iki farkli direngenlik ve bir
yiikkleme - bosaltma ¢eviriminde ihmal edilemeyecek diizeyde mekanik enerji
kaybi (histeris), (Sekil 2).

e Sabit yer degistirme (veya gerinim) altinda tepki kuvvetinin (gerilimin) azalmasi
yani gevseme, (Sekil 3).

e Sabit kuvvet (veya gerilim) altinda yer degistirmenin (veya gerinimin) artmasi
yani siinme, (Sekil 4).
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Kuvvet

Zaman

Sekil 1 — Yumusak Dokunun Ard Arda Yapilan Yiiklemelerde
Gosterdigi Alisma Etkisi

} t
Yer Degigtirme,

Sekil 2 — Yumusak Dokunun Yiikleme ve Yiik Bosaltma Sirasindaki Davranisi

Kuvvet
I

| |
t t
Zaman

Sekil 3 - Yumusak Dokunun Sabit Gerinimde Gevseme Davranisi
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Yer Degistirme
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t
Zaman

Sekil 4 - Yumusak dokunun sabit gerilimde siinme davramsi

Yumusak dokularin bu 6zellikleri deneyler sonucu ortaya c¢ikarilmistir. Yumusak
doku mekanik yanitinin belirlenebilmesi i¢in degisik deney yontemleri kullanilir. Her
yontemin kendine 6zgili avantaj ve dezavantajlart vardir. Kullanim amacia gore bu
deney tiplerinden en uygunu secilmelidir.

Yumusak doku mekanik davranisini modellemek icin kullamlan biinye
denklemlerinden en yaygin kabul gorenleri sanki-elastik malzeme modelleri [4, 15,
17], ve bu ¢alismada da kullanilan viskoelastik malzeme modelleridir [10, 13, 14].

Sanki-elastik malzeme modellerinde yumusak doku, yiikleme yoniinde bir elastik
malzeme, bosaltma yoniinde baska bir elastik malzeme olarak modellenmistir.
Ciinkii, Sekil 2’de de goriildiigii gibi dogrusal olmayan yumusak dokunun davranisi
yiikleme sirasinda farkli bosaltma swrasinda farkli tepki kuvveti—yer degistirme
egrileri ile temsil edilmektedir. Bu nedenle oldukga basit bir yaklagimla, gerinmenin
artmasi yoniinde bir elastik malzeme katsayisi seti, azalmasi yoniinde baska bir
elastik malzeme katsayis1 seti kullamilmaktadir. Dokunun gercek davramisi elastik
olarak modellenemeyecegi i¢in bu modele sanki-elastik denmistir. Ancak sanki-
elastik malzeme modelleri zamana bagimli davrams1 (gevseme ve siinme gibi)
gozardi ettigi i¢in kullanim alant sinirhdar.

Viskoelastik malzeme modelleri ise viskoelastik malzeme 6zellikleri olarak kabul
edilen histeris (Sekil 2), gevseme (Sekil 3) ve siinme (Sekil 4) davramiglarini
modellemek icin gelistirilmistir. Son yillarda en sik ve basarili bir sekilde kullanilan
model ise sanki-dogrusal viskoelastik modeldir. Bu modelin temeli indirgenmis
gevseme fonksiyonunun elastik gerilim fonksiyonunun zamana gore tiireviyle
carpiminin deney zamanisiiresince integralinin alinmasina dayanir.
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II. MATERYALLER ve YONTEMLER
Sanki-Dogrusal Visko-elastik Model

Gelisen bilgisayarlar ve hesaplama yontemleri ile andirim programlar1 sayesinde son
yillarda en sik ve basarili bicimde kullanilan yontem, yumusak dokularin visko-
elastik modellenmesidir. Ciinkii yumusak dokular, neredeyse tiim visko-elastik
malzeme davramglarini sergilemektedirler [23]. Dolayisiyla bu calismada da
viskoelastik modellemenin bir alt kolu olan sanki-dogrusal viskoelastik
modellemenin gelistirilmis bir modelini kullanilmisgtir.

Sanki-dogrusal visko-elastik modelin temeli indirgenmis gevseme fonksiyonunun
elastik gerilim fonksiyonunun zamana gore tiireviyle ¢arpiminin deney zamaminda
integrallenmesine dayanir ve su sekilde ifade edilir:

ol1) = [o(-2) 2212 (1)

Burada; t zamani; ¢(s) gerilimin zamana gore degisimini; G(-) indirgenmis gevseme
fonksiyonunu; ¢ gerinimi ve o“(¢) gerinime bagh anhk elastik gerilim
fonksiyonunu temsil eder.

Bu ¢aligmada kullanilan ve literatiirde kullanilanlar arasinda en az malzeme sabitine
sahip olan indirgenmis gevseme fonksiyonu su sekildedir:

_1+C[E1(t/72)_E1(t/71)] 2
G(1)= 1+Cln(z,/7,) @

Burada; C gevsemenin genlidini, 7 ve 7, sirasiyla kisa ve uzun donem gevseme
davranislarim1 kontrol eder. Ifade igerisindeki E, (-) birinci iistel integral fonksiyonu
olarak adlandirilir ve su sekilde ifade edilir:

E(y)=[ e[z dz 3

Gerilime baglh anlik elastik gerilim fonksiyonu olarak asagidaki dogrusal olmayan
iistel ifade tercih edilmistir:

o (e) = Ale" - 1) )
Buradaki A ve B, diger iki malzeme parametresidir [23].

Bu asamaya kadar temel durumdaki sanki-dogrusal viskoelastik model
olusturulmustur. Gerekli ifadeler (1) numarali denklemde yerine konularak modelin

son sekli elde edilir. Model bes parametre (C, 7,, 7,, A, B) ile gevseme davranisini
modelleyebilmektedir.
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Bu model temel alinarak gelistirilen model ise hem dokuda bulunan anizotropiyi goz
Oniine alir hem de zaman ile beraber gerinime de baglhidir. Bu model;

Ti(en) =2 Eo(r) S)
e =" 0(1) ©)
Tss(gat):%a(t) (7

denklemleri ile ifade edilir. Bu denklemlerde 7

11°

1,, ve T, li¢ malzeme eksenindeki
gerilimler; ¢, &, ve g ¢ malzeme eksenindeki asal gerinimler; a, b ve ¢
anizotropiye izin veren birim hiicre Ol¢iileridir. () ifadesi (1) numarah denklem ile

hesaplanan baz durumdaki sanki-dogrusal viskoelastik gerilimdir. A asagidaki
bicimde ifade edilir:

2012+l:—:+c2 ®)

A

Anizotropinin modellenebilmesi i¢in modele ii¢ yeni parametre (a, b, ¢) eklenmistir.
Gelistirilen model sekiz parametrelidir. Gerekli ifadeler yerlerine koyulup
integrasyon islemi tamamlandiktan sonra A parametresi @, b ve ¢ parametrelerinin
icine alinarak model yedi parametreye indirgenebilir.

III. SONUCLAR

Modellemeler sirasinda gerinim hizi sabit ve 0.03125 s' almmustir (bu deger,
indentdr deneyi sirasinda ilk kalinhigi yaklasik 32 mm olan dokuya indentoriin 1
mm/s sabit hiz ile basmasi sirasinda olusan gerinim hizidir [22]). Kullanilan
parametre degerleri Tablo 1°de sunulmustur.

Tablo 1 — Modelde kullanilan katsayilar

C T, T, B a b c
0.08 0.8 1400 42 3.1E-9 2.8E-9 2.6E-9
IV. TARTISMA

Yukarida bahsedilen ve tiiretilen denklemlerden (5) numarali olan kullanilarak
modelin son hali olusturulmus ve Matlab 6.5 yazilimi kullanilarak Sekil 5-7’deki
sonuclar elde edilmistir.

277



Sekil 5°te 20 saniyelik periyotlarla yapilan gerinim artig1 ve azaltmasi islemlerinin
egrileri goriilmektedir. Alisma etkisi, yani ilk birka¢ dongiiden sonra tekrarlanabilir
gerilim tepkisi sekilden goriilebilir.

i
=
= e i
b I
14 | ‘ 4
\ } \
‘. |
12 | ‘ \ g
| | |
10+ 1 ‘ | E
\ ; \
sl | R
I | |
\ | |
6 \ f ﬂ 8
1 ‘\ \
\ 1 ‘
e | | | B
‘ [ \
2 \l !r‘ |
[ ‘ Jr 7
% 50 100 150 200 250 300 350 400 450
zaman (s)

Sekil 5 — Alisma Davranisinin Modellenmesi

Sekil 6’da yine gerinimin bu kez bir devirde artmasi ve azalmasi iglemleri goriiliiyor.
Bu kez tekrar edilebilir sonu¢ alindiktan sonraki tek bir dongiiniin gerilim—gerinim
egrisi sunulmustur. Bu grafikte bir devir swrasinda kaybedilen mekanik enerji
(histeris) iki egrinin arasindaki alan olarak goriilmektedir.

Sekil 7°de, gevseme davranisinin, hizli gevsemenin gerceklestigi ilk 20 saniyelik
periyodu sunulmustur. Sanal deney sirasinda, ilk 20 saniyede gerinim arttirilip sonra
120 saniye beklenmistir.

Yapilan bu ilk denemeler, Onerilen modelin, yumusak dokulardan elde edilen
deneysel verileri [22] modelleyebildigini gostermistir. Onerilen malzeme modelinin
MSC.Marc 2003 sonlu elemanlar programina kullanici altprogrami araciligiyla
tanitilmasi ile yumusak doku deneysel verilerinden evrik sonlu elemanlar yontemiyle
malzeme katsayilariin elde edilmesi ve bu katsayilar kullanilarak degisik
durumlarin andinnmlarmin gercekg¢i olarak yapilmasi olanakli hale gelecektir.
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Sekil 6 — Devirli yiikleme davranisinin modellenmesi
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Sekil 7 — Gevseme davranisinin modellenmesi

Olusturulan bu model, tek bir ifade ile yumusak doku mekanik yantim ayrintili
bicimde modelleyebilmesi ve az sayida malzeme katsayisina bagli olmasi nedeniyle
literatiirdeki yumusak doku modellerine énemli bir katkida bulunmaktadir.
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PAPER SUBMITTED FOR PUBLICATION FOR MATIM

In Vivo indentér Deneylerinden Elde Edilen
Yumusak Doku Mekanik Davranisim1 Modellemek icin
Sanki-Dogrusal Viskoelastik Malzeme Modelleri

Kerem Usii', Ergin Toniik'*

' Orta Dogu Teknik pniversitesi, Makina Miihendisligi Boliimii, Ankara, Tiirkiye
* Orta Dogu Teknik Universitesi, Biyomedikal Miihendisligi Lisansiistii Programu,
Ankara, Tiirkiye

Bu ¢alismamin amact yumusak biyolojik dokularin farkli deney protokollerindeki mekanik
davramislarim sanki-dogrusal viskoelastik malzeme modeli kullanarak miimkiin olan en az
malzeme sabiti degisimi ile andirmaktir. Yumusak dokular yiiklemeye dogrusal olmayan
gerilim-gerinim davranisi, gevseme, siinme, histeris ve alisma (Mullin etkisi) gibi alisilageldik
miihendislik malzemelerinden farkly tepkiler verirler. Yumusak dokular modelleme amagl
olarak genelde sanki-elastik veya viskoelastik kabul edilirler. Bu ¢alismada, indentor
deneyleri sonucunda elde edilen yumusak doku yer degistirme-tepki kuvveti-zaman verileri
kullanilarak deney bolgesi ve yakin cevresinin, sonlu elemanlar modeli olusturulmugtur.
Yumusak doku malzeme modeli olarak viskoelastik malzeme modeli, rastgele baslangi¢
katsayllari ile kullamlms, evrik sonlu elemanlar yontemi araciligiyla sonlu elemanlar
andirimindaki  yumugak doku yer degistirmesi-tepki kuvveti-zaman sonuglart deneysel
sonuglarla arzu edilen yakinhiga ulasincaya kadar malzeme katsayilari degistirilmigtir.
Andinim sonuglari, deneysel gevseme ve siinme davranislarini sirasiyla % 0.74 ve % 0.31
normalize edilmis hata kareleri toplami degerleriyle modellemistir. Bu degerler, kullanilan
malzeme modelinin yumugak biyolojik doku davranisimn kestirimine uygun oldugunu ve elde
edilen malzeme katsayillarimin yumusak dokuyu istenen hassasiyette temsil ettigini
gostermektedir. Indentor deney sonuglart ve burada sunulan yontem kullamilarak insan
bedeninin ¢evre ile mekanik etkilesimi kigiye ve dokuya ozel olacak bigcimde ve hassas olarak
modellenebilir.

Anahtar Kelimeler: Yumusak Doku, Viskoelastik, Evrik Sonlu Elemanlar
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GIRIS

Insanoglu yasamim devam ettirdigi siirece siirekli cevresi ile etkilesim igindedir.
Bazen algilayabilmek icin koklar ya da dinler; bazen de dokunur. Hi¢ farkinda
olmadan giin icerisinde defalarca cisimlerle fiziksel temasta bulunur. Ornegin bir
koltuga oturur ve saatlerce kalkmaz veya biitiin gece ayni kolunun iizerinde uyur.

Insan viicudunun disi biiyiik 6lgiide yumusak dokulardan olusmustur ve dolayisiyla
fiziksel temaslarin cogu bu yumusak dokular aracihigiyla gergeklestirilir. Ornegin,
kalca tizerine oturulur ve zamanla kalgca oturulan zeminin seklini alir, en ufak bir
kipirdanma sonucu tekrar sekil degistirir ve yeni pozisyonuna adapte olmaya ¢alisir;
uzun Yyiirilyligler sonucunda viicut agirligindan dolayr ayak tabanlarma uygulanan
periyodik degisen kuvvet sonucu ¢esitli yumusak doku zedelenmeleri meydana
gelebilir ve agr1 hissedilebilir. Fel¢li hastalarin uzun siire hareketsiz yatmalar1 sonucu
viicutlariyla yatagin temas ettigi yerlerde yatak yaralar1 meydana gelir. Protez veya
ortez kullanan Kkisiler bunlarin viicutlartyla uyumsuzluklarindan dolayr olusan
yaralardan sikayet ederler.

Insan viicudunda olan bu fiziksel etkilesimlerin mekanik sonuglarinn dogru olarak
kestirilebilmesi i¢in Oncelikle bu etkilesimleri gerceklestiren yumusak dokularin
mekanik davramiglar1 hakkinda bilgi sahibi olunmalidir. Bunlarm, ¢esitli kuvvet tip
ve biiyiikliiklerine nasil tepki verecegi miimkiin oldugu kadar ayrintili ve dogru
bilinmelidir.

Yumusak dokularin hangi kuvvete ne sekilde tepki verecegi deneylerle belirlenir. Bu
deneyler ex vivo, in vitro ve in vivo olmak iizere ii¢ sekilde yapilir [25].

Ex vivo deneylerde, yumusak doku yerine benzer karakteristik gosteren polimer
benzeri malzemeler kullanilir. Dolayisiyla dogru sonuca en uzak deney tipidir.
Bunun yaninda bilindik geometrilere sahip numuneler kullanilarak deneyin yapilisi
kolaylastirilabilir. In vitro deneylerde ise kadavradan kesilip alinmis gergek ama 6lii
yumusak dokular kullanmlir. Dokunun gergek ortaminda (viicudun bir pargasi olarak)
bulunmamasi1 ve canli olmamasi mekanik 6zelliklerinin degismesine sebep olur.
Sonuglart ex vivo deneylere gore daha gercek¢i olsa da tatmin edici degildir. Son
olarak bu calismada faydalamlan in vivo deneyler yumusak doku kendi ortaminda ve
canli haldeyken yapilir. Dolayisiyla, canli dokunun kendi biyolojik cevresindeki
mekanik davranis1 hakkinda en dogru bilgiler in vivo deneyler sonucu elde edilir. Bu
deneylerin en bilyilk sakincas1i ise dokularin karmagsik geometrisinden dolayi
uygulanmalariin zor olmasi ve malzeme yasasini elde etmek i¢in gerilim-gerinim-
zaman bagintilarinin elde edilmesi i¢in ek islemlere gereksinim duymasidir.

Yapilan deneyler sonucu elde edilen veriler, yumusak doku mekanik 6zelliklerini

modelleyen ve genellikle dogrusal olmayan karmasik matematiksel denklemlerin
katsayilarinin bulunmasinda kullanilmaktadir.
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YUMUSAK DOKU MEKANiIK MALZEME MODELLER]

Yumusak dokular iizerinde yapilan deneysel ¢aligmalar sonucu, onlarin genel olarak
su mekanik ozellikleri gosterdigi gozlenmistir:

1.

2.

Mekanik davraniglar1 biiyiik yer degistirme ve biiyiik gerinmeler altinda dogrusal
elastik malzeme davranisindan 6nemli oranda sapmaktadir (Sekil 1).

Belirgin bir alisma davranisi (Mullin etkisi) sergilerler (ilk birkac yiiklemenin,
daha sonra gelen ve tekrarlanabilen yiiklemelerden sapmas) (Sekil 2).

Sabit deformasyon altinda tutuldugunda yumusak dokunun gosterdigi tepki
kuvveti zamanla azalmaktadir (gevseme) (Sekil 3).

Sabit yiikleme altinda tutuldugunda yumusak dokuda meydana gelen
deformasyon zamanla artmaktadir (siinme) (Sekil 4).

-
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Yiikleme Bogaltma

Yumusak Doku Tepki Kuvveti [N]
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Sekil 1. Yumusak Doku Devirli Yiikleme Deneyi
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Sekil 2. Yumusak Doku Aligma Deneyi
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Yumugak Doku Tepki Kuvveti [N]
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Zaman [s]

Sekil 3. Yumusak Doku Gevseme Deneyi
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o

u]

u] 20 40 BO a0 100 120
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Sekil 4. Yumusak Doku Siinme Deneyi

Yumusak dokularin bu ozelliklerini miimkiin olabildigince az katsayili ve fazla
karmagik olmayan matematiksel denklemlerle modelleyebilmek yillardir siiregelen
caligmalarin amacidir. Bunun i¢in cesitli yontemler denenmistir. Bunlardan bazilar;
derinin modellenmesi [2, 16, 18], {ist ve alt bacagin modellenmesi [3, 4],
atardamarlarin modellenmesi [5, 17, 18], kalp kapak¢iginin modellenmesi [6],
akciger dokusunun modellenmesi [7, 18], ayak tabaninin modellenmesi [8], eklem
kikirdaginin modellenmesi [9], baglarin modellenmesi [10, 11, 15], gogiis dokusunun
modellenmesi [12, 13] ve karaciger dokusunun modellenmesi [14] olarak
gosterilebilir.

Bu modellemeler sirasinda, asagida deginilen baglica iki yaklagim kullanilmagtir.

1. Psodoelastik Model

Sekil 1°de goriildiigii gibi yumusak dokular yiikleme ve bosaltma hareketlerinde
farkli egrilerle temsil edilirler. Tek bir dongii esnasinda bu iki egri arasinda olusan
alan histeris olarak tamimlanir ve dokularin elastik olmadiginin kamitidir (elastik

malzemelerde yiikleme ve bosaltma hareketleri tek egri ile ifade edilir ve yiikleme
bosaltma dongiisiinde mekanik enerji kayb1 yoktur).
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Psodoelastik modellemenin temeli, bu iki egriyi ayr1 ayr1 ele almaya dayanr.
Boylece iki farkli elastik malzeme varmis gibi diisiiniiliip elastisite teorileri
kullanilarak mekanik davranig modellenebilir.

Psodoelastik modellemenin en biiyiikk avantaji, denklemlerin gerinme hizindan
bagimsiz olmasidir. Fakat her doku icin ayr1 bir sanki-elastik gerinme enerjisi
fonksiyonunun olusturulmasmin gerekliligi, basit ve az katsayili denklem olusturma
caligmalarina tamamen ters diismektedir. Literatiirde bulunan, farkli yumusak
dokular icin Onerilmis sanki-elastik gerinme enerjisi fonksiyonlarindan birkagi
sunulmaktadir.

Vaishnav [17] tarafindan kullanilan gerinme enerjisi fonksiyonu damarlar gibi
silindirik yapilar i¢indir, silindirik koordinat sisteminde ifade edilmistir ve bir
polinom bi¢imindedir:

p,W =AE, +BE, E_+CE_+DE,, +EE,, E_+FE,E._ +GE.’ (1)

Burada A, B, C, D, E, F ve G malzeme sabitleri olup deneysel verinin fonksiyon
tarafindan kestirilen davranisa uyumunu saglayacak bicimde belirlenir.

Akciger Ozekdokusu icin Hoppin [7] tarafindan Onerilen fonksiyon ise asagida
sunulmustur:

POW=Z:,ai(7\fi+ 2i +>\§i)+ibi(>\12i>\§i+>\éi 2i +>\12i>\§i)
S e s o 2)
MM+ (WA AN HASA AT +AON +AGAT )

i=2

Burada a;, b; ve ¢; malzeme sabitleridir ve fonksiyon genel bir ii¢c boyutlu gerilme
durumu icin gecerlidir.

Mezenter ve kaslar icin 6nerilen gerinme enerjisi fonksiyonu [26, 27] soyledir:

dT
W=—oT+ 3
PoW="p p 3)

Burada T birim alandaki ¢cekme kuvveti, E gerinme, & ve 3 ise malzeme sabitleridir.
Bu denklem gerilmesiz duruma ¢ok yakin durumlar icin iyi sonu¢ vermese de diger
tiim gerilmelerde istenen hassasiyette kestirim yapabilmektedir.

Alt ekstremite yumusak dokularmin modellenebilmesi icin Toniik [28] tarafindan

kullanilmis olan James-Green-Simpson modelinin eksenel simetrik ve sikistirilamaz
malzemelere uygulanmis tipi su sekildedir:
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W=C, (I-3)+C, (I-3)" +C, (1-3)’ )

Burada [ sikistirilamaz malzeme icin eksenel simetrik Green-Lagrange gerinme
tensoriiniin tek bagimsiz degismezi, C; ise malzeme sabitleridir.

Her doku vce her yiikleme tipi ve hizi i¢in ayr1 bir psddo-elastik gerinme enerjisi
fonksiyonunun olusturulmasmin gerekliligi, basit ve az katsayili denklem olusturma
calismalarina ters diismektedir. Bu sebeple, daha genel denklemler araciligiyla
yumusak doku modellenmesine imkan veren viskoelastik malzeme modelleri
gelistirilmigtir.

2. Viskoelastik Model

Viskoelastik malzemeler katilarla agdali sivilarin 6zelliklerini bir arada gosteren
malzemelerdir. Bu malzemeler, kat1 veya sivi 6zelliklerinin baskinligina gore katiya
daha yakin veya siviya daha yakin davranabilirler [25]. Viskoelastik malzeme
mekanik davranis1 ynmusak doku mekanik davranigina ¢ok benzemektedir. Yumusak
dokular gibi histeris (Sekil 1), gevseme (Sekil 3) ve siinme (Sekil 4) gibi tipik
davraniglart sergilerler.

En temel iki tip viskoelastik malzeme modeli Maxwell ve Voigt modelleri olup tek
boyutlu mekanik model olarak Sekil 5’deki gibi gosterilebilir. Burada yay, elastik
davranigi; amortisor ise agdali davranisi temsil etmektedir. Maxwell modeli
viskoelastik akigkanlart modellemekte uygundur. Voigt modelinin tepkisi gergek
viskoelastik katilarla uyusmadigr i¢in en basit viskoelastik kati modeli icin {i¢
elemanli (bazen Kelvin modeli olarak anilir) model (Sekil 6) 6nerilmistir [25].

k
c k
| D I c Voigt Modeli
S
Maxwell Modeli

Sekil 5. Temel Viskoelastik Malzeme Modellerinin Tek Boyutlu Mekanik Modelleri
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Sekil 6. U¢ Elemanli (Kelvin) Viskoelastik Malzeme Modelinin iki Farkli Gosterimi

Uc elemanh modelde gergek viskoelastik katilarda goriilen anlik elastik yanit
goriilebilmektedir. Bu modellerde gevseme ve siinme davranisi tek bir iistel ifade ile
temsil edilmektedir ve cogu gercek viskoelastik katinin davranisi bu temsile
uymamaktadir. Bu tiir modellerdeki en biiyiik kisit, elde edilen biinye denklemlerinin
cebirsel degil diferansiyel olmasidir. Bunun sonucunda, elastik malzemeye gore daha
karmagik bir biinye denkleminin ¢6ziilmesi geregi, sistem denklemlerini daha da
karmagik hale getirecektir.

Fung [21] tarafindan Onerilen ve yumusak doku modellemesi konusunda ¢ok bilinen
bir standart model olan sanki-dogrusal viskoelastik kuram (quasi-linear viscoelastic
theory) dogrusal olmayan, zaman ve yiikleme ge¢misine bagh yumusak doku
mekanik davranigimi modellemek iizere pek c¢ok arastirmaci tarafindan basari ile
kullanilmigtir. Bu kurama gore gerilme ile gerinme arasindaki iliski su sekilde genel
bir formiil ile gosterilebilir:

o(t) =G(1)*o°(e) &)

Burada (;) gerilimin zamana baghh degisimini, ¢(;) indirgenmis gevseme
fonksiyonunu ve o°(¢) anlik elastik gerilim tepkisi fonksiyonunu ifade eder. Farkli
G(1) V€ 5¢(¢) fonksiyonlar: kullanilarak farkli modellerin elde edilebilmesiyle birlikte
literatiirde en fazla kullanilanlar1 su sekildedir;

_1+C[E(t/7,)-E (1/7)]
G(r)= 1+Cln(z,/7,) ©

o ()= Ale™ - 1) @)

Buradaki indirgenmis gevseme fonksiyonu icerisinde ii¢ parametre bulunmaktadir.
Bunlardan 7, ile 7, sirasiyla kisa ve uzun donem gevseme davraniglarin1 kontrol
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ederken, C parametresi de gevsemenin genligini belirlemektedir. Ifade icerisindeki
E, birinci listel integral fonksiyonudur ve su sekilde tamimlanir:

El(y)=r 4 8)

Anlik elastik gerilme tepkisi fonksiyonunu igerisindeki iki parametre (A, B) ile
birlikte toplam bes parametreli bir model olusmaktadir.

Bu denklemler kullanilarak elde edilen model ise su sekildedir;

o(1) =[Gl 2212 ©

EVRIK SONLU ELEMANLAR ANALIZi

In-vivo deneylerle elde edilen yer degistirme-kuvvet-zaman iliskileri malzeme
kanununun belirlenmesi i¢cin gerinme-gerilme-zaman verisine kolaylikla ¢evrilemez.
Bu amagla evrik sonlu elemanlar analizi kullanilmaktadir.

Evrik sonlu elemanlar analizinde, deney yapilan bolge ve yakin c¢evresinin sonlu
elemanlar modeli hazirlanir. Gerekli sinir kosullari, deney sirasinda uygulanan
yiikler, dokunun uymasi beklenen biinye denklemi modele girilir. Ancak biinye
denklemi ile ilgili katsayilar bilinmedigi icin baslangic degerleri rastgele secilir.
Rastgele secilen bu degerlerle sonlu elemanlar andirimu ¢alistirilir, malzeme sabitleri
rastgele secilmis dokunun tepkisi elde edilir. Uzerinde deney yapilmis gercek
dokunun malzeme sabitleri, rastgele se¢ilen malzeme sabitlerinden farkli olacagi
icin, bilgisayar andirimindan elde edilen tepki de gercek dokudan elde edilenden
farkli olacaktir. Aradaki farki kapatmak iizere bilgisayar andirimindaki malzeme
sabitleri degistirilerek andirim yeniden calistirilir. Andirimdan elde edilen tepki,
gercek dokudan deneysel olarak elde edilen tepkiye istenen Slciide yaklastiginda,
andirimda kullanilan malzeme sabitlerinin de gercek yumusak dokunun malzeme
sabitlerine istenen Olclide yaklastigi varsayilir ve boylece yumusak doku mekanik
malzeme sabitleri istenen hassasiyetle kestirilebilir [25].

Evrik sonlu elemanlar yonteminin kullanimi sirasinda yumusak dokunun uymasi
beklenen biinye denkleminin 6nceden bilindigi varsayilir. Eger kullanilacak biinye
denklemi deney yapilan dokunun mekanik davranigint modellemede yetersiz kalirsa
evrik sonlu elemanlar yonteminden biinye denkleminin degistirilmesine yonelik bir
bilgi edinilemez.

289



INDENTOR DENEYLERINDEN MALZEME KATSAYILARININ
BELIRLENMESI

Bu calismada evrik sonlu elemanlar yontemi ile sabitleri bulunan biinye denklemleri,
viskoelastik malzeme modeli temel alinarak gelistirilmistir. Buna gore (9) numarali
denklem gelistirilerek gerilmenin gerinme ve zamana bagl tepkisini veren
anizotropik denklemler olusturulmustur. Bu denklemler su sekildedir:

T, (et)= “Sil o(t) (10)
T, (et) = bgiz (1) (11
T, ()= ‘:823 0, (12)

Bu denklemlerde T

11°

T,, Ve T, Ug asal eksenindeki gerilmeler; ¢, ¢, ve ¢, li¢ asal
eksendeki gerinmeler; a, b ve ¢ anizotropiye izin veren birim hiicre dl¢iileridir. &(r)

ifadesi (9) numarali denklem ile hesaplanan baz durumdaki sanki-dogrusal
viskoelastik gerilimdir. A asagidaki bicimde ifade edilir:

_a’+b’+c?
8

A (13)

Yukarida verilen biinye denklemleri kullanilarak yumusak dokularin karakteristik
ozellikleri modellenmeye, yani deneysel veriler andirilmaya calisilmistir. Sonlu
elemanlar andirimlar1 sirasinda model Patran 2005 ile olusturulmus ve gerekli sinir
kosullar1 ile diger tamimlamalar Marc/Mentat 2005r2 ile yapilmistir. Modelin
Marc/Mentat ile ¢alistirllmas: sirasinda ise malzeme modeli Digital Fortran 6.0 ile
derlenerek kullanilmigtir. Her denemede malzeme modelinin kodu igerisindeki
katsay1 degerleri degistirilmistir.

Andirma calismalari, gevseme davranigi ile baslamistir. Gevseme davranigina ait
deneysel veri (Sekil 7) eliptik indentdor ucunun dokuya 1 mm/s sabit hizla 20
saniyede 20 mm basilip olusan deplasmanin 120 saniye boyunca sabit tutulmasiyla
elde edilmistir. Aym prosediir, olusturulan sonlu elemanlar modeli ile de
gerceklestirilmis ve alt1 sonlu elemanlar denemesi sonucunda deneysel veri yeterli
dogrulukla andirilmistir. Her deneme igin zamana kars1 olusan tepki kuvveti egrileri
Sekil 7°de [29] goriilmektedir. Ayrica her sonlu elemanlar ¢oziimiinde kullanilan
malzeme sabitleri Tablo 1°de [29] verilmistir.

Ik denemedeki (SE1) gevseme periyodunun basinda (t=20s) elde edilen tepki
kuvveti degerini dogru olarak kestirebilmek icin ikinci denemede (SE2) kisa donem

gevseme Kkatsayis1 (7,) kiiciiltiilmiis ve gevsemenin basinda olusan tepki kuvveti
andirilabilmistir.
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Tepki Kuvveti (N)

Zaman (s)

Sekil 7. Gevseme Davranisinin Modellenmesi

Uclincii adimda (SE3), gevseme genlik sabiti (C) biiyiiltiilerek toplam gevseme
miktar1 arttirilmistir. Sekil 7’de goriildiigli gibi bu degisiklikten sonra hem kisa
donem hem de uzun donem gevseme miktarlarinda artis olmustur. Fakat, uzun
donem gevseme miktarindaki artisin kisa donemdekinden daha fazla olmasi, toplam
gevseme genliginin artmasim saglamistir. Dordiincti denemede (SE4), kisa donem
gevseme katsayis1 bir miktar biiyiiltiilerek egrinin solu sagindan biraz daha fazla
yukariya kaldirilmig ve gevsemenin baslangicindaki tepki kuvveti yeniden
yakalanmastir.

Daha sonra uzun donem gevseme miktarimi azaltmak, yani egrinin sag tarafini
yukariya kaldirmak i¢in besinci denemede (SES) uzun donem gevseme katsayisi (7, )
biiyiiltiilmiistiir. Son olarak altinct denemede (SE6) kisa donem gevseme katsayisi

yeniden kiiciiltiilerek deneysel veri yeterli dogrulukla andirilabilmistir ve % 0.74’liikk
hata kareleri toplam1 (NSSE) elde edilmistir [29].

Tablo 1- Gevseme Davraniginin Andiriminda Kullanilan Malzeme Sabitleri

1>
le=]
(@}

Tl TZ a b

SE1 7.6E-37 42 0.08 8.0 1400 0.7 0.8 0.9

SE2 7.6E-37 42 0.08 4.0 1400 0.7 0.8 0.9

SE3 7.6E-37 42 8.0 4.0 1400 0.7 0.8 0.9

SE4 7.6E-37 42 8.0 5.0 1400 0.7 0.8 0.9

SE5 7.6E-37 42 8.0 5.0 14000 0.7 0.8 0.9

SE6 7.6E-37 42 8.0 4.0 14000 0.7 0.8 0.9
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Gevseme davranist basarili bir sekilde modellenebildikten sonra, aymi biinye
denklemi ve malzeme katsayilar1 kullanilarak siinme davraniginin andirimi
yapilmistir. Siinme davranisina ait deneysel veri (Sekil 8) eliptik indentér ucunun
dokuya 1 mm/s sabit hizla 20 saniyede 20 mm basilip, basma sonunda olusan tepki
kuvvetinin 120 saniye boyunca sabit tutulmasiyla elde edilmistir. Aym yOntem,
olusturulan sonlu elemanlar modeli ile de gerceklestirilmis ve iic sonlu elemanlar
denemesi sonucunda deneysel veri yeterli dogrulukla andirilmistir. Her deneme igin
zamana kars1 olusan tepki kuvveti egrileri Sekil 8’de [29] goriilmektedir. Ayrica her
sonlu elemanlar ¢6ziimiinde kullanilan malzeme sabitleri Tablo 2’de [29] verilmistir.

Yer Degistirme (mm)
b

Sekil 8. Siinme Davraniginin Modellenmesi

IIk denemede (SEI1), gevseme davramisini andiran son katsayr seti kullanilmistir. Bu
denemede Sekil 8’de de goriildiigii gibi yeterli miktarda siinme tepkisi elde
edilememistir. Dolayisiyla ikinci ve iiglincli denemelerde elastik malzeme katsayisi
(A) azaltilarak deneydeki gibi siinme elde edilmeye calisilmistir. Son denemenin
(SE3) ardindan % 0.31 hata kareleri toplami degeri ile bu andirim da basartyla
gerceklestirilmistir.

Tablo 2- Siinme Davraniginin Andiriminda Kullanilan Malzeme Sabitleri

A B Cc T, 7, a b c
SEl | 7.6E-37 42 8.0 4.0 14000 0.7 0.8 0.9
SE2 | 3.4E-37 42 8.0 4.0 14000 0.7 0.8 0.9
SE3 | 2.6E-37 42 8.0 4.0 14000 0.7 0.8 0.9

SONUC

Onerilen bu yeni malzeme modeli sayesinde gevseme ve siinme davraniglarinin her
ikisi de tek bir biinye denklem kullanilarak ve sadece bir sabitin degeri degistirilerek
andirilabilmistir. Bu degisim, malzeme modelinin her iki davranisi modellemede
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yetersiz kalmasi nedeniyle olabilecegi gibi deneysel hatalar ve canli yumusak doku
lizerinde deney yapilirken dokunun o&zelliklerindeki degisimler ve adaptasyon
nedeniyle de olabilir. Gevsemenin modellenmesi % 0.74 ve stinmenin modellenmesi
% 0.31 gibi cok kiiciik hata paylar ile gergeklestirilebilmistir. Ayn1 sekilde yine bu
malzeme modeli kullamlarak histeris ve aligma davramiglarinin modellenebilecegi
diistiniilmektedir.

Yumusak doku modellemesi ile ilgili literatiir incelendiginde, yazarlarin bilgisi
dahilinde, siinme ve gevseme davraniglarin her ikisini tek bir biinye denklemi ve ¢ok
az katsayr degisikligi ile andirabilen modele rastlamak miimkiin degildir. Bugiine
kadar bazi bilim adamlar1 sadece gevseme davranigini modelleyebilmis, bazilar1 da
gevseme andirmminin  sonuglarindan faydalanarak siinmeyi modelleyebilmistir.
Yumusak doku mekanik davramiglar1 matematiksel serilere uydurulmaya ve model
icerisindeki sabitler azaltilmaya c¢alisilmistir. Bu c¢alisma, tim yumusak doku
davraniglarin1 tek bir model ve ¢ok az sayida sabit degisimi ile andirabilmesi
bakimindan onemlidir.

Bu model kullanilarak; amputasyon giidiigii ile protez soketi arasinda etkilesim
modellenerek protez soketi tasariminda iyilestirme saglanabilir; ayakkabi ile ayak
arasindaki etkilesim modellenerek ozellikle yaralari gec iyilesen diyabetli hastalar
icin ayakkabi tasariminda iyilestirme saglanabilir; yatan hasta ile yatak arasindaki
etkilesim modellenerek oOzellikle felgli hastalarda olusan yatak yaralarmi en az
seviyeye indirmek icin yatak tasarimina yenilikler getirilebilir.

Gelisen teknolojinin de yardimiyla, cok daha ayrintili sonlu elemanlar modelleri
olusturularak, ve ¢cok daha hassas deneyler sonucu daha dogru veriler elde edilerek,
yumusak doku davramslar1 daha da kii¢iik hatalarla hassas olarak yapilabilir.

TESEKKUR

Bu calismada kullamlan deney birimi ilk olarak TUBITAK MISAG-183 kapsaminda
iretilmis, Yiiksek Lisans Ogrencisi Ali Tolga Petekkaya tarafindan gelistirilmistir.
Yazarlar, indentor icin eliptik uclar1 6zenle ilireten Birant Makina’dan Makina
Miihendisi Sayin Emir Birant’a ve yumusak doku deneylerini yapan ODTU Makina
Miihendisligi Bolimii yiiksek lisans 6grencisi Ali Tolga Petekkaya’ ya tesekkiir eder.

QUASI-LINEAR VISCOELASTIC MATERIAL MODELS TO MODEL THE
MECHANICAL BEHAVIOR OF SOFT BIOLOGICAL TISSUES OBTAINED
VIA IN VIVO INDENTOR EXPERIMENTS

The purpose of this thesis is to simulate the mechanical behavior of soft biological
tissues by using quasi-linear viscoelastic model with the minimum possible change in
the coefficients. Different sections of human body exhibit different responses like
stress relaxation, creep, hysteresis and preconditioning to external loading
conditions. These body sections are generally assumed as pseudoelastic or

293



viscoelastic. After making the choice of the material model from one of these for the
current study, the finite element model and the material model to be used with this
model have been created. Then, the constants in the code which simulates the in vivo
experimental data that was obtained by indenting the elliptic indenter tip into the
forearm, medial part as close as possible, have been derived by inverse finite element
method. Consequently, the characteristic behaviors of the soft tissue could be
simulated. Despite the big size of the finite element model and very long submission
times, relaxation and creep behaviors could be simulated with the maximum
normalized sum of square errors of 0.74 % and 0.31 %, respectively. These values
prove that this material model is well suited for the simulation of the behavior of soft
biological tissues. By using different experimental data obtained from another
sections of human body, simulation of the behavior of different soft tissues can be
achieved by using this material model.

Keywords: Soft Tissue, Viscoelastic, Inverse Finite Elements.
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APPENDIX S

POSSIBILITY OF SIMULATING THE EXPERIMENTAL DATA
BY DIFFERENT SETS OF CONSTANTS WITHIN THE
MATERIAL MODEL

In Chapter 9, all the characteristic behaviors of the soft biological tissue were
simulated by three material models. The constants in the material models were
determined for the best fit between the models and experiments. However, these
constants are not unique, i.e. the experimental data can be simulated by using
different constant values. In this chapter, this will be proved with the simulation of
the relaxation behavior with the third material model by using different constants

than the ones used in the Chapter 9.3.1.

Relaxation experiment data is the same as the original one used in Chapter 9.3.1.
(continuous line in Figure S1). For the alternative simulation of the experimental
data, six finite element (FE) trials were performed which can be seen in Figure S1.
The normalized sums of square errors (NSSE) for each trial were presented in Figure

S2.

In the first FE trial, the base material model (subroutine) which was presented in
Appendix M was used. This trial was not able to simulate the magnitude of the
reaction force at the beginning of the relaxation period. The reaction force for this
simulation was starting from about 4.2 N, whereas the reaction force of the
experimental data was starting from somewhere close to 4 N. The great majority of
the NSSE of 86.86 % for this simulation was arising from this force difference. So,
in the second FE trial, the elastic constant (B), which had never been changed during

the previous simulation processes, was decreased from 42 MPa to 41.974 MPa. As
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seen in Figure S1, by decreasing the value of this elastic constant, the reaction force
at the beginning of the relaxation period could be simulated. This can also be seen
from the value of NSSE which decreased to 30.74 % in one step. The majority of this
error was due to the deficiency in the amount of total relaxation magnitude which
causes the long term relaxation magnitude to deviate from the experimental data

more and more as time passes.

Reaction Force (N)
ra

Time (s)

—Exp.Data ¢ FE1 = FE2 x FEJ o FE4 =& FE5 + FEG

Figure S1 - Relaxation Curves for the Alternative Simulation of the Third Model

with Different Constants

To increase the amount of total relaxation magnitude, the relaxation amplitude
constant (C) in the material model was increased from 0.08 to 0.53 in the third FE
trial. This procedure increased the magnitude of relaxation amount as seen in Figure

S1. In the fourth FE trial, the long term relaxation constant (7, ) was decreased from

1400 seconds to 200 seconds and curvature of the relaxation curve was changed.
Then, in the fifth FE trial, the relaxation amplitude constant was decreased to catch

the real amount of relaxation amplitude again.
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Figure S2 - Normalized Sums of Square Errors for the Alternative Relaxation

Simulation of the Third Model with Different Constants

The last finite element trial was performed to decrease the magnitude of reaction
force for all the simulation points by decreasing the value of the other elastic
constant (A). After that step, there occurred a great fit between the experimental data
and simulation response which was proved by the NSSE value of 0.63 % given in
Figure S2. The constants used in the original simulation (Chapter 9.3.1) and

alternative simulation are summarized in Table S1.

Table S1 — Constants of the Third Material Model Used in the Original and the

Alternative Simulations of Relaxation Behavior

Trial A

(o]
(@)
)
2
[}
o
o

FE-original 7.6E-37 42 8.0 4.0 14000 | 0.7 | 0.8 | 0.9

FE-alternative | 7.1E-37 | 41.974 0.53 4.0 200 0710809
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Consequently, what can be seen is the fact that the simulation of the mechanical
behaviors of soft biological tissues can be performed by using different sets of
constants within the material models. In this chapter, that was proved by simulating
the relaxation behavior with the third material model by using another set of
constants than the one used in the original simulation. This can also be applied to
creep and cyclic loading simulations and the experimental data can be simulated by

many different sets of constants with different NSSE values.
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