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ABSTRACT

CLASSIFICATION OF FOREST AREAS BY K NEAREST NEIGHBOR METHOD:
CASE STUDY, ANTALYA.

Ozsakabasgi, Feray
M.Sc., Department of Geodetic and Geographic Information Technologies

Supervisor: Assoc. Prof. Dr. Zuhal Akylrek

June 2008,101 pages

Among the various remote sensing methods that can be used to map forest areas,
the K Nearest Neighbor (KNN) supervised classification method is becoming
increasingly popular for creating forest inventories in some countries. In this study,

the utility of the KNN algorithm is evaluated for forest/non-forest/water stratification.

Antalya is selected as the study area. The data used are composed of Landsat TM
and Landsat ETM satellite images, acquired in 1987 and 2002, respectively, SRTM
90 meters digital elevation model (DEM) and land use data from the year 2003.
The accuracies of different modifications of the KNN algorithm are evaluated using
Leave One Out, which is a special case of K-fold cross-validation, and traditional
accuracy assessment using error matrices. The best parameters are found to be
Euclidean distance metric, inverse distance weighting, and k equal to 14, while
using bands 4, 3 and 2. With these parameters, the cross-validation error is
0.009174, and the overall accuracy is around 86%. The results are compared with
those from the Maximum Likelihood algorithm. KNN results are found to be

accurate enough for practical applicability of this method for mapping forest areas.

Keywords: K-nearest neighbor method (KNN), Classification, Forest, Accuracy

Assessment, Antalya.
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ORMAN ALANLARININ K EN YAKIN KOMSU METODUYLA SINIFLANDIRILMASI:
ORNEK GALISMA, ANTALYA

OZSAKABASI, FERAY
Yiksek Lisans, Jeodezi ve Cografi Bilgi Teknolojileri Bélimi

Tez Yoneticisi: Dog. Dr. Zuhal Akyurek

Haziran 2008, 101 sayfa

Orman alanlarini haritalandirmak amaciyla kullaniimakta olan farkli uzaktan
algilama metodlar arasinda, K En Yakin Komgu (KNN) kontrolli siniflandirma
metodu, bazi ulkelerde orman envanterlerini olugturmak igin gittikge daha populer
hale gelmektedir. Bu calismada, KNN algoritmasinin orman/orman olmayan/su

katmanlasmasi i¢in kullanilabilirligi degerlendirilmistir.

Calisma alani olarak Antalya segilmistir. Kullanilan veriler, sirasiyla 1987 ve 2002
yillarina ait Landsat TM and Landsat ETM uydu goérintlleri, SRTM 90 metre
sayisal ylUkseklik modeli (SYM) ve 2003 yilina ait arazi kullanimi verisinden
olusmaktadir. KNN algoritmasinin  farkh  modifikasyonlari, K-katli ¢apraz
dogrulamanin bir tird olan Leave One Out ve hata matrislerinin kullanildigi bilinen
dogruluk analizleri ile degerlendirilmistir. En iyi parametreler, 4., 3. ve 2. bandlari
kullanirken, Euclidean uzakhk 6lgima, ters uzaklik agirliklari, ve k degeri 14’e esit
olarak bulunmustur. Bu parametrelerle, capraz dogrulama hatasi 0.009174 ve
toplamdaki dogruluk yaklasik %86’dir. Sonuglar, Maksimum Benzerlik sonuclariyla
karsilastiriimistir. KNN sonugclarinin, orman alanlarinin haritalandiriimasi igin pratik

uygulanabilirligine yetecek kadar dogru oldugu goérulmastar.

Anahtar Kelimeler: K En Yakin Komsu Metodu, Siniflandirma, Orman, Dogruluk

Analizi, Antalya.
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CHAPTER 1

INTRODUCTION

Creating an accurate forest inventory by mapping forest vs. non-forest areas is an
essential requirement for forest management and planning. Using field analysis for
creating forest inventories is a difficult task, especially due to economical
constraints. In field sampling, the density of sample plots has to be low or even
very low in hard-to-reach areas. Therefore, attempts to estimate forest variables for
small areas turn out to be inaccurate, and mapping large areas is infeasible. In the
last decades, the availability of high-resolution satellite images has opened up new
possibilities for mapping forest areas in an objective, accurate and comprehensive
way. In particular, intelligent image classification algorithms and increasing
computing power make forest mapping possible to be performed automatically with

the help of computers.

In remote sensing, a “class” can be defined as a land cover type. For example, to

”

map a forest inventory, the classes “forest,” “non-forest” and “water” are of interest
because the training samples are collected only from forest areas with plots. For a
pixel in a satellite image, image classification algorithms help us to detect which
class that pixel belongs to. Each pixel in the satellite image belongs to only one of
these classes. Thus, the classified image is a computer-generated land cover map.

Here, one can easily detect the expanse covered by each land cover class.

There have been a lot of researches in image classification algorithms and their
application to forest detection. These researches are especially active in
Scandinavian countries and in the USA. Suggestions for algorithmic improvement
and optimization, mainly to increase classification accuracy, are an important focus
in these studies. Although the various classification methods are well-established,
there is still room for improvement. In Turkey, there are some studies which

determine forest stand parameters using remotely sensed data. The projects focus



on classifying and mapping the stand parameters such as development stages,

crown closure, stand types, and land cover.

The two most common algorithms employed in forest area detection are K-nearest-
neighbor (KNN) and Maximum Likelihood, which are both classification algorithms.
In recent years, KNN is becoming more and more significant and is attaining

widespread use, especially in mapping forest areas.

In this study, the primary objective is to evaluate the utility of the KNN method for
forest/non-forest/water stratification. In the process, various modifications of the
KNN algorithm are tested for detecting forest areas. By comparing the resulting
accuracies, the optimal parameters of the classification for KNN forest detection
are found. Also, KNN results are compared with Maximum Likelihood results, to
illustrate its relative effectiveness. The comparison is done mainly from the

perspectives of accuracy and computing performance.

Research activity in the area of satellite image classification is expected to
continue for a long time, since it offers vast potential. The automation of complex
classification tasks will allow us to obtain meaningful knowledge from vast amounts
of data, with the possibility of speed never before imagined. Decision makers will
be supported with reliable, up-to-date land cover data. In the particular case of
forest mapping, it will be possible to track the change of forest areas over the

years, by comparing the classified satellite images acquired at different times.

Deforestation is the conversion of forested areas to non-forest areas, by cutting
down trees and making room for alternative land uses, mainly for urban, industrial
or agricultural growth. Large-scale deforestation is very harmful since it reduces
biodiversity, affects climate (global warming), increases the probability of flooding
and erosion, and ultimately, reduces the quality of human life (URL1). During the
last decades, this has become an important problem, especially in developing
countries like Turkey. Better image classification algorithms will help these
countries make better planning decisions, which will ultimately improve the quality

of life.

In this study the area is selected as the Center District of Antalya, which is a rapidly

growing city in Turkey. Namely, it has a population growth of 41.79% for the last



decade. Change of forest areas during this growth phase is expected to be
significantly large, due to urbanization. Therefore, two satellite images of Antalya,
belonging to different years 1987 and 2002, are classified using KNN and
Maximum Likelihood algorithms. Thus, the change of forest areas over these years
of high growth can be analyzed. The performance of KNN algorithm against
Maximum Likelihood algorithm in terms of accuracy is evaluated for detecting
deforestation.

The study is presented in six chapters:

In the first chapter, the Introduction, the importance of improving land use detection

algorithms is outlined.

In the second chapter, Theoretical and Practical View of Classification on Forest
Areas, previous studies on supervised classification algorithms that are relevant to
this particular study are summarized.

In the third chapter, Materials and Methodology, the study area is illustrated,
preparation of the data is explained, and any difficulties are described. Also,

flowcharts for the classification algorithms are given.

In the fourth chapter, Analyses, the procedures in implementing and carrying out
the algorithms are described in detail. The advantages and disadvantages of each
algorithm are discussed. The explanations convey an approximate sense of the
relative implementation complexity of these algorithms. Solutions to the difficulties
encountered during image classification are explained, which should help further

related studies greatly. The classification results can also be found here.

In the fifth chapter, Discussion of the Results, the results obtained from the large
number of accuracy assessment experiments are presented, and their significance
is discussed. Change detection is performed to compare different results. With

careful interpretation, the reasons are explained.

In the sixth and final chapter, Conclusions and Recommendations, a summary and

evaluation of the study are presented.



CHAPTER 2

THEORETICAL AND PRACTICAL VIEW OF CLASSIFICATION

ON FOREST AREAS

2.1. Classification Algorithms and Accuracy Assessment

It is a painstaking process to detect land cover features in satellite images by hand.
If we are able to automate this process with the help of computers, we can facilitate
this task immensely. Therefore, in the long run, we will be able to generate land
cover / land use maps over unlimited areas and over arbitrarily long timeframes.

This will help us to observe past trends and predict future tendencies very rapidly.

In order for the computer to simulate human recognition of land cover features,
artificial intelligence (Al) must come into play. Computer Al is not perfect, and is a
dynamic, unending field of research. A common technique to develop Al is
“machine learning,” where computers can “learn” with the use of some advanced
algorithms inspired from human recognition. Using this intelligence, computers can

extract information from data automatically.

In our particular case, the computer must be able to classify a satellite image into
its features. This is a typical case of the statistical classification problem. Here, the
computer reads in a training set of previously classified objects and sees a number
of input/output (object/class) examples. Afterwards, it predicts the class labels of
individual, unclassified input objects, based on one or more quantitative variables
in these objects. This is a supervised (machine) learning task. Therefore, the most

common supervised learning algorithms are applied in this study suited to this task:



There are different classification techniques used in forest inventories. For
example, in Scandinavian forest inventory studies KNN is used mostly. On the
other hand, in some countries different classification techniques are used, for
example, in Canadian Forest inventory studies, K-Means clustering as an
unsupervised classification technique, and maximum likelihood as a supervised

classification technique (Wulder et al., 2001).
2.1.1. KNN Algorithm

The nearest neighbor algorithm is one of the simplest machine learning algorithms.
It is a non-parametric technique. Before detailing the algorithm, some definitions

are necessary:

- The “distance” between two objects is taken as the Euclidean distance
between them. (In some cases, the Manhattan or Mahalanobis distance
can be used as well.) To calculate this distance, every object must be
represented by a position vector in a multidimensional feature space. Let

the vectors X and y be two input samples (objects) with p
features(xl, Xz,...,xp). The Euclidean distance between sample X and

sample Y is defined as in Equation 2.1.

d(X,y)= \/(Xl— yi)f +(X2- y2f +...+(Xo— Yo ) (2.1)

- An object is the “neighbor” of another object if the distance between them is
below a predefined threshold.

- The “nearest neighbor” of an object x is the sample object whose distance
to x is the lowest among all input samples.

- The “2" nearest neighbor” of an object x is the sample object whose
distance to x is the second lowest among all input samples. The “nth
nearest neighbor” is defined analogously.

- “k nearest neighbors” of an object x are the collection of sample objects Xi

where i = {LZ,...,k} and xi is the i™ nearest neighbor of x.

The nearest neighbor algorithm steps can be described as follows:



1. Training phase
a) A human being classifies a humber of objects manually. This is the
training set. The feature vectors and class labels of these samples
are stored.
b) The computer reads in this set of objects. The correct classification
for these objects is known.
2. Classification phase
a) A new, unclassified input object (test sample) is classified by a
majority vote of its neighbors:

= The neighbors are taken from the training set.

» Distances from the test sample object to all stored sample
objects are calculated, and the k nearest neighbors of the
object are selected. k is a small integer.

= There are different ways to assign a particular class to the
object. Usually, the most common class among these k
neighbors is assigned to the object. In other words, an object
is assigned to the class c if it is the most frequent class label
among the k nearest training samples. If k = 1, then the class
of the nearest neighbor is assigned to the object. This
special case (k = 1) is called the “nearest neighbor”

algorithm.

Normally, the training phase is executed once, and the classification phase is

executed any number of times afterwards.

Drawbacks:

- If there is a class with a very large number of training samples compared to
the other classes, then its samples come up more frequently among the k
nearest neighbors of a new object when these are calculated. This class
dominates the classification of new objects, by overwhelming samples
belonging to other classes. This can be avoided by slightly enhancing the
majority vote. For example, one can modify it so that the distance of each

neighbor to the test sample determines the “strength” or “closeness” of that



neighbor. So, the shorter the distance, the more effect the sample has on
the majority vote.

- The accuracy drops severely when there are noisy or irrelevant features, or
if the feature scales are inconsistent with their importance.

- The algorithm does not report confidence or class probabilities.

- A classification is always made. There are no objects that cannot be

assigned to a class.

Figure 2.1. Example of KNN classification

As an example given in Figure 2.1, the test sample (green circle) should be
classified either to class “blue square” or to class “red triangle.” If k = 3 it is
classified to the “red triangle” because there are 2 triangles and only 1 square
inside the inner circle. If k = 5 it is classified to “blue square” (3 squares vs. 2

triangles inside the outer circle).

2.1.1.1. Choosing k value

If there are only two different classes, an even number of k can cause a tie.
Choosing an odd value for k prevents this problem (URL 8). The size of k value is
important. Small and large values of k value have different characteristics. The
small and large k values are compared in Table 2.1. Heuristic techniques such as
cross-validation can help in selecting a good value for k. Ultimately, of course, the

best value of k depends on the data at hand.



Table 2.1. Features of small and large values of k

Small values of k Large values of k

Cause over-fit Cause over-generalization
Increase negative effect of noise Reduce negative effect of noise
Create distinct class boundaries Create indistinct class boundaries

2.1.1.2. Distance functions

Different distance metrics can be used when calculating distances for the KNN
algorithm. First of all, it is helpful to explain a general class of metric called as
Minkowski metric which is given in Equation 2.2.

) k 1/k
d()?, V)I(Z‘Xi—yi‘ j (2.2)

i=1
where different values of k >1 result in different commonly-used metrics. Here are

the most common metrics used for calculating distances in KNN:

Euclidean: Explained as in Equation 2.1 in section 2.1.1. This is a special case of
the Minkowski metric (Equation 2.2) where k = 2. According to Berrueta et al.
(2007), this metric should be used when the different features are not strongly

correlated.

Mahalanobis: Let the vectors X and y be two input samples of the same

distribution with the covariance matrix P. The Mahalanobis distance between

sample X and sample V is defined as

d(%,¥)=y(x-y) £ (x-y) (2.3)

According to Berrueta et al. (2007), this metric should be used when the different
features are strongly correlated. The covariance matrix X represents this
correlation.

If the standard deviation of any of the features is 0, then the determinant of X is O,

and the inverse of ¥ is undefined. Thus, in cases where one or more features of a




training set consist of a single value, its standard deviation is 0, and this distance
metric cannot be used. When the covariance matrix X is equal to 1 (the identity
matrix), the Mahalanobis distance becomes the similar Euclidean distance (URL
6). Figure 2.2 illustrates Euclidean and Mahalanobis distances on the same graph,

in two-dimensional space.

A

X -Hl;- =K
Ix, -] =K

-
Figure 2.2. The graph of Euclidean(circle) and Mahalanobis distances (URL 6)

Diagonal (Class-Dependent) Mahalanobis: (Also called normalized Euclidean

distance) Let the vectors X and y be two input samples of the same distribution,
with p features. Let o be the standard deviation of feature i. The Diagonal

Mahalanobis distance between sample X and sample y is defined as in Equation

2.4,

(2.4)

As with the Euclidean distance, the correlation of different features is not taken into
account here.
If the covariance matrix X in the Mahalanobis distance is diagonal (the features

are not correlated), it reduces to the Diagonal Mahalanobis distance. As in the



Mahalanobis distance, this metric cannot be used if the standard deviation of any

of the features of a training set is 0.

Manhattan: This is a special case of the Minkowski metric (Equation 2.2) where k

= 1. Let the vectors X and y be two input samples (objects) with p features

(Xl, Xz,...,xp). The Manhattan distance between sample X and sample y is

defined as

d(X, V) =|xe— yi+[X2- yg+...+[% — yy| (2.5)

As with the Euclidean distance, the correlation of different features is not taken into

account here.
2.1.1.3. Weight functions

After the k nearest neighbors of a test sample are found, these can be evaluated
using different weighting methods. For each neighboring pixel, the pixel's weight is
added to the total weight of that pixel’s class. At the end, the class with the largest
total weight wins.

The goal of weight functions is to cause distant neighbors to have less effect on the
majority vote than the closer neighbors.

Here are the most common weight functions:
i. None: All neighbors have equal weight

ii. Fraction: Let i be the order of the neighbor in the list of k neighbors, i = 1..k. The
weight function is 1/i. Therefore, the weight of the pixel is inversely proportional to
its rank in the neighbor list. The fraction weights decrease steeply as the order(i) of

nearest neighbor increases (Figure 2.3).

iii. Stairs: Let i be the order of the neighbor in the list of k neighbors, i = 1..k. The
weight function is (k — i + 1) / k. Again, the weight of the pixel is inversely
proportional to its rank in the neighbor list. The stairs weights slightly decrease as

the order (i) of nearest neighbor increases (Figure 2.4).
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Figure 2.3. The Fraction weights for Weighted KNN
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Figure 2.4. The Stairs weights for Weighted KNN
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iv. InverseDistance: Let d be the distance of the neighbor from the test sample.
The weight function is 1/d. Therefore, the weight of the pixel is inversely

proportional to its distance from the test sample.

v. InverseSquareDistance: Let d be the distance of the neighbor from the test
sample. The weight function is 1/d°. Again, the weight of the pixel is inversely
proportional to its distance from the test sample.

2.1.2. Maximum Likelihood Algorithm

Although slightly complex, the maximum likelihood algorithm is related to many
familiar estimation methods in statistics. Before detailing the algorithm, the
definition of “distance” is necessary, which can be taken from the corresponding

description under the KNN algorithm.
The maximum likelihood algorithm steps can be described as follows:

1. Training phase

a) A human being classifies a humber of objects manually. This is the
training set. The feature vectors and class labels of these samples
are stored.

b) The computer reads in this set of objects. The correct classification
for these objects is known.

c) A probability model is picked for each class (uniform distribution,
normal distribution, etc.).

d) For each class, those probability model parameters are selected
which make the class’s training data “more likely” than any other
model parameters would make them. For example, if uniform prior
distribution was picked, then its model parameters would be its most
probable values.

2. Classification phase
a) A new, unclassified input object (test sample) is classified by its

distance to the parameterized probability model of each class.
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= The probability that a test sample with value X belongs to

class i is given by Bayes’ theorem in Equation 2.6.

HHM=EQime (2.6)

P(x)
where P(x|1) is the probability that a sample in class i has
the value x, P(i) is the prior probability that a test sample
belongs to class i, and P(X) is the probability that a sample

has the value x. P(x) is the sum of P(x|i) values for all i.

= Equation 2.6 is the decision rule. For each test sample X,

P(i| x) is calculated for all classes i. It is decided that x
belongs to the class having the highest P(i| x) (likelihood).
Since P(x) is the same for all classes, it can be ignored

here.
Choosing a probability model:

If normal distribution is selected, then maximum likelihood estimation gives a
unigue solution. Let’s take the normal distribution N(,u,az) which has the

probability density function defined as in Equation 2.7.

1 (k=)
\/ﬁo— exp( = ] (2.7)

F(x| 0=

We can calculate the corresponding probability density function for n normal

random variables that are correlated, using Equation 2.8. Let X be a vector of

random variables (Xl,...,Xn), where each variable has means given by

= (/u, . ,uh) Also, X is the covariance matrix of the random variables. Then,

f(7) = @—ﬁleﬁ—ﬁq 28

1
e p—
@ﬁwaﬁﬁcﬁ’@( 2
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Here, X can be viewed as a test sample having n features. The parameters x and
2 are calculated once for the training samples of each class. Thus, the probability
that a sample in class i has the value X can be calculated with Equation 2.8,
where 1 and X are different for each class i. Inserting this into Equation 2.6, the

probability that a test sample with value X belongs to class i is given by Equation
2.9.

P(i|%)= f(X|i)P()= (Zﬁ)n/zjmzi)exp(— 2= *')Tzz‘_l(i‘[”)]wi) (2.9

If the standard deviation of any of the features in class i is 0, then the determinant
of i is 0, and the inverse of Xi is undefined. Thus, in cases where one or more
features of a training set consist of a single value, its standard deviation is 0, and

the maximum likelihood algorithm cannot be used.
2.1.3. Accuracy Assessment

The following sections detail the various assessment methods that were used to
calculate the accuracy of the classification methods detailed in the previous

chapter.
2.1.3.1. Leave One Out Cross Validation

In the field of supervised learning, it could occur that the algorithm at hand tunes
itself too closely to the training data. This means that the algorithm does not gain
strong abilities to predict the class of a new and unfamiliar test object correctly. Of
course, we cannot know for sure how the algorithm is going to perform in a real-
world situation, where unclassified objects arrive all the time. However, we can at
least estimate the algorithm’s future success by attempting to simulate this real-

world situation artificially.

If we can expect that future data will be taken from the same distribution as the
training data, we can use a method called cross-validation to estimate the accuracy
of the algorithm’s future predictions. We can apply this validation method to a

range of different classification algorithms, and obtain cross-validation error values
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for each one. Then, we can compare these values to find the lowest error rate and

so the best classification algorithm, having the highest “generalization ability.”
The cross-validation algorithm steps can be described as follows:

1. The available data is divided into k disjoint sets.
2. The classification algorithm is executed k times. For each execution:

a) A patrtition is selected out of these partitions.

b) The algorithm is trained with k — 1 partitions. The training data
excludes the selected partition.

c) The algorithm is tested on the selected partition. That is, the
algorithm, not knowing the actual class of the selected patrtition,
attempts to classify it.

d) The performance statistic is evaluated for this trained model.

3. The mean of the performance statistic of k trained models is calculated.

This is the k-fold cross-validation estimate.

Advantages:

- Normally, for split-sample training, one would use training, validation and
test partitions. These would represent the real distribution of objects for
each class. Obviously, these partitions require a high amount of data.
Sometimes, however, this data is not available. Cross-validation is
especially useful here. Since each sample object is used as both training
data and test data, cross-validation uses the available data very

conservatively.

If k is equal to the number of training objects, the algorithm is called “Leave One
Out cross validation.” This particular case has been the focus of many studies.

Here is a simplified algorithm for this validation method:

For i = 1to k (where k is the number of training set objects)

« Temporarily remove the i"" object from the training set.
e Train the learning algorithm on the remaining k - 1 points.

e Test the removed object against the trained algorithm and note your error.
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o Calculate the mean error over all k objects.

The advantages of Leave One Out accuracy assessment can be listed as follows:

- Well-suited for selecting a classification model, by giving an almost
unbiased estimate of its generalization ability.

- Uses almost all available objects when training. The resulting classification
model is virtually the same as it would have been if all objects had been
used.

- Does not waste data.

It costs a lot of computing power, since the algorithm must be repeated for every
single training set object. Therefore, this can be considered as disadvantage of the

method.

The error mentioned above is usually measured in terms of Root Mean Square
Error (RMSE) for continuous variables. On the other hand, for class variables (such
as forest/non-forest/water classification), the error rate is calculated using the

following formula defined as in Equation 2.10.

Err = Zu (2.10)
i-t N

where ¥ is the predicted value, y is the actual value, and n is the number of
classifications made. For each classification, if y and ¥ belong to the same class

(1), then the difference is 0. Otherwise, the difference is 1. Then, overall accuracy
is defined using the following formula defined as in Franco-Lopez et al. (2001) in

Equation 2.11.

OA=1-Err (2.11)
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2.1.3.2 Error Matrix

An error matrix is a very effective way to represent map accuracy in that the
individual accuracies of each category are plainly described along with both the
errors of inclusion (commission errors) and errors of exclusion (omission errors)
present in classification. A commision error is simply defined as including an area
into category when it does not belong to that category. An omission error is
excluding that area from the category in which it truly does belong. Every error is
an omission from the correct category and a commission to a wrong category
(Congalton and Green 1999).

In addition to clearly showing errors of omission and comission, the error matrix
can be used to compute other accuracy measures, such as overall accuracy,
producer’s accuracy and user’s accuracy (Story and Congalton 1986, in Congalton
and Green 1999).
Additionally, the error matrix is helpful for calculating other accuracy metrics. Three
of these are described below:

- Overall Accuracy: Indicates how well the map identifies all land cover types

on the ground and is defined as in Equation 2.14.

- Producer’s Accuracy: Indicates what percentage of the time a particular
land cover type on the ground was identified as that land cover type on the
map. It expresses how well the map producer identified a land cover type
on the map from the satellite imagery data and is defined as in Equation
2.15.

- User's Accuracy: Indicates what percentage of the time a particular land
cover type on the map is really that land cover type on the ground. It
expresses how well a person using the map will find that land cover type on

the ground and is defined as in Equation 2.16.

The calculation of these three different types of accuracy is rather simple. But

before detailing them, some definitions are necessary:
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- There are k categories and n sample objects.

- nsample objects are distributed into k2 cells.

- Each sample object is assigned to one of k categories in the remotely
sensed classification (usually the rows) and, independently, to one of the

same k categories in the reference data set (usually the columns).

- njj denotes the number of samples classified into category i(i :1,2,...,k)

in the remotely sensed classification and category j(j :LZ,...,k) in the

reference data set.
- pij denotes the proportion of samples in the i,j th cell, corresponding to nij.

In other words, pij = nij/n.

k
n,; = Ni (2.12)
i=1
Kk
N, = > M (2.13)
j=1
k
i Nii
Overall accuracy = ——— (2.14)
n
. Nii
Producer's accuracy = — (2.15)
4]
, Nii
User's accuracy = — (2.16)
i+
k
P, = Z Pij (2.17)
i=1
k
P =D Pi (2.18)

The number of samples which are used in error matrix is important for accuracy
assessment. Consider a population of units divided into k mutually exclusive and
exhaustive categories. (Congalton and Green 1999). The calculation of the sample

size is as follows;
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—

N = B *ITij * 1-11i)

(2.19)

N= Sample size

i= categories 1 to k

I1= the proportion of the population in the i category

B= upper (a/k)*100™ percentile of the X2 distribution with degree of freedom.

b= desired precision
2.1.3.3 Kappa Analysis

The Kappa analysis is a discrete multivariate technique used in accuracy
assessment for statistically determining if one error matrix is significantly different
than another (Bishop et al. 1975, in Congalton and Green 1999). The result of
performing a Kappa analysis is a KHAT statistic (an estimate of Kappa), which is
another measure of agreement or accuracy (Cohen 1960, in Congalton and Green
1999). This measure of agreement is based on the difference between the actual
agreement in the error matrix (i.e., the agreement between the remotely sensed
classification and the reference data as indicated by the major diagonal) and the
chance agreement which is indicated by the row and column totals (Congalton and
Green 1999).

The following equations are used for computing the KHAT statistic and its variance.

k

Po = z Pii (2.20)
i=1
k

P. = Z Pi. P.j (2.21)
i=1

> Po—Pc

K e (2.22)

pii denotes the proportion of samples in the i,i th cell, corresponding to nii. In
other words, pii=ni/n. p,, and p.; are defined in Equation 2.17 and Equation

2.18, respectively.
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2.2. Practical View on KNN on Forest Areas

In this section, the previous studies about KNN classification in remote sensing
analysis are given. There are numerous references about KNN supervised
classification method and accuracy assessment. The literature about KNN
classification on forest areas is given here and details on the steps of the flowchart
is presented in Figure 2.5.

SELECTING TRAINING DATA

A 4

SELECTING DISTANCE METRIC
WITH ERROR VALUES
OF LEAVE ONE OUT CROSS
VALIDATION

Y

SELECTING BEST K VALUE
WITH ERROR VALUES
OF LEAVE ONE OUT CROSS
VALIDATION

A 4

RUN KNN

A 4

ACCURACY ASSESSMENT WITH
ERROR MATRIX

Figure 2.5. Flowchart of KNN Supervised Classification steps.
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2.2.1. KNN usage in the world forestry

Practical success of the KNN method is described by Gjertsen (2007). It is being
used as a part of the National Forest Inventory (NFI) in Finland for 10 years. The
NFI reference data is based on sample plots. These are explained in Gjertsen
(2007). To sample a plot, a predefined spot in a forest area is visited. Then, forest
variables (such as tree species, age, basal area, volume, etc.) are measured inside
a 250 m? circle centered in this spot. Using this process, a plot is sampled once
every 3 km inside the forest, forming a 3 km by 3 km network. The resulting grid of
plots makes up the reference data for forest variables. Before remote sensing was
introduced, the plots were used to estimate forest variables and the location of
forest resources, where each plot had equal weight. However, this system did not
give reliable estimates. Multi-source forest inventory (MSFI) method was
developed as a solution (Gjertsen 2007). In MSFI, remotely sensed data were
integrated using the KNN algorithm as follows: Both ancillary data such as digital
elevation models (DEMs) and NFI plot data were combined and used as reference
data for KNN classification. For each pixel in the area to be estimated, the k
nearest neighbors were found among the available NFI plots. The distance
between a test pixel and a plot was calculated using the spectral values of the test
pixel and of the pixel covering the plot. The plot weights depended on these

distances.

When continuous land use data is available, then any number of sample pixels
corresponding to the various land use classes can be selected as training data.
These pixels are analogous to the plots collected in forest fieldwork, but they are

much larger in number.

According to Gjertsen (2007), this KNN method was able to produce wall-to-wall
maps showing the location of different forest resources. These maps are being
used by the forest industry for timber procurement. Ecologists use these maps for
habitat analyses. In Sweden, the method has been used to produce a complete
map database for the whole country, called KNN Sweden. It has been used to
improve forest statistics from the National Forest Inventory by using post

stratification based on stem volume strata derived from the database (Gjertsen,
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2007). It is reported that the standard errors for estimates of total stem volume,
stem volume for spruce, stem volume for pine, and woody biomass have been
reduced by 10% to 30% at the county level (Gjertsen, 2007).

In Gjertsen (2007), the KNN method has been tested for preharvest inventory of a
forest plantation with pine trees in New Zealand. Estimates were made at pixel
level and stand level. Cross validation tests showed that the estimates were
unbiased but with high root mean square errors (RMSES). The pixel-level accuracy
was tested in Finland as well. It was found that the errors at pixel level for volume
estimates were relatively high, with RMSE for total volume around 75 ms3/ha or
between 62% and 68% of the mean estimated value. For volumes of species
groups, the relative errors were even higher and above 100%. However, the bias
was found to be low, and it was concluded that the accuracy would improve for
large area estimates. In (Tomppo and Katila, 1991), KNN-based volume estimates
for three municipalities were compared with independent surveys of the
municipalities made for forest planning purposes. The estimates from the latter

survey varied more from municipality to municipality than the KNN estimates.

According to Gjertsen (2007), a KNN -based method was tested based on Landsat
TM data on a site in Germany. Area proportions of single tree species groups were
estimated for forest stands. It was found that the KNN method improved the
estimated values from 1.7% to 25.2% relative to estimates based on the mean
values of the sample of reference plots. Reduction of RMSE was used as indicator
of improvement. It was concluded that the method does not provide sufficient
information for a forest management plan but that it provides a good overview of

the spatial distribution of the main tree types.

Since 1990, optical area satellite images and digital maps, in addition to field plot
data, have been used by the Finnish multisource National Forest Inventory
(MSNFI) (Gjertsen, 2007). In Katila (2001), it is explained that a set of parameters
are chosen for the KNN method in the operative MSNFI, such as:

(1) the image features;

(2) the distance measure;

(3) the value of k, i.e., the number of the nearest neighbors;
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(4) parameters related to the possible use of digital elevation model;

(5) stratification of the image and field plots to mineral land and peatland on
the basis of a digital site class map, produced by the National Land
Survey (NLS);

(6) the geographical reference area from which the nearest field plots are
selected. The geographical reference area is crucial for the estimation
procedure and is selected separately for each pixel in the Finnish MS-
NFI.

In Franco-Lopez et al. (2001), distances between neighbors were computed using
two different distance metrics, Mahalanobis and Euclidean. RMSE values of the
classified images were found for continuous variables, and overall accuracy values
were found for class variables, calculating with Euclidean and Mahalanobis
distances. There was a typical KNN classification result which was good for the
first few k values. Even though there is a well-known correlation among TM band
values, the use of Mahalanobis distance did not benefit the quality of the estimation
in these trials (Franco-Lopez et al., 2001). RMSE values at least 5% smaller than
those of Mahanolobis distance metric were obtained, for any number of neighbors,
and it was then noted that this is contrary to the results reported by Nilsson, (1997),
in Franco-Lopez et al. (2001). Usually, the Euclidean distance is used, but for
strongly correlated variables, correlation-based measures, like the Mahalanobis

distance, are preferred (Berrueta et al., 2007).

2.2.2. KNN and its features

In Berrueta et al. (2007), it is explained that nearest neighbor methods are based
on the determination of the distances between an unknown object and each of the
objects of the training set. Usually, the Euclidean distance is used, but for strongly
correlated variables, correlation-based measures are preferred. Then, the lowest
distance is selected for the assignment of the class membership. It is described
that in KNN, the k-nearest objects to the unknown sample are selected and a
majority rule is applied: the unknown is classified in the group to which the majority
of the k objects belong. The choice of k is optimized by calculating the prediction

ability with different k values. It is claimed by Berrueta et al. (2007) that frequently,
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small k values (3 or 5) should be preferred. It has been suggested to choose k near
sgrt(n;) for a typical n;, the number of plots in class i (Gjersten, 2007). However,
this is more applicable in estimating continuous forest variables in the presence of
a low number of sample plots. For class variables, it can happen that a much larger
number of samples are available, since numerous sample pixels can be selected
based on large-scale land use data. In such cases, sqrt(n;) becomes too large to
be useful.

The KNN method is a nonparametric classifier in which there are no assumptions
about the distributions of the variables involved in the classification (Franco-Lopez
et al., 2001). In Franco-Lopez et al. (2001), it is explained that all the digital number
information of pixels for all training classes are obtained and the unlabeled pixel is
classified among the closer neighboring training pixels. There is a summary of a
substantial body of literature regarding the statistical characteristics of nearest-
neighbor rules and the statement “when the proportion of pixels in each training
class is identical to the actual proportion of each class in the population, the KNN
rule is a maximume-likelihood classifier”. According to Mc Roberts and Tomppo
(2006), both parametric and non-parametric estimation methods have been tested
and applied in forest inventory applications. The keen interest in the non-
parametric KNN method is partly motivated by the desire to estimate

simultaneously the large number of variables of interest.

The K-Nearest Neighbor (KNN) method can be used in a wide range of estimation
and classification applications. In the past decade, the KNN method has been
advanced for estimation of forest variables and is now operational in Finland’s

national forest inventory (Haapanen et al., 2004).

In Gjertsen (2007), it is summarized that the main reason to use the KNN method
is that it is very flexible. A highlighted fact is that KNN produces statistical
estimates and wall-to-wall maps of the inventory area at the same time. In
particular, to produce wall-to-wall maps, many other methods could be used,
including parametric methods such as the maximum likelihood classifier. However,
there are references to other studies which have demonstrated that the KNN

method performs well in comparison to other methods. Some examples are given
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by Gjertsen (2007): KNN, maximum likelihood, and several other classifiers were
tested using Landsat TM data and very small differences in the classifiers’
performance were found. Also, KNN has been compared with artificial neural
network (ANN) and traditional statistical classifiers. There, it was concluded that
KNN performed as well as ANN classifiers and better than the traditional statistical

classifiers.

In Gjertsen (2007), a very common drawback of the KNN method in practice was
detailed as well. The KNN method makes no assumptions on the distribution of
pixels in feature space as a function of forest variables. It is noted that for every
forest variable value (e.g. for every forest cover type), a sufficient number of plot
pixels must be available in order to find similar ones. These plot pixels must lie on
the same image as the unknown pixel, otherwise the spectral similarity is disturbed
by external factors such as sun elevation and atmospheric conditions. It is
mentioned that this problem particularly occurs in countries that are elongated in
east—west direction. The reason for this is those scenes from neighboring image
acquisition paths are usually acquired on different dates. The same concerns apply
to forest/non-forest/water stratification as well. Here, a sufficient number of training
data pixels must be available, which must lie on the same image as the unknown
pixel. This is usually not a problem when selecting training pixels based on large-

scale land use data.

Another explanation of the KNN algorithm is given by Katila and Tomppo (2001):
KNN searches the feature space for the k nearest pixels, whose field data vectors
are known, applying a distance measure, d, defined in the feature space. Then,
field data from the k nearest pixels is transferred to the unknown pixel. The method
has been widely studied in pattern recognition and statistics (Katila and Tomppo,
2001). The importance in choosing an appropriate value of k is explained in Katila
and Tomppo (2001): The KNN estimator may give biased estimates as the value of
k increases, but the bias can be reduced with weighted averages of the k
neighbors. The error rate asymptotically approaches the optimal rate of the Bayes
decision rule for discrete variables when both the k and n (humber of observations)

tend to infinity in such a way that k/n>0 (Katila and Tomppo, 2001).
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According to Berrueta et al. (2007), the KNN method has the following advantages:
() It has mathematical simplicity. Still, KNN achieves classification results as
good as (or even better than) other more complex pattern recognition
techniques.
(i) It does not make any prior statistical assumptions, such as the normal
distribution of the variables.
(iii) Its effectiveness does not depend on the space distribution of the classes.

In Franco-Lopez et al. (2001), the KNN method was tested for propagating forest
stand density, volume, and cover type through the landscape, and it was found to
be very promising. The method could be easily integrated within the procedures of
existing forest monitoring systems. An important difference between the KNN and
traditional classification and estimation techniques was pointed out: The KNN
method is a form of poststratification constrained to the range of plot values of the
inventory. In effect, after field plots are taken, they comprise strata with associated
variable values. These values are then assigned to the remaining nonselected plot
locations according to the similarity of certain features among the sampled and
nonsampled plots. As an example that is given, a mature pine plot and its variable
values are distributed (assigned) across the landscape to nonsampled locations
that are determined to be similar in some sense. On the other hand, traditional
classification attempts to establish strata according to the inventory plots they may
contain. Thus, the KNN retains the full set of inventory specifications and values,

while traditional classification typically does not (Franco-Lopez et al., 2001).

2.2.3. Distance-weighted k-nearest-neighbor (DW- KNN) rule

According to Berrueta et al. (2007), KNN cannot work well if there are large
differences in the number of samples in each class. In such cases, when using
equal weights, highly populated classes tend to dominate other classes in the list of
neighbors. To solve this problem, an alternative criterion is suggested instead of a
simple majority criterion. For instance, another choice of criterion in KNN consists
of weighing the importance as a neighbor of a known object to an unknown sample

(inverse distance or inverse square distance). This will cause the nearest
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neighbors to influence the classification more than the farthest ones. Three
drawbacks to the KNN method are mentioned:
- It provides poor information about the structure of the classes and of the
relative importance of each variable in the classification.
- It does not allow a graphical representation of the results,
- In the case of large number of samples, the computation can become

excessively slow.

In Dudani (1976), in Yang and Chou (2005), the distance weighted-KNN (DW-
KNN) rule is proposed as a modification of the KNN rule. It is suggested that
training samples closest to the test sample should be given more weight than
training samples that are more distant. In general, the neighborhood of the DW-
KNN model is comparable to the KNN model, but its decision criterion is different.
In applying the DW-KNN rule, an unlabeled sample is assigned to the class
producing the highest total weight among its reference neighbors (Yang and Chou,
2005).

A similar explanation of the distance-weighted k-nearest-neighbor algorithm, which
is a refinement of the original k-nearest neighbor algorithm, is given by Dudani
(1976), in Tsiriga and Virvouin (2003): In general, nearest neighbor learning
algorithms typically store all of the n available training examples during learning.
These algorithms use a distance function to determine how close a new query
instance is to each stored instance, and use the nearest instance or instances to
classify the query instance (Tsiriga and Virvouin, 2003). In other words, the basic
idea of the distance weighted k-nearest neighbor algorithm is to weigh the
contribution of each of the k neighbors according to their distance to the query
point, thereby giving greater weight to neighbors that are closer than neighbors that
are farther (Tsiriga and Virvouin, 2003)

A summary of the main decisions that must be made when applying a distance
weighted nearest neighbor algorithm is given by Tsiriga and Virvouin (2003):
1. Select the features that would be used to formulate the input space of the
distance function.

2. ldentify a distance function to estimate the similarity between two instances.
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3. Define the number of neighbors (k) that would participate in the
classification task.

4. Design a function to classify new instances.

In Dudani’s paper, several weighting functions are listed (Yang and Chou, 2005).
One of them was found meaningful and original by Yang and Chou (2005): A
function tied to the weight to the inverted distance from the unlabeled sample to the
reference neighbors. If the distance between the unlabeled sample and a certain
reference neighbor was shorter than the distances from the other reference
neighbors, it gave the largest weight and asserted the strongest relation among all
of the reference neighbors. Also, an extended, more comprehensive version was
used, where a weighting factor inversely proportional to a w-powered Mahalanobis
distance from the unlabeled sample was utilized.

In Gjertsen et al. (2007), it is mentioned that the National Forest Inventory plots are
typically located outside the inventory area; however, using ancillary data, the
method calculates the representativeness of the external National Forest Inventory
plots in the form of new area weights. The development in Finland has inspired a
similar development of the Norwegian National Forest Inventory. According to
Gjertsen et al (2007), the KNN method is very attractive because it works in a
manner familiar to the National Forest Inventory by making estimates based on
sample plots with associated area weights. It is explained that the basic difference
is that in NFI, all plots have the same area weights, while in KNN, the plots receive
different area weights according to how similar they are to the pixels of the
inventory area. Similarity is not based on forest variables, but rather on the vector

of spectral values from the image pixel covering the plot.

The KNN method for forest/nonforest/water stratification and its ultimate application
in developing forest area estimates for the USDA Forest Service’s Forest Inventory
and Analysis (FIA) program was studied by Haapanen et al. (2004). The method
couples field-based inventory and satellite imagery data to produce continuous
digital layers of measured forest or land use attributes. The KNN algorithm assigns
each unknown (target) pixel the field attributes of the most similar reference

pixel(s) for which field data exists. The similarity is defined in terms of the feature
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space (e.g., Euclidean distance in spectral space). Attributes of interest are
imputed to target pixels by calculating a weighted average of measurements of
each of the (k) reference pixels. Class variables such as cover type or land use are
estimated as a weighted mode. These weights can be applied as some function of
spectral distance between each target and reference pixel. Because forest
attributes are imputed based solely on spectral similarity, the method can be used
to simultaneously impute all field-measured attributes to target pixels.

In Franco-Lopez et al. (2001), it is mentioned that Hardin (1994) compared the
performance of parametric and nonparametric classifiers, particularly nearest
neighbor rules. This study concluded that the neighborhood-based classifiers, in
particular, the distance weighted neighbor classifier, are superior to the best
parametric classifiers (such as the maximum likelihood classifier) when the training
sets are large and contain the same class proportions as the population to be
classified. When this condition is severely violated, there was not a clear

advantage in using the KNN algorithm.

2.2.4. Accuracy Assessment in KNN algorithm applications

The accuracy of a classification algorithm in predicting the correct class for a pixel
is the most important measure of its success, or its “performance.” Accuracy can
only be measured for images where the land use data is available, which allows

comparing the estimated class with the real class.

In general, accuracy assessment is done with the help of traditional error matrix
and various cross validation methods such as Leave One Out, k-fold. Most widely
used cross validation method is Leave One Out. This method is based on
extracting a single observation from the original sample as the validation data, and

the remaining observations as the training data.

The evaluation of KNN’s utility for forest/nonforest/water stratification was studied
by Haapanen et al., (2003). The errors were estimated by Leave One Out cross
validation. For each omission (Haapanen et al, 2004), the KNN prediction rule was

applied to the remaining sample. Subsequently, the errors from these predictions
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were summarized. In total, the prediction rule was applied n times and predicted

the outcome for n units. Such estimates of prediction error are nearly unbiased.

Ways to develop statistical methods to integrate real coarse scale variation of
forest variables into KNN estimation were studied by Tomppo and Halme (2004).
Also, work was done on selection of the neighbors with the minimum bias and
RMSE and to develop methods to estimate a weight vector for the feature vector
applied in the KNN estimation. The parameters were selected which are based on
pixel level validation of the KNN predictions using Leave One Out and jackknifing.

The estimation of forest stand volumes by means of satellite image data and stand-
level field data was investigated by Makela and Pekkarinen (2004). In order to
determine the appropriate value of k for the KNN estimation, different values of k
were tested with employing the cross-validation (Leave One Out) technique. After
the selection of parameter k and the best features, the estimations of the volumes
for actual forest were observed with the help of existing ones. Also, the results of

the actual forest stand volumes were compared with the estimated ones.

In Thessler et. al (2007), KNN and discriminant analyses to classify rain forest
types in a Landsat TM image over northern Costa Rica were studied. It was
emphasized that the level of forest classification accuracy from a given satellite
sensor's data depends on the classification algorithm and the resolution (pixel
window or segment size) applied in the process. Leave One Out cross validation

was used in the accuracy assessment of both classification methods.
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CHAPTER 3

MATERIALS AND METHODOLOGY

In this chapter, the case study area, the preparation of the input data required for
the K nearest neighbor (KNN) classification and the methodology used in this study

are described.

3.1. Definition of the Study Area

The study area is in the city of Antalya, Turkey. This area lies in the rectangle
between the 30°31°E - 37°01" N, 30°53’ E -36°49’ N latitudes & longitudes (Figure
3.1). Antalya has fifteen districts: Center district, Akseki, Alanya, Elmali, Finike,
Gazipasa, Giindogmus, ibradi, Kale, Kas, Kemer, Korkuteli, Kumluca, Manavgat,
and Serik.

For the last decade, Antalya has been the fastest growing metropolitan city in
Turkey (Sevik, 2006). This information shows that due to the very high speed of
urbanization, the forest areas in Antalya may be in danger of decline. Therefore,
the region was a natural candidate for this study. In addition, it was advantageous

that satellite data of this region from different years were readily available.
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Figure 3.1. Location of the Study Area

3.2. Data Used in the Study

1987 and 2002 satellite images were acquired in the summer time namely June
and August (Sevik, 2006). The year of 1987 satellite image Thematic Mapper (TM)
Landsat 30 meter image with 7 bands) and the year of 2002 satellite image
Enhanced Thematic Mapper (ETM) Landsat 30 meter image with 8 bands) were
used in this study. Then they were projected by using projection system of UTM
WGS 84, Zone 36. In this study ETM (RGB; 432) (Figure 3.2), ETM (RGB; 321)
(Figure 3.3), TM (RGB; 432) (Figure 3.4) band composites are used for
comparison of classification results. The year of 2003 landuse map (Sevik, 2006)
(Figure 3.5) and SRTM 90 meters DEM (Digital Elevation Model) data (Figure 3.6)
were used as ancillary data. They were also projected into the same projection
system. No atmospheric conditions were available for these satellite images.
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Figure 3.2. 2002 Landsat ETM satellite imagery of the study area with 30-meter

spatial resolution (RGB; 432).
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Figure 3.3. 2002 Landsat ETM satellite imagery of the study area with 30-meter

spatial resolution (RGB; 321).
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Figure 3.4. 1987 Landsat TM satellite imagery of the study area with 30 meter
spatial resolution (RGB; 432).
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Figure 3.5. 2003 Landuse Data of the study area
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Figure 3.6. SRTM 90meters DEM Data of the study area

3.3. Data normalization

Satellite images from two different dates of the same area can have completely
different spectral values, due to atmospheric conditions and illumination geometry.
In order to be able to classify two different satellite images with the same training
data and perform change detection, they must undergo radiometric correction.

The Landsat ETM and Landsat TM satellites have different sensor settings,
although they produce images with the same resolution. This causes the 2002
ETM image to have a different color distribution than the 1987 TM image. In
addition, atmospheric conditions that are present when the satellite image is being
taken cause strange effects on the resulting image. Because of these reasons, two
different satellite images of the same location taken at different times always have

different color distributions.

Supervised classification methods require training data which is a small
representative set out of the data that needs to be classified. In satellite images,
one can create the training data by extracting pixels whose classes are already

known. This training data can then be used to classify the satellite image that it
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was extracted from. Ideally, one set of training data should be sufficient to classify

any satellite image. This should minimize manual intervention in the classification

process. However, because of the reasons mentioned above, each satellite image

has its own color distribution. Therefore, each satellite image can be classified with

its own training data only.This was exactly the case with 2002 ETM and 1987 TM

images. This behavior is not desired since it is impractical to do such manual work

with every image. It would be much better if one set of training data could be used

for all images.

This can be achieved by equalizing satellite images. There are different methods

for this:

1)
2)

1)

2)

Atmospheric correction

Radiometric correction.

In order to perform atmospheric correction, the exact atmospheric
conditions at the time of the satellite image snapshot must be known. Then,
using tools such as ERDAS IMAGINE and PCI Geomatics, these variables
can be input to perform atmospheric correction for all satellite images at
hand. As a result, all satellite images have the same color distribution, and
can be classified with the same set of training data. However, most of the
time, the atmospheric conditions are not available for a given satellite
image. This was the case with our ETM and TM images. In such cases,

radiometric correction must be applied.

One of the radiometric correction techniques is histogram matching
explained in (URL3). If two different satellite images have different
histograms, they are corrected to have the same histogram. Normally, there
is a reference image that is not changed. All other images are modified so
that their histograms match that of the reference image. In Nelson et al.
(2005), it is mentioned that distribution-based relative radiometric correction
techniques, such as histogram matching, eliminate the problem of
subjectivity and reduce the dependence on a geometrically accurate spatial
match between multi-date images through their use of the entire dataset. In
this study, histogram matching is applied as radiometric correction

technique.The histgorams of Landsat TM before and after histogram
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matching can be seen in Figure 3.7. Landsat ETM histogram can be seen

in Figure 3.8. The scaled vertical axis shows the amount of histogram in the

view.
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Figure 3.7. Histograms of Landsat TM before (a) and after (b) the histogram

matching
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Figure 3.8. Histogram of Landsat ETM
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3.4. Land Use Classes

According to the official land use data which is obtained from (Sevik, 2006), the
area of interest (Center District) has mainly the following classes (Figure 3.5) :

- Urban settlement

- Rural settlement

- Urban green areas

- Forest

- Greenhouses

- Water agriculture

- Dry agriculture

- Military zones

- Industrial area

- Commercial areas

- Airport

There is also a portion of the Antalya Bay (Mediterranean Sea) inside this area.

Since this study focuses on measuring forest areas with classification algorithms,
none of the specific non-forest classes were of interest. All of these were viewed as
a single class, “Non-forest.” In addition to “Forest” and “Non-forest,” a third class,
“Water” was also included in the study. The reasons for this are the very distinctive
pixel values of the sea and the lakes, and also the ability to identify the city

coastline more easily in the classified image.

3.5. Training Data Selection

Three sets of training data were prepared, for each of the classes Forest, Non-
forest and Water (Figure 3.9). In Haapanen (2004), it is emphasized that the
training data should capture the range of spectral variability within a class, in order
to obtain good class estimates with the KNN method. So, in the process,
rectangular areas were selected out of specific areas of the ETM satellite image
which were believed to be representative of the corresponding class. Since the
non-forest class is actually a collection of many different land use classes. In this

study, nonforest training data were collected from the corresponding land use
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classes except rural settlements and industrial areas, whose pixels are very similar
to urban settlement pixels. The size of the training data was about 1%
(approximately ten thousand pixels) of the ETM image (1170x793 pixels) which
has to be classified. The Quantile-Quantile plots are used to check the normality of
training data. It shows sample quantiles of training samples versus theoretical
guantiles from a normal distribution. If the distribution of samples is normal, the plot
will be close to linear. The QQ plots of forest, nonforest and water training samples
can be seen in this section (Figure 3.10-3.18). It can be seen that some training
pixels have deviations from the line. Therefore, if training pixels had been normally
distributed exactly, then Maximum Likelihood classification would have better

accuracy.

The training data was selected out of the 2002 ETM image since official land use
data was only available for the year 2002. By using image normalization, it was
possible to use this same training data to classify the 1987 TM image. A striping
(banding) problem was discovered in the 1987 TM image, which was most obvious
in the water (sea) areas. The striping effect is caused by a miscalibration in the
satellite sensor. So the sea areas in the TM image had abnormal pixel values. In
order to detect the sea areas correctly, a part of this abnormal sea was added to
the water training data during the TM classification. The training data was
subjected to Leave One Out accuracy assessment, before and after the
consideration of this abnormal sea area. It was found that the addition of this area

to the training data affected the accuracy by a negligible amount.
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Figure 3.9. Training data selected for this study
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Figure 3.10. Forest training data 4™ band QQ plot
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Figure 3.12. Forest training data 2"* band QQ plot
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Figure 3.13. Nonforest training data 4™ band QQ plot
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Figure 3.14. Nonforest training data 3™ band QQ plot
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Figure 3.15. Nonforest training data 2™ band QQ plot
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Figure 3.16. Water training data 4™ band QQ plot
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Figure 3.17. Water training data 3 band QQ plot
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Figure 3.18. Water training data 2™ band QQ plot
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3.6 Band selection

Usually, in satellite image classification, 3 bands are selected out of the maximum
number of bands, which is 8 in the case of ETM and TM images. The main reason
for this is ease of viewing. Computer can only display 3 color channels, red, green
and blue. Therefore, true-color computer images consist of 3 bands (channels)
only. The intensity of each band is represented with 8 bits (256 different possible
values). Therefore, 3 bands take up 24 bits (2 different possible values). When
these 3 bands are assigned to red, green and blue channels, the computer can
display all the different colors detectable by the human eye plus many more. Trying
to display a fourth channel would result in colors that the human eye cannot detect.
Remote sensing software that displays more than 3 bands does so by merging
values from all channels into the three visible channels. This results in loss of real
color information for the viewer. 24-bit (3 channel) image formats also have the
advantage that they can be opened and handled by any computer program.

There is also a need to retain only a small humber of useful and good features
(bands) for the classification algorithm (Wiley, 1973, in Raudys and Jain, 1991). It
can happen that as the number of bands is increased, the classification error also
increases. This is called the curse of dimensionality. So, only the most relevant

bands should be selected.

In Pereira, 2006, the band combinations (RGB;432) and (RGB;543) are
recommended for detecting forest areas. Both band combinations were tested with
their accuracy. No significant difference was found between the accuracies for the
two suggestions, so the 432 combination was selected arbitrarily. Moreover, 1%,
2" 3 4™ 5" 7" bands are used for classification and compared with 432 and the
result is more or less the same. 6™ Band is not selected because it decreases

accuracy of classification.

3.7. Addition of DEM data

In addition to 3 selected bands, DEM information can also be considered in the

classification algorithm as an extra (fourth) band. A digital elevation model (DEM)
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is a digital representation of ground surface topography or terrain. In Pereira
(2006), it is explained that DEM’s represent the shape of Earth’s surface, and each

pixel represents an elevation measurement rather than a brightness value.

According to Campbell (2002), in Pereira (2006), data for DEM’s can be compiled
using one of the three alternatives:

e Contours from maps can be digitized, converted to vector files and tagged
with elevation values producing an elevation map,

¢ Photogrammetric methods derive the elevation map from stereoscopic
images,

e Elevation maps are constructed based on survey data but they are very

expensive and time consuming.

One source of DEM data is Shuttle Radar Topographic Mission (SRTM). According
to Gorokhovic and Voustianiouk (2006), SRTM has created an unparalleled data
set of global elevations that is freely available, and can be easily downloaded from
the Internet (URL4 and URLS5). Almost 80% of the Earth surface is available from
SRTM. This is of great value for scientists dealing with terrain analysis. The data
were collected over the 11-day mission in February 2000. Since then, they have
been described in detail (Farr and Kobrick, 2000; Rabus et al., 2003; Werner,
2001, in Gorokhovic and Voustianiouk, 2006). It is mentioned that SRTM data with
90 m spatial resolution is available globally, however, SRTM data with 30 m spatial
resolution is only available for USA territory. SRTM data has been used for
vegetation cover studies in Kellndorfer et al., 2004 (in Gorokhovic and
Voustianiouk, 2006).

In Haapanen et al. (2004), several studies have found that stratification by DEM or

other factors that drive vegetative gradients can also improve classification.

According to Pereira (2006), vegetation patterns are closely related to topography.
Therefore, when working with vegetation patterns, elevation data is crucial for
mapping vegetation patterns with digital data. With DEM data, it is possible to

incorporate, manipulate, classify and display elevation data to improve the
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classification task. DEM data can be used in image classification by adding the
DEM as an additional band of data for classification, to improve classification
accuracy. Additional data like DEM improve classification accuracy, as shown in
Nangendo et al. (2007).

Whether topographic correction of TM bands and adding the digital elevation
model (DEM) as additional band improves the accuracy of Landsat TM-based
forest mapping was studied by Dorren et al. (2003). Here, different classification
schemes were applied to Landsat TM images with and without the DEM as
additional band. This technique has been called the “logical channel approach”
(Strahler et al., 1978; Hutchinson, 1982, in Dorren et al., 2003). The classification
results were assessed with error matrices and kappa statistics. It was found that
classification with the DEM as additional band increases the accuracy of Landsat
TM-based forest maps.

3.8. Flowcharts of KNN and Maximum Likelihood Classifications Applications
KNN and Maximum Likelihood Applications, which are used in this study, are

summarized as the flowcharts in Figure 3.19 and Figure 3.20.
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Figure 3.19. KNN Classification application flowchart
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Figure 3.20. Maximum Likelihood Classification application flowchart
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CHAPTER 4

ANALYSES

In this section, the analyses done with the Maximum Likelihood and KNN
algorithms are explained. The complexity and the performance are compared.

Implementation problems are discussed.

4.1. KNN Algorithm

The KNN algorithm was analyzed by examining various literatures on this topic.
This algorithm is increasingly being used in land use classification, often to
estimate forest areas. Initially, MATLAB was used to implement the algorithm, due

to its clear and expressive syntax.

The KNN algorithm can be seen in Figure 4.1. There is no need to implement a
complex probability distribution equation, or calculate statistical values like
covariance. Since it is distribution free, KNN algorithm is non-parametric. The most
complex part of the code was in the CalculateDistance() function. This is where all
3 color dimensions are taken into consideration. This function and the
FindStrongestClass() function will be explained later. Note that in KNN, there is no

need to make any assumptions about the image to be classified.

The inputs to this algorithm are the value of k, the three sets of training data and
the image to be classified, all saved as 24-bit bitmap files. The output is a three-
color (three-class) classified image, also saved as a 24-bit bitmap file (C# can only
save 24-bit bitmaps). The value of k can have a significant effect on the accuracy

of the algorithm. How to choose the best k is discussed in Chapter 2.
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function ENN

= 14

f := ReadForestTraininghata

mf := FeadWNonforestTrainingData
m = ReadWaterTraininglata

zat 1= Feadliatellitelmage

clazzsified := new Image

for each column in sat

for each row in sat

testPixel = sat[column, row]

distancelist := new Listi)

for each trainingPixel in £

AddTolLizt(distancelist, trainingPixel,

for each trainingPixel in nt

AddTolLizt(distancelist, trainingPixel,

for each trainingPixel in w

AddTolList(distancelist, trainingPixel,

SortByDistance(distancelizt)

neighborlist = distancelist[l..k]

class := FinditrongestClass (neighborlist)

GaveImage(classified)

distance := CalculateDistance(testPixel,trainingPixel)

distance)

distance := CalculateDistance (testPixel, trainingPixel)

distance)

distance := CaloulateDistance(testPixel, trainingPixel)

distance)

clazzsified[column, row] := DefaultColorPixel(clazz)

Figure 4.1. The pseudocode of KNN Classification
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It was noticed that the algorithm ran extremely slow, compared with the maximum
likelihood algorithm. The reason is that most of the time-consuming parts are
delayed until the moment of decision, that is, repeatedly calculated for each pixel
combination. In addition to CalculateDistance(), the SortByDistance() function cost
the highest performance. This problem is one of the weaknesses of the KNN
algorithm. It could be possible to improve performance by using spatial indices
such as R-tree or R*-tree. These would help retrieve data items quickly according
to their spatial location (Gutmann, 1984). The output of KNN classification with
Euclidean distance metric is given in Figure 4.2.
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Figure 4.2. Landsat ETM (RGB; 432) with Euclidean distance metric.
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4.1.1. Leave One Out Algorithm

This algorithm is used to estimate the accuracy of a classification algorithm. It can
be used in repeated runs to find the optimum algorithm or the optimum parameters,
such as the value of k.

Initially, MATLAB was used to implement the algorithm, due to its clear and

expressive syntax.

function LOo
f := BEeadForestTrainingData
nf := ReadNonforestTraininghata

W 1= ReadWaterTrainingData

trainingbata := {f, nf, w}

pixelEstimates := new List

for each trainingPixel in trainingbata
RemovePixel (traininglata, trainingPixel)
estimate := ClassifyPixel (trainingbata, trainingPizel)
2ddTolist (pixelEstimates, estimate)

BestorePixel (trainingbata, trainingPixel)

CalculateError (pixelEstimates, traininghata)

Figure 4.3. The pseudocode of Leave One Out Algorithm

The algorithm can be seen in Figure 4.3. The most complex parts here are the
ClassifyPixel() function, which calls the classification algorithm which is being
measured, and the CalculateError() function, which executes the error formula
(Equation 2.10) on the results. The inputs to this algorithm are the classification
algorithm and the three sets of training data. The output is the error values based
on the classification. The algorithm runs pretty fast, especially due to the low size

of the training data.
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4.1.2. Distance functions
The CalculateDistance() function in KNN algorithm can implement one of the
following distance measurements:

Euclidean,

Manhattan,

DiagonalMahalanobis,

Mahalanobis,

By using Leave One Out cross validation, error values were calculated, for different
values of k and for different distance metrics. As it is seen in Table 4.1, they were
sorted to understand the lowest value which gave the best result. The values were
plotted in Figure 4.4. The best result was obtained when the distance metric was
selected as Euclidean. The results of the classification are depicted in Figures 4.5-
4.7 for Manhattan, Diagonal Mahalanobis and Mahalanobis distance metrics

respectively.
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Figure 4.4. 2002 Landsat ETM satellite imagery KNN classification error plot with
different metrics (RGB; 432).
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Table 4.1. 2002 Landsat ETM satellite imagery (RGB; 432) KNN classification

error values

Diagonal
k Euclidean Manhattan Mahalanobis | Mahalanobis
1 0,013578 0,015291 0,042446 0,045015
2 0,013578 0,015291 0,042446 0,045015
3 0,011131 0,012232 0,055902 0,061774
4 0,010398 0,01211 0,054801 0,057003
5 0,011498 0,011743 0,064465 0,061407
6 0,010765 0,01211 0,05578 0,060306
7 0,010887 0,011376 0,061651 0,065443
8 0,010275 0,011009 0,058104 0,062997
9 0,010765 0,011621 0,05896 0,066544
10 0,009908 0,011009 0,056269 0,06422
11 0,010642 0,010765 0,057492 0,066667
12 0,010275 0,011131 0,056881 0,065443
13 0,010031 0,010887 0,058716 0,068746
14 0,009419 0,010765 0,058716 0,067768
15 0,010153 0,011009 0,062263 0,070092
16 0,010887 0,010642 0,060183 0,068135
17 0,011376 0,011376 0,06263 0,071804
18 0,011009 0,011131 0,06104 0,07107
19 0,011009 0,011865 0,062263 0,074495
20 0,010642 0,011743 0,061162 0,074373
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Figure 4.5. Landsat ETM (RGB; 432) with Manhattan distance metric.
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Figure 4.6. Landsat ETM (RGB; 432) with Diagonal Mahalanobis distance metric.
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Figure 4.7. Landsat ETM (RGB; 432) with Mahalanobis distance metric.

4.1.3. Weight functions

The FindStrongestClass() function in KNN algorithm can implement one of the

following weight functions:

None (Equal weight),
Fraction,

Stairs,
InverseDistance,

InverseSquareDistance

Note that it is not possible to omit the Sqrt() method when calculating the distance,

if the weight function is dependent on the distance.
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Table 4.2. 2002 Landsat ETM satellite imagery Euclidean and Weighted Euclidean
KNN classification error values (RGB; 432).

Euclidean Euclidean Euclidean Euclidean Euclidean
Inverse Inverse Stairs Fraction
Distance Square

K Distance

1 0,013578 0,013578 0,013578 0,013578 0,013578
2 0,013578 0,013578 0,013578 0,013578 0,013578
3 0,011131 0,011254 0,011865 0,013578 0,013578
4 0,010398 0,010887 0,011254 0,010398 0,010398
5 0,011498 0,011131 0,01052 0,011009 0,010765
6 0,010765 0,01052 0,010398 0,011009 0,01052
7 0,010887 0,010765 0,010642 0,010275 0,010887
8 0,010275 0,010398 0,01052 0,010398 0,010765
9 0,010765 0,010642 0,010642 0,010642 0,011131
10 0,009908 0,009786 0,010398 0,010398 0,01052
11 0,010642 0,010153 0,010275 0,010275 0,01052
12 0,010275 0,010031 0,009908 0,01052 0,01052
13 0,010031 0,009541 0,009664 0,010398 0,010398
14 0,009419 0,009174 0,009541 0,01052 0,010153
15 0,010153 0,009908 0,009541 0,010275 0,010153
16 0,010887 0,010275 0,009664 0,010275 0,010275
17 0,011376 0,010398 0,010031 0,010275 0,010153
18 0,011009 0,010275 0,009908 0,010031 0,010031
19 0,011009 0,010031 0,009908 0,010153 0,010031
20 0,010642 0,010275 0,009908 0,010153 0,010275
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Figure 4.8. 2002 Landsat ETM satellite imagery Euclidean and Weighted
Euclidean KNN classification error plot (RGB; 432).

After the selection of the Euclidean distance metric as the best one, the different
weight functions were taken into consideration. Again, Leave One Out cross-
validation was performed for each weight function and different values of k, and the
error values were calculated. The best four weight functions were “Inverse

Distance”,

Inverse Square Distance”, “Stairs” and “Fraction”. The results can be
seen in Table 4.2 and Figure 4.8. It is also possible to compare the results with
those obtained when no weight function is used (all neighbors have equal weight).

The results are sorted to understand the lowest value which gives the best result.

4.1.4. Selecting the number of neighbors (k value selection)

After the selection of the Euclidean distance metric and the Inverse Distance
Function as the best one, different values of k were taken into consideration.
Again, Leave One Out cross-validation was performed for different values of k, and

the error values were calculated. As it is seen in Table 4.3, the results are sorted to
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understand the lowest value which gives the best result. Best result is obtained

when k = 14. Then, all satellite images are classified with Inverse Distance Metric.

Table 4.3. 2002 Landsat ETM satellite imagery Inverse Square Distance Euclidean
KNN classification error values (RGB; 432).

Euclidean Inverse

K Distance

1 0,013578
2 0,013578
3 0,011254
4 0,010887
5 0,011131
6 0,01052
7 0,010765
8 0,010398
9 0,010642
10 0,009786
11 0,010153
12 0,010031
13 0,009541
14 0,009174
15 0,009908
16 0,010275
17 0,010398
18 0,010275
19 0,010031
20 0,010275

4.1.5. Results of different KNN parameters

Non-weighted Euclidean distance metric were applied to both ETM (RGB; 432) and
ETM (RGB; 321) and the results were presented respectively in Figure 4.2 and
Figure 4.9. Then, Inverse Distance weighted KNN, which gave the lowest error,
was applied to ETM (RGB; 432), ETM (RGB; 321), ETM (7 bands), TM (RGB; 432)
satellite images which were classified by using the same training data respectively
given in Figure 4.10-4.13. Subsequently, ETM (RGB; 432) was classified by using
DEM as the 4" band given in Figure 4.14.
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Figure 4.9. Landsat ETM (RGB; 321) with Euclidean distance metric (k=14).
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Figure 4.10. Landsat ETM (RGB; 432) with Inverse Distance Weighted Euclidean

distance metric (k=14).

61




207'OME MSMAOE S0TOCE B0MOOME B0MME0ME S0MEME S0RMSME BORSXOUE
1 1 1 L 1 1 L 1 L 1 1 L 1 L 1 L 1 1 1 1 1
— 1 1T | |
} , / B I - -
TN | gl
Loy
700" M ,
i L LINE e L0 W
i : A e :
36590 N i - ] |
A 9 3675910 N
2ESE0"H R K
= 7 T L sgma
ST e
F . L 2ee 70
SE°5E'0" M i w
- T 367560 N
26550 M f 9‘% g
b : LT N
3655407 N o
- FE540" N
26530 M
L 262550
26520 M .
_ I L z6ms20 M
36°51'0" N Ml — -
L RIS L s6210m M
6500 N L T
‘T e 262500 W
EERE0" | 1 Il ] 1 Il T T 1 1
1 | 1 | 1 1 | 1 1 1 1 1 1 1 1 1 1 || 1 1 1 1 1
0°0E S0°%BA0UE S0%FOUE AOOVE S0MFOUE B0RMEUME 30%M0CE 30%20YE 30%S0CE
I Forest Nonforest B e

Figure 4.11. Landsat ETM (RGB; 321) with Inverse Distance Weighted Euclidean
distance metric (k=14).
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Figure 4.12. Landsat ETM (1;2;3;4;5;7) with Inverse Distance Weighted Euclidean
distance metric (k=14).
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Figure 4.13. Landsat TM (RGB; 432) with Inverse Distance Weighted Euclidean
distance metric (k=14).
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Figure 4.14. Landsat ETM (RGB; 432 and DEM) with Inverse Distance Weighted
Euclidean distance metric (k=14).
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4.1.6. Design and performance improvements for KNN

To obtain more computing performance, the function was converted to C#, and the

following improvements were made:

- All code relating to the algorithm was encapsulated in its own class, called

KNN. The input parameters were made configurable.

- The algorithm, which can be seen as pseudocode in Figure 4.1, was
modified so that it would run with any number of classes, and therefore,
with any number of training data sets. This may be useful in future studies,

where a finer classification of forest or non-forest areas is desired.

- Since C# does not contain useful matrix functions like MATLAB by default,
a freeware matrix library called “CSML” was installed and used (URL2). It
was noticed that the performance of this library was insufficient for distance
calculations in KNN. Therefore, the matrix operations were implemented by

hand, using primitive arithmetic operations.

- Memory usage was improved. Whenever possible, large lists of objects
were not duplicated, but the calculations were performed directly on the
existing lists. For example, instead of creating a distance list for each band
and then combining them into yet another list, a single distance list was
used for all bands. In addition, the length of the distance list was limited to k

instead of being equal to the size of the training data.

- It was found that it is noticeably faster to work with the “int” data type
instead of the higher precision “double” data type, at times where the higher
accuracy is not required. When calculating Mahalanobis distance, or when
using weight functions, high-precision values are required, therefore,

“double” variables have to be used.

- The Sart() function costs performance, so one should try to avoid it.

However, it is used in the CalculateDistance() function. In cases where the
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FindStrongestClass() does not need the exact distances, it was found that
one can omit the Sqrt() function and just return the square distance. The
SortByDistance() function will work just as well with square distances. This
way, since square distances are always whole numbers, it is possible to

use the faster “int” data type as well.

The size of the training data had a huge impact on the computing
performance. It was found that any increase in the training data size caused
two problems:
o For each test pixel, that many more distances had to be calculated.
o The distance list was that much longer, causing the sort function to
work longer.
The performance could be improved by using spatial indices such as R-
tree.

The SortByDistance() function was the biggest performance bottleneck. If
the number of distances is huge, the sort function is very slow. C# uses the
quicksort algorithm, which is one of the fastest sorting algorithms, but it is
still not fast enough. In our case, we preferred to keep the distance list
sorted during AddToList(), and omit the SortByDistance() function
altogether. Actually, only the first k members of the distance list were of
interest, so only these members needed to be sorted. In AddToList(), a
training pixel was added to the neighbor list only if its distance was less
than any of the first k members of the neighbor list. Since the value of k is
usually very low, this improvement brought a significant performance

increase.

The most significant speed increase came from keeping a history of
classification results. For the same algorithm (with the same parameters)
and the same training data, the same pixel is always classified to the same
class. Therefore, in a classification run, it is possible to keep a history of all
pixels that have already been classified. If a new pixel is encountered which
has already been classified, then one can simply trust the corresponding

class from the history. There is no need to run the KNN algorithm on the
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pixel. It was noticed that the history can become quite large, often around
one fifth of the number of pixels in the image. This shows that on average,
each pixel is repeated five times in different places in the satellite image. In
any case, due to the huge size of the history cache, it was necessary to find
a fast method to access an individual pixel in it. This was accomplished by
using a hash table, where the hashing function was based on the three
color values (RGB) in the pixel. Another possibility would be to use a three-
level tree, where each level has 256 branches, for all possible values of one
color dimension. A completely filled tree would have 256x256x256 nodes in
its lowest level. After successful implementation, this history cache was
used for the maximum likelihood algorithm as well.

- The possibility of keeping a history of distances between two pixels also
presented itself. However, after some experiments, it was found that this
did not bring any speed increases. The reason was that the time required to
search for a pair of pixels in a huge history hash table was more than the

time required to calculate the distance between them from scratch.

Note that most of the performance optimizations focus on the innermost loop,

where most of the calculation takes place.

Performing multiple experiments with the KNN algorithm was only possible after
these performance optimizations. In its original form, it would have taken several
hours to execute a single KNN run. The final form is about 10 times as fast. In
addition, the process of finding the k nearest neighbors of a given instance can be
improved further by using spatial indices such as R-tree, which will help retrieve
data items quickly according to their spatial location. For future work, the search

process can be facilitated by using a spatial index.

4.1.7. Designh and performance improvements for Leave One Out cross
validation

To obtain more computing performance, the function was converted to C#, and the

following improvements were made:
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- All code relating to the algorithm, which can be seen as pseudocode in
Figure 4.3, was encapsulated in its own class. The input parameters were
made configurable. This means that any classification algorithm can be

evaluated using this class.

- Components of error were calculated during the loop, which prevented
having to go through the pixel estimates a second time.

- Note that history caching is impossible here, since each classification runs
on a different training data.

- The performance advantage of the maximum likelihood algorithm was lost,
since each classification runs on a different training data. Therefore, the
mean and covariance has to be recalculated before each classification.

4.2. Maximum Likelihood Classification

The maximum likelihood algorithm was analyzed by examining various literatures
on this topic. This algorithm is often used in land use classification, often to
estimate forest areas. Therefore, it is the best candidate to compare with the KNN
algorithm, in terms of estimation and computing performance. Initially, MATLAB

was used to implement the algorithm, due to its clear and expressive syntax.

The maximum likelihood algorithm can be seen in Figure 4.15. It was found that
the most complex part of the code was the NormalDistributionProbability() function.
Here, the normal distribution function as described under the Maximum Likelihood
Algorithm section was implemented. Since, in our case, each pixel is 3-dimensional
(RGB), a modified version of the function for multidimensional feature sets was

used.

It was noticed that the algorithm ran pretty fast, even for larger images. The reason
is that most of the time-consuming parts are calculated in advance, such as the
mean and the covariance matrix, and only once. It is also possible to calculate

parts of the NormalDistributionProbability() function in advance, to increase
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performance further. The output of the Maximum Likelihood classification is given
in Figure 4.16.

function ML

f := ReadForestTraininghata
nmf := BEeadNonforestTraininghata
w = ReadilaterTraininghata

fMean := CalculateMean(f)

nfMean := CalculateMeanint)

mMean := CalculateMearn (W)
fCowvar := CalculateCovarianceMatrix (£)
nfCowvar := CalculateCovarianceMatrixint)

mCowvar := CalculateCovarianceMatrix ()

s2at := BeadiatelliteImage

classified = new Image

for each column in sat

for each row in sat

testPixel = sat[column, row]

fProbability :=NormallistributionProbability(testPixel,
fMean, fCowar)

nfProbability :=NormalDistributionProbability(testPixel,
nfMean, nflowvar)

wProbability :=NormalDistributionProbability(testPixel,
wMean, wCowvar)

class := Maw (fProbability, nfProbability, wProbabhilitsy)

claszified[columnn, row] := DefaultColorPixel (claszsz)

SaveImage(classified)

Figure 4.15. The pseudocode of Maximum Likelihood Classification
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Figure 4.16. Landsat ETM (RGB; 432) with Maximum Likelihood Classification

4.2.1. Design and Performance Improvements for Maximum Likelihood

Classification

To obtain more computing performance (as was necessary for the KNN algorithm),

the function was converted to C#, and the following improvements were made:

All code relating to the algorithm, which can be seen as Figure 4.15, was

encapsulated in its own class, called MI. The input parameters were made

configurable.

The algorithm was modified so that it would run with any number of classes,

and therefore, with any number of training data sets. This may be useful in

future studies, where a finer classification of forest or non-forest areas is

desired.

Some parts of the normal distribution equation were calculated in advance.
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Since C# does not contain useful matrix functions like MATLAB by default,
a freeware matrix library called “CSML” was installed and used (URL2).
Still, it is possible to increase performance further by implementing

necessary matrix operations by hand, instead of using a generic library.

4.3. Other remarks

C# was chosen as language because of its following features:

Object-orientation is very easy,

There is automatic memory management, which guards against
programmer errors,

With JIT compilation, performance is high. With just-in-time compilation, the
program code is completely translated into native machine code and
cached before being executed. MATLAB, on the other hand, reinterprets
each line or operand each time it is met. Machine code always runs faster
than interpreted code.

It is easy to find comfortable development environments,

There are lots of useful math libraries that are built-in, although not as rich
as MATLAB.

There is lots of documentation, example code and free third party libraries
available.

After implementing two classifier algorithms, it was noticed that they shared a lot of

common functionality. This common code was factored out to a base class called

Classifier. This may be useful in future studies, where other classifiers can be

plugged in to this base class.

Although C# can only read images containing 3 bands (24 bits), the code was

modified in a special way so that it became possible to read any number of bands.

For this purpose, the user could prepare several bitmap files, each containing a

different 3-band combination selected out of the total number of bands in the

satellite image. The program would then read all of these bitmap files separately,

and combine them in memory into a single image containing all bands. For

example, 2 different bitmaps would contain a total of 6 bands.
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Also, as the number of bands increases, the computational performance drops
significantly, due to the following reasons:

1) The distance function in the innermost loop becomes more complex,

2) History caching is no longer useful. The probability that two pixels are
exactly the same in 8 bands is much less than the probability that they are
exactly the same in 3 bands. Therefore, most history searches fail. Also,
because of having so many different values, the hash table becomes too
large, or the search tree becomes too deep, making history searches
unfeasible.

The classifier algorithms can be easily modified so that run in parallel. For
example, in a dual CPU system, one CPU can work on classifying the upper half of
the image, whereas the other CPU can work on classifying the lower half. For a
test pixel, one CPU can calculate distances (or probabilities) from one half of the
training data, whereas the other CPU can calculate distances (or probabilities) from
the other half. Both CPU’s can access the common training data, satellite image,
classified image, neighbor list and classification history in memory. Matrix
operations can also be easily parallelized. This concept can be scaled to any
number of CPU’s. For improving performance, parallelization is becoming more
and more important, since the clock speeds of current CPU’s are nearing the

theoretical limit and manufacturers are focusing on multi-core architectures.

The 24-bit classified bitmaps generated by the classifiers were then saved as 256
color bitmaps using Paint.NET, to make accuracy assessment easier in ERDAS
IMAGINE. In the whole classification process, it is important not to use lossy image

file formats such as JPEG, since these may cause loss of color information.
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CHAPTER 5

DISCUSSION OF THE RESULTS

K nearest neighbor algorithm with different metrics, different weights and different k
values are applied to the Landsat ETM satellite image acquired in 2002. Band
combination is selected for this reference image as (RGB; 432) because it is one of
the most commonly used band combinations in the studies of forestry remote
sensing. First, the best distance metric is selected with error results of Leave One
Out cross validation technique by using bands (RGB; 432). The result is clearly
Euclidean distance metric. After selecting the distance metric, the weights and the
best k values are selected. With the same distance metrics, weights and k values
of bands (RGB:432), The 6 bands which are 1%, 2™ 39 4" 5" 7" pands of
Landsat ETM are selected as reference image for comparison. The 6™ band is not
selected because thermal band decreases the accuracy. Additionally, Digital
Elevation Model (DEM) data is used as the 4™ band and then as ancillary data to
select training data better because, in the literature, it is expressed that the DEM
data may increase the accuracy in some cases. The results of them are compared

to understand which pixels are found with addition of DEM data.

The TM satellite image from the year 1987 is then selected as reference image to
understand the change in forest percentage of both years. The bands are selected

for this reference image as (RGB; 432).

Due to being the most commonly used supervised algorithm, Maximum Likelihood
Algorithm, which is another supervised classification method, is applied to Landsat
ETM (RGB; 432) to understand the proximity of the results between the KNN and

Maximum Likelihood Classification methods.

72



5.1. Selecting the distance metric with LEAVE ONE OUT cross validation

The error values were calculated by using Leave One Out cross validation, for
different values of k and for different distance metrics in Chapter 4. The best
distance metric was selected as Euclidean. The weights, which are fraction, stairs,
inverse distance and inverse square distance, were applied to Euclidean distance
metric for several k values. It was seen that the best results was achieved by
inverse distance weighted KNN with k value equal to 14.

In Franco-Lopez et al. (2001), KNN is applied by using Euclidean and Mahalanobis
distance metrics for the estimation of the forest stand, type and volume. In that
study, it is seen that Euclidean distance metric gives lower RMSE values than
Mahalanobis distance for any number of neighbors. Therefore, the subsequent
trials are based on Euclidean distance. It is also mentioned that the results
contradict with the results found by Nilsson (1997), in Franco-Lopez et al. (2001).

Similarly, in this study, the Euclidean distance metric was found as the best metric,
and it was taken into consideration for further classification tasks. This agrees with
Franco-Lopez et al. (2001), Pereira (2006) and Cabaravdic (2007). However, it
contradicts with the results found by Nilsson (1997), in Franco-Lopez et al. (2001),

and Lorenzo et al. (2002), both of whom found Mahalanobis distance to be better.

The Mahalanobis distance metric would be expected to perform better when bands
are strongly correlated. The bad performance of this metric in this study is an
indication that the bands 4, 3 and 2 are not strongly correlated. This argument can
also explain the higher performance of the Mahalanobis distance metric found by
Lorenzo et al. (2002).

Diagonal (Class-Dependent) Mahalanobis distance metric performed better than
Mahalanobis distance. This can be explained by the fact that this metric does not
take band correlation into account. However, it still exhibited very low performance.
The reason can be understood by noting that the distance of a test pixel to a
training pixel is inversely proportional to the standard deviation of the training data

which the training pixel comes from. This means that if a training data of a certain

73



class has a high standard deviation, then its pixels will have especially low
distances to the test pixel. The underlying assumption is that the test pixel would fit
a wide and flat distribution more easily than a narrow and thin distribution. In our
case, the training data for the water and forest classes both have low standard
deviation, but the training data for the non-forest class have an especially high
standard deviation, since they are collected from widely different land features.
Therefore, the closest neighbors to a test pixel tend to be chosen from non-forest
pixels, due to their low distances. The non-forest class tends to overwhelm forest
and water classes in the list of neighbors, resulting in an unfair advantage for the
non-forest class. Many forest and water test pixels are mistakenly classified as
non-forest, which decreases the accuracy.

The Manhattan distance metric gave pretty good results. The difference to the
Euclidean distance metric is as follows: In a 3-band combination, if one of the
bands of a training pixel has a high distance to the same band of the test pixel,
then that training pixel is severely penalized by the Euclidean distance. A band with
a high difference cannot be offset by another band with a low difference. On the
other hand, Manhattan distance allows a band with a high difference to be offset by
another band with a low distance. Even if there is a band with a high difference,
Manhattan distance accepts the overall distance to be low, if the other bands have
a low difference. For the Euclidean distance, all bands have to be low in order for
the distance to be low. In other words, the closeness has to be consistent across
all bands. Since the Euclidean distance metric gave the best results in our case, it
was observed that it was better to expect a training pixel to be close to the test
pixel in all of the bands 4, 3 and 2, in order to identify it as a neighbor. A high
distance in one of the bands had to be penalized severely, even if the other bands

had really low distances. Consistency in distance was important.

On the other hand, the Manhattan distance metric consists entirely of additions and
subtractions, whereas the Euclidean distance metric includes slow-running
multiplications and square roots. Therefore, in cases where computing
performance must be maximized, the Manhattan distance is recommended over

the Euclidean distance, considering its high accuracy.
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5.2. Weighted KNN Application

The best result is obtained when the weight function is “Inverse Distance.” This
holds true for every distance metric, but the focus here is on the Euclidean
distance metric, which gives the highest accuracy. The superiority of “Inverse
Distance” is contrary to the results obtained by Franco-Lopez et al. (2001), who
observed that it was best to use no weights (equal weights). In their experiments,
each test pixel had several close neighbors in most cases, with very little distance
between them. Therefore, a distance-dependent weight function did not generate
different results than assigning equal weights to all neighbors. In such cases, using
fraction or stairs weight function is recommended. These functions are not
dependent on the distance. Rather, the weight of a neighbor drops as its order
increases among the list of neighbors, without exception.

It should be noted that the error drops steeply as k increases from 1 to 4. For
subsequent values of k, the error drop is more gradual and irregular. This rapid
early decrease, followed by diminishing marginal drops is mentioned by Franco-
Lopez et al. (2001) as well.

It was also observed that there was very little difference between “Inverse
Distance” and “Inverse Square Distance” weight functions. This agrees with the

observations made by Haapanen (2004).

Although there were good and bad weight functions, it was usually not possible for
an algorithm with a bad distance function to become superior to an algorithm with a

good distance function, even if it used the best weight function.

In order to demonstrate the role of the distance value inside the weight function
more clearly, it is necessary to observe the accuracy results for different values of
k and different weight functions under Mahalanobis distance, which is given in
Figure 5.1. This is a bad distance function and tends to collect misleading
neighbors. Therefore, for all weight functions, the error increases as the value of k
increases. Higher values of k cause neighbors that are really far away to be taken

into consideration, which confuse the classifier even more. If there is no weight
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function (all neighbors have the same weight), then the error increase (accuracy
drop) is very steep. However, if the weight is calculated from the distance, the error
increase is negligible, because if the weights of misleading neighbors are
correspondingly low, then the confusion is also low. Therefore, a weight function

that is inversely proportional to the distance is definitely recommended.
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Figure 5.1. 2002 Landsat ETM satellite imagery Mahalanobis and Weighted
Mahalanobis KNN classification error plot (RGB; 432).

For “Inverse Distance,” the k value with the minimum error was found to be 14.
This agrees with Haapanen (2004), where it is mentioned that typically, the value
of k employed in forest inventory studies has ranged from 1 to 15. For example, in
Franco-Lopez et al. (2001), it is cited that Nilsson (1997) and Tokola et al. (2006)
reported a stability point between 10 and 15 neighbors. Note that if a bad distance
function is used, and there is no weight function, higher values of k can be very

dangerous to the accuracy of the classifier.
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In all measurements, the error for k = 2 was exactly equal to the error for k = 1. The
reason is that the first neighbor’s class always carries more weight than the second
neighbor’s class when a weight function is used. Also, in our version of the
algorithm, if equal weights are used, the first neighbor’s class overrides the second
neighbor’s class in case of a tie. Therefore, the second neighbor is completely

ineffective.

With the optimum parameters, the Leave One Out error for KNN was 0.009174,
whereas the same error for the Maximum Likelihood algorithm was found to be
0.0168. It was seen that KNN achieves better performance than Maximum
Likelihood when classifier parameters are carefully selected.

5.3. DEM addition to KNN classification process

It is specified in section 3.7; the ancillary data can be also used as additional
information in the KNN classification. Therefore, ETM (RGB; 432) was classified by
using DEM as the 4™ band firstly.

In Figure 5.2, it can be seen that the classification of Landsat ETM (RGB; 432) with
Inverse Distance Weighted Euclidean metric with DEM data failed to find the forest
areas inside the black circle. The green pixels indicate areas additionally classified
as forest, and red pixels indicate areas no longer classified as forest. This is due to
the restrictive nature of the forest training data. The forest training data had been
taken from areas where elevation was high. Therefore, KNN tended towards
expecting more forest in high areas, and less forest in low areas. The algorithm
was able to find forest near the mountaintops on the lower left successfully. It also
found more forests towards the top left, where elevation is high. However, it
ignored the area in the black circle, where elevation is low. The accuracy is still
very high, because the random points did not include many pixels from the
wrongly-classified areas. This shows that accuracy assessment can be misleading
due to an unfortunate distribution of sample points. Because of this wrong

classification, new forest training area was taken from this region for detecting the
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forests in areas which had varying elevation values. The new classification results

were given in Figure 5.3 and Figure 5.4.

Figure 5.2. The changes in pixels with addition of DEM data as an extra band.

It was observed that this time, classification with DEM was able to find forests in
the black circle successfully, which is shown in Figure 5.5. But it was also seen that
some non-forest, low elevation areas were mistakenly classified as forest this time.
Without the DEM band, the KNN algorithm had seen that the spectral values of
these areas were sufficiently far from forest pixels. The DEM, used as an extra
band, gave an additional hint that the areas were closer, because their low
elevation matched that in the forest training data. As a result, they were classified
as forest, and the accuracy decreased. It is seen that using DEM as an extra band
only confuses the reliable information obtained from the spectral values. In areas
where the different classes are strongly dependent on elevation such as different
vegetation types, or special types of forest, the DEM band can be useful. However,
both forest and non-forest classes were found on varying elevation levels in our

study, which caused the DEM band to be impractical.
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Figure 5.3. Landsat ETM (RGB; 432) with Inverse Distance Weighted Euclidean
distance metric (k=14) by using new forest training data.
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Figure 5.4. Landsat ETM (RGB; 432 and DEM) with Inverse Distance Weighted
Euclidean distance metric (k=14) by using new forest training data.
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Figure 5.5. The changes in pixels with addition of DEM data as an extra band by
using new forest training areas.

Figure 5.6. The changes in pixels with addition of DEM data as an ancillary data to
select training data using new forest training areas.
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On the other hand, the classification results using the new training data were better
than the results using the old training data. When DEM was not used as 4th band,
there was no pixel which could not be found as forest compared to other classified
images. The extra forest pixels that were found using the new training data can be
seen in Figure 5.6. This can demonstrate that by selecting the training data from
different elevations (by observing the DEM band as auxiliary data), the accuracy
can be increased. This indicates that forest areas reflect slightly different spectral
values at different elevations, and these variations should be taken into account
when selecting the training data.

5.4. Forest change from 1987 to 2002

Change detection is a tool to make decisions about development strategies. Forest
change is a result of natural and man-caused changes. In this study, Landsat TM
image was acquired in 1987 and Landsat ETM was acquired in 2002. There has
been probably a change in forest areas in the study region during this fifteen-year
period. As it was explained in section 3.1, histogram matching as a radiometric
correction technique was applied to Landsat TM to classify both satellite images by
using the same training data. KNN was applied to both of them by using Inverse
Distance Weighted Euclidean distance metric with k equal to 14. The different

pixels in forest areas were compared in Figure 5.7.

The red pixels in the pink and brown circles show the forest pixels which exist in
1987 but not in 2002. The pink circle indicates the forest areas in 1987 which
became agricultural areas in 2002. The brown circles show the forest areas in
1987 that are apparently still forest in 2002, since these areas are forest in land
use data. The pixels are red because the digital values of these pixels in 2002 are
very different from forest training pixels that represent most forest areas in the
satellite images. Forest training data have not been collected from the pixels in
brown circles. Two conclusions can be reached from here. First, the training data
should consist of all types of forest at the same time for better accuracy. Second,
the land use data should give correct information. There are some regions which
are seen as forest in land use, but these regions obviously do not have forest

pixels in satellite images. It can be seen that the land use data are not very reliable
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for accuracy assessment. Field survey and sampling plots, which consist of training

data, are recommended for better accuracy.

4 el & 32;

Figure 5.7. Change in forest pixels from 1987 to 2002.

Table 5.1. Class distribution (%) of TM and ETM classified images

™ ETM
Forest 7.07 8.61
Nonforest 80.57 79.05
Water 12.36 12.34

Forest areas increase from 7.07% to 8.61%. This means that the change in forest
areas is approximately 21%. Although there is a rapid urbanization in Antalya, the

increase in forest areas is an indicator of sustainable development.
5.5. KNN and Maximum Likelihood Classification Comparison
It can be seen in Figure 5.8 that there are some pixels in KNN different from
Maximum Likelihood Classification. The green pixels are found as forest by

Maximum Likelihood classification and not found as forest by KNN classification.
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Similarly, red pixels are found as forest by KNN classification and not found as
forest by Maximum Likelihood classification. There is not much difference between
the two results. KNN found slightly more forest pixels in the top left and lower left
areas. This is in agreement with the land use data, which shows these areas as
forest. The spectral values of the pixels in these areas deviate from typical forest
pixels. This shows that KNN is more successful in classifying such outlying pixels.
Maximum Likelihood, on the other hand, found slightly more pixels in the middle
left and top areas. The land use data shows these areas as forest as well. The
spectral values of pixels from these areas are typical forest pixels. This indicates
that Maximum Likelihood is more successful in classifying pixels that are closer to

the mean.

Figure 5.8. Different forest pixels in images classified by KNN and Maximum

Likelihood classifications.

The overall accuracies of KNN and Maximum Likelihood classification are more or

less the same for the random points in the accuracy assessment part of the study.
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5.6. Accuracy Assessment

The accuracy assessment was performed with ERDAS Imagine by comparing the
land use data with classified images. The two images were geometrically corrected
so that they would overlap perfectly. Then, stratified random points calculated as
280 points were selected automatically on the classified image, and these were
manually classified by referring to the land use data. The stratified random points

can be seen in Figure 5.9.
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Figure 5.9. Stratified random sample points used in accuracy assessment.

The error matrix and other accuracy values were automatically computed by using
ERDAS. The highest accuracy values were obtained with the band selection RGB;
432 when using the KNN algorithm, with Euclidean distance and inverse distance
weights, with k = 14,

The accuracy assessment reports of ETM (RGB; 432) KNN with Inverse Distance
Euclidean and ETM (RGB; 321) KNN with Inverse Distance Euclidean can be seen
in Figure 5.10 and Figure 5.11 show that overall, using (RGB; 432) bands give
higher accuracy than using (RGB; 321) bands.
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The reason for this is that band 4 is more significant than band 1 for classifying
vegetation. Band 4 is “near-infrared.” Agricultural vegetation and forest vegetation
reflect clearly different spectral values under infrared band. Therefore, it becomes
easier for the classifier to detect the difference between agriculture (non-forest)
and forest pixels. The accuracy reports of ETM (1;2;3;4;5;7) with KNN with Inverse
Distance can be seen in Figure 5.12. Selecting all available spectral bands gave
the same accuracy. It was decided that it is not worth to perform extra effort and
computing performance for these bands. The selection of a small number of useful
bands, such as (RGB; 432), was sufficient. The accuracy reports of DEM data
added to ETM (RGB; 432) with KNN with Inverse Distance Euclidean can be found
in Figure 5.13. Figure 5.14 and Figure 5.15 contain accuracy reports using the new
forest training data selected by taking elevation values into consideration. These
results were discussed in section 5.3. Figure 5.16 contains the ETM (RGB; 432),
Maximum Likelihood classification accuracy reports. It was seen that there is slight
difference between accuracies of KNN algorithm and maximum likelihood
algorithm. Overall accuracies of the methods followed in this study can be seen in
Table 5.2.

Table 5.2. Overall accuracies of different classification, band and ancillary data

combinations.

Ancillary Overall Accuracy
Bands Data Classification (%)
Inverse Distance
RGB; 321 Landuse Weighted KNN 85,36
Inverse Distance
RGB; 432 Landuse Weighted KNN 86,07
Inverse Distance
1,2,3,4,5,7 Landuse Weighted KNN 86,07
Maximum
RGB:; 432 Landuse Likelihood 87,14
RGB; 432 and Landuse& Inverse Distance
DEM DEM Weighted KNN 87,14
RGB; 432 and Inverse Distance
DEM Landuse Weighted KNN 87,50
Landuse& Inverse Distance
RGB; 432 DEM Weighted KNN 87,86
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ERF.OR. MATRIX

Referetice Data
Classified Data Forest Monforest Whater
Fuorest 20 2 0
Monforest 35 156 1
Water 1] 1 35
Colunn Total 55 189 36
ACCURACYTOTALS

Class  Feference Classified Muamber Producers Taers

Matne Totals Totals Correct Acouracy Acouracy
Forest 55 22 20 36,36% 90,91%
Monforest 159 2212 154 A541% B3,78%
Water 36 36 35 a7 23% 97 210%

Totals 280 220 1

Crrerall Classification Acouracy = 8607%

KAPPA (K*) STATISTICS

Crrerall Kappa Statistics =0,6782

Conditioral Kappa for each Category,

Class Matne Kappa
Forest [, 2860
Monforest 05010
Water 09681

Figure 5.10. ETM (RGB; 432) KNN with Inverse Distance Weighted Euclidean
distance metric classification Accuracy Assessment Report.
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ERF.OR. MATRIX

Eeferenice Data

Classified Data Forest Monforest  Water

Forest 20 4 1]

Monforest 35 154 1

Water 1] 1 35

Colunn Total 55 180 36
ACCURACYTOTALS

“lazs  Beference Clazsified Mutnber Producers 1 zers

Matne Totds Totals Correct Acouracy Acouracy
Forest 55 24 20 36,30% 83,30%
MNonforest 180 220 184 07,35% 83,64%
Water 36 36 i 07, 22% 07 20%,

Totals 280 220 25

Orrerall Classification Acouracy = 8530%

KAPPA (K*) STATISTICS

Crrerall Kappa Statistics = 0,6644

Conditional Kappa for each Category.

Class Matne Kappa
Forest 0,7926
Monforest 04985
Water 09681

Figure 5.11. ETM (RGB; 321) KNN with Inverse Distance Weighted Euclidean
distance metric classification Accuracy Assessment Report.
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ERF.OR. MATRIX

Eeferenice Data

Classified Data Forest Monforest Whater

Forest 20 2 0

Monforest 35 186 1

Water 1] 1 35

Colunn Total 55 180 36
ACCURACYTOTALS

lass  Reference Claszsified Mignber Producers sets

Martne Totdls Totals Correct Acouracy Acouracy
Forest 55 22 20 36,36% 90,91%
Honforest 159 222 154 AE,41% B3,78%
Water 36 36 35 07, 22% 07 210%;

Totals 280 220 21

Orrerall Classification Acouracy = 86,07%

KAPPA (K~) STATISTICS

Crrerall Kappa Statistics = 0,6782

Conditioral Kappa for each Category,

Class Matne Kappa
Forest [, 2860
Monforest 05010
Water 09681

Figure 5.12. ETM (Bands:1;2;3;4;5;7) with Inverse Distance Weighted Euclidean
distance metric classification Accuracy Assessment Report

88



ERF.OR. MATRIX

Eeferenice Data
Classified Data Forest Monforest Whater
Forest 22 0 0
Monforest 33 188 1
Water 1] 1 35
Colunn Total 55 180 36
ACCURACYTOTALS

Class  Reference Classified Muamber Producers Taers

Martne Totdls Totals Correct Acouracy Acouracy
Forest 55 22 2 40,00%% 100,00%
Honforest 159 222 153 99, 47% 84 ,68%
Water 36 36 35 a7,23% 97 210%

Totals 280 220 M5

Orrerall Classification Acouracy = 87.50%

KAPPA (K*) STATISTICS

Crrerall Kappa Statistics =0,7112

Conditional Kappa for each Category.

Class Matne Kappa
Forest 1,000
Monforest 0,5288
Water 09681

Figure 5.13. DEM data added to ETM (RGB; 432) with Inverse Distance Weighted
Euclidean distance metric classification Accuracy Assessment Report
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ERR.OR MATEIX

Eeferenice Data

Classified Data Forest Monforest Wt et

Forest 26 3 1]
MNonforest it 185 1
Water 1] 1 35
Colunn Total 55 150 36

ACCURACYTOTALS

Class  Reference Classified Futrber Producers Tsetrs

Matne Totdls Totals Caotrect Accuracy Acouracy
Forest 55 29 26 47, 27%% 89,86%
Monforest 159 215 183 a7, 85% 86,05%
Water 36 36 35 A7, 20% 97 20%,
Totals 280 280 24

Owrerall Classification Accuracy = 37.86%

KAPPA (K~) STATISTICS

Drrerall Kappa Statistics =0,7270

Conditioral Kappa for each Category.

Class Matne Kappa
Forest 0,713
Monforest 0,5707
Water 0,9651

Figure 5.14. ETM (RGB; 432) KNN with Inverse Distance Weighted Euclidean
distance metric classification (by using new forest training data) Accuracy

Assessment Report.
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ERF.OR. MATRIX

Eeferenice Data
Classified Data Forest Monforest Whater
Forest X fi
Monforest 28 152 1
Water 1] 1 35
Colunn Total 55 180 36
ACCURACYTOTALS

Class  Reference Classified Muamber Producers Taers

HMame Tatals Tatals Comrect Acouracy Accuracy
Forest 55 33 & 43 09% 51,82%
Monforest 159 211 152 96, 30%, 86,26%
Water 36 36 35 o7 20% o7 20%

Totals 280 230 24

Orwrerall Classification Aceuracy = 3714%

KAPPA (K~) STATISTICS

Orrerall Kappa Statisties =0,7153

Conditional Kappa for each Category.

Clags Mame Kappa
Forest 07737
Muonforest 05771
Water 0,951

Figure 5.15. DEM data added to ETM (RGB; 432) with Inverse Distance Weighted
Euclidean distance metric classification (by using new forest training data)
Accuracy Assessment Report.
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Referetice Data
Classified Data Forest

23

Crrerall Kappa Statistics = 0,706

Conditional Kappa for each Category.

ERF.OR. MATRIX

Monforest  Water

Fuorest 2 1]
Monforest 32 156 1
Water 0 1 35
Colunn Total 55 180 36
ACCURACYTOTALS
Class  Feference Classified Muamber Producers Taers
HMame Totals Totals Comrect Acouracy Accuracy
Forest 55 25 e 41 ,82% 02.00%
MNonforest 189 210 156 0541% 84,03%
Water 36 36 35 o7 22% o7 22%
Totals 280 280 24
Crrerall Classification Accuracy = 87,14%

KAPPA (K") STATISTICS

Clazs Mame Kappa

Forest 02004
Monforest 05364
Water 09481

Figure 5.16. ETM (RGB; 432) Maximum
Assessment Report.
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CHAPTER 6

CONCLUSIONS and RECOMMENDATIONS

The application of image classification algorithms to satellite images makes it
possible to map land cover types of huge areas automatically. In the particular field
of forest area detection, appropriate classification methods help improve forest
planning. A lot of research on the area of image classification focuses on improving
classification accuracy and thus increasing its applicability for practical use. This
study detailed the KNN algorithm in particular, which is commonly used in the

detection of forest areas.
6.1. Conclusions

The study area was the Center District of Antalya, which has undergone high
urbanization over recent years. Using different parameters, the accuracy of the
KNN algorithm was evaluated by means of Leave One Out cross validation.
Among the four different distance functions that were used in the KNN algorithm,
the best function turned out to be the simple Euclidean distance, followed by the
Manhattan distance. There was a very clear accuracy weakness with the
Mahalanobis distance. This showed that the Landsat bands 4, 3 and 2 are not
strongly correlated. Diagonal Mahalanobis, which did not take band correlation into
account, performed better. However, it was still unsatisfactory, due to the high
standard deviation of non-forest training data. If more granular classes were used

for non-forest areas, Diagonal Mahalanobis could have performed better.

Among the different weight factors (functions) that were used in the KNN algorithm,
the best function turned out to be the inverse distance, followed by the inverse

square distance. Both were better than using no weight factors.
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It was noticed that the choice of distance function had a significant effect on the
resulting accuracy. The choice of weight function did not have such a strong
impact. Therefore, it is crucial to select a good distance function first, before

choosing a good weight function.

In addition, for the best distance and weight functions, the best value for k was
found to be 14.

It was observed that choosing bands 4, 3 and 2 resulted in higher accuracies than
choosing bands 3, 2 and 1. This was due to the importance of band 4 in detecting
vegetation. As expected, using all available bands did not increase the accuracy,
so just 3 bands were sufficient. Also, it was observed that adding DEM as an extra
band did not improve classification accuracy. DEM would be much more useful for
classifying forest or vegetation types that are closely dependent on elevation.
Alternatively, it can increase accuracy when it is observed as ancillary data to
specifically select training pixels from varying elevations. This indicates that
performing topographic normalization using DEM data could have increased

accuracy results.

As a result, the best flavor of KNN can be achieved by taking Euclidean distances,
inverse distance weights, k equal to 14, with bands 4, 3 and 2. With these
optimizations, it was found that KNN has an advantage over the Maximum
Likelihood algorithm, which is also a classification method commonly used for

forest area detection.

In the accuracy assessment done by comparing the classified image with official
land use data, it was found that there is slight difference between optimized KNN
result and the Maximum Likelihood result. Also, it was observed that KNN was
more successful in classifying pixels that deviate significantly from the
corresponding training data, whereas Maximum Likelihood was more successful in
classifying pixels that are closer to the mean of the corresponding training data. In
the literature, the KNN method has been applied while using grids of sample plots,
with successful results. However, the land use data available for this study was not
as precise as the plots used in those cited studies. If more precise and detailed

fieldwork had been performed, then it would have been possible to select better
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training data, and perform accuracy assessment against a more correct reference

image. Thus, the accuracy results of KNN could have been better.

It was seen that both algorithms were straightforward to implement in code, but
one needs a good design in order to make the algorithms configurable. Also, it was
observed that the computing performance of KNN is low in comparison to the
Maximum Likelihood algorithm. It was seen that the running time of KNN was
highly dependent on the number of training samples. Increasing the number of
bands, using Mahalanobis distance function, and adding weight calculation all
increased the running time. Ways to improve this performance have been
discussed. The optimized source code has been included, which can be easily
manipulated to modify classification parameters or add new image classifiers.

Thus, it can act as a high-performance library for future studies.

A secondary obijective of this study was to classify two satellite images from two
different years, and detect the change percentage of forest areas. This required
applying radiometric correction to the images. Histogram matching was used for
this purpose. After radiometric correction, it was observed that the optimized KNN
had no problems classifying both images based on the training data taken from
one of them. However, it was not possible to measure the accuracy of the second

classified image due to the lack of land use data.

When performing change detection between the TM and ETM images, it was found
that the forest areas actually increased approximately 21% during the urbanization
phase of Antalya over the years. This shows that in spite of massive urbanization,
reforestation strategies in the Center District of Antalya have been somewhat
successful. This is valuable data for decision makers who want to plan future

strategies for forest management.

As a result, the practical applicability of the KNN algorithm for mapping forest areas
over large areas was demonstrated, with acceptable accuracy and computing
performance. It is anticipated that progress in this field will continue, especially in
other possible modifications of the classifier. The final objective is the operational

application of classifiers in creating and maintaining forest inventories.
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6.2. Recommendations

For forest/non-forest/water stratification, the KNN algorithm is recommended due
to its advantages listed in Chapter 2 and its high accuracy demonstrated in
Chapter 5.

In classification using KNN, Euclidean distance should be used for bands that are
not strongly correlated, such as bands 4, 3 and 2. If computing performance is
more important than maximum accuracy, then Manhattan distance can also be
used. For strongly correlated bands, Mahalanobis distance should be used. In that
case, care should be taken to use granular classes, so that the standard deviation
of a single class does not become too large. When selecting training data, it is

important to include pixels from all variations of a class.

For highest accuracy in KNN during forest/non-forest/water stratification, it is
strongly recommended to have neighbor weights decrease in inverse proportion to
their distances from the test pixel. This will also help reduce the accuracy problems
that can arise if the value of k is selected too big. However, if each test pixel has
several close neighbors in most cases, with very little distance between them, then
functions that are not dependent on the distance are recommended, such as
fraction or stairs. Also, the value of k should be selected around 14, and the bands
4, 3 and 2 should be used.

When classes are not dependent on elevation, it is not recommended to use DEM
as a fourth band; however, it can increase accuracy when used as ancillary data

during training data selection or in topographic correction.

For maximum reliability when selecting training data and performing accuracy

assessment, it is important to have precise and up-to-date land use data.

For reducing the running time of the KNN algorithm, it is recommended to keep the
size of the training data below an acceptable limit. Also, the search process of k
nearest neighbors can be facilitated by using a spatial index such as R-tree for

future work.
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