
PREFERENCE-BASED FLEXIBLE MULTIOBJECTIVE EVOLUTIONARY

ALGORITHMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İBRAHİM KARAHAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTERS OF SCIENCE
IN

INDUSTRIAL ENGINEERING

JUNE 2008



Approval of the thesis

“PREFERENCE-BASED FLEXIBLE MULTIOBJECTIVE EVOLUTIONARY
ALGORITHMS”

submitted by İbrahim Karahan in partial fulfillment of the requirements for the
degree of Masters of Science in Industrial Engineering, Middle East Technical
University by,

Prof. Canan Özgen
Director, Graduate School of Natural and Applied Sciences

Prof. Nur Evin Özdemirel
Head of Department, Industrial Engineering

Prof. Murat Köksalan
Supervisor, Industrial Engineering, METU

Examining Committee Members:

Assoc. Prof. Canan Sepil
Industrial Engineering, METU

Prof. Murat Köksalan
Industrial Engineering, METU

Assoc. Prof. Esra Karasakal
Industrial Engineering, METU

Asst. Prof. Pelin Bayındır
Industrial Engineering, METU

Prof. Sencer Yeralan
Agricultural and Biological Engineering, University of Florida

Date:



I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last name : İbrahim Karahan

Signature :

iii



ABSTRACT

PREFERENCE-BASED FLEXIBLE MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

Karahan, İbrahim

M.S., Department of Industrial Engineering

Supervisor: Prof. Murat Köksalan

June 2008, 96 pages

In this study, we develop an elitist multiobjective evolutionary algorithm for approximating

the Pareto-optimal frontiers of multiobjective optimization problems. The algorithm con-

verges the true Pareto-optimal frontier while keeping the solutions in the population well-

spread over the frontier. Diversity of the solutions is maintained by the territory defining

property of the algorithm rather than using an explicit diversity preservation mechanism.

This leads to substantial computational efficiency. We test the algorithm on commonly used

test problems and compare its performance against well-known benchmark algorithms.

In addition to approximating the entire Pareto-optimal frontier, we develop a preference

incorporation mechanism to guide the search towards the decision maker’s regions of

interest. Based on this mechanism, we implement two variants of the algorithm. The first

gathers all preference information before the optimization stage to find approximations of

the desired regions. The second one is an interactive algorithm that focuses on the desired

region by interacting with the decision maker during the solution process. Based on tests

on 2- and 3-objective problems, we observe that both algorithms converge to the preferred

regions.

Keywords: Multiobjective Evolutionary Algorithms, Multiobjective Optimization, Prefer-

ence Incorporation, Interactive

iv



ÖZ

TERCİHE DAYALI ESNEK ÇOK AMAÇLI EVRİMSEL ALGORİTMALAR

Karahan, İbrahim

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Murat Köksalan

Haziran 2008, 96 sayfa

Bu çalışmada çok amaçlı eniyileme problemlerinin etkin yüzeylerine yaklaşmayı amaçlayan

bir çok amaçlı evrimsel algoritma geliştirilmiştir. Algoritma, problemlerin gerçek etkin

yüzeylerine yaklaşırken popülasyonundaki çözümleri yüzey üzerinde iyi dağıtmaktadır.

Bunu yaparken dıştan dağılım sağlama mekanizması yerine algoritmanın alan kontrol

özelliği kullanılmaktadır. Böylece önemli miktarda hesaplama verimliliği sağlanmaktadır.

Algoritma yaygın kullanılan test problemleri üzerinde denenmiş ve başarımı literatürdeki

diğer çok amaçlı evrimsel algoritmalar ile karşılaştırılmıştır.

Etkin yüzeyin tamamına yaklaşmanın yanı sıra, aramayı karar vericinin ilgilendiği

alanlara yöneltmeyi amaçlayan bir tercih entegrasyonu mekanizması geliştirilmiştir. Bu

mekanizmaya dayalı olarak yukarıda belirtilen algoritmanın iki çeşidi önerilmektedir. Bun-

lardan ilki bütün tercih bilgilerini çözüm sürecinin başında almaktadır. Diğeri ise karar

verici ile eniyileme sürecinde etkileşimde bulunarak istenilen alanlara yönelmektedir. İki

ve üç amaçlı problemler üzerinde yapılan testlerin sonucunda, algoritmaların istenilen

alanlara başarıyla yaklaştığı görülmüştür.

Anahtar Kelimeler: Çok Kriterli Evrimsel Algoritmalar, Çok Amaçlı Optimizasyon, Tercihe

Dayalı, Etkileşimli

v



ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my thesis supervisor, Prof. Murat

Köksalan, who guided me with his deep knowledge and experience in this study. He was

always very helpful and involved, and I count myself very fortunate to work with such an

excellent researcher. I hope that we will be able to work together in future studies.

I owe thanks to Prof. Meral Azizoğlu for her sincere support and friendship. She is a

great guide who did her best for helping me in deciding my future academic career. She

always believed and encouraged me that I can do even better. In addition, I would like to

thank Prof. Sencer Yeralan for his cheerful presence and advices on my prospective life in

his country. I would also like to thank my examining committee members, Assoc. Prof.

Canan Sepil, Assoc. Prof. Esra Karasakal and Asst. Prof. Pelin Bayındır, for reviewing and

contributing to this study.

It was a great honor for me to be a part of METU-IE as a research assistant. It would not

be so enjoyable and full of remembrance without my friends in METU-IE. I would like to

extend my thanks especially for my dear friends Melih Çelik and Güvenç Değirmenci for

their endless patience for my random questions. I am also thankful to all my professors in

the department for their contributions to my life.

I am grateful to my parents Yaşar Karahan and Cennet Karahan for their endless love

and support. I also present my special thanks to my sister Hamide Karahan Turan and my

brother Agâh Reha Turan, who contributed to my anxiety by providing me the opportunity

to observe their lives as PhD students.

I would like to thank TÜBİTAK (The Scientific and Technological Research Council of

Turkey) for the scholarship they have provided me for my graduate study.

My love and my best friend Nihan deserves my deepest gratitudes. She was present

in every stage of this study with her ideas, support and patience. Without her, neither this

study nor my life would be so complete.

vi



To my family and my dearest

vii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

DEDICATON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 INTRODUCTION 1

2 DEFINITIONS AND LITERATURE REVIEW 3

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Dominance and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Ideal and Nadir Objective Vectors . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Distance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 MOEAs that Approximate the Entire Efficient Frontier . . . . . . . . 8

2.2.2 Incorporation of Preference Information to the MOEAs . . . . . . . . 10

3 TERRITORY DEFINING EVOLUTIONARY ALGORITHM (TDEA) 12

3.1 The Details of TDEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Population Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.4 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.5 Determination of τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

viii



3.1.6 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Simulation Runs and Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 2-Objective Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 3-Objective Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.4 5-Objective Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.5 Effects of Changing τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 PREFERENCE INCORPORATION 52

4.1 Common Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Variable Territory Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Favorable Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Preferred-Region Territory Defining Evolutionary Algorithm . . . . . . . . . 54

4.2.1 Details of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Simulation Runs and Comparisons . . . . . . . . . . . . . . . . . . . . 56

4.2.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Interactive Territory Defining Evolutionary Algorithm . . . . . . . . . . . . . 66

4.3.1 Details of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Simulation Runs and Comparisons . . . . . . . . . . . . . . . . . . . . 70

4.3.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 CONCLUSIONS 91

REFERENCES 93

ix



LIST OF FIGURES

FIGURES

Figure 2.1 Classification of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.2 Ideal and Nadir Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 3.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 3.2 Ideal Placement of Solutions on the Pareto-optimal Frontiers . . . . . 17

Figure 3.3 ZDT1 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.4 Pareto-Optimal Frontiers of ZDT1 and ZDT4 . . . . . . . . . . . . . . 23

Figure 3.5 Pareto-Optimal Frontier of ZDT2 . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.6 ZDT2 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.7 ZDT3 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.8 ZDT4 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.9 Pareto-Optimal Frontier of ZDT3 . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.10 Pareto-Optimal Frontier of ZDT6 . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.11 ZDT6 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.12 DTLZ1 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.13 Pareto-Optimal Frontier of DTLZ1 . . . . . . . . . . . . . . . . . . . . 34

Figure 3.14 Pareto-Optimal Frontier of DTLZ2 . . . . . . . . . . . . . . . . . . . . 34

Figure 3.15 DTLZ2 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.16 DTLZ3 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.17 Pareto-Optimal Frontier of DTLZ3 . . . . . . . . . . . . . . . . . . . . 38

Figure 3.18 Pareto-Optimal Frontier of DTLZ4 . . . . . . . . . . . . . . . . . . . . 38

Figure 3.19 DTLZ4 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.20 DTLZ5 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.21 Pareto-Optimal Frontiers of DTLZ5 and DTLZ6 . . . . . . . . . . . . . 42

x



Figure 3.22 Pareto-Optimal Frontier of DTLZ7 . . . . . . . . . . . . . . . . . . . . 42

Figure 3.23 DTLZ6 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.24 DTLZ6 Plots with 320000 Function Evaluations . . . . . . . . . . . . . 45

Figure 3.25 DTLZ7 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.26 ZDT4 Plots with Different τ Values . . . . . . . . . . . . . . . . . . . . 50

Figure 3.27 DTLZ1 Plots with Different τ Values . . . . . . . . . . . . . . . . . . . 51

Figure 3.28 DTLZ2 Plots with Different τ Values . . . . . . . . . . . . . . . . . . . 51

Figure 4.1 ZDT4 Test 1 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.2 ZDT4 Test 2 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.3 ZDT4 Test 3 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.4 ZDT4 Test 4 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.5 DTLZ1 and DTLZ2 Test 1 Plots . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.6 DTLZ1 and DTLZ2 Test 2 Plots . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4.7 DTLZ1 and DTLZ2 Test 3 Plots . . . . . . . . . . . . . . . . . . . . . . 64

Figure 4.8 DTLZ1 and DTLZ2 Test 4 Plots . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.9 ZDT4 Interactive Test 1 Plots . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 4.10 ZDT4 Interactive Test 2 Plots . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 4.11 ZDT4 Interactive Test 3 Plots . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4.12 DTLZ1 Interactive Test 1 Plots . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 4.13 DTLZ2 Interactive Test 1 Plots . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.14 DTLZ1 Interactive Test 2 Plots . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.15 DTLZ2 Interactive Test 2 Plots . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 4.16 DTLZ1 Interactive Test 3 Plots . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.17 DTLZ2 Interactive Test 3 Plots . . . . . . . . . . . . . . . . . . . . . . . 84

xi



LIST OF TABLES

TABLES

Table 2.1 Estimation of the Nadir Vector using a Payoff Table . . . . . . . . . . . 6

Table 2.2 Commonly used Weighted Distance Metrics . . . . . . . . . . . . . . . 7

Table 3.1 Test Problems and Their Characteristics . . . . . . . . . . . . . . . . . . 19

Table 3.2 Test Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 3.3 Indicator Results for ZDT1 . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Table 3.4 Test Results for ZDT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Table 3.5 Indicator Results for ZDT2 . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Table 3.6 Test Results for ZDT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 3.7 Indicator Results for ZDT3 . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 3.8 Test Results for ZDT3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 3.9 Indicator Results for ZDT4 . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 3.10 Test Results for ZDT4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 3.11 Indicator Results for ZDT6 . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 3.12 Test Results for ZDT6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 3.13 Indicator Results for DTLZ1 . . . . . . . . . . . . . . . . . . . . . . . . . 32

Table 3.14 Test Results for DTLZ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 3.15 Indicator Results for DTLZ2 . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 3.16 Test Results for DTLZ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 3.17 Indicator Results for DTLZ3 . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 3.18 Test Results for DTLZ3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 3.19 Indicator Results for DTLZ4 . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 3.20 Test Results for DTLZ4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 3.21 Indicator Results for DTLZ5 . . . . . . . . . . . . . . . . . . . . . . . . . 41

xii



Table 3.22 Test Results for DTLZ5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 3.23 Indicator Results for DTLZ6 . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 3.24 Test Results for DTLZ6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 3.25 Indicator Results for DTLZ6 with 320000 Function Evaluations . . . . 44

Table 3.26 Test Results for DTLZ6 with 320000 Function Evaluations . . . . . . . 44

Table 3.27 Indicator Results for DTLZ7 . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 3.28 Test Results for DTLZ7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 3.29 Indicator Results for DTLZ1-5D . . . . . . . . . . . . . . . . . . . . . . . 48

Table 3.30 Test Results for DTLZ1-5D . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 3.31 Indicator Results for DTLZ2-5D . . . . . . . . . . . . . . . . . . . . . . . 49

Table 3.32 Test Results for DTLZ2-5D . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 3.33 Indicator Results for ZDT4 . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 3.34 Indicator Results for DTLZ1 . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 3.35 Indicator Results for DTLZ2 . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 4.1 Preference Test Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 4.2 Indicator Results for ZDT4 Preference Test 1 . . . . . . . . . . . . . . . 58

Table 4.3 Indicator Results for ZDT4 Preference Test 2 . . . . . . . . . . . . . . . 59

Table 4.4 Indicator Results for ZDT4 Preference Test 3 . . . . . . . . . . . . . . . 59

Table 4.5 Indicator Results for ZDT4 Preference Test 4 . . . . . . . . . . . . . . . 60

Table 4.6 Statistical Tests for ZDT4 Preference Tests . . . . . . . . . . . . . . . . . 60

Table 4.7 Indicator Results for DTLZ1 and DTLZ2 Preference Test 1 . . . . . . . 61

Table 4.8 Indicator Results for DTLZ1 and DTLZ2 Preference Test 2 . . . . . . . 62

Table 4.9 Indicator Results for DTLZ1 and DTLZ2 Preference Test 3 . . . . . . . 63

Table 4.10 Indicator Results for DTLZ1 and DTLZ2 Preference Test 4 . . . . . . . 64

Table 4.11 Statistical Tests for DTLZ1 and DTLZ2 Preference Tests . . . . . . . . . 65

Table 4.12 Interactive Test Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table 4.13 ZDT4 Interactive Test 1 Results . . . . . . . . . . . . . . . . . . . . . . . 73

Table 4.14 ZDT4 Interactive Test 2 Results . . . . . . . . . . . . . . . . . . . . . . . 74

Table 4.15 ZDT4 Interactive Test 3 Results . . . . . . . . . . . . . . . . . . . . . . . 74

Table 4.16 DTLZ1 Interactive Test 1 Results . . . . . . . . . . . . . . . . . . . . . . 77

Table 4.17 DTLZ2 Interactive Test 1 Results . . . . . . . . . . . . . . . . . . . . . . 77

Table 4.18 DTLZ1 Interactive Test 2 Results . . . . . . . . . . . . . . . . . . . . . . 80

Table 4.19 DTLZ2 Interactive Test 2 Results . . . . . . . . . . . . . . . . . . . . . . 80

xiii



Table 4.20 DTLZ1 Interactive Test 3 Results . . . . . . . . . . . . . . . . . . . . . . 81

Table 4.21 DTLZ2 Interactive Test 3 Results . . . . . . . . . . . . . . . . . . . . . . 81

Table 4.22 ZDT4 Linear Utility Function Test 1 Results . . . . . . . . . . . . . . . . 85

Table 4.23 ZDT4 Linear Utility Function Test 2 Results . . . . . . . . . . . . . . . . 85

Table 4.24 ZDT4 Linear Utility Function Test 3 Results . . . . . . . . . . . . . . . . 86

Table 4.25 DTLZ1 Linear Utility Function Test 2 Results . . . . . . . . . . . . . . . 86

Table 4.26 DTLZ1 Linear Utility Function Test 3 Results . . . . . . . . . . . . . . . 86

Table 4.27 DTLZ2 Linear Utility Function Test 1 Results . . . . . . . . . . . . . . . 87

Table 4.28 DTLZ2 Linear Utility Function Test 2 Results . . . . . . . . . . . . . . . 87

Table 4.29 DTLZ2 Linear Utility Function Test 3 Results . . . . . . . . . . . . . . . 87

Table 4.30 ZDT4 Quadratic Utility Function Test 1 Results . . . . . . . . . . . . . . 88

Table 4.31 ZDT4 Quadratic Utility Function Test 2 Results . . . . . . . . . . . . . . 88

Table 4.32 ZDT4 Quadratic Utility Function Test 3 Results . . . . . . . . . . . . . . 88

Table 4.33 DTLZ1 Quadratic Utility Function Test 1 Results . . . . . . . . . . . . . 89

Table 4.34 DTLZ1 Quadratic Utility Function Test 2 Results . . . . . . . . . . . . . 89

Table 4.35 DTLZ1 Quadratic Utility Function Test 3 Results . . . . . . . . . . . . . 89

Table 4.36 DTLZ2 Quadratic Utility Function Test 2 Results . . . . . . . . . . . . . 89

Table 4.37 DTLZ2 Quadratic Utility Function Test 3 Results . . . . . . . . . . . . . 89

xiv



CHAPTER 1

INTRODUCTION

Many real-life problems are actually multiobjective, since they involve more than one

objective that have to be optimized simultaneously. To solve them, many mathematical

modeling-based approaches have been proposed. Although they are effective in finding

nondominated solutions, they usually do not generate multiple solutions in a single run.

Multiobjective evolutionary algorithms (MOEAs) overcome this shortcome. These algo-

rithms imitate the genetic evolution in nature and apply it to optimization. They work with

a population of solutions and progress with their genetic evolution. Consequently, they

find multiple nondominated solutions in a single optimization run.

One of the goals of MOEAs is to minimize the proximity of solutions to the true Pareto-

optimal frontier. In addition, they have to maintain the diversity among the solutions in

the population so that a good approximation of the Pareto-optimal frontier is obtained with

a limited number of solutions. The performance of an algorithm not only depends on how

it converges, but also on how it keeps the diversity. Of course, the computational burden

of achieving these should always be considered while designing the algorithm.

Recently, a third goal of converging to the desired portions of the Pareto-optimal frontier

has emerged. It is claimed that the nondominated solutions found by an MOEA in fact

do not provide any insight into the decision making (Coello, 2000). Furthermore, by

incorporating the decision maker’s preferences into the search procedure, an algorithm can

obtain better details about the regions of interest. Such a method also avoids much of the

computational issues related to the approximation of the entire Pareto-optimal frontier.

Considering these goals, we propose a fast MOEA, the Territory Defining Evolutionary

Algorithm (TDEA), that converges to the true Pareto-optimal frontier while maintaining a

uniform diversity among solutions. In addition, we propose two preference-based versions

of the algorithm that are capable of focusing on the preference regions either interactively

1



or with prespecified preference information.

We begin by presenting some preliminary definitions and reviewing related literature on

MOEAs in Chapter 2. This chapter also surveys the literature on preference incorporation

in MOEAs.

In Chapter 3, we introduce TDEA and give the details of the algorithm. We also compare

the performance of TDEA to well-known MOEAs in the literature on 2-, 3- and 5-objective

problems.

In Chapter 4, we describe the preference incorporation mechanism incorporated into

TDEA. We also present the preference-based versions of TDEA and test their performances

on 2- and 3-objective test problems.

Lastly, we conclude by pointing out the contributions of this study and give future

research directions in Chapter 5.

2



CHAPTER 2

DEFINITIONS AND LITERATURE REVIEW

In this chapter, we introduce the definitions that we use throughout this study, together with

the related literature on multiobjective evolutionary algorithms. In Section 2.1, we define

basic concepts related to multiobjective optimization. It will be followed by a literature

review of the studies on multiobjective evolutionary algorithms in Section 2.2.

2.1 Definitions

A multiobjective optimization problem (MOP) has multiple objective functions, each is

either maximized or minimized. As in the single objective optimization problems, there

may be some constraints that must be satisfied. In its general form, a multiobjective

optimization problem can be formulated as follows:

“Maximize” z = f(x) (2.1)

subject to x ∈ X (2.2)

where,

f(x) = ( f1(x), . . . , fi(x), . . . , fp(x))T p-vector of objective functions

x = (x1, . . . , xn)T decision vector

X ⊆ <n feasible decision space

z = f(x) objective vector

Z = f(X) feasible objective space (solution space)

<
n may be restricted with constraints of the following types to form X:

g(x) ≥ 0 inequality type constraints

h(x) = 0 equality type constraints

3



Unlike single objective optimization problems, most multiobjective optimization prob-

lems do not have a single solution that optimizes all p objectives. Instead, the search is for

finding those solutions for which improvement in one objective can only occur with the

worsening of at least one other objective. These are called nondominated solutions.

2.1.1 Dominance and Efficiency

Without loss of generality, we will assume that the objectives are of maximization type in

the following definitions (For further details, see Steuer (1986)):

Definition 2.1. Let z1, z2
∈ Z be two objective vectors. Then, z1 dominates z2 if and only if

z1
i ≥ z2

i for all i and z1
i > z2

i for at least one i.

Definition 2.2. Let z1, z2
∈ Z be two objective vectors. Then, z1 strongly dominates z2 if and

only if z1
i > z2

i for all i.

Nondominated solutions are those that are not dominated by any other solution. Their

decision vectors are said to be efficient. We present the formal definitions below:

Definition 2.3. Let z ∈ Z be an objective vector. Then, z is nondominated if and only if no

z′ ∈ Z dominates it. Otherwise, z is said to be dominated.

Definition 2.4. Let x ∈ X be a feasible decision vector. Then, x is efficient if and only if there

does not exist an x′ ∈ X with f(x′) dominating f(x). Otherwise, x is said to be inefficient.

Definition 2.5. Let z ∈ Z be an objective vector. Then, z is weakly nondominated if and only

if there does not exist a z′ ∈ Z that strongly dominates z.

Definition 2.6. Let x ∈ X be a decision vector. Then, an x is weakly efficient if and only if

there does not exist x′ ∈ X with f(x′) strongly dominating f(x).

The set that covers all nondominated solutions is called the nondominated set. It is a

subset of the weakly nondominated set, which may also contain dominated solutions.

Definition 2.7. Let ẑ ∈ Z. If there exist solutions z1, z2, . . . , zk ∈ Z and weights w1,w2, . . . ,wk ≥

0 satisfying
∑k

i=1 wi = 1 and
∑k

i=1 wizi ≥ ẑ, then ẑ is said to be convex dominated.

It should be noted that a convex dominated solution can be nondominated. These

solutions are called unsupported nondominated solutions and they cannot be found by using

weighted-sum approaches (i.e. by maximizing a positive linear combination of objectives).

An illustration of nondominated, dominated, unsupported nondominated and weakly

nondominated solutions are given in Figure 2.1.

4



Max Objective 2

Max Objective 1

Supported Nondominated Solutions

Dominated Solutions

Weakly Nondominated
but Dominated Solutions

Unsupported Nondominated Solutions

Figure 2.1: Classification of Solutions

2.1.2 Ideal and Nadir Objective Vectors

Definition 2.8. Let z∗ =
[
z∗1, z

∗

2, . . . , z
∗
p

]T
be a vector of objective values whose element i is

the optimal value of the ith objective function. Then, z∗ is called the ideal objective vector.

Definition 2.9. Let zn =
[
zn

1 , z
n
2 , . . . , z

n
p

]T
be a vector of objective values whose element i is

the worst value of ith objective function among all nondominated solutions. Then, zn is

called the nadir objective vector.

Ideal and nadir vectors are illustrated in Figure 2.2. Note that neither the ideal nor

the nadir objective vector needs to be feasible. The ideal objective vector is determined

by individually optimizing each of the p objectives over the feasible region. However,

finding the nadir objective vector is not straightforward, since the efficient set is not known

explicitly. It may be estimated using a payoff table.

Consider a multiobjective optimization problem with p maximization-type objectives.

A payoff table for this problem (see Table 2.1) is constructed by placing the objective vectors

resulting from individually optimizing each of the p objectives over the feasible region.

Then, the smallest value in the jth column gives an estimate for the jth element of the nadir

objective vector. However, there is no guarantee for the quality of the estimate. If the row

corresponding to the smallest value is weakly nondominated but dominated, then it may

be an underestimate. Otherwise, it is the correct value or an overestimate. In either case, the

deviation from the actual value can be large. Underestimation can be avoided by changing

the objective function fi with an augmented one as follows:

Max fi + ε

p∑
j,i

f j (2.3)

5



Ideal Point

Nadir Point

Max Objective 2

Max Objective 1

Efficient Frontier

Figure 2.2: Ideal and Nadir Vectors

where ε is a very small number.

Table 2.1: Estimation of the Nadir Vector using a Payoff Table

Objectives 1 2 . . . p
1 z∗1 z12 . . . z1p
2 z21 z∗2 . . . z2p
...

...
...

...
p zp1 zp2 . . . z∗p

Estimation min j{z j1} min j{z j2} . . . min j{z jp}

2.1.3 Distance Metrics

A metric is a function that gives the distance between two vectors x,y ∈ <n. The distance

between x and y in terms of an Lq-metric can be computed as follows:

∥∥∥x − y
∥∥∥

q =

 n∑
i=1

∣∣∣xi − yi
∣∣∣q

1
q

(2.4)

The weighted Lq-distance is calculated using the following formula:

∥∥∥x − y
∥∥∥

w,q =

 n∑
i=1

wi
∣∣∣xi − yi

∣∣∣q
1
q

(2.5)

Commonly used weighted distance metrics are given in Table 2.2.

6



Table 2.2: Commonly used Weighted Distance Metrics

Name Metric Formula

Rectilinear L1
∑n

i=1 wi
∣∣∣xi − yi

∣∣∣
Euclidean L2

[∑n
i=1 wi

∣∣∣xi − yi
∣∣∣2] 1

2

Tchebycheff L∞ maxi

(
wi

∣∣∣xi − yi
∣∣∣)

2.2 Literature Review

Solving some multiobjective optimization problems is a difficult and resource-demanding

task. For this purpose, many different mathematical formulation-based methods rang-

ing from the weighted-sums approach to goal programming and achievement scalarizing

function-based methods are proposed. Although they are effective in finding good so-

lutions, they often have significant computational requirements on some problems. On

the other hand, multiobjective evolutionary algorithms (MOEAs) are suitable for solving

these problems in a reasonable time, since they can generate multiple solutions that can

approximate the entire efficient frontier in a single run. In addition, they are less sensitive

to the shape of the efficient frontier than the traditional methods (Coello, 1999). These

qualifications have made MOEAs popular among researchers in the past two decades.

The review papers by Fonseca and Fleming (1995), Tamaki et al. (1996), Coello (1999),

Deb (1999) and Veldhuizen and Lamont (2000) examine different MOEA approaches and

point out their increasing popularity among researchers. Also, the books by Deb (2001)

and by Coello et al. (2006) cover many aspects of evolutionary algorithms in multiobjective

optimization. In addition, Coello maintains a list of references to publications in the

multiobjective evolutionary optimization area at http://www.lania.mx/~ccoello/EMOO/

EMOObib.html.

Traditionally, MOEAs are considered to have two goals:

1. Converging to the efficient frontier

2. Maintaining a well-dispersed set of solutions to obtain a good approximation of the

efficient frontier

Most of the MOEAs try to generate solutions that approximate the entire efficient fron-

tier. However, as Coello (2000) indicates, this does not help decision making at all. Conse-

quently, a third goal of converging to the regions that are appealing to the decision maker

is also considered in the recent years. The review papers of Coello (2000), Cvetković and

7

http://www.lania.mx/~ccoello/EMOO/EMOObib.html
http://www.lania.mx/~ccoello/EMOO/EMOObib.html


Parmee (2002) and Rachmawati and Srinivasan (2006) stress the importance and examine

the methods of converging to the interesting portions of the efficient frontier.

Since the algorithms in this study are capable of finding solutions both in the entire

efficient frontier and in a particular region, we will divide our literature review into two. We

will first review the evolutionary algorithms that approximate the entire efficient frontier.

Following that, we will examine preference incorporation techniques.

2.2.1 MOEAs that Approximate the Entire Efficient Frontier

Knowles and Corne (2000) suggested an elitist multiobjective evolutionary algorithm,

Pareto-Archived Evolution Strategy (PAES) that uses an evolution strategy. Unlike most of

the MOEAs, the (1 + 1) evolution strategy proposed in their paper employs a local search

using a population of size 1. However, while doing the local search, it makes use of an

archive that consists of previously found solutions to identify the approximate dominance

ranking of the current and candidate solution vectors. No recombination is applied to the

solutions but they are mutated. For preserving diversity and calculating the density of

solutions, the algorithm divides the entire search space into hypercubes. These hypercubes

are used for choosing the next parent to be evolved.

The Pareto Envelope based Selection Algorithm 2 (PESA-II) proposed by Corne et al.

(2001) defines the unit of selection as a hyperbox in the objective space. Instead of assigning

a fitness to a solution, it assigns a fitness to the hyperbox itself. Diversity is maintained by the

help of the hyperboxes. Although the algorithm allows multiple solutions to reside in one

hyperbox, the number of solutions in a hyperbox directly affects the selection probability

of a solution. This is done by assigning the selective fitness of a solution to the number of

solutions that occupy the same hyperbox with that solution, and favoring smaller fitness

values.

Deb et al. (2002) proposed the Nondominated Sorting Genetic Algorithm 2 (NSGA-II).

This elitist algorithm uses the idea of nondominated sorting to classify the solutions in

the population and assigning their ranks. At the end of each generation, the offspring

population is combined with the parent population. The population of the next generation

is then selected among the members of the combined population, accepting first those

that have better ranks. When the next generation is unable to accept all solutions from a

particular rank, a selection is made with respect to the crowding measure of the solutions

having that rank.

8



Zitzler et al. (2002) suggested the Strength Pareto Evolutionary Algorithm 2 (SPEA2)

that overcomes the deficiencies of its predecessor, Strength Pareto Evolutionary Algorithm

(SPEA). The algorithm maintains two populations, namely the regular population of size N,

and the archive with a maximum capacity of N̄. At the end of each generation, the regular

population is copied to the archive and dominated solutions are removed from the archive.

If the size of the archive exceeds the maximum capacity, N̄, then some members are removed

using a clustering technique that preserves the characteristics of the archive. After that,

each solution is assigned a strength that represents the number of solutions it dominates.

Based on the strength and density values, the fitness of each solution is calculated.

The Indicator Based Evolutionary Algorithm (IBEA) proposed by Zitzler and Künzli

(2004) aims to integrate the preference information into the selection procedure. The opti-

mization goal of the algorithm is defined by a binary indicator that can be adapted to reflect

the decision maker’s preferences. It is also stated that the algorithm does not need any

explicit diversity preservation operator. The fitness of a solution with respect to an indica-

tor is a measure for the loss in quality if that solution is removed from the population. The

authors suggest two different indicators in the paper, namely the hypervolume indicator

and the additive ε-indicator.

Deb et al. (2005) suggested the steady-state Epsilon Multiobjective Evolutionary Al-

gorithm (ε-MOEA). In ε-dominance, a solution is considered to be efficient if there is no

solution that is at least an ε amount better than that solution in every objective and more

than an ε amount better at least in one objective. The authors implement this by dividing

the objective space into hyperboxes having side lengths of ε in all objectives. Diversity is

maintained by disallowing more than one solution in each hyperbox. The algorithm main-

tains two populations, the archive and the regular population. In each generation, two

offspring are created using one parent from each population. While the regular population

is updated using regular domination, the archive population is updated using hyperboxes.

The algorithm runs fast since it does not need any diversity preserving operator.

The S-Metric (Hypervolume metric) Selection Evolutionary Multiobjective Algorithm

(SMS-EMOA) proposed by Beume et al. (2007) explicitly sets the optimization goal as the

maximization of the dominated hypervolume. The authors state that the algorithm com-

bines the nondominated sorting idea of NSGA-II with the archiving strategy presented by

Knowles et al. In every generation, nondominated sorting is used for assigning ranks to

the solutions, whereas the hypervolume metric is used for discarding the solution that con-

tributes the least to the total dominated hypervolume. Since computation of hypervolume

9



metric is expensive, a single offspring is created in every generation.

Soylu and Köksalan (2006) suggested the Favorable Weights Evolutionary Algorithm

(FWEA). The algorithm utilizes the favorable weights mechanism that allows each solution

to choose its own favorable Tchebycheff weights for a Tchebycheff distance function. The

direction defined by these weights is the best direction of that solution to contribute to

convergence. On the other hand, the diversity among the solutions are maintained by

incorporating a nearest neighbor information to the fitness of each solution. In addition, in

each generation, nondominated sorting is applied to solutions in order to adjust the fitness

values among different frontiers.

2.2.2 Incorporation of Preference Information to the MOEAs

Branke et al. (2001) proposed a method for utilizing the decision maker’s preferences for

guiding the search towards the regions of interest. The method asks the decision maker

to specify his/her trade-offs between each pair of objectives. After that, it constructs the

minimal and maximal utility functions. These utility functions are used for modifying

the dominance scheme according to the decision maker’s preferences. The authors also

suggested the Guided Multi-Objective Evolutionary Algorithm (G-MOEA) that uses this

method. They showed that the algorithm is able to converge to the desired regions.

Phelps and Köksalan (2003) proposed an interactive multiobjective evolutionary algo-

rithm for multiobjective combinatorial optimization problems. The algorithm interacts

with the decision maker during the run to guide the search towards the preferred regions.

At the initialization stage, the algorithm constructs a club for each objective, which keeps

the high-achiever solutions in that objective. These clubs are then used for parent selection.

The preference information is gathered by asking the decision maker to compare some

solutions. Using these pairwise comparisons, weights of the estimated utility function

can be calculated by the middlemost weights technique (see Köksalan et al. (1984)), which

solves a linear program (LP). The fitness of solutions is computed using these weights. The

algorithm also keeps an incumbent solution, which is selected to be the best solution by the

decision maker so far. When an offspring challenges the incumbent, an interaction with the

decision maker is initiated to update the incumbent and the estimated utility function.

Deb and Sundar (2006) suggested a method that seeks to find a set of solutions close to

one or more reference points that are specified by the decision maker. They incorporate the

method into NSGA-II by modifying its crowding distance operator. First, they calculate

10



each solution’s normalized Euclidean distance to each reference point and assign the solu-

tions having the minimum distances the rank of one. After that, every solution is assigned

the minimum of all its ranks as its final rank. Solutions having smaller ranks are preferred.

The method is shown to work with both feasible and infeasible reference points which need

not to be nondominated.

Deb and Kumar (2007) adapt the reference direction based method described in Korho-

nen and Laakso (1986), which solves a sequence of achievement scalarizing functions. The

method asks the decision maker to specify one or more reference directions. After that,

a set of points (r (t) , t = 0, 1, . . .) are marked on the reference directions. The achievement

scalarizing function value s (z, r,w) of each point r (t) corresponding to the chosen weight

vector w and each population member z is calculated. The population members that have

the smallest value of s for each r (t) is assigned to the first frontier. The members with the

next smallest values are assigned to the second frontier and the procedure is repeated for

the other members. The rest of the algorithm is the same as NSGA-II.

Köksalan and Phelps (2007) proposed the Evolutionary Metaheuristic for Approxi-

mating Preference-Nondominated Solutions (EMAPS) for the multiobjective combinatorial

problems to find solutions that are appealing to the decision maker. The algorithm uses

partial preference information provided by the decision maker, which is gathered through

qualitative statements. That is, no precise utility weights or trade-off parameters are re-

quired. These statements are then used for restricting the weight space. The fitness of a

solution is based on the relative strength of the solution over other solutions in the popu-

lation. Calculation of fitness values requires the favorable weights of the solutions that are

found by solving an LP that maximizes the fitness of the solution. This LP simultaneously

provides both favorable weights and fitness values. The authors tested the algorithm on

multiobjective knapsack and multiobjective spanning tree problems and reported good

results.

11



CHAPTER 3

TERRITORY DEFINING EVOLUTIONARY

ALGORITHM (TDEA)

In this chapter, we present the Territory Defining Evolutionary Algorithm (TDEA) for

solving multiobjective optimization problems. TDEA is a steady-state algorithm that can

be tailored to converge either to the entire efficient frontier or to a desired portion of

the efficient frontier. This elitist algorithm promotes convergence by maintaining two

populations: The archive population that consists only of nondominated solutions and

the regular population that may contain both dominated and nondominated solutions.

When updating the archive population, it defines a territory around the solution closest to

the newcomer and rejects the newcomer if it violates the territory. The territory defining

property of TDEA eliminates the need for an explicit diversity operator, resulting in a fast

operation while always keeping a diverse set of solutions in the archive population. The

idea is similar to that of ε-MOEA, however TDEA’s territory defining property improves

shortcomings of the hyperbox mechanism of ε-MOEA that causes losing solutions toward

the ends of the Pareto-optimal frontier.

The sections of this chapter are organized as follows: We start by presenting the details

of TDEA and its important properties in Section 3.1. We then present the results of the

simulation runs and provide comparisons in Section 3.2.

3.1 The Details of TDEA

As mentioned before, TDEA maintains two populations. The first population is called the

regular population, which we will denote as P from now on. It is formed by randomly created

solutions at the beginning of the algorithm until its maximum size N̄ is reached. It may

contain both nondominated and dominated solutions, maintaining some lateral diversity.

12



An offspring is accepted to the regular population if it is nondominated relative to the

solutions in the regular population.

The second population is the archive (A) that consists of only nondominated solutions.

It is created from the copies of the nondominated solutions of the regular population.

Although its size is not bounded by a fixed number, it depends on a parameter specified

by the user. This parameter, τ, defines the extent of the territory of a solution. Only the

solutions that are accepted to the regular population are eligible to be evaluated to enter

the archive. The evaluation is done using the territory defining property of the algorithm,

which is described in Section 3.1.3.

We will first give an outline of the algorithm before going into the details:

1. Ask the user to specify N̄, τ and maximum number of iterations T. Set iteration count

t = 0. Create N̄ random solutions to initiate P(0). Copy the nondominated solutions

of P(0) into A(0).

2. Set t← t + 1. Choose a parent from each population P(t) and A(t). Recombine parents

to create a new offspring and apply mutation to it.

3. Test the offspring for acceptance into P(t). If accepted, insert into P(t) and go to the

next step. Otherwise, go to Step 5.

4. Test the offspring for acceptance into A(t). If accepted, insert into A(t).

5. If the iteration limit is reached, that is, t = T, then stop and report the archive

population. Otherwise go to Step 2.

3.1.1 Selection

TDEA uses one solution from each population for recombination. However, the selection

scheme is different for the two populations. In the regular population, the binary tour-

nament selection is used. Two solutions s1 and s2 are randomly picked from the regular

population and the parent p1 is determined according to the following procedure:

1. Test whether s1 or s2 dominates the other solution.

2. If s1 dominates s2, set p1 = s1 and vice versa.

3. If neither dominates the other, then select one of s1 and s2 as p1 with equal probabilities.

13



Parent p2 is selected from the archive population. Since all solutions in the archive are

nondominated relative to each other, the binary tournament selection is not meaningful

here. We randomly choose one solution as p2, although some other techniques can be

utilized.

3.1.2 Scaling

In multiobjective optimization problems, the range and the scale of objectives may vary

greatly. These differences may cause MOEAs to have some bias for some of the objectives.

To address this concern, many objective scaling techniques are proposed in the literature

(see Steuer (1986) for details). In TDEA, we use the idea of Soylu and Köksalan (2006),

who adapted the approach of Chang et al. (2003) for scaling the objectives. Their method

treats the objective values between the ideal ( f ∗) and nadir point ( f n) differently from those

beyond the nadir point. While they use linear scaling for the former, the latter are scaled

using the following sigmoid function:

Ψ(y) =

(
1

1 + e−
y
λ

− C
)

G (3.1)

where C and G are parameters to control the shape, λ is a parameter for controlling the

slope and y is the value to be scaled. We set C = 0.5 and G = 2 so that the sigmoid function

takes values between 0 and 1. As done by the authors, we scale the values in the efficient

range into a large portion of [0, 1]. The rest is scaled into the remaining narrow interval,

since they are not as important as the nondominated range. For this purpose, we set λ in

such a way that the sigmoid function has a very small slope at the nadir point ( f n). This is

done by solving the following equation using a very small slope of the sigmoid function at

the nadir point:

d
dy

Ψ(y)

∣∣∣∣∣∣
y= f n

=
e−

f n

λ

λ
(
1 + e−

f n
λ

)2 G = m (3.2)

We present the steps of the scaling procedure below for a minimization type objec-

tive function. Note that maximization type objective functions have to be converted into

minimization before scaling.

1. Shift the objective value and nadir point until the ideal point becomes 0, that is, set

f̄i = fi − f ∗i and f̄ n
i = f n

i − f ∗i .

2. Using f̄ n
i and a very small m, solve (3.2) to determine λ.

14



3. The scaled objective f̂i is then found as follows:

f̂i =


Ψ( f̄ n

i )

f̄ n
i

f̄i if fi ≤ f n
i 1

1 + e−
f̄i
λ

− C

 G otherwise

(3.3)

An illustration of scaling is given in Figure 3.1. In this study, we estimate the nadir

points using payoff tables and determine λ values using a trial-and-error method.

f(x)

f(x) 
 1

f
n Sigmoid Scaling

Linear
Scaling

^

f
n

_

0
_

^

Figure 3.1: Scaling

Note that this scaling method scales all values into [0, 1] interval. If only the efficient

range is scaled [0, 1] interval, the territory defining property may not work correctly for

values beyond the nadir point, because the territory sizes are set according to the efficient

range. But, the efficient range is more important, hence the larger portion of the [0, 1]

interval is allocated to those. If the nadir point is exactly known, then this portion can be

accurately determined for each objective. Otherwise, they may be differences depending

on the quality of the estimate. However, as long as the error of the estimate is not severe,

the effect of these differences on the performance of the algorithm is small.

3.1.3 Population Updates

An offspring (denoted as c which stands for child) is first evaluated for acceptance into the

regular population. The evaluation procedure is as follows:

1. Test c against each solution si ∈ P(t) for dominance. Mark solutions dominated by c.

If c is dominated by at least one si, reject c. Otherwise, go to the next step.

15



2. Remove one of the marked solutions randomly from P(t). If no solutions are marked,

remove one randomly chosen solution from P(t).

3. Insert c into P(t) and test for acceptance in A(t).

If c is rejected in the above procedure, then it is not evaluated for archive acceptance at

all, since it is guaranteed that at least one solution in the archive dominates it. Otherwise, it

is checked if it satisfies the requirements of the archive population. The archive evaluation

process is more complicated. It consists of two stages. First, the offspring c is checked for

dominance against the members of the archive. If it is not dominated by any solution in the

archive, then we proceed to the second stage. The second stage begins with the removal of

solutions dominated by c from the archive. After that, we determine the closest solution si∗

to c in rectilinear distance. This distance is calculated using the scaled objective function

values. Then, we check whether c is in the territory of si∗ , which is defined as the region

within τ distance in all objective values of si∗ . If the maximum scaled objective distance

between si∗ and c is smaller than τ, then we say that the territory of si∗ is violated by c in

all directions. In that case, we reject c. Otherwise, the territory is said to be preserved in at

least one direction and c is accepted.

The details of the procedure are given below:

1. Test c against each solution si ∈ A(t) for dominance. Mark solutions dominated by c.

If c is dominated by at least one si, reject c. Otherwise, go to the next step.

2. Remove all marked solutions from A(t).

3. If A(t) is empty, accept c and insert it into A(t). Otherwise, go to next step.

4. Calculate the rectilinear distance dci =
∑p

j=1

∣∣∣ f̂cj − f̂i j
∣∣∣ of c to each solution si ∈ A(t)

using the scaled objective function values.

5. Find i∗ = argmini(dci), that is, the solution si∗ closest to c.

6. Find the maximum scaled absolute objective difference between c and si∗ . That is, find

δ = max
j=1,2,...,p

∣∣∣ f̂cj − ˆfi∗ j
∣∣∣ (3.4)

where f̂cj and ˆfi∗ j are the scaled jth objective values of offspring c and solution si∗ ,

respectively.

7. Accept c if δ ≥ τ and insert it into A(t). Otherwise, reject c.

16



3.1.4 Fitness Function

TDEA does not have a fitness function associated with the solutions. Instead, each solu-

tion is tested for dominance with respect to the members of the population that they are

evaluated for entering. However, it should be noted that TDEA does not disallow the use

of a fitness function. A fitness function can be used for various purposes such as parent

selection and guided search. For example, instead of binary tournament selection, one can

compare the fitnesses of two solutions for choosing the parent.

3.1.5 Determination of τ

In TDEA, τ controls the territory size of solutions and the hypervolume that a solution

occupies in the objective space. Since the total nondominated hypervolume is limited, the

territory size affects the maximum number of solutions in the archive population. In a

given problem, a smaller τ leads to a larger population compared to a larger τ. However,

the size of the nondominated hypervolume depends on the shape of the Pareto-optimal

frontier. Hence, a τ value used in a problem may work differently in another problem. We

illustrate this in Figure 3.2.

Max Obj. 2

Max Obj. 1

τ

τ

1

1

(a) Linear

τ

τ

1

1

Max Obj. 2

Max Obj. 1

(b) Curve

Figure 3.2: Ideal Placement of Solutions on the Pareto-optimal Frontiers

As can be seen in Figure 3.2, the same τ leads to a smaller population in the linear frontier.

For that reason, there is no straightforward way to set τ. In this study, we determine τ by

performing some preliminary runs.

17



3.1.6 Computational Complexity

TDEA is a steady-state multiobjective evolutionary algorithm. In each generation, only one

offspring is created and evaluated to enter the populations. Assuming that an offspring

c is accepted into the regular population P, it takes pN̄ calculations to check whether c is

nondominated with respect to all solutions in P. Denoting the size of archive population A

as N̂, the number of calculations needed to check whether c is nondominated with respect to

all solutions in A is pN̂. Note that since the size of A is not fixed, the number of calculations

for dominance check in A is not known exactly. In addition to that, it takes pN̂ calculations to

determine the closest solution to c in A. At the end, pN̄ + 2pN̂ calculations are made in each

generation, excluding the ones made for crossover and mutation operators. If N̂ � N̄, then

the computational complexity of TDEA is dominated by the size of the archive population.

In this case, the worst case computational complexity is O
(
pN̂

)
.

3.2 Simulation Runs and Comparisons

In this section, we evaluate TDEA on some test problems and compare its performance

against well-known MOEAs, namely SPEA2, NSGA-II, PAES, PESA-II, IBEA and ε-MOEA.

We use test problems ZDT (Deb, 2001) and DTLZ (Deb et al., 2001), each of which has

different characteristics as shown in Table 3.1.

We use the real-valued representation of the decision variables. That is, each gene in a

chromosome is the value of the decision variable itself. As the crossover operator, we choose

the Simulated Binary Crossover (SBX) (Deb and Agrawal, 1995) with Prob(crossover) = 1.0

and crossover parameter ηc = 20 for all metaheuristics. The mutation operator is the Poly-

nomial Mutation Operator (Deb and Goyal, 1996) with Prob(mutation) = 1
number of variables

and mutation parameter ηm = 20.

We run each algorithm 50 times with different seeds for the random number generator

and limit each run by a prespecified maximum number of function evaluations. Initial

populations are formed from randomly created solutions and population sizes are set

based on the number of objectives. For metaheuristics without constant population sizes

(ε-MOEA and TDEA), we make preliminary runs to ensure that the final nondominated

population is approximately the same size as in the other metaheuristics. The detailed

parameter settings are given in Table 3.2.

We implement our algorithm in C++ programming language and use ε-MOEA code

18



Ta
bl

e
3.

1:
Te

st
Pr

ob
le

m
s

an
d

Th
ei

r
C

ha
ra

ct
er

is
ti

cs

Te
st

Pr
ob

le
m

N
um

be
r

of
O

bj
ec

ti
ve

s
Pr

op
er

ti
es

D
ec

is
io

n
V

ar
ia

bl
es

Z
D

T
1

2
C

on
ve

x,
C

on
ti

nu
ou

s
Effi

ci
en

tF
ro

nt
ie

r
x i
∈

[0
,1

]
i=

1,
2,
..
.,

30

Z
D

T
2

2
N

on
-C

on
ve

x,
C

on
ti

nu
ou

s
Effi

ci
en

tF
ro

nt
ie

r
x i
∈

[0
,1

]
i=

1,
2,
..
.,

30

Z
D

T3
2

C
on

ve
x,

D
is

co
nn

ec
te

d
Effi

ci
en

tF
ro

nt
ie

r
x i
∈

[0
,1

]
i=

1,
2,
..
.,

30

Z
D

T4
2

C
on

ve
x,

M
ul

ti
m

od
al

Effi
ci

en
tF

ro
nt

ie
r

x 1
∈

[0
,1

]a
nd

x i
∈

[−
5,

5]
i=

2,
..
.,

10

Z
D

T6
2

N
on

-C
on

ve
x,

N
on

-U
ni

fo
rm

Effi
ci

en
tF

ro
nt

ie
r

x i
∈

[0
,1

]
i=

1,
2,
..
.,

10

D
TL

Z
1

3
Li

ne
ar

Effi
ci

en
tF

ro
nt

ie
r

x i
∈

[0
,1

]
i=

1,
2,
..
.,

7

5
x i
∈

[0
,1

]
i=

1,
2,
..
.,

9

D
T

LZ
2

3
Sp

he
ri

ca
lE

ffi
ci

en
tF

ro
nt

ie
r

x i
∈

[0
,1

]
i=

1,
2,
..
.,

12

5
x i
∈

[0
,1

]
i=

1,
2,
..
.,

14

D
T

LZ
3

3
Sp

he
ri

ca
l,

M
ul

ti
m

od
al

Effi
ci

en
tF

ro
nt

ie
r

x i
∈

[0
,1

]
i=

1,
2,
..
.,

12

D
T

LZ
4

3
Sp

he
ri

ca
l,

N
on

-U
ni

fo
rm

Effi
ci

en
tF

ro
nt

ie
r

x i
∈

[0
,1

]
i=

1,
2,
..
.,

12

D
T

LZ
5

3
C

ur
ve

-S
ha

pe
d

Effi
ci

en
tF

ro
nt

ie
r

x i
∈

[0
,1

]
i=

1,
2,
..
.,

12

D
T

LZ
6

3
M

ul
ti

m
od

al
,C

ur
ve

-S
ha

pe
d

Effi
ci

en
tF

ro
nt

ie
r

x i
∈

[0
,1

]
i=

1,
2,
..
.,

12

D
TL

Z
7

3
D

is
co

nn
ec

te
d

Effi
ci

en
tF

ro
nt

ie
r

x i
∈

[0
,1

]
i=

1,
2,
..
.,

22

19



Table 3.2: Test Parameters

Number of Objectives Population Size Function Evaluations Replications
2 100 40000 50
3 200 160000 50
5 400 320000 50

downloaded from the website of Kanpur Genetic Algorithms Laboratory1. Both programs

are built with GNU C/C++ Compiler 4.2.3. For other metaheuristics, we use jMetal frame-

work2 with Sun Java JDK/JRE 1.6.0.3. All computational tests are made on a Pentium IV

2.8 GHz, 1 GB RAM computer running Kubuntu Linux 8.04.

3.2.1 Performance Metrics

In order to compare the performances of the algorithms, we use two performance metrics.

The first one is the Hypervolume metric (Zitzler and Thiele, 1998), which measures the total

objective space dominated by the final population P with respect to a given reference point

W. This quality indicator improves when the resulting population has better convergence

to the Pareto-optimal frontier and its distribution among the frontier is good. Formally, it

can be described as follows:

Hypervolume =

|P|⋃
i=1

VW
i (3.5)

where Vi is the objective space dominated by solution i ∈ P with respect to the reference

point W. The Hypervolume measure depends on the selected reference point. A larger

value is desirable.

The other performance metric is the Inverted Generational Distance (Bosman and Thierens,

2003) that measures the algorithm’s performance in both diversity and convergence. This

metric calculates the Euclidean distance of each solution in the true nondominated frontier

(PFtrue) to the closest solution in the final population P and reports the average of the values.

Formally, it can be stated as follows:

IGD =
1

|PFtrue|

∑
i∈PFtrue

(
min

j∈P

∥∥∥zi − z j
∥∥∥

2

)
(3.6)

For practical reasons, this metric is calculated using a set of true nondominated solutions

that represent the nondominated front. In this study, we generate approximately 100, 000

well-dispersed true nondominated solutions for each problem.

1http://www.iitk.ac.in/kangal/codes.shtml
2http://mallba10.lcc.uma.es/wiki/index.php/JMetal

20

http://www.iitk.ac.in/kangal/codes.shtml
http://mallba10.lcc.uma.es/wiki/index.php/JMetal


For every problem, we calculate the performance of each run of each algorithm in

terms of Hypervolume (H) and Inverted Generational Distance (D). We use the nadir

point as the reference point when calculating the Hypervolume values. Then, we compute

their sample means x̄H, x̄D and sample standard deviations sH, sD of these metrics. By the

Central Limit Theorem, we assume that the sample means are normally distributed. Then,

we test the following hypothesis at a 99% significance level to check whether there exists

a statistically significant difference between the performances of TDEA (denoted as T) and

other algorithms (denoted as C) in both metrics:

H0 :µT
pm = µC

pm (3.7)

H1 :µT
pm , µ

C
pm (3.8)

where pm stands for performance metric. For every problem, we report the estimated

difference ∆pm = x̄T
pm − x̄C

pm between means of TDEA and its contender for both metrics. We

also present the p-value of the statistical test. For comparison, the metric results of the true

nondominated sets are given.

3.2.2 2-Objective Problems

All 2-objective problems in this section the following form:

Minimize f1(x) (3.9)

Minimize f2(x) = g(x)h( f1(x), g(x)) (3.10)

ZDT1

The easiest of all 2-objective problems we test, ZDT1, has a convex Pareto-optimal frontier

(Figure 3.4) and is defined as follows:

f1(x) = x1 (3.11)

g(x) = 1 + 9
n−1

n∑
i=2

xi (3.12)

h( f1, g) = 1 −
√

f1
g (3.13)

where n = 30, xi ∈ [0, 1] for i = 1, 2, . . . , 30. The Pareto-optimal frontier corresponds to

x∗1 ∈ [0, 1] and x∗i = 0 for i = 2, 3, . . . , 30. Table 3.3 shows the indicator values of different

algorithms. All methods but IBEA successfully converge the Pareto-optimal frontier. As

it can be seen from Table 3.4, TDEA is statistically better than all algorithms at a 99%

21



significance level in both metrics except SPEA2 in Inverted Generational Distance, where

there is no significant difference. In addition, TDEA requires the second smallest time to

complete 40, 000 function evaluations.

Table 3.3: Indicator Results for ZDT1

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.66090 0.000116 0.0000144 0.00000035 1.09
ε-MOEA 0.66067 0.000059 0.0000172 0.00000031 0.75

IBEA 0.45197 0.044280 0.0004920 0.00011600 2.48
NSGA2 0.65966 0.000232 0.0000183 0.00000104 5.68
PAES 0.65567 0.005750 0.0000370 0.00002780 1.68

PESA2 0.65685 0.001130 0.0000391 0.00002040 14.50
SPEA2 0.66084 0.000101 0.0000145 0.00000019 26.24

True Pareto 0.66599 - 0 - -

Table 3.4: Test Results for ZDT1

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA 0.000233 0 TDEA -0.000003 0 TDEA

IBEA 0.208929 0 TDEA -0.000477 0 TDEA
NSGA2 0.001245 0 TDEA -0.000004 0 TDEA
PAES 0.005236 0 TDEA -0.000023 0 TDEA

PESA2 0.004047 0 TDEA -0.000025 0 TDEA
SPEA2 0.000060 0.007 TDEA 0.000000 0.068 none

We present sample outputs from six algorithms in Figure 3.3. It can be seen that the

final populations of TDEA and SPEA2 have better diversity than those of others. ε-MOEA

loses solutions for the smaller values of the first objective. Although the others have good

diversity in the overall, some gaps stand out in various places.

22



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(a) TDEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(b) SPEA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(c) ε-MOEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(d) NSGA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(e) PAES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2
f1

(f) PESA2

Figure 3.3: ZDT1 Plots

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

Figure 3.4: Pareto-Optimal Frontiers of
ZDT1 and ZDT4

Figure 3.5: Pareto-Optimal Frontier of
ZDT2

23



ZDT2

ZDT2 is an n = 30-variable problem with a nonconvex and uniform Pareto-optimal frontier

(Figure 3.5). Its definition is as follows:

f1(x) = x1 (3.14)

g(x) = 1 + 9
n−1

n∑
i=2

xi (3.15)

h( f1, g) = 1 −
( f1

g

)2
(3.16)

where xi ∈ [0, 1] for i = 1, 2, . . . , 30. The Pareto-optimal frontier is obtained when x∗1 ∈ [0, 1]

and x∗i = 0 for i = 2, 3, . . . , 30.

We observe similar results in indicator values (Table 3.5) as in ZDT1. IBEA again fails

to converge while all others successfully find good approximations of the Pareto-optimal

frontier. Table 3.6 shows that TDEA and SPEA2 outperform other algorithms, except they

are at the same level as ε-MOEA with respect to the Hypervolume metric.

Table 3.5: Indicator Results for ZDT2

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.32833 0.000129 0.0000143 0.00000030 1.06
ε-MOEA 0.32828 0.000074 0.0000209 0.00000013 0.71

IBEA 0.07211 0.067230 0.0014630 0.00094300 2.50
NSGA2 0.32731 0.000207 0.0000187 0.00000087 5.70
PAES 0.32477 0.000836 0.0000301 0.00001290 1.37

PESA2 0.32476 0.000563 0.0000318 0.00000587 13.85
SPEA2 0.32829 0.000107 0.0000145 0.00000019 24.09

True Pareto 0.33332 - 0 - -

Figure 3.5 shows a plot for each of the six algorithms. The final populations of all

algorithms display similar patterns to those of ZDT1.

ZDT3

ZDT3 is an n = 30-variable problem whose Pareto-optimal frontier consists of 5 discontin-

uous parts (Figure 3.9). It tests the ability of an MOEA to distribute the population to all

24



Table 3.6: Test Results for ZDT2

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA 0.000052 0.016 none -0.000007 0 TDEA

IBEA 0.256224 0 TDEA -0.001449 0 TDEA
NSGA2 0.001021 0 TDEA -0.000004 0 TDEA
PAES 0.003564 0 TDEA -0.000016 0 TDEA

PESA2 0.003574 0 TDEA -0.000018 0 TDEA
SPEA2 0.000045 0.063 none 0.000000 0 none

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(a) TDEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(b) SPEA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(c) ε-MOEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(d) NSGA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(e) PAES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(f) PESA2

Figure 3.6: ZDT2 Plots

25



discontinuous regions. The problem is defined below:

f1(x) = x1 (3.17)

g(x) = 1 + 9
n−1

n∑
i=2

xi (3.18)

h( f1, g) = 1 −
√

f1
g −

f1
g sin(10π f1) (3.19)

where xi ∈ [0, 1] for i = 1, 2, . . . , 30. The Pareto-optimal frontier is obtained when x∗i = 0 for

i = 2, 3, . . . , 30. Some solutions in the range x1 ∈ [0, 1] are dominated.

Indicator values (Table 3.7) show that performances of the algorithms are similar to those

of ZDT1 and ZDT2. It can be observed from Table 3.8 that although TDEA is outperformed

by SPEA2, ε-MOEA and NSGA2 in the Hypervolume metric, their differences in Inverted

Generational Distance are not statistically significant. TDEA performs well with respect

to the Hypervolume metric in the absolute sense, compared to results of the true Pareto-

optimal set.

Table 3.7: Indicator Results for ZDT3

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.51391 0.000903 0.0000247 0.00005860 1.08
ε-MOEA 0.51487 0.000711 0.0000208 0.00004780 0.76

IBEA 0.01610 0.009410 0.0017500 0.00009360 2.48
NSGA2 0.51482 0.000083 0.0000128 0.00000061 5.67
PAES 0.49411 0.029830 0.0002460 0.00027200 1.33

PESA2 0.50906 0.012680 0.0000760 0.00015500 13.16
SPEA2 0.51497 0.000073 0.0000114 0.00000040 25.07

True Pareto 0.51695 - 0 - -

We present plots for TDEA, SPEA2, ε-MOEA, NSGA2, PAES and PESA2 in Figure 3.7.

Plots clearly show TDEA’s superior diversity preservation. SPEA2 also performs well. The

final populations of other algorithms have varying densities at the different parts of the

frontier.

ZDT4

This n = 10-variable problem has the same Pareto-optimal frontier as ZDT1 (Figure 3.4).

However, there are 100 local optimal frontiers unlike ZDT1. Each of these local optimal

26



Table 3.8: Test Results for ZDT3

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA -0.000957 0 ε-MOEA 0.000004 0.716 none

IBEA 0.497812 0 TDEA -0.001725 0 TDEA
NSGA2 -0.000911 0 NSGA2 0.000012 0.157 none
PAES 0.019795 0 TDEA -0.000221 0 TDEA

PESA2 0.004851 0.01 TDEA -0.000051 0.033 none
SPEA2 -0.001064 0 SPEA2 0.000013 0.115 none

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(a) TDEA

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(b) SPEA2

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(c) ε-MOEA

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(d) NSGA2

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(e) PAES

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(f) PESA2

Figure 3.7: ZDT3 Plots

27



frontiers can trap an algorithm and cause it to get stuck. This is one of the most difficult

problems in the ZDT series. Below are the function definitions:

f1(x) = x1 (3.20)

g(x) = 1 + 10(n − 1) +

n∑
i=2

(
x2

i − 10 cos(4πxi)
)

(3.21)

h( f1, g) = 1 −
√

f1
g (3.22)

where x1 ∈ [0, 1] and xi ∈ [−5, 5] for i = 2, . . . , 10. The Pareto-optimal frontier is obtained

when x∗1 ∈ [0, 1] and x∗i = 0 for i = 2, 3, . . . , 10.

Table 3.9 shows that IBEA is unable to find any solutions in the nondominated range

while others find good approximation sets. We present the test results in Table 3.10. TDEA

and SPEA2 outperform other metaheuristics and ε-MOEA follows them in performance.

Figure 3.8 displays the qualities of the distributions in the final populations of these six

algorithms.

Table 3.9: Indicator Results for ZDT4

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.65907 0.001090 0.0000160 0.00000127 0.66
ε-MOEA 0.65895 0.001320 0.0000182 0.00000353 0.34

IBEA 0.00000 0.000000 0.0077200 0.01107000 2.41
NSGA2 0.65822 0.001320 0.0000184 0.00000141 5.26
PAES 0.64861 0.007400 0.0000537 0.00004090 0.96

PESA2 0.65573 0.001400 0.0000320 0.00000681 10.89
SPEA2 0.65919 0.001550 0.0000153 0.00000176 17.17

True Pareto 0.66599 - 0 - -

ZDT6

ZDT6 is an n = 10-variable problem with a nonconvex Pareto-optimal frontier (Figure 3.10).

It features a non-uniform density among the frontier. In addition, the solutions are less

dense as they get closer to the Pareto-optimal frontier. Both the nonconvexity and the

varying density of the solutions cause difficulty in convergance and maintaining a diverse

28



Table 3.10: Test Results for ZDT4

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA 0.000118 0.625 none -0.000002 0 TDEA

IBEA N/A N/A TDEA N/A N/A TDEA
NSGA2 0.000845 0.001 TDEA -0.000002 0 TDEA
PAES 0.010461 0 TDEA -0.000038 0 TDEA

PESA2 0.003338 0 TDEA -0.000016 0 TDEA
SPEA2 -0.000118 0.661 none 0.000001 0.035 none

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(a) TDEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(b) SPEA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(c) ε-MOEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(d) NSGA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(e) PAES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(f) PESA2

Figure 3.8: ZDT4 Plots

29



-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

Figure 3.9: Pareto-Optimal Frontier of
ZDT3

Figure 3.10: Pareto-Optimal Frontier of
ZDT6

population. The problem is defined as follows:

f1(x) = 1 − e−4x1 sin6(6πx1) (3.23)

g(x) = 1 + 9

∑10
i=2 xi

9


1
4

(3.24)

h( f1, g) = 1 −
(

f1
g

)2

(3.25)

where xi ∈ [0, 1] for i = 1, . . . , 10. The Pareto-optimal frontier is obtained when x∗1 ∈ [0, 1]

and x∗i = 0 for i = 2, 3, . . . , 10.

Table 3.11: Indicator Results for ZDT6

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.39945 0.000226 0.0000154 0.00000248 0.78
ε-MOEA 0.39430 0.000142 0.0000619 0.00000027 0.38

IBEA 0.32898 0.022020 0.0002250 0.00007400 2.29
NSGA2 0.39907 0.000306 0.0000146 0.00000167 4.97
PAES 0.39245 0.015260 0.0000380 0.00004290 1.25

PESA2 0.39583 0.000765 0.0000335 0.00001390 12.29
SPEA2 0.39822 0.000573 0.0000138 0.00000109 18.94

True Pareto 0.40635 - 0 - -

Table 3.11 indicates that all metaheuristics are able to converge to the Pareto-optimal

frontier with good population diversity. IBEA performs better compared to the previous

30



Table 3.12: Test Results for ZDT6

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA 0.005149 0 TDEA -0.000046 0 TDEA

IBEA 0.070473 0 TDEA -0.000210 0 TDEA
NSGA2 0.000379 0 TDEA 0.000001 0.065 none
PAES 0.007001 0.002 TDEA -0.000023 0.001 TDEA

PESA2 0.003617 0 TDEA -0.000018 0 TDEA
SPEA2 0.001234 0 TDEA 0.000002 0 SPEA2

problems. In statistical tests (Table 3.12), we see that TDEA outperforms all algorithms

in the Hypervolume metric, whereas SPEA2 has the best Inverted Generational Distance

score. We again observe in Figure 3.11 that ε-MOEA loses solutions towards the smaller

values of objective 1. SPEA2 and TDEA have the best distribution among all.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(a) TDEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(b) SPEA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(c) ε-MOEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(d) NSGA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(e) PAES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(f) PESA2

Figure 3.11: ZDT6 Plots

31



3.2.3 3-Objective Problems

The DTLZ series can be modified to have an arbitrary number of objectives and decision

variables. In all 3-objective DTLZ problems, we follow the recommendations of Deb et al.

(2001) for setting the number of decision variables.

DTLZ1

DTLZ1 is the simplest of all 3-objective problems we test, with a linear Pareto-optimal

frontier. It is defined as follows:

Minimize

f1 = 1
2 x1x2

(
1 + g (xM)

)
(3.26)

f2 = 1
2 x1(1 − x2)

(
1 + g (xM)

)
(3.27)

f3 = 1
2 (1 − x1)

(
1 + g (xM)

)
(3.28)

where

g(xM) = 100

|xM| +
∑

xi∈xM

(xi − 0.5)2
− cos (20π (xi − 0.5))

 (3.29)

xi ∈[0, 1] i = 1, 2, . . . , 7 and xM = {x3, x4, . . . , x7}

The Pareto-optimal frontier is obtained when x∗M = 0 and objective functions satisfy∑3
i=1 fi = 0.5. Performance metric scores and test results are given in Table 3.13 and

Table 3.14, respectively. Test results show that TDEA is better than other metaheuristics

in both metrics, except that it is at par with SPEA2 in the Hypervolume metric. NSGA2

converges better than ε-MOEA, but ε-MOEA has better diversity.

Table 3.13: Indicator Results for DTLZ1

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.80227 0.000690 0.0000913 0.00000123 4.46
ε-MOEA 0.75686 0.004030 0.0001010 0.00000610 2.37

IBEA 0.44669 0.063320 0.0008020 0.00033100 22.09
NSGA2 0.78431 0.003010 0.0001300 0.00000647 47.49
PAES 0.61510 0.170300 0.0006150 0.00058000 11.72

PESA2 0.29380 0.090900 0.0014020 0.00028500 201.70
SPEA2 0.80240 0.000455 0.0000947 0.00000134 353.18

True Pareto 0.83050 - 0 - -

32



Table 3.14: Test Results for DTLZ1

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA 0.045408 0 TDEA -0.000010 0 TDEA

IBEA 0.355586 0 TDEA -0.000711 0 TDEA
NSGA2 0.017960 0 TDEA -0.000039 0 TDEA
PAES 0.187167 0 TDEA -0.000524 0 TDEA

PESA2 0.508445 0 TDEA -0.001310 0 TDEA
SPEA2 -0.000128 0.277 none -0.000003 0 TDEA

Figure 3.12 shows the plots of the solutions found by TDEA, SPEA2 and ε-MOEA.

Although ε-MOEA produces finely spaced solutions around the center of the objective

space, it loses solutions towards the extremes, which causes it to have low scores. On the

other hand, TDEA and SPEA2 maintain diversity throughout the entire frontier.

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(a) TDEA

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(b) SPEA2

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(c) ε-MOEA

Figure 3.12: DTLZ1 Plots

DTLZ2

DTLZ2 has a spherical Pareto-optimal frontier (Figure 3.14). Objective functions satisfy∑3
i=1 f 2

i = 1 at Pareto-optimality.

Minimize

f1 =
(
1 + g(xM)

)
cos(0.5x1π) cos(0.5x2π) (3.30)

f2 =
(
1 + g(xM)

)
cos(0.5x1π) sin(0.5x2π) (3.31)

f3 =
(
1 + g(xM)

)
sin(0.5x1π) (3.32)

33



 0

 0.1

 0.2

 0.3

 0.4

 0.5  0  0.1  0.2  0.3  0.4  0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1

f2

 0

 0.2

 0.4

 0.6

 0.8

 1  0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

f1

f2

Figure 3.13: Pareto-Optimal Frontier of
DTLZ1

Figure 3.14: Pareto-Optimal Frontier of
DTLZ2

where

g(xM) =
∑

xi∈xM

(xi − 0.5)2 (3.33)

xi ∈[0, 1] i = 1, 2, . . . , 12 and xM = {x3, x4, . . . , x12}

The problem’s Pareto-optimal frontier corresponds to x∗M = 0.5. We present indicator

results in Table 3.15. In this problem, TDEA performs better than all other metaheuris-

tics in both metrics (see Table 3.16). SPEA2, ε-MOEA and IBEA together come second.

Interestingly, IBEA’s performance is noticeably better than that in DTLZ1.

Table 3.15: Indicator Results for DTLZ2

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.43340 0.001060 0.0001220 0.00000234 7.51
ε-MOEA 0.43057 0.000498 0.0001620 0.00000212 4.37

IBEA 0.43250 0.000465 0.0002720 0.00000579 20.39
NSGA2 0.40364 0.003630 0.0001730 0.00000570 37.25
PAES 0.28964 0.062830 0.0006860 0.00030600 42.25

PESA2 0.09511 0.058380 0.0016690 0.00034400 245.07
SPEA2 0.42594 0.000960 0.0001300 0.00000169 683.86

True Pareto 0.47402 - 0 - -

Figure 3.15 shows one example each for the best performing MOEAs. It can be seen that

TDEA and SPEA2 maintain superior diversity than the others. Although IBEA converges

34



Table 3.16: Test Results for DTLZ2

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA 0.002824 0 TDEA -0.000040 0 TDEA

IBEA 0.000897 0 TDEA -0.000150 0 TDEA
NSGA2 0.029753 0 TDEA -0.000051 0 TDEA
PAES 0.143759 0 TDEA -0.000564 0 TDEA

PESA2 0.338285 0 TDEA -0.001548 0 TDEA
SPEA2 0.007458 0 TDEA -0.000008 0 TDEA

well, most of its solutions are towards the edges. The solutions of ε-MOEA are not as

finely-spaced as in DTLZ1. We see that there are gaps towards the ends and between edges

and the center.

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(a) TDEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(b) SPEA2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(c) ε-MOEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(d) IBEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(e) NSGA2

Figure 3.15: DTLZ2 Plots

35



DTLZ3

DTLZ3 is the same problem with DTLZ2, except that its g function is changed. The change

does not affect the Pareto-optimality conditions but adds multimodality. That is, it has

many local Pareto-optimal frontiers. It tests the ability of an MOEA to converge the true

Pareto-optimal frontier.

Minimize

f1 =
(
1 + g(xM)

)
cos(0.5x1π) cos(0.5x2π) (3.34)

f2 =
(
1 + g(xM)

)
cos(0.5x1π) sin(0.5x2π) (3.35)

f3 =
(
1 + g(xM)

)
sin(0.5x1π) (3.36)

where

g(xM) = 100

|xM| +
∑

xi∈xM

(xi − 0.5)2
− cos (20π (xi − 0.5))

 (3.37)

xi ∈[0, 1] i = 1, 2, . . . , 12 and xM = {x3, x4, . . . , x12}

As can be seen from Table 3.17, SPEA2 and TDEA have better values in both metrics.

SPEA2’s values are better than those of TDEA, although Inverted Generational Distance

difference is not statistically significant (Table 3.18). These two algorithms are followed

by ε-MOEA and NSGA2. One remarkable note is that IBEA is unable to converge the

Pareto-optimal front.

Table 3.17: Indicator Results for DTLZ3

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.42843 0.002540 0.0001240 0.00000332 4.34
ε-MOEA 0.42041 0.004660 0.0001820 0.00000669 2.48

IBEA 0 0 0.0460900 0.02726000 20.81
NSGA2 0.40775 0.004110 0.0001690 0.00000526 49.41
PAES 0.19530 0.110900 0.0012870 0.00079800 8.54

PESA2 0.07773 0.044680 0.0017860 0.00029800 186.62
SPEA2 0.43181 0.002030 0.0001260 0.00000161 251.61

True Pareto 0.47402 - 0 - -

We present sample plots for TDEA, SPEA2, ε-MOEA and NSGA2 in Figure 3.16. We

observe similar patterns to those in DTLZ2.

36



Table 3.18: Test Results for DTLZ3

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA 0.008017 0 TDEA -0.000058 0 TDEA

IBEA N/A N/A TDEA N/A N/A TDEA
NSGA2 0.020680 0 TDEA -0.000045 0 TDEA
PAES 0.233127 0 TDEA -0.001163 0 TDEA

PESA2 0.350698 0 TDEA -0.001662 0 TDEA
SPEA2 -0.003386 0 SPEA2 -0.000002 0.004 none

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(a) TDEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(b) SPEA2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(c) ε-MOEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(d) NSGA2

Figure 3.16: DTLZ3 Plots

37



 0

 0.2

 0.4

 0.6

 0.8

 1  0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

f1

f2

 0

 0.2

 0.4

 0.6

 0.8

 1  0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

f1

f2

Figure 3.17: Pareto-Optimal Frontier of
DTLZ3

Figure 3.18: Pareto-Optimal Frontier of
DTLZ4

DTLZ4

DTLZ4 has a concave and unimodal Pareto-optimal frontier (Figure 3.18). However, the

density of solutions among the frontier is different. Hence, it tests an algorithm’s ability to

maintain a good diversity of solutions.

Minimize

f1 =
(
1 + g(xM)

)
cos(0.5xα1π) cos(0.5xα2π) (3.38)

f2 =
(
1 + g(xM)

)
cos(0.5xα1π) sin(0.5xα2π) (3.39)

f3 =
(
1 + g(xM)

)
sin(0.5xα1π) (3.40)

where

g(xM) =
∑

xi∈xM

(xi − 0.5)2 (3.41)

xi ∈[0, 1] i = 1, 2, . . . , 12 , xM = {x3, x4, . . . , x12} and α = 100

Table 3.19 shows the indicator values of algorithms. It can be seen that compared to the

previous problems the standard deviations are very high for both metrics. This is because

all of the metaheuristics are stuck in a particular region of the Pareto-optimal frontier

during some of the runs. Among all MOEAs, NSGA2 has the lowest standard deviation.

This indicates that NSGA2 is able to recover better than the other metaheuristics, most

probably because its nondominated sorting mechanism preserves more lateral diversity

than the other methods. However, this is not enough for it to outperform IBEA. TDEA is

behind SPEA2 and ε-MOEA although the difference is not statistically significant.

38



Table 3.19: Indicator Results for DTLZ4

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.36470 0.112000 0.0005330 0.00068800 6.61
ε-MOEA 0.40710 0.073100 0.0003120 0.00046700 4.28

IBEA 0.42764 0.025720 0.0002310 0.00008870 20.32
NSGA2 0.40712 0.003280 0.0001760 0.00001150 37.85
PAES 0.00506 0.028020 0.0023150 0.00016400 3.66

PESA2 0.11010 0.144000 0.0018050 0.00074500 101.75
SPEA2 0.40535 0.064980 0.0002640 0.00043300 645.33

True Pareto 0.47275 - 0 - -

Table 3.20: Test Results for DTLZ4

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA -0.042404 0.028 none 0.000221 0.063 none

IBEA -0.062915 0 IBEA 0.000303 0.003 IBEA
NSGA2 -0.042398 0.01 none 0.000357 0.001 NSGA2
PAES 0.359662 0 TDEA -0.001782 0 TDEA

PESA2 0.254599 0 TDEA -0.001272 0 TDEA
SPEA2 -0.040627 0.029 none 0.000269 0.022 none

In Figure 3.19, we present the plots of well-converged final populations of TDEA, SPEA2,

ε-MOEA, IBEA and NSGA2. We observe that when algorithms are able to converge, TDEA

and SPEA2 produce populations with best diversity.

DTLZ5

DTLZ5 is a modification of DTLZ2, which turns its Pareto-optimal frontier into a curve as

seen in Figure 3.21.

Minimize

f1 =
(
1 + g(xM)

)
cos(θ1) cos(θ2) (3.42)

f2 =
(
1 + g(xM)

)
cos(θ1) sin(θ2) (3.43)

f3 =
(
1 + g(xM)

)
sin(θ1) (3.44)

where

g(xM) =
∑

xi∈xM

(xi − 0.5)2 (3.45)

θ1 = π
2 x1 (3.46)

39



 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(a) TDEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(b) SPEA2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(c) ε-MOEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(d) IBEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(e) NSGA2

Figure 3.19: DTLZ4 Plots

θ2 = π
4(1+g(xM)) (1 + 2g(xM)x2) (3.47)

xi ∈[0, 1] i = 1, 2, . . . , 12 and xM = {x3, x4, . . . , x12}

The Pareto-optimal frontier is found when x∗M = 0.5 and objective functions satisfy∑3
i=1 f 2

i = 1. As it can be seen from Table 3.21, none of the algorithms has a problem

in converging to the Pareto-optimal frontier. The test results in Table 3.22 show that all

algorithms perform very well in converging the Pareto-optimal frontier.

We present plots of TDEA, SPEA2, ε-MOEA, IBEA and NSGA2 in Figure 3.20. While

TDEA, SPEA2 and NSGA2 maintain good diversity throughout the entire frontier, IBEA

and ε-MOEA lose solutions towards the ends.

DTLZ6

DTLZ6 is a modified version of DTLZ5 with a different g function, which makes it a more

difficult problem. The change causes MOEAs to find dominated surfaces instead of a curve.

40



Table 3.21: Indicator Results for DTLZ5

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.09429 0.000037 0.0000102 0.00000021 5.94
ε-MOEA 0.09444 0.000012 0.0000272 0.00000041 3.69

IBEA 0.09376 0.000096 0.0000529 0.00000503 19.91
NSGA2 0.09419 0.000057 0.0000129 0.00000056 35.51
PAES 0.09248 0.000424 0.0000264 0.00000256 16.12

PESA2 0.09301 0.000189 0.0000210 0.00000153 140.05
SPEA2 0.09433 0.000051 0.0000099 0.00000017 404.69

True Pareto 0.09587 - 0 - -

Table 3.22: Test Results for DTLZ5

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA -0.000151 0 ε-MOEA -0.000017 0 TDEA

IBEA 0.000523 0 TDEA -0.000043 0 TDEA
NSGA2 0.000102 0 TDEA -0.000003 0 TDEA
PAES 0.001803 0 TDEA -0.000016 0 TDEA

PESA2 0.001274 0 TDEA -0.000011 0 TDEA
SPEA2 -0.000038 0 SPEA2 0.000000 0 none

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
 0  0.2  0.4  0.6  0.8  1  1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1

f2

(a) TDEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
 0  0.2  0.4  0.6  0.8  1  1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1

f2

(b) SPEA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
 0  0.2  0.4  0.6  0.8  1  1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1

f2

(c) ε-MOEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
 0  0.2  0.4  0.6  0.8  1  1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1

f2

(d) IBEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
 0  0.2  0.4  0.6  0.8  1  1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1

f2

(e) NSGA2

Figure 3.20: DTLZ5 Plots

41



 0

 0.2

 0.4

 0.6

 0.8

 1  0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

f1

f2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 1

 2

 3

 4

 5

 6

 7

f1

f2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 1

 2

 3

 4

 5

 6

 7

f1

f2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 1

 2

 3

 4

 5

 6

 7

f1

f2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 1

 2

 3

 4

 5

 6

 7

f1

f2

Figure 3.21: Pareto-Optimal Frontiers of
DTLZ5 and DTLZ6

Figure 3.22: Pareto-Optimal Frontier of
DTLZ7

It has the same Pareto-optimal frontier as DTLZ5 (Figure 3.21).

Minimize

f1 =
(
1 + g(xM)

)
cos(θ1) cos(θ2) (3.48)

f2 =
(
1 + g(xM)

)
cos(θ1) sin(θ2) (3.49)

f3 =
(
1 + g(xM)

)
sin(θ1) (3.50)

where

g(xM) =
∑

xi∈xM

(xi)
0.1 (3.51)

θ1 = π
2 x1 (3.52)

θ2 = π
4(1+g(xM)) (1 + 2g(xM)x2) (3.53)

xi ∈[0, 1] i = 1, 2, . . . , 12 and xM = {x3, x4, . . . , x12}

Table 3.23 shows that SPEA2, NSGA2, PAES and PESA2 are not affected at all by the

change. On the other hand, TDEA and ε-MOEA are unable to converge as well as they

do in DTLZ5, while IBEA is unable to find any solutions in the nondominated range. Test

results in Table 3.24 also confirm that.

The plots given in Figure 3.23 display that TDEA and ε-MOEA find dominated surfaces

as indicated above. It shows that these algorithms have some difficulty in converging to

the Pareto-optimal frontier. To test whether they can converge better, we make further 50

runs with 320, 000 function evaluations for these two algorithms. As Table 3.25 indicates,

TDEA remarkable improves with more iterations while ε-MOEA produces almost the same

results. The test results in Table 3.26 as well as the plots given in Figure 3.24 also show the

42



Table 3.23: Indicator Results for DTLZ6

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.06927 0.001243 0.0001300 0.00000830 6.48
ε-MOEA 0.05571 0.010250 0.0002480 0.00008330 3.27

IBEA 0.00000 0.000000 0.0041340 0.00202900 20.39
NSGA2 0.09245 0.005588 0.0000223 0.00002780 37.69
PAES 0.09247 0.001803 0.0000504 0.00012700 14.62

PESA2 0.08904 0.007370 0.0000418 0.00003010 172.39
SPEA2 0.09363 0.003571 0.0000131 0.00001540 547.52

True Pareto 0.09587 - 0 - -

Table 3.24: Test Results for DTLZ6

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA 0.013553 0 TDEA -0.000118 0 TDEA

IBEA N/A N/A TDEA N/A N/A TDEA
NSGA2 -0.023186 0 NSGA2 0.000108 0 NSGA2
PAES -0.023206 0 PAES 0.000080 0 PAES

PESA2 -0.019779 0 PESA2 0.000089 0 PESA2
SPEA2 -0.024366 0 SPEA2 0.000117 0 SPEA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1

f2

(a) TDEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1

f2

(b) SPEA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1

f2

(c) ε-MOEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1

f2

(d) NSGA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1

f2

(e) PAES

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1

f2

(f) PESA2

Figure 3.23: DTLZ6 Plots

43



significant difference. Note that both algorithms are still faster than the other algorithms

despite the increased number of function evaluations.

Table 3.25: Indicator Results for DTLZ6 with 320000 Function Evaluations

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.08860 0.000995 0.0000349 0.00000195 10.48
ε-MOEA 0.05598 0.010370 0.0002458 0.00008427 6.41

True Pareto 0.09587 - 0 - -

Table 3.26: Test Results for DTLZ6 with 320000 Function Evaluations

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA 0.032610 0 TDEA -0.000210 0 TDEA

DTLZ7

DTLZ7’s Pareto-optimal frontier consists of 2p−1 disconnected parts. We present its frontier

for the 3-objective case in (Figure 3.22). The density of solutions is uniform throughout the

frontier. It tests an algorithm’s ability to maintain populations in all disconnected regions.

Minimize

f1 = x1 (3.54)

f2 = x2 (3.55)

f3 =
(
1 + g(xM)

)
h
(

f1, f2, g
)

(3.56)

where

g(xM) = 1 + 9
|xM|

∑
xi∈xM

xi (3.57)

h( f1, f2, g) = 3 −
2∑

i=1

[ fi
1+g

(
1 + sin(3π fi)

)]
(3.58)

xi ∈[0, 1] i = 1, 2, . . . , 22 and xM = {x3, x4, . . . , x22}

44



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1

f2

(a) TDEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1

f2

(b) ε-MOEA

Figure 3.24: DTLZ6 Plots with 320000 Function Evaluations

As can be seen from Table 3.27, all algorithms except PAES and PESA2 converge success-

fully the Pareto-optimal frontier. IBEA and TDEA have large standard deviation values,

which indicate that they perform significantly worse in some of the runs. Because of that,

TDEA cannot outperform ε-MOEA and SPEA2 in the Hypervolume measure (Table 3.28)

although it has a higher mean. A similar result is seen in the Inverted Generational Distance

comparisons.

Table 3.27: Indicator Results for DTLZ7

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.32055 0.013960 0.0001620 0.00030400 7.58
ε-MOEA 0.31630 0.001370 0.0000803 0.00000054 4.84

IBEA 0.30160 0.037370 0.0006860 0.00057600 20.76
NSGA2 0.31084 0.002290 0.0001270 0.00000725 39.11
PAES 0.17241 0.025460 0.0021630 0.00025200 33.94

PESA2 0.16350 0.075000 0.0019150 0.00085800 248.82
SPEA2 0.31920 0.000951 0.0001030 0.00000268 551.75

True Pareto 0.34437 - 0 - -

We present plots of TDEA, SPEA2, ε-MOEA, IBEA and NSGA2 in Figure 3.25. ε-MOEA

displays the best diversity with TDEA and SPEA2 following it. NSGA2 produces an

irregular pattern, while IBEA has difficulty in finding solutions towards the center.

45



Table 3.28: Test Results for DTLZ7

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA 0.004250 0.037 none 0.000082 0.062 none

IBEA 0.018949 0.001 TDEA -0.000524 0 TDEA
NSGA2 0.009705 0 TDEA 0.000035 0.414 none
PAES 0.148138 0 TDEA -0.002001 0 TDEA

PESA2 0.157003 0 TDEA -0.001753 0 TDEA
SPEA2 0.001343 0.501 none 0.000059 0.174 none

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 1

 2

 3

 4

 5

 6

 7

f1

f2

(a) TDEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 1

 2

 3

 4

 5

 6

 7

f1

f2

(b) SPEA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 1

 2

 3

 4

 5

 6

 7

f1

f2

(c) ε-MOEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 1

 2

 3

 4

 5

 6

 7

f1

f2

(d) IBEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 1

 2

 3

 4

 5

 6

 7

f1

f2

(e) NSGA2

Figure 3.25: DTLZ7 Plots

46



3.2.4 5-Objective Problems

In 5-objective tests, we use problems DTLZ1 and DTLZ2. However, we do not perform

tests with PESA-II and PAES since their performances are significantly lower than the other

algorithms in 3-objective tests.

DTLZ1-5D

As in 3-objective DTLZ1, DTLZ1-5D has a linear Pareto-optimal frontier. It is a multimodal

problem with many local Pareto-optimal frontiers. These local frontiers attract MOEAs and

cause difficulties for them to converge the true frontier.

Minimize

f1 = 1
2 x1x2x3x4

(
1 + g (xM)

)
(3.59)

f2 = 1
2 x1x2x3(1 − x4)

(
1 + g (xM)

)
(3.60)

f3 = 1
2 x1x2(1 − x3)

(
1 + g (xM)

)
(3.61)

f4 = 1
2 x1(1 − x2)

(
1 + g (xM)

)
(3.62)

f5 = 1
2 (1 − x1)

(
1 + g (xM)

)
(3.63)

where

g(xM) = 100

|xM| +
∑

xi∈xM

(xi − 0.5)2
− cos (20π (xi − 0.5))

 (3.64)

xi ∈[0, 1] i = 1, 2, . . . , 9 and xM = {x5, x6, . . . , x9}

Table 3.29 shows that TDEA and ε-MOEA are the most successful algorithms in con-

verging the Pareto-optimal frontier. While IBEA and NSGA2 partially converge, SPEA2 is

unable to find any solutions within the nondominated range. In test results (Table 3.30),

TDEA outperforms all algorithms in both metrics. Note that the standard deviation values

of TDEA are also the smallest, which means that it has the least difficulty in finding qual-

ity final populations compared to other algorithms. One another remark is the duration.

TDEA’s average time to complete its runs is the second among all algorithms.

DTLZ2-5D

DTLZ2-5D is the 5-objective version of DTLZ2, sharing the same properties.

Minimize

f1 =
(
1 + g(xM)

)
cos(0.5x1π) cos(0.5x2π) cos(0.5x3π) cos(0.5x4π) (3.65)

47



Table 3.29: Indicator Results for DTLZ1-5D

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.95202 0.001570 0.0003520 0.00001990 25.745
ε-MOEA 0.91499 0.008360 0.0003920 0.00003100 13.3264

IBEA 0.56667 0.051770 0.0009150 0.00010600 114.295
NSGA2 0.15390 0.294300 0.0120600 0.01318000 163.369
SPEA2 0 0 0.1183300 0.03057000 2140

Table 3.30: Test Results for DTLZ1-5D

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA 0.037025 0 TDEA -0.000040 0 TDEA

IBEA 0.385347 0 TDEA -0.000562 0 TDEA
NSGA2 0.798130 0 TDEA -0.011709 0 TDEA
SPEA2 N/A N/A TDEA N/A N/A TDEA

f2 =
(
1 + g(xM)

)
cos(0.5x1π) cos(0.5x2π) cos(0.5x3π) sin(0.5x4π) (3.66)

f3 =
(
1 + g(xM)

)
cos(0.5x1π) cos(0.5x2π) sin(0.5x3π) (3.67)

f4 =
(
1 + g(xM)

)
cos(0.5x1π) sin(0.5x2π) (3.68)

f5 =
(
1 + g(xM)

)
sin(0.5x1π) (3.69)

where

g(xM) =
∑

xi∈xM

(xi − 0.5)2 (3.70)

xi ∈[0, 1] i = 1, 2, . . . , 14 and xM = {x5, x6, . . . , x14}

Indicator results in Table 3.31 show that all algorithms converge the Pareto-optimal fron-

tier, although there are significant differences in Hypervolume and Inverted Generational

Distance metrics. This is also confirmed in test results (Table 3.31). TDEA and IBEA display

better Hypervolume performances than other algorithms, indicating better convergence.

However, TDEA scores much better in the Inverted Generational Distance compared to

IBEA. In addition, it needs less time to finish its runs than all algorithms except ε-MOEA.

3.2.5 Effects of Changing τ

In TDEA, τ controls the extent of the territory of a solution. Its value changes the hy-

pervolume that a solution occupies in the objective space. Since the total nondominated

48



Table 3.31: Indicator Results for DTLZ2-5D

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

TDEA 0.71209 0.001900 0.0004340 0.00000892 41.1262
ε-MOEA 0.69352 0.001850 0.0004860 0.00000593 22.4666

IBEA 0.72338 0.000542 0.0006330 0.00001590 106.964
NSGA2 0.41157 0.030360 0.0007940 0.00006910 165.432
SPEA2 0.59258 0.010080 0.0005950 0.00003600 4692.72

Table 3.32: Test Results for DTLZ2-5D

H0 : µTDEA = µContender vs H1 : µTDEA , µContender
Hypervolume Inverted Gen. Distance

Contender ∆H P-Value Winner ∆D P-Value Winner
ε-MOEA 0.018571 0 TDEA -0.000052 0 TDEA

IBEA -0.011289 0 IBEA -0.000199 0 TDEA
NSGA2 0.300515 0 TDEA -0.000360 0 TDEA
SPEA2 0.119504 0 TDEA -0.000161 0 TDEA

hypervolume is limited, the size of the population depends on τ. The population size is

expected to be smaller with a larger τ compared to that with a smaller τ. TDEA scales all

objectives into the [0, 1] range, hence τ is always between 0 and 1. However, there is no

straightforward way of determining the right value for τ, because the space between solu-

tions changes with the shape of the Pareto-optimal frontier. Also the number of objectives

affects the value of τ. For large number of objectives, τ needs to be large in order to keep

the population in size reasonable.

A smaller τ yields a better approximation of the Pareto-optimal frontier than a larger τ.

However, computational time requirement increases as τ decreases. To observe the effect of

different τ values, we make test runs on problems ZDT4, DTLZ1 and DTLZ2 with various

τ values and compare their results.

Table 3.33: Indicator Results for ZDT4

Hypervolume Inverted Gen. Distance Final
τ x̄H sH x̄D sD Duration (sec) Pop. Size

0.0005 0.66459 0.000465 0.0000031 0.00000285 3.7 ~ 1400
0.001 0.66439 0.000531 0.0000031 0.00000098 2.7 ~ 750
0.005 0.66258 0.000379 0.0000087 0.00000032 1.7 ~ 170

True Pareto 0.66599 - 0 - -

49



Table 3.34: Indicator Results for DTLZ1

Hypervolume Inverted Gen. Distance Final
τ x̄H sH x̄D sD Duration (sec) Pop. Size

0.01 0.82311 0.000777 0.0000254 0.00000101 86.1 ~ 3000
0.02 0.81760 0.000414 0.0000456 0.00000048 22.4 ~ 800
0.03 0.81100 0.000347 0.0000664 0.00000092 15.4 ~ 400

True Pareto 0.83050 - 0 - -

Table 3.35: Indicator Results for DTLZ2

Hypervolume Inverted Gen. Distance Final
τ x̄H sH x̄D sD Duration (sec) Pop. Size

0.02 0.46140 0.000164 0.0000394 0.00000038 87.1 ~ 2000
0.03 0.45666 0.000175 0.0000550 0.00000045 45.1 ~ 1000
0.05 0.44541 0.000554 0.0000876 0.00000100 25.7 ~ 400

True Pareto 0.47402 - 0 - -

In Table 3.33, we observe that Hypervolume values slightly increase as τ decreases.

Average duration of runs also increase when τ is decreased. Figure 3.26 illustrates the

difference in the details of final populations. Tables 3.34 and 3.35 give results for 3-objective

problems DTLZ1 and DTLZ2. It can be seen that decreasing τ gives more detail in return

for increased computational cost. In all problems, decreasing τ increases the size of final

populations. However, using the same τ for different problems does not lead to the same

number of solutions in final populations. The plots in Figures 3.27 and 3.28 clearly display

the difference in the densities of the final populations when τ is changed. Note that in all

of the problems and for all τ values, TDEA successfully maintains the diversity among the

entire population.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(a) τ = 0.0005

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(b) τ = 0.001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(c) τ = 0.005

Figure 3.26: ZDT4 Plots with Different τ Values

50



 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(a) τ = 0.01

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(b) τ = 0.03

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(c) τ = 0.05

Figure 3.27: DTLZ1 Plots with Different τ Values

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(a) τ = 0.02

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(b) τ = 0.03

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(c) τ = 0.05

Figure 3.28: DTLZ2 Plots with Different τ Values

3.2.6 Discussions

The tests show that TDEA is able to converge the true Pareto-optimal frontier in all of the

problems, regardless of the number of objectives and the shape of the Pareto-optimal fron-

tier. It maintains a uniform diversity of solutions over the entire Pareto-optimal frontier

and obtains a good representation of the true frontier. We observe that it performs better

than other metaheuristics in most of the problems with respect to both the Hypervolume

and the Inverted Generational Distance metrics. Thanks to its territory defining property, it

eliminates the need for an explicit diversity preserving operator, providing the fastest exe-

cution time after ε-MOEA. As shown in the plots, this mechanism also helps the algorithm

to obtain the best spread of solutions together with SPEA2.

51



CHAPTER 4

PREFERENCE INCORPORATION

Although many multiobjective evolutionary algorithms try to approximate the entire

Pareto-optimal frontier, the final goal in solving multiobjective optimization problems is to

find a single or few solutions that satisfy the preferences of the decision maker (DM). These

MOEAs are a posteriori methods that do not involve any preference-based decision making

until the optimization stage ends. They first generate many solutions all over the Pareto-

optimal frontier. After that, they present these solutions to the DM for him/her to make a

decision. Although they avoid some computational issues by relegating decision making to

post optimization, some new problems are introduced (Rachmawati and Srinivasan, 2006).

First of all, approximating the entire frontier is a difficult and computationally expensive

task, since most of the procedures used in these algorithms are costly. In addition, this is

usually an unnecessary task. Most of the time, DMs know beforehand that they are not

interested at all in some parts of the Pareto-optimal frontier. Since a posteriori methods

do not incorporate such information, they spend needless effort in searching these regions.

Furthermore, a search without a focus may not provide the necessary resolution about the

regions that the DM has interest. On the other hand, guiding the search towards these

regions allows algorithms to discover more details about them.

Considering these disadvantages of a posteriori methods, we implement a preference

incorporation mechanism into the Territory Defining Evolutionary Algorithm. This mecha-

nism alters the territories of solutions based on their locations. For solutions in the preferred

regions, the territory size is set to a lower value so as to accept more solutions in these re-

gions. On the other hand, solutions outside these regions control larger territories, causing

closely located newcomers to be rejected. Such a territory modification scheme guides

the search so that solutions in regions of interest are densely packed, while the rest of the

regions are sparse.

52



Without changing the underlying preference incorporation mechanism, we propose a

priori and interactive versions of the Territory Defining Evolutionary Algorithm. We call

the former as the Preferred-Region Territory Defining Evolutionary Algorithm (prTDEA)

and the latter as the Interactive Territory Defining Evolutionary Algorithm (iTDEA). In

this chapter, we will first describe the common features of preference incorporation in two

algorithms in Section 4.1. It is followed by the details and computational results of prTDEA

and iTDEA in Sections 4.2 and 4.3, respectively.

4.1 Common Features

4.1.1 Variable Territory Sizes

In Section 3.2.5, we investigate the effects of different τ values on the population size

and the quality of Pareto-optimal frontier approximation. The results show that a smaller

τ brings better details, though with extra computational cost. However, as mentioned

before, approximating the entire Pareto-optimal frontier is not very useful. On the contrary,

focusing a particular region helps to avoid much of the additional effort. This is only

possible if preferences of the DM can be integrated into the solution procedure. TDEA’s

territory defining property can be effectively utilized for this purpose. If the preferred

regions are defined, then the algorithm can concentrate on these regions by shrinking the

territories of the solutions falling within. That is, a smaller τ is used for such an offspring

in the archive evaluation stage. This way, more solutions are allowed in those areas in

the archive population, which means higher resolution and better approximation. On the

other hand, solutions located elsewhere are evaluated using a larger τ. This prohibits

dense populations in the regions in which the DM is not interested. Consequently, the

search in these regions are discouraged, because unfavorable solutions have less chance to

participate in genetic operations. In addition, while the size of the entire population is kept

in a smaller size, the size of the focused region will remain large. Thus, each generation

takes a shorter time, since the population size is trimmed down and fewer comparisons are

to be done.

Note that the final population of the algorithm is still the approximation of the entire

Pareto-optimal frontier. That is, solutions outside the preferred regions are still accepted,

but their densities are lower than those in the areas of interest.

53



4.1.2 Favorable Weights

To make variable territory sizes operational, we have to define the regions to be focused

on and determine whether solutions fall within these regions. In TDEA, we use the idea of

favorable weights (Soylu and Köksalan, 2006) for this purpose. The favorable weights ws =

{ws
1,w

s
2, . . . ,w

s
p} of solution s are a set of weights that minimizes its weighted Tchebycheff

distance from the ideal point. They are computed as shown in the following equation. Note

that we dropped s from the superscript to simplify the notation.

wi =


1

f ∗i − fi

[∑p
j=1

1
f ∗j − f j

]−1
if f j , f ∗j for all j = 1, 2, . . . , p

1 if fi = f ∗i
0 if fi , f ∗i but ∃ j such that f j = f ∗j

(4.1)

where fi is the ith objective value and f ∗i is the ith element of the ideal objective vector.

These weights determine the direction in which a solution contributes the highest to

the convergence. More specifically, the corresponding solution is in the direction 1
wi
, i =

1, 2, . . . , p from the ideal point. We define a preferred region RP by a set of Tchebycheff weights

WP. Then, we say that a solution s is in RP if its weights, ws, satisfy ws
∈WP. Otherwise, s

is not in RP. In other words, a solution is a favorable one if its favorable weights are covered

by the weight ranges of a preferred region.

4.2 Preferred-Region Territory Defining Evolutionary Algorithm

In this section, we present Preferred-Region the Territory Defining Evolutionary Algorithm.

We start by explaining the details of the algorithm in Section 4.2.1. It will be followed by

the simulation runs and comparisons in Section 4.2.2.

4.2.1 Details of the Algorithm

Preferred-Region Territory Defining Evolutionary Algorithm (prTDEA) is an application

of the preference incorporation mechanism in TDEA. In prTDEA, DM states all his/her

preference information before optimization. This is done by explicitly specifying m =

1, 2, . . . preference regions by weight sets. Then, each region and the remaining space is

assigned its own τ value. An offspring is evaluated using the τ of the region to which it

corresponds. An outline of the algorithm is given below:

1. Set N̄ and T. Ask the user to specify his/her non-overlapping preferred regions

54



R1,R2, . . . ,Rm. Set τ1, τ2, . . . , τm. Specify an τU value corresponding to regions in

which the DM is not interested. Set iteration count t = 0.

2. Create N̄ random solutions to fill P(0). Copy the nondominated solutions in P(0) into

A(0).

3. Set t← t + 1. Choose a parent from each population P(t) and A(t). Recombine parents

to create new offspring and apply mutation to it.

4. Test the offspring for acceptance into P(t). If accepted, insert into P(t) and go to the

next step. Otherwise, go to Step 6.

5. Test the offspring for acceptance into A(t). If accepted, insert into A(t).

6. If the iteration limit is hit, that is, t = T, then stop and report the archive population.

Otherwise go to Step 3.

It can be observed that prTDEA and TDEA are very similar. prTDEA allows multiple

preference regions to be defined, whereas in TDEA there exists a single preference region,

Rp, whose weight set is equal to the entire weight space. This leads to a difference between

the archive acceptance procedure. In prTDEA, this stage involves the determination of

favorable weights of an offspring. Also it is modified so that the offspring are evaluated

with different τ values. The process starts with a dominance check. If any solution in the

archive dominates offspring c, then c is rejected and the process is terminated. Otherwise,

the second stage of the archive acceptance starts by removing all solutions dominated by

c. Before checking for territory violation, we determine the preference region that contains

c. For this purpose, we compute the favorable weights, wc, of c and determine the region

i whose weight set contain these weights to set τ = τi. If c is not a favorable solution,

then τ = τU. The rest is the same as TDEA. First, the closest solution si∗ to c with respect

to rectilinear distance is determined, using the scaled objective function values. Then, we

check whether si∗ is in the territory of c, which is defined as the region within τ distance

in all objective values of c. c is rejected if the maximum scaled objective distance between

si∗ and c is smaller than the τ value. Otherwise, it is accepted. We give the details of the

procedure below:

1. Test c against each solution si ∈ A(t) for dominance. Mark solutions dominated by c.

If c is dominated by at least one si, reject c. Otherwise, go to next step.

2. Remove all marked solutions from A(t).

55



3. If A(t) is empty, accept c and insert into A(t). Otherwise, go to the next step.

4. Calculate the favorable weights wc of c with Equation 4.1 using scaled objective values.

5. Find the region i whose weight set contains the favorable weights of c and set τ = τi.

If there exists no such region, then set τ = τU. That is, set τ as follows:

τ =

 τi if ∃Ri such that wc
∈Wi

τU otherwise
(4.2)

6. Calculate the rectilinear distance dci =
∑p

j=1

∣∣∣ f̂cj − f̂i j
∣∣∣ of c to each solution si ∈ A(t)

using the scaled objective function values.

7. Find i∗ = argmini(dci), that is, the solution si∗ closest to c.

8. Find maximum scaled absolute objective difference between c and si∗ . That is, find

δ = max
j=1,2,...,p

∣∣∣ f̂cj − ˆfi∗ j
∣∣∣ (4.3)

where f̂cj and ˆfi∗ j are the scaled jth objective values of offspring c and solution si∗ ,

respectively.

9. If δ ≥ τ, accept c and insert it into A(t). Otherwise, reject c.

4.2.2 Simulation Runs and Comparisons

Since prTDEA focuses on regions specified by the DM, we expect that it finds better ap-

proximations of the preferred regions than does TDEA under the same test conditions. To

test this claim, we make simulation runs on problems ZDT4, DTLZ1 and DTLZ2. For each

problem, we create 4 tests, each having a different preference region. We define preference

regions by a set of Tchebycheff weight ranges
[
lP,uP

]
=

{[
lP1 ,u

P
1

]
,
[
lP2 ,u

P
2

]
, . . . ,

[
lPp ,uP

p

]}
. In

prTDEA, a small τs value is used for these preference regions, whereas a larger τl value is

used for the remaining regions. On the other hand, TDEA uses the same small τs for the

entire Pareto-optimal frontier. After runs are complete, we filter out solutions of two algo-

rithms corresponding to preference regions and compute their Hypervolume and Inverted

Generational Distance values as defined in Section 3.2.1. We also filter the true Pareto-

optimal frontier representations that are used in Section 3.2 according to the preference

regions. The details of each test are given in Table 4.1.

56



Ta
bl

e
4.

1:
Pr

ef
er

en
ce

Te
st

Pa
ra

m
et

er
s

Z
D

T
4

D
T

LZ
1

D
T

LZ
2

Te
st

1
W

ei
gh

tR
an

ge
s

[0
.4
,0
.6

],
[0
.4
,0
.6

]
[0
.2

5,
0.

5]
,[

0.
25
,0
.5

],
[0
.2

5,
0.

5]
[0
.2

5,
0.

5]
,[

0.
25
,0
.5

],
[0
.2

5,
0.

5]

Te
st

2
W

ei
gh

tR
an

ge
s

[0
.3
,0
.7

],
[0
.3
,0
.7

]
[0
.2
,0
.6

],
[0
.2
,0
.6

],
[0
.2
,0
.6

]
[0
.2
,0
.6

],
[0
.2
,0
.6

],
[0
.2
,0
.6

]

Te
st

3
W

ei
gh

tR
an

ge
s

[0
.1
,0
.3

],
[0
.7
,0
.9

]
[0
.1
,0
.4

],
[0
.3
,0
.6

],
[0
.1
,0
.6

]
[0
.1
,0
.4

],
[0
.3
,0
.6

],
[0
.1
,0
.6

]

Te
st

4
W

ei
gh

tR
an

ge
s

[0
.7

5,
1]
,[

0,
0.

25
]

[0
.4
,0
.7

],
[0
.1
,0
.3

],
[0
.2
,0
.5

]
[0
.4
,0
.7

],
[0
.1
,0
.3

],
[0
.2
,0
.5

]

Fu
nc

ti
on

Ev
al

ua
ti

on
s

80
00

0
16

00
00

16
00

00

R
eg

ul
ar

Po
pu

la
ti

on
Si

ze
20

0
40

0
40

0

τ s
0.

00
00

1
0.

00
5

0.
01

τ u
0.

01
0.

05
0.

1

R
ep

lic
at

io
ns

30
30

30

57



2-Objective Tests

We use problem ZDT4 to conduct 2-objective preference tests.

Test 1 The first test covers a region in the middle of the Pareto-optimal frontier (Fig-

ure 4.1a). As it can be observed from Table 4.2, prTDEA outperforms TDEA in both

Hypervolume and Inverted Generational Distance metrics. Table 4.6 shows that the differ-

ences are statistically significant. In addition, it takes a shorter time to finish its runs on

average. Plots of the results of the two algorithms are given in Figure 4.1.

Table 4.2: Indicator Results for ZDT4 Preference Test 1

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

prTDEA 0.51388 0.00217 0.0000226 0.0000111 3.76
TDEA 0.50764 0.00470 0.0000513 0.0000232 6.72

True Pareto 0.51850 - 0 - -

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(a) Preference Region 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(b) Filtered TDEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(c) prTDEA

Figure 4.1: ZDT4 Test 1 Plots

Test 2 The region in this test is an enlarged version of the region in Test 1 as seen in

Figure 4.2a. Although prTDEA still gives better results than TDEA (Tables 4.3 and 4.6), the

gap between the two algorithms decreases. This is because the focused region is larger. We

present the plots of the results of the two algorithms in Figure 4.2.

58



Table 4.3: Indicator Results for ZDT4 Preference Test 2

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

prTDEA 0.53478 0.00135 0.0000108 0.00000462 4.28
TDEA 0.53273 0.00227 0.0000174 0.00000779 6.72

True Pareto 0.53802 - 0 - -

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(a) Preference Region 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(b) Filtered TDEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(c) prTDEA

Figure 4.2: ZDT4 Test 2 Plots

Test 3 Figure 4.3a displays the preference region of this test, which is towards the better

values of the second objective. In Table 4.4, we observe that prTDEA finds better results

in both metrics. However, the difference between Inverted Generational Distance values

is not statistically significant (Table 4.6), although the estimated difference is the largest

among all tests. This is due to TDEA’s high standard deviation. Figure 4.2 exhibits the

plots of the results of the two algorithms.

Table 4.4: Indicator Results for ZDT4 Preference Test 3

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

prTDEA 0.51157 0.00195 0.0000145 0.00000139 4.26
TDEA 0.50299 0.02097 0.0000875 0.00005440 6.72

True Pareto 0.51527 - 0 - -

Test 4 The preference region in Test 4 covers the best values of the first objective (Fig-

ure 4.4a). Similar to the previous results, Table 4.4 indicates that prTDEA performs better

than TDEA in both metrics as well as the average time required to complete the runs. The

59



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(a) Preference Region 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(b) Filtered TDEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(c) prTDEA

Figure 4.3: ZDT4 Test 3 Plots

differences are statistically significant as seen in Table 4.6. The plots of the final populations

are presented in Figure 4.4.

Table 4.5: Indicator Results for ZDT4 Preference Test 4

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

prTDEA 0.66225 0.00163 0.0000141 0.00000857 4.67
TDEA 0.66086 0.00183 0.0000204 0.00000914 6.72

True Pareto 0.66508 - 0 - -

Table 4.6: Statistical Tests for ZDT4 Preference Tests

H0 : µprTDEA = µTDEA vs H1 : µprTDEA , µTDEA
Hypervolume Inverted Gen. Distance

Test ∆H P-Value Winner ∆D P-Value Winner
ZDT4 - 1 0.006241 0 prTDEA -0.000029 0 prTDEA
ZDT4 - 2 0.002050 0 prTDEA -0.000007 0 prTDEA
ZDT4 - 3 0.008584 0.033 prTDEA -0.000073 0.191 none
ZDT4 - 4 0.001391 0.003 prTDEA -0.000006 0.008 prTDEA

3-Objective Tests

We conduct 3-objective tests on DTLZ1 and DTLZ2 problems using the same desirable

regions for both problems. The reason behind using two problems is to test whether the

60



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(a) Preference Region 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(b) Filtered TDEA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(c) prTDEA

Figure 4.4: ZDT4 Test 4 Plots

shape of the Pareto-optimal frontier affects the performance.

Test 1 The first preference region (Figures 4.5a and 4.5d) is set as the middle of the Pareto-

optimal frontier. We see from Table 4.7 that prTDEA outperforms TDEA as in ZDT4 tests

and the difference between computation times are substantially higher in favor of prTDEA.

The difference between plots (Figure 4.5) are also clearly observable.

Table 4.7: Indicator Results for DTLZ1 and DTLZ2 Preference Test 1

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

DTLZ1
prTDEA 0.29512 0.00249 0.000258 0.0000111 10.43
TDEA 0.27598 0.00638 0.000419 0.0000558 205.23

True Pareto 0.31194 - 0 - -

DTLZ2
prTDEA 0.26707 0.000523 0.000204 0.00000189 17.40
TDEA 0.25580 0.000768 0.000252 0.00000362 183.85

True Pareto 0.28396 - 0 - -

Test 2 We expand the preference region in Test 1 to form this test (Figures 4.6a and 4.6d).

We observe that the differences between their metric values are smaller compared to those

in Test 1, since the preference region is larger. However, prTDEA’s superiority over TDEA

persists as seen in Tables 4.8 and 4.11. We present the plots of the results in Figure 4.6 for

both algorithms.

61



 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(a) DTLZ1 Preference Region 1

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(b) DTLZ1 - Filtered TDEA

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(c) DTLZ1 - prTDEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(d) DTLZ2 Preference Region 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(e) DTLZ2 - Filtered TDEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(f) DTLZ2 - prTDEA

Figure 4.5: DTLZ1 and DTLZ2 Test 1 Plots

Table 4.8: Indicator Results for DTLZ1 and DTLZ2 Preference Test 2

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

DTLZ1
prTDEA 0.39768 0.00219 0.000117 0.00000845 19.85
TDEA 0.38809 0.00459 0.000166 0.00002160 205.23

True Pareto 0.41386 - 0 - -

DTLZ2
prTDEA 0.34523 0.000607 0.0000911 0.000000741 35.53
TDEA 0.33943 0.000688 0.0001070 0.000001430 183.85

True Pareto 0.36065 - 0 - -

62



 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(a) DTLZ1 Preference Region 2

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(b) DTLZ1 - Filtered TDEA

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(c) DTLZ1 - prTDEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(d) DTLZ2 Preference Region 2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(e) DTLZ2 - Filtered TDEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(f) DTLZ2 - prTDEA

Figure 4.6: DTLZ1 and DTLZ2 Test 2 Plots

Test 3 Here we assign each objective different weight ranges and test whether this cre-

ates difficulties in focusing on a preferred region. prTDEA has no problems in finding

better approximations than TDEA, with a noticeably shorter average computational time

(Table 4.11). The statistical tests in Table 4.11 indicate significance. The difference can be

also seen from the plots given in Figure 4.7.

Table 4.9: Indicator Results for DTLZ1 and DTLZ2 Preference Test 3

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

DTLZ1
prTDEA 0.55521 0.00227 0.000095 0.00000568 19.71
TDEA 0.54526 0.00410 0.000132 0.00001480 205.23

True Pareto 0.56979 - 0 - -

DTLZ2
prTDEA 0.35584 0.000452 0.0000851 0.000000865 31.59
TDEA 0.34914 0.000540 0.0000997 0.000001230 183.85

True Pareto 0.36842 - 0 - -

63



 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(a) DTLZ1 Preference Region 3

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(b) DTLZ1 - Filtered TDEA

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(c) DTLZ1 - prTDEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(d) DTLZ2 Preference Region 3

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(e) DTLZ2 - Filtered TDEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(f) DTLZ2 - prTDEA

Figure 4.7: DTLZ1 and DTLZ2 Test 3 Plots

Test 4 The last test is similar to Test 3, but it features a smaller preference region as shown

in Figures 4.8a and 4.8d. We expect that the difference between prTDEA and TDEA will

increase in both metrics and average computational time, since the region is smaller than

that of Test 3. The indicator results given in Table 4.10 confirm that expectation. We also

present the plots in Figure 4.8 to illustrate the difference.

Table 4.10: Indicator Results for DTLZ1 and DTLZ2 Preference Test 4

Hypervolume Inverted Gen. Distance
Algorithm x̄H sH x̄D sD Duration (sec)

DTLZ1
prTDEA 0.44510 0.00226 0.000198 0.00000524 11.55
TDEA 0.42890 0.00588 0.000295 0.00003450 205.23

True Pareto 0.46002 - 0 - -

DTLZ2
prTDEA 0.33666 0.000747 0.000180 0.00000158 18.14
TDEA 0.32416 0.001040 0.000231 0.00000354 183.85

True Pareto 0.34909 - 0 - -

64



 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(a) DTLZ1 Preference Region 4

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(b) DTLZ1 - Filtered TDEA

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(c) DTLZ1 - prTDEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(d) DTLZ2 Preference Region 4

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(e) DTLZ2 - Filtered TDEA

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(f) DTLZ2 - prTDEA

Figure 4.8: DTLZ1 and DTLZ2 Test 4 Plots

Table 4.11: Statistical Tests for DTLZ1 and DTLZ2 Preference Tests

H0 : µprTDEA = µTDEA vs H1 : µprTDEA , µTDEA
Hypervolume Inverted Gen. Distance

Test ∆H P-Value Winner ∆D P-Value Winner
DTLZ1 - 1 0.019142 0 prTDEA -0.000161 0 prTDEA
DTLZ1 - 2 0.009583 0 prTDEA -0.000049 0 prTDEA
DTLZ1 - 3 0.009956 0 prTDEA -0.000037 0 prTDEA
DTLZ1 - 4 0.016198 0 prTDEA -0.000097 0 prTDEA
DTLZ2 - 1 0.011270 0 prTDEA -0.000048 0 prTDEA
DTLZ2 - 2 0.005795 0 prTDEA -0.000015 0 prTDEA
DTLZ2 - 3 0.006701 0 prTDEA -0.000015 0 prTDEA
DTLZ2 - 4 0.012492 0 prTDEA -0.000052 0 prTDEA

65



4.2.3 Discussions

The test results show that focusing on a preference region provides both a better approxi-

mation and a substantial computational time advantage in all settings. The positive effects

of focusing are clearer when the region is smaller. In addition, computation time differences

get larger when the number of objectives increase. This is because the number of solutions

needed to properly approximate the Pareto-optimal frontier increases with the number of

objectives. We can conclude that DM preferences should be exploited whenever possible.

prTDEA’s preference incorporation mechanism effectively serves this purpose. Note that it

does not lose the rest of the Pareto-optimal frontier while concentrating on these regions. It

displays an overview of the entire Pareto-optimal frontier, while presenting finely detailed

solutions in the regions of interest.

4.3 Interactive Territory Defining Evolutionary Algorithm

In this section, we present the Interactive Territory Defining Evolutionary Algorithm. In

Section 4.3.1, we describe the details of the algorithm. It is followed by simulation runs and

comparisons in Section 4.3.2.

4.3.1 Details of the Algorithm

In the previous section, we showed that prTDEA works well when preference information

is gathered from the DM. However, in some cases the DM may not know his/her regions

of interest before the optimization stage and consequently may not be able to specify

his/her preferences. In such a situation, it will not be easy to guide prTDEA. To overcome

this difficulty, we propose another version of TDEA, the Interactive Territory Defining

Evolutionary Algorithm (iTDEA). This interactive algorithm starts by finding solutions

over all of the Pareto-optimal frontier that we denote as region R0 with a low resolution (i.e

small number of solutions per unit hypervolume). At generation G1, it pauses for initiating

an interaction with the DM. Here, the algorithm presents a sample of the solutions found

so far to the DM and receives his/her most preferred solution among these. This solution is

then used for estimating a preferred region R1 to focus on. Subsequent interaction stages

are scheduled at generations G2,G3, . . . ,GH. At each interaction stage h, a new preferred

region Rh is estimated. Note that the resolution of a preferred region is always higher

than previously estimated preferred regions whereas its size is smaller. In this way, the

66



algorithm converges to the final preference region of the DM. In the end, a set of solutions

from this region are presented to DM for the final selection. We give an outline of the

algorithm below:

1. Ask the user to specify the regular population size N̄, the maximum number of

generations T, the number of interactions H, a starting τ0 and a final τH for the final

preference region.

2. Set iteration count t = 0 and interaction count h = 1. Set the first focus region R0 to

the entire Pareto-frontier. That is, set [l(0)
i ,u

(0)
i ] = [0, 1] for all i = 1, 2, . . . , p. Determine

generations G1,G2, . . . ,GH at which an interaction with the DM is scheduled.

3. Create N̄ random solutions to fill P(0). Copy the nondominated solutions in P(0) into

A(0).

4. Set t← t + 1. Choose a parent from each population P(t) and A(t). Recombine parents

to create new offspring and apply mutation to it.

5. Test the offspring for acceptance into P(t). If accepted, insert into P(t) and go to the

next step. Otherwise, go to Step 7.

6. Test the offspring for acceptance into A(t). If accepted, insert into A(t).

7. If t = Gh, then pause and interact with the DM. Find the new preferred region Rh and

determine τh. Set h← h + 1. Otherwise, go to next step.

8. If the iteration limit is hit, that is, t = T, then stop and report the archive population.

Otherwise go to Step 4.

We previously defined a preferred region RP by a set of Tchebycheff weights WP in

Section 4.1.2. In iTDEA, we change the definition. From now on, a preferred region RP is

defined by a set of Tchebycheff weight ranges
[
lP,uP

]
=

{[
lP1 ,u

P
1

]
,
[
lP2 ,u

P
2

]
, . . . ,

[
lPp ,uP

p

]}
.

iTDEA modifies the archive selection scheme as prTDEA does. Unlike prTDEA, there

is a single preferred region at the beginning of the algorithm, that is, the entire Pareto-

optimal frontier. Other preferred regions, R1,R2, . . . ,RH, are estimated during the process,

at interaction stages 1, 2, . . . ,H. Each preferred region is smaller than the previous one.

Once a new preferred region Rh is estimated, it is also assigned a new τh value. A newer

preferred region always has a smaller τ value than the previous ones to ensure that new

focus regions are emphasized more than the former regions. Here, the important issue

67



is the determination of these preferred regions and assigning τ values to them. For this

purpose, we use the method in Steuer (1986, pp.446–450) at each interaction stage h.

Let H be the number of interactions, λ be the desired [li,ui] width of ith objective in

the final preference region, r be the reduction factor in each interaction stage and P be

the number of solutions to be presented to the DM in each interaction stage. Then, the

following can be used as a guide to set these parameters as in Steuer (1986, pp.446–450):

P ' p (4.4)

H ≈ p (4.5)

1
2p / λ /

3
2p (4.6)

k
√

1
P / r /

H−1√

λ (4.7)

where p is the number of objectives. The algorithm starts with h = 1 and R0 having

[l0i ,u
0
i ] = [0, 1] for i = 1, 2, . . . , p. Suppose that DM chooses s∗ as his/her best solution in

interaction stage h. We compute the favorable weights w∗ of the chosen solution s∗ using

Equation 4.1. Then, the next preferred region Rh = [l(h),u(h)] is determined using the

following formula:

[
l(h)
i ,u

(h)
i

]
=


[
0, rh

]
if w∗i −

rh

2 ≤ 0[
1 − rh, 0

]
if w∗i + rh

2 ≥ 1[
w∗i −

rh

2 ,w
∗

i + rh

2

]
otherwise

(4.8)

for all i = 1, 2, . . . , p.

As seen in Equation 4.8, regions are shrunk faster in the first interaction stages. Towards

the end, the amount of shrinkage gets smaller. A similar method is applied for assigning τh

to Rh to control the number of solutions in the population. In the first interaction stages, τ

is decreased faster and the decrease gets slower with each interaction stage. At interaction

stage h, τh is found using the following formula:

τh = τHe(H−h)ρ (4.9)

where,

ρ =
ln τ0

τH

H
(4.10)

Since it is hard for a DM to choose his/her best among all solutions, we choose a small

subset of solutions to present. Here, the chosen solutions should represent the last focus

region well. Otherwise, the solution selected by the DM may mislead the algorithm and

68



cause an inaccurate estimate for the next preferred region. For choosing solutions to present

the DM, we use a filtering procedure that utilizes ε-dominance. In ε-dominance, a solution

is considered to be nondominated if there is no solution that is at least an ε amount better

than that solution in every objective and more than an ε amount better at least in one

objective. The steps of the filtering procedure at interaction stage h are as follows:

1. Form the first filtered list F1
h by taking solutions only from region Rh−1. That is,

F1
h =

{
i ∈ A(Gh)|wi

∈

[
l(h−1),u(h−1)

]}
.

2. Test each pair of solutions i, j ∈ F1
h for ε-dominance using ε = τh−1. If solution i

ε-dominates solution j and is not ε-dominated by j, remove j from F1
h, and vice versa.

3. Calculate rectilinear distances di j between each pair of solutions i, j ∈ F1
h.

4. Initialize the second filtered list F2
h by moving two solutions k, l = argmaxi, j∈F1

h

(
di j

)
from F1

h to F2
h. That is, choose the pair of solutions that are most distant to each other

and move them from F1
h to F2

h.

5. Fill F2
h until its size is equal to P, each time moving solution k = argmaxi∈F1

h

(
min j∈F2

h

(
di j

))
to F2

h. That is, move the solution k in F1
h which maximizes the minimum distance to

all solutions in F2
h.

6. Present solutions in F2
h to the DM.

Note that we used P = 2p for all interaction stages except the first one. In the first interaction

stage and the final presentation, we set P = 4p.

The archive acceptance procedure of iTDEA is almost the same as prTDEA. It starts

with a dominance check. If any solution in the archive dominates offspring c, then c is

rejected and the process terminates. Otherwise, we start the second stage of the archive

acceptance by removing all solutions dominated by c. Then, we determine the preferred

region that contains c. For this purpose, we compute the favorable weights, wc, of c and

determine the regions whose weight ranges contain these weights. Among these regions,

we find the one having the smallest τi to set τ = τi. As in prTDEA, the rest of the process

is the same as in TDEA. First, the closest solution si∗ to c with respect to rectilinear distance

is determined, using the scaled objective function values. Then, we check whether si∗ is in

the territory of c, which is defined as the region within τ distance in all objective values of

c. c is rejected if the maximum scaled objective distance between si∗ and c is smaller than

the τ value. Otherwise, it is accepted. We give the details of the procedure below:

69



1. Test offspring c with each solution si ∈ A(t) for dominance. Mark solutions dominated

by c. If c is dominated by at least one si, reject c. Otherwise, go to next step.

2. Remove all marked solutions from A(t).

3. If A(t) is empty, accept c and insert it into A(t). Otherwise, go to next step.

4. Calculate the favorable weights wc of c with Equation 4.1 using scaled objective values.

5. Find the preferred regions whose weight ranges contain the favorable weights of c.

Then find the region j with the smallest τi to set τ = τ j. That is, set τ = minh
j=0{τi|wc

∈[
lj,uj

]
i = 1, 2, . . . , h}.

6. Calculate the rectilinear distance dci =
∑p

j=1

∣∣∣ f̂cj − f̂i j
∣∣∣ of c to each solution si ∈ A(t)

using the scaled objective function values.

7. Find i∗ = argmini(di), that is, the solution si∗ closest to c.

8. Find maximum scaled absolute objective difference between c and si∗ . That is, find

δ = max
j=1,2,...,p

∣∣∣ f̂cj − ˆfi∗ j
∣∣∣ (4.11)

where f̂cj and ˆfi∗ j are the scaled jth objective values of offspring c and solution si∗ ,

respectively.

9. Accept c if δ ≥ τ and insert into A(t). Otherwise, reject c.

In iTDEA, scheduling the generations G1,G2, . . . ,GH at which an interaction will occur

is important for the correct functioning of the algorithm. The weight mechanism works

well if the population is converged to the Pareto-optimal frontier. Otherwise, the selected

solution’s weights may mislead the algorithm. Hence, first interaction should be set at a

generation where the population is considered to converge. Selection of the generation

for the last interaction is also important. Since the final preference region is found, the

algorithm should be allowed to spend enough search effort to concentrate and converge

well to that region.

4.3.2 Simulation Runs and Comparisons

We conduct our simulation runs on test problems ZDT4, DTLZ1 and DTLZ2. We simulate

the DM’s preferences using a Tchebycheff utility function of the following form:

U = Min
z∈Z

Max
i=1,2,...,p

[
wi

∣∣∣ f ∗i − fi
∣∣∣] (4.12)

70



where fi is the ith objective value, f ∗i is the ith element of the ideal vector and wi is the weight

corresponding to ith objective. For each problem, we choose three utility functions. To

observe the effects of the number of interactions with the DM, we try 4 and 6 interactions.

Each run is replicated 50 times. The details of the simulation runs are given in Table 4.12.

To see how filtering affects the results of the algorithm, we run each instance with

filtering and no filtering. In the unfiltered mode, we assume that the DM chooses his/her

best solution among all solutions. In the end, we choose the solution (denoted as “No

Filter”) with the best utility to report. In the filtering case, we filter P solutions (2P in the

first interaction) to present to the DM at each interaction. At the end of the run, we report

two solutions. The first one (denoted as “Filter 1”) is the best utility solution among all

generated solutions, whereas the second (denoted as “Filter 2”) is again chosen among 2P

filtered solutions from the final preference region.

We calculate the absolute deviation (∆) and percentage deviation (∆̄) values as follows:

∆ = U∗ −U (4.13)

∆̄ =
U∗ −U
U∗ −Un (4.14)

where U is the utility value of the solution reported by the algorithm, U∗ is the true

optimal solution’s utility value and Un is the utility value of the worst solution among all

nondominated solutions.

The first interaction with the decision maker is scheduled at the generation when the 1
3

of the generations are completed. The algorithm is also allowed to run 1
6 of the generations

after the final interaction. The rest of the generations are uniformly distributed to each

interaction.

2-Objective Tests

Test 1: In the first test, the best solution is at the middle of the Pareto-optimal frontier.

Table 4.13 shows the results found for all cases. We observe that more interactions with the

DM allows better convergence to the desired locations. In addition, it can be seen that iTDEA

successfully converges in both filtered and unfiltered cases. However, deviation from the

optimal solution increases when filtering is applied to the final population. Figure 4.9

displays the plots of the runs. Note that the final regions of 6-interaction cases are smaller.

Test 2: In the second test, the utility function favors the second objective more than the

first objective. It tests whether such a bias affects the convergence. As seen in Table 4.14,

71



Ta
bl

e
4.

12
:I

nt
er

ac
ti

ve
Te

st
Pa

ra
m

et
er

s

Z
D

T
4

D
T

LZ
1

D
T

LZ
2

Te
st

1
W

ei
gh

ts
,w

(0
.5
,0
.5

)
(0
.3

3,
0.

33
,0
.3

3)
(0
.3

3,
0.

33
,0
.3

3)

Te
st

2
W

ei
gh

ts
,w

(0
.2
,0
.8

)
(0
.2
,0
.3
,0
.5

)
(0
.2
,0
.3
,0
.5

)

Te
st

3
W

ei
gh

ts
,w

(0
.6

5,
0.

35
)

(0
.7
,0
.2
,0
.1

)
(0
.7
,0
.2
,0
.1

)

Id
ea

lV
ec

to
r,

f∗
(0
,0

)
(0
,0
,0

)
(0
,0
,0

)

In
te

ra
ct

io
ns

4,
6

4,
6

4,
6

Po
pu

la
ti

on
Si

ze
20

0
40

0
40

0

τ 0
0.

1
0.

1
0.

1

τ H
0.

00
00

1
0.

00
5

0.
00

5

Fu
nc

ti
on

Ev
al

ua
ti

on
s

80
00

0
32

00
00

32
00

00

R
ep

li
ca

ti
on

s
50

50
50

72



Table 4.13: ZDT4 Interactive Test 1 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev. Rel. Dev.
No Filter 4 0.19115 0.000132 0.19098 0.500 0.00017 0.0540%
Filter 1 4 0.19114 0.000100 0.19098 0.500 0.00016 0.0508%
Filter 2 4 0.19281 0.001290 0.19098 0.500 0.00183 0.5912%

No Filter 6 0.19111 0.000099 0.19098 0.500 0.00013 0.0411%
Filter 1 6 0.19110 0.000080 0.19098 0.500 0.00012 0.0379%
Filter 2 6 0.19143 0.000239 0.19098 0.500 0.00045 0.1446%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(a) Unfiltered with 4 Interactions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(b) Unfiltered with 6 Interactions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(c) Filtered with 4 Interactions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(d) Filtered with 6 Interactions

Figure 4.9: ZDT4 Interactive Test 1 Plots

73



the results are very similar to those of Test 1. iTDEA with 6 interactions outperform the

one with 4 interactions. No filter and Filter 1 cases perform very close to each other. We

present the plots of the runs in Figure 4.10.

Table 4.14: ZDT4 Interactive Test 2 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev. Rel. Dev.
No Filter 4 0.13739 0.000092 0.13726 0.800 0.00013 0.0199%
Filter 1 4 0.13740 0.000100 0.13726 0.800 0.00014 0.0214%
Filter 2 4 0.13894 0.001100 0.13726 0.800 0.00168 0.2537%

No Filter 6 0.13734 0.000057 0.13726 0.800 0.00008 0.0123%
Filter 1 6 0.13736 0.000070 0.13726 0.800 0.00010 0.0153%
Filter 2 6 0.13756 0.000197 0.13726 0.800 0.00030 0.0455%

Test 3: In test 3, we reverse the bias to the first objective’s side. Interestingly, the algorithm

performs worse than the previous test in the filtered case with final population filtering

(Table 4.15), although solutions are still good in the absolute sense. Note that standard

deviation is highest in the Filter 2, which shows that the final preference region has the

largest variation in this case. This is significantly reduced by two additional interactions.

Figure 4.11 displays the plots of of the final population of well-guided runs.

Table 4.15: ZDT4 Interactive Test 3 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev. Rel. Dev.
No Filter 4 0.17081 0.000095 0.17066 0.650 0.00015 0.0313%
Filter 1 4 0.17083 0.000121 0.17066 0.650 0.00017 0.0355%
Filter 2 4 0.17215 0.001050 0.17066 0.650 0.00149 0.3108%

No Filter 6 0.17076 0.000063 0.17066 0.650 0.00010 0.0209%
Filter 1 6 0.17075 0.000050 0.17066 0.650 0.00009 0.0188%
Filter 2 6 0.17105 0.000199 0.17066 0.650 0.00039 0.0814%

3-Objective Tests

We use problems DTLZ1 and DTLZ2 for 3-objective tests. The Pareto-optimal frontiers of

these two problems have different shapes and we test whether this creates difficulty for the

algorithm.

74



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(a) Unfiltered with 4 Interactions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(b) Unfiltered with 6 Interactions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(c) Filtered with 4 Interactions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(d) Filtered with 6 Interactions

Figure 4.10: ZDT4 Interactive Test 2 Plots

75



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(a) Unfiltered with 4 Interactions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(b) Unfiltered with 6 Interactions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(c) Filtered with 4 Interactions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f 2

f1

(d) Filtered with 6 Interactions

Figure 4.11: ZDT4 Interactive Test 3 Plots

76



Test 1: In both DTLZ1 and DTLZ2 tests (Tables 4.16 and 4.17), we observe that the differ-

ences between filtered and unfiltered cases are larger than those of ZDT4 tests. The standard

deviation of filtered cases are also higher, which means that in some runs the results are

worse, whereas in other runs better results are obtained. We also observe that although

the algorithm finds good solutions in the filtered case, the final filtering may cause worse

solutions to be reported. Note that although the performances are better in 2-objective

cases, the algorithm still obtains good solutions here in the absolute sense. In the plots

(Figures 4.12 and 4.12) we observe the progress of the preferred regions. In the unfiltered

cases, the algorithm finely advances to the desired final preference region. However, in the

filtered cases, the solution chosen by the DM misleads the algorithm a little bit in the first

interaction stages. This is somewhat prevented when the number of interaction stages is

increased from 4 to 6.

Table 4.16: DTLZ1 Interactive Test 1 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev. Rel. Dev.
No Filter 4 0.05539 0.000161 0.05500 0.165 0.00039 0.3573%
Filter 1 4 0.05591 0.001221 0.05500 0.165 0.00091 0.8291%
Filter 2 4 0.05793 0.002646 0.05500 0.165 0.00293 2.6618%

No Filter 6 0.05536 0.000149 0.05500 0.165 0.00036 0.3273%
Filter 1 6 0.05593 0.001380 0.05500 0.165 0.00093 0.8455%
Filter 2 6 0.05619 0.001669 0.05500 0.165 0.00119 1.0791%

Table 4.17: DTLZ2 Interactive Test 1 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev. Rel. Dev.
No Filter 4 0.19136 0.000376 0.19053 0.330 0.00083 0.5983%
Filter 1 4 0.19154 0.000961 0.19053 0.330 0.00101 0.7273%
Filter 2 4 0.19757 0.006420 0.19053 0.330 0.00704 5.0507%

No Filter 6 0.19137 0.000346 0.19053 0.330 0.00084 0.6054%
Filter 1 6 0.19226 0.001880 0.19053 0.330 0.00173 1.2435%
Filter 2 6 0.19391 0.003770 0.19053 0.330 0.00338 2.4265%

Test 2: In this test, the second objective is favored more than the other two objectives.

Incorporating such a bias to the utility function does not affect the results, as they are very

77



 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(a) Unfiltered with 4 Interactions

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(b) Unfiltered with 6 Interactions

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(c) Filtered with 4 Interactions

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(d) Filtered with 6 Interactions

Figure 4.12: DTLZ1 Interactive Test 1 Plots

78



 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(a) Unfiltered with 4 Interactions

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(b) Unfiltered with 6 Interactions

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(c) Filtered with 4 Interactions

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(d) Filtered with 6 Interactions

Figure 4.13: DTLZ2 Interactive Test 1 Plots

79



similar to those found in Test 2 (Tables 4.18 and 4.19). One unusual observation is that Filter

2 results with 4 interactions are better than those with 6 interactions in problem DTLZ2

(Table 4.19). This indicates that the algorithm converges to an incorrect region after the last

interaction in some runs. Since the final region is larger with 4 interactions, this does not

affect it as severely as it does the 6-interaction case. We observe similar patterns to Test 1 in

the plots given in Figures 4.14 and 4.15.

Table 4.18: DTLZ1 Interactive Test 2 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev. Rel. Dev.
No Filter 4 0.04870 0.000154 0.04839 0.250 0.00031 0.1537%
Filter 1 4 0.04960 0.001203 0.04839 0.250 0.00122 0.6031%
Filter 2 4 0.05257 0.003496 0.04839 0.250 0.00418 2.0737%

No Filter 6 0.04872 0.000125 0.04839 0.250 0.00033 0.1641%
Filter 1 6 0.04961 0.001220 0.04839 0.250 0.00122 0.6046%
Filter 2 6 0.05091 0.003194 0.04839 0.250 0.00252 1.2499%

Table 4.19: DTLZ2 Interactive Test 2 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev. Rel. Dev.
No Filter 4 0.15839 0.000190 0.15789 0.500 0.00050 0.1448%
Filter 1 4 0.15998 0.001790 0.15789 0.500 0.00209 0.6095%
Filter 2 4 0.16568 0.004380 0.15789 0.500 0.00779 2.2757%

No Filter 6 0.15835 0.000200 0.15789 0.500 0.00046 0.1331%
Filter 1 6 0.16078 0.002400 0.15789 0.500 0.00289 0.8434%
Filter 2 6 0.16456 0.004830 0.15789 0.500 0.00667 1.9483%

Test 3: In Test 3, the third objective has the greatest bias. As can be seen from Tables 4.20

and 4.21, iTDEA shows its best 3-objective performances in this test. We still observe the

same issues in the filtered case without final population filtering. Also, the patterns in the

plots (Figures 4.16 and 4.17) are similar to the previous 3-objective tests.

Other Utility Functions

In order to inspect the effects of different utility functions, we repeat the same tests using

linear and quadratic utility functions. Their formal definitions are given in Equations 4.15

80



 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(a) Unfiltered with 4 Interactions

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(b) Unfiltered with 6 Interactions

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(c) Filtered with 4 Interactions

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(d) Filtered with 6 Interactions

Figure 4.14: DTLZ1 Interactive Test 2 Plots

Table 4.20: DTLZ1 Interactive Test 3 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev. Rel. Dev.
No Filter 4 0.03062 0.000080 0.03043 0.350 0.00019 0.0592%
Filter 1 4 0.03112 0.000780 0.03043 0.350 0.00068 0.2135%
Filter 2 4 0.03337 0.002389 0.03043 0.350 0.00293 0.9169%

No Filter 6 0.03080 0.000324 0.03043 0.350 0.00037 0.1155%
Filter 1 6 0.03146 0.000953 0.03043 0.350 0.00102 0.3199%
Filter 2 6 0.03307 0.002540 0.03043 0.350 0.00264 0.8256%

Table 4.21: DTLZ2 Interactive Test 3 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev. Rel. Dev.
No Filter 4 0.08895 0.000148 0.08872 0.700 0.00022 0.0366%
Filter 1 4 0.09005 0.001271 0.08872 0.700 0.00132 0.2165%
Filter 2 4 0.09504 0.003928 0.08872 0.700 0.00632 1.0335%

No Filter 6 0.08901 0.000197 0.08872 0.700 0.00029 0.0479%
Filter 1 6 0.08969 0.000911 0.08872 0.700 0.00097 0.1588%
Filter 2 6 0.09267 0.004392 0.08872 0.700 0.00395 0.6461%

81



 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(a) Unfiltered with 4 Interactions

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(b) Unfiltered with 6 Interactions

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(c) Filtered with 4 Interactions

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(d) Filtered with 6 Interactions

Figure 4.15: DTLZ2 Interactive Test 2 Plots

82



 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(a) Unfiltered with 4 Interactions

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(b) Unfiltered with 6 Interactions

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(c) Filtered with 4 Interactions

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f1f2

(d) Filtered with 6 Interactions

Figure 4.16: DTLZ1 Interactive Test 3 Plots

83



 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(a) Unfiltered with 4 Interactions

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(b) Unfiltered with 6 Interactions

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(c) Filtered with 4 Interactions

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f1f2

(d) Filtered with 6 Interactions

Figure 4.17: DTLZ2 Interactive Test 3 Plots

84



and 4.16, respectively:

U = Min
z∈Z

∑
i=1,2,...,p

wi
∣∣∣ f ∗i − fi

∣∣∣ (4.15)

U = Min
z∈Z

√ ∑
i=1,2,...,p

[
wi

(
f ∗i − fi

)]2
(4.16)

where fi is the ith objective value, f ∗i is the ith element of the ideal vector and wi is the weight

corresponding to ith objective.

Since DTLZ1 has a linear Pareto-optimal frontier, all nondominated solutions are op-

timal for linear utility functions having equal weights in all objectives. Similarly, due to

DTLZ2’s spherical Pareto-optimal frontier, all nondominated solutions in DTLZ2 are op-

timal for quadratic utility functions that have equal weights in all objectives. For these

reasons, we omit those tests.

In Tables 4.22, 4.23 and 4.24, we present the results of 2-objective tests with linear utility

function. It can be observed that iTDEA successfully converges to the final preference

region of the DM. The results show that relative deviations from optimal solutions are less

than 0.26%.

Table 4.22: ZDT4 Linear Utility Function Test 1 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.37520 0.000126 0.37500 0.500 0.00020 0.16000%
Filter 1 4 0.37523 0.000189 0.37500 0.500 0.00023 0.18400%
Filter 2 4 0.37533 0.000227 0.37500 0.500 0.00033 0.26400%

No Filter 6 0.37512 0.000096 0.37500 0.500 0.00012 0.09600%
Filter 1 6 0.37514 0.000075 0.37500 0.500 0.00014 0.11200%
Filter 2 6 0.37517 0.000089 0.37500 0.500 0.00017 0.13600%

Table 4.23: ZDT4 Linear Utility Function Test 2 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.20042 0.000364 0.20000 0.800 0.00042 0.07000%
Filter 1 4 0.20042 0.000365 0.20000 0.800 0.00042 0.07000%
Filter 2 4 0.20043 0.000379 0.20000 0.800 0.00043 0.07167%

No Filter 6 0.20025 0.000196 0.20000 0.800 0.00025 0.04167%
Filter 1 6 0.20026 0.000202 0.20000 0.800 0.00026 0.04333%
Filter 2 6 0.20026 0.000203 0.20000 0.800 0.00026 0.04333%

85



Table 4.24: ZDT4 Linear Utility Function Test 3 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.30309 0.000152 0.30300 0.650 0.00009 0.02594%
Filter 1 4 0.30306 0.000111 0.30300 0.650 0.00006 0.01729%
Filter 2 4 0.30320 0.000162 0.30300 0.650 0.00020 0.05764%

No Filter 6 0.30303 0.000111 0.30300 0.650 0.00003 0.00865%
Filter 1 6 0.30302 0.000103 0.30300 0.650 0.00002 0.00576%
Filter 2 6 0.30307 0.000147 0.30300 0.650 0.00007 0.02017%

In the following five tables (Tables 4.25, 4.26, 4.27, 4.28 and 4.29, the results of 3-objective

tests with linear utility function are shown. Although the relative deviations from the

optimal solutions are higher than 2-objective case, the algorithm still finds good solutions

in the absolute sense. Note that the performance of iTDEA is better when linear utility

function is used instead of Tchebycheff utility function.

Table 4.25: DTLZ1 Linear Utility Function Test 2 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.10031 0.000350 0.10000 0.25000 0.00031 0.20667%
Filter 1 4 0.10043 0.000397 0.10000 0.25000 0.00043 0.28667%
Filter 2 4 0.10154 0.003110 0.10000 0.25000 0.00154 1.02667%

No Filter 6 0.10037 0.000334 0.10000 0.25000 0.00037 0.24667%
Filter 1 6 0.10042 0.000355 0.10000 0.25000 0.00042 0.28000%
Filter 2 6 0.10113 0.001520 0.10000 0.25000 0.00113 0.75333%

Table 4.26: DTLZ1 Linear Utility Function Test 3 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.05016 0.000231 0.05000 0.35000 0.00016 0.05367%
Filter 1 4 0.05014 0.000209 0.05000 0.35000 0.00014 0.04600%
Filter 2 4 0.05052 0.002293 0.05000 0.35000 0.00052 0.17400%

No Filter 6 0.05017 0.000233 0.05000 0.35000 0.00017 0.05567%
Filter 1 6 0.05014 0.000191 0.05000 0.35000 0.00014 0.04567%
Filter 2 6 0.05111 0.003978 0.05000 0.35000 0.00111 0.36933%

The following three tables (Tables 4.30, 4.31 and 4.32) show the performance of iTDEA

on 2-objective tests with quadratic utility function. They are followed by the results of

86



Table 4.27: DTLZ2 Linear Utility Function Test 1 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.33002 0.000027 0.33000 0.572 0.00002 0.00826%
Filter 1 4 0.33003 0.000109 0.33000 0.572 0.00003 0.01240%
Filter 2 4 0.33112 0.003100 0.33000 0.572 0.00112 0.46281%

No Filter 6 0.33005 0.000133 0.33000 0.572 0.00005 0.02066%
Filter 1 6 0.33004 0.000127 0.33000 0.572 0.00004 0.01653%
Filter 2 6 0.33255 0.005770 0.33000 0.572 0.00255 1.05372%

Table 4.28: DTLZ2 Linear Utility Function Test 2 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.20100 0.001540 0.20000 0.617 0.00100 0.23981%
Filter 1 4 0.20283 0.004480 0.20000 0.617 0.00283 0.67866%
Filter 2 4 0.21504 0.030630 0.20000 0.617 0.01504 3.60671%

No Filter 6 0.20175 0.002950 0.20000 0.617 0.00175 0.41966%
Filter 1 6 0.20327 0.005300 0.20000 0.617 0.00327 0.78417%
Filter 2 6 0.21611 0.030270 0.20000 0.617 0.01611 3.86331%

Table 4.29: DTLZ2 Linear Utility Function Test 3 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.10038 0.000968 0.10000 0.735 0.00038 0.05984%
Filter 1 4 0.10070 0.002060 0.10000 0.735 0.00070 0.11024%
Filter 2 4 0.10269 0.014120 0.10000 0.735 0.00269 0.42362%

No Filter 6 0.10046 0.000975 0.10000 0.735 0.00046 0.07244%
Filter 1 6 0.10040 0.000837 0.10000 0.735 0.00040 0.06299%
Filter 2 6 0.10293 0.015870 0.10000 0.735 0.00293 0.46142%

87



3-objective tests in Tables 4.33, 4.34, 4.35, 4.36 and 4.37. We obtain similar results to linear

utility function case in these tests. However, the algorithm performs better in quadratic

utility function than those in the other two utility functions.

Table 4.30: ZDT4 Quadratic Utility Function Test 1 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.26907 0.000101 0.26892 0.500 0.00015 0.06491%
Filter 1 4 0.26908 0.000126 0.26892 0.500 0.00016 0.06924%
Filter 2 4 0.26914 0.000152 0.26892 0.500 0.00022 0.09521%

No Filter 6 0.26901 0.000061 0.26892 0.500 0.00009 0.03895%
Filter 1 6 0.26903 0.000078 0.26892 0.500 0.00011 0.04760%
Filter 2 6 0.26906 0.000095 0.26892 0.500 0.00014 0.06059%

Table 4.31: ZDT4 Quadratic Utility Function Test 2 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.18071 0.000151 0.18057 0.800 0.00014 0.02260%
Filter 1 4 0.18070 0.000126 0.18057 0.800 0.00013 0.02099%
Filter 2 4 0.18078 0.000173 0.18057 0.800 0.00021 0.03390%

No Filter 6 0.18066 0.000081 0.18057 0.800 0.00009 0.01453%
Filter 1 6 0.18065 0.000062 0.18057 0.800 0.00008 0.01292%
Filter 2 6 0.18067 0.000068 0.18057 0.800 0.00010 0.01614%

Table 4.32: ZDT4 Quadratic Utility Function Test 3 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.23301 0.000098 0.23288 0.650 0.00013 0.03117%
Filter 1 4 0.23300 0.000100 0.23288 0.650 0.00012 0.02877%
Filter 2 4 0.23306 0.000147 0.23288 0.650 0.00018 0.04315%

No Filter 6 0.23297 0.000055 0.23288 0.650 0.00009 0.02158%
Filter 1 6 0.23298 0.000071 0.23288 0.650 0.00010 0.02397%
Filter 2 6 0.23300 0.000087 0.23288 0.650 0.00012 0.02877%

88



Table 4.33: DTLZ1 Quadratic Utility Function Test 1 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.09527 0.000011 0.09526 0.165 0.00001 0.00946%
Filter 1 4 0.09528 0.000068 0.09526 0.165 0.00002 0.02667%
Filter 2 4 0.09532 0.000074 0.09526 0.165 0.00006 0.08116%

No Filter 6 0.09527 0.000004 0.09526 0.165 0.00000 0.00373%
Filter 1 6 0.09527 0.000019 0.09526 0.165 0.00001 0.00803%
Filter 2 6 0.09527 0.000019 0.09526 0.165 0.00001 0.01233%

Table 4.34: DTLZ1 Quadratic Utility Function Test 2 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.07895 0.000006 0.07895 0.250 0.00001 0.00327%
Filter 1 4 0.07899 0.000070 0.07895 0.250 0.00004 0.02374%
Filter 2 4 0.07945 0.000906 0.07895 0.250 0.00051 0.29558%

No Filter 6 0.07895 0.000005 0.07895 0.250 0.00000 0.00269%
Filter 1 6 0.07902 0.000107 0.07895 0.250 0.00008 0.04478%
Filter 2 6 0.07926 0.000589 0.07895 0.250 0.00031 0.18158%

Table 4.35: DTLZ1 Quadratic Utility Function Test 3 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.04437 0.000008 0.04436 0.350 0.00001 0.00236%
Filter 1 4 0.04460 0.000538 0.04436 0.350 0.00024 0.07859%
Filter 2 4 0.04570 0.001675 0.04436 0.350 0.00134 0.43915%

No Filter 6 0.04437 0.000017 0.04436 0.350 0.00001 0.00334%
Filter 1 6 0.04462 0.000468 0.04436 0.350 0.00026 0.08546%
Filter 2 6 0.04560 0.001549 0.04436 0.350 0.00124 0.40479%

Table 4.36: DTLZ2 Quadratic Utility Function Test 2 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.20001 0.000046 0.20000 0.500 0.00001 0.00333%
Filter 1 4 0.20004 0.000083 0.20000 0.500 0.00004 0.01333%
Filter 2 4 0.20022 0.000913 0.20000 0.500 0.00022 0.07333%

No Filter 6 0.20001 0.000027 0.20000 0.500 0.00001 0.00333%
Filter 1 6 0.20006 0.000153 0.20000 0.500 0.00006 0.02000%
Filter 2 6 0.20030 0.000913 0.20000 0.500 0.00030 0.10000%

Table 4.37: DTLZ2 Quadratic Utility Function Test 3 Results

Solution Interactions Mean Std. Dev. Optimal Worst Abs. Dev Rel. Dev
No Filter 4 0.10001 0.000019 0.10000 0.700 0.00001 0.00167%
Filter 1 4 0.10001 0.000015 0.10000 0.700 0.00001 0.00167%
Filter 2 4 0.10012 0.000450 0.10000 0.700 0.00012 0.02000%

No Filter 6 0.10000 0.000013 0.10000 0.700 0.00000 0.00000%
Filter 1 6 0.10000 0.000009 0.10000 0.700 0.00000 0.00000%
Filter 2 6 0.10009 0.000540 0.10000 0.700 0.00009 0.01500%

89



4.3.3 Discussions

In this section, we demonstrated that iTDEA converges to the final preference region of

the DM interactively on the selected test problems with different utility functions. The

algorithm finely converges to the correct region when the specified best solution accurately

indicates the true preferences of the DM. In addition, when more interactions are made

with the DM, the final focus region is usually more accurate. However, when solutions

are filtered before they are presented to the DM, the selected solution may mislead the

algorithm. To prevent this, a more appropriate filtering method is needed.

90



CHAPTER 5

CONCLUSIONS

In this study, we proposed a new multiobjective evolutionary algorithm (MOEA), the

Territory Defining Evolutionary Algorithm (TDEA) and tested its performance against

well-known MOEAs in the literature. We discuss how the territory defining property of

the algorithm helps to preserve diversity and allows fast execution.

We tested the algorithm on 2-, 3- and 5-objective problems, each having different char-

acteristics. We observe that TDEA performs well on the Hypervolume and the Inverted

Generational Distance performance metrics in all problems. In most problems, it outper-

forms other algorithms in both metrics. In addition, it is the second fastest algorithm among

all contenders.

In addition to approximating the the entire Pareto-optimal frontier, we proposed a

preference incorporation mechanism that focuses on the desired regions of the decision

maker. Based on this mechanism, we suggested two preference-based variants of TDEA,

namely the Preference-Region Territory Defining Evolutionary Algorithm (prTDEA) and

Interactive Territory Defining Evolutionary Algorithm (iTDEA). The former makes use of

the preference information specified before the optimization stage to guide the search. On

the other hand, iTDEA interactively guides the search towards the regions of interest. In

computational tests, we observed that both algorithms converge accurately to the regions

that are appealing to the decision maker. We also showed that incorporating preference

information allows better details and decreases computational requirements.

This study contributes the MOEA literature by introducing a multiobjective evolution-

ary algorithm that obtains well-spread final populations without the need of a computa-

tionally demanding diversity operator. Instead, the algorithm makes use of its territory

defining property and reduces computation time requirements substantially. This prop-

erty is also used for integrating a preference incorporation mechanism into the algorithm.

91



This mechanism is utilized for decreasing computational efforts further by integrating the

preferences of the decision maker into the search process.

In this study, the preference information in prTDEA is gathered from the decision

maker by explicit specification of the preferred regions by weight sets. However, this is

not practical. In a future research, a mechanism that converts qualitative statements of the

decision maker into weight sets can be implemented.

We observe that filtering solutions before presenting them to the decision maker affects

the performance of iTDEA significantly. It should be noted that presenting the entire

population to a decision maker for him/her choose the best solution may not be practical.

Therefore, there is a need for better filtering mechanisms and implementing it is a future

research direction.

In guiding the search towards the preferred regions, we used Tchebycheff weights to

specify the preferred regions of the decision maker. In future research, the variable territory

sizes property of the algorithm can be combined with other types of preference information

as well.

We have tested the algorithms on various hypothetical test problems having 2, 3 and

5 objectives. In order to assess the performances of the algorithms in real-life problems,

they should be evaluated in real-life applications as a future research direction. In addi-

tion, the performance of algorithm can be tested on various multiobjective combinatorial

optimization problems.

92



REFERENCES

Beume, N., B. Naujoks, and M. Emmerich (2007, 16 September). SMS-EMOA: Multiob-

jective Selection Based on Dominated Hypervolume. European Journal of Operational

Research 181(3), 1653–1669.

Bosman, P. A. and D. Thierens (2003, April). The Balance Between Proximity and Diversity

in Multiobjective Evolutionary Algorithms. IEEE Transactions on Evolutionary Computa-

tion 7(2), 174–188.

Branke, J. and K. Deb (2005). Integrating User Preferences into Evolutionary Multi-Objective

Optimization. In Y. Jin (Ed.), Knowledge Incorporation in Evolutionary Computation, pp. 461–

477. Berlin Heidelberg: Springer. ISBN 3-540-22902-7.

Branke, J., T. Kaußler, and H. Schmeck (2001). Guidance in Evolutionary Multi-Objective

Optimization. Advances in Engineering Software 32, 499–507.

Chang, W.-C., A. Sutcliffe, and R. Neville (2003, July). A Distance Function-Based Multi-

Objective Evolutionary Algorithm. In J. Foster (Ed.), 2003 Genetic and Evolutionary Com-

putation Conference. Late-Breaking Papers, Chicago, Illinois, USA, pp. 47–53. AAAI.

Coello, C. A. C. (1999, 6-9). An Updated Survey of Evolutionary Multiobjective Optimiza-

tion Techniques: State of the Art and Future Trends. In P. J. Angeline, Z. Michalewicz,

M. Schoenauer, X. Yao, and A. Zalzala (Eds.), Proceedings of the Congress on Evolutionary

Computation, Volume 1, Mayflower Hotel, Washington D.C., USA, pp. 3–13. IEEE Press.

Coello, C. A. C. (2000). Handling Preferences in Evolutionary Multiobjective Optimization:

A Survey. In Proc. of the 2000 Congress on Evolutionary Computation, Piscataway, NJ, pp.

30–37. IEEE Service Center.

Coello, C. A. C., G. B. Lamont, and D. A. V. Veldhuizen (2006). Evolutionary Algorithms for

Solving Multi-Objective Problems. Springer.

93



Corne, D. W., N. R. Jerram, J. D. Knowles, and M. J. Oates (2001, 7-11). PESA-II: Region-based

Selection in Evolutionary Multiobjective Optimization. In L. Spector, E. D. Goodman,

A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon,

and E. Burke (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-2001), San Francisco, California, USA, pp. 283–290. Morgan Kaufmann.

Cvetković, D. and I. C. Parmee (2002, February). Preferences and their Application in Evolu-

tionary Multiobjective Optimisation. IEEE Transactions on Evolutionary Computation 6(1),

42–57.

Deb, K. (1999). Evolutionary Algorithms for Multi-Criterion Optimization in Engineering

Design. In K. Miettinen, M. M. Mäkelä, P. Neittaanmäki, and J. Periaux (Eds.), Evolutionary

Algorithms in Engineering and Computer Science, pp. 135–161. Chichester, UK: John Wiley

& Sons, Ltd.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.

Deb, K. and R. B. Agrawal (1995). Simulated Binary Crossover for Continuous Search Space.

Complex Systems 9(2), 115–148.

Deb, K. and M. Goyal (1996). A Combined Genetic Adaptive Search (GeneAS) for Engi-

neering Design. Computer Science and Informatics 26(4), 30–45.

Deb, K. and A. Kumar (2007, July). Interactive Evolutionary Multi-Objective Optimization

and Decision-Making using Reference Direction Method. In D. Thierens (Ed.), 2007

Genetic and Evolutionary Computation Conference (GECCO’2007), Volume 1, London, UK,

pp. 781–788. ACM Press.

Deb, K., M. Mohan, and S. Mishra (2005, Winter). Evaluating the ε-Domination Based

Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal

Solutions. Evolutionary Computation 13(4), 501–525.

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan (2002, April). A Fast and Elitist Multiob-

jective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2),

182–197.

Deb, K. and J. Sundar (2006, July). Reference Point Based Multi-Objective Optimization

Using Evolutionary Algorithms. In M. K. et al. (Ed.), 2006 Genetic and Evolutionary

94



Computation Conference (GECCO’2006), Volume 1, Seattle, Washington, USA, pp. 635–642.

ACM Press. ISBN 1-59593-186-4.

Deb, K., L. Thiele, M. Laumanns, and E. Zitzler (2001). Scalable Test Problems for Evo-

lutionary Multi-Objective Optimization. Technical Report 112, Computer Engineering

and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich,

Switzerland.

Fonseca, C. M. and P. J. Fleming (1995). An Overview of Evolutionary Algorithms in

Multiobjective Optimization. Evolutionary Computation 3(1), 1–16.

Köksalan, M., M. H. Karwan, and S. Zionts (1984). An Improved Method for Solving

Multiple Criteria Problems Involving Discrete Alternatives. IEEE Transactions on Systems,

Man, and Cybernetics 14(1), 24–34.

Köksalan, M. and S. P. Phelps (2007, Spring). An Evolutionary Metaheuristic for Approxi-

mating Preference-Nondominated Solutions. Informs Journal on Computing 19(2), 291–301.

Knowles, J. D. and D. W. Corne (2000). Approximating the Nondominated Front Using the

Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172.

Korhonen, P. J. and J. Laakso (1986). A Visual Interactive Method for Solving the Multiple

Criteria Problem. European Journal of Operational Research 24(2), 277–287.

Marler, R. T. and J. S. Arora (2004). Survey of Multi-objective Optimization Methods for

Engineering. Structural and Multidisciplinary Optimization 26(6), 369–395.

Phelps, S. P. and M. Köksalan (2003, December). An Interactive Evolutionary Metaheuristic

for Multiobjective Combinatorial Optimization. Management Science 49(12), 1726–1738.

Rachmawati, L. and D. Srinivasan (2006, July). Preference Incorporation in Multi-objective

Evolutionary Algorithms: A Survey. In 2006 IEEE Congress on Evolutionary Computation

(CEC’2006), Vancouver, BC, Canada, pp. 3385–3391. IEEE.

Soylu, B. and M. Köksalan (2006). A Favorable Weight Based Evolutionary Algorithm for

Multiple Criteria Problems. Technical report, Middle East Technical University.

Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation and Application. John

Wiley, New York, 546 pp.

95



Tamaki, H., H. Kita, and S. Kobayashi (1996). Multi-Objective Optimization by Genetic

Algorithms : A Review. In T. Fukuda and T. Furuhashi (Eds.), Proceedings of the 1996

International Conference on Evolutionary Computation (ICEC’96), Nagoya, Japan, pp. 517–

522. IEEE.

Veldhuizen, D. A. V. and G. B. Lamont (2000). Multiobjective Evolutionary Algorithms:

Analyzing the State-of-the-Art. Evolutionary Computation 8(2), 125–147.

Zitzler, E. and S. Künzli (2004, September). Indicator-based Selection in Multiobjective

Search. In X. Y. et al. (Ed.), Parallel Problem Solving from Nature - PPSN VIII, Volume 3242

of Lecture Notes in Computer Science, Birmingham, UK, pp. 832–842. Springer-Verlag.

Zitzler, E., M. Laumanns, and L. Thiele (2002). SPEA2: Improving the Strength Pareto

Evolutionary Algorithm. In K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou, and

T. Fogarty (Eds.), EUROGEN 2001. Evolutionary Methods for Design, Optimization and

Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100.

Zitzler, E. and L. Thiele (1998). Multiobjective Optimization Using Evolutionary Algorithms

- A Comparative Case Study. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel

(Eds.), Parallel Problem Solving from Nature - PPSN V, Volume 1498 of Lecture Notes in

Computer Science, pp. 292–301. Springer.

96


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	DEDICATON
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER
	INTRODUCTION
	DEFINITIONS AND LITERATURE REVIEW
	Definitions
	Dominance and Efficiency
	Ideal and Nadir Objective Vectors
	Distance Metrics

	Literature Review
	MOEAs that Approximate the Entire Efficient Frontier
	Incorporation of Preference Information to the MOEAs


	TERRITORY DEFINING EVOLUTIONARY ALGORITHM (TDEA)
	The Details of TDEA
	Selection
	Scaling
	Population Updates
	Fitness Function
	Determination of 
	Computational Complexity

	Simulation Runs and Comparisons 
	Performance Metrics
	2-Objective Problems
	3-Objective Problems
	5-Objective Problems
	Effects of Changing 
	Discussions


	PREFERENCE INCORPORATION
	Common Features
	Variable Territory Sizes
	Favorable Weights

	Preferred-Region Territory Defining Evolutionary Algorithm
	Details of the Algorithm
	Simulation Runs and Comparisons
	Discussions

	Interactive Territory Defining Evolutionary Algorithm
	Details of the Algorithm
	Simulation Runs and Comparisons
	Discussions


	CONCLUSIONS
	REFERENCES

