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ABSTRACT 
 
 

 
CLASSIFICATION OF FOREST AREAS BY K NEAREST NEIGHBOR METHOD: 

CASE STUDY, ANTALYA. 
 
 

Özsakabaşı, Feray 
 

M.Sc., Department of Geodetic and Geographic Information Technologies 
 

Supervisor: Assoc. Prof. Dr. Zuhal Akyürek 
 

 
June 2008,101 pages 

 

Among the various remote sensing methods that can be used to map forest areas, 

the K Nearest Neighbor (KNN) supervised classification method is becoming 

increasingly popular for creating forest inventories in some countries. In this study, 

the utility of the KNN algorithm is evaluated for forest/non-forest/water stratification. 

 

Antalya is selected as the study area. The data used are composed of Landsat TM 

and Landsat ETM satellite images, acquired in 1987 and 2002, respectively, SRTM 

90 meters digital elevation model (DEM) and land use data from the year 2003. 

The accuracies of different modifications of the KNN algorithm are evaluated using 

Leave One Out, which is a special case of K-fold cross-validation, and traditional 

accuracy assessment using error matrices. The best parameters are found to be 

Euclidean distance metric, inverse distance weighting, and k equal to 14, while 

using bands 4, 3 and 2. With these parameters, the cross-validation error is 

0.009174, and the overall accuracy is around 86%. The results are compared with 

those from the Maximum Likelihood algorithm. KNN results are found to be 

accurate enough for practical applicability of this method for mapping forest areas. 

 

Keywords: K-nearest neighbor method (KNN), Classification, Forest, Accuracy 

Assessment, Antalya. 
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ÖZ 

 

 

ORMAN ALANLARININ K EN YAKIN KOMŞU METODUYLA SINIFLANDIRILMASI: 

ÖRNEK ÇALIŞMA, ANTALYA 

 

ÖZSAKABAŞI, FERAY 

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü 

Tez Yöneticisi: Doç. Dr. Zuhal Akyürek 

 

Haziran 2008, 101 sayfa 

 

Orman alanlarını haritalandırmak amacıyla kullanılmakta olan farklı uzaktan 

algılama metodları arasında, K En Yakın Komşu (KNN) kontrollü sınıflandırma 

metodu, bazı ülkelerde orman envanterlerini oluşturmak için gittikçe daha popüler 

hale gelmektedir. Bu çalışmada, KNN algoritmasının orman/orman olmayan/su 

katmanlaşması için kullanılabilirliği değerlendirilmiştir. 

 

Çalışma alanı olarak Antalya seçilmiştir. Kullanılan veriler, sırasıyla 1987 ve 2002 

yıllarına ait Landsat TM and Landsat ETM uydu görüntüleri, SRTM 90 metre 

sayısal yükseklik modeli (SYM) ve 2003 yılına ait arazi kullanımı verisinden 

oluşmaktadır. KNN algoritmasının farklı modifikasyonları, K-katlı çapraz 

doğrulamanın bir türü olan Leave One Out ve hata matrislerinin kullanıldığı bilinen 

doğruluk analizleri ile değerlendirilmiştir. En iyi parametreler, 4., 3. ve 2. bandları 

kullanırken, Euclidean uzaklık ölçümü, ters uzaklık ağırlıkları, ve k değeri 14’e eşit 

olarak bulunmuştur. Bu parametrelerle, çapraz doğrulama hatası 0.009174 ve 

toplamdaki doğruluk yaklaşık %86’dir. Sonuçlar, Maksimum Benzerlik sonuçlarıyla 

karşılaştırılmıştır. KNN sonuçlarının, orman alanlarının haritalandırılması için pratik 

uygulanabilirliğine yetecek kadar doğru olduğu görülmüştür. 

 

Anahtar Kelimeler: K En Yakın Komşu Metodu, Sınıflandırma, Orman, Doğruluk 

Analizi, Antalya. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Creating an accurate forest inventory by mapping forest vs. non-forest areas is an 

essential requirement for forest management and planning. Using field analysis for 

creating forest inventories is a difficult task, especially due to economical 

constraints. In field sampling, the density of sample plots has to be low or even 

very low in hard-to-reach areas. Therefore, attempts to estimate forest variables for 

small areas turn out to be inaccurate, and mapping large areas is infeasible. In the 

last decades, the availability of high-resolution satellite images has opened up new 

possibilities for mapping forest areas in an objective, accurate and comprehensive 

way. In particular, intelligent image classification algorithms and increasing 

computing power make forest mapping possible to be performed automatically with 

the help of computers. 

In remote sensing, a “class” can be defined as a land cover type. For example, to 

map a forest inventory, the classes “forest,” “non-forest” and “water” are of interest 

because the training samples are collected only from forest areas with plots. For a 

pixel in a satellite image, image classification algorithms help us to detect which 

class that pixel belongs to. Each pixel in the satellite image belongs to only one of 

these classes. Thus, the classified image is a computer-generated land cover map. 

Here, one can easily detect the expanse covered by each land cover class. 

There have been a lot of researches in image classification algorithms and their 

application to forest detection. These researches are especially active in 

Scandinavian countries and in the USA. Suggestions for algorithmic improvement 

and optimization, mainly to increase classification accuracy, are an important focus 

in these studies. Although the various classification methods are well-established, 

there is still room for improvement. In Turkey, there are some studies which 

determine forest stand parameters using remotely sensed data. The projects focus 
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on classifying and mapping the stand parameters such as development stages, 

crown closure, stand types, and land cover.  

The two most common algorithms employed in forest area detection are K-nearest-

neighbor (KNN) and Maximum Likelihood, which are both classification algorithms. 

In recent years, KNN is becoming more and more significant and is attaining 

widespread use, especially in mapping forest areas.  

In this study, the primary objective is to evaluate the utility of the KNN method for 

forest/non-forest/water stratification. In the process, various modifications of the 

KNN algorithm are tested for detecting forest areas. By comparing the resulting 

accuracies, the optimal parameters of the classification for KNN forest detection 

are found. Also, KNN results are compared with Maximum Likelihood results, to 

illustrate its relative effectiveness. The comparison is done mainly from the 

perspectives of accuracy and computing performance. 

Research activity in the area of satellite image classification is expected to 

continue for a long time, since it offers vast potential. The automation of complex 

classification tasks will allow us to obtain meaningful knowledge from vast amounts 

of data, with the possibility of speed never before imagined. Decision makers will 

be supported with reliable, up-to-date land cover data. In the particular case of 

forest mapping, it will be possible to track the change of forest areas over the 

years, by comparing the classified satellite images acquired at different times.  

Deforestation is the conversion of forested areas to non-forest areas, by cutting 

down trees and making room for alternative land uses, mainly for urban, industrial 

or agricultural growth. Large-scale deforestation is very harmful since it reduces 

biodiversity, affects climate (global warming), increases the probability of flooding 

and erosion, and ultimately, reduces the quality of human life (URL1). During the 

last decades, this has become an important problem, especially in developing 

countries like Turkey. Better image classification algorithms will help these 

countries make better planning decisions, which will ultimately improve the quality 

of life.  

In this study the area is selected as the Center District of Antalya, which is a rapidly 

growing city in Turkey. Namely, it has a population growth of 41.79% for the last 
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decade. Change of forest areas during this growth phase is expected to be 

significantly large, due to urbanization. Therefore, two satellite images of Antalya, 

belonging to different years 1987 and 2002, are classified using KNN and 

Maximum Likelihood algorithms. Thus, the change of forest areas over these years 

of high growth can be analyzed. The performance of KNN algorithm against 

Maximum Likelihood algorithm in terms of accuracy is evaluated for detecting 

deforestation. 

The study is presented in six chapters: 

In the first chapter, the Introduction, the importance of improving land use detection 

algorithms is outlined. 

In the second chapter, Theoretical and Practical View of Classification on Forest 

Areas, previous studies on supervised classification algorithms that are relevant to 

this particular study are summarized. 

In the third chapter, Materials and Methodology, the study area is illustrated, 

preparation of the data is explained, and any difficulties are described. Also, 

flowcharts for the classification algorithms are given. 

In the fourth chapter, Analyses, the procedures in implementing and carrying out 

the algorithms are described in detail. The advantages and disadvantages of each 

algorithm are discussed. The explanations convey an approximate sense of the 

relative implementation complexity of these algorithms. Solutions to the difficulties 

encountered during image classification are explained, which should help further 

related studies greatly. The classification results can also be found here. 

In the fifth chapter, Discussion of the Results, the results obtained from the large 

number of accuracy assessment experiments are presented, and their significance 

is discussed. Change detection is performed to compare different results. With 

careful interpretation, the reasons are explained. 

In the sixth and final chapter, Conclusions and Recommendations, a summary and 

evaluation of the study are presented. 
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CHAPTER 2 

 

THEORETICAL AND PRACTICAL VIEW OF CLASSIFICATION 

 ON FOREST AREAS 

 

 

2.1. Classification Algorithms and Accuracy Assessment 

It is a painstaking process to detect land cover features in satellite images by hand. 

If we are able to automate this process with the help of computers, we can facilitate 

this task immensely. Therefore, in the long run, we will be able to generate land 

cover / land use maps over unlimited areas and over arbitrarily long timeframes. 

This will help us to observe past trends and predict future tendencies very rapidly. 

In order for the computer to simulate human recognition of land cover features, 

artificial intelligence (AI) must come into play. Computer AI is not perfect, and is a 

dynamic, unending field of research. A common technique to develop AI is 

“machine learning,” where computers can “learn” with the use of some advanced 

algorithms inspired from human recognition. Using this intelligence, computers can 

extract information from data automatically. 

In our particular case, the computer must be able to classify a satellite image into 

its features. This is a typical case of the statistical classification problem. Here, the 

computer reads in a training set of previously classified objects and sees a number 

of input/output (object/class) examples. Afterwards, it predicts the class labels of 

individual, unclassified input objects, based on one or more quantitative variables 

in these objects. This is a supervised (machine) learning task. Therefore, the most 

common supervised learning algorithms are applied in this study suited to this task: 
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There are different classification techniques used in forest inventories. For 

example, in Scandinavian forest inventory studies KNN is used mostly. On the 

other hand, in some countries different classification techniques are used, for 

example, in Canadian Forest inventory studies, K-Means clustering as an 

unsupervised classification technique, and maximum likelihood as a supervised 

classification technique (Wulder et al., 2001). 

2.1.1. KNN Algorithm 

The nearest neighbor algorithm is one of the simplest machine learning algorithms. 

It is a non-parametric technique. Before detailing the algorithm, some definitions 

are necessary: 

- The “distance” between two objects is taken as the Euclidean distance 

between them. (In some cases, the Manhattan or Mahalanobis distance 

can be used as well.)  To calculate this distance, every object must be 

represented by a position vector in a multidimensional feature space. Let 

the vectors x


 and y


 be two input samples (objects) with p  

features  pxxx ,,, 21  . The Euclidean distance between sample x


 and 

sample y


 is defined as in Equation 2.1. 

       22
22

2
11, pp yxyxyxyxd   


                              (2.1) 

- An object is the “neighbor” of another object if the distance between them is 

below a predefined threshold. 

- The “nearest neighbor” of an object x is the sample object whose distance 

to x is the lowest among all input samples. 

- The “2nd nearest neighbor” of an object x is the sample object whose 

distance to x is the second lowest among all input samples. The “nth 

nearest neighbor” is defined analogously. 

- “k nearest neighbors” of an object x are the collection of sample objects ix  

where  ki ,,2,1   and ix  is the ith nearest neighbor of x. 

  The nearest neighbor algorithm steps can be described as follows: 
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1. Training phase 

a) A human being classifies a number of objects manually. This is the 

training set. The feature vectors and class labels of these samples 

are stored. 

b) The computer reads in this set of objects. The correct classification 

for these objects is known. 

2. Classification phase 

a) A new, unclassified input object (test sample) is classified by a 

majority vote of its neighbors: 

 The neighbors are taken from the training set. 

 Distances from the test sample object to all stored sample 

objects are calculated, and the k nearest neighbors of the 

object are selected. k is a small integer. 

 There are different ways to assign a particular class to the 

object. Usually, the most common class among these k 

neighbors is assigned to the object. In other words, an object 

is assigned to the class c if it is the most frequent class label 

among the k nearest training samples. If k = 1, then the class 

of the nearest neighbor is assigned to the object. This 

special case (k = 1) is called the “nearest neighbor” 

algorithm. 

Normally, the training phase is executed once, and the classification phase is 

executed any number of times afterwards. 

Drawbacks: 

- If there is a class with a very large number of training samples compared to 

the other classes, then its samples come up more frequently among the k 

nearest neighbors of a new object when these are calculated. This class 

dominates the classification of new objects, by overwhelming samples 

belonging to other classes. This can be avoided by slightly enhancing the 

majority vote. For example, one can modify it so that the distance of each 

neighbor to the test sample determines the “strength” or “closeness” of that 
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neighbor. So, the shorter the distance, the more effect the sample has on 

the majority vote. 

- The accuracy drops severely when there are noisy or irrelevant features, or 

if the feature scales are inconsistent with their importance.  

- The algorithm does not report confidence or class probabilities. 

- A classification is always made. There are no objects that cannot be 

assigned to a class. 

 

Figure 2.1. Example of KNN classification  

 

As an example given in Figure 2.1, the test sample (green circle) should be 

classified either to class “blue square” or to class “red triangle.” If k = 3 it is 

classified to the “red triangle” because there are 2 triangles and only 1 square 

inside the inner circle. If k = 5 it is classified to “blue square” (3 squares vs. 2 

triangles inside the outer circle). 

 

2.1.1.1. Choosing k value 

 

If there are only two different classes, an even number of k can cause a tie. 

Choosing an odd value for k prevents this problem (URL 8). The size of k value is 

important. Small and large values of k value have different characteristics. The 

small and large k values are compared in Table 2.1. Heuristic techniques such as 

cross-validation can help in selecting a good value for k. Ultimately, of course, the 

best value of k depends on the data at hand. 
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Table 2.1. Features of small and large values of k 

Small values of k Large values of k 

Cause over-fit Cause over-generalization 

Increase negative effect of noise Reduce negative effect of noise 

Create distinct class boundaries Create indistinct class boundaries 

 

 

2.1.1.2. Distance functions 

 

Different distance metrics can be used when calculating distances for the KNN 

algorithm. First of all, it is helpful to explain a general class of metric called as 

Minkowski metric which is given in Equation 2.2. 

 
k

p

i

k
ii yxyxd
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1
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                       (2.2) 

where different values of 1k  result in different commonly-used metrics. Here are 

the most common metrics used for calculating distances in KNN: 

 

Euclidean: Explained as in Equation 2.1 in section 2.1.1. This is a special case of 

the Minkowski metric (Equation 2.2) where k = 2. According to Berrueta et al. 

(2007), this metric should be used when the different features are not strongly 

correlated. 

 

Mahalanobis: Let the vectors x


 and y


 be two input samples of the same 

distribution with the covariance matrix P. The Mahalanobis distance between 

sample x


 and sample y


 is defined as  

     yxyxyxd
T 

 1,                       (2.3) 

 

According to Berrueta et al. (2007), this metric should be used when the different 

features are strongly correlated. The covariance matrix   represents this 

correlation. 

If the standard deviation of any of the features is 0, then the determinant of   is 0, 

and the inverse of   is undefined. Thus, in cases where one or more features of a 
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training set consist of a single value, its standard deviation is 0, and this distance 

metric cannot be used. When the covariance matrix   is equal to   (the identity 

matrix), the Mahalanobis distance becomes the similar Euclidean distance (URL 

6). Figure 2.2 illustrates Euclidean and Mahalanobis distances on the same graph, 

in two-dimensional space. 

 

 

Figure 2.2. The graph of Euclidean(circle) and Mahalanobis distances (URL 6) 

 

Diagonal (Class-Dependent) Mahalanobis: (Also called normalized Euclidean 

distance) Let the vectors x


 and y


 be two input samples of the same distribution, 

with p  features. Let i   be the standard deviation of feature i . The Diagonal 

Mahalanobis distance between sample x


 and sample y


 is defined as in Equation 

2.4. 

                              
 







p

i i

ii yx
yxd

1

2

2
,




                      (2.4) 

As with the Euclidean distance, the correlation of different features is not taken into 

account here. 

If the covariance matrix   in the Mahalanobis distance is diagonal (the features 

are not correlated), it reduces to the Diagonal Mahalanobis distance. As in the 
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Mahalanobis distance, this metric cannot be used if the standard deviation of any 

of the features of a training set is 0. 

 

Manhattan: This is a special case of the Minkowski metric (Equation 2.2) where k 

= 1. Let the vectors x


 and y


 be two input samples (objects) with p  features 

 pxxx ,,, 21  . The Manhattan distance between sample x


  and sample y


 is 

defined as  

  pp yxyxyxyxd   


2211,                                (2.5) 

 

As with the Euclidean distance, the correlation of different features is not taken into 

account here. 

 

2.1.1.3. Weight functions 

 

After the k nearest neighbors of a test sample are found, these can be evaluated 

using different weighting methods. For each neighboring pixel, the pixel‟s weight is 

added to the total weight of that pixel‟s class. At the end, the class with the largest 

total weight wins. 

The goal of weight functions is to cause distant neighbors to have less effect on the 

majority vote than the closer neighbors. 

Here are the most common weight functions: 

 

i. None: All neighbors have equal weight 

 

ii. Fraction: Let i be the order of the neighbor in the list of k neighbors, i = 1..k. The 

weight function is 1/i. Therefore, the weight of the pixel is inversely proportional to 

its rank in the neighbor list. The fraction weights decrease steeply as the order(i) of 

nearest neighbor increases (Figure 2.3). 

 

iii. Stairs: Let i be the order of the neighbor in the list of k neighbors, i = 1..k. The 

weight function is (k – i + 1) / k. Again, the weight of the pixel is inversely 

proportional to its rank in the neighbor list. The stairs weights slightly decrease as 

the order (i) of nearest neighbor increases (Figure 2.4). 
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Figure 2.3. The Fraction weights for Weighted KNN 

 

 

Figure 2.4. The Stairs weights for Weighted KNN 
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iv. InverseDistance: Let d be the distance of the neighbor from the test sample. 

The weight function is 1/d. Therefore, the weight of the pixel is inversely 

proportional to its distance from the test sample. 

 

v. InverseSquareDistance: Let d be the distance of the neighbor from the test 

sample. The weight function is 1/d2. Again, the weight of the pixel is inversely 

proportional to its distance from the test sample. 

 

2.1.2. Maximum Likelihood Algorithm 

Although slightly complex, the maximum likelihood algorithm is related to many 

familiar estimation methods in statistics. Before detailing the algorithm, the 

definition of “distance” is necessary, which can be taken from the corresponding 

description under the KNN algorithm. 

The maximum likelihood algorithm steps can be described as follows: 

1. Training phase 

a) A human being classifies a number of objects manually. This is the 

training set. The feature vectors and class labels of these samples 

are stored. 

b) The computer reads in this set of objects. The correct classification 

for these objects is known. 

c) A probability model is picked for each class (uniform distribution, 

normal distribution, etc.). 

d) For each class, those probability model parameters are selected 

which make the class‟s training data “more likely” than any other 

model parameters would make them. For example, if uniform prior 

distribution was picked, then its model parameters would be its most 

probable values. 

2. Classification phase 

a) A new, unclassified input object (test sample) is classified by its 

distance to the parameterized probability model of each class. 
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 The probability that a test sample with value x  belongs to 

class i  is given by Bayes‟ theorem in Equation 2.6. 

                           
)(

)()|(
)|(

xP

iPixP
xiP                                 (2.6) 

where )|( ixP  is the probability that a sample in class i  has 

the value x , )(iP  is the prior probability that a test sample 

belongs to class i , and )(xP  is the probability that a sample 

has the value x . )(xP  is the sum of )|( ixP  values for all i . 

 Equation 2.6 is the decision rule. For each test sample x , 

)|( xiP  is calculated for all classes i . It is decided that x  

belongs to the class having the highest )|( xiP  (likelihood). 

Since )(xP  is the same for all classes, it can be ignored 

here. 

Choosing a probability model: 

If normal distribution is selected, then maximum likelihood estimation gives a 

unique solution. Let‟s take the normal distribution  2,Ν  which has the 

probability density function defined as in Equation 2.7. 
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We can calculate the corresponding probability density function for n normal 

random variables that are correlated, using Equation 2.8. Let x


 be a vector of 

random variables  nxx ,,1  , where each variable has means given by 

 n ,,1 

 . Also,   is the covariance matrix of the random variables. Then, 
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Here, x


 can be viewed as a test sample having n features. The parameters 


 and 

  are calculated once for the training samples of each class. Thus, the probability 

that a sample in class i  has the value x


 can be calculated with Equation 2.8, 

where 


 and   are different for each class i . Inserting this into Equation 2.6, the 

probability that a test sample with value x


 belongs to class i  is given by Equation 

2.9. 
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If the standard deviation of any of the features in class i  is 0, then the determinant 

of i  is 0, and the inverse of i  is undefined. Thus, in cases where one or more 

features of a training set consist of a single value, its standard deviation is 0, and 

the maximum likelihood algorithm cannot be used. 

2.1.3. Accuracy Assessment 

The following sections detail the various assessment methods that were used to 

calculate the accuracy of the classification methods detailed in the previous 

chapter. 

2.1.3.1. Leave One Out Cross Validation 

In the field of supervised learning, it could occur that the algorithm at hand tunes 

itself too closely to the training data. This means that the algorithm does not gain 

strong abilities to predict the class of a new and unfamiliar test object correctly. Of 

course, we cannot know for sure how the algorithm is going to perform in a real-

world situation, where unclassified objects arrive all the time. However, we can at 

least estimate the algorithm‟s future success by attempting to simulate this real-

world situation artificially. 

If we can expect that future data will be taken from the same distribution as the 

training data, we can use a method called cross-validation to estimate the accuracy 

of the algorithm‟s future predictions. We can apply this validation method to a 

range of different classification algorithms, and obtain cross-validation error values 
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for each one. Then, we can compare these values to find the lowest error rate and 

so the best classification algorithm, having the highest “generalization ability.” 

The cross-validation algorithm steps can be described as follows: 

1. The available data is divided into k disjoint sets. 

2. The classification algorithm is executed k times. For each execution: 

a) A partition is selected out of these partitions. 

b) The algorithm is trained with k – 1 partitions. The training data 

excludes the selected partition. 

c) The algorithm is tested on the selected partition. That is, the 

algorithm, not knowing the actual class of the selected partition, 

attempts to classify it. 

d) The performance statistic is evaluated for this trained model. 

3. The mean of the performance statistic of k trained models is calculated. 

This is the k-fold cross-validation estimate. 

Advantages: 

- Normally, for split-sample training, one would use training, validation and 

test partitions. These would represent the real distribution of objects for 

each class. Obviously, these partitions require a high amount of data. 

Sometimes, however, this data is not available. Cross-validation is 

especially useful here. Since each sample object is used as both training 

data and test data, cross-validation uses the available data very 

conservatively. 

 

If k is equal to the number of training objects, the algorithm is called “Leave One 

Out cross validation.” This particular case has been the focus of many studies. 

Here is a simplified algorithm for this validation method: 

 

For i = 1 to k (where k is the number of training set objects)  

 Temporarily remove the ith object from the training set. 

 Train the learning algorithm on the remaining k - 1 points. 

 Test the removed object against the trained algorithm and note your error. 
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 Calculate the mean error over all k objects.  

The advantages of Leave One Out accuracy assessment can be listed as follows: 

- Well-suited for selecting a classification model, by giving an almost 

unbiased estimate of its generalization ability. 

- Uses almost all available objects when training. The resulting classification 

model is virtually the same as it would have been if all objects had been 

used. 

- Does not waste data. 

 

It costs a lot of computing power, since the algorithm must be repeated for every 

single training set object. Therefore, this can be considered as disadvantage of the 

method.  

 

The error mentioned above is usually measured in terms of Root Mean Square 

Error (RMSE) for continuous variables. On the other hand, for class variables (such 

as forest/non-forest/water classification), the error rate is calculated using the 

following formula defined as in Equation 2.10. 
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                                                    (2.10) 

 

where ŷ  is the predicted value, y  is the actual value, and n  is the number of 

classifications made. For each classification, if y and ŷ belong to the same class 

( i ), then the difference is 0. Otherwise, the difference is 1. Then, overall accuracy 

is defined using the following formula defined as in Franco-Lopez et al. (2001) in 

Equation 2.11. 
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2.1.3.2 Error Matrix 

 

An error matrix is a very effective way to represent map accuracy in that the 

individual accuracies of each category are plainly described along with both the 

errors of inclusion (commission errors) and errors of exclusion (omission errors) 

present in classification. A commision error is simply defined as including an area 

into category  when it does not belong to that category. An omission error is 

excluding that area from the category in which it truly does belong. Every error is 

an omission from the correct category and a commission to a wrong category 

(Congalton and Green 1999).  

 

In addition to clearly showing errors of omission and comission, the error matrix 

can be used to compute other accuracy measures, such as overall accuracy, 

producer‟s accuracy and user‟s accuracy (Story and Congalton 1986, in Congalton 

and Green 1999).  

Additionally, the error matrix is helpful for calculating other accuracy metrics. Three 

of these are described below: 

- Overall Accuracy: Indicates how well the map identifies all land cover types 

on the ground and is defined as in Equation 2.14. 

 

- Producer‟s Accuracy: Indicates what percentage of the time a particular 

land cover type on the ground was identified as that land cover type on the 

map. It expresses how well the map producer identified a land cover type 

on the map from the satellite imagery data and is defined as in Equation 

2.15. 

 

- User‟s Accuracy: Indicates what percentage of the time a particular land 

cover type on the map is really that land cover type on the ground. It 

expresses how well a person using the map will find that land cover type on 

the ground and is defined as in Equation 2.16. 

 

The calculation of these three different types of accuracy is rather simple. But 

before detailing them, some definitions are necessary: 
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- There are k categories and n sample objects. 

- n sample objects are distributed into k² cells. 

- Each sample object is assigned to one of k categories in the remotely 

sensed classification (usually the rows) and, independently, to one of the 

same k categories in the reference data set (usually the columns). 

- ijn  denotes the number of samples classified into category  kii ,,2,1   

in the remotely sensed classification and category  kjj ,,2,1   in the 

reference data set. 

- ijp  denotes the proportion of samples in the i,j th cell, corresponding to ijn . 

In other words, nnp ijij  . 
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The number of samples which are used in error matrix is important for accuracy 

assessment. Consider a population of units divided into k mutually exclusive and 

exhaustive categories. (Congalton and Green 1999). The calculation of the sample 

size is as follows; 
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N= Sample size 

i= categories 1 to k   

 = the proportion of the population in the ith category   

B= upper (α/k)*100th percentile of the Χ² distribution with degree of freedom. 

b= desired precision 

 

2.1.3.3 Kappa Analysis 

 

The Kappa analysis is a discrete multivariate technique used in accuracy 

assessment for statistically determining if one error matrix is significantly different 

than another (Bishop et al. 1975, in Congalton and Green 1999). The result of 

performing a Kappa analysis is a KHAT statistic (an estimate of Kappa), which is 

another measure of agreement or accuracy (Cohen 1960, in Congalton and Green 

1999). This measure of agreement is based on the difference between the actual 

agreement in the error matrix (i.e., the agreement between the remotely sensed 

classification and the reference data as indicated by the major diagonal) and the 

chance agreement which is indicated by the row and column totals (Congalton and 

Green 1999). 

 

The following equations are used for computing the KHAT statistic and its variance. 
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iip  denotes the proportion of samples in the i,i th cell, corresponding to iin . In 

other words, nnp iiii  . ip  and jp  are defined in Equation 2.17 and Equation 

2.18, respectively. 
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2.2. Practical View on KNN on Forest Areas 

In this section, the previous studies about KNN classification in remote sensing 

analysis are given. There are numerous references about KNN supervised 

classification method and accuracy assessment. The literature about KNN 

classification on forest areas is given here and details on the steps of the flowchart 

is presented in Figure 2.5. 

 

Figure 2.5. Flowchart of KNN Supervised Classification steps. 

 

 

 

SELECTING TRAINING DATA 

SELECTING DISTANCE METRIC 

WITH ERROR VALUES 

OF LEAVE ONE OUT CROSS 

VALIDATION 

SELECTING BEST K VALUE 

WITH ERROR VALUES 

OF LEAVE ONE OUT CROSS 

VALIDATION 

 

RUN KNN  

ACCURACY ASSESSMENT WITH 

ERROR MATRIX 
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2.2.1. KNN usage in the world forestry 

 

Practical success of the KNN method is described by Gjertsen (2007). It is being 

used as a part of the National Forest Inventory (NFI) in Finland for 10 years. The 

NFI reference data is based on sample plots. These are explained in Gjertsen 

(2007). To sample a plot, a predefined spot in a forest area is visited. Then, forest 

variables (such as tree species, age, basal area, volume, etc.) are measured inside 

a 250 m2 circle centered in this spot. Using this process, a plot is sampled once 

every 3 km inside the forest, forming a 3 km by 3 km network. The resulting grid of 

plots makes up the reference data for forest variables. Before remote sensing was 

introduced, the plots were used to estimate forest variables and the location of 

forest resources, where each plot had equal weight. However, this system did not 

give reliable estimates. Multi-source forest inventory (MSFI) method was 

developed as a solution (Gjertsen 2007). In MSFI, remotely sensed data were 

integrated using the KNN algorithm as follows: Both ancillary data such as digital 

elevation models (DEMs) and NFI plot data were combined and used as reference 

data for KNN classification. For each pixel in the area to be estimated, the k 

nearest neighbors were found among the available NFI plots. The distance 

between a test pixel and a plot was calculated using the spectral values of the test 

pixel and of the pixel covering the plot. The plot weights depended on these 

distances. 

 

When continuous land use data is available, then any number of sample pixels 

corresponding to the various land use classes can be selected as training data. 

These pixels are analogous to the plots collected in forest fieldwork, but they are 

much larger in number. 

 

According to Gjertsen (2007), this KNN method was able to produce wall-to-wall 

maps showing the location of different forest resources. These maps are being 

used by the forest industry for timber procurement. Ecologists use these maps for 

habitat analyses. In Sweden, the method has been used to produce a complete 

map database for the whole country, called KNN Sweden. It has been used to 

improve forest statistics from the National Forest Inventory by using post 

stratification based on stem volume strata derived from the database (Gjertsen, 
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2007). It is reported that the standard errors for estimates of total stem volume, 

stem volume for spruce, stem volume for pine, and woody biomass have been 

reduced by 10% to 30% at the county level (Gjertsen, 2007). 

 

In Gjertsen (2007), the KNN method has been tested for preharvest inventory of a 

forest plantation with pine trees in New Zealand. Estimates were made at pixel 

level and stand level. Cross validation tests showed that the estimates were 

unbiased but with high root mean square errors (RMSEs). The pixel-level accuracy 

was tested in Finland as well. It was found that the errors at pixel level for volume 

estimates were relatively high, with RMSE for total volume around 75 m³/ha or 

between 62% and 68% of the mean estimated value. For volumes of species 

groups, the relative errors were even higher and above 100%. However, the bias 

was found to be low, and it was concluded that the accuracy would improve for 

large area estimates. In (Tomppo and Katila, 1991), KNN-based volume estimates 

for three municipalities were compared with independent surveys of the 

municipalities made for forest planning purposes. The estimates from the latter 

survey varied more from municipality to municipality than the KNN estimates. 

 

According to Gjertsen (2007), a KNN -based method was tested based on Landsat 

TM data on a site in Germany. Area proportions of single tree species groups were 

estimated for forest stands. It was found that the KNN method improved the 

estimated values from 1.7% to 25.2% relative to estimates based on the mean 

values of the sample of reference plots. Reduction of RMSE was used as indicator 

of improvement. It was concluded that the method does not provide sufficient 

information for a forest management plan but that it provides a good overview of 

the spatial distribution of the main tree types. 

 

Since 1990, optical area satellite images and digital maps, in addition to field plot 

data, have been used by the Finnish multisource National Forest Inventory 

(MSNFI) (Gjertsen, 2007). In Katila (2001), it is explained that a set of parameters 

are chosen for the KNN method in the operative MSNFI, such as:  

(1) the image features; 

(2) the distance measure; 

(3) the value of k, i.e., the number of the nearest neighbors; 
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(4) parameters related to the possible use of digital elevation model; 

(5) stratification of the image and field plots to mineral land and peatland on 

the basis of a digital site class map, produced by the National Land 

Survey (NLS); 

(6) the geographical reference area from which the nearest field plots are 

selected. The geographical reference area is crucial for the estimation 

procedure and is selected separately for each pixel in the Finnish MS-

NFI. 

 

In Franco-Lopez et al. (2001), distances between neighbors were computed using 

two different distance metrics, Mahalanobis and Euclidean. RMSE values of the 

classified images were found for continuous variables, and overall accuracy values 

were found for class variables, calculating with Euclidean and Mahalanobis 

distances. There was a typical KNN classification result which was good for the 

first few k values. Even though there is a well-known correlation among TM band 

values, the use of Mahalanobis distance did not benefit the quality of the estimation 

in these trials (Franco-Lopez et al., 2001). RMSE values at least 5% smaller than 

those of Mahanolobis distance metric were obtained, for any number of neighbors, 

and it was then noted that this is contrary to the results reported by Nilsson, (1997), 

in Franco-Lopez et al. (2001). Usually, the Euclidean distance is used, but for 

strongly correlated variables, correlation-based measures, like the Mahalanobis 

distance, are preferred (Berrueta et al., 2007). 

 

2.2.2. KNN and its features 

 

In Berrueta et al. (2007), it is explained that nearest neighbor methods are based 

on the determination of the distances between an unknown object and each of the 

objects of the training set. Usually, the Euclidean distance is used, but for strongly 

correlated variables, correlation-based measures are preferred. Then, the lowest 

distance is selected for the assignment of the class membership. It is described 

that in KNN, the k-nearest objects to the unknown sample are selected and a 

majority rule is applied: the unknown is classified in the group to which the majority 

of the k objects belong. The choice of k is optimized by calculating the prediction 

ability with different k values. It is claimed by Berrueta et al. (2007) that frequently, 
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small k values (3 or 5) should be preferred. It has been suggested to choose k near 

sqrt(ni) for a typical ni, the number of  plots in class i (Gjersten, 2007). However, 

this is more applicable in estimating continuous forest variables in the presence of 

a low number of sample plots. For class variables, it can happen that a much larger 

number of samples are available, since numerous sample pixels can be selected 

based on large-scale land use data. In such cases, sqrt(ni) becomes too large to 

be useful. 

 

The KNN method is a nonparametric classifier in which there are no assumptions 

about the distributions of the variables involved in the classification (Franco-Lopez 

et al., 2001). In Franco-Lopez et al. (2001), it is explained that all the digital number 

information of pixels for all training classes are obtained and the unlabeled pixel is 

classified among the closer neighboring training pixels. There is a summary of a 

substantial body of literature regarding the statistical characteristics of nearest-

neighbor rules and the statement „„when the proportion of pixels in each training 

class is identical to the actual proportion of each class in the population, the KNN 

rule is a maximum-likelihood classifier”.  According to Mc Roberts and Tomppo 

(2006), both parametric and non-parametric estimation methods have been tested 

and applied in forest inventory applications. The keen interest in the non-

parametric KNN method is partly motivated by the desire to estimate 

simultaneously the large number of variables of interest. 

 

The K-Nearest Neighbor (KNN) method can be used in a wide range of estimation 

and classification applications. In the past decade, the KNN method has been 

advanced for estimation of forest variables and is now operational in Finland‟s 

national forest inventory (Haapanen et al., 2004). 

 

In Gjertsen (2007), it is summarized that the main reason to use the KNN method 

is that it is very flexible. A highlighted fact is that KNN produces statistical 

estimates and wall-to-wall maps of the inventory area at the same time. In 

particular, to produce wall-to-wall maps, many other methods could be used, 

including parametric methods such as the maximum likelihood classifier. However, 

there are references to other studies which have demonstrated that the KNN 

method performs well in comparison to other methods. Some examples are given 
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by Gjertsen (2007): KNN, maximum likelihood, and several other classifiers were 

tested using Landsat TM data and very small differences in the classifiers‟ 

performance were found. Also, KNN has been compared with artificial neural 

network (ANN) and traditional statistical classifiers. There, it was concluded that 

KNN performed as well as ANN classifiers and better than the traditional statistical 

classifiers. 

 

In Gjertsen (2007), a very common drawback of the KNN method in practice was 

detailed as well. The KNN method makes no assumptions on the distribution of 

pixels in feature space as a function of forest variables. It is noted that for every 

forest variable value (e.g. for every forest cover type), a sufficient number of plot 

pixels must be available in order to find similar ones. These plot pixels must lie on 

the same image as the unknown pixel, otherwise the spectral similarity is disturbed 

by external factors such as sun elevation and atmospheric conditions. It is 

mentioned that this problem particularly occurs in countries that are elongated in 

east–west direction. The reason for this is those scenes from neighboring image 

acquisition paths are usually acquired on different dates. The same concerns apply 

to forest/non-forest/water stratification as well. Here, a sufficient number of training 

data pixels must be available, which must lie on the same image as the unknown 

pixel. This is usually not a problem when selecting training pixels based on large-

scale land use data. 

 

Another explanation of the KNN algorithm is given by Katila and Tomppo (2001): 

KNN searches the feature space for the k nearest pixels, whose field data vectors 

are known, applying a distance measure, d, defined in the feature space. Then, 

field data from the k nearest pixels is transferred to the unknown pixel. The method 

has been widely studied in pattern recognition and statistics (Katila and Tomppo, 

2001). The importance in choosing an appropriate value of k is explained in Katila 

and Tomppo (2001): The KNN estimator may give biased estimates as the value of 

k increases, but the bias can be reduced with weighted averages of the k 

neighbors. The error rate asymptotically approaches the optimal rate of the Bayes 

decision rule for discrete variables when both the k and n (number of observations) 

tend to infinity in such a way that k/n0 (Katila and Tomppo, 2001).  
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According to Berrueta et al. (2007), the KNN method has the following advantages: 

(i) It has mathematical simplicity. Still, KNN achieves classification results as 

good as (or even better than) other more complex pattern recognition 

techniques. 

(ii) It does not make any prior statistical assumptions, such as the normal 

distribution of the variables. 

(iii) Its effectiveness does not depend on the space distribution of the classes. 

 

In Franco-Lopez et al. (2001), the KNN method was tested for propagating forest 

stand density, volume, and cover type through the landscape, and it was found to 

be very promising. The method could be easily integrated within the procedures of 

existing forest monitoring systems. An important difference between the KNN and 

traditional classification and estimation techniques was pointed out: The KNN 

method is a form of poststratification constrained to the range of plot values of the 

inventory. In effect, after field plots are taken, they comprise strata with associated 

variable values. These values are then assigned to the remaining nonselected plot 

locations according to the similarity of certain features among the sampled and 

nonsampled plots. As an example that is given, a mature pine plot and its variable 

values are distributed (assigned) across the landscape to nonsampled locations 

that are determined to be similar in some sense. On the other hand, traditional 

classification attempts to establish strata according to the inventory plots they may 

contain. Thus, the KNN retains the full set of inventory specifications and values, 

while traditional classification typically does not (Franco-Lopez et al., 2001). 

 

2.2.3. Distance-weighted k-nearest-neighbor (DW- KNN) rule 

 

According to Berrueta et al. (2007), KNN cannot work well if there are large 

differences in the number of samples in each class. In such cases, when using 

equal weights, highly populated classes tend to dominate other classes in the list of 

neighbors. To solve this problem, an alternative criterion is suggested instead of a 

simple majority criterion. For instance, another choice of criterion in KNN consists 

of weighing the importance as a neighbor of a known object to an unknown sample 

(inverse distance or inverse square distance). This will cause the nearest 
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neighbors to influence the classification more than the farthest ones. Three 

drawbacks to the KNN method are mentioned: 

- It provides poor information about the structure of the classes and of the 

relative importance of each variable in the classification. 

- It does not allow a graphical representation of the results, 

- In the case of large number of samples, the computation can become 

excessively slow. 

 

In Dudani (1976), in Yang and Chou (2005), the distance weighted-KNN (DW-

KNN) rule is proposed as a modification of the KNN rule. It is suggested that 

training samples closest to the test sample should be given more weight than 

training samples that are more distant. In general, the neighborhood of the DW-

KNN model is comparable to the KNN model, but its decision criterion is different. 

In applying the DW-KNN rule, an unlabeled sample is assigned to the class 

producing the highest total weight among its reference neighbors (Yang and Chou, 

2005). 

 

A similar explanation of the distance-weighted k-nearest-neighbor algorithm, which 

is a refinement of the original k-nearest neighbor algorithm, is given by Dudani 

(1976), in Tsiriga and Virvouin (2003): In general, nearest neighbor learning 

algorithms typically store all of the n available training examples during learning. 

These algorithms use a distance function to determine how close a new query 

instance is to each stored instance, and use the nearest instance or instances to 

classify the query instance (Tsiriga and Virvouin, 2003). In other words, the basic 

idea of the distance weighted k-nearest neighbor algorithm is to weigh the 

contribution of each of the k neighbors according to their distance to the query 

point, thereby giving greater weight to neighbors that are closer than neighbors that 

are farther (Tsiriga and Virvouin, 2003) 

 
A summary of the main decisions that must be made when applying a distance 

weighted nearest neighbor algorithm is given by Tsiriga and Virvouin (2003): 

1. Select the features that would be used to formulate the input space of the 

distance function. 

2. Identify a distance function to estimate the similarity between two instances. 
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3. Define the number of neighbors (k) that would participate in the 

classification task. 

4. Design a function to classify new instances. 

 

In Dudani‟s paper, several weighting functions are listed (Yang and Chou, 2005). 

One of them was found meaningful and original by Yang and Chou (2005): A 

function tied to the weight to the inverted distance from the unlabeled sample to the 

reference neighbors. If the distance between the unlabeled sample and a certain 

reference neighbor was shorter than the distances from the other reference 

neighbors, it gave the largest weight and asserted the strongest relation among all 

of the reference neighbors. Also, an extended, more comprehensive version was 

used, where a weighting factor inversely proportional to a w-powered Mahalanobis 

distance from the unlabeled sample was utilized. 

 

In Gjertsen et al. (2007), it is mentioned that the National Forest Inventory plots are 

typically located outside the inventory area; however, using ancillary data, the 

method calculates the representativeness of the external National Forest Inventory 

plots in the form of new area weights. The development in Finland has inspired a 

similar development of the Norwegian National Forest Inventory. According to 

Gjertsen et al (2007), the KNN method is very attractive because it works in a 

manner familiar to the National Forest Inventory by making estimates based on 

sample plots with associated area weights. It is explained that the basic difference 

is that in NFI, all plots have the same area weights, while in KNN, the plots receive 

different area weights according to how similar they are to the pixels of the 

inventory area. Similarity is not based on forest variables, but rather on the vector 

of spectral values from the image pixel covering the plot.  

 

The KNN method for forest/nonforest/water stratification and its ultimate application 

in developing forest area estimates for the USDA Forest Service‟s Forest Inventory 

and Analysis (FIA) program was studied by Haapanen et al. (2004). The method 

couples field-based inventory and satellite imagery data to produce continuous 

digital layers of measured forest or land use attributes. The KNN algorithm assigns 

each unknown (target) pixel the field attributes of the most similar reference 

pixel(s) for which field data exists. The similarity is defined in terms of the feature 
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space (e.g., Euclidean distance in spectral space). Attributes of interest are 

imputed to target pixels by calculating a weighted average of measurements of 

each of the (k) reference pixels. Class variables such as cover type or land use are 

estimated as a weighted mode. These weights can be applied as some function of 

spectral distance between each target and reference pixel. Because forest 

attributes are imputed based solely on spectral similarity, the method can be used 

to simultaneously impute all field-measured attributes to target pixels. 

 

In Franco-Lopez et al. (2001), it is mentioned that Hardin (1994) compared the 

performance of parametric and nonparametric classifiers, particularly nearest 

neighbor rules. This study concluded that the neighborhood-based classifiers, in 

particular, the distance weighted neighbor classifier, are superior to the best 

parametric classifiers (such as the maximum likelihood classifier) when the training 

sets are large and contain the same class proportions as the population to be 

classified. When this condition is severely violated, there was not a clear 

advantage in using the KNN algorithm. 

 

2.2.4. Accuracy Assessment in KNN algorithm applications 

 

The accuracy of a classification algorithm in predicting the correct class for a pixel 

is the most important measure of its success, or its “performance.” Accuracy can 

only be measured for images where the land use data is available, which allows 

comparing the estimated class with the real class. 

 

In general, accuracy assessment is done with the help of traditional error matrix 

and various cross validation methods such as Leave One Out, k-fold. Most widely 

used cross validation method is Leave One Out. This method is based on 

extracting a single observation from the original sample as the validation data, and 

the remaining observations as the training data. 

 

The evaluation of KNN‟s utility for forest/nonforest/water stratification was studied 

by Haapanen et al., (2003). The errors were estimated by Leave One Out cross 

validation. For each omission (Haapanen et al, 2004), the KNN prediction rule was 

applied to the remaining sample. Subsequently, the errors from these predictions 



 30 

were summarized. In total, the prediction rule was applied n times and predicted 

the outcome for n units. Such estimates of prediction error are nearly unbiased. 

 

Ways to develop statistical methods to integrate real coarse scale variation of 

forest variables into KNN estimation were studied by Tomppo and Halme (2004). 

Also, work was done on selection of the neighbors with the minimum bias and 

RMSE and to develop methods to estimate a weight vector for the feature vector 

applied in the KNN estimation. The parameters were selected which are based on 

pixel level validation of the KNN predictions using Leave One Out and jackknifing.  

 

The estimation of forest stand volumes by means of satellite image data and stand-

level field data was investigated by Makela and Pekkarinen (2004). In order to 

determine the appropriate value of k for the KNN estimation, different values of k 

were tested with employing the cross-validation (Leave One Out) technique. After 

the selection of parameter k and the best features, the estimations of the volumes 

for actual forest were observed with the help of existing ones. Also, the results of 

the actual forest stand volumes were compared with the estimated ones. 

 

In Thessler et. al (2007),  KNN  and discriminant analyses to classify rain forest 

types in a Landsat TM image over northern Costa Rica were studied. It was 

emphasized that the level of forest classification accuracy from a given satellite 

sensor's data depends on the classification algorithm and the resolution (pixel 

window or segment size) applied in the process. Leave One Out cross validation 

was used in the accuracy assessment of both classification methods. 
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CHAPTER 3 

 

 

MATERIALS AND METHODOLOGY 

 

 

 

In this chapter, the case study area, the preparation of the input data required for 

the K nearest neighbor (KNN) classification and the methodology used in this study 

are described. 

 

3.1. Definition of the Study Area 

 

The study area is in the city of Antalya, Turkey. This area lies in the rectangle 

between the 30031’E - 37001’ N, 30053’ E -36049’ N latitudes & longitudes (Figure 

3.1). Antalya has fifteen districts: Center district, Akseki, Alanya, Elmalı, Finike, 

Gazipaşa, Gündoğmuş, İbradi, Kale, Kaş, Kemer, Korkuteli, Kumluca, Manavgat, 

and Serik. 

 
For the last decade, Antalya has been the fastest growing metropolitan city in 

Turkey (Sevik, 2006). This information shows that due to the very high speed of 

urbanization, the forest areas in Antalya may be in danger of decline. Therefore, 

the region was a natural candidate for this study. In addition, it was advantageous 

that satellite data of this region from different years were readily available. 
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Figure 3.1. Location of the Study Area 
 
 
3.2. Data Used in the Study 
 
 

1987 and 2002 satellite images were acquired in the summer time namely June 

and August (Sevik, 2006). The year of 1987 satellite image Thematic Mapper (TM) 

Landsat 30 meter image with 7 bands) and the year of 2002 satellite image 

Enhanced Thematic Mapper (ETM) Landsat 30 meter image with 8 bands) were 

used in this study. Then they were projected by using projection system of UTM 

WGS 84, Zone 36. In this study ETM (RGB; 432) (Figure 3.2), ETM (RGB; 321) 

(Figure 3.3), TM (RGB; 432) (Figure 3.4) band composites are used for 

comparison of classification results. The year of 2003 landuse map (Sevik, 2006) 

(Figure 3.5) and SRTM 90 meters DEM (Digital Elevation Model) data (Figure 3.6) 

were used as ancillary data. They were also projected into the same projection 

system. No atmospheric conditions were available for these satellite images. 
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Figure 3.2. 2002 Landsat ETM satellite imagery of the study area with 30-meter 
spatial resolution (RGB; 432). 
 

 
 
Figure 3.3. 2002 Landsat ETM satellite imagery of the study area with 30-meter 
spatial resolution (RGB; 321). 
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Figure 3.4. 1987 Landsat TM satellite imagery of the study area with 30 meter 
spatial resolution (RGB; 432). 
 

 

 
Figure 3.5. 2003 Landuse Data of the study area 
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Figure 3.6. SRTM 90meters DEM Data of the study area 
 
 
3.3. Data normalization 
 
Satellite images from two different dates of the same area can have completely 

different spectral values, due to atmospheric conditions and illumination geometry. 

In order to be able to classify two different satellite images with the same training 

data and perform change detection, they must undergo radiometric correction. 

 
The Landsat ETM and Landsat TM satellites have different sensor settings, 

although they produce images with the same resolution. This causes the 2002 

ETM image to have a different color distribution than the 1987 TM image. In 

addition, atmospheric conditions that are present when the satellite image is being 

taken cause strange effects on the resulting image. Because of these reasons, two 

different satellite images of the same location taken at different times always have 

different color distributions. 

 

Supervised classification methods require training data which is a small 

representative set out of the data that needs to be classified. In satellite images, 

one can create the training data by extracting pixels whose classes are already 

known. This training data can then be used to classify the satellite image that it 
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was extracted from. Ideally, one set of training data should be sufficient to classify 

any satellite image. This should minimize manual intervention in the classification 

process. However, because of the reasons mentioned above, each satellite image 

has its own color distribution. Therefore, each satellite image can be classified with 

its own training data only.This was exactly the case with 2002 ETM and 1987 TM 

images. This behavior is not desired since it is impractical to do such manual work 

with every image. It would be much better if one set of training data could be used 

for all images. 

This can be achieved by equalizing satellite images. There are different methods 

for this: 

1) Atmospheric correction 

2) Radiometric correction. 

 

1) In order to perform atmospheric correction, the exact atmospheric 

conditions at the time of the satellite image snapshot must be known. Then, 

using tools such as ERDAS IMAGINE and PCI Geomatics, these variables 

can be input to perform atmospheric correction for all satellite images at 

hand. As a result, all satellite images have the same color distribution, and 

can be classified with the same set of training data. However, most of the 

time, the atmospheric conditions are not available for a given satellite 

image. This was the case with our ETM and TM images. In such cases, 

radiometric correction must be applied. 

 

2) One of the radiometric correction techniques is histogram matching 

explained in (URL3). If two different satellite images have different 

histograms, they are corrected to have the same histogram. Normally, there 

is a reference image that is not changed. All other images are modified so 

that their histograms match that of the reference image. In Nelson et al. 

(2005), it is mentioned that distribution-based relative radiometric correction 

techniques, such as histogram matching, eliminate the problem of 

subjectivity and reduce the dependence on a geometrically accurate spatial 

match between multi-date images through their use of the entire dataset. In 

this study, histogram matching is applied as radiometric correction 

technique.The histgorams of Landsat TM before and after histogram 
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matching can be seen in Figure 3.7. Landsat ETM histogram can be seen 

in Figure 3.8. The scaled vertical axis shows the amount of histogram in the 

view. 

 

Figure 3.7. Histograms of Landsat TM before (a) and after (b) the histogram 

matching 

 

Figure 3.8. Histogram of Landsat ETM  
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3.4. Land Use Classes 

 
According to the official land use data which is obtained from (Sevik, 2006), the 

area of interest (Center District) has mainly the following classes (Figure 3.5) : 

- Urban settlement 

- Rural settlement 

- Urban green areas 

- Forest 

- Greenhouses 

- Water agriculture 

- Dry agriculture 

- Military zones 

- Industrial area 

- Commercial areas 

- Airport 

 

There is also a portion of the Antalya Bay (Mediterranean Sea) inside this area. 

Since this study focuses on measuring forest areas with classification algorithms, 

none of the specific non-forest classes were of interest. All of these were viewed as 

a single class, “Non-forest.” In addition to “Forest” and “Non-forest,” a third class, 

“Water” was also included in the study. The reasons for this are the very distinctive 

pixel values of the sea and the lakes, and also the ability to identify the city 

coastline more easily in the classified image. 

 

3.5. Training Data Selection 

 

Three sets of training data were prepared, for each of the classes Forest, Non-

forest and Water (Figure 3.9). In Haapanen (2004), it is emphasized that the 

training data should capture the range of spectral variability within a class, in order 

to obtain good class estimates with the KNN method. So, in the process, 

rectangular areas were selected out of specific areas of the ETM satellite image 

which were believed to be representative of the corresponding class. Since the 

non-forest class is actually a collection of many different land use classes. In this 

study, nonforest training data were collected from the corresponding land use 
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classes except rural settlements and industrial areas, whose pixels are very similar 

to urban settlement pixels. The size of the training data was about 1% 

(approximately ten thousand pixels) of the ETM image (1170x793 pixels) which 

has to be classified. The Quantile-Quantile plots are used to check the normality of 

training data. It shows sample quantiles of training samples versus theoretical 

quantiles from a normal distribution. If the distribution of samples is normal, the plot 

will be close to linear. The QQ plots of forest, nonforest and water training samples 

can be seen in this section (Figure 3.10-3.18). It can be seen that some training 

pixels have deviations from the line. Therefore, if training pixels had been normally 

distributed exactly, then Maximum Likelihood classification would have better 

accuracy. 

 

The training data was selected out of the 2002 ETM image since official land use 

data was only available for the year 2002. By using image normalization, it was 

possible to use this same training data to classify the 1987 TM image. A striping 

(banding) problem was discovered in the 1987 TM image, which was most obvious 

in the water (sea) areas. The striping effect is caused by a miscalibration in the 

satellite sensor. So the sea areas in the TM image had abnormal pixel values. In 

order to detect the sea areas correctly, a part of this abnormal sea was added to 

the water training data during the TM classification. The training data was 

subjected to Leave One Out accuracy assessment, before and after the 

consideration of this abnormal sea area. It was found that the addition of this area 

to the training data affected the accuracy by a negligible amount. 
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Figure 3.9. Training data selected for this study 

 

 

Figure 3.10. Forest training data 4th band QQ plot 

Water Nonforest Forest 
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Figure 3.11. Forest training data 3rd band QQ plot 

 

 

Figure 3.12. Forest training data 2nd band QQ plot 
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Figure 3.13. Nonforest training data 4th band QQ plot 

 

 

 

Figure 3.14. Nonforest training data 3rd band QQ plot 
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Figure 3.15. Nonforest training data 2nd band QQ plot 

 

 

Figure 3.16. Water training data 4th  band QQ plot 
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Figure 3.17. Water training data 3rd  band QQ plot 

 

 

Figure 3.18. Water training data 2nd band QQ plot 
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3.6 Band selection 

 
Usually, in satellite image classification, 3 bands are selected out of the maximum 

number of bands, which is 8 in the case of ETM and TM images. The main reason 

for this is ease of viewing. Computer can only display 3 color channels, red, green 

and blue. Therefore, true-color computer images consist of 3 bands (channels) 

only. The intensity of each band is represented with 8 bits (256 different possible 

values). Therefore, 3 bands take up 24 bits (224 different possible values). When 

these 3 bands are assigned to red, green and blue channels, the computer can 

display all the different colors detectable by the human eye plus many more. Trying 

to display a fourth channel would result in colors that the human eye cannot detect. 

Remote sensing software that displays more than 3 bands does so by merging 

values from all channels into the three visible channels. This results in loss of real 

color information for the viewer. 24-bit (3 channel) image formats also have the 

advantage that they can be opened and handled by any computer program. 

 

There is also a need to retain only a small number of useful and good features 

(bands) for the classification algorithm (Wiley, 1973, in Raudys and Jain, 1991). It 

can happen that as the number of bands is increased, the classification error also 

increases. This is called the curse of dimensionality. So, only the most relevant 

bands should be selected. 

 

In Pereira, 2006, the band combinations (RGB;432) and (RGB;543) are 

recommended for detecting forest areas. Both band combinations were tested with 

their accuracy. No significant difference was found between the accuracies for the 

two suggestions, so the 432 combination was selected arbitrarily. Moreover, 1st, 

2nd, 3rd, 4th, 5th, 7th bands are used for classification and compared with 432 and the 

result is more or less the same. 6th Band is not selected because it decreases 

accuracy of classification. 

 

3.7. Addition of DEM data 

 

In addition to 3 selected bands, DEM information can also be considered in the 

classification algorithm as an extra (fourth) band. A digital elevation model (DEM) 



 46 

is a digital representation of ground surface topography or terrain. In Pereira 

(2006), it is explained that DEM’s represent the shape of Earth’s surface, and each 

pixel represents an elevation measurement rather than a brightness value. 

 

According to Campbell (2002), in Pereira (2006), data for DEM’s can be compiled 

using one of the three alternatives: 

 

 Contours from maps can be digitized, converted to vector files and tagged 

with elevation values producing an elevation map, 

 Photogrammetric methods derive the elevation map from stereoscopic 

images, 

 Elevation maps are constructed based on survey data but they are very 

expensive and time consuming. 

 

One source of DEM data is Shuttle Radar Topographic Mission (SRTM). According 

to Gorokhovic and Voustianiouk (2006), SRTM has created an unparalleled data 

set of global elevations that is freely available, and can be easily downloaded from 

the Internet (URL4 and URL5). Almost 80% of the Earth surface is available from 

SRTM. This is of great value for scientists dealing with terrain analysis. The data 

were collected over the 11-day mission in February 2000. Since then, they have 

been described in detail (Farr and Kobrick, 2000; Rabus et al., 2003; Werner, 

2001, in Gorokhovic and Voustianiouk, 2006). It is mentioned that SRTM data with 

90 m spatial resolution is available globally, however, SRTM data with 30 m spatial 

resolution is only available for USA  territory. SRTM data has been used for 

vegetation cover studies in Kellndorfer et al., 2004 (in Gorokhovic and 

Voustianiouk, 2006). 

 

In Haapanen et al. (2004), several studies have found that stratification by DEM or 

other factors that drive vegetative gradients can also improve classification. 

 

According to Pereira (2006), vegetation patterns are closely related to topography. 

Therefore, when working with vegetation patterns, elevation data is crucial for 

mapping vegetation patterns with digital data. With DEM data, it is possible to 

incorporate, manipulate, classify and display elevation data to improve the 
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classification task. DEM data can be used in image classification by adding the 

DEM as an additional band of data for classification, to improve classification 

accuracy. Additional data like DEM improve classification accuracy, as shown in 

Nangendo et al. (2007). 

 

Whether topographic correction of TM bands and adding the digital elevation 

model (DEM) as additional band improves the accuracy of Landsat TM-based 

forest mapping was studied by Dorren et al. (2003). Here, different classification 

schemes were applied to Landsat TM images with and without the DEM as 

additional band. This technique has been called the “logical channel approach” 

(Strahler et al., 1978; Hutchinson, 1982, in Dorren et al., 2003). The classification 

results were assessed with error matrices and kappa statistics. It was found that 

classification with the DEM as additional band increases the accuracy of Landsat 

TM-based forest maps. 

 

 

3.8. Flowcharts of KNN and Maximum Likelihood Classifications Applications 

KNN and Maximum Likelihood Applications, which are used in this study, are 

summarized as the flowcharts in Figure 3.19 and Figure 3.20. 
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Figure 3.19. KNN Classification application flowchart 
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Figure 3.20. Maximum Likelihood Classification application flowchart 
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CHAPTER 4 

 

 

ANALYSES 

 

 

 

In this section, the analyses done with the Maximum Likelihood and KNN 

algorithms are explained. The complexity and the performance are compared. 

Implementation problems are discussed. 

 
4.1. KNN Algorithm 
 
The KNN algorithm was analyzed by examining various literatures on this topic. 

This algorithm is increasingly being used in land use classification, often to 

estimate forest areas. Initially, MATLAB was used to implement the algorithm, due 

to its clear and expressive syntax. 

 

The KNN algorithm can be seen in Figure 4.1. There is no need to implement a 

complex probability distribution equation, or calculate statistical values like 

covariance. Since it is distribution free, KNN algorithm is non-parametric. The most 

complex part of the code was in the CalculateDistance() function. This is where all 

3 color dimensions are taken into consideration. This function and the 

FindStrongestClass() function will be explained later. Note that in KNN, there is no 

need to make any assumptions about the image to be classified. 

 

The inputs to this algorithm are the value of k, the three sets of training data and 

the image to be classified, all saved as 24-bit bitmap files. The output is a three-

color (three-class) classified image, also saved as a 24-bit bitmap file (C# can only 

save 24-bit bitmaps). The value of k can have a significant effect on the accuracy 

of the algorithm. How to choose the best k is discussed in Chapter 2. 
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Figure 4.1. The pseudocode of KNN Classification 
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It was noticed that the algorithm ran extremely slow, compared with the maximum 

likelihood algorithm. The reason is that most of the time-consuming parts are 

delayed until the moment of decision, that is, repeatedly calculated for each pixel 

combination. In addition to CalculateDistance(), the SortByDistance() function cost 

the highest performance. This problem is one of the weaknesses of the KNN 

algorithm. It could be possible to improve performance by using spatial indices 

such as R-tree or R*-tree. These would help retrieve data items quickly according 

to their spatial location (Gutmann, 1984). The output of KNN classification with 

Euclidean distance metric is given in Figure 4.2. 

 

 

 

 
 
Figure 4.2. Landsat ETM (RGB; 432) with Euclidean distance metric. 
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4.1.1. Leave One Out Algorithm 
 
This algorithm is used to estimate the accuracy of a classification algorithm. It can 

be used in repeated runs to find the optimum algorithm or the optimum parameters, 

such as the value of k. 

Initially, MATLAB was used to implement the algorithm, due to its clear and 

expressive syntax. 

 

 

Figure 4.3. The pseudocode of Leave One Out Algorithm 

 

The algorithm can be seen in Figure 4.3. The most complex parts here are the 

ClassifyPixel() function, which calls the classification algorithm which is being 

measured, and the CalculateError() function, which executes the error formula 

(Equation 2.10) on the results. The inputs to this algorithm are the classification 

algorithm and the three sets of training data. The output is the error values based 

on the classification. The algorithm runs pretty fast, especially due to the low size 

of the training data. 
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4.1.2. Distance functions 

The CalculateDistance() function in KNN algorithm can implement one of the 

following distance measurements: 

 Euclidean, 

Manhattan, 

DiagonalMahalanobis, 

 Mahalanobis, 

 

By using Leave One Out cross validation, error values were calculated, for different 

values of k and for different distance metrics. As it is seen in Table 4.1, they were 

sorted to understand the lowest value which gave the best result. The values were 

plotted in Figure 4.4. The best result was obtained when the distance metric was 

selected as Euclidean. The results of the classification are depicted in Figures 4.5-

4.7 for Manhattan, Diagonal Mahalanobis and Mahalanobis distance metrics 

respectively. 
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Figure 4.4. 2002 Landsat ETM satellite imagery KNN classification error plot with      
different metrics (RGB; 432).   
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Table 4.1. 2002 Landsat ETM satellite imagery (RGB; 432) KNN classification 

error values 

k Euclidean  Manhattan  
Diagonal 

Mahalanobis  Mahalanobis  

1 0,013578 0,015291 0,042446 0,045015 

2 0,013578 0,015291 0,042446 0,045015 

3 0,011131 0,012232 0,055902 0,061774 

4 0,010398 0,01211 0,054801 0,057003 

5 0,011498 0,011743 0,064465 0,061407 

6 0,010765 0,01211 0,05578 0,060306 

7 0,010887 0,011376 0,061651 0,065443 

8 0,010275 0,011009 0,058104 0,062997 

9 0,010765 0,011621 0,05896 0,066544 

10 0,009908 0,011009 0,056269 0,06422 

11 0,010642 0,010765 0,057492 0,066667 

12 0,010275 0,011131 0,056881 0,065443 

13 0,010031 0,010887 0,058716 0,068746 

14 0,009419 0,010765 0,058716 0,067768 

15 0,010153 0,011009 0,062263 0,070092 

16 0,010887 0,010642 0,060183 0,068135 

17 0,011376 0,011376 0,06263 0,071804 

18 0,011009 0,011131 0,06104 0,07107 

19 0,011009 0,011865 0,062263 0,074495 

20 0,010642 0,011743 0,061162 0,074373 
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Figure 4.5.  Landsat ETM (RGB; 432) with Manhattan distance metric. 

 

 

Figure 4.6. Landsat ETM (RGB; 432) with Diagonal Mahalanobis distance metric. 
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Figure 4.7. Landsat ETM (RGB; 432) with Mahalanobis distance metric. 

 

 

4.1.3. Weight functions 

The FindStrongestClass() function in KNN algorithm can implement one of the 

following weight functions: 

 None (Equal weight), 

 Fraction, 

 Stairs, 

 InverseDistance, 

 InverseSquareDistance 

 

Note that it is not possible to omit the Sqrt() method when calculating the distance, 

if the weight function is dependent on the distance. 
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Table 4.2. 2002 Landsat ETM satellite imagery Euclidean and Weighted Euclidean 
KNN classification error values (RGB; 432).      
     

k 

Euclidean Euclidean 

Inverse 

Distance 

Euclidean 

Inverse 

Square 

Distance 

Euclidean 

Stairs 

Euclidean 

Fraction 

1 0,013578 0,013578   0,013578 0,013578 0,013578 

2 0,013578 0,013578 0,013578 0,013578 0,013578 

3 0,011131 0,011254 0,011865 0,013578 0,013578 

4 0,010398 0,010887 0,011254 0,010398 0,010398 

5 0,011498 0,011131 0,01052 0,011009 0,010765 

6 0,010765 0,01052 0,010398 0,011009 0,01052 

7 0,010887 0,010765 0,010642 0,010275 0,010887 

8 0,010275 0,010398 0,01052 0,010398 0,010765 

9 0,010765 0,010642 0,010642 0,010642 0,011131 

10 0,009908 0,009786 0,010398 0,010398 0,01052 

11 0,010642 0,010153 0,010275 0,010275 0,01052 

12 0,010275 0,010031 0,009908 0,01052 0,01052 

13 0,010031 0,009541 0,009664 0,010398 0,010398 

14 0,009419 0,009174 0,009541 0,01052 0,010153 

15 0,010153 0,009908 0,009541 0,010275 0,010153 

16 0,010887 0,010275 0,009664 0,010275 0,010275 

17 0,011376 0,010398 0,010031 0,010275 0,010153 

18 0,011009 0,010275 0,009908 0,010031 0,010031 

19 0,011009 0,010031 0,009908 0,010153 0,010031 

20 0,010642 0,010275 0,009908 0,010153 0,010275 
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Figure 4.8. 2002 Landsat ETM satellite imagery Euclidean and Weighted 
Euclidean KNN classification error plot (RGB; 432). 
 
 

After the selection of the Euclidean distance metric as the best one, the different 

weight functions were taken into consideration. Again, Leave One Out cross-

validation was performed for each weight function and different values of k, and the 

error values were calculated. The best four weight functions were “Inverse 

Distance”, “Inverse Square Distance”, “Stairs” and “Fraction”. The results can be 

seen in Table 4.2 and Figure 4.8. It is also possible to compare the results with 

those obtained when no weight function is used (all neighbors have equal weight). 

The results are sorted to understand the lowest value which gives the best result. 

 

4.1.4. Selecting the number of neighbors (k value selection) 
 
After the selection of the Euclidean distance metric and the Inverse Distance 

Function as the best one, different values of k were taken into consideration. 

Again, Leave One Out cross-validation was performed for different values of k, and 

the error values were calculated. As it is seen in Table 4.3, the results are sorted to 
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understand the lowest value which gives the best result. Best result is obtained 

when k = 14. Then, all satellite images are classified with Inverse Distance Metric.  

 
Table 4.3. 2002 Landsat ETM satellite imagery Inverse Square Distance Euclidean 
KNN classification error values (RGB; 432). 
 

k 

Euclidean Inverse 

      Distance 

1 0,013578 

2 0,013578 

3 0,011254 

4 0,010887 

5 0,011131 

6 0,01052 

7 0,010765 

8 0,010398 

9 0,010642 

10 0,009786 

11 0,010153 

12 0,010031 

13 0,009541 

14 0,009174 

15 0,009908 

16 0,010275 

17 0,010398 

18 0,010275 

19 0,010031 

20 0,010275 

 

4.1.5. Results of different KNN parameters 

 

Non-weighted Euclidean distance metric were applied to both ETM (RGB; 432) and 

ETM (RGB; 321) and the results were presented respectively in Figure 4.2 and 

Figure 4.9. Then, Inverse Distance weighted KNN, which gave the lowest error, 

was applied to ETM (RGB; 432), ETM (RGB; 321), ETM (7 bands), TM (RGB; 432) 

satellite images which were classified by using the same training data respectively 

given in Figure 4.10-4.13. Subsequently, ETM (RGB; 432) was classified by using 

DEM as the 4th band given in Figure 4.14. 
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Figure 4.9. Landsat ETM (RGB; 321) with Euclidean distance metric (k=14). 

 

Figure 4.10.  Landsat ETM (RGB; 432) with Inverse Distance Weighted Euclidean 
distance metric (k=14). 
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Figure 4.11.  Landsat ETM (RGB; 321) with Inverse Distance Weighted Euclidean 
distance   metric (k=14).  

 

Figure 4.12.  Landsat ETM (1;2;3;4;5;7) with Inverse Distance Weighted Euclidean 
distance metric (k=14). 
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Figure 4.13.  Landsat TM (RGB; 432) with Inverse Distance Weighted Euclidean 
distance metric (k=14). 

 

Figure 4.14.  Landsat ETM (RGB; 432 and DEM) with Inverse Distance Weighted 
Euclidean distance metric (k=14). 
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4.1.6. Design and performance improvements for KNN 
 

To obtain more computing performance, the function was converted to C#, and the 

following improvements were made: 

 

- All code relating to the algorithm was encapsulated in its own class, called 

KNN. The input parameters were made configurable. 

 

- The algorithm, which can be seen as pseudocode in Figure 4.1, was 

modified so that it would run with any number of classes, and therefore, 

with any number of training data sets. This may be useful in future studies, 

where a finer classification of forest or non-forest areas is desired.  

 

- Since C# does not contain useful matrix functions like MATLAB by default, 

a freeware matrix library called “CSML” was installed and used (URL2). It 

was noticed that the performance of this library was insufficient for distance 

calculations in KNN. Therefore, the matrix operations were implemented by 

hand, using primitive arithmetic operations. 

 

- Memory usage was improved. Whenever possible, large lists of objects 

were not duplicated, but the calculations were performed directly on the 

existing lists. For example, instead of creating a distance list for each band 

and then combining them into yet another list, a single distance list was 

used for all bands. In addition, the length of the distance list was limited to k 

instead of being equal to the size of the training data. 

 

- It was found that it is noticeably faster to work with the “int” data type 

instead of the higher precision “double” data type, at times where the higher 

accuracy is not required. When calculating Mahalanobis distance, or when 

using weight functions, high-precision values are required, therefore, 

“double” variables have to be used. 

 

- The Sqrt() function costs performance, so one should try to avoid it. 

However, it is used in the CalculateDistance() function. In cases where the 
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FindStrongestClass() does not need the exact distances, it was found that 

one can omit the Sqrt() function and just return the square distance. The 

SortByDistance() function will work just as well with square distances. This 

way, since square distances are always whole numbers, it is possible to 

use the faster “int” data type as well. 

 

- The size of the training data had a huge impact on the computing 

performance. It was found that any increase in the training data size caused 

two problems: 

o For each test pixel, that many more distances had to be calculated. 

o The distance list was that much longer, causing the sort function to 

work longer. 

The performance could be improved by using spatial indices such as R-

tree. 

 

- The SortByDistance() function was the biggest performance bottleneck. If 

the number of distances is huge, the sort function is very slow. C# uses the 

quicksort algorithm, which is one of the fastest sorting algorithms, but it is 

still not fast enough. In our case, we preferred to keep the distance list 

sorted during AddToList(), and omit the SortByDistance() function 

altogether. Actually, only the first k members of the distance list were of 

interest, so only these members needed to be sorted. In AddToList(), a 

training pixel was added to the neighbor list only if its distance was less 

than any of the first k members of the neighbor list. Since the value of k is 

usually very low, this improvement brought a significant performance 

increase. 

 

- The most significant speed increase came from keeping a history of 

classification results. For the same algorithm (with the same parameters) 

and the same training data, the same pixel is always classified to the same 

class. Therefore, in a classification run, it is possible to keep a history of all 

pixels that have already been classified. If a new pixel is encountered which 

has already been classified, then one can simply trust the corresponding 

class from the history. There is no need to run the KNN algorithm on the 
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pixel. It was noticed that the history can become quite large, often around 

one fifth of the number of pixels in the image. This shows that on average, 

each pixel is repeated five times in different places in the satellite image. In 

any case, due to the huge size of the history cache, it was necessary to find 

a fast method to access an individual pixel in it. This was accomplished by 

using a hash table, where the hashing function was based on the three 

color values (RGB) in the pixel. Another possibility would be to use a three-

level tree, where each level has 256 branches, for all possible values of one 

color dimension. A completely filled tree would have 256x256x256 nodes in 

its lowest level. After successful implementation, this history cache was 

used for the maximum likelihood algorithm as well. 

 

- The possibility of keeping a history of distances between two pixels also 

presented itself. However, after some experiments, it was found that this 

did not bring any speed increases. The reason was that the time required to 

search for a pair of pixels in a huge history hash table was more than the 

time required to calculate the distance between them from scratch. 

 

Note that most of the performance optimizations focus on the innermost loop, 

where most of the calculation takes place. 

 

Performing multiple experiments with the KNN algorithm was only possible after 

these performance optimizations. In its original form, it would have taken several 

hours to execute a single KNN run. The final form is about 10 times as fast. In 

addition, the process of finding the k nearest neighbors of a given instance can be 

improved further by using spatial indices such as R-tree, which will help retrieve 

data items quickly according to their spatial location. For future work, the search 

process can be facilitated by using a spatial index. 

  

4.1.7. Design and performance improvements for Leave One Out cross 
validation 
 
To obtain more computing performance, the function was converted to C#, and the 

following improvements were made: 
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- All code relating to the algorithm, which can be seen as pseudocode in 

Figure 4.3, was encapsulated in its own class. The input parameters were 

made configurable. This means that any classification algorithm can be 

evaluated using this class. 

 

- Components of error were calculated during the loop, which prevented 

having to go through the pixel estimates a second time. 

 

- Note that history caching is impossible here, since each classification runs 

on a different training data. 

 

- The performance advantage of the maximum likelihood algorithm was lost, 

since each classification runs on a different training data. Therefore, the 

mean and covariance has to be recalculated before each classification. 

 

4.2. Maximum Likelihood Classification 
 
The maximum likelihood algorithm was analyzed by examining various literatures 

on this topic. This algorithm is often used in land use classification, often to 

estimate forest areas. Therefore, it is the best candidate to compare with the KNN 

algorithm, in terms of estimation and computing performance. Initially, MATLAB 

was used to implement the algorithm, due to its clear and expressive syntax. 

 

The maximum likelihood algorithm can be seen in Figure 4.15. It was found that 

the most complex part of the code was the NormalDistributionProbability() function. 

Here, the normal distribution function as described under the Maximum Likelihood 

Algorithm section was implemented. Since, in our case, each pixel is 3-dimensional 

(RGB), a modified version of the function for multidimensional feature sets was 

used.  

 

It was noticed that the algorithm ran pretty fast, even for larger images. The reason 

is that most of the time-consuming parts are calculated in advance, such as the 

mean and the covariance matrix, and only once. It is also possible to calculate 

parts of the NormalDistributionProbability() function in advance, to increase 
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performance further. The output of the Maximum Likelihood classification is given 

in Figure 4.16. 

 

 

Figure 4.15. The pseudocode of Maximum Likelihood Classification 
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Figure 4.16.  Landsat ETM (RGB; 432) with Maximum Likelihood Classification 

 

4.2.1. Design and Performance Improvements for Maximum Likelihood 

Classification 

 

To obtain more computing performance (as was necessary for the KNN algorithm), 

the function was converted to C#, and the following improvements were made: 

 

- All code relating to the algorithm, which can be seen as Figure 4.15, was 

encapsulated in its own class, called Ml. The input parameters were made 

configurable. 

 

- The algorithm was modified so that it would run with any number of classes, 

and therefore, with any number of training data sets. This may be useful in 

future studies, where a finer classification of forest or non-forest areas is 

desired.  

 

- Some parts of the normal distribution equation were calculated in advance. 
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- Since C# does not contain useful matrix functions like MATLAB by default, 

a freeware matrix library called “CSML” was installed and used (URL2). 

Still, it is possible to increase performance further by implementing 

necessary matrix operations by hand, instead of using a generic library. 

 

4.3. Other remarks 
 
C# was chosen as language because of its following features: 

- Object-orientation is very easy, 

- There is automatic memory management, which guards against 

programmer errors, 

- With JIT compilation, performance is high. With just-in-time compilation, the 

program code is completely translated into native machine code and 

cached before being executed. MATLAB, on the other hand, reinterprets 

each line or operand each time it is met. Machine code always runs faster 

than interpreted code. 

- It is easy to find comfortable development environments, 

- There are lots of useful math libraries that are built-in, although not as rich 

as MATLAB. 

- There is lots of documentation, example code and free third party libraries 

available. 

 

After implementing two classifier algorithms, it was noticed that they shared a lot of 

common functionality. This common code was factored out to a base class called 

Classifier. This may be useful in future studies, where other classifiers can be 

plugged in to this base class. 

 

Although C# can only read images containing 3 bands (24 bits), the code was 

modified in a special way so that it became possible to read any number of bands. 

For this purpose, the user could prepare several bitmap files, each containing a 

different 3-band combination selected out of the total number of bands in the 

satellite image. The program would then read all of these bitmap files separately, 

and combine them in memory into a single image containing all bands. For 

example, 2 different bitmaps would contain a total of 6 bands. 
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Also, as the number of bands increases, the computational performance drops 

significantly, due to the following reasons: 

1) The distance function in the innermost loop becomes more complex, 

2) History caching is no longer useful. The probability that two pixels are 

exactly the same in 8 bands is much less than the probability that they are 

exactly the same in 3 bands. Therefore, most history searches fail. Also, 

because of having so many different values, the hash table becomes too 

large, or the search tree becomes too deep, making history searches 

unfeasible. 

 

The classifier algorithms can be easily modified so that run in parallel. For 

example, in a dual CPU system, one CPU can work on classifying the upper half of 

the image, whereas the other CPU can work on classifying the lower half. For a 

test pixel, one CPU can calculate distances (or probabilities) from one half of the 

training data, whereas the other CPU can calculate distances (or probabilities) from 

the other half. Both CPU’s can access the common training data, satellite image, 

classified image, neighbor list and classification history in memory. Matrix 

operations can also be easily parallelized. This concept can be scaled to any 

number of CPU’s. For improving performance, parallelization is becoming more 

and more important, since the clock speeds of current CPU’s are nearing the 

theoretical limit and manufacturers are focusing on multi-core architectures. 

 

The 24-bit classified bitmaps generated by the classifiers were then saved as 256 

color bitmaps using Paint.NET, to make accuracy assessment easier in ERDAS 

IMAGINE. In the whole classification process, it is important not to use lossy image 

file formats such as JPEG, since these may cause loss of color information. 

 

 

 



 72 

 

 

CHAPTER 5 

 

 

DISCUSSION OF THE RESULTS 

 

 

 

K nearest neighbor algorithm with different metrics, different weights and different k 

values are applied to the Landsat ETM satellite image acquired in 2002. Band 

combination is selected for this reference image as (RGB; 432) because it is one of 

the most commonly used band combinations in the studies of forestry remote 

sensing. First, the best distance metric is selected with error results of Leave One 

Out cross validation technique by using bands (RGB; 432). The result is clearly 

Euclidean distance metric. After selecting the distance metric, the weights and the 

best k values are selected. With the same distance metrics, weights and k values 

of bands (RGB;432), The 6 bands which are 1st, 2nd, 3rd, 4th, 5th, 7th bands of 

Landsat ETM are selected as reference image for comparison. The 6th band is not 

selected because thermal band decreases the accuracy. Additionally, Digital 

Elevation Model (DEM) data is used as the 4th band and then as ancillary data to 

select training data better because, in the literature, it is expressed that the DEM 

data may increase the accuracy in some cases. The results of them are compared 

to understand which pixels are found with addition of DEM data.  

 

The TM satellite image from the year 1987 is then selected as reference image to 

understand the change in forest percentage of both years. The bands are selected 

for this reference image as (RGB; 432). 

 

Due to being the most commonly used supervised algorithm, Maximum Likelihood 

Algorithm, which is another supervised classification method, is applied to Landsat 

ETM (RGB; 432) to understand the proximity of the results between the KNN and 

Maximum Likelihood Classification methods. 
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5.1. Selecting the distance metric with LEAVE ONE OUT cross validation 

 

The error values were calculated by using Leave One Out cross validation, for 

different values of k and for different distance metrics in Chapter 4. The best 

distance metric was selected as Euclidean. The weights, which are fraction, stairs, 

inverse distance and inverse square distance, were applied to Euclidean distance 

metric for several k values. It was seen that the best results was achieved by 

inverse distance weighted KNN with k value equal to 14. 

 

In Franco-Lopez et al. (2001), KNN is applied by using Euclidean and Mahalanobis 

distance metrics for the estimation of the forest stand, type and volume. In that 

study, it is seen that Euclidean distance metric gives lower RMSE values than 

Mahalanobis distance for any number of neighbors. Therefore, the subsequent 

trials are based on Euclidean distance. It is also mentioned that the results 

contradict with the results found by Nilsson (1997), in Franco-Lopez et al. (2001). 

 

Similarly, in this study, the Euclidean distance metric was found as the best metric, 

and it was taken into consideration for further classification tasks. This agrees with 

Franco-Lopez et al. (2001), Pereira (2006) and Cabaravdic (2007). However, it 

contradicts with the results found by Nilsson (1997), in Franco-Lopez et al. (2001), 

and Lorenzo et al. (2002), both of whom found Mahalanobis distance to be better. 

 

The Mahalanobis distance metric would be expected to perform better when bands 

are strongly correlated. The bad performance of this metric in this study is an 

indication that the bands 4, 3 and 2 are not strongly correlated. This argument can 

also explain the higher performance of the Mahalanobis distance metric found by 

Lorenzo et al. (2002).  

 

Diagonal (Class-Dependent) Mahalanobis distance metric performed better than 

Mahalanobis distance. This can be explained by the fact that this metric does not 

take band correlation into account. However, it still exhibited very low performance. 

The reason can be understood by noting that the distance of a test pixel to a 

training pixel is inversely proportional to the standard deviation of the training data 

which the training pixel comes from. This means that if a training data of a certain 
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class has a high standard deviation, then its pixels will have especially low 

distances to the test pixel. The underlying assumption is that the test pixel would fit 

a wide and flat distribution more easily than a narrow and thin distribution. In our 

case, the training data for the water and forest classes both have low standard 

deviation, but the training data for the non-forest class have an especially high 

standard deviation, since they are collected from widely different land features. 

Therefore, the closest neighbors to a test pixel tend to be chosen from non-forest 

pixels, due to their low distances. The non-forest class tends to overwhelm forest 

and water classes in the list of neighbors, resulting in an unfair advantage for the 

non-forest class. Many forest and water test pixels are mistakenly classified as 

non-forest, which decreases the accuracy. 

 

The Manhattan distance metric gave pretty good results. The difference to the 

Euclidean distance metric is as follows: In a 3-band combination, if one of the 

bands of a training pixel has a high distance to the same band of the test pixel, 

then that training pixel is severely penalized by the Euclidean distance. A band with 

a high difference cannot be offset by another band with a low difference. On the 

other hand, Manhattan distance allows a band with a high difference to be offset by 

another band with a low distance. Even if there is a band with a high difference, 

Manhattan distance accepts the overall distance to be low, if the other bands have 

a low difference. For the Euclidean distance, all bands have to be low in order for 

the distance to be low. In other words, the closeness has to be consistent across 

all bands. Since the Euclidean distance metric gave the best results in our case, it 

was observed that it was better to expect a training pixel to be close to the test 

pixel in all of the bands 4, 3 and 2, in order to identify it as a neighbor. A high 

distance in one of the bands had to be penalized severely, even if the other bands 

had really low distances. Consistency in distance was important. 

 

On the other hand, the Manhattan distance metric consists entirely of additions and 

subtractions, whereas the Euclidean distance metric includes slow-running 

multiplications and square roots. Therefore, in cases where computing 

performance must be maximized, the Manhattan distance is recommended over 

the Euclidean distance, considering its high accuracy. 
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5.2. Weighted KNN Application 

 
The best result is obtained when the weight function is “Inverse Distance.” This 

holds true for every distance metric, but the focus here is on the Euclidean 

distance metric, which gives the highest accuracy. The superiority of “Inverse 

Distance” is contrary to the results obtained by Franco-Lopez et al. (2001), who 

observed that it was best to use no weights (equal weights). In their experiments, 

each test pixel had several close neighbors in most cases, with very little distance 

between them. Therefore, a distance-dependent weight function did not generate 

different results than assigning equal weights to all neighbors. In such cases, using 

fraction or stairs weight function is recommended. These functions are not 

dependent on the distance. Rather, the weight of a neighbor drops as its order 

increases among the list of neighbors, without exception. 

 

It should be noted that the error drops steeply as k increases from 1 to 4. For 

subsequent values of k, the error drop is more gradual and irregular. This rapid 

early decrease, followed by diminishing marginal drops is mentioned by Franco-

Lopez et al. (2001) as well. 

 

It was also observed that there was very little difference between “Inverse 

Distance” and “Inverse Square Distance” weight functions. This agrees with the 

observations made by Haapanen (2004). 

 

Although there were good and bad weight functions, it was usually not possible for 

an algorithm with a bad distance function to become superior to an algorithm with a 

good distance function, even if it used the best weight function. 

 

In order to demonstrate the role of the distance value inside the weight function 

more clearly, it is necessary to observe the accuracy results for different values of 

k and different weight functions under Mahalanobis distance, which is given in 

Figure 5.1. This is a bad distance function and tends to collect misleading 

neighbors. Therefore, for all weight functions, the error increases as the value of k 

increases. Higher values of k cause neighbors that are really far away to be taken 

into consideration, which confuse the classifier even more. If there is no weight 
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function (all neighbors have the same weight), then the error increase (accuracy 

drop) is very steep. However, if the weight is calculated from the distance, the error 

increase is negligible, because if the weights of misleading neighbors are 

correspondingly low, then the confusion is also low. Therefore, a weight function 

that is inversely proportional to the distance is definitely recommended. 

 

 

Figure 5.1. 2002 Landsat ETM satellite imagery Mahalanobis and Weighted 
Mahalanobis KNN classification error plot (RGB; 432). 
 

For “Inverse Distance,” the k value with the minimum error was found to be 14. 

This agrees with Haapanen (2004), where it is mentioned that typically, the value 

of k employed in forest inventory studies has ranged from 1 to 15. For example, in 

Franco-Lopez et al. (2001), it is cited that Nilsson (1997) and Tokola et al. (2006) 

reported a stability point between 10 and 15 neighbors. Note that if a bad distance 

function is used, and there is no weight function, higher values of k can be very 

dangerous to the accuracy of the classifier. 
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In all measurements, the error for k = 2 was exactly equal to the error for k = 1. The 

reason is that the first neighbor’s class always carries more weight than the second 

neighbor’s class when a weight function is used. Also, in our version of the 

algorithm, if equal weights are used, the first neighbor’s class overrides the second 

neighbor’s class in case of a tie. Therefore, the second neighbor is completely 

ineffective. 

 

With the optimum parameters, the Leave One Out error for KNN was 0.009174, 

whereas the same error for the Maximum Likelihood algorithm was found to be 

0.0168. It was seen that KNN achieves better performance than Maximum 

Likelihood when classifier parameters are carefully selected. 

 

5.3. DEM addition to KNN classification process 

 

It is specified in section 3.7; the ancillary data can be also used as additional 

information in the KNN classification. Therefore, ETM (RGB; 432) was classified by 

using DEM as the 4th band firstly. 

 

In Figure 5.2, it can be seen that the classification of Landsat ETM (RGB; 432) with 

Inverse Distance Weighted Euclidean metric with DEM data failed to find the forest 

areas inside the black circle. The green pixels indicate areas additionally classified 

as forest, and red pixels indicate areas no longer classified as forest. This is due to 

the restrictive nature of the forest training data. The forest training data had been 

taken from areas where elevation was high. Therefore, KNN tended towards 

expecting more forest in high areas, and less forest in low areas. The algorithm 

was able to find forest near the mountaintops on the lower left successfully. It also 

found more forests towards the top left, where elevation is high. However, it 

ignored the area in the black circle, where elevation is low. The accuracy is still 

very high, because the random points did not include many pixels from the 

wrongly-classified areas. This shows that accuracy assessment can be misleading 

due to an unfortunate distribution of sample points. Because of this wrong 

classification, new forest training area was taken from this region for detecting the 
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forests in areas which had varying elevation values. The new classification results 

were given in Figure 5.3 and Figure 5.4. 

 
 

 

Figure 5.2. The changes in pixels with addition of DEM data as an extra band. 
 

It was observed that this time, classification with DEM was able to find forests in 

the black circle successfully, which is shown in Figure 5.5. But it was also seen that 

some non-forest, low elevation areas were mistakenly classified as forest this time. 

Without the DEM band, the KNN algorithm had seen that the spectral values of 

these areas were sufficiently far from forest pixels. The DEM, used as an extra 

band, gave an additional hint that the areas were closer, because their low 

elevation matched that in the forest training data. As a result, they were classified 

as forest, and the accuracy decreased. It is seen that using DEM as an extra band 

only confuses the reliable information obtained from the spectral values. In areas 

where the different classes are strongly dependent on elevation such as different 

vegetation types, or special types of forest, the DEM band can be useful. However, 

both forest and non-forest classes were found on varying elevation levels in our 

study, which caused the DEM band to be impractical. 
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Figure 5.3. Landsat ETM (RGB; 432) with Inverse Distance Weighted Euclidean 
distance metric (k=14) by using new forest training data. 

 

 

Figure 5.4. Landsat ETM (RGB; 432 and DEM) with Inverse Distance Weighted 
Euclidean distance metric (k=14) by using new forest training data. 
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Figure 5.5. The changes in pixels with addition of DEM data as an extra band by 
using new forest training areas.  
 

 
Figure 5.6. The changes in pixels with addition of DEM data as an ancillary data to 
select training data using new forest training areas. 
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On the other hand, the classification results using the new training data were better 

than the results using the old training data. When DEM was not used as 4th band, 

there was no pixel which could not be found as forest compared to other classified 

images. The extra forest pixels that were found using the new training data can be 

seen in Figure 5.6. This can demonstrate that by selecting the training data from 

different elevations (by observing the DEM band as auxiliary data), the accuracy 

can be increased. This indicates that forest areas reflect slightly different spectral 

values at different elevations, and these variations should be taken into account 

when selecting the training data. 

 

5.4. Forest change from 1987 to 2002 

 

Change detection is a tool to make decisions about development strategies. Forest 

change is a result of natural and man-caused changes. In this study, Landsat TM 

image was acquired in 1987 and Landsat ETM was acquired in 2002. There has 

been probably  a change in forest areas in the study region during this fifteen-year 

period. As it was explained in section 3.1, histogram matching as a radiometric 

correction technique was applied to Landsat TM to classify both satellite images by 

using the same training data. KNN was applied to both of them by using  Inverse 

Distance Weighted Euclidean distance metric with k equal to 14. The different 

pixels  in forest areas were compared in Figure 5.7. 

 

 The red pixels in the pink and brown circles show the forest pixels which exist in 

1987 but not in 2002. The pink circle indicates the forest areas in 1987 which 

became agricultural areas in 2002. The brown circles show the forest  areas in 

1987 that are apparently still forest in 2002, since these areas are forest in land 

use data. The pixels are red because the digital values of  these pixels in 2002 are 

very different from forest training pixels that represent most forest areas in the 

satellite images. Forest training data have not been collected from the pixels in 

brown circles. Two conclusions can be reached from here. First, the training data 

should consist of all types of forest at the same time for better accuracy. Second, 

the land use data should give correct information. There are some regions which 

are seen as forest in land use, but these regions obviously do not have forest 

pixels in satellite images. It can be seen that the land use data are not very reliable 
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for accuracy assessment. Field survey and sampling plots, which consist of training 

data, are recommended for better accuracy. 

 

Figure 5.7. Change in forest pixels from 1987 to 2002. 

 

Table 5.1. Class distribution (%) of TM and ETM classified images  

 TM ETM 

Forest 7.07 8.61 

Nonforest 80.57 79.05 

Water 12.36 12.34 

 

Forest areas increase from 7.07%  to 8.61%. This means that the change in forest 

areas is approximately 21%. Although there is a rapid urbanization in Antalya, the 

increase in forest areas is an indicator of sustainable development. 

 

5.5. KNN and Maximum Likelihood Classification Comparison 

 

It can be seen in Figure 5.8 that there are some pixels in KNN different from 

Maximum Likelihood Classification. The green pixels are found as forest by 

Maximum Likelihood classification and not found as forest by KNN classification. 
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Similarly, red pixels are found as forest by KNN classification and not found as 

forest by Maximum Likelihood classification. There is not much difference between 

the two results. KNN found slightly more forest pixels in the top left and lower left 

areas. This is in agreement with the land use data, which shows these areas as 

forest. The spectral values of the pixels in these areas deviate from typical forest 

pixels. This shows that KNN is more successful in classifying such outlying pixels. 

Maximum Likelihood, on the other hand, found slightly more pixels in the middle 

left and top areas. The land use data shows these areas as forest as well. The 

spectral values of pixels from these areas are typical forest pixels. This indicates 

that Maximum Likelihood is more successful in classifying pixels that are closer to 

the mean. 

 

 

Figure 5.8. Different forest pixels in images classified by KNN and Maximum 

Likelihood classifications. 

 

The overall accuracies of KNN and Maximum Likelihood classification are more or 

less the same for the random points in the accuracy assessment part of the study. 
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5.6. Accuracy Assessment 

 
The accuracy assessment was performed with ERDAS Imagine by comparing the 

land use data with classified images. The two images were geometrically corrected 

so that they would overlap perfectly. Then, stratified random points calculated as 

280 points were selected automatically on the classified image, and these were 

manually classified by referring to the land use data. The stratified random points 

can be seen in Figure 5.9. 

 

Figure 5.9. Stratified random sample points used in accuracy assessment. 

 

The error matrix and other accuracy values were automatically computed by using 

ERDAS. The highest accuracy values were obtained with the band selection RGB; 

432 when using the KNN algorithm, with Euclidean distance and inverse distance 

weights, with k = 14. 

 

The accuracy assessment reports of ETM (RGB; 432) KNN with Inverse Distance 

Euclidean and ETM (RGB; 321) KNN with Inverse Distance Euclidean can be seen 

in Figure 5.10 and Figure 5.11 show that overall, using (RGB; 432) bands give 

higher accuracy than using (RGB; 321) bands.  
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The reason for this is that band 4 is more significant than band 1 for classifying 

vegetation. Band 4 is “near-infrared.” Agricultural vegetation and forest vegetation 

reflect clearly different spectral values under infrared band. Therefore, it becomes 

easier for the classifier to detect the difference between agriculture (non-forest) 

and forest pixels. The accuracy reports of ETM (1;2;3;4;5;7) with KNN with Inverse 

Distance can be seen in Figure 5.12. Selecting all available spectral bands gave 

the same accuracy. It was decided that it is not worth to perform extra effort and 

computing performance for these bands. The selection of a small number of useful 

bands, such as (RGB; 432), was sufficient. The accuracy reports of DEM data 

added to ETM (RGB; 432) with KNN with Inverse Distance Euclidean can be found 

in Figure 5.13. Figure 5.14 and Figure 5.15 contain accuracy reports using the new 

forest training data selected by taking elevation values into consideration. These 

results were discussed in section 5.3. Figure 5.16 contains the ETM (RGB; 432), 

Maximum Likelihood classification accuracy reports. It was seen that there is slight 

difference between accuracies of KNN algorithm and maximum likelihood 

algorithm. Overall accuracies of the methods followed in this study can be seen in 

Table 5.2. 

 

Table 5.2. Overall accuracies of different classification, band and ancillary data 

combinations. 

Bands 
Ancillary 
Data Classification 

Overall Accuracy 
(%) 

RGB; 321 Landuse 
Inverse Distance 
Weighted KNN 85,36 

RGB; 432 Landuse 
Inverse Distance 
Weighted KNN 86,07 

1,2,3,4,5,7 Landuse 
Inverse Distance 
Weighted KNN 86,07 

RGB; 432  Landuse 
Maximum 
Likelihood  87,14 

RGB; 432 and 
DEM 

Landuse& 
DEM 

Inverse Distance 
Weighted KNN 87,14 

RGB; 432 and 
DEM Landuse 

Inverse Distance 
Weighted KNN 87,50 

RGB; 432 
Landuse& 
DEM 

Inverse Distance 
Weighted KNN 87,86 
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Figure 5.10. ETM (RGB; 432) KNN with Inverse Distance Weighted Euclidean 
distance metric classification Accuracy Assessment Report. 
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Figure 5.11. ETM (RGB; 321) KNN with Inverse Distance Weighted Euclidean 
distance metric classification Accuracy Assessment Report. 
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Figure 5.12. ETM (Bands:1;2;3;4;5;7) with Inverse Distance Weighted Euclidean 
distance metric classification Accuracy Assessment Report 
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Figure 5.13. DEM data added to ETM (RGB; 432) with Inverse Distance Weighted 
Euclidean distance metric classification Accuracy Assessment Report 
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Figure 5.14. ETM (RGB; 432) KNN with Inverse Distance Weighted Euclidean 
distance metric classification (by using new forest training data) Accuracy 
Assessment Report. 
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Figure 5.15. DEM data added to ETM (RGB; 432) with Inverse Distance Weighted 
Euclidean distance metric classification (by using new forest training data) 
Accuracy Assessment Report. 
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Figure 5.16. ETM (RGB; 432) Maximum Likelihood Classification Accuracy 
Assessment Report. 
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CHAPTER 6 

 

CONCLUSIONS and RECOMMENDATIONS 

 

 

The application of image classification algorithms to satellite images makes it 

possible to map land cover types of huge areas automatically. In the particular field 

of forest area detection, appropriate classification methods help improve forest 

planning. A lot of research on the area of image classification focuses on improving 

classification accuracy and thus increasing its applicability for practical use. This 

study detailed the KNN algorithm in particular, which is commonly used in the 

detection of forest areas. 

6.1. Conclusions 

The study area was the Center District of Antalya, which has undergone high 

urbanization over recent years. Using different parameters, the accuracy of the 

KNN algorithm was evaluated by means of Leave One Out cross validation. 

Among the four different distance functions that were used in the KNN algorithm, 

the best function turned out to be the simple Euclidean distance, followed by the 

Manhattan distance. There was a very clear accuracy weakness with the 

Mahalanobis distance. This showed that the Landsat bands 4, 3 and 2 are not 

strongly correlated. Diagonal Mahalanobis, which did not take band correlation into 

account, performed better. However, it was still unsatisfactory, due to the high 

standard deviation of non-forest training data. If more granular classes were used 

for non-forest areas, Diagonal Mahalanobis could have performed better. 

Among the different weight factors (functions) that were used in the KNN algorithm, 

the best function turned out to be the inverse distance, followed by the inverse 

square distance. Both were better than using no weight factors. 
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It was noticed that the choice of distance function had a significant effect on the 

resulting accuracy. The choice of weight function did not have such a strong 

impact. Therefore, it is crucial to select a good distance function first, before 

choosing a good weight function. 

In addition, for the best distance and weight functions, the best value for k was 

found to be 14. 

It was observed that choosing bands 4, 3 and 2 resulted in higher accuracies than 

choosing bands 3, 2 and 1. This was due to the importance of band 4 in detecting 

vegetation. As expected, using all available bands did not increase the accuracy, 

so just 3 bands were sufficient. Also, it was observed that adding DEM as an extra 

band did not improve classification accuracy. DEM would be much more useful for 

classifying forest or vegetation types that are closely dependent on elevation. 

Alternatively, it can increase accuracy when it is observed as ancillary data to 

specifically select training pixels from varying elevations. This indicates that 

performing topographic normalization using DEM data could have increased 

accuracy results. 

As a result, the best flavor of KNN can be achieved by taking Euclidean distances, 

inverse distance weights, k equal to 14, with bands 4, 3 and 2. With these 

optimizations, it was found that KNN has an advantage over the Maximum 

Likelihood algorithm, which is also a classification method commonly used for 

forest area detection. 

In the accuracy assessment done by comparing the classified image with official 

land use data, it was found that there is slight difference between optimized KNN 

result and the Maximum Likelihood result. Also, it was observed that KNN was 

more successful in classifying pixels that deviate significantly from the 

corresponding training data, whereas Maximum Likelihood was more successful in 

classifying pixels that are closer to the mean of the corresponding training data. In 

the literature, the KNN method has been applied while using grids of sample plots, 

with successful results. However, the land use data available for this study was not 

as precise as the plots used in those cited studies. If more precise and detailed 

fieldwork had been performed, then it would have been possible to select better 
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training data, and perform accuracy assessment against a more correct reference 

image. Thus, the accuracy results of KNN could have been better. 

It was seen that both algorithms were straightforward to implement in code, but 

one needs a good design in order to make the algorithms configurable. Also, it was 

observed that the computing performance of KNN is low in comparison to the 

Maximum Likelihood algorithm. It was seen that the running time of KNN was 

highly dependent on the number of training samples. Increasing the number of 

bands, using Mahalanobis distance function, and adding weight calculation all 

increased the running time. Ways to improve this performance have been 

discussed. The optimized source code has been included, which can be easily 

manipulated to modify classification parameters or add new image classifiers. 

Thus, it can act as a high-performance library for future studies. 

A secondary objective of this study was to classify two satellite images from two 

different years, and detect the change percentage of forest areas. This required 

applying radiometric correction to the images. Histogram matching was used for 

this purpose. After radiometric correction, it was observed that the optimized KNN 

had no problems classifying both images based on the training data taken from 

one of them. However, it was not possible to measure the accuracy of the second 

classified image due to the lack of land use data. 

When performing change detection between the TM and ETM images, it was found 

that the forest areas actually increased approximately 21% during the urbanization 

phase of Antalya over the years. This shows that in spite of massive urbanization, 

reforestation strategies in the Center District of Antalya have been somewhat 

successful. This is valuable data for decision makers who want to plan future 

strategies for forest management. 

As a result, the practical applicability of the KNN algorithm for mapping forest areas 

over large areas was demonstrated, with acceptable accuracy and computing 

performance. It is anticipated that progress in this field will continue, especially in 

other possible modifications of the classifier. The final objective is the operational 

application of classifiers in creating and maintaining forest inventories. 
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6.2. Recommendations 

For forest/non-forest/water stratification, the KNN algorithm is recommended due 

to its advantages listed in Chapter 2 and its high accuracy demonstrated in 

Chapter 5. 

In classification using KNN, Euclidean distance should be used for bands that are 

not strongly correlated, such as bands 4, 3 and 2. If computing performance is 

more important than maximum accuracy, then Manhattan distance can also be 

used. For strongly correlated bands, Mahalanobis distance should be used. In that 

case, care should be taken to use granular classes, so that the standard deviation 

of a single class does not become too large. When selecting training data, it is 

important to include pixels from all variations of a class. 

For highest accuracy in KNN during forest/non-forest/water stratification, it is 

strongly recommended to have neighbor weights decrease in inverse proportion to 

their distances from the test pixel. This will also help reduce the accuracy problems 

that can arise if the value of k is selected too big. However, if each test pixel has 

several close neighbors in most cases, with very little distance between them, then 

functions that are not dependent on the distance are recommended, such as 

fraction or stairs. Also, the value of k should be selected around 14, and the bands 

4, 3 and 2 should be used. 

When classes are not dependent on elevation, it is not recommended to use DEM 

as a fourth band; however, it can increase accuracy when used as ancillary data 

during training data selection or in topographic correction. 

For maximum reliability when selecting training data and performing accuracy 

assessment, it is important to have precise and up-to-date land use data. 

For reducing the running time of the KNN algorithm, it is recommended to keep the 

size of the training data below an acceptable limit. Also, the search process of k 

nearest neighbors can be facilitated by using a spatial index such as R-tree for 

future work.  
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