

COST-EFFECTIVE FAULT TOLERANT ROUTING IN
NETWORKS ON CHIP

VENERA ADANOVA

SEPTEMBER 2008

COST-EFFECTIVE FAULT TOLERANT ROUTING IN
NETWORKS ON CHIP

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

VENERA ADANOVA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2008

Approval of the thesis

COST-EFFECTIVE FAULT TOLERANT ROUTING IN

NETWORKS ON CHIP

submitted by Venera Adanova in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Science _____________

Prof. Dr. Volkan Atalay
Head of Department, Computer Engineering _____________

Assoc.Prof. Dr. Ali Hikmet Dogru
Supervisor, Computer Engineering Department _____________

Examining Committee Members

Prof.Dr.Müslim Bozyigit
Computer Engineering Dept., METU ___________________

Assoc.Prof. Dr. Ali Hikmet Doğru
Computer Engineering Dept., METU ___________________

Prof.Dr.Adnan Yazıcı
Computer Engineering Dept., METU ___________________

Assoc.Prof.Dr.Ahmet Cosar
Computer Engineering Dept., METU ___________________

Dr.Sevgi Özkan
Graduate School of Informatics, METU ___________________

Date:

iii

PLAGIARISM

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material
and results that are not original to this work.

Name, Last name: Venera Adanova

Signature :

iv

ABSTRACT

COST-EFFECTIVE FAULT TOLERANT ROUTING IN
NETWORKS ON CHIPS

Adanova, Venera

M.Sc., Department of Computer Engineering

 Supervisor: Assoc.Prof. Dr. Ali Hikmet Doğru

September 2008, 87 pages

Growing complexity of Systems on Chip (SoC) introduces interconnection

problems. As a solution for communication bottleneck the new paradigm,

Networks on Chip (NoC), has been proposed. Along with high performance and

reliability, NoC brings in area and energy constraints. In this thesis we mainly

concentrate on keeping communication-centric design environment fault-tolerant

while considering area overhead. The previous researches suggest the adoption

solution for fault-tolerance from multiprocessor architectures. However,

multiprocessor architectures have excessive reliance on buffering leading to costly

solutions. We propose to reconsider general router model by introducing central

buffers which reduces buffer size. Besides, we offer a new fault-tolerant routing

algorithm which effectively utilizes buffers at hand without additional buffers out

of detriment to performance.

Keywords: Networks on Chip, Fault-Tolerant Routing, Wormhole Routing

v

ÖZ

YONGALARDA MALİYETİ UYGUN HATAYA DAYANIKLI
YÖNLENDİRME AĞI

Adanova, Venera

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ali Hikmet Doğru

Eylül 2008, 87 sayfa

Yonga Üstü Sistem'in (YÜS) artan karmaşıklığı bağlantı sorunlarına yol

açmaktadır.İletişimdeki bu darboğaza çözüm olarak yeni bir model olan Yonga

Üstü İletişim Ağ (YÜİA) ileri sürülmüştür. Yüksek performans ve güvenilirliği

yanında, YÜİA alan ve enerji kısıtlaması kazandırmaktadır. Bu tezde esas olarak,

alanı sabit tutmayı gözetirken, iletişim merkezli tasarım çevresini hataya dayanıklı

olarak tutmaya odaklandık. Önceki araştırmalar, çokişlemci mimarilerden hataya

dayanıklı çözümler uyarlamayı öneriyorlar. Fakat, çoğu zaman çok işlemci

mimariler pahalı çözümlere yol açan tampon belleklemeye dayanırlar. Tampon

bellek boyutunu küçülten merkezi tampon bellekleri tanıtarak genel yönlendirici

modeli yeniden ele almayı öneriyoruz. Bunun yanında, performansı düşürmeyen ek

tampon belleksiz, eldeki tampon belleklerden etkili biçimde yararlanan hataya

dayanıklı yeni bir yönlendirici algoritma sunuyoruz.

Anahtar Kelimeler: Yonga Üstü İletişim Ağı, Hataya Dayanıklı Yönlendirme, Solucan
Yönlendirme

vi

DEDICATION

Апама арналат

Dedicated to my mother

vii

ACKNOWLEDGEMENTS

I am deeply grateful to my thesis supervisor, Assoc. Prof. Dr. Ali Hikmet Dogru,

for his guidance, support and encouragement throughout my thesis work.

I would like to thank my friend Rita Ismailova for her invaluable support and

assistance both in my thesis work and in my life.

viii

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ .. v

DEDICATION .. vi

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS.. viii

LIST OF FIGURES .. xi

LIST OF TABLES .. xiii

LIST OF ABBREVIATIONS... xiv

CHAPTERS

1. INTRODUCTION.. 1

2. BACKGROUND ... 5

2.1 NETWORK TOPOLOGY ... 6

2.1.1 Octagon .. 6

2.1.2 CLICHÉ ... 7

2.1.3 2D Torus .. 8

2.1.4 Tree Architectures ... 10

2.1.5 Comparison of Network Topologies .. 11

2.2 SWITCHING TECHNIQUES ... 12

2.2.1 Circuit Switching ... 12

2.2.2 Packet Switching .. 13

2.2.3 Virtual Cut-Through .. 13

ix

2.2.4 Wormhole Switching .. 14

2.2.5 Virtual Flow Control ... 15

2.2.6 Comparison of Switching Techniques ... 17

2.3 ROUTING ALGORITHMS ... 17

2.3.1 Deadlock, Livelock and Starvation .. 18

2.3.2 Oblivious Routing Algorithms ... 20

2.3.3 Adaptive Routing Algorithms ... 24

2.4 FAULT TOLERANT ROUTING .. 29

2.4.1 Fault Models .. 30

2.4.2 Fault-Tolerant Routing Using SAF and VCT Techniques 31

2.4.3 Fault-Tolerant Routing Using Wormhole Switching Technique 32

2.4.4 Dynamic Recovery ... 37

2.5 TRAFFIC GENERATOR MODELS .. 39

3. NETWORK SIMULATOR AND SIMULATION ANALYSIS 43

3.1 NETWORK SIMULATOR .. 43

3.1.1 Embedded Protocols .. 44

3.2 ROUTER MODEL .. 45

3.3 NETWORK SIMULATION ... 46

3.3.1 Effect of Network Size .. 49

3.3.2 Effect of Packet Size ... 50

3.3.3 Effect of Buffer Depth .. 52

3.3.4 Effect of VC Size .. 55

4. FAULT-TOLERANT ROUTING ALGORITHMS AND SIMULATION

RESULTS .. 57

4.1 FAULT MODEL ... 57

4.1.1 Formation of f-rings and f-chains .. 58

x

4.2 F-CUBE4 ALGORITHM .. 59

4.2.1 Performance Evaluation of f-Cube4 Algorithm 61

4.3 SHARED BUFFER ALGORITHM ... 64

4.3.1 Performance Evaluation of SB algorithm .. 68

4.4 GENERAL VIEW ON ALGORITHMS ... 73

4.4.1 Efficiency level of buffer utilization ... 77

4.4.2 Comparison of algorithms ... 78

5. CONCLUSION AND FUTURE WORK .. 81

REFERENCES ... 83

xi

LIST OF FIGURES

FIGURES

Figure 1 Octagon [22] .. 7

Figure 2 CLICHÉ [22] ... 8

Figure 3 2D Torus [22] .. 9

Figure 4 Folded Torus [22] .. 9

Figure 5 SPIN [22] ... 10

Figure 6 BFT [22] .. 11

Figure 7 Virtual channels ... 16

Figure 8 An example of deadlock [12] ... 19

Figure 9 A possible path from source to destination using 3-phase ROMM on a 2-

dimensional mesh. .. 23

Figure 10 The channels for an adaptive plane Ai . .. 25

Figure 11 (a) 8 possible turns, (b) 4 turns allowed by XY-routing, (c) 2 prohibited

turns in West-First routing [18] ... 28

Figure 12 West-First routing [18] .. 28

Figure 13 f-rings, f-chain and overlapping f-rings ... 34

Figure 14 Canonical virtual channel router architecture [52] 45

Figure 15 Visual graphic of a network in ns-2 ... 48

Figure 16 Average latency under different network sizes .. 49

Figure 17 Throughput under different network sizes ... 50

Figure 18 Average latency under different packet sizes .. 51

Figure 19 Throughput under different packet sizes ... 52

Figure 20 Average latency under different buffer depth .. 53

Figure 21 Throughput under different buffer depth ... 54

Figure 22 Average latency under different VC sizes ... 55

Figure 23 Throughput under different VC sizes .. 56

xii

Figure 24 Average latency of f-Cube4 under various fault patterns 62

Figure 25 Throughput of f-Cube4 under various fault patterns 62

Figure 26 Average latency of f-Cube4 under localized fault sets 63

Figure 27 Throughput of f-Cube4 under localized fault sets 63

Figure 28 Overlapping f-rings sharing y-axis and x-axis ... 65

Figure 29 Average latency of SB algorithm under random fault 68

Figure 30 Throughput of SB algorithm under random faults 69

Figure 31 Average latency of SB algorithm under localized faults 70

Figure 32 Throughput of SB algorithm under localized faults 70

Figure 33 Average latency of SB with 4 VCs under random faults 71

Figure 34 Throughput of SB with 4 VCs under random faults 72

Figure 35 Average latency of SB with 4 VCs under local faults 72

Figure 36 Throughput of SB with 4 VCs under local faults 73

Figure 37 Average latency of algorithms under fault free conditions 74

Figure 38 Throughput of algorithms under fault free conditions 75

Figure 39 Average latency as a function of node failures .. 76

Figure 40 Throughput as a function of node failures ... 76

xiii

LIST OF TABLES

TABLES

Table 1 Comparison of fault-tolerant algorithms .. 79

xiv

LIST OF ABBREVIATIONS

2D Two Dimensional

BFT Butterfly Fat Tree

CLICHÉ Chip-Level Integration of Communicating

Heterogeneous Elements

DIM Dimension

DOR Dimension Ordered Routing

DSP Digital Signal Processor

EW East-West

f-chain Faulty chain

FPGA Field-Programmable Gate Array

f-ring Faulty ring

IC Input Controller

IP Intellectual Property

LAN Local Area Network

MIN Multistage Interconnection Networks

MTBF Mean Time Between Failures

MTTR Mean Time To Repair

NAM Network AniMator

NoC Network on Chip

NS North-South

OTcl Object Tool command line

PE Processing Element

ROMM Randomized, Oblivious, Multi-Phase, Minimal

SAF Store-and-Forward

SB Shared Buffer

xv

SN South-North

SoC System on Chip

SPIN Scalable Programmable Integrated Network

TCP Transmission Control Protocol

UDP User Datagram Protocol

VC Virtual Channel

VCID Virtual Channel Identifier

VCT Virtual Cut-Through

WAN Wide Area Network

WE West-East

1

CHAPTER 1

INTRODUCTION

The rapid advance in semiconductor technology has opened new advantages which

allow placing many resources into single chip. This approach is known as Systems

on Chip (SoC). It is predicted [1] [2] that further improvements in silicon

technology will allow tens or even hundreds of processing elements (PEs) to fit

into single chip. A PE can be a processor core, a DSP core, an FPGA block,

memory block etc. However, as the number of PEs in SoC increases, complexity of

interconnection architecture of the SoC also increases [3]. The up to now solutions

that are used as communication infrastructures (point-to-point, shared-medium

architectures) considered to be not enough for data exchange among PEs because

of growing system size and non-scalable wire delay [4]. Although point-to-point

communication maximizes chip performance, its design complexity takes high

development cost [3]. Widely used shared communication architectures have

limited scalability and poor performance when the number of PEs becomes more

than ten. Besides, general buses have high energy consumption because of its

broadcast data transfer nature. This means that data need great energy in order to

reach each possible receiver [5].

Because of limitations introduced by communication infrastructure, the on chip

design methodology became communication-centric rather than computation-

centric [6]. This led to a new design methodology called Network on Chip (NoC).

NoC efficiently decouples communication infrastructure from computation.

Decoupling gives more structured architecture and modularity. The performance

2

increases due to increase in bandwidth and support of concurrent communication

[4].

Models and techniques used in NoC are generally borrowed from computer

networks and parallel processing. Scalability of computer networks and its steady

success over many years motivate researchers to adopt switch-based (router)

networks and packet-based communication. NoC provides PEs with

communication infrastructure, where PEs are connected to the network via

intelligent switches (routers). The communication is done by message-passing

between PEs. The message may take multiple hops through intermediate routers in

order to reach its destination. Thus, PEs are independent from each other and do

not require global arbiter to access the network enabling highly utilized of network

bandwidth.

NoC is much like interconnection networks for high performance parallel

computers in which each processor is an individual chip [3]. However, NoC have

a number of characteristics that make their design quit different than the inter-chip

(inter-board) networks. Firstly, wires are more abundant [7]. Second, they have

energy and area constraints. This limits the buffer usage since they significantly

impact the area overhead.

The design of NoC requires the consideration over network topology, switching

technique and routing algorithm to be used [8].

The right topology selection is important since it defines the ability of the network to

efficiently disseminate information. Its importance extends when considering the

network latency, throughput, area, fault-tolerance, power consumption, and

designing the routing strategy and mapping cores to the network nodes. It is

desirable to have rich set of predefined topologies that can be reused. This

significantly reduces the time required for system design [9] [10].

While the topology defines only the static aspects of network-based

communication, routing algorithms and switching technique governs the actual

movement of messages along the network. Routing algorithm greatly influences

the network performance and power consumption, since more complicated

3

algorithms require larger design. The switching technique defines when the routing

decision is made and how the packets are transferred between switches. It

introduces trade-offs between area overhead that results from larger buffer sizes

and performance [11].

Along with the described requirements, it is important to keep communication-

centric design environment fault-tolerant and reliable. It must at least guarantee

that the particular fault will not cause the entire chip to fail. The solutions for fault-

tolerant can be adopted from multiprocessor architectures. However, they should

be evaluated in terms of throughput, latency, area overhead, and energy dissipation

[4].

Our research is motivated mainly by the possible prospects of NoC, since it is

considered to be a solution for communication bottleneck. NoC is still in its

infancy. Despite lots of researches conducted in this area, few problems have been

faced and still more left for the future. We mainly focus on fault-tolerance, since

even less researches were conducted on this area. It is not of less importance to

keep system working under various fault patterns. Possibly with degraded

performance. Fault-tolerance requires redundancy in terms of buffers. Since faulty

components introduce additional dependencies between channels while routing

messages around faulty regions, the number of required virtual channels increases.

However, NoC constraints the area used by buffers. Thus, it is desirable to have

fault-tolerant algorithms with less buffer requirements. This situation again leads to

trade-offs between area and performance.

Our main concern is to decrease the number of used virtual channels while

tolerating faults. Since NoC restricts buffer size it is important to be able to take

advantage of buffers that are in hand rather than using additional buffers. This

requires dynamic allocation of these buffers that are idle. Besides, we make some

changes to router organization, i.e. to the location of buffers.

Chapter 2 gives an idea about the main aspects of NoC. Proposed traffic models

are also described briefly in this chapter.

4

Chapter 3 describes the general-purpose simulator, ns-2, and our router model. The

various simulation results on parameterizable aspects of NoC are given and

analyzed.

Chapter 4 deals with our fault-tolerant algorithm and compares the simulation

results with fCube4 algorithm.

Conclusion and future work is presented in Chapter 5.

5

CHAPTER 2

BACKGROUND

NoC consists of routers, buffers and links. While considering the design of a

system it is important to choose the right topology, so that the applications match

onto topology in such a manner that the performance will be the best. Since buffer

usage is limited the right switching technique that requires the limited buffers size

must be chosen. It depends on application if the messages are sent packet by packet

or divided into smaller units called flits. The right buffer utilization has big impact

on the system performance. The complexity of a router is determined by the

routing algorithm. Although deterministic algorithms are simple and fast, they do

not have the flexibility of adaptive algorithms.

This chapter describes the proposed topologies, switching techniques and routing

algorithms. The differences between them and their comparisons are presented. We

also give a general view of faults and how the literature proposes to handle them.

6

2.1 Network Topology

The topology of a network is a graph that defines how the nodes are interconnected

by channels. In general, NoC adopts the interconnection architecture of high

performance parallel computing, where Intellectual Property (IP) blocks are

connected to the network via routers, thus providing a communication between

functional IP blocks. However, SoC design paradigm introduces some constraints,

as compared to high performance parallel computing. Along with the desirable

characteristics, such as high throughput and low latency, SoC also considers

energy consumption and the area overhead of proposed interconnection

architecture. It is also desirable for interconnection architecture to be scalable,

making the design of SoC even more difficult since the latency of a message

should still be kept low as the number of IP blocks increase [12]. Since, the system

performance is highly dependent on communication, the right topology selection is

important.

[13] argues that the topology should be application specific since the system will

consist of heterogeneous nodes. However, predefined, regular topologies are

generally suggested [14] [1] [15], since they reduce the system design time.

 Below we present some of the proposed architectures. Here, functional IP blocks

are shown as white squares and the routers are shown as black squares.

2.1.1 Octagon

The octagon architecture was proposed by Karim et al. [16] for network processor

SoCs. It is a special case of more general class of networks called Spidergon [17].

In this architecture each node is associated with a processing element (PE or

otherwise IP) and a switch. The basic octagon consists of eight nodes and 12

bidirectional links (Fig.1), and the communication between any two nodes takes at

most two hops within it. As the number of nodes increase the octagon is extended

to a multidimensional space.

7

Unlike the traditional shared buses and crossabars [18] the octagon architecture has

much higher throughput, is easy in implementation, and has less wiring

complexity. It implements simple shortest path algorithm. However, as the number

of nodes increase the implementation complexity also increases. It also requires an

implementation of network arbiter and a good scheduler, since nodes share the

single communication point at the center of an octagon.

Figure 1 Octagon [22]

2.1.2 CLICHÉ

The CLICHÉ (Chip-Level Integration of Communicating Heterogeneous

Elements) was proposed by Kumar et al. [14]. It is a simple 2D-mesh [18], where

each IP is connected to a switch and each switch, except the edge switches, is

connected to four other switches (Fig. 2). Here, the IP to switch and switch to

switch interconnection is done via bidirectional links.

8

Figure 2 CLICHÉ [22]

CLICHÉ was proposed as a basic topology for NoC, since it is simple from layout

perspective and scalable. It allows addition of resources, thus increasing the

network, without reintroducing any changes in communication protocols, while

increasing the network bandwidth.

2.1.3 2D Torus

Dally and Towels [7] proposed 2D torus, which is also mesh-based architecture.

The only difference from 2D mesh is that the edge switches are connected via

wraparound channels. Thus, every switch is connected to an IP block and four

neighboring switches (Fig. 3). The number of switches is the same as for CLICHÉ

and equal to the number of IP blocks.

9

Figure 3 2D Torus [22]

The wraparound channels are very long and still increases with the number of IP

blocks, thus the link delay increases. Long channels require repeaters to be placed

within a link, so that the packet propagation fits within one clock cycle. As a

solution, folded torus was proposed [19]. In a folded torus the wraparound

channels are divided into approximately fixed length by shifting the position of

nodes (Fig. 4). Hence, the channel length between any switches is now equal and

considerably shorter.

Figure 4 Folded Torus [22]

10

2.1.4 Tree Architectures

The tree-based architectures are derived from multistage interconnection networks

(MIN) [18], where IP blocks communicate with each other by sending a message

through a number of switch stages. Hence, IP block can communicate

simultaneously without contention.

Guerrier and Greiner [20] proposed a SPIN (Scalable, Programmable, Integrated

Network), which has a fat-tree architecture. In this architecture, every node has

four children and the parent is replicated four times in every level (Fig. 5). The IP

blocks are placed at the leaves of the tree and switches are at the vertices.

Figure 5 SPIN [22]

The size of a network grows as (NlogN)/8, where N is the number of IP blocks.

Since, the SPIN architecture provides multi-path between any pair of IP blocks the

wiring complexity increases with the number of IPs.

Another tree-based architecture, BFT (Butterfly Fat-Tree), was proposed by Pande

et al. [21]. Here, again IP blocks are at the leaves and switches are at the vertices

(Fig. 6). Each node is labeled by a pair of coordinates, (l, p), where l indicates a

node’s level and p indicates its position in that level. As the IP blocks reside at the

lowest level of tree, their addresses are indicated as (0, N), where N ranges from 0

to (N-1). Each switch has four child ports and two parent ports, and IPs are

connected to N/4 switches at the first level. At the jth level of a tree the number of

11

switches is N/2j+1

, and the total number of switches approaches to N/2 as N

increases. Thus, there is one switch for every two IP blocks.

Figure 6 BFT [22]

2.1.5 Comparison of Network Topologies

Pande et al. [22] compared all these proposed interconnect architectures relative to

throughput, latency, energy and area overhead. Under uniform traffic SPIN and

Octagon show good performance in terms of throughput and latency. This is due to

the fact that both of them have more links between two pairs of nodes than do the

others. However, it was show that SPIN and Octagon have higher energy

dissipation because of the higher degree of connectivity they provide.

When considering area overhead the Folded Torus and CLICHÉ are favored

because of their simplicity. The inter-switch wires are of equal sizes and fit within

one clock cycle in both of them. When the wires do not have equal sizes these with

longer length require repeaters in order to be able to work at the same speed with

others or force others to become longer. In BFT and SPIN wire length between

switches depends on the levels of the switches. In Octagon, the inter-switch wires

connecting IPs from disjoin Octagon units also require repeaters.

12

2.2 Switching Techniques

The network performance is highly dependent on a switching technique that is

being used. Switching techniques determine when and how internal switches are

set to connect router inputs to router outputs [18]. It does not decide which channel

should be used by a message, but performs the actual mechanism that removes data

from an input channel and puts it on the output channel. Various kind of switching

techniques were proposed. These techniques are coupled with flow control

mechanism in order to move messages through the network [23]. Since the

network consists of channels and buffers, the flow control mechanism deals with

the allocation of channels and buffers. The ideal flow control mechanism reduces

the channel and buffer congestion while decreasing message latency.

2.2.1 Circuit Switching

In a circuit switching the path from source to destination is reserved before the

message is injected into the network. The reservation is done by a routing probe

that is send along the network. Routing probe contains the destination address and

some control information. It progresses toward the destination reserving physical

links. Thus, when routing probe reaches the destination the complete path is set up.

The acknowledgment is sent to the source and a message is injected into the

network. Since, the path is already set the message is transmitted at the full

bandwidth of a path and does not required to be stored at an intermediate routers.

The path is released either by destination node or by a few last bits of a message

itself.

However, this technique is very conservative. Since physical path is reserved for

the entire duration of a message and blocks other message. If a routing probe is

blocked itself the physical path that was reserved by it up to now cannot be used by

other messages, thus channels remain idle. This leads to a channel underutilization.

13

The circuit switching is advantageous when the message size is long compared to a

set up time and infrequent.

2.2.2 Packet Switching

The packet switching technique was borrowed from computer networks [12]. In

this technique the message is divided into fixed-length packets and every packet is

sent to the network individually. First few bytes of a packet are allocated for packet

header which contains routing information. This technique is also called store-and-

forward (SAF) switching technique, since the packet should be entirely stored at an

intermediate router before being forwarded to the next router.

In a networks that use packet switching the message latency is directly

proportional to the distance between source and destination, and can be represented

as (L/B)*D, where L is a message length , B is a channel bandwidth and D is a

distance between source and destination. Every packet is independent of each other

and needs to be routed at every intermediate router. Besides, packets can arrive out

of order to the destination, thus producing additional overhead.

The packet switching is advantageous when the messages are short and frequent. In

compare to circuit switching the resources are fully utilized and packets may be

injected into the network simultaneously. However, if the packet size becomes

large routers should provide buffers in order to be able store the entire packet.

2.2.3 Virtual Cut-Through

The packet switching requires entire packet to be stored in a router before routing

decision is made. Since the packet size is usually bigger than the link bandwidth, it

takes several cycles to transfer entire packet through the link. However, the header

of a packet is available after a few cycles. Virtual cut-through (VCT) switching

technique was introduced in order to decrease the message latency. The routing is

14

done as soon as the packet header arrives and if the next router has available

buffer, cut-through to the input of a next router before the entire packet arrives.

The message is send after the header in a pipelined manner. When there is no

congestion in the network, the latency of a header is the routing latency, and the

propagation delay through the router and physical channel. However, if a header

blocks then the entire packet is stored at a router. Thus, each router still will have

to be able to store the entire packet. At high network loads VCT acts like SAF

switching technique. The latency is defined as (Lh/B)*D+L/B, where Lh is the

length of a header. When, Lh

2.2.4 Wormhole Switching

<<L the distance, D, will not have big effect on a

latency.

In a SoC environment the routers should consume small silicon area compared to

IP blocks [22]. However, SAF and VCT switching techniques require the large

buffers in order to be able to store entire packet, making it difficult in construction

of small, fast and compact routers. As a solution wormhole switching technique

was proposed [24]. The message is divided into small units called flits. The size of

a flit depends on system parameters and generally is equal to phit, where phit is a

unit of information that can be transferred across the channel in a single cycle. The

message contains three types of flit: header, data and tail. The header flit contains

the routing information and reserves resources toward the destination. Data flits

and tail flit does not contain routing information and simply follow the header flit

in a pipelined manner. Resources are released by tail flit, which indicates the end

of a message. In compare to VCT where the blocked packet is stored in one router

completely removing a message from network channels, wormhole technique

blocks flits in place. Thus, the blocked message occupies buffers in several routers.

This enables routers to have smaller buffer size, one or two flits.

Since the data flits do not contain routing information and simply use these

resources that are reserved by header flit, different messages cannot interleave.

Thus, if a buffer or channel was allocated for one message it is held for the entire

15

message duration. The latency of a message is defined as ((Lf/B)*D+L/B), where Lf

is a length of a flit. When Lf

2.2.5 Virtual Flow Control

 <<L the distance between the source and destination,

D, does not have much impact on a latency, unless D is very large. [12] indicates

that in the absence of contention a message that is wormhole routed is shown to be

nearly independent of the distance between source and destination.

There are two resource types in a network: buffers and channels. Usually, one

channel is related to one buffer. If a packet A has allocated a buffer bi, the

associated channel ci remains idle until A releases bi. In networks that use flit-level

flow control, where channels are reserved for the duration of a packet, if a packet is

blocked then all the channels held by this packet remain idle. This situation leads

to an inefficient use of physical channels and may lead to deadlocks (see Section

2.3) as well. In order to cope with this problem virtual channels (VC) [25] are

adopted.

A virtual channel consists of a private buffer that can hold one or more flits [25].

Several virtual channels may share the bandwidth of a single physical channel.

This property provides each channel in the network with multiple buffers. If a

blocked packet holds one buffer associated with channel ci, another buffer is

available allowing other packets to pass.

16

Figure 7 Virtual channels

Figure 7 illustrates two unidirectional virtual channels in each direction. This can

be seen as if virtual channels are using two distinct physical channels at half the

speed.

Virtual channel assignment is made at the packet level, meaning that, if a packet is

assigned to a particular virtual channel than this assignment is fixed for the

duration of the packet. It assures that different packets will not interleave, as data

flits does not contain routing information. However, physical channel is allocated

at the flit level.

Virtual channels were initially introduced for deadlock avoidance in [19].

However, lately they are suggested to be used also for performance improvement

purposes.

Adding virtual channels increase network throughput, since physical channel

utilization increases. However, virtual channel usage is limited. With every new

VC the probability of a message being granted physical channel decreases, thus

increasing message latency. Large number of VCs also has a big impact on router

performance. Routers become complex, arbitrating between VCs and multiplexing

them over one physical channel, thus increasing the hardware cycle time.

17

2.2.6 Comparison of Switching Techniques

There is no unique solution to all problems. Although wormhole switching is the

most popular switching technique and significantly improves network

performance, individual messages may block other messages, and lead to resource

underutilization. SAF and VCT switching techniques consume network bandwidth

proportional to network load and fully utilizes the network bandwidth. However,

they require large buffer sizes to store packets. Circuit switching is very

conservative and allocates the entire physical path, thus blocking other messages.

Wormhole technique can be improved by adding virtual channels. But the latency

of individual messages may vary, because of contention for small buffers, in

compare to SAF, which has predictable latency characteristics. At low loads

wormhole routing performs better, but at high loads SAF is much better. VCT

achieves the performance of wormhole switching at low loads and of SAF at high

loads.

The SAF allows error detection and retransmission at link-by-link basis. It if

flexible and easily avoids faulty components. Pipelining reduces buffer size, but

introduces unique challenges in deadlock and fault avoidance, since the message is

pipelined over several routers and form dependence between these buffers.

2.3 Routing Algorithms

The routing algorithm determines the path that must be taken by a message in

order to reach its destination. Various kinds of algorithms were introduced in the

literature. These are differentiated according to the place where the decision is

taken about the path that should be traversed by a message and the routing

flexibility to different network conditions. The decision of an entire path can be

done by source node prior to message injection. This is called source routing. In

this case, the packet carries the whole routing information, thus increasing the

18

packet size. Furthermore, the path is fixed and cannot be changed after the packet

injection into the network. Alternatively, the path can be determined at every

intermediate router using distributed routing. In this case, the decision is

distributed through the network. Every router, upon receiving the packet, decides

whether to deliver it to the local node or forward it to the neighboring node. The

decision of a right neighboring node, where the packet should be delivered, is also

implemented in an intermediate router. The routing algorithm can be implemented

in adaptive way so that the path traversed by a message is dependent on the

network traffic, or can be oblivious. In latter case, the path by a message is

independent of network traffic.

Routing algorithm also has a big impact on network performance. The routing

decision must be fast thus decreasing the message latency and be easily

implemented in hardware. Complex routing algorithms increase the routing

complexity and may require additional hardware. Besides, as it was indicated

before, routers must be small and compact. That is the reason why the knowledge

of network’s global state information is not favored, since it requires additional

storage space in each router. Among these requirements, routing algorithms should

also be able to preserve deadlock, livelock and starvation freedom.

2.3.1 Deadlock, Livelock and Starvation

Unrestricted routing algorithms may lead to situations where a message can never

reach its destination. These are caused by deadlock, starvation or livelock.

Livelock happens when a packet wonders across the network never reaching its

destination. It happens when the resources requested by a packet are occupied by

other packets. Adaptive algorithms are usually livelock-prone, since they allow

messages to go away from their destinations. Hot potato [] is one example for

livelock-prone algorithms. In this algorithm, if a channel required by a packet is

busy, it is send through any other available channel, although that channel moves a

message to the different path. Thus, livelock enforces some restrictions to routing

19

algorithm. This may be achieved by several techniques, such as minimal path,

restricted non-minimal path, probabilistic avoidance [18].

The packet may also block permanently because resources requested are never

granted to it and lead to starvation. The avoidance of starvation requires correct

resource assignment scheme.

The most difficult problem in routing algorithm implementation is to preserve

deadlock freedom. It is a situation when several packets are blocked permanently

in the network. Deadlock occurs when the packets are allowed to allocate resources

while holding others [12]. In VCT and SAF resources are buffers and in a

wormhole and circuit switching resources are channels. The most deadlock-prone

network is a network that uses wormhole switching technique since the packet

holds several router buffers simultaneously.

Figure 8 An example of deadlock [12]

Figure 8 represents a deadlocked situation where four routers and four packets are

blocked. Here, packets are requesting for a channel while holding a channel

requested by other message.

20

The most common technique is deadlock avoidance that is implemented by routing

algorithm. Channels are granted in strictly monotonic order so that the packet is

granted a resource only if the resulting global state is safe. The channel

dependency graph [18] is used in implementation of deadlock-free routing

algorithm. In this graph the vertices are unidirectional channels and the edges are

connected channels. Two unidirectional channels are connected if the routing

algorithm allows the usage of second channel (output) after the first (input). If all

these connections form a cycle then the algorithm is deadlock-prone. Hence, some

restriction should be embedded into the routing algorithm. Generally, it is done by

disallowing some turns in a packet’s path.

2.3.2 Oblivious Routing Algorithms

 An oblivious routing does not consider the network state. The path taken by

messages is only dependent on the source and destination of the messages. It may

contain routing table that includes several options for an output channel based on

the destination address. This may give some level of adaptivity, however the

routing algorithm is independent of network state. They are used for general-

purpose routing as they are easy to implement and considerably perform well.

Oblivious algorithms can be deterministic or randomized according to the

variations of options of output channels supplied at any intermediate router.

2.3.2.1 Deterministic Routing Algorithms

Deterministic algorithms always supply the message from particular source to

particular destination with the same path. This means that every intermediate

router always grants the same output channel for the same destination.

The deterministic routing became popular with the wormhole switching technique.

As wormhole switching technique is heavily pipelined, it is extremely important

that all the stages work at the same speed in order for it to be efficient. This

21

requires the routing algorithm to be implemented in hardware. Deterministic

algorithm is usually preferable due to its simplicity [18].

The most popular deterministic routing algorithm is Dimension Ordered Routing

(DOR), which is also known as XY (YX) routing when used in 2D-meshes and e-

cube routing when used in hypercube. The DOR algorithm routes packets first in

one dimension. When it arrives to the proper coordinate of the other dimension,

proceeds in that dimension.

In XY-routing the message first travels on x-dimension. When the offset of x-

dimension becomes zero, i.e. the message reaches the router that is on the same x

coordinate with destination, it starts moving on y-dimension. Messages always are

routed along the minimal path.

DOR algorithm is deadlock-free when used in 2D-mesh and does not require

additional virtual channels. It preserves its deadlock freedom by allocating

channels in strictly monotonic order. This restricts some kind of turns that could

lead to deadlock.

2.3.2.2 Randomized Routing Algorithms

DOR algorithm is simple and fast, however when the system is heavily loaded it

may act poorly. Because of its poor worst case behavior, a few algorithms using

randomization were proposed. Randomization helps using the network bandwidth

efficiently when the minimality constraints for routing algorithm are relaxed to

some extend.

The oblivious algorithm, named Valiant, was introduced by Valiant and Brebner

[27] and it is the best known randomized algorithm. This algorithm works in two

phases. In both first and second phases, it uses dimension-order routing, at first

phase - to route a packet from its source to randomly selected node, at the second

phase it routes the packet from that random node to its destination. As Valiant is

non-minimal, it tries to avoid congestion in the network. Packets with the same

source and destination have different intermediate nodes, which are selected

22

randomly, thus they cannot take the same path. In order to avoid deadlocks buffers

are needed, and as in a mesh topology, it requires two sets of independent buffers

per communication link, so, this algorithm requires the buffers of O(n) depth in

each node and does not preserve data locality. If livelocks are considered, the

packet in the algorithm reaches its destination, even it may take longer path than

actually required and so, in Valiant routing algorithm livelock cannot occur. The

negative aspect of this algorithm is the path taken, because it increases depending

on the topology being used. For example, in a mesh, the packet path may be

doubled, resulting in longer routing times of Valiant routing, and so, doubling the

demand on network bandwidth.

Randomized, Oblivious, Multi-phase, Minimal (ROMM) [28] algorithm is another

routing algorithm which uses randomization. From dimension-order routing

algorithm it inherits properties of minimality, which is to preserve data locality and

to assure that the path taken by a packet will be minimal, and from Valiant –

randomization, which is to assure that packets with same source and destination

will not take the same path. These properties are combined to avoid congestion.

Since the algorithm is oblivious, it is easy to implement it, in contrast to adaptive

algorithms, which are more complex. As ROMM algorithms use the minimal path,

it is constrained in randomization compared to Valiant that uses full

randomization.

ROMM algorithms select random nodes within the range of a minimal path which

a message is required to follow in order to reach the destination. A packet is routed

in p-phases. In p-phase ROMM algorithm there are p-1 randomly selected nodes

Z1, Z2, …, Zp-1 between source and destination, and all Zi ‘s (i=1,..,p-1) must be on

minimal path from source to destination.

23

Figure 9 A possible path from source to destination using 3-phase ROMM on a 2-
dimensional mesh.

Fig.9 shows a possible path from source to destination in a 3-phase ROMM. In this

example source node establishes the path taken by message by means of

dimension-order routing and chooses a random node that lies within that path,

which is Z0 in our case. Next, message is routed from src to Z0 using dimension-

order routing. In the same way, a new source node, which is now Z0, sends a

message using dimension-order routing having chosen another random node that

lies along the minimal path from Z0 to dist, in this case Z1. Z1 in its turn routes a

message to dist again using dimension-order routing.

In order to avoid deadlock in p-phases ROMM algorithms p-virtual channels for

wormhole routed mesh network is needed. Also, due to wrap-around links, it

requires 2p virtual channels for wormhole routed torus network. As p increases the

algorithm becomes very costly, since it increases memory usage adding virtual

channels and complicates routing with additional logics required to manage virtual

channels.

24

2.3.3 Adaptive Routing Algorithms

Another option in implementing a routing algorithm is to consider the network

state. Every intermediate router supplies a message with several output channels

based on the current node or buffer and the destination node. One of these output

channels are then selected according to its status at the current node. Thus, a path

of a message from source to destination is adaptive, allowing avoid busy channels.

Adaptivity makes the routing more flexible however the hardware becomes more

slow and complex.

Adaptive algorithm can be minimal or non-minimal. Minimal algorithms supply a

message with a set of channels that always bring it closer to destination. Non-

minimal algorithms may misroute a message by sending it away from its

destination. It relies on the optimistic assumption that misrouting can bring a

message to another set of minimal channels.

The further classification of adaptive algorithms is: fully adaptive and partially

adaptive. The fully adaptive algorithms can use all the physical paths in its class,

while partially adaptive algorithms can use only subset of them.

2.3.3.1 Planar-Adaptive Routing

The aim of planar adaptive routing algorithms, proposed by Chien and Kim [29]

for n-dimensional meshes and hyper cubes, is to provide adaptivity in only two

dimensions at a time and is considered to be minimal. While being adaptive they

limit the routing direction in a series of 2-D planes, and as the packet moves

toward its destination the routing dimensions change so that the packet is routed in

all dimensions in its way to destination. By this the network cost is reduced while

deadlock-freedom is maintained.

In order to avoid deadlocks, in a k-ary n-cube with no loop paths, planar-adaptive

routing requires three virtual channels for each physical channel in meshes.

Let A0 to An-2 denote n–1 adaptive planes, each of them defined as the combination

of several sets of virtual channels.

25

𝐴𝐴𝑖𝑖 = 𝑑𝑑𝑖𝑖 ,2 + 𝑑𝑑𝑖𝑖+1,0+𝑑𝑑𝑖𝑖+1,1 (1)

Each adaptive plane involves only two dimensions. To support the n – 1 adaptive

planes three virtual channels in each dimension are needed.

Figure 10 The channels for an adaptive plane Ai

The algorithm conditionally can be divided into high level (between adaptive

planes) and low-level (within adaptive plane 𝐴𝐴𝑖𝑖). In high-level each routing in

adaptive plane 𝐴𝐴𝑖𝑖 reduces the distance in 𝑑𝑑𝑖𝑖 to zero. The packet reaches its

destination when it is routed in all of the adaptive planes. Since for VC 𝑑𝑑𝑛𝑛−1, there

is no adaptivity left for a minimal router, the packet is routed directly to its

destination. In low-level routing, within each adaptive plane multiple paths can be

chosen and the packet completes its routing in at least one dimension. If in

plane 𝐴𝐴𝑖𝑖 , the 𝑑𝑑𝑖𝑖+1 the offset is reduced to zero first, routing continues in 𝑑𝑑𝑖𝑖 until

the 𝑑𝑑𝑖𝑖 distance is reduced to zero.

.
The increasing (a) and decreasing (b) networks are logically decoupled as they

contain disjoint sets of virtual channels [29]

The overlapping adaptive planes require only three virtual channels per physical

channel for an n-dimensional network. VCs 𝑑𝑑𝑖𝑖 ,2, 𝑑𝑑𝑖𝑖+1,0 and 𝑑𝑑𝑖𝑖+1,1 belong to

adaptive plane 𝐴𝐴𝑖𝑖 and inside the plane, a packet is routed adaptively with respect to

dimensions 𝑑𝑑𝑖𝑖 and 𝑑𝑑𝑖𝑖+1 by choosing the channels which directs close to the

destination. In order to prevent deadlock, the traffic is divided into increasing and

decreasing virtual networks which are completely disjoint: increasing network is

26

formed by VCs 𝑑𝑑𝑖𝑖 ,2 + and 𝑑𝑑𝑖𝑖+1,0 with packets which need to increase their 𝑑𝑑𝑖𝑖

address while decreasing network formed by VCs 𝑑𝑑𝑖𝑖 ,2−, 𝑑𝑑𝑖𝑖+1,1, where packets

cross dimension 𝑑𝑑𝑖𝑖 in negative direction.

If decompose the network into the adaptive planes, it can be seen that routing in

each plane in deadlock-free, and that cycles cannot form between planes.

Consequently, the planar-adaptive routing algorithm is free from deadlocks.

2.3.3.2 Dimension-Reversal

In non-minimal adaptive routing packets can temporarily move away from their

destination, but eventually achieve their destination. Due to misrouting, the

distance a packet travels may not be minimal. This technique is fully adaptive and

requires two VCs per physical channel. Two non-minimal routing algorithms for

mesh networks were proposed by Dally et al. [30]. In the first of them, named

static dimension reversal routing algorithm, every two adjacent nodes are

connected by r pairs of channels. Thus, the network is divided into r sub-networks

and all the ith pair channels are contained in the ith

The second algorithm is called dynamic dimension reversal routing algorithm. In

this algorithm the channels are divided into two classes: adaptive and

deterministic. At first, packets are sent through adaptive channels and can move in

any direction. However, when a packet reaches a node, it must switch to the

deterministic channels as at node all output channels are busy by packets with

values of c smaller or equal to its own. Once a packet enters the deterministic

channels, it cannot return to adaptive channels. The algorithm is deadlock-free.

 sub-network. Each packet

header stores additional value c, the numbers to break the dependency cycle, which

is initially set to zero. The packet with c<r-1 can move in any direction in its own

sub-network, except when the packet moves from high dimensional channel to low

dimensional channel the value of c is increased by one. If c reaches the value r-1

then the packet must switch into the deterministic dimension-ordered routing

algorithm. The packets can be also misrouted, but the parameter r restricts the

number of times it can happen.

27

2.3.3.3 Turn Model

Turn model, proposed by Glass and Ni [31], is partially adaptive algorithm, both

minimal and nonminimal. It is based on the idea that deadlocks occur because the

packet routes contain turns that form cycles. Deadlock cannot occur if there is no

cyclic dependency between channels [18]. The turn in the packet route occurs

when it is routed from one dimension to another. If packet changes its direction

without moving to another dimension it is considered to have 180-degree turn.

When physical channel is split into several virtual channels, moving from one

virtual channel to another in the same dimension and direction is considered as 0-

degree turn. Different turns when combined form cycles. The main concept of the

proposed algorithm is to prohibit smallest number of turns so that the cycles are

prevented. In order to develop a maximally adaptive routing algorithm in n-

dimensional meshes and k-ary n-cubes following six steps are presented:

1- Classify channels according to the directions in which they route

packets.

2- Identify the turns that occur between one direction and another.

3- Identify simple turns that may occur.

4- Prohibit one turn in each cycle.

5- Incorporate as many turns as possible that involve wraparound

channels, without reintroducing cycles (in the case of k-ary n-cubes).

6- Add 0-degree and 180-degree turns without reintroducing cycles. 180-

degree turns are needed when there are multiple channels in the same

direction and for nonminimal routing.

The Figure 11(a) shows eight possible turns and two possible abstract cycles that

may occur in 2-D mesh.

28

Figure 11 (a) 8 possible turns, (b) 4 turns allowed by XY-routing, (c) 2 prohibited
turns in West-First routing [18]

XY- routing allows only four turns as shown in Figure 11(b), thus the deadlock

cannot occur. Figure 11(c) presents turns that are prohibited in the algorithm

presented by [31]. It is West-First routing, where two turns to the west are

prohibited, thus in order to travel west packet must begin in that direction and then

adaptively south, east and north.

Figure 12 West-First routing [18]

29

Figure 12 illustrates how this algorithm works. Here, unavailable channel is either

blocked or faulty channel.

Also some other algorithms can be derived from turn model, such as north-last and

negative-first routing. The north-last routing algorithm does not allow turns from

north to east or from north to west. The negative-first routing algorithm does not

allow turns from north to west or from east to south.

2.4 Fault Tolerant Routing

The design of NoC is not limited by performance improvement issues. The second

dominant issue is fault tolerance, which is the ability of the network to function in

the presence of faulty components. The implementation of fault tolerance into the

system may degrade its performance considerably. Moreover, the faulty network

may lead the communication into deadlock and livelock, thus making routing

algorithms implemented for fault free network ineffective.

From first glance it might appear that the adaptive algorithms can tolerate faults

and move messages along faulty components. However, even the single link failure

can demolish the deadlock-freedom property of adaptive algorithm. If adaptive

algorithm provides several channels to a message and all these channels are

occupied by other messages that have encountered a fault and cannot make a

progress, this message blocks even if its destination does not lie along the faulty

component. This means that the deadlock might occur even though cyclic

dependencies between resources do not exist [18]. Since, these messages that

encounter faulty component cannot make a progress and are holding buffer and

channel resources, the other messages that do not require to traverse the faulty

component, but need these resources that are held by blocked messages are also

blocked. This leads to a wait chain that might block the whole system [18].

30

The deadlock might also occur due to dynamic faults, where a message in progress

is interrupted by fault. In this case, if data flits lose their header flit they cannot

make a progress without routing information and hold resources indefinitely. The

recovery mechanism should be able to resolve wait chains, clean the network from

interrupted messages, and recover corrupted messages or notify the source node

about loss so that a new copy of a message is sent.

2.4.1 Fault Models

The fault tolerant algorithm is implemented according to faulty component patterns

introduced, and the ability of a system to diagnose these faults. Diagnose can be

conducted on different levels. Generally, only two classes of faults are diagnosed:

either, the entire PE and its associated router fails (node failure), or any channel

fails (link failure).

Faults may be static or dynamic, where static faults already exist when the system

is powered on while dynamic faults occur on run time of a system. Both of them

are considered as permanent faults and remain in the system until repaired.

Permanent fault avoidance is much easier than transient fault avoidance. Transient

faults cannot be reproduced and are not amenable to prediction.

The fault tolerance technique can be implemented in the system according to the

fault occurrence rate. If the mean time between failures (MTBF) is much bigger

than the mean time to repair (MTTR) then the system can utilize lower-cost fault

tolerance approaches. However, if MTTR is much bigger than MTBF, as it can be

seen in space-borne systems, then the fault tolerance approach should be more

expensive so that the system will work, possibly with degraded performance, until

the repair is conducted.

The fault model of a system should also define the behavior of a faulty nodes and

the fault information that is available at a node. The faulty node should stop

sending or receiving messages in order to avoid deadlock in a system. Faults are

generally considered to be non-malicious, thus making fault tolerance much easier

31

in implementation. The fault information available at a node may be global or

local. In global fault information, every node knows the status of every other node,

thus making the best decision in routing. However, this technique leads to

synchronization problems in conducting global information updates, and increase

storage requirements at a node. In local fault information, every node knows the

status of only neighboring node. This technique may force messages to take longer

path, but the network implementation becomes easier.

2.4.2 Fault-Tolerant Routing Using SAF and VCT Techniques

In SAF and VCT networks the deadlock is avoided by right buffer management,

since packets form deadlock only when there are no available buffer at an adjacent

router. Fault-tolerant routing assumes packet misrouting, so the main issue is to

avoid livelock. Usually SAF and VCT techniques are used in high-dimensional

networks because in these techniques message latency depends on distance [12].

Chien and Shin [32] introduced a fault-tolerant routing algorithm that is used in

binary hypercube (k=2). In binary hypercube messages traverse only one link in

each dimension, so if the destination address differs in m bits from source address

the shortest path will take m dimensions. They presented a new concept called as

spare dimension, which is the dimension that is not on the shortest path. When all

the dimensions that lie on a shortest path are blocked the message is misrouted and

sent to spare dimension. Since in n-dimensional binary hypercube there is n

disjoint path between any pair of nodes, it is assumed that n-1 faults cannot

disconnect the network. So, the algorithm can tolerate up to (n-1) faults. By this

assumption where a network can have only n-1 faults, Chien and Shin [32] asserts

that there is always one spare dimension that can be used by blocked messages.

Another approach in order to avoid faulty components in a network is to use

randomization. Some routers use this technique to avoid deadlocks [33]. If a

message holds an input buffer for a long time, it is removed from input buffer and

stored in a local buffer in a node. They are re-injected into the network later when

32

the output buffers become available. As the local buffer size is also limited and

implemented as a queue, when the queue becomes full and there is some message

that should also be stored, the random message is selected and misrouted. Thus,

every message has a nonzero probability to avoid misrouting.

2.4.3 Fault-Tolerant Routing Using Wormhole Switching Technique

In compare the networks that use VCT and SAF switching techniques, wormhole

switching introduces some unique challenges. The wormhole switching is

deadlock-prone and even in fault-free networks requires a deep consideration in

routing algorithm implementation. This is because the message is divided into flits

and the blocked message occupies several routers, thus blocking other messages

that are also competing for the same virtual channel. It is suggested to implement

good routing algorithm rather than recovery mechanism, since recovery is

expensive in terms of time and resources [18]. The general solution is to route

messages around faulty regions as with VCT and SAF without introducing cyclic

dependency between channels. The fault-tolerant routing algorithm is determined

by the shape of a fault region and the base routing algorithm upon which it was

implemented. Fault-tolerance requires additional virtual channels and the routing

restrictions among their usage.

2.4.3.1 Fault Regions

The concept of regions was firstly defined by S.Kumar et al. [14], where the region

G is defined as an area inside the NoC, that is insulated from the network and may

have different internal topology and communication mechanism. A region may be

some resource that is of larger size than the atomic slots in the mesh. They are

connected to the rest of the network with special IO wrappers. The concept of

region adds several advantages to NoC:

- A set of resources can be dedicated to a specific task.

33

- The communication between the resources inside the region can have different

communication capacity.

- The resources inside the region are insulated from external traffic.

- NoC can accommodate a specific technology inside these regions.

However, these regions are constrained to have convex boundaries.

The concept of regions was further adopted by Chien et al. [29], where faulty

components were insulated into region and messages are routed around that region.

The fault region is also constrained to have convex boundaries. This constrained

implies that the faulty components must form a block fault, so that every non-

faulty component that is on the boundary of a fault region can have a faulty link

only from one side. Since concave faults may also occur, they are transferred to

convex faults by deactivating some non-faulty components.

The algorithm intoduced in [29] is a planar-adaptive routing (see Section 2.3),

where the network is divided into two virtual netwoks: decreasing and increasing.

There is one additional virtual channel in vertical direction. These messages that

are traveling in increasing (decreasing) x-coordinates use increasing (decreasing)

virtual network. When a message, that is traveling in increasing (respectively in

decreasing) network, encounters a fault it is misrouted in y-coordinate using virtual

channel 0 (respactively 1). Thus, cyclic dependency is prevented by using totally

three virtual channels. The algorithm is adaptive and a message can use either

dimension adaptively. The message is only misrouted when it is on the same row

or column with destination and encounters a fault.

Planar-adaptive routing marks non-faulty components as faulty, thus decreasing

the number of good links and nodes. If a faulty node is on the boundary of a

network the message cannot be routed around the fault region and have to traverse

backward. This bring new channel dependency between increasing and decreasing

networks. As a solution the entire row or column is marked as faulty. The same

situation can be seen for concave regions, where a message will need to traverse

back, thus message are no longer monothonically increasing or decreasing. The

convex faulty region simplifies the routing algorithm and deadlock avoidance, thus

34

any kind of region is desired to have convex boundaries. However, this constrain

leads to unefficient usage of non-faulty nodes.

Chalasani et. al. [34] improved the concept of faulty region presented by [29]. In

their fault-tolerant routing algorithm non-faulty nodes are not marked as faulty in

order to obtain convex fault. They introduced a new concept of fault rings (f-ring).

F set contains all faulty links and nodes. The faulty region is considered to be

rectangular faulty block (convex) if all the fault-free nodes around the faulty region

connect and form rectangle and all the nodes lying in the rectangle are faulty. The

block-fault-model assumes that each fault belongs to exactly one faulty block. If all

non-faulty nodes around the f-region connect and form a ring this is called f-ring.

When a fault region touch boundaries of a network non faulty nodes cannot form

ring so this is called f-chain (F2 in Fig. 13). The nodes at which f-chain touches the

boundaries of a network are called end-nodes. F-rings are said to be overlapped if

two or more f-rings share one or more links (F3 and F4 in Fig.13).

Figure 13 f-rings, f-chain and overlapping f-rings

35

[34] implemented their fault-tolerant algorithm upon the DOR algorithm, which is

also called e-cube algorithm. Since DOR is deterministic algorithm it cannot

tolerate even one faulty component. They divided the messages into column and

row messages. The column and row messages are further divided into West-East

(WE), East-West (EW), North-South (NS), and South-North (SN) messages, where

WE and EW messages are row messages and NS and SN messages are column

messages. A message that is still taking row hops is called row message, and a

message that only requires column hops in order to reach its destination is called

column messages. The row messages may change their status into column, but

column messages never change their status into row messages. Two algorithms

were presented: f-Cube2 and f-Cube4.

f-Cube algorithm uses 2 VC’s and considers only non-overlapping block-faults.

Row messages use c0 VC and column messages use only c1 VC. A message may

have normal or misrouted status. The message’s status is changed to misrouted if

its next DOR hop is not available. Each time a message status is changed its

direction is set, and its direction will not change throughout that f-ring. A

misrouted NS (SN) message’s direction is set to clockwise (counter clockwise).

The EW message’s direction is set to counter-clockwise (clockwise) if a

destination is a row above (row below) than the current node. The same for WE

messages.

The algorithm above proposed for non-overlapping fault-blocks is proved to be

deadlock-free, since WE messages use only west boundaries and EW messages

only east boundaries of f-ring. But when fault-blocks overlap, they share common

columns or rows. Hence, the channels used by WE and EW messages are no longer

disjoint. The similar issue arises in routing messages along f-chain, since messages

that reach end-nodes are either stuck or make u-turn making channel utilization

disjoint. In order to avoid deadlock f-Cube2 algorithm was modified to f-cube4

algorithm which uses 4 VCs. The algorithm divides the network into 4 disjoint

networks WE, EW, NS and SN messages use c0, c1, c2, and c3 VC’s respectively.

Here, again the row messages can become column messages but not vice versa.

36

Many other proposed fault-tolerant algorithms [35] [36] [37] [38] are generally

derivatives of f-Cube4 with various attempt to decrease the number of virtual

channels to be used in routing around f-regions. These fault tolerant algorithms are

recommended to be used as a backup algorithm in adaptive networks. Since,

adaptive networks lose their adaptivity in last dimension left and messages are not

guaranteed to be delivered if they encounter faults, with additional four VC the

adaptive algorithm can tolerate any number of faults.

2.4.3.2 Fault-Tolerant Routing Without VCs

In order to make wormhole routed meshes fault tolerant, usually additional virtual

channels are used. However, virtual channels come at expanse as they require extra

control lines, buffer space and switching hardware. Ni et al. [39] uses turn model in

their one-fault-tolerant routing algorithm which does not require additional virtual

channels. However, this algorithm is (n-1) fault-tolerant, which means that in 2D

mesh it can tolerant only one faulty component. The authors argue that misrouting

should be used only to increase fault-tolerance degree and never just for increasing

adaptiveness, since misrouting increase communication latency

One-fault-tolerant algorithm is based on the negative-first routing algorithm, where

packets are first routed in the negative directions (west and south) of dimensions 0

and 1 then in the positive directions (east and south) of dimensions 0 and 1. The

result of the modifications of the negative-first routing algorithm:

1. Route the packet west and south to the destination or farther west and south

than the destination. Avoid routing the packet to a negative edge for as long

as possible. If a packet encounters a fault along the negative edge, route

the packet one hop perpendicular to the edge.

2. Route the packet east and north to the destination, avoiding routing the

packet as far east or north as the destination for as long as possible. If a

faulty node on a negative edge of the mesh blocks the path to a destination

on the edge, route the packet one hop perpendicular to the edge, two hops

toward the destination and one hop back to the edge.

37

Another algorithm that does not require additional VCs was presented by Duato et

al. [40]. It is software based fault tolerant routing. In fault-free cases the messages

are routed using DOR algorithm. A packet that encounters a fault is ejected from

the network and passed to messaging layer of the local node’s operating system.

The messaging layer further decides whether to send the packet along a non-

minimal path or send it via intermediate node. Thus, the packet is re-injected into

the network with modified header. However, the message reinjection complicates

the messaging layer of a node, since it has to make right decisions upon message

reinjection. As the messaging layer should know what paths has the message taken,

the header flit size increases because of routing information. Along with

introduced overhead in messaging layer, reinjection also increases message

latency.

Both algorithms are considered for environments where fault rates are relatively

low. The goal is to keep the system functioning, with possibly degraded

performance. They try to keep the feature of deterministic router designs, i.e.

compactness and speed, thus avoiding additional virtual channels. So, these

messages that do not encounter faults are minimally impacted.

2.4.4 Dynamic Recovery

As it can be seen from the previous chapters, wormhole routing is more difficult in

avoiding deadlock. Since messages are sent in pipelined fashion, flits of one

message occupy several routers. The destination information is stored only in

header flit, so the data flits are heavily dependent on it. However, dynamic faults

that occur on runtime may corrupt a link separating data flits from header flit.

Since data flits cannot be routed without routing information, they remain in the

network holding resources and thus leading to deadlock. The recovery from these

faults should be held on run time.

38

2.4.4.1 Flit-Level Recovery

For a packet switching networks recovery can be easily constructed, so that the

exactly-one injection is guaranteed. They are amenable to a link-level error

detection and retransmission. However, the wormhole switching is not amenable to

a link-level retransmission, since flits are spread over several routers. One solution

for a wormhole switching technique that guarantees end-to-end delivery was

presented by [41]. It implements link-level monitoring of flits. The copy of every

flit is kept in a router until it receives acknowledgment that it was successfully

received, which means that at least to copies of a flit remains in the network. Thus,

if a flit encounters a fault while passing a link its copy can be retrieved from the

last router it has leaved. The message is constructed from header, data, tail flits

and a token. When a link fault occurs and the data flits lost their header flit a new

header is generated for them. The message token is kept the same that was

appended to original message. Thus, every router keeps the copy of header flit until

token releases it. Those data flits that are on the other side of corrupted link with

header flit will continue on the same way after the new token is appended to them.

At the destination header flits are distinguished according to tag which indicates if

the message is original or restart and the token according to replica or unique type.

2.4.4.2 Message-Level Recovery

Message-level recovery suggests discard the entire message from the network and

retransmit it from source.

[42] suggested the message-level recovery algorithm which is applicable in

network where the path taken by message from source to destination is released by

destination node. When a message encounters a fault and is divided into two parts

two type of control flits are send: forward and reverse flits. Forward flit moves

toward destination and releases all the buffers and channels allocated by these flits

that are closer to destination. Reverse flit moves toward source and releases

resources allocated by the other part of a message that was separated from header

flit. When the reverse flit reaches source the message is retransmitted and when the

39

forward flit reaches the destination the partially received message is discarded. As

long as there is a path between source and destination the control flits are

guaranteed to notify about the lost. However, this type of recovery requires

additional virtual channels for recovery traffic.

Another recovery algorithm was suggested by [43], which is called compassionless

routing. Here, the time of a message arrival at destination node is approximately

calculated at source node. If it is clear that the message will not arrive at

destination node after the tail flit is injected into the network the message is padded

with pad flits thus the entire path is kept throughout message delivery. Every router

distinguishes between data flits and pad flits. Pad flits are also used to release the

path reserved by header flit. If the fault model is static after the approximate time

calculation expires in source node, it sends an FKILL signal toward the destination

thus releasing the path kept for a message. If the fault model is dynamic then an

FKILL and BKILL signal are sent from the detecting router. FKILL signal moves

toward the destination while BKILL signal moves toward source node. Since the

path from source to destination is kept by pad flits, these signals do not require

additional buffer at intermediate routers. But, in this case pad flits are consuming

bandwidth, thus decreasing the network utilization.

2.5 Traffic Generator Models

In order to understand and unravel network power/performance related issues

network traffic modeling are considered. Traffic patterns for network evaluation

are divided into two following types [44]:

1. Application-driven traffic, which models the network and its clients

simultaneously. In other words it is full system simulation.

40

2. Synthetic traffic, which captures the application-driven workload (easier to

design and manipulate, therefore it is used more often) – uniform, Poisson,

permutation traffics etc.

General prior research in the area of classic networks such as the Internet, Ethernet,

and wireless LANs which transport TCP/IP, HTTP, and FTP traffic among others,

demonstrated how application-driven traffic models and model-based synthetic

traffic generators can facilitate understanding of traffic characteristics and drive

early-stage simulation to explore a large network design space.

The class of NoCs has substantially different traffic behavior as compared to the

traditional network fabrics. Thus, determining network architecture is one of

fundamental aspect of Network-on-Chip design. Since there exists an enormous

network design space with respect to topology, routing and flow control schemes

etc, and the network design should be customized for applications or a class of

applications, determining network architecture becomes difficult. For on-chip

networks no complete traffic model exists. Designers frequently rely on simple

synthetic traffic patterns such as uniform random, bit-permutation and tornado

traffic to stress-test a network design.

Varatkar et al. [45] first proposed a traffic model for on-chip networks, but the

model captures pair-wise traffic rather than traffic over the entire network, and

modeled a single application. They present a traffic analysis approach to

characterize the on-chip communication traffic pattern of different multimedia

applications based on self-similar or long-range dependent (which was denoted as

LRD2) stochastic processes. The degree of self-similarity of the on-chip traffic

using techniques based on the Hurst parameter was illustrated by analyzing the

statistical properties of the arrival process at different points in a generic

architecture for standard MPEG-2 applications. Having obtained the Hurst

parameter, the designer can choose the minimal buffer size for the router at each

tile, which ensures a certain quality of service (QoS) for running the multimedia

application. That is, the Hurst parameter which characterizes the traffic pattern for

a particular application helps in finding the optimal buffer length distribution

which turns out to be the critical issue for the routers at each node in the on-chip

41

communication network. Also, they describe a method of generating synthetic

traces with statistical properties similar to the original ones.

Application oriented traffic described by Jantsch et al. [46] reflects the

communication distribution of the applications and allows designers to adjust the

locality of traffic so as to analyze the network behavior under locality network.

They introduce traffic characteristic parameters by mean of traffic configuration

tree, which characterizes network traffic by considering distributions of messages

along the three dimensions: spatial distribution, temporal characteristics, and

message size specification. The spatial distribution describes the communication

partnership between sources and destinations and classified into two categories,

namely traffic pattern and channel-by-channel traffic. The temporal characteristics

give details of the message generation probability over time such as constant rate,

random rate, and normal rate. The size distribution classifies the length of

communicated messages into uniform, random and normal. They introduced

notion of distribution coefficient and locality factor and incorporated the case when

locality factor is equal to zero. Thus they achieve the traffic to have uniform

distribution to nodes with a different distance, i.e. distribution coefficient becomes

independent of distance.

Since locality factor may be set individually with distance, the amount of traffic

distributed to a certain distance can be controlled.

Peh et al. [47] proposed (𝐻𝐻,𝑝𝑝,𝜎𝜎) 3-tuple network traffic modeling. The 3-tuple

(𝐻𝐻, 𝑝𝑝,𝜎𝜎) answer three questions: (1) How often are bursts of packets injected at a

router, and how large are these bursts? (2) How far do packets travel in the

network from a source node towards their destination node? And (3), what

proportion of total traffic does each router inject into the network? These three

components are orthogonal or independent from each other.

The level of burstiness or packets per unit time is not constant and varies from one

cycle to the next and this level of burstiness can be parameterized using single

parameter, the Hurst exponent H. The quantity 𝐻𝐻 = 1 − 𝛽𝛽 2⁄ , known as the Hurst

exponent or “fractal dimension,” shows the presence and degree of scale-invariant

memory. A value of 0.5 is a sign of no long-term memory effect (white noise),

while values closer to 1 show increasing presence of the long-term memory.

42

The second parameter p is one of the two spatial components of traffic and

abstracts the hop distance of traffic and captures its distribution. It can be equally

determined by three factors: (1) the communication pattern of the application, (2)

the computation power (hardware resources such as processing unit, memory etc.)

of each router node, and (3) the mapping of the application onto the nodes. The

first two factors decide the best possibility which network traffic mapping can

achieve, in other words, they define a tight lower bound of the network traffic’s

average hop count. To derive this lower bound, first define the traffic acceptance

probability 0 ≤ 𝑝𝑝 ≤ 1 such that when one source node is to send a packet, any

other node in the network that is used by the same application will receive (i.e. in-

transit node) or consume (i.e. destination node) that packet with acceptance

probability p. A node with a relatively higher p has an increased capability of

receiving or consuming a packet. Therefore a relatively high p denotes short-

distance network traffic (source-destination nodes are close, i.e. localized traffic)

while a relatively small p denotes longer distance (global) traffic as each node

across the source-destination path possesses a smaller capability of consuming the

in-transit packets.

 Lastly 𝜎𝜎 represents the second spatial component of the 3-tuple model, and

characterizes the distribution of the ratio of total network traffic that each router

injects into the network. The traffic injection distribution shows the percentage of

traffic, or the average probability of packet injection, that comes from each node. It

therefore captures spatial characteristics of traffic. A greater 𝜎𝜎 presents a flatter,

more evened-out distribution (a relatively large 𝜎𝜎 can model uniform distribution),

while a smaller 𝜎𝜎 models more concentrated, uneven injected traffic, where a few

routers inject most of the traffic forming hotspots in the network.

43

CHAPTER 3

NETWORK SIMULATOR AND SIMULATION ANALYSIS

The best way to analyze the system behavior is to make a simulation where all of

its aspects are captured. We chose the general-purpose simulator, ns-2, to simulate

NoC. Here, we present the simulation results solely considering the non-faulty

system. The main goal of this chapter is to present the behavior of NoC under XY-

routing. The different parameters that may influence the network performance are

analyzed.

3.1 Network Simulator

To simulate NoC we used the general-purpose simulator, ns-2, which was

developed by the Network Research Group at the Lawrence Berkley National

Laboratory (LBNL). Ns-2 is an object-oriented, discrete-event driven network

simulator implemented in C++ and OTcl (Object Tool Command Line) [48]. Users

can set up and run a simulation by writing a Tcl script, where the topology, routing

algorithm, protocols and applications can be defined. It provides basic TCP and

UDP as the network transmission protocols, four routing strategies, such as Static,

Session, Dynamic and Manual and many mechanisms for modelling traffic

generation. Ns-2 also provides users with a built-in graphical animator tool, NAM

(Network AniMator), which visualizes the flow of messages and the whole system

simulated. These protocols that are not supported by ns-2 can be implemented in

44

C++ and added into the ns-2 library, which then can be used in simulation via OTcl

script.

Since, ns-2 was designed for regular computer network simulation, like Local Area

Networks (LANs), Wide Area Networks (WANs) and for satellite networks, radio

propagation and wireless systems, it does not contain NoC protocols. Even though,

in [49] [50] [51] the authors used ns-2 in simulation of NoC they did not

implement its protocols but rather used built-in options.

3.1.1 Embedded Protocols

We had to implement our own router model presented in [52] in ns-2, because it

does not consider router delay. Each time a packet arrives, ns-2 finds the

appropriate slot that the packet should use and sends it to the output buffers

immediately. Thus, packets latency is computed considering only buffer latency

and link latency. Since, ns-2 pre computes all possible outputs before simulation

begins using Dijkstra’s Shortest Path algorithm, every node contains tables which

contain slot numbers that should be used in order to reach certain destination. In

NoC the routing algorithm is distributed, so the decision of output channel that

should be taken is made in every intermediate node, so the routing algorithm is

also implemented.

Ns-2 does not support flit level communication and drops random packets in links

when the buffer overflows. In flit level communication the drop of header flit

cause the data flits moving behind also to be dropped. Besides, dropping packets

reduces system performance (i.e. multimedia applications). In our router model

drops never occur and packets spend several cycles in the router passing different

stages in order to allocate an output channel.

45

3.2 Router Model

Routers are the building blocks of NoC. Thus, the performance of interconnection

networks depends on the performance of the routers and the optimization of a

router significantly increases network throughput [53].

Generally, proposed router models assumed that the clock cycle time depends only

on router latency, thus assuming that the router latency fits within one clock cycle.

Peh et al. [52] suggested a more realistic router delay model, where the clock cycle

time was fixed and the router consists of several pipeline stages that might vary

and each stage takes one cycle.

Figure 14 Canonical virtual channel router architecture [52]

Figure 14 presents a canonical virtual channel router architecture, where p is the

number of physical channels, v is the number of virtual channels per physical

channel, and w is the channel width in bits. Crossbar ports are shared between

virtual channels of a physical channel, allocated on flit-by-flit basis.

46

Each virtual channel has a separate buffer and a state. The packet passes through

routing, virtual channel allocation, switch allocation and crossbar traversal stages.

Each flit has a VC-identifier (VCID) field, which defines the virtual channels

where a flit is destined to. When a header flit arrives input controller decodes its

VCID and injects the packet into virtual channel with associated VCID, where it is

buffered. Virtual-channel enters a routing state and sends a flit’s destination field

to routing logic which returns the output virtual channel for a packet. Input

controller then sets the virtual-channels state to virtual-channel allocation. Virtual-

channel sends a request for those output virtual-channels to global virtual-channel

allocator, which in turn returns the available output virtual-channels and updates

the states of those output virtual-channels to unavailable. Once an output virtual-

channel is allocated the header flit sends a request to global switch allocator for

output port. When a request is granted the header flit leaves for the next node, with

its VCID field changed to the recently allocated virtual-channel’s VCID.

When data flits arrive they inherit the output virtual-channel reserved by their

header flit so they can immediately send a request to global switch allocator for

output port. The tail flit signals the virtual-channel allocator to release the output

virtual-channels reserved by its header flit after gaining access to crossbar passage.

Each time a flit leaves, the buffer count for its output virtual channel is

decremented in the current router, and the credit containing the input virtual

channel is sent to the previous router, prompting it to increment its buffer count.

Thus, a flit is never sent to next router until it has available buffers to store entire

flit. This prevents the network from packet drops.

3.3 Network Simulation

In this section simulations are conducted in order to see the behavior of NoC under

different conditions. These conditions are parameterizable values that can be

47

changed, like packet size, buffer depth at each input controller, number of VCs per

physical channel, and network size. The evaluation is done in terms of message

average latency and throughput.

Latency: Transport latency is defined as the time (in clock cycles) that elapses

from the occurrence of message header injection into the network at the source

node and the occurrence of a tail flit reception at the destination node. The average

message latency is calculated as a sum of latencies of every received message

divided by total received messages.

Throughput: Throughput is defined as maximum traffic accepted by the network.

In our case it as a ratio of total received messages to total generated messages.

Thus, if the number of received messages equal to the number of generated

messages, then the network is working at 100% capacity. In all our simulation the

throughput is given as the percentage of total received messages out of total

generated messages.

Load normalization: Since injection rate depends on network size and packet size,

it has to be normalized. In kxk network every node under maximum load (that is 1)

is considered to inject into the network 4/k flits every cycle when the k is even. In

our case, if we use 16x16 mesh the maximum load is 4/16=0.25 (flits/node/cycle).

We implemented router model described earlier in ns-2. The routing algorithm is

XY-routing, where a packet moves first in x- dimension until it reaches the same

position with the destination and then moves along y-dimension. Used switching

technique is wormhole. The destinations are uniformly distributed across an eight-

to-eight mesh network. All simulations ran under Poisson traffic. It is noteworthy

that Poisson traffic model and uniformly destination distribution is considered to

be non-realistic. However, there are no other realistic traffic models proposed for

NoC, since it is not known yet how future SoCs will behave [44].

Each simulation ran for a 3000 cycles for a warm-up period and other 30 000

cycles for performance data collection. The latency of a packet begins when the

message header is injected into the network at the source node and continues until

48

the last unit of information is received at the destination node. The communication

load is given in terms of a percentage of the network capacity.

Figure 15 Visual graphic of a network in ns-2

Figure 15 shows the connection of routers on NAM. Since, traffic generators are

attached to routers and they do not have graphical representation in ns-2 we

decided not to show source nodes. Actually every node has one source, where

packets are generated. In NoC router and source are connected via links and

similar to every link in simulator they have one cycle propagation delay. So we

simulated a link between a router and a source such that every packet sent by

source reaches the router after one cycle.

These packets that reach their destinations are ejected from network immediately.

Thus, we do not consider buffer size in source nodes and while the buffer size in

routers is restricted the source nodes are considered to have unlimited buffer size.

49

3.3.1 Effect of Network Size

Figures 16 and 17 illustrate the effect of network size on average message latency

and throughput respectively. The message size is 32 flits and the buffer depth is 4

flits per input channel. The performance is evaluated for 4x4, 8x8 and 16x16

networks.

Figure 16 Average latency under different network sizes

As the network size increases the average message latency of messages also

increases (Fig. 16). As destinations are uniformly distributed which means that

every node has equal probability to become destination, with the increase of

network size the distance between nodes increases. Thus, the messages have to

spend more cycles in a network until they reach their destinations.

The throughput of a network with bigger sizes saturates earlier than the 4x4

network (Fig. 17). The increase of network sizes causes more messages to be

injected into the network. From the other side message will spend more time in a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4x4 84.58 95.25 118.89 134.4 137.13 135.62 134.66 137.76 136.65 136

8x8 158.13 178.12 279.27 293.9 299.6 295.27 298.58 294.42 300 297

16x16 381.83 391.34 513.21 596.37 633.9 662.17 671.8 672.46 681.37 683.7

0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 la
te

nc
y

Load

50

network thus blocking the resources. In 4x4 networks the nodes take advantage of

their proximity which allows messages to reach their destinations quickly and thus

free the allocated resources.

Figure 17 Throughput under different network sizes

3.3.2 Effect of Packet Size

The effect of packet size on network performance is presented in Figures 18 and

19. Here, the network size is 8x8, and the buffer depth per input channel is 4 flits.

The number of VCs per physical channel is one. The performance is evaluated for

message sizes that are 10, 16, 32 and 64 flits long.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4x4 91.02 90.97 91.09 83.27 70.711 64.288 57 51.87 48.688 46.71

8x8 91.68 91.68 72.879 56.687 45.04 34.88 32.89 29.68 25.88 23.94

16x16 93.53 91.05 78.75 57.73 46.672 38.589 33 28.97 25.67 18.399

0
10
20
30
40
50
60
70
80
90

100

Th
ro

ug
hp

ut

Load

51

Figure 18 Average latency under different packet sizes

The average latency of messages increases as the message size increase (Fig.15).

This is natural, since the messages with bigger sizes spend more cycles in a

network. However, the throughput does not change with the message size (Fig.16).

As it was indicated before the injection rate also depends on message size. Thus,

when the message size increases the injection rate decreases. This causes every

node to send the same amount of flits independent of message size. We consider

that the network throughput does not depend on message size but rather on the

number of flits that are injected.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 flits 52.707 75.88 122.88 126.74 126.88 127.24 126.25 128 126.69 126.42

16 flits 77.616 96.32 163.95 169.08 172 169.8 170.6 171.25 169.4 169.78

32 flits 158.13 178.12 279.27 293.9 299.6 295.27 298.58 294.42 300 297

64 flits 326.47 368 527.4 561 551.05 572.56 563.28 568.26 564.19 564.76

0
100
200
300
400
500
600
700
800
900

A
ve

ra
ge

 la
te

nc
y

Load

52

Figure 19 Throughput under different packet sizes

3.3.3 Effect of Buffer Depth

Figures 20 and 21 represent the effect of buffer depth on average latency and

throughput respectively. The network size is 8x8 and the message size is 32 flits.

The buffer depth changes from 4 to 8 and 16.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 flits 91.2 91.14 72.58 57.98 48.29 37.93 36.72 32.63 29.98 28.13

16 flits 91.659 91 71.84 57.06 45.969 36.14 34.477 30.67 27.92 25.8

32 flits 91.68 91.68 72.879 56.687 45.04 34.88 32.89 29.68 25.88 23.94

64 flits 92.5 91.78 71.888 55.62 45.719 33.19 32.237 28.057 25.16 22.907

0
10
20
30
40
50
60
70
80
90

100

Th
ro

ug
hp

ut

Load

53

Figure 20 Average latency under different buffer depth

As it can be seen from Figure 20 increase in buffer depth increases the message

latency after the saturation point. It was indicated that the message latency begins

when the header flit is injected into the network. The source node sends a flit to the

router as soon as it finds out that the there is a free buffer available in uploading

buffers. At that time the message’s latency begins. As the buffer size increases,

more flits can be injected into the network. However, there is a contention for

resources in the router and these flits will have to wait longer in the router after

being injected into the network. The bigger the buffer depth, the earlier the

message is injected into the network and thus, the earlier its latency begins.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4 buffers 158.1 178.1 279.3 293.9 299.6 295.3 298.6 294.4 300 297

8 buffers 152.8 164.2 298.9 314.2 324.6 322.5 320.8 321.3 321.9 318.9

16 buffers 147.5 148.5 339.9 375.5 400 389.4 394.8 382.2 388.9 395.3

0
50

100
150
200
250
300
350
400
450

A
ve

ra
ge

 la
te

nc
y

Load

54

Figure 21 Throughput under different buffer depth

However, increasing the buffer depth slightly increases the throughput. Although

flits that are newly injected into the network wait longer thus increasing the

message latency, once they get the grant for the channel requested they path

quickly to the next router. This releases the resources that are held by these

messages. On the other hand the increase in throughput is not significant. In [2] it

was also indicated that if the message size is small and wormhole switching is

used, the increase in performance through increased buffer size is insignificant.

We consider that trying to achieve better performance by increasing the buffer

depth will not give any advantages, since the improvement is small at the cost of

bigger buffers. Buffer depth seriously influences the overall area. In [11] it was

suggested avoid big buffers, since the increase of the buffer size at each input

channel from 2 to 3 words, increases the router area of 4x4 NoC by 30%.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4 buffers 91.68 91.68 72.879 56.687 45.04 34.88 32.89 29.68 25.88 23.94

8 buffers 91.62 91.64 76.736 61.037 48.22 36.899 35.53 31.39 28.02 26.01

16 buffers 91.62 91.659 83.516 66.302 51.968 40.9 38.639 35.468 31 27.867

0
10
20
30
40
50
60
70
80
90

100

Th
ro

ug
hp

ut

Load

55

3.3.4 Effect of VC Size

Figures 22 and 23 show the results of the simulation, where different VC sizes per

physical channel were used. Here, the packet size is 32 flits and the buffer depth

per virtual channel is 4 flits. The performance is evaluated under VC sizes of 1, 2,

4 and 8.

Figure 22 Average latency under different VC sizes

The average latency of packets is high when we use solely a channel without

virtual channels (1 VC). The throughput rapidly decreases as the communication

load increases. This is due to inefficient usage of channels, since a flit reserves it

for entire packet duration. The best results are obtained for 4 VCs per physical

channel, where both average latency and throughput present high performance.

This result is consistent with researches in [25] [22], where four VCs are showed to

be the optimal size. 8 VCs per physical channel yield good throughput but the

latency increases after saturation point. This confirms the results presented in [52],

where the author asserts that the latency increases after 8 VCs per physical

channel. This rapid increase in latency may be due to complexity in the router that

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1VC 158.13 178.12 279.27 293.9 299.6 295.27 298.58 294.42 300 297

2VCs 100.14 97.73 96.98 100.59 116.17 147.26 149.35 147.62 148.9 150

4VCs 97 95.477 94.449 95.33 98 108 116 143.37 149.32 149.18

8VCs 97.19 95.57 94.5 95.35 98.338 107.75 118.5 175.21 193.79 193.67

0

50

100

150

200

250

300

350

A
ve

ra
ge

 la
te

nc
y

Load

56

is introduced by large VC numbers, as the router will have to arbitrate among

many requestors competing for one physical channel. Thus, number of VCs is

constrained to four, since it yields a balance between high throughput, low latency,

and conservation of silicon area [25]. Since we consider that the message latency

starts upon its injection into the network the graphs show the latency to be constant

after saturation point. However, if we would consider also the time the message

spends in source buffers before being injected into the network, the graphs would

show that the latency is going upward. The increase in message latency is due to

the fact that as the injection load increases till the accepted traffic limit, there will

be more message contention.

Figure 23 Throughput under different VC sizes

As it can be seen from Figure 23 while the router that does not make use of any

VCs enjoys the throughput of 30% capacity, the router with 2VCs and 4VCs

increase the throughput up to 50% and 70% respectively.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1VC 91.68 91.68 72.879 56.687 45.04 34.88 32.89 29.68 25.88 23.94

2VCs 91.62 91.83 91.24 91 91 81.89 77.23 69.54 61.395 55.826

4VCs 91.62 91.83 91.21 91 91 91 91 88.84 79.66 73.18

8VCs 91.62 91.83 91.21 91 91.13 91 90.989 89.17 80 73.595

0
10
20
30
40
50
60
70
80
90

100

Th
ro

ug
hp

ut

Load

57

CHAPTER 4

FAULT-TOLERANT ROUTING ALGORITHMS AND
SIMULATION RESULTS

In this chapter we present the simulation results of the f-Cube4 fault-tolerant

routing algorithm and our own, Shared Buffer (SB), algorithm. Some comparison

between these algorithms is presented. Various kinds of fault situations such as

non-overlapping fault-rings, fault-chains and overlapping fault-rings are induced

and algorithm performances are evaluated. Besides, the faults are categorized

according to their localization in order to see the performance of a network under

random and localized faults.

4.1 Fault Model

We consider node and link faults. A node failure makes all links incident on it

faulty. If all links of a node is faulty then this node is marked as faulty. However, if

a node has faulty output link it marks its neighbor to which the link is incident, as

faulty, even if the node is not faulty. Only non-faulty nodes generate messages. It

is also considered that the messages are destined to non-faulty nodes. These are

general assumptions used in literature.

58

Presented fault-tolerant algorithms work with local fault information. Thus, every

node knows only the status of its neighboring nodes. As it was indicated in Chapter

2, global fault information requires additional storage for routing tables and leads

to synchronization problems.

Faulty nodes and links form fault regions. We use the block fault model

(rectangular faults), which requires a fault to belong to only one fault block. Under

this fault model a fault-free node has faulty links incident on it in at most one

dimension. Since fault-tolerant algorithms are applicable in only connected

networks, where every non-faulty node has a path to every other non-faulty node,

the block faults that touch both row boundaries or column boundaries of a network,

thus disconnecting the network, are not considered. However, the algorithm can be

applied to each connected sub network.

The concept of fault ring (f-ring) that was introduces by [34] is used. Here, non-

faulty nodes around the region are connected to form a ring. If the faults are on the

boundary of a network, non-faulty components cannot form a ring, thus non-faulty

components connect to form an f-chain. The nodes at which f-chain touches the

boundaries of the network are end-nodes. We require f-ring to be of rectangular

shape. The fault-free node is in the f-ring if it is at most two hops away from a

faulty node. Since network may contain several f-rings and if these f-rings share

physical channels they are called overlapping f-rings. In our algorithm we consider

f-rings, f-chains and overlapping f-rings of rectangular shape.

4.1.1 Formation of f-rings and f-chains

It is assumed that the nodes have self testing mechanisms that are variously

presented in literature [54]. Each node monitors links incident on it. If a node x

becomes faulty, each of its neighbors conclude that the link connecting it to x is

faulty. Since we consider block faults each node can have faulty links in at most

one dimension. Thus if a node has faulty links in more than one dimension, it

marks itself as faulty and stops sending status signals to its neighbors.

59

Nodes on an f-ring can be in one of the eight possible positions: North West (NW)

corner, North, North East (NE) corner, East, South East (SE) corner, South, South

West (SW) corner, and West. Nodes determine their positions on an f-ring as

follows:

1- If a node has faulty neighbors in first dimension (DIM 0, in our case it is x-

dimension), it sends a message with information on its faulty neighbors to

each of its non-faulty neighbors in DIM 1 (in our case y-dimension), and

vice versa.

2- Each node determines its position according to received messages and its

own link status.

Thus the f-ring is formed by using local fault information. The f-chain is formed in

the same manner. The only difference is the end-node. However, only end-nodes

can know that they are on the f-chain, while others consider themselves on f-ring

since the algorithm is the same for both f-rings and f-chains. In the case of

overlapping f-rings nodes will have to distinguish between two distinct messages.

As a node can have faulty neighbors in at most one dimension, the fault

information from two different neighbors that are on the same dimension can be

categorized and split into two distinct f-rings.

As every other approach this approach relies on the absence of faults during the

interval in which the system state is being updated. This interval is bounded by the

network diameter.

4.2 f-Cube4 Algorithm

The f-Cube4 algorithm was briefly described in Chapter 2. It is built on XY-

routing algorithm. The f-Cube4 requires 2 Virtual Channels (2VCs) per physical

channel for non-overlapping f-rings. Here, messages are divided into row and

60

column messages. These messages that are still taking their row hops are either

West East (WE) or East West (EW) messages, and these that have completed their

row hops and passed to column hops are either South North (SN) or North South

(NS) messages. Row messages may become column messages while vice versa is

not true. VCs are divided into two sets where c0 is used by row messages and c1 is

used by column messages.

According to the f-Cube4 algorithm that is used for non-overlapping f-rings a

direction of a NS message’s that encounters fault (misrouted) is set clockwise and

misrouted SN message’s direction is set counter-clockwise. A misrouted WE

message’s direction is set clockwise (respectively counter-clockwise) if the

destination is a row above (respectively row below) the current host. A misrouted

EW message’s direction is set clockwise (respectively counter-clockwise) if the

destination is row below (respectively above) the current host. Either orientation

can be chosen when the host is on the same row with destination. The algorithm

uses the term e-cube hop, which is defined by [34] as a path that lies on a

message’s e-cube path. Recall that XY-routing algorithm is also called e-cube

algorithm (see Chapter 2), thus the e-cube path is the natural path that should be

used by a message under fault-free conditions.

In f-Cube4 algorithm messages are routed around the fault region in such a manner

that the WE messages always use the west boundaries of f-ring while EW

messages use east boundaries. NS and SN messages move in opposite direction

and never share the same physical channel. However, when f-rings overlap, the

East (South) boundary of one f-ring becomes a West (North) boundary of another

one. Thus, the physical channels used by both row and column messages are no

longer disjoint. As a solution two more VCs per physical channel are provided,

overall of four VCs per channel. Now WE, EW, NS, and SN messages use their

own VCs c0, c1, c2, c3 respectively.

61

4.2.1 Performance Evaluation of f-Cube4 Algorithm

We have simulated a 16x16 mesh, since radix 16 is generally used in studies [34].

The network implements f-Cube4 routing algorithm. The implemented router

model is the one presented in [52]. Since the f-Cube algorithm requires at least four

VCs, every physical channel has four VCs. Injection rate is normalized. The

latency of a packet begins when the message header is injected into the network at

the source node and continues until the last unit of information is received at the

destination node. The simulation results obtained in Chapter 3 shows that the

packet size does not influence the throughput but only increases the average

message latency. Hence, we decided to keep the message size small, 5 flits. It was

also shown that the improvement is small when increasing the buffer depth. As we

are trying to minimize the buffer size we chose it to be as small as possible and

keep it as 4 flits per VC. Every simulation runs for 3000 cycles for warm up period

and for 30 000 cycles for information gathering.

 1%, 5% and 7% total link faults were injected randomly to the different places of a

network. For the 1% case we have randomly chosen a node and a link to be faulty.

Every node has four links incident on it, thus totally 5 links of 480 links are faulty.

For the 5% fault case, four nodes and eight links are set as faulty, and for 7% fault

case four nodes and 16 links are set as faulty. The faults are constructed in such

that the f-rings, overlapping f-rings and f-chains are also covered. Figure 24

illustrates average latency obtained from simulation, and Figure 25 shows the

throughput.

62

Figure 24 Average latency of f-Cube4 under various fault patterns

Figure 25 Throughput of f-Cube4 under various fault patterns

Since injection of random faults into different parts of a network increases the

probability that the message encounters multiple faults, the performance degrades

rapidly with the increase of load. The message average latency reaches up to 800

Cycles. In order to see the difference with the faults which occur randomly with

those which are localized, we have injected multiple faults that are gathered in one

place. Figures 26 and 27 present the results obtained for one non-overlapping f-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1% fault (I node 1 link) 77.8 82.24 255.6 366.8 425 463 488.17 495.2 492 493.4

5% fault (4 node 8 link) 157.86 283.33343.448 436.5 500.4 544.5 561.4 584 571.2 581.66

7% fault (4 node 16 link) 377.5 485.8 556.34 652.8 703 734.4 765.8 778.9 793 777

0
100
200
300
400
500
600
700
800
900

A
ve

ra
ge

 la
te

nc
y

Load

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1% fault (I node 1 link) 91.13 91.07 80.2 58.42 46.61 38.8 33.16 29.26 26.3 19.43

5% fault (4 node 8 link) 87.8 71.47 57.47 43.47 33.8 27.68 23.84 21 18.67 13.9

7% fault (4 node 16 link) 73.7 53.9 40.78 29.94 23.5 19.2 16.25 14.43 12.8 9.5

0
10
20
30
40
50
60
70
80
90

100

Th
ro

ug
hp

ut

Load

63

ring containing 9 nodes and 2 overlapping f-rings each containing 6 nodes. Both of

them are placed into the middle of a network, which is the most heavily loaded

part.

Figure 26 Average latency of f-Cube4 under localized fault sets

Figure 27 Throughput of f-Cube4 under localized fault sets

Performance of the f-Cube4 algorithm under the localized fault set is better in

compared to random faults even though the overall link faults are more than these

injected randomly (7.5% and 10%). This is because faults are localized and these

1 2 3 4 5 6 7 8 9 10

(6x6) overlapping 94.66285.224494.35548.79602.55630.74630.745617.546622.11633.66

9 nodes nonoverlapping 85.83 213 456 536.9 565.79592.69 604.5 607.9 598.6 612

0

100

200

300

400

500

600

700
A

ve
ra

ge
 la

te
nc

y

Load

1 2 3 4 5 6 7 8 9 10

(6x6) overlapping 91.16 80.9 56.78 42.61 33.39 27.9 23.93 22 19.45 14.15

9 nodes nonoverlapping 91.13 83 60.41 44.58 36.38 30 25.77 23 20.99 15.08

0
10
20
30
40
50
60
70
80
90

100

Th
ro

ug
hp

ut

Load

64

messages whose path does have to pass through the faulty components have very

small latency thus decreasing the overall message latency. We believe that in

reality the fault that is localized as a node failure affects others thus forms an f-ring

in that place.

Naturally the average message latency of network with overlapping f-ring is higher

than the one that contains non-overlapping f-ring (Fig.3). Routing around one f-

ring take less time, while in overlapping f-ring a message has high probability to

encounter a fault twice. However, the difference in message latency is

insignificant. This is also valid for throughput. The reason may be that although

overall faulty node number is bigger the overlapping f-ring contains a small

amount of faulty nodes (6x6) in each f-ring, while non-overlapping f-ring contains

9 nodes in one f-ring.

4.3 Shared Buffer Algorithm

In a general router model presented in Chapter 3, edge buffers are used. Thus when

the link fails buffers associated with it are also considered as faulty. Despite the

fact that VCs are called channels, indeed they are normal buffers. Fault tolerance

requires many buffers to be embedded into routers, as misrouting around the faulty

regions leads to channel dependency thus creating deadlocks. Since it is not known

when the fault occurs and from what side, every physical channel has equal size of

VCs. However, when that physical channel fails, all these VCs remain idle. When

a link is faulty it does not necessarily mean that associated buffers are also faulty.

We propose to make use of central VCs. This can be done by placing VCs in the

middle of a router rather than assigning them to each input. Every input controller

(IC) can see every VC. In fault free conditions ICs use their own set of buffers.

However, when fault occurs some buffers remain idle. Thus, they can be allocated

dynamically and be useful in avoiding fault regions. In order to see how useful it

65

can be, we have implemented the central buffer mechanism in the f-Cube4

algorithm, thus reducing the number of VCs to two that is sufficient for both non-

overlapping and overlapping f-rings.

While implementing f-Cube4 algorithm we observed that the channels are

significantly underutilized. This algorithm provides four VCs per physical channel.

However, under fault free condition only one of them is used. Even in a faulty

environment NS (WE) messages will never use their SN (EW) VCs and vice versa,

since messages are not allowed to move backward, except the situations, when a

message encounters f-chains. It is noteworthy that the NS and SN messages never

encounter an f-chain on North and South boundaries of a network, while WE and

EW messages never encounter it on West and East boundaries.

Figure 28 shows the movement of messages around overlapping f-rings. Since WE

and EW messages share channels on y-axis (Figure 28a) they may block each other

when multiple overlapping f-rings occur, if we use two VCs per physical channel.

The similar condition is valid for column messages (Figure 28b). In order to

separate movement of every message type, f-Cube algorithm proposes four VCs

per physical channel. Thus, channels used by every message are disjoint, allowing

messages to move in every direction around the f-ring and not causing deadlock.

S

D

S
 D

D
 S

S

D

(a) (b)

Figure 28 Overlapping f-rings sharing y-axis and x-axis

66

However, when closely observed it can be seen that row messages share channels

only on y-axis and column messages on x-axis. Thus, messages need additional

VCs only on their shared channels. This requires VC number to be different for

particular physical channels. Due to unpredictable nature of fault occurrences, four

VCs are used as a guarantee. When central buffers are used there are always free

buffers around f-rings. They can be dynamically allocated, thus eliminating the

need for additional VCs.

In our shared buffer (SB) algorithm NS and WE messages use shared buffers that

are provided by those nodes that have faulty links. As it was described in our fault

model, every node knows its position over f-ring. For blocked fault model a

message can have faulty links in at most one dimension. If a node has a faulty link

on its West or East side it divides VCs associated to that link to equal numbers

(depends on VC number per physical channel), and notifies its North and South

neighbors that it is sharing a VC. This can be done by sending a message

containing the VC ID. The same is done if a fault is either on North or South of a

node. In this case a node notifies its West and East neighbors. Thus every node that

is on the f-ring contains shared buffers, except for the corner nodes. For this

algorithm at least two VCs are needed, so that for one link failure in one

dimension, a node can give one shared VC for each neighbor from the other

dimension.

Row messages use c0 and column messages use c1. The movement of EW and SN

messages is the same as in f-Cube4 algorithm. However, WE and NS messages use

shared VCs in particular places. Since WE messages move in opposite direction to

EW messages when an e-hop is provided they never share a channel. But, when a

row message encounters a fault it has to turn to another dimension (y-axis in our

case). In order to escape channel dependency WE messages look further to the

position of a next node on an f-ring. If it is a corner node that indicates an end of

an f-ring, it allocates the normal VC (c0), otherwise it requests a shared VC that is

provided by the next node. As long as a WE message enters shared buffers it

moves along until it meets a corner node. As the corner node assures that its e-hop

67

is available from that position, WE message again uses the normal VC. The same

concept is used for NS messages that enter shared buffers only when they have to

move along the x-dimension. However, the additional constraint used for NS

messages is that they move along shared buffers until they meet a corner node or

until a y-hop is available. Here, we define a y-hop is a hop that the message was to

move before it encounter first fault. Since in normal condition NS messages move

only on y-axis, this constraint is required in order to ensure deadlock-safety. Now,

the messages can move in any direction along the f-ring provided that the nodes

around the f-ring share at least two VCs - one for a direction and other in the

opposite direction.

The routing algorithm is deadlock free. Row messages may turn into column

messages after a few hops, but column messages never turn into row messages.

Since row messages use only class 0 virtual channels and column messages use

only class 1 virtual channels, there cannot be deadlock involving both classes of

virtual channels. Therefore, if there is a deadlock, then it is among the channels of

class 0 or class 1 only.

Class 0 channels are used only by WE and EW messages. When they move on the

x-axis they use disjoint set of physical channels. When a WE message encounters a

fault it allocates a shared buffer that is used only by the WE message on the y-axis.

The only time a message uses VC of class 0 in a misrouted status is when it meets

corner nodes that do not have shared buffers. However, corner nodes indicate that

the e-hop of a message is available or that there are other shared VCs if the rings

overlap thus, WE messages eventually free the corner channels and cannot block

EW messages.

Class 1 channels are used by NS and SN messages. When they move on the y-axis

their directions are always opposite, thus they use disjoint set of channels. When an

NS message encounters a fault it moves along the shared buffers, which are used

only by NS messages along the x-axis. The only time the NS message uses VC of

class 1 in misrouted form is when it passes to corner nodes and while it is moving

along the y-axis. However, as the y-axis is always free for NS messages and cannot

68

be used by SN messages that move in opposite direction, the corner nodes are

eventually freed. Thus NS messages cannot block SN messages and vice versa.

4.3.1 Performance Evaluation of SB algorithm

The same set of faults (1%, 5% and 7%) was injected into the network simulating

the SB algorithm. The number of VCs per physical channel is two. The SB

algorithm achieves the same throughput as an f-Cube4 algorithm. The performance

of SB algorithm is shown Figures 29-32. The average message latency is

significantly decreased. It will be shown later that even under the fault-free

condition f-Cube4 has much bigger average message latency.

Figure 29 Average latency of SB algorithm under random fault

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1% fault (I node 1 link) 77.8 81.9 199.8 263.59 293.49 313.6 323.4 325.7 325.22324.335

5% fault (4 node 8 link) 136.218 219.7 256.5 313.6 344.7 371.5 381.63 388.4 386 390

7% fault (4 node 16 link) 291.7 352.8 391.27 450.73 487.9 505.9 513.79 527.4 536 528.9

0
100
200
300
400
500
600
700
800
900

A
ve

ra
ge

 la
te

nc
y

Load

69

Figure 30 Throughput of SB algorithm under random faults

In 7% randomly placed faults SB reaches maximum of 540 Cycles average

message latency, while it reaches 800 in f-Cube4 algorithm. The throughput is

almost the same as f-Cube4 algorithm. This is explainable. While providing four

VCs per physical channel f-Cube4 restricts their usage, so that only particular

message types can allocate them. However, every node has its own internal traffic

generator, which is also provided with these four VCs. Since a traffic generator

sends a message from its internal queue to VCs as soon as they become free, the

increase in injection rate always keeps these internal VCs full with messages. As

there are four internal VCs there is high probability that one of them always has

highest priority in allocating the VC that was also requested by an incoming

message. Thus, a message spends several cycles (depends on message size in flits)

in every router waiting for a requested VC to be available. This problem of

multiplexing multiple VCs over one physical channel reduces in the SB algorithm,

thus reducing the message latency. However, the throughput remains the same,

since the router using the f-Cube4 algorithm sends the same amount of flits every

cycle as in SB routers.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1% fault (I node 1 link) 91.13 91.07 80.2 58.43 46.83 38.8 33.2 29.33 26.4 19.5

5% fault (4 node 8 link) 88.2 71.11 57.37 43.3 34 27.78 23.86 21 18.7 13.9

7% fault (4 node 16 link) 73.67 53.84 40.83 29.95 23.5 19.2 16.29 14.48 12.8 9.5

0
10
20
30
40
50
60
70
80
90

100

Th
ro

ug
hp

ut
Load

70

Figure 31 Average latency of SB algorithm under localized faults

Figure 32 Throughput of SB algorithm under localized faults

In order to see what can be achieved by using the same number of VCs that were

used in f-Cube4 algorithm we added two more VCs to the SB algorithm. Here, c0

and c1 are used by row messages, and c2 and c3 are used by column messages.

This may look similar to f-Cube4 algorithm. However, in f-Cube4 an incoming

message can request only one VC according to its type. In SB with four VCs an

incoming message can request either of the two VCs, thus reducing the blocked

message number in a router.

1 2 3 4 5 6 7 8 9 10

(6x6) overlapping 93.94 220.9 346.1 384 416.7 421.7 416.7 410.7 419.2 424.9

9 node nonoverlapping 86 187 330 364.3 377.7 397 401 401.6 393 405.2

0
100
200
300
400
500
600
700

A
ve

ra
ge

 la
te

nc
y

Load

1 2 3 4 5 6 7 8 9 10

(6x6) overlapping 91.16 81.34 57.52 42.3 32.77 27.68 24.11 21.99 19 13.97

9 nodes nonoverlapping 91.13 83 60 44.9 36.6 30.11 25.87 23 21 15

0
10
20
30
40
50
60
70
80
90

100

Th
ro

ug
hp

ut

Load

71

The simulation result for SB4 algorithm is presented in Figures 33-36. Since SB4

algorithm provides messages with alternative VCs the network saturates much

slower than the previous two algorithms. The average message latency reaches up

to 450 Cycles under 7% random faults. This is nearly the half of the average

latency that is achieved by f-Cube4 algorithm. The throughput is almost 1.5 times

better than SB and f-Cube4 algorithms. This indicates that SB algorithm can

achieve much better performance when using the same number of VCs that is used

by f-Cube4 algorithm.

Figure 33 Average latency of SB with 4 VCs under random faults

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1% fault (I node 1 link) 64.41 64.13 64.83 67.35 90 122 178.9 203.2 221.486251.69

5% fault (4 node 8 link) 68.74 68.86 117.2 187.7 218.5 231.75 248.7 280 296.118331.47

7% fault (4 node 16 link) 77 189.321 299.6 352.4 370 368.558378.588400.49 425.3 456.4

0
100
200
300
400
500
600
700
800
900

A
ve

ra
ge

 la
te

nc
y

Load

72

Figure 34 Throughput of SB with 4 VCs under random faults

Figure 35 Average latency of SB with 4 VCs under local faults

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1% fault (I node 1 link) 91.16 91.1 91 90.99 89.87 86.4 78.5 69.7 61.74 45.67

5% fault (4 node 8 link) 91.15 91.12 86.3 75 65.4 58.9 54.45 49 47.57 31.73

7% fault (4 node 16 link) 91.16 85.28 69 55.74 47.87 42.1 37.93 34 30.07 21.8

0
10
20
30
40
50
60
70
80
90

100

Th
ro

ug
hp

ut

Load

1 2 3 4 5 6 7 8 9 10

(6x6) overlapping 68.68 68.3 91.74 252 342.98 375 395.86411.87433.49451.47

9 nodes nonoverlapping 67.87 67.53 97.4 167.63 296.3321.131349.72 356.8 361.55 379

0

100

200

300

400

500

600

700

A
ve

ra
ge

 la
te

nc
y

Load

73

Figure 36 Throughput of SB with 4 VCs under local faults

However, in Figure 35 we can observe that the latency of messages in SB4

algorithm under overlapping f-rings reaches up the latency of SB algorithm. Since

in these parts where the f-rings overlap the only one physical channel is given as an

option, using two VCs per physical channel increases the contention for that

particular channel. This is due to additional shared buffers that also content for

resources, introducing the problem of multiplexing of VCs over one physical

channel. That may be the reason of an increase in message latency. But the

throughput is still better compared to f-Cube4 and SB algorithm since additional

VCs releases the blocked messages.

4.4 General view on algorithms

Here we investigate all these algorithms under fault-free conditions. XY-routing

algorithm is also included. It is desirable for a fault-tolerant algorithm to be fast

and require small amount of buffers. Since many fault tolerant algorithms require a

big number of VCs in order to preserve deadlock-free operations, in the fault-free

cases their performance is not good. The general effort in implementing fault-

1 2 3 4 5 6 7 8 9 10

(6x6) overlapping 91.2 91 89.76 76.9 60.51 50.23 42.89 37.35 32.39 23.5

9 nodes nonoverlapping 91.15 91.1 90.18 82.8 68.63 59.35 49.52 44.6 40.1 29

0
10
20
30
40
50
60
70
80
90

100

Th
ro

ug
hp

ut

Load

74

tolerance is to keep the speed and compactness of deterministic algorithms (XY-

algorithm), while being able to tolerate any number of faults with any kind of

shapes.

Figure 37 Average latency of algorithms under fault free conditions

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

XY(packet size=5flits network
size 16x16) 76.56 77.46 154.889 190.2 207.294 215.1 218.95 218.5 217.2 218.2

f-Cube4 76.51 77.15 232.64 341 402.711446.251 467.38 471.54 470.819471.542

Shared Buffer Algorithm 76.51 77.19 187.75 248.142 284.06 302 311 311.37 310.67 312.6

Share Buffer 4 Algo 64.16 63.92 64.28 65.67 68.39 82 164.71 188.034207.115238.718

0

100

200

300

400

500

600

700

800

900

A
ve

ra
ge

 la
te

nc
y

Load

75

Figure 38 Throughput of algorithms under fault free conditions

Figures 37 and 38 illustrate the performance achieved by algorithms under fault-

free conditions. The throughput is the same for XY, f-Cube4 and SB algorithms.

The reason is that the router in all three cases sends equal number of flits every

cycle. However the latencies differ. The highest latency is achieved by f-Cube4

algorithm. As it was explained before, the reason is the usage of more VCs per

physical channels, while providing only with one choice for VC request according

to message type. The lowest message latency and highest throughput is achieved

by SB that uses 4 VCs. That is because it provides with alternative VCs, thus

releasing blocked messages in every router.

Figures 39 and 40 present the performance of algorithms in the presence of single

block fault region ranging in size from 4 to 20 failed nodes. Some of them form

single f-ring and some of them form overlapping f-rings. Message injection rates

are chosen from the results obtained from the performance evaluation under fault-

free conditions that is illustrated in Figures 37 and 38. Since at load 0.2 the

algorithms perform below saturation point, by inducing faulty nodes we can

observe the degradation level of a network. Load 0.6 is chosen because of SB4

algorithm which saturates only when the load exceeds 0.6 in fault-free network.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

XY(packet size=5flits
network size 16x16) 91.2 91.1 84.78 62.02 49.08 40.7 34.88 31.1 27.88 20.55

f-Cube4 91.12 91.12 84.54 62.1 49.36 40.84 35.05 30.94 27.71 20.5

Shared Buffer Algorithm 91.12 91.12 84.67 62.05 48.91 40.68 34.9 31 27.83 20.43

Share Buffer 4 Algo 91.2 91.07 91.03 90.99 90.96 90.97 84.68 75.16 66.63 49.06

0
10
20
30
40
50
60
70
80
90

100

Th
ro

ug
hp

ut
Load

76

Figure 39 Average latency as a function of node failures

Figure 40 Throughput as a function of node failures

From the figures it can be seen that the SB4 algorithm performs well when the

applied load is 0.2. It does not degrade even after injection of 20 faulty nodes. This

is due to the saturation point of this algorithm which is far above 0.2.

0

100

200

300

400

500

600

700

800

4 6 8 10 12 16 20

A
ve

ra
ge

 la
te

nc
y

Number of faulty nodes

f-Cube4 (Load = 0.2)

SB4 (Load = 0.2)

SB (Load = 0.2)

f-Cube4 (Load = 0.6)

SB4 (Load = 0.6)

SB (Load = 0.6)

0

10

20

30

40

50

60

70

80

90

100

4 6 8 10 12 16 20

Th
ro

ug
hp

ut

Number of faulty nodes

f-Cube4 (Load = 0.2)

SB4 (Load = 0.2)

SB (Load = 0.2)

f-Cube4 (Load = 0.6)

SB4 (Load = 0.6)

SB (Load = 0.6)

77

We observed that the shape of an f-ring greatly influences the performance of the

network. The performance degrades when the multiple faults mostly span x-axis

rather than y-axis, since WE and EW messages can turn into NS and SN messages

thus encounter a faulty block twice. Besides, NS and SN messages have to make

long path in order to reach their destination after being misrouted. That is the

reason of unstability in lines shown in Figures 39 and 40, as we are changing the

shape of a faulty region by adding faulty nodes either on x-axis or y-axis. It is also

observed that a single large faulty-block degrades the network performance greatly

rather than the overlapping f-ring which consists of smaller faulty set. The peak

that occurred in a graph is a non-overlapping f-ring containing 12 nodes and

mostly spans x-axis, thus roughly increasing message latency and decreasing

network throughput. The other faulty regions are taken either as overlapping f-

rings each containing smaller amount of faulty nodes or non-overlapping f-ring

spanning y-axis.

4.4.1 Efficiency level of buffer utilization

As it was mention before f-Cube4 algorithm significantly underutilizes VCs. In

order to understand the buffer utilization we put counters into every VC of a router.

The router was chosen from the middle of a network, which is the most overloaded

part of a network [18]. Since we are considering the worst case the applied load

was maximum, i.e. 1. In a fault-free network f-Cube4 utilizes only 40% of given

VCs. SB and SB4 algorithms make use of 60% of the given VCs.

To evaluate the buffer utilization we put the overlapping f-ring into the middle of a

network and applied the maximum load. However the VC utilization of messages

depends on the position of a router. That’s why we put counters into VC’s of

several routers: to the routers that are located on the shared path where two f-rings

overlap, to the routers on the West, South, East and North of an f-ring.

On the shared path between two f-rings the high buffer utilization is shown by SB4

algorithm that periodically allocates 80% VCs placed in routers, while SB and f-

78

Cube4 algorithm make use of 70% and 45% respectively. North and South parts of

an f-ring showed to be the most overloaded parts of an f-ring and hence f-Cube4

utilizes up to 55% VCs while SB and SB4 utilizes 90%.

SB algorithm is seen to be more efficient in terms of buffer utilization, since it

efficiently uses these buffers that are given, dynamically allocating them according

to its needs. On the other hand, f-Cube4 algorithm rarely utilizes even the half of

the given VCs.

4.4.2 Comparison of algorithms

Both SB and f-Cube4 algorithms have the same routing concept. However, f-

Cube4 provides every physical channel with four VCs in order to be able to

tolerate overlapping f-rings. But many of these VCs are hardly utilized even at

maximum load. Besides, additional VCs are never utilized under fault-free

conditions. We decided to look more optimistically and consider that the VCs

associated with faulty link are not faulty and make use of these idle VCs around

the fault region. This requires every VC to be seen by every input controller and

hence, increases the wiring complexity in a router. However, we consider that the

increase in wiring complexity is tolerable since we reduce the number of VCs and

utilize them at full capacity. The same performance can be achieved with small

amount of VCs. The simulation results show that the performance improves

significantly when adding two more VCs to SB algorithm. In addition to

improvements in performance SB4 algorithm fully utilizes VCs at hand, thus rarely

keeping them idle. Table 1 shows the similarities and differences of algorithms.

The minimum and maximum throughput and average latency of algorithms under

various conditions are given (Teble 1). Here, minimum latency and throughput is

the performance results obtained with minimum load, while the maximum

throughput and latency indicate the results obtained when the applied load is the

maximum. Maximum load is the maximum sustainable throughput when a network

is loaded with uniform random traffic. The table shows the general view on

performances of algorithms. SB4 algorithm degrades much slower than the other

79

two algorithms. Besides, SB with two VCs has smaller average latency in

compared to f-Cube4 algorithm.

In [34] the simulation of f-Cube4 was conducted by giving the physical channel

arbitrary number of VC, up to eight, that were implemented as a free pool.

However, the free pools belong only to one physical channel, which means that the

other links cannot make use of these VCs that belong to faulty links. We do not

implement a router with such huge amount of VCs per physical channel, since our

goal is to decrease buffer size required for every router.

Algorithms f-Cube4 SB SB4
Fault model Convex

(f-rings, f-chains,
overlapping f-

rings)

Convex
(f-rings, f-

chains,
overlapping f-

rings)

Convex
(f-rings, f-chains,

overlapping f-
rings)

Routing technique XY-routing XY-routing XY-routing
Buffer utilization 40%-55% 60%-90% 60%-90%
Min-max throughput
under fault free
condition (in
percentage)

20.5%-91.12% 20.43%-91.12% 49%-91.2%

Min-max average
latency under fault free
condition (in cycles)

76.5-471.5 76.5-312.6 64.2-238.7

Min-max throughput
under random faults
(7% faults, in
percentage)

9.5%-73.7% 9.5%-73.7% 21.8%-91.15%

Min-max avg. latency
under random faults
(7% faults, in cycles)

377.5-777 291.7-528.9 77-456

Min-max throughput
under localized faults
(10% faults, in
percentage)

14.2%-91.2% 13.97%-91.2% 23.5%-91.2%

Min-max avg. latency
under localized faults
(10% faults, in cycles)

94.7-633.7 93.9-424.9 68.7-451.5

Table 1 Comparison of fault-tolerant algorithms

80

As our algorithm is dependent on VCs of failed links, it may look like we are not

considering the buffer failures. However, fault-tolerant algorithms are generally

proposed to be used as escape channels for adaptive algorithms. Since adaptive

algorithms also require a big number of VCs the link failure gives a lot more

shared buffers than the fault-tolerant algorithm itself. It is not likely that all these

buffers will fail at the same time.

81

CHAPTER 5

 CONCLUSION AND FUTURE WORK

In this thesis we mainly concentrated on fault-tolerant routing in NoC. We

implemented the well known fault-tolerant f-Cube4 algorithm, which considers

edge buffers. When the edge buffers are implemented in a router only one input

controller can see these VC that are incident on it. The failure of a physical link

automatically disables VCs incident on it. However fault-tolerance requires large

buffer sizes, thus a link failure disables large amount of buffers leading to buffer

underutilization. This contradicts with the requirements of NoC that limits the

buffer utilization. As a solution we proposed to implement VCs as a central pool in

the middle of a router, so that every input controller can see them. Thus VCs are

dynamically allocated when the link to which the VC associates is faulty. Besides,

we proposed our own algorithm, SB, which requires only 2 VCs per physical

channel under fault-free conditions and dynamically allocates idle VCs when the

fault occurs. Simulation results showed that two VCs are enough to escape f-rings,

f-chains and overlapping-rings of rectangular shape.

The implementation of VC as a central pool significantly improves the buffer

utilization. While f-Cube4 algorithm uses only 55% of given buffers SB algorithm

uses up to 90%. With the right management of buffer utilization the performance

of a network can be significantly improved. However, the implementation of

central buffers may increase the wiring complexity in a router. We consider that

82

central buffers can be implemented in those routers where small amount of VCs

are needed, since the wiring complexity increases with the number of VCs.

In order to be able to tolerate faults our algorithm requires at least 2 VCs to be

spare so that the router can share them with two neighbors from the other

dimension. Besides, SB algorithm still marks non-faulty nodes as faulty in order to

get f-rings of rectangular shape.

The concave (non-rectangular) faulty blocks are left as a future work, since they

are more complicated and need extensive work. All our simulations use Poisson-

distributed injection rate and destinations are uniformly distributed, since no other

realistic traffic models were proposed. Investigation of realistic traffic models for

NoC is still an open problem and could be a good area of research. It is not easy,

however, since it requires to be deepened on specifics of particular applications.

83

REFERENCES

[1] A. Hemani, A. Jantsh, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D.
Lindqvist. Network on a Chip: An architecture for billion transistor era. In
Proceeding of the IEEE NorChip Conference, 166--173. 2000

[2] J. Henkel, W. Wolf, and S. Chakradhar. On-chip networks: a scalable,
communication-centric embedded system design paradigm. Proceedings of 17th
International Conference on VLSI Design. 2004, pp. 845-851.

[3] S. Lee, K. Lee, S. Song, and H. Yoo. Packet-switched on-chip interconnection
network for system-on-chip applications. IEEE Transaction on Circuits and
Systems, 52(6):308--312, 2005.

[4] P. P. Pande, G. D. Micheli, C. Grecu, A. Ivanov, and R. Saleh. Design,
synthesis, and test of networks on chips. from Networks on Chip. s.l. : Kluwer
Academic Publishers, 2003.

[5] L. Benini and G. D. Micheli. Networks on chips: a new SoC paradigm. IEEE
Computer. January 2002, Vol. 35, 1, pp. 70-78.

[6] R. Saleh. An approach that will NoC your SoCs off! Design & Test of
Computers,2005,22(5):488-488.

[7] W. J. Dally and B. Towles. Route packets not wires: on-chip interconnection
networks. Proceedings. Design Automation Conference, page 684- 689, 2001.

 [8] M. E. Kreutz, L. Carro, C. A. Zaferino and A. A. Susin. Communication
architectures for System-on-Chip. Proceedings of the 14th symposium on
Integrated circuits and systems design, p.14, September 10-15, 2001

 [9] R. Marculescu, U. Y. Ogras and N. H. Zamora. Computation and
communication refinement for multiprocessor SoC design:a system-level
perspective. in ACM Trans. on Design Automation of Electronic Systems, Special
Issue on Novel Paradigms in System-Level Design, Vol.11, No.3, pp. 564-592,
July, 2006.

 [10] J. Hu and R. Marculescu. Energy-and performance-aware mapping for
regular NoC architectures. IEEE transactions on computer aided design of
integrated circuits and systems. vol 24; numb 4, pages 551-562, 2005

84

[11] U. Y. Ogras, J. Hu and R. Marculescu. Key research problems in NoC
design: a holistic perspective. Third IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, 2005. CODES+ISSS '05.
Sept. 2005, pp. 69-74.

[12] L.M. Ni and P. K. McKinley. A survey of wormhole routing techniques in
direct networks. IEEE Computer 26 (2): 62-76. 1993

[13] L. Benini, and D. Bertozzi. Network-on-chip architectures and design
methods. IEE Proceedings - Computers and Digital Techniques. March 2005, Vol.
152, 2, pp. 261-272.

[14] S. Kumar, A. Jantsch, J. P. Soininen, M. Forsell, M. Millberg, J. Oberg,
K. Tiensyrja, A. Hemani. A network on chip architecture and design
methodology. Proceedings of IEEE Computer Society Annual Symposium on
VLSI, 2002. April 25-26, 2002, pp. 105-112.

[15] S. Lee, K. Lee and H. Yoo. Analysis and implementation of practical, cost-
effective networks on chips. Design & Test of Computers, IEEE, 422-433 2005

[16] F. Karim et al. An Interconnect Architecture for Networking Systems on
Chips. IEEE Micro, vol. 22, no. 5, pp. 36-45, Sept./Oct. 2002.

[17] M. Coppola et al. OCCN: A network on chip modeling and simulation
framework. Proc. Design, Automation and Test in Europe, IEEE CS Press, 2004,
pp. 174-179.

[18] J. Duato, S. Yalamanchili, L. Ni. Interconnection Networks: an Engineering
Approach. s.l. : Morgan Kauffman, 2002.

[19] W.J. Dally and C.L. Seitz. The Torus Routing Chip. Technical Report
5208:TR: 86, Computer Science Dept., California Inst. of Technology, pp. 1-19,
1986.

[20] P. Guerrier and A. Greiner. A Generic Architecture for On-Chip Packet-
Switched Interconnections. Proc. Design and Test in Europe (DATE), pp. 250-256,
Mar. 2000.

[21] P.P. Pande, C. Grecu, A. Ivanov, and R. Saleh. Design of a Switch for
Network on Chip Applications. Proc. Int’l Symp. Circuits and Systems (ISCAS),
vol. 5, pp. 217-220, May 2003.

[22] P. P. Pandeet al. Performance evaluation and design trade-offs for network-
on-chip interconnect architectures. IEEE Transactions on Computers. August
2005, Vol. 54, 8, pp. 1025-1040.

85

[23] R. I. Greenberg and H. Oh. Universal wormhole routing. IEEE Transactions
on Parallel and Distributed Systems, vol.8, No.3, March 1997, pp. 254-262

[24] P. P. Pande, C. Grecu, A. Ivanov and R. Saleh. High-throughput switch-
based interconnect for future SoCs. Proceedings of 3rd IEEE International
Workshop on System-on-Chip for Real-Time Applications, June 30-July 2, 2003,
Calgary, Canada.

[25] W. J. Dally. Virtual-channel flow control. IEEE Transactions on Parallel and
Distributed Systems. March 1992, Vol. 3, 2, pp. 194-204.

[26] C. Busch, M. Herlihy and R. Wattenhofer. Routing without Flow Control.
ACM Symposium on Parallel Algorithms and Architectures 2001

[27] L.G. Valiant; G. J. Brebner. Universal schemes for parallel communication.
Proc. 13th ACM. Symp. on Theory of Computing, Milwaukee, IL, pp.263-277,
May 11-13, 1981

[28] T. Nesson; S. L. Johnson. ROMM Routing on Mesh and Torus Networks.
Proceedings of the seventh annual ACM symposium on Parallel algorithms and
architectures, p.275-287, Santa Barbara, California, United States , June 24-26,
1995

[29] Andrew A. Chien and Jae H. Kim. Planar-adaptive routing: low-cost
adaptive networks for multiprocessors. Journal of the ACM (JACM),Volume 42 ,
Issue 1 , pages 91 - 123 , (January 1995)

[30] W.J. Dally and H.Aoki. Adaptive routing Using Virtual Channels. MIT
Laboratory for Computer Science. 1990. Technical report.

[31] C. J. Glass and L. M. Ni. The turn model for adaptive routing. Proceedings
of the 19th International Symposium on Computer Architecture, pp. 278–287, May
1992.

[32] M. S. Chien and K. G. Shin. Adaptive fault-tolerant routing in hypercube
multicomputers. IEEE Transactions on Computers, vol. C-39, no.12, pp. 1406-
1416, December 1990.

[33] S. Konstantinidou and L. Snyder. The chaos router: A practical application
of randomization in network routing. Proc. 2nd

[34] R.V. Boppana and S. Chalasani. Fault-tolerant wormhole routing
algorithms for mesh networks. IEEE Transactions on Computers, July 1995, pp.
848-864.

 Annual Symposium on Parallel
Algorithms and Architectures, pp. 21-31, July 1990.

86

[35] S. Park, J. Youn and B.Bose. Fault-tolerant wormhole routing algorithms in
meshes in the presence of concave faults. In Proceedings of IPDPS. 2000, 633-633.

[36] J. Zhou and F. C. M. Lau. Adaptive fault-tolerant wormhole routing in 2D
meshes. Proc. 15th Int'l Parallel and Distributed Processing Symp. (IPDPS 2001),
p. 56, 2001.

[37] E. Oh, J. Kim and H. Lee. Fault-tolerant routing in mesh-connected 2D
Tori. Proc. The International Conference on Computational Science (ICCS '03),
527-536 2003

[38] J.Shih. Adaptive fault-tolerant wormhole routing algorithms for hypercube
and mesh interconnection netwotks. Proc. 11th Int'l Parallel Processing Symp., pp.
333-340, Apr. 1997.

[39] C. J. Glass and L. M. Ni. Fault-tolerant wormhole routing in meshes. 3rd
Annual International Symposium on Fault-Tolerant Computing, 1993, June 22-24.

[40] Y. Suh, B. V. Dao, J. Duato and S. Yalamanchili. Software based fault-
tolerant oblivious routing in pipelined networks. IEEE Transactions on Reliability,
September 2005, pp. 449-458.

 [41] W. J. Dally et al.. Architecture and implementation of the reliable router.
Proceedings of Hot Interconnects Symposium II, August 1994.

[42] P. T. Gaughan et al. Distributed, deadlock-free routing in faulty, pipelined,
direct interconnection networks. IEEE Transactions on Computers, vol. 45, June
1996, pp. 651-665.

[43] J. H. Kim, Z. Liu and A. A. Chien. Compressionless routing: A framework
for adaptive and fault-tolerant routing. Proceedings of the 21st International
Symposium on Computer Architecture, April 1994, pp. 289-300.

[44] Vassos Soteriou, Hangsheng Wang, Li-Shiuan Peh. A Statistical Traffic
Model for On-Chip Interconnection Networks. International Conference on
Measurement and Simulation of Computer and Telecommunication Systems
(MASCOTS '06), September, 2006.

[45] S. Mahadevan et al. A network traffic generator model for fast network on-
chip simulation. In Proc. of the Design, Automation and Test in Europe
Conference and Exhibition (DATE’05) Vol. II, pp. 780–785, March 2005.

87

[46] G. V. Varatkar and R. Marculescu. On-chip traffic modeling and synthesis
for MPEG-2 video applications. IEEE Transactions of Very Large Scale
Integration (VLSI) Systems, Vol. 12, No. 1, Jan. 2004.

[47] Zhonghai Lu, A. Jantsch. Traffic configuration for evaluating networks on
chips. Fifth international Workshop on System-on-Chip for Real-Time
Applications (IWSOC). 20-24 July 2005. pp. 535 - 540

 [48] Kevin Fall, Kannan Varadhan. The ns Manual. The VINT Project, June
20, 2001. Also available at http://www.isi.edu/nsnam/ns/ns-documentation.html

[49] Y. Sun, S. Kumar and A. Jantsch. Simulation and evaluation for a network
on chip architecture using ns-2. Proc. Of 20th IEEE Norchip Conference,
November 2002

[50] A. Hegedus, G. M. Maggio and L. Kocarev. A ns-2 simulator utilizing
chaotic maps for network-on-chip traffic analysis. IEEE International Symposium
on Circuits and Systems, May 2005, pp. 3375-3378.

[51] M. Ali, M. Welzl, A. Adnan and F. Nadeem. Using the ns-2 simulator for
evaluating network on chips (NoC). IEEE International Conference on Emerging
Technologies, November 2006.

[52] L. S. Peh and W. J. Dally. Flit-reservation flow control. Proceedings of High
Performance Computer Architecture. January 2000, pp. 73–84.

 [53] C. A. Zaferino, F. Santo and A. A. Susin. ParIS: a parameterizable
interconnect switch for networks-on-chip. Proceedings of the 17th symposium on
Integrated circuits and system design, September 07-11, 2004, Pernambuco, Brazil.

[54] R. Leveugle, T. Michael, and G. Sauicier. Design of microprocessors with
built-in on-line test. 20th Annual International Symposium. Fault-Tolerant
Computing, pp. 450-456, 1990.

	PLAGIARISM
	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	1TÖZ1T v
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	BACKGROUND
	2.1 Network Topology
	2.1.1 Octagon
	2.1.2 CLICHÉ
	2.1.3 2D Torus
	2.1.4 Tree Architectures
	2.1.5 Comparison of Network Topologies

	2.2 Switching Techniques
	2.2.1 Circuit Switching
	2.2.2 Packet Switching
	2.2.3 Virtual Cut-Through
	2.2.4 Wormhole Switching
	2.2.5 Virtual Flow Control
	2.2.6 Comparison of Switching Techniques

	2.3 Routing Algorithms
	2.3.1 Deadlock, Livelock and Starvation
	2.3.2 Oblivious Routing Algorithms
	2.3.2.1 Deterministic Routing Algorithms
	2.3.2.2 Randomized Routing Algorithms

	2.3.3 Adaptive Routing Algorithms
	2.3.3.1 Planar-Adaptive Routing
	2.3.3.2 Dimension-Reversal
	2.3.3.3 Turn Model

	2.4 Fault Tolerant Routing
	2.4.1 Fault Models
	2.4.2 Fault-Tolerant Routing Using SAF and VCT Techniques
	2.4.3 Fault-Tolerant Routing Using Wormhole Switching Technique
	2.4.3.1 Fault Regions
	2.4.3.2 Fault-Tolerant Routing Without VCs

	2.4.4 Dynamic Recovery
	2.4.4.1 Flit-Level Recovery
	2.4.4.2 Message-Level Recovery

	2.5 Traffic Generator Models

	NETWORK SIMULATOR AND SIMULATION ANALYSIS
	3.1 Network Simulator
	3.1.1 Embedded Protocols

	3.2 Router Model
	3.3 Network Simulation
	3.3.1 Effect of Network Size

	/
	3.3.2 Effect of Packet Size
	3.3.3 Effect of Buffer Depth
	3.3.4 Effect of VC Size

	FAULT-TOLERANT ROUTING ALGORITHMS AND SIMULATION RESULTS
	4.1 Fault Model
	4.1.1 Formation of f-rings and f-chains

	4.2 f-Cube4 Algorithm
	4.2.1 Performance Evaluation of f-Cube4 Algorithm

	4.3 Shared Buffer Algorithm
	4.3.1 Performance Evaluation of SB algorithm

	4.4 General view on algorithms
	4.4.1 Efficiency level of buffer utilization
	4.4.2 Comparison of algorithms

	CONCLUSION AND FUTURE WORK
	REFERENCES

