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abstract

BOUNDARY ELEMENT METHOD SOLUTION OF

INITIAL AND BOUNDARY VALUE PROBLEMS IN

FLUID DYNAMICS AND

MAGNETOHYDRODYNAMICS

Bozkaya, Canan

Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Münevver Tezer

June 2008, 188 pages

In this thesis, the two-dimensional initial and boundary value problems invol-

ving convection and diffusion terms are solved using the boundary element method

(BEM). The fundamental solution of steady magnetohydrodynamic (MHD) flow

equations in the original coupled form which are convection-diffusion type is es-

tablished in order to apply the BEM directly to these coupled equations with

the most general form of wall conductivities. Thus, the solutions of MHD flow

in rectangular ducts and in infinite regions with mixed boundary conditions are

obtained for high values of Hartmann number, M .

For the solution of transient convection-diffusion type equations the dual reci-

procity boundary element method (DRBEM) in space is combined with the dif-

ferential quadrature method (DQM) in time. The DRBEM is applied with the

fundamental solution of Laplace equation treating all the other terms in the

equation as nonhomogeneity. The use of DQM eliminates the need of iteration

and very small time increments since it is unconditionally stable. Applications

include unsteady MHD duct flow and elastodynamic problems. The transient

Navier-Stokes equations which are nonlinear in nature are also solved with the

DRBEM in space - DQM in time procedure iteratively in terms of stream function
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and vorticity. The procedure is applied to the lid-driven cavity flow for moderate

values of Reynolds number. The natural convection cavity flow problem is also

solved for high values of Rayleigh number when the energy equation is added.

Keywords: BEM, DRBEM, DQM, fundamental solutions, MHD flow.
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öz

AKIŞKANLAR MEKANİĞİ VE

MAGNETOHİDRODİNAMİK BAŞLANGIÇ VE SINIR

DEĞER PROBLEMLERİNİN SINIR ELEMANLAR

YÖNTEMİ İLE ÇÖZÜMÜ

Bozkaya, Canan

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Münevver Tezer

Haziran 2008, 188 sayfa

Bu tezde, konveksiyon ve difüzyon terimlerini içeren iki boyutlu başlangıç ve

sınır değer problemleri sınır elemanlar yöntemi kullanılarak çözülmüştür. Sınır

elemanlar yönteminin durgun, birbirine bağlı magnetohidrodinamik denklemlere

direkt olarak uygulanabilmesi amaçlanmıştır. En genel duvar iletkenlik koşulları

ile verilmiş ve orijinal formu konveksiyon-difüzyon tipinde olan bu denklemlere

sınır elemanlar yöntemi için gereken temel çözüm türetilmiştir. Böylece, gerek

dikdörtgen kesitli kanal içerisinde gerekse sonsuz bölgelerde tanımlı magneto-

hidrodinamik akış problemlerinin çözümleri, karma sınır koşulları altında, büyük

Hartmann sayıları, M , için elde edilmiştir.

Zaman bağımlı konveksiyon-difüzyon tipindeki denklemleri çözmek için, uzay

koordinatlarının ve zaman parametresinin ayrıklaştırılmasında sırasıyla karşılıklı

sınır elemanlar ve diferansiyel kuadratür yöntemleri birarada kullanılmıştır. Kar-

şılıklı sınır elemanlar yöntemi Laplace denkleminin temel çözümü alınarak uygu-

lanmış ve diğer bütün terimler sağ taraf fonsiyonu olarak kabul edilmiştir. Difer-

ansiyel kuadratür koşulsuz kararlı bir yöntem olduğu için iterasyon ve küçük za-

man aralığı kullanma gerekliliğini ortadan kaldırmaktadır. Zaman bağımlı mag-

netohidrodinamik kanal akış ve elastodinamik problemleri uygulamalar içerisinde-
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dir. Aynı yöntem ile lineer olmayan, zamana bağlı Navier-Stokes denklemleri

de stream fonksiyonu ve vorticity cinsinden çözülmüştür. Yöntemin uygulaması

olarak üst kapağı hareketli kare kesitli kanal akış problemi ele alınmış, çözümler

orta değerdeki Reynolds sayıları için elde edilmiştir. Akabinde, bu denklem-

lerle birlikte enerji denklemini de içeren doğal konveksiyon kanal problemi yüksek

Rayleigh sayıları için çözülmüştür.

Anahtar Kelimeler: Sınır elemanlar yöntemi, karşılıklı sınır elemanlar yöntemi,

diferansiyel kuadratür yöntemi, temel çözümler, MHD akış.

vii



To my parents, Şerife and Ahmet,
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chapter 1

introduction

A wide range of ordinary or partial differential equations which are the mathe-

matical model of engineering or physical problems can only be solved in an app-

roximate manner due to their complexity. The best known approximate tech-

niques are the finite difference method (FDM) and the finite element method

(FEM). These methods are called domain discretization methods since they re-

quire the discretization of the domain of the problem under consideration into a

number of elements or cells.

Finite difference technique approximates the governing differential equation

using truncated Taylor series expansion, which results in a system of algebraic

equations. Although the method employs a comparatively straightforward inter-

nal discretization scheme and it is computationally economical, main difficulties

of the technique lie in the consideration of curved geometries and the insertion

of boundary conditions in this case.

Finite element method was developed in order to obtain a better represen-

tation of the geometry of the problem and to simplify the incorporation of the

boundary conditions. The method uses polynomial interpolation functions to

approximate the terms in the equations over small parts of domains, called ele-

ments. By assembling all of the influence matrices which express the properties

of each element, a global matrix is obtained. This enables a simpler way than

the one used in FDM for the insertion of the boundary conditions. The disad-

vantages of FEM are that large quantities of data are required to discretize the

full domain, and that there are also difficulties when modelling infinite regions

and moving boundary problems.

The boundary element method (BEM) is a well-established numerical tech-

nique for solving boundary value problems. The method provides an efficient
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alternative to the prevailing finite difference and finite element methods by of-

fering important advantages over them. The basic idea of the technique is the

transformation of the original differential equation describing the behaviour of

the unknown both inside and on the boundary of the domain, into an equivalent

integral equation only on the boundary. This boundary integral relates bound-

ary unknown solution values and their normal derivatives on the boundary. The

main advantage of the BEM is its boundary-only nature. That is, BEM requires

only the boundary discretization, which reduces the dimensionality of the prob-

lem under consideration by one. Thus, a smaller system of equations is obtained

in comparison with the numerical methods requiring domain discretization, and

then the boundary conditions can be applied in a similar way as is done in finite

elements. Consequently, the solution is carried out very efficiently with substan-

tial savings in computer time and storage. Another important advantage of the

method is that it is also well suited for free and moving surface problems and for

the problems defined on infinite regions for which the classical domain methods

are unsuitable.

The origin of the boundary element method can be traced to the work on the

application of boundary integral equations to potential flow and stress analysis

problems in the 1960’ s. The modern definition of boundary elements that is used

nowadays was then introduced in 1978 by Brebbia [1] and his research group [2, 3].

Since 1978 the popularity of the boundary element method has increased. The

first comprehensive work on the BEM and its applications in the various fields

of engineering science is represented in the book of Banerjee and Butterfield [4].

The method has become a widely used technique with the applications around in

many areas of engineering such as general potential theory, fluid mechanics, creep

and fracture problems on solid mechanics, inelastic problems, elastodynamics,

electrodynamics and magnetohydrodynamics problems. Further, transient heat

conduction, wave propagation and other time dependent problems are also treated

by BEM, [1, 2, 3].

The boundary element method, like finite elements, can be obtained as a

special case of the general weighted residual statement [2]. The advantage of

using weighted residual technique is its generality which allows the extension of
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the method to the solution of more complex partial differential equations and

it helps to clarify its relationship to other numerical techniques such as finite

elements. Actually, the errors introduced if the analytical solution of the problem

is replaced by an approximate solution, can be minimized by orthogonalizing

them with respect to a weight (weighting) function. A special type of weighting

function, called the fundamental solution of the differential equation defining the

problem, is used in order to transform the weighted residual formula involving

domain integrals into a boundary integral equation.

1.1 Fundamental Solution to Coupled Magneto-

hydrodynamic Equations

The fundamental solution represents the field generated by a concentrated

unit source acting at a point xi. The effect of this source is propagated from xi to

infinity without any consideration of boundary conditions. Because of this, the

fundamental solution u∗ satisfies the following equation, [5, 6],

Lu∗ = −∆(x − xi) (1.1)

where L is the differential operator of the given initial and/or boundary value

problem. The term ∆(x− xi) represents the Dirac delta function which tends to

infinity at the source point xi and is equal to zero elsewhere.

Fundamental solutions are very useful in the theory of differential equations.

They are used in solving nonhomogeneous equations and give the information

about the regularity and growth of the solutions. The general existence and

uniqueness theorems about the fundamental solutions are given in the books by

Kythe [5] and Pozrikidis [6].

The fundamental solution is needed for the boundary element method so-

lution, because BEM is a numerical technique which makes intensive use of a

fundamental solution of differential equation defining the problem. The bound-

ary integral equation corresponding to an initial and/or boundary value problem
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is obtained by the choice of the weight function equivalent to the fundamental

solution of the problem in question through the weighted residual procedure.

Therefore, not to lose the most significant advantage of BEM, the boundary-only

nature, fundamental solutions of the problem under consideration must be known.

For most of the differential equations, including Laplace, Helmholtz, modified

Helmholtz and convection-diffusion equations, the fundamental solutions exist in

the literature. However, in the case of the coupled partial differential equations,

e.g. magnetohydrodynamic (MHD) flows and original form of the Navier-Stokes

equations, the fundamental solutions are not available to our knownledge.

In this thesis, the fundamental solution of the original coupled magnetohydro-

dynamic flow equations is derived and it is used in the boundary element method

to obtain an efficient and accurate solution to these equations. This is one of the

basic contributions in the thesis.

Magnetohydrodynamics studies the dynamics of electrically conducting fluids

and their interactions with magnetic fields. In magnetohydrodynamics, magnetic

field can induce currents in a moving conducting fluid, which create Lorentz force

in turn on the fluid, and also change the magnetic field itself. Thus, one has to

consider both the fluid mechanics equations and the electromagnetic field equa-

tions simultaneously. This makes most MHD problems both theoretically and

practically difficult to study. Magnetohydrodynamics is a challenging subject due

to its important applications in varies fields. It occurs naturally in the Earth’s

interior constituting the dynamo that produces the Earth’s magnetic field, in the

magnetosphere that surrounds the Earth, and throughout astrophysics. In the

laboratory, magnetohydrodynamics is important in the magnetic confinement of

plasmas in experiments on controlled thermonuclear fusion. Magnetohydrody-

namic principles are also used for the propulsion and flight control in rocket

and hypersonic aerodynamic vehicles, for pumping of conducting liquids, and for

magnetohydrodynamic power generation.

The design of the MHD generators, pumps, brakes and accelerators requires

an understanding of the flow of a conducting fluid down a duct having finitely

conducting walls driven by a pressure gradient. The situation may be approx-

imated by the pressure driven flow down a rectangular duct (a straight duct
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of rectangular cross-section) under an applied transverse magnetic field imposed

parallel to one pair of sides of the duct. The MHD flow which is laminar, steady

and incompressible, of a viscous and electrically conducting fluid through pipes

of rectangular cross-section is considered. Special emphasis is given to the ducts

which have partly insulated partly conducting walls as well as to inclined applied

magnetic field. Some problems of laminar flow of a viscous electrically conducting

fluid on the upper half plane are also studied with the emphasis on the mixed

boundaries due to the electrodes placed on the x-axis. These MHD flows consti-

tute electrically driven MHD problems in infinite regions.

The motion of a nonconducting fluid through a duct can only be maintained

by some cause of mechanical nature, such as a pressure gradient along the duct,

a given upstream motion, the gravitational field, etc. These causes transfer a

certain energy. Conducting fluids having an additional property give us the pos-

sibility of slowing down or accelerating the motion through the external action

of an electromagnetic field. Moreover, the external magnetic field determines the

appearance within the fluid of an induced current which can be made to flow in an

external circuit. In this manner, some of the internal energy of the fluid is given

up to the exterior as utilizable electrical energy (MHD generators). These are

some of the reasons for the motion through ducts to be of considerable theoretical

and practical importance.

The set of equations which describe MHD is a combination of the Navier-

Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetism

through Ohm’ s law. These coupled system of differential equations have to be

solved simultaneously. Due to the coupling of the MHD equations in velocity and

induced magnetic field, analytical solutions are available only for some simple

geometries under simple boundary conditions [7, 8]. Therefore, several numerical

techniques such as FDM, FEM and BEM have been used to obtain approximate

solutions for the MHD flow problems.

Singh and Lal [9, 10] have used FDM to solve MHD flow through channels

of triangular cross-section for small values of Hartmann number, M . There is

an extensive study on the numerical solution of MHD duct flow problems using

FEM. Singh and Lal [11, 12], Gardner and Gardner [13] presented FEM solu-
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tions for arbitrary cross-section of ducts but for Hartmann numbers less than

10. Tezer-Sezgin and Köksal [14] extended these studies to moderate Hartmann

numbers up to 100 using standard FEM with linear and quadratic elements. Fur-

ther, Demendy and Nagy [15] have used the analytical finite element method to

obtain their numerical solution in the range of the Hartmann number M ≤ 1000.

Barrett [16] obtained FEM solution for high values of M by using very fine mesh

within the Hartmann layers but as the author himself indicated the method is

computationally very expensive, memory and time consuming. Later, Neslitürk

and Tezer-Sezgin [17, 18] solved MHD flow equations in rectangular ducts by

using a stabilized FEM with residual free buble functions. Thus, it was possible

to increase M up to 1000 and also to use general wall conductivities.

The BEM applications for solving MHD flow problems arise from the diffi-

culties of solving huge systems and high computational cost in FEM because of

the domain discretization. Singh and Agarwal [19], Tezer-Sezgin [20], Liu and

Zhu [21], Tezer-Sezgin and Han Aydın [22] and Carabineanu et al [23]’ s papers

are some studies on the BEM solutions of MHD duct flow problems. All these

BEM solutions have been obtained for small and moderate values of Hartmann

number (M ≤ 50). On the other hand the duct walls are taken as insulated (the

induced magnetic field is zero at the walls) which enables to decouple the MHD

equations [20, 22]. The decoupled MHD equations then are treated with the dual

reciprocity BEM, making use of the fundamental solution of Laplace or modified

Helmholtz equations. But the original MHD equations are coupled convection-

diffusion type equations and are convection dominated equations for large values

of Hartmann number. Treating these equations in dual reciprocity BEM with the

fundamental solution of decoupled equations loses this dominance and is the main

reason of obtaining the solutions only for small and moderate values of Hartmann

number. The solution procedure is also restricted to the simple case of insulated

duct boundary, however most of the physical MHD flow applications need partly

conducting and partly insulated duct walls. We consider here the direct BEM

solution of MHD equations in coupled form. Thus, the derivation of the funda-

mental solution of coupled MHD equations which are convection-diffusion type is

certainly required and given in this thesis.
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The fundamental solution derived in the thesis for the coupled MHD equations

is used in the boundary element solution of some MHD flows in rectangular duct.

First, the duct with insulating wall is taken for comparing the results with the

exact solution which is available only for this insulated boundary case, [8]. Then,

the same problem is solved when the applied magnetic field is inclined, making

angles with the axes. Special emphasis is given to the solution of MHD flow in

ducts with partly insulating and partly conducting walls which was not possible

to obtain before with BEM, since the equations can not be decoupled due to

the mixed boundary conditions. Now, the original coupled MHD equations can

be treated directly with the fundamental solution obtained here in using BEM.

The MHD flow in rectangular duct with perfectly conducting walls parallel to the

external magnetic field is also solved with the derived fundamental solution. In

this case, the MHD equations can not also be decoupled since then the boundary

conditions are coupled, [20]. In all these duct problems we have considered flows

which are pressure driven. The MHD flows which are driven by imposed electric

currents on the upper half plane of partly insulating and partly conducting x-axis

are also solved by the BEM with the fundamental solution derived for coupled

MHD equations. This fundamental solutions make possible to obtain solutions for

large values of Hartmann number in MHD ducts and MHD infinite region prob-

lems. In the infinite region (upper half plane) MHD flow problem, the boundary

layer thicknesses are also computed directly from the BEM integral formulations

of the velocity and the induced magnetic field.

1.2 DRBEM in Space-DQM in Time Domains

for Unsteady Problems

In the second part of the thesis, we consider unsteady problems as diffusion,

convection-diffusion, unsteady MHD duct flow and elastodynamic problems. The

time-dependent Navier-Stokes and the natural convection flow equations are also

solved in a square cavity. In all of these problems, the first or second order time

derivatives of the unknown functions are involved. Therefore, in the use of BEM,

7



finding the corresponding fundamental solutions is not an easy task. There are

BEM studies using time dependent fundamental solution, [24, 25, 26], but then

some domain integrals are encountered in the BEM formulation destroying the

boundary only nature of the BEM applications. One of the procedure to deal

with the time derivatives and some nonlinear terms in the BEM applications is

the dual reciprocity boundary element method (DRBEM).

The dual reciprocity boundary element method was introduced by Nardini

and Brebbia [27] in 1982 for elastodynamic problems and extended by Wrobel

and Brebbia [28] to time-dependent diffusion in 1986. The method was further

extended to more general problems by Partridge and Brebbia [29] and Partridge

and Wrobel [30].

The dual reciprocity BEM uses the fundamental solution of the dominating

differential operator (Laplace operator in the problems considered here) and treats

the time and space derivatives, nonlinear terms as nonhomogeneity, [31]. In the

thesis, the DRBEM is developed for the Poisson equation in which the nonhomo-

geneous term is a known function of space. Then, the method is extended to the

time-dependent problems in which the right hand side of the governing equation

is taken as an unknown function of the problem variable as well as a function of

space and time derivatives. The right hand side is approximated using linear and

quadratic radial basis (coordinate) functions, [22].

In the applications, the numerical solutions to transient convection-diffusion

problems containing variable coefficients with Dirichlet and/or Neumann type

boundary conditions are obtained. First, the solution of the diffusion problem in

a circular region with mixed type boundary conditions, [32], is obtained. Then

the rotating pulse problem with homogeneous Dirichlet boundary condition, [33],

is solved in a square region. The solution of the unsteady MHD duct flow problem

with insulating walls is also available with the DRBEM procedure since the equa-

tions are convection-diffusion type. Then, the transient elastodynamic problems,

the only difference being the existence of the second order time derivative of the

unknown, are solved with the DRBEM procedure, [34, 35]. The problems of free

vibration of a square membrane [36], longitudinal vibration of a plate subjected

to a periodic plane force [37] and Heaviside impact load [38], and longitudinal
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vibration of damped plate subjected to Heaviside impact load [39] are solved.

DRBEM application to convection-diffusion and elastodynamic equations gives

rise to initial value problems represented by systems of first and second order or-

dinary differential equations in time, respectively. These initial value problems

need a time integration scheme for obtaining the discrete solution at a required

time level or at steady-state. There are several time integration schemes mostly

iterative in nature.

Singh and Kalra [40] provided a comprehensive comparative study of various

different time integration algorithms indicating that all these algorithms for first

order system of initial value problems encountered loss of accuracy in solving

problems with Dirichlet boundary conditions. Later, in Singh and Kalra [41], a

least square finite element scheme in the time domain was presented and it was

found that the one step least squares scheme is more accurate than other one

step schemes but it is not suitable for stiff initial value problems.

Recently, Chawla and Al-Zanaidi [42] have described a locally one-dimensional

time integration scheme which is third order in time and is unconditionally stable

for the diffusion equation in two space dimensions based on the extended trape-

zoidal formula. The method of fundamental solutions with dual reciprocity was

applied to solve convection-diffusion equation by Partridge and Sensale [43]. The

time integration scheme is also the finite difference with a relaxation procedure

which is iterative in nature and needs carefully taken time increment. The com-

bined application of dual reciprocity boundary element method (DRBEM) for

the spatial partial derivatives and differential quadrature method for the time

derivative in solving diffusion problems was presented by Tanaka and Chen [44].

The resulting Lyapunov matrix equation was solved by Bartels-Stewart algorithm

to reduce the computing effort of solving such matrix equations. As the authors

themselves indicate, the computing effort is nearly the same as that in the step

by step integration algorithms since their procedure needs similarity transforma-

tions for the matrices in the differential system and this is quite time consuming

computationally. Also, the method performs very well only for Dirichlet type

boundary conditions in solving diffusion problems.

For the elastodynamic problems the finite difference approximations, such as
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Houbolt and Newmark scheme that are implicit and unconditionally stable algo-

rithms, have been used in the DRBEM solutions by Nardini and Brebbia [34] and

Loeffer and Mansur [45]. They have concluded that the Houbolt scheme should

be preferred for time marching in order to remove disturbing effects that higher

modes introduce in the response. It has been also noticed that the accuracy and

computational effort of the solutions depend greatly on the proper choice of the

time step size and the number of employed internal nodes and subregions. Besides

these commonly used traditional time integration methods, many researchers have

used the finite element method in the discretization of the time domain. Chien

et. al. [46] applied the time discontinuous Galerkin finite element method in time

domain to solve the transient elastodynamic problems and showed that their so-

lution technique is more stable and more accurate than the solution procedure

based on the Houbolt method using step-by-step time integration algorithm.

In this thesis the differential quadrature method (DQM) is used for the so-

lution of the resulting initial value problems in time, since it is known that it is

unconditionally stable, [47]. The differential quadrature method was presented

by R.E. Bellman and his associates in early 1970’ s and since then, the technique

has been succesfully employed in a variety of problems in engineering and physical

science.

Differential quadrature provides a global approach to numerical discretization,

which approximates the partial derivative of a function. The DQ method is based

on the idea of conventional integral quadrature. Since the weighting coefficients

only depend on the grid spacing, they do not relate to any special problem.

Thus, any partial differential equation can easily be reduced to a set of algebraic

equations using these coefficients. The key to DQM is to determine the weighting

coefficients for the discretization of a derivative of any order. Several approaches,

e.g. polynomial-based and Fourier expansion-based differential quadrature, have

been introduced in order to obtain the weighting coefficients in [48, 49].

When the DQM discretizes the system of ordinary differential equations in

time direction, we finally obtain a large system of linear equations for the un-

known nodal values containing both discretized space and time points. This sys-

tem gives the solution vector at any required time level since it contains spatial
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nodal solution at all interior time levels between the initial and the final. These

interior time levels may be either equally spaced or the Gauss-Chebyshev-Lobatto

(GCL) points. This way, the resulting linear system of equations can be solved

by any direct (Gaussian type) or iterative (Gauss-Seidel, SOR) solver without

any special treatment like the use of Bartels-Stewart algorithm in the solution

of Lyapunov matrix equations. Also, our solution procedure can be used with

large time increments directly in the system of linear equations and does not need

an iterative algorithm in the time direction. The other time integration schemes

(Singh and Kalra [40]) mostly need very small time increments for stability and

convergence and thus they are expensive computationally.

The last problem of this section is the DRBEM in space - DQM in time

domains solution of the Navier-Stokes equations. Applications are on the solu-

tion of lid-driven cavity flow problem, and natural convection flow in a square

cavity which includes the temperature equation as well. Four alternative for-

mulations of the Navier-Stokes equations are given earlier. These are (i) the

velocity-pressure formulation, (ii) the vorticity-stream function formulation, (iii)

the stream function fourth order equation and (iv) the velocity-vorticity formu-

lation. For two dimensional and also for axi-symmetric flows it is convenient to

use the vorticity-stream function formulation where the equation of continuity is

automatically satisfied. Of course, the resulting system consists of two coupled

equations. Aside from the fact that one of these coupled equations, the vorticity

transport equation, is nonlinear, there are several other difficulties associated with

their solution. A major difficulty arises from the boundary conditions of the prob-

lem. In practice only the velocity on the boundaries is prescribed, while for the

numerical solution of the equation in the vorticity-stream function formulation

we require the values of the vorticity on the boundaries as well. The advantage of

using the velocity-pressure formulation is that we are dealing with the primitive

variables. However, in the velocity-pressure formulation it becomes necessary to

solve a rather complicated pressure equation, introducing additional difficulties.

A third possibility is to solve the fourth order formulation of the Navier-Stokes

equations. Although there is only one nonlinear equation that is to be solved, it

must be realized that one is now faced with a higher order nonlinear equation.
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One of the boundary conditions is given in terms of the normal derivatives which

also complicates the numerical procedure.

There are many studies on the numerical solutions of the Navier-Stokes equa-

tions in these formulations. Wong and Chan [50] have given numerical verifica-

tions of the mixed finite element consistent splitting scheme for solving Navier-

Stokes equations in primitive variables. Their numerical simulation for the dou-

ble lid-driven cavity by using fine mesh with 513 × 513 points for high Reynolds

number, Re. The Navier-Stokes equations in stream function-vorticity formu-

lation are solved using a fine uniform grid mesh of 601 × 601 for high Re by

Erturk et. al. [51]. Wu and Liao [52] have applied the domain decomposition

method and the general BEM to solve the laminar viscous flow in a driven cavity

in terms of stream function and vorticity. Sousa and Sobey [53] have developed

a global iteration matrix formulation for the stream function-vorticity equations

for examining the effect on numerical stability of boundary vorticity discretiza-

tion. Two dimensional time-dependent incompressible Navier-Stokes equations

in stream function-vorticity formulation are solved by uncoupling the variables,

linearizing the advective terms and using Euler type implicit time discretization

by Ghadi [54] et al. A numerical solution by using differential quadrature method

has been developed by Lo et al. [55] for 2D Navier-Stokes equations in velocity-

vorticity form and this numerical algorithm has been implemented successfully to

study natural convection in a differentially heated cavity. For the time derivative

an iterative second-order time stepping of finite difference type has been used.

Ding et al. [56] also presented a mesh free finite difference scheme based on the

use of a weighted least-square aproximation to solve 2D natural convection in a

square cavity. Moreover, the global methof of generalized differential quadrature

is applied to simulate the natural convection in a square cavity by Shu and Xue

[57]. In these two studies also iterative time integration schemes have been used.

Most of the studies on the discretization of time derivative in the vorticity

transport equation are based on finite difference approximations. Erturk et al.

[51] used an implicit Euler time scheme which is first order accurate, Wong and

Chan [50] used a fully implicit second order backward differentiation formula

since it is stable. Kobayashi et al. [58] have chosen an explicit fourth order accu-
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rate Runge-Kutta method for solving the unsteady fourth order stream function

equation. It is known that the above mentioned methods need iterations with a

proper choice of time increment ∆t for obtaining the solution at a required time

level. Since all the equations obtained from space discretization must be solved in

each iteration the whole solution procedure is usually computationally expensive.

In this thesis, we follow the stream function-vorticity formulation of the

Navier-Stokes equations, and use the DRBEM treating the time derivatives and

nonlinear terms as the nonhomogeneity in the vorticity transport and the energy

equations. In the stream function equation the nonhomogeneity is the previous

value of vorticity and these two equations are solved iteratively. We obtain the

vorticity boundary conditions from the Taylor series expansion of stream function

equation in terms of boundary and interior stream function values. The approxi-

mations for the vorticity boundary conditions affect the accuracy and convergence

of the whole solution procedure. The formula we use involves the unknown values

of stream function at the distances ph and qh away from the boundary (p and q

are integers and h is the mesh distance). The DRBEM application to vorticity

transport equation results in system of first-order initial value problem in time.

We use the DQM in discretizing the time derivative in this initial value problem.

The DQM gives the solution at any required time level at one stroke with a min-

imal number of discretized points between the initial and the required time level.

By taking these results as initial values we solve the system for obtaining the so-

lution at another required time level. This way, we reach iteratively to the steady

state by solving the system in time blocks. These time blocks are discretized with

very small number of Gauss-Chebyshev-Lobatto points since it is known that it

gives better accuracy than the use of equally spaced points, [47]. Our solution

procedure has been tested first on solving Navier-Stokes equations when a force

term is present for which an exact solution is available. Then, the lid-driven cav-

ity and natural-convection cavity problems are solved for Reynolds number up to

1000 and Rayleigh number up to 105, respectively. These two benchmark prob-

lems have occupied the attention of many scientists in developing computational

algorithms for solving the Navier-Stokes and energy equations.
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1.3 Plan of the Thesis

In Chapter 2, we give the derivations of fundamental solutions for Laplace,

Helmholtz, modified-Helmholtz and convection-diffusion type differential equa-

tions. These are the basic studies in developing the fundamental solution for

coupled convection-diffusion type differential equations which is necessary in ob-

taining BEM formulation of the MHD flow problems. The boundary element

method is explained on Laplace equation giving the corresponding boundary in-

tegral equation. Discretization of the boundary is performed by using constant

and linear elements and the resulting system of algebraic equations is obtained.

Chapter 3 presents the boundary element method solution of the magneto-

hydrodynamic flow equations. The governing equations of a laminar, steady and

fully developed MHD flow of a viscous, incompressible and electrically conduct-

ing fluid are formulated in nondimensional form. Then, the derivation procedure

in Chapter 2 is extended to establish the fundamental solution of these coupled

MHD flow equations which are convection-diffusion type. With this fundamen-

tal solution, the MHD flow equations are transformed into the boundary integral

equations. In Section 3.4 applications are given on the pressure driven MHD flows

in rectangular ducts and electrically driven MHD flows in infinite regions. The

first, involves flow which is driven by means of a constant pressure gradient and

is subjected to a constant and uniform imposed magnetic field. We consider here

four MHD flow problems in a rectangular duct with insulating and/or conducting,

and partly insulating partly conducting walls. The latter includes the flow which

is driven by the electrodes through external circuits. Two sample problems with

partly insulating and partly perfectly conducting walls are solved on the upper

half plane.

In the last two chapters of the thesis a numerical method, which is the coupling

of the DRBEM with the DQM, is introduced for solving the transient convection-

diffusion type and elastodynamic problems, and also for the solution of unsteady

Navier-Stokes equations. The dual reciprocity BEM is used for the discretization

of the spatial domain whereas the DQM discretizes the time domain.

Chapter 4 presents the theory of DRBEM on the Poisson equation with a
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right hand side function containing the unknown itself, and its space and time

derivatives. Thus, the application of DRBEM with the fundamental solution of

the Laplace equation to these unsteady differential equations yields systems of

first or second order (in transient elastodynamic problems) initial value problems

in time. The differential quadrature method is made use of in solving resulting

initial value problems in Section 4.2. The applications of the proposed coupled

method are given in Section 4.3. The method is first applied to the diffusion

equation in a circular region and then the transient convection-diffusion type

equations with variable coefficients are solved. Then, the method is used for the

solution of unsteady MHD flow problem with insulating walls, which also contains

coupled convection-diffusion type equations. The last application in this chapter

is the solution of the transient elastodynamic problems which involve second order

time derivative of the solution as well.

In Chapter 5, the unsteady Navier-Stokes equations are solved in terms of

stream function and vorticity by using the procedure given in Chapter 4. The

stream function equation is solved with the dual reciprocity BEM and the cou-

pling of DRBEM in space - DQM in time is made use of for solving the vorticity

transport equation. Numerical results are given in Section 5.2 for the laminar

flow of an incompressible, viscous fluid in a lid-driven cavity and for the natural

convection flow in a square cavity. The natural convection flow contains also the

energy equation which is of the same type of vorticity transport equation.
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chapter 2

the boundary element method

and the fundamental solutions

In this chapter a unified treatment of the derivation of fundamental solutions

for some differential equations and the basic formulation of the boundary element

method for solving the model problem governed by the Laplace equation are

presented. The first part of the chapter, Section 2.1, makes reference to the

fundamental solution together with its properties. Furthermore, the derivation

of the fundamental solutions for the Laplace, Helmholtz, modified Helmholtz

and convection-diffusion type differential equations is demonstrated. Section 2.2

deals with the development of the general integral equation by weighting the

Laplace equation over the domain of the problem. A corresponding boundary

integral equation is obtained by using the fundamental solution together with

the application of Divergence theorem. After the discretization of the boundary

by constant, linear, quadratic or cubic elements, the problem is finally expressed

as an algebraic system of equations which can be solved for discrete unknown

boundary values after the insertion of the boundary conditions. The solution

then, can be obtained at any required interior point by revising the same integral

equation for interior region.

2.1 Fundamental Solutions

Fundamental solutions are very useful in the theory of differential equations.

They are used in solving nonhomogeneous equations and tell us about the reg-

ularity and growth of solutions. The general existence and uniqueness theorems
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about fundamental solutions are given in the books by Kythe [5] and Pozrikidis

[6].

Let L be a differential operator, i.e.

Lu = f(x), x ∈ Ω . (2.1)

If f(x) = −∆(x − xi), the solution of equation (2.1), if it exists, is called the

fundamental solution for the operator L, and it is denoted by u∗, i.e.

Lu∗ = −∆(x− xi) . (2.2)

The Dirac delta function, ∆(x− xi), is defined as

∆(x− xi) =

{

0 , if x 6= xi

∞ , if x = xi

and is also constrained to satisfy the identity

∫

Ω

∆(x− xi) dΩ = 1

where Ω is the domain contaning the point xi. The Dirac delta function has the

fundamental property that

∫

Ω

Φ(x)∆(x− xi) dΩ =

{

Φ(xi), if xi ∈ Ω

0, if xi /∈ Ω

where Φ(x) is any function continuous at xi.

In other words, the fundamental solution represents the field generated by

a concentrated unit source acting at a point x = xi. The effect of this source

is propagated from x = xi to infinity without any consideration of boundary

conditions.

The fundamental solution is necessary for the application of the boundary

element method to the differential equations, because BEM is a numerical tech-

nique which makes intensive use of a fundamental solution of the problem in
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question in order to reach the boundary-only merit of the method. Therefore, we

derive fundamental solutions for some classical linear operators, namely Laplace,

Helmholtz, modified Helmholtz and convection-diffusion operators, which help us

also to find the fundamental solutions of some coupled differential equations in

progress.

2.1.1 Fundamental solution of Laplace equation

The solution of potential flow problems governed by Laplace or Poisson equa-

tions is one of the most important application area of the boundary element

method. In this thesis, especially in Chapters 4 and 5, some differential equa-

tions in which the Laplacian is the dominating differential operator will be consid-

ered. In order to transform these differential equations into boundary integrals,

the fundamental solution of the Laplace equation is made use of. This section

concentrates on the derivation of the fundamental solution of firstly two- and

three-dimensional Laplace equation, and then a general form is given for the

n-dimensional case [5, 6].

2-D Laplace Equation

The two-dimensional (2-D) Laplace equation is governed by

∂2u

∂x2
+
∂2u

∂y2
= 0 (2.3)

in the xy−coordinate system. By the substitution r = |x| =
√

x2 + y2, equation

(2.3) can be written in polar coordinates for the axisymmetric case as follows

1

r

∂

∂r

(

r
∂u

∂r

)

= 0 . (2.4)

The fundamental solution u∗ of 2-D Laplace equation is the solution of

∇2u∗ = −∆(x) (2.5)
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where ∆(x) is the Dirac delta function concentrated at origin. For x 6= 0, u∗ will

satisfy the homogeneous equation

∇2u∗ = 0 (2.6)

which has a general solution

u∗ = A ln(r) +B (2.7)

where A and B are constants. By setting arbitrarily B = 0, equation (2.7) will

have the form

u∗ = A ln(r) . (2.8)

In order to determine the coefficient A, take into account the magnitude of

the source at x = 0 . Integrating equation (2.5) over a small circle of radius ǫ

center at origin, we obtain A = − 1

2π
.

Hence, the fundamental solution for 2-D Laplace equation is given by

u∗ = − 1

2π
ln(r) =

1

2π
ln

(

1

|x|

)

. (2.9)

In a similar way, the fundamental solution of the 3-D Laplace equation can

be easily obtained as

u∗ = − 1

4πr
= − 1

4π|x| (2.10)

in which the magnitude r of the vector x = (x, y, z) is given by r =
√

x2 + y2 + z2.

n-D Laplace Equation

The n-dimensional Laplace equation in polar coordinates with the absence of

angle dependence is given by

1

rn−2

∂

∂r

(

rn−1∂u

∂r

)

= 0, n > 2 (2.11)
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where r = |x| =
√

x2
1 + x2

2 + · · ·+ x2
n. By a similar procedure given for the two-

dimensional case, the general solution of the homogeneous equation corresponding

to the equation

∇2u∗ = −∆(x) (2.12)

is obtained as, [59],

u∗ =
A

rn−2(n− 2)
+B (2.13)

for x 6= 0, in which A and B are constants. By setting arbitrarily B = 0, equation

(2.13) will have the form

u∗ =
A

rn−2(n− 2)
. (2.14)

One can determine the coefficient A as A = −1/Sn(1) by integrating equation

(2.12) over a unit radius spherical domain centered at origin, where Sn(1) is

the surface area of the spherical domain. Hence, the fundamental solution for

n-dimensional Laplace equation is obtained as

u∗ = − 1

rn−2Sn(1)(n− 2)
for n > 2 . (2.15)

2.1.2 Fundamental solutions of Helmholtz and modified

Helmholtz equations

Helmholtz and modified Helmholtz equations are also basic differential equa-

tions like Laplace in the sense that their fundamental solutions are beneficial to

obtain the fundamental solutions of convection-diffusion type equations which is

derived in the following Section 2.1.3. First, the derivation of the two-dimensional

case is sketched out in details and then the form for three-dimension is given.

2-D Helmholtz and modified Helmholtz equations

The two-dimensional Helmholtz and modified Helmholtz equations in the

cartesian coordinate system are given by

∂2u

∂x2
+
∂2u

∂y2
+ λ2u = 0 (2.16)
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and
∂2u

∂x2
+
∂2u

∂y2
− λ2u = 0 (2.17)

respectively. These two equations differ only with the sign of the term λ2u, with

an arbitrary constant λ.

The substitution r = |x| =
√

x2 + y2 leads to the equation

r2d
2u

dr2
+ r

du

dr
± λ2r2u = 0 (2.18)

in polar coordinates for both of equations (2.16) and (2.17). The fundamen-

tal solutions u∗ of 2-D Helmholtz and modified Helmholtz equations satisfy the

equation

∇2u∗ ± λ2u∗ = −∆(x) (2.19)

respectively, for the plus and minus signs in the equation.

For x 6= 0 , u∗ will satisfy the homogeneous equation

∇2u∗ ± λ2u∗ = 0 (2.20)

which have general solutions

u∗ =















AH
(1)
0 (λr) +BH

(2)
0 (λr) for Helmholtz equation

AH
(1)
0 (iλr) +BH

(2)
0 (iλr) for modified Helmholtz equation

(2.21)

where H
(1)
0 and H

(2)
0 are the Bessel functions of the third kind and of order zero,

A and B are constants. Since u∗ is bounded as r → ∞, we must take A = 0 for

Helmholtz equation and B = 0 for Modified Helmholtz equation, then

u∗ =















BH
(2)
0 (λr) for Helmholtz equation

AH
(1)
0 (iλr) for Modified Helmholtz equation .

(2.22)

In order to determine the coefficients A and B, apply Divergence theorem to
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the integral of equation (2.19) over Ω, so we have

∫

∂Ω

du∗

dr
dS = −1 (2.23)

or

lim
r→0

(

du∗

dr
2πr

)

= −1 . (2.24)

Then, A = i/4 and B = −i/4. Hence, the fundamental solutions for two-

dimensional Helmholtz and modified Helmholtz equations are obtained as

u∗ =



















− i

4
H

(2)
0 (λr) for Helmholtz equation

i

4
H

(1)
0 (iλr) =

1

2π
K0(λr) for modified Helmholtz equation

(2.25)

where K0 is the modified Bessel function of the second kind and of order zero.

In the same manner the fundamental solutions for three-dimensional case can

be derived and they are given by, [5],

u∗ =



























− λ

4πi

√

π

2λr
H

(2)
1/2(λr) for Helmholtz equation

λ

2π2

√

π

2λr
K1/2(λr) for modified Helmholtz equation

(2.26)

or

u∗ =























− λ

4πi

i

λr
e−iλr = − e−iλr

4πr
for Helmholtz equation

λ

2π2

π

2λr
e−λr =

e−λr

4πr
for modified Helmholtz equation

(2.27)

where H1/2, I1/2 and K1/2 are spherical Bessel function of the third kind, modified

spherical Bessel functions of the first and second kind, respectively.
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2.1.3 Fundamental solution of convection-diffusion equa-

tion

This section deals with the derivation of the fundamental solution of the two-

dimensional convection diffusion equation which is going to be used in Chapter

3 to derive the fundamental solution of the coupled convection-diffusion type

equations. The two-dimensional convection-diffusion equation is given as

k∇2u = Ux
∂u

∂x
+ Uy

∂u

∂y
(2.28)

where U = (Ux, Uy) is the constant velocity vector and k is the diffusivity cons-

tant.

Introducing a new variable v = v(x, y) as follows, [5],

u =
1

k
exp

(

U.x

2k

)

v , (2.29)

one obtains a differential equation in the form of a modified Helmholtz equation

∇2v − λ2v = 0 (2.30)

where λ =
|U|
2k

and |.| denotes the magnitude of a vector.

Equation (2.30) is a 2-D modified Helmholtz equation with the fundamental

solution

v∗ =
1

2π
K0(λ|x|) (2.31)

given as in Section 2.1.2. Now substituting v∗ back in equation (2.29), we obtain

u∗ =
1

2πk
exp

(

U.x

2k

)

K0(
|U|
2k

|x|) (2.32)

which is the fundamental solution for 2-D convection-diffusion equation.
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2.2 Boundary Element Method

The boundary element formulation for the solution of boundary value prob-

lems can be deduced as a weighted residual technique as mentioned before. To

illustrate this, we follow the procedure in [1, 3] to find the solution of Laplace

equation in a two- or three-dimensional domain Ω,

∇2u = 0, in Ω (2.33)

with the following boundary conditions:

i. Essential conditions of type u = ū on Γ1

ii. Natural conditions such as , q =
∂u

∂n
= q̄ on Γ2

where n is the outward normal to the boundary Γ = Γ1+Γ2 and the bars indicate

known values.

The errors ǫ introduced in the above equations if the exact values of u and q are

replaced by the approximate values û and q̂, can be minimized by orthogonalizing

them with respect to a weight function [1, 3].

Thus, one can obtain the following residuals

ǫ = ∇2û 6= 0 in Ω

ǫ1 = û− ū 6= 0 on Γ1

ǫ2 =
∂û

∂n
− q̄ 6= 0 on Γ2 .

(2.34)

These residuals can be weighted as in the method of weighted residuals, so

that we have the following integral equation

∫

Ω

ǫ u∗ dΩ +

∫

Γ1

ǫ1 ū
∗ dΓ +

∫

Γ2

ǫ2 ¯̄u∗ dΓ = 0 (2.35)

where u∗, ū∗ and ¯̄u∗ are the weight functions. After the substitution of the

residuals in equation (2.35), we have

∫

Ω

(∇2û)u∗ dΩ +

∫

Γ1

(û− ū) ū∗ dΓ +

∫

Γ2

(

∂û

∂n
− q̄

)

¯̄u∗ dΓ = 0 . (2.36)
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Now, applying the Divergence theorem

−
∫

Ω

∂û

∂n

∂u∗

∂n
dΩ +

∫

Γ1+Γ2

∂û

∂n
u∗ dΓ +

∫

Γ1

(û− ū) ū∗ dΓ +

∫

Γ2

(

∂û

∂n
− q̄

)

¯̄u∗ dΓ = 0

(2.37)

and choosing u∗ = −¯̄u∗, we have

−
∫

Ω

∂û

∂n

∂u∗

∂n
dΩ +

∫

Γ1

∂û

∂n
u∗ dΓ +

∫

Γ1

(û− ū) ū∗ dΓ +

∫

Γ2

q̄ u∗ dΓ = 0 . (2.38)

Application of the Divergence theorem once more and choosing ū∗ = ∂u∗/∂n,

equation (2.38) becomes

∫

Ω

û∇2u∗ dΩ −
∫

Γ2

û
∂u∗

∂n
dΓ +

∫

Γ1

∂û

∂n
u∗ dΓ −

∫

Γ1

ū
∂u∗

∂n
dΓ +

∫

Γ2

q̄ u∗ dΓ = 0 .

(2.39)

To eliminate the domain integral

∫

Ω

û∇2u∗ dΩ, we choose u∗ such that

∇2u∗ = −∆(r − ri) (2.40)

where ∆(r − ri) is the Dirac delta function concentrated at the point i = (xi, yi),

r and ri are the distance vectors of the field point (x, y) and the source point

(xi, yi), respectively. Substituting equation (2.40) into equation (2.39) and by

the integral property of the Dirac delta function, we have

−ci ûi +

∫

Γ1

∂û

∂n
u∗ dΓ +

∫

Γ2

q̄ u∗ dΓ −
∫

Γ1

ū
∂u∗

∂n
dΓ −

∫

Γ2

û
∂u∗

∂n
dΓ = 0 . (2.41)

Defining

ũ =

{

ū, if i ∈ Γ1

û, if i ∈ Γ2

q̃ =

{

q̄, if i ∈ Γ2

q̂, if i ∈ Γ1 .
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where q̂ = ∂û/∂n and q∗ = ∂u∗/∂n, we have

ci ũi +

∫

Γ

ũ q∗ dΓ −
∫

Γ

q̃ u∗ dΓ = 0 . (2.42)

The constant ci is equal to

ci =







θi

2π
, if i ∈ Γ

1, if i ∈ Ω/Γ

with θi denoting the internal angle at point i in radians, as shown in Figure 2.1.

Figure 2.1: Geometric representation of the constant ci

The weight function u∗ is the fundamental solution of the given differen-

tial equation which is the Laplace equation in this case. For two- and three-

dimensional Laplace equation the weight functions are derived in Section 2.1.1

and given respectively by

u∗ =
1

2π
ln

(

1

r

)

and

u∗ =
1

4πr

with the distance r between the source and field points.
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2.2.1 Discretization of the boundary in 2-D

We consider now how the boundary integral equation (2.42) can be discretized

to find the system of equations from which the boundary values are calculated. In

BEM, discretization is made on the boundary by dividing it into small portions

which are called boundary elements, [1, 3]. The points where the unknown values

are considered are called nodes. If the node is taken in the middle of the element,

the method is called constant element method. The method with the nodes at the

extremes or ends of the element is the linear element method (see Figure (2.2)).

Higher order elements can be obtained by adding nodes to the elements (e.g.

center and end points for a cubic element).

Figure 2.2: Constant and linear boundary elements

The discretization with constant and linear elements of equation (2.42) is

performed by using u and q for the approximate solution and its normal derivative
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respectively instead of ũ and q̃ for simplifying the notation. That is,

ci ui +

∫

Γ

u q∗ dΓ −
∫

Γ

q u∗ dΓ = 0 . (2.43)

Constant element case

The boundary is assumed to be divided into N elements. In the case of the

constant elements the values of u and q are assumed to be constant over each

element and equal to the value at the mid-element node. The points at the ends

of the elements are used only for defining the geometry of the problem. Note that

for the type of constant element the boundary is always smooth at the nodes as

these are located at the center of the elements, hence the constant ci is always
1

2
.

Equation (2.43) can be discretized for a given point i before applying any

boundary conditions, as follows

1

2
ui +

N
∑

j=1

∫

Γj

uq∗ dΓj −
N
∑

j=1

∫

Γj

qu∗ dΓj = 0 (2.44)

where the point i is on the boundary and Γj is the boundary of the jth element.

The u and q values can be taken out of the integral since they are constants over

each element j and they are denoted as uj and qj. Hence,

1

2
ui +

N
∑

j=1

Ĥijuj =

N
∑

j=1

Gijqj (2.45)

where Ĥij =

∫

Γj

q∗ dΓj and Gij =

∫

Γj

u∗ dΓj. These integrals are related to the

node i where the fundamental solution is applied, to any other node j. The

entries Ĥij and Gij are given particularly for the two-dimensional problems with

the fundamental solution of 2-D Laplace equation as follows, [1, 3]

Ĥij =
1

2π

∫

Γj

(r − ri).n

|r− ri|2
dΓj
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and

Gij =
1

2π

∫

Γj

ln
1

|r − ri|
dΓj

where r = (x, y) and ri = (xi, yi) are the free (field) and fixed (source) points,

respectively. The symbol |.| denotes the norm of a vector and n is the outward

unit normal vector on the boundary Γj.

The matrix-vector form of equation (2.45) is

Hu = Gq (2.46)

where u and q are vectors of length N and H and G are the N × N matrices.

The entries of the matrix H are given as

Hij =
1

2
δij + Ĥij

where δ is the Kronecker delta function defined as

δij =

{

1, if i = j

0, if i 6= j .

Notice that N1 values of u and N2 values of q are known on Γ1 and Γ2 res-

pectively (N1 + N2 = N), hence there are only N unknowns in the system of

equations (2.46). To introduce these boundary conditions into system (2.46) one

has to rearrange the system by moving columns of H and G from one side to the

other. Once all unknowns are passed to the left hand side one can write

A
′

x = b (2.47)

where x is the vector of unknown boundary values of u and q, and b is found

by multiplying the corresponding columns of H or G by the known values of u

or q. It is interesting to point out that the unknowns are now a mixture of the

potential u and its normal derivative q, rather than the potential only as in finite

element method. This is a consequence of the boundary element method being a

mixed formulation, and constitutes an important advantage over finite elements.
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Equation (2.47) can now be solved and all the boundary values will then be

known. Once this is done it is also possible to calculate internal values of u at

any point i by using equation (2.43) with ci = 1, which after the discretization

become

ui =

N
∑

j=1

qjGij −
N
∑

j=1

ujĤij . (2.48)

Notice that now, the fundamental solution is considered to be acting on an inter-

nal point i and that all values of u and q are already known. The entries Ĥij and

Gij in (2.48), in which the indices i and j denote the fixed node in the interior of

the domain and jth element on the boundary respectively, have to be calculated

for each different internal point.

The coefficients Ĥij and Gij can be calculated using analytical or numerical

integration such as Gauss quadrature formula for the case i 6= j. In the case i = j

the singularity of the fundamental solution requires a more accurate integration

rule or a special formula such as logarithmic integration. For constant element

case Ĥii and Gii can be calculated analytically. The entries Ĥii = 0 due to the

orthogonality of the distance vector r and the normal vector n. The integrals Gii

require special handling. For a two-dimensional element, for instance, they are

of the form

Gii =

∫

Γi

u∗dΓi =
1

2π

∫

Γi

ln

(

1

r

)

dΓi . (2.49)

In order to integrate the above expression one can perform a change of coor-

dinates such that

r =

∣

∣

∣

∣

ℓ

2
ζ

∣

∣

∣

∣

, dΓi = dr =
ℓ

2
dζ (2.50)

where ℓ is the length of the element. Hence, taking into account symmetry,
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equation (2.49) can be written as, [1, 3]

Gii =
1

2π

∫ Point 2

Point 1
ln

(

1

r

)

dΓi =
1

π

∫ Point 2

node i

ln

(

1

r

)

dΓi

=
ℓ

2π

∫ 1

0

ln

(

2

ℓζ

)

dζ

=
ℓ

2π

{

ln

(

2

ℓ

)

+

∫ 1

0

ln

(

1

ζ

)}

.

(2.51)

Thus,

Gii =
ℓ

2π

(

ln
2

ℓ
+ 1

)

. (2.52)

Linear element case

In this case we consider a linear variation of u and q for which the nodes are

taken to be at the ends of the boundary element. After the discretization of the

boundary into N elements, the boundary integral equation (2.43) can be written

as

ciui +
N
∑

j=1

∫

Γj

uq∗ dΓj =
N
∑

j=1

∫

Γj

qu∗ dΓj . (2.53)

The integrals in this equation are more difficult to evaluate than those for the

constant element as u and q vary linearly over each element Γj and hence it is not

possible to take them out of integrals. The values of u and q at any point on the

element can be defined in terms of their nodal values and two linear interpolation

functions φ1 and φ2 as follows

u(ξ) = φ1u1 + φ2u2 = [φ1 φ2]

[

u1

u2

]

q(ξ) = φ1q1 + φ2q2 = [φ1 φ2]

[

q1

q2

]

(2.54)
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where ξ is the dimensionless coordinate varying from −1 to +1 and the two

interpolation functions are

φ1 =
1

2
(1 − ξ), φ2 =

1

2
(1 + ξ) . (2.55)

The integral over an element j given on the left hand side of equation (2.53)

can be written as

∫

Γj

uq∗ dΓj =

∫

Γj

[φ1 φ2] q
∗ dΓj

[

u1

u2

]

= [h1
ij h2

ij ]

[

u1

u2

]

(2.56)

where for each jth element we have two components

h1
ij =

∫

Γj

φ1q
∗ dΓj, h2

ij =

∫

Γj

φ2q
∗ dΓj . (2.57)

Similarly, the integral on the right hand side of (2.53) gives

∫

Γj

qu∗ dΓj =

∫

Γj

[φ1 φ2] u
∗ dΓj

[

q1

q2

]

= [g1
ij g2

ij ]

[

q1

q2

]

(2.58)

where

g1
ij =

∫

Γj

φ1u
∗ dΓj, g2

ij =

∫

Γj

φ2u
∗ dΓj . (2.59)

Substituting the integrals in (2.56) and (2.58) for each jth element into (2.53)

one obtains the following equation for node i

ciui + [Ĥi1 Ĥi2 . . . ĤiN ]















u1

u2

...

un















= [Ĝi1 Ĝi2 . . . ĜiN ]















q1

q2
...

qn















(2.60)

where Ĥij is equal to the h1
ij term of element j plus h2

i,j−1 term of element j − 1

and similarly for Gij . Hence, equation (2.60) represents the assembled equation
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for node i and it can be written as

N
∑

j=1

Hij uj =

N
∑

j=1

Gij qj (2.61)

where j defines the nodes in between elements and Hij = ciδij + Ĥij. Then, the

matrix-vector form becomes

Hu = Gq (2.62)

which can be solved for the unknown u and q values after the insertion of bound-

ary conditions as explained in the constant element case.

This chapter is closed with the standart derivation procedures of the fun-

damental solutions for Laplace, Helmholtz, modified Helmholtz and convection-

diffusion equations. The boundary element method is explained on the solution

of Laplace equation for showing the general steps of the method. Thus, these

basic ideas are going to be used in deriving the fundamental solution of coupled

magnetohydrodynamic equations and the corresponding BEM application in the

next chapter, which constitutes the main original part of the thesis.

The boundary element method can easily be used to study problems with

more than one boundary, such as the case of a region with holes in it (multiply

connected regions). In order to define an external or internal boundary we need to

identify the direction of the normal. For external boundary the numbering scheme

is defined in the counterclockwise direction whereas for internal boundary it is

defined in the clockwise direction.
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chapter 3

boundary element method

solution of the

magnetohydrodynamic flow

equations

Magnetohydrodynamics is the academic discipline which studies the dynamics

of electrically conducting fluids and their interactions with magnetic fields. The

idea of MHD is that magnetic fields can induce currents in a moving conductive

fluid, which create forces on the fluid, and also change (through Ohm’ s law) the

magnetic field itself. Qualitatively, the magnetohydrodynamic interactions tend

to link the fluid and the field lines so as to make them move together.

The governing equations of MHD flow are the Navier-Stokes equations of

fluid dynamics and Maxwell’ s equations of electromagnetism. The coupling of

these equations is due to Ohm’ s Law and makes it necessary to solve them

simultaneously. These coupled MHD equations can be solved analytically in

terms of velocity and induced magnetic field only for some simple geometries

under simple boundary conditions as completely insulated or conducting, [7]. The

previous boundary element method solution procedures given in the literature

are also restricted to the simple case of insulated boundaries, since the equations

can be decoupled, [20]-[23]. Our aim is to solve the MHD equations by using

boundary element method with a fundamental solution which treats the equations

in coupled form. Thus, one can able to solve MHD flow problems with partly

insulated and partly conducting walls, and for large values of Hartmann number.

In the present chapter, the solution of the MHD flow equations by using the
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boundary element method is explained. Section 3.1 gives the basic equations that

govern the magnetohydrodynamic flow problems. In Section 3.2, the fundamental

solution of MHD flow equations in the original coupled form which are convection-

diffusion type is established to be able to apply the BEM directly to these coupled

equations with the most general form of wall conductivities. This constitutes one

of the main original contributions to the thesis. Section 3.3 concentrates on how

the boundary element method is applied to transform these coupled MHD flow

equations into the boundary integrals by using the fundamental solution derived

in Section 3.2. Thus, the dimensionality of the problem is reduced by one and

the constant elements are used in order to discretize the boundary of the domain

under consideration. The resulting system of linear equations is solved after

the insertion of boundary conditions. In the last section, Section 3.4, pressure

driven MHD flows in rectangular ducts with insulating and/or conducting, partly

insulating partly conducting walls, and electrically driven MHD flows on the

upper half plane are solved.

3.1 Governing Equations for the MHD Flow

The equations governing all the magnetohydrodynamic problems considered

in this chapter are the same. The problems differ only in either the boundary

conditions, the direction of the imposed magnetic field or the geometry of the

regions. So, the equations will be derived in general as in Dragoş [7] or Shercliff

[8], for the duct problems and for the flow between parallel plates, and then the

nondimensionalization will be performed.

We consider the problem in a region on the xy-plane in which the fluid velocity

is in the z-direction, and the imposed uniform magnetic field H0 existing outside

the fluid acts in a direction lying in the xy-plane but forming an angle α with

the y-axis.

All physical quantities in our problems, except pressure, are independent of

z, the velocity vector V has only a z-component, Vz(x, y), and the magnetic

field vector takes the form H = (Hx,Hy,Hz(x, y)), in which Hx = H0 sinα and

Hy = H0 cosα. We also assume that displacement currents are negligible and
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there is no net flow of current in the z-direction. The flow is steady, laminar and

the fluid is viscous, incompressible.

On neglecting displacement currents, in the steady-state, Maxwell’ s equations

governing the electrodynamic field become, [7],

curl E = 0 (3.1)

curl H = J (3.2)

div H = 0 (3.3)

where E is the electric field intensity and J is the electric current density1.

By taking the curl of Ohm’ s law, which is

J = σ(E + µeV × H) (3.4)

where σ and µe are known as the electrical conductivity and magnetic permeabil-

ity, respectively, we obtain from equations (3.1) and (3.2)

curl J = curl curl H = σµe curl (V × H) . (3.5)

Using the following two vector identities

curl curl H = grad div H −∇2
H

and

curl (V × H) = (H.∇)V − (V.∇)H + V div H − H div V

1Divergence of a vector function f = (f1, f2, f3) is given by

div f = ∇.f =
∂f1

∂x
+

∂f2

∂y
+

∂f3

∂z

and curl of a vector function f = (f1, f2, f3) is given by

curl f = ∇× f = (
∂f3

∂y
− ∂f2

∂z
)i + (

∂f1

∂z
− ∂f3

∂x
)j + (

∂f2

∂x
− ∂f1

∂y
)k
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and noting that the divergence of H and V both vanish. Since µe is constant

and the fluid is incompressible, we deduce the equation2

∇2
H + σµe [(H.∇)V − (V.∇)H] = 0 . (3.6)

The Navier-Stokes equation (equation of motion) for the steady-state in the

absence of the body forces is given as (since div V = 0),[8],

F(em) − grad p+ µ∇2V = ρ(V.grad)V . (3.7)

When the given medium is simple, the electromagnetic force F(em) is reduced

to Lorentz force J × µeH. From equations (3.2) and (3.7) we get

µe(curl H) × H − grad p+ µ∇2V = ρ(V.grad)V (3.8)

where µ and ρ are the coefficient of viscosity and the density of the fluid, respec-

tively, p is the pressure in the fluid.

Since

(curl H) × H = (H.grad)H − 1

2
grad |H|2

equation (3.8) becomes

µe(H.grad)H − µe
1

2
grad |H|2 − grad p+ µ∇2V = ρ(V.grad)V . (3.9)

Since the conditions are invariant in the z-direction, apart from a pressure gra-

dient, differentiating the above equation with respect to z shows that grad(∂p/∂z)

2The cross product of two vectors A = (A1, A2, A3) and B = (B1, B2, B3) is

A× B = (A2B3 − A3B2)i + (A3B1 − A1B3)j + (A1B2 − A2B1)k ,

the dot product is given by

A.B = A1B1 + A2B2 + A3B3 .

The gradient of a scalar φ is ∇φ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k.

The Laplacian operator is ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.
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vanishes. Hence ∂p/∂z is a constant.

Since Vx = 0, Vy = 0, Hx = H0 sinα, Hy = H0 cosα where H0 is a constant,

then Jz = 0, H.grad = Hx
∂

∂x
+ Hy

∂

∂y
, and V.grad = 0.

Thus, the z-components of equations (3.6) and (3.9) become

µ∇2Vz + µeH0 sinα
∂Hz

∂x
+ µeH0 cosα

∂Hz

∂y
=

∂p

∂z

∇2Hz + σµeH0 sinα
∂Vz

∂x
+ σµeH0 cosα

∂Vz

∂y
= 0 .

(3.10)

By taking η =
1

σµe
, which is known as magnetic diffusivity, equation (3.10)

becomes

µ∇2Vz + µeH0 sinα
∂Hz

∂x
+ µeH0 cosα

∂Hz

∂y
=

∂p

∂z

η∇2Hz + H0 sinα
∂Vz

∂x
+ H0 cosα

∂Vz

∂y
= 0 .

(3.11)

By using the relationship

D = ǫE, B = µeH (3.12)

where D is the electric induction, B is the magnetic induction and ǫ is the electri-

cal permitivity, one can write equation (3.11) in terms of induced magnetic field

B.

In vacuum, equation (3.12) become

D = ǫ0E, B = µ0H

where ǫ0 and µ0 are constants, and for a simple medium,

ǫµe ≈ ǫ0µ0

and c =
1

(µ0ǫ0)1/2
=velocity of light in vacuum.
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Now, equations (3.11) are written in terms of B as

µ∇2Vz +
B0

µe

sinα
∂Bz

∂x
+
B0

µe

cosα
∂Bz

∂y
=

∂p

∂z

η∇2Bz +B0 sinα
∂Vz

∂x
+B0 cosα

∂Vz

∂y
= 0

(3.13)

where B0 is the inductance of the applied magnetic field.

Introducing dimensionless variables

V =
1

ν0

Vz, B =
1

ν0µe

(σµ)−1/2Bz, x
′ =

x

L0

, y′ =
y

L0

where

ν0 = −L2
0(
∂p

∂z
)/µ

is the characteristic velocity (mean axis velocity) and L0 is the characteristic

length, and substituting in equation (3.13) (x′ = x, y′ = y substituted), we

obtain the following equations for the velocity V (x, y) and the induced magnetic

field B(x, y):

∇2V +M sinα
∂B

∂x
+M cosα

∂B

∂y
= −1

∇2B +M sinα
∂V

∂x
+M cosα

∂V

∂y
= 0

(3.14)

where M = B0L0

√
σ/

√
µ is the Hartmann number, which was first used by

Hartmann when dealing with flow between parallel non-conducting planes. In

other words, the Hartmann number M is the magnitude of the vector M =

(Mx,My) in which

Mx = M sinα

My = M cosα .
(3.15)
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Thus, equation (3.14) becomes

∇2V +Mx
∂B

∂x
+My

∂B

∂y
= −1

∇2B +Mx
∂V

∂x
+My

∂V

∂y
= 0

(3.16)

which describes two coupled second order linear partial differential equations. For

each problem which is solved in this chapter, the geometry, the direction of the

applied magnetic field and the boundary conditions will be explained in Section

3.4. Also, the characteristic length L0 will be taken differently for each problem

considered and specified according to the geometry of the problem. For all of

the problems considered, the walls are a combination of insulators (σ ≈ 0) and

perfect conductors (σ ≈ ∞). The effect of the conducting part and the value of

the Hartmann number on the velocity field and induced magnetic field will be

discussed for each problem.

3.2 Derivation of the Fundamental Solution to

Coupled MHD Flow Equations

For the BEM solution of equations (3.16) which are the convection-diffusion

type coupled equations, the fundamental solution is needed because BEM is a

numerical technique which makes intensive use of a fundamental solution of the

problem in question.

The MHD equations (3.16) are first transformed to the matrix-vector form

L u = f (3.17)

where L is the matrix containing both diffusion and convection operators

L =







∇2 Mx
∂

∂x
+My

∂

∂y

Mx
∂

∂x
+My

∂

∂y
∇2






(3.18)
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and

u =

[

V

B

]

, f =

[

−1

0

]

. (3.19)

Weighting this equation over the domain of the problem, Ω, in the Galerkin

principle [3],
∫

Ω

wT
L u dΩ =

∫

Ω

wT f dΩ (3.20)

where wT is the transpose of the vector weight function w =

[

V ∗

B∗

]

, gives the

integral equation

∫

Ω

[

V ∗ B∗
]







∇2 Mx
∂

∂x
+My

∂

∂y

Mx
∂

∂x
+My

∂

∂y
∇2







[

V

B

]

dΩ

=

∫

Ω

[

V ∗ B∗
]

[

−1

0

]

dΩ .

This is actually one equation containing three integrals in the form

I1 + I2 = I3 (3.21)

where

I1 =

∫

Ω

V ∗

(

∇2V +Mx
∂B

∂x
+My

∂B

∂y

)

dΩ

I2 =

∫

Ω

B∗

(

∇2B +Mx
∂V

∂x
+My

∂V

∂y

)

dΩ

and

I3 = −
∫

Ω

V ∗dΩ .

After the application of Green’s second identity, the integrals I1 and I2 reduce

to

I1 =

∫

Ω

V∇2V ∗dΩ +

∫

Γ

(

V ∗∂V

∂n
− V

∂V ∗

∂n

)

dΓ + I4 (3.22)
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I2 =

∫

Ω

B∇2B∗dΩ +

∫

Γ

(

B∗∂B

∂n
−B

∂B∗

∂n

)

dΓ + I5 (3.23)

where Γ is the boundary of the domain Ω,

I4 =

∫

Ω

V ∗

(

Mx
∂B

∂x
+My

∂B

∂y

)

dΩ

and

I5 =

∫

Ω

B∗

(

Mx
∂V

∂x
+My

∂V

∂y

)

dΩ .

Now, we rewrite

V ∗

(

Mx
∂B

∂x
+My

∂B

∂y

)

= Mx

(

(V ∗B), x − V ∗
, xB

)

+My

(

(V ∗B), y − V ∗
, yB

)

B∗

(

Mx
∂V

∂x
+My

∂V

∂y

)

= Mx

(

(B∗V ), x − B∗
, xV

)

+My

(

(B∗V ), y − B∗
, yV

)

and substitute in the integrals I4 and I5. The subscripts , x , , y denote the x

and y derivatives, respectively. Moreover, with the application of the Divergence

theorem, the integrals I4 and I5 become

I4 =

∫

Γ

(MxV
∗Bnx +MyV

∗Bny) dΓ −
∫

Ω

(

MxBV
∗
, x +MyBV

∗
, y

)

dΩ

I5 =

∫

Γ

(MxB
∗V nx +MyB

∗V ny) dΓ −
∫

Ω

(

MxV B
∗
, x +MyV B

∗
, y

)

dΩ .

By the substitution of I4 and I5 in equations (3.22) and (3.23) respectively,

equation (3.21) becomes,

∫

Ω

V

(

∇2V ∗ −Mx
∂B∗

∂x
−My

∂B∗

∂y

)

dΩ +

∫

Ω

B

(

∇2B∗ −Mx
∂V ∗

∂x
−My

∂V ∗

∂y

)

dΩ

+

∫

Γ

(

V ∗∂V

∂n
− V

∂V ∗

∂n

)

dΓ +

∫

Γ

(

B∗∂B

∂n
− B

∂B∗

∂n

)

dΓ

+

∫

Γ

Mx (V ∗B +B∗V )nxdΓ +

∫

Γ

My (V ∗B +B∗V )nydΓ = −
∫

Ω

V ∗dΩ

(3.24)
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where n = (nx, ny) is the outward unit normal vector on Γ.

To omit the region integrals on the left hand side of equation (3.24), we need

to consider two cases:

First case:

∇2V ∗ −Mx
∂B∗

∂x
−My

∂B∗

∂y
= −∆(A,P )

∇2B∗ −Mx
∂V ∗

∂x
−My

∂V ∗

∂y
= 0

where A and P are the fixed and the variable points in Ω respectively. The

solution for this case is denoted as

[

V ∗
1

B∗
1

]

.

Second case:

∇2V ∗ −Mx
∂B∗

∂x
−My

∂B∗

∂y
= 0

∇2B∗ −Mx
∂V ∗

∂x
−My

∂V ∗

∂y
= −∆(A,P )

and denote the solution as
[

V ∗
2

B∗
2

]

.

These two cases transform equation (3.24) into the following integral equations
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−cAV (A) +

∫

Γ

(

V ∗
1

∂V

∂n
− V

∂V ∗
1

∂n

)

dΓ +

∫

Γ

(

B∗
1

∂B

∂n
− B

∂B∗
1

∂n

)

dΓ

+

∫

Γ

Mx (V ∗
1 B +B∗

1V )nxdΓ +

∫

Γ

My (V ∗
1 B +B∗

1V )nydΓ

= −
∫

Ω

V ∗
1 dΩ

(3.25)

where cA is a constant equals to
θ

2π
, θ being the internal angle at the source

point A, and

−cAB(A) +

∫

Γ

(

V ∗
2

∂V

∂n
− V

∂V ∗
2

∂n

)

dΓ +

∫

Γ

(

B∗
2

∂B

∂n
− B

∂B∗
2

∂n

)

dΓ

+

∫

Γ

Mx (V ∗
2 B +B∗

2V )nxdΓ +

∫

Γ

My (V ∗
2 B +B∗

2V )nydΓ

= −
∫

Ω

V ∗
2 dΩ.

(3.26)

Let the matrix G∗ be formed as

G∗ =

[

V ∗
1 V ∗

2

B∗
1 B∗

2

]

(3.27)

which is the fundamental solution for the adjoint operator

L
∗ =







∇2 −Mx
∂

∂x
−My

∂

∂y

−Mx
∂

∂x
−My

∂

∂y
∇2






(3.28)

of L. That is,

L
∗G∗ = −∆(A,P )I

and I is the 2 × 2 identity matrix.
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Therefore, the fundamental solution G∗ becomes

G∗ =







∇2 Mx
∂

∂x
+My

∂

∂y

Mx
∂

∂x
+My

∂

∂y
∇2







[

1 0

0 1

]

Φ (3.29)

where Φ is the fundamental solution of the biharmonic equation

(

∇4 −M2
x

∂2

∂x2
− 2MxMy

∂2

∂x∂y
−M2

y

∂2

∂y2

)

u = 0 .

This can be partitioned into two convection-diffusion equations

(

∇2 −Mx
∂

∂x
−My

∂

∂y

)

Ψ1 = −∆(A,P ) (3.30)

and
(

∇2 +Mx
∂

∂x
+My

∂

∂y

)

Ψ2 = −∆(A,P ) (3.31)

where

Ψ1 =

(

∇2 +Mx
∂

∂x
+My

∂

∂y

)

Φ (3.32)

and

Ψ2 =

(

∇2 −Mx
∂

∂x
−My

∂

∂y

)

Φ . (3.33)

It is clear that Ψ1 and Ψ2 are the fundamental solutions of the convection-

diffusion type equations (3.30) and (3.31) respectively, of which the derivations

are given in Section 2.1.3. Therefore,

Ψ1 =
1

2π
eM. r/2K0(

M

2
r) (3.34)

and

Ψ2 =
1

2π
e−M. r/2K0(

M

2
r) (3.35)

where M is the vector with components (Mx,My) and r = (rx, ry) is the distance

vector between the source and field points. The Hartmann number M and r are

the modulus of the vectors M and r respectively.
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With the relationships between Φ and the fundamental solutions Ψ1 and Ψ2,

we have

Mx
∂Φ

∂x
+My

∂Φ

∂y
=

Ψ1 − Ψ2

2
(3.36)

∇2Φ =
Ψ1 + Ψ2

2
(3.37)

where

Ψ1 − Ψ2

2
=

1

2π
K0(

M

2
r) sinh(

M.r

2
)

and

Ψ1 + Ψ2

2
=

1

2π
K0(

M

2
r) cosh(

M.r

2
) .

Thus, the fundamental solution G∗ for the adjoint operator L∗ is finally ob-

tained as

G∗ =











1

2π
K0(

M

2
r) cosh(

M.r

2
)

1

2π
K0(

M

2
r) sinh(

M.r

2
)

1

2π
K0(

M

2
r) sinh(

M.r

2
)

1

2π
K0(

M

2
r) cosh(

M.r

2
)











(3.38)

with its entries from (3.27) as

V ∗
1 = B∗

2 =
1

2π
K0(

M

2
r) cosh(

M.r

2
)

V ∗
2 = B∗

1 =
1

2π
K0(

M

2
r) sinh(

M.r

2
) .

(3.39)
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3.3 Application of the Boundary Element Method

Having found the fundamental solutions V ∗
1 = B∗

2 and B∗
1 = V ∗

2 , equations

(3.25) and (3.26) can be rewritten,

−cAV (A) +

∫

Γ

(

MxB
∗
1nx +MyB

∗
1ny −

∂V ∗
1

∂n

)

V dΓ

+

∫

Γ

(

MxV
∗
1 nx +MyV

∗
1 ny −

∂B∗
1

∂n

)

BdΓ +

∫

Γ

V ∗
1

∂V

∂n
dΓ +

∫

Γ

B∗
1

∂B

∂n
dΓ

= −
∫

Ω

V ∗
1 dΩ

(3.40)

and

−cAB(A) +

∫

Γ

(

MxV
∗
1 nx +MyV

∗
1 ny −

∂B∗
1

∂n

)

V dΓ

+

∫

Γ

(

MxB
∗
1nx +MyB

∗
1ny −

∂V ∗
1

∂n

)

BdΓ +

∫

Γ

B∗
1

∂V

∂n
dΓ +

∫

Γ

V ∗
1

∂B

∂n
dΓ

= −
∫

Ω

B∗
1dΩ .

(3.41)

Thus, after the discretization of the boundary Γ of the domain of the prob-

lem by using the constant elements, boundary element matrix equations for the

unknowns, the velocity V and the induced magnetic field B and their normal

derivatives, can now be obtained by the evaluation of the boundary integrals in

equations (3.40) and (3.41). The matrix-vector form is

[

−cAV(A)

−cAB(A)

]

+

[

H G

G H

][

V

B

]

+

[

H1 G1

G1 H1

]











∂V

∂n

∂B

∂n











=

[

F1

F2

]

(3.42)
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where H, G, H1 and G1 are the matrices with the entries

hij =

∫

Γj

(

MxB
∗
1nx +MyB

∗
1ny −

∂V ∗
1

∂n

)

dΓj

gij =

∫

Γj

(

MxV
∗
1 nx +MyV

∗
1 ny −

∂B∗
1

∂n

)

dΓj

h1
ij =

∫

Γj

V ∗
1 dΓj

g1
ij =

∫

Γj

B∗
1 dΓj

(3.43)

and F =

[

F1

F2

]

is the right hand side vector with the entries containing domain

integrals

F1 = −
∫

Ω

V ∗
1 dΩ

F2 = −
∫

Ω

B∗
1dΩ .

(3.44)

The subscripts i and j indicate the fixed node i and the jth element on the

boundary respectively. r = (rx, ry) is the vector between the boundary nodes i

and j. After the substitution of the fundamental solutions V ∗
1 and B∗

1 and their

normal derivatives in equations (3.43) and (3.44), the entries of H, G, H1, G1

and F become;

48



hij =
1

4π

∫

Γj

(

K0(
M

2
r) sinh(

M.r

2
)M.n +MK1(

M

2
r) cosh(

M.r

2
)
∂r

∂n

)

dΓj

gij =
1

4π

∫

Γj

(

K0(
M

2
r) cosh(

M.r

2
)M.n +MK1(

M

2
r) sinh(

M.r

2
)
∂r

∂n

)

dΓj

h1
ij =

1

2π

∫

Γj

K0(
M

2
r) cosh(

M.r

2
) dΓj

g1
ij =

1

2π

∫

Γj

K0(
M

2
r) sinh(

M.r

2
) dΓj

F1 = −
∫

Ω

K0(
M

2
r) cosh(

M.r

2
) dΩ

F2 = −
∫

Ω

K0(
M

2
r) sinh(

M.r

2
) dΩ

(3.45)

where K1 is the modified Bessel function of the second kind and of order one.

The constant cA is 1/2 or 1 when the fixed point A is on the straight boundary

or inside respectively. The problem is solved first for the values of unknowns V ,

B and their normal derivatives
∂V

∂n
,
∂B

∂n
on the boundary, so equation (3.42)

becomes

[

H̄ G

G H̄

][

V

B

]

+

[

H1 G1

G1 H1

]











∂V

∂n

∂B

∂n











=

[

F1

F2

]

(3.46)

where H̄ is the matrix with the entries

h̄ij = −1

2
δij + hij .

This linear system of equations (3.46) is going to be solved for values of
∂V

∂n

on Γ, B on Γ2 and
∂B

∂n
on Γ1. Having found (V,B) and (

∂V

∂n
,
∂B

∂n
) everywhere on
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the boundary, one can obtain the values of V and B at any point of the domain

Ω by using equation (3.42) with cA equals to one. This is given by

[

V

B

]

=

[

HI GI

GI HI

][

V

B

]

+

[

HI1 GI1

GI1 HI1

]











∂V

∂n

∂B

∂n











−
[

F1

F2

]

. (3.47)

The entrices of the matrices HI, GI, HI1 and GI1 are in the same form with

the ones of H, G, H1 and G1. But, this time in the entries of HI, GI, HI1 and

GI1, i indicates the fixed node in the domain and j indicates the jth element on

the boundary. Thus, the vector r is computed between the inside node i and the

boundary node j.

3.4 Numerical Results and Discussions

In this section we discuss the solution of the magnetohydrodynamic flow equa-

tions by using the boundary element method. In all of the problems considered

in this section, the fluid is taken as viscous, incompressible and having uniform

electrical conductivity. The first part includes the flow which is driven by means

of a constant pressure gradient in a rectangular duct and throughtout its passage

the flow is subjected to a constant and uniform imposed magnetic field. Then,

in the second part, the flow on the half-plane which is driven by the electrodes

through external circuits is considered. We further assume that, in both of the

cases, the fluid motion is fully developed (i.e. the ducts are assumed to be of

infinite length and end-effects are neglected), steady and laminar. The geome-

try and boundary conditions of each problem will be given in detail in the parts

where they belong.

The computations are performed by using programs written in FORTRAN

language and MATLAB is made use of in drawing graphics. For the evaluation

of the modified Bessel functions, K0 and K1, the routines S18ACF and S18ADF,

which are based on Chebyshev expansions, from the NAG library are used respec-
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tively. The solution of resulting algebraic linear system of equations is obtained

by using LU factorization. The routine F04ATF from the NAG library which

applies iterative refinement is used.

3.4.1 Pressure driven MHD flow in a rectangular duct

The magnetohydrodynamic flow of an incompressible, viscous, electrically

conducting fluid, driven down the duct by a constant pressure gradient, subjected

to a constant and uniform magnetic field is considered. In the BEM discretization

for the domain, the constant boundary elements are used. We give four MHD

flow test problems in a rectangular duct with different types of wall conductivities

and the numerical results for both the velocity and the induced magnetic field

are visualized in terms of graphics.

Problem 1: Insulating wall duct

The magnetohydrodynamic flow in a rectangular duct, the cross-section of

which is shown in Figure 3.1, is considered. The axis of the duct is chosen as the

z-axis. A uniform magnetic field of strength B0 is directed along the x-axis (i.e.

α = π/2).

The basic equations governing the MHD duct flow subjected to a magnetic

field parallel to x-direction (in nondimensionalized form) are

∇2V +M
∂B

∂x
= −1

∇2B +M
∂V

∂x
= 0

(3.48)

where V (x, y) and B(x, y) are the velocity and the induced magnetic field re-

spectively, both of which have only one component in the z-direction. M is the

Hartmann number. The walls of the duct are insulated (B = 0) and the velocity is

zero on the solid walls (Figure 3.1). The analytical solution of this problem exits

[7, 8], which gives the opportunity to be able to compare the obtained boundary

element results with the exact ones.
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Figure 3.1: MHD duct flow with insulating walls

The coupled nonhomogeneous MHD flow equations (3.48) are expressed in

matrix differential operator form

L u = f

where

L =







∇2 M
∂

∂x

M
∂

∂x
∇2






, u =

[

V

B

]

, f =

[

−1

0

]

for which the corresponding homogeneous equations can be obtained by using the

particular solution

up =

[

Vp

Bp

]

where Vp = 0 and Bp = −x/M .

By taking

u = uh + up
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the homogeneous solution uh =

[

Vh

Bh

]

satisfies

∇2Vh +M
∂Bh

∂x
= 0

in Ω

∇2Bh +M
∂Vh

∂x
= 0

(3.49)

with the boundary conditions

Vh = 0, Bh =
x

M
, on Γ . (3.50)

Thus, the evaluation of the domain integrals on the right hand side in equa-

tions (3.46) and (3.47) is omitted.

The fundamental solution for the adjoint equation

L
∗ u = f

takes the form in (3.38)

G∗ =











1

2π
K0(

M

2
r) cosh(

M

2
rx)

1

2π
K0(

M

2
r) sinh(

M

2
rx)

1

2π
K0(

M

2
r) sinh(

M

2
rx)

1

2π
K0(

M

2
r) cosh(

M

2
rx)











. (3.51)

The BEM is applied to solve homegeneous equations (3.49) with boundary

conditions (3.50). The square boundary is discretized by using N = 80 and

N = 300 constant elements for the values of Hartmann number M = 50 and

M = 300, respectively. Figures 3.2-3.3 and 3.4-3.5 depict the agreement of the

numerical solution with the exact solution for both the velocity and the induced

magnetic field in terms of velocity and induced magnetic field lines (equivelocity

and current lines), respectively for M = 50 and M = 300. It is noted that as M

increases the velocity becomes uniform at the center of the duct and the boundary

layer formation starts for both the velocity and the induced magnetic field.
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Figure 3.2: Velocity lines for M = 50 and N = 80 (α = π/2)
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Figure 3.3: Induced magnetic field lines for M = 50 and N = 80 (α = π/2)
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Figure 3.4: Velocity lines for M = 300 and N = 300 (α = π/2)
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Figure 3.5: Induced magnetic field lines for M = 300 and N = 300 (α = π/2)
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Problem 2: Insulating wall duct under oblique magnetic field

The steady laminar flow of an incompressible, viscous, electrically conducting

fluid in a rectangular duct subjected to an externally oblique magnetic field of

strength B0 making a positive angle with the y-axis is considered. The governing

partial differential equations (in nondimensionalized form) in terms of velocity V

and induced magnetic field B are

∇2V +Mx
∂B

∂x
+My

∂B

∂y
= −1

∇2B +Mx
∂V

∂x
+My

∂V

∂y
= 0 .

(3.52)

The boundary conditions are homogeneous for both the velocity and the in-

duced magnetic field. The cross-section of the square domain |x| ≤ 1, |y| ≤ 1 is

drawn in Figure (3.6).

Figure 3.6: MHD duct flow under an external oblique magnetic field
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Similar to Problem 1 we take the particular solution up =

[

0

−x/Mx

]

for

reducing the problem in (3.52) to homogeneous equations with non-homogeneous

boundary conditions. Computations are carried out with N = 72 and 300 con-

stant boundary elements for the values of Hartmann number M = 50 and 300

respectively. In Figures 3.7-3.8 and 3.9-3.10, the velocity-induced magnetic field

lines are presented with α = π/4 for the values of Hartmann number M = 50

and M = 300, respectively. Similarly, the velocity-induced magnetic field lines

are drawn in Figures 3.11-3.12 and 3.13-3.14 with α = π/3 for M = 50 and 300,

respectively. The boundary layer formation close to the walls for both the velocity

and the induced magnetic field is well observed for increasing Hartmann number.

Velocity again becomes uniform at the center of the duct and the flow becomes

stagnant. The boundary layers are concentrated near the corners in the direction

of the applied oblique magnetic field for both the velocity and the induced mag-

netic field. These are the well-known characteristics of the magnetohydrodynamic

flow.
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Figure 3.7: Velocity lines for M = 50 and N = 72 (α = π/4)
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Figure 3.8: Induced magnetic field lines for M = 50 and N = 72 (α = π/4)
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Figure 3.9: Velocity lines for M = 300 and N = 300 (α = π/4)
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Figure 3.10: Induced magnetic field lines for M = 300 and N = 300 (α = π/4)
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Figure 3.11: Velocity lines for M = 50 and N = 72 (α = π/3)
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Figure 3.12: Induced magnetic field lines for M = 50 and N = 72 (α = π/3)
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Figure 3.13: Velocity lines for M = 300 and N = 300 (α = π/3)
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Figure 3.14: Induced magnetic field lines for M = 300 and N = 300 (α = π/3)

Problem 3: Duct with partly insulating partly conducting walls

The magnetohydrodynamic flow, subjected to an external magnetic field of

strength B0 in the direction of x-axis in a rectangular duct with a cross section

0 ≤ x ≤ a, −b/2 ≤ y ≤ b/2 where a and b are the lengths of the sides in x and

y-directions, is considered. It is assumed that the sides of the duct parallel to

the magnetic field are electrically insulated, while the perpendicular side x = 0

is conducting symmetrically about the x-axis for a length l from the origin, the

rest of the same side is assumed to be insulated. The side x = a is insulated

completely (see Figure 3.15).

The basic equations governing the MHD duct flow are given as

∇2V +M
∂B

∂x
= −1

∇2B +M
∂V

∂x
= 0

(3.53)
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Figure 3.15: MHD duct flow with a conducting part on x = 0

in terms of the velocity V and the induced magnetic field B with the Hartmann

number M = Mx. There is only one component of the velocity and induced mag-

netic field in the z-direction. These nonhomogeneous equations are reduced to ho-

mogeneous partial differential equations (3.49) with the nonhomogeneous bound-

ary conditions (3.50) by using the same particular solution up =

[

0

−x/M

]

given in Problem 1. In the computations the lengths a and b are taken as one.

Boundary element method solutions are carried out for the values of Hartmann

number M = 50, 100 and 300 and for several values of length of the conducting

part of the boundary l by discretizing the boundary of the problem with appro-

priate numbers of constant elements. Equal velocity and induced magnetic field

lines are drawn in Figures 3.16-3.33 for M = 50, 100 and 300 and for the values

of l = 0.15, 0.25 and 0.35 . In Figures 3.17, 3.23 and 3.29, the equal velocity lines

are depicted for M = 50, 100 and 300, respectively. In each of the figures l is kept

fixed (l = 0.25). One can notice from these graphs that as Hartmann number
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M is increased Hartmann layer formation starts to take place at the insulated

parts of the boundary. The thickness of the Hartmann layer is of the order of

M−1 at the walls x = 0, a and of order of 1/
√
M at the walls y = ± b/2 (Shercliff

[8]). Also the parabolic boundary layer emanating from the discontinuity points

y = ± l in the direction of applied magnetic field starts to form with increasing

M , and is more pronounced, higher the value of l or M . For small l or M , the

two layers coming from the two points of discontinuity tend to interfere with each

other in the middle, while for large l or M , they stay seperate and are, therefore,

more easily displayed.

The effect of varying M on the induced magnetic field lines are demonstrated

in Figures 3.20, 3.26 and 3.32 for M = 50, 100 and 300, respectively. The length

of the conducting portion l is kept fixed (l = 0.25). As M increases, the region for

which B > 0, keeps on increasing. The maximum value of the induced magnetic

field, B, takes place in front of the conducting part.
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Figure 3.16: Velocity lines for M = 50 and N = 76 (l = 0.15)

To see the effect of the increase in the length of the conducting part on the
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Figure 3.17: Velocity lines for M = 50 and N = 76 (l = 0.25)
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Figure 3.18: Velocity lines for M = 50 and N = 76 (l = 0.35)
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Figure 3.19: Induced magnetic field lines for M = 50 and N = 76 (l = 0.15)
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Figure 3.20: Induced magnetic field lines for M = 50 and N = 76 (l = 0.25)
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Figure 3.21: Induced magnetic field lines for M = 50 and N = 76 (l = 0.35)

velocity field, equivelocity lines in Figures 3.22, 3.23 and 3.24 are plotted for

M = 100 and l = 0.15, 0.25 and 0.35, respectively. We observe that the increase

in the value of l results in the expansion of the region in which the fluid is nearly

stagnant. This region is in the neighbourhood of the conducting part. The other

features remain essentially the same. An increase in the length of the conducting

part l has a similar effect with an increase in Hartmann number M on the induced

magnetic field lines. This is shown in Figures 3.25, 3.26 and 3.27 where M is fixed

(M = 100) and l varies as l = 0.15, 0.25 and 0.35, respectively.

The numerical accuracy of the results for this problem is validated by in-

creasing the number of the boundary elements, N , used in the computations.

Especially at the discontinuity points y = ∓ l, l = 0.35, much more refined ele-

ments are used as presented in Figures 3.34, 3.35 and 3.36 respectively forN = 48,

184 and 360 for the value of Hartmann number M = 100. The convergence and

the formation of the parabolic boundary layers emanating from the discontinuity

points are well observed when the number of boundary elements is increased.
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Figure 3.22: Velocity lines for M = 100 and N = 92 (l = 0.15)
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Figure 3.23: Velocity lines for M = 100 and N = 92 (l = 0.25)
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Figure 3.24: Velocity lines for M = 100 and N = 92 (l = 0.35)
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Figure 3.25: Induced magnetic field lines for M = 100, N = 92 (l = 0.15)
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Figure 3.26: Induced magnetic field lines for M = 100, N = 92 (l = 0.25)
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Figure 3.27: Induced magnetic field lines for M = 100, N = 92 (l = 0.35)
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Figure 3.28: Velocity lines for M = 300 and N = 180 (l = 0.15)
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Figure 3.29: Velocity lines for M = 300 and N = 180 (l = 0.25)
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Figure 3.30: Velocity lines for M = 300 and N = 180 (l = 0.35)

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.00331 0.00221 0.00111

1.9e−005

−0.000529

−0.000529

x

y

Figure 3.31: Induced magnetic field lines for M = 300 and N = 180 (l = 0.15)
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Figure 3.32: Induced magnetic field lines for M = 300 and N = 180 (l = 0.25)
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Figure 3.33: Induced magnetic field lines for M = 300 and N = 180 (l = 0.35)
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Figure 3.34: Velocity and induced magnetic field lines for M = 100 and N = 48
(l = 0.35)
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Figure 3.35: Velocity and induced magnetic field lines for M = 100 and N = 184
(l = 0.35)
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Figure 3.36: Velocity and induced magnetic field lines for M = 100 and N = 360
(l = 0.35)

Problem 4: Duct with conducting walls parallel to applied magnetic

field

MHD flow in a rectangular duct with perfectly conducting walls parallel to

the applied magnetic field and insulated walls perpendicular to the field is solved.

Although a rigorous solution in terms of double infinite series has been established

by Greenberg and given in Dragoş [7], its practical usefulness is limited. Thus,

efficient numerical solutions are needed in terms of computational cost and time.

In the present problem the external magnetic field is applied in a parallel

direction to the conducting walls, whereas in the previous test problem, Problem

3, it is perpendicular to the conducting portion of the boundary. The equations

governing these MHD duct flow subjected to an external magnetic field B0 in the

direction of y-axis are given as,

∇2V +M
∂B

∂y
= −1

∇2B +M
∂V

∂y
= 0

in Ω (3.54)
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where Ω ⊂ R
2 denotes the section of the duct (−1 ≤ x, y ≤ 1) and M = My. The

external magnetic field B0 is applied parallel to the conducting walls at x = ∓1

and perpendicular to the horizontal insulated walls at y = ∓1. The fluid is

driven down the duct by means of a constant pressure gradient. The boundary

conditions for the unknowns V (x, y) and B(x, y) are

V (∓1, y) = 0,
∂B

∂x

∣

∣

∣

∣

x=∓1

= 0, |y| ≤ 1

V (x,∓1) = 0, B(x,∓1) = 0, |x| ≤ 1

(3.55)

as shown in Figure 3.37.

Figure 3.37: MHD duct flow with a conducting walls parallel to B0

The MHD problem considered here is of considerable theoretical and practical

importance. The external magnetic field determines the appearance within the

fluid of an induced current which can be made to flow in an external circuit

through the conducting walls. In this manner, some of the internal energy of the

fluid is given up to the exterior as utilizable electrical energy. But, the BEM
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must be applied directly to coupled equations since they can not be decoupled

because of the conducting walls. For this, the fundamental solution G∗ to coupled

equations,

G∗ =
1

2π
K0(

M

2
r)











cosh(
M

2
ry) sinh(

M

2
ry)

sinh(
M

2
ry) cosh(

M

2
ry)











(3.56)

which is derived as in Section 3.2, is used.

The boundary of the square duct is discretized by using N = 80 to N = 312

constant elements for the values of Hartmann number ranging from M = 10 to

M = 300. It is observed that the higher the Hartmann number is, the more the

number of boundary elements is needed for obtaining accurate solutions. Figures

3.38-3.39, 3.40-3.41 and 3.42-3.43 show the velocity-induced magnetic field lines

for Hartmann numbers M = 10, 100 and 300 respectively. When M is increasing,

the boundary layer formation for the velocity close to the insulated walls is much

faster than the one close to the conducting walls. It is also known from the

MHD duct flow theory that the boundary layer thickness is 1/M on the walls

perpendicular to the external field whereas it is 1/
√
M on the walls parallel to

the field, [60]. For the induced magnetic field also, the boundary layers are

formed near the insulated walls for increasing value of Hartmann number. The

symmetry for both the velocity and the induced magnetic field with respect to y-

axis is observed from the graphics since the problem and the boundary conditions

are invariant under the transformation x → −x. The induced magnetic field is

antisymmetric with respect to x-axis, although the velocity is symmetric.

In Figures 3.44-3.46 and 3.47-3.49 the velocity and the induced magnetic field

level curves are depicted respectively for values of M = 10, 50 and 200. One can

notice that as M increases a flattening tendency is observed for both the velocity

and the induced magnetic field. Induced magnetic field lines are emanating from

the conducting walls orthogonally satisfying the condition ∂B/∂n = 0 there.

Finally, the fluid is almost stagnant at the center of the duct when M increases.

These are all the well known characteristics of the MHD duct flow.
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Figure 3.38: Velocity lines for M = 10, N = 80
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Figure 3.39: Induced magnetic field lines for M = 10, N = 80
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Figure 3.40: Velocity lines for M = 100, N = 100
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Figure 3.41: Induced magnetic field lines for M = 100, N = 100
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Figure 3.42: Velocity lines for M = 300, N = 312
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Figure 3.43: Induced magnetic field lines for M = 300, N = 312
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Figure 3.44: Velocity level curves for M = 10, N = 80
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Figure 3.45: Velocity level curves for M = 50, N = 80
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Figure 3.46: Velocity level curves for M = 200, N = 212
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Figure 3.47: Induced magnetic field level curves for M = 10, N = 80
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Figure 3.48: Induced magnetic field level curves for M = 50, N = 80
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Figure 3.49: Induced magnetic field level curves for M = 200, N = 212
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3.4.2 Electrically driven MHD flow on the upper half plane

In the previous section, Section 3.4.1, we consider flows which are pressure

driven in a rectangular duct. The purpose of this section is to solve the MHD

flows which are driven by imposed electric currents (without pressure gradient)

on the upper half plane of partly insulated and partly conducting x-axis. It may

be considered as the MHD flow along a flat plate (y = 0 line) with a transverse

external magnetic field applied perpendicular to the plate. The coupled equations

are solved with the boundary element method by using the fundamental solution

(derived in Section 3.2) which treats the equations in coupled form. The use

of this fundamental solution makes it possible to obtain the solution for large

values of Hartmann number as M ≤ 700. It is important to increase M in the

solution procedure since the higher the value of M means the stronger the applied

magnetic field is. Thus, the behaviour of the velocity and that of the induced

magnetic field are greatly affected and the action takes place in very narrow

regions close to the insulated walls and also inside of narrow parabolas in front of

the discontinuity points. The flow is almost stagnant in front of the conducting

portion of the boundary.

The boundary element method is a technique which offers a great advantage

to analyse stationary problems with infinite domains. Due to the regularity con-

ditions, it is possible to limit the discretization to a finite interval on the x-axis

(infinite flat plate). The coupled MHD equations on the upper half plane re-

strict the integral equations only to the y = 0 line by using the properties of

Bessel functions for large arguments. The advantage of the BEM lies in the need

of discretization of only a finite lenght on the x-axis. In domain discretization

methods, a closed region is assumed with a fictitious boundary taken far from the

x-axis and this closed region is discretized with quite a number of elements. The

computational economy makes very attractive the present numerical procedure.

We consider the steady and laminar flow of an incompressible fluid which is

driven by the interaction of imposed electric currents and a uniform, transverse

magnetic field B0 applied perpendicular to the x-axis. There is only one compo-

nent of velocity and induced magnetic field (in the z-direction). All these physical
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variables, including pressure, and the boundary conditions are functions of x and

y only.

So, the partial differential equations describing such flows are the same as

those MHD duct flows where pressure gradient is taken as zero and they are

given by (in nondimensionalized form), [7],

∇2V +M
∂B

∂y
= 0

∇2B +M
∂V

∂y
= 0

in Ω (3.57)

where Ω is the upper half plane (i.e. infinite region bounded by a regular plane

containing all sufficiently distant points) and M = My.

The general form of the boundary conditions which are suitable in practice

for the MHD flow in an infinite region can be expressed as

V (x, 0) = 0 −∞ < x <∞
B(x, 0) = B̄ on ΓI

∂B

∂y
(x, 0) = 0 on ΓC

|V (x, y)| <∞, |B(x, y)| <∞ as x2 + y2 → ∞
∣

∣

∣

∣

∂V

∂n

∣

∣

∣

∣

<∞,

∣

∣

∣

∣

∂B

∂n

∣

∣

∣

∣

<∞ as x2 + y2 → ∞

∣

∣

∣

∣

∂V

∂n

∣

∣

∣

∣

→ 0,

∣

∣

∣

∣

∂B

∂n

∣

∣

∣

∣

→ 0 as y → ∞ in the vicinity of discontinuity points

(3.58)

where Γ = ΓI + ΓC is the whole x-axis with ΓI ∩ ΓC = ∅. ΓI and ΓC are the

insulated and conducting parts of the boundary Γ respectively. The points where

the conductivity changes abrubtly are called discontinuity points. B̄ is a known

value.

The application of the boundary element method to equation (3.57) leads to
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the following homogeneous boundary integral equations

−cAV (A) +

∫

Γ

(

MB∗
1ny −

∂V ∗
1

∂n

)

V dΓ +

∫

Γ

(

MV ∗
1 ny −

∂B∗
1

∂n

)

BdΓ

+

∫

Γ

V ∗
1

∂V

∂n
dΓ +

∫

Γ

B∗
1

∂B

∂n
dΓ = 0

(3.59)

and

−cAB(A) +

∫

Γ

(

MV ∗
1 ny −

∂B∗
1

∂n

)

V dΓ +

∫

Γ

(

MB∗
1ny −

∂V ∗
1

∂n

)

BdΓ

+

∫

Γ

B∗
1

∂V

∂n
dΓ +

∫

Γ

V ∗
1

∂B

∂n
dΓ = 0

(3.60)

which are similar to equations (3.40) and (3.41), respectively, with M = (Mx =

0,My = M). The components V ∗
1 and B∗

1 of the fundamental solution G∗ defined

in (3.39) are reduced to

V ∗
1 =

1

2π
K0(

M

2
r) cosh(

M

2
ry)

B∗
1 =

1

2π
K0(

M

2
r) sinh(

M

2
ry)

(3.61)

with their normal derivatives

∂V ∗
1

∂n
=
M

4π

(

K0(
M

2
r) sinh(

M

2
ry)ny +K1(

M

2
r) cosh(

M

2
ry)

∂r

∂n

)

∂B∗
1

∂n
=
M

4π

(

K0(
M

2
r) cosh(

M

2
ry)ny +K1(

M

2
r) sinh(

M

2
ry)

∂r

∂n

)

.

(3.62)

Taking into consideration R as the radius of an infinitely distant upper semi

circular boundary Γ∞ with center at the origin, equations (3.59) and (3.60) can

be written containing boundary integrals on both Γx and fictitious boundary Γ∞

where Γx is the diameter of the semicircle on the x-axis. The boundary integral

equations (3.59) and (3.60) can be restricted only to the boundary Γx, if the
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following condition be obeyed:

lim
R→∞

[
∫

Γ∞

(V ∗∂V

∂n
dΓ∞ +

∫

Γ∞

B∗∂B

∂n
dΓ∞ +

∫

Γ∞

(MB∗ny −
∂V ∗

∂n
)V dΓ∞

+

∫

Γ∞

(MV ∗ny −
∂B∗

∂n
)BdΓ∞

]

= 0

(3.63)

where V ∗ and B∗ replace V ∗
1 and B∗

1 in equations (3.59) and (3.60) respectively.

This can be seen from the behaviour of V ∗
1 , B∗

1 and that of their normal derivatives

as R→ ∞ by the explanation given below.

The replacement of V ∗
1 or B∗

1 in equation (3.63) results in the integrals contain-

ing the terms
1

2π
K0(M r/2) multiplied by either cosh(M ry/2) or sinh(Mry/2),

and
1

2π
K1(Mr/2) multiplied by either cosh(Mry/2)

∂r

∂n
or sinh(Mry/2)

∂r

∂n
as

can be seen from equations (3.61)-(3.62). The first two integrals in (3.63) drop

as R → ∞ (r → ∞) from the behaviour of modified Bessel functions K0 and K1

for large arguments and the behaviour of exponential function.

1. Considering the first integral in (3.63)

lim
R→∞

∫

Γ∞

V ∗
1

∂V

∂n
dΓ∞ = lim

R→∞

∫

Γ∞

1

2π
K0(

M

2
r) cosh(

M

2
ry)

∂V

∂n
dΓ∞

= lim
R→∞

1

2π

∫

Γ∞

1 + e−M ry

2
e

M
2

ry

√

π

2

e−
M
2

r

√
r
√

M
2

∂V

∂n
dΓ∞

= lim
R→∞

1

4
√
Mπ

∫

Γ∞

(1 + e−M ry)
e−

M
2

(r−ry)

√
r

∂V

∂n
dΓ∞ .

(3.64)

If r−ry → ∞ the integral drops obviously. If r−ry is bounded, so is e−
M
2

(r−ry)

bounded (except near y-axis) but 1/
√
r → 0 uniformly, which leads to the drop

of the integral. However, when x approaches zero in a narrow segment around

the y-axis, the integral of the terms e−
M
2

(r−ry)/
√
r has a positive value. But the

integral over Γ∞ still drops since ∂V/∂n → 0 as x → 0, y → ∞. Similarly, the

second integral in (3.63) tends to zero as R → ∞.
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2. The third integral in (3.63) can be written as

lim
R→∞

∫

Γ∞

(MB∗
1ny −

∂V ∗
1

∂n
)V dΓ∞ = lim

R→∞

∫

Γ∞

[

M

2π
K0(

M

2
r) sinh(

M

2
ry)ny

−M
4π
K1(

M

2
r) cosh(

M

2
ry)
(rx

r
nx +

ry

r
ny

)

− M

4π
K0(

M

2
r) sinh(

M

2
ry)ny

]

V dΓ∞

(3.65)

= lim
R→∞

√
M

8
√
π

∫

Γ∞

[

(1 + e−M ry)
e−

M
2

(r−ry)

√
r

ry

r

−(1 − e−M ry)
e−

M
2

(r−ry)

√
r

]

V dΓ∞

Similar arguments as in Case 1 hold for r − ry → ∞ and r − ry is bounded.

However again near the y-axis ry and r are of the same order, i.e. ry/r ≈ O(1).

Thus, the integral in (3.65) takes the form lim
R→∞

√
M

4
√
π

∫

Γ∞

e−
M
2

(r+ry)

√
r

V dΓ∞, which

tends to zero as R → ∞ since V is bounded. Similarly, the last integral in (3.63)

also drops as R → ∞.

Thus, equations (3.59) and (3.60) are valid only on the boundary Γx and will

lead to the following matrix boundary integral equation after the discretization

of the boundary Γx into N constant boundary elements Γj,

−cA
[

V(A)

B(A)

]

+

[

H G

G H

][

V

B

]

+

[

H1 G1

G1 H1

]











∂V

∂n

∂B

∂n











=

[

0

0

]

.

(3.66)
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The entries of H, G, H1 and G1 become

hij =
M

4π

∫

Γj

(

K0(
M

2
r) sinh(

M

2
ry)ny +K1(

M

2
r) cosh(

M

2
ry)

∂r

∂n

)

dΓj

gij =
M

4π

∫

Γj

(

K0(
M

2
r) cosh(

M

2
ry)ny +K1(

M

2
r) sinh(

M

2
ry)

∂r

∂n

)

dΓj

h1
ij =

1

2π

∫

Γj

K0(
M

2
r) cosh(

M

2
ry)dΓj

g1
ij =

1

2π

∫

Γj

K0(
M

2
r) sinh(

M

2
ry)dΓj

(3.67)

in which the subscripts i and j indicate the fixed node i and the jth element on

the boundary Γx.

Problem 1

The first example is a simple MHD flow problem on the half plane (y ≥ 0)

defined by equations (3.57) with the boundary conditions

V (x, 0) = 0 −∞ < x <∞
B(x, 0) = 1 0 ≤ x <∞
∂B

∂y
(x, 0) = 0 −∞ < x < 0

V → 0, B → 0 as x→ −∞
∣

∣

∣

∣

∂V

∂n

∣

∣

∣

∣

→ 0,

∣

∣

∣

∣

∂B

∂n

∣

∣

∣

∣

→ 0 as x→ 0, y → ∞

|V | <∞, |B| <∞ as x2 + y2 → ∞
∣

∣

∣

∣

∂V

∂n

∣

∣

∣

∣

<∞,

∣

∣

∣

∣

∂B

∂n

∣

∣

∣

∣

<∞ as x2 + y2 → ∞ .

The wall y = 0 is partly insulated (x > 0) and partly perfectly conducting

(x < 0) as shown in Figure 3.50. An external circuit is connected so that a

current enters the fluid at the discontinuity point (0, 0) and leaves at infinity.

The boundary Γx = [−1, 1] is discretized by using N = 20, 68 and 100 constant
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Figure 3.50: Geometry of Problem 1

boundary elements for the calculations with the values of Hartmann number

M = 10, M = 300 and M = 700 respectively. It is observed that the higher

the Hartmann number is, the more the number of boundary elements is needed.

The need of increase in the number of boundary elements results in showing the

actions of the velocity and the induced magnetic field clearly near the insulated

wall and in the narrow region bounded by the parabola emanating from the origin.

However, there is no certain relationship between M and the number of boundary

elements in terms of order. The accuracy test is carried by drawing the graphs of

V (xM/M0, yM/M0) and B(xM/M0, yM/M0) at a fixed point, (x = .5, y = .5),

in Figure 3.51 as a function of dlM/M0, where M0 is a fixed Hartmann number

value (e.g. M0 = 100) and dl is the length of the boundary elements used in the

calculations with M0. Hartmann number M is ranging between 10 and 250. As

can be seen from this figure that as dlM/M0 decreases the corresponding V and

B values are settled down. The same V and B values are drawn in Figure 3.52

as a function of NdlM/M0. This shows the accuracy of the solution with respect

to the whole length used on the x-axis in the computations. There is no need to

take large interval on the x-axis to see the action.

Figures 3.53-3.54, 3.55-3.56 and 3.59-3.60 show the velocity-induced magnetic

field lines for Hartmann numbers M=10, 300 and 700 respectively. In Figures

3.57-3.58 the velocity and induced magnetic field lines are shown in details for
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M = 300 in a narrow region around the discontinuity point. The condition
∂B

∂n
= 0 is clearly satisfied for x < 0 (conducting portion). As M increases the

boundary layer (Hartmann layer) formation starts taking place near the insulated

wall (x > 0 and small values of y) for both the velocity field and the induced

magnetic field. There is a parabolic boundary layer emanating from the origin for

y > 0 again for both the velocity and the induced magnetic field. The thickness of

the parabolic boundary layer is computed and given at the end of this section. In

the figures the parabolas emanating from the discontinuity points are also drawn

by dotted lines. Also, one can notice that an increase in M causes a stagnant

region for the velocity field in front of the conducting boundary (y = 0, x < 0).

There are hardly any current lines in front of the conducting boundary also as

M is increased. The action takes place inside of the parabola in front of the

discontinuity point for both the velocity and the induced magnetic field. Since

the equal velocity and induced magnetic field lines are drawn on the finite part

Γx of the x-axis with dimensionless length 2, the lines shown emanating from

the end point x = 1 indicates that the flow acts just freely when x → ∞. For

x→ −∞ both V and B tend to zero.

Figure 3.51: Variation of V and B with the length of the boundary elements
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Figure 3.52: Variation of V and B with the length of computational interval on
Γx
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Figure 3.53: Velocity lines for M = 10, N = 20
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Figure 3.54: Induced magnetic field lines for M = 10, N = 20
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Figure 3.55: Velocity lines for M = 300, N = 68
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Figure 3.56: Induced magnetic field lines for M = 300, N = 68
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Figure 3.57: Details of Figure 3.55
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Figure 3.58: Details of Figure 3.56

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

y

Figure 3.59: Velocity lines for M = 700, N = 100
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Figure 3.60: Induced magnetic field lines for M = 700, N = 100

Problem 2

The MHD flow on the upper half of an infinite plate for the case when the

flow is driven by the current produced by an electrode of length 2a, placed in the

middle of the plate, therefore conducting, is considered. Imposed electric currents

enter the fluid at x = ±a through external circuits and move up on the plane.

The partial differential equations describing the flow are the same as in Problem

1 with the boundary conditions (see Figure 3.61)

95



V (x, 0) = 0 −∞ < x <∞
B(x, 0) = 1 a < x <∞
B(x, 0) = −1 −∞ < x < −a
∂B

∂y
(x, 0) = 0 −a < x < a

∣

∣

∣

∣

∂V

∂n

∣

∣

∣

∣

→ 0,

∣

∣

∣

∣

∂B

∂n

∣

∣

∣

∣

→ 0 as x→ ±a, y → ∞

|V | <∞, |B| <∞ as x2 + y2 → ∞
∣

∣

∣

∣

∂V

∂n

∣

∣

∣

∣

<∞,

∣

∣

∣

∣

∂B

∂n

∣

∣

∣

∣

<∞ as x2 + y2 → ∞ .

Figure 3.61: Geometry of Problem 2

We present the equal velocity and induced magnetic field lines for a = 0.1,

0.3, and for Hartmann numbers 50, 400 and 700 in Figures 3.62-3.65, 3.66-3.69

and 3.70-3.73, respectively again by taking dimensionless finite interval Γx =

[−1, 1]. Although we need more boundary elements for large values of Hartmann

number there is no relationship between the increase of M and the length of

the conducting portion. As M increases boundary layers (Hartmann layers) are
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formed near y = 0 line for x > a and x < −a. It can also be seen from these figures

that except for narrow regions near y = 0 and x = ± a, the velocity is almost

constant and equal to its minimum value. The behaviour of the induced magnetic

field lines is similar to that of velocity lines except for −a < x < a and for small

values of y, because in this case the magnetic field lines are perpendicular to the

x-axis owing to the boundary condition ∂B/∂n = 0. From Figures 3.64 and 3.65

we can see that induced magnetic field lines are antisymmetric with respect to

y-axis reaching the values B = −1 and B = 1 on −∞ < x < −a and a < x <∞
parts, respectively. The velocity is also antisymmetric with respect to y-axis. One

can also notice that an increase in the length of the conducting part, a, develops

a stagnant region in front of the conducting wall for both of the velocity and

the induced magnetic field. There are again parabolic boundary layers (shown by

dotted lines in Figures 3.66-3.73) emanating from the discontinuity points x = ±a
for both the velocity and the induced magnetic field.
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Figure 3.62: Velocity lines for M = 50, N = 28, a = 0.1
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Figure 3.63: Velocity lines for M = 50, N = 28, a = 0.3
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Figure 3.64: Induced magnetic field lines for M = 50, N = 28, a = 0.1
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Figure 3.65: Induced magnetic field lines for M = 50, N = 28, a = 0.3
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Figure 3.66: Velocity lines for M = 400, N = 80, a = 0.1
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Figure 3.67: Velocity lines for M = 400, N = 80, a = 0.3
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Figure 3.68: Induced magnetic field lines for M = 400, N = 80, a = 0.1
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Figure 3.69: Induced magnetic field lines for M = 400, N = 80, a = 0.3
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Figure 3.70: Velocity lines for M = 700, N = 100, a = 0.1
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Figure 3.71: Velocity lines for M = 700, N = 100, a = 0.3
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Figure 3.72: Induced magnetic field lines for M = 700, N = 100, a = 0.1
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Figure 3.73: Induced magnetic field lines for M = 700, N = 100, a = 0.3

The thickness of the parabolic boundary layer

This part concentrates on the calculation of the thickness of the parabolic

boundary layer in the region near the discontinuity points by direct use of the

BEM formulations for the velocity and the induced magnetic field.

It is known that there is a boundary layer (Hartmann layer) near the insulated

walls which is perpendicular to the applied magnetic field of order 1/M , [60, 61].

Thus, on the portion of the x-axis where the walls are insulated we have Hartmann

layers of order 1/M and on the conducting portion the flow is almost stagnant

and there are hardly any current lines. This behaviour is depicted in Figure

3.74, which gives the boundary layer thickness versus the Hartmann number M

comparing with the function 1/M .

The integrals can be approximated for large ry and small |rx| by using the

property of Kν(z) ≈
√

π

2

e−z

√
z

for large argument. This case corresponds to

the places on the x-axis where the conductivity is changing (discontinuity points)

abruptly. Now, the integrals in the entries hij , gij and h1
ij , g

1
ij contain the products
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Figure 3.74: Variation of Hartmann boundary layer thickness

of Bessel and hyperbolic fuctions as

∫

Γj

K0(
M

2
r) sinh(

M

2
ry)dΓj ,

∫

Γj

K0(
M

2
r) cosh(

M

2
ry)dΓj

∫

Γj

K1(
M

2
r) sinh(

M

2
ry)

∂r

∂n
dΓj ,

∫

Γj

K1(
M

2
r) cosh(

M

2
ry)

∂r

∂n
dΓj

(3.68)

and integrations are on the boundary elements Γj, thus dΓj = dx.

Each integral in (3.68) can be approximated for ry >> rx as

1 ± e−M ry

2

√
π√
M

∫

Γj

e
−M
2

ry(
√

1+r2
x/r2

y −1)

(r2
x + r2

y)
1

4

dΓx

= (1 ± e−M ry)

√
π

2
√
M

∫ |x|

0

e
−M r2

x
4ry

√
ry

dΓx

since we consider the boundary layer close to discontinuity points, i.e. in the

regions |x| for small rx. With the change of variable u =
√
Mrx/2

√
ry, it can still

be transformed to
π

2M
(1 ± e−M ry) erf(

√
M rx

2
√
ry

)

and with the help of the property of error function erf(x) for 0 ≤ x <∞ (rational
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approximation) it can be written in the form

π

2M
(1 ± e−M ry)






1 − a1

1 + px
e
−
M r2

x

4ry + · · ·







=
π

2M
(1 ± e−M ry)






1 − a1

(

1 − p

√
M |rx|
2
√
ry

· · ·
)

e
−
M r2

x

4ry + · · ·







where a1 and p are positive constants.

Since rx and ry behave like x and y respectively, the thickness of the boundary

layer which emanates from the points of discontinuities of boundary conditions

on the x-axis and lies on the upper half of the plane y > 0, is obtained as

|x| = 2

√
y√
M

.

This result is also in accordance with the thickness of the secondary layer on

the boundary parallel to the applied magnetic field mentioned by Hunt [60] which

is of order 1/
√
M . It shows that these type of secondary layers also appear from

the points of discontinuity in boundary conditions. The graphs of |x| = 2

√
y√
M

are superimposed on the velocity and magnetic field lines in the figures. Figure

3.75 also shows the variation of the thickness of the secondary layer (parabolic

boundary layer) versus M comparing with the function 1/
√
M .

Figure 3.75: Variation of secondary layer thickness
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chapter 4

application of dual reciprocity

boundary element method with

differential quadrature time

integration scheme to the

transient convection-diffusion

type equations

The numerical solution of transient convection-diffusion type equations is a

challenging task because of the occurrence of these equations in many branches

of science and engineering. In solving the time dependent problems, classical

methods discretize the spatial domain of the problems with one of the known

methods such as finite difference, finite element and boundary element methods.

Then various time integration schemes, mostly iterative in nature, are applied to

the resulting initial value problem represented as a system of ordinary differential

equations of the first order for the time domain.

In this chapter, a numerical scheme which is the coupling of the dual reci-

procity BEM and the differential quadrature method is introduced for the solu-

tion of the two-dimensional transient convection-diffusion type and elastodynamic

equations. The theory of the DRBEM is given in Section 4.1. The application of

the DRBEM for the Poisson equation with a known right hand side function of

position is explained in details through Section 4.1.1. Then, in Section 4.1.2 the

method is extended to the Poisson type equation with the right hand side func-
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tion involving the unknown itself and its partial derivatives with respect to space

and time variables. In the solution procedure, the dual reciprocity BEM is em-

ployed to discretize the spatial partial derivatives in the convection-diffusion type

equations. The equation is treated as Poisson’s type equation keeping the time

derivative, the first order space derivatives and the unknown itself as nonhomoge-

neous terms. BEM idea is applied to the Laplace operator by using fundamental

solution of Laplace equation since the equation is diffusion type when all the other

terms are considered as the nonhomogeneity. Thus, the resulting matrices contain

integrals of logarithmic function or its normal derivative which can be computed

quite easily and accurately. The right hand side is approximated using linear and

quadratic radial basis functions. DRBEM application to convection-diffusion type

equations gives rise to an initial value problem represented by a system of first

order ordinary differential equations in time. This system is then solved by the

differential quadrature method, the application of which is established in Section

4.2. When the DQM discretizes the system of ordinary differential equations in

time direction, we finally obtain a large system of linear equations for the un-

known nodal values containing both discretized space and time points. After

the imposition of both the initial and the boundary conditions to the final linear

system of equations, we end up with a rectangular system, which can be trans-

formed into a square system with the application of least square method. The

final system gives the solution vector at any required time level since it contains

spatial nodal solution at all time levels between the initial and the required time

level. This way, the resulting linear system of equations can be solved by any di-

rect (Gaussian type) or iterative (Gauss-Seidel, SOR) solver without any special

treatment like the use of Bartels-Stewart algorithm in the solution of Lyapunov

matrix equations, [44]. Also, our solution procedure can be used with large time

increments directly in the system of linear equations and does not need an itera-

tive algorithm in the time direction. The other time integration schemes mostly

need very small time increments for stability and convergence and thus they are

computationally expensive. The applications of the proposed coupled method are

considered in Section 4.3 by solving several test problems, such as the transient

variable coefficient convection-diffusion equation, the unsteady magnetohydro-
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dynamic flow and the elastodynamic problems. In elastodynamic problems the

second order time derivative of the solution is involved. Then, this procedure is

revised accordingly to have the resulting system of initial value problems of the

second order in time.

4.1 Dual Reciprocity Boundary Element Method

The boundary element method always requires a fundamental solution to the

original differential equation in order to avoid domain integrals in the formulation

of the boundary integral equation, which is one of the drawbacks of the method.

Another is that nonhomogeneous and nonlinear terms are incorporated in the

formulation by means of domain integrals. The use of cells to evaluate these do-

main integrals implies an internal discretization which considerably increases the

quantity of data necessary to run a problem. Thus, the method loses the attrac-

tion of its boundary-only character in relation to the other domain decomposition

methods.

One of the several techniques to deal with the domain integrals is the dual

reciprocity method (DRM), which is the subject of the present chapter. It is

essentially a generalized way of constructing particular solutions that can be

used to solve nonlinear and time-dependent problems.

The basic idea behind the dual reciprocity BEM is to employ a fundamental

solution corresponding to a simpler equation and to treat the remaining terms, as

well as other nonhomogeneous terms in the original equation, through a procedure

which involves a series expansion using global approximating functions and the

application of reciprocity principles.

In this section, the dual reciprocity method is developed for the Poisson equa-

tion in which the nonhomogeneous term is a known function of space. Further,

the method is extended to time-dependent cases in which the right hand side of

the governing equation is an unknown function of the problem variable as well as

a function of space and time.
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4.1.1 DRBEM for Poisson equation

The dual reciprocity method is explained for the Poisson equation following

the reference [31]

∇2u = b (4.1)

where b = b(x, y) is considered to be a known function of position.

The solution to equation (4.1) can be expressed as the sum of the solution of

a homogeneous Laplace equation and a particular solution û such that

∇2û = b . (4.2)

It is generally difficult to find a particular solution û, particularly in the case

of nonlinear or time-dependent problems. The dual reciprocity method proposes

the use of a series of particular solutions ûj instead of a single function û. The

number of ûj used is equal to the total number of nodes in the problem.

The following approximation for b is then proposed

b ≈
N+L
∑

j=1

αjfj (4.3)

where the αj are a set of initially unknown coefficients and the fj are the app-

roximating or interpolating fuctions. The values N and L are the numbers of

boundary and internal nodes, respectively. The particular solutions ûj, and the

approximating functions fj, are linked through the relation

∇2ûj = fj . (4.4)

The fuctions fj are only geometry-dependent and there is no restriction on

these fuctions. In fact, many different types may be used, each of which results

in a different fuction ûj as determined from equation (4.4).
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Substituting equation (4.4) into equation (4.3) gives

b =

N+L
∑

j=1

αj(∇2ûj) (4.5)

which can be substituted into the original equation (4.1) to give the following

expression

∇2u =
N+L
∑

j=1

αj(∇2ûj) . (4.6)

The procedure explained in Chapter 2 for developing the boundary element

method for the Laplace equation can now be applied, [31]. Equation (4.6) is mul-

tiplied by the fundamental solution u∗ of the Laplace equation and is integrated

over the domain Ω, producing

∫

Ω

(∇2u)u∗dΩ =

N+L
∑

j=1

αj

∫

Ω

(∇2ûj)u
∗dΩ . (4.7)

Applying Divergence theorem two times in equation (4.7), as in Section 2.2,

leads to the following integral equation for each source node i,

ciui +

∫

Γ

q∗udΓ −
∫

Γ

u∗qdΓ =

N+L
∑

j=1

αj

(

ciûij +

∫

Γ

q∗ûjdΓ −
∫

Γ

u∗q̂jdΓ

)

(4.8)

where n is the unit outward normal to the boundary Γ. The term q̂j is defined

as q̂j = ∂ûj/∂n and can be expanded to

q̂j =
∂ûj

∂x

∂x

∂n
+
∂ûj

∂y

∂y

∂n
. (4.9)

Note that equation (4.8) involves no domain integrals. The domain integral

of the source term b has been substituted by equivalent boundary integrals.

The discretized form of equation (4.8), with summations over the constant

110



boundary elements replacing the integrals, gives for a source point i the expression

ciui +

N
∑

k=1

∫

Γk

q∗udΓ −
N
∑

k=1

∫

Γk

u∗qdΓ

=

N+L
∑

j=1

αj

(

ciûij +

N
∑

k=1

∫

Γk

q∗ûjdΓ −
N
∑

k=1

∫

Γk

u∗q̂jdΓ

)

.

(4.10)

The functions ûj and q̂j are known once fj are defined. By introducing the

interpolation functions and integrating over each boundary element Γk with the

substitution of fundamental solution u∗ and its normal derivative q∗, equation

(4.10) can be written in terms of nodal values as

ciui +
N
∑

k=1

Hikuk −
N
∑

k=1

Gikqk =
N+L
∑

j=1

αj

(

ciûij +
N
∑

k=1

Hikûkj −
N
∑

k=1

Gikq̂kj

)

(4.11)

where index k is used for the boundary nodes which are the field points. After the

application to all boundary nodes using a collocation technique, equation (4.11)

can be expressed in matrix form as

Hu−Gq =
N+L
∑

j=1

αj(Hûj −Gq̂j) (4.12)

in which the matrices H and G are the same as obtained in Section 2.2.

If each of the vectors ûj and q̂j is considered to be one column of the ma-

trices Û and Q̂ respectively, then equation (4.12) may be written without the

summation in the final form as

Hu−Gq = (HÛ −GQ̂)α (4.13)

where α is the vector containing the unknown coefficients αj .

Equation (4.13) is the basis of the application of the dual reciprocity boundary

element method and involves discretization of the boundary only. The definition

of interior nodes is not normally necessary to obtain a boundary solution, however,
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the solution will be more accurate if a number of such nodes is used. One can

calculate the values of u at the internal nodes, by redefining the matrices H and

G in equation (4.11) in such a way that they contain the point i as an interior

node.

The right hand side function b in equation (4.1) is approximated by using the

interpolation fuctions fj as in equation (4.3). By taking the value of b at (N +L)

different points, a set of equations is obtained and it may be expressed in matrix

form as

b = Fα (4.14)

where each column of F consists of a vector fj containing the values of the function

fj at the (N +L) nodes. Thus α is obtained by inverting equation (4.14), that is

α = F−1b (4.15)

and when it is substituted back into equation (4.13) we get the system

Hu−Gq = (HÛ −GQ̂)F−1b . (4.16)

When this system is arranged after the application of the boundary conditions

as given in Section 2.2, we get

A
′

x = y (4.17)

where the vector x contains the N unknown boundary values of u or q.

If the approximating functions fj are distance or radial basis functions of the

form

f = 1 + r + r2 + . . .+ rm (4.18)

where r2 = r2
x + r2

y, in the two-dimensional case, then it can be shown that the

corresponding û and q̂ functions are (from equation (4.4))

û =
r2

4
+
r3

9
+ . . .+

rm+2

(m+ 2)2
(4.19)
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and

q̂ =

(

rx
∂x

∂n
+ ry

∂y

∂n

)(

1

2
+
r

3
+ . . .+

rm

(m+ 2)

)

. (4.20)

In principle, any combination of terms may be selected from equation (4.18).

In all cases, however, results are found to differ little from those obtained using

f = 1 + r which is the simplest alternative.

4.1.2 DRBEM for the equation ∇2 = b(x, y, t, u, ux, uy, ut)

In the previous section the dual reciprocity BEM is developed for the Poisson

type equation in which the right hand side is a known function of the position.

In this section, the range of application of the DRBEM is extended to problems

governed by the equations [31]

∇2u = b(x, y, t, u, ux, uy, ut) (4.21)

where the nonhomogeneous term b now contains the unknown u itself, the con-

vective terms ux and uy and the time derivative term ut. Then, the fuction b can

be written as (assuming b is a linear function of u, ux, uy and ut)

b = ut + b1(x, y) + b2(x, y)u+ b3(x, y)ux + b4(x, y)uy . (4.22)

In this case, the function b is approximated by means of a set of coordinate

functions fj as

b = ut + b1 + b2u+ b3ux + b4uy ≈
N+L
∑

j=1

αj(t)fj(x, y) (4.23)

in which αj are unknown functions of time. The approximating functions fj

are known functions of geometry and are linked with the particular solutions ûj

through equation (4.4).

The application of the dual peciprocity method follows the same pattern as

113



in Section 4.1.1, and produces a matrix equation of the form

Hu−Gq = (HÛ −GQ̂)α (4.24)

where the vector α is obtained from equation (4.23) as

α = F−1(ut + b1 + B2u + B3ux + B4uy) (4.25)

where F is the same (N + L) × (N + L) position matrix, defined in equation

(4.14), consisting of the values of fj at the (N + L) nodal points and b1 is

the vector with components b1(xi, yi) at the nodes i = 1, . . . , (N + L). The

matrices B2, B3 and B4 refer to the diagonal matrices with b2(xi, yi), b3(xi, yi)

and b4(xi, yi), (i = 1, . . . , (N + L)), on the diagonals respectively, and of the size

(N + L) × (N + L).

Since the function b contains the values of u and its partial derivatives at

the boundary and internal nodes, the vector α can not be calculated explicitly.

Therefore during the solution procedure we have to carry it (at least some part)

as unknown.

For the solution of the boundary values we have

Hbsu −Gbsq = (HbsÛbs −GbsQ̂bs)α (4.26)

and for the internal nodes

Hisu −Gisq = (IÛis + HisÛis − GisQ̂is)α (4.27)

where bs and is refer to boundary and internal solutions, respectively. By the

combination of equations (4.26) and (4.27) together at one step, one can get the
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following system of equations

[

Hbs 0

His I

]{

ubs

uis

}

−
[

Gbs 0

Gis 0

]{

qbs

0

}

=

([

Hbs 0

His I

]{

Ûbs

Ûis

}

−
[

Gbs 0

Gis 0

]{

Q̂bs

0

})

α

(4.28)

which can be represented in short

Hu−Gq = (HÛ −GQ̂)α (4.29)

in which all the matrices now are of size (N +L)× (N +L). Thus, it is necessary

to use the (N + L) DRBEM collocation points in order to obtain the solution at

both boundary and interior nodes.

When the solution u is also approximated by using the same coordinate func-

tions fj(x, y)

u ≈
N+L
∑

j=1

βj(t)fj(x, y) (4.30)

where βj 6= αj are unknown coefficients depending on time, equation (4.30) can

also be written in matrix form

u = Fβ . (4.31)

Differentiation of equation (4.31) with respect x produces

∂u

∂x
=
∂F

∂x
β (4.32)

and by rewriting equation (4.31) as β = F−1u, then (4.32) becomes

∂u

∂x
=
∂F

∂x
F−1u . (4.33)

Similarly,
∂u

∂y
=
∂F

∂y
F−1u . (4.34)
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With the above approximation of convective terms, equation (4.25) can be

rewritten as

α = F−1(
∂u

∂t
+ b1 + B2u + B3

∂F

∂x
F−1u + B4

∂F

∂y
F−1u) . (4.35)

Substituting the vector α back into equation (4.29), one can obtain

Hu−Gq = (HÛ −GQ̂)F−1(
∂u

∂t
+ b1 + B2u + B3

∂F

∂x
F−1u + B4

∂F

∂y
F−1u)

(4.36)

and, finally rearranging, the following system of ordinary differential equations is

reached

Cu̇ + (H + S)u = Gq −Cb1 (4.37)

where superscript dot denotes the time derivative. The matrices C and S are of

size (N + L) × (N + L) and are given by

C = −(HÛ − GQ̂)F−1

S = C(B2 + B3

∂F

∂x
F−1 + B4

∂F

∂y
F−1) .

(4.38)

Now, from equation (4.38) the standard form of the first-order initial value

problem is obtained

u̇ + Bu = Dq − b1 (4.39)

in which B = C−1(H + S) and D = C−1G. System (4.39) can now be solved by

using any time integration scheme.

In elastodynamic problems, the right hand side function b in (4.21) contains

utt, the second order time derivative of the unknown. Thus, the second order time

derivative of the unknown vector u also appears in the final system of initial value

problem (4.39). Then, this system of second order ordinary differential equations

in time will be solved by a proper time integration scheme.
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4.2 Differential Quadrature Method

In this section, the DQM is applied to the system of initial value problem

(4.39) in order to approximate the first order time derivative of the unknown

function. A similar procedure can be carried out for the second order time deriv-

ative in elastodynamic problems.

4.2.1 The weighting coefficients in one-dimensional poly-

nomial differential quadrature

The differential quadrature method approximates the derivative of a smooth

function with respect to a variable at a grid point by a linear weighted summation

of all the functional values in the whole computational domain, [47].

When a function f(t) is approximated at a grid point ti, f(t) and its first and

second order derivatives can be written as

f(ti) =
K
∑

j=1

aijf(tj), i = 1, 2, . . . , K (4.40)

df(t)

dt

∣

∣

∣

∣

ti

=

K
∑

j=1

a
(1)
ij f (tj) , i = 1, 2, . . . , K (4.41)

d2f(t)

d2t

∣

∣

∣

∣

ti

=

K
∑

j=1

a
(2)
ij f (tj) , i = 1, 2, . . . , K (4.42)

where K is the number of grid points ti in the variable domain and a
(1)
ij and a

(2)
ij

are the weighting coefficients for the first and second order derivative approxima-

tions of f(t), respectively, to be determined by the polynomial based differential

quadrature method. The weighting coefficient are given as, [62]

a
(1)
ij =

M (1)(ti)

(ti − tj)M (1)(tj)
, i 6= j (4.43)

a
(1)
ii =

M (2)(ti)

2M (1)(ti)
(4.44)
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a
(2)
ij = 2a

(1)
ij (a

(1)
ii − 1

ti − tj
), i 6= j (4.45)

a
(2)
ii =

M (3)(ti)

3M (1)(ti)
(4.46)

where

M (1)(tk) =

K
∏

j=1, j 6=k

(tk − tj) (4.47)

is the derivative of M(t) given by

M(t) = (t− t1)(t− t2) . . . (t− tK) . (4.48)

Similarly, M (2)(t) and M (3)(t) are the second and third order derivatives of

M(t).

It is observed that if ti is given, it is easy to compute M (1)(ti) from equation

(4.47) and hence a
(1)
ij , a

(2)
ij for i 6= j. However, the computation of a

(1)
ii (equation

(4.44)) and a
(2)
ii (equation (4.46)) involve the computation of the second order

derivative M (2)(ti) and the third order derivative M (3)(ti) which are not easy to

compute. This difficulty can be eliminated by the property of the linear vector

space.

According to the theory of a linear vector space, one set of base polynomials

can be expressed uniquely by another set of base polynomials. Thus, if one

set of base polynomials satisfies a linear operator, say equation (4.41) or (4.42),

so does another set of base polynomials. As a consequence equations (4.41)

and (4.42) should also be satisfied by the second set of base polynomials tk,

k = 1, 2, . . . , K − 1. When k = 0 this set of base polynomials gives

K
∑

j=1

a
(1)
ij = 0 or a

(1)
ii = −

K
∑

j=1, j 6=1

a
(1)
ij (4.49)

and
K
∑

j=1

a
(2)
ij = 0 or a

(2)
ii = −

K
∑

j=1, j 6=1

a
(2)
ij (4.50)
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which are practical to compute once a
(1)
ij , a

(2)
ij (i 6= j) are known.

4.2.2 DQM for the initial value problems

Now, differential quadrature method is going to be applied to the system of

first order initial value problem (4.39) which is the other original contribution of

the thesis.

The DQM discretizes the solution u in the time direction

∂u

∂t

∣

∣

∣

∣

ti

= u̇i =
K
∑

j=1

a
(1)
ij Uj , i = 1, 2, . . . , K (4.51)

where Uj = u(tj).

Substituting the approximation (4.51) into equation (4.39) yields

K
∑

j=1

a
(1)
ij Uj + BUi = Dq̄i − b1 i = 1, 2, . . . , K (4.52)

where the vectors Ui and q̄i are, infact, the u and q vectors respectively

u = {u1, u2, . . . , uN , . . . , uN+L} (4.53)

q = {q1, q2, . . . , qN , 0, . . . , 0} (4.54)

at the ith time level

Ui =
{

u1i, u2i, . . . , uNi, u(N+1)i, . . . , u(N+L)i

}

(4.55)

q̄i = {q1i, q2i, . . . , qNi, 0, . . . , 0} (4.56)

in which uji = uj(ti) and qji = qj(ti).

One can notice that equation (4.52) gives a system of linear equations for each

time level ti (i = 1, 2, . . . , K)

a
(1)
i1 U1 + a

(1)
i2 U2 + . . .+ a

(1)
iKUK + BUi = Dq̄i − b1 (4.57)
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where Ui and q̄i are the vectors of the size (N + L) × 1. When system (4.57) is

written for i = 1, 2, . . . , K, we finally obtain the system of linear equations for

the solution of the transient convection-diffusion type problem in the entire time

domain

ÃŨ = D̃q̃ − b1 (4.58)

where

Ã = A + B̃ . (4.59)

The matrices A, B̃ and D̃ are expressed as

A =















a11 a12 . . . a1K

a21 a22 . . . a2K

...

aK1 aK2 . . . aKK















(4.60)

with (N + L) × (N + L) submatrices aij defined as aij = a
(1)
ij I and

B̃ =















B

B
. . .

B















, D̃ =















D

D
. . .

D















. (4.61)

The sizes of the matrices Ã, B̃ , A and D̃ are (N + L)K × (N + L)K and

the identity matrix I is of size (N + L) × (N + L) .

The (N + L)K × 1 vectors Ũ and q̃ are defined as

Ũ =
{

u11, u21, . . . , u(N+L)1; u12, u22, . . . , u(N+L)2; . . .

; . . . ; u1K , u2K , . . . , u(N+L)K

}

(4.62)

q̃ = {q11, q21, . . . , qN1, 0, . . . , 0; q12, . . . , qN2, 0, . . . , 0; . . .

; . . . ; q1K , . . . , qNK , 0, . . . , 0} .
(4.63)
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In the linear system (4.58) boundary conditions (some of Ũ and some of q̃

nodal specified values) are inserted by interchanging the negative of corresponding

columns and reordering the solution vector in terms of unknown Ũ and q̃ nodal

values. When the initial condition is also inserted at the interior plus boundary

nodes for the initial time level, system (4.58) finally becomes a rectangular system

since known initial Ũ values are passed to the right hand side leaving less number

of unknowns than the number of equations.

The resulting reordered form of system (4.58) is given as

˜̃A ˜̃U = ˜̃D ˜̃q− b1 (4.64)

where the sizes of ˜̃A, ˜̃U are (N + L)K×((N + L)K − L) and ((N + L)K − L)×
1, respectively if the boundary condition is of Dirichlet type. For Neumann

and mixed type of boundary conditions the sizes of ˜̃A and ˜̃U are appropriately

arranged. The sizes of ˜̃D, ˜̃q are the same as the sizes of D̃ and q̃. Now ˜̃U

contains all the unknown values of Ũ and q̃ but, ˜̃q contains boundary plus initial

information.

System (4.64) gives the solution of our transient convection-diffusion problem

at all the required time levels directly without the need of a time iteration. But

since the system is overdetermined, the least squares method can be employed to

obtain the solution.

Application of the least squares method to the overdetermined system (4.64)

gives the normal equations

˜̃AT ˜̃A ˜̃U = ˜̃AT ˜̃D ˜̃q− ˜̃AT b1 (4.65)

for the unknown ˜̃U which is the solution of transient convection-diffusion equation

for the entire domain Ω̄ × [0, T ].

When the initial value problem is of second order a similar procedure will be

carried out in Section 4.3.3.
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4.3 Numerical Solutions and Discussions

In this section the numerical solutions of the transient convection-diffusion

type equations and elastodynamic problems are considered. The equations are

discretized by the above proposed tecnique, which involves the coupling of the

dual reciprocity BEM in spatial domain with the DQM in the time domain. The

discretization of the space variables using the DRBEM in transient convection-

diffusion type equations or in elastodynamic equations results in a system of

first order or second order initial value problem in time, respectively. Then, this

system is discretized in time direction by the use of DQM. After the imposition of

both initial and boundary conditions, the problem reduces to a system of linear

algebraic equations which gives the solution on the whole computational domain

at any required time level at one stroke without the need of iteration in the time

direction.

The present section contains the applications of the coupled DRBEM and

DQM to mainly three types of equations. These are convection-diffusion equa-

tion with variable coefficients, unsteady magnetohydrodynamic flow equations

with homogeneous Dirichlet type boundary conditions and the elastodynamic

equations. The original unsteady coupled MHD equations can be transformed

into two decoupled time dependent convection-diffusion type equations when the

walls are insulated. Thus, the proposed method can be applied directly. For the

solution of the elastodynamic equations the method is modified for the second

order time derivative.

4.3.1 Diffusion and convection-diffusion problems

The equation governing two-dimensional transient convection-diffusion type

problems can be expressed as

ν∇2u =
∂u

∂t
+ d1(x, y)

∂u

∂x
+ d2(x, y)

∂u

∂y
+ d3(x, y)u (4.66)

where (x, y) ∈ Ω ⊂ R2, t > 0, ν is a constant and d1, d2, d3 are functions of space

variables.
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Equation (4.66) is supplied with an initial condition

u (x, y, 0) = u0 (x, y) (4.67)

and Dirichlet, Neumann or mixed type boundary conditions

u (x, y, t) = u (x, y, t) (x, y) ∈ Γu

q (x, y, t) = q (x, y, t) (x, y) ∈ Γq

q (x, y, t) + h (x, y, t)u (x, y, t) = 0 (x, y) ∈ Γh

(4.68)

for obtaining a well-defined problem. Here u0, ū, q̄ and h are given functions and

q = ∂u/∂n, (n is the outward normal), Γ = Γu + Γq + Γh is the boundary of the

region Ω.

Equation (4.66) is in the same form with equation (4.21), by taking b1 = 0,

b2 = d3, b3 = d1 and b4 = d2. Thus, the application of the dual reciprocity BEM

transforms the differential equation (4.66) into the boundary integral equations

of the form given in equation (4.36), i.e.

ν(Hu− Gq) = (HÛ − GQ̂)F−1(
∂u

∂t
+d3u+d1

∂F

∂x
F−1u+d2

∂F

∂y
F−1u) . (4.69)

When equation (4.69) is rearranged, the following differential equations is

obtained

Cu̇ + (νH + S)u = νGq (4.70)

where C is the matrix given in equation (4.38) and the matrix S of size (N +

L) × (N + L) is as follows

S = C(d3 + d1

∂F

∂x
F−1 + d2

∂F

∂y
F−1) . (4.71)

Thus, the standard form of the first order initial value problem will be

u̇ + Bu = Dq (4.72)

as in equation (4.39) with the initial condition u(x, y, 0) = u0(x, y) where B =
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C−1(νH + S) and D = νC−1G.

Equation (4.72) now can be discretized in the time direction by using the

differential quadrature method which was explained in Section 4.2.2.

We consider both diffusion and convection-diffusion type problems together

with Dirichlet, Neumann and/or mixed type boundary conditions. The problem

domains are either, a circle, a square or a rectangle in the (x, y)-plane and the

time domain is [0, T ] where T is a constant. In the DRBEM discretization for the

domains, we use constant boundary elements with the numbers ranging from 20

to 240 and some interior nodes for presenting the solution in terms of graphics.

For the time domain (0, T ) in DQM both equally spaced and Gauss-Chebyshev-

Lobatto (GCL) points are used in the discretization. The equally spaced points

in the time direction are given by

ti =
i− 1

K − 1
T, i = 1, 2, . . . , K

for a region [0, T ]. The GCL points are the Chebyshev collocation points which

are the roots of |TK(t)| = 1 and given by, [47],

ti = cos(
i− 1

K − 1
π), i = 1, 2, . . . , K

for an interval [−1, 1]. For a region on [0, T ], they are given by

ti =
T

2
[1 − cos(

i− 1

K − 1
π)], i = 1, 2, . . . , K .

Shu and Chen [63] have discussed the optimal selection of the grid points

in DQM. They introduced the strectching of GCL points towards boundary to

obtain more accurate results. They showed that these points have a faster rate

of convergence than the equally spaced points. Since the points are clustered

near the end points of a time interval, the value of the solution at the required

time level will be captured more accurately. The solution of the test problems

are compared with the exact solution and with other studies. The first test

problem is the diffusion equation in a circular region of unit radius with mixed
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type boundary conditions. The last two applications are convection-diffusion type

equations with variable coefficients in rectangular domains with Neumann and/or

Dirichlet type boundary conditions.

Diffusion problem in a circular region

The diffusion problem in a circular region of unit radius is described by

∂u

∂t
= ∇2u 0 ≤ r < 1, t > 0

where r is the radius of the circle. The problem is subjected to the mixed type

boundary conditions q = 2(1 − u) and the initial condition is given as zero.

The circular region is discretized withN = 24 constant boundary elements and

L = 10 internal nodal points. In Figure 4.1, the numerical results are compared

with the corresponding analytical values [32] at varying time levels for r = 0,

r = 0.5 and r = 1.0, respectively.

Figure 4.1: Solution of diffusion equation in a circular region at varying time
levels for r = 0, 0.5 and 1.0 respectively, N = 24, L = 10
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The convection-diffusion type problem (Partridge and Sensale [43])

∇2u =
∂u

∂t
+ d1(x, y)

∂u

∂x
+ d2(x, y)

∂u

∂y
+ d3 u

0 ≤ x ≤ 1

0 ≤ y ≤ 0.7
, t > 0

where d3 is the decay parameter and d1, d2 are the velocity components defined

as

d1 = d3 x+ log

(

10

300

)

− d3

2

d2 = 0 .

The boundary conditions are

∂u

∂n
(x, 0, t) =

∂u

∂n
(x, 0.7, t) = 0 0 ≤ x ≤ 1 , t > 0

u(0, y, t) = 300

u(1, y, t) = 10

0 ≤ y ≤ 0.7 , t > 0

and the initial condition is homogeneous.

The boundary of the region is discretized with N = 112, 180 and 240 constant

boundary elements for the values of d3 = 1, 20 and 40 with L = 7, 20 and 35

interior nodes respectively . K = 5 Gauss-Chebyshev-Lobatto points are used in

the time direction. The DQM enables us to obtain the solution at any transient

and the required time levels. Figure 4.2 gives the behaviour of the DQM solution

at the transient levels which converges to steady state exact solution for increasing

time levels. The results are also obtained at the steady state level T = 1.0 for

d3 = 20 and 40. Thus, we are able to compare the obtained numerical results

with the steady state exact solution [64]. Figures 4.3 and 4.4 show the agreement

of our solution with the steady state exact solution at y = 0.6 for d3 = 20 and 40

respectively. It is noticed that for an increased value of d3, and consequently of

d1, one needs more number of boundary elements. This corresponds to the need

of increased discretization for large values of Peclet number.
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Figure 4.2: Solution of convection-diffusion equation at several T ’ s for d3 = 1 at
y = 0.6, N = 112
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Figure 4.3: Solution of convection-diffusion equation for d3 = 20 at y = 0.6,
T = 1.0, N = 180, L = 20
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Figure 4.4: Solution of convection-diffusion equation for d3 = 40 at y = 0.6,
T = 1.0, N = 240, L = 35

Furthermore, this problem has been solved by using the finite difference and

the finite element methods for the discretization of the time domain. In the finite

difference solution, a general two-level time integration scheme is employed, [65].

Figure 4.5 shows the FDM solution of the problem at the time levels T = 5, 10,

15 and 20 by using K = 15, 30, 40 and 60 time discretization points, respectively.

These results are compared with the solution obtained by the differential quadra-

ture method which uses only K = 5 points at each time level, i.e. DQM uses

less number of time grid points, and consequently larger time increments, than

FDM to reach any required time level with a finer accuracy. It can be also seen

in Figure 4.5 that DQM converges to the steady state much faster than finite

difference method.

In Figures 4.6 and 4.7 the finite element method solution compared with the

DQM solution is drawn by using K = 5 time discretization points for the values of

d3 = 10 and 20, respectively. They are giving almost the same accuracy, however

the implementation of the differential quadrature method is easier than the finite

element method.
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Figure 4.5: Solution of convection-diffusion type equation with FDM and DQM
for d3 = 1 at y = 0.6, N = 112, L = 7
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Figure 4.6: Solution of convection-diffusion type equation with FEM and DQM
for d3 = 10 at y = 0.6, T = 1.0, N = 140, L = 13
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Figure 4.7: Solution of convection-diffusion type equation with FEM and DQM
for d3 = 20 at y = 0.6, T = 1.0, N = 180, L = 20

The convection-diffusion type problem with variable coefficients (Huerta,

Roig and Donea [33])

ν∇2u+ s =
∂u

∂t
+ d1(x, y)

∂u

∂x
+ d2(x, y)

∂u

∂y
+ d3u

−1 ≤ x ≤ 1

−1 ≤ y ≤ 1
, t > 0

where ν = 5 × 10−5, the velocity components (d1, d2) = φ(ρ)(−y, x) , d3 = 2,

ρ =
√

x2 + y2 ,

φ(ρ) =

{

1 − ρ2 if ρ ≤ 1

0 otherwise
and s =

{

1 if ρ ≤ 1/2

0 otherwise
.

This is a rotating pulse problem in the region Ω = (−1, 1) × (−1, 1) with

homogeneous Dirichlet boundary conditions and zero initial condition. Figure

4.8 shows the solution of the problem at the time levels T = 0.5 and T = 5.0

respectively which are obtained by taking N = 200 and K = 5. T = 5.0 is
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almost the steady state level for the solution and even this solution presents a

clear pattern with u ≈ 1
2

if ρ ≤ 1
2

and u ≈ 0 otherwise, which is the steady state

solution behaviour [33].

Figure 4.8: Solution of convection-diffusion type equation with variable coeffi-
cients at T = 0.5 and T = 5.0 respectively, N = 200, K = 5

4.3.2 Unsteady magnetohydrodynamic duct flow

The unsteady, laminar, fully developed flow of viscous, incompressible and

electrically conducting fluid in a rectangular duct, subjected to a constant and

uniform applied magnetic field B0 in the direction of x-axis can be put in the

following non-dimensional form given by Dragoş, [7],

∇2V +M
∂B

∂x
= −1 +

∂V

∂t

∇2B +M
∂V

∂x
=

∂B

∂t

(4.73)

in Ω × [0,∞) with the boundary conditions and the initial condition

V (x, y, t) = 0 B(x, y, t) = 0 (x, y) ∈ Γ

V (x, y, 0) = 0 B(x, y, 0) = 0 (x, y) ∈ Ω .

(4.74)
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V (x, y, t), B(x, y, t) are the velocity and the induced magnetic field, respectively,

M is the Hartmann number. V (x, y, t), B(x, y, t) are in the z-direction which

is the axis of the duct. We take the domain Ω of the problem as a square

|x| ≤ 1, |y| ≤ 1. The fluid is initially at rest and then starts to move down the

duct by the application of a constant pressure gradient. As t → ∞ we get the

steady state solution. Due to the physical and geometrical conditions in which

the motion takes place, most of the studies are concentrated not on the original

unsteady but on the steady MHD equations which have exact solutions for simple

geometry and wall conductivity. However, it is important to see the behaviour of

the solution at transient levels as approaching to steady state. Thus, the original

unsteady MHD equations are solved here by firstly transforming these coupled

equations into decoupled time dependent convection-diffusion type equations with

the change of variables

U1 = V +B , U2 = V − B (4.75)

as

∇2U1 +M
∂U1

∂x
= −1 +

∂U1

∂t
(x, y, t) ∈ Ω × [0,∞)

∇2U2 −M
∂U2

∂x
= −1 +

∂U2

∂t

(4.76)

U1(x, y, t) = 0 U2(x, y, t) = 0 (x, y) ∈ Γ

U1(x, y, 0) = 0 U2(x, y, 0) = 0 (x, y) ∈ Ω .

(4.77)

It is possible to go back to the original unknowns V and B through equation

(4.75).

Now, both of equations (4.76) are time dependent convection-diffusion type

equations with the only difference being +M is replaced with −M in the second

equation. After reducing the unsteady coupled MHD equations to the transient

convection-diffusion equations we can apply our method described in Sections 4.1

and 4.2.
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In the DRBEM discretization in space variables for the square domain, we use

constant boundary elements with the number of elements ranging from N = 92

to N = 240 and some equally spaced interior points for representing the solution

in terms of graphics. The distribution of the interior points is arbitrary which

is one of the advantage of the DRBEM. We may place more points close to the

walls where the most of the action takes place in MHD flow. For the time domain

[0, T ] in DQM, Gauss-Chebyshev-Lobatto points are used in the discretization.

These points are non-uniform and clustered near the boundary which enable us to

obtain converged and stable solution for our convection-diffusion type equation

[47]. Since we solve the transient MHD equations, we are able to obtain the

solution at any required time level. As t → ∞, we get the steady state solution

which can be compared with the available exact solution of the steady equations

to check the accuracy of the results. Our steady state results for the velocity and

the induced magnetic field for small and moderate values of Hartmann number

(5 ≤ M ≤ 50) agree with the Shercliff’ s, [8], exact solution to roughly three

significant digits.

In Figures 4.9 and 4.10 the velocity-induced magnetic field contours are pre-

sented at steady state respectively for Hartmann numbers of M = 5 and M = 20.

It is noticed from these figures that as the Hartmann number increases the veloci-

ty shows a flattening tendency (contour values are decreased). It is also observed

that the boundary layer formation starts near the walls for both the velocity and

the induced magnetic field for increasing Hartmann number. This is the well

known behaviour of MHD duct flow. For the larger value of M the thickness of

the boundary layer is smaller. Velocity becomes uniform at the center of the duct

when M is increased and it always has its maximum through the center. When

the Hartmann number is increased, the number of boundary elements N must be

increased in our computations to get good accuracy. Efficient number of interior

points is taken for drawing contours and plots. At the same time we control the

total size ((N + L)K − L) × ((N + L)K − L) (K : the number of discretiza-

tion points in time) of the system with the values of N , L and K not to have

difficulties in solving large systems. For this reason we could increase Hartmann

number up to M = 50 which needs N = 240 boundary elements. Further than
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Figure 4.9: Velocity and induced magnetic field lines for M = 5, N = 92

this Hartmann number, the total size of the system becomes very large due to

the large values of especially N , K and L. Figure 4.11 is the velocity-induced

magnetic field curves for M = 50 at y = 0 (−1 ≤ x ≤ 1) respectively. As we

increase Hartmann number M , discrepancies are examined especially for velocity.

This may be due to the fact that we need to take more boundary and interior

points resulting with a larger sized matrix system. Accumulation of roundoff

errors drops accuracy to 10−2 especially close to the corners. In Figure 4.11 we

notice that the numerical velocity maximum value for M = 50 differs from the

exact velocity maximum value because of this accuracy drop.

Time discretization points in the DQM application for the time derivative are

taken as GCL points which are mostly placed near the boundaries. Since the

DQM is stable and convergent for these nonuniform points we don’t need to take

too many points. In the computations the number of GCL points was taken at

most K = 5. The other explicit methods need very small time increments in the

step by step computation in time.
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Figure 4.10: Velocity and induced magnetic field lines for M = 20, N = 108
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Figure 4.11: Velocity and induced magnetic field lines for M = 50, N = 240,
y = 0
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4.3.3 Transient elastodynamic problems

In this section, the transient elastodynamic problems are solved by the present

numerical method which is the coupling of dual reciprocity BEM with the least

squares differential quadrature method. The same procedure has already been

applied to the most general type of convection-diffusion problems with variable

coefficients in the previous Sections 4.3.1 and 4.3.2. There, the DQM approxi-

mated the first order time derivative in the initial value problem obtained by the

application of DRBEM to convection-diffusion problems. But when the dual reci-

procity BEM is applied to the elastodynamic problems in spatial domain, we end

up with a system of second order ordinary differential equations of initial value

problem which will be discretized by DQM. Thus, this study can be considered

as an extention of the present method to the elastodynamic problems containing

both the first and second order time derivatives.

The equation governing the longitudinal vibration of damped plates can be

expressed as

∇2u(x, t) =
1

c2
∂2u(x, t)

∂t2
+ λ

∂u(x, t)

∂t
, x ∈ Ω

where λ and c are the coefficient of viscous damping and wave propagation ve-

locity, respectively. To formulate a well-defined problem, boundary and initial

conditions must be imposed which specify the state of displacement and velocity

as

u(x, 0) = u0(x), u̇(x, 0) = v0(x)

at time t = 0, where the superimposed dot represents the time derivative. The

displacement and traction boundary conditions are given by

u(x, t) = ū(x, t), x ∈ Γu

q(x, t) = q̄(x, t), x ∈ Γq

where the spatial domain Ω ⊂ R
2 is bounded by a piecewise smooth boundary

Γ = Γu + Γq, and q = ∂u/∂n, n is the outward normal on the boundary.
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The matrix form of the resulting DRBEM formulation for this elastodynamic

problem is obtained as

1

c2
Cü + λCu̇ + Hu = Gq (4.78)

where C is the (N+L)×(N+L) matrix given in equation (4.38). The matrices G

and H contain the integrals of the fundamental solution and its normal derivative

respectively, which are defined in equation (4.11). By rewriting equation (4.78),

the standard form of the second order initial value problem is obtained as

ü + λc2u̇ + Bu = Dq (4.79)

in which B = c2C−1H and D = c2C−1G. The sizes of the matrices B and D are

(N + L) × (N + L).

When the DQM is applied to the second order initial value problem (4.79)

for the approximation of time derivatives, we end up with a linear system of

equations for each time level ti which can be denoted in matrix form similar to

(4.58) as

ÃŨ = D̃q̃ (4.80)

where Ã = A + B̃. The (N + L)K × (N + L)K matrix A is defined as

A =















a11 a12 . . . a1K

a21 a22 . . . a2K

...

aK1 aK2 . . . aKK















(4.81)

with the submatrices aij = (a
(2)
ij + λc2a

(1)
ij ) I, where I is the identity matrix. The

matrices B̃ and D̃ are the block diagonal matrices containing the matrices B and

D on the diagonals, respectively.

The procedure outlined here is applied to four types of vibration problems of

membranes and plates. The square spatial domain (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) of

the problem is discretized by using N = 28 constant boundary elements. For the
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discretization of the time domain with the differential quadrature method,K = 50

Gauss-Chebyshev-Lobatto points are used. Since the DQM is unconditionally

stable, we are allowed to use arbitrarily large time step size to reach a required

time level. Thus, the choice of K is arranged accordingly. The number of internal

points (L) is taken to depict the behaviour of the solution clearly. Although there

is no certain relationship between N , K and L on the accuracy and convergence

of the numerical solution, one should be careful in the choice of N , K and L for

not having an oversized final linear system of equations for the solution. The use

of linear or quadratic radial basis functions in the application of DRBEM does

not effect much the accuracy of the numerical results. Thus, for simplicity linear

radial basis functions (f = 1 + r) are made use of throughout the computations.

The last example considered is the longitudinal vibration of plate subjected to

Heaviside-type impact load. In this problem, accuracy and convergence properties

are studied with respect to the number of points in space and time discretizations.

Free vibration of a square membrane

The free vibration of a square membrane which is released from rest in an ini-

tial position and velocity, with homogeneous Dirichlet type boundary conditions

u = 0 is taken. The initial displacement and the velocity are given by

u(x, y, 0) = (x− x2)(y − y2), u̇(x, y, 0) = 0 .

The analytical solution of this problem is, [36],

u(x, y, t) =

∞
∑

m, n=1

[

16a2b2

π2

1 − (−1)m

m3

1 − (−1)n

n3

sin(
mπx

a
) sin(

nπy

b
) cos(kmnct)

]

where a and b are the lenghts of the rectangular domain, k2
mn = π2

(

m2

a2
+
n2

b2

)

.

c =
√

T/ρ in which T and ρ are tension and density, respectively.

138



The numerical results are obtained by using L = 25 internal points for λ =

0. Figures 4.12 and 4.13 show the agreement of the numerical and analytical

solutions for the displacement at the center point of the domain and for the

traction at the point (x = 1.0, y = 0.5), respectively.
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Figure 4.12: Displacement curve at the point (0.5, 0.5) for free vibration of mem-
brane, λ = 0
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Figure 4.13: Traction curve at the point (1, 0.5) for free vibration of membrane,
λ = 0
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Longitudinal vibration of plate subjected to a periodic plane force

The longitudinal vibration of plate subjected to a periodic plane force with

zero initial condition is solved. The square plate with edges of length a = 1 is

fixed along the boundary x = 1 and the plane outer force is applied along x = 0

(see Figure 4.14). The displacement and traction boundary conditions are as

follows,

u(x, y, t) = 0 if x = 1

q(x, y, t) = 0 if x = 0, y = 0, 1 .

Figure 4.14: Square plate subjected to outer force

The analytical solution

u(x, y, t) =
8

π2

Pa

EA

∞
∑

i=1

{

(−1)i−1

(2i− 1)2 − 9/16
sin

(

2i− 1

2a
π(a− x)

)

[

cos
3π

8a

√

E

ρ
t

− cos
2i− 1

2a
π

√

E

ρ
t

]}

is obtained when the periodic plane force p = P cos
3π

8a

√

E

ρ
t is applied at the left
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side of the plate, [37]. E and ρ are the Young’s modulus and the density of the

plate material, respectively. A is the area of the cross section.

For the computations L = 16 internal points are used and the results are

compared with the exact ones in terms of graphics. In Figures 4.15 and 4.16

which show very good agreement with the exact solution, the displacement curve

at the point B(0, 0.5) and traction curve at the point C(1, 0.5) versus time are

drawn.

Figure 4.15: Displacement curve at point B, λ = 0

Figure 4.16: Traction curve at point C, λ = 0
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Longitudinal vibration of damped plate subjected to Heaviside impact

load

The longitudinal vibration of damped plate subjected to Heaviside impact

load is solved for λ = π/10, [38]. Here the initial and boundary conditions and

the domain properties (see Figure 4.14) are the same as in the second example,

except the applied force. The displacement curve at the point B and the traction

curve at the point C are illustrated in Figures 4.17 and 4.18, respectively. As a

result of damped factor, the amplitudes of both displacement and traction curves

decrease for increasing time levels. There exist oscillations for the traction due to

the lack of artificial damping in the application of differential quadrature method.

This may be also due to the fact that, it is difficult to represent the derivatives

well with constant element DRBEM formulation.

Figure 4.17: Displacement curve at point B, λ = π/10

Figure 4.18: Traction curve at point C, λ = π/10
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Longitudinal vibration of plate subjected to Heaviside-type impact

load

The longitudinal vibration of plate subjected to Heaviside-type impact load is

solved. In this case, the [0, 1]× [0, 1] square plate is fixed along the left boundary

x = 0 and an impact load of Heaviside-type

p = H(t), t ≥ 0

is enforced at the right wall of the plate x = 1. The initial and the boundary

conditions are given respectively by

u(x, y, 0) = 0, u̇(x, y, 0) = 0

and
u(x, y, t) = 0 if x = 0

q(x, y, t) = 0 if x = 1, y = 0, 1 .

The analytical solution for the displacement of this problem can be expressed

as [39]

u(x, t) = − 1

ρc

∞
∑

i=1

(−1)i−1

[(

t− (2i− 1)a− x

c

)

H

(

t− (2i− 1)a− x

c

)

−
(

t− (2i− 1)a+ x

c

)

H

(

t− (2i− 1)a+ x

c

)]

where a and ρ are the same as in the second example. In Figures 4.19 and

4.20, we present the behaviour of the displacement and the relative error at

the point (x = 1.0, y = 0.5), in a short time interval (T = 1) with respect

to the number of discretization points in space. It is observed that, N = 28

is the reasonable number of boundary elements since larger values of N do not

contribute to the accuracy much. Similarly, Figures 4.21 and 4.22 represent the

behaviour of the displacement and the relative error at the same point with

respect to time nodal values (number of Gauss-Chebyshev-Lobatto points). K =
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10 gives quite good accuracy in terms of relative error. For a long time interval

K is arranged accordingly. Figure 4.23 represents the long time behaviour of

the displacement at the point (1, 0.5), which is in a good agreement with the

analytical solution, by using N = 28 constant boundary elements, L = 16 internal

nodes and K = 38 time discretization points for the time level T = 10.
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Figure 4.19: Displacement curve for vibration of square plate subjected to Heav-
iside impact load for several N at the point (1.0, .5), λ = 0
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Figure 4.20: Relative error of displacement for several N at the point (1.0, .5),
λ = 0
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Figure 4.21: Displacement curve for vibration of square plate subjected to Heav-
iside impact load for several K at the point (1.0, .5), λ = 0
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Figure 4.22: Relative error of displacement for several K at the point (1.0, .5),
λ = 0
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Figure 4.23: Displacement curve at the point (1.0, .5) for vibration of square
plate subjected to Heaviside impact load , λ = 0
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As a conclusion, the transient convection-diffusion equations including the

unsteady MHD duct flow equations, and the elastodynamic equations which are

second order initial value problems in time are solved by using the DRBEM

in space - DQM in time procedure in the present chapter. These applications

constitute the other original part of the thesis. The DRBEM is applied to Poisson

type equation with the fundamental solution of Laplace equation keeping all the

other terms as nonhomogeneity, which results in systems of first or second order

differential equations in time. These systems are treated by the use of DQM in the

discretization of time. The DQM allows us to obtain stable solutions for transient

problems although its weighting coefficient matrix is a full matrix. Other time

discretization methods as FDM and FEM give block diagonal coefficient matrices

despite of using very small time increments

In the next chapter, the same idea will be applied to the unsteady Navier-

Stokes equations in terms of stream function and vorticity in which the right

hand side functions will contain nonlinear terms also. Therefore, the iterative

procedure is made use of between the equations.
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chapter 5

solution of incompressible

viscous fluids by coupling of

differential quadrature

integration scheme with dual

reciprocity boundary element

method

Fluid dynamics deals with the motion of liquids and gases. The flow of most

fluids may be analyzed mathematically by the use of two equations. The first

one is the continuity equation which requires the conservation of mass of a fluid

entering a fixed control volume. The other equation is based on the Newton’

s law of motion giving the momentum equations, or Navier-Stokes equations,

which describe the conservation of the momentum. Usually, the term Navier-

Stokes equations is used to refer to all of the equations, namely, momentum and

continuity equations.

Navier-Stokes equations are one of the most useful sets of equations because

they describe the physics of a large number of phenomena of academic and eco-

nomic interest. They may be used to model weather, the movement of air in the

atmosphere, ocean currents, water flow in a pipe, flow around an airfoil, and mo-

tion of stars inside a galaxy. As such, these equations in both full and simplified

forms, are used in the design of aircraft and cars, the study of blood flow, the

design of power stations, the analysis of the effects of pollution, etc. Further,
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when they are coupled with Maxwell’s equations they can also be used to model

and study magnetohydrodynamics as in Chapter 3.

The Navier-Stokes equations for laminar, viscous flow of an incompressible

fluid, consist of the momentum equations

ρ′
∂u′

∂t′
+ ρ′u′.∇u′ = −∇p′ + µ′∇2u′ + ρ′g′ (5.1)

and the continuity equation

∇.u′ = 0 (5.2)

where ρ′, µ′ and p′ are the density, viscosity and pressure, respectively. The

vectors u′ and g′ represent respectively the velocity field and the body forces

(e.g. gravity).

The Navier-Stokes equations are second order, nonhomogenous, nonlinear par-

tial differential equations, which are extremely difficult to solve in their raw form.

However, the equations can be simplified and may admit some numerical solu-

tions.

In this section, the two-dimensional flow of a viscous, incompressible fluid (i.e.

a fluid whose density is constant) with a constant viscosity is considered. Thus,

the governing Navier-Stokes equations (5.1) and (5.2) can be written in cartesian

coordinates as

∂u′

∂t′
+ u′

∂u′

∂x′
+ v′

∂u′

∂y′
= − 1

ρ′
∂p′

∂x′
+ γ′

(

∂2u′

∂x′2
+
∂2u′

∂y′2

)

∂v′

∂t′
+ u′

∂v′

∂x′
+ v′

∂v′

∂y′
= − 1

ρ′
∂p′

∂y′
+ γ′

(

∂2v′

∂x′2
+
∂2v′

∂y′2

)

(5.3)

for the momentum equations and the continuity equation takes the form

∂u′

∂x′
+
∂v′

∂y′
= 0 (5.4)

in the absence of body force. The constant γ′ =
µ′

ρ′
is called as the kinematic

viscosity, and u′ = u′(t′, x′, y′), v′ = v′(t′, x′, y′) are the components of the velocity
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field u′.

Equations (5.3) and (5.4) can be written in the nondimensional form by in-

troducing a characteristic length L′, a characteristic velocity U ′, and defining the

dimensionless quantities as

u =
u′

U ′
, v =

v′

U ′
, x =

x′

L′
, y =

y′

L′
, t =

t′

(L′/U ′)
, p =

p′

U ′2ρ′
. (5.5)

Thus, (5.3) and (5.4) in nondimensional form become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(

∂2u

∂x2
+
∂2u

∂y2

)

(5.6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(

∂2v

∂x2
+
∂2v

∂y2

)

(5.7)

∂u

∂x
+
∂v

∂y
= 0 (5.8)

where

Re =
U ′L′

γ′
(5.9)

is the Reynolds number of the flow.

There are four alternative formulations of the Navier-Stokes equations given

earlier. These are (i) the velocity-pressure formulation, (ii) the fourth order

stream function equation, (iii) the vorticity-stream function formulation, and (iv)

the velocity-vorticity formulation. The advantage of using the velocity-pressure

formulation is that we are dealing with the primitive variables. However, in the

velocity-pressure formulation it becomes necessary to solve a rather complicated

pressure equation, introducing additional difficulties. A second possibility is to

solve the fourth order formulation of the Navier-Stokes equations. Although

there is only one nonlinear equation that is to be solved, it must be realized that

one is now faced with a higher order nonlinear equation. One of the boundary

conditions is given in terms of the normal derivatives which also complicates the

numerical procedure. For two-dimensional and also for axi-symmetric flows it is

convenient to use the vorticity-stream function formulation where the equation of
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continuity is automatically satisfied. Of course, the resulting system consists of

two coupled equations. Also, the vorticity transport equation is nonlinear. There

are several other difficulties associated with the solution of these equations. A

major difficulty arises from the boundary conditions of the problem. In practice,

only the velocity on the boundaries is prescribed, while for the numerical solution

of the equation in the vorticity-stream function formulation we require the values

of the vorticity on the boundaries as well.

To obtain the vorticity-stream function formulation of the Navier-Stokes equa-

tions (5.6)-(5.8), a stream function ψ satisfying the continuity equation automat-

ically is defined as
∂ψ

∂x
= −v, ∂ψ

∂y
= u . (5.10)

The pressure p can be eliminated from equations (5.6) and (5.7) by subtracting

the derivative of (5.6) with respect to y from the derivative of (5.7) with respect

to x. Then, by introducing the only nonzero component of the vorticity field w

as

w =
∂v

∂x
− ∂u

∂y
= −

(

∂2ψ

∂x2
+
∂2ψ

∂y2

)

= −∇2ψ (5.11)

the momentum equations (5.6) and (5.7) provide a vorticity transport equation,

1

Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
. (5.12)

We are concerned here with the numerical solution of the Navier-Stokes equa-

tions in the vorticity-stream function formulation and the required vorticity bound-

ary conditions are obtained from the Taylor series expansion of stream function

equation in terms of boundary and interior stream function values. One can ob-

serve that equations (5.11) and (5.12) are coupled and equation (5.12) is also a

time dependent nonlinear convection-diffusion type equation. In the solution pro-

cedure, a combination of the dual reciprocity BEM and the differential quadrature

method is used. The spatial domain and time domain are discretized by using

DRBEM and DQM, respectively. The stream function equation (5.11) is solved

by using DRBEM with an initial vorticity value. The vorticity transport equation

(5.12) is solved with the coupling of DRBEM in space-DQM in time domains.
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The velocity components in (5.12) are obtained from the stream function values

through the relationships (4.33) and (4.34). Thus, equations (5.11) and (5.12)

are solved iteratively. This solution procedure for Navier-Stokes equations is also

an original contribution in the thesis.

The solution procedure has been tested first on solving Navier-Stokes equa-

tions when a force term is present for which an exact solution is available. Then

the square cavity problem for which the fluid in the cavity is driven by the motion

of one of the walls with a constant velocity is solved for Reynolds number values

up to 1000. As a last example the natural convection flow, which involves an

additional energy equation because of the heat flux, is considered and it is solved

for Rayleigh number values up to 105.

5.1 Method of Solution

The Navier-Stokes equations are coupled in terms of vorticity and stream func-

tion as shown in equations (5.11) and (5.12). These coupled equations can be

solved iteratively. In the solution procedure, firstly the Poisson equation (5.11) is

solved for the stream function giving an initial value for the vorticity by using the

DRBEM with the fundamental solution of Laplace equation. After obtaining the

stream function values for both the boundary and the interior nodal points, the x

and y derivatives of the stream function are calculated by using these stream func-

tion values through the dual reciprocity boundary element formulation. When

we insert these derivative values in the vorticity equation (5.12), it returns into

a linear transient convection-diffusion equation with constant coefficients. Thus,

this equation can be solved by using the combination of the dual reciprocity BEM

for spatial domain and differential quadrature method for the time domain.

5.1.1 Application of DRBEM to vorticity transport and

stream function equations

The DRBEM is employed to transform the vorticity transport equation (5.12)

and the stream function equation (5.11) into boundary integral equations by using
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the fundamental solution of the Laplace equation. The method treats the terms

on the right hand sides of these equations as the nonhomogeneity. Thus equations

(5.12) and (5.11) are weighted through the domain Ω of the problem as in [31],

by the fundamental solution u∗ of Laplace equation in two dimensions. Then by

using the Green’ s second identity, we have

1

Re
ciwi +

∫

Γ

1

Re
(q∗w − u∗

∂w

∂n
)dΓ = −

∫

Ω

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
)u∗dΩ (5.13)

and

ciψi +

∫

Γ

(q∗ψ − u∗
∂ψ

∂n
)dΓ = −

∫

Ω

(−w)u∗dΩ (5.14)

where subscript i denotes the source point, q∗ = ∂u∗/∂n and Γ is the boundary

of the domain Ω. The constant ci = θi/2π with the internal angle θi at the source

point i.

In order to obtain boundary integrals which are equivalent to the domain

integrals in equations (5.13) and (5.14), a dual reciprocity approximation is in-

troduced. The basic idea is to expand the terms described as nonhomogeneity in

the form,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
=

N+L
∑

j=1

αj(t)fj(x, y) (5.15)

and

−w =

N+L
∑

j=1

α̃jfj(x, y) (5.16)

for equations (5.13) and (5.14), respectively. The above series involve a set of

radial basis (coordinate) functions fj(x, y) which are dependent only on geometry

and they are linked with the particular solutions ûj of the equation ∇2ûj = fj .

The unknown coefficients αj are time dependent whereas α̃j are undetermined

coefficients. The numbers of boundary and internal nodes are denoted by N

and L, respectively. Then, the application of the DRBEM leads to the following
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boundary integral equations

1

Re
ciwi+

∫

Γ

1

Re
(q∗w−u∗∂w

∂n
)dΓ =

N+L
∑

j=1

αj(t)

[

ciûji +

∫

Γ

(q∗ûj − u∗q̂j)dΓ

]

(5.17)

and

ciψi +

∫

Γ

(q∗ψ − u∗
∂ψ

∂n
)dΓ =

N+L
∑

j=1

α̃j

[

ciûji +

∫

Γ

(q∗ûj − u∗q̂j)dΓ

]

(5.18)

where q̂j =
∂ûj

∂n
.

When constant elements are used for the approximation of ψ, w and their

normal derivatives on the boundary, the matrix form of the resulting DRBEM

formulation of the vorticity transport and stream function equations are obtained

respectively as
1

Re
(Hw − G

∂w

∂n
) = (HÛ − GQ̂)α (5.19)

and

Hψ −G
∂ψ

∂n
= (HÛ −GQ̂)α̃ (5.20)

where G and H are the square matrices whose coefficients are calculated by

integrating u∗ and q∗ over each boundary element. Thus, the entries of these

matrices are given by

Hij = ciδij +
1

2π

∫

Γj

∂

∂n

(

ln(
1

r
)

)

dΓj

Gij =
1

2π

∫

Γj

ln(
1

r
) dΓj

where r is the modulus of the distance vector from the point i to the element j, δij

is the Kronecker delta function and Γj is the boundary of the jth element. The

matrices Û and Q̂ are constructed by taking each vectors ûj and q̂j as columns

respectively.

By evaluating expressions (5.15) and (5.16) at all boundary and interior (N+L
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points) nodes and inverting, one arrives at

α = F−1

{

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y

}

(5.21)

and

α̃ = −F−1w (5.22)

with the (N+L)×(N+L) matrix F which contains the coordinate functions fj ’ s

as column vectors. The substitution of equations (5.21) and (5.22) into equations

(5.19) and (5.20) respectively results in

1

Re
(Hw − G

∂w

∂n
) = (HÛ − GQ̂)F−1

{

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y

}

(5.23)

and

Hψ − G
∂ψ

∂n
= (HÛ − GQ̂)F−1 {−w} . (5.24)

Observe that the resulting DRBEM discretization produces coupled equations

in vorticity and stream function because of the relationship (5.10). Thus an

iterative procedure is necessary to solve them. The iterative procedure proposed

here reduces equation (5.23) to a set of ordinary differential equations in time

and equation (5.24) to a system of linear algebraic equations in each iteration.

We shall now describe the iterative procedure:

(i) Start with some initial approximations for the vorticity, namely w0.

(ii) Solve the stream function equation appearing in equation (5.24) with w =

w0. By this initial vorticity guess the right hand side of equation (5.24)

produces a constant vector. Moreover, by the insertion of the boundary

conditions for the stream function and its normal derivative and the re-

arrangement of equation (5.24), we end up with a linear system of equations

Ãψ̃ = b̃ (5.25)

where Ã is the coefficient matrix of size (N + L) × (N + L), b̃ is a known
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vector and ψ̃ is the solution vector containing N boundary values of ψ and
∂ψ

∂n
plus L interior values of ψ.

(iii) Once the values of stream functions are obtained both on the boundary and

inside of the domain, the x and y derivatives of stream function can also be

approximated by using the same coordinate functions fj(x, y), i.e.

ψ =
N+L
∑

j=1

β̃jfj(x, y) (5.26)

where β̃j are unknown coefficients and this equation can be rewritten as

ψ = Fβ̃ . (5.27)

Differentiating equation (5.27), we have

∂ψ

∂x
=
∂F

∂x
F−1ψ ,

∂ψ

∂y
=
∂F

∂y
F−1ψ (5.28)

since β̃ = F−1ψ. Thus, the velocity components u and v given in equation

(5.10) in terms of derivatives of stream function at the required nodal points

can be found by using equation (5.28). These obtained values of u and v

will be used as constants in the solution of vorticity tranport equation.

(iv) Solve the vorticity transport equation (5.23). Since equation (5.23) involves
∂w

∂t
, the vorticity is approximated by using the same coordinate function

fj(x, y) as

w =
N+L
∑

j=1

βj(t)fj(x, y) (5.29)

where βj(t) = −α̃j are time dependent unknown coefficients as given in

equation (5.16) and the system w = Fβ leads to the convective terms of
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the vorticity

∂w

∂x
=
∂F

∂x
F−1w ,

∂w

∂y
=
∂F

∂y
F−1w (5.30)

since β = F−1w.

Substituting convection terms back into equation (5.23) one can obtain

1

Re
(Hw −G

∂w

∂n
) = (HÛ − GQ̂)F−1

{

∂w

∂t
+ u

∂F

∂x
F−1w + v

∂F

∂y
F−1w

}

(5.31)

and finally rearranging, we end up with the following system of ordinary

differential equations

Cẇ + H̃w − G̃
∂w

∂n
= 0 (5.32)

where the matrices C, H̃ and G̃ are

C = −(HÛ −GQ̂)F−1

H̃ =
1

Re
H + CR1 + CR2

G̃ =
1

Re
G

(5.33)

and

R1 = u
∂F

∂x
F−1 , R2 = v

∂F

∂y
F−1 . (5.34)

Now, from equation (5.32), the standard form of the first order initial value

problem

ẇ + Bw = D
∂w

∂n
(5.35)

is obtained, in which B = C−1H̃, D = C−1G̃ and superscript dot denotes

the time derivative. Then, system (5.35) is integrated in time using differ-

ential quadrature method which enables us to obtain vorticity values at any

required time level.
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(v) Repeat steps (ii)-(iv) until the convergence is obtained. In our calculations

we terminate the procedure when the difference between the values of ψ and

w at two successive iterates in L∞ norm is less than a preassigned tolerance.

5.1.2 Application of the DQM to vorticity transport equa-

tion

The differential quadrature method approximates the derivative of a smooth

function at a grid point by a linear weighted summation of all the functional

values in the whole computational domain, [47]. In this study DQM is employed

to discretize the time derivative of w in equation (5.35).

The DQM analogue of the first order derivative of a function f (t) at a grid

point ti can be expressed as

df(t)

dt

∣

∣

∣

∣

ti

=

K
∑

j=1

a
(1)
ij f (tj) (5.36)

where i = 1, 2, . . . , K is the number of grid points ti in the time direction and a
(1)
ij

are the weighting coefficients for the first order derivative approximations of f(t),

which are determined in Section 4.2.1 by using the polynomial based differential

quadrature method [47, 62].

The weighting coefficients for the first order derivative are given as

a
(1)
ij =

M (1)(ti)

(ti − tj)M (1)(tj)
i 6= j , i, j = 1, 2, . . . , K (5.37)

a
(1)
ii = −

K
∑

j=1, j 6=i

a
(1)
ij (5.38)

where

M (1)(tj) =

K
∏

k=1, k 6=j

(tj − tk) (5.39)

and

a
(1)
ij = a

(1)
j (ti) .
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By using the DQM time approximation, the first order initial value problem

(5.35) for vorticity w becomes

K
∑

j=1

a
(1)
ij wj + Bwi = Dqi , i = 1, 2, . . . , K (5.40)

where the vectors wi and qi are, infact, the vectors containing the values of

vorticity w and
∂w

∂n
respectively at the ith time level and they are given as

wi =
{

w1i, w2i, . . . , wNi, w(N+1)i, . . . , w(N+L)i

}

qi =

{

∂w

∂n

∣

∣

∣

∣

1i

,
∂w

∂n

∣

∣

∣

∣

2i

, . . . ,
∂w

∂n

∣

∣

∣

∣

Ni

, 0, . . . , 0

}

(5.41)

in which wji = wj(ti) and
∂w

∂n

∣

∣

∣

∣

ji

=
∂w

∂n

∣

∣

∣

∣

j

(ti) .

Equation (5.40) gives a system of linear equations for each time level ti which

can be denoted in matrix vector form

SW̃ = D̃q̃ (5.42)

where

S = A + B̃ . (5.43)

The matrices A, B̃ and D̃ are expressed as

A =















a11 a12 . . . a1K

a21 a22 . . . a2K

...

aK1 aK2 . . . aKK















(5.44)

with (N + L) × (N + L) submatrices aij defined as

aij = a
(1)
ij I ,

159



and

B̃ =















B

B
. . .

B















, D̃ =















D

D
. . .

D















. (5.45)

The sizes of the matrices S , B̃ , A and D̃ are (N + L)K × (N + L)K and

the identity matrix I is of size (N + L) × (N + L) .

The (N + L)K × 1 vectors W̃ and q̄ are defined as

W̃ =
{

w11, w21, . . . , w(N+L)1;w12, w22, . . . , w(N+L)2; . . .

; . . . ; w1K , w2K , . . . , w(N+L)K

}

(5.46)

q̄ =

{

∂w

∂n

∣

∣

∣

∣

11

,
∂w

∂n

∣

∣

∣

∣

21

, . . . ,
∂w

∂n

∣

∣

∣

∣

N1

, 0, . . . , 0;
∂w

∂n

∣

∣

∣

∣

12

, . . . ,
∂w

∂n

∣

∣

∣

∣

N2

, 0, . . . , 0; . . .

; . . . ;
∂w

∂n

∣

∣

∣

∣

1K

, . . . ,
∂w

∂n

∣

∣

∣

∣

NK

, 0, . . . , 0

}

.

(5.47)

In the linear system (5.42) boundary conditions (some of W̃ and some of q̃

nodal specified values) are inserted by interchanging the negative of corresponding

columns and reordering the solution vector in terms of unknown W̃ and q̃ nodal

values. When the initial condition is also inserted at the interior plus boundary

nodes for the initial time level, system (5.42) finally becomes a rectangular system

since known initial W̃ values are passed to the right hand side leaving less number

of unknowns than the number of equations.

The resulting reordered form of system (5.42) is given as

S̃X = Y (5.48)

where the size of the matrix S̃ is ((N + L)K − L) × ((N + L)K − L). The
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vectors X and Y are of the size ((N + L)K − L) × 1 if the boundary condition

is of Dirichlet type. For Neumann type of boundary conditions the sizes of S̃, X

and Y are appropriately arranged. The vector X contains the unknown values of

w and its normal derivative for each nodal points at all the required time levels

whereas Y contains all boundary plus initial information. Therefore, once system

(5.48) is solved, one can obtain the solution for vorticity on the entire domain at

any time level at one stroke and then iteratively at steady state.

5.2 Numerical Results

Three test problems are considered. As a first example, the Navier-Stokes

equations in a square domain (0 ≤ x, y ≤ 1), when an external force is present,

is solved to see the accuracy and efficiency of present numerical method since

the exact solution is available. The second example is the lid-driven cavity prob-

lem for which the fluid in the cavity is driven by the motion of the upper wall

with a constant velocity. In the DRBEM discretization for the spatial domains,

we use suitable number of constant boundary elements and some interior nodes

for presenting the solution in terms of graphics. For the time domain Gauss-

Chebyshev-Lobatto points are used in the differential quadrature discretization.

The two-dimensional natural convection problem in a square cavity is also solved

as a third application with the proposed iterative procedure. Now, the Navier-

Stokes equations include the buoyancy force generated as a result of fluid density

difference caused by the temperature difference. The buoyancy term is computed

based on the Boussinesq approximation.

5.2.1 Navier-Stokes equations in a square

The aim of this first problem is to verify the accuracy of the proposed method.

The equations now include a force term f as
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∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
=

1

Re
∇2w + f

∇2ψ = w

(5.49)

with no slip boundary conditions for the stream function (i.e. ψ|Γ = 0) and
∂ψ

∂n
|Γ = 0, where Γ is the boundary of the square domain 0 ≤ x, y ≤ 1. Here the

velocity field is given by u = −∂ψ/∂y and v = ∂ψ/∂x. Boundary conditions for

the vorticity are taken from the exact solution, [66],

ψ = − sin t sin2 πx sin2 πy

w = −π2 sin t(cos 2πx+ cos 2πy − 2 cos 2πx cos 2πy)

u = π sin t sin 2πy sin2 πx

v = −π sin t sin 2πx sin2 πy

(5.50)

and the force is given by

f = −π2 cos t(cos 2πx+ cos 2πy − 2 cos 2πx cos 2πy)

+π4 sin2 t sin 2πx sin 2πy(cos 2πx− cos 2πy)

− 4

Re
π4 sin t(cos 2πx+ cos 2πy − 4 cos 2πx cos 2πy) .

(5.51)

In the DRBEM discretization we use N constant boundary elements ranging

from N = 64 to 80 and K = 4 GCL points are taken in the time discretization

for DQM. In Figures 5.1, 5.2 and 5.3 the agreement of numerical solutions with

exact ones is depicted for both the stream function and the vorticity in terms of

contours at several time levels for the Reynolds number Re = 500, 1500 and 2000

respectively. It is noted that this viscous flow problem has the particularity of

having a flow pattern, which is independent of the Reynolds number.
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Figure 5.1: Stream function and vorticity contours for Re = 500, N = 64, K = 4,
T = 10
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Figure 5.2: Stream function and vorticity contours for Re = 1500, N = 72,
K = 4, T = .5
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Figure 5.3: Stream function and vorticity contours for Re = 2000, N = 80,
K = 4, T = 1

5.2.2 Lid-driven cavity flow

The second problem is the classical lid-driven cavity flow in a square domain

Ω = [0, 1]× [0, 1] containing a recirculating flow induced by the motion of the lid,

[67].

We consider the equations governing the transient, laminar flow of a viscous

incompressible fluid in a square cavity. The fluid in the cavity is driven by the

motion of the upper wall which is assumed to move with a constant velocity

u = −1. The governing equations are given by

1

Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y

∇2ψ = −w .

The velocities and the stream function are prescribed on the boundaries of the

square cavity (Figure 5.4) bounded by three motionless walls and by fourth wall

moving in its own plane. These boundary conditions are used for the solution of

the stream function.

In order to solve the vorticity transport equation, vorticity boundary con-

164



Figure 5.4: Boundary conditions for the lid-driven cavity problem

ditions are required and these values can be approximated from the discretized

stream function equation using the relation

wi,j = −∇2ψi,j . (5.52)

The boundary approximation for w is obtained on any boundary by taking

ψnn|0 = α0ψ0 + α1ψp + α2ψq + α3ψn|0 (5.53)

where subscripts 0, p and q indicate ψ values on the boundary mesh point, ph

and qh distances away from the boundary respectively, as shown in Figure 5.5.

The expansion of ψp and ψq into Taylor series about the mesh point numbered
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Figure 5.5: ψ values on the boundary mesh points

0 and reorganization of terms gives

ψnn|0 = ψ0(α0 + α1 + α2) + ψn|0(phα1 + qhα2 + α3)

+ψnn|0(
p2h2

2
α1 +

q2h2

2
α2) + ... .

(5.54)

In this latter equality, by setting the corresponding terms equal we obtain the

solution

α0 =
−2(p3 − q3)

h2p2q2(p− q)
, α1 =

−2q

h2p2(p− q)

α2 =
−2p

h2q2(p− q)
, α3 =

−2(p+ q)

hpq

(5.55)

where p and q are positive integers and p 6= q. Thus, the boundary approximation

becomes

w0 = −h−2

[

− 2(p3 − q3)

p2q2(p− q)
ψ0 −

2q

p2(p− q)
ψp

+
2p

q2(p− q)
ψq −

2h(p+ q)

pq
ψn|0

]

(5.56)

which involves the unknown ψ values at distances ph and qh along the normal

and has a truncation error of order h2. Since boundary values of ψ, ψx, ψy for the

cavity flow are given, the boundary values of w can be obtained from equation

(5.56).
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In the computations p = 2 and q = 1 are taken. We use N = 56, 88 and 112

constant boundary elements and K = 3, 2 and 2 time discretization points for

the values of Reynolds number Re = 100, 500 and 1000, respectively. The steady

state stream function and the vorticity values are obtained after 59, 116 and 200

iterations with an accuracy 10−4 for the Reynolds number Re = 100, 500 and

1000 and these results are presented, respectively in Figures 5.6, 5.7 and 5.8.

At a Reynolds number of around 100, the streamline primary vortex moves

towards the left hand wall. At Reynolds numbers of Re = 500 and Re = 1000

the primary vortex starts to move towards the cavity center. As the Reynolds

number increases up to 500 the recirculations appear at the lower corners for the

streamlines. At Re = 1000 the recirculation close to upper right corner shows

up since the fluid movement is affected with the velocity of the lid which moves

to the left. As Re increases, the vorticity contours move away from the cavity

center towards the cavity walls indicating that strong vorticity gradients develop

on the lid and the cavity walls (especially x = 0 wall). The fluid begins to rotate

with a constant angular velocity. These behaviours are in good agreement with

the behaviours observed in [54, 68, 69].

The numbers of the boundary elements N and the time points K for one time

block are so small that the whole procedure is still more economical than the

FDM which has to use very small time increment for stability. Although, there is

no certain relationship between N , K and L on the accuracy and the convergence

of the numerical solution, one should be careful in the choice of N , K and L for

not having an oversized final linear system of equations for the solution. Thus,

the application of the present method to the three-dimensional problems is not

recommended since one has to deal with much larger matrices.

Figures 5.9 and 5.10 show the velocity profiles for u along vertical line (x =

0.5) and v along horizontal line (y = 0.5) passing through the geometric center of

the cavity for the values of Reynolds number Re = 100 and 400. The numerical

results obtained by the coupling of the DRBEM and DQM is compared with the

results of Ghia [67] (by taking u = 1 on the upper lid as is done in [67]) and it is

observed that they are in good agreement.
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Figure 5.6: Stream function and vorticity contours for Re = 100, N = 56, K = 3
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5.2.3 Natural convection in a square cavity

In situations where the fluid may be treated as incompressible and tempera-

ture differences are small, momentum equations (5.3) and the continuity equation

(5.4) are sufficient to specify the velocities and pressure. If heat flux occurs (tem-

perature not constant), at least one additional equation is required. In some of

these instances, the energy equation may be used. Natural convection in a dif-

ferentially heated enclosure which is a popular problem as testing any proposed

numerical scheme is added here since the governing equations can be treated eas-

ily with the proposed method. The vorticity transport equation is coupled to

the energy equation through the buoyancy force RaPr
∂T

∂x
and the energy equa-

tion is exactly in the same form (convection term multipliers are the velocity

components) of vorticity transport equation for the Navier-Stokes equations.
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The equations are given as, [55, 57],

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
= Pr∇2w +RaPr

∂T

∂x

∇2ψ = w

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= ∇2T

(5.57)

where L
′

, α/L
′

, α/L
′2

, L
′2
/α and T = (θ

′−θ′

c)/(θ
′

h−θ
′

c) are used as scaled factors

for length, velocity, vorticity, time and temperature in the above nondimensional

form of the governing equations. The nondimensional parameters are defined as

Rayleigh number, Ra = gβ(Ts − T∞)L′3/αν, and Prandtl number, Pr = ν/α.

Here α is the thermal diffusivity, g gravitational acceleration, β is the coefficient of

thermal expansion, Ts is the temperature of wall and T∞ is the fluid temperature

far from the surface of the object.

Equation (5.57) is subjected to initial conditions

w = T = 0 . (5.58)

The no-slip boundary conditions of the velocity at boundary walls are as-

sumed. Temperature has Dirichlet type conditions as 1 and 0 at the left and right

walls of the cavity [0, 1]× [0, 1] whereas adiabatic conditions
∂T

∂y
= 0 are imposed

on the top and bottom (see Figure 5.11). The proposed coupled numerical al-

gorithm is applied to determine the stream function, vorticity and temperature

variations with the given initial values iteratively.

In Figure 5.12 we present streamlines, vorticity and temperature contours at

steady state for Ra = 103, 104 and 105 with the number of constant boundary

elements N = 48, 64 and 80 respectively. As the Rayleigh number increases the

boundary layer formation starts for all the variables stream function, vorticity

and isotherms near the walls x = 0 and x = 1. It is also observed from isotherms

that the temperature contours undergo an inversion at the central region of the

cavity. The primary vortex of the stream lines tends to seperate and form two
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Figure 5.11: Boundary conditions for the natural convection flow

vortices through the corners (0, 1) and (1, 0) as the Rayleigh number increases.

These behaviours are in good agreement with the previously published results

[55, 56, 57]. The obtained results indicate that present method is capable of

handling high Rayleigh number without difficulties and with a considerable small

number of mesh points.

In Table 5.1, the values of the Nusselt number on the vertical boundary at

x = 0, Nu0, and the average Nusselt number throughout the cavity, Nu, obtained

by the present study are compared with the benchmark solution given by Davis,

[70], for Ra = 103, 104 and 105. As Rayleigh number increases we need to take

more boundary elements to obtain better accuracy. Although there are some

differences in the values in Table 5.1, the flow patterns obtained by the coupling

of the DRBEM and DQM show no distinguishable difference.
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Table 5.1: Numerical results of natural convection for Ra = 103, 104 and 105

Ra = 103 Ra = 104 Ra = 105

Nu0 Nu Nu0 Nu Nu0 Nu

DRBEM&DQM 1.118 1.105 2.274 2.352 4.376 4.369
Davis[70] 1.117 1.118 2.238 2.243 4.509 4.519

As a result, the transient two-dimensional Navier-Stokes equations in stream

function-vorticity form are solved by using the dual reciprocity BEM in spatial

and DQM in time domains. The DQM discretization in time direction results in

a system of linear algebraic equations which gives the solution vector for vorticity

at the required time levels at one stroke. The vorticity boundary conditions are

computed by a finite difference formula which uses both the boundary and interior

stream fuction values. The proposed numerical algorithm is also applicable for the

solution of natural convection in a square cavity. It gives very good accuracy with

a considerable small number of mesh points in both space and time directions.
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chapter 6

conclusion

This thesis, in general, is devoted to the numerical solutions of convection-

diffusion type equations using the boundary element method. We consider the

problems in two groups, mainly steady and unsteady differential equations, and

solve by using the direct BEM and the dual reciprocity BEM, respectively.

First, the fundamental solution of steady magnetohydrodynamic flow equa-

tions in the original coupled form which are convection-diffusion type is estab-

lished to be able to apply the BEM directly with the most general form of wall

conductivities. The applications are given for the pressure driven MHD flows

in rectangular ducts with insulating and/or conducting, partly insulating partly

conducting walls, and then for electrically driven MHD flows in infinite regions.

The case of inclined applied external magnetic field is also considered. As the

value of the Hartmann number M , increases boundary layer formation starts

to take place at the insulated parts of the boundary. With the increase in the

length of the conducting part, a stagnant region develops and the induced mag-

netic field has its maximum value in front of the conducting portion. These are

the well known characteristics of the MHD duct flow. Also, as M increases par-

abolic boundary layers form emanating from the points of discontinuities. For

the MHD flow on the upper half plane with mixed boundary conditions on the

x-axis, similar results are observed for increasing M and the length of the con-

ducting portion. The boundary layer thicknesses are also computed directly from

the boundary element formulations of MHD flow in infinite regions. The thick-

ness of the boundary layer (Hartmann layer) near the insulated walls, which are

perpendicular to the applied magnetic field, is of order 1/M . The thickness of the

parabolic boundary layer which emanates from the point where the conductivity

changes is computed and found to be of order 1/
√
M . This is also in accordance
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with the secondary boundary layer in rectangular ducts. It is also noticed that

an increase in M needs more boundary elements for obtaining accurate solutions.

The BEM application with the derived fundamental solution also enables one to

obtain solutions for high values of Hartmann number.

In the second part of the thesis, the unsteady differential equations are solved

by a numerical scheme which is the coupling of the dual reciprocity BEM with

the differential quadrature method. The DRBEM and DQM are used in the

discretization of spatial and time domains, respectively. The DRBEM is preferred

since it gives the flexibility of using fundamental solution of Laplace equation

which is rather simple to implement. Thus, it is possible to treat the space and the

time derivatives of the unknown as well as the unknown itself, and the nonlinear

terms in the equation as the nonhomogeneity. The DRBEM application results

in a system of initial value problems in time which is going to be solved by a time

integration scheme. Then, the application of the DQM for the time derivatives in

these ordinary differential equations gives an algebraic system of equations to be

solved for the unknown nodal values containing both discretized space and time

points on the whole computational domain. Thus, one can obtain the solution at

any required time level including steady state at one stroke and without the need

of a time iteration which usually needs very small time increments for stability.

Another advantage is that the DQM allows one to use large step sizes since it

is unconditionally stable. The proposed method is general in the sense that it

is applicable to both linear and nonlinear equations. The diffusion equation in

a circle with mixed type boundary conditions, variable coefficient convection-

diffusion equations, and also unsteady MHD duct flow equations with insulating

walls conditions are solved giving very good accuracy and the solutions are stable.

Elastodynamic problems containing second order time derivatives are also solved

since DQM is suitable for higher order derivatives. Finally, the solution of the

Navier-Stokes equations which are nonlinear in nature is able to be obtained

with this procedure. Applications are on the lid-driven cavity flow and natural

convection flow in a square cavity. One is able to obtain solutions for the values of

Reynolds number up to 1000 in the Navier-Stokes equations and Rayleigh number

values up to 105 in natural convection flow.
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Further investigations could be concentrated on obtaining solutions for higher

values of Reynolds and Rayleigh numbers in solving Navier-Stokes and natural

convection equations respectively. We also believe that the procedure outlined in

Chapter 3 for deriving the fundamental solution of coupled MHD equations, can

be extended for the derivation of fundamental solution of Navier-Stokes equations.

Since the Navier-Stokes equations are coupled and nonlinear in nature, this needs

further studies on coupled partial differential equations.
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