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ABSTRACT 
 

 

COST-EFFECTIVE FAULT TOLERANT ROUTING IN 
NETWORKS ON CHIPS 

 

 

Adanova, Venera 

M.Sc., Department of Computer Engineering 

  Supervisor: Assoc.Prof. Dr. Ali Hikmet Doğru 

 

September 2008, 87 pages 

 

 

Growing complexity of Systems on Chip (SoC) introduces interconnection 

problems. As a solution for communication bottleneck the new paradigm, 

Networks on Chip (NoC), has been proposed. Along with high performance and 

reliability, NoC brings in area and energy constraints. In this thesis we mainly 

concentrate on keeping communication-centric design environment fault-tolerant 

while considering area overhead. The previous researches suggest the adoption 

solution for fault-tolerance from multiprocessor architectures. However, 

multiprocessor architectures have excessive reliance on buffering leading to costly 

solutions. We propose to reconsider general router model by introducing central 

buffers which reduces buffer size. Besides, we offer a new fault-tolerant routing 

algorithm which effectively utilizes buffers at hand without additional buffers out 

of detriment to performance. 

 

Keywords: Networks on Chip, Fault-Tolerant Routing, Wormhole Routing 
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ÖZ 
 

 

YONGALARDA MALİYETİ UYGUN HATAYA DAYANIKLI 
YÖNLENDİRME AĞI 

 

 

Adanova, Venera 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Ali Hikmet Doğru 

 

Eylül 2008, 87 sayfa 

 

 

Yonga Üstü Sistem'in (YÜS) artan karmaşıklığı bağlantı sorunlarına yol 

açmaktadır.İletişimdeki bu darboğaza çözüm olarak yeni bir model olan Yonga 

Üstü İletişim Ağ (YÜİA) ileri sürülmüştür. Yüksek performans ve güvenilirliği 

yanında, YÜİA alan ve enerji kısıtlaması kazandırmaktadır. Bu tezde esas olarak, 

alanı sabit tutmayı gözetirken, iletişim merkezli tasarım çevresini hataya dayanıklı 

olarak tutmaya odaklandık. Önceki araştırmalar, çokişlemci mimarilerden hataya 

dayanıklı çözümler uyarlamayı öneriyorlar. Fakat, çoğu zaman çok işlemci 

mimariler pahalı çözümlere yol açan tampon belleklemeye dayanırlar. Tampon 

bellek boyutunu küçülten merkezi tampon bellekleri tanıtarak genel yönlendirici 

modeli yeniden ele almayı öneriyoruz. Bunun yanında, performansı düşürmeyen ek 

tampon belleksiz, eldeki tampon belleklerden etkili biçimde yararlanan hataya 

dayanıklı yeni bir yönlendirici algoritma sunuyoruz. 

 

Anahtar Kelimeler: Yonga Üstü İletişim Ağı, Hataya Dayanıklı Yönlendirme, Solucan 
Yönlendirme  
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CHAPTER 1 

 

INTRODUCTION 
 

 

 

The rapid advance in semiconductor technology has opened new advantages which 

allow placing many resources into single chip. This approach is known as Systems 

on Chip (SoC). It is predicted [1] [2] that further improvements in silicon 

technology will allow tens or even hundreds of processing elements (PEs) to fit 

into single chip. A PE can be a processor core, a DSP core, an FPGA block, 

memory block etc. However, as the number of PEs in SoC increases, complexity of 

interconnection architecture of the SoC also increases [3]. The up to now solutions 

that are used as communication infrastructures (point-to-point, shared-medium 

architectures) considered to be not enough for data exchange among PEs because 

of growing system size and non-scalable wire delay [4]. Although point-to-point 

communication maximizes chip performance, its design complexity takes high 

development cost [3]. Widely used shared communication architectures have 

limited scalability and poor performance when the number of PEs becomes more 

than ten. Besides, general buses have high energy consumption because of its 

broadcast data transfer nature. This means that data need great energy in order to 

reach each possible receiver [5].  

Because of limitations introduced by communication infrastructure, the on chip 

design methodology became communication-centric rather than computation-

centric [6]. This led to a new design methodology called Network on Chip (NoC). 

NoC efficiently decouples communication infrastructure from computation. 

Decoupling gives more structured architecture and modularity. The performance 
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increases due to increase in bandwidth and support of concurrent communication 

[4]. 

Models and techniques used in NoC are generally borrowed from computer 

networks and parallel processing. Scalability of computer networks and its steady 

success over many years motivate researchers to adopt switch-based (router) 

networks and packet-based communication. NoC provides PEs with 

communication infrastructure, where PEs are connected to the network via 

intelligent switches (routers). The communication is done by message-passing 

between PEs. The message may take multiple hops through intermediate routers in 

order to reach its destination. Thus, PEs are independent from each other and do 

not require global arbiter to access the network enabling highly utilized of network 

bandwidth.  

NoC is much like interconnection networks for high performance parallel 

computers in which each processor is an individual chip [3].  However, NoC have 

a number of characteristics that make their design quit different than the inter-chip 

(inter-board) networks.  Firstly, wires are more abundant [7]. Second, they have 

energy and area constraints. This limits the buffer usage since they significantly 

impact the area overhead.  

The design of NoC requires the consideration over network topology, switching 

technique and routing algorithm to be used [8].  

The right topology selection is important since it defines the ability of the network to 

efficiently disseminate information. Its importance extends when considering the 

network latency, throughput, area, fault-tolerance, power consumption, and 

designing the routing strategy and mapping cores to the network nodes. It is 

desirable to have rich set of predefined topologies that can be reused. This 

significantly reduces the time required for system design [9] [10].   

While the topology defines only the static aspects of network-based 

communication, routing algorithms and switching technique governs the actual 

movement of messages along the network. Routing algorithm greatly influences 

the network performance and power consumption, since more complicated 
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algorithms require larger design. The switching technique defines when the routing 

decision is made and how the packets are transferred between switches. It 

introduces trade-offs between area overhead that results from larger buffer sizes 

and performance [11]. 

Along with the described requirements, it is important to keep communication-

centric design environment fault-tolerant and reliable. It must at least guarantee 

that the particular fault will not cause the entire chip to fail. The solutions for fault-

tolerant can be adopted from multiprocessor architectures. However, they should 

be evaluated in terms of throughput, latency, area overhead, and energy dissipation 

[4].  

Our research is motivated mainly by the possible prospects of NoC, since it is 

considered to be a solution for communication bottleneck. NoC is still in its 

infancy. Despite lots of researches conducted in this area, few problems have been 

faced and still more left for the future. We mainly focus on fault-tolerance, since 

even less researches were conducted on this area. It is not of less importance to 

keep system working under various fault patterns. Possibly with degraded 

performance. Fault-tolerance requires redundancy in terms of buffers. Since faulty 

components introduce additional dependencies between channels while routing 

messages around faulty regions, the number of required virtual channels increases. 

However, NoC constraints the area used by buffers. Thus, it is desirable to have 

fault-tolerant algorithms with less buffer requirements. This situation again leads to 

trade-offs between area and performance. 

Our main concern is to decrease the number of used virtual channels while 

tolerating faults. Since NoC restricts buffer size it is important to be able to take 

advantage of buffers that are in hand rather than using additional buffers. This 

requires dynamic allocation of these buffers that are idle. Besides, we make some 

changes to router organization, i.e. to the location of buffers. 

Chapter 2 gives an idea about the main aspects of NoC. Proposed traffic models 

are also described briefly in this chapter. 
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Chapter 3 describes the general-purpose simulator, ns-2, and our router model. The 

various simulation results on parameterizable aspects of NoC are given and 

analyzed. 

Chapter 4 deals with our fault-tolerant algorithm and compares the simulation 

results with fCube4 algorithm. 

Conclusion and future work is presented in Chapter 5. 
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CHAPTER 2 

 
 

BACKGROUND 
 

 

 

NoC consists of routers, buffers and links. While considering the design of a 

system it is important to choose the right topology, so that the applications match 

onto topology in such a manner that the performance will be the best. Since buffer 

usage is limited the right switching technique that requires the limited buffers size 

must be chosen. It depends on application if the messages are sent packet by packet 

or divided into smaller units called flits. The right buffer utilization has big impact 

on the system performance. The complexity of a router is determined by the 

routing algorithm. Although deterministic algorithms are simple and fast, they do 

not have the flexibility of adaptive algorithms. 

This chapter describes the proposed topologies, switching techniques and routing 

algorithms. The differences between them and their comparisons are presented. We 

also give a general view of faults and how the literature proposes to handle them.  
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2.1 Network Topology 

 

The topology of a network is a graph that defines how the nodes are interconnected 

by channels. In general, NoC adopts the interconnection architecture of high 

performance parallel computing, where Intellectual Property (IP) blocks are 

connected to the network via routers, thus providing a communication between 

functional IP blocks. However, SoC design paradigm introduces some constraints, 

as compared to high performance parallel computing. Along with the desirable 

characteristics, such as high throughput and low latency, SoC also considers 

energy consumption and the area overhead of proposed interconnection 

architecture. It is also desirable for interconnection architecture to be scalable, 

making the design of SoC even more difficult since the latency of a message 

should still be kept low as the number of IP blocks increase [12]. Since, the system 

performance is highly dependent on communication, the right topology selection is 

important.  

[13] argues that the topology should be application specific since the system will 

consist of heterogeneous nodes. However, predefined, regular topologies are 

generally suggested [14] [1] [15], since they reduce the system design time.  

 Below we present some of the proposed architectures. Here, functional IP blocks 

are shown as white squares and the routers are shown as black squares. 

 

2.1.1 Octagon 

The octagon architecture was proposed by Karim et al. [16] for network processor 

SoCs. It is a special case of more general class of networks called Spidergon [17]. 

In this architecture each node is associated with a processing element (PE or 

otherwise IP) and a switch. The basic octagon consists of eight nodes and 12 

bidirectional links (Fig.1), and the communication between any two nodes takes at 

most two hops within it. As the number of nodes increase the octagon is extended 

to a multidimensional space.  
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Unlike the traditional shared buses and crossabars [18] the octagon architecture has 

much higher throughput, is easy in implementation, and has less wiring 

complexity. It implements simple shortest path algorithm. However, as the number 

of nodes increase the implementation complexity also increases. It also requires an 

implementation of network arbiter and a good scheduler, since nodes share the 

single communication point at the center of an octagon. 

 

Figure 1 Octagon [22] 

 

 

2.1.2 CLICHÉ 

The CLICHÉ (Chip-Level Integration of Communicating Heterogeneous 

Elements) was proposed by Kumar et al. [14]. It is a simple 2D-mesh [18], where 

each IP is connected to a switch and each switch, except the edge switches, is 

connected to four other switches (Fig. 2). Here, the IP to switch and switch to 

switch interconnection is done via bidirectional links. 

 



 
8 

 

Figure 2  CLICHÉ [22] 

 

CLICHÉ was proposed as a basic topology for NoC, since it is simple from layout 

perspective and scalable. It allows addition of resources, thus increasing the 

network, without reintroducing any changes in communication protocols, while 

increasing the network bandwidth.  

2.1.3 2D Torus 

Dally and Towels [7] proposed 2D torus, which is also mesh-based architecture. 

The only difference from 2D mesh is that the edge switches are connected via 

wraparound channels. Thus, every switch is connected to an IP block and four 

neighboring switches (Fig. 3). The number of switches is the same as for CLICHÉ 

and equal to the number of IP blocks.  
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Figure 3 2D Torus [22] 

  

The wraparound channels are very long and still increases with the number of IP 

blocks, thus the link delay increases. Long channels require repeaters to be placed 

within a link, so that the packet propagation fits within one clock cycle. As a 

solution, folded torus was proposed [19]. In a folded torus the wraparound 

channels are divided into approximately fixed length by shifting the position of 

nodes (Fig. 4). Hence, the channel length between any switches is now equal and 

considerably shorter.  

 

Figure 4 Folded Torus [22] 
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2.1.4 Tree Architectures 

The tree-based architectures are derived from multistage interconnection networks 

(MIN) [18], where IP blocks communicate with each other by sending a message 

through a number of switch stages. Hence, IP block can communicate 

simultaneously without contention.  

Guerrier and Greiner [20] proposed a SPIN (Scalable, Programmable, Integrated 

Network), which has a fat-tree architecture. In this architecture, every node has 

four children and the parent is replicated four times in every level (Fig. 5). The IP 

blocks are placed at the leaves of the tree and switches are at the vertices. 

 

 

Figure 5 SPIN [22] 

 

The size of a network grows as (NlogN)/8, where N is the number of IP blocks. 

Since, the SPIN architecture provides multi-path between any pair of IP blocks the 

wiring complexity increases with the number of IPs.  

Another tree-based architecture, BFT (Butterfly Fat-Tree), was proposed by Pande 

et al. [21]. Here, again IP blocks are at the leaves and switches are at the vertices 

(Fig. 6). Each node is labeled by a pair of coordinates, (l, p), where l indicates a 

node’s level and p indicates its position in that level. As the IP blocks reside at the 

lowest level of tree, their addresses are indicated as (0, N), where N ranges from 0 

to (N-1). Each switch has four child ports and two parent ports, and IPs are 

connected to N/4 switches at the first level. At the jth level of a tree the number of 
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switches is N/2j+1

 

, and the total number of switches approaches to N/2 as N 

increases.  Thus, there is one switch for every two IP blocks.  

 

Figure 6 BFT [22] 

 

2.1.5 Comparison of Network Topologies 

Pande et al. [22] compared all these proposed interconnect architectures relative to 

throughput, latency, energy and area overhead. Under uniform traffic SPIN and 

Octagon show good performance in terms of throughput and latency. This is due to 

the fact that both of them have more links between two pairs of nodes than do the 

others. However, it was show that SPIN and Octagon have higher energy 

dissipation because of the higher degree of connectivity they provide.  

When considering area overhead the Folded Torus and CLICHÉ are favored 

because of their simplicity. The inter-switch wires are of equal sizes and fit within 

one clock cycle in both of them. When the wires do not have equal sizes these with 

longer length require repeaters in order to be able to work at the same speed with 

others or force others to become longer. In BFT and SPIN wire length between 

switches depends on the levels of the switches. In Octagon, the inter-switch wires 

connecting IPs from disjoin Octagon units also require repeaters. 
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2.2 Switching Techniques 

 

The network performance is highly dependent on a switching technique that is 

being used. Switching techniques determine when and how internal switches are 

set to connect router inputs to router outputs [18]. It does not decide which channel 

should be used by a message, but performs the actual mechanism that removes data 

from an input channel and puts it on the output channel. Various kind of switching 

techniques were proposed. These techniques are coupled with flow control 

mechanism in order to move messages through the network [23]. Since the 

network consists of channels and buffers, the flow control mechanism deals with 

the allocation of channels and buffers. The ideal flow control mechanism reduces 

the channel and buffer congestion while decreasing message latency.  

 

2.2.1 Circuit Switching 

In a circuit switching the path from source to destination is reserved before the 

message is injected into the network. The reservation is done by a routing probe 

that is send along the network. Routing probe contains the destination address and 

some control information. It progresses toward the destination reserving physical 

links. Thus, when routing probe reaches the destination the complete path is set up. 

The acknowledgment is sent to the source and a message is injected into the 

network. Since, the path is already set the message is transmitted at the full 

bandwidth of a path and does not required to be stored at an intermediate routers. 

The path is released either by destination node or by a few last bits of a message 

itself.  

However, this technique is very conservative. Since physical path is reserved for 

the entire duration of a message and blocks other message. If a routing probe is 

blocked itself the physical path that was reserved by it up to now cannot be used by 

other messages, thus channels remain idle. This leads to a channel underutilization. 
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The circuit switching is advantageous when the message size is long compared to a 

set up time and infrequent.  

 

2.2.2 Packet Switching 

The packet switching technique was borrowed from computer networks [12]. In 

this technique the message is divided into fixed-length packets and every packet is 

sent to the network individually. First few bytes of a packet are allocated for packet 

header which contains routing information. This technique is also called store-and-

forward (SAF) switching technique, since the packet should be entirely stored at an 

intermediate router before being forwarded to the next router.  

In a networks that use packet switching the message latency is directly 

proportional to the distance between source and destination, and can be represented 

as (L/B)*D, where L is a message length , B is a channel bandwidth and D is a 

distance between source and destination. Every packet is independent of each other 

and needs to be routed at every intermediate router. Besides, packets can arrive out 

of order to the destination, thus producing additional overhead.  

The packet switching is advantageous when the messages are short and frequent. In 

compare to circuit switching the resources are fully utilized and packets may be 

injected into the network simultaneously. However, if the packet size becomes 

large routers should provide buffers in order to be able store the entire packet.  

 

2.2.3 Virtual Cut-Through 

The packet switching requires entire packet to be stored in a router before routing 

decision is made. Since the packet size is usually bigger than the link bandwidth, it 

takes several cycles to transfer entire packet through the link. However, the header 

of a packet is available after a few cycles. Virtual cut-through (VCT) switching 

technique was introduced in order to decrease the message latency. The routing is 
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done as soon as the packet header arrives and if the next router has available 

buffer, cut-through to the input of a next router before the entire packet arrives. 

The message is send after the header in a pipelined manner. When there is no 

congestion in the network, the latency of a header is the routing latency, and the 

propagation delay through the router and physical channel. However, if a header 

blocks then the entire packet is stored at a router. Thus, each router still will have 

to be able to store the entire packet. At high network loads VCT acts like SAF 

switching technique. The latency is defined as (Lh/B)*D+L/B, where Lh is the 

length of a header. When, Lh

2.2.4 Wormhole Switching 

<<L the distance, D, will not have big effect on a 

latency.  

 

In a SoC environment the routers should consume small silicon area compared to 

IP blocks [22]. However, SAF and VCT switching techniques require the large 

buffers in order to be able to store entire packet, making it difficult in construction 

of small, fast and compact routers. As a solution wormhole switching technique 

was proposed [24].  The message is divided into small units called flits. The size of 

a flit depends on system parameters and generally is equal to phit, where phit is a 

unit of information that can be transferred across the channel in a single cycle. The 

message contains three types of flit: header, data and tail. The header flit contains 

the routing information and reserves resources toward the destination. Data flits 

and tail flit does not contain routing information and simply follow the header flit 

in a pipelined manner. Resources are released by tail flit, which indicates the end 

of a message. In compare to VCT where the blocked packet is stored in one router 

completely removing a message from network channels, wormhole technique 

blocks flits in place. Thus, the blocked message occupies buffers in several routers. 

This enables routers to have smaller buffer size, one or two flits.  

Since the data flits do not contain routing information and simply use these 

resources that are reserved by header flit, different messages cannot interleave. 

Thus, if a buffer or channel was allocated for one message it is held for the entire 
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message duration. The latency of a message is defined as ((Lf/B)*D+L/B), where Lf 

is a length of a flit. When Lf

2.2.5 Virtual Flow Control 

 <<L the distance between the source and destination, 

D, does not have much impact on a latency, unless D is very large. [12] indicates 

that in the absence of contention a message that is wormhole routed is shown to be 

nearly independent of the distance between source and destination.  

 

There are two resource types in a network: buffers and channels. Usually, one 

channel is related to one buffer. If a packet A has allocated a buffer bi, the 

associated channel ci remains idle until A releases bi. In networks that use flit-level 

flow control, where channels are reserved for the duration of a packet, if a packet is 

blocked then all the channels held by this packet remain idle. This situation leads 

to an inefficient use of physical channels and may lead to deadlocks (see Section 

2.3) as well. In order to cope with this problem virtual channels (VC) [25] are 

adopted. 

A virtual channel consists of a private buffer that can hold one or more flits [25]. 

Several virtual channels may share the bandwidth of a single physical channel. 

This property provides each channel in the network with multiple buffers. If a 

blocked packet holds one buffer associated with channel ci, another buffer is 

available allowing other packets to pass.  
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Figure 7 Virtual channels 

 

Figure 7 illustrates two unidirectional virtual channels in each direction. This can 

be seen as if virtual channels are using two distinct physical channels at half the 

speed. 

Virtual channel assignment is made at the packet level, meaning that, if a packet is 

assigned to a particular virtual channel than this assignment is fixed for the 

duration of the packet. It assures that different packets will not interleave, as data 

flits does not contain routing information. However, physical channel is allocated 

at the flit level. 

Virtual channels were initially introduced for deadlock avoidance in [19]. 

However, lately they are suggested to be used also for performance improvement 

purposes.  

Adding virtual channels increase network throughput, since physical channel 

utilization increases. However, virtual channel usage is limited. With every new 

VC the probability of a message being granted physical channel decreases, thus 

increasing message latency. Large number of VCs also has a big impact on router 

performance. Routers become complex, arbitrating between VCs and multiplexing 

them over one physical channel, thus increasing the hardware cycle time. 
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2.2.6 Comparison of Switching Techniques 

There is no unique solution to all problems. Although wormhole switching is the 

most popular switching technique and significantly improves network 

performance, individual messages may block other messages, and lead to resource 

underutilization. SAF and VCT switching techniques consume network bandwidth 

proportional to network load and fully utilizes the network bandwidth. However, 

they require large buffer sizes to store packets. Circuit switching is very 

conservative and allocates the entire physical path, thus blocking other messages.  

Wormhole technique can be improved by adding virtual channels. But the latency 

of individual messages may vary, because of contention for small buffers, in 

compare to SAF, which has predictable latency characteristics.  At low loads 

wormhole routing performs better, but at high loads SAF is much better. VCT 

achieves the performance of wormhole switching at low loads and of SAF at high 

loads.  

The SAF allows error detection and retransmission at link-by-link basis. It if 

flexible and easily avoids faulty components. Pipelining reduces buffer size, but 

introduces unique challenges in deadlock and fault avoidance, since the message is 

pipelined over several routers and form dependence between these buffers.   

 

 

2.3 Routing Algorithms 

 

The routing algorithm determines the path that must be taken by a message in 

order to reach its destination. Various kinds of algorithms were introduced in the 

literature. These are differentiated according to the place where the decision is 

taken about the path that should be traversed by a message and the routing 

flexibility to different network conditions. The decision of an entire path can be 

done by source node prior to message injection. This is called source routing. In 

this case, the packet carries the whole routing information, thus increasing the 
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packet size. Furthermore, the path is fixed and cannot be changed after the packet 

injection into the network. Alternatively, the path can be determined at every 

intermediate router using distributed routing. In this case, the decision is 

distributed through the network. Every router, upon receiving the packet, decides 

whether to deliver it to the local node or forward it to the neighboring node. The 

decision of a right neighboring node, where the packet should be delivered, is also 

implemented in an intermediate router. The routing algorithm can be implemented 

in adaptive way so that the path traversed by a message is dependent on the 

network traffic, or can be oblivious. In latter case, the path by a message is 

independent of network traffic.     

Routing algorithm also has a big impact on network performance. The routing 

decision must be fast thus decreasing the message latency and be easily 

implemented in hardware. Complex routing algorithms increase the routing 

complexity and may require additional hardware.  Besides, as it was indicated 

before, routers must be small and compact. That is the reason why the knowledge 

of network’s global state information is not favored, since it requires additional 

storage space in each router. Among these requirements, routing algorithms should 

also be able to preserve deadlock, livelock and starvation freedom. 

 

2.3.1 Deadlock, Livelock and Starvation 

Unrestricted routing algorithms may lead to situations where a message can never 

reach its destination. These are caused by deadlock, starvation or livelock. 

Livelock happens when a packet wonders across the network never reaching its 

destination. It happens when the resources requested by a packet are occupied by 

other packets. Adaptive algorithms are usually livelock-prone, since they allow 

messages to go away from their destinations. Hot potato [] is one example for 

livelock-prone algorithms. In this algorithm, if a channel required by a packet is 

busy, it is send through any other available channel, although that channel moves a 

message to the different path. Thus, livelock enforces some restrictions to routing 
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algorithm. This may be achieved by several techniques, such as minimal path, 

restricted non-minimal path, probabilistic avoidance [18]. 

The packet may also block permanently because resources requested are never 

granted to it and lead to starvation. The avoidance of starvation requires correct 

resource assignment scheme. 

The most difficult problem in routing algorithm implementation is to preserve 

deadlock freedom. It is a situation when several packets are blocked permanently 

in the network. Deadlock occurs when the packets are allowed to allocate resources 

while holding others [12]. In VCT and SAF resources are buffers and in a 

wormhole and circuit switching resources are channels. The most deadlock-prone 

network is a network that uses wormhole switching technique since the packet 

holds several router buffers simultaneously. 

 

 

Figure 8 An example of deadlock [12] 

 

Figure 8 represents a deadlocked situation where four routers and four packets are 

blocked. Here, packets are requesting for a channel while holding a channel 

requested by other message.  
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The most common technique is deadlock avoidance that is implemented by routing 

algorithm. Channels are granted in strictly monotonic order so that the packet is 

granted a resource only if the resulting global state is safe. The channel 

dependency graph [18] is used in implementation of deadlock-free routing 

algorithm. In this graph the vertices are unidirectional channels and the edges are 

connected channels. Two unidirectional channels are connected if the routing 

algorithm allows the usage of second channel (output) after the first (input). If all 

these connections form a cycle then the algorithm is deadlock-prone. Hence, some 

restriction should be embedded into the routing algorithm. Generally, it is done by 

disallowing some turns in a packet’s path. 

 

2.3.2 Oblivious Routing Algorithms 

 An oblivious routing does not consider the network state. The path taken by 

messages is only dependent on the source and destination of the messages. It may 

contain routing table that includes several options for an output channel based on 

the destination address. This may give some level of adaptivity, however the 

routing algorithm is independent of network state. They are used for general-

purpose routing as they are easy to implement and considerably perform well. 

Oblivious algorithms can be deterministic or randomized according to the 

variations of options of output channels supplied at any intermediate router. 

 

2.3.2.1 Deterministic Routing Algorithms 

Deterministic algorithms always supply the message from particular source to 

particular destination with the same path. This means that every intermediate 

router always grants the same output channel for the same destination.  

The deterministic routing became popular with the wormhole switching technique. 

As wormhole switching technique is heavily pipelined, it is extremely important 

that all the stages work at the same speed in order for it to be efficient. This 
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requires the routing algorithm to be implemented in hardware. Deterministic 

algorithm is usually preferable due to its simplicity [18]. 

The most popular deterministic routing algorithm is Dimension Ordered Routing 

(DOR), which is also known as XY (YX) routing when used in 2D-meshes and e-

cube routing when used in hypercube. The DOR algorithm routes packets first in 

one dimension. When it arrives to the proper coordinate of the other dimension, 

proceeds in that dimension.  

In XY-routing the message first travels on x-dimension. When the offset of x-

dimension becomes zero, i.e. the message reaches the router that is on the same x 

coordinate with destination, it starts moving on y-dimension. Messages always are 

routed along the minimal path.  

DOR algorithm is deadlock-free when used in 2D-mesh and does not require 

additional virtual channels. It preserves its deadlock freedom by allocating 

channels in strictly monotonic order. This restricts some kind of turns that could 

lead to deadlock.  

 

2.3.2.2 Randomized Routing Algorithms 

DOR algorithm is simple and fast, however when the system is heavily loaded it 

may act poorly. Because of its poor worst case behavior, a few algorithms using 

randomization were proposed.  Randomization helps using the network bandwidth 

efficiently when the minimality constraints for routing algorithm are relaxed to 

some extend.  

The oblivious algorithm, named Valiant, was introduced by Valiant and Brebner 

[27] and it is the best known randomized algorithm. This algorithm works in two 

phases. In both first and second phases, it uses dimension-order routing, at first 

phase - to route a packet from its source to randomly selected node, at the second 

phase it routes the packet from that random node to its destination. As Valiant is 

non-minimal, it tries to avoid congestion in the network. Packets with the same 

source and destination have different intermediate nodes, which are selected 
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randomly, thus they cannot take the same path. In order to avoid deadlocks buffers 

are needed, and as in a mesh topology, it requires two sets of independent buffers 

per communication link, so, this algorithm requires the buffers of O(n) depth in 

each node and does not preserve data locality. If livelocks are considered, the 

packet in the algorithm reaches its destination, even it may take longer path than 

actually required and so, in Valiant routing algorithm livelock cannot occur. The 

negative aspect of this algorithm is the path taken, because it increases depending 

on the topology being used. For example, in a mesh, the packet path may be 

doubled, resulting in longer routing times of Valiant routing, and so, doubling the 

demand on network bandwidth. 

Randomized, Oblivious, Multi-phase, Minimal (ROMM) [28] algorithm is another 

routing algorithm which uses randomization. From dimension-order routing 

algorithm it inherits properties of minimality, which is to preserve data locality and 

to assure that the path taken by a packet will be minimal, and from Valiant – 

randomization, which is to assure that packets with same source and destination 

will not take the same path. These properties are combined to avoid congestion. 

Since the algorithm is oblivious, it is easy to implement it, in contrast to adaptive 

algorithms, which are more complex. As ROMM algorithms use the minimal path, 

it is constrained in randomization compared to Valiant that uses full 

randomization.  

ROMM algorithms select random nodes within the range of a minimal path which 

a message is required to follow in order to reach the destination. A packet is routed 

in p-phases. In p-phase ROMM algorithm there are  p-1 randomly selected nodes 

Z1, Z2, …, Zp-1 between source and destination, and all Zi ‘s (i=1,..,p-1) must be on 

minimal path from source to destination. 
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Figure 9 A possible path from source to destination using 3-phase ROMM on a 2-
dimensional mesh.  

 

Fig.9 shows a possible path from source to destination in a 3-phase ROMM. In this 

example source node establishes the path taken by message by means of 

dimension-order routing and chooses a random node that lies within that path, 

which is Z0 in our case. Next, message is routed from src to Z0 using dimension-

order routing. In the same way, a new source node, which is now Z0, sends a 

message using dimension-order routing having chosen another random node that 

lies along the minimal path from Z0 to dist, in this case Z1. Z1 in its turn routes a 

message to dist again using dimension-order routing. 

In order to avoid deadlock in p-phases ROMM algorithms p-virtual channels for 

wormhole routed mesh network is needed. Also, due to wrap-around links, it 

requires 2p virtual channels for wormhole routed torus network. As p increases the 

algorithm becomes very costly, since it increases memory usage adding virtual 

channels and complicates routing with additional logics required to manage virtual 

channels. 
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2.3.3 Adaptive Routing Algorithms 

Another option in implementing a routing algorithm is to consider the network 

state.  Every intermediate router supplies a message with several output channels 

based on the current node or buffer and the destination node. One of these output 

channels are then selected according to its status at the current node. Thus, a path 

of a message from source to destination is adaptive, allowing avoid busy channels. 

Adaptivity makes the routing more flexible however the hardware becomes more 

slow and complex.   

Adaptive algorithm can be minimal or non-minimal. Minimal algorithms supply a 

message with a set of channels that always bring it closer to destination. Non-

minimal algorithms may misroute a message by sending it away from its 

destination. It relies on the optimistic assumption that misrouting can bring a 

message to another set of minimal channels. 

The further classification of adaptive algorithms is: fully adaptive and partially 

adaptive. The fully adaptive algorithms can use all the physical paths in its class, 

while partially adaptive algorithms can use only subset of them.   

 

2.3.3.1 Planar-Adaptive Routing  

The aim of planar adaptive routing algorithms, proposed by Chien and Kim [29] 

for n-dimensional meshes and hyper cubes, is to provide adaptivity in only two 

dimensions at a time and is considered to be minimal. While being adaptive they 

limit the routing direction in a series of 2-D planes, and as the packet moves 

toward its destination the routing dimensions change so that the packet is routed in 

all dimensions in its way to destination. By this the network cost is reduced while 

deadlock-freedom is maintained. 

In order to avoid deadlocks, in a k-ary n-cube with no loop paths, planar-adaptive 

routing requires three virtual channels for each physical channel in meshes.  

Let A0 to An-2 denote n–1 adaptive planes, each of them defined as the combination 

of several sets of virtual channels. 
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𝐴𝐴𝑖𝑖 = 𝑑𝑑𝑖𝑖 ,2 + 𝑑𝑑𝑖𝑖+1,0+𝑑𝑑𝑖𝑖+1,1    (1) 

Each adaptive plane involves only two dimensions. To support the n – 1 adaptive 

planes three virtual channels in each dimension are needed.  

 

 

Figure 10 The channels for an adaptive plane Ai

The algorithm conditionally can be divided into high level (between adaptive 

planes) and low-level (within adaptive plane 𝐴𝐴𝑖𝑖). In high-level each routing in 

adaptive plane 𝐴𝐴𝑖𝑖  reduces the distance in 𝑑𝑑𝑖𝑖  to zero. The packet reaches its 

destination when it is routed in all of the adaptive planes. Since for VC 𝑑𝑑𝑛𝑛−1, there 

is no adaptivity left for a minimal router, the packet is routed directly to its 

destination. In low-level routing, within each adaptive plane multiple paths can be 

chosen and the packet completes its routing in at least one dimension. If in 

plane 𝐴𝐴𝑖𝑖 , the 𝑑𝑑𝑖𝑖+1 the offset is reduced to zero first, routing continues in 𝑑𝑑𝑖𝑖  until 

the 𝑑𝑑𝑖𝑖  distance is reduced to zero.  

.  
The increasing (a) and decreasing (b) networks are logically decoupled as they 

contain disjoint sets of virtual channels [29] 
 

The overlapping adaptive planes require only three virtual channels per physical 

channel for an n-dimensional network. VCs 𝑑𝑑𝑖𝑖 ,2, 𝑑𝑑𝑖𝑖+1,0 and 𝑑𝑑𝑖𝑖+1,1 belong to 

adaptive plane 𝐴𝐴𝑖𝑖  and inside the plane, a packet is routed adaptively with respect to 

dimensions 𝑑𝑑𝑖𝑖  and 𝑑𝑑𝑖𝑖+1 by choosing the channels which directs close to the 

destination. In order to prevent deadlock, the traffic is divided into increasing and 

decreasing virtual networks which are completely disjoint: increasing network is 
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formed by VCs 𝑑𝑑𝑖𝑖 ,2 +  and  𝑑𝑑𝑖𝑖+1,0  with packets which need to increase their 𝑑𝑑𝑖𝑖  

address while decreasing network formed by VCs 𝑑𝑑𝑖𝑖 ,2−, 𝑑𝑑𝑖𝑖+1,1, where packets 

cross dimension 𝑑𝑑𝑖𝑖  in negative direction.  

If decompose the network into the adaptive planes, it can be seen that routing in 

each plane in deadlock-free, and that cycles cannot form between planes. 

Consequently, the planar-adaptive routing algorithm is free from deadlocks. 

 

2.3.3.2 Dimension-Reversal  

In non-minimal adaptive routing packets can temporarily move away from their 

destination, but eventually achieve their destination. Due to misrouting, the 

distance a packet travels may not be minimal. This technique is fully adaptive and 

requires two VCs per physical channel. Two non-minimal routing algorithms for 

mesh networks were proposed by Dally et al. [30]. In the first of them, named 

static dimension reversal routing algorithm, every two adjacent nodes are 

connected by r pairs of channels. Thus, the network is divided into r sub-networks 

and all the ith pair channels are contained in the ith

The second algorithm is called dynamic dimension reversal routing algorithm. In 

this algorithm the channels are divided into two classes: adaptive and 

deterministic. At first, packets are sent through adaptive channels and can move in 

any direction. However, when a packet reaches a node, it must switch to the 

deterministic channels as at node all output channels are busy by packets with 

values of c smaller or equal to its own. Once a packet enters the deterministic 

channels, it cannot return to adaptive channels. The algorithm is deadlock-free.  

 sub-network. Each packet 

header stores additional value c, the numbers to break the dependency cycle, which 

is initially set to zero. The packet with c<r-1 can move in any direction in its own 

sub-network, except when the packet moves from high dimensional channel to low 

dimensional channel the value of c is increased by one. If c reaches the value r-1 

then the packet must switch into the deterministic dimension-ordered routing 

algorithm. The packets can be also misrouted, but the parameter r restricts the 

number of times it can happen.  
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2.3.3.3 Turn Model 

Turn model, proposed by Glass and Ni [31], is partially adaptive algorithm, both 

minimal and nonminimal. It is based on the idea that deadlocks occur because the 

packet routes contain turns that form cycles. Deadlock cannot occur if there is no 

cyclic dependency between channels [18]. The turn in the packet route occurs 

when it is routed from one dimension to another. If packet changes its direction 

without moving to another dimension it is considered to have 180-degree turn. 

When physical channel is split into several virtual channels, moving from one 

virtual channel to another in the same dimension and direction is considered as 0-

degree turn. Different turns when combined form cycles. The main concept of the 

proposed algorithm is to prohibit smallest number of turns so that the cycles are 

prevented. In order to develop a maximally adaptive routing algorithm in n-

dimensional meshes and k-ary n-cubes following six steps are presented: 

1- Classify channels according to the directions in which they route 

packets. 

2- Identify the turns that occur between one direction and another. 

3- Identify simple turns that may occur. 

4- Prohibit one turn in each cycle. 

5- Incorporate as many turns as possible that involve wraparound 

channels, without reintroducing cycles (in the case of k-ary n-cubes). 

6- Add 0-degree and 180-degree turns without reintroducing cycles. 180-

degree turns are needed when there are multiple channels in the same 

direction and for nonminimal routing. 

The Figure 11(a) shows eight possible turns and two possible abstract cycles that 

may occur in 2-D mesh. 
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Figure 11 (a) 8 possible turns, (b) 4 turns allowed by XY-routing, (c) 2 prohibited 
turns in West-First routing [18] 

 

XY- routing allows only four turns as shown in Figure 11(b), thus the deadlock 

cannot occur. Figure 11(c) presents turns that are prohibited in the algorithm 

presented by [31]. It is West-First routing, where two turns to the west are 

prohibited, thus in order to travel west packet must begin in that direction and then 

adaptively south, east and north.   

 

 

 

Figure 12 West-First routing [18] 
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Figure 12 illustrates how this algorithm works. Here, unavailable channel is either 

blocked or faulty channel. 

Also some other algorithms can be derived from turn model, such as north-last and 

negative-first routing. The north-last routing algorithm does not allow turns from 

north to east or from north to west. The negative-first routing algorithm does not 

allow turns from north to west or from east to south. 

 

 

2.4 Fault Tolerant Routing 

 

The design of NoC is not limited by performance improvement issues. The second 

dominant issue is fault tolerance, which is the ability of the network to function in 

the presence of faulty components. The implementation of fault tolerance into the 

system may degrade its performance considerably. Moreover, the faulty network 

may lead the communication into deadlock and livelock, thus making routing 

algorithms implemented for fault free network ineffective.  

From first glance it might appear that the adaptive algorithms can tolerate faults 

and move messages along faulty components. However, even the single link failure 

can demolish the deadlock-freedom property of adaptive algorithm. If adaptive 

algorithm provides several channels to a message and all these channels are 

occupied by other messages that have encountered a fault and cannot make a 

progress, this message blocks even if its destination does not lie along the faulty 

component. This means that the deadlock might occur even though cyclic 

dependencies between resources do not exist [18]. Since, these messages that 

encounter faulty component cannot make a progress and are holding buffer and 

channel resources, the other messages that do not require to traverse the faulty 

component, but need these resources that are held by blocked messages are also 

blocked. This leads to a wait chain that might block the whole system [18].  
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The deadlock might also occur due to dynamic faults, where a message in progress 

is interrupted by fault. In this case, if data flits lose their header flit they cannot 

make a progress without routing information and hold resources indefinitely. The 

recovery mechanism should be able to resolve wait chains, clean the network from 

interrupted messages, and recover corrupted messages or notify the source node 

about loss so that a new copy of a message is sent. 

 

2.4.1 Fault Models 

The fault tolerant algorithm is implemented according to faulty component patterns 

introduced, and the ability of a system to diagnose these faults. Diagnose can be 

conducted on different levels. Generally, only two classes of faults are diagnosed: 

either, the entire PE and its associated router fails (node failure), or any channel 

fails (link failure).  

Faults may be static or dynamic, where static faults already exist when the system 

is powered on while dynamic faults occur on run time of a system. Both of them 

are considered as permanent faults and remain in the system until repaired. 

Permanent fault avoidance is much easier than transient fault avoidance. Transient 

faults cannot be reproduced and are not amenable to prediction.  

The fault tolerance technique can be implemented in the system according to the 

fault occurrence rate. If the mean time between failures (MTBF) is much bigger 

than the mean time to repair (MTTR) then the system can utilize lower-cost fault 

tolerance approaches. However, if MTTR is much bigger than MTBF, as it can be 

seen in space-borne systems, then the fault tolerance approach should be more 

expensive so that the system will work, possibly with degraded performance, until 

the repair is conducted. 

The fault model of a system should also define the behavior of a faulty nodes and 

the fault information that is available at a node. The faulty node should stop 

sending or receiving messages in order to avoid deadlock in a system. Faults are 

generally considered to be non-malicious, thus making fault tolerance much easier 
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in implementation. The fault information available at a node may be global or 

local. In global fault information, every node knows the status of every other node, 

thus making the best decision in routing. However, this technique leads to 

synchronization problems in conducting global information updates, and increase 

storage requirements at a node. In local fault information, every node knows   the 

status of only neighboring node. This technique may force messages to take longer 

path, but the network implementation becomes easier.  

 

2.4.2 Fault-Tolerant Routing Using SAF and VCT Techniques 

In SAF and VCT networks the deadlock is avoided by right buffer management, 

since packets form deadlock only when there are no available buffer at an adjacent 

router. Fault-tolerant routing assumes packet misrouting, so the main issue is to 

avoid livelock. Usually SAF and VCT techniques are used in high-dimensional 

networks because in these techniques message latency depends on distance [12].  

Chien and Shin [32] introduced a fault-tolerant routing algorithm that is used in 

binary hypercube (k=2). In binary hypercube messages traverse only one link in 

each dimension, so if the destination address differs in m bits from source address 

the shortest path will take m dimensions. They presented a new concept called as 

spare dimension, which is the dimension that is not on the shortest path. When all 

the dimensions that lie on a shortest path are blocked the message is misrouted and 

sent to spare dimension. Since in n-dimensional binary hypercube there is n 

disjoint path between any pair of nodes, it is assumed that n-1 faults cannot 

disconnect the network. So, the algorithm can tolerate up to (n-1) faults. By this 

assumption where a network can have only n-1 faults, Chien and Shin [32] asserts 

that there is always one spare dimension that can be used by blocked messages.  

Another approach in order to avoid faulty components in a network is to use 

randomization. Some routers use this technique to avoid deadlocks [33]. If a 

message holds an input buffer for a long time, it is removed from input buffer and 

stored in a local buffer in a node. They are re-injected into the network later when 
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the output buffers become available. As the local buffer size is also limited and 

implemented as a queue, when the queue becomes full and there is some message 

that should also be stored, the random message is selected and misrouted. Thus, 

every message has a nonzero probability to avoid misrouting.  

 

2.4.3 Fault-Tolerant Routing Using Wormhole Switching Technique  

In compare the networks that use VCT and SAF switching techniques, wormhole 

switching introduces some unique challenges. The wormhole switching is 

deadlock-prone and even in fault-free networks requires a deep consideration in 

routing algorithm implementation. This is because the message is divided into flits 

and the blocked message occupies several routers, thus blocking other messages 

that are also competing for the same virtual channel. It is suggested to implement 

good routing algorithm rather than recovery mechanism, since recovery is 

expensive in terms of time and resources [18]. The general solution is to route 

messages around faulty regions as with VCT and SAF without introducing cyclic 

dependency between channels. The fault-tolerant routing algorithm is determined 

by the shape of a fault region and the base routing algorithm upon which it was 

implemented. Fault-tolerance requires additional virtual channels and the routing 

restrictions among their usage.   

  

2.4.3.1 Fault Regions 

The concept of regions was firstly defined by S.Kumar et al. [14], where the region 

G is defined as an area inside the NoC, that is insulated from the network and may 

have different internal topology and communication mechanism. A region may be 

some resource that is of larger size than the atomic slots in the mesh. They are 

connected to the rest of the network with special IO wrappers. The concept of 

region adds several advantages to NoC: 

- A set of resources can be dedicated to a specific task. 
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- The communication between the resources inside the region can have different 

communication capacity.  

- The resources inside the region are insulated from external traffic. 

- NoC can accommodate a specific technology inside these regions.  

However, these regions are constrained to have convex boundaries.  

The concept of regions was further adopted by Chien et al. [29], where faulty 

components were insulated into region and messages are routed around that region. 

The fault region is also constrained to have convex boundaries. This constrained 

implies that the faulty components must form a block fault, so that every non-

faulty component that is on the boundary of a fault region can have a faulty link 

only from one side. Since concave faults may also occur, they are transferred to 

convex faults by deactivating some non-faulty components.  

The algorithm intoduced in [29] is a planar-adaptive routing (see Section 2.3), 

where the network is divided into two virtual netwoks: decreasing and increasing. 

There is one additional virtual channel in vertical direction. These messages that 

are traveling in increasing (decreasing) x-coordinates use increasing (decreasing) 

virtual network. When a message, that is traveling in increasing (respectively in 

decreasing) network, encounters a fault it is misrouted in y-coordinate using virtual 

channel 0 (respactively 1). Thus, cyclic dependency is prevented by using totally 

three virtual channels. The algorithm is adaptive and a message can use either 

dimension adaptively. The message is only misrouted when it is on the same row 

or column with destination and encounters a fault.  

Planar-adaptive routing marks non-faulty components as faulty, thus decreasing 

the number of good links and nodes. If a faulty node is on the boundary of  a 

network the message cannot be routed around the fault region and have to traverse 

backward. This bring new channel dependency between increasing and decreasing 

networks. As a solution the entire row or column is marked as faulty. The same 

situation can be seen for concave regions, where a message will need to traverse 

back, thus message are no longer monothonically increasing or decreasing. The 

convex faulty region simplifies the routing algorithm and deadlock avoidance, thus 
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any kind of region is desired to have convex boundaries. However, this constrain 

leads to unefficient usage of non-faulty nodes.  

Chalasani et. al. [34] improved the concept of faulty region presented by [29]. In 

their fault-tolerant routing algorithm non-faulty nodes are not marked as faulty in 

order to obtain convex fault. They introduced a new concept of fault rings (f-ring). 

F set contains all faulty links and nodes. The faulty region is considered to be 

rectangular faulty block (convex) if all the fault-free nodes around the faulty region 

connect and form rectangle and all the nodes lying in the rectangle are faulty. The 

block-fault-model assumes that each fault belongs to exactly one faulty block. If all 

non-faulty nodes around the f-region connect and form a ring this is called f-ring. 

When a fault region touch boundaries of a network non faulty nodes cannot form 

ring so this is called f-chain (F2 in Fig. 13). The nodes at which f-chain touches the 

boundaries of a network are called end-nodes. F-rings are said to be overlapped if 

two or more f-rings share one or more links (F3 and F4 in Fig.13).  

 

 

Figure 13 f-rings, f-chain and overlapping f-rings   
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[34] implemented their fault-tolerant algorithm upon the DOR algorithm, which is 

also called e-cube algorithm. Since DOR is deterministic algorithm it cannot 

tolerate even one faulty component. They divided the messages into column and 

row messages. The column and row messages are further divided into West-East 

(WE), East-West (EW), North-South (NS), and South-North (SN) messages, where 

WE and EW messages are row messages and NS and SN messages are column 

messages. A message that is still taking row hops is called row message, and a 

message that only requires column hops in order to reach its destination is called 

column messages. The row messages may change their status into column, but 

column messages never change their status into row messages. Two algorithms 

were presented: f-Cube2 and f-Cube4. 

f-Cube algorithm uses 2 VC’s and considers only non-overlapping block-faults. 

Row messages use c0 VC and column messages use only c1 VC. A message may 

have normal or misrouted status. The message’s status is changed to misrouted if 

its next DOR hop is not available. Each time a message status is changed its 

direction is set, and its direction will not change throughout that f-ring. A 

misrouted NS (SN) message’s direction is set to clockwise (counter clockwise). 

The EW message’s direction is set to counter-clockwise (clockwise) if a 

destination is a row above (row below) than the current node. The same for WE 

messages.  

The algorithm above proposed for non-overlapping fault-blocks is proved to be 

deadlock-free, since WE messages use only west boundaries and EW messages 

only east boundaries of f-ring. But when fault-blocks overlap, they share common 

columns or rows. Hence, the channels used by WE and EW messages are no longer 

disjoint. The similar issue arises in routing messages along f-chain, since messages 

that reach end-nodes are either stuck or make u-turn making channel utilization 

disjoint. In order to avoid deadlock f-Cube2 algorithm was modified to f-cube4 

algorithm which uses 4 VCs. The algorithm divides the network into 4 disjoint 

networks WE, EW, NS and SN messages use c0, c1, c2, and c3 VC’s respectively. 

Here, again the row messages can become column messages but not vice versa.  
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Many other proposed fault-tolerant algorithms [35] [36] [37] [38] are generally 

derivatives of f-Cube4 with various attempt to decrease the number of virtual 

channels to be used in routing around f-regions. These fault tolerant algorithms are 

recommended to be used as a backup algorithm in adaptive networks. Since, 

adaptive networks lose their adaptivity in last dimension left and messages are not 

guaranteed to be delivered if they encounter faults, with additional four VC the 

adaptive algorithm can tolerate any number of faults.  

 

2.4.3.2 Fault-Tolerant Routing Without VCs 

In order to make wormhole routed meshes fault tolerant, usually additional virtual 

channels are used. However, virtual channels come at expanse as they require extra 

control lines, buffer space and switching hardware. Ni et al. [39] uses turn model in 

their one-fault-tolerant routing algorithm which does not require additional virtual 

channels. However, this algorithm is (n-1) fault-tolerant, which means that in 2D 

mesh it can tolerant only one faulty component. The authors argue that misrouting 

should be used only to increase fault-tolerance degree and never just for increasing 

adaptiveness, since misrouting increase communication latency 

One-fault-tolerant algorithm is based on the negative-first routing algorithm, where 

packets are first routed in the negative directions (west and south) of dimensions 0 

and 1 then in the positive directions (east and south) of dimensions 0 and 1. The 

result of the modifications of the negative-first routing algorithm: 

1. Route the packet west and south to the destination or farther west and south 

than the destination. Avoid routing the packet to a negative edge for as long 

as possible.  If a packet encounters a fault along the negative edge, route 

the packet one hop perpendicular to the edge. 

2. Route the packet east and north to the destination, avoiding routing the 

packet as far east or north as the destination for as long as possible. If a 

faulty node on a negative edge of the mesh blocks the path to a destination 

on the edge, route the packet one hop perpendicular to the edge, two hops 

toward the destination and one hop back to the edge. 
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Another algorithm that does not require additional VCs was presented by Duato et 

al. [40]. It is software based fault tolerant routing. In fault-free cases the messages 

are routed using DOR algorithm. A packet that encounters a fault is ejected from 

the network and passed to messaging layer of the local node’s operating system. 

The messaging layer further decides whether to send the packet along a non-

minimal path or send it via intermediate node. Thus, the packet is re-injected into 

the network with modified header. However, the message reinjection complicates 

the messaging layer of a node, since it has to make right decisions upon message 

reinjection. As the messaging layer should know what paths has the message taken, 

the header flit size increases because of routing information. Along with 

introduced overhead in messaging layer, reinjection also increases message 

latency.  

Both algorithms are considered for environments where fault rates are relatively 

low. The goal is to keep the system functioning, with possibly degraded 

performance. They try to keep the feature of deterministic router designs, i.e. 

compactness and speed, thus avoiding additional virtual channels. So, these 

messages that do not encounter faults are minimally impacted.  

 

2.4.4 Dynamic Recovery 

As it can be seen from the previous chapters, wormhole routing is more difficult in 

avoiding deadlock. Since messages are sent in pipelined fashion, flits of one 

message occupy several routers. The destination information is stored only in 

header flit, so the data flits are heavily dependent on it. However, dynamic faults 

that occur on runtime may corrupt a link separating data flits from header flit. 

Since data flits cannot be routed without routing information, they remain in the 

network holding resources and thus leading to deadlock. The recovery from these 

faults should be held on run time. 
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2.4.4.1 Flit-Level Recovery 

For a packet switching networks recovery can be easily constructed, so that the 

exactly-one injection is guaranteed. They are amenable to a link-level error 

detection and retransmission. However, the wormhole switching is not amenable to 

a link-level retransmission, since flits are spread over several routers. One solution 

for a wormhole switching technique that guarantees end-to-end delivery was 

presented by [41]. It implements link-level monitoring of flits. The copy of every 

flit is kept in a router until it receives acknowledgment that it was successfully 

received, which means that at least to copies of a flit remains in the network. Thus, 

if a flit encounters a fault while passing a link its copy can be retrieved from the 

last router it has leaved.  The message is constructed from header, data, tail flits 

and a token. When a link fault occurs and the data flits lost their header flit a new 

header is generated for them. The message token is kept the same that was 

appended to original message. Thus, every router keeps the copy of header flit until 

token releases it. Those data flits that are on the other side of corrupted link with 

header flit will continue on the same way after the new token is appended to them. 

At the destination header flits are distinguished according to tag which indicates if 

the message is original or restart and the token according to replica or unique type. 

 

2.4.4.2 Message-Level Recovery   

Message-level recovery suggests discard the entire message from the network and 

retransmit it from source.  

[42] suggested the message-level recovery algorithm which is applicable in 

network where the path taken by message from source to destination is released by 

destination node. When a message encounters a fault and is divided into two parts 

two type of control flits are send: forward and reverse flits. Forward flit moves 

toward destination and releases all the buffers and channels allocated by these flits 

that are closer to destination. Reverse flit moves toward source and releases 

resources allocated by the other part of a message that was separated from header 

flit. When the reverse flit reaches source the message is retransmitted and when the 
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forward flit reaches the destination the partially received message is discarded. As 

long as there is a path between source and destination the control flits are 

guaranteed to notify about the lost. However, this type of recovery requires 

additional virtual channels for recovery traffic. 

Another recovery algorithm was suggested by [43], which is called compassionless 

routing. Here, the time of a message arrival at destination node is approximately 

calculated at source node. If it is clear that the message will not arrive at 

destination node after the tail flit is injected into the network the message is padded 

with pad flits thus the entire path is kept throughout message delivery. Every router 

distinguishes between data flits and pad flits. Pad flits are also used to release the 

path reserved by header flit.  If the fault model is static after the approximate time 

calculation expires in source node, it sends an FKILL signal toward the destination 

thus releasing the path kept for a message. If the fault model is dynamic then an 

FKILL and BKILL signal are sent from the detecting router. FKILL signal moves 

toward the destination while BKILL signal moves toward source node. Since the 

path from source to destination is kept by pad flits, these signals do not require 

additional buffer at intermediate routers. But, in this case pad flits are consuming 

bandwidth, thus decreasing the network utilization.   

 

 

2.5 Traffic Generator Models 

 

In order to understand and unravel network power/performance related issues 

network traffic modeling are considered. Traffic patterns for network evaluation 

are divided into two following types [44]: 

1. Application-driven traffic, which models the network and its clients 

simultaneously. In other words it is full system simulation. 
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2. Synthetic traffic, which captures the application-driven workload (easier to 

design and manipulate, therefore it is used more often) – uniform, Poisson, 

permutation traffics etc. 

General prior research in the area of classic networks such as the Internet, Ethernet, 

and wireless LANs which transport TCP/IP, HTTP, and FTP traffic among others, 

demonstrated how application-driven traffic models and model-based synthetic 

traffic generators can facilitate understanding of traffic characteristics and drive 

early-stage simulation to explore a large network design space.  

The class of NoCs has substantially different traffic behavior as compared to the 

traditional network fabrics. Thus, determining network architecture is one of 

fundamental aspect of Network-on-Chip design. Since there exists an enormous 

network design space with respect to topology, routing and flow control schemes 

etc, and the network design should be customized for applications or a class of 

applications, determining network architecture becomes difficult. For on-chip 

networks no complete traffic model exists. Designers frequently rely on simple 

synthetic traffic patterns such as uniform random, bit-permutation and tornado 

traffic to stress-test a network design. 

Varatkar et al. [45] first proposed a traffic model for on-chip networks, but the 

model captures pair-wise traffic rather than traffic over the entire network, and 

modeled a single application. They present a traffic analysis approach to 

characterize the on-chip communication traffic pattern of different multimedia 

applications based on self-similar or long-range dependent (which was denoted as 

LRD2) stochastic processes. The degree of self-similarity of the on-chip traffic 

using techniques based on the Hurst parameter was illustrated by analyzing the 

statistical properties of the arrival process at different points in a generic 

architecture for standard MPEG-2 applications. Having obtained the Hurst 

parameter, the designer can choose the minimal buffer size for the router at each 

tile, which ensures a certain quality of service (QoS) for running the multimedia 

application. That is, the Hurst parameter which characterizes the traffic pattern for 

a particular application helps in finding the optimal buffer length distribution 

which turns out to be the critical issue for the routers at each node in the on-chip 
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communication network.  Also, they describe a method of generating synthetic 

traces with statistical properties similar to the original ones. 

Application oriented traffic described by Jantsch et al. [46] reflects the 

communication distribution of the applications and allows designers to adjust the 

locality of traffic so as to analyze the network behavior under locality network. 

They introduce traffic characteristic parameters by mean of traffic configuration 

tree, which characterizes network traffic by considering distributions of messages 

along the three dimensions: spatial distribution, temporal characteristics, and 

message size specification. The spatial distribution describes the communication 

partnership between sources and destinations and classified into two categories, 

namely traffic pattern and channel-by-channel traffic. The temporal characteristics 

give details of the message generation probability over time such as constant rate, 

random rate, and normal rate. The size distribution classifies the length of 

communicated messages into uniform, random and normal. They introduced 

notion of distribution coefficient and locality factor and incorporated the case when 

locality factor is equal to zero. Thus they achieve the traffic to have uniform 

distribution to nodes with a different distance, i.e. distribution coefficient becomes 

independent of distance.  

Since locality factor may be set individually with distance, the amount of traffic 

distributed to a certain distance can be controlled.  

Peh et al. [47] proposed  (𝐻𝐻,𝑝𝑝,𝜎𝜎) 3-tuple network traffic modeling. The 3-tuple 

(𝐻𝐻, 𝑝𝑝,𝜎𝜎) answer three questions: (1) How often are bursts of packets injected at a 

router, and how large are these bursts? (2) How far do packets travel in the 

network from a source node towards their destination node? And (3), what 

proportion of total traffic does each router inject into the network? These three 

components are orthogonal or independent from each other.  

The level of burstiness or packets per unit time is not constant and varies from one 

cycle to the next and this level of burstiness can be parameterized using single 

parameter, the Hurst exponent H. The quantity 𝐻𝐻 = 1 − 𝛽𝛽 2⁄ , known as the Hurst 

exponent or “fractal dimension,” shows the presence and degree of scale-invariant 

memory. A value of 0.5 is a sign of no long-term memory effect (white noise), 

while values closer to 1 show increasing presence of the long-term memory.  
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The second parameter p is one of the two spatial components of traffic and 

abstracts the hop distance of traffic and captures its distribution. It can be equally 

determined by three factors: (1) the communication pattern of the application, (2) 

the computation power (hardware resources such as processing unit, memory etc.) 

of each router node, and (3) the mapping of the application onto the nodes. The 

first two factors decide the best possibility which network traffic mapping can 

achieve, in other words, they define a tight lower bound of the network traffic’s 

average hop count. To derive this lower bound,  first define the traffic acceptance 

probability 0 ≤ 𝑝𝑝 ≤ 1  such that when one source node is to send a packet, any 

other node in the network that is used by the same application will receive (i.e. in-

transit node) or consume (i.e. destination node) that packet with acceptance 

probability p. A node with a relatively higher p has an increased capability of 

receiving or consuming a packet. Therefore a relatively high p denotes short-

distance network traffic (source-destination nodes are close, i.e. localized traffic) 

while a relatively small p  denotes longer distance (global) traffic as each node 

across the source-destination path possesses a smaller capability of consuming the 

in-transit packets. 

 Lastly 𝜎𝜎 represents the second spatial component of the 3-tuple model, and 

characterizes the distribution of the ratio of total network traffic that each router 

injects into the network. The traffic injection distribution shows the percentage of 

traffic, or the average probability of packet injection, that comes from each node. It 

therefore captures spatial characteristics of traffic. A greater 𝜎𝜎 presents a flatter, 

more evened-out distribution (a relatively large 𝜎𝜎 can model uniform distribution), 

while a smaller 𝜎𝜎 models more concentrated, uneven injected traffic, where a few 

routers inject most of the traffic forming hotspots in the network.  
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CHAPTER 3 

 

NETWORK SIMULATOR AND SIMULATION ANALYSIS 
 

 

 

The best way to analyze the system behavior is to make a simulation where all of 

its aspects are captured. We chose the general-purpose simulator, ns-2, to simulate 

NoC. Here, we present the simulation results solely considering the non-faulty 

system. The main goal of this chapter is to present the behavior of NoC under XY-

routing. The different parameters that may influence the network performance are 

analyzed.   

 

 

3.1 Network Simulator  

 

To simulate NoC we used the general-purpose simulator, ns-2, which was 

developed by the Network Research Group at the Lawrence Berkley National 

Laboratory (LBNL). Ns-2 is an object-oriented, discrete-event driven network 

simulator implemented in C++ and OTcl (Object Tool Command Line) [48]. Users 

can set up and run a simulation by writing a Tcl script, where the topology, routing 

algorithm, protocols and applications can be defined. It provides basic TCP and 

UDP as the network transmission protocols, four routing strategies, such as Static, 

Session, Dynamic and Manual and many mechanisms for modelling traffic 

generation. Ns-2 also provides users with a built-in graphical animator tool, NAM 

(Network AniMator), which visualizes the flow of messages and the whole system 

simulated. These protocols that are not supported by ns-2 can be implemented in 
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C++ and added into the ns-2 library, which then can be used in simulation via OTcl 

script.   

Since, ns-2 was designed for regular computer network simulation, like Local Area 

Networks (LANs), Wide Area Networks (WANs) and for satellite networks, radio 

propagation and wireless systems, it does not contain NoC protocols. Even though, 

in [49] [50] [51] the authors used ns-2 in simulation of NoC they did not 

implement its protocols but rather used built-in options.  

 

3.1.1 Embedded Protocols 

We had to implement our own router model presented in [52] in ns-2, because it 

does not consider router delay. Each time a packet arrives, ns-2 finds the 

appropriate slot that the packet should use and sends it to the output buffers 

immediately. Thus, packets latency is computed considering only buffer latency 

and link latency. Since, ns-2 pre computes all possible outputs before simulation 

begins using Dijkstra’s Shortest Path algorithm, every node contains tables which 

contain slot numbers that should be used in order to reach certain destination. In 

NoC the routing algorithm is distributed, so the decision of output channel that 

should be taken is made in every intermediate node, so the routing algorithm is 

also implemented. 

Ns-2 does not support flit level communication and drops random packets in links 

when the buffer overflows. In flit level communication the drop of header flit 

cause the data flits moving behind also to be dropped. Besides, dropping packets 

reduces system performance (i.e. multimedia applications). In our router model 

drops never occur and packets spend several cycles in the router passing different 

stages in order to allocate an output channel.  
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3.2 Router Model 

 

Routers are the building blocks of NoC. Thus, the performance of interconnection 

networks depends on the performance of the routers and the optimization of a 

router significantly increases network throughput [53].  

Generally, proposed router models assumed that the clock cycle time depends only 

on router latency, thus assuming that the router latency fits within one clock cycle. 

Peh et al. [52] suggested a more realistic router delay model, where the clock cycle 

time was fixed and the router consists of several pipeline stages that might vary 

and each stage takes one cycle.  

 

 

Figure 14 Canonical virtual channel router architecture [52] 

 

Figure 14 presents a canonical virtual channel router architecture, where p is the 

number of physical channels, v is the number of virtual channels per physical 

channel, and w is the channel width in bits. Crossbar ports are shared between 

virtual channels of a physical channel, allocated on flit-by-flit basis. 



 
46 

Each virtual channel has a separate buffer and a state. The packet passes through 

routing, virtual channel allocation, switch allocation and crossbar traversal stages. 

Each flit has a VC-identifier (VCID) field, which defines the virtual channels 

where a flit is destined to. When a header flit arrives input controller decodes its 

VCID and injects the packet into virtual channel with associated VCID, where it is 

buffered. Virtual-channel enters a routing state and sends a flit’s destination field 

to routing logic which returns the output virtual channel for a packet. Input 

controller then sets the virtual-channels state to virtual-channel allocation. Virtual-

channel sends a request for those output virtual-channels to global virtual-channel 

allocator, which in turn returns the available output virtual-channels and updates 

the states of those output virtual-channels to unavailable. Once an output virtual-

channel is allocated the header flit sends a request to global switch allocator for 

output port. When a request is granted the header flit leaves for the next node, with 

its VCID field changed to the recently allocated virtual-channel’s VCID. 

When data flits arrive they inherit the output virtual-channel reserved by their 

header flit so they can immediately send a request to global switch allocator for 

output port. The tail flit signals the virtual-channel allocator to release the output 

virtual-channels reserved by its header flit after gaining access to crossbar passage. 

Each time a flit leaves, the buffer count for its output virtual channel is 

decremented in the current router, and the credit containing the input virtual 

channel is sent to the previous router, prompting it to increment its buffer count. 

Thus, a flit is never sent to next router until it has available buffers to store entire 

flit. This prevents the network from packet drops.   

 

 

3.3 Network Simulation 

 

In this section simulations are conducted in order to see the behavior of NoC under 

different conditions. These conditions are parameterizable values that can be 
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changed, like packet size, buffer depth at each input controller, number of VCs per 

physical channel, and network size. The evaluation is done in terms of message 

average latency and throughput.  

Latency:  Transport latency is defined as the time (in clock cycles) that elapses 

from the occurrence of message header injection into the network at the source 

node and the occurrence of a tail flit reception at the destination node. The average 

message latency is calculated as a sum of latencies of every received message 

divided by total received messages.  

Throughput: Throughput is defined as maximum traffic accepted by the network. 

In our case it as a ratio of total received messages to total generated messages. 

Thus, if the number of received messages equal to the number of generated 

messages, then the network is working at 100% capacity.  In all our simulation the 

throughput is given as the percentage of total received messages out of total 

generated messages.  

Load normalization: Since injection rate depends on network size and packet size, 

it has to be normalized. In kxk network every node under maximum load (that is 1) 

is considered to inject into the network 4/k flits every cycle when the k is even. In 

our case, if we use 16x16 mesh the maximum load is 4/16=0.25 (flits/node/cycle).  

We implemented router model described earlier in ns-2. The routing algorithm is 

XY-routing, where a packet moves first in x- dimension until it reaches the same 

position with the destination and then moves along y-dimension. Used switching 

technique is wormhole. The destinations are uniformly distributed across an eight-

to-eight mesh network. All simulations ran under Poisson traffic. It is noteworthy 

that Poisson traffic model and uniformly destination distribution is considered to 

be non-realistic. However, there are no other realistic traffic models proposed for 

NoC, since it is not known yet how future SoCs will behave [44].  

Each simulation ran for a 3000 cycles for a warm-up period and other 30 000 

cycles for performance data collection. The latency of a packet begins when the 

message header is injected into the network at the source node and continues until 
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the last unit of information is received at the destination node. The communication 

load is given in terms of a percentage of the network capacity.  

 

 

Figure 15 Visual graphic of a network in ns-2 

 

Figure 15 shows the connection of routers on NAM. Since, traffic generators are 

attached to routers and they do not have graphical representation in ns-2 we 

decided not to show source nodes. Actually every node has one source, where 

packets are generated. In NoC router and source are connected via links and 

similar to every link in simulator they have one cycle propagation delay. So we 

simulated a link between a router and a source such that every packet sent by 

source reaches the router after one cycle. 

These packets that reach their destinations are ejected from network immediately. 

Thus, we do not consider buffer size in source nodes and while the buffer size in 

routers is restricted the source nodes are considered to have unlimited buffer size. 
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3.3.1 Effect of Network Size 

Figures 16 and 17 illustrate the effect of network size on average message latency 

and throughput respectively. The message size is 32 flits and the buffer depth is 4 

flits per input channel. The performance is evaluated for 4x4, 8x8 and 16x16 

networks. 

 

 

Figure 16 Average latency under different network sizes 

 

As the network size increases the average message latency of messages also 

increases (Fig. 16). As destinations are uniformly distributed which means that 

every node has equal probability to become destination, with the increase of 

network size the distance between nodes increases. Thus, the messages have to 

spend more cycles in a network until they reach their destinations.  

The throughput of a network with bigger sizes saturates earlier than the 4x4 

network (Fig. 17). The increase of network sizes causes more messages to be 

injected into the network. From the other side message will spend more time in a 
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network thus blocking the resources. In 4x4 networks the nodes take advantage of 

their proximity which allows messages to reach their destinations quickly and thus 

free the allocated resources.  

 

 

Figure 17 Throughput under different network sizes 

 

 

3.3.2 Effect of Packet Size 

The effect of packet size on network performance is presented in Figures 18 and 

19. Here, the network size is 8x8, and the buffer depth per input channel is 4 flits. 

The number of VCs per physical channel is one. The performance is evaluated for 

message sizes that are 10, 16, 32 and 64 flits long. 
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Figure 18 Average latency under different packet sizes 

 

The average latency of messages increases as the message size increase (Fig.15). 

This is natural, since the messages with bigger sizes spend more cycles in a 

network. However, the throughput does not change with the message size (Fig.16). 

As it was indicated before the injection rate also depends on message size. Thus, 

when the message size increases the injection rate decreases. This causes every 

node to send the same amount of flits independent of message size. We consider 

that the network throughput does not depend on message size but rather on the 

number of flits that are injected.  
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Figure 19 Throughput under different packet sizes 

 

 

3.3.3 Effect of Buffer Depth  

Figures 20 and 21 represent the effect of buffer depth on average latency and 

throughput respectively. The network size is 8x8 and the message size is 32 flits. 

The buffer depth changes from 4 to 8 and 16. 
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Figure 20 Average latency under different buffer depth 

 

As it can be seen from Figure 20 increase in buffer depth increases the message 

latency after the saturation point. It was indicated that the message latency begins 

when the header flit is injected into the network. The source node sends a flit to the 

router as soon as it finds out that the there is a free buffer available in uploading 

buffers. At that time the message’s latency begins. As the buffer size increases, 

more flits can be injected into the network. However, there is a contention for 

resources in the router and these flits will have to wait longer in the router after 

being injected into the network. The bigger the buffer depth, the earlier the 

message is injected into the network and thus, the earlier its latency begins.  
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Figure 21 Throughput under different buffer depth 

 

However, increasing the buffer depth slightly increases the throughput. Although 

flits that are newly injected into the network wait longer thus increasing the 

message latency, once they get the grant for the channel requested they path 

quickly to the next router. This releases the resources that are held by these 

messages. On the other hand the increase in throughput is not significant. In [2] it 

was also indicated that if the message size is small and wormhole switching is 

used, the increase in performance through increased buffer size is insignificant.  

We consider that trying to achieve better performance by increasing the buffer 

depth will not give any advantages, since the improvement is small at the cost of 

bigger buffers. Buffer depth seriously influences the overall area. In [11] it was 

suggested avoid big buffers, since the increase of the buffer size at each input 

channel from 2 to 3 words, increases the router area of 4x4 NoC by 30%. 
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3.3.4 Effect of VC Size 

Figures 22 and 23 show the results of the simulation, where different VC sizes per 

physical channel were used. Here, the packet size is 32 flits and the buffer depth 

per virtual channel is 4 flits. The performance is evaluated under VC sizes of 1, 2, 

4 and 8. 

 

 

Figure 22 Average latency under different VC sizes 

 

The average latency of packets is high when we use solely a channel without 

virtual channels (1 VC). The throughput rapidly decreases as the communication 

load increases. This is due to inefficient usage of channels, since a flit reserves it 

for entire packet duration. The best results are obtained for 4 VCs per physical 

channel, where both average latency and throughput present high performance. 

This result is consistent with researches in [25] [22], where four VCs are showed to 

be the optimal size. 8 VCs per physical channel yield good throughput but the 

latency increases after saturation point. This confirms the results presented in [52], 

where the author asserts that the latency increases after 8 VCs per physical 

channel. This rapid increase in latency may be due to complexity in the router that 
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is introduced by large VC numbers, as the router will have to arbitrate among 

many requestors competing for one physical channel. Thus, number of VCs is 

constrained to four, since it yields a balance between high throughput, low latency, 

and conservation of silicon area [25]. Since we consider that the message latency 

starts upon its injection into the network the graphs show the latency to be constant 

after saturation point. However, if we would consider also the time the message 

spends in source buffers before being injected into the network, the graphs would 

show that the latency is going upward. The increase in message latency is due to 

the fact that as the injection load increases till the accepted traffic limit, there will 

be more message contention. 

 

Figure 23 Throughput under different VC sizes 

 

As it can be seen from Figure 23 while the router that does not make use of any 

VCs enjoys the throughput of 30% capacity, the router with 2VCs and 4VCs 

increase the throughput up to 50% and 70% respectively.  
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CHAPTER 4 

 

FAULT-TOLERANT ROUTING ALGORITHMS AND 
SIMULATION RESULTS 

 

 

 

In this chapter we present the simulation results of the f-Cube4 fault-tolerant 

routing algorithm and our own, Shared Buffer (SB), algorithm. Some comparison 

between these algorithms is presented. Various kinds of fault situations such as 

non-overlapping fault-rings, fault-chains and overlapping fault-rings are induced 

and algorithm performances are evaluated. Besides, the faults are categorized 

according to their localization in order to see the performance of a network under 

random and localized faults. 

 

 

4.1 Fault Model 

 

We consider node and link faults.  A node failure makes all links incident on it 

faulty. If all links of a node is faulty then this node is marked as faulty. However, if 

a node has faulty output link it marks its neighbor to which the link is incident, as 

faulty, even if the node is not faulty.  Only non-faulty nodes generate messages. It 

is also considered that the messages are destined to non-faulty nodes. These are 

general assumptions used in literature. 
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Presented fault-tolerant algorithms work with local fault information. Thus, every 

node knows only the status of its neighboring nodes. As it was indicated in Chapter 

2, global fault information requires additional storage for routing tables and leads 

to synchronization problems.  

Faulty nodes and links form fault regions. We use the block fault model 

(rectangular faults), which requires a fault to belong to only one fault block. Under 

this fault model a fault-free node has faulty links incident on it in at most one 

dimension. Since fault-tolerant algorithms are applicable in only connected 

networks, where every non-faulty node has a path to every other non-faulty node, 

the block faults that touch both row boundaries or column boundaries of a network, 

thus disconnecting the network, are not considered.  However, the algorithm can be 

applied to each connected sub network. 

The concept of fault ring (f-ring) that was introduces by [34] is used. Here, non-

faulty nodes around the region are connected to form a ring. If the faults are on the 

boundary of a network, non-faulty components cannot form a ring, thus non-faulty 

components connect to form an f-chain. The nodes at which f-chain touches the 

boundaries of the network are end-nodes. We require f-ring to be of rectangular 

shape. The fault-free node is in the f-ring if it is at most two hops away from a 

faulty node. Since network may contain several f-rings and if these f-rings share 

physical channels they are called overlapping f-rings. In our algorithm we consider 

f-rings, f-chains and overlapping f-rings of rectangular shape.  

 

4.1.1 Formation of f-rings and f-chains 

It is assumed that the nodes have self testing mechanisms that are variously 

presented in literature [54]. Each node monitors links incident on it.  If a node x 

becomes faulty, each of its neighbors conclude that the link connecting it to x is 

faulty. Since we consider block faults each node can have faulty links in at most 

one dimension. Thus if a node has faulty links in more than one dimension, it 

marks itself as faulty and stops sending status signals to its neighbors.   
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Nodes on an f-ring can be in one of the eight possible positions: North West (NW) 

corner, North, North East (NE) corner, East, South East (SE) corner, South, South 

West (SW) corner, and West. Nodes determine their positions on an f-ring as 

follows: 

1- If a node has faulty neighbors in first dimension (DIM 0, in our case it is x-

dimension), it sends a message with information on its faulty neighbors to 

each of its non-faulty neighbors in DIM 1 (in our case y-dimension), and 

vice versa. 

2-   Each node determines its position according to received messages and its 

own link status. 

Thus the f-ring is formed by using local fault information. The f-chain is formed in 

the same manner. The only difference is the end-node. However, only end-nodes 

can know that they are on the f-chain, while others consider themselves on f-ring 

since the algorithm is the same for both f-rings and f-chains.  In the case of 

overlapping f-rings nodes will have to distinguish between two distinct messages. 

As a node can have faulty neighbors in at most one dimension, the fault 

information from two different neighbors that are on the same dimension can be 

categorized and split into two distinct f-rings. 

As every other approach this approach relies on the absence of faults during the 

interval in which the system state is being updated. This interval is bounded by the 

network diameter.   

 

 

4.2 f-Cube4 Algorithm 

 

The f-Cube4 algorithm was briefly described in Chapter 2. It is built on XY-

routing algorithm. The f-Cube4 requires 2 Virtual Channels (2VCs) per physical 

channel for non-overlapping f-rings. Here, messages are divided into row and 
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column messages. These messages that are still taking their row hops are either 

West East (WE) or East West (EW) messages, and these that have completed their 

row hops and passed to column hops are either South North (SN) or North South 

(NS) messages. Row messages may become column messages while vice versa is 

not true.  VCs are divided into two sets where c0 is used by row messages and c1 is 

used by column messages. 

According to the f-Cube4 algorithm that is used for non-overlapping f-rings a 

direction of a NS message’s that encounters fault (misrouted) is set clockwise and 

misrouted SN message’s direction is set counter-clockwise. A misrouted WE 

message’s direction is set clockwise (respectively counter-clockwise) if the 

destination is a row above (respectively row below) the current host. A misrouted 

EW message’s direction is set clockwise (respectively counter-clockwise) if the 

destination is row below (respectively above) the current host.  Either orientation 

can be chosen when the host is on the same row with destination. The algorithm 

uses the term e-cube hop, which is defined by [34] as a path that lies on a 

message’s e-cube path. Recall that XY-routing algorithm is also called e-cube 

algorithm (see Chapter 2), thus the e-cube path is the natural path that should be 

used by a message under fault-free conditions.   

In f-Cube4 algorithm messages are routed around the fault region in such a manner 

that the WE messages always use the west boundaries of f-ring while EW 

messages use east boundaries. NS and SN messages move in opposite direction 

and never share the same physical channel. However, when f-rings overlap, the 

East (South) boundary of one f-ring becomes a West (North) boundary of another 

one. Thus, the physical channels used by both row and column messages are no 

longer disjoint. As a solution two more VCs per physical channel are provided, 

overall of four VCs per channel. Now WE, EW, NS, and SN messages use their 

own VCs c0, c1, c2, c3 respectively.   
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4.2.1 Performance Evaluation of f-Cube4 Algorithm 

We have simulated a 16x16 mesh, since radix 16 is generally used in studies [34]. 

The network implements f-Cube4 routing algorithm. The implemented router 

model is the one presented in [52]. Since the f-Cube algorithm requires at least four 

VCs, every physical channel has four VCs. Injection rate is normalized. The 

latency of a packet begins when the message header is injected into the network at 

the source node and continues until the last unit of information is received at the 

destination node.  The simulation results obtained in Chapter 3 shows that the 

packet size does not influence the throughput but only increases the average 

message latency. Hence, we decided to keep the message size small, 5 flits. It was 

also shown that the improvement is small when increasing the buffer depth. As we 

are trying to minimize the buffer size we chose it to be as small as possible and 

keep it as 4 flits per VC. Every simulation runs for 3000 cycles for warm up period 

and for 30 000 cycles for information gathering. 

 1%, 5% and 7% total link faults were injected randomly to the different places of a 

network. For the 1% case we have randomly chosen a node and a link to be faulty. 

Every node has four links incident on it, thus totally 5 links of 480 links are faulty. 

For the 5% fault case, four nodes and eight links are set as faulty, and for 7% fault 

case four nodes and 16 links are set as faulty. The faults are constructed in such 

that the f-rings, overlapping f-rings and f-chains are also covered. Figure 24 

illustrates average latency obtained from simulation, and Figure 25 shows the 

throughput.  
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Figure 24 Average latency of f-Cube4 under various fault patterns 

 

 

Figure 25 Throughput of f-Cube4 under various fault patterns 

 

Since injection of random faults into different parts of a network increases the 

probability that the message encounters multiple faults, the performance degrades 

rapidly with the increase of load. The message average latency reaches up to 800 

Cycles. In order to see the difference with the faults which occur randomly with 

those which are localized, we have injected multiple faults that are gathered in one 

place. Figures 26 and 27 present the results obtained for one non-overlapping f-
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ring containing 9 nodes and 2 overlapping f-rings each containing 6 nodes. Both of 

them are placed into the middle of a network, which is the most heavily loaded 

part. 

 

 

Figure 26 Average latency of f-Cube4 under localized fault sets 

 

 

Figure 27 Throughput of f-Cube4 under localized fault sets 

 

Performance of the f-Cube4 algorithm under the localized fault set is better in 

compared to random faults even though the overall link faults are more than these 

injected randomly (7.5% and 10%). This is because faults are localized and these 
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messages whose path does have to pass through the faulty components have very 

small latency thus decreasing the overall message latency. We believe that in 

reality the fault that is localized as a node failure affects others thus forms an f-ring 

in that place.  

Naturally the average message latency of network with overlapping f-ring is higher 

than the one that contains non-overlapping f-ring (Fig.3). Routing around one f-

ring take less time, while in overlapping f-ring a message has high probability to 

encounter a fault twice. However, the difference in message latency is 

insignificant. This is also valid for throughput. The reason may be that although 

overall faulty node number is bigger the overlapping f-ring contains a small 

amount of faulty nodes (6x6) in each f-ring, while non-overlapping f-ring contains 

9 nodes in one f-ring.  

 

 

4.3 Shared Buffer Algorithm 

 

In a general router model presented in Chapter 3, edge buffers are used. Thus when 

the link fails buffers associated with it are also considered as faulty. Despite the 

fact that VCs are called channels, indeed they are normal buffers. Fault tolerance 

requires many buffers to be embedded into routers, as misrouting around the faulty 

regions leads to channel dependency thus creating deadlocks. Since it is not known 

when the fault occurs and from what side, every physical channel has equal size of 

VCs. However, when that physical channel fails, all these VCs remain idle. When 

a link is faulty it does not necessarily mean that associated buffers are also faulty.  

We propose to make use of central VCs. This can be done by placing VCs in the 

middle of a router rather than assigning them to each input. Every input controller 

(IC) can see every VC. In fault free conditions ICs use their own set of buffers. 

However, when fault occurs some buffers remain idle. Thus, they can be allocated 

dynamically and be useful in avoiding fault regions. In order to see how useful it 
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can be, we have implemented the central buffer mechanism in the f-Cube4 

algorithm, thus reducing the number of VCs to two that is sufficient for both non-

overlapping and overlapping f-rings. 

While implementing f-Cube4 algorithm we observed that the channels are 

significantly underutilized. This algorithm provides four VCs per physical channel. 

However, under fault free condition only one of them is used. Even in a faulty 

environment NS (WE) messages will never use their SN (EW) VCs and vice versa, 

since messages are not allowed to move backward, except the situations, when a 

message encounters f-chains. It is noteworthy that the NS and SN messages never 

encounter an f-chain on North and South boundaries of a network, while WE and 

EW messages never encounter it on West and East boundaries.  

Figure 28 shows the movement of messages around overlapping f-rings. Since WE 

and EW messages share channels on y-axis (Figure 28a) they may block each other 

when multiple overlapping f-rings occur, if we use two VCs per physical channel. 

The similar condition is valid for column messages (Figure 28b). In order to 

separate movement of every message type, f-Cube algorithm proposes four VCs 

per physical channel. Thus, channels used by every message are disjoint, allowing 

messages to move in every direction around the f-ring and not causing deadlock. 
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Figure 28 Overlapping f-rings sharing y-axis and x-axis 
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However, when closely observed it can be seen that row messages share channels 

only on y-axis and column messages on x-axis. Thus, messages need additional 

VCs only on their shared channels. This requires VC number to be different for 

particular physical channels. Due to unpredictable nature of fault occurrences, four 

VCs are used as a guarantee. When central buffers are used there are always free 

buffers around f-rings. They can be dynamically allocated, thus eliminating the 

need for additional VCs. 

In our shared buffer (SB) algorithm NS and WE messages use shared buffers that 

are provided by those nodes that have faulty links. As it was described in our fault 

model, every node knows its position over f-ring. For blocked fault model a 

message can have faulty links in at most one dimension. If a node has a faulty link 

on its West or East side it divides VCs associated to that link to equal numbers 

(depends on VC number per physical channel), and notifies its North and South 

neighbors that it is sharing a VC. This can be done by sending a message 

containing the VC ID. The same is done if a fault is either on North or South of a 

node. In this case a node notifies its West and East neighbors. Thus every node that 

is on the f-ring contains shared buffers, except for the corner nodes. For this 

algorithm at least two VCs are needed, so that for one link failure in one 

dimension, a node can give one shared VC for each neighbor from the other 

dimension.  

Row messages use c0 and column messages use c1.  The movement of EW and SN 

messages is the same as in f-Cube4 algorithm. However, WE and NS messages use 

shared VCs in particular places. Since WE messages move in opposite direction to 

EW messages when an e-hop is provided they never share a channel. But, when a 

row message encounters a fault it has to turn to another dimension (y-axis in our 

case). In order to escape channel dependency WE messages look further to the 

position of a next node on an f-ring. If it is a corner node that indicates an end of 

an f-ring, it allocates the normal VC (c0), otherwise it requests a shared VC that is 

provided by the next node. As long as a WE message enters shared buffers it 

moves along until it meets a corner node. As the corner node assures that its e-hop 
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is available from that position, WE message again uses the normal VC. The same 

concept is used for NS messages that enter shared buffers only when they have to 

move along the x-dimension. However, the additional constraint used for NS 

messages is that they move along shared buffers until they meet a corner node or 

until a y-hop is available. Here, we define a y-hop is a hop that the message was to 

move before it encounter first fault. Since in normal condition NS messages move 

only on y-axis, this constraint is required in order to ensure deadlock-safety. Now, 

the messages can move in any direction along the f-ring provided that the nodes 

around the f-ring share at least two VCs - one for a direction and other in the 

opposite direction. 

The routing algorithm is deadlock free. Row messages may turn into column 

messages after a few hops, but column messages never turn into row messages. 

Since row messages use only class 0 virtual channels and column messages use 

only class 1 virtual channels, there cannot be deadlock involving both classes of 

virtual channels. Therefore, if there is a deadlock, then it is among the channels of 

class 0 or class 1 only.  

Class 0 channels are used only by WE and EW messages. When they move on the 

x-axis they use disjoint set of physical channels. When a WE message encounters a 

fault it allocates a shared buffer that is used only by the WE message on the y-axis. 

The only time a message uses VC of class 0 in a misrouted status is when it meets 

corner nodes that do not have shared buffers. However, corner nodes indicate that 

the e-hop of a message is available or that there are other shared VCs if the rings 

overlap thus, WE messages eventually free the corner channels and cannot block 

EW messages. 

Class 1 channels are used by NS and SN messages. When they move on the y-axis 

their directions are always opposite, thus they use disjoint set of channels. When an 

NS message encounters a fault it moves along the shared buffers, which are used 

only by NS messages along the x-axis. The only time the NS message uses VC of 

class 1 in misrouted form is when it passes to corner nodes and while it is moving 

along the y-axis. However, as the y-axis is always free for NS messages and cannot 
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be used by SN messages that move in opposite direction, the corner nodes are 

eventually freed. Thus NS messages cannot block SN messages and vice versa.  

 

4.3.1 Performance Evaluation of SB algorithm 

The same set of faults (1%, 5% and 7%) was injected into the network simulating 

the SB algorithm. The number of VCs per physical channel is two. The SB 

algorithm achieves the same throughput as an f-Cube4 algorithm. The performance 

of SB algorithm is shown Figures 29-32. The average message latency is 

significantly decreased. It will be shown later that even under the fault-free 

condition f-Cube4 has much bigger average message latency. 

 

 

Figure 29 Average latency of SB algorithm under random fault 
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Figure 30 Throughput of SB algorithm under random faults 

 

In 7% randomly placed faults SB reaches maximum of 540 Cycles average 

message latency, while it reaches 800 in f-Cube4 algorithm. The throughput is 

almost the same as f-Cube4 algorithm. This is explainable. While providing four 

VCs per physical channel f-Cube4 restricts their usage, so that only particular 

message types can allocate them. However, every node has its own internal traffic 

generator, which is also provided with these four VCs. Since a traffic generator 

sends a message from its internal queue to VCs as soon as they become free, the 

increase in injection rate always keeps these internal VCs full with messages. As 

there are four internal VCs there is high probability that one of them always has 

highest priority in allocating the VC that was also requested by an incoming 

message. Thus, a message spends several cycles (depends on message size in flits) 

in every router waiting for a requested VC to be available. This problem of 

multiplexing multiple VCs over one physical channel reduces in the SB algorithm, 

thus reducing the message latency. However, the throughput remains the same, 

since the router using the f-Cube4 algorithm sends the same amount of flits every 

cycle as in SB routers. 
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Figure 31 Average latency of SB algorithm under localized faults 

 

 

Figure 32 Throughput of SB algorithm under localized faults 

 

In order to see what can be achieved by using the same number of VCs that were 

used in f-Cube4 algorithm we added two more VCs to the SB algorithm. Here, c0 

and c1 are used by row messages, and c2 and c3 are used by column messages.   

This may look similar to f-Cube4 algorithm. However, in f-Cube4 an incoming 

message can request only one VC according to its type. In SB with four VCs an 

incoming message can request either of the two VCs, thus reducing the blocked 

message number in a router. 
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The simulation result for SB4 algorithm is presented in Figures 33-36. Since SB4 

algorithm provides messages with alternative VCs the network saturates much 

slower than the previous two algorithms. The average message latency reaches up 

to 450 Cycles under 7% random faults. This is nearly the half of the average 

latency that is achieved by f-Cube4 algorithm. The throughput is almost 1.5 times 

better than SB and f-Cube4 algorithms. This indicates that SB algorithm can 

achieve much better performance when using the same number of VCs that is used 

by f-Cube4 algorithm. 

 

 

Figure 33 Average latency of SB with 4 VCs under random faults 
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Figure 34 Throughput of SB with 4 VCs under random faults 

 

 

Figure 35 Average latency of SB with 4 VCs under local faults 
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Figure 36 Throughput of SB with 4 VCs under local faults 

 

However, in Figure 35 we can observe that the latency of messages in SB4 

algorithm under overlapping f-rings reaches up the latency of SB algorithm. Since 

in these parts where the f-rings overlap the only one physical channel is given as an 

option, using two VCs per physical channel increases the contention for that 

particular channel. This is due to additional shared buffers that also content for 

resources, introducing the problem of multiplexing of VCs over one physical 

channel. That may be the reason of an increase in message latency. But the 

throughput is still better compared to f-Cube4 and SB algorithm since additional 

VCs releases the blocked messages.  

 

 

4.4 General view on algorithms 
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tolerance is to keep the speed and compactness of deterministic algorithms (XY-

algorithm), while being able to tolerate any number of faults with any kind of 

shapes.   

 

 

Figure 37 Average latency of algorithms under fault free conditions 
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Figure 38 Throughput of algorithms under fault free conditions 

 

Figures 37 and 38 illustrate the performance achieved by algorithms under fault-

free conditions. The throughput is the same for XY, f-Cube4 and SB algorithms. 

The reason is that the router in all three cases sends equal number of flits every 

cycle. However the latencies differ. The highest latency is achieved by f-Cube4 

algorithm. As it was explained before, the reason is the usage of more VCs per 

physical channels, while providing only with one choice for VC request according 

to message type.  The lowest message latency and highest throughput is achieved 

by SB that uses 4 VCs. That is because it provides with alternative VCs, thus 

releasing blocked messages in every router.  

Figures 39 and 40 present the performance of algorithms in the presence of single 
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single f-ring and some of them form overlapping f-rings. Message injection rates 

are chosen from the results obtained from the performance evaluation under fault-

free conditions that is illustrated in Figures 37 and 38. Since at load 0.2 the 

algorithms perform below saturation point, by inducing faulty nodes we can 

observe the degradation level of a network. Load 0.6 is chosen because of SB4 

algorithm which saturates only when the load exceeds 0.6 in fault-free network.  
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Figure 39 Average latency as a function of node failures 

 

 

Figure 40 Throughput as a function of node failures 

 

From the figures it can be seen that the SB4 algorithm performs well when the 

applied load is 0.2. It does not degrade even after injection of 20 faulty nodes. This 

is due to the saturation point of this algorithm which is far above 0.2.  
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We observed that the shape of an f-ring greatly influences the performance of the 

network. The performance degrades when the multiple faults mostly span x-axis 

rather than y-axis, since WE and EW messages can turn into NS and SN messages 

thus encounter a faulty block twice. Besides, NS and SN messages have to make 

long path in order to reach their destination after being misrouted. That is the 

reason of unstability in lines shown in Figures 39 and 40, as we are changing the 

shape of a faulty region by adding faulty nodes either on x-axis or y-axis. It is also 

observed that a single large faulty-block degrades the network performance greatly 

rather than the overlapping f-ring which consists of smaller faulty set. The peak 

that occurred in a graph is a non-overlapping f-ring containing 12 nodes and 

mostly spans x-axis, thus roughly increasing message latency and decreasing 

network throughput. The other faulty regions are taken either as overlapping f-

rings each containing smaller amount of faulty nodes or non-overlapping f-ring 

spanning y-axis. 

 

4.4.1 Efficiency level of buffer utilization  

As it was mention before f-Cube4 algorithm significantly underutilizes VCs. In 

order to understand the buffer utilization we put counters into every VC of a router. 

The router was chosen from the middle of a network, which is the most overloaded 

part of a network [18]. Since we are considering the worst case the applied load 

was maximum, i.e. 1. In a fault-free network f-Cube4 utilizes only 40% of given 

VCs. SB and SB4 algorithms make use of 60% of the given VCs.  

To evaluate the buffer utilization we put the overlapping f-ring into the middle of a 

network and applied the maximum load. However the VC utilization of messages 

depends on the position of a router. That’s why we put counters into VC’s of 

several routers: to the routers that are located on the shared path where two f-rings 

overlap, to the routers on the West, South, East and North of an f-ring.  

On the shared path between two f-rings the high buffer utilization is shown by SB4 

algorithm that periodically allocates 80% VCs placed in routers, while SB and f-
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Cube4 algorithm make use of 70% and 45% respectively. North and South parts of 

an f-ring showed to be the most overloaded parts of an f-ring and hence f-Cube4 

utilizes up to 55% VCs while SB and SB4 utilizes 90%. 

SB algorithm is seen to be more efficient in terms of buffer utilization, since it 

efficiently uses these buffers that are given, dynamically allocating them according 

to its needs. On the other hand, f-Cube4 algorithm rarely utilizes even the half of 

the given VCs.  

4.4.2 Comparison of algorithms 

Both SB and f-Cube4 algorithms have the same routing concept. However, f-

Cube4 provides every physical channel with four VCs in order to be able to 

tolerate overlapping f-rings. But many of these VCs are hardly utilized even at 

maximum load. Besides, additional VCs are never utilized under fault-free 

conditions. We decided to look more optimistically and consider that the VCs 

associated with faulty link are not faulty and make use of these idle VCs around 

the fault region. This requires every VC to be seen by every input controller and 

hence, increases the wiring complexity in a router. However, we consider that the 

increase in wiring complexity is tolerable since we reduce the number of VCs and 

utilize them at full capacity. The same performance can be achieved with small 

amount of VCs. The simulation results show that the performance improves 

significantly when adding two more VCs to SB algorithm. In addition to 

improvements in performance SB4 algorithm fully utilizes VCs at hand, thus rarely 

keeping them idle. Table 1 shows the similarities and differences of algorithms. 

The minimum and maximum throughput and average latency of algorithms under 

various conditions are given (Teble 1). Here, minimum latency and throughput is 

the performance results obtained with minimum load, while the maximum 

throughput and latency indicate the results obtained when the applied load is the 

maximum. Maximum load is the maximum sustainable throughput when a network 

is loaded with uniform random traffic. The table shows the general view on 

performances of algorithms. SB4 algorithm degrades much slower than the other 
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two algorithms. Besides, SB with two VCs has smaller average latency in 

compared to f-Cube4 algorithm. 

In [34] the simulation of f-Cube4 was conducted by giving the physical channel 

arbitrary number of VC, up to eight, that were implemented as a free pool. 

However, the free pools belong only to one physical channel, which means that the 

other links cannot make use of these VCs that belong to faulty links. We do not 

implement a router with such huge amount of VCs per physical channel, since our 

goal is to decrease buffer size required for every router. 

 

Algorithms f-Cube4 SB SB4 
Fault model Convex 

(f-rings, f-chains, 
overlapping f-

rings) 

Convex 
(f-rings, f-

chains, 
overlapping f-

rings) 

Convex 
(f-rings, f-chains, 

overlapping f-
rings) 

Routing technique XY-routing XY-routing XY-routing 
Buffer utilization 40%-55% 60%-90% 60%-90% 
Min-max throughput 
under fault free 
condition (in 
percentage) 

20.5%-91.12% 20.43%-91.12% 49%-91.2% 

Min-max average 
latency under fault free 
condition (in cycles) 

76.5-471.5 76.5-312.6 64.2-238.7 

Min-max throughput 
under random faults 
(7% faults, in 
percentage) 

9.5%-73.7% 9.5%-73.7% 21.8%-91.15% 

Min-max avg. latency 
under random faults 
(7% faults, in cycles) 

377.5-777 291.7-528.9 77-456 

Min-max throughput 
under localized faults 
(10% faults, in 
percentage) 

14.2%-91.2% 13.97%-91.2% 23.5%-91.2% 

Min-max avg. latency 
under localized faults 
(10% faults, in cycles) 

94.7-633.7 93.9-424.9 68.7-451.5 

Table 1 Comparison of fault-tolerant algorithms 
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As our algorithm is dependent on VCs of failed links, it may look like we are not 

considering the buffer failures. However, fault-tolerant algorithms are generally 

proposed to be used as escape channels for adaptive algorithms. Since adaptive 

algorithms also require a big number of VCs the link failure gives a lot more 

shared buffers than the fault-tolerant algorithm itself. It is not likely that all these 

buffers will fail at the same time. 
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CHAPTER 5 

 
 

  CONCLUSION AND FUTURE WORK 
 

 

 

In this thesis we mainly concentrated on fault-tolerant routing in NoC. We 

implemented the well known fault-tolerant f-Cube4 algorithm, which considers 

edge buffers. When the edge buffers are implemented in a router only one input 

controller can see these VC that are incident on it. The failure of a physical link 

automatically disables VCs incident on it. However fault-tolerance requires large 

buffer sizes, thus a link failure disables large amount of buffers leading to buffer 

underutilization. This contradicts with the requirements of NoC that limits the 

buffer utilization. As a solution we proposed to implement VCs as a central pool in 

the middle of a router, so that every input controller can see them. Thus VCs are 

dynamically allocated when the link to which the VC associates is faulty. Besides, 

we proposed our own algorithm, SB, which requires only 2 VCs per physical 

channel under fault-free conditions and dynamically allocates idle VCs when the 

fault occurs. Simulation results showed that two VCs are enough to escape f-rings, 

f-chains and overlapping-rings of rectangular shape. 

The implementation of VC as a central pool significantly improves the buffer 

utilization. While f-Cube4 algorithm uses only 55% of given buffers SB algorithm 

uses up to 90%. With the right management of buffer utilization the performance 

of a network can be significantly improved. However, the implementation of 

central buffers may increase the wiring complexity in a router. We consider that 
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central buffers can be implemented in those routers where small amount of VCs 

are needed, since the wiring complexity increases with the number of VCs.  

In order to be able to tolerate faults our algorithm requires at least 2 VCs to be 

spare so that the router can share them with two neighbors from the other 

dimension. Besides, SB algorithm still marks non-faulty nodes as faulty in order to 

get f-rings of rectangular shape.  

The concave (non-rectangular) faulty blocks are left as a future work, since they 

are more complicated and need extensive work. All our simulations use Poisson-

distributed injection rate and destinations are uniformly distributed, since no other 

realistic traffic models were proposed. Investigation of realistic traffic models for 

NoC is still an open problem and could be a good area of research. It is not easy, 

however, since it requires to be deepened on specifics of particular applications. 
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