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ABSTRACT

SEMI ANALYTICAL STUDY OF STRESS AND DEFORMATION ANALYSIS
OF ANISOTROPIC SHELLS OF REVOLUTION INCLUDING FIRST ORDER
TRANSVERSE SHEAR DEFORMATION

Oygr, Ozgir Sinan

M.Sc., Department of Aerospace Engineering
Supervisor  : Assoc. Prof. Dr. Altan Kayran

Co-Supervisor: Dr. Ozge Sen

September 2008, 258 pages

In this study, anisotropic shells of revolution subject to symmetric and
unsymmetrical static loads are analysed. In derivation of governing equations
to be used in the solution, first order transverse shear effects are included in
the formulation. The governing equations can be listed as kinematic
equations, constitutive equations, and equations of motion. The equations of
motion are derived from Hamilton’s principle, the constitutive equations are
developed under the assumptions of the classical lamination theory and the
kinematic equations are based on the Reissner-Naghdi linear shell theory. In
the solution method, these governing equations are manipulated and written
as a set called fundamental set of equations. In order to handle anisotropy and
first order transverse shear deformations, the fundamental set of equations is
transformed into 20 first order ordinary differential equations using finite
exponential Fourier decomposition and then solved with multisegment method
of integration, after reduction of the two-point boundary value problem to a

series of initial value problems. The results are compared with finite element



analysis results for a number of sample cases and good agreement is found.
Case studies are performed for circular cylindrical shell and truncated
spherical shell geometries. While reviewing the results, effects of temperature
and pressure loads, both constant and variable throughout the shell, are
discussed. Some drawbacks of the first order transverse shear deformation

theory are exhibited.

Keywords: Shell of Revolution, First Order Transverse Shear Deformation,
Anisotropy, Finite Exponential Fourier Decomposition, Multisegment Method

of Integration
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BiRi_NCi DERECEDEN YANAL KESME DEFORMASYONU DAHIL EDILMIS
ANIZOTROPIK EKSENEL SiMET_Ri_K KABUK YAPILARININ GERILME VE
DEFORMASYON ANALIZI YARI ANALITIK CALISMASI

Oygr, Ozgir Sinan

Yiksek Lisans, Havacilik ve Uzay Muhendisligi Bolumu
Tez Yoneticisi : Dog. Dr. Altan Kayran
Ortak Tez Yoneticisi : Dr. Ozge Sen

Eylul 2008, 258 sayfa

Bu tezde simetrik ve simetrik olmayan statik yuklemelere maruz kalan
anizotropik eksenel simetrik kabuk yapilari incelenmistir. Banye denklemlerinin
tiretimi sirasinda birinci dereceden yanal kesme etkileri formulasyona dahil
edilmistir. Blinye denklemleri, kinematik denklemler, konstitutif denklemler ve
hareket denklemlerinden olusmaktadir. Hareket denklemleri, Hamilton
prensibinden yola cikilarak; konstitutif denklemler klasik katmanl yapi
teorisinin kabullerine dayanilarak; hareket denklemleri de Reissner Naghdi
dogrusal kabuk teorisi kullanilarak tdretilmistir. C6zum sirasinda, binye
denklemleri tekrar diizenlenmis ve temel denklem seti adi verilen bir dizi
denklem haline getirilmigtir. Anizotropi ve birinci dereceden yanal kesme
etkilerinden dolayi temel denklem seti, sonlu Ustel Fourier déntisim metodu
kullanilarak 20 birinci dereceden bayagi diferansiyel denkleme gevrilmis ve iki
noktali sinir degeri problemi bir dizi baslangic degeri problemine
donlstirdldikten sonra ¢ok pargali integrasyon metodu kullanilarak
¢Ozllmustir. Bir dizi deneme durumu icin bulunan sonuglar sonlu eleman

analizinden elde edilen sonuglarla kiyaslanmis ve iki yéntemden elde edilen

vi



degerlerin birbirine yakin oldugu gorilmuistir. Dairesel silindirik kabuk ve kesik
kiresel kabuk geometrileri igcin durum ¢alismalari yapilmig, sonuglar
incelenirken sabit ve kabuk (zerinde degisken sicakllk ve basing
yuklemelerinin etkileri belirtiimistir. Ayrica birinci dereceden yanal kesme

deformasyonu teorisini bazi eksiklikleri ortaya konulmustur.
Anahtar Kelimeler: Eksenel Simetrik Kabuk Yapilari, Birinci Dereceden Yanal

Kesme Deformasyonu, Anizotropi, Sonlu Ustel Fourier Dénlisim Metodu, Cok

Parcali Integrasyon Metodu
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CHAPTER 1

INTRODUCTION

1.1. Background

The basic theory of the present study is based on shell structures made of
composite materials. In the following Sections 1.1.1 and 1.1.2, these two main

concepts are introduced.

1.1.1. Shell Structures

All structures are made of three dimensional bodies, regardless of their
dimension. However, three dimensional theory of elasticity is not always
needed to be used when the stresses and deformations on such a body are
calculated. Structural elements are designed to withstand certain types of
loads. For example, cables and bars are created to transmit loads in one
direction, and therefore they are known as straight two force members [31].
Thus, while deriving the equations that govern these kinds of structures, they
are geometrically regarded as lines with cross sections assigned, so that a
number of simplifying assumptions can be made instead of solving the full

equations of three dimensional elasticity.



Similarly, structures like aircraft panels and cloth hulls of balloons can be
described by a plane or curved surface, and accordingly their analysis must be
built on the concept of a physical surface capable of transmitting loads from
one part to another and of undergoing consequent deformations. When
dealing with mathematical models, such structural elements are classified into
two types: Plane surfaces are called plates, while curved surfaces are called

shells.

In conclusion, shell is defined as an object which may be considered as the
materialization of a curved surface. The definition implies that the thickness of

a shell is small compared to its other dimensions.

In most cases, a shell is bounded by two curved surfaces, namely its faces.
The thickness of the shell may be the same everywhere or it may vary from
point to point. The middle surface of the shell is defined as the surface which
passes midway between the two faces. If the shape of the middle surface and
the thickness of the shell is known for everywhere on the shell, then the shell
can geometrically be fully described. Therefore the middle surface and the

thickness represent the shell mechanically.

There are many aspects of the use of shells in engineering. For example,
pressure vessels and associated pipework are the key components in thermal
and nuclear power plants for chemical and power engineering. Some other
examples of the use of shell structures in engineering include water cooling
towers for power stations, grain silos, armour, arch dams, tunnels,

submarines, etc.

Apart from those, shells have a vast usage area in aerospace structures.
Many airplane components such as ribs, skin, bulkhead etc., solid rocket
motor cases and payloads carried under wings like missiles and fuel tanks are

classified as shell structures.



Monocoque Wing Skin

Figure 1.1 Shell Structures Used as Aircraft Components

Shells can be classified in terms of the ratio of the thickness to a characteristic

dimension as [34]:

Very Thick: Three dimensional effects are fully included

- Thick: Stretching, Bending and higher order transverse shear

- Moderately Thick: Stretching, bending and first order transverse
shear

- Thin: Stretching and bending energy considered but first order
transverse shear neglected

- Very Thin: Dominated by stretching effects. Also called

membranes.



11.2. Composite Materials

A composite material can be defined as a material that consists of at least two
identifiably distinct constituent materials that are combined on a macroscopic
scale. If the constituent materials are combined microscopically, the resulting
material becomes macroscopically homogeneous. Mechanical properties of
materials such as strength, stiffness, corrosion resistance, temperature
dependent behaviour and weight can be improved by forming a composite
material, because composite materials exhibit the best qualities of their

constituents and sometimes qualities that neither of the constituents posses.

Composite parts have both advantages and disadvantages when compared to
the metal parts they are being used to replace [36]. Among the advantages of
composites

1) A higher performance for a given weight leads to fuel savings in
vehicles. Excellent strength to weight ratios can be achieved by
composite materials. This is usually expressed as strength divided by
density and stiffness modulus divided by density.

2) Laminate patterns and ply build-up in a part can be tailored to give the
required mechanical properties in various directions.

3) ltis easier to achieve smooth aerodynamic profiles for drag reduction.
Complex double-curvature parts with a smooth surface finish can be
made in one manufacturing operation.

4) Integration of different parts is simpler in composite structures, and
molded composite construction allows for simple strong structures that
can be built without requiring expensive equipment and highly skilled
assemblers

5) In prototype engineering composites offer various advantages such as
ease of repair

6) Composites may be made by a wide range of processes so there are

many alternative methods of manufacturing.



7)

8)

Composites offer excellent resistance to corrosion, chemical attack and
outdoor weathering, as mentioned above.
Generally, composites have higher fatigue resistance compared to

metals

And among the disadvantages of composites the following can be listed:

1)

2)

3)

4)
5)

6)

Failure mechanisms of composite structures are more complex and the
design methodologies of structures made of composite materials are
not as good standardized as the structures made of metal

Repair introduces new problems, for the following reasons:

a. Materials require refrigerated transport and storage and have
limited shelf lives.

b. Hot curing is necessary in many cases, requiring special
equipment.

c. Curing either hot or cold takes time. The job is not finished
when the last rivet has been installed during the montage
process.

If rivets have been used and must be removed, this presents problems
of removal without causing further damage.

Repair at the original cure temperature requires tooling and pressure.
Composites must be thoroughly cleaned of all contamination before
repair.

Composites must be dried before repair because all resin matrices and

some fibers absorb moisture.

It should be stressed that since one of the main goals to be achieved in

aerospace structures is light-weight, the advantages that composite materials

offer due to their high strength to weight ratios become more and more

important.

Structural classification of composites is performed in three ways:

1)
2)
3)

Basic / Elemental Classification
Microstructural Classification

Macrostructural Classification



In macrostructural classification, composites are generally classified into three

main groups according to the types of their constituents [4]:
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Figure 1.2 Composite Materials with Different Form of Constituents

- Fibrous Composites: Those consist of fibers in a matrix. The fibers
in such composites are generally strong and stiff and therefore
serve as primary load-carrying constituent. The matrix holds the
fibers together and serves as an agent to redistribute the loads
from a broken fiber to the adjacent fibers in the material when
fibers start failing under excessive loads.

- Particulate Composites: Those composed of particles in a matrix.

Particulate composites consist of particles of one or more materials



suspended in a matrix of another material. The particles can either
be metallic or non-metallic as can the matrix.
- Laminated Composites: Those consist of layers of at least two

different materials that are bonded together.

A lamina is a flat or curved arrangement of unidirectional fibers or woven
fibers in a matrix; and a laminate is a stack of laminae with various
orientations of principal material directions in the laminae. Lamination is used
to combine the best aspects of the constituent layers in order to achieve a
more useful material. In laminated composites, the layers of unidirectional
fiber reinforced composites are stacked on top of one another. Such laminates
are described according to a standard notation called stacking sequence,
which lists fiber orientations measured from a reference axis of the laminate. If
the orientation is counter clockwise from the reference direction it is
considered to be positive. The standard stacking sequence lists orientations of
the different layers, starting from the bottom of the laminate to the top in a

string separated by slashes. For a laminate with N layers, starting from the

bottom layer with a fiber orientation 6,, the laminate is represented as

[9, 10,/...10, ] Therefore the total thickness, h, of the laminate is 7 =¢x N.

A laminate is symmetric when the fiber orientations of the top half of the
laminate are mirror images of the fiber orientations below the mid-plane of the
laminate, for example [90°/45°/-60°/-60°/45°/90°]. Laminates that have
alternating orientations of 0° and 90° plies are called cross-ply laminates.
Another special case is the angle ply laminate. All the layers of an angle ply
laminate have the same fiber orientation angle with an alternating sign, such
as [45°/-45°/45°/-45°]. Finally, a laminate is antisymmetric if the magnitude of
the ply orientation angle above the laminate mid-plane is a mirror image of the
ply orientations below the mid-plane with signs reversed. For example,
[30/-60/90/-90/60/-30].



1.2. Overview of the Thesis

Axisymmetric shells have considerable practical interest in aerospace
engineering. It has been mentioned that thin-walled structures such as plates
and shells have a vast usage area in aerospace structures. Among them, shell
of revolution is a major body type when aerodynamics and flight mechanics
aspects are considered and it is therefore widely used in aerospace

components like external fuel tanks or missile, rocket and airframe fuselage.
A shell of revolution is generated by a generating cross section that rotates

360° about an axis of revolution, as illustrated in Figure 1.3. Such structures

are said to be rotationally symmetric.

Axis of revolution

Generating
cross-section

Figure 1.3 A shell of Revolution



The technical importance of shells of revolution is considerable because of the
following practical considerations:
e Fabrication: Axisymmetric bodies are usually easier to manufacture
than bodies with more complex geometries.
o Strength: axisymmetric configurations are often optimal in terms of
strength to weight ratio because of the favourable distribution of the

structural material.

The axisymmetric problem deals with the analysis of structures of revolution
under axisymmetric loading. However, a shell of revolution under
unsymmetrical loading can be treated by the Fourier decomposition method.
This involves decomposing the load into a Fourier series in the circumferential
direction, calculating the response of the structure to each harmonic term
retained in the series, and superposing the results. But if the shell of revolution
material is anisotropic, classical Fourier decomposition can not be employed,

due to the reasons explained in Section 3.3.

In the present study, macroscopically anisotropic shells of revolution under
symmetrical and unsymmetrical loads are analyzed. Since the loads can be
unsymmetrical and material is macroscopically anisotropic, finite exponential

Fourier transform method is utilized for the analysis.

The present work aims to propose a method for the analysis of anisotropic
shells of revolution, with transverse shear deformations taken into account.
Unlike variational methods of approximation, this method is based on a semi-
analytical method and therefore can be regarded as an alternative to
numerical-based methods. As extensively explained in Chapter 3,
multisegment method of integration, which was originated by Kalnins [7], is

used for the solution of the problems.

As loading, distributed mechanical loads in meridional, tangential and
thickness directions of the shell of revolution and temperature difference can

be exerted. It has already been mentioned that loads can be unsymmetrical



with respect to the rotation axis, and therefore finite exponential Fourier
transform method is utilized in the analysis of anisotropic shells of revolution.
In addition to that, the use of multisegment method of integration enables the
application of the loads as a function of the meridional coordinate.
Furthermore, as exhibited in the succeeding chapters, the method allows the

application of temperature difference as a function of the thickness.

In this thesis the Reissner-Naghdi linear shell theory including first order
transverse shear deformation is used [9]. It should be noted that other linear
shell theories can also be used in the numerical integration based method of

analysis as long as the governing equations of those shell theories are used.

As opposed to those listed above, there are a number of limitations in the
present study. First of all, as stated above, the theory used in the formulation

is linear and therefore only linear static problems can be analyzed.

Furthermore, the thickness of the shell may be same everywhere or it may
vary from point to point, as stated previously. In the present study the
thickness of the shell is taken as constant. However, the extension of the
method to variable thickness shell of revolution can be performed without

much labour and it is listed as one of the future work.

In general, in a shell of revolution, orientation of fibers in the laminate may be
a function of the meridional direction, which depends on the manufacturing
process of the laminate such as filament winding. However, in the present
study, in order to demonstrate the application of the multi-segment numerical
integration technique to the static analysis of shells of revolution, orientation of
the fibers is assumed to be constant in the meridional direction. Similar to the
variable thickness problem, meridional change of the winding angle can also
be incorporated into the solution method with some extra effort, and this is

also listed as one of the future work.
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Finally, effects arising from moisture are neglected, although it can easily be
included in the analysis since the formulation of loads due to moisture effects

is very similar to the formulation of loads due to temperature difference.
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CHAPTER 2

GOVERNING EQUATIONS FOR ROTATIONALLY
SYMMETRIC SHELLS OF REVOLUTION

The equations that govern the analysis of macroscopically anisotropic shells of
revolution are derived from the equations of elasticity. These are frequently
grouped into three main sets of equations. The first set, which represents the
kinematics of the problem, is called kinematic equations; or the strain
displacement relations. The second set, which governs the relations between
the stresses and strains, are called constitutive equations; or the stress strain
relations. The last set represents the kinetics of the problem and it is called the

equations of motion; or the equilibrium equations.

In the following sections, these equations are given for shells of arbitrary
shape in the beginning, and subsequently the equations are specialized to
shells of revolution. Finally, as an example to commonly occurring shell of
revolution geometries, the equations for circular cylinder are derived from
general shell of revolution equations. This section begins with description of
the shell geometry and coordinate system to be used in the derivation of
governing equations, preceded by kinematic equations, constitutive equations

and the equations of motion; respectively.

12



2.1. Shell Geometry and Coordinate System

In this section, general shell geometry and the coordinate system used in the
derivation of governing equations for thin shells of arbitrary shape and
constant thickness are explained. As explained in Section 2.1.1, a curvilinear
coordinate system is used for the derivation of shell equations. It is assumed
that the shell is thin with respect to its radii of curvature so that the deflections
of the shell are small. The discussion is then specialized on the shell of
revolution geometry. In the end, as an example to commonly occurring shell of
revolution geometries, relations are further simplified to the circular cylinder

geometry.

21.1. Curvilinear Coordinates

Let the coordinates of a point P on an arbitrary shell be defined by

P(x,,x,,x;) in a three dimensional rectangular coordinate system and
&,n,l be the curvilinear coordinates. If a correspondence can be
established between x,,x,,x;, and &,n,{ ; then there exists a coordinate

transformation between x,,x,,x, and &,n,¢ in the form of three functions

x, =x,(8,1,¢) 2.1.1.1)
x, =x,(8,1,8) (2.1.1.2)
Xy = X;(5,1,6) (2.1.1.3)

If this correspondence is one to one, then there exists a unique inverse of
Equations (2.1.1.1), (2.1.1.2), (2.1.1.3) in the form

13



ézé(xlaxza)%) (2.1.1.4)
n=n(x,,x,,x;) (2.1.1.5)
é/:é/(xl’xzaxs) (2.1.1.6)

It is said that point P has curvilinear coordinates &,n,{ . The position vector

p of the point P has the rectangular coordinates given by Equation 2.1.1.7.

D =X, +X,0, + X315 (2.1.1.7)
The vector increment of the position vector is,

dp = dx,iy + dx, i, + dx,1, (2.1.1.8)

The same position vector increment dp can be similarly given in terms of the

curvilinear coordinate increments by
dp=dég.+dng,+dd g, (2.1.1.9)

where the coefficients of the metric tensor g, g, , g, are given by [5]

- -2
g, = a{ni] (2.1.1.10)
I R, )|
- -2
4
g, = 05,7[1+— 2.1.1.11)
g. =1 (2.1.1.12)
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where R.andR, are the radii of curvature in the & and 7 directions of the

shell respectively; «.anda, are some scale factors, to be explained in the

next section.

2.1.2. General Shell Geometry

A shell is defined as a three dimensional body, whose one dimension is

smaller than any other characteristic length. For the description of the points of

the shell, a reference surface of the shell is defined as the (ej,n) surface at
¢ =0, and ¢ coordinate is taken as a straight line directed along the normal
of the reference surface. The length of the { coordinate line lying within the

shell is called the thickness of the shell.

Figure 2.1 General Shell Coordinates
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The change of the position vector 7 of a point P on the shell, with coordinates

& and n are defined as [3]

2

2_;.2_;:2_; e (2.1.2.1)
2

oF oF |oF

é.ézé = (2.1.2.2)

a. and «, in Equations (2.1.2.1) and (2.1.2.2) are called fundamental form

parameters or Lamé parameters.

The deformation of a thin shell is determined by the displacement of its
reference surface and there are some relationships about the deformation of
this surface. One of them is called Mainardi — Codazzi Equations, which are

given in Equations (2.1.2.3) and (2.1.2.4), explain the relation between

Rg ,R,7 ez and a, [6].

i ] oa
o a, 1+ o & |9% (2.1.2.3)
65_ nJ | 4 65

i ] oa
9 a, 128 2] 8 ]9% (2.1.2.4)
on R, R, | On

2.1.3.  Shell of Revolution Geometry and Coordinate System

Shells whose neutral surface is generated by rotating a line about an axis are
called shells of revolution. For such shells, the lines of principal curvature are

its meridians and its parallel circles. In shell coordinate system, & is replaced

16



by ¢ and nis replaced by 6, as shown in Figure 2.2 and Figure 2.3.

Therefore, for a shell of revolution principal radii of curvature are given by
Equations 2.1.3.1 and 2.1.3.2.

, (2.1.3.1)

R, =R, (2.1.3.2)

. Axis of
\ Revolution

Figure 2.2 General Shell of Revolution Coordinates (2D)
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Figure 2.3 General Shell of Revolution Coordinates (3D)

From Figure 2.3, it is clear that the infinitesimal distance between points A and

C can be written as

dr’ =|AC| =|4B" +|BC[’ (2.1.3.3)
and Figure 2.2 reveals that

|4B| = R,d¢ (2.1.3.4)

And therefore the distance between points B and C is, as can be seen from
Figure 2.2 and Figure 2.3,

|BC|=(R+dR)d0 = RdO = (R, sin ¢)d6 (2.1.3.5)
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thus
dr’ =R;d¢> +(R, sin¢)’do’ (2.1.3.6)

Lamé parameters o, and o, were defined in Equations (2.1.2.1) and

(2.1.2.2). For the shell of revolution they become

. . 12
o o _|or =a, (2.1.3.7)
op 0¢ |09

- - |2
o o _|or =a, (2.1.3.8)
00 00 |06

Substituting Equation (2.1.3.6) into Equations (2.1.3.7) and (2.1.3.8),

a,and a, become for shell of revolution

a, =R, (2.1.3.9)

o, =R,sin¢g (2.1.3.10)
In addition to those, from Figure 2.2 it is obvious that

R=R,sin¢ (2.1.3.11)
as already been used in Equation (2.1.3.5) and

dR = d(R, sin §) = (R,d¢)cos ¢ (2.1.3.12)

One final issue which is of interest is that since shell of revolution is

axisymmetric, geometric properties R,,R,,a,and a,are independent of 6,

i.e.
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0
%[RWRG,%,%]ZO (2.1.3.13)

Further simplifications can be made to the shell of revolution geometry, in
order to obtain the equations of some commonly occurring geometries, which
can also be classified as shell of revolution. Among them, one of the most
commonly occurring and therefore widely used geometry is circular cylinder.
(See Figure 2.4)

¢ = constant = 90°

o
I
8

Figure 2.4 Circular Cylinder Coordinates

It is clear from Figure 2.4 that for cylinder,

¢ = Constant= 90° (2.1 .3.14)
oy =Ry - (2.1.3.15)

For cylindrical shells of revolution, Equations (2.1.3.10) and (2.1.3.11) become

20



o, =R,sm¢p=R, =R (2.1.3.16)
In addition,¢ coordinate, which is constant along the symmetry axis of the

cylinder, is the axial direction of the cylinder and becomes x coordinate. The

relation between x and ¢ coordinates can be found utilizing Equation
(2.1.3.4). Thus, for cylinder, relation between x and ¢ coordinates becomes:

dx = R,d¢ (2.1.3.17)

Equation (2.1.3.17) leads to the transformation between the ¢ coordinate of

the general shell of revolution and x coordinate of the circular cylinder:

o_19 (2.1.3.18)

2.2. Kinematic Equations

In this section, the equations which represent the kinematics of the problem, in
other words kinematic equations; or the strain displacement relations are

described.

2.21. Shell Assumptions

The approach to be used in the expression of the strain displacement relations

is based on the thin shell theory with first order transverse shear deformation
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effects included. The assumptions to be used in this work are first stated by

Reissner [9]. These can be summarized as,

1. Thickness of the shell is small compared to the other dimensions of the

shell; as stated in 2.1.2.

2. Strains and displacements are so small that higher than first order terms

can be neglected in strain — displacement relations.
3. Normal stress component perpendicular to the reference surface of the
shell (transverse normal stress) is small compared to the other normal

stresses and may be neglected.

4. A lineal element normal to the undeformed reference surface undergoes at

most a translation and a rotation and suffers no elongation.

2.2.2. General Derivation

The displacement field proposed under these assumptions is given by
Equations (2.2.1), (2.2.2) and (2.2.3) [9].

U.(&n.¢)=ul(En)+¢ B.(En) 2.2.1)
U,(En.¢)=u)(En)+< B, (En) (2.2.2)
U (Em.¢)=ul(én) (2.2.3)

where U,, U, and U, are the displacements of the shell in &, n and &

0

coordinates; u;, u,,

ug are the middle surface displacements of the shell in

the corresponding directions and . and 3, are the rotations of the normal of
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the middle surface of the shell with respect to n and & directions respectively.

The rotations ., and f3, are given by Equations (2.2.4) and (2.2.5).

aU b b
i3 :% (2.2.4)
U, (En.0)

The strain displacement equations of three dimensional theory of elasticity is
simplified to the following equations under the assumptions of Reissner for
thin shell theory with first order transverse shear deformation effects included,

and strain-displacement equations are given by Equations (2.2.6) — (2.2.10)

[1].

10U, U, Oa, U,
Eop =— +—7 +— (2.2.6)
a. 0§ a.a, On R,

L ov, U, da, U

=Ty (2.2.7)
" a, On a,a, 0§ R
a U a U
v, _ % 0T | % O Yy (2.2.8)
a,on\a; ) a5\ a,
U ou
e ‘“é(HRLJ% S % @29
: a§(1+§] a§(1+§]
R
5 5
U ou
Ve :a,{HRi]% 1 + ! . < (2.2.10)
! a, 1+£ a, 1+ & 7
Rn Rn
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Substituting the proposed displacement field into the strain displacement

equations, total strains can be represented as the sum of the membrane and

bending strains which are also commonly referred to as extensional strains

and curvatures:

_ .0
o =8z +C Ky

e =& +CK

nm nm nm

Ven = 7/277 T g Ken
Ve =P _%Jré%
where
0 _L@ug N u,(; oo ﬁ

855_0{ ot a.a, O R
£ @y on £

0 0 0
1 auﬂ ug 805,7 ug
o R

" oa, On  a.a

o2 (i) o ()
= Sy vl S R
" a,0nla. ) a.onla,
1 0p. B, oa,
g=———_.t
a. 0§ a.a, On

1 aﬁn ﬁé 80(,7
Km = +
a, on  a.a, 08

n

o @2 (B @ o (B
a. 06\ a, | «a, on\ a,

n
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(2.2.11)
(2.2.12)

(2.2.13)

(2.2.14)

(2.2.15)

(2.2.16)

(2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)

(2.2.21)



2.2.3. Reduction to Shell of Revolution

Strain displacement relations given in Equations (2.2.11) through (2.2.21) are
derived for shells of arbitrary shape. In order to obtain the kinematic relations
for shells of revolution, modifications discussed in 2.1.3 have to be made.
Substituting Equations (2.1.3.9), (2.1.3.10) and (2.1.3.13) into Equations
(2.2.11) through (2.2.21) and changing the shell coordinates to ¢ and 0,

midstrains and curvatures terms become:

o _ 1|05

el =—|—2 1y 2.2.3.1

# R | op (2.2.3.1)
1 ou’

g =———|ulcosp+—=+u’sin 2232
% Rgsingb{ ’ ¢ 00 ¢ 4 (2232)
0 1 Ouy 1 oul cotg ,

_ L. G4y cotg 2.2.3.3
"9~ R,sinp 00 R, 0p R, (22:33)
o, =L %P 2.2.34

=7 (2.2.3.4)
1 op
Kgg = X Sm{ﬁ(ﬁ cos ¢ +6—;} (2.2.3.5)
o
L P L OB, cot (2.2.3.6)

0

KW:R ,
pSing 060 R, 0 R

For a general shell of revolution, the overall (total) strains are given by:

£,5(0,0.8)=0,(0,0)+ ¢ ,5(9.,0) (2.2.3.7)
€00(,0,8)= 20, (,0)+ icp (6,0) (2.2.3.8)
Y50(8.0,8)=73(.0)+ ¢ K,5(6,0) (2.2.3.9)
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0 0
Vo =By b, 1 e (2.2.3.10)
R, R, 0¢
uj 1 Ou;
Voo = Bo ——2+ —= (2.2.3.11)

R, R,sm¢ 00

If one utilizes the Equations (2.1.3.14) to (2.1.3.16) and (2.1.3.18), and
substituting ¢ with x , kinematic relations given above for general shells of
revolution can further be specialized to circular cylindrical shells. For circular

cylindrical shells mid plane strains and curvatures are given by Equations
(2.2.3.12) - (2.2.3.17).

0 aug
., = (2.2.3.12)
ox
1| ouy
0 [ 0
Egp = | =, tu 2.2.3.13
00 R{ 20 g} ( )
N —16u3+6u3 (2.2.3.14)
“ RO  ox o
0
K. =£ (2.2.3.15)
ox
1 0B,
=0 2.2.3.16
Koo R 00 ( )
Ko :l%+% (2.2.3.17)
R 00  Ox
For a cylindrical shell of revolution, the overall strains are given by:
£.(6,0,0)="(x,0)+ ¢k (x,0) (2.2.3.18)
£49(x,0,8 )= &5 (x,0)+ ¢ 10 (x,0) (2.2.3.19)
70 (2,0,) =72 (x,0)+  x,(x.6) (2.2.3.20)
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4
=B 2.2.3.21
g Oox ( )
ug 1 6u2
=B ——+——= 2.2.3.22
Vo = Py R R 80 ( )

2.3. Constitutive Equations

Constitutive equations described in this section govern the relations between
the stresses and strains arisen due to the external effects in a laminate. Since
a laminate is defined as two or more laminae (layers) bonded together to
construct a complete structural member, there are a number of theories which
explain the bonding between these layers. Among these, one of the most
widely known and used theories is Classical Lamination Theory [4], [12]. The
constitutive equations explained in this section are developed under the
assumptions of this Classical Lamination Theory. Most of these assumptions
are identical to the thin shell theory with first order transverse shear
deformation effects included, which are given in Section 2.2.1. The only
difference is in the material properties. In classical lamination theory, Perfect
bonding between layers is assumed. The bonding itself is infinitesimally small
(there is no flaw or gap between layers); and non-shear-deformable (no
lamina can slip relative to another). The strength of bonding is as strong as it
needs to be (the laminate acts as a single lamina with special integrated

properties).

The laminae principal material directions are oriented to produce a structural
element capable of resisting load in several directions. Therefore, since the
material directions and the geometric directions of the structure do not overlap
for this reason, transformation between the coordinates of the material and the

structure is necessary. The following section deals with this subject.
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2.3.1. Transformations of Stresses and Strains

In materials of any kind, there is always a need for establishing transformation
relations among stresses and strains in one coordinate system to

corresponding quantities in another coordinate system.

Figure 2.5 Material and Geometric Coordinates

For a fiber reinforced composite layer, which is schematically shown in Figure

2.5, let x;, x, and x, represent principal material coordinates, x, being the
fiber direction, x, the transverse to fiber direction and x, the thickness

direction; and &, n, { represent the geometric coordinates. From Figure 2.5,

it can be devised that
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X, cos@ smf O0||&

X, p=|sin@ cosf@ O0|n (2.3.1.1)
X, 0 0 1[|¢
and

£ [cosd® sin® 0] [x
ne=|snf cosfd 0| {x, (2.3.1.2)
¢ 0 0 1] |x

since
cos@ sin® 0] [cos® sin@® 0]
sin@ cosf 0| =|snf cosf 0 (2.3.1.3)
0 0 1 0 0 1

Using Equation (2.3.1.1), transformation of stresses between material

coordinate system and geometric coordinate system can be written as

o, O, Op cos sin@ 0| o, o, o0, |cosd snf O ’

0, Oy Oy|=|sin@ cosb 0|0, o, o0,|sind cosd 0

o, O Os 0 0 ljjo, o, o4 0 0 1
(2.3.1.4)

For symmetric stress tensor, one can write the elements of the stress tensor in
vector form. Thus, Equation (2.3.1.4) can be re-arranged as in Equation
(2.3.1.5) [12].
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o m n- 0 0

O, n m* 0 0

ou| | O 0 1 O

ol | 0 0 0 m -n

(o 0 0 0 n

o, |-mn mn 0 0 0 (mz—nz)_
where

m=cosf , n=sméb

For plane stress situation, Equation (2.3.1.5) becomes

2 2

o, m n 2mn O
2 2
Oyr=| n m —2mn |0,
o, —mn mn (m2 —n’ O,
Similarly, for the strains,
& m* n 0 0 0
€y n’ m* 0 0 0
Exy 0 0 1 0 O
2-&, 0 0 0 n m
2-e,) |-2mn 2mn 0 O
For plane stress,
&, m* n’ mn P
Enr=| 0 m —-mn &
71 —2mn  2mn (m2 -n’ Yen
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(2.3.1.6)

(2.3.1.7)

(2.3.1.8)

(2.3.1.9)



Note that 2¢; =y, .

2.3.2. Macromechanical Behaviour of Lamina and Laminate

The Generalized Hooke’s Law relating stresses to strains in the material

coordinate system can be written in contracted notation as [4]:

0, ¢, G, C; C, C5 Cy €

0, Gy Cp Cy G G Cylle,

O3 _ Cy Gy G G G Gy & (2.3.2.1)
0y Ch Cp Cp Cp Cy Cylf2ey

Os Cy Cy G Gy Gy Cy||265

O L Cao Co Cu Cou Cgy Cg J 2

Note that o, =0,, 0,=0,, O,=0,,; and ¢, =¢,,, € =&, & =&,

Matrix C is symmetric, that is C, =C,, so for fully anisotropic materials

i
there are 21 independent material constants. For monoclinic materials, i.e. the
materials which exhibit single plane of elastic symmetry, the number of
independent constants reduces to 13 and for orthotropic materials, the
materials which exhibit three planes of elastic symmetry, this number reduces

to 9.

Since laminates are generally composed of layers of fiber-reinforced laminae,
and lamina is a flat or curved arrangement of unidirectional fibers or woven
fibers in a matrix, stress strain relations should be investigated for plane stress

behaviour in orthotropic materials. For a lamina, plane stress state is defined

by setting o0,=0 o, =0 o,; =0 in Equation (2.3.2.1). For orthotropic
materials, plane stress assumption leads to ¢,; =0 and ¢,; =0. Therefore,

for the plane stress case, Generalized Hooke’s Law can be written as:
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0, O, Qn 0 ||¢
o, =10n On 0 |& (2.3.2.2)
O 0 0 O |70

The material constants (), in Equation (2.3.2.2) are called the reduced

stiffnesses and are given, in terms of engineering constants, as [4]

E
Qn - ]
1_‘/12‘/21
E
0, =Yk _ Vb (2.3.2.3)
1 V2V 1_‘/12‘/21
E
Qn = 2
1_‘/12‘/21
Qn :GIZ

For a lamina of arbitrary orientation, stress strain relations are transformed

using the approach explained in Section 2.3.1. Let the transformation matrix

given in Equation (2.3.1.7) denoted with 7, and the transformation matrix

given in Equation (2.3.1.9) with 7,, so that

m*  n? 2mn

T,=| n* m> —2mn (2.3.2.4)

2 2
—mn mn (m —I’l)

m2 I’l2 mn

T,=| n’ m’ —mn (2.3.2.5)

—2mn 2mn (mz—nz)

In geometric coordinates, stresses can be related to strains using the
Equations (2.3.1.7), (2.3.1.9) and (2.3.2.2). Substituting the stress and strains
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expressions for geometric coordinates given in Equations (2.3.1.7) and

(2.3.1.9) into Equation (2.3.2.2) yields,

Oy O, 0, O Eee
-1

01717 = T; Q]2 Q22 0 T2 81717

O ¢y 0 0 O Ven

Rewriting Equation (2.3.2.6) one gets,

O 9 I 9 2 9 6 ||%e
617 n = Ql 2 Q22 Q26 gl] n
Oy O O O Ven

where

0, =0y, c0s* 0+2(0,, +20,)-sin® cos’+Q,, sin* 0
le = (Qn + 0,5, =40 )COSZ Gsin” 6 + O, (COS4 6 +sin* 9)

0, =0, sin*0+2(0,, +2 -sin? cos’+ 0, cos* O
22 11 12 66 22

Q]e = (Qn -0, - 2Q66 )0053 Osin 0 + (Qn -0, + 2Q66 )cos@sin3 0
Qze = (Q]] - le - 2Q66 )cos@sin3 0+ (Q]] - Q22 + 2Q66 )COS3 Osin 6

O =(0,, +0,, —20,, =20, )cos’ Osin” 8 + O, (cos4 6 +sin? 9)

(2.3.2.6)

(2.3.2.7)

(2.3.2.8)

When transverse shear effects are not neglected, the terms y.. and y,. are

non-zero and should appear in the constitutive equations. This is discussed

further in Section 2.3.3. The relation between transverse shear stresses and

transverse shear strains for geometric coordinates are given by [11]:

2
O Oi Oss |V
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Note that the coordinate transformation is carried out the same way. So Q.j

(z', j= 4,5) coefficients are given, in terms of material stiffness coefficients, by

0, =0,,c08’ 0+ Q0 sin’ 0
§55 =0 COS29+Q44 sin” 0 (2.3.2.10)

Oy = (Q55 -0, )cos@sin 2]

The material stiffness coefficients in transformation Equations (2.3.2.10) are

given in terms of engineering constants, by

O, =Cy, =G, (2.3.2.11)

Stress and strain variation in a laminate is essential for determining the
extensional and bending stiffness of the laminate. In the classical lamination

theory, the laminate is assumed to be consisting of perfectly bonded laminae.

Displacements u. and u, are assumed to vary linearly through the thickness

of the laminate. Similarly, strains ¢.., ¢, and y. also vary linearly through

nn
the thickness of the laminate. Since the strains are related to the stresses
through the Equation (2.3.2.7), stresses acting on each layer of the laminate
can be integrated through the shell thickness to obtain the force and moment

resultants per unit length for the shell which has a total thickness of % . For the

face perpendicular to & direction, in-plane force resultants are given as [1]

Ngg _ h/2 055 i
{Nén} B J“W{G&] HH R, ]dé’ (2.3.2.12)

and for the face perpendicular to n direction,
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N, :J.h/z O 1+£ i
Ny 2O R,

Similarly, the moment resultants are given by:

Méé (2|0 i
AR 3

M'm (2| Oy, ) & i
M, _I_h/z O e +R_§ o

(2.3.2.13)

(2.3.2.14)

(2.3.2.15)

As mentioned in Section 2.2.1, one of the major assumptions made by

Reissner for shell theory is that thickness of the shell is small compared to the

other dimensions of the shell, so that g“/Rg and C/R,7 can be neglected.

Furthermore, although due to the symmetry of the stress tensor o, =0, it

is clear from Equations (2.3.2.12) and (2.3.2.13) that N, #N,. unless

R.=R, or {/R.and {/R, terms are cancelled from the equations. Since

based on the assumptions of Reissner’s shell theory g“/Rg and C/R,7 terms

can be neglected, it can be said that for the current study, which is based on

Reissner Shell Theory, the force resultants are also symmetric, Ngq = N,ﬁ.

Symmetry is also valid for the moment resultants, M. =M, .. As a result,

Equations (2.3.2.12) - (2.3.2.15) become, after regrouping,

N o

d wa |
Ny 1=, om (4
N én 6577
M o

13 2 &
M, =] o, ({dS
M én 6577
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Stresses are integrated over the laminate by integrating over each lamina
separately. Since the laminae are assumed to be bonded perfectly,
displacements are continuous through the thickness, but integrations for each

lamina should be summed up.

N, v o, |9
M7=;Q4QWCM (2.3.2.18)
N§’7 én )y

M, v o, |C%
My =3 Yo, (dS (2.3.2.19)
- 6577

In these equations, N is the total number of lamina and as shown in Figure
2.6, Z is the vectorial quantity defining the distance between the mid-surface
and any layer; k is the dummy variable for the summation of values for each
layer. It should be noted that although reference plane is usually taken as the
mid plane of the shell or laminate wall, in theory reference surface can be

taken anywhere within the laminate.
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Figure 2.6 Stacking of Layers through the Shell Thickness

Substituting Hooke’s Law given by Equation (2.3.2.7) into Equation (2.3.2.18)
and Equation (2.3.2.19), and writing the total strains as the sum of membrane
and bending strains as explained in Section 2.2, one gets:

Nel 5|@n Qo Q|| - foa . |2
Ny t=200 On O |4 {en t d+[" 1x,p ¢dS  (2:3220)
ey _ _ k-1 k-1
N§I7 Q]6 Q26 Q66 k 8217 k K§I7 k
M, v Ql Q]z Q]e , 325 , Kee
- - - k k 2
M;; :z On On 0Oy L 31(7);7 éldé/"'J.ZV Kon ¢ d¢
ey _ — k-1 k-1
M§I7 Q]6 Q26 Q66 k 8217 k K§I7 k

(2.3.2.21)

Performing the integrations, Equations (2.3.2.20) and (2.3.2.21) can be
rewritten as:
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Al] A12 Al(y 80 Bl] B]2 B
N, t=|4, Ay Ay |i&, t+| By By By l|ik (2.3.2.22)
A Ay Ay 82 By By B

M, B, B, By & D, D, Dj||lk
M ‘=B, B, B, \+|D, D, D, |[ix (2.3.2.23)
&n By By By 850 Dy D,y Dg || K;

4; = g@-j )k (e —21) i,j=12,6 (2.3.2.24)

B, :%i(gj )k (Z/f —Z/f_]) i,j=12,6 (2.3.2.25)
k=1

D; :%ﬁ@ )k (Zi —Zi_l) i,j=12,6 (2.3.2.26)

In Equations (2.3.2.24) — (2.3.2.26), A; terms are the extensional stiffness
coefficients, B; terms are the bending stretching coupling stiffness coefficients,

and D; terms are the bending stiffness coefficients.

In the case of the analysis of laminates that have not been cured at
operational design temperatures, thermal stresses arise and final stress
distribution is given by the superposition of stresses due to mechanical effects
and thermal effects. To deal with the real world of polymer composites, strain
stress relations must be modified as in Equations (2.3.2.27) and (2.3.2.28) [4].

g, =5,0, +a,AT (i=123) (2.3.2.27)

g =8,0; (i=4,5,6) (2.3.2.28)
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It should be noted that coefficients of thermal expansion affect only

extensional strains, not the shearing strain. The total normal strain ¢, is the
sum of the mechanical strain S;0; and the thermal strain ;AT . Inverting the

Equations (2.3.2.27) and (2.3.2.28), stress strain relations for plane stress for

an orthotropic lamina are obtained.

O, Ql] le 0 gl_a]AT
o, =10, 0, 0 |J&,—a,AT (2.3.2.29)

O 0 0 O V12

Stresses in laminate coordinates, or geometric coordinates, for the K™ layer

are obtained by transformation of coordinates. Transformation yields:

O g Ql Qz Qe £z —a AT
ot =0, On Ol{e, —a,AT (2.3.2.30)

nm

0517 & Q]6 Q26 Q66 & 7/517 _a&]AT &

where

a. =a,cos’ 0 +a,sin’ 0
a, =a,sin’ 0 +a, cos’ 0 (2.3.2.31)

Qg = 2(05, —az)cos9sin9
Substituting Equation (2.3.2.7) with Equation (2.3.2.30) and carrying out the

same procedure for force and moment resultants, one gets:

N, A
N, t=|4, Ay Ay |S&y t+| By, By By |k, r—1N, ¢ (2.3.2.32)
N. | |4
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M, By By By 825 Dy Dy, Dy ||Ke MéT
26 87(7)17 +| Dy, Dy Dy |9Ky, 1= M,7T (2.3.2.33)

=
Il
;CU Stc
o~ Btc
oy

0 T
% B || €z Dy Dy Dg || K; M

n én

where thermal force and moment resultants are given by Equations (2.3.2.34)
and (2.3.2.35).

NéT N 0, 0, Qe o

NI =20 10n 0n Ol {a, | ATdS (2.3.2.34)
N ;7 o O O O N\ %en ),

MéT N 0, 0, Qe .

MIt=Y["10, 0w 0Ol a, | ATCdS (2.3.2.35)
M ;7 e O O O %),

For constant spatial temperature difference between the operational
temperature and cure temperature of the composite, thermal force and

moment resultants can be obtained as:,

NéT N 0, 0, O a;

Ny =210, On Oy 4@, AT(z,-z,) (2.3.2.36)
NéTn - O Ox O i e ),

MéT | & 0, O, Qe .

MUT :Ez Q]z sz Qze a, AT(Z/f _Z/f_]) (2.3.2.37)
M ;7 - O O O P ),

For shells of revolution it is very probable that the temperature across the
thickness may vary depending on the exposure of the shell to external
environment. For instance, a cylindrical pipe, which is subject to different
temperatures inside and outside the cylinder, will definitely have a varying
temperature distribution across the thickness of the shell. For thin walled

shells, linear variation of the temperature distribution across the thickness can
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be assumed in most engineering problems. If the temperature difference is

allowed to vary linearly across the thickness in the form given by Equation
(2.3.2.38),

AT(E)=AT, +AT,¢§ (2.3.2.38)
then the expressions should be modified accordingly. Note that { =0 plane is

the middle surface of the laminate. Substituting Equation (2.3.2.38) into
Equations (2.3.2.34) and (2.3.2.35),

No L [0 Gn O [

Ny =20 100 0w O {a, | (AT +ALC)dC (2.3.2.39)
N;; ~ Q]e Qze Q,e i P )y

Ml 100 Oy O |a

My =010, 0w Ol @, t (AL+ATS)dS (2.3.2.40)
M gTq e Qe Qze Qee o P )y

Evaluation of the integrals yields:

NgT N Ql Q]z Q]e a, AT

NqT = z le Q22 Qze a, (AT] (Zk T2k )+72(Zlf _Z/f—l )]
k=1| =~ = Py

N; Q](, Qze Qee

1 Qz O &,

- = AT, AT
O, Oy a, (T](Z/f _Zlf—l )+TZ(Z£ _Zli—] )]
O Qe N\ %en ),

urlo$
n

<

Y,

T
ASIRISTEIS]

[=)

(2.3.2.42)

Thus, the thermal force and moment resultants caused by linearly varying

temperature difference across the laminate thickness are obtained. Note that

in Equation (2.3.2.38), setting A7, =0 reduces the Equations (2.3.2.41) and
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(2.3.2.42) to the Equations (2.3.2.36) and (2.3.2.37), which are derived for
constant temperature difference across the thickness. In total, constitutive

equations can be written as

N A4, A, 4 B, B, By 325 N;

N, A, Ay, Ay By, By By ||e€ ;(7);7 N ;7T;7

Ngq _ A Ay A Bis Bx B 7/2;7 _ NgTq (2.3.2.43)
M. B, B, Bs Dy D, Dgl||K Mng o
M, B, By By D, Dy, Dyl||K, MUT;;

M. | [Bg By By Dy Dy D | Key MgTq

Substituting ¢ for £ and 6 for n, and bearing in mind that the strain

displacement relations are given by Equations (2.2.3.1) — (2.2.3.6), in-plane
constitutive equations for shells of revolution can be written as in Equation
2.3.244.

Ny A4, A4, 4g B, B, By g£¢ N¢T¢

Noo 4, Ay Ay By, By By || Ngy

N¢9 _ A Ay A B By B 729 _ N¢Ta (2.3.2.44)
M,, B, B, Bs Dy D, Dygl||K M¢T¢ o

M g, B, By By Dy Dy Dy|| Ky My,

M¢9 | Bis By Bs Dis Dy Dy | Ko M¢Ta

Constitutive equations for the circular cylindrical shells of revolution can be

written by substituting x in place of ¢ in Equation (2.3.2.44), and keeping in

mind that strain displacement relations are given by Equations (2.2.3.12) —
(2.2.3.17).
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N, 4, 4, 4, B, B, By||e, Ny,
N g A, Ay Ay B, By, By || gy Ny
N _ Ag Ay A By By By || _ N (2.3.2.45)
M., B, B, B, D, D, Dgl||kK, M
M g, B, By By D, D, Dyl||Ky My,
M) [Bg By Bg D Dy Dg ||k, M3,

2.3.3. Transverse Shear Resultants

In order to include the transverse shear effects in the formulation, assumptions
of classical shell theory should be modified such that transverse shear strains

Y e and y,, should be taken as non-zero. When the transverse shear

deformation is non-zero, surfaces normal to the middle surface before
deformation will not remain normal after deformation. In case of first order
transverse shear deformation theory, it is assumed that normals to the mid
surface before deformation at most undergoes a rotation leading to two more
unknowns compared to the unknowns present in classical shell theory

equations.

Since the top and bottom surfaces of the laminates composite shell are free
surfaces and therefore force and moment resultants should be equal to zero
on these faces, assuming constant transverse shear stresses do not satisfy
the boundary conditions on the top and bottom surfaces of the shell. However,
according to the elementary beam theory, the transverse shear stress varies
parabolically through the beam thickness and is zero at the top and bottom
surfaces. In order to satisfy these conditions, Equation (2.3.3.1) is used as a
weighing function, so that the transverse shear stress distribution is parabolic
through the thickness and equals to zero at the top and bottom surfaces of the
shell [12].
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3 4 (2.3.3.1)

In Equation (2.3.3.1), h is the total thickness of the laminated composite shell
and the coefficient 5/4 is called as the shear correction factor, as suggested

by Mindlin and Reissner for the isotropic case [10], [13]. It should be noted
that a factor of 5/4 multiplies the distribution function used by Whitney [14] so
that the shear factor calculated for the layered anisotropic shell wall can be
consistent with the established shear factor from the previous work of Mindlin

[10] and Reissner [13] for the homogenous case.

The relation between transverse shear stresses and transverse shear strains
were given by Equation (2.3.2.9). By multiplying the transverse shear stresses
by the weighing function, Equation (2.3.3.1), and carrying out integration
through the thickness of the laminated shell wall, the transverse force

resultants can be calculated as given Equations (2.3.3.2) and (2.3.3.3) [1].

0, =3[ loc), {HRi]f(:) dg (23.3.2)
k=1~ &
0. =3[ oz, {HRi]f(e“) d¢ (2.3.3.3)

Again utilizing the basic Reissner Shell Theory assumption that the thickness

of the shell is small compared to the other dimensions of the shell, so that

C/Rg and C/R,7 can be neglected, as explained in Section 2.3.2, Equations
(2.3.3.2) and (2.3.3.3) become

{gné}:zj? {0-774} f(g’)dg’ (2.3.3.4)
& - K

44



Substituting Equation (2.3.2.9) into (2.3.3.4), one gets Equation (2.3.3.5).

A4, A
{qu }{ “ 45}{7'74 } (2.3.3.5)
O ) A AV
where 4, (i,j = 4,5) terms, which are defined as transverse shear stiffness

coefficients, are given by
5 (= 4 1 ..
4, :ZZ(QU )k[zk (-2 )h—z} (i,j=45) (2.3.3.6)

In Equation (2.3.3.6), Q.j (z',j = 4,5)terms are given by Equation (2.3.2.10).

For a general shell of revolution, by switching the coordinate notation, & <> ¢

and 1 <> 0 | one can rewrite 2.3.3.5 as:

{Qeg } _ |:A44 Ays }{7%} (2.3.3.7)
Q¢g A45 ASS Yoc

In addition, for a circular cylindrical shell of revolution, after switching the

coordinates (¢ <> x ) one can rewrite Equation (2.3.3.7) as:

{Qeg } _ |:A44 A45}{704 } (2.3.3.8)
ng A45 ASS %
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2.4. Equations of Motion

In this section the equations representing the kinetics of the problem, which

are called the equations of motion; or the equilibrium equations are described.

24.1. General Derivation

Equations of motion for shells of arbitrary shape is derived from Hamilton’s
Principle, which states that while there are several possible paths along which
a dynamic system may move from one point to another in space and time, the
path which is actually followed is the one that minimizes the time integral of

the difference between the kinetic and potential energies.

Hamilton’s Principle can be written as in Equation (2.4.1.1) [3].
5[\, -K-W,)dt=0 (2.4.1.1)

where U, is the strain energy, K is the kinetic energy and W, is the total

input energy, which is defined as the sum of the energy input by the boundary

force resultants (£, ) and the energy input by the applied load components

(£, ). By taking the variation symbol inside the integral one can re-express the

Hamilton’s principle as:
['6U,-6K-6E,~5E,)dt=0 (2.4.1.2)

In Equation (2.4.1.2), if the variations are examined one by one and evaluated

separately, after substituting them back to Equation (2.4.1.2), Equation
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(2.4.1.3) is obtained for a general shell. The full derivation of Equation 2.4.1.3
is skipped since it is given in many previous works such as [1], [2]. In Equation
(2.4.1.3) translatory and rotatory inertia terms are also included for the sake of

generality.

L’;HH Wats) AWaete) | 2 0y QO

+ o.a
5 5
an n an nn ag Rg n
- p.aQ +phuaa)5u
O\N,,a o\N, a oo oo
. ( én 77) ( nm 5) N&7 n +N§5 ¢ _QUC a.a,
O& on o0& an R,
—-p,a:o, +phi,a.a, )éu,7
N _a(Ql7Ca§)_a(QéCal7)+ Ne +Nm7 oo
on o0& R. R, )
-psacQ, +phiiga5a,7)5ug
6(M a, 6(M,oc oa oa,
+(_ ;é 7)_ 657; 5)_1\4577 6775 +M,, 657 +0.a.a,
. (2.4.1.3)
no.
oM, o) oM, a dar, dar
J{— 63,; 7) 671; ) -M,, 6§7+M55 a;+Qn:0‘50‘n

3

+pfiaca ,7]5ﬁ,7}dédndé

* J:: L [(N o~ N ;7 )5“5 + (N m N;” 0t (qu - Q;g )&M

+ (M5’7 - M;7 )5 ﬁé + (Mlm - M;’] )5ﬁ17 ] . dg dt
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+J:J:7 [(Néé - N )5“5 +(N§77 - N, )5“:7 +(Q5¢ -0y )5“4

+(M¢: _M;: )5ﬁ§+(M€77 _M;n )5ﬁ77 ]a,7dndt =0

Equation (2.4.1.3) can be satisfied only if each of the triple and double

integrals is zero individually. Moreover, since the variational displacements are

arbitrary, each integral equation can only be satisfied if the coefficients of the

variational displacements are zero. Thus, by setting the coefficients of the

triple integral to zero, one gets the following five equations of motion for a shell

of arbitrary shape.

o(N o(N 0
( 550‘17)+ ( 5:70‘5)+N& a; VR
oé on "on ™ oE R

+p.a.a, = phi.a.a,

Ql]é’

n

6(N§,7a,7) . 6(N,ma§) . N& 605,7 ~ Nﬁ 6055
o0& on " o0& on

+p,a.q, = phi,a.a,

+

06506,7

a(Q§§a17) + a(Q17§a§) +— N§§ + NI]I]
PE on

]0‘50‘:7 - po.a, = phia.o,

6(M§§a,7)+6(M§,7a5)+M& oo §
o0& on " on "o

/S
—0. 0.0, = paﬂéaéan

nn n -M
05 on Tos ¥ on
3

o
—Qaa, = paﬂnaéan

oM, )+6(M77170‘5)+M oo oa,
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(2.4.1.5)

(2.4.1.6)

(2.4.1.7)

(2.4.1.8)



If one traces the derivation of these equations from their beginning at

Hamilton’s Principle to the ending at equilibrium equations, It will be revealed

that in these equations, p., p, and p, terms are caused by the distributed

forces applied to shell externally. Among them, since p, is the distributed

force in the thickness direction, it is always normal to the surface and therefore

can be treated as pressure. Furthermore, p. and p, can be considered as

the applied shearing stresses in the & and 7 directions, respectively.

24.2. Boundary Conditions

Each of the double integrals given in (2.4.1.3) is equal to zero only if the
coefficients of the variational displacements, variational displacements or one
of the two for each term are zero. Since variational displacements are only
zero at all times when the boundary displacements are prescribed, this

translates into the following possible boundary conditions for a constant &

edge.

Either N,, = N, or u, =u, (2.4.2.1)
Either N, = N, or u, =u, (2.4.2.2)
Either O, = 0, or u, =u; (2.4.2.3)
Either M, =M, or B, = j; (2.4.2.4)
Either M., =M, or B, = f3, (2.4.2.5)

This states the intuitively obvious fact that at a boundary one has to prescribe
either force resultants (moments) or displacements (rotations). Thus, at a

constant ¢ edge, five conditions have to be specified. Similarly, examining
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Equation (2.4.3) along a constant n edge, the five boundary conditions have

to be given by Equations (2.4.2.6) — (2.4.2.10).

Either N, = N, or u, =u, (2.4.2.6)
Either N,, =N, or u, =u, (2.4.2.7)
Either 0, = O, or u, =u; (2.4.2.8)
Either M., =M, or . = f3; (2.4.2.9)
Either M,, =M, or 8, =j, (2.4.2.10)

nm

It should be noted that the terms given with asterisk (*) are the prescribed

values of the boundary conditions.

2.4.3. Reduction to Shells of Revolution

Equations (2.4.1.4) — (2.4.1.8) along with boundary conditions (2.4.2.1) —
(2.4.2.10) constitute the equations of equilibrium for an arbitrary shaped shell.
Therefore, some simplifications should be made to obtain the equations of
motion for shells of revolution. Substituting Equations (2.1.3.9), (2.1.3.10) and
(2.1.3.13) into Equations (2.4.1.4) through (2.4.1.8), and changing the

variables used for the shell coordinates ¢ <& and 6 < n one gets the

equations of equilibrium for a general shell of revolution.

aN¢¢ : aN¢e . .
WRQ sing + (N, — Nyy)R; cosg+ py: Ry + 0Oy Rysing + p,RyR, sin ¢
zphiigReR¢ sin ¢ (2.4.3.1)

ONyy . ON . .
o6 Rysing+2N R, cosd + 20 R+ 0y Rysing+ pyR,R, sing

= p hii)R,R, sin ¢ (2.4.3.2)
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0Qy; Oy . : :

20 R, + o6 Rysing+Q,R, cosgp— Ny, R,singp —N,,R, sin¢
+p.R,;R,sing = phiv’RyR, sin ¢ (2.4.3.3)
oM ,, , oM 4, '

Rysing+——=R, + (M, —M )R, cosgp— O, RyR, sin ¢

o0¢ 00
:ép W B,R,R, sin ¢ (2.4.3.4)
oM M

R, sin¢+a—99R¢ +2M 44R, cosp — Oy R, R, sin ¢

o0¢ 00

1

== p I’ ByR,R, sin ¢ (2.4.3.5)

For a shell of revolution, circumferential coordinate 8 changes from 0 to 27 ;
so it traverses a full circle. Therefore, there is no boundary at a constant 6
edge, meaning that only possible boundary is constant ¢ = edge, where a
boundary condition can be applied. So, the applicable boundary conditions
are given by Equations (2.4.2.1) — (2.4.2.5). Since for shell of revolution

& <> ¢ and n <> 0, these equations can be re-written as:

Either N,, = N,, or u, = u, (2.4.3.6)
Either N,, = N, or u, =u, (2.4.3.7)
Either Q,, = 0, or u, =u; (2.4.3.8)
Either M, = M, or B, =, (2.4.3.9)
Either M ,, = M, or B, = 3, (2.4.3.10)

It should be noted that for a shell of revolution the first double integral in
Equation (2.4.1.3) vanishes. This is because in the derivation of Equation
(2.4.1.3) at the intermediate steps integration by parts is applied. When the

integration by parts is applied to n derivative terms, the first integral which

emerges is a definite integral which has to be evaluated at the n boundaries.
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Since for a shell of revolution n boundaries coincide the force and moment
resultant terms (N and M) coming from the strain energy expression vanishes.
In addition, since not constant n boundary exists the energy input into the
shell by the applied boundary force and moment resultants (N" and M) along a
constant n boundary also does not exist. Thus, the first double integral in

Equation (2.4.1.3) vanishes.

Furthermore, since the current study is limited to static conditions, terms
involving the change of quantities with time (i.e. derivatives with respect to
time) necessarily happen to be zero and drop from the equations. Therefore,
Equations (2.4.3.1) to (2.4.3.5) become:

aNWR ing+(N,, — N, )R, cos¢ aNWR 0, R, sin ¢
—_— S @ + — CoOSQ+—— + sim
op ° e 00 4 T (2.4.3.11)
+pyR,R,sinp=0
ON ON
96 : 00 :

R,sn¢p+2N,,R, cos¢+ R, + R, sin
op ° #+2NyyR, cosg 00 Qu Rysin g (2.4.3.12)
+pyRyRysinp=0
00y, 00y . . : .

R, + R,smop+QO,R, cosp—N,,R, sm¢p —N, R, sin
o0 ' o9 ¢+ QyR,y cosg=NogRy sin g = Nyy Ry sin ¢ (2.4.3.13)
+p:R,R,singp=0
oM, OM 4,
o6 R, sin ¢ + 20 Ry + (M, —My)R, cosg
~ 0, R,R,sing =0 (2.4.3.14)
oM M
a¢¢9 R, sin¢+aa—999R¢ +2M 4R, cosd — Oy R,R, sin ¢ =0 (2.4.3.15)

Equilibrium equations for circular cylindrical shell of revolution can be obtained
by substituting Equations (2.3.1.14) to (2.3.1.16) and (2.3.1.18), with the

change of coordinate ¢ to coordinate x, into these equilibrium Equations

(2.4.3.11) to (2.4.3.15) given for general shell of revolution above. Thus, the
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equilibrium equations for a circular cylindrical shell of revolution reduce to
Equations (2.4.3.16) — (2.4.3.20).

%R+aév_9w+pxR:0 (2.4.3.16)
azav;g o aévgg 0w + R 0 (2.4.3.17)
aaQ—;Hagf R—NgR+p.R=0 (2.4.3.18)
az;cxx o 61(;459 0.R=0 (2.4.3.19)
aA(;I):g o 81(;4;9 0, R=0 (2.4.3.20)

And obviously the boundary conditions are re-written with x substitution in

place of ¢:

Either N, =N_ oru, =u, (2.4.3.21)
Either N, =N, or u, =u, (2.4.3.22)
Either O, = O, or u, =u; (2.4.3.23)
Either M _ =M or B, =p. (2.4.3.24)
Either M , =M _, or B, = f3, (2.4.3.25)
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CHAPTER 3

METHOD OF SOLUTION

3.1. General Description of the Method of Solution

In Chapter 2, governing equations required for the static analysis of shells of
revolution are explained. In this chapter, a solution methodology will be
defined in order to exhibit how these equations are handled. First in Section
3.2, the governing equations are reduced to a system of equations called
fundamental set of equations by some algebraic formulations and
manipulations. In Section 3.3, Finite Exponential Fourier Transform of the
fundamental system of equations [8] is performed in order to eliminate the
circumferential coordinate from the fundamental set of equations. Having
completed this operation, the physical shell variables are transformed and the
solution method is applied on the fundamental system of equations written in
terms of transformed shell variables. In Sections 3.4 and 3.5, these
transformed unknown variables of fundamental set of equations, which are
derived in Section 3.3, are solved by the methods named as reduction of a
two-point boundary value problem to a number of initial value problems and
multisegment method of integration, respectively [7]. After the solution, these
variables are back-transformed to actual physical variables with the method
described in Section 3.6, and in Section 3.7 stresses and strains are extracted
by post processing on the fundamental shell variables which are found by

applying the solution methodology.
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3.2. Formulation of Fundamental System of Equations

In Chapter 2, governing equations for rotationally symmetric shells of
revolution are given. In summary, there are 21 equations, of which eight are
kinematic equations (Equations (2.2.3.1) — (2.2.3.6), (2.2.3.10), (2.2.3.11)),
there are eight constitutive equations (Equations (2.3.2.44), (2.3.3.7)) and
there are five equilibrium equations (Equations (2.4.3.11) — (2.4.3.15)). In

these equations there are 21 unknowns, which are eight force and moment

resultants (N¢,N9,N¢9,Q¢§,Q9§,M¢,M9,M¢9), five displacement and

rotation terms (uy,u,,u;, ;. B, ), three middle surface in-plane strains (&,
gl . ;/0 ), two transverse shear strains (y,., 7, ), three middle surface
00 $0 [ ¢

curvatures (K,,, Ko, Kyp)-

These 21 equations with 21 unknowns can be reduced to 10 equations with 10
unknowns by formulating some of the unknowns in terms of others. When the
formulation is completed, the obtained 10 equations are called as the
fundamental system of equations, and these can be written in the following

form:

2
WO 1 4y9.0} 2 (1600 0.00) |+ 6. 00} 0
@ 00 0°6

(3.2.1)

where {B(¢,0)} is a vector which includes all the non-homogeneous terms

due to loading and {t//(gb,@)} is a vector representing the fundamental shell

variables that enter into the appropriate boundary conditions on a rotationally
symmetric edge of the shell of revolution, and for the Reissner-Naghdi

improved shell theory they are given by
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T
W (B,00h= 1l ul ul, By BasOys Nyss Nyos M gy, M gy | (3.2.2)

The unknown variables in Equation (3.2.1) are called as the fundamental
variables, and the first half consists of the reference plane displacements and
the second half consist of the stress and moment resultants which are defined
in appropriate manner (Soedel [3], Vinson and Sierakowski [12], Toorani and
Lakis [25]).

Fundamental system of equations given by Equation (3.2.1) are obtained by
deriving expressions for the first derivative of the fundamental shell variables

with respect to meridional coordinate ¢ . In the following, the fundamental

system of equations is obtained in terms of fundamental variables. While
deriving the fundamental system of equations, a similar method to the one
used in a previous study [2] will be followed. As it can be seen in Equation

(3.2.2), fundamental set of equations begin with the term lateral displacement

ug . Substituting Equations (2.2.3.10) and (2.2.3.11) into (2.3.3.7), one gets

0 0 0 0
u 1 Ou u 1 Ou
N K4 | p Lo L 323
Qs 45[ﬁ9 R, R,sin® ae} 55[ﬁ¢ R, R, 04 (3:23)
writing in a similar form of Equation (3.2.1),
0 0
Ou; R, ARy B LA B o B A Ry Oug oy
09 Ay " Ag ' ° R, Ay ° "' Ag R,sin® 00 *
(3.24)

or in @ more compact form Equation (3.2.4) can be rewritten as in Equation
(3.2.5) in terms of coefficients which are defined in terms of parameters given
in Equation (3.2.4).
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oul ol
=Py Oty Oty + 0 By 5By + €60y, (3.2.5)
op 00

Coefficients of the fundamental variables ¢;, and cp, are given also in

Appendix A.

Similarly, first, third, fourth and sixth rows of Equation set (2.3.2.44) can be
used to derive the necessary coefficients for au;f /6¢, Ouy /6¢, op, /8¢ and
dpB,/0¢ by substituting the strain-displacement relations given in (2.2.3.1) —

(2.2.3.6). After the completion of necessary algebraic operations and

manipulations, these equations can be brought to the following form:

by hy o hy 5u2/5¢ Ji
hy  hy hy o hy 8u3/8¢ _ J> (3.2.6)
by hy oy hy |08, [0¢] s -
hy o hg hu]10B5/04) s

In Equation (3.2.6), the components of the 4x4 coefficient matrix h depend on

stiffness coefficients (A@-,-,B@-,-,Dy; i,j=1,2,6)), and radii of curvature of the
shell (R4,Ry). The components of the vector j on the right hand side of

Equation (3.2.6), comprise of the fundamental variables, 6 derivatives of the

fundamental variables, meridional coordinate ¢, stiffness coefficients

(4;,B;,D

i+ By, Dy 1,7 =1,2,6), and radii of curvature of the shell (R, Ry).

Equation (3.2.6), is solved symbolically by MATLAB, which is a numerical

computing environment and programming language [26], for the first ¢
derivatives of u$,u2,ﬂ¢ and B,. By taking the inverse of Equation (3.2.6),
fundamental system of equations giving 6u2/6¢, 6u3/6¢, 6ﬂ¢/6¢ and

0P, /0¢ are written in the desired form:
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6142/6(15 by hy o hy oy Ji

5“3/5(15 _ hy  hy  hy o hy, Js (3.2.7)
0B /09 |y hu hy k| |Js B
aﬁao /6(15 hy hy hy hy Ja

Re-arranging Equation (3.2.7) so that it can be written in terms of the
fundamental variables and their first and second 6 derivatives, as shown by

Equation (3.2.1), one can express the meridional coordinate (¢ ) derivative of

the displacement and rotation terms as in Equations (3.2.8 - 3.2.11).

ou! ou! ou’
6_¢¢ = czlug +022u2 +Cpy a_;"'czﬂ/‘g + Py 6_99+cz4ﬁ¢ +cp246_9¢
+ 9B, N N M M B
Cy5 B + €Dy %""027 g TColVyg T CogM 4y +Co 0 M 49 + B,
(3.2.8)
a”g 0 0 8u2 0 5”3 ¢
=Co U, +Cooll, +CPry ——+ Cially +CPrs ——+C +cp., ——
o4 31y TCHRU, TP 20 33Up T CP33 20 34ﬂ¢ P34 20
Py N N M M, +B
+c35ﬂ9+cp35%+c37 g TCaglVyg T C30M 4y +C3 oM 45 + Dy
(3.2.9)
op ou’ ou’
[ 0 0 [ 0 0 [
— = U, Cplly FCPYy———F Cplly FCP s ——+Cu By + DY ——
o 4y TCHUY TCPyy o0 Cute Pi3 20 44ﬁ¢ Pag 20
+c,5P, +¢ %+ N, +cyN, +c,M, +c, M, +B
45Po T CPys 20 Cy7 NV gy T CygdVyg T CpoM 4y T CpygtVl 49 T Dy
(3.2.10)
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op, du, ou’

8_¢_C silly + Coply +Cps, 89¢ +cs3u3+cp53a—9‘9+cs4ﬂ¢
+¢ % in + +C53Nyy +CsgNyy +CsoM yy +5 M, + B
Pss = 20 CPss — - 20 CssPy +Cs; ¢¢ T CsglVyg T Csg Cs10t1 49 5

(3.2.11)

In Equations (3.2.8) — (3.2.11) the coefficients multiplying the fundamental
variables and circumferential coordinate (6 ) derivatives of the fundamental
variables are given in detail in Appendix A, and the components of the load

vector B; are given in Appendix B.

For the derivation of equations corresponding to the meridional coordinate

derivative of force and moment resultants,
00,. /0¢ ,0N,, [0$,0N,, [0¢ ,0M ,, [0p ~ and  OM,, /0¢,  equilibrium
Equations (2.4.3.13), (2.4.3.11), (2.4.3.12), (2.4.3.14) and (2.4.3.15) are
utilized, respectively. Primarily, N,, and M, terms in these equations are

substituted by the second and fourth rows of Equation set (2.3.2.44), since
they do not appear in the fundamental variables. Utilizing kinematic relations
given by Equations (2.2.3.1) — (2.2.3.6) and the recently derived Equations
(3.2.5), (3.2.8) — (3.2.11) in the second and fourth rows of Equation set

(2.3.2.44) where necessary, 0Q, /0¢,0N,,/0¢,0N,,/0p,0M ,, /0¢ and
oM ,, /0¢ terms are obtained in terms of other fundamental variables and

their first and second @ derivatives:

oQ 0*u’ ou’ ou’
8_; _Cmug +cdp, 8924 +Ce2“g +CPs;, a_g"'céau(g +cp63a_09+064ﬂ¢
op op o0
TPy 69(1} +CgsBy +CPgs 890 +066Q¢ +cp666_9¢+067N¢¢

+ cégNw +069M¢¢ + Cmon + B

(3.2.12)

59



ON ou’ ou’
T:) = C71“§ +Cp “g +Ccpy, a_g +Cop “g +Cpo; 8_5 + C74ﬂ¢
op op
+cpoy a_; + ¢35 By +cps 8_99 + C76Q¢ + C77N¢¢ + C78N¢0
8N¢9
+ CPg E-F C79M¢¢ + C710M¢9 + B7
(3.2.13)
ON ou’ ou’ o*u’ ou’
8;6 = CPs, 8; + Gy, “2 +Cpg, 8_9¢ +cdpy, #"' Cg3 “3 +Cpy; 8_06
82140 ¢ ? ¢
+ cdpy; # + cs4ﬂ¢ +CPyy % +cdp, W +¢45 By
+ CPys 6—96'+ca’p85 W2‘9'+086Q¢S +Cpg, a—g‘ﬁ+cggN¢6
ON oM oM
+ CPgq a—ge CPsg a—;ﬁ"' CPs10 a_;g+ By
(3.2.14)
oM ou’ ou’
P¢ 0 0 ¢ 0 )
— = =Coly + Co U, +CPy, —— + Cor Uy + CPyy —— + C,
o ol 9 Uy T CPyy 20 93 Ug T CPos3 20 94IB¢
op, op
+ Cpy, % + Co5 By + CPos 8_90 + C96Q¢ + CorN gy + CogN 4y
5M¢9
+ C99M¢¢ + C910M¢9 + CPo W + B,
(3.2.15)
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oM ow’ ou’ 0*u’

aqﬁw = CPioy % + Cp2 Mg + P a_g +cdp,g, # +C3 ug
ou’ o*ul op
+CPy; 8_99 +cdpyg;s Wﬁg + o4 IB¢ +CPis 8_9¢
o’p op 0>
+ cdp,, ﬁ; +Cp5 By + CPos 8_99 +cdp,ps Wzg + C106Q¢
ON ON,, oM

P¢ P¢
+cpy, W + CPyg WJF CP1o9 W + C1010M 4y

(3.2.16)

B, vector contains the non-homogeneous terms of the fundamental system of
equations and they are given in Appendix B. Coefficients ¢, , ¢cp; and cdp, of

the homogeneous part are given in Appendix A.

Equation (3.2.5) and Equations (3.2.8) - (3.2.16) are the fundamental system
of partial differential equations in ¢ and 6 . In the following, reduction of these
equations to first order system of ordinary differential equations will be
discussed. The reduction process makes use of the rotational symmetry of the

shell of revolution.

3.3. Finite Exponential Fourier Transform of the

Fundamental System of Equations

The fundamental set of equations derived in Section 3.2 also contains the first
and second @ derivatives of fundamental variables, as well as the
fundamental variables themselves. Therefore, the fundamental system of

equations given by Equation (3.2.5) and Equations (3.2.8) - (3.2.16) are partial
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differential equations. In order to utilize the multisegment numerical integration
technique for the solution of this set, one needs to transform the partial
differential equation set into a system of ordinary differential equations. This is
achieved by eliminating 6 derivatives from the equations, and expressing the

meridional coordinate (¢ ) derivatives of the fundamental shell variables only

in terms of the fundamental variables and the load vector, which includes all
the non-homogeneous terms due to loading. For the elimination of the
circumferential coordinate (6) derivatives in the fundamental system of

equations, Finite Exponential Fourier Transform Method is employed.

For the classical shell theory, which neglects transverse shear deformation,
when the full anisotropic form of constitutive relations given by Equations
(2.3.2.44) and (2.3.3.7) are utilized, the uncoupling of the governing equations
describing the symmetric and antisymmetric responses, with respect to
circumferential coordinate, cannot be achieved by the classical Fourier
decomposition of the fundamental shell variables in which each variable is
expressed by either a cosine series or sine series exploiting the rotational
symmetry of the shell of revolution. Therefore, multisegment numerical
integration technique cannot be employed due to the existence of coupling
stiffness coefficients. The same restriction also exists for the first order shear
deformation shell theory [1]. Vanishing of coupling stiffness coefficients with
subscripts 16, 26, and 45 imply laminates with specially orthotropic layers.
Thus, with the classical Fourier decomposition of the fundamental variables in
the circumferential direction, it is not possible to treat shells of revolution with
full anisotropic constitutive relations, which allow for arbitrary orientation of
fibres with respect to the curvilinear coordinate system of the shell of

revolution.

For laminated shells of revolution, which include the effects of extensional

shear (A A%), extensional bending(B B%), bending twisting(D]G,D%)

16> 16

and transverse shear(A45) coupling stiffness terms in constitutive equations,

uncoupling of the governing equations, describing the symmetric and
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antisymmetric responses with respect to circumferential coordinate 6 is

achieved by Finite Exponential Fourier Transform.

In the previous works of Lestingi and Padovan such as [8] and [17], the
applicability of the technique of multisegment method of integration is
extended to include the solution of general macroscopically anisotropic
multilayered shells of revolution through the use of Finite Exponential Fourier
Transform Method. Prior to their works, for shells of revolution, this technique

was limited to the special case of orthotropic materials.

In Reference 8, this method was applied for the static loading solution of
governing equations of classical shell theory, which includes eight
fundamental variables; and the solution is carried out by reduction of the
equations to sixteen first order ordinary differential equations. In [2] this
method is used to reduce the governing equations for free vibration analysis of
anisotropic laminated composite shells of revolution to twenty first order
homogeneous ordinary differential equations. In the present study, the method
of Finite Exponential Fourier Transform is utilized for the reduction of the
governing equations of macroscopically anisotropic shells of revolution,
including first order transverse shear deformation, to twenty first order

nonhomogeneous ordinary differential equations.

Through the use of Finite Exponential Fourier Transform, the partial differential

equations with independent variables ¢ and 6 are converted into ordinary
differential equations with ¢ being the only independent variable. Considering
the first fundamental variable of the fundamental variable vector v, complex

Fourier series representation can be shown as [15]

+00

ul($,0) = (12(g)) " (3.3.1)

n=—o

where
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127r

(W2@), =5 [w@.0)e a0 =l (@), ~ilul (@), (3.32)
and

(W) = izfug ($,0)cosn6 d (3.3.3)
(W) = izfug (4,0)sin n0do (3.3.4)

It should be noted that in getting Equations (3.3.3) and (3.3.4), e*™ is

expanded using Euler’s formula [15]
e*™? =cosnf tisinnb (3.3.5)

If Finite Exponential Fourier Transform is applied to the first fundamental
equation (Equation (3.2.5)), it can be written in terms of real and imaginary
parts as in Equation (3.3.2). During this operation, integration by parts is
employed to perform the integration in Equation (3.3.2). Since the integral
boundaries are 0 and 27, and the geometry is a shell of revolution, all the

variables are periodic in the circumferential direction, so that

ul(9.0)=ul(p.2z). Thus, all the initial terms, which emerge after the

integration by parts is performed, disappear. Application of Finite Exponential

Fourier Transform to Equation (3.2.5) yields
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{aug]nc_{augj —epnlil @) +w2) -

o9 o¢
ealwS @), - S @), [+ esllus @), —ilud @), ]+ (3.3.6)
B @), -y @), JresllBs @), - ilgs @), ]+
Cis [(Qgg (¢))nc - i(Qgg (¢))ns ]

and since a+ib=c+id implies a=c and b=d, we can write real and

imaginary parts separately:

a 0
{i] =cp,n (ug (¢))ns +¢p (ug (¢))nc RSE (ug (¢))nc T Cy (ﬁ; (¢))nc

Gl (3.3.7)
+as (B @), +al0) @),

a 0

{61;] =i @), + (), rabi@), relBl@),

res(BU@), +e(0L @)

It is clearly seen that application of finite exponential Fourier transform results

in doubling of the number of fundamental variables.

However, one important issue has to be mentioned here. First fundamental
equation, Equation (3.2.5) differs from the rest of the fundamental equations
because of the non-existence of a nonhomogeneous load vector term, that is
B, =0. Therefore, in order to investigate the Finite Exponential Fourier
Transform of nonhomogeneous terms, another fundamental equation has to
be analyzed. To demonstrate the application of Finite Exponential Fourier
Transform to an equation which includes nonhomogeneous loading terms,

sixth fundamental equation is considered. In Equation (3.2.12), the loading

term B, as explained in Appendix B, is given by,

By =CByp, +CByN} +CB N} +CB Ny +CBoM] +CByM!,  (3.3.9)
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If Finite Exponential Fourier Transform is applied to the sixth fundamental
equation (Equation (3.2.12)), it can be written in terms of real and imaginary
parts like in Equation (3.3.2). During this operation, in Equation (3.2.12), all the

terms appearing except B, i.e. the terms of the homogeneous part, are

handled in the same manner as it has been done for the first fundamental

equation. In Equation (3.3.9) p, (pressure loading in the thickness direction of

the shell £ ), which is the first term in B, can be expanded by using Finite

Exponential Fourier Transform as:

—+00

p.(9,0)= n_Z_w(pg ¢)), " (33.10)
where

(b @), = gfpg @.0)e a0 =(p, @), ~i(p. @), (3:3.11)
and

(b: @), =gfpg ($,0)cosn0do (3:3.12)
(. @), = ij P ($,0)sin 00O (3:3.13)

Equation (3.3.10) can be rewritten as

230 =poo+ S (.)€ +3 (p, (9)) & (3:3.14)

n=—1

or
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P80 =0+ 2 (@), "+ (p. @), e 33.15)

In Equations (3.3.14) and (3.3.15), p,, term corresponds to the coefficient of

the series when n = 0. Therefore,
1 2
Poo=5- !pg (9,0)d0o (3.3.16)
Considering the first part of Equation (3.3.11), it can be written that
(- ) zizf”p (,0)e"do (3.3.17)
: 2y e

Comparing Equations (3.3.11) and (3.3.17), it is obvious that (p,(¢)) and

(pg (¢))_n are complex conjugates. Therefore,

(@), =(p. ) (3.3.18)

Rewriting Equation (3.3.15),

200 = oo+ (.)€ +(p. @) ] (3:3.19)

Substituting Euler’'s formula given with Equation (3.3.5) and using the second

part of the Equation (3.3.11), Equation (3.3.19) can be written as

,9 = 0 S ~1 Oris 0
p:(9,0)=p, +;[(Pg(¢))nc 1(17;((’5))"3][003" +isinn6]+ (3.3.20)

(o) +i(p. () ]lcosno—isinno]
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It is clear from Equation (3.3.11) that the terms (p, (¢)) and (p, (9))

ns

expanded in Equations (3.3.12) and (3.3.13) are necessarily the real and

imaginary parts of (pg (¢))n. Rearranging Equation (3.3.20), one gets:

P 6.0)=p.o+23 [(p. @), cosnd+(p. (), sinno] 63.21)

Equation (3.3.21) shows how p, , the first term in B, can be expanded by
using Finite Exponential Fourier Transform. The other load terms
(p¢,p9,NT Ng,Ngo, My Mg, M, ) in the load vector B, (i =1,...10) can be

expanded using the same procedure. Thus, all the loading terms can be
expressed as:

Ps(8.0)=py0 +23[(p, @), cosn0 +(p, (4)), sinn6] 3322)
2o ($:0)= pou +23 [(py ), cos 10+ (p, (4)), sinn0] (3.3.23)

n=1

NI (4,0)=(N]), + 22[ NI (), cosnd+(NI(9)) sinn6]  (3.3.24)
NI ($,0)=(NT), + 2+Z°° (N7 (9)), cosno+(NI($)), sinn0]  (33.25)
NL6.0) = (N2), +23 (V2 #)_cosn0+ (N (9) sinnb]  (33.26)

M (9.0)=(m7), +23 (M7 @), cosno+ (] ), sinn6]  (3327)

M ($.0)=(M]), + 2§ (M7 (), cosno+(M]($)), sinnd] (3.3.28)

n=1
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ML$.0)=(M]), + 2§ (07,(#)) cosnd+ (M2 ($)) sinnd] (3.3.29)

This implies that any function, which can be expanded as a Fourier series, can
be applied as the loading (distributed force in any direction or temperature) to
the shell of revolution. This is the explanation of how the axisymmetric loads
(i.e. the loads constant in circumferential direction ) and the unsymmetrical
loads (i.e. the loads given as a function of circumferential direction 6) are

handled mathematically.

Physically, if the loading is axisymmetric, this implies that circumferential wave
number 7 is zero and the load is defined by only the first term of Equations
(3.3.21) — (3.3.29). On the other hand, if the loading is unsymmetrical, first the
function defining the load is expanded as a Fourier series by incorporating
finite number of terms defined by n, then the real and imaginary parts of the
series are expressed as the coefficients of cosnf and sinn@ of the
corresponding circumferential wave number n in Equations (3.3.21) —
(3.3.29), respectively. For the function defining the unsymmetrical load, if there
is a constant term in the Fourier series of that function, this is also represented
by the constant term in the Equations (3.3.21) — (3.3.29). In order this to be
better understood, Finite Exponential Fourier Transform is applied to the
Equation (3.2.12) in Appendix C, as an exhibition of how the procedure is

carried out.

Equations involving the temperature loading, i.e. Equations (3.3.25) — (3.3.29)
should further be investigated. Substituting ¢ for £ and 0 for n in Equations
(2.3.2.34) and (2.3.2.35), force and moment resultants due to temperature
loading, either constant temperature difference throughout the thickness or
linearly varying temperature difference through the thickness respectively, can

be obtained for a shell of revolution:
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N¢T N Q]] Qz Qe a,
NGT :Z On 0, 0O Qg AT(Zk Zk_l) (3.3.30)
= = =
N¢TH 16 Qze Qee P 05¢9 P
M¢T 0, 0, Qe «,
r I<|A a) ra) 2 2
M, :_z O, 0, 0O (22 AT(Zk Zk_]) (3.3.31)
T 23 = = =
My 16 6 Des (Koo ),
N¢T N Q]] Qz Qe a, AT
O. 0. O. 2 2
No :z Qo D D | 1% (AT;(Z/( 2 )+ (Zk 2k )]
= = =
N¢TH 16 Qze Qee P 05¢9 P
(3.3.32)
MT O. 0O. O a
A = B S OV N S
M, :z Qo Dn Qi | )% T(Zk _Zk—l)+ (Zk - k—l)
= = =
M¢TH 16 Qze Qee P Xy P
(3.3.33)

Equations (3.3.30) and (3.3.31) give the thermal force and moment resultants
for constant temperature difference, and Equations (3.3.32) and (3.3.33) give
the thermal force and moment resultants for linearly varying temperature

difference through the thickness.

These equations give the relation between the temperature difference exerted
as the loading and its effects as force and moment resultants on a shell of

revolution. Let Equations (3.3.30) — (3.3.33) be rewritten as

Thl,
= AT Thl,

Thl,,

Th2,
= AT{ Th2,

Th2,,

(3.3.34)

(3.3.35)
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N; Th, Th2,
N, t=AT,{ Thl, ¢+ AT,{ Th2, (3.3.36)
Ny, Thi,, Th2
M; Th2, Th3,
M, + =AT{ Th2, ¢+ AT,{ Th3, (3.3.37)
M, Th2,, Th3,,
where
Th1¢ N Ql Q]z Qe o,
Thly 1=>"10 On Oy | i@ (2,-2) (3.3.38)
k=l| = = —
Thl, 6 O O ([ Fgo ),
Th2¢ 1 & Q]] Qz Q]e o,
Th2, :Ez On On Oy o7 (Z/f _Z/f_] (3.3.39)
k=1l = = —
Th2,, 6 @ O (Koo ),
Th3¢ 1 & Q]] Qz Qe o,
Th3, :gz O, On Oy o7 (Z/f _Z/f_] (3.3.40)
k=1| =~ =y —
Th3,4 O Ox e (Koo ),

As stated in Section 2.3.2, letting AT, =0 in Equations (3.3.36) and (3.3.37),

which are derived for linear variation of temperature difference through the
thickness, leads to the Equations (3.3.34) and (3.3.35), which are derived for
constant temperature difference throughout the thickness. This shows that
Equations (3.3.36) and (3.3.37) are general forms of Equations (3.3.34) and
(3.3.35). Therefore only Equations (3.3.36) and (3.3.37) will be used from now

on.

As it is seen above, coefficients of Equations (3.3.36) and (3.3.37) are given

by Equations (3.3.38) — (3.3.40). They consist of transformed material

coefficients Q] thermal expansion coefficients «,, and the position vectors of
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layers in the thickness direction { with respect to the reference surface of the
laminate z,, none of which are functions of the circumferential direction 6.

And since these coefficients are not 6 dependent, they do not need to be

expanded with Finite exponential Fourier Transform. Therefore, only A7, and

AT, are expanded with Finite exponential Fourier Transform:

AT, (9,0) = ot 22[ (AT,(¢)),. cosn@+(AT,(¢))  sin n@] (3.3.41)

where (AT)) , (AT)) and (AT,), are given in the same manner as

nc’

Equations (3.3.12), (3.3.13) and (3.3.16)

(AT, (4)),, = L j AT, (¢,0)cosn do (3.3.42)
27

(AT (), =— j AT, ($,60)sin n6 d6 (3.3.43)

(AT(9)), = [ AT, (9,000 (3:3.44)

2r
Similarly,
AT, (¢,0) = +22[ (AT,(9)),. cosn® +(AT,(¢)), sinn6]
(3.3.45)

where

(AT, (9)),, = L j AT, (¢,0)cosn do (3.3.46)
27
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(AT, (9)),, = — j AT, ($,6)sin n6 do (3.3.47)

(5T, 9)), = [A7.(6.0)d0 (3.3.48)

Note that AT can also vary in the ¢ direction since AT, and AT, can be
defined as a function of ¢ . How this can be accomplished will be explained in
the succeeding sections. However, it should be emphasized that, using Finite
Exponential Fourier Transform and defining temperature difference AT as

(AT, + AT, ¢) in Equation (2.3.2.38) so that it can vary linearly through the

thickness, allow the temperature difference AT be defined as a function of all

three ¢, 6, and { directions.

We can now get the expressions for the thermal stress and moment resultants
by first substituting Equations (3.3.41) and (3.3.45) into (3.3.36) and (3.3.37);
and then Equations (3.3.36) and (3.3.37) into Equations (3.3.24) — (3.3.29).

e {Tm‘”}{ RS N

o }{ ”Z:iA(fo();"c):)ssizze:} o
e { R0 i feH

maforion g ]
s )

+{mh2,, }{(AT2 @), +2: [ErA&Tf();nc):ossi:ie_ } (3.3.51)

73



M1 ($,0)=1{Th2, }{(Aﬂ (8)), +2

) {(An o +2§[+A(12T¢))nc cos 0 } }

+wmz@m»mma}

M@ (¢>9) = {Thze }{(ATl ¢))0 +2n:1 + (AT1 (¢ )ns sinn@

(
AM%ﬁmnwm+z
M1, ($,0)={Th2,, }{(Az @), +23

+{mn3,, }{(AT2 @), +23 [SA&;Z&();M):OS?: i 9} }

(3.3.53)

Comparing Equations (3.3.24) — (3.3.29) and (3.3.49) — (3.3.54), it is seen that

Vi) | [, Th?,

(V7). b =1 1, a7 4), +| 2, W, (9),

(V@) | |1y, Th2,,

VI @) | [, Th?,

(V@) b =1 1, (AT (), + 1 Th2, AT, (0),

(V@) | |7, Th2,,

M) | [mh2, Th3,

(M (¢))c =1 Th2, (AT,(9)),. +1 Th3, (AT,(¢)),.

(M) | |1h2, Th3,,

(M) | [r2, Th3,

((M (¢>))s =1 Th2, (AT(9)),, +4 Th3, (AT, (9)),,
ML@) | (Th2, Th3,,

74

(3.3.55)

(3.3.56)

(3.3.57)

(3.3.58)



After the application of Finite Exponential Fourier Transform, first and second

derivatives of the fundamental variables with respect to € are eliminated from

the fundamental set of equations. However, this causes the number of

fundamental variables and elements of the load vector to be doubled; all

consisting of real and imaginary parts now. This results in a system of 20 first

order nonhomogeneous ordinary differential equations, which is represented

by the following matrix equation:

| 1 )
d_,/,_i{l//( )(¢)} :[K(n,(b)]zoxzo{l//( )((b)} +{§(2)((Z))

dp  d¢ ly®(9) v (9)

where 7 is the circumferential wave number and

() ) ) ) ) et >m,</s;>w,r

(on ), lon ), vg), ), (v, ), v, ) ]

v ()=, ) ) )
[a(M RN AR

{5% = (KBl 1L

(Pé )nc’(l’g )ns ; (P¢ )nc’(p¢ )ns (Po),eo(Po),.
BLIg)=| (V7)o (V] ),V ). (V0 ) s ) (N )
(), (0) 0 ), e ), ) L),
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(3.3.59)

(3.3.60)

(3.3.61)

(3.3.62)

(3.3.63)



The elements of the coefficient matrix K and KB are given in Appendix D

and Appendix E, respectively in detail.

It should be remembered that the fundamental variables given by the

fundamental set of Equations (3.3.59), are not the actual physical variables
but they are the transformed variables. For the fundamental variable ug they

are given by Equations (3.3.3) and (3.3.4). Generalizing these equations to all

fundamental variables,

400

w@.0=> ({v)),e" (3.3.64)

n=—ow
where

2

(v @), == [ty @.0ke a0 = ({y @), -ilv ), (3.3.65)

27r0

and
(v @), =5 [ly@.0)}cosnod0 (3.3.66)
(v @), = [ly@.o)sinnoa0 (3:3.67)

0

The transformed variables used in Equation (3.3.59) are given by Equations
(3.3.66) and (3.3.67).

In order to be compatible with the equation (3.3.59), the boundary conditions,
given by Equations (2.4.3.6) — (2.4.3.10), should also be expressed in terms of
the transformed variables. If the Finite Exponential Fourier Transform is

applied to the fundamental variables at the boundary of the shell of revolution,
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then the boundary conditions at an edge of the shell of revolution can be

expressed in terms of the transformed shell variables as:

Either (N0 Ny )= (Vo Niow ) or (eea® ) = (2, ) (2, ) )

(3.3.68)
Either (N¢9nc s N g s ) = (N;Onc’ N;Ons) or (ugnc’ugns) = ((”gnc )*’(”gns )*)

(3.3.69)
Either (Qd)é‘nc > Q¢§ns): (Q;;nc > Q;gns) or (ugnc»ugns) = ((”gnc )*’(ugns )*)

(3.3.70)
Either (M,,,.,M,,, )= (M, ..M, ) or (Byrr Byns )= (Birer Bins)

(3.3.71)
Either <M¢9nc’M¢9ns): (M;anaM;Ons) or (ﬂencaﬂens ): (ﬁ;ncﬁﬂ;ns)

(3.3.72)

Fundamental system of equations (Equation (3.3.59)), together with the
boundary conditions (Equations (3.3.68) — (3.3.72)) specified at the two
boundary edges of an anisotropic shell of revolution form a two point boundary
value problem for the solution of the fundamental shell variables which are the

transformed displacements, and stress and moment resultants.

3.4. Reduction to Initial Value Problems

This section is concerned with the reduction of a two-point boundary value

problem given by

{d";—f)} =[K(@)] o 1 (@)} 1 + 1B}, (3.4.1)

77



in Equation (3.3.59) to a series of initial value problems by the method
proposed by Kalnins [7]. In Equation (3.4.1), w(¢) is the vector which
represents m unknown functions, K(gb) denotes the coefficient matrix, and
B(¢) is the vector of nonhomogeneous terms. For the present study, as

shown in the preceding section, m is twenty for the first order transverse

shear deformation theory.

The object is to determine t//(gb) in the interval ¢ . <¢ <¢__ subjectto m/2

boundary conditions at each end of the shell of revolution in the form

U, B N & B}y = {2}, (3.4.2)
[, B N o W B Vo = 1285} (3.4.3)

The elements of U, and U, matrices and u, and u, vectors are determined
by the boundary conditions. These Equations (3.4.2) and (3.4.3) enable any
linear combination of the elements of y vector to be prescribed at the

boundaries.

It must be emphasized that the governing Equation set (3.4.1) and the
boundary conditions (3.4.2) and (3.4.3) are given in the form of governing
Equations (3.3.59) and boundary conditions (3.3.68) — (3.3.72) which are
derived for the static analysis of the shell of revolution subject to symmetrical

and unsymmetrical loads.
Equations (3.4.1), (3.4.2) and (3.4.3) represent the two-point boundary value
problem which is going to be to reduced to a number of initial value problems.

The solution proposed for the ordinary differential Equation set (3.4.1) can be

written as [71]:

@) =V (@) 1Cs +{DO)},.0 (3.4.4)
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where {C} represents vector of arbitrary constants, [W(¢>)] and {D(gb)} are the

homogeneous and particular solutions of Equation (3.4.1). In order to
determine the vector of arbitrary constants, Equation (3.4.4) is evaluated at

¢ =¢_.,ie. atthe boundary:

(W @i )} = [ (91 HC D8, ) (3.4.5)

{C} = [W(¢min )]_] {W(¢min )}"' [W(¢min )]_] {D(¢min )}mx] (3.4.6)

and substituting {C} given by Equation (3.4.6) into Equation (3.4.4),

W (8)} = [SH($){ (., )} + {SP(9)} (3.4.7)
where

(s (8)]=[w ()] 7 (b )] (3.4.8)
1SP($) =~ (@)] [V (@ )] {D(bn )} +1D(#)} (3.4.9)

Substituting Equation (3.4.7) into Equation (3.4.1),

L ([sH @y (o 1+ (PG = KON [5H @)y (B )}

d¢ (3.4.10)

+{SP(¢)})+{B(9)}

Opening the parenthesis,
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W (8, )}d%[SH( )]+—¢({SP( o)1) =K (@)ISH () ()} + Bat)
[K(¢)liSP(¢)+ {B(g)}

This equation can be separated by regrouping the first terms on the left hand

side and right hand side together in one equation, and second terms on the
left hand side and right hand side in another equation. Since {y(¢,. )}

appears in both sides of the first equation, it drops out. The first and second

equations mentioned are written as

O] o). ). -
{deLq@}mxl - [K(¢)] mxm {SP(¢)}mxl + {B(¢)}mxl (3.4.13)

The matrix [SH(¢)] is also named as transfer matrix, because it relates the

fundamental shell variables at one end of the shell of revolution to the

fundamental shell variables at the other end of the shell of revolution.

In order to find out the initial conditions, Equations (3.4.8) and (3.4.9) are

evaluated at ¢ = ¢

min "

[SH (¢, =7 (6 ) 7 (6 )] =[1] (3.4.14)
(5P(g =~ (B |17 (B )T 1D 1+ (D6 )
= [1}D(g )+ (D(6,. )} = 0} (3415

Therefore, the initial condition required for the determination of homogeneous

solution [SH(¢)] is the unity matrix and that for the determination of the

particular solution {SP(¢)} is zero, i.e.
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[SH (6, )] = 1] (3.4.16)
[SP(¢,.:, )] = [0] (3.4.17)

In addition, evaluation of the Equation (3.4.7) at the other boundary, i.e. at

¢ =¢,... , provides the continuity between ¢,_.. and as:

min max

W @ Wt = [SH G D W B s + 1P B e (3.4.18)

Equation set (3.4.18) constitutes a system of 2m linear algebraic equations
with 2m unknowns, with the boundary conditions prescribed by Equations

(3.4.2) and (3.4.3). Of these 2m unknowns, m are to be determined at

¢ =¢.,, , which are represented as {l//((bmm )} and m are to be determined at
¢ =¢,,. ., which are represented as {y (¢, )}. Once {w(4,.. )} is known, the
solution at any value of ¢ can be obtained using Equation (3.4.7), as long as

[SH] and {SP} for the ¢ value of interest are known. Thus, the reduction of a

two point boundary value problem defined by Equations (3.4.1), (3.4.2) and
(3.4.3) to m+1 initial value problems given by Equations (3.4.12), (3.4.13),
(3.4.16) and (3.4.17) is now completed.

During the solution of the initial value problem defined above, elements of the

[SH] matrix and {SP} vector are observed to increase in magnitude in such a
way that if the length of the interval (gbmm,gbmax) is increased by a factor of x,

the magnitude of the solutions of [SH] matrix and {SP} vector increase
approximately exponentially with x[7]. Increasing x on the other hand
physically means that the meridional dimension of the shell becomes longer.
And naturally, as the shell gets longer in the meridional direction, the effects of

the applied loads on one end of the shell is perceived less on the other end.

Therefore, as opposed to [SH] matrix and {SP} vector, the elements of

l//((bmax) are expected to decrease with increasing x .
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If the Equation (3.4.18) is examined carefully, in the light of the mathematical

and physical facts explained in the above paragraph, it is expected that

lw(4,..)} should decrease, while [SH(4, . )] and {SP(¢ . )} increase and
{y/(gbmm )} is kept constant with increasing x, which represents (gbmm,gbmax)

interval. However, if the length of the interval (4, ..., ) exceeds a critical

value, loss of accuracy occurs in Equation (3.4.18), which involve matrix

multiplication and addition operations. Loss of accuracy occurs because after
a certain value of the interval (@, , .., ). all significant digits of [SH (¢, )] are
lost when [SH(¢, . )] is multiplied by {w(¢,. )}. The only way that the matrix
product of Equation (3.4.18) can give small values of {l//((bmax )} is that a

number of significant digits of the large values of [SH (¢, )] subtract out.

Therefore, drawback of this using a single shell interval is the loss of accuracy
that is encountered when the length of the interval (gbmm,gbmax) exceeds a

critical value.

In order to overcome this problem and estimate the critical length of a shell

approximately, a convenient length factor is defined by Kalnins [7]:

_B-o?)]"
B= (RA)" (3.4.19)

where [ is the length of the meridian of the shell, R is a minimum radius of

curvature, and /4 is the thickness of the shell.

However, the loss of accuracy can be avoided completely and shells of

revolution with larger values of  can be analyzed by means of the direct

integration technique if the multisegment method given in the next section is

employed.
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3.5. Multisegment Method of Integration

This method is the continuation of the method described in the previous
section and has been used widely after it was first developed by Kalnins [7] in

many studies such as [1] and [2]. Let the shell be divided into M segments
denoted by S,, where i=12,..,M . (See Figure 3.1) These M segments
can be arbitrary in length, but all should be less or equal to [ so that loss of

accuracy that was described above does not occur. A generic shell segment

S, is defined between the meridional coordinates ¢, and ¢,.,.

Figure 3.1 Notation for Division of Total Interval into Segments

The equations derived for the whole interval (gbmm,gbmax) in the previous
section is now used for each segment. Therefore, analogous to Equations

(3.4.7), (3.4.12), (3.4.13), (3.4.16) and (3.4.17), one can write:

{W(¢)}mx1 = [SHi (¢)]mxm {l//(¢i )}mx] + {SR (¢)}mx] (3.5.1)
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[K(@)] o 1SP. @)}, + {B®)} s (3.5.3)
SH,(¢,)]=1[1] (3.5.4)
[sP.(g,)]=[0] (3.5.5)

Requiring the continuity of all elements of {l//((b)} at the ends of each

segment, using Equation (3.4.18)
{W(¢i+l )}mxl = [SHI (¢i+l )]mxm {W((bl )}mxl + {SB (¢i+l )}mxl (356)

As seen in Equation set (3.5.6), the unknown vector {y/(¢)} has m elements.

Since the equation is solved at the beginning and end points of each segment,

and there are a total number of M segments and M +1 points in the interval
(B, » Bunx ) @S Shown in Figure 3.1, the total number of variables is m (M +1).
Of these variables, 2m exist at the boundaries, thatis at ¢, and ¢,.,(¢,,, and
?... )- As explained in Section 2.4.2, only half of the variables existing at the
boundaries can be known (either force terms or the corresponding

displacements can be prescribed in any direction). Therefore, of the 2m

variables existing at ¢, and ¢,.,, m/2 are known at one end and m/2 are

m+1?

known at the other end. Consequently, as the calculation in Equation (3.5.7)

shows, the matrix equation involves exactly mx M number of unknowns.

m(M+1)—%—%:mM (3.5.7)

It has been shown in Equations (3.4.2) and (3.4.3) that the boundary

conditions can be given as a linear combination of any of the variables. Since
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Pin =0, and ¢, =9, for the multisegment method of integration, these

equations can be rewritten as

U, B ] (v @), = {10}, (3.5.8)
U, @ e 0 B ), = Lt (3.5.9)

where m/2 elements of u, and m/2 elements of u, are assumed to be

prescribed. It is convenient to arrange the rows of the given boundary

condition matrices U, and Uy, in such a way that, the prescribed elements of
u, appear as the first m/2 elements and the prescribed elements of u, are the

last m/2 elements. Writing the continuity Equation (3.5.1) for the first point
using Equation (3.5.8),

{V/( ) )}mx] = [SHI ( ) )]mxm [Ua (¢min )];alxm { u, }mx] + { SP (¢2 )}mx] (3.5.10)

and for the last point, using Equation (3.5.9),

{ub }mx] = |.Ub( M+1 )J mxm [SHM( M+l )]mxm {W(¢M )}mxl + |.Ub( M+1 )J mxm

(3.5.11)
{ SPM (¢M+] )}mxl

For the first and last segments respectively, the following transformations are

performed:

[SH ()]0 [U. 0], = [SH ,(82)],.., (35.12)
|_UB (¢m+] )mem |_SHM (¢m+] )mem = |_SHM (¢m+] )me,n (3.5.13)
0518,.)1,, 152, 6,.),., = 5P @,..)],., (35.14)

Matrix Equation (3.5.6) contains both known variables, which are prescribed at

the boundaries, and unknown variables together. In order to solve the
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equation to find out the unknown variables properly, first known and unknown

variables should be separated. As stated above, for convenience, the first

m/2 elements of u, and last m/2 elements of u, are assumed to be
prescribed. Therefore, the first m/2 elements of {l//((b] )} denoted by {y/,( ,)}
are assumed to be known and the last m/2 elements of {l//((bl )} denoted by
{y/z(gbl )} are assumed to be unknown. On the other hand, for the other end,

the first m/2 elements of {t//( MH)}, denoted by {t//]( M+])} are unknown and

the last m/2 elements of {t//( MH)}, denoted by {t//z( Mﬂ)} are known. If the

rearrangement of the columns in the matrix Equation (3.5.6) is performed, the
continuity equations can be rewritten as a partitioned matrix product in the

form given by Equation (3.5.15).

{w, (W} _ {SHP(@H) SH{?(4,., 1 {wl(¢i>}+ {SB“)(@H)} (3.5.15)

vo(b.0)  [SHP(B.) SHY($.)]Ww.(8))  [SB?(9.)

1,2,...,M)

In each shell segment (i - , Equation (3.5.15) can be written as

[SEO @) [{w, @)} + [SH? @0 0}~ {w (8.0} = ~{ SRV (8..)}
(3.5.16)

[SEO (0.0 ){w, @)} + [SH 6.0 [, 0} - (w2 (6.)} = ~{SE@ (4.}
(3.5.17)

The result is a system of 2M linear algebraic matrix equations with known

coefficient matrices [SHi(j)(¢i+1)] (j=1,234;i=12,.M) and vectors of
nonhomogeneous coefficients {SPI.(”(q)H,)} (j:1,2 ; i:1,2,...,M). It should
be noted that in Equation (3.5.16), {y/](qb,)}; and in Equation (3.5.17),

{W2(¢M+])} are known. Therefore, the unknowns partitioned vectors are given
by {v(4)} with (i=2,3..,M +1) and {y(¢,)} with (i=1,2,3...,M). Thus,

there are exactly 2M unknowns.
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System of Equations (3.5.16) and (3.5.17) is brought into the following form by

means of Gaussian elimination.

E -1 0 0 0 0 ][w,(4) VA,
0 ¢ -1 0 0 0 ||w) VB,
0 0 E, -I 0 0 ||w,(d) VA,
0 0 0 G, 0 0 |Jwi@) | _|VB, 35.18)
. 0 0 .
-1 0

0 0 0 0 00 E, —I||wv,(d)| |4,
0 0 0 0 00 0 C,||wvid)| VB,

where the dots indicate the equations for i=3,.M —1. The (m/2xm/2)

matrices £, and C, are defined for i =1 as

E, =SHY (3.5.19)
C, =SHWE (3.5.20)

andfor i =23,.M , as

E =SH® + SHVC!! (3.5.21)

C, = (s + sHPC e (3.5.22)

The (m/2x1) vectors V4, and VB, are defined for i =1 as

va, =-SPY —SH Y (4,) (3.5.23)

VB, =~SP) —SHy, (4) - SHVE V4, (3.5:24)

fori=23,.M -1, as
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VA, =-SpY - sHYC VB, (3.5.25)

VB, =—SP® —SHOC VB, —(SHY + SHOC )E A, (3.5.26)

and for the M” segment

VA, =-SPY - sHVC.! VB, | (3.5.27)

VBy = V/z( M+1 )_ SPA(JZ) - SHI(;)CA_/I]—] VBy — (SH/(;)

(3.5.28)
+SHU'C, JE VA,

In the relations given above, for brevity, in place of SH'"(¢..,) and SPY)(g,,),

i

the symbols SHY) and SE(j) have been used and square brackets

representing the matrices and curly brackets representing the vectors are

dropped.

Following this procedure, by the use of Equations (3.5.19) — (3.5.28), the

unknown variables are found by

w6y )= Cil VB, (3.5.29)

W2(¢M):EA_4] [l//]( M+])+ VAM] (3.5.30)

andfori=12,.M —1,

l//]( M—i+]): C}l_/l]—i [l//z( M—i+] )+ VB, (3.5.31)

v, (¢M—i): EA_/I]—i [‘/’1 (¢M—i+1)+ VA, (3.5.32)

It should be noted that the transformed fundamental variables will be
determined for a particular circumferential wave number, and depending on

the definition of loading the solution process must be repeated for a certain
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number of circumferential wave numbers which are used to define any

unsymmetrical load with sufficient accuracy in the Fourier series

representation. Once all the unknowns {w(4 )} are found, fundamental
variables can be determined using Equation (3.5.1) at any desired values of ¢
at which the solutions [SH.(¢)].and {SP(#)} are stored during the integration

of the initial value problem defined by Equations (3.5.2) and (3.5.3).

However, it should be remembered that the number of segments that the
interval is divided into can be chosen at will, Thus, if the number of segments
are sufficiently large, then the solution is obtained at sufficient number of
intermediate points and use of Equation (3.5.1) will not be necessary to obtain
the fundamental variables at intermediate meridional coordinates; because
enough resolution will have been obtained in terms of the meridional

coordinates, where the output is given.

The integration of Equations (3.5.2) and (3.5.3) can be accomplished by
means of any direct integration method. The description of the integration

method used in the present study will be explained in the succeeding sections.

In Section 3.3 it has been stated that loading can also be defined as a function

of ¢. It should be noted that the known vector of nonhomogeneous terms
{B(¢)},., consist of loading terms, and this vector is calculated at the end

points of each of the segments forming the whole interval. Therefore, by
specifying mechanical and thermal loads at the end points of the shell
segments, one can define of the loads as a function of the meridional

coordinate ¢ .
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3.6. Back Transformation

Another issue that should be mentioned is that by following the method
described above, the results will have been found only for a particular
circumferential wave number n. Therefore, for a complete solution, as it was
stresses before, solution should be carried out for each circumferential wave
number n separately, and finally be summed up to obtain the final result.
Furthermore, for each circumferential wave number »n, fundamental variables
determined are the transformed variables, not the actual physical variables.
Therefore, these transformed variables should be back-transformed to the
actual physical variables. Back transformation of transformed variables and
summation of the solutions for each circumferential wave number n is
achieved by Equation (3.6.1) where {t//(qb,@)} represents the vector of
fundamental shell variables. The solution process gives the cosine and sine

parts of fundamental variables ({l//(¢)})nc and ({l//(¢)})ns , and once these

Fourier components are determined the actual physical variables are
calculated by the summation operation over the range of circumferential wave

numbers.

w@.0)}={v©)), + 2ij[({w<¢>})nc cosn6 +({y ($)}),, sinnd] (3.6.1)

where

(W@, = o= [{w@.0)}cosno o (362)
n 0

(v @), = % [{w(9.0)}sinno a6 (3.6.3)
n 0

(v (p)), = i [{v(@.0)}a0 (3.6.4)
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3.7. Post Processing

After back transformation is performed in Section 3.6, all fundamental

variables in their actual physical form ({l//((b,@)}mx]) have now been

calculated. Using these results, it is possible to calculate stresses and strains
using the governing equations given in Chapter 2. It should be noted that the
fundamental variable vector consists of displacements and rotations and
stress and moment resultants. Therefore, for a layered composite structure to
calculate the layer stresses and strains one needs to process on the
fundamental shell variables to get the strains and stresses through the shell of

revolution.

Strain — displacement relations for shells of revolution are given in Chapter 2
by the Equations (2.2.3.1) — (2.2.3.11). For the sake of completeness and
ease of explanation, these equations are reminded here again. Overall (total)

in-plane strains are given by

£45(0,0.5)=£0,($.0)+ x,,(4.6) (3.7.1)
899(¢>9>§):839(¢>9)+§K99 ((15,9) (3.7.2)
Y50(8.0,8)=735(.0)+ ¢ K,5(6,0) (3.7.3)

where, the midstrains (membrane strains) and bending strains are given by

o _ 1|0
Eip = —| =t (3.7.4)
o R¢ a¢ ¢
0 1 0 Oug | o
Epp =— CosQ+——+ Sin
00 R, sin¢ u, ¢ 20 u, ¢ (3.7.5)

ou,) 0
1. u, +L6u6 B COt¢u§ (3.7.6)
R,sing 00 R, 0¢p R,

0 _
Yoo =
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1o,

Ko = (3.7.7)
ob
R¢ op
1 op,
Ky = coSQ +—— 3.7.8
00 Rasm(b[ﬁqﬁ ¢ 69} (3.7.8)
0
o=t L 8.7.9)
Rysing 00 R, 0¢ R,
and transverse shear strains are given by
0 0
u 1 Ou
¢ ¢
=Pyt —— 3.7.10
Voc =By R, R, 04 ( )
uj 1 ou}
Yor = P —— (3.7.11)

R, R,sin ¢¥

As it is seen clearly, in order to calculate the total in-plane strains, midstrains
(membrane strains) and bending strains should be known, and these are
given by Equations (3.7.4) — (3.7.9). In Equations (3.7.4) — (3.7.11), for the

calculation of midstrains, bending strains and transverse shear strains; mid-

plane displacements u;, uy, u; and rotations S,, 8, should be known, all of

which appear in the fundamental variable vector {l//((b,@)}mx]. However, their

derivatives with respect to ¢ and with respect to 6 also need to be calculated.
Since the fundamental variables are given by the Equation (3.6.1) in generic

form, mid-plane displacements and rotations u,, u,, u;,f, and S, can be

expressed as:

. (9.0);=(y@)), + 22 (v, (®)}),. cosnd+({y,($))), sin 6]

(3.7.12)

where
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(. 0.0)={u0(8,0) u3($.0) u(6.6) B,6.0) B,(30) (3713

Thus, based on Equation (3.7.12), the derivatives of u,, u,, u;,f, and f,

with respect to 6 can be found as:

{‘//d (¢ 9) 22[ Wd (¢) sin no + n({Wd(¢)})ns CoS n@] (3.7.14)

For the calculation of derivatives with respect to ¢, finite difference method

will be employed. To calculate the meridional coordinate derivatives of the

fundamental variables at the initial point of the first segment, i.e. at

. =9, =9, forward difference of first order is used [16]:

N (8,.0)) (v, (4,.0)}— v, (4,.0)f
o A¢

(3.7.15)

for the second point and the point one before the last point, i.e. for ¢, = ¢, and

¢, = ¢,,, central difference of first order is used [16]:

oy, (8.0)) W00~ 1w, (6.0
o 204

(3.7.16)

for the points in between, i.e. for ¢, (i:3,...,M—1) central difference of

second order is used in order to improve accuracy [16]:

o, (3,0))  — Wi (3.,.0)}+81w,(8,...0)|-8w, (4,_..0)+ {w,(4,.0)}
o a 12A¢

(3.7.17)
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and for the last point, i.e. ¢, =¢,,., =4¢,... , backward difference of first order is

used [16]:

AU RN B U RNV S U CIRY (37.18)

o¢ A

Once the mid-plane strains are calculated, one can calculate the total in-plane
strains strain from Equations (3.7.1) — (3.7.3) and transverse shear strains
from Equations (3.7.10) — (3.7.11). In-plane stresses and transverse shear
stresses at each layer can then be calculated from Equation (3.7.19) and

(3.7.21), respectively.

O 49 Q]] Q]z Q]e €40 —OC¢AT
Cowr =|0n On O Egg — QAT (3.7.19)
G0, O O O + V90 — QAT .

where

a, =a,cos’ 0+a,sin’0
a, =a,sin’ 0 +a, cos’ O (3.7.20)

Qg = 2(a, —a, )cos@sin O

{Geg}{gm 945} {704} (3.7.21)
Oy¢ O Oss | Yoz

It should be noted that as an alternative method, the mid-plane strains,
curvatures and transverse shear strains can also be calculated from the
stress/moment resultant strain/curvatures relations. One should recall that the
relation of in-plane forces and moments with midstrains (membrane strains)
and bending strains is given in Chapter 2 by the Equation (2.3.2.44); and the
relation between transverse shear strains and transverse force resultants is

given by the Equation (2.3.3.7). To calculate mid-plane strains, bending
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strains (curvatures) and transverse shear strains one has to invert Equations
(2.3.2.44) and (2.3.3.7) as in Equation (3.7.22) and (3.7.23).

52¢ Ay, A, Ae B, B, By Ny N¢T¢

€ ge A, Ay Ay B, By By Ny N aTe

729 _ A Ay A B By B N¢9 " N¢Te (3.7.22)
Ksp B, B, By D, D, Dg M, M¢T¢ -
Koo B, By, By D, Dy Dy M, Mg

Ko | Bis By Bes Dig Dy De | i M, M¢Te ]

Yoo | |:A44 Ays ]] {Qag }
_ (3.7.23)
{%é} Ay A Oy

Note that in Equation (3.7.22), the matrix containing the stiffness coefficients

N

4,, B; and D, (z',j :1,2,6) terms is calculated before and therefore known.

In addition, the thermal load vector {N¢T¢ Ngg Ngo My, Mg, M¢TQ}T is

. T-
also known. However, in vector {NM Nop Ny My My, M¢9} ; Ny s

Ny, M,, and M, terms are known since they are among the fundamental
variables and calculated during the solution process. But N,, and M, have

not been calculated previously because they are not among the fundamental
shell variables. Similarly, in Equation (3.7.23), the matrix containing the

transverse shear stiffness coefficients A4, (i, Jj= 4,5) is calculated before and
therefore known. Transverse shear stress resultant 0, is also known since it

appears in the fundamental variable vector, but Q. is unknown for the time

being. Therefore, in order to be able to calculate the midplane strains, bending

strains and transverse shear strains from Equations (3.7.22) and (3.7.23) one

needs to know the stress and moment resultants N,,, M, and transverse
shear stress resultant O, . Two methods of calculating N, and M, are

presented below.
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In the first method, N,, and M, can be extracted from two of the equations

of motion, Equations (2.4.3.11) and (2.4.3.14) as

in g ON ON, i i
p= oSG Reg oy 1 oo Kosing ) - p SN0, (3724)
R, cos¢ 0¢ cosg 00 R, cos¢ cos¢
_ R, sing oM ,, . N 1 oM, _R sin ¢ 0 (3.7.25)
% R, cosgp 0¢ " cos¢p 06 9cos¢ ¢§

In these equations, terms involving 6 derivatives, i.e. 8N¢9/89 and
6M¢9/69 are calculated using Equation (3.7.14); and terms involving ¢

derivatives, i.e. 6N¢¢/8¢ and 6M¢¢/6¢ are calculated using finite difference

method given by Equations (3.7.15) — (3.7.18).

In the second method, N,, and M, are calculated using Equation (2.3.3.7)

as
0 0 0

Ny = A123¢¢ + Ay Egy + A268¢9 + B]2K¢¢ + Bk + stK¢9 (3.7.26)
0 0 0

M gy = Biy€4s + By€gy + By + DisKyy + DKy + DogKyp (3.7.27)

respectively. But in Equations (3.7.26) and (3.7.27), in order to find N,, and

M ,, , midstrains and bending strains should be known, and they are already

the unknowns that need to be found.

On the other hand, Equations (3.7.4) — (3.7.9), which use finite difference

method for the calculation of midstrains and bending strains, could be used to

get an initial estimate of those strain values for the calculation of N,, and

M ,, , during the process of midstrain and bending strain calculation.
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In order to achieve this, first, midstrains and bending strains are calculated
using Equations (3.7.4) — (3.7.9). During these calculations, finite difference
method given by Equations (3.7.15) — (3.7.18) is used when derivatives of

midsurface displacements and rotations with respect to ¢ need to be found.
Second, N, and M, are calculated by Equations (3.7.26) and (3.7.27),

using the strain values just been found.

Then, having found all in-plane force and moment resultants, either by the first
method using Equations (3.7.24) and (3.7.25) or by the second method using
Equations (3.7.26) and (3.7.27), Equation (3.7.22) can now be used to

calculate midstrains (membrane strains) and bending strains.

However, although both methods can be used to calculate N,, and M, fora
general shell of revolution, there is a restriction for the special case of circular
cylinder. It is shown in Section 2.1.3 that ¢ =90° and therefore cos¢ =0 for
circular cylinder. Hence Equations (3.7.24) and (3.7.25) cannot be used for the
calculation of N,, and M ,,, meaning that Equations (3.7.26) and (3.7.27) are

used instead for circular cylinder.

It should be emphasized that since in Equation (3.7.22) four of the six
variables of the stress/moment resultant vector are known as a result of
multisegment numerical integration solution method, exploiting Equation
(3.7.22) to determine midplane strains and curvatures could also give accurate

results. Because in either of these methods, finite differencing will have been

used only for the calculation of the stress and moment resultants N,, and

M

00 -

To calculate transverse shear stress resultant Qeg, transverse shear strain
yoc has to be calculated. To calculate transverse shear strain yg, if

equation (3.7.11) is examined carefully, it is seen that use of finite difference

method is not necessary since no derivative with respect to ¢ appear in the
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equation, and derivative with respect to € can be calculated by series solution

as given by Equation (3.7.14).

Finite difference method is used only once in Equation (3.7.10), and when it is
used, central difference of second order given by Equation (3.7.17) is

employed at most points, therefore it can be concluded that using Equation

(3.7.10) for the calculation of y,. causes very little loss of accuracy due to the

use of higher order finite differencing. As a result, Equations (3.7.10) and

(3.7.11) are used for the calculation of transverse shear strains.

Having found midstrains and bending strains, one can calculate overall (total)
in-plane strains by employing Equations (3.7.1) — (3.7.3). Using these
equations, overall strains are found at each layer separately throughout the

thickness of the laminate.

In plane stresses for a general shell can then be calculated by Equation
(2.3.2.30). Since for shell of revolution & <> ¢ and 1 <> @, this equation can

be re-written as

O 4 Q]] On 0O €4 _05¢AT
Cowr =|0n On O Egg — QAT (3.7.28)
G0, O O O + V90 — QAT .

where

a, =a cos’ 0+a,sin’0
a, =a,sin’ 0 +a, cos’ O (3.7.29)

Qg = 2(a, —a, )cos@sin O

Using Equation (3.7.28), in-plane stresses can be calculated at each layer

separately throughout the thickness of the laminate
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Transverse shear stresses for a general shell can be calculated by Equation

(2.3.2.9). Since for shell of revolution £ <> ¢ and 1 <> @, this equation can

be re-written as

{ffeg}{gm @Hm} (3.7.30)
Oy¢ O Oss | Yoz

where y,. and y, are given by Equations (3.7.10) and (3.7.11), respectively.

Using Equation (3.7.30), transverse shear stresses can be calculated.

Thus, the post processing of the solution which aims to calculate stresses and
strains is now completed. Note that since the fundamental variables are found

as functions of ¢ and 6 in the preceding section, all stresses and strains
calculated in this section are also functions of ¢ and 6. In addition to that,

since overall in-plane strains and stresses are found at each layer, these

variables, apart from being functions of ¢ and @, are also functions of the

thickness direction of the shell £ .
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CHAPTER 4

IMPLEMENTATION OF THE SOLUTION METHODOLOGY

4.1. Description of the Computer Code Developed

For the analysis of shells of revolution, an algorithm is created following the
instructions of the solution methodology described in Chapter 3. In order to
implement the algorithm created, a computer code is developed using
FORTRAN 77 programming language. The code consists of a main program,
thirteen subroutines and an external subroutine used during the execution.
Double precision storage format is used in the code in order to improve

accuracy.

41.1. Description of the Main Program

The algorithm of the main program is graphically represented by the flowchart
shown in Figure 4.1. As it can be seen, main program is basically the general
router which manages the data flow between the subroutines. Three
subroutines are mentioned in the flowchart of the main program. Among them,
subroutine “Backtrans” simply follows the instructions on how to perform the

back transformation described in Section 3.6. However, subroutines “Nuint”

100



and “Postprocess” include complicated sequence of instructions for the
solution and post processing of the problem, respectively. Therefore, in the

following flowcharts describing their algorithms are given individually.
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Call Subroutine “Nuint”
to calculate the

Call Subroutine “Backtrans” to
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Output The
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N, ($.6).M ,($.6).M ,(8.6)f

h 4
Call Subroutine
“Postprocess” For
Postprocessing

A 4

( Finish )

Figure 4.1 Flowchart for the Main Program
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4.1.2. Description of the Subroutine “Nuint”

The algorithm of the subroutine “Nuint” is graphically represented by the
flowchart shown in Figure 4.2. This subroutine implements the procedures

given in Section 3.5, i.e. it applies the multisegment method of integration.

As previously discussed in Section 3.7, an integration scheme needs to be
used for the solution of Equations (3.5.2) and (3.5.3), and in the present study,
the integration of these equations is performed using the IMSL numerical
integration routine DIVPAG, which is the double precision version of the
routine IVPAG. It is used to solve the initial value problems for ordinary
differential equations using either Adam-Moulton’s or Gear’'s BDF method. In

the present study, Adam-Moulton’s method is chosen.

Therefore, the external subroutine “DIVPAG” is called during the execution of
subroutine “Nuint”. This is one of the routines in the international mathematics
and statistics library “IMSL”, which is a comprehensive set of mathematical
and statistical functions that programmers can embed into their software

applications. The IMSL Libraries are provided by Visual Numerics Inc [18].

The other subroutines called during the execution of subroutine “Nuint” are the
subroutines FCN, FCN2, Loadvector and ABD. The sequence of calling these
subroutines and their functions are described in Figure 4.2. In addition to
these, subroutines INV, Det10X10 and Det9X9 are called for the inversion and

determinant finding of matrices when necessary.
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Figure 4.2 Flowchart of the Subroutine Nuint
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4.1.3. Description of the Subroutine “Postprocess”

The algorithm of the subroutine “Postprocess” is graphically represented by
the flowchart shown in Figure 4.3. This subroutine implements the procedures

given in Section 3.7, i.e. it performs the post processing.
Subroutines INV6, Det6X6 and Det5X5 are called during the execution of

subroutine “Postprocess” for the inversion and finding the determinant of the

matrices when necessary.

105



( Start ) Calculate the ¢ derivatives

of the fundamental variables
using equations (3.7.15) —

Calculate the @ derivatives
of the fundamental variables

using the series solution

Cylindrical Shell

}

Calculate the midstrains and
rotations using equations
(3.7.4) - (3.7.9).

Calculate N, and M , using

equations (3.7.26).and
(3.7.27).

Calculate the distance of
each layer from the neutral

(3.7.18). given by equation (3.7.14).
Prepare the [ABBD] Matrix
given by equation (3.7.22).
For Circular

For General Shell
of Revolution

Calculate N, and M,
using equations
(3.7.24).and (3.7.25).

Calculate the midstrains and
rotations using equation

(middle) surface

h 4

Calculate the overall in-plane
strains using equations
(3.7.1) — (3.7.3).

(37.22).

Calculate the transverse
»| shear strains using equations

Calculate the in-plane

(3.7.10) and (3.7.11).

Calculate the transverse

stresses using equation
(3.7.28).

Return to Main

p| shear stresses using
equation (3.7.30).

v
Output the stresses and
strains at required

Program

locations

Figure 4.3 Flowchart for the Subroutine Postprocess
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4.2. Verification of the Code

In Section 4.1, the computer code developed is described in detail. In this
section, the results generated by the code are compared with the results
generated by MSC NASTRAN.

MSC NASTRAN is a general purpose finite element analysis solver used for
small to complex assemblies [19]. Nastran was initially developed by NASA for
the space program in the 1960’s and the term NASTRAN is actually an
acronym for NASA Structural Analysis. Today, NASTRAN is widely used
throughout the world in the aerospace, automotive and maritime industries. It
has been claimed in many studies such as [20], [21] and [22] that NASTRAN
is the industry standard for analysis of aerospace structures. Therefore,
comparison of the results generated by the code developed in the present
study with the results generated by MSC NASTRAN is a convenient method

for the verification of the code.

MSC NASTRAN is closely linked with MSC Patran. MSC Patran is a
comprehensive pre and post processing environment for finite element
analysis [19]. Therefore, it is used for the preparation of the model to be
solved in MSC NASTRAN and the results are post processed using again
MSC Patran.

The following sample problems are analyzed using both the code developed in

this study and MSC NASTRAN. Then the results obtained from these solvers

are compared.
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4.2.1. Sample Problem 1

Consider a laminated circular cylinder clamped at two ends is exposed to a
temperature difference of 1000° C, which is uniformly distributed throughout
the cylinder. In addition to that, an internal pressure of 100 kPa is applied to
the cylinder. Here a temperature difference of 1000° C is used just for
demonstration purposes. A high temperature difference is selected on purpose
to get high thermal stresses The cylinder is made of MR50/LTM25 Carbon
Epoxy Unidirectional Prepreg [23]. The material data used, geometric

properties, loads and boundary conditions are given in Table 4.1.

Table 4.1 Analysis Data for the Sample Problem 1

Geometry Circular Cylinder
Radius 0.2m

Axial Length 1.0m

Number of segments 300

Material

Ply Material MR50/LTM25 Carbon Epoxy
£, 155 GPa

Ey 7.31 GPa

Uy, 0.345

Gy, 4.19 GPa

G 4.19 GPa

Gy 3 GPa

Ply thickness 0.146 mm

Ply density (p) 1520 kg/m®
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Table 4.1 (continued)

o, -0.43x 10°1/°C
Oy 37.4x10°1/°C
Laminate

Number of Layers 4

Ply Orientation [0°/45°/90°/0°]
Loads

AT (constantalong x, 6 and ') |1000°C

D¢ (constant along x and 6) 100 kPa
Boundary Conditions clamped-clamped

f ) a2 )l ) 7)) g ) (87,
left end 0 0 )

(87)..(85).487). =

right end

As it can be seen from Table 4.1, in the multisegment integration method the
cylinder is divided into 300 segments. In order to overlap the nodes of finite
element mesh used in MSC NASTRAN with the grid points of the segments
used in the multisegment method of integration in the axial direction, the
nodes of finite element mesh which is created in the axial direction of the
cylinder are equally spaced and the total number is also 300 The fundamental
variables obtained from the code and NASTRAN are compared at these

points.
It is stated in many references such as [27] and [28] that in displacement

based finite element solvers, stresses, which are calculated during the post

processing, are obtained more accurately at element centroids. NASTRAN is
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Since the shell equations used in the present study assumes small strain /
small displacement (see Section 2.2.1), and the materials are considered to
be linearly elastic in the analysis domain, that is they are not functions of strain
or strain rate, linear static solution type with sol 101 solution sequence is
chosen in MSC NASTRAN.

The analysis is run using both the computer code developed in the present
thesis and NASTRAN solver. Following the completion of the analyses, the

results are presented.

In Figure 4.5, variation of the mid-surface displacement in the thickness
direction ug with axial (meridional) coordinate at 8 =0 is given. It should be
emphasized that for the present problem, since the loading is axisymmetric,
the problem is completely axisymmetric and the results are not functions of the
circumferential coordinate 6, therefore the results would be the same for any
value of 6. The results of both NASTRAN and the code are given in this figure

for comparison.
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Figure 4.5 Comparison of Solutions for variation of ug with x for Sample

Problem 1

In Figure 4.5 one can clearly see the bending boundary layer extending a

short distance away from the edges.

In the figure, the results of NASTRAN and the code overlap and are seen as
one curve. In order to compare the results more clearly, percent difference is

calculated for each grid point in the axial direction:

AbsoluteValue(NASTRAN result — Code result)

Yo Difference = NASTRAN result

x100

4.2.1.1)

The variation of percent difference with the axial coordinate x is given in

Figure 4.6:
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Figure 4.6 Change of Percent Difference with Axial Coordinate for ug for

Sample Problem 1

This graph shows that maximum difference between NASTRAN results and
code results occur near the boundaries with a value of nearly 0.4%. Away
from the boundaries, this value is less than 0.02%, meaning that two methods

find almost exactly the same values.

These results given above are for ug which is a fundamental variable. The

percent differences between code results and NASTRAN results for other

fundamental variables are similar; therefore they are not given here for brevity.

Stresses and strains are also calculated by postprocessing the results found

directly from the solution, both for the method used in the present study and

113



for the finite element method. In Figure 4.7, variation of the stress in the axial

direction (o) with axial (meridional) coordinate at & =0 and for layer 1 (first

layer inside the cylinder) is given. The results of both NASTRAN and the code

are given in this figure for comparison.

0(.0) vs. x for Layer Number 1
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Figure 4.7 Comparison of Solutions for Variation of o with x for Sample

Problem 1

Again in the figure, the results of NASTRAN and the code overlap and are
seen as one curve, so the percent difference given by Equation (4.2.1.1) is

calculated. The behaviour of change of percent difference with axial

coordinate is similar to the one given above for ug The difference is

symmetrical and reaches a stable value at some distance away from the

boundary. This stable value is 0.02%, and reached around x =0.07m. The
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variation of percent difference with axial coordinate in the interval [0, 0.1] is

given in Figure 4.8.

% Difference For O'H(x,())

7.0

% Difference

Axial Coordinate (m)

Figure 4.8 Change of Percent Difference with Axial Coordinate for o for

Sample Problem 1

The percent difference is highest at the end of the first shell segment, with a
value of 6.%, oscillating and getting smaller away from the boundary,
eventually reaching the stable value mentioned above. As it is explained in
Section 3.7, stresses are calculated using the fundamental variables by
postprocessing. During this process, different orders of finite difference
method are involved. Central difference of second order is used between 3™
and (m-1)" points, where m is the number of shell segments used in the multi-
segment method of integration. Forward difference is used for the first point

and backward difference is used for the last ((m+1)") point. The use of forward
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and backward difference at the boundary edges of the shell of revolution may
cause loss of accuracy in the calculation of stresses at these points to some
extent. It can be seen from Figure 4.8 that the percent difference decreases
rapidly and its final value of 0.04% reveals that NASTRAN and the code
calculates almost the same axial stress values during the postprocessing. It
should also be noted that the axial stress results calculated by the developed
code are greater than the axial stress results calculated by NASTRAN in
magnitude. As it has been stated above, for the comparison of stresses,

NASTRAN element centroids are used.

Force and moment resultants are also among the fundamental variables, and
they are calculated during multisegment method of integration, in addition to

the displacements and rotations, as it is explained in Section 3.5. For this
problem, variation of the mid-surface axial force resultant per unit length (Nf:x)

with axial coordinate is calculated as constant throughout the cylinder, as
expected. The result obtained from the code is -44170.8 N/m and the result
obtained from the NASTRAN solution is -44168.5 N/m. Therefore the percent

difference between two solutions is also constant, and calculated as

44170.8+ 44168.5|

% Difference = |_ 241635

x 100 = —0.00522% (4.2.1.2)

Result given by Equation (4.2.1.2) reveal that axial force resultant per unit

length is found almost the same by two solvers. The variation of the mid-

surface in-plane shear force resultant per unit length (Nfe) with axial

coordinate is also constant along the axial direction over most of the cylinder
length, with a value of -39146.5 N/m for the code and -39136.3 N/m for
NASTRAN.

The percent difference of results between two solvers for this fundamental

variable is given in Figure 4.9. The variation is symmetrical with respect to the

cylinder cross section at x =0.5m and is constant over most of the cylinder
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since N, itself is constant at those points. Therefore, the result is given in the

interval [0, 0.1] where the variation starts from its initial value and reaches the

constant value.

% Difference For Ngg(x,(})
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-3.1E-02

-3.3E-02

-35E-02
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Figure 4.9 Change of Percent Difference with Axial Coordinate for N , for

Sample Problem 1

Maximum percent difference is at the boundary with a value of 0.036 %.
Therefore it can be said that NASTRAN and the code developed in this thesis

both calculate the same results also for the in-plane shear force resultant per

unit length.
One final comparison is made for the solution times of the two solvers. On a

computer with a 2.40 GHz CPU and 1 GB of RAM, the analysis is run on the

code developed, and total time elapsed is 9.953 seconds. When the same
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analysis is run on NASTRAN with the finite element mesh described above, it
is completed in 490.906 seconds. The solution time for NASTRAN solver does
not include the preparation of the NASTRAN input file (*.bdf) from the finite
element model by the pre and post-processor Patran. From this data, it can be
deduced that the code developed in this study solves this problem about 49
times faster if the shell is divided into 300 segments along the meridian of the
shell. Obviously, one should keep in mind that in the finite element model
when 300 elements are placed along the meridian of the shell, the element
length in the circumferential direction can not be arbitrary in order not to end
up with an element configuration with a high aspect ratio. Therefore, finite
element model becomes very crowded in terms of element and node
numbers. For a particular problem one could get reliable results with a much
coarser mesh, and in that case the solution times of the present method and
finite element method could approach each other. However, in this example
the comparison is made for 300 segments along the meridian of the shell, and

for this size the present method is much faster than the finite element method.

4.2.2. Sample Problem 2

Consider again a laminated circular cylinder clamped at two ends. This time, a
variable external pressure is applied to it. The cylinder is made of
MR50/LTM25 Carbon Epoxy Unidirectional Prepreg [23]. The material data
used, geometric properties, loads and boundary conditions are given in Table
4.2
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Table 4.2 Analysis Data for the Sample Problem 2

Geometry Circular Cylinder
Radius 0.2m

Axial Length 1.0m

Number of segments 300

Material

Ply Material MR50/LTM25 Carbon Epoxy
E, 155 GPa

E,, 7.31 GPa

Uy, 0.345

G, 4.19 GPa

G 4.19 GPa

Gy 3 GPa

Ply thickness 0.146 mm

Ply density (p) 1520 kg/m®

a,, -0.43x 10° 1/°C
a5, 37.4x10°1/°C
Laminate
Number of Layers 4
Ply Orientation [0°/45°/90°/0°]
Loads

pr=0atx=0,

D¢ (constant along @ and variable

in x)

=100 kPaat x =1,

changing linearly in between
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Table 4.2 (continued)

Boundary Conditions

clamped-clamped

left end

g ) A ), ),

right end

)
(87),.(87).(87), =0
)

Finite element mesh used in NASTRAN and number of segments used in the

multisegment method of integration are the same as those used in 4.2.1. The

variation of p. with axial direction is defined using fields option in Patran for

the finite element solution. Sol 101 is used again as the solution type in

NASTRAN.

In Figure 4.10, variation of the mid-surface displacement in the thickness

direction ug with axial (meridional) coordinate at @ =0 is given. The results of

both NASTRAN and the code are given in this figure for comparison.
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Figure 4.10 Comparison of Solutions for Variation of ug with x for Sample

Problem 2

As it can be seen, the displacement in the thickness direction increases
linearly as one moves from one boundary to another, with linearly increasing
internal pressure. In the figure, the results of NASTRAN and the code overlap
and they are seen as one curve. In order to compare the results more clearly,
percent difference given by Equation (4.2.1.1) is calculated at each grid point
in the axial direction. The variation of percent difference with the axial

coordinate x is given in Figure 4.11:
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Figure 4.11 Change of Percent Difference with Axial Coordinate for ug for

Sample Problem 2

This graph shows that maximum difference between NASTRAN results and
code results occur near the boundaries with a value of 1.1%. Away from the
boundaries, this value is approximately than 0.03%, meaning that two

methods find almost exactly the same values.

These results given above are for ug which is a fundamental variable. The

percent differences between code results and NASTRAN results for other

fundamental variables are similar; therefore they are not given here for brevity.

In Figure 4.12, the variation of the stress in the axial direction (axx) with axial

(meridional) coordinate at 8 =0 and for layer 1 (first layer in the cylinder) is
given. The results of both NASTRAN and the code are given in this figure for

comparison.
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Figure 4.12 Comparison of Solutions for Variation of o with x for Sample

Problem 2

Again in Figure 4.12, the results of NASTRAN and the code overlap and they
are seen as one curve, so percent difference given by Equation (4.2.1.1) is
calculated. The behaviour of variation of the percent difference with the axial
direction is not symmetrical as opposed to the previous sample problem, since
loading in axial direction is not symmetrical, but it also reaches a stable value
at some distance from the boundary. This value is 0.1%, and it is reached at
around x =0.05m. The variation of percent difference with axial coordinate

throughout the cylinder is given in Figure 4.13.
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Figure 4.13 Change of Percent Difference with Axial Coordinate for o _ for

Sample Problem 2

The percent difference is highest at the first point, with a value of 7%, getting
smaller away from the boundary, eventually reaching a stable value as
mentioned above. Its behaviour is similar near the other boundary; however
not exactly the same since the problem is not symmetrical, as mentioned
before. Away from the boundaries percent difference is about 0.1%, which
reveals that the code developed and NASTRAN calculates reasonably close
results for axial stress. Relatively higher percent differences near the
boundaries can be explained by loss of accuracy due to the reasons stated at
the end of Section 4.2.1.

Furthermore, a sudden change in percent difference is observed at about

x=0.65- 0.67. Figure 4.12 shows that axial stress changes sign in the same

interval, where the axial stress becomes smaller in magnitude, eventually
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reaches zero and increases again. Percent difference is defined in Equation
(4.2.1.1) as the absolute value of the difference of results of the code and
NASTRAN, divided by the results of NASTRAN. If the code results and
NASTRAN results do not become zero at exactly the same point, and they
have the same slopes so that one curve is shifted up or down with respect to
the other, then the denominator of the percent difference definition becomes
smaller and smaller without much change in the numerator, as the axial
stresses approach zero. This results in much higher percent differences in the
neighbourhood of the point where stress values change sign. Therefore, it is
obvious that this phenomenon occurs due to the definition of the percent
difference and it affects a considerably small interval. Besides, percent

difference converges to its value before the sign change of stress results.

In order to exhibit this more clearly, variation of the stress in the tangential

direction (099) with axial (meridional) coordinate at 8 =0 and for layer 1 (first

layer in the cylinder) is given in Figure 4.14:
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Figure 4.14 Comparison of Solutions for Variation of o,, with x for Sample

Problem 2

As it is seen from Figure 4.14, tangential stress values change sign nearby the
left boundary, where the percent difference is already high due to accuracy
issues mentioned at the end of Section 4.2.1. The effect of this is seen more
clearly in Figure 4.15 which gives the change of percent difference of

tangential stresses with axial coordinate:
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Figure 4.15 Change of Percent Difference with Axial Coordinate for o, for

Sample Problem 2

The percent difference is highest at the boundaries, again due to the reasons
stated at the end of Section 4.2.1, but the difference gets smaller away from
the boundaries, and eventually reaches the stable value of 0.1%. Also it is
seen that no jumps and peak values occur in the percent difference away from
the boundaries, since tangential stress values do not change sign. Therefore,
it can be deduced that the results do not deviate significantly from each other,
but a numerical error arises from the definition of percent difference in the
neighbourhood of the points where the results change sign. Like in Section
4.2.1, stresses are calculated at the NASTRAN element centroids and the

comparisons are made at these points.

The variation of the mid-surface axial force resultant per unit length (Nf:x) with

axial coordinate is again constant throughout the cylinder for the code with a
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value of 2059.413 N/m and it is also constant for NASTRAN solution with a
value of 2059.057 N/m, with slight deviations from a constant value near the
boundaries. Therefore the percent difference between two solutions is also

constant, and calculated as

) 2059.057 +2059.413
% Differeence = 3059.057 x100=0.017% (4.2.2.1)

It is obvious that axial force resultant per unit length is found almost the same

by two solvers. In Figure 4.16, variation of the mid-surface in-plane shear
force resultant per unit length (Nfe) with axial coordinate at 6 =0 is given.

The results of both NASTRAN and the code are given in this figure for

comparison.
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Figure 4.16 Comparison of Solutions for variation of N?, with x for Sample

Problem 2
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The in-plane shear force resultant per unit length variations show similar
behaviours in two solutions, both increasing in magnitude while going from
one boundary to the other. Although graphically the two solution curves do not
seem to overlap, percent difference variation in the next figure reveals that
they are very close numerically and the reason for the curves not overlapping
is that the force resultant values are given in a short range to distinguish the

results from each other. The percent difference of results between two solvers

for N7, is given in Figure 4.17.
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Figure 4.17 Change of Percent Difference with Axial Coordinate for N_, for

Sample Problem 2
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The maximum percent difference occurs at a boundary with a value of less
than 0.06%. Therefore, once again it can be said that NASTRAN and the code
developed in this thesis calculate almost the same results also for in-plane

shear force resultant per unit length.

Furthermore, it should be noted that there are no jumps and sharp peaks in
the percent difference variation, since N_, values do not change sign along

the cylinder. This justifies the explanations on the percent difference variations

for the previous displacement and stress results.

One final comparison is again made for the solution times of two solvers. On a
computer with a 2.40 GHz CPU and 1 GB of RAM, the analysis is run on the
code developed, and total time elapsed is 10.109 real seconds. When the
same analysis is run on NASTRAN with the finite element mesh described in
Section 4.2.1, it is completed in 497.347 real seconds. This result shows for
this problem, the code developed in this study is about 50 times faster than
NASTRAN. Again it should be emphasized that NASTRAN solution time does
not include the preparation of the NASTRAN input file (*.bdf) from the finite
element model by the pre and post-processor Patran. Similar to the previous
problem, it should be kept in mind that in the finite element model when 300
elements are placed along the meridian of the shell, the element length in the
circumferential direction can not be arbitrary in order not to end up with an
element configuration with a high aspect ratio. Therefore, finite element model
becomes very crowded in terms of element and node numbers, which

increases the solution time for NASTRAN.

4.2.3. Comparison of Methods for Calculating Strain

In Section 3.7, two alternative methods are described for calculating

midstrains and bending strains. Strains could either be found by using
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Equation (3.7.22), i.e. by the inversion of constitutive equations (method 1); or

by using kinematic equations and differentiating displacements and rotations
with the finite difference method (method 2). In Figure 4.18, variation of gf:x
with axial coordinate at 9 =0 obtained by using method 1 and method 2 are

compared. For the analysis, problem described in 4.2.1 is used and

comparison is made at the end points of the shell segments.
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Figure 4.18 Comparison of Solutions for Variation of &’ with x for Sample

Problem 1

In Figure 4.18, the results obtained by methods 1 and 2 overlap and are seen
as one curve. In order to compare the results more clearly, a percent
difference is calculated, in a similar way to Equation (4.2.1.1), at each grid

point in the axial direction:
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AbsoluteValue(method 1 result — method 2 result)
method 1 result

x 100

% Difference =

(4.2.3.1)

The variation of percent difference with the axial coordinate is given in Figure
4.19:
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Figure 4.19 Change of Percent Difference with Axial Coordinate for ¢ in

Sample Problem 1

This graph shows that, maximum percent difference between the results of
two methods occur near the boundaries with a value of 2.6%. As moving away
from the boundaries, this value reduces below 0.5%, which reveals that either

of these methods can be used as an alternative to the other.
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Furthermore, calculation of overall (total) strains is discussed in Sections 2.2.3

and 3.7. Variation of overall strain in the x direction (gxx) with axial coordinate

at =0 and for layer 1 (first layer in the cylinder) are calculated by using
method 1, method 2 and NASTRAN. In Figure 4.20, the results are given for
comparison. For the analysis, problem described in 4.2.1 is used and
comparison of two methods with  NASTRAN results are made at the
NASTRAN element centroids, as explained for the stress calculation in
Section 4.2.1.
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Figure 4.20 Comparison of Solutions for Variation of ¢ with x for Sample

Problem 1

In Figure 4.20, again similar to the previous results, the overall strains
obtained from method 1, method 2 and NASTRAN overlap. In order to

compare the results of the two methods with NASTRAN results, two percent
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differences are calculated, in a similar way to the Equation (4.2.1.1), for each

grid point in the axial direction:

Abs.Value (methodl result — NASTRAN result)

% Difference 1= NASTRAN result

x100

4.2.4.1)

Abs.Value(method 2 result — NASTRAN result)

Yo Difference 2 = NASTRAN result

x 100

(4.2.4.2)

The variations of the percent differences with axial coordinate are very much
similar to each other. The variation is symmetrical with respect to the mid-span
and reaches stable values at some distance away from the boundary. These
stable values are both below 1%, and reached around x = 0.1 m. The variation
of percent differences with axial coordinate in the interval [0, 0.12] is given in
Figure 4.21:
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Figure 4.21 Change of Percent Differences with Axial Coordinate for ¢ in

Sample Problem 1

The percent differences are around 5% at the first point, oscillate as one
moves away from the boundary, and eventually reach stable values below 1%.
It is seen from Figure 4.21 that method 1 and method 2 results deviate almost
by the same amount from the NASTRAN results, except for slight differences
at around x=0.07. This result is expected, since it is shown in Figure 4.19
that two methods deviate very little (less than 0.5 %) from each other. As seen
from Figure 4.21, for this particular example, method 2 deviates less from
NASTRAN solution than method 1.

In addition, it is explained in Section 2.3.2 that stresses are related to strains

through the transformed material constants Q] Furthermore, percent change
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of o, variation with axial coordinate is less than 1%, as shown in Figure 4.8.

Therefore, the percent difference of ¢ _ also being less than 1% is justifiable.

Since stresses are calculated using strains as explained in Section 3.7, the

results shown in this section are similar for stresses.

4.2.4. Effect of Number of Segments on the Results

In Sections 4.2.1 and 4.2.2, the solutions are performed for 300 segments
when the code is used and similarly, cylinder is divided into 300 elements in
the axial direction when NASTRAN is used. In this section, in order to
investigate the effect of humber of segment on the results, the problem in
Section 4.2.2 is re-solved with various numbers of segments using the code

developed in the thesis.

In Figure 4.22, variations of the mid-surface displacements in the thickness

direction (ug) with axial coordinate at 8 =0 are given for 300, 400, 600 and

900 segments (M).
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Figure 4.22 Variation of ug with x for Various Segments Numbers

Similar to the results obtained in Sections 4.2.1 and 4.2.2, the results overlap
such that they cannot be distinguished from each other visually. Therefore,
percent differences are again defined in order to estimate the deviations of
results from each other. In percent difference calculation, reference is chosen
to be the solution with 900 segments, which is the most accurate result case.

Consequently, the percent difference definitions appear as

AbsoluteValue Hl’esults for] _ (results fOFH

M =900 M=X

% Difference, = x100 (4.2.4.1)
results for
(M =900 ]

where (X =300,400,600)
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In Figure 4.23, percent differences of u, calculated using Equation (4.2.4.1)

for the given number of segments are shown as a variation of the axial

coordinate x.

% Difference For ug(x,O)
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-0.005
Axial Coordinate (m)

—M=300 - M=900 M=400 - M=900 — M=600 - M=900

Figure 4.23 Percent Difference Results of ug vs. Axial Coordinate for Various

Segments Numbers

The deviations decrease expectedly as the number of segments approach 900
which is the reference number of segments. Still, even for the smallest
segments number 300, the maximum difference is 0.004%; and it gets even
smaller as the axial coordinate x increases. This shows that results do not
exhibit significant changes for this problem as the segments number exceeds

300, which means that sufficient accuracy is reached. Another point of interest
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is the position where the maximum percent difference occurs, and this will be

elaborated soon.

In Figure 4.24, variations of the axial stress (om) with axial coordinate at

0 =0 are given for 300, 400, 600 and 900 segments (M) at layer 1 (first layer

in the cylinder).

o, (x.0)vs. x for Layer Number 1
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Figure 4.24 Variation of o, with x for Various Segments Numbers

Again in order to distinguish the deviations of results from each other, percent
differences given by Equation (4.2.4.1) are calculated. In Figure 4.25, percent
differences are given as a function of axial coordinate for the same number of

segments
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Figure 4.25 Percent Difference Results of o vs. Axial Coordinate for

Various Segments Numbers

It can be seen from Figure 4.25 that percent differences are generally below
0.1%, and again the deviations decrease as the number of segments

approach the reference value of 900

However, in Figure 4.25, there is a special point of interest which is at

x=0.66. It can be seen from Figure 4.24 that this point is the coordinate
where o values change sign, going from positive values to negative values.

Furthermore, if Figure 4.22 and Figure 4.23 are examined carefully, percent

differences of u, results for all segments numbers reach their maximum

values also at the point where u, values move from negative values to
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positive values. This phenomenon was also observed when viewing the
results in Section 4.2.2 and the reasons were explained in detail. The same
discussion will not be given here in order to avoid repetition. However, it
should be emphasized once again that the results do not deviate significantly
from each other, but the difference is a result of the numerical error arising

from the definition of percent difference.

It can be concluded that the results obtained by the multisegment integration
method do not change significantly beyond a particular number of segments.
For the current problem, sufficient accuracy is obtained when the shell is
divided into 300 segments. However, it should be noted that 300 segments is
an arbitrary number that was selected at the beginning of the comparison
studies, and in practice number of segments can be decreased to low values
and still accurate results can be obtained. Because in the multi-segment
numerical integration technique by decreasing the number of segments one
does not actually reduce the accuracy as in finite element analysis. Solutions
at the ends of the shell segments will still have sufficient accuracy but the
resolution will be lowered. Therefore, one has to calculate the fundamental
variables at the intermediate locations afterwards by making use of the

fundamental variables determined at the end of the shell segments.

The behaviour of the axial variations of the variables must be considered while
deciding the number of segments the shell is divided into for the solution. For
these particular problems, solutions performed for less than 300 segments
along the shell axial direction may cause peaks existing in the solution curves
due to the bending boundary layers nearby the boundaries be missed and

therefore prevent to obtain the correct variations in the axial direction.
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CHAPTER 5

CASE STUDIES FOR CIRCULAR CYLINDRICAL SHELLS
OF REVOLUTION

5.1. Introduction

The analysis method developed in the present study is explained in detail in
Chapter 3 and its implementation is carried out by developing a computer
code, which is verified using the finite element method solver NASTRAN in
Chapter 4. In this chapter, a number of cases are analysed by using the code
developed and the results obtained are discussed. As it was mentioned
previously, one of the most commonly occurring shells of revolution
geometries is circular cylinder and many engineering problems involve this
geometry. Therefore, circular cylindrical shells are analysed in the cases

studied in this chapter.

The case studies begin with the investigation of temperature change effects
through the thickness, where a temperature difference varying with thickness
is applied as a thermal load to the body analysed. Next, a problem in which
the effects of variable mechanical loads in axial direction is considered by
applying pressure to a specific region along the cylinder axis. The analyses
continue with the examination of a cylindrical shell under temperature loading,
which is unsymmetrical in the circumferential direction and with the study of

transverse shear effects on the body under a given type of loading. This
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chapter ends with a specific application of the method to an aerospace

structure, namely a solid propellant rocket motor body.

5.2. Effect of Temperature Change through the Thickness

In Section 2.3.2, it is explained that for shells of revolution it is very probable to
have a varying temperature difference across the thickness depending on the
exposure of the shell to the external environment. In this section, a cylindrical
pipe which is subject to different temperatures inside and outside the cylinder
is analysed. In order to demonstrate the effect of temperature change with
thickness clearly, temperature differences in axial and tangential directions are

kept constant.

For this problem, four different cases in terms of loading are compared. In the
first case, a temperature difference of 100°C, which is constant through the
thickness, is considered. Physically, this problem can be an example for a thin
cylindrical shell after the steady state is reached and constant temperature

distribution is attained.

However, consider a case in which a pipe shaped cylindrical laminated shell is
manufactured at room temperature and exposed to a sudden temperature
change subsequently. If there is a heat source or heat sink inside the cylinder,
the temperature difference will be less inside compared to the outside. For
such a case, linearly varying temperature change through the thickness may
be assumed. As the second, third and fourth cases, a cylindrical pipe subject
to varying temperature differences through the thickness are considered.

These cases are given in Table 5.1
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Table 5.1 Temperature Difference Values for Analysis Cases 1 — 4

Cases Temperature Differences
Case 1 (AT1) AT, =AT,,, =100°C

Case 2 (AT2) AT, =100°C , AT,,, =200°C
Case 3 (AT?3) AT, =100°C , AT, =250°C
Case 4 (AT4) AT, =100°C , AT,, =300°C

As it was explained in Section 2.3.2, thermal loads were derived by assuming
linear variation of the temperature across the shell thickness. The thickness
coordinate ¢ is equal to zero at the mid-surface of the laminate, and its
positive direction is towards outer surface of the shell. Thus, temperature

difference can be written as a linear function of ¢ , using

AT(g ):%(é ~¢,)+AT, (5.2.1)

where ¢, and §,, are the { values at the inner and outer surfaces of the

laminate, respectively. The temperature variation across the thickness,
material data used, geometric properties, and boundary conditions are
summarized in Table 5.2. Change of temperature difference with the thickness

coordinate ¢ is also shown in Figure 5.1.
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Figure 5.1 Change of Temperature Difference with Thickness for Cases 1 — 4

Table 5.2 Analysis Data for the Problem 5.2

Geometry Circular Cylinder
Radius 0.2m

Axial Length 1.0m

Number of segments 300

Material

Ply Material MR50/LTM25 Carbon Epoxy Prepreg [23]
£, 155 GPa

Ey 7.31 GPa

Uy, 0.345
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Table 5.2 (continued)

G, 4.19 GPa
G 4.19 GPa
Gy 3 GPa

Ply thickness 0.146 mm
Ply density (p) 1520 kg/m®

a,, -0.43x10°1/°C
a5, 37.4x10°1/°C
Laminate

Number of Layers 4

Ply Orientation [0°/45°/90°/0°]
Loads

AT1 (constant along( ) 100°C

AT2=AT2(¢) AT2()=150+1.7123x10° x ¢
AT3=AT3(¢) AT3(S)=175+2.56849x10° x ¢
AT4=AT4(C) AT4(£)=200+3.4247x10° x¢

Boundary Conditions

clamped-clamped

left end

() ) ) (u?)..
(82).(87).87), =

right end

In Figure 5.2, change of ug with the axial coordinate at the tangential position

0 =0° is given for the cases described above.
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Figure 5.2 Comparison of Solutions for Variation of ug with x for Cases 1 — 4

In Figure 5.3, change of u’ with the axial coordinate at the tangential position

0 =0° is given for the Cases 1 — 4.
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Figure 5.3 Comparison of Solutions for Variation of uff with x for Cases 1 — 4

It should be recalled that the displacements ug and u. are defined at the mid-
plane of the laminate. It is seen from these figures that the maximum values of
both ug and uff increase with increasing case number, i.e. as the temperature
difference increase going from inside to the outside the shell. In addition to
that, ug displacements are greater for the cases with higher temperature

differences throughout the shell; and the same conclusion is also true for the
absolute values of u_ displacements, i.e. the absolute values of u

displacements are greater for the cases with higher temperature differences
throughout the shell as expected. It should also be noted the bending

boundary layer near the boundary edges is clearly seen.

In Figure 5.4, change of o at layer 4 with the axial coordinate at the

tangential position 8 =0° is given for the Cases 1 — 4. For the current
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analysis, thermal loads are mainly dominated by the temperature difference
outside the shell. Naturally, the effect of this is seen on the layer adjacent to

the outer surface of the laminate more clearly. Therefore, layer 4 is chosen for
the output location of results. The variation of o with the axial coordinate is
symmetrical in the axial direction and reaches a stable value at some distance
from the boundary. This stable value is reached around x=0.08m. The
variation of o  with axial coordinate is given in the interval [0, 0.1] for the

cases 1 — 4. For all the load cases, it should be stressed that the stresses are

calculated at the mid-plane of each layer.

O'H(.X:,O) vs. x for Layer Number 4
15E+07

1.0E+07
5.0E+06

0.0E+00
0

Stress Axial (Pa)

-5.0E+06

-1.0E+07
Auial Coordinate (m)
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Figure 5.4 Comparison of Solutions for Variation of o _ at layer 4 with x for

Cases1-4

It can be seen from Figure 5-4 that, as expected, the maximum value of o

increase with increasing case number, i.e. as the temperature difference
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increases. Also the absolute values of axial stresses o are greater for the

cases with higher temperature differences throughout the shell. It is again
seen that besides the shell boundary, the axial stress exhibits a peak value at
a section which is short distance away from boundary. This behaviour is

typical for shells of revolution.

In Figure 5.5, solutions for variation of o with layer number for Cases 1 — 4

are compared. It is seen in Figure 5.4 that the axial stress is nearly constant
with the axial coordinate x in the interval [0.1, 0.9]. Therefore, for the output of
results an axial location in this interval is chosen at x=0.333. Since the
problem and the loading is axisymmetric, tangential location is again taken as
6=0°.

o (0.333,0) vs. Layer Number
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Figure 5.5 Comparison of Solutions for Variation of o with Layer Number for

Cases1-4
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The graphs of Cases 2 — 4 exhibit very similar behaviour and they can be said
to be shifted up or down with respect to each other. In Figure 5.5, it is seen
that cases with higher temperature differences have higher axial stress values
at each layer and this result is in agreement with the results deduced from
previous figures. In case 1, loading is constant through the thickness and
therefore it differs from the other load cases. Consequently, the variation of
axial stress with the layer number is slightly different from the results of other

cases.

Absolute value of the axial stress is almost the same at layer 1 for cases 2 — 4,
while it is higher for case 1. This character is also true at layer 2. However, at
layers 3 and 4 effect of variable temperature difference with the thickness is
seen more clearly. Since the temperature difference increases at the outer
layers as the case number is increased, the axial stresses also increase at the

outer layers as the case number is increased.

5.3. Effect of Pressure on a Specific Region in the Axial

Direction

One of the advantages of the multi-segment method of Integration is that
loads can be defined as a function of the meridional coordinate by specifying
mechanical and thermal loads at the end points of the shell segments, as
previously emphasized in Section 3.5. In addition, any analytical function can
be used to define the meridional variation of the loads. This has been shown

for a general case in Section 4.2.2.

In many engineering problems, cylindrical shells are subject to mechanical
loads exerted on a specific region along the body, such as bearing loads. For
the current problem, a ring pressure is applied on the cylinder. In order to

demonstrate the effect of local pressure as a function of axial coordinate
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clearly, pressure in tangential direction is kept constant. Region where the

pressure is applied at is given in Table 5.3, along with the other data used in

the analysis.
Table 5.3 Analysis Data for the Problem 5.3
Geometry Circular Cylinder
Radius 0.2m
Axial Length 1.0m
Number of segments 300
Material
Ply Material MR50/LTM25 Carbon Epoxy Prepreg [23]
£, 155 GPa
Ey 7.31 GPa
Uy, 0.345
Gy, 4.19 GPa
G 4.19 GPa
Gy 3 GPa
Ply thickness 0.146 mm
Ply density (p) 1520 kg/m®
a -0.43x 10° 1/°C
Ay 37.4x10°1/°C
Laminate
Number of Layers 4
Ply Orientation [0°/45°/90°/0°]

152



Table 5.3 (continued)

Loads

0 if x<03
e =1200kPa if 03<x<0.5
0 if 05<x

Boundary Conditions clamped-clamped

f ) a2 )l ) u?) ) g ) (87,
left end 0 0 )

(87)..(85).87). =

right end

In addition, the same problem is also analysed with NASTRAN by the linear
static solver sol 101, in order to make a comparison. Same finite element
mesh is generated as in the analyses of the problems given in Sections 4.2.1
and 4.2.2.

The effect of pressure applied at a local region can best be visualized by the

variation of ug with the axial coordinate. This is given in Figure 5.6 at the

tangential position 8 =0°. The results of both NASTRAN and the code are

given in this figure for comparison
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Figure 5.6 Comparison of Solutions for variation of ug with x for the Problem

in Section 5.3

In Figure 5.6, the effect of applied pressure between x=0.3 and x=0.5 is
seen very clearly, which causes higher deformations in the { direction in that
area. In addition, the results of NASTRAN and the code overlap and are seen
as one curve. In order to compare the results more clearly, percent difference
given by equation (4.2.1.1) is calculated for each grid point in the axial

direction. This is given in Figure 5.7.
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Figure 5.7 Change of Percent Difference with Axial Coordinate for ug the

Problem in Section 5.3

Maximum percent difference between the results of NASTRAN and the code
is 0.1%, and the percent difference is below 0.02% at most grid points. This
shows that NASTRAN and the code find almost the same values, and the
difference is most probably due to numerical calculations, similar to the results
found in 4.2.1 and 4.2.2.

In Figure 5.8, variation of uff with the axial coordinate at the tangential position

0 =0° is given. The axial displacement calculated by the present code and

NASTRAN are overlaid on the same figure.
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Figure 5.8 Variation of uff with x for the Problem in Section 5.3, solved by the

code and NASTRAN

Effect of pressure applied to the local region is revealed in this figure by the

change in the slope of displacement values when approaching the interval
[0.3, 0.5] from the left and right. Also it should be noted that u! values are
much lower than ug values as far as the orders of magnitude are considered.

Similar to the previous results, code results and NASTRAN results match

perfectly.

In Figure 5.9, variation of the stress in the axial direction (axx) with axial

coordinate at the tangential position 8 =0 and for layer 4 (layer adjacent to
the outer surface of the cylinder) is given both for the code and NASTRAN

solutions.
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Figure 5.9 Variation of o with x for the Problem in Section 5.3, solved by the

code and NASTRAN

Effect of locally exerted pressure on a region along the axis is also seen

clearly in Figure 5.9. Besides the jumps in the axial stress at the boundaries of

the interval where the stress is applied, stresses in the interval [0.3, 0.5] are

also higher than the stresses elsewhere on the cylinder, as expected. Similar

to the previous results, code results and NASTRAN results match perfectly.

In Figure 5.10, variation of the stress in the tangential direction (099) with

axial coordinate at the tangential position 8 =0 and for layer 4 (layer adjacent

to the outer surface of the cylinder) is given both for the code and NASTRAN

solutions
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Figure 5.10 Variation of o, with x for the Problem in Section 5.3, solved by

the code and NASTRAN

Comparing Figure 5.10 with Figure 5.6, it is seen that behaviour of u, (x) and
Oy (x,O) curves are very similar. This can be explained as follows. In Equation
(2.2.3.13), &y is given as a linear function of u, and ou$ 06 . Current
problem is axisymmetric, so 6u3/69 =0. Therefore &g, is linearly related to

u, only. On the other hand, in Equation (2.3.2.7), o, is given as a linear

0
xx ?

function of ¢_, &, , and ¢_,, which are also linearly related to ¢/, &g,, and
3;’9 through the Equations (3.7.1) — (3.7.3), respectively. In Figure 5.8, it is
seen that u_ is very small compared to u,, and it can be shown that u, is

also negligibly small compared to u, . Therefore, u, is the dominant term in

0

. . 0 0
the calculation of the strains ¢, ¢,, and ¢ ,, and consequently o,,. And
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since for the particular problem o, is linearly related to u,, o, curve in

Figure 5.10 and u, curve in Figure 5.6 show similar behaviour.

5.4. Cylinder under Unsymmetrical Loading

In order to apply unsymmetrical loads to the shell of revolution, loads that are
given as functions of circumferential coordinate 6 are expanded using Fourier
series, as explained in Section 3.3. In this section, temperature difference is
applied as a function of 6 to the laminated circular cylindrical shell, whose
material and geometrical properties are given in Table 5.4. Table 5.4 also
summarizes the temperature load applied and the boundary conditions. In
order to demonstrate the effect of temperature difference as a function of 6
clearly, temperature difference is taken as constant along the axial direction

and also kept constant in thickness direction.

Table 5.4 Analysis Data for the Problem 5.4

Geometry Circular Cylinder

Radius 0.2m

Axial Length 1.0m

Number of segments 300

Material

Ply Material MR50/LTM25 Carbon Epoxy Prepreg [23]
£, 155 GPa

Ey 7.31 GPa
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Table 5.4 (continued)

Uy, 0.345

Gy, 4.19 GPa

G 4.19 GPa

Gy 3 GPa

Ply thickness 0.146 mm

Ply density (p) 1520 kg/m®

a -0.43x 10° 1/°C

Ay 37.4x10° 1/°C

Laminate

Number of Layers 4

Ply Orientation [0°/45°/90°/0°]

Loads
B 300xsin(0) if 0el0,7]

AT - 70xsin(0) if 6e(r,27)

Boundary Conditions clamped-clamped

AR AR ANA
(87),.(87).487). = 0

. TR R R W LR LT

’ (52)..(2). 42 ), =0

Temperature difference given as a function of circumferential coordinate 6 is
shown in Figure 5.11. Temperature differences caused by convective flows
around the body can be modelled by sinusoidal functions. And this load case
can physically be an example to a cylindrical pipe subject to different

temperatures differences from both sides.
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For the expansion of this function using Fourier series, a final circumferential
wave number needs to be determined. Mathematically, in Fourier series
expansion, circumferential wave number starts from 0 and goes to infinity, as
shown by Equation (3.3.41). However, Fourier series converges to the original
function after a certain circumferential wave number is reached. For the
temperature difference function given in Table 5.4, this number is found to be

14, as depicted in Figure 5.11.

AT(8)vs. 6

350

300

s 300xsin(g) if Gelon]
250

| 70xsin{6) if Oe(m2m)
200
160
100

50

Temperature Difference { C)

Tangential Coordinate (Degrees)

‘—Original Function —— Fourier Series Expansion for n=14 ‘

Figure 5.11 Original Temperature Difference Function and its Fourier Series

Expansion at n=14 in Problem 5.4

The Fourier series is expanded by Equation (5.4.1) and using the engineering
calculation software Mathcad [29].

70)=f, +i ' cos(n0)+ f,, sin(n0) (5.4.1)

n=1
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Coefficients f,, f,. and f (n:1,2,...,

14) are calculated as explained in

Section 3.3 and by using Equations (3.3.46) — (3.3.48). Fourier components

are summarized are in Table 5.5.

Table 5.5 Coefficients of the Temperature Difference Function Expanded

Convergence of the Fourier series to the original

using Fourier Series

fo=73.211

f.=0 s =—185
fr. =—48.8 b =
fi. =0 /5 =0
S =-9.762 | f,.=0
S5 =0 S5 =
Joo.=—4184 | f.. =
Jre = Jr =
Jee =—2.324 | fi, =
Joe = Jos =
Ji0e =—1.479 | fi,, =0
S =0 S, =0
S =—1.024 | £, =0
Sz =0 Ji3, =0
Siae =—0.751 | f,,, =0

function as the

circumferential wave number increases is shown in Figure 5.12. In order to

distinguish graphics from each other visually, they are given in the interval

[170°, 190°]
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Fourier Series Expansion for n=2 Fourier Series Expansion forn=6 —— Fourier Series Expansion for n=10
——Fourier Series Expansion for n=14 — Qriginal Function

Figure 5.12 Fourier Series Expansion of the Temperature Difference for

Various Circumferential Wave Numbers

In this section, effect of circumferential wave number on the results when
modelling the unsymmetrical loading with Fourier series is also investigated.
Therefore, although the results are primarily given for the final circumferential
wave number n =14, results for the circumferential wave numbers less than

14 are also given to demonstrate the change of results with circumferential

wave number n. In Figure 5.13, variation of ug with axial coordinate x is

given for the tangential location & =0 for a number of circumferential wave

numbers.
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ug(x,O) vs. X
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Figure 5.13 Variation of ug with x for Various Circumferential Wave Numbers

in Problem 5.4

As it is shown in Figure 5.13, the displacement in the thickness direction ug

converges as the circumferential wave number approaches n=14. This
behaviour is in accordance with the actual Fourier series representation of the
temperature variation given in Figure 5.11. Figure 5.13 also shows that

maximum displacement is obtained at x =0.5. Therefore, Figure 5.14, which
shows the variation of ug with @ for various circumferential wave numbers, is

plotted for x=0.5.
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Figure 5.14 Variation of ug with @ for Various Circumferential Wave Numbers

in Problem 5.4

Again, it is seen that thickness displacement u, values converge to the

solution as the circumferential wave number approaches n =14. Maximum
percent difference of the solutions for n =12 and for n =14 is less than 5%.
And also since the solution for n =14 can not be graphically distinguished
from the solution for n =12 and can barely be distinguished from the solution
for n =10, it is concluded that at n =14 solution converges. Moreover, it was
also shown in Figure 5.11 and Figure 5.12 that the Fourier series of the
loading function converges to the original function at a circumferential wave

number of 14.

From Figure 5.11 and Figure 5.14, it is apparent that the maximum lateral

displacement locations coincides with the angular positions 8 = 0" (and 360°)
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and 0 =180°, where the temperature difference changes sign. In Figure 5.15,
the variation of tangential displacement u, with tangential coordinate 6 for

various circumferential wave numbers is given at x =0.5.

u2(0.5,0) vs. @
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Figure 5.15 Variation of u, with 6 for Various Circumferential Wave Numbers

in Problem 5.4

In Figure 5.15, it is also seen that tangential displacement ug values converge

at about n =14 . After the solution is completed, by using the axial, tangential
and thickness displacements, the displaced positions of the grids around the
circumference of the cylinder can be calculated in three dimensional space.

However, since the loading is constant in axial direction and axial

displacement u, is small compared to u, and u;, axial displacements are
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neglected. Thus, the displaced positions of the grids around the circumference

are calculated in two dimensions, at the semi span location, x =0.5.

New positions of the grids constitute the deformed shape of the body at
x=0.5. The deformed shape is given in Figure 5.16, along with the
undeformed shape. However, since the magnitude of the displacements are
on the order of millimetres and therefore the deformed shape cannot be
distinguished from the undeformed shape, the displacements are multiplied by
10 and consequently the deformed shape is scaled up to 1/10 in order to
exhibit the deformation clearly. It also should be noted that Figure 5.16 shows

the mid-plane displacements.

Shape of the Cylinder at x=0.5 m
0.25

015
0.1

0.05

02—
-0.25
—— Undeformed Shape Deformed Shape

Figure 5.16 Deformed and Undeformed Shape of the Cylinder Cross-Section
at x=0.5 (Displacement Scale: 1/10)
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In conjunction with Figure 5.14, it is seen that maximum displacements occur
near the transition regions (6 =0°,180°,360°) where temperature difference
changes from positive to negative values. It should also be noted that the
current case studies are analysed under linear elasticity assumptions. The
magnitudes of the loads imposed should be checked to see if the resulting
displacements can be regarded as small displacements and linear analysis is
still applicable. However, in this section the aim was to demonstrate the
application of the multi-segment numerical integration technique in the static
solution of cylindrical shell of revolution subject to different load types

including non-symmetric loads.

In Figure 5.17, the variation of axial stress o with the axial coordinate x is

given for various circumferential wave numbers. The stress results are given

at 0 =0° and in layer 4 (layer adjacent to the outer surface of the cylinder).
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. (x,0) vs. x for Layer Number 4
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Figure 5.17 Variation of o with x for Various Circumferential Wave

Numbers in Problem 5.4

It is seen that axial stress o values also converge to the solution at about

n =14 as the circumferential wave number n increases. Maximum stress is
obtained at the boundaries and the variations are symmetric with respect to
x =0.5 plane. Figure 5.18 and Figure 5.19 show the variation of o and o,
respectively with @ for the same circumferential wave numbers, at x=0.5

and in layer 4 (layer adjacent to the outer surface of the cylinder).
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Figure 5.18 Variation of o with @ for Various Circumferential Wave

Numbers in Problem 5.4
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0,(05,6) vs 6
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Figure 5.19 Variation of o, with @ for Various Circumferential Wave

Numbers in Problem 5.4

It is seen in Figure 5.18 that axial stress o is maximum in magnitude at
0 =0° and at 6 =180°, where positive temperature difference to negative
temperature difference transitions occur, similar to the variation of U with 0.
Also o distribution curve has a local maximum at 6 =90° where the

temperature difference is maximum (300°C) around the circumference and
has a local minimum at 6 =270° where the temperature difference is

minimum (— 70°C) around the circumference of the cylindrical shell.
As opposed to u, variation, which is zero at § =90° and at 8 =270°, o,

values take the minimum and maximum values at these coordinates

respectively, as shown by Figure 5.19.
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5.5. Transverse Shear Effects

In Chapter 2, classical shell theory equations are modified such that

transverse shear strains Y e and y,, are taken non-zero in order to include

the transverse shear effects in the formulation. Therefore, stresses and strains

arising from the existence of transverse shear effects can be found. In this

section, these results are demonstrated.

In order to obtain not-too-low transverse shear stress values, a laminate
consisting of two different lamina materials is analyzed, with a temperature
loading, which is changing linearly along the shell in the meridional direction.

The material data used, geometric properties, loads and boundary conditions

are given together in Table 5.6.

Table 5.6 Analysis Data for the Problem 5.5

Geometry Circular Cylinder

Radius 0.2m

Axial Length 1.0m

Number of

segments 300

Material Laminate Consisting of Two Different Lamina materials
Ply Material 1 MR50/LTM25 Carbon Epoxy Prepreg [23]

L, 155 GPa

Ey 7.31 GPa

172




Table 5.6 (continued)

Uy, 0.345

Gy, 4.19 GPa
G 4.19 GPa
G23 3 GPa

Ply thickness 0.146 mm
Ply density (o) 1520 kg/m3

ay -0.43 x 10-6 1/°C
Oy 37.4x10-6 1/°C
Ply Material 2 CFS003/LTM25 Carbon Epoxy Fabric Prepreg [23]
L, 53.6 GPa

Ey 55.2 GPa

Lpp 0.042

G, 2.85 GPa

G 2.85 GPa

Gy 2.15 GPa

Ply thickness 0.230 mm

Ply density (o) 1450 kg/m3

a, 3.83x10-6 1/°C
Qs 3.80 x 10-6 1/°C
Laminate

Number of Layers

5

Ply Materials

Material 1/ Material 2/ Material 1/ Material 2 /Material 1

Ply Orientation

[0°/30°/-30°/45°/60°]
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Table 5.6 (continued)

Loads

AT (constant AT =1000°C at x=0,

along 0 and ¢ , =0°C at x =1,

variable in x) changing linearly in between

Bounfijary clamped-free

Conditions

VIR R,
(87).(87).487). =0

r|ght end (Q¢ ) (Q¢§) (N xx )C (Nxx S’(ng )c ’(ng )s ’(Mxx )c’
(.. )01, ) 1, ), =0

In Figure 5.20 and Figure 5.21, variation of the mid-surface displacements in

the thickness direction (ug) and in the axial direction (uf:) respectively with

axial coordinate at 8 =0 is given in order to demonstrate the deformation of
the shell.
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Figure 5.20 Variation of ug with x for Problem 5.5
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Figure 5.21 Variation of u! with x for Problem 5.5
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It is seen from Figure 5.21 that since the boundary at the right is free, cylinder
expands in that direction. u! is observed to increase quadratically along the

cylinder axis. In addition to that, since the temperature difference decreases

linearly from the left boundary to the right boundary, mid-surface displacement

in the thickness direction (ug) also decreases linearly in the axial direction,

subsequent to reaching a peak value near the fixed boundary.

In Figure 5.22 and Figure 5.23, variation of the transverse force resultant per

unit length (ng) with axial coordinate is given at 8 = 0. In order to display the

results clearly, the cylinder axis is divided into two intervals and given in two

separate figures.
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Figure 5.22 Variation of O . with x in the Interval [0, 0.1] for Problem 5.5
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Figure 5.23 Variation of O . with x in the Interval [0.1, 1] for Problem 5.5

It should be emphasized that O . =0 at the right boundary because that

boundary is not constrained and therefore all force and moment resultants are
zero. Apart from that, transverse force resultant variation is almost constant

away from the boundaries with a value of approximately 8.65 N/m. At the fixed

boundary, Q.. is maximum and decreases steeply to its constant value. At

the other end, it makes a small peak before its final value at the boundary.

In Figure 5.24 and Figure 5.25 variation of transverse shear stress o . with

the axial coordinate x at 8 =0 is given. Figure 5.26 and Figure 5.27 give the

variation of transverse shear stress o, with the axial coordinate x at 6 =0.

The transverse shear stresses are plotted for layer 3 which is the middle layer
of the laminated shell wall. Once again it should be stressed that stresses are

calculated at the mid-surface of the third layer, as shown in Figure 2.6.
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Similar to the plots for transverse shear force resultant O, in order to display

the variation of the transverse shear stresses clearly, the cylinder axis is
divided into two intervals and stress results are given in two separate figures

for each transverse shear stress.

ng(x,O) ve. x for Layer Number 3

1.6E+07

14E+07 |

1.2E407

ess (Pa)

1.0E+07

8.0E+06

4.0E+06

Transverse Shear Str
(=)
o
m
+
=
(=)
-

2.0E+06 —+

0.0E+00

0.1 0.15 0.2 0.25 0.3 0.35 04 045 05
-2.0E+06

Axial Coordinate (m)

Figure 5.24 Variation of o . with x in the Interval [0, 0.5] for Problem 5.5
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Gxg(x,O) vs. x for Layer Number 3
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Figure 5.25 Variation of o . with x in the Interval [0.5, 1] for Problem 5.5
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Figure 5.26 Variation of o, with x in the Interval [0, 0.5] for Problem 5.5
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Figure 5.27 Variation of o, with x in the Interval [0.5, 1] for Problem 5.5

The variation of transverse shear stresses o, and o, are similar to each

other and they also show similar behaviour with the transverse force resultant

per unit length Q. . However, transverse shear stresses do not vanish at the

right boundary, since transverse shear strains are not zero. Transverse shear
stresses are maximum at the fixed boundary and make a small peak before
the free boundary. Away from the boundaries transverse shear stresses
change slightly, with average values of 21500 Pa and -36200 Pa, respectively.
However, it should be noted that the transverse shear stresses at the free end
show sharp drops. Furthermore, transverse shear strains show similar
variations, i.e. they also show sharp drops at the free end and change slightly

away from the boundaries, as expected.

It should also be noted that in the present study first order transverse shear

deformation theory is used. As it is explained in Section 2.3.3, first order
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theory assumes constant transverse shear strain through the thickness and
consequently, for each layer a constant transverse shear stress is calculated.
Therefore, the first order theory is not adequate to represent the variation of
the transverse shear stress through the thickness, because for free inner and
outer surfaces the transverse shear stresses must vanish at the inner and
outer surfaces. However, in layers near the middle surface of the shell wall the
transverse shear stresses calculated based on the first order shear
deformation theory is quite satisfactory. And the stress results given in this
section are for the 3™ layer, which contains the middle surface. One future
work that might be worked on could be to derive the transverse shear stresses
from the in-plane stresses that are already determined. This would be a similar
approach used in the derivation of the famous transverse shear stress formula
for a beam under transverse loading. Since the transverse shear stiffness is
already incorporated in the analysis, the fundamental shell variables and the
in-plane stresses are more accurate compared to the case in which transverse
shear deformation is neglected. After determining the in-plane stresses the
transverse shear stresses can be determined by imposing the equilibrium of

the infinitesimal shell element. This point is further discussed in Chapter 7.

5.6. An Aerospace Structures Application

Laminated circular cylinders have a vast usage area in aerospace structures,
as it is stated earlier. On of the most common applications is the solid
propellant rocket motor. A solid-propellant rocket motor consists of a casing,
filed with a solid propellant charge, called the grain, which contains all the
chemical constituents (fuel plus oxidizer) for complete burning. When ignited,
the propellant compounds burn rapidly, expelling hot gases from a nozzle to
produce thrust. The propellant burns from the center out toward the sides of
the casing. The shape of the center channel determines the rate and pattern

of the burn, thus providing a means to control thrust. Unlike liquid-propellant
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engines, solid-propellant motors can't be shut down. Once ignited, they burn

until all the propellant is exhausted.

Igniter

Heat-resistamt
material

Figure 5.28 A solid Propellant Rocket Motor

Solid propellant rocket motors can be used in long range ballistic missiles as
well as short range ballistic missiles. In any case, motors can be analysed
statically when they reach steady state during the cruise phase of the mission

profiles.
In steady flight, two major types of loading are exerted on the rocket motor:

pressure and temperature. In the present study other loads, which can depend

on many factors such as the rocket motor and mission profile, are neglected.
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Maximum expected operating pressure of a rocket motor also depends on
many factors such as the rocket motor geometry and grain size [39], and
therefore it is determined by ballistic analyses, which is beyond the scope of

this thesis. Therefore, in the present study, pressure exerted on the rocket

motor in steady flight is assumed to be 50 bars (5x10° Pa).

Another type of loading to be considered is the one arising from the
temperature. Like pressure, temperature inside the rocket motor depends on a
number of factors such as grain and oxidizer [39], which is again determined
by thermal analyses and therefore is a design parameter. However, in some
references such as [40] it is stated that temperature inside a rocket motor can
reach 3000 K. It should be noted that in real cases this temperature is
expected to be on the solid propellant surface and on the motor body this
value decreases to lower values due to thermal insulation. For the present
case, existence of thermal insulation and the nozzle is ignored and

temperature is assumed to be uniformly distributed inside the rocket motor.

Consider a case in which the rocket motor is assembled at 25°C at sea level
and cruising at an altitude of 10000 m, where the ambient temperature is
about -50°C [41]. Also, if the temperature inside the cylinder is assumed to be
2727°C (3000 K), there exists a sharp temperature difference between inside
and outside the cylinder, inside with a temperature difference of 2702°C and
outside with a temperature difference of -75° This can be modelled with linear
change of temperature difference across the thickness, which is developed in

this study.
Such a solid propellant rocket motor can be assumed to be clamped at one
end, where it is attached to the other parts of the missile and free at the other

end.

In this section, four laminate alternatives, each with a different ply orientation

(symmetric and anti-symmetric) is analysed and the results are compared. The
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laminate alternatives and ply orientations for each laminate is given in Table
5.7.

Table 5.7 Laminate Alternatives

Laminate Material Number of Layers | Ply Orientation
MR50/LTM25
. Carbon Epoxy
Laminate 1 4 [45/-45/-45/45]
Prepreg

See Table 5.8

MRS50/LTM25

Carbon Epoxy
Laminate 2 4 [0/90/90/0]
Prepreg

See Table 5.8
MR50/LTM25
Carbon Epoxy
Laminate 3 4 [30/45/-45/-30]
Prepreg

See Table 5.8
MR50/LTM25
Carbon Epoxy
Laminate 4 4 [60/30/-30/-30]
Prepreg

See Table 5.8

Note that Laminate 1 and Laminate 2 are symmetric whereas Laminate 3 and
Laminate 4 are anti-symmetric. The geometry, loads, boundary conditions and

material data used in the problem is summarized in Table 5.8.

184



Table 5.8 Analysis Data For Problem 5.6

Geometry Circular Cylinder
Radius 0.04 m

Axial Length 0.5m

Number of segments 300

Material

Ply Material MR50/LTM25 Carbon Epoxy Prepreg [23]
E, 155 GPa

Ey 7.31 GPa

Uy, 0.345

Gy, 4.19 GPa

G 4.19 GPa

Gy 3 GPa

Ply thickness 0.146 mm

Ply density (p) 1520 kg/m®

a -0.43x 10° 1/°C
Ay 37.4x10° 1/°C
Laminate See Table 5.8
Loads

AT (constant along ¢ and 6,

changing in § )

AT(S)=1313.5-4.75514x10° x ¢

D¢ (constant along x and 6)

5 MPa

Boundary Conditions

clamped-free

left end

f ) g ) o) el ) ) Mg ) (82,
0

right end

(62),-(87) (57 ), =
(

04 ) A ) (V. ) V.. ) (N, ).

(V.o ),
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In Figure 5.29, axial variation of ug at 6 =0° is given for the laminates

described in Table 5.7.

“Og(xso) vs. X
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Figure 5.29 Comparison of Solutions for variation of ug with x for Problem 5.6

It is seen that of all the laminates analysed, shell made of laminate 2 deforms

least in the thickness direction, followed by the shell made of laminate 4.

Figure 5.30 shows the axial variation of u! at 6 = 0° for laminates 1 — 4.
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Figure 5.30 Comparison of Solutions for variation of u! with x for Problem 5.6

Since the ply orientations are different for each laminate, laminate 2 expands
while laminates 1, 3 and 4 contract. As far as the orders of magnitude are
concerned, axial displacement of shell made of laminate 4 is the least,
followed by the shell made of laminate 2. Depending on the design
requirements, motor may be desired to expand or contract under such loading
conditions. If minimum contraction is desirable, Figure 5.29 and Figure 5.30
together reveal that shell made of laminate 4 can be chosen over the other
three alternatives, since it contracts least in the axial direction and also

deforms less than twice as much as laminates 1 and 3.

As it is stated in Section 5.4, it should also be noted that the current case
studies are analysed under linear elasticity assumptions. The magnitudes of
the loads imposed should be checked to see if the resulting displacements
can be regarded as small displacements and linear analysis is still applicable.

However, in this section the aim was to demonstrate the application of the

187



multi-segment numerical integration technique in the static solution of a solid

propellant rocket motor under the specified steady flight loading conditions.

In addition, the ply orientations chosen here for the analysis of the laminated
shell of revolution are also arbitrary, since the aim is again the demonstration
of the method. The optimum ply orientation can be determined by a stacking
sequence optimization, such as the generic algorithm developed in [42], and
the method developed in the present study may be used as a solver

subsequent to the optimization of stacking sequence.

Axial variations of axial and tangential stresses for the shell made of laminate
4 are given in Figure 5.31, at 8 = 0° and for layers 1 and 4 (layers adjacent to

the inner and outer surfaces of the cylinder, respectively)

Stresses vs. x for Layer Numbers 1 and 4
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Figure 5.31 Axial Variations of Axial and Tangential Stresses for Laminate 4
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As it is seen clearly, behaviours of axial and tangential stresses are similar,
with tangential stress being almost three times greater than the axial stress in
terms of magnitudes. It can also be concluded that [60°/30°/-30°/-30°]
sequence causes the tangential stresses be higher than axial stresses in

magnitude.

It should be recalled that during the analyses, temperature difference is
modelled to be linearly changing throughout the thickness. In Figure 5.32,
variation of axial and tangential stresses with thickness at the mid-span

location (x = 0.25 m) and @ = 0° is given for laminate 4.

O-xx(o'2570) and 0'95(0-2570) vs. Layer Number
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Figure 5.32 Thickness Variation of Axial and Tangential Stresses for Laminate
4

Variation of axial stress exhibits a smoother behaviour throughout the
thickness whereas tangential stress variation shows steeper changes

especially in the layers adjacent to the inner and outer surfaces of the cylinder.
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For both axial and tangential stresses, maximum values occur at layer 4, and
this is also the reason to why layer 4 is chosen as one of the thickness
positions for the axial variation of axial and tangential stresses. It is also seen
that Figure 5.32 is in agreement with Figure 5.31: For axial stress variation,
values are negative for layer 1 and positive for layer 4, which can be seen in

both figures.

Using the stress values obtained from the analyses, laminates can further be
analysed for failure. Laminate strength analysis procedure for failure by itself
is another subject of interest, in which various failure algorithms and failure
criteria such as Tsai-Hill or maximum stress failure criterion may be employed

[4], therefore it is not studied further in the present thesis.
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CHAPTER 6

CASE STUDIES FOR GENERAL SHELLS OF
REVOLUTION

6.1. Introduction

In Chapter 5, analyses are carried out with various loading cases for circular
cylindrical shells. In this chapter, the multisegment numerical integration
technique is applied to a shell of revolution geometry other than circular
cylinder. In order to achieve this, a truncated spherical shell, which is shown in
Figure 6.1, is analysed. As seen in Figure 6.1, the geometrical parameters

used for the definition of the shell are:

- The radii in meridional and tangential directions, which are constant
and equal to the spherical radius of 1 metre;

- Initial and final meridional positions in terms of the angles
measured from the axis of revolution. It should be kept in mind that

centres of radii of curvature in meridional and tangential

coordinates R, and R, coincide for this geometry.
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Figure 6.1 Truncated Spherical Shell Geometry Analysed in Chapter 6

In the succeeding sections, the effects of various loading conditions on this
truncated spherical shell are examined. In Section 6.2, constant pressure is
applied to the shell, and in Section 6.3 spherical truncated shell of revolution is
subjected to a number of temperature loads, including the case in which the

temperature is linearly changing within the thickness.

In general, in a spherical shell, orientation of fibers in the laminate may be a
function of the meridional direction, which depends on the manufacturing
process of the laminate. Especially, when the shell is manufactured by the
filament winding process, the winding angle and thickness of the shell varies
along the meridian of the shell. However, in the present study, in order to
demonstrate the application of the multi-segment numerical integration
technique to the static analysis of a truncated spherical shell of revolution,

orientation of the fibers is assumed to be constant in the meridional direction.
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6.2. Pressure Loading

Consider the laminated truncated spherical shell described in Section 6.1
clamped at one end and free at the other is exposed to an internal pressure of
150 kPa which is axisymmetrically and uniformly distributed throughout the
shell. The laminate is made of MR50/LTM25 Carbon Epoxy Unidirectional
Prepreg [23]. The material data used, geometric properties, loads and
boundary conditions are given in Table 6.1

Table 6.1 Analysis Data for Problem 6.2

Truncated Spherical Shell
Geometry i
(See Figure 6.1)
Radii Ry =Ry =R, =1m
Starting Meridional
" 110°
Position ¢,
Final Meridional Position
160°
¢ﬁnal
Number of segments 400
Material
Ply Material MR50/LTM25 Carbon Epoxy Prepreg [23]
E, 155 GPa
Ey 7.31 GPa
Uy, 0.345
Gy, 4.19 GPa
G 4.19 GPa
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Table 6.1 (continued)

Gy 3 GPa

Ply thickness 0.146 mm

Ply density (o) 1520 kg/m®

a, -0.43x 10° 1/°C
Oy 37.4x10° 1/°C
Laminate

Number of Layers 4

Ply Orientation [0°/45°/90°/0°]
Loads

D¢ (constant along

xand @) 100 kPa

Boundary Conditions clamped-free

f ) g ) ) el ) ) Mg ) (82,

Starting boundary ( 5 )S ( 9 ) ( )A .
End boundar (Q¢ ) (QM) ’(N x )c ’(Nxx ) (Nx9 ) (Nx9 )S ’(Mxx )c’
’ (.).00.,) 1., ) =0

In Figure 6.2, change of mid-surface displacement in the thickness direction

ug with the meridional coordinate at the tangential position 6 =0° is given.
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Figure 6.2 Variation of ug with ¢ in Problem 6.2

The variation of ug is similar to that for circular cylinder given in Section 4.2.1

near the starting boundary, increasing to a peak value from zero. However,

since the end boundary is free in the current problem, ug (1600,0) is non-zero,
therefore ug decreases with an almost constant slope to its value at the end

boundary. For the particular load case, the maximum ug displacement is

found to be approximately 3.0 mm.

In Figure 6.3, change of mid-surface displacement in the meridional direction

u;’ with the meridional coordinate at the tangential position 6 =0° is given.
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Figure 6.3 Variation of u;’ with ¢ in Problem 6.2

Mid-surface displacement in the meridional direction has a quasi-linear
change, starting from the clamped boundary until the free boundary. It also
should be noted that mid-surface displacements in the meridional direction are
smaller than mid-surface displacement in the thickness direction as far as the

order of magnitudes are concerned.

In Figure 6.4, change of meridional stress o, with the meridional coordinate

at the tangential position 6 =0° and for layer 1 (first layer inside the cylinder)
is given. It should be noted that as shown in Figure 2.6, stresses are

calculated at the mid-surface of each layer.
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Figure 6.4 Variation of o, with ¢ in Problem 6.2

Meridional stress variation is also similar to that for circular cylinder given in
Section 4.2.1 near the starting boundary, increasing to a peak value from zero.

Then it decreases gradually since the end boundary is free.

In Figure 6.5, change of meridional stress o, with layer number at the mid-

span location, which is ¢ =135° and tangential position 8 =0° is given.
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Figure 6.5 Variation of o, with Layer Number in Problem 6.2

In Figure 6.5, first point (point at layer number = 1) refers to the meridional
stress at mid-surface location of the 1% layer. The same is true for the other
layers, ranging from 2 to 4. In this sense, the linear variation between layer
number 1 and layer number 2 refers to the linear change of meridional stress
between the mid-surface locations of the first and second layers. Again the

same argument is applicable to the other layers from 2 to 4.

Meridional stress is highest at the layers next to the inner and outer surfaces
of the shell and they have smaller values at the layers near the mid-surface.
Stress variation is linear since stresses are linearly connected to overall
strains through Equation (3.7.28) and overall strains change linearly through

the thickness, as shown in Equations (3.7.1) — (3.7.3).
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6.3. Temperature Loading

In this section, the response of the truncated spherical shell to various
temperature loads is given. For this problem, four different load cases are

compared.

In the first and second cases, temperature differences of 50°C and 200°C,
which are constant through the thickness, are considered respectively. For the
third case, a varying temperature difference through the thickness is
considered such that the inner temperature difference is taken as 50°C and
the outside temperature difference is taken as 200°C. Thus, this load case
can easily be compared with first and second cases. In the fourth load case, a
temperature difference twice as big as the third case is exerted. Load
conditions for all cases are given together in Table 6.2. In order to
demonstrate the effect of temperature change with thickness clearly,
temperature differences in meridional and tangential directions are kept

constant.

Table 6.2 Temperature Difference Values for the Load Cases 1 —4

Cases Temperature Differences

Case 1 (AT1) AT, = AT, =50°C

Case 2 (AT2) AT, = AT, =200°C

Case 3 (AT3) AT, =50°C , AT, =200°C
Case 4 (AT4) AT, =100°C , AT,,, = 400°C

As it was explained in Section 2.3.2, and Section 5.2, thermal loads were

derived by assuming linear variation of the temperature across the shell
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thickness. The thickness coordinate ¢ is equal to zero at the mid-surface of

the laminate, and its positive direction is towards outer surface of the shell.
Thus, by using Equation (5.2.1), temperature difference can be written as a

linear function of £ . The temperature variation across the thickness, material

data used, geometric properties, and boundary conditions are summarized in
Table 6.3.

Table 6.3 Analysis Data for the Problem 6.3

Truncated Spherical Shell
Geometry
(See Figure 6.1)
Radii Ry =Ry = Ry =1m
Starting Meridional Position ¢, 110°
Final Meridional Position ¢, 160°
Number of segments 400
Material
Ply Material MR50/LTM25 Carbon Epoxy Prepreg [23]
L, 155 GPa
Ey 7.31 GPa
Ly 0.345
G, 4.19 GPa
G 4.19 GPa
Gy 3 GPa
Ply thickness 0.146 mm
Ply density (p) 1520 kg/m®
Q -0.43x 10° 1/°C
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Table 6.3 (continued)

Ay 37.4x10° 1/°C
Laminate

Number of Layers 4

Ply Orientation [0°/45°/90°/0°]
Load Cases

ATT1 (constantalong & ) (Case 1) |5g°C

AT?2 (constant along ¢ ) (Case 2) |200°C

AT3 =AT3(¢) (Case 3)

AT3(S)=125+2.56849x10° x ¢

AT4=AT4(l) (Case 4)

AT4()=250+5.13698x10° x £

Boundary Conditions

Starting boundary

TR T
50). 42 050)

0
¢

0

0
X

End boundary

In Figure 6.6 change of ug with the meridional coordinate at the tangential

position 8 =0° is given for the cases described above
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Figure 6.6 Comparison of Solutions for Variation of ug with ¢ for Cases 1 -4

It is seen that general behaviour of the four load cases are the nearly same
with each other. Unlike the cylindrical shell geometry used in Chapter 5, the
truncated shell of revolution is not symmetric with respect to a tangential plane

and therefore the results are not symmetric with respect to ¢ =135° plane

Another observation is that lateral displacement response for Case 3 is
between the responses for Case 1 and Case 2. If it is recalled that AT = 50°
for Case 1; AT =200° for Case 2 and AT is linearly changing between 50°

and 200° through the thickness for Case 3, this result is expected.

It should also be recalled that temperature difference AT for Case 4 is twice
as high as the temperature difference AT for Case 3. Since the solution
method developed in this study uses linear elasticity relations, displacements

are also expected to be twice as high. In Figure 6.6, it is clearly seen that
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absolute values of displacements at Case 4 are indeed twice as high as those

at Case 3.

In Figure 6.7, change of o, at layer 4 (outer layer) with the meridional

coordinate at the tangential position 8 =0° is given for the Cases 1 — 4.

Stresses are calculated at the mid-plane of the layer.

c,,(#.0) vs. ¢ for Layer Number 4
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Figure 6.7 Comparison of Solutions for Variation of o ,,at layer 4 with ¢ for

Cases1-4

The meridional variations of o,, are seen to be similar to the variation of axial

stress, o for the circular cylinder which is subjected to similar loads (in

Figure 5.4). However, for the truncated spherical shell case the meridional
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stress is not symmetric with respect to a tangential plane since the geometry

is not symmetric with respect to a tangential plane.

Another observation is that, like in Figure 6.6, it is seen that stress response
curve for Case 3 is between the stress response curves for Case 1 and Case
2. However it should be noted that these variations are at layer 4 and stresses
in Case 2 are higher than stresses in Case 3, although AT is equal for Cases
2 and 3 at that layer. Examining the loading condition of Case 3 reveals that in
layers 1, 2 and 3 temperature differences AT are lower than the constant
temperature difference AT of Case 4, which causes the lower stresses at

layer 4 than the stress in Case 2.

In addition, similar to the case in the displacements, stresses are also
expected to be twice as high in Case 4 as in Case 3, since AT for Case 4 is
twice as high as AT for Case 3. Figure 6.7 shows that stress values at Case

4 are twice as high as stress values at Case 3, in agreement with the theory.

In Figure 6.8, solutions for variation of o, with layer number for Cases 1 — 4

are compared. It is seen in Figure 6.7 that the meridional stress does not

change steeply with the meridional coordinate ¢ in the interval [115°, 155°].

Therefore, for the output of results a meridional location in this interval is

chosen as ¢ =135°. Tangential location is again taken as 0 = 0°.
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Figure 6.8 Comparison of Solutions for Variation of o, with Layer Number for

Cases1-4

The effect of temperature difference on the variation of the meridional stresses
in the layers of the truncated spherical shell for the load cases 1, 2 and 3
shows the following behaviour. As expected, stresses for the load Case 3 are
between stresses for load Cases 1 and 2 in each layer. In addition, meridional
stresses in each layer for Case 4 are twice as high as the stresses for Case 3.
This result again proves the correct use of linear elasticity relations throughout
the multi-segment numerical integration technique that is developed for the
static analysis of macroscopically anisotropic general shells of revolution

including transverse shear deformation.
Also it is seen that stresses for load Case 4 are higher than stresses for Case

2 in layer 1, although the temperature difference is higher for Case 2 in that

layer. This behaviour shows that the local temperature difference is not very
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significant in the stress variation, but the variation of the temperature

difference throughout the whole thickness is more effective.
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CHAPTER 7

CONCLUSIONS & FUTURE WORK

A number of sample cases are analyzed using both the code developed in this
study and the finite element analysis tool NASTRAN, as it is explained in
Chapter 4. The results are compared and excellent agreement is found for
fundamental variables. Since NASTRAN is a displacement based finite
element analysis solver; similar to the method developed in this study, the
displacements are calculated primarily and the stresses and strains are found
consecutively using the displacements, by post-processing. Therefore,
although still less than 10% at maximum, the percent difference of stress
results between two methods is higher compared to the fundamental variable

results, especially at the boundaries.

Consequently, the present technique, besides providing an alternative solution
methodology to study the stress and deformation behaviour of anisotropic
shells of revolution under non-symmetric loading, can be reliably used as an
alternative computational tool to compare against the other solution

methodologies.

It should be stressed that the methodologies used in the present study are
based on analytical methods, except the numerical integration scheme used in
multisegment method of integration and the finite difference method used for
the calculation of strains as a first iteration step only in the post-processing of

circular cylindrical shells.
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It has been shown in Sections 4.2.1 and 4.2.2 that the code developed in this
study solves the problems in the sections mentioned about 49 times faster
compared to the finite element analysis solver NASTRAN when the shell is
divided into 300 segments along the meridian of the shell. Obviously, it should
be kept in mind that in the finite element model when 300 elements are placed
along the meridian of the shell, the element length in the circumferential
direction cannot be arbitrary in order not to end up with an element
configuration with a high aspect ratio. Therefore, finite element model
becomes very crowded in terms of element and node numbers. For a
particular problem one could get reliable results with a much coarser mesh,
and in that case the solution times of the present method and finite element
method could approach each other. However, in this examples solved in
Chapter 4 the comparison is made for 300 segments along the meridian of the
shell, and for this size the present method is much faster than the finite

element method.

It also should be noted that although it is not quantified, the initial preparation
time of the input files for the present method is also much less compared to
the pre-processing time of the finite element model. To reduce the finite
element solution time further, finite element mesh can be made much coarser
in the regions where there are no significant gradients, and the solution time
by the finite element solver can be reduced down. However, in that case the
pre-processing time would increase. Based on the case studies performed,
especially for problems in which gradients of the field quantities are high, the
numerical integration based method used in the present study has less

solution time compared to the finite element method.

In the present study, extension of the multisegment numerical integration
method due to Kalnins [7] is extended to the solution of stress and
deformation analysis of anisotropic shells of revolution through the use of finite

exponential transform of the fundamental system of equations
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It can be deduced from the results of Section 4.2.4 that the results obtained by
the multisegment integration method do not change significantly beyond a
particular number of segments. 300 segments, which was selected at the
beginning of the comparison studies in Chapter 4, is an arbitrary number and
in practice number of segments can be decreased to lower values and still
accurate results can be obtained. Because as stated earlier, in the
multisegment numerical integration technique by decreasing the number of
segments one does not actually reduce the accuracy as in finite element
analysis. Solutions at the ends of the shell segments will still have sufficient
accuracy but the resolution will be lowered. Therefore, one has to calculate
the fundamental variables at the intermediate locations afterwards by making

use of the fundamental variables determined at the end of the shell segments.

It should be added that by using the multisegment method of integration,
concentrated (point) loads can also be exerted on the shell, by defining the
distributed loads only at a single segment along the meridional direction.
However, the load should be modelled accordingly in the tangential direction

using the Fourier series, since it will be an unsymmetrical loading case.

In this study, the applicability of the method of solution is further extended to
include the first order transverse shear deformation. However, the first order
transverse shear deformation theory has certain drawbacks as indicated in the
text. Since the first order shear deformation theory assumes constant
transverse shear strain through the thickness, the variation of the transverse
shear stresses cannot be obtained accurately if the constant shear strain is
multiplied by the reduced stiffness coefficients to determine the transverse

shear stresses in each layer of the shell wall.

More correct way to calculate the transverse shear stresses could be
accomplished by integrating the stress equilibrium equations for the shell of
revolution type studied. By making use of the already determined in-plane
stresses along with the continuity relations of the transverse shear stresses at

the ply interfaces, and bottom and top surface conditions on the transverse

209



shear stresses, through-the thickness variation of the transverse shear
stresses can be calculated more accurately. Nevertheless, transverse shear
stresses calculated based on the first order shear deformation theory is quite

satisfactory in layers near the middle surface of the shell wall.

It should be noted since transverse shear stiffness coefficients are included in
the initial numerical integration based solution strategy, the in-plane stresses
are calculated accurately within the borders of the shell theory used,
compared to the theories in which transverse shear deformations are

neglected.

In Sections 5.2 and 6.3, the effect of temperature difference linearly changing
throughout the thickness is examined and its results are compared with the
results of the case in which temprature difference is constant throughout the
thickness. In the end it is seen that although shell thickness is very small
compared to its other dimensions, the results are effected significantly with
respect to the case where no temperature difference change occurs

throughout the thickness.

The derivation of the transverse shear stresses from the in-plane stresses
which are already determined can be considered as a future work. As stated in
Section 5.5, this would be a similar approach used in the derivation of the
famous transverse shear stress formula for a beam under transverse loading.
After determining the in-plane stresses the transverse shear stresses can be
determined by imposing the equilibrium of the infinitesimal shell element, as

stated above.

Furthermore, in order to predict the transverse shear effects more accurately
throughout the thickness and satisfy traction conditions on top and bottom
surfaces, numerical integration based method of solution can be used in
conjunction with higher order transverse shear deformation theories, such as
those mentioned in [37] and [38].
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The method can further be extended to the analysis of filament wound shells
of revolution with general meridional curvature. Filament winding is the most
commonly used technique to manufacture shells of revolution. In case of
filament wound shells of revolution the winding angle and the thickness vary
along the meridional coordinate only if the fibers are placed along the
geodesic or semi-geodesic paths on the surface of the shell of revolution.
Therefore, the change of the winding angle and the thickness must be

included in the analysis.

Extension of the numerical integration based method of solution to
geometrically non-linear problems and thermoelastic analyses can also be

worked on as a future work.

Loads due to moisture can be included in the formulation of loads, for the

cases in which moisture effects become dominant.
Finally, the method developed in this thesis can be used as a solver in an

extended solution algorithm in which additional solution procedures such as

stacking sequence optimization and laminate failure analysis are included.
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APPENDIX A

COEFFICIENTS OF THE HOMOGENEOUS PART IN THE
FUNDAMENTAL SYSTEM OF EQUATIONS DERIVED IN
SECTION 3.2

ou
Coefficients of 6_; equation, i.e. Equation (3.2.5)

R, A
oy = (A1)
R,sin¢- A,
¢, =1 (A.2)
R, A
€, =22 (A.3)
RGASS
¢y =—R, (A.4)
AR
¢y =——0 (A.5)
ASS
% (A.6)
Ce =, .
ASS

ou
Coefficients of a—¢ equation, i.e. Equation (3.2.8)
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+ (RLG [(— A4, )(Ul)+ (— Ay )(U2)+ (_ B, )(U3) + (_ By )(U4)]

(_ A )(Ul)"' (_ Aze )(U2)

(Rie Zin ¢ ]{+ (= B, U3)+(- B, )(U4)}
)
R

+ (_ B16 )(U3) + (_ Bee )(U4)

@_s¢]{(A]6)(U1)+(A66)(U2) }

n +(B16)(U3)+(B66 )(U4)

9}
)
¥
Il
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S S
Il Il
> | — / \ > | — / | \ > | — 7 N > | —

9}
3
I
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)

n +(—B]2)(U3)+(—B% )(U4)

)

n +(_D]2)(U3)+(_D26 )(U4)

J
A e )
J

(@) o
[ =]
* b
I
7\

3
I
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(A.7)

(A.8)

(A.9)

(A.10)

(A11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)



where

_(AHAG()D]]D ) (A AGGDIGD ) (A B16B16D66)+(AHB]()BG()D]()) ]

+(AnBeeBleD ) (AnBeeBeeD ) (AIGAIGDHDGG)+(A16A16D16D16)
A= L +(A16B16B1]D6) (AIGBIGBIGD ) (AIGBGGBHD]G)+(A16B66B16D1])
R¢ +(B]]A]6B16D6) (B]]AIGBGGDIG) (B”A%B”D%)+(B”A6(,B]6D]6)
+(B”B%B”B(,) (B B B B ) (B16A16B16D16)+(B16A16B66D]])
_+(B16A66B]]D16) (BIGAGGBIGD]]) (B16B16B11B66)+(B16B16B16B16)_
(A.20)
Ul:|:(A66D11D66)_(A66D]6D]6)_(B16B16D66) } (A.21)
+(B16B66D16)+(B66B16D16)_(BGGBGGDH)
Uo = _(_ AleDnDee )"‘ (AIGDIGDIG )"‘ (B](,B”D% )} (A.22)
__(BIGBIGDIG)_(B66B11D16)+(B66B16D11)
U3 = _(A16B16D66 )_(A16B66D16)_(A66B11D66) } (A.23)
_+(A66B16D16)+(B66B11B66)_(BGGBIGBIG)
U4 = _(_ A16B16D16 )"‘ (AIGBGGD]] )"‘ (AeeBnDle )} (A.24)
__(AeeBleDn)_(BleBnBee)+(BleBleBle)
1
N EN SOCENERERERENTE
03‘:[Zj / (A.25)
1
[ AN 2 ) )
0
— V1)+(= A4, \V2
032:(1]Lc9s¢ (= A XV D)+ (= 4,5 )1 2) "26)
ANR, sing )| +(=B, )V3)+(=By NV4)
(Y11 AV D)+ (= 4 N2)
Py =|— || —— (A.27)
A\ R, sn¢ ( Blé)(V3)+( Bee)(V4)
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]{i NV 1)+ (44 J172) } (A.28)

(B,s NV73)+ (Bys Xv74)
2 (ﬂ(% = #2
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(AnBleDle )_ (A”B%D” )_ (AIGBHDIG )

V4=
+ (AleBleDn )+ (BanBee )_ (B]]BIGBIG)

and A is given by Equation (A20).

0
Coefficients of % equation, i.e. Equation (3.2.10)

[(_ Ay )(Y1)+(_ Alé)(Y2)+(_ By, )(Y3)+(_ Ble)(Y4)]

; [(_ Ay, )(Y1)+ (_ Aze )(Y2)+ (_ B, )(Y3)+ (_ Bze )(Y4)]
COS¢ (_ A12 )(Yl) + (_ Aze )(Y2)
=) }
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(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)



1
Cy = Z {Yl}
1
Cag = A {Y2}
1
Cyo = Z {Y3}
1
Ca10 = (Z]{Yél}
where
:|:(A16B16D66)_(A16D16B66)_( 11A66D66) }
+(B1]B66B66)+(BIGAGGDIG)_(BIGBGGBIG)
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Y4 = _(_ AnAeeDle )+ (AnBeeBle )+ (AIGAIGDIG )}
L~ (AleBleBle)_(BllAleBee)+(BnBleAee)

and A is given by Equation (A20).

0By

Coefficients of 50 equation, i.e. Equation (3.2.11)

{L][(_ Ay )(Zl)+ (_ Ale )(22)+ (_ B, XZ3)+ (_ B‘G )(24)]

R,

’ (RL(J][(_ Ay, )(Zl)+ (_ Aze )(22) + (_ B, )(23)+ (_ B26 )(24)]
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and A is given by Equation (A20).

. 00, . :
Coefficients of W equation, i.e. Equation (3.2.12)
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Coefficients of Y equation, i.e. Equation (3.2.13)
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APPENDIX B

COEFFICIENTS OF THE NONHOMOGENEOUS PART IN
THE FUNDAMENTAL SYSTEM OF EQUATIONS DERIVED
IN SECTION 3.2

The nonhomogeneous coefficients B, (i:1,2,...,10) of the fundamental

system of equations given in Section 3.2 can be related to the loading terms

through
Bl [ 0 0 0 0 0 0 0 0 0 |
B, 0 0 0O CB, O CBy, CB, 0 CB, P
B, 0 0 0 B, 0O CB, CB, 0 CB,| "
B, 0 0 o C¢B, O CB, CB, 0 CB, f; ‘
Bi|_| 0O 0 0O CB, O CBy, CB, 0 CBy N?
B,| |CB, 0 0O CB, CB, CB, CB, 0 CB, N?
B, 0O CB, O CB, CB, CB, CB, 0 CB, M¢§
B, 0 CB;, O 0 o 0 0 M?
B, 0 0O CB, 0 CB,, CB,, CB, CB, M?
B, | 0 0o 0 o o o o |-"
(B.1)
where

ou
the nonhomogeneous coefficients (B,) of a—g equation, i.e. Equation (3.2.5)

are given as:
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CB,; =0 (j=12,..9) (B.2)

ou
the nonhomogeneous coefficients (Bz) of 6_¢¢ equation, i.e. Equation (3.2.8)

are given as:

CB,, =c,, (B.3)
CB,, =cy (B.4)
CB,, =cy (B.5)
CByy =y (B.6)

the nonhomogeneous coefficients (33) of 4o equation, i.e. Equation (3.2.9)
are given as:

CB,, =c;, (B.7)
CB,, =y (B.8)
CB;, =c;, (B.9)
CB,, = ¢y, (B.10)

0

the nonhomogeneous coefficients (B4) of ﬂ equation, i.e. Equation
(3.2.10) are given as:

CB, =c, (B.11)
CB, =cy (B.12)
CB,, =c, (B.13)
CB,, =cy (B.14)
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the nonhomogeneous coefficients (B,) of

(3.2.11) are given as:

CB,, =cs,
CBy, =cq
CBy, =cy,
CB, =cq

the nonhomogeneous coefficients (B,) of

(3.2.12) are given as:

CB, =R,

1
CBq, :R_( 12Ca7 + AyeCyy + ByCyy +Bzecs7)
0

R¢
(B, =——*
Ra
1
CBy, :R_(AIZCZ8 + Ay Cig + By +Bzecss)
0
1
CB67 :R_( 12€29 +A26039 +Blzc49 +Bzecsc))

0

1
CB, :R_( 12Ca10 + ApCs10 + B1yCyg +Bzecsm)
0

the nonhomogeneous coefficients (B,) of

(3.2.13) are given as:

CB,, =R,
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9By
o

09y

N¢¢

equation, i.e. Equation

(B.15)
(B.16)
(B.17)
(B.18)

equation, i.e. Equation

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

equation, i.e. Equation

(B.25)



1 cos¢

CB, :R_.—(Alzcz7 + AyoCyy + By +Bzecs7) (B.26)
p SINQ
R

CB s =250 (B.27)

p SING

1 cos¢

CB :R_.—(Alzczs + Ay Cyg + Byyeyg +Bzecss) (B.28)
p SINQ
1 cos¢

CB;, :R_.—(Alzcw + Ay Cyy + By +Bzecs9) (B.29)
p SN
1 cos¢

CB; :R_—( 12C210 T Ay6C310 T B12Cao +Bzecsm) (B.30)
p SIN¢

ON,

the nonhomogeneous coefficients (BS) of % equation, i.e. Equation
(3.2.14) are given as:
CBy; =—R, (B.31)
M
the nonhomogeneous coefficients (Bg) of —* equation, i.e. Equation
(3.2.15) are given as:
1 cos¢
CB,, :R_M(Blzcn + By +Dpeyy +Dzecs7) (B.32)
0
1 cos¢
CBy :R_M(Blzczs +BysCys + Dy +D26058) (B.33)
0
1 cos¢
CB,, :R_M(Blzcw +BygCy9 + Dyyy +Dzecs9) (B.34)
0
R
CByy =455 (B.35)
R, sn¢
1 cos¢
CB,, :R_M(Blzczlo +By5Cy10 + Dyycyy +D2605]O) (B.36)
0
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oM,,

the nonhomogeneous coefficients (B,O) of equation, i.e. Equation

(3.2.16) are given as:

CB,, =0  (j=12,.9) (B.37)

In the Equations (B.3) — (B.36), ¢; are the coefficients of the homogeneous

part in the fundamental system of equations derived in Section 3.2, and given

in detail in Appendix A.

4, are the extensional stiffness coefficients, B, are the bending stretching

coupling stiffness coefficients, and D, are the bending stiffness coefficients

given by Equations (2.3.2.24) — (2.3.2.26).

It should be stressed that B, (i :1,2,...,10) is the vector of nonhomogeneous
coefficients in the fundamental system of equations; whereas Bl.j (i,j = 1,2,6)

are the bending stretching coupling stiffness coefficients given by Equation
(2.3.2.25) and they should not be confused.
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APPENDIX C

FINITE EXPONENTIAL FOURIER TRANSFORM OF
EQUATION (3.2.12)

Equation (3.2.12) is given in Section 3.2 as

20, 0% ouy ou’
8_; = 061”2 +cdp, Wﬂg + 062”2 +CPs;, a_g"'céau(g +CPgs 8_99 +Cé4ﬂ¢
oB op 0,
TPy 8_9¢ +Ces By +CPes 6_98 + 60y + CDgs 8_9(1} +C; Ny (C.1)

+ cégNw +069M¢¢ + Cmon + B,

Applying the finite exponential Fourier transform to Equation (C.1), along with

using the expansion given in Appendix B,
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(Con)5 - HM¢9 6,0)e° a6 +(CB,, ) — - j[pg $,0) a6

}zm Cor)— HN $.0)e ™ |do+

0L

CB64 I[N $,0)e ]d9+ (CB, )— j[NgT $,0) e—in@]d9 (C.2)
27

CB@(, H ) ]d9+(CB(,7 )i j [M; (¢,9)e—fn9] 10

+(CB) J [, (¢,0)e a0

Utilizing Equation (3.3.2) in Equation (C.2),
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0 N, (#,0)sinno o | —iN!(¢,0)sinn6
[ N (4,0 0 [ M7 (.0 0
+CB | ""’(f )Cosfq do +CB,, ¢(¢: Joos n do
0 | —i Ny (¢,60)sin nd o | —iM;(4,0)sinno
2wl ml (¢ 6)cos n@
+CB do
69'([ —zM (¢ 0)s1nn0] (C.3)

Note that expansion of N, Ny, Nj,, M;, My and M j, terms have further

been explained in detail in Section 3.3. Expanding Equation (C.3) by using

Equation (3.3.2),
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{M} {M} (el @), - il )

as a9 s
~(r* Xedpo N[ @)]. ~ilut ()] f+ e {luf @)~ @), §
+(epo i g @), +lug 0], 1+ (o { i @) s ) }
+(epe X7 [ @) +ub @) t+ o {0, =108, 0], |

+(epe oot [8,0)] + 18, 0)], 1+ (e KB, @), ~118, )] }
# (o X 180 ) 18, @))s }+ (o N[0, )], ~ 110, ), |

+ (e )i [0, 0),.. +[0s @] J+ (e {V, 0, ~ i, )], §
#lea Vi@, =iV @), 1+ (o N1, @], -1, 0)]
+ (e M40 @), ~ 1,0 @), J+ BP0, 1P, ()],

(C.4)

+ B [V O], ~i[N] ()], 1+ B (VG @)L ~i[N7 )]}

+ B (VL @) ~i VL @), o (] @], -ilm] ),

+ B (M )], il )], )

Now separating the real and imaginary terms of Equation (C.4) and writing the

parts involving the real and imaginary terms in two equations as follows:
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{%ﬁ}nc = (6'61 )[ug (¢)]nc — (n2 Xcdp61 )[ug (¢)]nc + (062 )[ug (¢)]nc

+ (cp 62 )(” )[”2 (¢)]n s T (cé3 )[”3 (¢)]nc + (cp 63 )(” )[ug (¢)]ns + (cé4 )[ﬁ ¢ (¢)]nc
CP64 [ﬁ¢ ] Cés )[ﬁe ( )] (CP65 )(”)[ﬁe (¢ )]ns + (céé )[Q¢ (¢ )]nc

cp 66 [Q¢ ] cé7 )[N ¢ (¢ )]nc + (cé8 )[N 40 (¢)]nc + (cé9 )[M ¢ (¢)]nc

+ (0610 )[M¢0 ((b)]nc +CBy [pg (¢)]nc +CBg, [Nqsr (¢)]nc + CBg; [Ner (¢)]nc

+CB[NL )], + CB[MI @), + CB ML B,

and imaginary terms,

{%ﬁ}ns = (6'61 )[ug (¢)]ns — (n2 Xcdp61 )[ug (¢)]ns + (062 )[us (¢)]ns

- (cp 62 )(” )[us (¢ )]nc + (cé3 )[”3 (¢ )]ns - (cp 63 )(” )[ug (¢ )]nc + (cé4 )[ﬁ ¢ (¢ )]ns
cp 64 [ﬁ¢ ] C 65 )[ﬁe ( )] (cp 65 )(” )[ﬁe (¢ )]nc + (C 66 )[Q¢ (¢ )]ns

cp 66 [Q¢ ] cé7 )[N ¢ (¢)]n ¢t (cé8 )[N 40 (¢)]n s (cé9 )[M ¢ (¢)]ns

+ (0610 )[M¢0 ((b)]ns +CBy, [pg ((b)]ns +CBy, [Nlpr (¢)]ns + CBg; [Ner (¢)]ns

+CB[NL )], +CB M (9)],, + B M @),
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APPENDIX D

THE ELEMENTS OF COEFFICIENT MATRIX K

The elements of the coefficient matrix [K],,.,, given in Equation (3.3.59) are

listed below.
The elements of 1% row are:

K, =0; K, =ncp,;; Kj=c,; K,=0;K;=cp;

Kig=0,K;=c,; Ki=0;K,y=c5; K, =0;

(D.1-10)
K =¢4 K1, =0, K,,,=0; K,,,=0; K,;5 =0;
K116 =0; K117 =0; K118 =0; K119 =0; K120 =0;
The elements of 2" row are:
Ky =—nep,; Ky =0, K,; =0; Ky, =¢)y5 Kys =0;
Ky =c135 Ky =0, Ky =¢43K, =0, K, = €453
(D.11-20)

K211 =0; K212 =C45 K213 =0; K214 =0; K215 =0;

Ky6=0; Ky, =0; Kyj3 =0; Ky, =0; K,,, =0

The elements of 3™ row are:
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Ky =¢y5 K3y =05 Ky =05 Ky =Py Kis = €535

K =ncpys; Ky = Cy5 Ky = 1Py Ky = o535 Ksyp = nep,ys;

(D.21-30)
Ky =0, K5, =0, Ky3 =055 Ky =05 Ky =05
K6 =05 Ky =Cp95 Ky =05 Ky =55 Kipg =0
The elements of 4™ row are:
Ky =05 Kyy =¢yp5 Kig = —nepy; Ky = ¢35 Kys = —nepys;
K =Cps Kyy =—ncpyy; Kig =45 Kyg =—npys; Kyjy = Cos5
(D.31-40)
K411 =0; K412 =0; K413 =0; K414 =Cyys K415 =0;
K4]6 =Cys K417 =0; K4]8 =Cy5 K419 =0; K420 =Cyp
The elements of 5" row are:
Ks=c35 Ksy =0; Ky = ¢35 Ky =n1¢pyy 5 K5 = €355
Kss =ncpss; Ky =345 Ksg = nepyys Ksg = ¢35 Ky = nepys;
(D.41-50)

K, =0; K5, =0; K3 = ¢35 Ky =05 K5 =45

Ks1s =05 K57 =395 Ky =05 K5j9= 3,95 Kipg =0

The elements of 6" row are:
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K =0; K, =15 Ky =—ncpyy; Koy =35 Kgs = —nCpyy;
Ko =C335 Koy = NP3y Ky = €345 Koy =—nCP35; Kgjp = C355
K

o =05 K¢y =05 K5 =0; Ky =¢575 K5 =0;

Kp = C3s5 K =05 Kjg = 393 Kigjo =05 Ky =39

The elements of 7" row are:

Koy =y Kyy =05 Koy =45 Koy = nep s Kos = ¢y

Ko =nep g Koy = Cuys Kog = 1Cpys; Kog = 455 Kyyg = nCpys;

Koy =05 Ky =05 Ky = cyp5 Ky =05 Kypps = cyg5

Koo =05 Ky =93 Kijg =05 Kojg = ¢4505 Kipg =0

The elements of 8" row are:

Ky =0; Kgy = ¢4y Ky = —1Cp s Kgy = €3 Ky = —nepyg;

K = Ca3s Ky = —nCp s Ky = Cay5 Ky = —1CP 453 Kiyo = Cus;

K =0; Ky, =0; K3 =0; Ky =¢455 Kgy5 =0;

Kys =Cugs Kgi7 =05 Ky = Ch95 Kgjg =05 Ky =4y

The elements of 9" row are:
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(D.51-60)

(D.61-70)

(D.71-80)



Ky =c¢55 Koy =0; Koy =555 Koy =n0ps,y5 Kos =535

Ko =ncpsy; Koy =545 Kog = nepsys Kog = C555 Koy = npss;

(D.81-90)
K911 =0; K912 =0; K913 =Cs; K914 =0; K915 =Cs;
K9]6 =0; K917 =Cs5 K9]8 =0; K919 =Cs05 K920 =0
The elements of 10" row are:
K =0; Ky, =515 K3 =—nCpsy; Koy = C555 Kygs =—nCpsy;
K6 = Cs35 Kygy = —nPsy; Koy = 545 Ky = —1CPsss K9 = Cs55
(D.91-100)
K]O]I =0; K1012 =0; K1013 =0; K1014 =Cs; K1015 =0;
K16 = Cs35 Kigiz =05 K15 =505 Kgrg = 05 Kpg =519
The elements of 11" row are:
2 . — 0 _ . _ . _ .
K, =cq—ncdpg; K, =0; K3 =cg; Ky =nepg; K5 = ¢
K =ncpg; K, =cos Ky =nepgs Ky =Ces5 Kiyjg = 1P
K]m = Ces» K1112 =NCPgs K1113 =Cq75 K1114 =0; K1115 =Ces5
Kme =0; K1117 =Cq> Kms =0; K1119 =Ce105 ano =0
(D.101-110)

The elements of 12" row are:
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—0- _ 2 . _ . _ . _ .
Ky, =0; K,y =cq —ncdpg; Ky = —ncepgy; Ky =cgs Kips = —nepe;

Ky =3 Ky = —ncpgys Ky =€y Kipg = —NCPgss Kipyp = Cs5

K1211 =—NCPg> K1212 =Ce» K1213 =0; K1214 =Ce75 K1215 =0;

K]2]6 =Ceg> K1217 =0; K12]8 =Cq>5 K1219 =0; K1220 =Cs1o

(D.111-120)
The elements of 13" row are:
Ky =c¢15 Ky =05 K33 =¢9p5 K3y =Py 5 Kizs =535
K36 =nepss; Ky =445 Kiyg =nepay; Kiyg =555 K319 = nEps;
(D.121-130)
Kz =065 K3y =05 K313 =075 K31y =05 Ky =5
K316 =ncprg; Kz =95 Kiyg =05 Kijj9 =C9305 Kizpg =0
The elements of 14" row are:
Ky =05 Ky =¢55 Ky =—ncpyy; Ky = ¢qp5 Kys = —npy3;
Ky = €333 Kiyg ==1CD7y5 Kiyg = €45 Kiyg = =1CP2s; Kyyyo = 55
(D.131-140)

Ky =05 Ky =065 Kigyy =05 Ky =€575 Kiyys == nepy;

K]4]6 =Cr K1417 =0; K14]8 =Cy95 K1419 =0; K1420 =Cyp

The elements of 15" row are:
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. _ . _ 2 . _ .

K5 =0; K5, = nepy; Kis; = gy —n7cdpg,; Kisy = nepy,;
_ 2 . _ . _ 2 . _ .
K55 = cg —ncdpgss Ko = nepygys Kis; = ¢y —n'cdpyy; Ky = nepyy;
_ 2 . _ . _ . —0N-
K5y = cgs —ncdpgs; Kisg = nepgs; Kisp = g5 Ky, =0;

K53 =0; Ki5, =nepg; Ko = Cg5 K516 = NP5

K57 =0; K55 = ncpgy; Kis9 = 0; K5y = nepg,

(D.141-150)
The elements of 16" row are:
Ko =—ncpg; K, =0; K, iy = —nCpy,; Koy = g —1°cdpyy;
K s = —NCPgs; Ky = Cos —n°cdpgs; Koy = —1CPgy; Koy = Coy —1°Cdpy,;
K g = —NCPgs; Kig10 = Cos —1°CAdPgs; Koy =05 K g1y = Cogs
K3 =—ncPgr; Kig1ys =05 K15 = —NCPggs K1 = Coss
K 17 =—NCPgo; K13 =05 K19 = —1CPg 05 Kigro =0
(D.151-160)
The elements of 17" row are:
Ky =cq3 Kipp =05 Kyg3 = o5 Kygy = npoy; K75 = o33
K6 = ncpoys Kigy = Coy5 Kizg = ncpoys Kizg = Co55 K719 = nCPos;
(D.161-170)

K]7]I =Cy> K1712 =0; K1713 =Cy;5 K1714 =0; K

5 K715 = Cogs

K6 =05 Kigy7 = Co95 Kiis =05 K19 = Co105 K7pg = 1CPg)
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The elements of 18" row are:

K =05 Kigy =Co15 Kigy =—nCPoy5 Koy = Cop5 Kigs = —NCPg3;5
Kz = Co35 Kigy = —NCPgy; Ky = Coy5 Kigg = —NCPgs; K519 = Cos5

(D.171-180)
K]S]I =0; K18]2 =Co5 K18]3 =0; K18]4 =Cy75 K1815 =0;

Kig16 = Cogs Kigir =05 Kig1g = Coo5 Kig19 = —1CPg 05 K59 = Cyy

The elements of 19" row are:

Ky =0; Kyg, =nepyg;; Kigy =y _n20dp102; Koy =ncpygy;

K5 = ¢)53 _nZCdpm;K]% =nepys Kigy = ¢y _nZCdpm; K\os = nepyg,;
K99 = €105 _nZCdp]OS; K919 = ncpios; Kigiy = Cio65 Kiop = 0;

K3 =05 Ky =n¢pyg;5 Kigis = 0K 915 = 1CP, 55

Ko7 =0; Kigig =nCPige; Kig1o = Clg105 Kigng = 1Py

(D.181-190)

The elements of 20" row are:
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Koy =—nepyg; Kygy =05 Kygy =—n¢pygy5 Koy =€ _”ZCdploz;

K5 = —nepg35 Kogs = Cio3 _”ZCdplos; Koy =—nepigy; Kygg =14 _”ZCdpm;
K9 =—npyos; Kygio = Cios _”ZCdplos; Koo =05 Ky =155

Kooz =—npior5 Kogs =05 K5 = —npyogs Ky = 0;

K17 ==nPig9; Kygizs =05 Kog19 = —1Pyg105 Koo = Cron0

(D.191-200)

In the Equations (D1.1) — (D1.200), » is the circumferential wave number; c;,
cp; and cdp; are coefficients of the homogeneous part in the fundamental

system of equations derived in Section 3.2 and given in detail in Appendix A
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APPENDIX E

THE ELEMENTS OF COEFFICIENT MATRIX KB

The transformed nonhomogeneous coefficients BY and BY of the
fundamental system of equations are given by Equation (3.3.62). This

equation can be written as

R0 (p )nc’(p§ )ns’(p¢)nc’(p¢ )ns’(pa)nc’(pG)ns’ '
o] =l (62 07), ) ). 2 L A )
(v]), 0a5) (0], 7)) La2,), |

(E.1)
where the elements of 1% row are

KB,; =0 (j=1,2,...18) (E.2)
The elements of 2" row are

KB,; =0 (j=1,2,..18) (E.3)
The elements of 3™ row are

KB,, = KB, = CB,, (E.4)
KB,,, = KB,,, = CB, (E.5)
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KB,, =KB,,, =CB,,

313

KBm = Kles = CBze

The elements of 4" row are

KB47 = KB48 = CBz4
KB411 = KB412 = CBze
KB413 = KB414 = CBz7

KB417 = KB4]8 = CBz9

The elements of 5" row are

KBS7 = KBS8 = CBs4
KBsn = KBS]Z = CBse
KB513 = KBSM = CBs7

KBSW = KBS]8 = CBs()

The elements of 6" row are

KBS7 :KBes = CBs4
KB(,” :KBGIZ :CBse
KB613 :KBem = CBs7

KB617 = KB618 = CBs9

The elements of 7" row are

KB, = KB, =CB,,

KBm :KB712 :CB46
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(E.B)
(E.7)

(E.8)

(E.9)
(E.10)
(E.11)

(E.12)
(E.13)
(E.14)
(E.15)

(E.16)
(E.17)
(E.18)
(E.19)

(E.20)
(E.21)



KB, , =KB,, =CB,,

713

KB717 = KBm = CB49

The elements of 8" row are

KBy, = KBy = CB,,
KBS]I :KBsn :CB46
KBSB = KB8]4 = CB47

KBsw = Kles = CB49

The elements of 9" row are

KBy, = KBy = CB54
KB911 = KB912 = CBSG
KB913 =KB,,, = CBS7

KB917 = KB9]8 = CBS9

The elements of 10" row are

KBIO7 :KBIO8 = CB54
KB]OII :KBIOIZ :CBse
KB]013 :KBIOM = CB57

KBIOW :KBIOI8 :CBS9

The elements of 11" row are

KB]]I = Kan = CB@]

KBm = KB]]S = CB(34
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(E.22)

(E.23)

(E.24)
(E.25)
(E.26)
(E.27)

(E.28)
(E.29)
(E.30)
(E.31)

(E.32)
(E.33)
(E.34)

(E.35)

(E.36)
(E.37)



KB]19 :KBmo :CBes
KB]]]I :KBmz :CBee
KB]113 :KB]]M :CBe7

KB]]W = KBms = CB@()

The elements of 12" row are

KB]Z] :KBIZZ :CBGI

KB,,, = KB,,, = CB,,

127

KB]29 = KB]Z]O = CB65

KBIZII :KBIZIZ :CBee
KB]213 :KB12]4 = CB(ﬁ

KB]217 :KB]2]8 :CBec)

The elements of 13" row are

KBI33 = KB]34 = CB72

KB,,, = KB,,, = CB,,

137

KB]39 :KBmo :CB75
KBml :KBmz :CB76
KB]313 :KBI3]4 :CB77

KB]317 = KB]3]8 = CB79

The elements of 14" row are

KB]43 = KB]44 = CB72

KB,,, = KB, = CB,,

147

KB]49 = KB]410 = CB75
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(E.38)
(E.39)
(E.40)
(E.41)

(E.42)
(E.43)
(E.44)
(E.45)
(E.46)

(E.47)

(E.48)
(E.49)
(E.50)
(E.51)
(E.52)

(E.53)

(E.54)
(E.55)
(E.56)



The elements of 15" row are

KBISS = KBISG = CBS3

The elements of 16" row are

KBles = KBIGG = CBS3

The elements of 17" row are

KB,,, = KB,,, = CB,,

KB,,,, =KB,,,, = CB,
KB,,, = KB,,,, = CB,,
KB,,,; = KB,.,, = CB,

KB]717 :KBms :CBee

The elements of 18" row are

KBy, = KBy, = CB,,

KB, = KBy, = CB,
KB, = KBy, = CB,,
KBgs = KB4 = CBy,

KB18I7 :KBI8I8 :CBee

The elements of 19" row are
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(E.57)
(E.58)
(E.59)

(E.60)

(E.61)

(E.62)
(E.63)
(E.64)
(E.65)
(E.66)

(E.67)
(E.68)
(E.69)
(E.70)
(E.71)



KB, =0  (j=1.2,..18) (E.72)

19
The elements of 20" row are

KBy, =0  (j=12,.18) (E.73)

In the Equations (D.4) — (D.71), CB,; are the coefficients that relate the

nonhomogeneous coefficients B, to the loading terms through the Equation

(B.1), and they are given in detail in Appendix B.
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