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ABSTRACT 
 
 

MULTIPLE TARGET TRACKING USING MULTIPLE 
CAMERAS 

 
 
 

Y�lmaz, Mehmet 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. M. Kemal Leblebicio� lu 

 
 
 

May 2008, 115 pages 

 
 
 

Video surveillance has long been in use to monitor security sensitive areas 

such as banks, department stores, crowded public places and borders. 

The rise in computer speed, availability of cheap large-capacity storage 

devices and high speed network infrastructure enabled the way for 

cheaper, multi sensor video surveillance systems. In this thesis, the 

problem of tracking multiple targets with multiple cameras has been 

discussed. Cameras have been located so that they have overlapping 

fields of vision. A dynamic background-modeling algorithm is described for 

segmenting moving objects from the background, which is capable of 

adapting to dynamic scene changes and periodic motion, such as 
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illumination change and swaying of trees. After segmentation of 

foreground scene, the objects to be tracked have been acquired by 

morphological operations and connected component analysis. For the 

purpose of tracking the moving objects, an active contour model (snakes) 

is one of the approaches, in addition to a Kalman tracker. As the main 

tracking algorithm, a rule based tracker has been developed first for a 

single camera, and then extended to multiple cameras. Results of used 

and proposed methods are given in detail. 

 

Keywords: Visual Surveillance, Moving Object Detection, Background 

Subtraction, Rule-Based Moving Object Tracking, Multiple Object Tracking 

Using Multiple Cameras. 
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ÖZ 
 
 

B�RDEN FAZLA KAMERA �LE ÇOKLU HEDEF TAK�B� 
 
 
 

Y�lmaz, Mehmet 

Yüksek Lisans, Elektrik-Elektronik Mühendisli� i Bölümü 

Tez Yöneticisi: Prof. Dr. Kemal Leblebicio� lu 

 
 
 

May�s 2008, 115 sayfa 

 
 
 

Video gözetimi, bankalar, ma� azalar, kalabal�k alanlar ve s�n�rlar gibi 

güvenlik hassasiyeti olan bölgelerde uzun süredir kullan�lmaktad�r. 

Bilgisayar h�z�ndaki art�� , ucuz ve yüksek kapasiteli depolama ayg�tlar� ve 

yüksek h�zl� a�  altyap�lar�, ucuz, çoklu kameral� video gözetim sistemlerine 

olanak sa� lamaktad�r. Bu tez çal�� mas�nda, birden fazla kamera 

kullan�larak çoklu hedef takibi problemi sunulmu� tur. Kameralar, gördükleri 

alanlar�n bir k�sm� üst üste gelecek � ekilde yerle� tirilmi� tir. Hareket eden 

nesneleri arka plan görüntüsünden ay�rmak için, ayd�nlanma de� i� imi ve 

sallanan a� açlar gibi dinamik görünüm de� i� ikliklerine ve periyodik 

hareketlere uyum sa� layan dinamik arka plan modelleme algoritmas� 

sunulmu� tur. Ön plan görüntüsü ayr�ld�ktan sonra takip edilen nesnelerin 

elde edilmesi için morfolojik i� lemler ve ba� l� eleman analizi kullan�lm�� t�r. 
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Hedef takibi s�ras�nda Kalman süzgecine ek olarak aktif d��  çevritlerden 

yararlan�lm�� t�r. Ana takip algoritmas� olarak önce tek kamera için kural 

tabanl� bir takip algoritmas� geli� tirilmi� tir. Daha sonra bu algoritma çoklu 

kamera sistemine uygun olacak � ekilde geni� letilmi� tir. Uygulanan ve 

önerilen metotlarla ilgili sonuçlar detayl� olarak verilmi� tir. 

 

Anahtar Kelimeler: Görsel Gözetim, Hareketli Nesnelerin Tespiti, 

Arkaplan Ç�kar�m�, Hareketli Nesnelerin Kural Tabanl� �zlenmesi, Birden 

Fazla Kamera �le Çoklu Hedef Takibi. 
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CHAPTER 1 

 
 

 INTRODUCTION 
 

 

 

In addition to recent advances in computer speed, availability of large-

capacity storage devices cheaply and high speed computer network 

infrastructure, the increase in crime rate has made visual surveillance 

popular. The history of surveillance systems consists of three generations 

which are called 1GSS, 2GSS and 3GSS [24]. The first generation 

surveillance systems (1GSS (1960-1980)) were based on analog 

subsystems for image acquisition, image transmission and processing 

which were depended on human operators for event detection. The next 

generation surveillance systems (2GSS (1980-2000)) used both analog 

and digital subsystems in order to solve the drawbacks of the 1GSS 

surveillance systems. They provided assistance to human operators to 

filter out the important events. Third generation surveillance systems 

(3GSS (2000- )) provided full assistance; image acquisition, image 

processing, storage, communication through network. 

 

As explained above traditional security systems were greatly depending on 

human operators. With traditional systems, area under surveillance is 

restricted with the number of operators and number of cameras. These 

problems present the need for 3GSS surveillance systems. 
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In this thesis the developed visual surveillance system detects and tracks 

moving objects automatically. Also the developed system handles 

occlusion and moving objects passing through one camera view to the 

other camera view. This enables the objects to be tracked in entire camera 

views. General scheme of the developed visual surveillance system can 

be seen below figure. 
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Figure 1.1 General scheme of Single Camera Target Tracking 
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Figure 1.2 General scheme of the developed visual surveillance system 
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1.1. Scope of the Thesis 
 

In this thesis, we present a smart visual surveillance system with object 

detection, tracking, occlusion handling and track continuation while tracks 

passing through one camera view to other. 

Moving object detection is the basic step for tracking. It handles 

segmentation of moving objects from background. Due to dynamic 

environmental conditions such as illumination changes, shadows and 

swaying of tree branches in the wind, object segmentation is a difficult and 

for a robust surveillance system these problems should be handled 

carefully. Commonly used background subtraction techniques for object 

detection are frame differencing, running average and mixture of 

Gaussians which is capable of coping with the changes in the scene such 

as illumination change and swaying of tree branches. Morphological 

operations and shadow removal algorithm are used in order to remove 

noise and shadows. 

 

The next section describes tracking of detected objects. Two commonly 

used methods have been implemented and discussed as object tracker. 

Kalman tracker and Particle Filter tracker have been utilized. 

  

To cope with some difficulties, such as occlusion and track continuation 

over entire camera views, multiple cameras that have overlapping field of 

views are chosen as a solution. Using multiple cameras that have 

overlapping field of views and different position angles, more information 

can be obtained about tracked objects. Then, obtained information from 

cameras is used for the solution of correspondence and occlusion 

problems. 
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The tough part of multiple target tracking is the closely spaced target case. 

One of the best approaches to this problem is Multiple Hypotheses 

Tracking which solves this problem by generating track hypotheses [25]. 

When new data is acquired, these hypotheses are evaluated, and the true 

matches are found or if the data is not enough to find the true matches, 

new hypothesis are generated and additional data is waited for the exact 

match. Multiple Hypothesis Tracking is not efficient in real time since 

decisions are made over several scans. Thus a rule-based real time 

tracking algorithm is developed based on fuzzy logic. 

 

1.2. Outline of the Thesis 
 

In Chapter 2, related works and overview of each of the proposed system 

blocks are presented. Moving object detection is described in Chapter 3. 

Three methods are extensively described and compared by means of 

obtained results. Shadow removal and morphological operations are also 

mentioned in this chapter. Moving object tracking is given in Chapter 4. 

Simple Kalman filter tracking and Particle Filter tracking are presented and 

discussed. Rule-based real time tracking algorithm has been proposed in 

Chapter 5, together with a generic idea of multiple target tracking. This 

thesis is summarized in Chapter 6 and some future works are also 

discussed in this chapter. 
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CHAPTER 2 

 

 

 A SURVEY ON VISUAL SURVEILLANCE 
 

 

 

There have been a number of surveys about object detection and tracking 

in the literature [26], [23]. The survey presented here includes the latest 

studies in the literature and covers only those works that are in the same 

context as our study. 

 

2.1. Moving Object Detection 
 

Detecting regions that correspond to moving objects in video is the first 

step of almost every visual surveillance system. Due to dynamic changes 

in scene such as illumination and weather changes, repetitive motions that 

cause clutter (swaying of tree branches and leaves), motion detection is a 

difficult problem to process reliably. The detection methods are mainly 

divided into two groups: optical flow and background modeling and 

subtraction. 
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2.1.1. Background Modeling and subtraction 
 

In the context of stationary camera, background modeling and subtraction 

is a widely used technique [27]. A background model is constructed at 

each pixel location during training phase. In the new frame each pixel is 

classified into background or foreground according to its distance to 

background model. Wren et al [1] used a Gaussian model for each pixel 

which is sufficient for many scenarios. Stauffer et al [2] extended this 

approach into a mixture of Gaussians to handle the situations where the 

value of each pixel switches between multiple processes such as swaying 

of tree branches and leaves. 

 

In W4 system Haritao� lu [5], uses a statistical background model where 

each pixel is represented with its minimum (M) and maximum (N) intensity 

values and maximum intensity difference (D) between any consecutive 

frames observed during initial training period where the scene contains no 

moving objects. A pixel in the current image is classified as foreground if it 

satisfies: 

|M(x, y) � It(x, y)| > D(x, y) or |N(x, y) � It(x, y)| >  D(x, y)        2-1 

 

The weakness of this model comes from its sensitivity to sudden 

illumination changes. 

 

Elgammal et al. [10] uses sample background images to estimate the 

probability of observing pixel intensity values in a nonparametric manner 

without any assumption about the form of the background probability 

distribution. This approach yields quite accurate results under challenging 

outdoor conditions. 
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2.1.2. Optical Flow 
 

Optical flow based motion detection uses characteristics of flow vectors of 

moving objects over time to detect moving regions in an image sequence. 

Main idea is to identify the regions that move together. For example, 

Meyer et al. [9] compute the displacement vector field for the extraction of 

articulated objects. Optical-flow-based methods can be used to detect 

independently moving objects even in the presence of camera motion. 

Phase correlation, Lucas-Kanade and Horn-Schunck methods are the 

mostly used methods for determining optical flow. Optical flow is a very 

accurate method for determining moving objects; however, most flow 

computation methods are computationally complex and very sensitive to 

noise. Thus optical flow cannot be applied to video streams in real time 

without specialized hardware. 

 

2.2. Moving Object Tracking 
 

The objective of tracking is to establish correspondence of objects and 

object parts between consecutive frames of video. These 

correspondences are established by finding the best match according to 

some similarity function calculated with the previous state of the objects 

and the new measurements. Tracking has been a difficult task to apply 

due to inaccurate segmentation of objects. Common problems of 

erroneous segmentation are illumination changes, swaying of tree 

branches and leaves, shadows, partial or full occlusion of objects with 

each other or with stationary items in the scene. Thus for robust tracking 

these problems should be handled carefully.  
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There are various methods in the literature related with visual tracking of 

moving objects. Tracking in video can be categorized according to the 

needs of the applications it is used in or according to the methods used for 

its solution. For outdoor video surveillance whole body tracking is 

generally adequate whereas objects’ part tracking is necessary for some 

indoor surveillance and higher level behavior understanding applications. 

 

There are two common approaches in tracking objects as a whole [28]: 

one is based on correspondence matching and other is based on the use 

of position prediction or motion estimation. The methods that track parts of 

objects employ model-based schemes to locate and track body parts. 

Stick figure, cardboard model [29], 2D contour and 3D volumetric models 

are some examples of model-based schemes. 

 

W4 [5] combines motion estimation methods with correspondence 

matching to track moving objects. It also uses cardboard model [29] which 

represents relative positions and sizes of body parts, in order to track parts 

of people such as heads, hands, torso and feet. In order to handle 

matching even in merge and split cases it keeps appearance templates of 

individual objects. 

 

Amer [28] presents a non-linear voting based scheme for tracking objects 

as a whole. It integrates object features like size, shape, center of mass 

and motion by voting and decides final matching with object 

correspondence. This method can also detect object split and fusion and 

handle occlusions. 

 

Stauffer et al. [2] employs a linearly predictive multiple hypotheses tracking 

algorithm. The algorithm incorporates size and positions of objects for 
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seeding and maintaining a set of Kalman filters for motion estimation. Also, 

Extended Kalman filters are used for trajectory prediction and occlusion 

handling in the work of Rosales and Sclaroff [30]. 

 

As an example of model based body part tracking system, Pfinder [1] 

makes use of a multi-class statistical model of color and shape to track 

head and hands of people in real-time. 

 

2.3. Multiple Object Tracking 
 

When tracking multiple targets the most important part of tracking is the 

observation to track association part. Before applying a Kalman or a 

Particle filter, most likely measurements should be associated to tracks. 

The simplest method to solve the correspondence problem is to use the 

nearest neighbor approach. In the case of closely spaced targets there is 

always a chance that the correspondence is incorrect. An incorrectly 

associated measurement can cause the filter to do the estimation wrongly. 

In the below figure, we can see such a problematic case as explained. 

 

 

Figure 2.1 Closely spaced multiple targets case; P1, P2 are the targets 
predicted positions and O1, O2, O3 are the observations. 
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Global Nearest Neighbor Approach, Joint Probability Data Association 

(JPDA) and Multiple Hypothesis Tracking (MHT) are widely used 

techniques to tackle this problem. Here is a brief description of these 

techniques. 

 

2.3.1. Global Nearest Neighbor Approach (GNN) 
 

Global Nearest Neighbor approach finds the best assignment of 

observations to existing tracks [25]. The term global comes from the fact 

that observation to track assignment is made considering all possible 

observation to track associations under the constraint that an observation 

can be associated with at most one track. In Figure 2.1 Global Nearest 

Neighbor would associate O1 to track 1, O2 to track 2 (we assume that O2 

is closer than O3 to the track 2) and O3 will initiate a new track. In Global 

Nearest Neighbor, track conformation is done by detection of the track in 

five (generally five but number can change) consecutive frames, and track 

deletion is done by missing of the track in 5 (generally five but number can 

change) consecutive frames. Then next states of all tracks are predicted. 

Kalman filter prediction covariance provides the uncertainty that is required 

for gating and association. 

 

GNN approach considers the single most likely hypothesis; thus when the 

targets are widely spaced it gives good results. But, in the case of closely 

spaced targets this approach does not work well and tends to 

disassociations. In order to improve the performance of GNN approach 

one solution was to increase the Kalman filter covariance matrix in order to 

reflect this uncertainty.  
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2.3.2. Joint Probabilistic Data Association (JPDA) 
 

JPDA is a target oriented approach; that is, for a known number of targets 

it evaluates the measurement-to-target probabilities and combines them 

into the corresponding state estimates [25]. The major limitation of the 

JPDA algorithm is its inability to handle new objects entering the field of 

view (FOV) or already tracked objects exiting the FOV. Since the JPDA 

algorithm performs data association of a fixed number of objects tracked 

over two frames, serious errors can arise if there is a change in the 

number of objects. Joint Probabilistic Data Association method offers 

updating the track by a weighted sum of all observations within its gate. 

For the case presented in Figure 2.1, track 1 is updated with O1, O2, O3 

and track 2 is updated with O2 and O3.  

 

2.3.3. Multiple Hypothesis Tracking (MHT) 
 

Multiple Hypothesis Tracking is an algorithm which solves the multiple 

target data association problem in an exact way as the number of track 

hypotheses goes to infinity [25]. Algorithm begins with a set of current 

track hypotheses. Each hypothesis is a collection of disjoint tracks. For 

each hypothesis, a prediction of each object’s position in the next frame is 

made. The predictions are then compared with actual measurements by a 

distance measurement and a set of associations are established for each 

hypothesis based on this distance measurement, then new hypotheses 

are generated. 

 

Each measurement can belong to a new object entering the FOV, a 

previously tracked object, or a spurious measurement. Moreover, a 

measurement may not be assigned to an object because the object may 
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have exited the FOV, or a measurement corresponding to an object may 

not be obtained. The latter happens because either the object is occluded 

or it is not detected due to noise. 

 

The MHT algorithm is computationally exponential both in memory and 

time. To overcome this limitation, Cox and Hingorani [31] use a special 

algorithm to determine best hypotheses in polynomial time for tracking 

interest points. There are other techniques that keep the number of 

hypothesis in acceptable numbers. These techniques are clustering, 

pruning and track merging. Clustering is performed to reduce the number 

of hypothesis that must be generated and evaluated. Clusters are 

collections of tracks that are linked by common observations. Thus 

clusters decompose a large problem into small and manageable problems. 

 

In this study Multiple Hypothesis Tracking technique is not chosen as the 

data association technique since it is computationally exponential both in 

memory and time. 
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CHAPTER 3 
 
 

 MOVING OBJECT DETECTION 
 

 

 

Performance of an automated visual surveillance system considerably 

depends on its ability to detect moving objects. This step is also called 

motion segmentation or foreground extraction. The following actions such 

as moving object tracking, analyzing the motion or classifying objects, 

requires an accurate extraction of the foreground objects. Thus, moving 

object detection is an important part of the visual surveillance systems. 

 

3.1. Foreground Segmentation 
 

The aim of the foreground segmentation is to detect changes between 

consecutive frames which are taken from the same scene and acquired by 

a static camera. The pixels that have significant difference compared to 

the previous ones are labeled as foreground pixels, and other pixels are 

marked as background. The pixels that are labeled as foreground forms 

the segmented moving objects. In order to decide which pixels are 

foreground and which are background there should be a background 

model. If the work is about outdoor scenes, this model should also be able 

to adapt to dynamic scene changes like illumination change, swaying tree 

leaves and shadows. 
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There are many works on moving object segmentation. Due to its 

simplicity and computational efficiency background subtraction method is 

chosen to be examined and implemented. Below some background 

subtraction methods are discussed.  

 

3.1.1. Frame Differencing 
 

Frame differencing is the simplest way of detecting moving objects. In this 

method background is always the previous frame. For detecting 

foreground objects previous frame is subtracted from current frame and 

result is thresholded. The pixels that have larger difference than the 

threshold are labeled as foreground.  
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In the above formula, I(x,y,t) is the intensity value at pixel location (x,y) at 

time t and I(x,y,t-1) is the intensity value at pixel location (x,y) at time t-1. 

M(x,y,t) is the mask image resulting from differencing and thresholding 

operations. 

 

This method is fast because it does not do any background update 

operation and frame differencing is taken as a whole instead of pixel by 

pixel operation. This method is also able to adapt scene changes since it 

takes the previous frame as the background. Besides these advantages 

this method is very sensitive to threshold value, has an aperture problem 

and gives low performance in dynamic scene conditions. 
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3.1.2. Running (Moving) Average 
 

In this method background frame is constructed by calculating the mean 

value of the previous N frames. Moving objects are segmented by 

subtracting the constructed background frame from current frame. The 

pixels that have difference values greater than the threshold are labeled 

as foreground. This is shown in the equation below: 
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And the update equation is: 

 

1,, I*)1() 1-ty, x,I( * I --+= treftref aa
                   3-3 

 

In the above equation m(x,y,t) is the mask, �  is the learning parameter. 

Moving average filtering is not robust to slowly moving objects and 

recovers slowly because of averaging; it also suffers from threshold 

sensitivity and cannot cope with multi-modal distributions, whereas yields 

a better background modeling with respect to the frame differencing. 

 

3.1.3. Mixture of Gaussians 
 

The tracking systems should be robust to lighting changes as well as they 

should deal with the movement through cluttered areas, repetitive motion 

like swaying trees and objects being left or removed. Traditional methods 

fail in these situations. Gaussian Mixture Models creates a background 

model that is adaptive to changes in background [32]. 
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The Gaussian Mixture Model approach models each pixel as a mixture of 

Gaussians. Each pixel is classified based on whether the Gaussian 

distribution which represents it most effectively is considered part of the 

background model. This results in a stable background model which is 

robust to lighting changes, repetitive motions like swaying trees and long 

term scene changes like parking car, a left or removed object. 

 

Instead of modeling the entire background as one particular type of 

distribution, GMM approach models every pixel as a mixture of Gaussians. 

Which Gaussian may correspond to the background is determined based 

on the persistence and the variance of each of the Gaussians. Pixel 

values that do not fit the background distributions are considered 

foreground until there is a Gaussian that includes them with sufficient, 

consistent evidence supporting it. Thus background robustly deals with 

lighting changes, repetitive motion of scene elements, slowly moving 

objects and left or removed objects. Repetitive motions are learned, and a 

model for the background distribution is generally maintained even it is 

temporarily replaced by another distribution, which leads to faster recovery 

when objects are removed. This method has two significant parameters, 

the learning constant and the proportion of the data that should be 

accounted for by the background.  

 

Each time the parameters of the Gaussians are updated, the Gaussians 

are evaluated using simple heuristic to hypothesize which are most likely 

to be part of the background process. Pixel values that do not match one 

of the pixels background Gaussians are considered as foreground. Then 

these pixels are grouped and moving objects are found. 
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This method models a specific pixel value as a mixture of weighted K 3-D 

Gaussian distributions in the color space. The value of K is generally 3 to 

5; it is determined by the available memory and computational power. The 

recent history of each pixel, {X1, ...,Xt}, is modeled by a mixture of K 

Gaussian distributions. The probability of observing the current pixel value 

is: 

�
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            3-4 

where � i,t is an estimate of the weight (what portion of the data should be 

accounted for by this Gaussian) of the ith Gaussian in the mixture at time t, 

� i,t and � i,t are the mean value and covariance matrix of the ith Gaussian in 

the mixture at time t, and �  is a Gaussian probability density function: 
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For computational reasons, the covariance matrix is assumed to be of the 

form: 

 

Iktk
2

, s=S
                 3-6 

 

This assumes that the red, green, and blue pixel values are independent 

and have the same variances. While this is certainly not the case, the 

assumption allows us to avoid a costly matrix inversion at the expense of 

some accuracy. 
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Thus, the distribution of recently observed values of each pixel in the 

scene is characterized by a mixture of Gaussians. Each new pixel value 

will be represented by one of the major components of the mixture model 

and used to update the parameters of that component of the mixture. 

 

Every new pixel value, Xt, is checked against the existing K Gaussian 

distributions (starting with the most likely background Gaussians) until the 

first match is found. A match is defined as a pixel value within 2.5 standard 

deviations of a distribution. If none of the K distributions match the current 

pixel value, the least probable distribution is replaced with a distribution 

with the current pixel value as its mean value, an initially high variance, 

and low prior weight. The prior weights of the K distributions at time t are 

adjusted as follows 

 

1,, *)1(),(* --+= tktk tkM waaw
                 3-7 

 

where, a  is the learning rate and tkM ,  is ‘1’ for matched models, and ‘0’ 

for remaining models. 

 

The mean (� ) and variance (	 ) parameters for unmatched distributions 

remain the same. The parameters of the distribution which matches the 

new observation are updated as follows 
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where ),|( kktX smahr = . These equations are logically the same as the 

equations used in weight updating equation and in running average 

method. 

 

Measurements must be organized such that any changes in the scene 

must be inserted into the model. For this reason, Gaussians are evaluated 

according to the following approach. First, the Gaussians are ordered by 

the value of � /	 . This value increases as the distribution gains more 

evidence and as the variance decreases. After re-estimating the 

parameters of the mixture, it is sufficient to sort from the matched 

distribution towards the most probable background distribution, because 

only the matched models relative value will have changed. This ordering of 

the model is effectively an ordered, open-ended list, where the most likely 

background distributions remain on top and the less probable transient 

background distributions gravitate towards the bottom and are eventually 

replaced by new distributions. Then the first B distributions are chosen as 

the background model, where 
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where T is a measure of the minimum portion of the data that should be 

accounted for by the background. This takes the “best” distributions until a 

certain portion, T, of the recent data has been accounted for. If a small 

value for T is chosen, the background model is usually unimodal. If this is 

the case, using only the most probable distribution will save processing. If 

T is higher, a multi-modal distribution caused by a repetitive background 

motion (e.g., leaves on a tree, a flag in the wind, a construction flasher, 

etc.) could result in more than one color being included in the background 
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model. This results in a transparency effect which allows the background 

to accept two or more separate colors. 

 

3.2. Results and Discussion 
 

Acquired results of moving object detection methods and comparison of 

these methods have been presented in this section. PETS2001 video 

sequence has been used to obtain the results of the methods. 

 

 

(a)      (b) 

 

 

         (c)       (d) 

Figure 3.1 Results of background subtraction algorithms. (a) Input frame   
(b) Frame differencing (c) Running average (d) Mixture of Gaussians 
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Frame differencing is the simplest way of detecting moving objects. This 

method is fast because it does not do any background update operation. 

Besides these advantages this method is very sensitive to threshold value, 

has an aperture problem and gives low performance in dynamic scene 

conditions. 

 

Compared to frame differencing, moving average yields a better 

background modeling. But it has some deficiencies like not being robust to 

slowly moving objects, recovering slowly because of averaging. It also 

suffers from threshold sensitivity and cannot cope with multi-modal 

distributions. 

 

In tracking systems the system should be robust to lighting changes as 

well as they should deal with the movement through cluttered areas, 

repetitive motion like swaying trees and objects being left or removed. 

Traditional methods fail because of these situations. GMM creates a 

background model that is adaptive to changes in background.  

 

It can be said that among all of the methods, mixture of Gaussians is the 

most powerful method since it is robust to lighting changes also it deals 

with movement through cluttered areas, repetitive motion like swaying 

trees and objects being left or removed. Consequently, it has been chosen 

as the detection method for subsequent tracking module. Some sample 

results of GMM algorithm on PETS-2001 video sequence is presented. 

 



23 

   

 

(a) Frame-5 

 

 

(b) Frame-500 

 

 

(c) Frame-900 
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(d) Frame-1300 

 

 

(e) Frame-1435 

Figure 3.2 Results of GMM method on PETS-2001 data set-3 camera-1. 
On the left tracking results during illumination changes and swaying trees 

are shown. On the right moving pixels are shown as white. 

 

3.3. Sub-operations 
 

There are some sub-operations that should be applied to outputs of the 

foreground segmentation process since there is noise and shadow 

problem. A shadow removal algorithm and morphological operations are 

used to remove shadow and noise. 
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3.3.1. Shadow Removal 
 

Shadow is a problematic case in moving object segmentation problem. 

Since shadows cause considerable intensity change, the parts of the 

scene that is affected from shadows are taken as foreground. Thus 

shadow removal is a crucial part of a visual surveillance system. Due to its 

simplicity and computational efficiency the algorithm proposed in [18] is 

applied. The main idea of algorithm is that the shadow changes the 

intensity of background but normalized intensity values of shadow pixels 

are approximately the same as background.  
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Is(x,y) = � I(x,y)           3-12 

 

where I(x,y) is the intensity value at point (x,y) and subscript “s” denotes 

the value after shadow. The foreground pixels, having intensity values 

different from the background, but normalized color values that are close 

to background values, are labeled as shadow region. Below, result of 

shadow removal on PETS-2001 video sequence is presented. 
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Figure 3.3 Result of shadow removal on PETS-2001 data set-3 camera-1. 
On the left tracking result is presented. On the right moving pixels are 

shown as white. 

 

3.3.2. Morphological Operations 
 

Morphological operations are used to remove the noise in the image which 

is obtained by moving object segmentation process. To remove the noise 

erosion and dilation operations are used.  

 

After the motion segmentation process we have a foreground map 

consists of 1’s and 0’s. A morphological operation is a matrix which is 

shifted over the image and at each pixel of the image its elements are 

compared with the ones on the image. If the two sets match the condition 

defined by the set operator, the pixel underneath the origin of the 

structuring element is set to a pre-defined value. Erosion and dilation are 

two fundamental morphological operations and applied to binary image 

which is obtained by moving object segmentation and shadow removal. 
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3.3.2.1. Erosion 
 

The basic effect of the erosion operator is to erode the small noise from 

the foreground pixel map. It also erodes boundaries of the regions for the 

foreground pixels. Thus dilation operation should be followed after erosion. 

A structuring element which has been utilized for this purpose is shown in 

(3-13). Each foreground pixel in the input image is aligned with the center 

of the structuring element.  
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The effect of this operation is to remove any foreground pixel that is not 

completely surrounded by other white pixels as shown in Figure 3.4. As a 

result foreground regions shrink and holes inside a region grow. 

 

  

(a)          (b) 

Figure 3.4 Effect of erosion operation, (a) Output image of background 
subtraction process, (b) Eroded image. 
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3.3.2.2. Dilation 
 

Dilation is the dual operation of erosion. Foreground image borders are 

eroded due to erosion. Dilation operation should be applied after erosion 

in order to have the original image border. Since first erosion is applied, 

the noise that was removed by erosion operation will not be back after the 

dilation operation. A sample structuring element which has been utilized is 

given in (3.14). 
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(a)          (b) 

Figure 3.5 Effect of dilation operation, (a) Eroded image, (b) Dilated image 
(resulting image of morphological operations). 

 

3.3.3. Connected Component Labeling 
 

In order to find moving objects separately we should apply connected 

component labeling. Here is a sample foreground matrix: 
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BW = [1     1     1     0     0     0     0     0 

       1     1     1     0     1     1     0     0 

       1     1     1     0     1     1     0     0 

       1     1     1     0     0     0     1     0 

       1     1     1     0     0     0     1     0 

       1     1     1     0     0     0     1     0 

       1     1     1     0     0     1     1     0 

       1     1     1     0     0     0     0     0]; 

 

Result of four connected component labeling: 

 

L =     [1     1     1     0     0     0     0     0 

      1     1     1     0     2     2     0     0 

      1     1     1     0     2     2     0     0 

      1     1     1     0     0     0     3     0 

      1     1     1     0     0     0     3     0 

      1     1     1     0     0     0     3     0 

      1     1     1     0     0     3     3     0 

      1     1     1     0     0     0     0     0] 
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CHAPTER 4 

 

 

 MOVING OBJECT TRACKING 
 

 

 

The objective of tracking is to establish correspondence of objects and 

object parts between consecutive frames of video. These 

correspondences are established by finding the best match according to 

some similarity function calculated with the previous state of the objects 

and the new measurements. As surveillance systems became popular, 

moving object tracking became an important research topic. The 

increasing need for automated video analysis has generated a great deal 

of interest in object tracking algorithms. Most important part of the moving 

object tracking is associating the measurements with the targets. For a 

robust tracking system this association should be done correctly. In this 

thesis, we deal with the association problem: doing the association 

correctly and fast. There are several methods that have been used to track 

moving objects. Kalman tracker is the most popular tracker, and we will 

concentrate on this method. 

  

Two methods have been used to track moving objects: Kalman tracker, 

Particle Filter Tracker. These methods have been evaluated using 

PETS2001 [8] and PETS2000 [37] data sets. 
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4.1. Kalman Tracker 
 

Kalman filtering is a popular approach in tracking to estimate the next state 

of moving objects. In this work, standard Kalman filter is used in the 

concept of Interacting Multiple Model Filtering approach. Instead of using a 

single motion model, Interacting Multiple Model Filtering approach uses 

multiple motion models. According to the error calculations between the 

estimated state and the measurement state, the motion model which is in 

action is determined. 

 

4.1.1. Kalman Filter 
 

In 1960, R.E. Kalman published his famous paper describing a recursive 

solution to the discrete-data linear filtering problem [14]. Since that time 

the Kalman filter has been the subject of extensive research and 

application, particularly in the area automated surveillance systems. 

 

Kalman filter is a set of equations that provides an efficient computational 

means to estimate the state of a process by minimizing the mean of the 

squared error. The filter supports estimations of past, present, and future 

states. 

 

The Kalman filter addresses the general problem of trying to estimate the 

state xÎ Rn of a discrete-time controlled process that is governed by the 

linear stochastic difference equation 

111 --- ++= kkkk wBuAxx
          4-1 

 

with a measurement defined by the equation 
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kkk vHxz +=
                         4-2 

 

The random variables wk and vk represent the process and measurement 

noise, respectively. They are assumed to be independent of each other, 

white, and with normal probability distributions. 

 

p(w) ~ N(0, Q) 

p(v) ~ N(0, R) 

 

In practice, the process noise covariance Q and measurement noise 

covariance R matrices might change with each time step or measurement; 

however they are assumed to be constant in our work. 

 

The next state of a process is estimated by a Kalman filter by the scheme 

given in Figure 4.1. The time update projects the current state estimate 

ahead in time. The measurement update adjusts the projected estimate by 

an actual measurement at that time. 

 

 

 

Figure 4.1The Kalman filter cycle. 
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For time-update and measurements update steps of Kalman filter, there 

are equations by which a priori (xk
-) and posteriori (xk) estimates are 

determined. 

 

Time update equations (predict): 

11ˆˆ --
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Measurement update (correct): 
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4.1.2. Moving Object Tracking via Kalman Filter 
 

After detection of moving object, Kalman tracker is used as point tracker. 

Center position of the moving object has been used as core point to be 

estimated. The state vector of Kalman filter has been defined as x and y 

positions and displacements in x and y directions per unit time interval.  

 

( )yxcck vvyxX =
                     4-8 
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The Kalman filtering algorithm estimates the state vector based on a 

measurement errors. State model has been assumed as linear and 

defined by 

11 -- += kkk AXX w
                        4-9 
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where A is the transition matrix and �  is the estimation error vector. We 

also assume that a linear relationship between state vector and 

measurements.  
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Where H is observation matrix and v is the measurement error. Using 

these values of transition and observation matrix, time-update and 

measurement-update equations have given the estimate of next state of 

the object.  

 

4.1.3. Interacting Multiple Model Filtering Approac h 
 

Early techniques for target tracking used single motion model based 

approaches, which do not give good results when the target changes its 

motion model while tracking or the motion model of the filter does not 
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match the target’s motion model. Advantage of using multiple model based 

tracking is that a target that moves according to various motion models 

can be tracked reliably. Motion model switching capability of multiple 

model framework tracks targets much more accurately than single motion 

model based trackers. General form of the multiple model filters assume 

that there is no motion model switching during the estimation process. 

Interacting Multiple Model algorithm can switch between motion models 

automatically according to a Markov chain process [33]. IMM algorithm 

can be used in various applications such as radar tracking, air craft 

tracking, and in our project we are using it for visual tracking. 

 

Normally, to track a target we can use a single Kalman filter. For 

successful tracking the correct motion model should be presented to the 

Kalman filter, but this cannot be known in real time applications. The 

potential weakness of a single motion model based trackers is single 

motion model can lead to under-modeling and over-modeling. Under-

modeling occurs when the Kalman filter state model does not describe the 

actual state adequately. It is possible to construct a Kalman filter that 

adequately describes any type of motion. This solves the under-modeling 

problem, but such kind of Kalman filter will have a large number of states 

and have complex state model. Thus although it is possible to construct 

such a Kalman filter, it will not be practical in noisy environment. High-

order Kalman filters containing states that are derivatives of derivatives are 

very sensitive to noise. Also it is very difficult to handle such complex 

Kalman filters compared to much simpler ones. 

 

To overcome the above problems one solution is to use a number of filters 

based on the possible expected motion models and then combine the 

outputs of the filters according to the probability of the filter to have the 
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correct motion model at that time. In IMM approach at time k the state 

estimate is computed under each possible current model using r (in our 

case r = 3 since we use 3 motion models) filters, with each filter using a 

different combination of the previous model conditional estimates. The 

figure below shows one cycle of the IMM algorithm. 

 

 

 

Figure 4.2 One cycle of IMM algorithm. 

 

One cycle of the IMM algorithm consist of five steps. 
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4.1.3.1. Calculation of the Mixing Probabilities 
 

The probability that mode Mi is in effect at k conditioned on Zk-1 

measurements is given by 
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where the mode transition probability Pij which is known or decided initially 

and the normalizing constants are  
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4.1.3.2. Mixing 
 

Starting with )11(ˆ -- kkxi  one computes the mixed initial condition for the 

filter matched to Mj(k) is 
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The covariance corresponding to the above is  

[ ]
[ ]

rj

kkxkkx

kkxkkxkkP

kkMkkP

Toji

ojii

ji

r

i

oj

,...,1

)11(ˆ)11(ˆ

*)11(ˆ)11(ˆ)11(

)11()11(
1

=

��

�


�

��

�
�
�

-----

-----+--

--=-- �
=

   4-16 

 



38 

   

4.1.3.3. Mode-matched Filtering 
 

The likelihood functions corresponding to the r filters are given by  
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4.1.3.4. Mode Probability Update 
 

This is given by  
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where cj is the normalizing constant used in calculation of mixing 

probabilities, and �
=
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)(  is the normalizing constant for the 

equation above. 

 

4.1.3.5. Estimate and Covariance Combination 
 

Combination of the model conditioned estimates and covariance is done 

according to the mixture equations 

),()(ˆ)(ˆ
1

kMkkxkkx j

r

j

j�
=

=
         4-19 

[ ][ ]{ }Tjjj
j

r

j

kkxkkxkkxkkxkkPkkMkkP )(ˆ)(ˆ)(ˆ)(ˆ)()()(
1

--+= �
=    4-20 

 

 



39 

   

4.2. Active Contours (Snakes) 
 

Active contours have been used in several applications in computer vision 

such as region segmentation, contour extraction [3]. In our work snakes 

are used to extract exact shape of the target. This information is not used 

in this study, but as a future work, the use of exact shapes obtained by 

snakes can be useful. 

 

4.3. Particle Filter Tracking  
 

In many application areas it is becoming important to include nonlinearity 

and non-Gaussianity in order to model dynamics of physical systems 

accurately [34]. In target tracking the main objective of the particle filtering 

is to track a target as it evolves over time with a non-Gaussian and 

potentially multi-modal pdf. Particle filters are sequential Monte Carlo 

methods based on point mass representations of probability densities. The 

basis of particle filtering is to construct a sample-based representation of 

the pdf of the target. Particles from the target are associated with weights 

that represent the quality of that particle. Target state estimate is 

represented by a weighted sum of all particles. Particle filtering is recursive 

and has two main phases: prediction and update. In prediction phase each 

particle is updated according to the existing model and random noise is 

included in order to represent the noise on the particle. In update phase 

each particle’s weight is re-evaluated based on the latest sensor 

information. Then particles that have very small weights are eliminated. 

 

Kalman filter assumes that the posterior density is Gaussian and, thus, the 

density is parameterized by a mean and covariance. If these assumptions 

hold Kalman filter is the optimal filter for the solution of the tracking 
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problems. Generally densities are non-Gaussian and there should be 

some other solution for these cases. One of the solutions for these cases 

is the Extended Kalman Filter approach, which approximates the non-

Gaussian densities by a Gaussian. Unscented Kalman filter is obtained 

from EKF framework by unscented transform. In UKF, a set of points are 

deterministically selected from the Gaussian approximation and 

propagated through the true nonlinearity. Then the parameters of the 

Gaussian approximation are re-estimated. Since UKF approximates the 

nonlinearity better than EKF, generally it gives better performance. But 

EKF always approximates p(Xk | Z1:k) to be Gaussian, and if the true 

density is non-Gaussian than EKF can never describe the dynamics of the 

system accurately. 

 

For solution of the above problems Particle Filtering is used which is a 

technique for implementing recursive Bayesian filter by Monte Carlo 

simulations. The key idea of the Particle Filtering is to represent the 

required posterior density function by a set of random samples with 

associated weights. Then, estimates are computed based on these 

samples and weights. As the number of samples gets larger, this 

characterization becomes an equivalent representation to the usual 

posterior pdf. Sequential Importance sampling is the optimal technique for 

Particle Filtering. Because of high computational load this method is not 

chosen. Also in this study Interacting Multiple Model filtering approach is 

used which is capable of solving most of the problems. 

 

4.4. Results and Discussions  
 

In this chapter the result of the Kalman tracker can be seen. When object 

motion is linear Kalman tracker gives good results, but generally this not 
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the case. Thus we decided to use and Interacting Multiple Model Kalman 

Filer approach in order to track objects in a better way. In Figure 4.2 

estimated (blue) and real (green) trajectory of a moving object is shown. 

 

 

 

Figure 4.3 Kalman Tracker: Estimated and real trajectories of a moving 
object. 
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CHAPTER 5 

 
 

 RULE-BASED TRACKING 
 

 

 

The objective of tracking is to establish a correspondence of objects and 

object parts between consecutive frames of video. These 

correspondences are established by finding the best match according to 

some similarity function calculated with the previous state of the objects 

and the new measurements. In this thesis a rule based tracker which is 

based on fuzzy logic is first developed for a single camera then extended 

to multiple cameras.  

 

For real-time tracking, rule based methodology is preferred since 

computational load is very low compared to the probabilistic data 

association techniques and Multiple Hypothesis Tracking Technique (in 

MHT memory load is also very high). 

  

In multi-target tracking the tough part of data association is the case of 

closely spaced targets. For discrimination of the closely spaced targets the 

use of additional information gathered from the sensors is important. 

Target shape, dimensions and intensity are the features that can be used 

for solving image based data association problem. Fuzzy logic presents a 

systematic way of combining this information. 
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5.1. Correlation Calculation Using Fuzzy Logic 
 

This part of the visual surveillance system is called Fuzzy Data 

Association Engine (FDAE) which is used to calculate the observation-to-

track correlation value that is used to solve the data association problem. 

In order to calculate the observation-to-track correlation value Euclidean 

distance and are ratio features are used. Euclidean distance is the 

distance between the target’s predicted center of area and the 

observation’s center of area. Area ratio is ratio of target’s predicted area to 

measurement’s area. These are the inputs of Fuzzy Data Association 

Engine, and the observation-to-track correlation value is the output. After 

having correlation values between all the observation-track pairings, 

observation-to-track correlation matrix is formed. Below a sample 

observation-to-track correlation matrix is given. 

Table 5-1 Sample Obervation-to-Track Correlation Matrix 

 
O\T T-1 T-2 T-3 T-4 T-5 

O-1 0.2 0.85 0 0.1 0 

O-2 0.4 0 0.7 0 0 

O-3 0.9 0.35 0 0.2 0 

O-4 0.1 0.2 0.2 0.75 0 

O-5 0.35 0 0.1 0 0 

 

Observation-to-track correlation matrix does not directly solve the 

observation-to-track association problem. It only shows which track is how 

much correlated to which observation. 
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Fuzzy data association engine is composed of four sub-blocks which are 

Fuzzification Interface, Fuzzy Knowledge Base, Fuzzy Inference Engine 

and Defuzzification Interface. 

 

5.1.1. Fuzzification Interface 
 

Fuzzification Interface transforms each numerical data received from the 

sensor measurements into fuzzy variables. In this case the numerical data 

is ratio of target’s predicted area to observation’s area, and the Euclidean 

distance between the target’s predicted center of area (output of the 

Kalman filter) and the observation’s center of area. 

 

Euclidean distance between the predicted position of the target and the 

measurement position is calculated, and this value is transformed into 

fuzzy variables: (Exact Position (EP), Very Very Close (VVC), Very Close 

(VC), Close (C), Far (F), Very Far (VF), Very Very Far (VVF)). The 

maximum Euclidean distance of a target in consecutive frames can be 400 

pixels length (frame size is 320x240). According to maximum distance, the 

Euclidean distance between the target’s predicted center of area and the 

observation’s center of area is fuzzified. Fuzzification of Euclidean 

distance is presented in Figure 5.1. 
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Figure 5.1 Fuzzification of input variable distance. 

 

The ratio of target’s predicted area to the observation’s area is calculated 

and transformed into fuzzy variables: (Very Very Small Ratio (VVSR), Very 

Small Ratio (VSR), Small Ratio (SR), Exact Ratio (ER), High Ration (HR), 

Very High Ratio (VHR), Very Very High Ratio (VVHR)). As objects get 

closer to the camera or get away from the camera, their areas on the 

frames get larger or smaller. Because of this fact we are using the 

predicted target area instead of the target’s exact area in previous frame. 

In Figure 5.2 fuzzification of area ratio is presented. 
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Figure 5.2 Fuzzification of input variable area ratio. 

 

5.1.2. Fuzzy Knowledge Base 
 

Fuzzy Knowledge Base contains the IF-THEN rules. Fuzzy Inference 

Engine employs particular kind of fuzzy logic. It stimulates the human 

decision making procedure, and employs Fuzzy Knowledge Base and 

fuzzy input to generate fuzzy decisions. In order to get the IF-THEN rules, 

fuzzified inputs are combined so that they give the degree of observation 

to track correlation value. 
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Table 5-2 Generation of IF-THEN Rules 

 
A.R.\E.D. EP VVC VC C F VF VVF 

VVSR MA SA VSA NA NA NA NA 

VSR HA MA SA VSA NA NA NA 

SR VHA HA MA SA VSA NA NA 

ER FA VHA HA MA SA VSA NA 

HR VHA HA MA SA VSA NA NA 

VHR HA MA SA VSA NA NA NA 

VVHR MA SA VSA NA NA NA NA 

 

In the table, NA represents No Association, VSA represents Very Small 

Association, SA represents Small Association, MA represents Medium 

Association, HA represents High Association, VHA represents Very High 

Association, and FA represents Full Association. 

 

From the combination of fuzzified inputs following IF-THEN rules are 

obtained: 

 

IF Distance is EP and Ratio is VVSR THEN Association if MA 

IF Distance is EP and Ratio is VSR THEN Association if HA 

IF Distance is EP and Ratio is SR THEN Association if VHA 

IF Distance is EP and Ratio is ER THEN Association if FA 

IF Distance is EP and Ratio is HR THEN Association if VHA 

IF Distance is EP and Ratio is VHR THEN Association if HA 

IF Distance is EP and Ratio is VVHR THEN Association if MA 
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IF Distance is VVC and Ratio is VVSR THEN Association if SA 

IF Distance is VVC and Ratio is VSR THEN Association if MA 

IF Distance is VVC and Ratio is SR THEN Association if HA 

IF Distance is VVC and Ratio is ER THEN Association if VHA 

IF Distance is VVC and Ratio is HR THEN Association if HA 

IF Distance is VVC and Ratio is VHR THEN Association if MA 

IF Distance is VVC and Ratio is VVHR THEN Association if SA 

 

IF Distance is VC and Ratio is VVSR THEN Association if VSA 

IF Distance is VC and Ratio is VSR THEN Association if SA 

IF Distance is VC and Ratio is SR THEN Association if MA 

IF Distance is VC and Ratio is ER THEN Association if HA 

IF Distance is VC and Ratio is HR THEN Association if MA 

IF Distance is VC and Ratio is VHR THEN Association if SA 

IF Distance is VC and Ratio is VVHR THEN Association if VSA 

 

IF Distance is C and Ratio is VVSR THEN Association if NA 

IF Distance is C and Ratio is VSR THEN Association if VSA 

IF Distance is C and Ratio is SR THEN Association if SA 

IF Distance is C and Ratio is ER THEN Association if MA 

IF Distance is C and Ratio is HR THEN Association if SA 

IF Distance is C and Ratio is VHR THEN Association if VSA 

IF Distance is C and Ratio is VVHR THEN Association if NA 

 

IF Distance is F and Ratio is VVSR THEN Association if NA 

IF Distance is F and Ratio is VSR THEN Association if NA 

IF Distance is F and Ratio is SR THEN Association if VSA 

IF Distance is F and Ratio is ER THEN Association if SA 

IF Distance is F and Ratio is HR THEN Association if VSA 
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IF Distance is F and Ratio is VHR THEN Association if NA 

IF Distance is F and Ratio is VVHR THEN Association if NA 

 

IF Distance is VF and Ratio is VVSR THEN Association if NA 

IF Distance is VF and Ratio is VSR THEN Association if NA 

IF Distance is VF and Ratio is SR THEN Association if NA 

IF Distance is VF and Ratio is ER THEN Association if VSA 

IF Distance is VF and Ratio is HR THEN Association if NA 

IF Distance is VF and Ratio is VHR THEN Association if NA 

IF Distance is VF and Ratio is VVHR THEN Association if NA 

 

IF Distance is VVF and Ratio is VVSR THEN Association if NA 

IF Distance is VVF and Ratio is VSR THEN Association if NA 

IF Distance is VVF and Ratio is SR THEN Association if NA 

IF Distance is VVF and Ratio is ER THEN Association if NA 

IF Distance is VVF and Ratio is HR THEN Association if NA 

IF Distance is VVF and Ratio is VHR THEN Association if NA 

IF Distance is VVF and Ratio is VVHR THEN Association if NA 

 

The output of the Fuzzy Data Association Engine is the observation to 

track correlation value. In Figure 5.3, output membership is presented. 
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Figure 5.3 Output membership. 

 

5.1.3. Defuzzification Interface 
 

Defuzzification Interface transforms the fuzzy output into the numerical 

data for use. In this study centroid is selected as defuzzification method. 

The output of the defuzzification step is the correlation value. Track 

initiation, track confirmation and track update processes are done 

according to this correlation value. 

 

5.2. Single Camera Tracking 
 

In this part of the thesis, objects that are detected by cameras are tracked 

independently. Features that are obtained from single camera are used. 

No additional information from other camera is used. In the tracking part 
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we define track strength as the probability of a track being a real track. We 

will use track strength throughout the study. 

 

In order to solve the observation-to-track association problem the 

observation-to-track correlation matrix, which is the output of the Fuzzy 

Data Association Engine will be used. Observation-to-track correlation 

matrix does not directly solve the observation-to-track association 

problem. It only shows which track is how much correlated to which 

observation. The job is to find the correct observation-track pairings. Here, 

additional rules are used to solve the problem. These rules are 

 

1) A track can be associated with one observation. Observation-to-

track correlation value that is calculated by Fuzzy Data Association 

Engine affects the track strength.  

a) Full Association, Very High Association and High Association 

increases the track strength, 

b) Medium Association does not affect the track strength, 

c) Small Association and Very Small Association decreases the 

track strength, 

2) An observation can be associated more than one track (occlusion 

case). Occluded tracks’ strength is not affected. 

3) If tracks are occluded with each other (merged), a new track is 

formed. This newly formed track is tracked until the occluded tracks 

split. When the occlusion finishes the track that is formed by 

occlusion is deleted. 

4) When the occlusion finishes the occluded tracks are matched with 

observations. End of occlusion is declared if the threshold added 

area of the track that is formed by occlusion contains more than one 

observation. During the occlusion, occluded tracks may have 
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changed the direction of move and velocity. Thus the matching after 

the occlusion is not reliable. The track strengths are not affected by 

this matching procedure. 

5) Observations that are not associated with existing tracks and track 

candidates initiate new track candidates. 

6) A track candidate becomes a tracks if it seen in five consecutive 

frames. Every appearance of the track candidate increases its 

strength. After five iterations, track strength is above the track 

threshold. Thus the candidate becomes a real track. 

7) If the track candidate is missed in even one frame, it is deleted. 

8) The strengths of the tracks that are not associated with 

observations are decreased.  These tracks are tracked in the 

background until there is an observation-to-track association. 

a) At every iteration, it is checked if there is an observation-to-

track-association. If not, the track strengths are decreased. 

b) If the predicted position of the track is out of the field of view of 

the camera, then the track strength decreases more. 

9) The tracks that have strengths below the threshold are deleted. 

 

When an observation is correlated with more than one track then these 

tracks are assumed to be occluded. This is the case like presented in 

Figure 5.5. In occlusion case an occlusion matrix is calculated using the 

predicted positions of the tracks and track’s bounding boxes. If the 

bounding boxes overlap or their distance is lower than a threshold, the 

corresponding cell of the occlusion matrix is made 1. After this calculation 

we have a matrix like the one given in Table 5-3. 
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Table 5-3 Sample Occlusion Matrix 

 

 T-1 T-2 T-3 T-4 T-5 

T-1 0 1 0 0 0 

T-2 1 0 0 0 0 

T-3 0 0 0 0 0 

T-4 0 0 0 0 0 

T-5 0 0 0 0 0 

 

From this matrix we can say that tracks T-1 and T-2 may be occluded with 

each other. If there is only one observation that is associated with tracks 

T-1 and T-2 in the observation-to-track correlation matrix, it is proved that 

tracks T-1 and T-2 are occluded. In this case a new track is formed, and 

occluded tracks are tracked in the background. Every frame tracks are 

checked if their occlusion ended. Occlusion is declared as ended when 

there are more than one observation in the threshold added area of the 

track formed by occlusion. When the occlusion finishes, the track that is 

formed as a result of occlusion is deleted and the tracking of occluded 

tracks continued normally. 

 

After observation-to-track association is done, with the help of observation-

to-track association matrix, occlusion matrix and rules, tracks are updated 

with associated observations. During occlusion, the occluded tracks are 

updated by the predicted data by Kalman filter, since there is no 

observation data for the update phase. 
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In Single Camera Tracking, the observation-to-track association technique 

and the rules are used as explained above. Track initiation, track 

confirmation and track update procedures are sub-parts of Single Camera 

Tracking. 

 

5.2.1. Track Initiation 
 

Track initiation begins with the rule “Observations that are not associated 

with existing tracks and track candidates initiate new track candidates.” 

For this step, first observation-to-track correlation matrix is formed as 

shown below.  

Table 5-4 Sample Observation-to-Track Matrix that is used for track 
initiation 

 

O\T T-1 T-2 T-3 T-4 T-5 

O-1 0.2 0.85 0 0.1 0 

O-2 0.4 0 0.7 0 0 

O-3 0.9 0.35 0 0.2 0 

O-4 0.1 0.2 0.2 0.75 0 

O-5 0.35 0 0.1 0 0 

 

After applying Rule-1, observation-to-track correlation matrix becomes as 

presented in Table 5-5; 
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Table 5-5 Sample Observation-to-Track Matrix, After Rule-1 is applied 

 

O\T T-1 T-2 T-3 T-4 T-5 

O-1 0 0.85 0 0 0 

O-2 0 0 0.7 0 0 

O-3 0.9 0 0 0 0 

O-4 0 0 0 0.75 0 

O-5 0 0 0 0 0 

 

According to the above matrix track T-1 is associated with observation O-

3, track T-2 is associated with observation O-1, track T-3 is associated 

with observation O-2 and track T-4 is associated with observation O-4. 

Track T-5 is not associated with any observations since there are not any 

observations that are correlated with track T-5. Observation O-5 is not 

correlated with existing tracks. Thus O-5 initiates a new track candidate. 

 

5.2.2. Track Confirmation 
 

A track is confirmed (a track candidate becomes a true track) only when 

five consecutive correlated observations are received. A track candidate is 

deleted even only one non-correlated observation is received. When this 

object is detected again, whole procedure starts from track initiation 

procedure. 
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For track confirmation procedure an observation-to-track candidate matrix 

is formed. These observations are the ones that are not correlated with 

existing tracks. 

Table 5-6 Sample Observation-to-Track Candidate Matrix 

 

O\TC TC-1 TC-2 TC-3 TC-4 TC-5 

O-1 0.2 0.85 0 0.34 0 

O-2 0 0 0.7 0.18 0 

O-3 0.9 0 0.22 0 0 

O-4 0 0.35 0 0.75 0 

 

After applying Rule-1 this matrix becomes as presented below. 

 

Table 5-7 Sample Observation-to-Track Candidate Matrix, After Rule-1 is 
applied 

 

O\TC TC-1 TC-2 TC-3 TC-4 TC-5 

O-1 0 0.85 0 0 0 

O-2 0 0 0.7 0 0 

O-3 0.9 0 0 0 0 

O-4 0 0 0 0.75 0 
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From the above matrix, track candidate TC-1 is associated with O-3, TC-2 

is associated with O-1, TC-3 is associated with O-2, and TC-4 is 

associated with O-4. TC-5 is not associated with any observations. By 

using the output of this matrix, another matrix that shows the number of 

consecutive correlation of track candidates is formed. 

Table 5-8 Sample Number of Consecutive Correlated Observations Matrix 

 

TC\I.N. k-4 k-3 k-2 k-1 k NOCCO 

TC-1 1 1 1 1 1 5 

TC-2 0 0 1 1 1 3 

TC-3 0 1 1 1 1 4 

TC-4 1 1 1 1 1 5 

TC-5 0 0 1 1 0 2 

 

In this matrix TC stands for Track Candidate, I.N stands for iteration 

number, and NOCCO stands for number of consecutive correlated 

observations. 1s mean that, at that iteration corresponding track candidate 

has an associated observation. 0s coming after 1s mean that, that track 

does not have an associated observation at that time step. 0s coming 

before 1s mean that corresponding track candidate is not initiated yet. In 

fact it is initiated at time step when 1s first seen. For example, track 

candidate TC-2 is first seen at time step k-2. 

 

As a result of this matrix, track candidates TC-1 and TC-4 is confirmed. 

TC-2 and TC-3 are carried to the next iteration. TC-5 is deleted since it is 

not associated with any observations. 
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5.2.3. Track Update 
 

In the track update phase, tracks are updated with the associated 

observations. A track can be correlated with only one observation but an 

observation can be correlated with more than one observation (tracks 

merging, occlusion). When there is a case that an observation is 

correlated with more than one track, occlusion matrix is calculated. This is 

the case like presented in Figure 5.7 (b). Occlusion matrix is calculated 

using the existing tracks’ predicted positions and bounding boxes. If the 

bounding boxes overlap or their distance is lower than a threshold, the 

corresponding cell of the occlusion matrix is made 1. After this calculation 

we have an occlusion matrix like the one below. 

Table 5-9 Sample Occlusion Matrix that is used during track update 

 

 T-1 T-2 T-3 T-4 T-5 

T-1 0 1 0 0 0 

T-2 1 0 0 0 0 

T-3 0 0 0 0 0 

T-4 0 0 0 0 0 

T-5 0 0 0 0 0 

 

From this matrix, we can say that tracks T-1 and T-2 might be occluded. 

We are sure of this case if we have an observation-to-track correlation 

matrix like in Table 5-10. 
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Table 5-10 Sample Observation-to-Track Correlation Matrix that shows 
two tracks’ occlusion with each other 

 

O\T T-1 T-2 T-3 T-4 T-5 

O-1 0.9 0.85 0 0.1 0.1 

O-2 0.4 0 0.7 0 0 

O-3 0.2 0.35 0 0.2 0.82 

O-4 0.1 0.2 0.2 0.75 0 

O-5 0.35 0 0.1 0 0.23 

 

After applying Rule-1 this matrix becomes as presented below. 

 

Table 5-11 Sample Observation-to-Track Correlation Matrix that shows 
two tracks’ occlusion with each other, after rule-1 is applied 

 

O\T T-1 T-2 T-3 T-4 T-5 

O-1 09 0.85 0 0 0 

O-2 0 0 0.7 0 0 

O-3 0 0 0 0 0.82 

O-4 0 0 0 0.75 0 

O-5 0 0 0 0 0 

 

By looking at occlusion matrix and observation-to-track correlation matrix 

together, we become sure that tracks T-1 and T-2 are occluded since 
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there is only one observation that is correlated with two tracks and tracks 

bounding boxes overlap. Thus a new track is formed, and this track is 

given the name T-6 (last track name + 1). Occluded tracks T-1 and T-2 are 

tracked in the background. Every time step tracks T-1 and T-2 are 

checked if their occlusion is finished. This check is positive if there exist 

observations that are inside the threshold added area of the track formed 

by occlusion, and these observations are not correlated with existing 

tracks but correlated with T-1 and T-2. Thus T-6, the track formed by 

occlusion is deleted and normal tracking of T-1 and T-2 continues. This is 

the case like presented in Figure 5.7 (c). Below there is a sample 

observation-to-track correlation matrix that shows the case of occlusion 

ending. 

 

Table 5-12 Sample Observation-to-Track Correlation Matrix that shows 
two tracks’ occlusion ending 

 

O\T T-1 T-2 T-3 T-4 T-5 

O-1 09 0.25 0.18 0 0 

O-2 0 0.4 0.7 0.34 0 

O-3 0.2 0 0 0 0.82 

O-4 0 0 0.23 0.75 0 

O-5 0.35 0.85 0 0 0 

 

After applying Rule-1 this matrix becomes as presented in Table 5-13. 
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Table 5-13 Sample Observation-to-Track Correlation Matrix that shows 
two tracks’ occlusion ending, after Rule-1 is applied 

 
O\T T-1 T-2 T-3 T-4 T-5 

O-1 09 0 0 0 0 

O-2 0 0 0.7 0 0 

O-3 0 0 0 0 0.82 

O-4 0 0 0 0.75 0 

O-5 0 0.85 0 0 0 

 

There are observations that are not associated with existing tracks and 

correlated with occluded tracks T-1 and T-2. Thus occlusion is ended, 

track T-6 that is formed by occlusion is deleted, and normal tracking 

procedure continues. 

 

Tracks are deleted if they have strengths below the threshold. If one track 

is not associated with any observations then its strength is decreased and 

if also the predicted position of the track is not inside the field of view of 

the camera, then its strength is decreased more. These tracks are tracked 

in the background until there are observations associated with these 

tracks. This is the case of track’s passing behind an object like a wall, a 

building or a car. If that track is detected again, normal tracking procedure 

continues. 
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5.2.4. Results of Singe Camera Tracking 
 

In this part the results of single camera tracking is presented. Tough cases 

like split and merge, occlusion, multiple target tracking are taken into 

account. 

 

 

(a) 

 

 

(b) 
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(c) 

 

 

(d) 

Figure 5.4 Results of rule-based tracker on PETS-2001 data set-1 camera-
1, (a, b) before splitting, (c) during splitting, (d) after splitting. 
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(a) 

 

 

(b) 
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(c) 

Figure 5.5 Results for occlusion case on PETS-2001 data set-1 camera-1, 
(a) before occlusion, (b) during occlusion, (d) after occlusion. 

 
 
 

 

(a) Frame-817 
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(b) Frame- 870 

 

 

(c) Frame-960 

Figure 5.6 Results for Multiple Target Tracking case on PETS-2001 data 
set-1 camera-1. 
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(a) Frame-340 
 
 

 
 

(b) Frame-345 
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(c) Frame-351 
 

Figure 5.7 Results for occlusion case on PETS-2000 data set, (a) before 
occlusion, (b) during occlusion, (c) after occlusion. 

 
 

 

 

(a) Frame-195 
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(b) Frame-271 

 

 

(c) Frame-301 
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(d) Frame-353 

 

 

(e) Frame-480 
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(f) Frame-492 

 

 

(g) Frame-520 

 

Figure 5.8 Results for Multiple Target Tracking case on PETS-2000 data 
set. 
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(a) Frame-272 

 

 

(b) Frame-286 
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(c) Frame-299 

 

 

(d) Frame-348 

 

Figure 5.9 Example of a tracking failure:  a person emerges from the 
parked car while the car being a part of the background. The identity of the 

car is taken by the person. 
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Fuzzy knowledge base and Fuzzy Inference Engine is designed to 

simulate the human decision mechanism. If the predicted position of the 

track is close to observation and area ratio is close to exact ratio then the 

probability of that observation belonging to that track is high. If the 

predicted position does not match to the observation’s position or the area 

ratio is not close to exact ratio then probability is low. If there were some 

errors in fuzzy knowledge base and fuzzy inference engine, and it did not 

simulate the human decision mechanism the results would be faulty. If the 

fuzzy knowledge base is selected as below and fuzzy inference engine is 

operated on that then the results will be erroneous. 

 

Table 5-14 Erroneous Fuzzy Knowledge Base 

 
A.R.\E.D. EP VVC VC C F VF VVF 

VVSR MA SA VSA FA FA FA NA 

VSR HA MA SA VSA NA NA NA 

SR VHA HA MA SA VSA NA NA 

ER FA VHA HA MA SA VSA NA 

HR VHA HA MA SA VSA NA NA 

VHR HA MA SA VSA NA NA NA 

VVHR MA SA VSA FA FA FA NA 
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Figure 5.10 Erroneous fuzzy knowledge base result on PETS-2001 
dataset1 camera-2. 

 

On the left correct Fuzzy Knowledge Base result is presented, on the right 

erroneous Fuzzy Knowledge Base result is presented. Because of 

erroneous Fuzzy Knowledge Base observation-to-track association is 

faulty. As explained above, if the fuzzy knowledge base has some errors 

and thus it does not simulate the human decision mechanism the results 

would have errors. 

 

 

 

Figure 5.11 Erroneous fuzzy knowledge base result on PETS-2001 
dateset1 camera-1. 
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On the left the track that is formed by occlusion of two tracks is shown. On 

the right the situation after the end of occlusion is presented. After the 

occlusion, the track formed by occlusion should be deleted and the tracks 

that are occluded should be labeled as before the occlusion. As seen on 

the left, the track formed by occlusion is not deleted and one of the 

occluded tracks is given a new label. 

 

5.2.5. Evaluation of Singe Camera Tracking 

 

When there are more than one track that are correlated with only one 

observation and the calculated occlusion matrix says that these tracks’ 

bounding boxes overlap, occlusion is declared. In fact this case becomes 

true when the tracks make the expected motion. Occlusion matrix is 

calculated using the predicted positions of the tracks. During that time step 

tracks may have changed their motion type, or one of the tracks may have 

passed behind a stationary object. These are the possible cases other 

than tracks’ occlusion with each other, thus in fact we not 100% sure about 

the occlusion. 

 

 After the occlusion, occluded tracks are matched with observations that 

are within the threshold added area of the track formed by occlusion. This 

match is made according to predicted positions and areas of the tracks. 

During occlusion, predicted positions and predicted areas that are 

predicted by Kalman filer are used in the update phase of the Kalman 

filter. There is no observation’s data to use in the update phase during 

occlusion. Tracks may have changed their motion type (direction, velocity) 

during occlusion. Thus the match after occlusion is not reliable. 
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When a new object enters the field of view of the camera, and this object 

is close to occluded objects then it can be thought that the occlusion 

ended. In this case match after the end of occlusion will be definitely false. 

Also the new track is not initialized. 

 

In order to solve the problems presented above the use of multiple 

cameras that have overlapping field of views and different angles is a 

good solution. In the next section this solution is presented. 

 

5.3. Rule-Based Tracking for Multi-Camera Configura tion 

 
In this part of the thesis our main concern is to find the correspondence of 

tracked objects between two cameras so that the problems presented in 

previous section are solved. After doing the individual association and 

tracking job for the cameras, we should find the corresponding tracks in 

both cameras. In order to find corresponding tracks in different cameras 

we should first transform one camera view to other camera view, and then 

find the correspondence. For this reason 2D homography idea has been 

utilized. 

 

5.3.1. 2D Homography 

 

In the field of computer vision, a homography is defined in 2 dimensional 

space as a mapping between a point on a ground plane as seen from one 

camera, to the same point on the ground plane as seen from a second 

camera. Homography is a projective transformation that maps each xi in 

one camera to xi’ in other camera [35]. Our problem is to compute a 3 x 3 

matrix H such that Hxi = xi’ for each i. 
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We first begin with determining the number of point to be used. If the type 

of transformation is Euclidean transform, at least two pairs of 

corresponding points needed. If the transformation type is perspective 

transform, at least four pairs of corresponding points needed. Our case fits 

the second one thus four points from each camera view are enough for 

calculation of the homography matrix. 

 

5.3.2. The Direct Linear Transformation (DLT) Algor ithm 

 
Direct linear transformation is a simple linear algorithm that solves a set of 

variables from a set of similarity relations. In our case similarity relation is 

xi’ = Hxi and the variable to be solved is H.  

 

If the j-th row of the matrix H is denoted by hjT, then we may write  
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Writing x i’= (xi’, yi’,wi’), the cross product may then be given explicitly as 
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Since hjTxi = xi
Thj for j = 1, 2, 3, this gives a set of three equations in the 

entries of H, which may be written in the form 
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these equations have the form Aih = 0, where Ai is a 3x9 matrix and h is a 

9-vector made up of the entries of matrix H, 
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with hi is the i-th element of h. Only two out of three equations in (5.3) are 

linearly independent. Thus each point correspondence gives two 

equations in the entries of H, and third equation is omitted. Then, the set 

of equations becomes 
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The homography matrix H is computed by solving a set of equations Ah=0, 

where h is the vector containing the entries of the matrix H. 8 equations 

are needed to solve for H. Then, the algorithm is  

(i) For each correspondence xi �  xi’, compute the matrix Ai from (5.3). 

Only the first two rows are required in general. 
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(ii) Assemble the n 2x9 matrices Ai into a single 2nx9 matrix A.  

(iii) Obtain SVD of A. Solution for h is the last column of V.  

(iv) The matrix H is determined from h as in (5.4). 

 

Once we calculate homography matrix via DLT algorithm, we have tested 

the success of DLT algorithm on PETS2001 sequence [8]. Homography 

matrix has been calculated using eight points. Four points are taken from 

the first camera image and four points are taken from the second camera 

image. Below examples of point transformation using homography matrix 

is presented. A point is marked on the first camera image and 

correspondence point is shown on the second camera image. 

 

 

(a)     (b) 

Figure 5-7 Original camera views, (a) camera 1, (b) camera 2. 
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(a)     (b) 

Figure 5-8 Example point transformation, (a) camera 1, (b) camera 2. 

 

 

(a)     (b) 

Figure 5-9 Example point transformation, (a) camera 1, (b) camera 2. 

 

5.3.3. Calculating Track Correspondences Using Fuzzy  Logic 

 

In order to solve the correspondence problem between cameras, fuzzy 

logic is used. Euclidean distance and area ratio are the inputs and the 

track correlation value is the output of the Fuzzy Logic Data Association 

Engine. 
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Using the homography matrix we can transform a track’s position in one 

camera to another camera with a small error. The difference between 

transformed position and the exact position is the Euclidean distance that 

is one of the inputs of Fuzzy Logic Data Association Engine. The 

transformed point is chosen to be left bottom corner of the object. This is 

because of getting rid of projection errors. As explained above there will be 

transformation errors, thus fuzzification of this input needs some 

modifications. Since transformation error will be an addition we have to 

widen the intervals. Below fuzzification of Euclidean distance is presented. 
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Figure 5.12 Fuzzification of input variable Euclidean distance for multiple 
camera case. 

 

The above scenario is valid for the area ratio. The areas of same object in 

different cameras will differ very much. Thus we cannot use the same 

Fuzzy Logic Data Association Engine that is used in single camera 

tracking. There should be some differences. Changing Fuzzy Knowledge 

Base will solve this problem. Since Euclidean distance error is smaller, the 

base (more important) attribute that is used to solve the correspondence 

problem will be Euclidean distance. The importance of area ratio is 

reduced compared to single camera tracking. 
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In order to get the IF-THEN rules, fuzzified inputs are combined so that 

they give the degree of track correlation value. 

Table 5-15 Generation of IF-THEN Rules 

 
A.R.\E.D. EP VVC VC C F VF VVF 

VVSR VHA HA MA SA VSA NA NA 

VSR VHA HA MA SA VSA NA NA 

SR FA VHA HA MA SA VSA NA 

ER FA VHA HA MA SA VSA NA 

HR FA VHA HA MA SA VSA NA 

VHR VHA HA MA SA VSA NA NA 

VVHR VHA HA MA SA VSA NA NA 

 

In the table, NA stands for No Association, VSA stands for Very Small 

Association, SA stands for Small Association, MA stands for Medium 

Association, HA stands for High Association, VHA stands for Very High 

Association, and FA stands for Full Association. 

 

From the combination of fuzzified inputs following IF-THEN rules are 

obtained: 

 

IF Distance is EP and Ratio is VVSR THEN Association if VHA 

IF Distance is EP and Ratio is VSR THEN Association if VHA 

IF Distance is EP and Ratio is SR THEN Association if FA 

IF Distance is EP and Ratio is ER THEN Association if FA 

IF Distance is EP and Ratio is HR THEN Association if FA 
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IF Distance is EP and Ratio is VHR THEN Association if VHA 

IF Distance is EP and Ratio is VVHR THEN Association if VHA 

 

IF Distance is VVC and Ratio is VVSR THEN Association if HA 

IF Distance is VVC and Ratio is VSR THEN Association if HA 

IF Distance is VVC and Ratio is SR THEN Association if VHA 

IF Distance is VVC and Ratio is ER THEN Association if VHA 

IF Distance is VVC and Ratio is HR THEN Association if VHA 

IF Distance is VVC and Ratio is VHR THEN Association if HA 

IF Distance is VVC and Ratio is VVHR THEN Association if HA 

 

IF Distance is VC and Ratio is VVSR THEN Association if MA 

IF Distance is VC and Ratio is VSR THEN Association if MA 

IF Distance is VC and Ratio is SR THEN Association if HA 

IF Distance is VC and Ratio is ER THEN Association if HA 

IF Distance is VC and Ratio is HR THEN Association if HA 

IF Distance is VC and Ratio is VHR THEN Association if MA 

IF Distance is VC and Ratio is VVHR THEN Association if MA 

 

IF Distance is C and Ratio is VVSR THEN Association if SA 

IF Distance is C and Ratio is VSR THEN Association if SA 

IF Distance is C and Ratio is SR THEN Association if MA 

IF Distance is C and Ratio is ER THEN Association if MA 

IF Distance is C and Ratio is HR THEN Association if MA 

IF Distance is C and Ratio is VHR THEN Association if SA 

IF Distance is C and Ratio is VVHR THEN Association if SA 

 

IF Distance is F and Ratio is VVSR THEN Association if VSA 

IF Distance is F and Ratio is VSR THEN Association if VSA 
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IF Distance is F and Ratio is SR THEN Association if SA 

IF Distance is F and Ratio is ER THEN Association if SA 

IF Distance is F and Ratio is HR THEN Association if SA 

IF Distance is F and Ratio is VHR THEN Association if VSA 

IF Distance is F and Ratio is VVHR THEN Association if VSA 

 

IF Distance is VF and Ratio is VVSR THEN Association if NA 

IF Distance is VF and Ratio is VSR THEN Association if NA 

IF Distance is VF and Ratio is SR THEN Association if VSA 

IF Distance is VF and Ratio is ER THEN Association if VSA 

IF Distance is VF and Ratio is HR THEN Association if VSA 

IF Distance is VF and Ratio is VHR THEN Association if NA 

IF Distance is VF and Ratio is VVHR THEN Association if NA 

 

IF Distance is VVF and Ratio is VVSR THEN Association if NA 

IF Distance is VVF and Ratio is VSR THEN Association if NA 

IF Distance is VVF and Ratio is SR THEN Association if NA 

IF Distance is VVF and Ratio is ER THEN Association if NA 

IF Distance is VVF and Ratio is HR THEN Association if NA 

IF Distance is VVF and Ratio is VHR THEN Association if NA 

IF Distance is VVF and Ratio is VVHR THEN Association if NA 

 

5.3.4. Multiple Camera Tracking 

 

After single camera tracking phase is finished we come to multiple camera 

tracking phase. First, objects in camera-1 are transformed to camera-2. 

Then Euclidean distance and area ratios are calculated. In multi cameras, 

a track can be in the field of view of only one camera, or a track can be in 
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the field of view of both cameras. Tracks may be occluded in one camera 

view and may not be occluded in the other camera view. A track may be 

behind a stationary object in one camera view but in other camera this 

track may be seen normally. Below sample Euclidean distance and area 

ratio matrix is presented. 

 

Table 5-16 Sample Euclidean Distance Matrix Calculated After Objects in 
Camera-1 are Trasnformed to Camera-2 

 
C-1/C-2 T-1 T-2 T-3 T-4 T-5 

T-1 200 178 15 250 375 

T-2 17 234 174 287 254 

T-3 354 213 155 34 90 

T-4 253 67 159 198 301 

 

Table 5-17 Sample Area Ratio Matrix Calculated After Objects in Camera-
1 are Trasnformed to Camera-2 

 
C-1/C-2 T-1 T-2 T-3 T-4 T-5 

T-1 60 45 70 134 56 

T-2 85 110 80 90 90 

T-3 120 25 86 65 65 

T-4 150 92 145 95 70 
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C-1 stands for Camera-1, C-2 stands for Camera-2 and T’s are the tracks. 

 

These are the inputs for Fuzzy Data Association Engine, and we get track 

correlation value as the output. With these values a track correlation matrix 

is formed.  

 

During track correspondence and multi-camera tracking following rules are 

applied: 

 

1. Tracks that are in the field of view of both cameras are matched. 

a. If there is a match, then the strength of those tracks are 

increased. 

b. If there is not a match, track strengths are not affected. 

2. If both cameras does not have observations associated with a track 

which is seen by both cameras in the previous iteration, and the 

predicted position of this track is in the field of view of both cameras 

in the current iteration, then the strength of this track is decreased 

much compared to Single Camera Tracking. 

3. If there is a track that is seen by both cameras in the previous 

iteration, and seen by only one camera in the current iteration, then 

this track is said to pass behind a stationary object in the camera 

which does not see this track. This case does not affect the track 

strength. The tracking in both cameras is done according to data 

that is gathered by the camera that sees the track. 

4. If a track that is in the field of view of both cameras exits from field 

of view of one camera (there is no associated observations and 

predicted position is out of FOV), then it is deleted from the camera 

which it exited the FOV, and continued to be tracked in other 

camera. 
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5. If there is a case that an observation is associated with more than 

one track, and these tracks are marked as occluded in the 

occlusion matrix in one of the cameras; 

a. If the same case occurred in other camera, then these tracks 

are said to be occluded in both cameras. Compared to 

Single Camera Tracking we are surer about occlusion. 

Because there can be an error when single camera is used, 

but there is a very small probability that there is an error in 

both cameras, since we have more information due to 

overlapping FOVs and different angles of cameras. In this 

case a new track is formed, and occluded tracks are tracked 

in the background. 

b. If the predicted positions of occluded tracks match with 

tracks in other camera, and these tracks are not occluded in 

that camera, then we are sure about occlusion. This is the 

advantage of multiple cameras that have overlapping FOVs 

and different angles. In this case a new track is formed in the 

camera which has occluded tracks. Occluded tracks are 

tracked in the background and updated by the data that is 

gathered from other camera. Thus motion type changes 

(direction, velocity) are handled, and accuracy of the tracking 

is increased. 

6. Occlusion is said to end when there are observations in the 

threshold added area of the track formed by occlusion, and they are 

matched with tracks in other camera. The track formed by occlusion 

is deleted and normal tracking of occluded tracks continue. 

7. Observations that are not associated with tracks and track 

candidates initiate new track candidates. 
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a. If these observations are seen by only one camera then track 

initiation is done as Single Camera Tracking. 

b. If the track candidate is seen by both cameras then it 

becomes a track if it is seen in tree consecutive iterations. 

Track strength is increased more compared to Single 

Camera Tracking. After tree iteration track candidate’s 

strength passes the threshold and track candidate becomes 

a track. 

c. If the track candidate is in the FOV of both cameras but only 

seen by one camera, then track strength does not increase 

as (b). This may be because of track’s passing behind a 

stationary object in one camera view. Track candidate 

becomes a track after five consecutive iterations. 

d. If track candidate is not seen by both cameras, then it is 

deleted. 

8. During track initiation a track candidate may be occluded with 

existing tracks in one of the cameras. In order to handle these 

situations, the corresponding position of the track candidate in other 

camera is checked. If there is a match, then normal track initiation 

procedure continues. 

9. Tracks that are seen only by one camera are tracked according to 

Single Camera Tracking. 

10. Tracks that have strengths below the threshold are deleted. 
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5.3.4.1. Examples of Multiple Camera Tracking 

 

Example-1: 

The case presented in this example is like the case in Figure 5.14. In the 

below matrix the correlation values between the Camera-1 objects’ 

transformed to Camera-2 and Camera-2 objects are presented. In this 

case occlusion matrix is calculated for both cameras and there are not any 

tracks that are occluded with each other in both cameras. 

 

Table 5-18 Sample Matrix that shows calculated track correlation values 
with objects in Camera-1 transformed to Camera-2 and objects in Camera-

2 

 
C-1/C-2 T-1 T-2 T-3 T-4 T-5 

T-1 0 0.12 0.56 0 0 

T-2 0.85 0 0.18 0.23 0 

T-3 0.27 0 0 0.74 0 

T-4 0 0 0 0 0 

 

According to rules, Table 5-18 is interpreted. In this case it is known that 

there is not any tracks that are occluded with each other. Thus track T-1 in 

Camera-1 correspond to track T-3 in  Camera-2, track T-2 in Camera-1 

correspond to track T-1 in Camera-2 and track T-3 in Camera-1 

correspond to track T-4 in Camera-2. Track T-4 in Camera-1 is not in the 

field of view of Camera-2. Tracks T-2 and T-5 in Camera-2 are not in the 

field of view of Camera-1. 
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Example-2: 

The case presented in this example is like the case in Figure 5.15. In the 

below matrix the correlation values between the Camera-1 objects’ 

transformed to Camera-2 and Camera-2 objects are presented. In this 

case occlusion matrix is calculated for both cameras. Two tracks in 

Camera-1 are marked as occluded in occlusion matrix calculated for 

Camera-1 and the corresponding positions of the occluded tracks in 

Camera-2 match with tracks that are not occluded with each other. Thus 

we are sure about the occlusion and the correspondence problem will be 

solved accordingly. 

 

Table 5-19 Sample matrix that shows calculated track correlation values 
with objects in Camera-1 transformed to Camera-2 and objects in Camera-

2 

 
C-1/C-2 T-1 T-2 T-3 T-4 T-5 

T-1 0 0.42 0.56 0 0 

T-2 0.85 0 0.18 0.23 0 

T-3 0.27 0 0 0.74 0 

T-4 0 0 0 0 0 

 

According to rules, Table 5-19 is interpreted. In this case it is known that 

there are tracks that are occluded with each other. Thus track T-1 in 

Camera-1 correspond to tracks T-2 and T-3 in  Camera-2, track T-2 in 

Camera-1 correspond to track T-1 in Camera-2 and track T-3 in Camera-1 

correspond to track T-4 in Camera-2. Track T-4 in Camera-1 is not in the 

field of view of Camera-2. Track T-5 in Camera-2 is not in the field of view 

of Camera-1. 
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5.3.5.  Results of Multiple Camera Tracking 
 

 

(a) Camera-1. 

 

 

(b) Camera-2. 

Figure 5.13 Results of target tracking using multiple cameras in PETS-
2001 data set-1. 

 

The number on the upper left corner of the object shows the track number 

in its own camera and the number on the upper right corner of the object 

shows the corresponding track in other camera. In this sample scenario 

track 1 in camera-1 is matched to track 1 in camera-2. 
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(a) Camera-1. 

 

 

(b) Camera-2. 

Figure 5.14 Results of multiple target tracking using multiple cameras in 
PETS-2001 data set-1. 

 

In this sample scenario track 1 in camera-1 is matched with track 1 in 

camera-2 and track 2 in camera-1 is matched to track 2 in camera-2. 
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(a) Camera-1. 

 

 

(b) Camera-2. 

Figure 5.15 Results of  multiple target tracking using multiple cameras in 
PETS-2001 data set-1: Tracks’ occlusion in only one camera scenario. 

 

In this sample scenario tracks 1 and 2 in camera-1 are occluded with each 

other, but corresponding tracks in camera-2 are not occluded. From this 

occlusion a new track, 3 is formed in camera-1. Track 3 in camera-1 is 

matched to tracks 1 and 2 in camera-2. Upper right corner of track 3 in 

camera-1 shows that this track is matched to tracks 1 and 2 in camera-2 
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(12(=1,2)). During occlusion, occluded tracks in camera-1 are updated 

with the information gathered by camera-2. 

 

 

(a) Camera-1. 

 

 

(b) Camera-2. 

Figure 5.16 Results of multiple target tracking using multiple cameras in 
PETS-2001 data set-1: Track’s occlusion in both cameras scenario. 

 

In this sample scenario tracks 1 and 2 in both cameras are occluded with 

each other. Thus, from these occlusions new tracks, 3 in camera-1 and 4 
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in camera-2 are formed. Track 3 in camera-1 is matched to track 4 in 

camera-2. Track 3 in camera-2 does not match to any tracks in camera-1. 

 

 

(a) Camera-1. 

 

 

(b) Camera-2. 

Figure 5.17 Results of multiple target tracking using multiple cameras in 
PETS-2001 data set-1: Track’s occlusion in only one camera scenario. 

 

In this sample scenario tracks 1 and 2 in camera-2 are occluded with each 

other, and from this occlusion a new track, 4 is formed. The occlusion of 

these tracks is ended in camera-1. Thus track 4 in camera-2 corresponds 
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to tracks 1 and 2 in camera-1. Upper right corner of track 4 in camera-2 

shows that this track corresponds to tracks 1 and 2 in camera-1 (12(=1,2)). 

Track 3 in camera-2 does not match to any tracks in camera-1. During 

occlusion, occluded tracks are updated with the information gathered from 

camera-1. 

 

 

(a) Camera-1. 

 

 

(b) Camera-2. 

Figure 5.18 Results of multiple target tracking using multiple cameras in 
PETS-2001 data set-1: Occlusion ends scenario. 
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In this sample scenario the occlusion of tracks 1 and 2 in camera-2 ends 

and track 4 which is formed by occlusion is deleted. Track 1 in camera-1 is 

matched to track 1 in camera-2, track 2 in camera-1 is matched to track 2 

in camera-2. During the occlusion, motion type changes are handled by 

updating the occluded tracks with the information gathered by other 

camera. Thus the predicted positions of the occluded tracks are much 

accurate. So, matching the tracks after occlusion is done correct. Track 3 

in camera-2 does not match to any tracks in camera-1. 

 

 

(a) Before passing behind a stationary object. 
 

 

(b) During passing behind a stationary object. 
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(c) Track is completely behind the object. 
 

 
(d) Track appears again. 

Figure 5.19 Results of multiple target tracking using multiple cameras in 
PETS-2001 data set-2: A tracks’ passing behind a stationary object 

scenario, left frame from camera-1, right frame from camera-2. 

 

In this sample scenario track-2 is passing behind a tree in camera-1. 

Corresponding track in camera-2, track-1 is always in sight. Track-2 in 

camera-1 disappears (does not have any associated observations), but 

predicted position of this track in camera-2 corresponds to track-1 in 

camera-2. Thus, it is concluded that track is passing behind a stationary 

object and can be seen only by one of the cameras. Track-2 in camera-1 

is updated with the information gathered from camera-2 while passing 

behind the tree. Thus the predicted position is much accurate and the 

matching of the track after appearing again is done correctly.  
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(a) Before passing behind an object.        (b) Track completely disappears. 

 

 

(c) Track appears again. 

Figure 5.20 Results of multiple target tracking using multiple cameras in 
PETS-2001 data set-2; track which is in the FOV of one of the cameras 

passes behind an object. 

 
In this sample scenario track-7 is passing behind a tree in camera-1. This 

track is not in the FOV of Camera-2. Thus track is lost when it is behind 

the tree. When the track appears again, a new label, 9 is given. In Figure 

5.19 a scenario like the one above is presented. In that case the track that 

is passing behind a tree was seen by both cameras. Thus the track was 

not lost when it is behind the tree, and the match after appearing again 

was done correctly. 
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(a) Frame-600. 

 

 

(b) Frame-690. 

 

 

(c) Frame-763. 

Figure 5.21 Results of multiple target tracking using multiple cameras in 
PETS-2001 data set-2: A tracks’ passing behind a stationary object 
scenario-2, left frame from camera-1, right frame from camera-2. 
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CHAPTER 6 

 
 

 PERFORMANCE EVALUATION 
 

 

 

From the results presented it can be seen that the proposed methods are 

very successful. When objects move very slowly, moving object detection 

part has some problems. This is because slowly moving objects become a 

part of the background. Swaying of trees and illumination change 

problems are solved. The data association part is also very fast since 

computational load is very low compared to probabilistic data association 

techniques and Multiple Hypothesis Tracking Technique. Thus it is suitable 

for real-time target tracking. Data association part also handles track 

initiation, track deletion and track merging. 

 

Below the results of the PETS-2001 data set-2 sequence from this work 

and [36] is compared. In [36], Gradients of images are combined with color 

information for object detection, and tracking is performed using a voting 

scheme that utilizes color and shape cues to establish the 

correspondence. FOV lines which indicates the areas that are seen by 

both cameras are automatically determined by the objects that are 

entering the FOV of the camera or exiting the FOV of the camera. Then, 

these FOV lines are used the find corresponding objects between 

cameras.  
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(a) Frame-110. 

 

 

(b) Frame-115. 

 

 

(c) Frame-120. 

Figure 6.1 Result of single camera tracking on PETS-2001 data set-2,  on 
the left result of [36], (b) on the right result of proposed tracker. 
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From the above figure, it is noticed that the tracker in [36] has taken 

swaying trees as moving objects. The proposed tracker in this work solves 

the problem of swaying trees, and periodic motion. 

 

The performance of the proposed rule-based tracker that is applied to 

multiple camera configurations on PETS-2001 data set-1 sequence is 

presented below.  

 

Table 6-1 Results of Multi Camera Correspondence 

 

Frame Camera-1 Camera2 Comment 

300 1 1 Correct 

545 3 1,2 Correct 

585 3 4 Correct 

585 - 3 Correct 

610 1 1 Correct 

610 2 2 Correct 

610 - 3 Correct 

708 4 3 Correct 

708 - 2 Incorrect 

830 4 3 Correct 

830 5 5 Correct 

830 6 - Correct 

875 4,5 7 Correct 

875 6 - Correct 

880 6 - Correct 

880 7 7 Correct 

900 7 3,5 Correct 
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900 6 - Correct 

1041 6 - Correct 

1041 8 9 Incorrect 

1066 6 - Correct 

1066 8 9 Incorrect 

1066 - 11 Incorrect 

1088 8 9 Correct 

1088 9 11 Correct 

1088 6 - Correct 

1412 13 12 Correct 

1412 8 - Correct 

 

In this table each row is interpreted separately. For example, first row 

states that object-1 in camera-1 is the same as object-1 in camera-2 in 

frame 300. Cells that contain more than one number states that, these 

objects are not occluded with each other in that camera view but they are 

occluded in other camera view. Rows that have free cells states that object 

is in the field of view of only one camera.  

 

The performance of the proposed multi camera tracker in [38] on PETS-

2001 data set-1 sequence is presented below. In [38] Gaussian Mixture 

Models are used for modeling the background, and motion 

correspondence is used for tracking. FOV lines which indicates the areas 

that are seen by both cameras are automatically determined by the objects 

that are entering the FOV of the camera or exiting the FOV of the camera. 

Then, these FOV lines are used the find corresponding objects between 

cameras. 
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Table 6-2 Results of Multi Camera Correcpondence from [38] 

 

Frame Camera Object Camera Object Comment 

98 1 1 2 1 Correct 

470 2 2 1 2 Correct 

688 1 3 2 3 Correct 

774 2 4 1 4 Correct 

963 2 5 1 5 Correct 

1074     Incorrect 

1185 1 6 2 7 Correct 

1423 2 8 1 8 Correct 

1578 2 9 1 7 Incorrect 

2106 2 10 1 9 Correct 

2177 2 12 1 10 Correct 

 

In the above table, the first row states that object 1 in camera 1 is the 

same as object 1 in camera 2.  

 

When two tables are compared, it can be said that the proposed rule-

based tracking method in this work is successful. It has some errors, but in 

general it is doing the job well. 
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CHAPTER 7 

 
 

 CONCLUSION 
 
 
 

7.1. Conclusion  
 

In recent years, automated visual surveillance became very important. In 

addition to recent advances in computer speed, availability of large-

capacity storage devices cheaply and high speed computer network 

infrastructure, the increase in crime rate has made visual surveillance very 

popular. 

 

 In this thesis, important parts of an automated visual surveillance system 

have been presented and implemented. Moving object detection part is 

accomplished by Gaussian Mixture Models which is an adaptive method 

that solves the problem of dynamic scene changes. After detecting the 

foreground regions, shadow and noise removal is applied in order to get 

the exact objects. 

 

Tracking is the next step after obtaining moving objects. An Interacting 

Multiple Model Kalman Filter approach is implemented as the tracker in 

order to cope with multiple motion models. Snakes are used to extract the 

exact shape of the target. 
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Multiple target tracking is a hard problem. Additional information about 

targets should be used in order to make successful observation-to-track 

association. Fuzzy logic presents a systematic way of combining 

information. It also stimulates the human decision mechanism. Using fuzzy 

logic and additional rules, rule-based tracking methodology is presented. 

Rule-based tracking methodology handles track initiation, track 

confirmation, track update and track deletion successfully. This method 

then applied for multi-camera configuration in order to solve the problems 

like track correspondence, occlusion, match after occlusion and tracks’ 

passing behind stationary objects. 

 

To cope with the some difficulties, such as occlusion, multiple camera 

tracking is chosen as solution. Data acquired from multiple cameras are 

connected so that multiple cameras can be used as single cameras that 

have very high coverage. Using multiple cameras, more information can 

be obtained about objects. In order to correspond information acquired 

from cameras homography matrix which is calculated by the use of direct 

linear transformation has been utilized. 

 

The use of rule-based tracking with multiple cameras that have 

overlapping field of views and different angles brings the solution of 

occlusion problem. Due to different angles of cameras, occluded objects 

are tracked more reliably. Data gathered from the camera that objects are 

not occluded also used for occluded tracks. Thus, a motion type change 

that may occur during occlusion is handled, and tracks’ matching after the 

occlusion is done more reliably. This technique also helps in the solution of 

problem that an observation’s occlusions with an existing track during 

track initialization phase. Also tracks’ passing behind stationary objects 

like parked cars, walls or buildings are handled. 
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7.2. Future Work  
 

Data association part is very crucial in multiple target tracking, especially 

in the closely spaced targets case. Thus the proposed rule-base data 

association method can be improved as a future work. In our rule-based 

data association method we used the ratios of the areas of target and 

measurement. Instead of this, comparing the shape of the target and 

measurement that is obtained by snakes can be a better idea. Also new 

features can be added to the data association part in order to increase the 

accuracy of the association. 

 

In order to handle complex occlusion cases like occlusion of a group of 

people, knowing the number of people in the group may be helpful. Thus 

human model analysis should be studied.  

 

After all, adding high level behavioral analysis will make the system useful 

for surveillance applications. This high level analysis should be about what 

the tracked person does, leaves a box, paces back and forth, etc. 
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