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ABSTRACT 
 

 

 

SEMI ANALYTICAL STUDY OF STRESS AND DEFORMATION ANALYSIS 
OF ANISOTROPIC SHELLS OF REVOLUTION INCLUDING FIRST ORDER 

TRANSVERSE SHEAR DEFORMATION 
 
 

Oygür, Özgür Sinan 

 

M.Sc., Department of Aerospace Engineering 

   Supervisor      : Assoc. Prof. Dr. Altan Kayran 

   Co-Supervisor: Dr. Özge Şen 

 

 

September 2008, 258 pages 

 

In this study, anisotropic shells of revolution subject to symmetric and 

unsymmetrical static loads are analysed. In derivation of governing equations 

to be used in the solution, first order transverse shear effects are included in 

the formulation. The governing equations can be listed as kinematic 

equations, constitutive equations, and equations of motion. The equations of 

motion are derived from Hamilton’s principle, the constitutive equations are 

developed under the assumptions of the classical lamination theory and the 

kinematic equations are based on the Reissner-Naghdi linear shell theory. In 

the solution method, these governing equations are manipulated and written 

as a set called fundamental set of equations. In order to handle anisotropy and 

first order transverse shear deformations, the fundamental set of equations is 

transformed into 20 first order ordinary differential equations using finite 

exponential Fourier decomposition and then solved with multisegment method 

of integration, after reduction of the two-point boundary value problem to a 

series of initial value problems. The results are compared with finite element 
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analysis results for a number of sample cases and good agreement is found. 

Case studies are performed for circular cylindrical shell and truncated 

spherical shell geometries. While reviewing the results, effects of temperature 

and pressure loads, both constant and variable throughout the shell, are 

discussed. Some drawbacks of the first order transverse shear deformation 

theory are exhibited.  

 

Keywords: Shell of Revolution, First Order Transverse Shear Deformation, 

Anisotropy, Finite Exponential Fourier Decomposition, Multisegment Method 

of Integration 
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ÖZ 
 

 

 

BİRİNCİ DERECEDEN YANAL KESME DEFORMASYONU DAHİL EDİLMİŞ 
ANİZOTROPİK EKSENEL SİMETRİK KABUK YAPILARININ GERİLME VE 

DEFORMASYON ANALİZİ YARI ANALİTİK ÇALIŞMASI 
 

 

Oygür, Özgür Sinan 

 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

       Tez Yöneticisi           : Doç. Dr. Altan Kayran 

       Ortak Tez Yöneticisi : Dr. Özge Şen 

 

Eylül 2008, 258 sayfa 

 

Bu tezde simetrik ve simetrik olmayan statik yüklemelere maruz kalan 

anizotropik eksenel simetrik kabuk yapıları incelenmiştir. Bünye denklemlerinin 

türetimi sırasında birinci dereceden yanal kesme etkileri formülasyona dahil 

edilmiştir. Bünye denklemleri, kinematik denklemler, konstitutif denklemler ve 

hareket denklemlerinden oluşmaktadır. Hareket denklemleri, Hamilton 

prensibinden yola çıkılarak; konstitütif denklemler klasik katmanlı yapı 

teorisinin kabullerine dayanılarak; hareket denklemleri de Reissner Naghdi 

doğrusal kabuk teorisi kullanılarak türetilmiştir. Çözüm sırasında, bünye 

denklemleri tekrar düzenlenmiş ve temel denklem seti adı verilen bir dizi 

denklem haline getirilmiştir. Anizotropi ve birinci dereceden yanal kesme 

etkilerinden dolayı temel denklem seti, sonlu üstel Fourier dönüşüm metodu 

kullanılarak 20 birinci dereceden bayağı diferansiyel denkleme çevrilmiş ve iki 

noktalı sınır değeri problemi bir dizi başlangıç değeri problemine 

dönüştürüldükten sonra çok parçalı integrasyon metodu kullanılarak 

çözülmüştür. Bir dizi deneme durumu için bulunan sonuçlar sonlu eleman 

analizinden elde edilen sonuçlarla kıyaslanmış ve iki yöntemden elde edilen 
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değerlerin birbirine yakın olduğu görülmüştür. Dairesel silindirik kabuk ve kesik 

küresel kabuk geometrileri için durum çalışmaları yapılmış, sonuçlar 

incelenirken sabit ve kabuk üzerinde değişken sıcaklık ve basınç 

yüklemelerinin etkileri belirtilmiştir. Ayrıca birinci dereceden yanal kesme 

deformasyonu teorisini bazı eksiklikleri ortaya konulmuştur. 

 

Anahtar Kelimeler: Eksenel Simetrik Kabuk Yapıları, Birinci Dereceden Yanal 

Kesme Deformasyonu, Anizotropi, Sonlu Üstel Fourier Dönüşüm Metodu, Çok 

Parçalı Integrasyon Metodu  
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CHAPTER 1 
 

1. INTRODUCTION 

INTRODUCTION 
 

 

 

1.1. Background  

 

 

The basic theory of the present study is based on shell structures made of 

composite materials. In the following Sections 1.1.1 and 1.1.2, these two main 

concepts are introduced. 

 

 

1.1.1. Shell Structures 

 

 

All structures are made of three dimensional bodies, regardless of their 

dimension. However, three dimensional theory of elasticity is not always 

needed to be used when the stresses and deformations on such a body are 

calculated. Structural elements are designed to withstand certain types of 

loads. For example, cables and bars are created to transmit loads in one 

direction, and therefore they are known as straight two force members [31]. 

Thus, while deriving the equations that govern these kinds of structures, they 

are geometrically regarded as lines with cross sections assigned, so that a 

number of simplifying assumptions can be made instead of solving the full 

equations of three dimensional elasticity. 
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Similarly, structures like aircraft panels and cloth hulls of balloons can be 

described by a plane or curved surface, and accordingly their analysis must be 

built on the concept of a physical surface capable of transmitting loads from 

one part to another and of undergoing consequent deformations. When 

dealing with mathematical models, such structural elements are classified into 

two types: Plane surfaces are called plates, while curved surfaces are called 

shells. 

 

In conclusion, shell is defined as an object which may be considered as the 

materialization of a curved surface. The definition implies that the thickness of 

a shell is small compared to its other dimensions.  

 

In most cases, a shell is bounded by two curved surfaces, namely its faces. 

The thickness of the shell may be the same everywhere or it may vary from 

point to point. The middle surface of the shell is defined as the surface which 

passes midway between the two faces. If the shape of the middle surface and 

the thickness of the shell is known for everywhere on the shell, then the shell 

can geometrically be fully described. Therefore the middle surface and the 

thickness represent the shell mechanically. 

 

There are many aspects of the use of shells in engineering. For example, 

pressure vessels and associated pipework are the key components in thermal 

and nuclear power plants for chemical and power engineering. Some other 

examples of the use of shell structures in engineering include water cooling 

towers for power stations, grain silos, armour, arch dams, tunnels, 

submarines, etc. 

 

Apart from those, shells have a vast usage area in aerospace structures. 

Many airplane components such as ribs, skin, bulkhead etc., solid rocket 

motor cases and payloads carried under wings like missiles and fuel tanks are 

classified as shell structures.  
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Figure 1.1 Shell Structures Used as Aircraft Components 

 
 
 
Shells can be classified in terms of the ratio of the thickness to a characteristic 

dimension as [34]: 

 

- Very Thick: Three dimensional effects are fully included 

- Thick: Stretching, Bending and higher order transverse shear  

- Moderately Thick: Stretching, bending and first order transverse 

shear  

- Thin: Stretching and bending energy considered but first order 

transverse shear neglected 

- Very Thin: Dominated by stretching effects. Also called 

membranes. 
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1.1.2. Composite Materials 

 

 

A composite material can be defined as a material that consists of at least two 

identifiably distinct constituent materials that are combined on a macroscopic 

scale. If the constituent materials are combined microscopically, the resulting 

material becomes macroscopically homogeneous. Mechanical properties of 

materials such as strength, stiffness, corrosion resistance, temperature 

dependent behaviour and weight can be improved by forming a composite 

material, because composite materials exhibit the best qualities of their 

constituents and sometimes qualities that neither of the constituents posses. 

 

Composite parts have both advantages and disadvantages when compared to 

the metal parts they are being used to replace [36]. Among the advantages of 

composites 

1) A higher performance for a given weight leads to fuel savings in 

vehicles. Excellent strength to weight ratios can be achieved by 

composite materials. This is usually expressed as strength divided by 

density and stiffness modulus divided by density. 

2) Laminate patterns and ply build-up in a part can be tailored to give the 

required mechanical properties in various directions. 

3) It is easier to achieve smooth aerodynamic profiles for drag reduction. 

Complex double-curvature parts with a smooth surface finish can be 

made in one manufacturing operation. 

4) Integration of different parts is simpler in composite structures, and 

molded composite construction allows for simple strong structures that 

can be built without requiring expensive equipment and highly skilled 

assemblers 

5) In prototype engineering composites offer various advantages such as 

ease of repair 

6) Composites may be made by a wide range of processes so there are 

many alternative methods of manufacturing. 
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7) Composites offer excellent resistance to corrosion, chemical attack and 

outdoor weathering, as mentioned above. 

8) Generally, composites have higher fatigue resistance compared to 

metals  

And among the disadvantages of composites the following can be listed: 

1) Failure mechanisms of composite structures are more complex and the 

design methodologies of structures made of composite materials are 

not as good standardized as the structures made of metal 

2) Repair introduces new problems, for the following reasons: 

a. Materials require refrigerated transport and storage and have 

limited shelf lives. 

b. Hot curing is necessary in many cases, requiring special 

equipment. 

c. Curing either hot or cold takes time. The job is not finished 

when the last rivet has been installed during the montage 

process. 

3) If rivets have been used and must be removed, this presents problems 

of removal without causing further damage. 

4) Repair at the original cure temperature requires tooling and pressure. 

5) Composites must be thoroughly cleaned of all contamination before 

repair. 

6) Composites must be dried before repair because all resin matrices and 

some fibers absorb moisture. 

 

It should be stressed that since one of the main goals to be achieved in 

aerospace structures is light-weight, the advantages that composite materials 

offer due to their high strength to weight ratios become more and more 

important. 

 

Structural classification of composites is performed in three ways: 

1) Basic / Elemental Classification 

2) Microstructural Classification  

3) Macrostructural Classification 
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In macrostructural classification, composites are generally classified into three 

main groups according to the types of their constituents [4]: 

 
 
 

 

 

Figure 1.2 Composite Materials with Different Form of Constituents 

 
 
 

- Fibrous Composites: Those consist of fibers in a matrix. The fibers 

in such composites are generally strong and stiff and therefore 

serve as primary load-carrying constituent. The matrix holds the 

fibers together and serves as an agent to redistribute the loads 

from a broken fiber to the adjacent fibers in the material when 

fibers start failing under excessive loads. 

- Particulate Composites: Those composed of particles in a matrix. 

Particulate composites consist of particles of one or more materials 
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suspended in a matrix of another material. The particles can either 

be metallic or non-metallic as can the matrix. 

- Laminated Composites: Those consist of layers of at least two 

different materials that are bonded together.  

 

A lamina is a flat or curved arrangement of unidirectional fibers or woven 

fibers in a matrix; and a laminate is a stack of laminae with various 

orientations of principal material directions in the laminae. Lamination is used 

to combine the best aspects of the constituent layers in order to achieve a 

more useful material. In laminated composites, the layers of unidirectional 

fiber reinforced composites are stacked on top of one another. Such laminates 

are described according to a standard notation called stacking sequence, 

which lists fiber orientations measured from a reference axis of the laminate. If 

the orientation is counter clockwise from the reference direction it is 

considered to be positive. The standard stacking sequence lists orientations of 

the different layers, starting from the bottom of the laminate to the top in a 

string separated by slashes. For a laminate with N layers, starting from the 

bottom layer with a fiber orientation 1 , the laminate is represented as 

 N /...// 21 . Therefore the total thickness, h, of the laminate is Nth  . 

 

A laminate is symmetric when the fiber orientations of the top half of the 

laminate are mirror images of the fiber orientations below the mid-plane of the 

laminate, for example [90°/45°/-60°/-60°/45°/90°]. Laminates that have 

alternating orientations of 0° and 90° plies are called cross-ply laminates. 

Another special case is the angle ply laminate. All the layers of an angle ply 

laminate have the same fiber orientation angle with an alternating sign, such 

as [45°/-45°/45°/-45°]. Finally, a laminate is antisymmetric if the magnitude of 

the ply orientation angle above the laminate mid-plane is a mirror image of the 

ply orientations below the mid-plane with signs reversed. For example,  

[30/-60/90/-90/60/-30]. 
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1.2. Overview of the Thesis 

 

 

Axisymmetric shells have considerable practical interest in aerospace 

engineering. It has been mentioned that thin-walled structures such as plates 

and shells have a vast usage area in aerospace structures. Among them, shell 

of revolution is a major body type when aerodynamics and flight mechanics 

aspects are considered and it is therefore widely used in aerospace 

components like external fuel tanks or missile, rocket and airframe fuselage.  

 

A shell of revolution is generated by a generating cross section that rotates 

360° about an axis of revolution, as illustrated in Figure 1.3. Such structures 

are said to be rotationally symmetric. 

 
 
 

 
 

Figure 1.3 A shell of Revolution 
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The technical importance of shells of revolution is considerable because of the 

following practical considerations: 

 Fabrication: Axisymmetric bodies are usually easier to manufacture 

than bodies with more complex geometries.  

 Strength: axisymmetric configurations are often optimal in terms of 

strength to weight ratio because of the favourable distribution of the 

structural material. 

 

The axisymmetric problem deals with the analysis of structures of revolution 

under axisymmetric loading. However, a shell of revolution under 

unsymmetrical loading can be treated by the Fourier decomposition method. 

This involves decomposing the load into a Fourier series in the circumferential 

direction, calculating the response of the structure to each harmonic term 

retained in the series, and superposing the results. But if the shell of revolution 

material is anisotropic, classical Fourier decomposition can not be employed, 

due to the reasons explained in Section 3.3.  

 

In the present study, macroscopically anisotropic shells of revolution under 

symmetrical and unsymmetrical loads are analyzed. Since the loads can be 

unsymmetrical and material is macroscopically anisotropic, finite exponential 

Fourier transform method is utilized for the analysis.  

 

The present work aims to propose a method for the analysis of anisotropic 

shells of revolution, with transverse shear deformations taken into account. 

Unlike variational methods of approximation, this method is based on a semi-

analytical method and therefore can be regarded as an alternative to 

numerical-based methods. As extensively explained in Chapter 3, 

multisegment method of integration, which was originated by Kalnins [7], is 

used for the solution of the problems. 

 

As loading, distributed mechanical loads in meridional, tangential and 

thickness directions of the shell of revolution and temperature difference can 

be exerted. It has already been mentioned that loads can be unsymmetrical 
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with respect to the rotation axis, and therefore finite exponential Fourier 

transform method is utilized in the analysis of anisotropic shells of revolution. 

In addition to that, the use of multisegment method of integration enables the 

application of the loads as a function of the meridional coordinate. 

Furthermore, as exhibited in the succeeding chapters, the method allows the 

application of temperature difference as a function of the thickness. 

 

In this thesis the Reissner-Naghdi linear shell theory including first order 

transverse shear deformation is used [9]. It should be noted that other linear 

shell theories can also be used in the numerical integration based method of 

analysis as long as the governing equations of those shell theories are used. 

 

As opposed to those listed above, there are a number of limitations in the 

present study. First of all, as stated above, the theory used in the formulation 

is linear and therefore only linear static problems can be analyzed. 

 

Furthermore, the thickness of the shell may be same everywhere or it may 

vary from point to point, as stated previously. In the present study the 

thickness of the shell is taken as constant. However, the extension of the 

method to variable thickness shell of revolution can be performed without 

much labour and it is listed as one of the future work. 

 

In general, in a shell of revolution, orientation of fibers in the laminate may be 

a function of the meridional direction, which depends on the manufacturing 

process of the laminate such as filament winding. However, in the present 

study, in order to demonstrate the application of the multi-segment numerical 

integration technique to the static analysis of shells of revolution, orientation of 

the fibers is assumed to be constant in the meridional direction. Similar to the 

variable thickness problem, meridional change of the winding angle can also 

be incorporated into the solution method with some extra effort, and this is 

also listed as one of the future work. 
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Finally, effects arising from moisture are neglected, although it can easily be 

included in the analysis since the formulation of loads due to moisture effects 

is very similar to the formulation of loads due to temperature difference. 
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CHAPTER 2 

2. GOVERNING EQUATIONS FOR ROTATIONALLY 

SYMMETRIC SHELLS OF REVOLUTION 

GOVERNING EQUATIONS FOR ROTATIONALLY 
SYMMETRIC SHELLS OF REVOLUTION 

 

 

 

The equations that govern the analysis of macroscopically anisotropic shells of 

revolution are derived from the equations of elasticity. These are frequently 

grouped into three main sets of equations. The first set, which represents the 

kinematics of the problem, is called kinematic equations; or the strain 

displacement relations. The second set, which governs the relations between 

the stresses and strains, are called constitutive equations; or the stress strain 

relations. The last set represents the kinetics of the problem and it is called the 

equations of motion; or the equilibrium equations.  

 

In the following sections, these equations are given for shells of arbitrary 

shape in the beginning, and subsequently the equations are specialized to 

shells of revolution. Finally, as an example to commonly occurring shell of 

revolution geometries, the equations for circular cylinder are derived from 

general shell of revolution equations. This section begins with description of 

the shell geometry and coordinate system to be used in the derivation of 

governing equations, preceded by kinematic equations, constitutive equations 

and the equations of motion; respectively.  
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2.1. Shell Geometry and Coordinate System 

 

 

In this section, general shell geometry and the coordinate system used in the 

derivation of governing equations for thin shells of arbitrary shape and 

constant thickness are explained. As explained in Section 2.1.1, a curvilinear 

coordinate system is used for the derivation of shell equations. It is assumed 

that the shell is thin with respect to its radii of curvature so that the deflections 

of the shell are small. The discussion is then specialized on the shell of 

revolution geometry. In the end, as an example to commonly occurring shell of 

revolution geometries, relations are further simplified to the circular cylinder 

geometry. 

 

 

2.1.1. Curvilinear Coordinates 

 

 

Let the coordinates of a point P on an arbitrary shell be defined by 

P( 1x , 2x , 3x ) in a three dimensional  rectangular coordinate system and 

 , ,  be the curvilinear coordinates. If a correspondence can be 

established between 1x , 2x , 3x  and  , , ; then there exists a coordinate 

transformation between 1x , 2x , 3x  and  , ,  in the form of three functions 

 

),,(11 xx              (2.1.1.1) 

),,(22 xx              (2.1.1.2) 

),,(33 xx              (2.1.1.3) 

 

If this correspondence is one to one, then there exists a unique inverse of 

Equations (2.1.1.1), (2.1.1.2), (2.1.1.3) in the form 

 



 
 
 14 

),,( 321 xxx                (2.1.1.4) 

),,( 321 xxx              (2.1.1.5) 

),,( 321 xxx              (2.1.1.6) 

 

It is said that point P has curvilinear coordinates  , , . The position vector 

p  of the point P has the rectangular coordinates given by Equation 2.1.1.7.  

 

332211 ixixixp


             (2.1.1.7) 

 

The vector increment of the position vector is, 

 

332211 idxidxidxpd


             (2.1.1.8) 

 

The same position vector increment pd  can be similarly given in terms of the 

curvilinear coordinate increments by  

 

  gdgdgdpd 
            (2.1.1.9) 

 

where the coefficients of the metric tensor g , g , g  are given by [5] 
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where R and R are the radii of curvature in the   and   directions of the 

shell respectively;  and  are some scale factors, to be explained in the 

next section. 

 

 

2.1.2. General Shell Geometry 

 

 

A shell is defined as a three dimensional body, whose one dimension is 

smaller than any other characteristic length. For the description of the points of 

the shell, a reference surface of the shell is defined as the   ,  surface at 

0 , and   coordinate is taken as a straight line directed along the normal 

of the reference surface. The length of the   coordinate line lying within the 

shell is called the thickness of the shell.  

 
 
 

 
 

Figure 2.1 General Shell Coordinates 
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The change of the position vector r of a point P on the shell, with coordinates 

  and   are defined as [3]  

 

2
2
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








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            (2.1.2.1) 
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










 rrr 

            (2.1.2.2) 

 

  and   in Equations (2.1.2.1) and (2.1.2.2) are called fundamental form 

parameters or Lamé parameters. 

 

The deformation of a thin shell is determined by the displacement of its 

reference surface and there are some relationships about the deformation of 

this surface. One of them is called Mainardi – Codazzi Equations, which are 

given in Equations (2.1.2.3) and (2.1.2.4), explain the relation between 

R , R ,  and  [6]. 
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2.1.3. Shell of Revolution Geometry and Coordinate System 

 

 

Shells whose neutral surface is generated by rotating a line about an axis are 

called shells of revolution. For such shells, the lines of principal curvature are 

its meridians and its parallel circles. In shell coordinate system,   is replaced 
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by   and  is replaced by  , as shown in Figure 2.2 and Figure 2.3. 

Therefore, for a shell of revolution principal radii of curvature are given by 

Equations 2.1.3.1 and 2.1.3.2. 

 

 RR               (2.1.3.1) 

 RR               (2.1.3.2) 

 
 
 

 
 

Figure 2.2 General Shell of Revolution Coordinates (2D) 
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Figure 2.3 General Shell of Revolution Coordinates (3D) 

 
 
 
From Figure 2.3, it is clear that the infinitesimal distance between points A and 

C can be written as 

 
2222 BCABACdr             (2.1.3.3) 

 

and Figure 2.2 reveals that  

 

dRAB               (2.1.3.4) 

 

And therefore the distance between points B and C is, as can be seen from 

Figure 2.2 and Figure 2.3, 

 

      dRRdddRRBC sin          (2.1.3.5) 
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thus 

 

  22222 sin   dRdRdr            (2.1.3.6) 

 

Lamé parameters   and   were defined in Equations (2.1.2.1) and 

(2.1.2.2). For the shell of revolution they become 
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            (2.1.3.8) 

 

Substituting Equation (2.1.3.6) into Equations (2.1.3.7) and (2.1.3.8), 

 and  become for shell of revolution  

 

 R              (2.1.3.9) 

  sinR            (2.1.3.10) 

 

In addition to those, from Figure 2.2 it is obvious that 

 

 sinRR              (2.1.3.11) 

 

as already been used in Equation (2.1.3.5) and 

 

    cos)sin( dRRddR          (2.1.3.12) 

 

One final issue which is of interest is that since shell of revolution is 

axisymmetric, geometric properties R , R ,  and  are independent of  , 

i.e. 
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  0,,, 



 


RR          (2.1.3.13) 

 

Further simplifications can be made to the shell of revolution geometry, in 

order to obtain the equations of some commonly occurring geometries, which 

can also be classified as shell of revolution. Among them, one of the most 

commonly occurring and therefore widely used geometry is circular cylinder. 

(See Figure 2.4) 

 
 
 

 
 

Figure 2.4 Circular Cylinder Coordinates 

 
 
 

It is clear from Figure 2.4 that for cylinder, 

 

 Constant  90           (2.1.3.14) 

  R            (2.1.3.15) 

 

For cylindrical shells of revolution, Equations (2.1.3.10) and (2.1.3.11) become 
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RRR    sin          (2.1.3.16)  

 

In addition,  coordinate, which is constant along the symmetry axis of the 

cylinder, is the axial direction of the cylinder and becomes x  coordinate. The 

relation between x  and   coordinates can be found utilizing Equation 

(2.1.3.4). Thus, for cylinder, relation between x  and   coordinates becomes: 

 

dRdx             (2.1.3.17) 

 

Equation (2.1.3.17) leads to the transformation between the   coordinate of 

the general shell of revolution and x  coordinate of the circular cylinder: 
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1

           (2.1.3.18) 

 

 

2.2. Kinematic Equations  

 

 

In this section, the equations which represent the kinematics of the problem, in 

other words kinematic equations; or the strain displacement relations are 

described. 

 

 

2.2.1. Shell Assumptions 

 

 

The approach to be used in the expression of the strain displacement relations 

is based on the thin shell theory with first order transverse shear deformation 



 
 
 22 

effects included. The assumptions to be used in this work are first stated by 

Reissner [9]. These can be summarized as, 

 

1. Thickness of the shell is small compared to the other dimensions of the 

shell; as stated in 2.1.2. 

 

2. Strains and displacements are so small that higher than first order terms 

can be neglected in strain – displacement relations. 

 

3. Normal stress component perpendicular to the reference surface of the 

shell (transverse normal stress) is small compared to the other normal 

stresses and may be neglected. 

 

4. A lineal element normal to the undeformed reference surface undergoes at 

most a translation and a rotation and suffers no elongation. 

 

 

2.2.2. General Derivation 

 

 

The displacement field proposed under these assumptions is given by 

Equations (2.2.1), (2.2.2) and (2.2.3) [9]. 

 

       ,,,, 0  uU                (2.2.1) 

       ,,,, 0  uU              (2.2.2) 

     ,,, 0uU                 (2.2.3) 

 

where U , U  and U  are the displacements of the shell in  ,   and   

coordinates; 0
u , 0

u , 0
u  are the middle surface displacements of the shell in 

the corresponding directions and   and   are the rotations of the normal of 
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the middle surface of the shell with respect to   and   directions respectively. 

The rotations   and  are given by Equations (2.2.4) and (2.2.5).  

 

 



 
 




,,U
                (2.2.4) 

 



 
 




,,U
               (2.2.5) 

 

The strain displacement equations of three dimensional theory of elasticity is 

simplified to the following equations under the assumptions of Reissner for 

thin shell theory with first order transverse shear deformation effects included, 

and strain-displacement equations are given by Equations (2.2.6) – (2.2.10) 

[1]. 
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Substituting the proposed displacement field into the strain displacement 

equations, total strains can be represented as the sum of the membrane and 

bending strains which are also commonly referred to as extensional strains 

and curvatures: 

 

   0              (2.2.11) 

   0              (2.2.12) 

   0              (2.2.13) 
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where  
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2.2.3. Reduction to Shell of Revolution 

 

 

Strain displacement relations given in Equations (2.2.11) through (2.2.21) are 

derived for shells of arbitrary shape. In order to obtain the kinematic relations 

for shells of revolution, modifications discussed in 2.1.3 have to be made. 

Substituting Equations (2.1.3.9), (2.1.3.10) and (2.1.3.13) into Equations 

(2.2.11) through (2.2.21) and changing the shell coordinates to   and  , 

midstrains and curvatures terms become: 
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For a general shell of revolution, the overall (total) strains are given by: 

 

       ,,,, 0            (2.2.3.7) 

       ,,,, 0            (2.2.3.8) 

       ,,,, 0            (2.2.3.9) 
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If one utilizes the Equations (2.1.3.14) to (2.1.3.16) and (2.1.3.18), and 

substituting   with x  , kinematic relations given above for general shells of 

revolution can further be specialized to circular cylindrical shells. For circular 

cylindrical shells mid plane strains and curvatures are given by Equations 

(2.2.3.12) – (2.2.3.17). 
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For a cylindrical shell of revolution, the overall strains are given by: 

 

      ,,,, 0 xxx xxxxx          (2.2.3.18) 

       ,,,, 0 xxx          (2.2.3.19) 

       ,,,, 0 xxx xxx          (2.2.3.20) 
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2.3. Constitutive Equations 

 

 

Constitutive equations described in this section govern the relations between 

the stresses and strains arisen due to the external effects in a laminate. Since 

a laminate is defined as two or more laminae (layers) bonded together to 

construct a complete structural member, there are a number of theories which 

explain the bonding between these layers. Among these, one of the most 

widely known and used theories is Classical Lamination Theory [4], [12]. The 

constitutive equations explained in this section are developed under the 

assumptions of this Classical Lamination Theory. Most of these assumptions 

are identical to the thin shell theory with first order transverse shear 

deformation effects included, which are given in Section 2.2.1. The only 

difference is in the material properties. In classical lamination theory, Perfect 

bonding between layers is assumed. The bonding itself is infinitesimally small 

(there is no flaw or gap between layers); and non-shear-deformable (no 

lamina can slip relative to another). The strength of bonding is as strong as it 

needs to be (the laminate acts as a single lamina with special integrated 

properties). 

 

The laminae principal material directions are oriented to produce a structural 

element capable of resisting load in several directions. Therefore, since the 

material directions and the geometric directions of the structure do not overlap 

for this reason, transformation between the coordinates of the material and the 

structure is necessary. The following section deals with this subject. 
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2.3.1. Transformations of Stresses and Strains 

 

 

In materials of any kind, there is always a need for establishing transformation 

relations among stresses and strains in one coordinate system to 

corresponding quantities in another coordinate system.  

 
 
 

 
 

Figure 2.5 Material and Geometric Coordinates 

 
 
 
For a fiber reinforced composite layer, which is schematically shown in Figure 

2.5, let 1x , 2x  and 3x  represent principal material coordinates, 1x  being the 

fiber direction, 2x  the transverse to fiber direction and 3x  the thickness 

direction; and  ,  ,   represent the geometric coordinates. From Figure 2.5, 

it can be devised that 
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since 
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Using Equation (2.3.1.1), transformation of stresses between material 

coordinate system and geometric coordinate system can be written as 
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     (2.3.1.4) 

 

For symmetric stress tensor, one can write the elements of the stress tensor in 

vector form. Thus, Equation (2.3.1.4) can be re-arranged as in Equation 

(2.3.1.5) [12].  
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where  

 

cosm  , sinn             (2.3.1.6) 

 

For plane stress situation, Equation (2.3.1.5) becomes 
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Similarly, for the strains, 
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For plane stress, 
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Note that ijij  2 . 

 

 

2.3.2. Macromechanical Behaviour of Lamina and Laminate 

 

 

The Generalized Hooke’s Law relating stresses to strains in the material 

coordinate system can be written in contracted notation as [4]: 
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Note that 234   , 135   , 126   ; and 234   , 135   , 126   . 

Matrix ijC  is symmetric, that is jiij CC  , so for fully anisotropic materials 

there are 21 independent material constants. For monoclinic materials, i.e. the 

materials which exhibit single plane of elastic symmetry, the number of 

independent constants reduces to 13 and for orthotropic materials, the 

materials which exhibit three planes of elastic symmetry, this number reduces 

to 9. 

 

Since laminates are generally composed of layers of fiber-reinforced laminae, 

and lamina is a flat or curved arrangement of unidirectional fibers or woven 

fibers in a matrix, stress strain relations should be investigated for plane stress 

behaviour in orthotropic materials. For a lamina, plane stress state is defined 

by setting 03   023   013   in Equation (2.3.2.1). For orthotropic 

materials, plane stress assumption leads to 023   and 013  . Therefore, 

for the plane stress case, Generalized Hooke’s Law can be written as: 
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The material constants ijQ  in Equation (2.3.2.2) are called the reduced 

stiffnesses and are given, in terms of engineering constants, as [4] 
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For a lamina of arbitrary orientation, stress strain relations are transformed 

using the approach explained in Section 2.3.1. Let the transformation matrix 

given in Equation (2.3.1.7) denoted with 1T  and the transformation matrix 

given in Equation (2.3.1.9) with 2T , so that 
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In geometric coordinates, stresses can be related to strains using the 

Equations (2.3.1.7), (2.3.1.9) and (2.3.2.2). Substituting the stress and strains 
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expressions for geometric coordinates given in Equations (2.3.1.7) and 

(2.3.1.9) into Equation (2.3.2.2) yields, 
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Rewriting Equation (2.3.2.6) one gets, 
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where 
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When transverse shear effects are not neglected, the terms   and   are 

non-zero and should appear in the constitutive equations. This is discussed 

further in Section 2.3.3. The relation between transverse shear stresses and 

transverse shear strains for geometric coordinates are given by [11]: 
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Note that the coordinate transformation is carried out the same way. So ijQ  

 5,4, ji  coefficients are given, in terms of material stiffness coefficients, by  
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The material stiffness coefficients in transformation Equations (2.3.2.10) are 

given in terms of engineering constants, by  

 

234444 GCQ   

135555 GCQ            (2.3.2.11) 

 

Stress and strain variation in a laminate is essential for determining the 

extensional and bending stiffness of the laminate. In the classical lamination 

theory, the laminate is assumed to be consisting of perfectly bonded laminae. 

Displacements u  and u  are assumed to vary linearly through the thickness 

of the laminate. Similarly, strains  ,   and   also vary linearly through 

the thickness of the laminate. Since the strains are related to the stresses 

through the Equation (2.3.2.7), stresses acting on each layer of the laminate 

can be integrated through the shell thickness to obtain the force and moment 

resultants per unit length for the shell which has a total thickness of h . For the 

face perpendicular to   direction, in-plane force resultants are given as [1] 
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and for the face perpendicular to   direction, 
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Similarly, the moment resultants are given by: 
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As mentioned in Section 2.2.1, one of the major assumptions made by 

Reissner for shell theory is that thickness of the shell is small compared to the 

other dimensions of the shell, so that  R and  R can be neglected.  

 

Furthermore, although due to the symmetry of the stress tensor    , it 

is clear from Equations (2.3.2.12) and (2.3.2.13) that  NN   unless 

 RR   or  R and  R terms are cancelled from the equations. Since 

based on the assumptions of Reissner’s shell theory  R and  R terms 

can be neglected, it can be said that for the current study, which is based on 

Reissner Shell Theory, the force resultants are also symmetric,  NN  . 

Symmetry is also valid for the moment resultants,  MM  . As a result, 

Equations (2.3.2.12) - (2.3.2.15) become, after regrouping, 
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Stresses are integrated over the laminate by integrating over each lamina 

separately. Since the laminae are assumed to be bonded perfectly, 

displacements are continuous through the thickness, but integrations for each 

lamina should be summed up. 
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In these equations, N is the total number of lamina and as shown in Figure 

2.6, Z is the vectorial quantity defining the distance between the mid-surface 

and any layer; k is the dummy variable for the summation of values for each 

layer. It should be noted that although reference plane is usually taken as the 

mid plane of the shell or laminate wall, in theory reference surface can be 

taken anywhere within the laminate.  
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Figure 2.6 Stacking of Layers through the Shell Thickness 

 
 
 

Substituting Hooke’s Law given by Equation (2.3.2.7) into Equation (2.3.2.18) 

and Equation (2.3.2.19), and writing the total strains as the sum of membrane 

and bending strains as explained in Section 2.2, one gets: 
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Performing the integrations, Equations (2.3.2.20) and (2.3.2.21) can be 

rewritten as: 



 
 
 38 

 













































































































662616

262212

161211

0

0

0

662616

262212

161211

BBB
BBB
BBB

AAA
AAA
AAA

N
N
N

     (2.3.2.22) 













































































































662616

262212

161211

0

0

0

662616

262212

161211

DDD
DDD
DDD

BBB
BBB
BBB

M
M
M

     (2.3.2.23) 

 

where  
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In Equations (2.3.2.24) – (2.3.2.26), Aij terms are the extensional stiffness 

coefficients, Bij terms are the bending stretching coupling stiffness coefficients, 

and Dij terms are the bending stiffness coefficients. 

 

In the case of the analysis of laminates that have not been cured at 

operational design temperatures, thermal stresses arise and final stress 

distribution is given by the superposition of stresses due to mechanical effects 

and thermal effects. To deal with the real world of polymer composites, strain 

stress relations must be modified as in Equations (2.3.2.27) and (2.3.2.28) [4]. 

 

TS ijiji    )3,2,1( i          (2.3.2.27) 

jiji S    )6,5,4( i           (2.3.2.28) 

 



 
 
 39 

It should be noted that coefficients of thermal expansion affect only 

extensional strains, not the shearing strain. The total normal strain i  is the 

sum of the mechanical strain jijS   and the thermal strain Ti . Inverting the 

Equations (2.3.2.27) and (2.3.2.28), stress strain relations for plane stress for 

an orthotropic lamina are obtained. 
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Stresses in laminate coordinates, or geometric coordinates, for the kth layer 

are obtained by transformation of coordinates. Transformation yields: 
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where  
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Substituting Equation (2.3.2.7) with Equation (2.3.2.30) and carrying out the 

same procedure for force and moment resultants, one gets: 
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where thermal force and moment resultants are given by Equations (2.3.2.34) 

and (2.3.2.35). 
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For constant spatial temperature difference between the operational 

temperature and cure temperature of the composite, thermal force and 

moment resultants can be obtained as:, 
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For shells of revolution it is very probable that the temperature across the 

thickness may vary depending on the exposure of the shell to external 

environment. For instance, a cylindrical pipe, which is subject to different 

temperatures inside and outside the cylinder, will definitely have a varying 

temperature distribution across the thickness of the shell. For thin walled 

shells, linear variation of the temperature distribution across the thickness can 
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be assumed in most engineering problems. If the temperature difference is 

allowed to vary linearly across the thickness in the form given by Equation 

(2.3.2.38), 

 

 21)( TTT            (2.3.2.38) 

 

then the expressions should be modified accordingly. Note that 0  plane is 

the middle surface of the laminate. Substituting Equation (2.3.2.38) into 

Equations (2.3.2.34) and (2.3.2.35), 
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Evaluation of the integrals yields: 
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            (2.3.2.42) 

 

Thus, the thermal force and moment resultants caused by linearly varying 

temperature difference across the laminate thickness are obtained. Note that 

in Equation (2.3.2.38), setting 02 T  reduces the Equations (2.3.2.41) and 
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(2.3.2.42) to the Equations (2.3.2.36) and (2.3.2.37), which are derived for 

constant temperature difference across the thickness. In total, constitutive 

equations can be written as 
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Substituting   for   and   for  , and bearing in mind that the strain 

displacement relations are given by Equations (2.2.3.1) – (2.2.3.6), in-plane 

constitutive equations for shells of revolution can be written as in Equation 

2.3.2.44. 
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Constitutive equations for the circular cylindrical shells of revolution  can be 

written by substituting x  in place of   in Equation (2.3.2.44), and keeping in 

mind that strain displacement relations are given by Equations (2.2.3.12) – 

(2.2.3.17). 
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2.3.3. Transverse Shear Resultants 

 

 

In order to include the transverse shear effects in the formulation, assumptions 

of classical shell theory should be modified such that transverse shear strains 

  and   should be taken as non-zero. When the transverse shear 

deformation is non-zero, surfaces normal to the middle surface before 

deformation will not remain normal after deformation. In case of first order 

transverse shear deformation theory, it is assumed that normals to the mid 

surface before deformation at most undergoes a rotation leading to two more 

unknowns compared to the unknowns present in classical shell theory 

equations. 

 

Since the top and bottom surfaces of the laminates composite shell are free 

surfaces and therefore force and moment resultants should be equal to zero 

on these faces, assuming constant transverse shear stresses do not satisfy 

the boundary conditions on the top and bottom surfaces of the shell. However, 

according to the elementary beam theory, the transverse shear stress varies 

parabolically through the beam thickness and is zero at the top and bottom 

surfaces. In order to satisfy these conditions, Equation (2.3.3.1) is used as a 

weighing function, so that the transverse shear stress distribution is parabolic 

through the thickness and equals to zero at the top and bottom surfaces of the 

shell [12].  
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In Equation (2.3.3.1), h is the total thickness of the laminated composite shell 

and the coefficient 45  is called as the shear correction factor, as suggested 

by Mindlin and Reissner for the isotropic case [10], [13]. It should be noted 

that a factor of 5/4 multiplies the distribution function used by Whitney [14] so 

that the shear factor calculated for the layered anisotropic shell wall can be 

consistent with the established shear factor from the previous work of Mindlin 

[10] and Reissner [13] for the homogenous case. 

 

The relation between transverse shear stresses and transverse shear strains 

were given by Equation (2.3.2.9). By multiplying the transverse shear stresses 

by the weighing function, Equation (2.3.3.1), and carrying out integration 

through the thickness of the laminated shell wall, the transverse force 

resultants can be calculated as given Equations (2.3.3.2) and (2.3.3.3) [1]. 
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Again utilizing the basic Reissner Shell Theory assumption that the thickness 

of the shell is small compared to the other dimensions of the shell, so that 

 R and  R can be neglected, as explained in Section 2.3.2, Equations 

(2.3.3.2) and (2.3.3.3) become 
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Substituting Equation (2.3.2.9) into (2.3.3.4), one gets Equation (2.3.3.5). 
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where ijA   5,4, ji  terms, which are defined as transverse shear stiffness 

coefficients, are given by 

 

   


 



 

N

k
kkkkkijij h
zzzzQA

1
2

3
1

3
1

1
3
4

4
5

  5,4, ji        (2.3.3.6) 

 

In Equation (2.3.3.6), ijQ    5,4, ji terms are given by Equation (2.3.2.10). 

 

For a general shell of revolution, by switching the coordinate notation,    

and    , one can rewrite  2.3.3.5 as:  
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In addition, for a circular cylindrical shell of revolution, after switching the 

coordinates ( x ) one can rewrite Equation (2.3.3.7) as: 
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2.4. Equations of Motion 

 

 

In this section the equations representing the kinetics of the problem, which 

are called the equations of motion; or the equilibrium equations are described. 

 

 

2.4.1. General Derivation 

 

 

Equations of motion for shells of arbitrary shape is derived from Hamilton’s 

Principle, which states that while there are several possible paths along which 

a dynamic system may move from one point to another in space and time, the 

path which is actually followed is the one that minimizes the time integral of 

the difference between the kinetic and potential energies. 

 

Hamilton’s Principle can be written as in Equation (2.4.1.1) [3]. 

 

0)(1

0


t

t ins dtWKU            (2.4.1.1) 

 

where sU  is the strain energy, K  is the kinetic energy and inW  is the total 

input energy, which is defined as the sum of the energy input by the boundary 

force resultants ( BE ) and the energy input by the applied load components 

( LE ). By taking the variation symbol inside the integral one can re-express the 

Hamilton’s principle as:  

 

0)(1

0


t

t LBs dtEEKU            (2.4.1.2) 

 

In Equation (2.4.1.2), if the variations are examined one by one and evaluated 

separately, after substituting them back to Equation (2.4.1.2), Equation 
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(2.4.1.3) is obtained for a general shell. The full derivation of Equation 2.4.1.3 

is skipped since it is given in many previous works such as [1], [2]. In Equation 

(2.4.1.3) translatory and rotatory inertia terms are also included for the sake of 

generality. 
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     
     0**

***1

0


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dtdMMMM
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Equation (2.4.1.3) can be satisfied only if each of the triple and double 

integrals is zero individually. Moreover, since the variational displacements are 

arbitrary, each integral equation can only be satisfied if the coefficients of the 

variational displacements are zero. Thus, by setting the coefficients of the 

triple integral to zero, one gets the following five equations of motion for a shell 

of arbitrary shape. 
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If one traces the derivation of these equations from their beginning at 

Hamilton’s Principle to the ending at equilibrium equations, It will be revealed 

that in these equations, p , p  and p  terms are caused by the distributed 

forces applied to shell externally. Among them, since p  is the distributed 

force in the thickness direction, it is always normal to the surface and therefore 

can be treated as pressure. Furthermore, p  and p  can be considered as 

the applied shearing stresses in the   and  directions, respectively. 

 

 

2.4.2. Boundary Conditions 

 

 

Each of the double integrals given in (2.4.1.3) is equal to zero only if the 

coefficients of the variational displacements, variational displacements or one 

of the two for each term are zero. Since variational displacements are only 

zero at all times when the boundary displacements are prescribed, this 

translates into the following possible boundary conditions for a constant   

edge. 

 

Either *
 NN   or *

 uu             (2.4.2.1) 

Either *
 NN   or *

 uu             (2.4.2.2) 

Either *
 QQ   or *

 uu             (2.4.2.3) 

Either *
 MM   or *

             (2.4.2.4) 

Either *
 MM   or *

             (2.4.2.5) 

 

This states the intuitively obvious fact that at a boundary one has to prescribe 

either force resultants (moments) or displacements (rotations). Thus, at a 

constant   edge, five conditions have to be specified. Similarly, examining 
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Equation (2.4.3) along a constant   edge, the five boundary conditions have 

to be given by Equations (2.4.2.6) – (2.4.2.10). 

 

Either *
 NN   or *

 uu             (2.4.2.6) 

Either *
 NN   or *

 uu             (2.4.2.7) 

Either *
 QQ   or *

 uu             (2.4.2.8) 

Either *
 MM   or *

             (2.4.2.9) 

Either *
 MM   or *

           (2.4.2.10) 

 

It should be noted that the terms given with asterisk (*) are the prescribed 

values of the boundary conditions. 

 

 

2.4.3. Reduction to Shells of Revolution 

 

 

Equations (2.4.1.4) – (2.4.1.8) along with boundary conditions (2.4.2.1) – 

(2.4.2.10) constitute the equations of equilibrium for an arbitrary shaped shell. 

Therefore, some simplifications should be made to obtain the equations of 

motion for shells of revolution. Substituting Equations (2.1.3.9), (2.1.3.10) and 

(2.1.3.13) into Equations (2.4.1.4) through (2.4.1.8), and changing the 

variables used for the shell coordinates      and    one gets the 

equations of equilibrium for a general shell of revolution. 

 





 




 sinsincos)(sin RRpRQR
N

RNNR
N











  sin0 RRuh              (2.4.3.1) 





 




 sinsincos2sin RRpRQRNRNR
N










  sin0 RRuh              (2.4.3.2) 
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
 



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Q





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



  sinsin 0 RRwhRRp            (2.4.3.3) 





 




 sincos)(sin RRQRMMR
M

R
M











  sin
12
1 3 RRh              (2.4.3.4) 





 




 sincos2sin RRQRMRMR
M










  sin
12
1 3 RRh              (2.4.3.5) 

 

For a shell of revolution, circumferential coordinate   changes from 0 to 2 ; 

so it traverses a full circle. Therefore, there is no boundary at a constant   

edge, meaning that only possible boundary is constant   edge, where a 

boundary condition can be applied.  So, the applicable boundary conditions 

are given by Equations (2.4.2.1) – (2.4.2.5). Since for shell of revolution 

   and   , these equations can be re-written as: 

 

Either *
 NN   or *

 uu             (2.4.3.6) 

Either *
 NN   or *

 uu             (2.4.3.7) 

Either *
 QQ   or *

 uu             (2.4.3.8) 

Either *
 MM   or *

             (2.4.3.9) 

Either *
 MM   or *

           (2.4.3.10) 

 

It should be noted that for a shell of revolution the first double integral in 

Equation (2.4.1.3) vanishes. This is because in the derivation of Equation 

(2.4.1.3) at the intermediate steps integration by parts is applied. When the 

integration by parts is applied to   derivative terms, the first integral which 

emerges is a definite integral which has to be evaluated at the   boundaries. 
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Since for a shell of revolution   boundaries coincide the force and moment 

resultant terms (N and M) coming from the strain energy expression vanishes. 

In addition, since not constant   boundary exists the energy input into the 

shell by the applied boundary force and moment resultants (N* and M*) along a 

constant   boundary also does not exist. Thus, the first double integral in 

Equation (2.4.1.3) vanishes. 

 

Furthermore, since the current study is limited to static conditions, terms 

involving the change of quantities with time (i.e. derivatives with respect to 

time) necessarily happen to be zero and drop from the equations. Therefore, 

Equations (2.4.3.1) to (2.4.3.5) become: 
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0sin
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













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



 




 cos)(sin RMMR
M

R
M










 

0sin   RRQ           (2.4.3.14) 

0sincos2sin 












 



 RRQRMRMR

M
    (2.4.3.15) 

 

Equilibrium equations for circular cylindrical shell of revolution can be obtained 

by substituting Equations (2.3.1.14) to (2.3.1.16) and (2.3.1.18), with the 

change of coordinate   to coordinate x , into these equilibrium Equations 

(2.4.3.11) to (2.4.3.15) given for general shell of revolution above. Thus, the 
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equilibrium equations for a circular cylindrical shell of revolution reduce to 

Equations (2.4.3.16) – (2.4.3.20). 

 

0





 RpNR
x
N

x
xxx


          (2.4.3.16) 

0





 RpQNR
x
N x





        (2.4.3.17) 

0








RpRNR

x
QQ x





        (2.4.3.18) 

0






 RQMR
x
M xxx





         (2.4.3.19) 

0






 RQMR
x
M x





         (2.4.3.20) 

 

And obviously the boundary conditions are re-written with x  substitution in 

place of  : 

 

Either *
xxxx NN   or *

xx uu           (2.4.3.21) 

Either *
 xx NN   or *

 uu           (2.4.3.22) 

Either *
 xx QQ   or *

 uu           (2.4.3.23) 

Either *
xxxx MM   or *

xx            (2.4.3.24) 

Either *
 xx MM   or *

           (2.4.3.25) 
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CHAPTER 3 
 

3. METHOD OF SOLUTION 

METHOD OF SOLUTION 
 

 

 

3.1. General Description of the Method of Solution 

 

 

In Chapter 2, governing equations required for the static analysis of shells of 

revolution are explained. In this chapter, a solution methodology will be 

defined in order to exhibit how these equations are handled. First in Section 

3.2, the governing equations are reduced to a system of equations called 

fundamental set of equations by some algebraic formulations and 

manipulations. In Section 3.3, Finite Exponential Fourier Transform of the 

fundamental system of equations [8] is performed in order to eliminate the 

circumferential coordinate from the fundamental set of equations. Having 

completed this operation, the physical shell variables are transformed and the 

solution method is applied on the fundamental system of equations written in 

terms of transformed shell variables. In Sections 3.4 and 3.5, these 

transformed unknown variables of fundamental set of equations, which are 

derived in Section 3.3, are solved by the methods named as reduction of a 

two-point boundary value problem to a number of initial value problems and 

multisegment method of integration, respectively [7]. After the solution, these 

variables are back-transformed to actual physical variables with the method 

described in Section 3.6, and in Section 3.7 stresses and strains are extracted 

by post processing on the fundamental shell variables which are found by 

applying the solution methodology. 
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3.2. Formulation of Fundamental System of Equations  

 

 

In Chapter 2, governing equations for rotationally symmetric shells of 

revolution are given. In summary, there are 21 equations, of which eight are 

kinematic equations (Equations (2.2.3.1) – (2.2.3.6), (2.2.3.10), (2.2.3.11)), 

there are eight constitutive equations (Equations (2.3.2.44), (2.3.3.7)) and 

there are five equilibrium equations (Equations (2.4.3.11) – (2.4.3.15)). In 

these equations there are 21 unknowns, which are eight force and moment 

resultants ( N , N , N , Q , Q , M , M , M ), five displacement and 

rotation terms ( 0
u , 0

u , 0
u ,  ,  ), three middle surface in-plane strains ( 0

 , 

0
 , 0

 ), two transverse shear strains (  ,  ), three middle surface 

curvatures (  ,  ,  ). 

 

These 21 equations with 21 unknowns can be reduced to 10 equations with 10 

unknowns by formulating some of the unknowns in terms of others. When the 

formulation is completed, the obtained 10 equations are called as the 

fundamental system of equations, and these can be written in the following 

form: 
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                 (3.2.1) 

 

where  ),( B  is a vector which includes all the non-homogeneous terms 

due to loading and    ,  is a vector representing the fundamental shell 

variables that enter into the appropriate boundary conditions on a rotationally 

symmetric edge of the shell of revolution, and for the Reissner-Naghdi  

improved shell theory they are given by 
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   TMMNNQuuu   ,,,,,,,,,),( 000           (3.2.2) 

 

The unknown variables in Equation (3.2.1) are called as the fundamental 

variables, and the first half consists of the reference plane displacements and 

the second half consist of the stress and moment resultants which are defined 

in appropriate manner (Soedel [3], Vinson and  Sierakowski [12], Toorani and 

Lakis [25]). 

 

Fundamental system of equations given by Equation (3.2.1) are obtained by 

deriving expressions for the first derivative of the fundamental shell variables 

with respect to meridional coordinate  . In the following, the fundamental 

system of equations is obtained in terms of fundamental variables. While 

deriving the fundamental system of equations, a similar method to the one 

used in a previous study [2] will be followed. As it can be seen in Equation 

(3.2.2), fundamental set of equations begin with the term lateral displacement 
0
u . Substituting Equations (2.2.3.10) and (2.2.3.11) into (2.3.3.7), one gets 
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writing in a similar form of Equation (3.2.1), 
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                 (3.2.4) 

 

or in a more compact form Equation (3.2.4) can be rewritten as in Equation 

(3.2.5) in terms of coefficients which are defined in terms of parameters given 

in Equation (3.2.4).  

 



 
 
 57 


 


Qcccucuc
u

cp
u

161514
0

13
0

12

0

11

0










           (3.2.5) 

 

Coefficients of the fundamental variables ijc , and ijcp  are given also in 

Appendix A. 

 

Similarly, first, third, fourth and sixth rows of Equation set (2.3.2.44) can be 

used to derive the necessary coefficients for   0u ,   0u ,    and 

   by substituting the strain-displacement relations given in (2.2.3.1) – 

(2.2.3.6). After the completion of necessary algebraic operations and 

manipulations, these equations can be brought to the following form: 
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In Equation (3.2.6), the components of the 4x4 coefficient matrix h depend on 

stiffness coefficients ( ijA , ijB , ijD ; )6,2,1, ji ), and radii of curvature of the 

shell ( R , R ). The components of the vector j on the right hand side of 

Equation (3.2.6), comprise of the fundamental variables,   derivatives of the 

fundamental variables, meridional coordinate  , stiffness coefficients 

( ijA , ijB , ijD ; )6,2,1, ji , and radii of curvature of the shell ( R , R ). 

 

Equation (3.2.6), is solved symbolically by MATLAB, which is a numerical 

computing environment and programming language [26], for the first   

derivatives of 0
u , 0

u ,   and  . By taking the inverse of Equation (3.2.6), 

fundamental system of equations giving   0u ,   0u ,    and 

   are written in the desired form: 
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Re-arranging Equation (3.2.7) so that it can be written in terms of the 

fundamental variables and their first and second   derivatives, as shown by 

Equation (3.2.1), one can express the meridional coordinate ( ) derivative of 

the displacement and rotation terms as in Equations (3.2.8 - 3.2.11). 
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In Equations (3.2.8) – (3.2.11) the coefficients multiplying the fundamental 

variables and circumferential coordinate ( ) derivatives of the fundamental 

variables are given in detail in Appendix A, and the components of the load 

vector Bi are given in Appendix B. 
 

For the derivation of equations corresponding to the meridional coordinate 

derivative of force and moment resultants, 

 Q ,  N ,  N ,  M  and  M , equilibrium 

Equations (2.4.3.13), (2.4.3.11), (2.4.3.12), (2.4.3.14) and (2.4.3.15) are 

utilized, respectively. Primarily, N  and M  terms in these equations are 

substituted by the second and fourth rows of Equation set (2.3.2.44), since 

they do not appear in the fundamental variables. Utilizing kinematic relations 

given by Equations (2.2.3.1) – (2.2.3.6) and the recently derived Equations 

(3.2.5), (3.2.8) – (3.2.11) in the second and fourth rows of Equation set 

(2.3.2.44) where necessary,  Q ,  N ,  N ,  M  and 

 M  terms are obtained in terms of other fundamental variables and 

their first and second   derivatives: 
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iB  vector contains the non-homogeneous terms of the fundamental system of 

equations and they are given in Appendix B. Coefficients ijc , ijcp  and ijcdp  of 

the homogeneous part are given in Appendix A. 
 

Equation (3.2.5) and Equations (3.2.8) - (3.2.16) are the fundamental system 

of partial differential equations in   and  . In the following, reduction of these 

equations to first order system of ordinary differential equations will be 

discussed. The reduction process makes use of the rotational symmetry of the 

shell of revolution. 

 

 

3.3. Finite Exponential Fourier Transform of the 
Fundamental System of Equations 

 

 

The fundamental set of equations derived in Section 3.2 also contains the first 

and second   derivatives of fundamental variables, as well as the 

fundamental variables themselves. Therefore, the fundamental system of 

equations given by Equation (3.2.5) and Equations (3.2.8) - (3.2.16) are partial 
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differential equations. In order to utilize the multisegment numerical integration 

technique for the solution of this set, one needs to transform the partial 

differential equation set into a system of ordinary differential equations. This is 

achieved by eliminating   derivatives from the equations, and expressing the 

meridional coordinate ( ) derivatives of the fundamental shell variables only 

in terms of the fundamental variables and the load vector, which includes all 

the non-homogeneous terms due to loading. For the elimination of the 

circumferential coordinate ( ) derivatives in the fundamental system of 

equations, Finite Exponential Fourier Transform Method is employed. 

  

For the classical shell theory, which neglects transverse shear deformation, 

when the full anisotropic form of constitutive relations given by Equations 

(2.3.2.44) and (2.3.3.7) are utilized, the uncoupling of the governing equations 

describing the symmetric and antisymmetric responses, with respect to 

circumferential coordinate, cannot be achieved by the classical Fourier 

decomposition of the fundamental shell variables in which each variable is 

expressed by either a cosine series or sine series exploiting the rotational 

symmetry of the shell of revolution. Therefore, multisegment numerical 

integration technique cannot be employed due to the existence of coupling 

stiffness coefficients. The same restriction also exists for the first order shear 

deformation shell theory [1]. Vanishing of coupling stiffness coefficients with 

subscripts 16, 26, and 45 imply laminates with specially orthotropic layers. 

Thus, with the classical Fourier decomposition of the fundamental variables in 

the circumferential direction, it is not possible to treat shells of revolution with 

full anisotropic constitutive relations, which allow for arbitrary orientation of 

fibres with respect to the curvilinear coordinate system of the shell of 

revolution. 

 

For laminated shells of revolution, which include the effects of extensional 

shear  2616 , AA , extensional bending  2616 ,BB , bending twisting  2616 ,DD  

and transverse shear  45A  coupling stiffness terms in constitutive equations, 

uncoupling of the governing equations, describing the symmetric and 
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antisymmetric responses with respect to circumferential coordinate   is 

achieved by Finite Exponential Fourier Transform. 

 

In the previous works of Lestingi and Padovan such as [8] and [17], the 

applicability of the technique of multisegment method of integration is 

extended to include the solution of general macroscopically anisotropic 

multilayered shells of revolution through the use of Finite Exponential Fourier 

Transform Method. Prior to their works, for shells of revolution, this technique 

was limited to the special case of orthotropic materials.  

 

In Reference 8, this method was applied for the static loading solution of 

governing equations of classical shell theory, which includes eight 

fundamental variables; and the solution is carried out by reduction of the 

equations to sixteen first order ordinary differential equations. In [2] this 

method is used to reduce the governing equations for free vibration analysis of 

anisotropic laminated composite shells of revolution to twenty first order 

homogeneous ordinary differential equations. In the present study, the method 

of Finite Exponential Fourier Transform is utilized for the reduction of the 

governing equations of macroscopically anisotropic shells of revolution, 

including first order transverse shear deformation, to twenty first order 

nonhomogeneous ordinary differential equations. 

 

Through the use of Finite Exponential Fourier Transform, the partial differential 

equations with independent variables   and   are converted into ordinary 

differential equations with   being the only independent variable. Considering 

the first fundamental variable of the fundamental variable vector  , complex 

Fourier series representation can be shown as [15] 
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where  
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It should be noted that in getting Equations (3.3.3) and (3.3.4), ine   is 

expanded using Euler’s formula [15] 

 

 nine in sincos                (3.3.5) 

 

If Finite Exponential Fourier Transform is applied to the first fundamental 

equation (Equation (3.2.5)), it can be written in terms of real and imaginary 

parts as in Equation (3.3.2). During this operation, integration by parts is 

employed to perform the integration in Equation (3.3.2). Since the integral 

boundaries are 0 and 2 , and the geometry is a shell of revolution, all the 

variables are periodic in the circumferential direction, so that 

     2,0, 00 uu  . Thus, all the initial terms, which emerge after the 

integration by parts is performed, disappear. Application of Finite Exponential 

Fourier Transform to Equation (3.2.5) yields 
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and since idciba   implies ca   and db  , we can write real and 

imaginary parts separately: 
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It is clearly seen that application of finite exponential Fourier transform results 

in doubling of the number of fundamental variables. 

 

However, one important issue has to be mentioned here. First fundamental 

equation, Equation (3.2.5) differs from the rest of the fundamental equations 

because of the non-existence of a nonhomogeneous load vector term, that is 

01 B . Therefore, in order to investigate the Finite Exponential Fourier 

Transform of nonhomogeneous terms, another fundamental equation has to 

be analyzed. To demonstrate the application of Finite Exponential Fourier 

Transform to an equation which includes nonhomogeneous loading terms, 

sixth fundamental equation is considered. In Equation (3.2.12), the loading 

term 6B , as explained in Appendix B, is given by, 

 
TTTTT MCBMCBNCBNCBNCBpCBB  6967666564616       (3.3.9) 
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If Finite Exponential Fourier Transform is applied to the sixth fundamental 

equation (Equation (3.2.12)), it can be written in terms of real and imaginary 

parts like in Equation (3.3.2). During this operation, in Equation (3.2.12), all the 

terms appearing except 6B , i.e. the terms of the homogeneous part, are 

handled in the same manner as it has been done for the first fundamental 

equation. In Equation (3.3.9) p  (pressure loading in the thickness direction of 

the shell  ), which is the first term in 6B , can be expanded by using Finite 

Exponential Fourier Transform as: 
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Equation (3.3.10) can be rewritten as 
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or 
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In Equations (3.3.14) and (3.3.15), 0p  term corresponds to the coefficient of 

the series when 0n . Therefore, 
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Considering the first part of Equation (3.3.11), it can be written that 
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Comparing Equations (3.3.11) and (3.3.17), it is obvious that  
n

p )(  and 

 
n

p
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)(  are complex conjugates. Therefore, 
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Rewriting Equation (3.3.15), 
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Substituting Euler’s formula given with Equation (3.3.5) and using the second 

part of the Equation (3.3.11), Equation (3.3.19) can be written as 
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It is clear from Equation (3.3.11) that the terms  
nc

p )(  and  
ns

p )(  

expanded in Equations (3.3.12) and (3.3.13) are necessarily the real and 

imaginary parts of  
n

p )( . Rearranging Equation (3.3.20), one gets: 
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Equation (3.3.21) shows how p , the first term in 6B , can be expanded by 

using Finite Exponential Fourier Transform. The other load terms 

 TTTTTT MMMNNNpp  ,,,,,,,  in the load vector iB   10,...1i  can be 

expanded using the same procedure. Thus, all the loading terms can be 

expressed as: 
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This implies that any function, which can be expanded as a Fourier series, can 

be applied as the loading (distributed force in any direction or temperature) to 

the shell of revolution. This is the explanation of how the axisymmetric loads 

(i.e. the loads constant in circumferential direction  ) and the unsymmetrical 

loads (i.e. the loads given as a function of circumferential direction  ) are 

handled mathematically.  

 

Physically, if the loading is axisymmetric, this implies that circumferential wave 

number n  is zero and the load is defined by only the first term of Equations 

(3.3.21) – (3.3.29). On the other hand, if the loading is unsymmetrical, first the 

function defining the load is expanded as a Fourier series by incorporating 

finite number of terms defined by n, then the real and imaginary parts of the 

series are expressed as the coefficients of ncos  and nsin  of the 

corresponding circumferential wave number n  in Equations (3.3.21) – 

(3.3.29), respectively. For the function defining the unsymmetrical load, if there 

is a constant term in the Fourier series of that function, this is also represented 

by the constant term in the Equations (3.3.21) – (3.3.29). In order this to be 

better understood, Finite Exponential Fourier Transform is applied to the 

Equation (3.2.12) in Appendix C, as an exhibition of how the procedure is 

carried out. 

 

Equations involving the temperature loading, i.e. Equations (3.3.25) – (3.3.29) 

should further be investigated. Substituting   for   and   for   in Equations 

(2.3.2.34) and (2.3.2.35), force and moment resultants due to temperature 

loading, either constant temperature difference throughout the thickness or 

linearly varying temperature difference through the thickness respectively, can 

be obtained for a shell of revolution:  
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Equations (3.3.30) and (3.3.31) give the thermal force and moment resultants 

for constant temperature difference, and Equations (3.3.32) and (3.3.33) give 

the thermal force and moment resultants for linearly varying temperature 

difference through the thickness. 

 

These equations give the relation between the temperature difference exerted 

as the loading and its effects as force and moment resultants on a shell of 

revolution. Let Equations (3.3.30) – (3.3.33) be rewritten as 
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where 
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As stated in Section 2.3.2, letting 02 T  in Equations (3.3.36) and (3.3.37), 

which are derived for linear variation of temperature difference through the 

thickness, leads to the Equations (3.3.34) and (3.3.35), which are derived for 

constant temperature difference throughout the thickness. This shows that 

Equations (3.3.36) and (3.3.37) are general forms of Equations (3.3.34) and 

(3.3.35). Therefore only Equations (3.3.36) and (3.3.37) will be used from now 

on. 

 

As it is seen above, coefficients of Equations (3.3.36) and (3.3.37) are given 

by Equations (3.3.38) – (3.3.40). They consist of transformed material 

coefficients ijQ , thermal expansion coefficients i , and the position vectors of 
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layers in the thickness direction   with respect to the reference surface of the 

laminate iz , none of which are functions of the circumferential direction  . 

And since these coefficients are not   dependent, they do not need to be 

expanded with Finite exponential Fourier Transform. Therefore, only 1T  and 

2T  are expanded with Finite exponential Fourier Transform: 
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where  ncT1 ,  nsT1  and  01T  are given in the same manner as 

Equations (3.3.12), (3.3.13) and (3.3.16) 
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Similarly, 
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where 
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Note that T  can also vary in the   direction since 1T  and 2T  can be 

defined as a function of  . How this can be accomplished will be explained in 

the succeeding sections. However, it should be emphasized that, using Finite 

Exponential Fourier Transform and defining temperature difference T  as 

 21 TT   in Equation (2.3.2.38) so that it can vary linearly through the 

thickness, allow the temperature difference T  be defined as a function of all 

three  ,  , and   directions.  

 

We can now get the expressions for the thermal stress and moment resultants 

by first substituting Equations (3.3.41) and (3.3.45) into (3.3.36) and (3.3.37); 

and then Equations (3.3.36) and (3.3.37) into Equations (3.3.24) – (3.3.29).  
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Comparing Equations (3.3.24) – (3.3.29) and (3.3.49) – (3.3.54), it is seen that 
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After the application of Finite Exponential Fourier Transform, first and second 

derivatives of the fundamental variables with respect to   are eliminated from 

the fundamental set of equations. However, this causes the number of 

fundamental variables and elements of the load vector to be doubled; all 

consisting of real and imaginary parts now. This results in a system of 20 first 

order nonhomogeneous ordinary differential equations, which is represented 

by the following matrix equation: 
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where n  is the circumferential wave number and  
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and 
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The elements of the coefficient matrix K  and KB  are given in Appendix D 

and Appendix E, respectively in detail. 

 

It should be remembered that the fundamental variables given by the 

fundamental set of Equations (3.3.59), are not the actual physical variables 

but they are the transformed variables. For the fundamental variable 0
u  they 

are given by Equations (3.3.3) and (3.3.4). Generalizing these equations to all 

fundamental variables,  
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The transformed variables used in Equation (3.3.59) are given by Equations 

(3.3.66) and (3.3.67). 

 

In order to be compatible with the equation (3.3.59), the boundary conditions, 

given by Equations (2.4.3.6) – (2.4.3.10), should also be expressed in terms of 

the transformed variables. If the Finite Exponential Fourier Transform is 

applied to the fundamental variables at the boundary of the shell of revolution, 
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then the boundary conditions at an edge of the shell of revolution can be 

expressed in terms of the transformed shell variables as:  

 

Either    ** ,, nsncnsnc NNNN    or     *0*000 ,),( nsncnsnc uuuu    

               (3.3.68) 

Either    ** ,, nsncnsnc NNNN    or     *0*000 ,),( nsncnsnc uuuu    

               (3.3.69) 

Either    ** ,, nsncnsnc QQQQ    or     *0*000 ,),( nsncnsnc uuuu    

               (3.3.70) 

Either    ** ,, nsncnsnc MMMM    or    ** ,, nsncnsnc      

               (3.3.71) 

Either    ** ,, nsncnsnc MMMM    or    ** ,, nsncnsnc     

               (3.3.72) 

 

Fundamental system of equations (Equation (3.3.59)), together with the 

boundary conditions (Equations (3.3.68) – (3.3.72)) specified at the two 

boundary edges of an anisotropic shell of revolution form a two point boundary 

value problem for the solution of the fundamental shell variables which are the 

transformed displacements, and stress and moment resultants. 

 
 

3.4. Reduction to Initial Value Problems  

 

 

This section is concerned with the reduction of a two-point boundary value 

problem given by 

 

          11
1

)( mxmxmxm
mx

BK
d

d 












           (3.4.1) 
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in Equation (3.3.59) to a series of initial value problems by the method 

proposed by Kalnins [7]. In Equation (3.4.1),    is the vector which 

represents m  unknown functions,  K  denotes the coefficient matrix, and 

 B  is the vector of nonhomogeneous terms. For the present study, as 

shown in the preceding section, m  is twenty for the first order transverse 

shear deformation theory. 

 

The object is to determine    in the interval maxmin    subject to 2m  

boundary conditions at each end of the shell of revolution in the form  

 

        11minmin mxamxmxma uU               (3.4.2) 

        11maxmax mxbmxmxmb uU               (3.4.3) 

 

The elements of aU  and bU  matrices and au  and bu  vectors are determined 

by the boundary conditions. These Equations (3.4.2) and (3.4.3) enable any 

linear combination of the elements of   vector to be prescribed at the 

boundaries.  

 

It must be emphasized that the governing Equation set (3.4.1) and the 

boundary conditions (3.4.2) and (3.4.3) are given in the form of governing 

Equations (3.3.59) and boundary conditions (3.3.68) – (3.3.72) which are 

derived for the static analysis of the shell of revolution subject to symmetrical 

and unsymmetrical loads.  

 

Equations (3.4.1), (3.4.2) and (3.4.3) represent the two-point boundary value 

problem which is going to be to reduced to a number of initial value problems. 

The solution proposed for the ordinary differential Equation set (3.4.1) can be 

written as [7]: 

 

           111 mxmxmxmmx DCW               (3.4.4) 
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where  C  represents vector of arbitrary constants,   W  and   D  are the 

homogeneous and particular solutions of Equation (3.4.1). In order to 

determine the vector of arbitrary constants, Equation (3.4.4) is evaluated at 

min  , i.e. at the boundary: 

 

         minminmin  DCW               (3.4.5) 

 

Solving Equation (3.4.5) for  C , 

 

              1min
1

minmin
1

min mxDWWC               (3.4.6) 

 

and substituting  C  given by Equation (3.4.6) into Equation (3.4.4), 

 

            SPSH  min              (3.4.7) 

 

where  

 

         1
min

  WWSH               (3.4.8) 

               DDWWSP  
min

1
min            (3.4.9) 

 

Substituting Equation (3.4.7) into Equation (3.4.1), 

 

                  

     




BSP

SHKSPSH
d
d



 minmin
       (3.4.10) 

 

Opening the parenthesis, 
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                  

        









BSPK

SHKSP
d
dSH

d
d



 minmin
       (3.4.11) 

 

This equation can be separated by regrouping the first terms on the left hand 

side and right hand side together in one equation, and second terms on the 

left hand side and right hand side in another equation. Since   min  

appears in both sides of the first equation, it drops out. The first and second 

equations mentioned are written as 

 

        mxmmxm
mmx

SHK
d

dSH 











          (3.4.12) 

          11
1

)( mxmxmxm
mx

BSPK
d

dSP 












         (3.4.13) 

 

The matrix   SH  is also named as transfer matrix, because it relates the 

fundamental shell variables at one end of the shell of revolution to the 

fundamental shell variables at the other end of the shell of revolution. 

 

In order to find out the initial conditions, Equations (3.4.8) and (3.4.9) are 

evaluated at min  : 

 

          IWWSH  1
minminmin            (3.4.14) 

              
         0minmin

minmin
1

minminmin


 




DDI
DDWWSP

        (3.4.15) 

 

Therefore, the initial condition required for the determination of homogeneous 

solution   SH  is the unity matrix and that for the determination of the 

particular solution  )(SP  is zero, i.e. 
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    ISH min              (3.4.16) 

    0min SP              (3.4.17) 

 

In addition, evaluation of the Equation (3.4.7) at the other boundary, i.e. at 

max  , provides the continuity between min  and max  as: 

 

            1max1minmax1max mxmxmxmmx SPSH           (3.4.18) 

 

Equation set (3.4.18) constitutes a system of 2m linear algebraic equations 

with 2m unknowns, with the boundary conditions prescribed by Equations 

(3.4.2) and (3.4.3). Of these 2m unknowns, m are to be determined at 

min  , which are represented as   min , and m are to be determined at 

max  , which are represented as   max . Once   min  is known, the 

solution at any value of   can be obtained using Equation (3.4.7), as long as 

 SH  and  SP  for the   value of interest are known. Thus, the reduction of a 

two point boundary value problem defined by Equations (3.4.1), (3.4.2) and 

(3.4.3) to 1m  initial value problems given by Equations (3.4.12), (3.4.13), 

(3.4.16) and (3.4.17) is now completed. 

 

During the solution of the initial value problem defined above, elements of the 

 SH  matrix and  SP  vector are observed to increase in magnitude in such a 

way that if the length of the interval  maxmin ,  is increased by a factor of x , 

the magnitude of the solutions of  SH  matrix and  SP  vector increase 

approximately exponentially with x [7]. Increasing x  on the other hand 

physically means that the meridional dimension of the shell becomes longer. 

And naturally, as the shell gets longer in the meridional direction, the effects of 

the applied loads on one end of the shell is perceived less on the other end. 

Therefore, as opposed to  SH  matrix and  SP  vector, the elements of 

 max  are expected to decrease with increasing x . 
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If the Equation (3.4.18) is examined carefully, in the light of the mathematical 

and physical facts explained in the above paragraph, it is expected that 

  max  should decrease, while   maxSH  and   maxSP  increase and 

  min  is kept constant with increasing x , which represents  maxmin ,  

interval. However, if the length of the interval  maxmin ,  exceeds a critical 

value, loss of accuracy occurs in Equation (3.4.18), which involve matrix 

multiplication and addition operations. Loss of accuracy occurs because after 

a certain value of the interval  maxmin , , all significant digits of   maxSH  are 

lost when   maxSH  is multiplied by   min . The only way that the matrix 

product of Equation (3.4.18) can give small values of   max  is that a 

number of significant digits of the large values of   maxSH  subtract out. 

 

Therefore, drawback of this using a single shell interval is the loss of accuracy 

that is encountered when the length of the interval  maxmin ,  exceeds a 

critical value. 

 

In order to overcome this problem and estimate the critical length of a shell 

approximately, a convenient length factor is defined by Kalnins [7]: 

 

  
  5.0

25.0213
Rh

l  
              (3.4.19) 

 

where l  is the length of the meridian of the shell, R  is a minimum radius of 

curvature, and h  is the thickness of the shell. 

 

However, the loss of accuracy can be avoided completely and shells of 

revolution with larger values of   can be analyzed by means of the direct 

integration technique if the multisegment method given in the next section is 

employed. 
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3.5. Multisegment Method of Integration 

 

 

This method is the continuation of the method described in the previous 

section and has been used widely after it was first developed by Kalnins [7] in 

many studies such as [1] and [2]. Let the shell be divided into M  segments 

denoted by iS , where Mi ,...,2,1 . (See Figure 3.1) These M  segments 

can be arbitrary in length, but all should be less or equal to  so that loss of 

accuracy that was described above does not occur. A generic shell segment 

iS  is defined between the meridional coordinates i  and 1i . 

 
 
 

 
 

Figure 3.1 Notation for Division of Total Interval into Segments 

 
 
 

The equations derived for the whole interval  maxmin ,  in the previous 

section is now used for each segment. Therefore, analogous to Equations 

(3.4.7), (3.4.12), (3.4.13), (3.4.16) and (3.4.17), one can write: 

 

            111 mximximxmimx SPSH              (3.5.1) 
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        mxmimxm
mmx

i SHK
d

dSH 











            (3.5.2) 

          11
1

)( mxmximxm
mx

i BSPK
d

dSP 


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



           (3.5.3) 

    ISH ii                 (3.5.4) 

    0iiSP                  (3.5.5) 

 

Requiring the continuity of all elements of     at the ends of each 

segment, using Equation (3.4.18) 

 

            111111 mxiimximxmiimxi SPSH              (3.5.6) 

 

As seen in Equation set (3.5.6), the unknown vector     has m  elements. 

Since the equation is solved at the beginning and end points of each segment, 

and there are a total number of M  segments and 1M  points in the interval 

 maxmin ,  as shown in Figure 3.1, the total number of variables is  1Mm . 

Of these variables, m2  exist at the boundaries, that is at 1  and 1m ( min  and 

max ). As explained in Section 2.4.2, only half of the variables existing at the 

boundaries can be known (either force terms or the corresponding 

displacements can be prescribed in any direction). Therefore, of the m2  

variables existing at 1  and 1m , 2m  are known at one end and 2m  are 

known at the other end. Consequently, as the calculation in Equation (3.5.7) 

shows, the matrix equation involves exactly Mm  number of unknowns.  

 

MmmmMm 
22

)1(               (3.5.7) 

 

It has been shown in Equations (3.4.2) and (3.4.3) that the boundary 

conditions can be given as a linear combination of any of the variables. Since 
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1min    and 1max  M  for the multisegment method of integration, these 

equations can be rewritten as  

 

        111min mxamxmxma uU               (3.5.8) 

        111max mxbmxMmxmb uU               (3.5.9) 

 

where 2m  elements of au  and 2m  elements of bu  are assumed to be 

prescribed. It is convenient to arrange the rows of the given boundary 

condition matrices aU and bU  in such a way that, the prescribed elements of 

au appear as the first 2m elements and the prescribed elements of bu  are the 

last 2m  elements. Writing the continuity Equation (3.5.1) for the first point 

using Equation (3.5.8), 

 

              1211
1

min2112 mxmxamxmamxmmx SPuUSH            (3.5.10) 

 

and for the last point, using Equation (3.5.9), 

 

             
   11

11111

mxMM

mxmMbmxMmxmMMmxmMbmxb

SP

USHUu



 




       (3.5.11) 

 

For the first and last segments respectively, the following transformations are 

performed: 

 

        mxmMmxmamxmM SHUSH 2
1

12             (3.5.12) 

        
mxmmMmxmmMmxmmB SHSHU 111             (3.5.13) 

        
mxmmMmxmmMmxmmB SPSPU 111             (3.5.14) 

 

Matrix Equation (3.5.6) contains both known variables, which are prescribed at 

the boundaries, and unknown variables together. In order to solve the 
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equation to find out the unknown variables properly, first known and unknown 

variables should be separated. As stated above, for convenience, the first 

2m  elements of au  and last 2m  elements of bu  are assumed to be 

prescribed. Therefore, the first 2m  elements of   1 , denoted by   11   

are assumed to be known and the last 2m  elements of   1 , denoted by 

  12   are assumed to be unknown. On the other hand, for the other end, 

the first 2m  elements of   1M , denoted by   11 M  are unknown and 

the last 2m  elements of   1M , denoted by   12 M  are known. If the 

rearrangement of the columns in the matrix Equation (3.5.6) is performed, the 

continuity equations can be rewritten as a partitioned matrix product in the 

form given by Equation (3.5.15). 
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       (3.5.15) 

 

In each shell segment  Mi ,...,2,1 , Equation (3.5.15) can be written as 

 

         )()()()()()( 1
)1(

1121
)2(

11
)1(

  iiiiiiiii SPSHSH   

               (3.5.16) 

         )()()()()()( 1
)2(

1221
)4(

11
)3(

  iiiiiiiii SPSHSH   

               (3.5.17) 

 

The result is a system of M2  linear algebraic matrix equations with known 

coefficient matrices  )( 1
)(

i
j

iSH    Mij ,...2,1;4,3,2,1   and vectors of 

nonhomogeneous coefficients  )( 1
)(

i
j

iSP    Mij ,...,2,1;2,1  . It should 

be noted that in Equation (3.5.16),  )( 11  ; and in Equation (3.5.17), 

 )( 12 M  are known. Therefore, the unknowns partitioned vectors are given 

by  )(1 i  with  1,...3,2  Mi  and  )(2 i  with  Mi ,...3,2,1 . Thus, 

there are exactly M2  unknowns. 
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System of Equations (3.5.16) and (3.5.17) is brought into the following form by 

means of Gaussian elimination.  
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       (3.5.18) 

 

where the dots indicate the equations for 1,..3  Mi . The  22 mm   

matrices iE  and iC  are defined for 1i  as 

 
 2
11 SHE                (3.5.19) 

  1
1

4
11

 ESHC               (3.5.20) 

 

and for Mi ,..3,2 , as 

 
    1

1
12 

 iiii CSHSHE             (3.5.21) 

     11
1

34 
 iiiii ECSHSHC             (3.5.22) 

 

The  12m  vectors iVA  and iVB  are defined for 1i  as 

 
     11

1
1

1
11 SHSPVA              (3.5.23) 

       
1

1
1

4
111

3
1

2
11 VAESHSHSPVB             (3.5.24) 

 

for 1,..3,2  Mi , as 
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   

1
1
1

1
1

1



 iiii VBCSHSPVA             (3.5.25) 

         iiiiiiiiii VAECSHSHVBCSHSPVB 11
1

34
1

1
1

32 



          (3.5.26) 

 

and for the thM  segment 

 
   

1
1

1
11



 MMMMM VBCSHSPVA            (3.5.27) 

       
   MMMM

MMMMMMM

VAECSH

SHVBCSHSPVB
11

1
3

4
1

1
1

32
12










 
         (3.5.28) 

 

In the relations given above, for brevity, in place of   1i
j

iSH   and   1i
j

iSP  , 

the symbols  j
iSH  and  j

iSP  have been used and square brackets 

representing the matrices and curly brackets representing the vectors are 

dropped. 

 

Following this procedure, by the use of Equations (3.5.19) – (3.5.28), the 

unknown variables are found by 

 

  MMM VBC 1
11


               (3.5.29) 

    MMMM VAE  


11
1

2             (3.5.30) 

 

and for 1,...2,1  Mi , 

 

    iMiMiMiM VBC 

  12

1
11             (3.5.31) 

    iMiMiMiM VAE 

  11

1
2             (3.5.32) 

 

It should be noted that the transformed fundamental variables will be 

determined for a particular circumferential wave number, and depending on 

the definition of loading the solution process must be repeated for a certain 
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number of circumferential wave numbers which are used to define any 

unsymmetrical load with sufficient accuracy in the Fourier series 

representation. Once all the unknowns   i  are found, fundamental 

variables can be determined using Equation (3.5.1) at any desired values of   

at which the solutions   iSH .and   iSP  are stored during the integration 

of the initial value problem defined by Equations (3.5.2) and (3.5.3). 

 

However, it should be remembered that the number of segments that the 

interval is divided into can be chosen at will, Thus, if the number of segments 

are sufficiently large, then the solution is obtained at sufficient number of 

intermediate points and use of Equation (3.5.1) will not be necessary to obtain 

the fundamental variables at intermediate meridional coordinates; because 

enough resolution will have been obtained in terms of the meridional 

coordinates, where the output is given. 

 

The integration of Equations (3.5.2) and (3.5.3) can be accomplished by 

means of any direct integration method. The description of the integration 

method used in the present study will be explained in the succeeding sections. 

 

In Section 3.3 it has been stated that loading can also be defined as a function 

of  . It should be noted that the known vector of nonhomogeneous terms 

   1mxB   consist of loading terms, and this vector is calculated at the end 

points of each of the segments forming the whole interval. Therefore, by 

specifying mechanical and thermal loads at the end points of the shell 

segments, one can define of the loads as a function of the meridional 

coordinate  . 
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3.6. Back Transformation 

 

 

Another issue that should be mentioned is that by following the method 

described above, the results will have been found only for a particular 

circumferential wave number n . Therefore, for a complete solution, as it was 

stresses before, solution should be carried out for each circumferential wave 

number n  separately, and finally be summed up to obtain the final result. 

Furthermore, for each circumferential wave number n , fundamental variables 

determined are the transformed variables, not the actual physical variables. 

Therefore, these transformed variables should be back-transformed to the 

actual physical variables. Back transformation of transformed variables and 

summation of the solutions for each circumferential wave number n  is 

achieved by Equation (3.6.1) where    ,  represents the vector of 

fundamental shell variables. The solution process gives the cosine and sine 

parts of fundamental variables   nc)(  and   ns)(  , and once these 

Fourier components are determined the actual physical variables are 

calculated by the summation operation over the range of circumferential wave 

numbers. 

 

            





1

0 sin)(cos)(2),(
n

nsnc nn  (3.6.1) 

 

where  

 

     





dnnc cos),(
2
1)(

2

0
             (3.6.2) 

     





dnns sin),(
2
1)(

2

0
             (3.6.3) 

     






2

0
0 ),(

2
1 d              (3.6.4) 
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3.7. Post Processing 

 

 

After back transformation is performed in Section 3.6, all fundamental 

variables in their actual physical form   110),( x  have now been 

calculated. Using these results, it is possible to calculate stresses and strains 

using the governing equations given in Chapter 2. It should be noted that the 

fundamental variable vector consists of displacements and rotations and 

stress and moment resultants. Therefore, for a layered composite structure to 

calculate the layer stresses and strains one needs to process on the 

fundamental shell variables to get the strains and stresses through the shell of 

revolution. 

 

Strain – displacement relations for shells of revolution are given in Chapter 2 

by the Equations (2.2.3.1) – (2.2.3.11). For the sake of completeness and 

ease of explanation, these equations are reminded here again. Overall (total) 

in-plane strains are given by 

 

       ,,,, 0               (3.7.1) 

       ,,,, 0               (3.7.2) 

       ,,,, 0               (3.7.3) 

 

where, the midstrains (membrane strains) and bending strains are given by 

 

















 0

0
0 1





 
 u

u
R               (3.7.4) 
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
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




 





 sincos
sin
1 0

0
00 uuu

R            (3.7.5) 

0
00
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sin
1
















 u
R

u
R

u
R









             (3.7.6) 
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


 


 



R
1

                (3.7.7) 



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


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






 

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sin
1

R
             (3.7.8) 
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


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









RRR
cot1

sin
1









             (3.7.9) 

 

and transverse shear strains are given by 

 


 




 




00 1 u
RR

u
            (3.7.10) 


 




 




00

sin
1 u

RR
u

           (3.7.11) 

 

As it is seen clearly, in order to calculate the total in-plane strains, midstrains 

(membrane strains) and bending strains should be known, and these are 

given by Equations (3.7.4) – (3.7.9).  In Equations (3.7.4) – (3.7.11), for the 

calculation of midstrains, bending strains and transverse shear strains; mid-

plane displacements 0
u , 0

u , 0
u  and rotations  ,   should be known, all of 

which appear in the fundamental variable vector   110),( x . However, their 

derivatives with respect to   and with respect to   also need to be calculated. 

Since the fundamental variables are given by the Equation (3.6.1) in generic 

form, mid-plane displacements and rotations 0
u , 0

u , 0
u ,   and   can be 

expressed as: 

 

            





1

0 sin)(cos)(2),(
n

nsdncdd nn   

               (3.7.12) 

 

where 
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             Td uuu   ,,,,,, 000        (3.7.13) 

 

Thus, based on Equation (3.7.12), the derivatives of 0
u , 0

u , 0
u ,   and   

with respect to   can be found as: 

 

        









1

cos)(sin)(2),(
n

nsdncd
d nnnn 



  (3.7.14) 

 

For the calculation of derivatives with respect to  , finite difference method 

will be employed. To calculate the meridional coordinate derivatives of the 

fundamental variables at the initial point of the first segment, i.e. at 

min1  i , forward difference of first order is used [16]: 

 

     













 ),(),(),( 121 ddd
          (3.7.15) 

 

for the second point and the point one before the last point, i.e. for 2 i  and 

Mi   , central difference of first order is used [16]: 

 

     












 

2
),(),(),( 11 ididid          (3.7.16) 

 

for the points in between, i.e. for i   1,...,3  Mi  central difference of 

second order is used in order to improve accuracy [16]: 

 

         












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12
),(),(8),(8),(),( 2112 ididididid

               (3.7.17) 
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and for the last point, i.e. max1   Mi , backward difference of first order is 

used [16]: 

 

     













  ),(),(),( 11 MdMdMd
         (3.7.18) 

 

Once the mid-plane strains are calculated, one can calculate the total in-plane 

strains strain from Equations (3.7.1) – (3.7.3) and transverse shear strains 

from Equations (3.7.10) – (3.7.11). In-plane stresses and transverse shear 

stresses at each layer can then be calculated from Equation (3.7.19) and 

(3.7.21), respectively. 
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where  


2

2
2

1 sincos   
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2

2
2

1 cossin              (3.7.20) 

   sincos2 21   
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            (3.7.21) 

 

It should be noted that as an alternative method, the mid-plane strains, 

curvatures and transverse shear strains can also be calculated from the 

stress/moment resultant strain/curvatures relations. One should recall that the 

relation of in-plane forces and moments with midstrains (membrane strains) 

and bending strains is given in Chapter 2 by the Equation (2.3.2.44); and the 

relation between transverse shear strains and transverse force resultants is 

given by the Equation (2.3.3.7). To calculate mid-plane strains, bending 
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strains (curvatures) and transverse shear strains  one has to invert Equations 

(2.3.2.44) and (2.3.3.7) as in Equation (3.7.22) and (3.7.23).  
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Note that in Equation (3.7.22), the matrix containing the stiffness coefficients 

ijA , ijB  and ijD   6,2,1, ji  terms is calculated before and therefore known. 

In addition, the thermal load vector  TTT NNN   TTTT MMM   is 

also known. However, in vector   MNNN  TMM  ; N , 

N , M  and M  terms are known since they are among the fundamental 

variables and calculated during the solution process. But N  and M  have 

not been calculated previously because they are not among the fundamental 

shell variables. Similarly, in Equation (3.7.23), the matrix containing the 

transverse shear stiffness coefficients ijA   5,4, ji  is calculated before and 

therefore known. Transverse shear stress resultant Q  is also known since it 

appears in the fundamental variable vector, but Q  is unknown for the time 

being. Therefore, in order to be able to calculate the midplane strains, bending 

strains and transverse shear strains from Equations (3.7.22) and (3.7.23) one 

needs to know the stress and moment resultants N , M  and transverse 

shear stress resultant Q . Two methods of calculating N  and M  are 

presented below. 
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In the first method, N  and M  can be extracted from two of the equations 

of motion, Equations (2.4.3.11) and (2.4.3.14) as 
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In these equations, terms involving   derivatives, i.e.  N  and 

 M  are calculated using Equation (3.7.14); and terms involving   

derivatives, i.e.  N  and  M  are calculated using finite difference 

method given by Equations (3.7.15) – (3.7.18).  

 

In the second method, N  and M  are calculated using Equation (2.3.3.7) 

as 

 

  262212
0
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0

12 BBBAAAN          (3.7.26) 

  262212
0
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0
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0

12 DDDBBBM          (3.7.27) 

 

respectively. But in Equations (3.7.26) and (3.7.27), in order to find N  and 

M , midstrains and bending strains should be known, and they are already 

the unknowns that need to be found.  

 

On the other hand, Equations (3.7.4) – (3.7.9), which use finite difference 

method for the calculation of midstrains and bending strains, could be used to 

get an initial estimate of those strain values for the calculation of N  and 

M , during the process of midstrain and bending strain calculation.  
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In order to achieve this, first, midstrains and bending strains are calculated 

using Equations (3.7.4) – (3.7.9). During these calculations, finite difference 

method given by Equations (3.7.15) – (3.7.18) is used when derivatives of 

midsurface displacements and rotations with respect to   need to be found. 

Second, N  and M  are calculated by Equations (3.7.26) and (3.7.27), 

using the strain values just been found.  

 

Then, having found all in-plane force and moment resultants, either by the first 

method using Equations (3.7.24) and (3.7.25) or by the second method using 

Equations (3.7.26) and (3.7.27), Equation (3.7.22) can now be used to 

calculate midstrains (membrane strains) and bending strains. 

However, although both methods can be used to calculate N  and M  for a 

general shell of revolution, there is a restriction for the special case of circular 

cylinder. It is shown in Section 2.1.3 that  90  and therefore 0cos   for 

circular cylinder. Hence Equations (3.7.24) and (3.7.25) cannot be used for the 

calculation of N  and M , meaning that Equations (3.7.26) and (3.7.27) are 

used instead for circular cylinder. 

 

It should be emphasized that since in Equation (3.7.22) four of the six 

variables of the stress/moment resultant vector are known as a result of 

multisegment numerical integration solution method, exploiting Equation 

(3.7.22) to determine midplane strains and curvatures could also give accurate 

results. Because in either of these methods, finite differencing will have been 

used only for the calculation of the stress and moment resultants N  and 

M . 

 

To calculate transverse shear stress resultant Q , transverse shear strain 

  has to be calculated. To calculate transverse shear strain  , if 

equation (3.7.11) is examined carefully, it is seen that use of finite difference 

method is not necessary since no derivative with respect to   appear in the 
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equation, and derivative with respect to   can be calculated by series solution 

as given by Equation (3.7.14).  

 

Finite difference method is used only once in Equation (3.7.10), and when it is 

used, central difference of second order given by Equation (3.7.17) is 

employed at most points, therefore it can be concluded that using Equation 

(3.7.10) for the calculation of   causes very little loss of accuracy due to the 

use of higher order finite differencing. As a result, Equations (3.7.10) and 

(3.7.11) are used for the calculation of transverse shear strains. 

 

Having found midstrains and bending strains, one can calculate overall (total) 

in-plane strains by employing Equations (3.7.1) – (3.7.3). Using these 

equations, overall strains are found at each layer separately throughout the 

thickness of the laminate.  

 

In plane stresses for a general shell can then be calculated by Equation 

(2.3.2.30). Since for shell of revolution    and   , this equation can 

be re-written as 
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where 

 


2

2
2

1 sincos   
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2

2
2

1 cossin              (3.7.29) 

   sincos2 21   

 

Using Equation (3.7.28), in-plane stresses can be calculated at each layer 

separately throughout the thickness of the laminate 
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Transverse shear stresses for a general shell can be calculated by Equation 

(2.3.2.9). Since for shell of revolution    and   , this equation can 

be re-written as 
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where   and   are given by Equations (3.7.10) and (3.7.11), respectively. 

Using Equation (3.7.30), transverse shear stresses can be calculated. 

 

Thus, the post processing of the solution which aims to calculate stresses and 

strains is now completed. Note that since the fundamental variables are found 

as functions of   and   in the preceding section, all stresses and strains 

calculated in this section are also functions of   and  . In addition to that, 

since overall in-plane strains and stresses are found at each layer, these 

variables, apart from being functions of   and  , are also functions of the 

thickness direction of the shell  . 
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CHAPTER 4 

4. IMPLEMENTATION OF THE SOLUTION 

METHODOLOGY 

IMPLEMENTATION OF THE SOLUTION METHODOLOGY 
 

 

 

4.1. Description of the Computer Code Developed 

 

 

For the analysis of shells of revolution, an algorithm is created following the 

instructions of the solution methodology described in Chapter 3. In order to 

implement the algorithm created, a computer code is developed using 

FORTRAN 77 programming language. The code consists of a main program, 

thirteen subroutines and an external subroutine used during the execution. 

Double precision storage format is used in the code in order to improve 

accuracy. 

 

 

4.1.1. Description of the Main Program 

 

 

The algorithm of the main program is graphically represented by the flowchart 

shown in Figure 4.1. As it can be seen, main program is basically the general 

router which manages the data flow between the subroutines. Three 

subroutines are mentioned in the flowchart of the main program. Among them, 

subroutine “Backtrans” simply follows the instructions on how to perform the 

back transformation described in Section 3.6. However, subroutines “Nuint” 
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and “Postprocess” include complicated sequence of instructions for the 

solution and post processing of the problem, respectively. Therefore, in the 

following flowcharts describing their algorithms are given individually.  
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Figure 4.1 Flowchart for the Main Program 
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4.1.2. Description of the Subroutine “Nuint” 

 

 

The algorithm of the subroutine “Nuint” is graphically represented by the 

flowchart shown in Figure 4.2. This subroutine implements the procedures 

given in Section 3.5, i.e. it applies the multisegment method of integration.  

 

As previously discussed in Section 3.7, an integration scheme needs to be 

used for the solution of Equations (3.5.2) and (3.5.3), and in the present study, 

the integration of these equations is performed using the IMSL numerical 

integration routine DIVPAG, which is the double precision version of the 

routine IVPAG. It is used to solve the initial value problems for ordinary 

differential equations using either Adam-Moulton’s or Gear’s BDF method. In 

the present study, Adam-Moulton’s method is chosen. 

 

Therefore, the external subroutine “DIVPAG” is called during the execution of 

subroutine “Nuint”. This is one of the routines in the international mathematics 

and statistics library “IMSL”, which is a comprehensive set of mathematical 

and statistical functions that programmers can embed into their software 

applications. The IMSL Libraries are provided by Visual Numerics Inc [18]. 

 

The other subroutines called during the execution of subroutine “Nuint” are the 

subroutines FCN, FCN2, Loadvector and ABD. The sequence of calling these 

subroutines and their functions are described in Figure 4.2. In addition to 

these, subroutines INV, Det10X10 and Det9X9 are called for the inversion and 

determinant finding of matrices when necessary. 
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Figure 4.2 Flowchart of the Subroutine Nuint 



 
 
 105 

 

4.1.3. Description of the Subroutine “Postprocess” 

 

 

The algorithm of the subroutine “Postprocess” is graphically represented by 

the flowchart shown in Figure 4.3. This subroutine implements the procedures 

given in Section 3.7, i.e. it performs the post processing. 

 

Subroutines INV6, Det6X6 and Det5X5 are called during the execution of 

subroutine “Postprocess” for the inversion and finding the determinant of the 

matrices when necessary. 
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Figure 4.3 Flowchart for the Subroutine Postprocess 
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4.2. Verification of the Code 

 

 

In Section 4.1, the computer code developed is described in detail. In this 

section, the results generated by the code are compared with the results 

generated by MSC NASTRAN.  

 

MSC NASTRAN is a general purpose finite element analysis solver used for 

small to complex assemblies [19]. Nastran was initially developed by NASA for 

the space program in the 1960’s and the term NASTRAN is actually an 

acronym for NASA Structural Analysis. Today, NASTRAN is widely used 

throughout the world in the aerospace, automotive and maritime industries. It 

has been claimed in many studies such as [20], [21] and [22] that NASTRAN 

is the industry standard for analysis of aerospace structures. Therefore, 

comparison of the results generated by the code developed in the present 

study with the results generated by MSC NASTRAN is a convenient method 

for the verification of the code. 

 

MSC NASTRAN is closely linked with MSC Patran. MSC Patran is a 

comprehensive pre and post processing environment for finite element 

analysis [19]. Therefore, it is used for the preparation of the model to be 

solved in MSC NASTRAN and the results are post processed using again 

MSC Patran. 

 

The following sample problems are analyzed using both the code developed in 

this study and MSC NASTRAN. Then the results obtained from these solvers 

are compared. 
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4.2.1. Sample Problem 1 

 

 

Consider a laminated circular cylinder clamped at two ends is exposed to a 

temperature difference of 1000° C, which is uniformly distributed throughout 

the cylinder. In addition to that, an internal pressure of 100 kPa is applied to 

the cylinder. Here a temperature difference of 1000° C is used just for 

demonstration purposes. A high temperature difference is selected on purpose 

to get high thermal stresses The cylinder is made of MR50/LTM25 Carbon 

Epoxy Unidirectional Prepreg [23]. The material data used, geometric 

properties, loads and boundary conditions are given in Table 4.1. 

 
 
 

Table 4.1 Analysis Data for the Sample Problem 1 

 
Geometry Circular Cylinder 

Radius 0.2 m 

Axial Length 1.0 m 

Number of segments 300 

  

Material  

Ply Material MR50/LTM25 Carbon Epoxy 

11E  155 GPa 

22E  7.31 GPa 

12  0.345 

12G  4.19 GPa 

13G  4.19 GPa 

23G  3 GPa 

Ply thickness 0.146 mm 

Ply density    1520 kg/m3 
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Table 4.1 (continued) 

 

11  -0.43 x 10-6 1/°C  

22  37.4 x 10-6 1/°C  

Laminate  

Number of Layers 4 

Ply Orientation [0°/45°/90°/0°] 

  

Loads  

T  (constant along x ,   and  ) 1000°C 

p  (constant along x and  ) 100 kPa 

  

Boundary Conditions clamped-clamped 

left end 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u








 

right end 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u








 

 
 
 
As it can be seen from Table 4.1, in the multisegment integration method the 

cylinder is divided into 300 segments. In order to overlap the nodes of finite 

element mesh used in MSC NASTRAN with the grid points of the segments 

used in the multisegment method of integration in the axial direction, the 

nodes of finite element mesh which is created in the axial direction of the 

cylinder are equally spaced and the total number is also 300 The fundamental 

variables obtained from the code and NASTRAN are compared at these 

points. 

 

It is stated in many references such as [27] and [28] that in displacement 

based finite element solvers, stresses, which are calculated during the post 

processing, are obtained more accurately at element centroids. NASTRAN is 
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also a displacement based finite element solver. Since stresses and strains 

are calculated during post processing, stress and strain values at the element 

centroids are used for the comparison with the results obtained from the code 

developed in this thesis.  Therefore, end points of the shell segments are 

arranged such that they coincided with the finite element centroids when 

stresses and strains are compared. 

 

Finite element mesh of the circular cylinder created in MSC Patran is given in 

Figure 4.4. Among the elements available for the analysis of standard 

laminated shells in MSC NASTRAN element library, first order shell elements 

with 4 nodes (CQUAD4 type elements) are used to create the finite element 

mesh. There are a total number of 37800 elements and 37926 nodes in the 

finite element model. Loads and boundary conditions applied to the model and 

material properties used are already given in Table 4.1.  

 
 
 

 
 

Figure 4.4 Finite Element Mesh for Circular Cylinder 
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Since the shell equations used in the present study assumes small strain / 

small displacement (see Section 2.2.1), and the materials are considered to 

be linearly elastic in the analysis domain, that is they are not functions of strain 

or strain rate, linear static solution type with sol 101 solution sequence is 

chosen in MSC NASTRAN. 

 

The analysis is run using both the computer code developed in the present 

thesis and NASTRAN solver. Following the completion of the analyses, the 

results are presented. 

 

In Figure 4.5, variation of the mid-surface displacement in the thickness 

direction 0
u  with axial (meridional) coordinate at 0  is given. It should be 

emphasized that for the present problem, since the loading is axisymmetric, 

the problem is completely axisymmetric and the results are not functions of the 

circumferential coordinate  , therefore the results would be the same for any 

value of  . The results of both NASTRAN and the code are given in this figure 

for comparison. 
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Figure 4.5 Comparison of Solutions for variation of 0
u  with x for Sample 

Problem 1 

 
 
 
In Figure 4.5 one can clearly see the bending boundary layer extending a 

short distance away from the edges. 

 

In the figure, the results of NASTRAN and the code overlap and are seen as 

one curve. In order to compare the results more clearly, percent difference is 

calculated for each grid point in the axial direction: 

 

  100% 



resultNASTRAN

resultCoderesultNASTRANValueAbsoluteDifference  

              (4.2.1.1) 

 

The variation of percent difference with the axial coordinate x  is given in 

Figure 4.6: 
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Figure 4.6 Change of Percent Difference with Axial Coordinate for 0
u  for 

Sample Problem 1 

 
 
 
This graph shows that maximum difference between NASTRAN results and 

code results occur near the boundaries with a value of nearly 0.4%. Away 

from the boundaries, this value is less than 0.02%, meaning that two methods 

find almost exactly the same values. 

 

These results given above are for 0
u , which is a fundamental variable. The 

percent differences between code results and NASTRAN results for other 

fundamental variables are similar; therefore they are not given here for brevity.  

 

Stresses and strains are also calculated by postprocessing the results found 

directly from the solution, both for the method used in the present study and 
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for the finite element method. In Figure 4.7, variation of the stress in the axial 

direction  xx  with axial (meridional) coordinate at 0  and for layer 1 (first 

layer inside the cylinder) is given. The results of both NASTRAN and the code 

are given in this figure for comparison. 

 
 
 

 
 

Figure 4.7 Comparison of Solutions for Variation of xx  with x for Sample 

Problem 1 

 
 
 
Again in the figure, the results of NASTRAN and the code overlap and are 

seen as one curve, so the percent difference given by Equation (4.2.1.1) is 

calculated. The behaviour of change of percent difference with axial 

coordinate is similar to the one given above for 0
u . The difference is 

symmetrical and reaches a stable value at some distance away from the 

boundary. This stable value is 0.02%, and reached around 07.0x m. The 
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variation of percent difference with axial coordinate in the interval [0, 0.1] is 

given in Figure 4.8. 

 
 
 

 
 

Figure 4.8 Change of Percent Difference with Axial Coordinate for xx  for 

Sample Problem 1 

 
 
 
The percent difference is highest at the end of the first shell segment, with a 

value of 6.%, oscillating and getting smaller away from the boundary, 

eventually reaching the stable value mentioned above. As it is explained in 

Section 3.7, stresses are calculated using the fundamental variables by 

postprocessing. During this process, different orders of finite difference 

method are involved. Central difference of second order is used between 3rd 

and (m-1)th points, where m is the number of shell segments used in the multi-

segment method of integration. Forward difference is used for the first point 

and backward difference is used for the last ((m+1)th) point. The use of forward 
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and backward difference at the boundary edges of the shell of revolution may 

cause loss of accuracy in the calculation of stresses at these points to some 

extent.  It can be seen from Figure 4.8 that the percent difference decreases 

rapidly and its final value of 0.04% reveals that NASTRAN and the code 

calculates almost the same axial stress values during the postprocessing. It 

should also be noted that the axial stress results calculated by the developed 

code are greater than the axial stress results calculated by NASTRAN in 

magnitude. As it has been stated above, for the comparison of stresses, 

NASTRAN element centroids are used. 

 

Force and moment resultants are also among the fundamental variables, and 

they are calculated during multisegment method of integration, in addition to 

the displacements and rotations, as it is explained in Section 3.5. For this 

problem, variation of the mid-surface axial force resultant per unit length  0
xxN  

with axial coordinate is calculated as constant throughout the cylinder, as 

expected. The result obtained from the code is -44170.8 N/m and the result 

obtained from the NASTRAN solution is -44168.5 N/m. Therefore the percent 

difference between two solutions is also constant, and calculated as 

 

%00522.0100
5.44168

5.441688.44170
% 




Difference        (4.2.1.2) 

 

Result given by Equation (4.2.1.2) reveal that axial force resultant per unit 

length is found almost the same by two solvers. The variation of the mid-

surface in-plane shear force resultant per unit length  0
xN  with axial 

coordinate is also constant along the axial direction over most of the cylinder 

length, with a value of -39146.5 N/m for the code and -39136.3 N/m for 

NASTRAN.  

 

The percent difference of results between two solvers for this fundamental 

variable is given in Figure 4.9. The variation is symmetrical with respect to the 

cylinder cross section at 5.0x m and is constant over most of the cylinder 
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since 0
xN  itself is constant at those points. Therefore, the result is given in the 

interval [0, 0.1] where the variation starts from its initial value and reaches the 

constant value. 

 
 
 

 
 

Figure 4.9 Change of Percent Difference with Axial Coordinate for xN  for 

Sample Problem 1 

 
 
 
Maximum percent difference is at the boundary with a value of 0.036 %. 

Therefore it can be said that NASTRAN and the code developed in this thesis 

both calculate the same results also for the in-plane shear force resultant per 

unit length. 

 

One final comparison is made for the solution times of the two solvers. On a 

computer with a 2.40 GHz CPU and 1 GB of RAM, the analysis is run on the 

code developed, and total time elapsed is 9.953 seconds. When the same 
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analysis is run on NASTRAN with the finite element mesh described above, it 

is completed in 490.906 seconds. The solution time for NASTRAN solver does 

not include the preparation of the NASTRAN input file (*.bdf) from the finite 

element model by the pre and post-processor Patran. From this data, it can be 

deduced that the code developed in this study solves this problem about 49 

times faster if the shell is divided into 300 segments along the meridian of the 

shell. Obviously, one should keep in mind that in the finite element model 

when 300 elements are placed along the meridian of the shell, the element 

length in the circumferential direction can not be arbitrary in order not to end 

up with an element configuration with a high aspect ratio. Therefore, finite 

element model becomes very crowded in terms of element and node 

numbers. For a particular problem one could get reliable results with a much 

coarser mesh, and in that case the solution times of the present method and 

finite element method could approach each other. However, in this example 

the comparison is made for 300 segments along the meridian of the shell, and 

for this size the present method is much faster than the finite element method. 

 

 

4.2.2. Sample Problem 2 

 

 

Consider again a laminated circular cylinder clamped at two ends. This time, a 

variable external pressure is applied to it. The cylinder is made of 

MR50/LTM25 Carbon Epoxy Unidirectional Prepreg [23]. The material data 

used, geometric properties, loads and boundary conditions are given in Table 

4.2 
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Table 4.2 Analysis Data for the Sample Problem 2 

 
Geometry Circular Cylinder 

Radius 0.2 m 

Axial Length 1.0 m 

Number of segments 300 

  

Material  

Ply Material MR50/LTM25 Carbon Epoxy 

11E  155 GPa 

22E  7.31 GPa 

12  0.345 

12G  4.19 GPa 

13G  4.19 GPa 

23G  3 GPa 

Ply thickness 0.146 mm 

Ply density    1520 kg/m3 

11  -0.43 x 10-6 1/°C  

22  37.4 x 10-6 1/°C  

Laminate  

Number of Layers 4 

Ply Orientation [0°/45°/90°/0°] 

  

Loads  

p  (constant along   and variable 

in x ) 

0p  at 0x ,  

     100 kPa at 1x ,  

changing linearly in between 
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Table 4.2 (continued) 

 
Boundary Conditions clamped-clamped 

left end 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u








 

right end 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u








 

 
 
 
Finite element mesh used in NASTRAN and number of segments used in the 

multisegment method of integration are the same as those used in 4.2.1. The 

variation of p  with axial direction is defined using fields option in Patran for 

the finite element solution. Sol 101 is used again as the solution type in 

NASTRAN. 

 

In Figure 4.10, variation of the mid-surface displacement in the thickness 

direction 0
u  with axial (meridional) coordinate at 0  is given. The results of 

both NASTRAN and the code are given in this figure for comparison. 
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Figure 4.10 Comparison of Solutions for Variation of 0
u  with x for Sample 

Problem 2 

 
 
 
As it can be seen, the displacement in the thickness direction increases 

linearly as one moves from one boundary to another, with linearly increasing 

internal pressure. In the figure, the results of NASTRAN and the code overlap 

and they are seen as one curve. In order to compare the results more clearly, 

percent difference given by Equation (4.2.1.1) is calculated at each grid point 

in the axial direction. The variation of percent difference with the axial 

coordinate x  is given in Figure 4.11: 
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Figure 4.11 Change of Percent Difference with Axial Coordinate for 0
u  for 

Sample Problem 2 

 
 
 
This graph shows that maximum difference between NASTRAN results and 

code results occur near the boundaries with a value of 1.1%. Away from the 

boundaries, this value is approximately than 0.03%, meaning that two 

methods find almost exactly the same values. 

 

These results given above are for 0
u , which is a fundamental variable. The 

percent differences between code results and NASTRAN results for other 

fundamental variables are similar; therefore they are not given here for brevity.  

 

In Figure 4.12, the variation of the stress in the axial direction  xx  with axial 

(meridional) coordinate at 0  and for layer 1 (first layer in the cylinder) is 

given. The results of both NASTRAN and the code are given in this figure for 

comparison. 
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Figure 4.12 Comparison of Solutions for Variation of xx  with x for Sample 

Problem 2 

 
 
 
Again in Figure 4.12, the results of NASTRAN and the code overlap and they 

are seen as one curve, so percent difference given by Equation (4.2.1.1) is 

calculated. The behaviour of variation of the percent difference with the axial 

direction is not symmetrical as opposed to the previous sample problem, since 

loading in axial direction is not symmetrical, but it also reaches a stable value 

at some distance from the boundary. This value is 0.1%, and it is reached at 

around 05.0x m. The variation of percent difference with axial coordinate 

throughout the cylinder is given in Figure 4.13. 
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Figure 4.13 Change of Percent Difference with Axial Coordinate for xx  for 

Sample Problem 2 

 
 
 
The percent difference is highest at the first point, with a value of 7%, getting 

smaller away from the boundary, eventually reaching a stable value as 

mentioned above. Its behaviour is similar near the other boundary; however 

not exactly the same since the problem is not symmetrical, as mentioned 

before. Away from the boundaries percent difference is about 0.1%, which 

reveals that the code developed and NASTRAN calculates reasonably close 

results for axial stress. Relatively higher percent differences near the 

boundaries can be explained by loss of accuracy due to the reasons stated at 

the end of Section 4.2.1. 

 

Furthermore, a sudden change in percent difference is observed at about 

65.0x - 0.67. Figure 4.12 shows that axial stress changes sign in the same 

interval, where the axial stress becomes smaller in magnitude, eventually 
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reaches zero and increases again. Percent difference is defined in Equation 

(4.2.1.1) as the absolute value of the difference of results of the code and 

NASTRAN, divided by the results of NASTRAN. If the code results and 

NASTRAN results do not become zero at exactly the same point, and they 

have the same slopes so that one curve is shifted up or down with respect to 

the other, then the denominator of the percent difference definition becomes 

smaller and smaller without much change in the numerator, as the axial 

stresses approach zero. This results in much higher percent differences in the 

neighbourhood of the point where stress values change sign. Therefore, it is 

obvious that this phenomenon occurs due to the definition of the percent 

difference and it affects a considerably small interval. Besides, percent 

difference converges to its value before the sign change of stress results. 

 

In order to exhibit this more clearly, variation of the stress in the tangential 

direction    with axial (meridional) coordinate at 0  and for layer 1 (first 

layer in the cylinder) is given in Figure 4.14: 

 
 
 



 
 
 126 

 
 

Figure 4.14 Comparison of Solutions for Variation of   with x for Sample 

Problem 2 

 
 
 
As it is seen from Figure 4.14, tangential stress values change sign nearby the 

left boundary, where the percent difference is already high due to accuracy 

issues mentioned at the end of Section 4.2.1. The effect of this is seen more 

clearly in Figure 4.15 which gives the change of percent difference of 

tangential stresses with axial coordinate: 
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Figure 4.15 Change of Percent Difference with Axial Coordinate for   for 

Sample Problem 2 

 
 
 
The percent difference is highest at the boundaries, again due to the reasons 

stated at the end of Section 4.2.1, but the difference gets smaller away from 

the boundaries, and eventually reaches the stable value of 0.1%. Also it is 

seen that no jumps and peak values occur in the percent difference away from 

the boundaries, since tangential stress values do not change sign. Therefore, 

it can be deduced that the results do not deviate significantly from each other, 

but a numerical error arises from the definition of percent difference in the 

neighbourhood of the points where the results change sign. Like in Section 

4.2.1, stresses are calculated at the NASTRAN element centroids and the 

comparisons are made at these points. 

 

The variation of the mid-surface axial force resultant per unit length  0
xxN  with 

axial coordinate is again constant throughout the cylinder for the code with a 
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value of 2059.413 N/m and it is also constant for NASTRAN solution with a 

value of 2059.057 N/m, with slight deviations from a constant value near the 

boundaries. Therefore the percent difference between two solutions is also 

 constant, and calculated as 

 

%017.0100
057.2059

413.2059057.2059
% 


eDiffereenc        (4.2.2.1) 

 

It is obvious that axial force resultant per unit length is found almost the same 

by two solvers. In Figure 4.16, variation of the mid-surface in-plane shear 

force resultant per unit length  0
xN  with axial coordinate at 0  is given. 

The results of both NASTRAN and the code are given in this figure for 

comparison. 

 
 
 

 
 

Figure 4.16 Comparison of Solutions for variation of 0
xN  with x for Sample 

Problem 2 
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The in-plane shear force resultant per unit length variations show similar 

behaviours in two solutions, both increasing in magnitude while going from 

one boundary to the other. Although graphically the two solution curves do not 

seem to overlap, percent difference variation in the next figure reveals that 

they are very close numerically and the reason for the curves not overlapping 

is that the force resultant values are given in a short range to distinguish the 

results from each other. The percent difference of results between two solvers 

for 0
xN  is given in Figure 4.17.  

 
 
 

 
 

Figure 4.17 Change of Percent Difference with Axial Coordinate for 0
xN  for 

Sample Problem 2 
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The maximum percent difference occurs at a boundary with a value of less 

than 0.06%. Therefore, once again it can be said that NASTRAN and the code 

developed in this thesis calculate almost the same results also for in-plane 

shear force resultant per unit length.  

 

Furthermore, it should be noted that there are no jumps and sharp peaks in 

the percent difference variation, since 0
xN  values do not change sign along 

the cylinder. This justifies the explanations on the percent difference variations 

for the previous displacement and stress results. 

 

One final comparison is again made for the solution times of two solvers. On a 

computer with a 2.40 GHz CPU and 1 GB of RAM, the analysis is run on the 

code developed, and total time elapsed is 10.109 real seconds. When the 

same analysis is run on NASTRAN with the finite element mesh described in 

Section 4.2.1, it is completed in 497.347 real seconds. This result shows for 

this problem, the code developed in this study is about 50 times faster than 

NASTRAN. Again it should be emphasized that NASTRAN solution time does 

not include the preparation of the NASTRAN input file (*.bdf) from the finite 

element model by the pre and post-processor Patran. Similar to the previous 

problem, it should be kept in mind that in the finite element model when 300 

elements are placed along the meridian of the shell, the element length in the 

circumferential direction can not be arbitrary in order not to end up with an 

element configuration with a high aspect ratio. Therefore, finite element model 

becomes very crowded in terms of element and node numbers, which 

increases the solution time for NASTRAN. 

 

 

4.2.3. Comparison of Methods for Calculating Strain 

 

 

In Section 3.7, two alternative methods are described for calculating 

midstrains and bending strains. Strains could either be found by using 
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Equation (3.7.22), i.e. by the inversion of constitutive equations (method 1); or 

by using kinematic equations and differentiating displacements and rotations 

with the finite difference method (method 2). In Figure 4.18, variation of 0
xx  

with axial coordinate at 0  obtained by using method 1 and method 2 are 

compared. For the analysis, problem described in 4.2.1 is used and 

comparison is made at the end points of the shell segments. 

 
 
 

 
 

Figure 4.18 Comparison of Solutions for Variation of 0
xx  with x for Sample 

Problem 1 

 
 
 
In Figure 4.18, the results obtained by methods 1 and 2 overlap and are seen 

as one curve. In order to compare the results more clearly, a percent 

difference is calculated, in a similar way to Equation (4.2.1.1), at each grid 

point in the axial direction: 
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  100
1

21% 



resultmethod

resultmethodresultmethodValueAbsoluteDifference  

              (4.2.3.1) 

 

The variation of percent difference with the axial coordinate is given in Figure 

4.19: 

 
 
 

 
 

Figure 4.19 Change of Percent Difference with Axial Coordinate for 0
xx  in 

Sample Problem 1 

 
 
 
This graph shows that, maximum percent difference between the results of 

two methods occur near the boundaries with a value of 2.6%. As moving away 

from the boundaries, this value reduces below 0.5%, which reveals that either 

of these methods can be used as an alternative to the other. 
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Furthermore, calculation of overall (total) strains is discussed in Sections 2.2.3 

and 3.7. Variation of overall strain in the x  direction  xx  with axial coordinate 

at 0  and for layer 1 (first layer in the cylinder) are calculated by using 

method 1, method 2 and NASTRAN. In Figure 4.20, the results are given for 

comparison. For the analysis, problem described in 4.2.1 is used and 

comparison of two methods with NASTRAN results are made at the 

NASTRAN element centroids, as explained for the stress calculation in 

Section 4.2.1. 

 
 
 

 
 

Figure 4.20 Comparison of Solutions for Variation of xx  with x for Sample 

Problem 1 

 
 
 
In Figure 4.20, again similar to the previous results, the overall strains 

obtained from method 1, method 2 and NASTRAN overlap. In order to 

compare the results of the two methods with NASTRAN results, two percent 
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differences are calculated, in a similar way to the Equation (4.2.1.1), for each 

grid point in the axial direction: 

 

  1001.1% 



resultNASTRAN

resultNASTRANresultmethodValueAbsDifference  

              (4.2.4.1) 

  1002.2% 



resultNASTRAN

resultNASTRANresultmethodValueAbsDifference  

              (4.2.4.2) 

 

The variations of the percent differences with axial coordinate are very much 

similar to each other. The variation is symmetrical with respect to the mid-span 

and  reaches stable values at some distance away from the boundary. These 

stable values are both below 1%, and reached around 1.0x m. The variation 

of percent differences with axial coordinate in the interval [0, 0.12] is given in 

Figure 4.21: 
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Figure 4.21 Change of Percent Differences with Axial Coordinate for xx  in 

Sample Problem 1 

 
 
 
The percent differences are around 5% at the first point, oscillate as one 

moves away from the boundary, and eventually reach stable values below 1%. 

It is seen from Figure 4.21 that method 1 and method 2 results deviate almost 

by the same amount from the NASTRAN results, except for slight differences 

at around 07.0x . This result is expected, since it is shown in Figure 4.19 

that two methods deviate very little (less than 0.5 %) from each other. As seen 

from Figure 4.21, for this particular example, method 2 deviates less from 

NASTRAN solution than method 1. 

 

In addition, it is explained in Section 2.3.2 that stresses are related to strains 

through the transformed material constants ijQ . Furthermore, percent change 
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of xx  variation with axial coordinate is less than 1%, as shown in Figure 4.8. 

Therefore, the percent difference of xx  also being less than 1% is justifiable. 

 

Since stresses are calculated using strains as explained in Section 3.7, the 

results shown in this section are similar for stresses. 

 

 

4.2.4. Effect of Number of Segments on the Results  

 

 

In Sections 4.2.1 and 4.2.2, the solutions are performed for 300 segments 

when the code is used and similarly, cylinder is divided into 300 elements in 

the axial direction when NASTRAN is used. In this section, in order to 

investigate the effect of number of segment on the results, the problem in 

Section 4.2.2 is re-solved with various numbers of segments using the code 

developed in the thesis.  

 

In Figure 4.22, variations of the mid-surface displacements in the thickness 

direction  0
u  with axial coordinate at 0  are given for 300, 400, 600 and 

900 segments (M). 
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Figure 4.22 Variation of 0
u  with x for Various Segments Numbers  

 
 
 
Similar to the results obtained in Sections 4.2.1 and 4.2.2, the results overlap 

such that they cannot be distinguished from each other visually. Therefore, 

percent differences are again defined in order to estimate the deviations of 

results from each other. In percent difference calculation, reference is chosen 

to be the solution with 900 segments, which is the most accurate result case. 

Consequently, the percent difference definitions appear as 

 

100

900

900
% 









































M
forresults

XM
forresults

M
forresults

ValueAbsolute
DifferenceX   (4.2.4.1) 

 

where  600,400,300X  
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In Figure 4.23, percent differences of u  calculated using Equation (4.2.4.1) 

for the given number of segments are shown as a variation of the axial 

coordinate x . 

 
 
 

 
 

Figure 4.23 Percent Difference Results of 0
u  vs. Axial Coordinate for Various 

Segments Numbers 

 
 
 
The deviations decrease expectedly as the number of segments approach 900 

which is the reference number of segments. Still, even for the smallest 

segments number 300, the maximum difference is 0.004%; and it gets even 

smaller as the axial coordinate x  increases. This shows that results do not 

exhibit significant changes for this problem as the segments number exceeds 

300, which means that sufficient accuracy is reached. Another point of interest 
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is the position where the maximum percent difference occurs, and this will be 

elaborated soon. 

 

In Figure 4.24, variations of the axial stress  xx  with axial coordinate at 

0  are given for 300, 400, 600 and 900 segments (M) at layer 1 (first layer 

in the cylinder). 

 
 
 

 
 

Figure 4.24 Variation of xx  with x  for Various Segments Numbers 

 
 
 
Again in order to distinguish the deviations of results from each other, percent 

differences given by Equation (4.2.4.1) are calculated. In Figure 4.25, percent 

differences are given as a function of axial coordinate for the same number of 

segments 
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Figure 4.25 Percent Difference Results of xx  vs. Axial Coordinate for 

Various Segments Numbers 

 
 
 
It can be seen from Figure 4.25 that percent differences are generally below 

0.1%, and again the deviations decrease as the number of segments 

approach the reference value of 900 

 

However, in Figure 4.25, there is a special point of interest which is at 

66.0x . It can be seen from Figure 4.24 that this point is the coordinate 

where xx  values change sign, going from positive values to negative values. 

Furthermore, if Figure 4.22 and Figure 4.23 are examined carefully, percent 

differences of u  results for all segments numbers reach their maximum 

values also at the point where u  values move from negative values to 
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positive values. This phenomenon was also observed when viewing the 

results in Section 4.2.2 and the reasons were explained in detail. The same 

discussion will not be given here in order to avoid repetition. However, it 

should be emphasized once again that the results do not deviate significantly 

from each other, but the difference is a result of the numerical error arising 

from the definition of percent difference. 

 

It can be concluded that the results obtained by the multisegment integration 

method do not change significantly beyond a particular number of segments. 

For the current problem, sufficient accuracy is obtained when the shell is 

divided into 300 segments. However, it should be noted that 300 segments is 

an arbitrary number that was selected at the beginning of the comparison 

studies, and in practice number of segments can be decreased to low values 

and still accurate results can be obtained. Because in the multi-segment 

numerical integration technique by decreasing the number of segments one 

does not actually reduce the accuracy as in finite element analysis. Solutions 

at the ends of the shell segments will still have sufficient accuracy but the 

resolution will be lowered. Therefore, one has to calculate the fundamental 

variables at the intermediate locations afterwards by making use of the 

fundamental variables determined at the end of the shell segments.  

 

The behaviour of the axial variations of the variables must be considered while 

deciding the number of segments the shell is divided into for the solution. For 

these particular problems, solutions performed for less than 300 segments 

along the shell axial direction may cause peaks existing in the solution curves 

due to the bending boundary layers nearby the boundaries be missed and 

therefore prevent to obtain the correct variations in the axial direction. 
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CHAPTER 5 

5. CASE STUDIES FOR CIRCULAR CYLINDRICAL 

SHELLS OF REVOLUTION 

CASE STUDIES FOR CIRCULAR CYLINDRICAL SHELLS 
OF REVOLUTION 

 

 

 

5.1. Introduction 

 

 

The analysis method developed in the present study is explained in detail in 

Chapter 3 and its implementation is carried out by developing a computer 

code, which is verified using the finite element method solver NASTRAN in 

Chapter 4. In this chapter, a number of cases are analysed by using the code 

developed and the results obtained are discussed. As it was mentioned 

previously, one of the most commonly occurring shells of revolution 

geometries is circular cylinder and many engineering problems involve this 

geometry. Therefore, circular cylindrical shells are analysed in the cases 

studied in this chapter. 

 

The case studies begin with the investigation of temperature change effects 

through the thickness, where a temperature difference varying with thickness 

is applied as a thermal load to the body analysed. Next, a problem in which 

the effects of variable mechanical loads in axial direction is considered by 

applying pressure to a specific region along the cylinder axis. The analyses 

continue with the examination of a cylindrical shell under temperature loading, 

which is unsymmetrical in the circumferential direction and with the study of 

transverse shear effects on the body under a given type of loading. This 
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chapter ends with a specific application of the method to an aerospace 

structure, namely a solid propellant rocket motor body. 

 

 

5.2. Effect of Temperature Change through the Thickness 

 

 

In Section 2.3.2, it is explained that for shells of revolution it is very probable to 

have a varying temperature difference across the thickness depending on the 

exposure of the shell to the external environment. In this section, a cylindrical 

pipe which is subject to different temperatures inside and outside the cylinder 

is analysed. In order to demonstrate the effect of temperature change with 

thickness clearly, temperature differences in axial and tangential directions are 

kept constant. 

 

For this problem, four different cases in terms of loading are compared. In the 

first case, a temperature difference of 100°C, which is constant through the 

thickness, is considered. Physically, this problem can be an example for a thin 

cylindrical shell after the steady state is reached and constant temperature 

distribution is attained.  

 

However, consider a case in which a pipe shaped cylindrical laminated shell is 

manufactured at room temperature and exposed to a sudden temperature 

change subsequently. If there is a heat source or heat sink inside the cylinder, 

the temperature difference will be less inside compared to the outside. For 

such a case, linearly varying temperature change through the thickness may 

be assumed. As the second, third and fourth cases, a cylindrical pipe subject 

to varying temperature differences through the thickness are considered. 

These cases are given in Table 5.1 
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Table 5.1 Temperature Difference Values for Analysis Cases 1 – 4 

 
Cases Temperature Differences 

Case 1  1T  CTT outin  100  

Case 2  2T  CTin  100  , CTout  200  

Case 3  3T  CTin  100  , CTout  250  

Case 4  4T  CTin  100  , CTout  300  

 
 
 
As it was explained in Section 2.3.2, thermal loads were derived by assuming 

linear variation of the temperature across the shell thickness. The thickness 

coordinate   is equal to zero at the mid-surface of the laminate, and its 

positive direction is towards outer surface of the shell. Thus, temperature 

difference can be written as a linear function of  , using 

 

    inin
inout

inout TTTT 



 


              (5.2.1) 

 

where in  and out  are the   values at the inner and outer surfaces of the 

laminate, respectively. The temperature variation across the thickness, 

material data used, geometric properties, and boundary conditions are 

summarized in Table 5.2. Change of temperature difference with the thickness 

coordinate   is also shown in Figure 5.1. 
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Figure 5.1 Change of Temperature Difference with Thickness for Cases 1 – 4  

 
 
 

Table 5.2 Analysis Data for the Problem 5.2 

 
Geometry Circular Cylinder 

Radius 0.2 m 

Axial Length 1.0 m 

Number of segments 300 

  

Material  

Ply Material MR50/LTM25 Carbon Epoxy Prepreg [23] 

11E  155 GPa 

22E  7.31 GPa 

12  0.345 
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Table 5.2 (continued) 

 
12G  4.19 GPa 

13G  4.19 GPa 

23G  3 GPa 

Ply thickness 0.146 mm 

Ply density    1520 kg/m3 

11  -0.43 x 10-6 1/°C  

22  37.4 x 10-6 1/°C  

Laminate  

Number of Layers 4 

Ply Orientation [0°/45°/90°/0°] 

  

Loads  

1T  (constant along ) 100°C 

 22 TT       5107123.11502T  

 33 TT       51056849.21753T  

 44 TT       5104247.32004T  

  

Boundary Conditions clamped-clamped 

left end 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u








 

right end 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u








 

 
 
 
In Figure 5.2, change of 0

u  with the axial coordinate at the tangential position 

 0  is given for the cases described above. 
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Figure 5.2 Comparison of Solutions for Variation of 0
u  with x for Cases 1 – 4 

 
 
 
In Figure 5.3, change of 0

xu  with the axial coordinate at the tangential position 

 0  is given for the Cases 1 – 4. 
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Figure 5.3 Comparison of Solutions for Variation of 0
xu  with x for Cases 1 – 4 

 
 
 
It should be recalled that the displacements 0

u  and 0
xu  are defined at the mid-

plane of the laminate. It is seen from these figures that the maximum values of 

both 0
u  and 0

xu  increase with increasing case number, i.e. as the temperature 

difference increase going from inside to the outside the shell. In addition to 

that, 0
u  displacements are greater for the cases with higher temperature 

differences throughout the shell; and the same conclusion is also true for the 

absolute values of xu  displacements, i.e. the absolute values of 0
xu  

displacements are greater for the cases with higher temperature differences 

throughout the shell as expected. It should also be noted the bending 

boundary layer near the boundary edges is clearly seen.  

 

In Figure 5.4, change of xx  at layer 4 with the axial coordinate at the 

tangential position  0  is given for the Cases 1 – 4. For the current 
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analysis, thermal loads are mainly dominated by the temperature difference 

outside the shell. Naturally, the effect of this is seen on the layer adjacent to 

the outer surface of the laminate more clearly. Therefore, layer 4 is chosen for 

the output location of results. The variation of xx  with the axial coordinate is 

symmetrical in the axial direction and reaches a stable value at some distance 

from the boundary. This stable value is reached around 08.0x m. The 

variation of xx  with axial coordinate is given in the interval [0, 0.1] for the 

cases 1 – 4. For all the load cases, it should be stressed that the stresses are 

calculated at the mid-plane of each layer. 

 
 
 

 
 

Figure 5.4 Comparison of Solutions for Variation of xx at layer 4 with x for 

Cases 1 – 4 

 
 
 
It can be seen from Figure 5-4 that, as expected, the maximum value of xx  

increase with increasing case number, i.e. as the temperature difference 
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increases. Also the absolute values of axial stresses xx  are greater for the 

cases with higher temperature differences throughout the shell. It is again 

seen that besides the shell boundary, the axial stress exhibits a peak value at 

a section which is short distance away from boundary. This behaviour is 

typical for shells of revolution. 

 

In Figure 5.5, solutions for variation of xx  with layer number for Cases 1 – 4 

are compared. It is seen in Figure 5.4 that the axial stress is nearly constant 

with the axial coordinate x in the interval [0.1, 0.9]. Therefore, for the output of 

results an axial location in this interval is chosen at 333.0x . Since the 

problem and the loading is axisymmetric, tangential location is again taken as 

 0 . 

 
 
 

 
 

Figure 5.5 Comparison of Solutions for Variation of xx  with Layer Number for 

Cases 1 – 4 
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The graphs of Cases 2 – 4 exhibit very similar behaviour and they can be said 

to be shifted up or down with respect to each other. In Figure 5.5, it is seen 

that cases with higher temperature differences have higher axial stress values 

at each layer and this result is in agreement with the results deduced from 

previous figures. In case 1, loading is constant through the thickness and 

therefore it differs from the other load cases. Consequently, the variation of 

axial stress with the layer number is slightly different from the results of other 

cases.  

 

Absolute value of the axial stress is almost the same at layer 1 for cases 2 – 4, 

while it is higher for case 1. This character is also true at layer 2. However, at 

layers 3 and 4 effect of variable temperature difference with the thickness is 

seen more clearly. Since the temperature difference increases at the outer 

layers as the case number is increased, the axial stresses also increase at the 

outer layers as the case number is increased. 

 

 

5.3. Effect of Pressure on a Specific Region in the Axial 
Direction 

 

 

One of the advantages of the multi-segment method of Integration is that 

loads can be defined as a function of the meridional coordinate by specifying 

mechanical and thermal loads at the end points of the shell segments, as 

previously emphasized in Section 3.5. In addition, any analytical function can 

be used to define the meridional variation of the loads. This has been shown 

for a general case in Section 4.2.2. 

 

In many engineering problems, cylindrical shells are subject to mechanical 

loads exerted on a specific region along the body, such as bearing loads. For 

the current problem, a ring pressure is applied on the cylinder. In order to 

demonstrate the effect of local pressure as a function of axial coordinate 
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clearly, pressure in tangential direction is kept constant. Region where the 

pressure is applied at is given in Table 5.3, along with the other data used in 

the analysis. 

 
 
 

Table 5.3 Analysis Data for the Problem 5.3 

 
Geometry Circular Cylinder 

Radius 0.2 m 

Axial Length 1.0 m 

Number of segments 300 

  

Material  

Ply Material MR50/LTM25 Carbon Epoxy Prepreg [23] 

11E  155 GPa 

22E  7.31 GPa 

12  0.345 

12G  4.19 GPa 

13G  4.19 GPa 

23G  3 GPa 

Ply thickness 0.146 mm 

Ply density    1520 kg/m3 

11  -0.43 x 10-6 1/°C  

22  37.4 x 10-6 1/°C  

Laminate  

Number of Layers 4 

Ply Orientation [0°/45°/90°/0°] 
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Table 5.3 (continued) 

 
Loads  

p  














xif
xifkPa

xif

5.00
5.03.0200

3.00
 

  

Boundary Conditions clamped-clamped 

left end 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u








 

right end 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u








 

 
 
 
In addition, the same problem is also analysed with NASTRAN by the linear 

static solver sol 101, in order to make a comparison. Same finite element 

mesh is generated as in the analyses of the problems given in Sections 4.2.1 

and 4.2.2.  

 

The effect of pressure applied at a local region can best be visualized by the 

variation of 0
u  with the axial coordinate. This is given in Figure 5.6 at the 

tangential position  0 . The results of both NASTRAN and the code are 

given in this figure for comparison 
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Figure 5.6 Comparison of Solutions for variation of 0
u  with x for the Problem 

in Section 5.3 

 
 
 
In Figure 5.6, the effect of applied pressure between 3.0x  and 5.0x  is 

seen very clearly, which causes higher deformations in the   direction in that 

area. In addition, the results of NASTRAN and the code overlap and are seen 

as one curve. In order to compare the results more clearly, percent difference 

given by equation (4.2.1.1) is calculated for each grid point in the axial 

direction. This is given in Figure 5.7. 
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Figure 5.7 Change of Percent Difference with Axial Coordinate for 0
u  the 

Problem in Section 5.3 

 
 
 
Maximum percent difference between the results of NASTRAN and the code 

is 0.1%, and the percent difference is below 0.02% at most grid points. This 

shows that NASTRAN and the code find almost the same values, and the 

difference is most probably due to numerical calculations, similar to the results 

found in 4.2.1 and 4.2.2. 

 

In Figure 5.8, variation of 0
xu  with the axial coordinate at the tangential position 

 0  is given. The axial displacement calculated by the present code and 

NASTRAN are overlaid on the same figure. 
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Figure 5.8 Variation of 0
xu  with x for the Problem in Section 5.3, solved by the 

code and NASTRAN 

 
 
 
Effect of pressure applied to the local region is revealed in this figure by the 

change in the slope of displacement values when approaching the interval 

[0.3, 0.5] from the left and right. Also it should be noted that 0
xu  values are 

much lower than 0
u  values as far as the orders of magnitude are considered. 

Similar to the previous results, code results and NASTRAN results match 

perfectly. 

 

In Figure 5.9, variation of the stress in the axial direction  xx  with axial 

coordinate at the tangential position 0  and for layer 4 (layer adjacent to 

the outer surface of the cylinder) is given both for the code and NASTRAN 

solutions. 
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Figure 5.9 Variation of xx  with x for the Problem in Section 5.3, solved by the 

code and NASTRAN 

 
 
 
Effect of locally exerted pressure on a region along the axis is also seen 

clearly in Figure 5.9. Besides the jumps in the axial stress at the boundaries of 

the interval where the stress is applied, stresses in the interval [0.3, 0.5] are 

also higher than the stresses elsewhere on the cylinder, as expected. Similar 

to the previous results, code results and NASTRAN results match perfectly. 

 

In Figure 5.10, variation of the stress in the tangential direction    with 

axial coordinate at the tangential position 0  and for layer 4 (layer adjacent 

to the outer surface of the cylinder) is given both for the code and NASTRAN 

solutions 
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Figure 5.10 Variation of   with x for the Problem in Section 5.3, solved by 

the code and NASTRAN 

 
 
 
Comparing Figure 5.10 with Figure 5.6, it is seen that behaviour of  xu  and 

 0,x  curves are very similar. This can be explained as follows. In Equation 

(2.2.3.13), 0
  is given as a linear function of u  and   0u . Current 

problem is axisymmetric, so 00  u . Therefore 0
  is linearly related to 

u  only. On the other hand, in Equation (2.3.2.7),   is given as a linear 

function of xx ,  , and  x , which are also linearly related to 0
xx , 0

 , and 

0
 x  through the Equations (3.7.1) – (3.7.3), respectively. In Figure 5.8, it is 

seen that xu  is very small compared to u , and it can be shown that u  is 

also negligibly small compared to u . Therefore, u  is the dominant term in 

the calculation of the strains 0
xx , 0

 , and 0
 x , and consequently  . And 
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since for the particular problem   is linearly related to u ,   curve in 

Figure 5.10 and u  curve in Figure 5.6 show similar behaviour. 

 

 

5.4. Cylinder under Unsymmetrical Loading 

 

 

In order to apply unsymmetrical loads to the shell of revolution, loads that are 

given as functions of circumferential coordinate   are expanded using Fourier 

series, as explained in Section 3.3. In this section, temperature difference is 

applied as a function of   to the laminated circular cylindrical shell, whose 

material and geometrical properties are given in Table 5.4. Table 5.4 also 

summarizes the temperature load applied and the boundary conditions. In 

order to demonstrate the effect of temperature difference as a function of   

clearly, temperature difference is taken as constant along the axial direction 

and also kept constant in thickness direction. 

 
 
 

Table 5.4 Analysis Data for the Problem 5.4 

 
Geometry Circular Cylinder 

Radius 0.2 m 

Axial Length 1.0 m 

Number of segments 300 

  

Material  

Ply Material MR50/LTM25 Carbon Epoxy Prepreg [23] 

11E  155 GPa 

22E  7.31 GPa 
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Table 5.4 (continued) 

 
12  0.345 

12G  4.19 GPa 

13G  4.19 GPa 

23G  3 GPa 

Ply thickness 0.146 mm 

Ply density    1520 kg/m3 

11  -0.43 x 10-6 1/°C  

22  37.4 x 10-6 1/°C  

Laminate  

Number of Layers 4 

Ply Orientation [0°/45°/90°/0°] 

  

Loads  

T  
   
   










2,sin70
,0sin300

if
if

 

  

Boundary Conditions clamped-clamped 

left end 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u








 

right end 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u








 

 
 
 
Temperature difference given as a function of circumferential coordinate   is 

shown in Figure 5.11. Temperature differences caused by convective flows 

around the body can be modelled by sinusoidal functions. And this load case 

can physically be an example to a cylindrical pipe subject to different 

temperatures differences from both sides. 
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For the expansion of this function using Fourier series, a final circumferential 

wave number needs to be determined. Mathematically, in Fourier series 

expansion, circumferential wave number starts from 0 and goes to infinity, as 

shown by Equation (3.3.41). However, Fourier series converges to the original 

function after a certain circumferential wave number is reached. For the 

temperature difference function given in Table 5.4, this number is found to be 

14, as depicted in Figure 5.11. 

 
 
 

 
 

Figure 5.11 Original Temperature Difference Function and its Fourier Series 

Expansion at n=14 in Problem 5.4 

 
 
 
The Fourier series is expanded by Equation (5.4.1) and using the engineering 

calculation software Mathcad [29]. 

 

      nfnfff ns
n

nc sincos
14

1
0  



            (5.4.1) 
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Coefficients 0f , ncf  and nsf   14,...,2,1n  are calculated as explained in 

Section 3.3 and by using Equations (3.3.46) – (3.3.48). Fourier components 

are summarized are in Table 5.5. 

 
 
 

Table 5.5 Coefficients of the Temperature Difference Function Expanded 

using Fourier Series 

 

 211.730 f    
 01 cf   1851 sf  

 8.482 cf   02 sf  

 03 cf   03 sf  

 762.94 cf   04 sf  

 05 cf   05 sf  

 184.46 cf   06 sf  

 07 cf   07 sf  

 324.28 cf   08 sf  

 09 cf   09 sf  

 479.110 cf   010 sf  

 011 cf   011 sf  

 024.112 cf   012 sf  

 013 cf   013 sf  

751.014 cf  014 sf  
 
 
 
Convergence of the Fourier series to the original function as the 

circumferential wave number increases is shown in Figure 5.12. In order to 

distinguish graphics from each other visually, they are given in the interval 

[170°, 190°] 
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Figure 5.12 Fourier Series Expansion of the Temperature Difference for 

Various Circumferential Wave Numbers 

 
 
 
In this section, effect of circumferential wave number on the results when 

modelling the unsymmetrical loading with Fourier series is also investigated. 

Therefore, although the results are primarily given for the final circumferential 

wave number 14n , results for the circumferential wave numbers less than 

14 are also given to demonstrate the change of results with circumferential 

wave number n . In Figure 5.13, variation of 0
u  with axial coordinate x  is 

given for the tangential location 0  for a number of circumferential wave 

numbers. 
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Figure 5.13 Variation of 0
u  with x  for Various Circumferential Wave Numbers 

in Problem 5.4 

 
 
 
As it is shown in Figure 5.13, the displacement in the thickness direction 0

u  

converges as the circumferential wave number approaches 14n . This 

behaviour is in accordance with the actual Fourier series representation of the 

temperature variation given in Figure 5.11. Figure 5.13 also shows that 

maximum displacement is obtained at 5.0x . Therefore, Figure 5.14, which 

shows the variation of 0
u  with   for various circumferential wave numbers, is 

plotted for 5.0x . 
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Figure 5.14 Variation of 0
u  with   for Various Circumferential Wave Numbers 

in Problem 5.4 

 
 
 
Again, it is seen that thickness displacement u  values converge to the 

solution as the circumferential wave number approaches 14n . Maximum 

percent difference of the solutions for 12n  and for 14n  is less than 5%. 

And also since the solution for 14n  can not be graphically distinguished 

from the solution for 12n  and can barely be distinguished from the solution 

for 10n , it is concluded that at 14n  solution converges. Moreover, it was 

also shown in Figure 5.11 and Figure 5.12 that the Fourier series of the 

loading function converges to the original function at a circumferential wave 

number of 14. 

 

From Figure 5.11 and Figure 5.14, it is apparent that the maximum lateral 

displacement locations coincides with the angular positions  0  (and 360 ) 
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and  180 , where the temperature difference changes sign. In Figure 5.15, 

the variation of tangential displacement u  with tangential coordinate   for 

various circumferential wave numbers is given at 5.0x . 

 
 
 

 
 

Figure 5.15 Variation of 0
u  with   for Various Circumferential Wave Numbers 

in Problem 5.4 

 
 
 
In Figure 5.15, it is also seen that tangential displacement 0

u  values converge 

at about 14n . After the solution is completed, by using the axial, tangential 

and thickness displacements, the displaced positions of the grids around the 

circumference of the cylinder can be calculated in three dimensional space. 

However, since the loading is constant in axial direction and axial 

displacement 0
xu  is small compared to 0

u  and 0
u , axial displacements are 
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neglected. Thus, the displaced positions of the grids around the circumference 

are calculated in two dimensions, at the semi span location, 5.0x .  

 

New positions of the grids constitute the deformed shape of the body at 

5.0x . The deformed shape is given in Figure 5.16, along with the 

undeformed shape. However, since the magnitude of the displacements are 

on the order of millimetres and therefore the deformed shape cannot be 

distinguished from the undeformed shape, the displacements are multiplied by 

10 and consequently the deformed shape is scaled up to 1/10 in order to 

exhibit the deformation clearly. It also should be noted that Figure 5.16 shows 

the mid-plane displacements. 

 
 
 

 
 

Figure 5.16 Deformed and Undeformed Shape of the Cylinder Cross-Section 

at 5.0x  (Displacement Scale: 1/10) 
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In conjunction with Figure 5.14, it is seen that maximum displacements occur 

near the transition regions (  0 , 180 , 360 ) where temperature difference 

changes from positive to negative values. It should also be noted that the 

current case studies are analysed under linear elasticity assumptions. The 

magnitudes of the loads imposed should be checked to see if the resulting 

displacements can be regarded as small displacements and linear analysis is 

still applicable. However, in this section the aim was to demonstrate the 

application of the multi-segment numerical integration technique in the static 

solution of cylindrical shell of revolution subject to different load types 

including non-symmetric loads. 

 

In Figure 5.17, the variation of axial stress xx  with the axial coordinate x  is 

given for various circumferential wave numbers. The stress results are given 

at  0  and in layer 4 (layer adjacent to the outer surface of the cylinder). 
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Figure 5.17 Variation of xx  with x  for Various Circumferential Wave 

Numbers in Problem 5.4 

 
 
 
It is seen that axial stress xx  values also converge to the solution at about 

14n  as the circumferential wave number n increases. Maximum stress is 

obtained at the boundaries and the variations are symmetric with respect to 

5.0x  plane. Figure 5.18 and Figure 5.19 show the variation of xx  and   

respectively with   for the same circumferential wave numbers, at 5.0x  

and in layer 4 (layer adjacent to the outer surface of the cylinder). 
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Figure 5.18 Variation of xx  with   for Various Circumferential Wave 

Numbers in Problem 5.4 
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Figure 5.19 Variation of   with   for Various Circumferential Wave 

Numbers in Problem 5.4 

 
 
 
It is seen in Figure 5.18 that axial stress xx  is maximum in magnitude at 

 0  and at 180 , where positive temperature difference to negative 

temperature difference transitions occur, similar to the variation of u  with  . 

Also xx  distribution curve has a local maximum at  90  where the 

temperature difference is maximum  C300  around the circumference and 

has a local minimum at  270  where the temperature difference is 

minimum  C 70  around the circumference of the cylindrical shell. 

 

As opposed to u  variation, which is zero at  90  and at  270 ,   

values take the minimum and maximum values at these coordinates 

respectively, as shown by Figure 5.19.  
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5.5. Transverse Shear Effects 

 

 

In Chapter 2, classical shell theory equations are modified such that 

transverse shear strains   and   are taken non-zero in order to include 

the transverse shear effects in the formulation. Therefore, stresses and strains 

arising from the existence of transverse shear effects can be found. In this 

section, these results are demonstrated.  

 

In order to obtain not-too-low transverse shear stress values, a laminate 

consisting of two different lamina materials is analyzed, with a temperature 

loading, which is changing linearly along the shell in the meridional direction. 

The material data used, geometric properties, loads and boundary conditions 

are given together in Table 5.6. 

 
 
 

Table 5.6 Analysis Data for the Problem 5.5 

 
Geometry Circular Cylinder 

Radius 0.2 m 

Axial Length 1.0 m 

Number of 

segments 300 

  
Material Laminate Consisting of Two Different Lamina materials 

Ply Material 1 MR50/LTM25 Carbon Epoxy Prepreg [23] 

11E  155 GPa 

22E  7.31 GPa 
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Table 5.6 (continued) 

 
12  0.345 

12G  4.19 GPa 

13G  4.19 GPa 

23G  3 GPa 

Ply thickness 0.146 mm 

Ply density    1520 kg/m3 

11  -0.43 x 10-6 1/°C  

22  37.4 x 10-6 1/°C  

  

Ply Material 2 CFS003/LTM25 Carbon Epoxy Fabric Prepreg [23] 

11E  53.6 GPa 

22E  55.2 GPa 

12  0.042 

12G  2.85 GPa 

13G  2.85 GPa 

23G  2.15 GPa 

Ply thickness 0.230 mm 

Ply density    1450 kg/m3 

11  3.83 x 10-6 1/°C  

22  3.80 x 10-6 1/°C  

  

Laminate  

Number of Layers 5 

Ply Materials Material 1/ Material 2/ Material 1/ Material 2 /Material 1 

Ply Orientation [0°/30°/-30°/45°/60°] 

 
 
 



 
 
 174 

Table 5.6 (continued) 

 
Loads  

T  (constant 

along   and  , 

variable in x ) 

CT  1000         at 0x ,  

       C 0             at 1x ,  

changing linearly in between 

  

Boundary 

Conditions 
clamped-free 

left end 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u









 

right end 
             
      0,

,


sxcxsxx

cxxsxcxsxxcxxsc

M,MM

,MN,N,N,N,Q,Q





 
 
 
 
In Figure 5.20 and Figure 5.21, variation of the mid-surface displacements in 

the thickness direction  0
u  and in the axial direction  0

xu  respectively with 

axial coordinate at 0  is given in order to demonstrate the deformation of 

the shell. 
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Figure 5.20 Variation of 0
u  with x for Problem 5.5 

 
 
 

 
 

Figure 5.21 Variation of 0
xu  with x for Problem 5.5 
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It is seen from Figure 5.21 that since the boundary at the right is free, cylinder 

expands in that direction. 0
xu  is observed to increase quadratically along the 

cylinder axis. In addition to that, since the temperature difference decreases 

linearly from the left boundary to the right boundary, mid-surface displacement 

in the thickness direction  0
u  also decreases linearly in the axial direction, 

subsequent to reaching a peak value near the fixed boundary. 

 

In Figure 5.22 and Figure 5.23, variation of the transverse force resultant per 

unit length  xQ  with axial coordinate is given at 0 . In order to display the 

results clearly, the cylinder axis is divided into two intervals and given in two 

separate figures. 

 
 
 

 
 

Figure 5.22 Variation of xQ  with x in the Interval [0, 0.1] for Problem 5.5 
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Figure 5.23 Variation of xQ  with x in the Interval [0.1, 1] for Problem 5.5 

 
 
 
It should be emphasized that 0xQ  at the right boundary because that 

boundary is not constrained and therefore all force and moment resultants are 

zero. Apart from that, transverse force resultant variation is almost constant 

away from the boundaries with a value of approximately 8.65 N/m. At the fixed 

boundary, xQ  is maximum and decreases steeply to its constant value. At 

the other end, it makes a small peak before its final value at the boundary. 

 

In Figure 5.24 and Figure 5.25 variation of transverse shear stress  x with 

the axial coordinate x at 0  is given. Figure 5.26 and Figure 5.27 give the 

variation of transverse shear stress   with the axial coordinate x at 0 .  

The transverse shear stresses are plotted  for layer 3 which is the middle layer 

of the laminated shell wall. Once again it should be stressed that stresses are 

calculated at the mid-surface of the third layer, as shown in Figure 2.6. 
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Similar to the plots for transverse shear force resultant xQ , in order to display 

the variation of the transverse shear stresses  clearly, the cylinder axis is 

divided into two intervals and stress results are given in two separate figures 

for each transverse shear stress. 

 
 
 

 
 

Figure 5.24 Variation of  x  with x in the Interval [0, 0.5] for Problem 5.5 
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Figure 5.25 Variation of  x  with x in the Interval [0.5, 1] for Problem 5.5 

 
 
 

 
 

Figure 5.26 Variation of   with x in the Interval [0, 0.5] for Problem 5.5 
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Figure 5.27 Variation of   with x in the Interval [0.5, 1] for Problem 5.5 

 
 
 
The variation of transverse shear stresses  x  and   are similar to each 

other and they also show similar behaviour with the transverse force resultant 

per unit length xQ . However, transverse shear stresses do not vanish at the 

right boundary, since transverse shear strains are not zero. Transverse shear 

stresses are maximum at the fixed boundary and make a small peak before 

the free boundary. Away from the boundaries transverse shear stresses 

change slightly, with average values of 21500 Pa and -36200 Pa, respectively. 

However, it should be noted that the transverse shear stresses at the free end 

show sharp drops. Furthermore, transverse shear strains show similar 

variations, i.e. they also show sharp drops at the free end and change slightly 

away from the boundaries, as expected. 

 

It should also be noted that in the present study first order transverse shear 

deformation theory is used. As it is explained in Section 2.3.3, first order 
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theory assumes constant transverse shear strain through the thickness and 

consequently, for each layer a constant transverse shear stress is calculated. 

Therefore, the first order theory is not adequate to represent the variation of 

the transverse shear stress through the thickness, because for free inner and 

outer surfaces the transverse shear stresses must vanish at the inner and 

outer surfaces. However, in layers near the middle surface of the shell wall the 

transverse shear stresses calculated based on the first order shear 

deformation theory is quite satisfactory. And the stress results given in this 

section are for the 3rd layer, which contains the middle surface. One future 

work that might be worked on could be to derive the transverse shear stresses 

from the in-plane stresses that are already determined. This would be a similar 

approach used in the derivation of the famous transverse shear stress formula 

for a beam under transverse loading. Since the transverse shear stiffness is 

already incorporated in the analysis, the fundamental shell variables and the 

in-plane stresses are more accurate compared to the case in which transverse 

shear deformation is neglected. After determining the in-plane stresses the 

transverse shear stresses can be determined by imposing the equilibrium of 

the infinitesimal shell element. This point is further discussed in Chapter 7. 

 

 

5.6. An Aerospace Structures Application 

 

 

Laminated circular cylinders have a vast usage area in aerospace structures, 

as it is stated earlier. On of the most common applications is the solid 

propellant rocket motor. A solid-propellant rocket motor consists of a casing, 

filled with a solid propellant charge, called the grain, which contains all the 

chemical constituents (fuel plus oxidizer) for complete burning. When ignited, 

the propellant compounds burn rapidly, expelling hot gases from a nozzle to 

produce thrust. The propellant burns from the center out toward the sides of 

the casing. The shape of the center channel determines the rate and pattern 

of the burn, thus providing a means to control thrust. Unlike liquid-propellant 
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engines, solid-propellant motors can't be shut down. Once ignited, they burn 

until all the propellant is exhausted. 

 
 
 

 
 

Figure 5.28 A solid Propellant Rocket Motor 

 
 
 
Solid propellant rocket motors can be used in long range ballistic missiles as 

well as short range ballistic missiles. In any case, motors can be analysed 

statically when they reach steady state during the cruise phase of the mission 

profiles. 

 

In steady flight, two major types of loading are exerted on the rocket motor: 

pressure and temperature. In the present study other loads, which can depend 

on many factors such as the rocket motor and mission profile, are neglected.  
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Maximum expected operating pressure of a rocket motor also depends on 

many factors such as the rocket motor geometry and grain size [39], and 

therefore it is determined by ballistic analyses, which is beyond the scope of 

this thesis. Therefore, in the present study, pressure exerted on the rocket 

motor in steady flight is assumed to be 50 bars ( 6105  Pa). 

 

Another type of loading to be considered is the one arising from the 

temperature. Like pressure, temperature inside the rocket motor depends on a 

number of factors such as grain and oxidizer [39], which is again determined 

by thermal analyses and therefore is a design parameter. However, in some 

references such as [40] it is stated that temperature inside a rocket motor can 

reach 3000 K. It should be noted that in real cases this temperature is 

expected to be on the solid propellant surface and on the motor body this 

value decreases to lower values due to thermal insulation. For the present 

case, existence of thermal insulation and the nozzle is ignored and 

temperature is assumed to be uniformly distributed inside the rocket motor.  

 

Consider a case in which the rocket motor is assembled at 25°C at sea level 

and cruising at an altitude of 10000 m, where the ambient temperature is 

about -50°C [41]. Also, if the temperature inside the cylinder is assumed to be 

2727°C (3000 K), there exists a sharp temperature difference between inside 

and outside the cylinder, inside with a temperature difference of 2702°C and 

outside with a temperature difference of -75° This can be modelled with linear 

change of temperature difference across the thickness, which is developed in 

this study. 

 

Such a solid propellant rocket motor can be assumed to be clamped at one 

end, where it is attached to the other parts of the missile and free at the other 

end. 

 

In this section, four laminate alternatives, each with a different ply orientation 

(symmetric and anti-symmetric) is analysed and the results are compared. The 
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laminate alternatives and ply orientations for each laminate is given in Table 

5.7. 

 
 
 

Table 5.7 Laminate Alternatives 

 
Laminate Material Number of Layers Ply Orientation 

Laminate 1 

MR50/LTM25 

Carbon Epoxy 

Prepreg  

See Table 5.8 

4 [45/-45/-45/45] 

Laminate 2 

MR50/LTM25 

Carbon Epoxy 

Prepreg  

See Table 5.8 

4 [0/90/90/0] 

Laminate 3 

MR50/LTM25 

Carbon Epoxy 

Prepreg  

See Table 5.8 

4 [30/45/-45/-30] 

Laminate 4 

MR50/LTM25 

Carbon Epoxy 

Prepreg  

See Table 5.8 

4 [60/30/-30/-30] 

 
 
 
Note that Laminate 1 and Laminate 2 are symmetric whereas Laminate 3 and 

Laminate 4 are anti-symmetric. The geometry, loads, boundary conditions and 

material data used in the problem is summarized in Table 5.8. 
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Table 5.8 Analysis Data For Problem 5.6 

 
Geometry Circular Cylinder 

Radius 0.04 m 

Axial Length 0.5 m 

Number of segments 300 

Material  

Ply Material MR50/LTM25 Carbon Epoxy Prepreg [23] 

11E  155 GPa 

22E  7.31 GPa 

12  0.345 

12G  4.19 GPa 

13G  4.19 GPa 

23G  3 GPa 

Ply thickness 0.146 mm 

Ply density    1520 kg/m3 

11  -0.43 x 10-6 1/°C  

22  37.4 x 10-6 1/°C  

Laminate See Table 5.8 

Loads  

T  (constant along   and  , 

changing in  )     51075514.45.1313T  

p  (constant along x and  ) 5 MPa 

Boundary Conditions clamped-free 

left end 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u








 

right end 
         
          0,, 

sxcxsxxcxxsx

cxsxxcxxsc

M,MM,MN

,N,N,N,Q,Q




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In Figure 5.29, axial variation of 0
u  at  0  is given for the laminates 

described in Table 5.7. 

 
 
 

 
 

Figure 5.29 Comparison of Solutions for variation of 0
u  with x for Problem 5.6 

 
 
 
It is seen that of all the laminates analysed, shell made of laminate 2 deforms 

least in the thickness direction, followed by the shell made of laminate 4. 

Figure 5.30 shows the axial variation of 0
xu  at  0  for laminates 1 – 4. 
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Figure 5.30 Comparison of Solutions for variation of 0
xu  with x for Problem 5.6 

 
 
 
Since the ply orientations are different for each laminate, laminate 2 expands 

while laminates 1, 3 and 4 contract. As far as the orders of magnitude are 

concerned, axial displacement of shell made of laminate 4 is the least, 

followed by the shell made of laminate 2. Depending on the design 

requirements, motor may be desired to expand or contract under such loading 

conditions. If minimum contraction is desirable, Figure 5.29 and Figure 5.30 

together reveal that shell made of laminate 4 can be chosen over the other 

three alternatives, since it contracts least in the axial direction and also 

deforms less than twice as much as laminates 1 and 3. 

 

As it is stated in Section 5.4, it should also be noted that the current case 

studies are analysed under linear elasticity assumptions. The magnitudes of 

the loads imposed should be checked to see if the resulting displacements 

can be regarded as small displacements and linear analysis is still applicable. 

However, in this section the aim was to demonstrate the application of the 
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multi-segment numerical integration technique in the static solution of a solid 

propellant rocket motor under the specified steady flight loading conditions. 

 

In addition, the ply orientations chosen here for the analysis of the laminated 

shell of revolution are also arbitrary, since the aim is again the demonstration 

of the method. The optimum ply orientation can be determined by a stacking 

sequence optimization, such as the generic algorithm developed in [42], and 

the method developed in the present study may be used as a solver 

subsequent to the optimization of stacking sequence. 

 

Axial variations of axial and tangential stresses for the shell made of laminate 

4 are given in Figure 5.31, at  0  and for layers 1 and 4 (layers adjacent to 

the inner and outer surfaces of the cylinder, respectively) 

 
 
 

 
 

Figure 5.31 Axial Variations of Axial and Tangential Stresses for Laminate 4 
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As it is seen clearly, behaviours of axial and tangential stresses are similar, 

with tangential stress being almost three times greater than the axial stress in 

terms of magnitudes. It can also be concluded that [60°/30°/-30°/-30°] 

sequence causes the tangential stresses be higher than axial stresses in 

magnitude.  

 

It should be recalled that during the analyses, temperature difference is 

modelled to be linearly changing throughout the thickness. In Figure 5.32, 

variation of axial and tangential stresses with thickness at the mid-span 

location (x = 0.25 m) and  0  is given for laminate 4. 

 
 
 

 
 

Figure 5.32 Thickness Variation of Axial and Tangential Stresses for Laminate 

4 

 
 
 
Variation of axial stress exhibits a smoother behaviour throughout the 

thickness whereas tangential stress variation shows steeper changes 

especially in the layers adjacent to the inner and outer surfaces of the cylinder. 



 
 
 190 

For both axial and tangential stresses, maximum values occur at layer 4, and 

this is also the reason to why layer 4 is chosen as one of the thickness 

positions for the axial variation of axial and tangential stresses. It is also seen 

that Figure 5.32 is in agreement with Figure 5.31: For axial stress variation, 

values are negative for layer 1 and positive for layer 4, which can be seen in 

both figures. 

 

Using the stress values obtained from the analyses, laminates can further be 

analysed for failure. Laminate strength analysis procedure for failure by itself 

is another subject of interest, in which various failure algorithms and failure 

criteria such as Tsai-Hill or maximum stress failure criterion may be employed 

[4], therefore it is not studied further in the present thesis. 

 



 
 
 191 

 

CHAPTER 6 

6. CASE STUDIES FOR GENERAL SHELLS OF 

REVOLUTION 

CASE STUDIES FOR GENERAL SHELLS OF 
REVOLUTION 

 

 

 

6.1. Introduction 

 

 

In Chapter 5, analyses are carried out with various loading cases for circular 

cylindrical shells. In this chapter, the multisegment numerical integration 

technique is applied to a shell of revolution geometry other than circular 

cylinder. In order to achieve this, a truncated spherical shell, which is shown in 

Figure 6.1, is analysed. As seen in Figure 6.1, the geometrical parameters 

used for the definition of the shell are: 

 

- The radii in meridional and tangential directions, which are constant 

and equal to the spherical radius of 1 metre; 

- Initial and final meridional positions in terms of the angles 

measured from the axis of revolution. It should be kept in mind that 

centres of radii of curvature in meridional and tangential 

coordinates R  and R  coincide for this geometry. 
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Figure 6.1 Truncated Spherical Shell Geometry Analysed in Chapter 6 

 
 
 
In the succeeding sections, the effects of various loading conditions on this 

truncated spherical shell are examined. In Section 6.2, constant pressure is 

applied to the shell, and in Section 6.3 spherical truncated shell of revolution is 

subjected to a number of temperature loads, including the case in which the 

temperature is linearly changing within the thickness. 

 

In general, in a spherical shell, orientation of fibers in the laminate may be a 

function of the meridional direction, which depends on the manufacturing 

process of the laminate. Especially, when the shell is manufactured by the 

filament winding process, the winding angle and thickness of the shell varies 

along the meridian of the shell. However, in the present study, in order to 

demonstrate the application of the multi-segment numerical integration 

technique to the static analysis of a truncated spherical shell of revolution, 

orientation of the fibers is assumed to be constant in the meridional direction. 
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6.2. Pressure Loading 

 

 

Consider the laminated truncated spherical shell described in Section 6.1 

clamped at one end and free at the other is exposed to an internal pressure of 

150 kPa which is axisymmetrically and uniformly distributed throughout the 

shell. The laminate is made of MR50/LTM25 Carbon Epoxy Unidirectional 

Prepreg [23]. The material data used, geometric properties, loads and 

boundary conditions are given in Table 6.1 

 
 
 

Table 6.1 Analysis Data for Problem 6.2 

 

Geometry 
Truncated Spherical Shell  

(See Figure 6.1) 

Radii 1 sphereRRR  m 

Starting Meridional 

Position in  
110  

Final Meridional Position 

final  
160  

Number of segments 400 

  

Material  

Ply Material MR50/LTM25 Carbon Epoxy Prepreg [23] 

11E  155 GPa 

22E  7.31 GPa 

12  0.345 

12G  4.19 GPa 

13G  4.19 GPa 
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Table 6.1 (continued) 

 
23G  3 GPa 

Ply thickness 0.146 mm 

Ply density    1520 kg/m3 

11  -0.43 x 10-6 1/°C  

22  37.4 x 10-6 1/°C  

Laminate  

Number of Layers 4 

Ply Orientation [0°/45°/90°/0°] 

Loads  

p  (constant along 

x and  ) 100 kPa 

  

Boundary Conditions clamped-free 

Starting boundary 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u








 

End boundary 
             
      0,

,


sxcxsxx

cxxsxcxsxxcxxsc

M,MM

,MN,N,N,N,Q,Q




 

 
 
 
In Figure 6.2, change of mid-surface displacement in the thickness direction 

0
u  with the meridional coordinate at the tangential position  0  is given. 
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Figure 6.2 Variation of 0
u  with   in Problem 6.2 

 
 
 
The variation of 0

u  is similar to that for circular cylinder given in Section 4.2.1 

near the starting boundary, increasing to a peak value from zero. However, 

since the end boundary is free in the current problem,  0,1600 u  is non-zero, 

therefore 0
u  decreases with an almost constant slope to its value at the end 

boundary. For the particular load case, the maximum 0
u  displacement is 

found to be approximately 3.0 mm. 

 

In Figure 6.3, change of mid-surface displacement in the meridional direction 
0
u  with the meridional coordinate at the tangential position  0  is given. 
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Figure 6.3 Variation of 0
u  with   in Problem 6.2 

 
 
 
Mid-surface displacement in the meridional direction has a quasi-linear 

change, starting from the clamped boundary until the free boundary. It also 

should be noted that mid-surface displacements in the meridional direction are 

smaller than mid-surface displacement in the thickness direction as far as the 

order of magnitudes are concerned. 

 

In Figure 6.4, change of meridional stress   with the meridional coordinate 

at the tangential position  0  and for layer 1 (first layer inside the cylinder) 

is given. It should be noted that as shown in Figure 2.6, stresses are 

calculated at the mid-surface of each layer. 

 
 
 



 
 
 197 

 
 

Figure 6.4 Variation of   with   in Problem 6.2 

 
 
 
Meridional stress variation is also similar to that for circular cylinder given in 

Section 4.2.1 near the starting boundary, increasing to a peak value from zero. 

Then it decreases gradually since the end boundary is free. 

 

In Figure 6.5, change of meridional stress   with layer number at the mid-

span location, which is 135  and tangential position  0  is given. 
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Figure 6.5 Variation of   with Layer Number in Problem 6.2 

 
 
 
In Figure 6.5, first point (point at layer number = 1) refers to the meridional 

stress at mid-surface location of the 1st layer. The same is true for the other 

layers, ranging from 2 to 4. In this sense, the linear variation between layer 

number 1 and layer number 2 refers to the linear change of meridional stress 

between the mid-surface locations of the first and second layers. Again the 

same argument is applicable to the other layers from 2 to 4. 

 

Meridional stress is highest at the layers next to the inner and outer surfaces 

of the shell and they have smaller values at the layers near the mid-surface. 

Stress variation is linear since stresses are linearly connected to overall 

strains through Equation (3.7.28) and overall strains change linearly through 

the thickness, as shown in Equations (3.7.1) – (3.7.3). 
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6.3. Temperature Loading 

 

 

In this section, the response of the truncated spherical shell to various 

temperature loads is given. For this problem, four different load cases are 

compared.  

 

In the first and second cases, temperature differences of 50°C and 200°C, 

which are constant through the thickness, are considered respectively. For the 

third case, a varying temperature difference through the thickness is 

considered such that the inner temperature difference is taken as 50°C and 

the outside temperature difference is taken as 200°C. Thus, this load case  

can easily be compared with first and second cases. In the fourth load case, a 

temperature difference twice as big as the third case is exerted. Load 

conditions for all cases are given together in Table 6.2. In order to 

demonstrate the effect of temperature change with thickness clearly, 

temperature differences in meridional and tangential directions are kept 

constant. 

 
 
 

Table 6.2 Temperature Difference Values for the Load Cases 1 – 4 

 
Cases Temperature Differences 

Case 1  1T  CTT outin  50  

Case 2  2T  CTT outin  200   

Case 3  3T  CTin  50  , CTout  200  

Case 4  4T  CTin  100  , CTout  400  

 
 
 
As it was explained in Section 2.3.2, and Section 5.2, thermal loads were 

derived by assuming linear variation of the temperature across the shell 
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thickness. The thickness coordinate   is equal to zero at the mid-surface of 

the laminate, and its positive direction is towards outer surface of the shell. 

Thus, by using Equation (5.2.1), temperature difference can be written as a 

linear function of  . The temperature variation across the thickness, material 

data used, geometric properties, and boundary conditions are summarized in 

Table 6.3.  

 
 
 

Table 6.3 Analysis Data for the Problem 6.3 

 

Geometry 
Truncated Spherical Shell  

(See Figure 6.1) 

Radii 1 sphereRRR  m 

Starting Meridional Position in  110  

Final Meridional Position final  160  

Number of segments 400 

  

Material  

Ply Material MR50/LTM25 Carbon Epoxy Prepreg [23] 

11E  155 GPa 

22E  7.31 GPa 

12  0.345 

12G  4.19 GPa 

13G  4.19 GPa 

23G  3 GPa 

Ply thickness 0.146 mm 

Ply density    1520 kg/m3 

11  -0.43 x 10-6 1/°C  
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Table 6.3 (continued) 

 
22  37.4 x 10-6 1/°C  

Laminate  

Number of Layers 4 

Ply Orientation [0°/45°/90°/0°] 

Load Cases  

1T  (constant along  ) (Case 1) 50°C 

2T  (constant along  ) (Case 2) 200°C 

 33 TT   (Case 3)     51056849.21253T  

 44 TT   (Case 4)     51013698.52504T  

  

Boundary Conditions clamped-clamped 

Starting boundary 
             
      0,

,


s

0
c

0
s

0
x

c
0
xs

0
c

0
s

0
xc

0
xs

0
c

0

,

,u,u,u,u,u,u








 

End boundary 
             
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In Figure 6.6 change of 0

u  with the meridional coordinate at the tangential 

position  0  is given for the cases described above 
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Figure 6.6 Comparison of Solutions for Variation of 0
u  with   for Cases 1 – 4 

 
 
 
It is seen that general behaviour of the four load cases are the nearly same 

with each other. Unlike the cylindrical shell geometry used in Chapter 5, the 

truncated shell of revolution is not symmetric with respect to a tangential plane 

and therefore the results are not symmetric with respect to 135  plane  

 

Another observation is that lateral displacement response for Case 3 is 

between the responses for Case 1 and Case 2. If it is recalled that  50T  

for Case 1;  200T  for Case 2 and T  is linearly changing between 50° 

and 200° through the thickness for Case 3, this result is expected.  

 

It should also be recalled that temperature difference T  for Case 4 is twice 

as high as the temperature difference T  for Case 3. Since the solution 

method developed in this study uses linear elasticity relations, displacements 

are also expected to be twice as high. In Figure 6.6, it is clearly seen that 
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absolute values of displacements at Case 4 are indeed twice as high as those 

at Case 3. 

 

In Figure 6.7, change of   at layer 4 (outer layer) with the meridional 

coordinate at the tangential position  0  is given for the Cases 1 – 4. 

Stresses are calculated at the mid-plane of the layer. 

 
 
 

 
 

Figure 6.7 Comparison of Solutions for Variation of  at layer 4 with   for 

Cases 1 – 4 

 
 
 
The meridional variations of   are seen to be similar to the variation of axial 

stress, xx for the circular cylinder which is subjected to similar loads (in 

Figure 5.4). However, for the truncated spherical shell case the meridional 
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stress is not symmetric with respect to a tangential plane since the geometry 

is not symmetric with respect to a tangential plane.  

 

Another observation is that, like in Figure 6.6, it is seen that stress response 

curve for Case 3 is between the stress response curves for Case 1 and Case 

2. However it should be noted that these variations are at layer 4 and stresses 

in Case 2 are higher than stresses in Case 3, although T  is equal for Cases 

2 and 3 at that layer. Examining the loading condition of Case 3 reveals that in 

layers 1, 2 and 3 temperature differences T  are lower than the constant 

temperature difference T  of Case 4, which causes the lower stresses at 

layer 4 than the stress in Case 2.  

 

In addition, similar to the case in the displacements, stresses are also 

expected to be twice as high in Case 4 as in Case 3, since T  for Case 4 is 

twice as high as T  for Case 3. Figure 6.7 shows that stress values at Case 

4 are twice as high as stress values at Case 3, in agreement with the theory. 

 

In Figure 6.8, solutions for variation of   with layer number for Cases 1 – 4 

are compared. It is seen in Figure 6.7 that the meridional stress does not 

change steeply with the meridional coordinate   in the interval [115°, 155°]. 

Therefore, for the output of results a meridional location in this interval is 

chosen as 135 . Tangential location is again taken as  0 . 
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Figure 6.8 Comparison of Solutions for Variation of   with Layer Number for 

Cases 1 – 4 

 
 
 
The effect of temperature difference on the variation of the meridional stresses 

in the layers of the truncated spherical shell for the load cases 1, 2 and 3 

shows the following behaviour. As expected, stresses for the load Case 3 are 

between stresses for load Cases 1 and 2 in each layer. In addition, meridional 

stresses in each layer for Case 4 are twice as high as the stresses for Case 3. 

This result again proves the correct use of linear elasticity relations throughout 

the multi-segment numerical integration technique that is developed for the 

static analysis of macroscopically anisotropic general shells of revolution 

including transverse shear deformation. 

 

Also it is seen that stresses for load Case 4 are higher than stresses for Case 

2 in layer 1, although the temperature difference is higher for Case 2 in that 

layer. This behaviour shows that the local temperature difference is not very 
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significant in the stress variation, but the variation of the temperature 

difference throughout the whole thickness is more effective. 
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CHAPTER 7 
 

7. CONCLUSIONS & FUTURE WORK 

CONCLUSIONS & FUTURE WORK 
 

 

 

A number of sample cases are analyzed using both the code developed in this 

study and the finite element analysis tool NASTRAN, as it is explained in 

Chapter 4. The results are compared and excellent agreement is found for 

fundamental variables. Since NASTRAN is a displacement based finite 

element analysis solver; similar to the method developed in this study, the 

displacements are calculated primarily and the stresses and strains are found 

consecutively using the displacements, by post-processing. Therefore, 

although still less than 10% at maximum, the percent difference of stress 

results between two methods is higher compared to the fundamental variable 

results, especially at the boundaries.  

 

Consequently, the present technique, besides providing an alternative solution 

methodology to study the stress and deformation behaviour of anisotropic 

shells of revolution under non-symmetric loading, can be reliably used as an 

alternative computational tool to compare against the other solution 

methodologies.  

 

It should be stressed that the methodologies used in the present study are 

based on analytical methods, except the numerical integration scheme used in 

multisegment method of integration and the finite difference method used for 

the calculation of strains as a first iteration step only in the post-processing of 

circular cylindrical shells. 
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It has been shown in Sections 4.2.1 and 4.2.2 that the code developed in this 

study solves the problems in the sections mentioned about 49 times faster 

compared to the finite element analysis solver NASTRAN when the shell is 

divided into 300 segments along the meridian of the shell. Obviously, it should 

be kept in mind that in the finite element model when 300 elements are placed 

along the meridian of the shell, the element length in the circumferential 

direction cannot be arbitrary in order not to end up with an element 

configuration with a high aspect ratio. Therefore, finite element model 

becomes very crowded in terms of element and node numbers. For a 

particular problem one could get reliable results with a much coarser mesh, 

and in that case the solution times of the present method and finite element 

method could approach each other. However, in this examples solved in 

Chapter 4 the comparison is made for 300 segments along the meridian of the 

shell, and for this size the present method is much faster than the finite 

element method. 

 

It also should be noted that although it is not quantified, the initial preparation 

time of the input files for the present method is also much less compared to 

the pre-processing time of the finite element model. To reduce the finite 

element solution time further, finite element mesh can be made much coarser 

in the regions where there are no significant gradients, and the solution time 

by the finite element solver can be reduced down. However, in that case the 

pre-processing time would increase. Based on the case studies performed, 

especially for problems in which gradients of the field quantities are high, the 

numerical integration based method used in the present study has less 

solution time compared to the finite element method. 

 

In the present study, extension of the multisegment numerical integration 

method due to Kalnins [7] is extended to the solution of stress and 

deformation analysis of anisotropic shells of revolution through the use of finite 

exponential transform of the fundamental system of equations 
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It can be deduced from the results of Section 4.2.4 that the results obtained by 

the multisegment integration method do not change significantly beyond a 

particular number of segments. 300 segments, which was selected at the 

beginning of the comparison studies in Chapter 4, is an arbitrary number and 

in practice number of segments can be decreased to lower values and still 

accurate results can be obtained. Because as stated earlier, in the 

multisegment numerical integration technique by decreasing the number of 

segments one does not actually reduce the accuracy as in finite element 

analysis. Solutions at the ends of the shell segments will still have sufficient 

accuracy but the resolution will be lowered. Therefore, one has to calculate 

the fundamental variables at the intermediate locations afterwards by making 

use of the fundamental variables determined at the end of the shell segments.  

 

It should be added that by using the multisegment method of integration, 

concentrated (point) loads can also be exerted on the shell, by defining the 

distributed loads only at a single segment along the meridional direction. 

However, the load should be modelled accordingly in the tangential direction 

using the Fourier series, since it will be an unsymmetrical loading case.  

 

In this study, the applicability of the method of solution is further extended to 

include the first order transverse shear deformation. However, the first order 

transverse shear deformation theory has certain drawbacks as indicated in the 

text. Since the first order shear deformation theory assumes constant 

transverse shear strain through the thickness, the variation of the transverse 

shear stresses cannot be obtained accurately if the constant shear strain is 

multiplied by the reduced stiffness coefficients to determine the transverse 

shear stresses in each layer of the shell wall.  

 

More correct way to calculate the transverse shear stresses could be 

accomplished by integrating the stress equilibrium equations for the shell of 

revolution type studied. By making use of the already determined in-plane 

stresses along with the continuity relations of the transverse shear stresses at 

the ply interfaces, and bottom and top surface conditions on the transverse 
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shear stresses, through-the thickness variation of the transverse shear 

stresses can be calculated more accurately. Nevertheless, transverse shear 

stresses calculated based on the first order shear deformation theory is quite 

satisfactory in layers near the middle surface of the shell wall.  

 

It should be noted since transverse shear stiffness coefficients are included in 

the initial numerical integration based solution strategy, the in-plane stresses 

are calculated accurately within the borders of the shell theory used, 

compared to the theories in which transverse shear deformations are 

neglected.  

 

In Sections 5.2 and 6.3, the effect of temperature difference linearly changing 

throughout the thickness is examined and its results are compared with the 

results of the case in which temprature difference is constant throughout the 

thickness. In the end it is seen that although shell thickness is very small 

compared to its other dimensions, the results are effected significantly with 

respect to the case where no temperature difference change occurs 

throughout the thickness. 

 

The derivation of the transverse shear stresses from the in-plane stresses 

which are already determined can be considered as a future work. As stated in 

Section 5.5, this would be a similar approach used in the derivation of the 

famous transverse shear stress formula for a beam under transverse loading. 

After determining the in-plane stresses the transverse shear stresses can be 

determined by imposing the equilibrium of the infinitesimal shell element, as 

stated above. 

 

Furthermore, in order to predict the transverse shear effects more accurately 

throughout the thickness and satisfy traction conditions on top and bottom 

surfaces, numerical integration based method of solution can be used in 

conjunction with higher order transverse shear deformation theories, such as 

those mentioned in [37] and [38].  
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The method can further be extended to the analysis of filament wound shells 

of revolution with general meridional curvature. Filament winding is the most 

commonly used technique to manufacture shells of revolution. In case of 

filament wound shells of revolution the winding angle and the thickness vary 

along the meridional coordinate only if the fibers are placed along the 

geodesic or semi-geodesic paths on the surface of the shell of revolution. 

Therefore, the change of the winding angle and the thickness must be 

included in the analysis.  

 

Extension of the numerical integration based method of solution to 

geometrically non-linear problems and thermoelastic analyses can also be 

worked on as a future work. 

 

Loads due to moisture can be included in the formulation of loads, for the 

cases in which moisture effects become dominant. 

 

Finally, the method developed in this thesis can be used as a solver in an 

extended solution algorithm in which additional solution procedures such as 

stacking sequence optimization and laminate failure analysis are included. 
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APPENDIX A 
 

 

COEFFICIENTS OF THE HOMOGENEOUS PART IN THE 

FUNDAMENTAL SYSTEM OF EQUATIONS DERIVED IN 
SECTION 3.2 

 

 

 

Coefficients of 
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

u
 equation, i.e. Equation (3.2.5) 
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Coefficients of 

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 equation, i.e. Equation (3.2.8) 
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       
       
       
       
       
        














































16161616661116161116661616116616

11661616161616161616661166116611

16166611661166111666161166161611

11166616161166161616161666111616

16161616661116161166661116166611

16661611661616111616661166116611

1

BBBBBBBBDBABDBAB
DBABDBABBBBBBBBB
DBABDBABDBABDBAB
DBBADBBADBBADBBA
DDAADDAADBBADBBA

DBBADBBADDAADDAA

R

                 (A.20) 

     
     










116666161666166616

6616161616666611661
DBBDBBDBB
DBBDDADDA

U             (A.21) 

     
      










111666161166161616

6611161616166611162
DBBDBBDBB
DBBDDADDA

U             (A.22) 

     
     











161666661166161666

6611661666166616163
BBBBBBDBA

DBADBADBA
U             (A.23) 

     
      










161616661116111666

1611661166161616164
BBBBBBDBA
DBADBADBA

U             (A.24) 

 

Coefficients of 




u

 equation, i.e. Equation (3.2.9) 
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and   is given by Equation (A20). 
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and   is given by Equation (A20). 
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



























43

21
sin
cos11

2612

2612
54 ZDZD

ZBZB
R

c





            (A.64) 

     
     





























43

21
sin

111

6616

6616
54 ZDZD

ZBZB
R

cp


            (A.65) 

     
     





























43

21
sin
cos11

6616

6616
55 ZDZD

ZBZB
R

c





            (A.66) 

     
     





























43

21
sin

111

2612

2612
55 ZDZD

ZBZB
R

cp


            (A.67) 

 11
57 Zc 









                  (A.68) 

 21
58 Zc 









                 (A.69) 

 31
59 Zc 









                 (A.70) 

 41
510 Zc 









                 (A.71) 

 

where 

 

     
      










161616116616661611

1666116611161616161
BBBDABBBB
DABBDADBA

Z             (A.72) 
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     
     











161116111616661111

1616116611111616112
BBBDABBBB
DABBDADBA

Z             (A.73) 

     
      










661116161616661116

1616166616111666113
ABBBABBBA
DAABBADAA

Z             (A.74) 

     
     











661111161611161116

1116161616111166114
ABBBABBBA
DAABBADAA

Z             (A.75) 

 

and   is given by Equation (A20). 

 

Coefficients of 





Q
 equation, i.e. Equation (3.2.12) 

 

       
       









































 222

51264112

3126122112
61

1 A
R
R

cBcB
cAAcA

R
c







           (A.76) 

 















































 




2
44

211
45

61 sinsin
1 A

R
R

cpA
R

cdp             (A.77) 

             






































 52264212322622221262 sin

cos1 cBcBcAAcA
R

c





 

                  (A.78) 

    

         














































































522642123226

26
221212

4545

62 sinsinsin1

cpBcpBcpA

A
R
R

cpAcAA

R
cp  





        (A.79) 

             






































 53264312263326231263 sin

cos1 cBcBAcAcA
R

c





                  (A.80) 

    

         























































































532643123326

22
2312

44
13

45

63 sinsinsin1

cpBcpBcpA

A
R
R

cpAA
R
R

cA

R
cp  









 

                  (A.81) 



 
 
 225 

             










































 sin
cos1

22542644123426241264 BcBcBcAcA
R

c

                  (A.82) 

         

      


























































































5426
26

4412

3426241214
4545

64

sin

sinsin1

cpBB
R
R

cpB

cpAcpAcAAR

R
cp













  (A.83) 

             










































 sin
cos1

26552645123526251265 BcBcBcAcA
R

c

                  (A.84) 

         

      


























































































5526
22

4512

35262512
44

15
45

65

sin

sinsin1

cpBB
R
R

cpB

cpAcpAARcA

R
cp













  (A.85) 


































sin
cos

66 R
R

c                (A.86) 

 




































 16

45
66 sin

1 cA
R

cp


              (A.87) 

              
















 11

572647123726271267 cBcBcAcA
R

c


          (A.88) 

            
















 582648123826281268

1 cBcBcAcA
R

c


           (A.89) 

            
















 592649123926291269

1 cBcBcAcA
R

c


           (A.90) 

            
















 51026410123102621012610

1 cBcBcAcA
R

c


          (A.91) 

 

Coefficients of 





N
 equation, i.e. Equation (3.2.13) 
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          

     





























































225126

41123126122112

71 sin
cos1

A
R
R

cB

cBcAAcA

R
c




 


          (A.92) 

       

      





































































52264212

3226222212
72 sin

cos

sin
cos1

cBcB

cAA
R
R

cA
R

c 











          (A.93) 

        

     





































































522626

421232262212

72

sin
1sin

cos1
cpBA

R
R

cpBcpAcpA

R
cp










          (A.94) 

       

      





























































53264312

2633262312
73 sin

cos

sin
cos1

cBcB

AcAcA
R

c 







          (A.95) 

       

      





































































53264312

3326222312
73 sin

1

sin
cos1

cpBcpB

cpAA
R
R

cpA
R

cp 









       (A.96) 

        

     






















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          (A.98) 
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         (A.100) 

 176 c                (A.101) 
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Coefficients of 





 N
 equation, i.e. Equation (3.2.14) 
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Coefficients of 





M
 equation, i.e. Equation (3.2.15) 
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Coefficients of 

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

M
 equation, i.e. Equation (3.2.16) 
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APPENDIX B 
 

 

COEFFICIENTS OF THE NONHOMOGENEOUS PART IN 

THE FUNDAMENTAL SYSTEM OF EQUATIONS DERIVED 
IN SECTION 3.2 

 

 

 

The nonhomogeneous coefficients iB   10,...,2,1i  of the fundamental 

system of equations given in Section 3.2 can be related to the loading terms 

through 
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                    (B.1) 

 

where  

 

the nonhomogeneous coefficients  1B  of 





u
 equation, i.e. Equation (3.2.5) 

are given as: 
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01 jCB   9,...2,1j                  (B.2) 

the nonhomogeneous coefficients  2B  of 





u
 equation, i.e. Equation (3.2.8) 

are given as: 

 

2724 cCB                     (B.3) 
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2927 cCB                     (B.5) 

21029 cCB                     (B.6) 

 

the nonhomogeneous coefficients  3B  of 




u

 equation, i.e. Equation (3.2.9) 

are given as: 

 

3734 cCB                     (B.7) 

3836 cCB                     (B.8) 

3937 cCB                     (B.9) 

31039 cCB                   (B.10) 

 

the nonhomogeneous coefficients  4B  of 






 equation, i.e. Equation 

(3.2.10) are given as: 

 

4744 cCB                   (B.11) 

4846 cCB                   (B.12) 

4947 cCB                   (B.13) 

41049 cCB                   (B.14) 
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the nonhomogeneous coefficients  5B  of 






 equation, i.e. Equation 

(3.2.11) are given as: 
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
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Q
 equation, i.e. Equation 

(3.2.12) are given as: 
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the nonhomogeneous coefficients  7B  of 





N
 equation, i.e. Equation 

(3.2.13) are given as: 

 

RCB 72                  (B.25) 
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the nonhomogeneous coefficients  8B  of 





N
 equation, i.e. Equation 

(3.2.14) are given as: 
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 equation, i.e. Equation 

(3.2.15) are given as: 
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the nonhomogeneous coefficients  10B  of 





M
 equation, i.e. Equation 

(3.2.16) are given as: 

 

010 jCB   9,...2,1j                (B.37) 

 

In the Equations (B.3) – (B.36), ijc  are the coefficients of the homogeneous 

part in the fundamental system of equations derived in Section 3.2, and given 

in detail in Appendix A. 

 

ijA  are the extensional stiffness coefficients, ijB  are the bending stretching 

coupling stiffness coefficients, and ijD  are the bending stiffness coefficients 

given by Equations (2.3.2.24) – (2.3.2.26).  

 

It should be stressed that iB   10,...,2,1i  is the vector of nonhomogeneous 

coefficients in the fundamental system of equations; whereas ijB   6,2,1, ji  

are the bending stretching coupling stiffness coefficients given by Equation 

(2.3.2.25) and they should not be confused. 
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APPENDIX C 
 

 

FINITE EXPONENTIAL FOURIER TRANSFORM OF 

EQUATION (3.2.12) 

 

 

 

Equation (3.2.12) is given in Section 3.2 as  
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Applying the finite exponential Fourier transform to Equation (C.1), along with 

using the expansion given in Appendix B, 
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Utilizing Equation (3.3.2) in Equation (C.2), 

 



 
 
 242 

 

   
 
 

   
 

 
 

 
 

   
 

 
   

 

     
 

 
 

 

   
 

     
 

     
   

 
 

   
 
   

 
 

 
 

   
 

 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 























































































































































































































































d
nMi

nM
CB

d
nMi

nM
CBd

nNi

nN
CB

d
nNi

nN
CBd

nNi

nN
CB

d
npi

np
CBd

nMi
nM

c

d
nMi

nM
cd

nNi
nN

c

d
nNi

nN
cd

nQi
nQ

nicp

d
nQi

nQ
cd

ni
n

nicp

d
ni

n
cd

ni
n

nicp

d
ni

n
cd

nui
nu

nicp

d
nui

nu
cd

nui

nu
nicp

d
nui

nu
cd

nui

nu
nicdp

d
nui

nu
cd

Q
ni

n
Q

T

T

T

T

T

T

T

T

T

T






















































































































































































































































































































































































2

0
69

2

0
67

2

0
66

2

0
65

2

0
64

2

0
61

2

0
610

2

0
69

2

0
68

2

0
67

2

0
66

2

0
66

2

0
65

2

0
65

2

0
64

2

0
64

2

0
0

0

63

2

0
0

0

63

2

0
0

0

62

2

0
0

0

62

2

0
0

0
2

61

2

0
0

0

61

2

0

sin,

cos,

sin,

cos,

sin,

cos,

sin,

cos,

sin,

cos,

sin,

cos,

sin,

cos,

sin,
cos,

sin,
cos,

sin,

cos,

sin,

cos,

sin,

cos,

sin,
cos,

sin,
cos,

sin,
cos,

sin,

cos,

sin,

cos,

sin,

cos,

sin,

cos,

sin,

cos,

sin,

cos,

sin,

cos,

,
sin

cos
,

            (C.3) 

 

Note that expansion of TN , TN , TN , TM  , TM   and TM   terms have further 

been explained in detail in Section 3.3. Expanding Equation (C.3) by using 

Equation (3.3.2), 
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Now separating the real and imaginary terms of Equation (C.4) and writing the 

parts involving the real and imaginary terms in two equations as follows: 
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and imaginary terms, 
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                     

                     

                    

             
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nsnsnsns

nsnsnsnc

nsncnsnc
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nsnsns
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TT
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

















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66656564
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0

63
0
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0
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0
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       (C.6) 
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APPENDIX D 
 

 

THE ELEMENTS OF COEFFICIENT MATRIX K  

 

 

 

The elements of the coefficient matrix   2020K  given in Equation (3.3.59) are 

listed below.  

 

The elements of 1st row are: 

 

;0;0;0;0;0

;0;0;0;0;

;0;;0;;0

;;0;;;0

120119118117116

11511411311216111

110151918141716

1315141213111211









KKKKK

KKKKcK

KcKKcKK

cKKcKncpKK

         (D.1-10) 

 

The elements of 2nd row are: 

 

0;0;0;0;0

;0;0;0;;0

;;0;;0;

;0;;0;0;

220219218217216

21521421316212211

15210291428271326

25122423221121









KKKKK

KKKcKK

cKKcKKcK

KcKKKncpK

       (D.11-20) 

 

The elements of 3rd row are: 
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0;;0;;0

;;0;;0;0

;;;;;

;;;;0;

32021031931829317316

2831531427313312311

253102539243824372336

233522342233322131









KcKKcKK

cKKcKKK

ncpKcKncpKcKncpK

cKncpKcKKcK

      (D.21-30) 

 

The elements of 4th row are: 

 

2104204192941841728416

41527414413412411

254102549244824472346

234522442243214241

;0;;0;

;0;;0;0;0

;;;;;

;;;;;0

cKKcKKcK

KcKKKK

cKncpKcKncpKcK

ncpKcKncpKcKK









     (D.31-40) 

 

The elements of 5th row are: 

 

0;;0;;0

;;0;;0;0

;;;;;

;;;;0;

52031051951839517516

3851551437513512511

355103559345834573356

335532543253523151









KcKKcKK

cKKcKKK

ncpKcKncpKcKncpK

cKncpKcKKcK

      (D.41-50) 

 

The elements of 6th row are: 
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3106206193961861738616

61537614613612611

356103569346834673366

336532643263316261

;0;;0;

;0;;0;0;0

;;;;;

;;;;;0

cKKcKKcK

KcKKKK

cKncpKcKncpKcK

ncpKcKncpKcKK









     (D.51-60) 

 

The elements of 7th row are: 

 

0;;0;;0

;;0;;0;0

;;;;;

;;;;0;

72041071971849717716

4871571447713712711

457104579437844774376

437542744273724171









KcKKcKK

cKKcKKK

ncpKcKncpKcKncpK

cKncpKcKKcK

     (D.61-70) 

 

The elements of 8th row are: 

 

4108208194981881748816

81547814813812811

458104589448844874386

438542844283418281

;0;;0;

;0;;0;0;0

;;;;;

;;;;;0

cKKcKKcK

KcKKKK

cKncpKcKncpKcK

ncpKcKncpKcKK









     (D.71-80) 

 

The elements of 9th row are: 
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0;;0;;0

;;0;;0;0

;;;;;

;;;;0;

92051091991859917916

5891591457913912911

559105599549854975396

539552945293925191









KcKKcKK

cKKcKKK

ncpKcKncpKcKncpK

cKncpKcKKcK

     (D.81-90) 

 

The elements of 10th row are: 

 

510102010195910181017581016

1015571014101310121011

55101055109541085410753106

53105521045210351102101

;0;;0;

;0;;0;0;0

;;;;;

;;;;;0

cKKcKKcK

KcKKKK

cKncpKcKncpKcK

ncpKcKncpKcKK









   (D.91-100) 

 

The elements of 11th row are: 

 

0;;0;;0

;;0;;;

;;;;;

;;;;0;

1120610111911186911171116

6811151114671113661112661111

65111065119641186411763116

63115621146211311261
2

61111









KcKKcKK

cKKcKncpKcK

ncpKcKncpKcKncpK

cKncpKcKKcdpncK

  

                   (D.101-110) 

 

The elements of 12th row are: 
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610122012196912181217681216

12156712141213661212661211

65121065129641286412763126

63125621246212361
2

61122121

;0;;0;

;0;;0;;

;;;;;

;;;;;0

cKKcKKcK

KcKKcKncpK

cKncpKcKncpKcK

ncpKcKncpKcdpncKK









 

                   (D.111-120) 

 

The elements of 13th row are: 

 

0;;0;;

;;0;;0;

;;;;;

;;;;0;

132071013191318791317781316

78131513147713131312761311

75131075139741387413773136

73135721347213313271131









KcKKcKncpK

cKKcKKcK

ncpKcKncpKcKncpK

cKncpKcKKcK

      (D.121-130) 

 

The elements of 14th row are: 

 

710142014197914181417781416

78141577141414137614121411

75141075149741487414773146

73145721447214371142141

;0;;0;

;;;0;;0

;;;;;

;;;;;0

cKKcKKcK

ncpKcKKcKK

cKncpKcKncpKcK

ncpKcKncpKcKK









     (D.131-140) 

 

The elements of 15th row are: 
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810152015198915181517

8815168815158715141513

151286151185151085
2

85159

8415884
2

841578315683
2

83155

8215482
2

8215381152151

;0;;0

;;;;0

;0;;;

;;;;

;;;;0

ncpKKncpKK

ncpKcKncpKK

KcKncpKcdpncK

ncpKcdpncKncpKcdpncK

ncpKcdpncKncpKK











 

                   (D.141-150) 

 

The elements of 16th row are: 

 

0;;0;

;;;0;

;;0;;

;;;;

;;;0;

162081016191618891617

8816168816151614871613

861612161185
2

85161085169

84
2

841688416783
2

8316683165

82
2

821648216316281161











KncpKKncpK

cKncpKKncpK

cKKcdpncKncpK

cdpncKncpKcdpncKncpK

cdpncKncpKKncpK

  

                   (D.151-160) 

 

The elements of 17th row are: 

 

9101720910171917189917171716

98171517149717131712961711

95171095179941789417793176

93175921749217317291171

;;0;;0

;;0;;0;

;;;;;

;;;;0;

ncpKcKKcKK

cKKcKKcK

ncpKcKncpKcKncpK

cKncpKcKKcK









      (D.161-170) 
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The elements of 18th row are: 

 

910182091018199918181817981816

181597181418139618121811

95181095189941889418793186

93185921849218391182181

;;;0;

;0;;0;;0

;;;;;

;;;;;0

cKncpKcKKcK

KcKKcKK

cKncpKcKncpKcK

ncpKcKncpKcKK









     (D.171-180) 

 

The elements of 19th row are: 

 

101019201010191910919181917

1081916191510719141913

191210619111051910105
2

105199

104198104
2

104197103196103
2

103195

102194102
2

102193101192191

;;;0

;;0;;0

;0;;;

;;;;

;;;;0

ncpKcKncpKK

ncpKKncpKK

KcKncpKcdpncK

ncpKcdpncKncpKcdpncK

ncpKcdpncKncpKK











 

                   (D.181-190) 

 

The elements of 20th row are: 
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101020201010201920181092017

2016108201520141072013

10620122011105
2

1052010105209

104
2

104208104207103
2

103206103205

102
2

102204102203202101201

;;0;

;0;;0;

;;0;;

;;;;

;;;0;

cKncpKKncpK

KncpKKncpK

cKKcdpncKncpK

cdpncKncpKcdpncKncpK

cdpncKncpKKncpK











 

                   (D.191-200) 

 

In the Equations (D1.1) – (D1.200), n  is the circumferential wave number; ijc , 

ijcp  and ijcdp  are coefficients of the homogeneous part in the fundamental 

system of equations derived in Section 3.2 and given in detail in Appendix A 
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APPENDIX E 
 

 

THE ELEMENTS OF COEFFICIENT MATRIX KB  

 

 

 

The transformed nonhomogeneous coefficients  1B  and  2B  of the 

fundamental system of equations are given by Equation (3.3.62). This 

equation can be written as 

 

 

   
           
           
           

T

xns
T

nc
T

ns
T

nc
T

ns
T

nc
T

ns
T

nc
T

ns
T

nc
T

ns
T

nc
T

nsncnsncnsnc

MMMMMM

NNNNNN

pppppp

KB
B
B

118

1820

120
2

1

,,,,,

,,,,,,

,,,,,,





































 

                    (E.1) 

 

where the elements of 1st row are 

 

01 jKB   18,...2,1j                  (E.2) 

 

The elements of 2nd row are 

 

02 jKB   18,...2,1j                  (E.3) 

 

The elements of 3rd row are 

 

243837 CBKBKB                    (E.4) 

26312311 CBKBKB                    (E.5) 
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27314313 CBKBKB                    (E.6) 

29318317 CBKBKB                    (E.7) 

 

The elements of 4th row are 

 

244847 CBKBKB                    (E.8) 

26412411 CBKBKB                    (E.9) 

27414413 CBKBKB                  (E.10) 

29418417 CBKBKB                  (E.11) 

 

The elements of 5th row are 

 

345857 CBKBKB                  (E.12) 

36512511 CBKBKB                  (E.13) 

37514513 CBKBKB                  (E.14) 

39518517 CBKBKB                  (E.15) 

 

The elements of 6th row are 

 

346857 CBKBKB                  (E.16) 

36612611 CBKBKB                  (E.17) 

37614613 CBKBKB                  (E.18) 

39618617 CBKBKB                  (E.19) 

 

The elements of 7th row are 

 

447877 CBKBKB                  (E.20) 

46712711 CBKBKB                  (E.21) 
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47714713 CBKBKB                  (E.22) 

49718717 CBKBKB                  (E.23) 

 

The elements of 8th row are 

 

448887 CBKBKB                  (E.24) 

46812811 CBKBKB                  (E.25) 

47814813 CBKBKB                  (E.26) 

49818817 CBKBKB                  (E.27) 

 

The elements of 9th row are 

 

549897 CBKBKB                  (E.28) 

56912911 CBKBKB                  (E.29) 

57914913 CBKBKB                  (E.30) 

59918917 CBKBKB                  (E.31) 

 

The elements of 10th row are 

 

54108107 CBKBKB                  (E.32) 

5610121011 CBKBKB                 (E.33) 

5710141013 CBKBKB                 (E.34) 

5910181017 CBKBKB                 (E.35) 

 

The elements of 11th row are 

 

61112111 CBKBKB                  (E.36) 

64118117 CBKBKB                  (E.37) 
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651110119 CBKBKB                 (E.38) 

6611121111 CBKBKB                 (E.39) 

6711141113 CBKBKB                 (E.40) 

6911181117 CBKBKB                 (E.41) 

 

The elements of 12th row are 

 

61122121 CBKBKB                  (E.42) 

64128127 CBKBKB                  (E.43) 

651210129 CBKBKB                 (E.44) 

6612121211 CBKBKB                 (E.45) 

6712141213 CBKBKB                 (E.46) 

6912181217 CBKBKB                 (E.47) 

 

The elements of 13th row are 

 

72134133 CBKBKB                  (E.48) 

74138137 CBKBKB                  (E.49) 

751310139 CBKBKB                 (E.50) 

7613121311 CBKBKB                 (E.51) 

7713141313 CBKBKB                 (E.52) 

7913181317 CBKBKB                 (E.53) 

 

The elements of 14th row are 

 

72144143 CBKBKB                  (E.54) 

74148147 CBKBKB                  (E.55) 

751410149 CBKBKB                 (E.56) 
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7614121411 CBKBKB                 (E.57) 

7714141413 CBKBKB                 (E.58) 

7914181417 CBKBKB                 (E.59) 

 

The elements of 15th row are 

 

83156155 CBKBKB                  (E.60) 

 

The elements of 16th row are 

 

83166165 CBKBKB                  (E.61) 

 

The elements of 17th row are 

 

94178177 CBKBKB                  (E.62) 

9617121711 CBKBKB                 (E.63) 

9717141713 CBKBKB                 (E.64) 

9817161715 CBKBKB                 (E.65) 

9917181717 CBKBKB                 (E.66) 

 

The elements of 18th row are 

 

94188187 CBKBKB                  (E.67) 

9618121811 CBKBKB                 (E.68) 

9718141813 CBKBKB                 (E.69) 

9818161815 CBKBKB                 (E.70) 

9918181817 CBKBKB                 (E.71) 

 

The elements of 19th row are 
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019 jKB   18,...2,1j                (E.72) 

 

The elements of 20th row are 

 

020 jKB   18,...2,1j                (E.73) 

 

In the Equations (D.4) – (D.71), ijCB  are the coefficients that relate the 

nonhomogeneous coefficients iB  to the loading terms through the Equation 

(B.1), and they are given in detail in Appendix B. 

 


