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abstract

FEATURE EXTRACTION FROM ACOUSTIC AND

HYPERSPECTRAL DATA BY 2D LOCAL

DISCRIMINANT BASES SEARCH

Kalkan, Habil

Ph.D., Department of Information Systems

Supervisor: Prof. Dr. Yasemin YARDIMCI

December 2008, 89 pages

In this thesis, a feature extraction algorithm based on 2D Local Discriminant

Bases (LDB) search is developed for acoustic and hyperspectral data. The deve-

loped algorithm extracts the relevant features by both eliminating the irrelevant

ones and/or by merging the ones that do not provide extra information on their

own. It is implemented on real world data to separate aflatoxin contaminated or

high risk hazelnuts from the sound ones by using impact acoustic and hyperspect-

ral data. Impact acoustics data is used to sort cracked and intact shell hazelnuts

with high classification accuracy. Hypespectral images of the shelled and roasted

(SRT) hazelnuts are used for classification and the algorithm extracted the spect-

ral and spatial-frequency features for that classification. Aflatoxin concentration

of the SRT category hazelnuts is automatically decreased to 0.7 ppb from 608

ppb by eliminating the detected contaminated ones.

Keywords: LDB, feature extraction, acoustic, hyperspectral, food safety.
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öz

2B YEREL AYIRTAÇ TABANLARI ARAŞTIRMASI İLE

AKUSTİK ve HYPERSPEKTRAL VERİDEN

ÖZNİTELİK ÇIKARIMI

Kalkan, Habil

Doktora, Enformatik Enstitüsü

Tez Yöneticisi: Prof. Dr. Yasemin YARDIMCI

Aralık 2008, 89 sayfa

Bu tezde, akustik ve hyperspektral veriden 2B Yerel Ayırtaç Tabanları (YAT)

araştırmasına dayalı bir öznitelik çıkarımı algoritması geliştirilmiştir. Gelişti-

rilen algoritma gereksiz özniteliklerin atılması ve/veya tek başlarına fazladan

bilgi taşımayanların birleştirilmesi sureti ile gerekli öznitelikleri çıkarır. Çarpma

akustik verisi kullanılarak çatlak kabuklu fındıklar sağlam kabuklu olanlardan

yüksek bir sınıflandırma oranı ile ayıklanmıştır. Kavrulmuş iç fındıkların (SRT)

sınıflandırılmasında hyperspektral görüntüler kullanılmış ve algoritma bu sınıflan-

dırma için spektral ve uzamsal-frekans özniteliklerini çıkarmıştır. Tespit edilen

bozulmuş fındıkların ayıklanması ile SRT fındıklarındaki aflatoksin yoğunlugu

otomatik olarak 608 ppb den 0.7 ppb’ye düşmüştür.

Anahtar Kelimeler: YAT, öznitelik çıkarımı, akustik, hyperspektral, gıda güvenliği.
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chapter 1

introduction

The recent developments in electronics and computer technologies have made

capturing and storing of images, signals or video in real-time easy and inexpen-

sive. Machine learning algorithms analyze these data automatically. Feature

extraction algorithms in machines learning focus on getting the useful and nec-

essary content of the information. In this thesis a feature extraction technique

based on Local Discriminant Bases (LDB) is developed to explore the location of

the discriminative features for acoustic and hyperspectral data. The algorithm is

tested on a real world problem in food safety field. The developed algorithm is

robust and adaptive to other type of data and it is able to extract the relevant

features which increase the performance of learning algorithms.

The feasibility of real-time food sorting and grading systems with satisfactory

performance depends on how well the acquired data is represented with fewer

number of features for classification. The data taken from food item may be high

dimensional and low quality with low signal to noise ratio. High dimensional data

is expected to increase the accuracy and effectiveness of classification algorithms.

However, the increase in data dimension not only increases the computational

complexity, but also decreases the classification accuracy, when a limited number

of training data is available [1, 2]. Moreover, the high dimensional data increases

the processing time which is inversely proportional to throughput of the system.

Therefore, the data dimension should be reduced by either eliminating the irrele-

vant ones or by combining the features that do not provide extra information on

their own.

The current dimensionality reduction algorithms are usually classified into

two categories: feature extraction and feature selection. Feature selection is the

process of moving to low dimensional feature space by eliminating the irrele-

1



vant features as much as possible and this process does not distort the original

data by transformation. Unlike feature selection, feature extraction is defined

as transforming to lower dimensional feature space by using various transforma-

tion methods. Although the reduction in dimension allows learning algorithms

to operate faster, this may remove the significant interpretation of original data.

Feature extraction is extensively studied by various researchers [3, 4, 5, 1].

Local Discriminant Bases (LDB) algorithm, which originated from Best Bases

algorithm [6] is developed to extract local information from data by using a divide

and conquer approach [7]. The original LDB algorithm searches discriminant

bases, which are regarded as feature, of the 1D signals either in time or frequency

axis. However, it has been shown that bases search in both axes is crucial for

classification[8, 9, 10]. LDB algorithm is also adapted to hyperspectral data

to get the relevant features by accepting the hyperspectral curve of pixels as a

one dimensional signal [11, 12, 1]. In this thesis, LDB algorithm is applied to

a practical nut sorting method to get the location of discriminative features in

data.

1.1 Motivation

Hazelnuts are extensively used in the chocolate and confectionary industries.

They are produced in Iran, USA and Mediterranean Countries such as Turkey,

Italy, Spain, France, Greece and Portugal. However, Turkey is the major pro-

ducer of hazelnuts in that 70% percent of the hazelnuts in worldwide is produced

by Turkey and about 80% of the Turkish Hazelnut export is consumed by the

European Union (EU) countries.

Unfortunately hazelnuts are prone to aflatoxin formation like many other nat-

ural products among which are corn, red pepper, almonds, and figs. The afla-

toxins are a group of structurally related toxic compounds produced by certain

strains of the fungi , Aspergillus Flavus and Aspergillus Parasiticus. Under favor-

able conditions of temperature and humidity, these fungi grow on certain foods

and feeds, resulting in the production of aflatoxins. Aflatoxins produce acute

necrosis, cirrhosis, and carcinoma of the liver on laboratory animals at low quan-
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tities [13]. Due to the health risks they pose on humans; it is desirable to lower the

aflatoxin levels in consumed food items. The present allowed level for aflatoxin

contamination in seed is 20 ppb (ng/g) and 4 ppb in USA and EU, respectively.

The hazelnuts are subject to aflatoxin analysis before exporting. A total of

40 incremental samples of 300 gr each are taken from the lot of 2 tonnes and

analyzed via chemical methods. A few highly aflatoxin contaminated kernels in

the incremental sample may increase the aflatoxin concentration of the sample

and finally may result the cancellation of export of the examined lot. In addition,

the sample which has undergone chemical testing can no longer be consumed.

Therefore, real-time passive screening procedures which do not destroy samples

are highly desirable and can be used to detect and remove such contaminated

samples.

For real time sorting systems, a classifier with maximum accuracy but with

minimum feature vector dimension is desirable. In addition, the feature vector

should be based on least amount of sensor data so that a simple and fast data

acquisition system can be employed. Unlike the traditional feature extraction

algorithm which use all the candidate features, LDB algorithm combines these

features to obtaine a more compact feature set. These features are fed to the

feature selection step to identify the most relevant part of the data.

In this thesis, we developed 2D ”Local Discriminant Bases” based feature ex-

traction algorithms to detect contaminated or potentially contaminated hazelnuts

by non-invasive and rapid methods. We used impact acoustics and hyperspectral

imaging data depending on the hazelnut kernels type and the developed algorithm

is tested on both types of data. The algorithm s developed to

1.2 Thesis statement

In this thesis, we modified the original LDB algorithm to two dimensions to get

the exact location of the discriminative features in data space. The bases search

is performed in time and frequency axis of impact acoustic data, spectral and

spatial-frequency axis for hyperspectral data. The developed algorithm decreases

the feature dimension by either eliminating the irrelevant ones and/or combining
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the ones that do not provide extra information on their own.

This algorithm is implemented on selecting the contaminated or potentially

contaminated hazelnut kernels by using impact acoustic and hyperspectral data.

It will be able to sort the hazelnut kernels by fewer number of features with high

classification accuracy. It is also observed that prior to feature selection, feature

extraction is a critical step on getting the discriminative features.

1.3 Thesis overview

Chapter 2 reviews the principle of feature extraction and selection algorithms

and provides a brief overview on Best Bases algorithm and Local Discriminant

Bases algorithm which the proposed feature extraction algorithm originates from.

It also gives the shift invariance concept that is used for discussion of proposed

algorithm. Some dissimilarity metrics and the classifier used in the study are

given in Section 2.

Chapter 3 explains the aflatoxin problem in foods and especially in hazelnuts

which is among the major export goods of Turkey. It also presents some non-

invasive aflatoxin detection algorithm developed for specific food items. This

section also describes impact acoustics sorter system and hyperspectral imaging

systems which are also used to acquire data for our algorithm.

Chapter 4 presents the proposed feature extraction algorithm by 2D Local

Discriminant Bases search for impact acoustic and hyperspectral data. Section

4.1 focuses on the algorithm for acoustic data whereas Section 4.2 focuses on

hyperspectral data. Both algorithms are same in principle but have some minor

differences depending on the data type.

Chapter 5 presents the data acquisition procedures for impact acoustic data

and the signal acquired from hazelnuts. The weight of the hazelnut for different

classes and the weight versus signal energy correlation are given in this Section

5.1. Section 5.2 gives the hyperspectral image acquisition procedures and the

hyperspectral images of shelled hazelnuts. The aflatoxin concentration of the

classes and the preprocessing of the hyperspectral images is also given in Section

5.2.

4



Chapter 6 begins by presenting the output of the steps of feature extraction

algorithm developed for impact acoustic data. The classification results obtained

with extracted features are compared to other type of features extracted from the

same dataset in Section 6.1. The filter selection criteria and the effect of noise

and shift invariance on classification are given in succeeding three sections. The

relevance of extracted features for classification is compared to candidate feature

set by two different feature selection algorithms.

Chapter 7 presents the findings of hyperspectral data classification on four

different classification problems defined on separating the mold contaminated or

aflatoxin contaminated kernels of two different hazelnut forms. The outputs of

the spectral spatial-frequency feature extraction steps are given in detail for the

mold detection of shelled&roasted hazelnut kernels. The summary of classsifica-

tion results and the relevance of extracted features are given for each problem

separately.

Chapter 8 presents conclusions and suggests future works.

5



chapter 2

Literature Review and

Background

2.1 Feature Extraction and Selection

In classification problems, it is expected that the high dimensional data should

increase the accuracy and effectiveness of the classification. However, it is ob-

served that the increase in the dimension decreases the classification accuracy

when a limited number of training data is available [1]. When the dimension of

the data increases the number of training samples should be increased exponen-

tially in order to retain the accuracy of classifier. This is a common problem in

hyperspectral data. In order to overcome this limitation, the number of dimen-

sion is reduced by eliminating the irrelevant ones or by combining features that

do not provide extra information on their own [14, 5, 11].

The current dimensionality reduction algorithms are usually classified into two

groups; feature extraction and selection. Feature extraction is defined as trans-

forming to M dimensional feature space from N dimensional (M<N) measured

data space [15] by using various transformation methods. Although the reduc-

tion in dimension allows learning algorithms to operate faster, this may remove

the significant interpretation of original data.

Feature extraction algorithms are mostly developed depending on the problem

and the data set. One of the common feature extraction algorithm is Principle

Component Analysis (PCA) [4]. In PCA, new sequences of uncorrelated variables

are generated by using Karhunen-Loeve transformation. The first M number of

components are selected and used for classification or representation. This en-

ables us to represent the high dimensional data by a few principle component.
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One drawback of PCA is that it works with whole data set for transformation. Jia

and Richards [5] segmented the PCA to remove the need for whole hyperspectral

data set. They developed a PCA based feature extraction algorithm: Segmented

Principle Component Transformation (SPCT). In SPCT, the highly correlated

adjacent bands in hyperspectral data are grouped by edge detection. The princi-

ple components in each group are computed and each grouped is represented by a

few components (eigenvectors) with high eigenvalues. The eigenvectors are then

pruned according to their Bhattacharya distance between classes. However, the

projection based dimension reduction methods are sensitive to noise. Therefore

projection should be made using a large number of samples in order to overcome

this problem. Although the simplicity and popularity of PCA, the features de-

rived from PCA projection may not have better discrimination than the features

in original data space [12]. Unlike to tranformation based algorithms, relevant

features can be extracted by first order and second order statistics[3] or Best

Bases Extraction algorithms [11] and etc..

Unlike feature extraction, feature selection is the process of moving to the K

dimensional feature space from M (K<M ) dimensional feature space by eliminat-

ing the irrelevant features as much as possible. The feature selection algorithms

in the literature are usually performed [16] on four steps;

Step 1: Select an initial point in feature space

Start with an initial point in feature space. This selection is important because

it may effect to find the solution in feature space.

Step 2: Search feature space

The search strategy of feature space is important because it determines the

search direction. There exist 2N possible feature subsets in N dimensional feature

space. Generally speaking, there are two different search strategies for subset

selection. The first one is exhaustive search strategy where all the subsets are

investigated individually. This is an NP complete problem and suffers from com-

putation complexity. The second one are heuristic strategies, which search the
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feature space by heuristics methods. Basically, there are three types of heuristic

method that is primarily works on addition or deletion approach [17].

Forward Selection starts with empty subset and successively expands by

adding most relevant feature that will provide local improvement to the problem.

Backward Elimination starts with complete subset and successively deletes

the most irrelevant feature from the current subset.

Stepwise Bidirectional Selection starts with null, full or randomly selected

feature subset and adds the most relevant feature or removes the most irrelevant

feature from the current subset.

Step 3: Evaluation of selected feature subset

The merit of the selected feature subset is evaluated by wrapper or filter model

[Figure 2.1]. Evaluation functions which measure and determine the classification

capability of individual features are used in filter model. In contrast, induction

algorithm (learning accuracy) is executed to measure discrimination capability

of the feature set in wrapper model. In wrapper model, data of the investigated

feature subset is randomly divided into test and train set. An initial machine

learning algorithm is trained with the train set and tested with the test set. The

accuracy of the testing gives the merit of the investigated feature sub set. The

wrapper model is slower than the filter function because the induction function

is executed at every feature increment. However, this approach may give better

results compared to filter models [18].
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Figure 2.1: a) Filter and b) wrapper feature subset selection model

Step 4: Termination of feature selection

The feature subset selection process is terminated by predefined criteria. The

process can be stopped when the addition of new feature does not improve the

merit of feature subset (this is classification accuracy in wrapper model) or the

process can be stopped at a given number feature subset size.

The critical step in feature selection algorithms is to evaluate the merit of the

feature subset. Various evaluation functions may be used such as Mutual Infor-

mation [19], Entropy, Information Gain, MDL, Gini, Relief, etc. [17, 16]. Hall

[16] developed Correlation Based Feature Selection (CFS) based on the Pearson”s

Correlation. In CFS algorithm, the initial feature subset of size k−1 is increased

by the feature which gives the maximum merit Ms.

Ms =
krcf√

k + k(k − 1)rff
(2.1)
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where rcf is the mean class correlation and rff is the average feature-feature

intercorrelation. The CFS algorithm aims to the find the feature subset including

the features that are higly correlated with the class but uncorrelated with each

other. The algorithm is terminated when the there is no improvement in the Ms

value.

2.2 Best Bases Algorithm

Coifman and Wickerhauser developed a best basis algorithm for signal com-

pression [6]. The best basis method firstly expands the signal into orthonormal

wavelet or trigonometric basis in binary tree structure. Each basis vetor has dif-

ferent location in time-frequency axis and some of them may be redundant for

signal representation. The importance of each basis (node at binary tree) is eval-

uated at the second step by using a defined minimization criterion, which is the

entropy for signal compression. At the third step, the binary tree is pruned from

bottom to top by using the entropy values of nodes. The best-basis algorithm

can be summarized as follows,

Step 1: Define a decomposition method (wavelet or trigonometric) and expand

the signal into orthonormal basis vectors in binary tree structure.

Step 2: Evaluate the information cost (entropy) of each node by using the

expansion coefficients. The entropy H of a sequence {p} with
∑
pi = 1 can be

calulated as

H(p) = −
∑
i

pilog(pi) (2.2)

Step 3: Prune the binary tree by mother and child node comparison.

The nodes at the level, right before the deepest level in tree are firstly selected

as parent nodes. The parent node is discarded if its children nodes have less cu-

mulative information and then the cumulative value of children are set to parent’s
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value. Otherwise, the children are destroyed and the parent is kept. This parent

is set as a child for the higher level. The survived nodes at the end of the whole

pruning operation are the nodes that are the best basis for signal compression.

2.3 Local Discriminant Basis Algorithm

As stated before, the best-basis algorithm [6] is developed to get local infor-

mation for signal representation and compression. Entropy values of the nodes

are used as information cost at pruning the binary tree. Saito and Coifman [7]

adapted this best-basis algorithm for classification of signals and images. The

local discriminant basis of the signals are evaluated and used for classification

purposes. Instead of using the entropy, they proposed to use a dissimilarity cost

function which will maximize the difference in time-frequency energy distributions

of classes. The LDB algorithm first decomposes the signal into orthonormal basis

(nodes) by using wavelet trigonometric packets in binary tree structure. Each

basis vector has different time-frequency locations. The discrimination power of

each node is calculated by using an appropriate dissimilarity measure. The best

basis are detected by pruning the binary tree using divide and conquer algorithm.

When pruning the binary tree, a parent node is split only if the cumulative dis-

criminative power of its children is greater than the discrimination of the parent

node. The parent node in that situation is destroyed and the cumulative dis-

crimination power of children is transferred to the parent node. Whenever the

cumulative discrimination power of children is smaller than the parent node the

child nodes are destroyed and the parent node with its discrimination value be-

comes a child of a node at higher level. The resulting best basis vectors are

ordered by their discrimination power and used for constructing the classification

machine. The LDB algorithm can be summarized as follows:

Step 1: Define a decomposition method (wavelet or trigonometric) and ex-

pand the signal into orthonormal basis in binary tree structure up to level J.

Step 2: Construct the time-frequency (TF) energy map of classes.
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Step 3: Construct discrimination power tree D from the TF energy map by

using an appropriate dissimilarity measure.

Step 4: Prune the J level tree by the following rule:

- start from the nodes in j=J-1 level

- for all k nodes in level j, do the following;

- if D(k) > [D(k)child1 +D(k)child2]

- keep mother node, destroy chidren nodes

- else

- keep children nodes and set D(k) = [D(k)child1 +D(k)child2]

Step 5: Order the selected best basis vectors (say M bases) by their discrim-

ination value

Step 6: Use K<M basis for constructing classification machine.

2.4 Shift Invariance in Signal Classification

The real time signals are not always aligned in time (or space). Figure 2.2

shows two impact acoustics signals sequence for demonstration. The phase dif-

ference between acoustic signals are obvious in Figure 2.2.

For a shift varying system, a shift at the input signal may results a big dif-

ference at the output. Therefore, the developed signal classification algorithms

that use the features extracted from the output signals may not have the highest
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Figure 2.2: Two impact acoustic signal of hazelnut kernels from the same class.

accuracy. Shift invariance is usually introduced as requirement for robust classifi-

cation. The importance of the shift invariance for classification is also emphasized

in [7, 8, 20].

There are some shift invariant systems, but the wavelet and trigonometric

packets that are used at LDB algorithm generates shift variant transformation.

Some researchers used spin-cycle procedure to get shift invariance properties for

signal classification purposes. [21, 22, 9]. In spin-cycle procedure, the input data

set is expanded by shifting the original set in both directions in order to handle

the possible shifts at the input signals. If the defined number of shift is τ then

the data set is expanded by its (−τ, τ + 1, .., 0, .., τ − 1, τ) versions and used as

independent signals.

One drawback of spin-cycle procedure is increased computational complexity;

because of the increased data size. This drawback must be taken account when

the performance of the developed algorithm is considered.

Undecimated wavelet transform (UDWT) employed in this study; has shift

invariance property. It is widely used in image denoising and enhancement ap-
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plications [23, 24, 25]. It is also used for texture classification [26]. The UDWT

can be used with the LDB algorithm to make it more robust against to the shifts

for signal classification.

2.5 Dissimilarity Measure

The dissimilarity (distance) measure is used to compute the discrimination

power of the basis vector(node). It has a direct effect on classification accuracy.

Therefore, the best distance measure function should be investigated for a given

problem. Let p and q are normalized energy distributions of signals belonging

to class 1 and class 2, respectively, where
∑n

i=1 pi =
∑n

i=1 qi = 1. The distance

measure can be:

• The symmetric Kullback Leibler distance, which is also named as J-divergence

J(p, q) = I(p, q) + I(q, p)

I(p, q) =
∑n

i=1 pilog(pi

pi
)

(2.3)

• Euclidean distance

D(p, q) =
∥∥∥pi − qi∥∥∥2

=
n∑
i=1

(pi − qi)2 (2.4)

• Hellinger Distance

H(p, q) =
n∑
i=1

(
√
pi −
√
qi)

2 (2.5)

• Fisher distance

F =

∣∣∣µ1 − µ2

∣∣∣
σ2

1 + σ2
2

(2.6)

where µi and σi are the mean and standard deviation of the corresponding

feature for class i.
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2.6 Classification

In pattern recognition problems, classification can be defined as assigning the

test pattern to a learned class. Various types of classifier are used in litera-

ture such as Support Vector Machine (SVM), k-Nearest Neighbor (kNN), Multi

Layer Perceptron (MLP), Linear Discriminant Analysis(LDA), Hidden Markov-

Model(HMM), etc.. However the common point in these classifiers is the require-

ment to work with relevant and orthogonal features. The main objective of this

study is the extraction of features for classification. Therefore, a single classifier,

LDA, is selected and used for detailed analysis.

LDA is one of statistical classifiers commonly used in pattern recognition prob-

lems [27]. LDA generates the best hyperplane decision surface in M dimensional

space. The orientation and location of the surface are determined by the vector

w and bias w0 , respectively.

g(x) = wtx+ w0 (2.7)

The discriminant function g(x ) gives the distance of the test pattern x to

the decision surface where g(x ) takes positive value when x is on the positive

side and takes negative value when g(x ) is on the negative side of the surface.

The detailed description of the LDA classifiers can be found at [27]. The surface

weight vector w used in LDA for two classes is

w = (
∑

1

+
∑

2

)−1(µ1 + µ2) (2.8)

where µi and
∑

i are the mean vector and covariance matrix of the class i,

respectively.
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chapter 3

Reduction of Aflatoxin in

Hazelnuts by Impact Acoustics

and Hyperspectral Imaging

3.1 Aflatoxin in Food Stuff

Aflatoxin that is caused by Aspergillus type molds (A. Flavus, A. Parasitius)

is one of the defects affecting the chemical composition of the food item. Aflatoxin

may cause porcine, pulmonary edema, liver cancer and esophageal hyptesia. It

is estimated that in USA 58 to 158 people per year are inflicted with liver cancer

because of aflatoxin consumption [13]. Therefore, aflatoxin contamination levels

of seeds (corn, pistachios, hazelnuts, pepper, etc..) is restricted by legislations.

The level for aflatoxin contamination in seed is 20 ppb (ng/g) and 4 ppb in USA

and European Union (EU), respectively. Aflatoxin in foods can be detected by

high-performance liquid chromatography (HPLC), mass spectroscopy (MS) and

enzyme-linked immunosorbent assay (ELISA).

3.2 Detection of Aflatoxin Contaminated Food

Items by Non-invasive Methods

Several studies have been conducted to detect aflatoxin contaminated foods

by non-invasive techniques. A spectrophotometer is commonly used to detect

compound of food items under inspection and it is also used to estimate aflatoxin

contamination in food kernels. A spectrophotometer consists of a spectrometer
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to produce light and a photometer to collect the reflected (R) or transmitted

(T) light in various spectral bands. Pearson [28] used spectral reflectance ratio

(R735nm/R1005nm) for detecting highly contaminated corn kernels (>100 ppb)

from low contaminated (<10 ppb) or uncontaminated ones under illumination

and reached 95% correct classification rate. Pearson could also distinguish the

high contaminated (>100 ppb) yellow corn kernels at a rate of 98% by using

spectral absorbance at 750 nm and 1200 nm [28]. Hirano [29] used transmit-

tance ratio (T700nm/T1100nm) of peanuts for identification of contaminated

kernels from uncontaminated ones. The imaging with spectrophotometer is time

consuming. Therefore the non-invasive food safety algorithms developed with

spectrophotometer is not suitable for real-time operations.

Aflatoxin may also be present inside the kernel. It that case, it may not

be possible to visualize the moldy effects on the surface of the kernel. Nuclear

Magnetic Resonance (NMR) and X-Ray Imaging can be used to detect internal

aflatoxin contamination. However, these are highly expensive techniques and take

more than 10 minutes to evaluate each kernel.

The mold of Aspergillus Flavus produces kojic acid which is observed to bright

greenish yellow fluorescence (BGYF) compound by peroxidase in the plant. These

plants exhibited BGY particles under UV radiation and this radiation can be

detected by machine vision. The number of exhibited Bright Greenish Yellow

(BGY) particles is taken as an indication of aflatoxin contamination. The BGY

fluorescence is also used by Tyson and Clark [30] for detecting aflatoxin contam-

inated pecans. They soaked the pecan halves in aflatoxin solution for two days.

They measured the BGY fluorescence or the pecan halves under UV light at 320

nm and used fluorescence ratios at 440nm/490nm and 450nm/490nm for classi-

fication. Fersai [31] used the same method for detecting aflatoxin contaminated

pistachio nuts by using the fluorescence ratio of 420nm/490nm. Fersai stated that

the peak emission occur at 490 nm for the BGY nuts. However, the human eye

has only 30% percent sensitivity at 490nm compared to 550nm. This insensitivity

causes fluorescence particles to appear as BGY although their peak sensitivities

are at the region between blue and green not at yellow region. The BGY fluores-

cence is also used to detect aflatoxin contaminated corn kernel [32], figs [33, 34],
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pistachio and Brazil nut [35, 36] and in some agricultural commodities [37].

However, Wilson detected that aflatoxin contaminated corn kernels do not

exhibit BGY fluorescence all the time due to the insufficient amount of perox-

idase in plant. Moreover, other types of fungi, besides the peroxidase, which

don’t produce aflatoxin, may yield kojic acid in foods and they may be regarded

as aflatoxin contaminated foods when the BGY fluorescence is considered only.

These findings are detailed in [38].

3.3 Aflatoxin Problem in Hazelnut

Tree nuts (almonds, pecans, pistachio, hazelnuts, etc) are used in food in-

dustry. However, environmental conditions and unsuitable processing procedures

cause crack or damage to the nut shell. This damage decreases the nut quality

and also increases the likelihood of mold infestation. For pistachio nuts, Pearson

showed [39] that nearly all the aflatoxin contaminated pistachios are either dam-

aged by birds or insects before harvesting or are early split ones. The damage at

the shell of the kernels allows mold to diffuse into the kernels and cause aflatoxin.

Pearson [40] used a machine vision system to classify pistachios nuts as stained

(caused by early splitting), unstained or moderated stained with an average of

11% classification error rates. By removal of stained pistachio nuts aflatoxin con-

tamination level of pistachio nut is reduced from 4.8- 8.6 interval to 0.04-2.5 ppb

[41]. Unlike the pistachio nuts, hazelnut shell are damaged mostly at processing

step before the drying phase which the contamination is mostly occured in. We

categorized the hazelnut into four groups to investigate the physical properties

of shell for aflatoxin contamination [42]. A sample hazelnut image from these

groups are shown in Figure 3.1

100 hazelnut kernels from each group are pruned to aflatoxin producing molds

and stored in high humidity environment with 280C temperature for 20 days. At

the end of the 20 days these kernels are analyzed for aflatoxin contamination.

The contamination results (Table 3.1) showed that the intact shell form strong

barriers against mold contamination during storage. However, any type of dam-

age at any size on the shell eliminates this capability. This can be seen from the
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Figure 3.1: A sample image from a) Regular shell hazelnuts (ReH), b) Cracked
shell hazelnuts (CrH), c) Broken shell hazelnuts (BrH) and d) In-shell hazelnuts
(InH)

contamination level of the CrH, BrH and InH hazelnuts which are close the each

other.

Table 3.1: The mean contamination levels of the hazelnuts from four groups

ReH CrH BrH InH
Cont.Level (ppb) 47 2730 2476 2494

Turkey is the major producer of hazelnut in the world. We produce 70% or

the hazelnut in worldwide and we export 80% of this to European Union countries

each year. The aflatoxin contamination in hazelnuts varies from year to year, and

it is negligible in some years (2000-2003). In reality, 30 percent of the hazelnuts

(Figure 3.2) are exported without any processing. The 35 percent is exported in

shelled form and the 35 percent is exported after roasting and processing.

The hazelnuts in these three forms have different physical characteristics.

Therefore, the hazelnut kernels in these categories should be investigated sepa-

rately before storage or consuming. The risk for in-shell kernels can be eliminated

by impact acoustic sorting systems. However, acoustic sorting can not be used

for sorting the shelled kernels. A hyperspectral imaging system is used to ad-

dress the risk of the shelled nuts (shelled, shelled&roasted) . The Shelled (SHD)

and Shelled/Roasted (SRT) hazelnut kernels have different visual characteristics.

Therefore these hazelnuts should be studied separately.
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Figure 3.2: The forms of exported hazelnut in TURKEY

3.4 Impact Acoustic Sorter System

Pearson developed an impact acoustic sorter system to separate cracked and

uncracked pistachio nuts. The system is currently working on pistachio processing

assembly in California and also in Turkey. A similar system (Figure 3.3, modified

from [43]) consisting of a pipe through which the nuts slide in, an impact plate

that the nuts are dropped on, a microphone for impact sound acquisition and a

PC for recording and processing the signals is used to get impact acoustic signal

of hazelnut kernels.

A stainless steel plate with dimensions 7.5 x 15 x 2 cm is used as the impact

plate. The impact plate is fixed to the ground with 120 0C. This angle prevents

the nuts from making multiple impacts. A microphone, sensitive to frequencies

up to 20 kHz, is placed 5 cm from the impact plate. The impact acoustic signal

is sampled at 44.1 kHz, processed and used for decision making.
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Figure 3.3: Schematic of experimental apparatus for collecting acoustic emissions
from hazelnut kernels

This system is also used to separate empty hazelnuts from fully developed

nuts in [44] by using 70 combined time and frequency features. Features that are

widely used in speech processing algorithms are extracted from short time vari-

ances of signals, maximum signal amplitude, spectral peak locations and Weibull

distribution parameters that fit to the envelope of the impact signal and used for

classification. We called this feature set as non adaptive time-frequency (NATF)

feature set.

Kalkan et.al [45] used impact acoustic signals for classifying cracked shell and

regular shell hazelnuts by non-adaptive subband (NASB) features with 90% accu-

racy. In this work, impact acoustic signals were first decomposed into subbands

by using undecimated wavelet transform. The subband signals were then divided

into overlapping or non-overlapping segments of constant width. An energy fea-

ture was extracted for each segment in each subband. The relevance of features

and the most relevant sub-bands for classification were investigated by wrapper

or filter model. However, the non-adaptive feature extraction method may miss

some of the relevant features for classification.
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3.5 Multi/Hyperspectral Imaging System for Food

Safety

A typical multi/hyperspectral imaging system consists of a CCD (charged

coupled device) camera, a frame grabber device, a set of filters and an illumina-

tion system. The CCD cameras are solid state, silicon based devices. Some of the

cameras have digital output. Frame grabber devices are used for the analog cam-

eras in order to digitize the analog signal. Multiple images at different frequency

bands are acquired by using a liquid crystal tunable filter, an acousto-optic tun-

able filter or by sequentially positioning band-pass filters in front of the lens of

the camera.

In multi/hyperspectral imaging system, food items are usually visualized un-

der UV (200-400nm), VIS (400-700nm) or NIR (700-2500nm) illumination. The

light incident on the object is absorbed, reflected of transmitted through. These

are accepted as the optical properties of the inspected material. The molecules

of the objects are excited to higher energy states by absorbing the penetrating

light. The excited molecules emit lights at higher wavelengths (fluorescence)

when returning to their previous state. Some of the compounds in materials emit

fluorescence in the visible region when exposed to UV illumination. The chemi-

cal properties of the investigated material are estimated by the properties of the

reflected light (wavelength, intensity, etc...).

Tylor and McCure [46] used multispectral imaging system to detect leaf tis-

sues. They stated the importance of three wavelengths 670, 800 and 990 for leaf

tissue detection. Zeringue and Shih [47] used the reflectance at 435 nm for de-

tecting the aflatoxin contaminated cotton lint. Park and Chen [48] stated the

discriminative importance of the spectral image at 540 and 700 nm for separat-

ing the unwholesome carcasses from wholesome carcasses. The images at 566,

515 and 631 nm are used for fecal and ingesta detection at poultry carcasses

[49]. Spectral image taken at 686 and 675nm are used for determining the main

contamination and defect in apples [50].
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Figure 3.4: Hyperspectral imaging system with a rotating filter wheel

The hyperspectral imaging system (Figure 3.4) used in this study consists of

• An Imaging Source VIS DFK 41AF02 digital CCD camera

• 2 High Intensity Spectroline UV-A Lamps (peak intensity at 365 nm)

• A cabin to function as dark room

• A band pass filter set including the filters from 400 nm to 510 nm with 10

nm FWHM and 550nm and 600nm filters with 70 nm and 40 nm FWHM

• A computer for data acquisition and processing
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chapter 4

Feature Extraction Algorithm

Based on 2D LDB Search

In signal classification applications, depending on problem and the dataset,

time (spatial in 2D) domain and and/or frequency domain features are extracted

and used for learning. The original LDB algorithm decomposes the time axis

by Local Cosine Packets or frequency axis by wavelet packets to locate the dis-

criminative features of the data. However, it is observed that, especially for

non-stationary signals (speech, acoustics, EEG, vibration, etc.), both time and

frequency domain features are important for classification [43, 10, 51].

The original LDB algorithm is modified to 2D structure and adapted to impact

acoustic and hyperspectral data to get the exact location of the discriminative

features. For impact acoustic data, the time-frequency plane features are ex-

tracted by combining the Local Cosine Packets and Wavelet Packet analysis to

obtain time and frequency adaptation in an off-line step. The introduced tech-

nique requires no prior information on the relevant time and frequency locations.

Pruning in both axis extracts the most discriminative features by combining the

ones which do not provide extra information on their own. The extracted fea-

tures are then selected by feature selection algorithm are used in classification.

Similar approach is used for hyperspectral imaging where the spectral axis is used

instead of time axis. LDB is implemented to get the most relevant spectral and

spatial-frequency features of hyperspectral data. The 2D LDB algorithm for one

dimensional impact acoustics signals and three dimensional hyperspectral images

are explained separately.
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Figure 4.1: The block diagram of the 2D LDB based feature extraction for one
dimensional signal

4.1 Feature Extraction from Acoustic Data by

2D Local Discriminant Bases Search

In 2D LDB algorithm, the time-frequency plane features are extracted by

combining the Local Cosine Packets and Wavelet Packet analysis to obtain time

and frequency adaptation in off-line step (Figure 4.1). The introduced technique

requires no apriori information on the relevant time and frequency locations.

It finds these locations automatically by pruning the time segments consider-

ing their discrimination potential. Then, the resulted time segment signals are

decomposed into frequency subbands by undecimated wavelet transform. The

extracted features are, then, selected by any feature selection algorithm and used

for classification.

4.1.1 Adaptive segmentation and pruning in time axis

The non-stationary signals may have different characteristics in time. There-

fore, these signals should be analyzed locally. In general, local information of the

signal is extracted by Short Time Fourier Transform (STFT). This type of block

transform generates side-lobe artifacts due to disjoint rectangular windows. On

the other hand, usage of smooth windows removes the ortogonality. It is possi-

ble to construct orthogonal transforms with smooth and overlapping windows by

trigonometric bases. Some researchers used Local Cosine Packets (LCP) because
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of its advantages over STFT [52, 8]. Therefore, Local Cosine Packets (LCP) is

used to partition the time axis in a dyadic binary tree structure (Figure 4.2).

Figure 4.2: Time segmentation with LCP at 4 levels in dyadic tree structure

The LCP partition the time axis by using smooth bells [53] which are con-

structed using cut-off functions r(t) that satisfy

∣∣r(t2)∣∣+
∣∣r(−t)2

∣∣ = 1 for all t ∈ R (4.1)

r(t) =

0 if t ≤ −1

1 if t ≥ 1
(4.2)

An example of such a function r(t) is

r(t) =


0 if t ≤ −1

sin

[
π
4

(
1 + sin(πt

4
)
)]

if − 1 < t < 1

1 if t > 1

(4.3)

Each signal is represented with Local Cosine Packets within smooth windows

(as in Eq. 4.3) in the tree structure (Figure 4.3). The resulting expansion coef-

ficients are squared and then averaged over the signals in the given class. This

provides an averaged energy spectrum of each class in a given time segment within

the pyramidal tree.
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Figure 4.3: The smooth windows obtianed by LCP

Let pi and qi be the mean energy spectra of cracked and regular classes, in

a given time segment respectively. The distance between the average spectra is

calculated with the Distance criterion J (Section 2.4) where ’n’ in Equation 2.2

corresponds to the total number of time samples in a given node. This way,

the distance is accumulated along the spectrum within all subspaces to get a

single value representing each node of the tree. The resulting binary tree is, then,

pruned from bottom to top according the following rule to find the nodes with

maximum discrimination power:

Pruning algorithm #1

if Jmother ≥ (Jchild1 + Jchild2)

keep mother

else

keep children
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where Jmother and Jchild are the discrimination power of the mother and children

node and are computed by the Kullback-Leibler distance criteria. The algorithm

keeps the mother node if it captures the discriminative power of the children

nodes; otherwise it keeps the children nodes. The algorithm may construct dif-

ferent tilings for different dataset. This may be regarded as a robustness measure

of the algorithm.

4.1.2 Adaptive segmentation and pruning in frequency

axis

The signal portion in time segments is divided into frequency bands to get

the specific frequency content of the signals. This segmentation in frequency axis

helps to find and analyze the local patterns in signals. Fourier Transform and

Discrete Wavelet Transform are two of the methods to decompose the frequency

axis. The methods for decomposition should be selected according to nature of

the data set. In that aspect, shift invariant decomposition system is highly re-

quired when the obtained signals are not time aligned. The Undecimated Wavelet

Transform has shift invariant property and for classification purposes it is firstly

used for texture classification [26]. In this study, similar approach with a filter

bank is used to analyze the impact signals for classification. A filter f that satisfies

the quadrature mirror filter condition

F (z)F (z−1) + F (−z)F (−z)−1 = 1 (4.4)

used to construct the pyramidal filter tree (Fig. 4.4), where F(z) is the z-transform

of f . The high-pass filter g is obtained by shift and modulation of f .

G(z) = zF (−z)−1 (4.5)
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The subsequent filters in the pyramidal tree are, then, generated by increasing

the width of f and g at every step.

Fi+1(z) = F (z2i
)

Gi+1(z) = G(z2i
) , i = 0, 1, 2, ....N

(4.6)

In the signal domain, the filter generation can be expressed as

fi+1(k) = [f ]↑2i

gi+1(k) = [g]↑2i

(4.7)

where the notation []↑m denotes the up-sampling operation by a factor of m.

Figure 4.4: Pyramidal filter tree up to second level. L and H stands for Low and
High band, respectively
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The pyramidal filter tree is transformed into a filter bank (Figure 4.5) for

which the filters are obtained by convolving the filters on the branch of the pyra-

midal tree.

Figure 4.5: Filter bank

A third level filter band with Coiflet 5 tap wavelet and scale functions is shown

in Figure 4.6.
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Figure 4.6: Undecimated filter banks up to third level decomposition
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The obtained filter-bank is used to decompose the signals in time segments

into sub-bands in frequency axis (Figure 4.7).

Figure 4.7: The 3 level full wavelet sub-band tree

The signals usually have different energy distribution in each sub-band. The

Euclidean distance between cumulative probability distribution of subband ener-

gies in Equation 2.3 is chosen as the discriminative measure and the constructed

pyramidal sub-band tree is pruned from bottom to top by the following rule:

Pruning algorithm #2

if dmother < max{dchild1, dchild2}
set max{dchild1, dchild2}as dmother

else

remove children

The characteristic of the filter may indirectly effect the discriminant band

distribution. This may, also, change the classification accuracy of the system.

As a result, the discriminant time-frequency (TF) map is constructed by adap-

tive segmentation in time and frequency in order to localize the most discrimina-

tive patterns in signal.

4.1.3 Selection of extracted time-frequency features

The adaptive segmentation and pruning operation in both time and frequency

axis by distance cost function revealed the location of the most discriminant

energy features of the signals. This feature extraction step provides the best

segmentation in two dimensions (time and frequency) but does not eliminate the

irrelevant feature location. Therefore, the extracted features are then sorted by
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feature selection algorithms and incrementally included to feature vector. These

algorithms are Fisher Distance Based Feature Selection (FFS) and Correlation

Based Feature Selection (CFS) algorithm [16]. The desired number of features is

obtained when the minimum classification error is reached.

4.2 Feature Extraction from Hyperspectral Data

by 2D Local Discriminant Bases Search

The LDB algorithm is also modified to 2D structure and applied to extract

most discriminative features in hyperspectral data. A four step algorithm similar

to the one in Section 4.4 is developed for hyperspectral data (Figure 4.8).

Figure 4.8: The block diagram of the 2D LDB based feature extraction for hy-
perspectral data

4.2.1 Feature Tree Generation

The first step in the algorithm is to obtain candidate feature set by generating

two feature trees on spectral and spatial-frequency axis in order. In the first tree,

the reflectance energies of spectral images are placed to the kth level of the tree

from left to right. Figure 4.8 shows an illustration to k=4 levels binary spectral

band tree with 16 spectral bands (SB). For the case of , the remaining nodes

at the kth level can be set to null in order to complete the binary tree. The

energy value of the mother nodes at the high levels were computed by summing

the feature values of their branch nodes.
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Figure 4.9: k=4 levels binary spectral band tree

The second feature tree is generated in spatial- frequency axis in quad tree

structure by decomposing the raw spectral images into h level full wavelet sub-

bands as in Figure 4.10. Wavelet transform retains the original image information

and completely represents the image in subbands of (LL, LH, HL and HH) where

first character shows the filtering (Low or High) through the x and second shows

the filtering through the y direction of the image.

Figure 4.10: Full wavelet decomposition quad tree up to h=2 levels

The energy in each subband is computed and used as features for further

analysis.

4.2.2 Adaptive Pruning in Spectral Axis

The feature extraction step (Figure 4.8) starts with pruning in spectral axis.

The obtained binary spectral band feature tree (Figure 4.9) is pruned from bottom

to top by the following rule:
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Binary tree pruning algorithm

if dmother < max{dchild1, dchild2}
set max{dchild1, dchild2}as dmother

else

remove children

where di is the distance of the ith node feature between classes. We used Eu-

clidean distance between cumulative probability distribution of the nodes. How-

ever, other distance metrics can be used as well.

The algorithm prunes the spectral bands (branch node) if their discrimination

potential is lower than their mother node. This process fuses some of the spectral

bands for better classification accuracy. The frequency subband energies of the

pruned spectral bands are averaged in parallel before pruning in the spatial-

frequency axis.

4.2.3 Adaptive Pruning in Spatial-Frequency Axis

The pruning algorithm in Section 4.5.2 is modified to four children mode

because of the quad tree structure (Figure 4.10) in spatial-frequency axis and

applied to prune the quad tree in a bottom-up manner.

Quad tree pruning algorithm

if dmother < max{dchild1, dchild2, dchild3, dchild4}
set max{dchild1, dchild2, dchild3, dchild4}as dmother

else

remove children

where the child1, child2,child3 and child4 are the LL, LH,HL and HH wavelet sub-

bands of the mother node, respectively. The algorithm keeps the mother node if

its discrimination potential is higher than any of its four children nodes. Other-

wise the children nodes survive as the nodes with high discrimination potential.
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4.2.4 Selection of extracted spectral spatial-frequency fea-

tures

The adaptive segmentation and pruning in both spectral and spatial-frequency

axis based on the distance between the feature elements revealed the location of

the discriminative features of the hyperspectral data. This feature extraction

processes provides the best segmentation in both spectral and spatial-frequency

axis but does not eliminate the irrelevant ones. Therefore, these features are

also selected by feature selection algoritms (FFS, CFS and Wrapper) and fed

into the classifier one by one to figure out the feature subset giving minimum

classification error. In addition to these feature selection algorithm, a new feature

set is generated by PCA algorithm and the tranformed features are used in the

classifier.
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chapter 5

Datasets Used in Experiment

5.1 Acquisition of Impact Acoustics Data

’Levant’ type in-shell hazelnuts, which were collected from an orchard in Ak-

cakoca, Turkey in August 2003 are used for impact acoustic sorter. The weights of

the hazelnuts are measured and the ones less than 0.9 gram are taken as empty or

undeveloped (EmH) nuts. Hazelnuts with weights over 0.9 grams are accepted as

fully developed (FuH). The shells of the fully developed nuts are visually inspected

are further classified as nuts with regular shell (ReH) and nuts with cracked shell

(CrH). The weight histogram of the randomly selected 180 nuts from each group

is depicted in Figure 5.1. It is seen that the fully developed nuts with cracked

shell have similar weights with the fully developed nuts with regular shell.

Figure 5.1: Weights of ’EmH’, ’CrH’ and ’ReH’ hazelnuts
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The impact acoustic data acquisition system is used to get impact acoustic

signals of those classified hazelnuts. Typical signals of an empty or undeveloped

hazelnut (EmH), a full hazelnut with regular (ReH) and cracked shell (CrH) are

shown in Figure 5.2.

Figure 5.2: Typical impact acoustic signals of ReH, CrH and EmH hazelnuts
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The impact instant of the acoustic signal is defined as the time of the first

sample from left up to the sample whose amplitude is over the 15% of the absolute

maximum amplitude. This impact instant is experimentally defined and the

redundant samples before the impact instant are removed adaptively from the

signals. The consecutive 768 samples from the impact instant are used as the

impact acoustic signal for each hazelnut.

Figure 5.3: Signal energy of hazelnuts at various weights

It is observed that empty hazelnuts generate weaker signals compared to fully

developed ones (FuH) and their impact signals tend to (computed by Equation

5.1) have lower energy values. The cracked hazelnut impact sounds have similar

energy values to those with regular shell indicating similar weights but the cracked

impact signals usually have a longer decay time due to the oscillations caused by

the crack. Figure 5.3 shows the significant correlation between the nuts’ weights

and the total impact acoustic signal x(j) energy levels of the nuts computed by

e =
∑
j

∣∣∣x(j)
∣∣∣ j = 1, 2, 3....M (5.1)
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where M is the total number of samples which is defined as 758.

It is possible to separate the EmH kernels from FuH ones at 96% classification

accuracy by just using the raw signal energies as a feature. However, this is

not valid for separation of ReH and CrH because they have similar weights and

energy values. Therefore more advanced signal processing and feature selection

techniques should be used to extract the relevant features for classification of ReH

and CrH hazelnuts. The LDB algorithm is aimed to obtain such relevant features

from the time-frequency domain of the signals (Figure 5.4). The impact acoustic

signal of 1000 ReH and 1000 CrH hazelnuts were used for algorithm development.

Figure 5.4: The averaged spectrogram of a) CrH and b) ReH hazelnuts
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5.2 Acquisition of Hyperspectral Data

Shelled hazelnuts for hyperspectral imaging were collected from Ordu, Turkey

in 2007. A few aflatoxin contaminated hazelnut kernels is encountered in the

collected samples. Therefore an artificial contamination procedure is conducted

to obtain aflatoxin contaminated hazelnut kernels. In stated in Section 3.2 that

the in-shelled hazelnuts processed in two different category as Shelled (SHD)and

Shelled/Roasted (SRT) nuts. The two types of hazelnuts have different visual

characteristics because the roasting operation removes the inner skin of the InH

hazelnuts.Therefore these hazelnuts were studied separately.The SHD and SRT

hazelnuts were divided into three groups as shown in Figure 5.5. The first group

was reserved for uncontaminated class (UnCont) where the second and third

groups were artificially contaminated. The hazelnut kernels in the second group

were incubated to aflatoxin producing molds (FlavusCont) whereas the kernels in

the third group incubated to pure water (WaterCont).

Figure 5.5: Categories of hazelnut used in the experiment

All the incubated kernels (FlavusCont and WaterCont) are kept in 280C with

90% humidity condition for 9 days. The mold infestation is observed at all the

incubated hazelnuts. At the end of the 9th day, the hazelnuts in SRT category

were roasted at 1400C for 15 minutes. The roasting process removed the skin over

the kernels. The hazelnuts in both SRT and SHD categories were sent to chemical

analysis for aflatoxin contamination after hyperspectral image acquisition. The

chemical analysis (Table 5.1 and Table 5.2) results showed high level of aflatoxin

contamination at FlavusCont hazelnuts and respectively low level of aflatoxin at
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some of the WaterCcont hazelnut of both categories. Aflatoxin over 4 ppb is

detected in two UnCont hazelnuts from SRT and one UnCont hazelnuts from

SHD category. All the kernels in WaterCont group are naturally mold infected

and these hazelnuts should not be consumed although a few of them contain

aflatoxin.

Table 5.1: Number of aflatoxin contaminated kernels and the mean aflatoxin level
(ppb) of the three group SRT hazelnuts

SRT UnCont SRT FlavusCont SRT WaterCont
# of SRT Afla+ kernel 2 79 15
# of SRT Afla- kernel 102 0 87
Mean Aflatoxin Level 0.7 2227 7,47

Table 5.2: Number of aflatoxin contaminated kernels and the mean aflatoxin level
(ppb) of the three group SDT hazelnuts

SDT UnCont SDT FlavusCont SDT WaterCont
# of SDT Afla+ kernel 1 49 4
# of SDT Afla- kernel 81 0 100
Mean Aflatoxin Level 0.36 3418 26,25

The hazelnut samples under UV-A light are screened by capturing the reflected

light from the sample by using the hyperspectral imaging system. The spectral

images are taken by IC Capture (Imaging Source Inc) image acquisition toll. The

exposure time of the camera is set to 0.33 sec for SRT and 2 sec for SHDhazelnuts

in order to capture sufficient reflectance light. The SHD category hazelnuts do

not reflect sufficient light because of the inner skin and moisture. Therefore,

we could not get high quality images although we increase the exposure time

from 0.33 sec to 2 sec with the same hyperspectral imaging system. Figure 5.6

shows some of the band features of hazelnut kernels from SRT and SHD category,

respectively. The first three columns show the FlavusCont hazelnut images, the

second third columns show the WaterCont hazelnuts, whereas the last 3 columns

show the (UnCont) hazelnut images. The kernels were also visualized without
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any filter, at a filter 550 nm (70 nm FWHM) and 600 nm (40 nm FWHM). These

images are used at image preprocessing but not used for algorithm development.

Figure 5.6: A few spectral band images for FlavusCont, WaterCont and (UnCont)
group of a) SRT and b) SHD hazelnuts
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5.3 Preprocessing the Hyperspectral Images

A median filter was applied to remove the noise at the spectral images (Fig

5.7-a). Secondly, a binary mask was generated to extract the hazelnut from back-

ground and the pixels of the regions which the inner skin was not removed during

roasting. The images taken at 550 nm is appropriate for mask generation. This

band clearly displays the distinction of the nut from background and unskinned

region. The mask was further improved by erosion and dilation operation. These

morphological operation removed the undesired defects due to thresolding. The

generated mask was applied for all spectral images of the hazelnut (Fig 5.7-b).

Figure 5.7: A raw spectral band image with unskinned region at the surface, b)
masked image of 430 nm spectral band

Instead of a whole hazelnut image, the masked spectral images were divided

into square regions (91x91 pixels) and each region was regarded as an independent

sample and they were later on used for voting on the class membership of a given

hazelnut kernel.
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chapter 6

Results and Discussions on

Impact Acoustic Data

Classification

It is possible to separate the empty EmH kernels from the fully developed FuH

ones with 96% classification accuracy by just using the raw signal energies as a

feature for the linear classifier. However, a classification by raw signal energies

does not separate the regular shell hazelnuts ReH and cracked shell hazelnuts CrH

because they have similar weights and energy values. Therefore more advanced

signal processing and feature selection techniques should be used to extract the

relevant features for classification of ReH and CrH. The developed LDB based

algorithm is aimed to obtain such relevant features from the time-frequency do-

main of the signals and the classification results of the extracted features are

compared.

A total of one thousand ReH and one thousand CrH hazelnut kernels are

used in this study. Each hazelnut is dropped on the metal plate and the resulting

acoustic signal consisting of 768 time samples is recorded. The one thousand

acoustic signals for each class are randomly divided into five non-overlapping

sets, each consisting of 200 records. Five pairs of ReH and CrH sets are then

randomly formed. Each pair is used to construct the adaptive time-frequency

(T-F) segmentation and select features. The features identified are then used

with the remaining 1600 acoustic signals to determine the performance of the

classifier. This procedure is repeated five times with the five different pairs of

ReH and CrH sets.
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The acoustic signals were analyzed up to a tree depth of four resulting in a

smallest segment size of 48 time samples in the time domain. It is empirically

found that this level provides a healthy balance between transient waveforms and

the required spectral resolution to distinguish between subbands with different

behavior. The signals were first represented by using LCP (Figure 4.1) over the

pyramidal tree structure (Figure 4.2). The pyramidal tree was pruned by using

the pruning algorithm of Section 4.1.1 and the adaptive time segmentation for

classification purpose was obtained for different sets of signals as indicated in

Figure 6.1. It was observed that different sets of signals may cause different

segmentation in time. The segmentation of Figure 6.1-a were used in further

analysis. In this case, the time axis is divided into seven segments.

Figure 6.1: The adaptive time segmentation grids (dotted lines) of a-) of set1 and
b-) of set2

In each time segment the signal was decomposed into sub-bands up to the

fourth Wavelet decomposition level and the most relevant sub-bands were de-

tected by using the procedures of Section 4.1.2.

A discriminative time-frequency map was generated in Figure 6.2 by combin-

ing the adaptively pruned trees both in time and frequency to visualize the most

crucial T-F patterns.
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Figure 6.2: The location of most discriminative features in time-frequency axis

In our application, the algorithm usually generates a T-F map with around

70 sub-bands for various training data sets. For every signal in each training set,

the energy value for each sub-band was computed resulting in two sets of feature

vectors corresponding to cracked and healthy shell classes. The 70 features ob-

tained were sorted by Fisher distance based (FFS) and Correlation Based Feature

Selection (CFS) algorithms and then used for classification. We observed with

all training data sets that the most discriminative feature locations (defined by

FFS) were concentrated in the high frequency bands corresponding to the early

and post impact regions as indicated in Figure 6.3. Among the 70 sub-bands, the

25 most discriminative ones are indicated by different shades of gray, with darker

shades corresponding to higher discrimination levels.
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Figure 6.3: The time-frequency discrimination map of impact acoustic data.
Darker regions indicate higher discrimination power

6.1 Classification

In order to assess the efficiency of the proposed algorithm, a comparison is

made with the Non-Adaptive Time and Frequency features (NATF) [44], Non-

Adaptive Sub-Bands features (NASB) and different order statistical features. Re-

call that in NATF method, 70 features were extracted from the short time vari-

ances of signal; maximum signal amplitude, spectral peak locations and Weibull

distribution fit to the envelope of the impact signal and all are used for classifica-

tion. In the NASB method, features were extracted from subband signals and the

20 most relevant features and the sub-bands including these features were manu-

ally selected. The time segmentation of Figure 6.1-a is employed to obtain a total

of 28 statistical features including mean absolute energy, variance, skewness and

kurtosis on each of the seven time segments.

The minimum number of features for classification was investigated by adding

features one by one which were ranked by FFS and CFS feature selection algo-

rithms. The feature selection step is repeated for all four different type of ex-

tracted feature sets. Related classification error curves are presented in Figure

6.4.
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Figure 6.4: The classification error rates (%) with various numbers of features

The lowest classification error is achieved with the proposed LBD based ap-

proach. The minimal classification error rates achieved by each method are given

in Table 6.1. It is observed that the lowest error is achieved by the first 64 fea-

tures with an error level of 3.5% by our proposed approach. For the method of

NATF, 43 out of 70 time and frequency domain features provided the minimum

error level. Similarly, 20 features are used for the method of NASB. The sta-

tistical features gave poor classification error rates compared to other methods.

The lowest error rate occurred when the first 7 features are used. Our proposed

approach reaches an error rate around 4% after the first 30 features. Increasing

the number of features provided marginal improvement of the error rate.
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Table 6.1: Classification rate comparison of proposed LDB based method against
the other methods

Method Accuracy(%)
43 NATF features 94.47
7 statistical features 85.00
20 NASB features 91.80
64 LDB features 96.51

The ROC curves for the three methods are presented in Figure 6.5. It is

observed that 64 and 30 dimensional LDB features provide higher detection of

cracked hazelnuts for a given false alarm rate.

Figure 6.5: Receiver Operating Characteristics (ROC) curves
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6.2 Filter Selection

Various types of wavelet filters (Daubechies, Coiflet, and Sym) are used for

decomposition of the frequency axis and their effects on classification accuracy are

observed. In Figures 6.6 (a) and (b) the classification error curves with various

number of features are depicted in contour graphics format for the usage of various

Daubechies and Coiflet Wavelets for frequency axis decomposition.

Figure 6.6: The effect of selected wavelets and feature dimension on classification
accuracy. a) Daubechies, b) Coiflet

The x axis indicates the total number of features retained after sorting. The
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y axis indicates the filter type used in subband decomposition. The numbers on

the graph show the obtained classification accuracies (%). The higher filter types

correspond to higher order filters. The darker regions in the contour graph give

lower classification accuracy. It is observed that better classification error rates

(< 4%) are obtained when approximately 40 or more features are retained after

decomposition with high order wavelet filters such as Daubechie’s 12 to 15 tap

and Coiflet’s three to five tap filters. We selected one of the high order wavelet

filters, Coiflet four tap, for further analysis. The discriminant band distribution

of Figure 6.3 may slightly change depending on the wavelet filter.

6.3 Effect of noise on classification

In order to asses the robustness of our methods against disturbing effects,

a zero mean Gaussian noise at various SNR level is added to the signal and

classification performances are compared as shown in Figure 6.7.

Figure 6.7: The classification error curves for noise disturbed impact acoustic
signals

It is observed that the algorithm performs well for reasonable noise levels.
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The algorithm usually selects low level subbands nodes when the signals are

disturbed by high level noise. This can be justified by the fact that the energy of

the impact acoustics is concentrated in the mid and lower bands of the spectrum

as indicated in Figure 6.3. In order to keep the efficiency in classification, the

algorithm selects features from lower bands with increasing noise level. This also

results in a decrease in classification accuracy.

6.4 Effect of shift-invariance on classification

As indicated in the previous sections the main motivation for using UDWT

against DWT is the shift invariance property of the UDWT. In order to justify

our selection, the UDWT results with those obtained from the DWT and spin-

cycle procedure of [Saito02] are compared. The spin-cycle procedure is introduced

by [Saito02] to overcome the lack of shift invariance of the DWT and LCP. In

particular, a signal is shifted to the left and right for a selected number of spins.

For each shift, the signal is expanded into its DWT coefficients. These coefficients

are either averaged or processed individually. It has been shown that the spin-

cycle procedure provides significant improvements over the direct use of the DWT

or LCP [Ince06, Saito02]. In The classification curves obtained from the DWT,

the DWT with spin-cycle and the UDWT methods are shown in Figure 6.8.

As expected, the results obtained from DWT were poor. However, the DWT

with spin-cycle and UDWT give better classification results. We note that the

minimum error of spin-cycle method was slightly lower that UDWT but used

more features. However, one should note that the data size of spin-cycle method

is higher than that of UDWT. In real time applications it is difficult to obtain

fast processing by this method.
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Figure 6.8: The classification error curves for evaluating the efficiency of shift
invariance property. The spin-cycle curve stands for the results obtained from
DWT supported 1-Spin-Cycle procedure

6.5 Effect of feature extraction algorithm on clas-

sification

A total of 210 features corresponding to 210 time-frequency bands are obtained

before pruning both in time and frequency axis. The pruning operations not

only extracted the most discriminative features; but also decreased the feature

dimension from 210 to 70. The extracted features are also selected by FFS and

CFS algorithms. Lower classification error curves are obtained with extracted

feature set compared to candidate feature set of size 210 (Figure 6.9).
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Figure 6.9: The classification error curves of a) FFS and b) CFS method with
extracted and candidate feature set

The minimal error of 4% is achieved with around 70 candidate features and

the classification error increased after addition of more features. This number

coincides with the number of extracted features. It is observed from the Figure

6.9 that the proposed algorithm is successful at detecting relevant features in

acoustic signals. Recall that the pruning algorithms in feature exraction merge

the features in t-f axis for better classification. Therefore, lower classification

error curves are achieved with 70 extracted features compared first 70 candidata

features.
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The feature selection algorithms of CFS and FFS on extracted feature set did

not make a significant difference on classification error (Figure 6.10). However,

the CFS has superior performance with the first 24 features.

Figure 6.10: The classification error curves of CFS and FFS method with ex-
tracted feature set
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6.6 Computational Complexity

Determining the best time-frequency segmentation of the signals and the

bands to be retained for classification is relatively computationally demanding

but this step has to be carried out only once, off-line. For online processing, the

throughput of the algorithm in terms of nuts processed per second depends on

the number of features used in classification. When the first 64 features providing

the best classification rate is employed all 768 samples need to be processed. In

this case 17.4 msec is required for signal acquisition of a single nut at a sampling

rate of 44.1 kHz. The computations for feature extraction and classification re-

quire 13.1 msec on a dedicated P4 3GHz processor. In this case, up to 32 nuts

can be processed in a second with classification error of 3.5%. In case an extra

0.5% classification error is tolerable, up to 45 nuts can be processed in a second

with 30 features. We observed that only the first half of the signal is required

to compute the first 19 features. The classification error achievable at this case

is 5.3% and the throughput can be as high as 119 nuts/sec provided that the

mechanical sorter system is able to keep up with signal processing.
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chapter 7

Results and Discussions on

Hyperspectral Data

Classification

The developed algorithm is tested on Shelled (SHD) and Shelled/Roasted

(SRT) hazelnut hyperspectral data, separately. The hazelnuts groups in both

category (SHD and SRT) are considered for two different classification problems.

In the first problem, the data sets (Table 5.1 and 5.2) are divided into mold con-

taminated Cont ( = FlavusCont + WaterCont) and uncontaminated (UnCont)

classes without considering the aflatoxin contamination (Figure 5.5). All of the

kernels in Cont class are mold contaminated (but some of them do not contain

measurable aflatoxin). In the second classification problem, we categorized the

hazelnuts by just considering the aflatoxin contamination levels and the hazel-

nuts with over 4 ppb aflatoxin are accepted as aflatoxin contaminated (Afla+)

and the remaining ones are accepted as aflatoxin free (Afla-). All the kernels

in FlavusCont; some of the kernels from (WaterCont) and UnCont groups are

assigned to Afla+ class and the remaining kernels from from (WaterCont) and

UnCont were assigned to Afla- class as in Figure 7.1
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Figure 7.1: The schematic assigments of hazelnuts Afla+ and Afla- groups

7.1 Problem 1: Classification of SRT Cont and

SRT UnCont Hazelnuts

Initially, feature trees are generated first along the spectral then spatial-

frequency axis. The reflectance energies of 12 spectral images (400-510) were

placed on the 4th level of the binary tree (Figure 4.8) from left to right. The

remaining four spectral band nodes (SB13-SB16) at the 4th level were set to null

in order to complete the binary tree. Consequently, the spatial-frequency quad

feature tree is generated by decomposing the spectral bands by full wavelet trans-

form (Figure 4.9). We used Daubechies 8 tap filter for decomposition. Other

wavelets can be used as well. For each spectral image, a total of 21 subband

images are constructed by a two level decomposition (Figure 4.9). That gives

a total of 252 spatial frequency patterns for 12 spectral bands. The nodes in

trees are represented by their energies as features. The entropy distribution of

the spatial-frequency features of spectral bands can be seen in Figure 7.2. It

is observed that low spatial-frequency subbands have higher entropy than high

frequency components.
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Figure 7.2: Entropy map of the spectral spatial-frequency features

After the generation of the feature trees, the feature extraction process is

initiated by pruning the spectral bands (Section 4.2.2). Figure 7.3 shows the

spectral band pruning. The spatial-frequency domain features (Figure 4.9) of the

spectral bands are averaged according to the pruned tree in Figure 7.3 before

pruning in spatial-frequency axis.

Figure 7.3: Spectral band pruning. The spectral bands (440-470) and (480 -510)
are pruned. The null bands in the tree were ignored at pruning

The spatial-frequency subbands features are pruned after merging the fre-

quency subband features of the pruned spectral bands (Section 4.2.3). The prun-

ing in both axes revealed the location of the most discriminative features (Figure
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7.4) of the hyperspectral data. A total of 12 spectral-frequency features were ob-

tained after the pruning operations. These operations also decreased the feature

dimension from 192 to 12. The location of 192 candidate features can be oberved

in Figure 7.2.

Figure 7.4: The location of the most discriminative features in spectral spatial-
frequency axis

It is observed that the spectral bands (440-470) and (480-510) are pruned

along the spectral axis and these spectral bands are not decomposed into spatial-

frequency subbands. However, the spectral bands of 430 and 440 are decomposed

into subbands in spatial-frequency axis.

The extracted 12 features are then ranked by four different feature selection

algorithms and fed into the linear classifier incrementally.

• Fisher Distance Based Feature Selection(FFS)

• Correlation Based Feature Selection(CFS)

• PCA Based Feature Selection(PCA)

• Wrapper Based Feature Selection
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In contract to FFS and CFS, PCA does not work in inremental way and uses

all the features to project to the new space. The wrapper model is just selects the

feature combination giving the best classification.The FFS and CFS algorithms

ordered the extracted features as in Figure 7.5. The darkness and the number on

nodes indicate the relevance of the features in those nodes. The order of features

may vary depending of the feature selection algorithm and this selection may

effect the classification accuracy.

Figure 7.5: Spectral Spatial-Frequency feature map of SRT hazelnut data ranked
by a) by FFS, b) by CFS algorithm
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The selected features are added one by one to find out the optimal number

of features for classification. The minimum classification error is obtained with

the two features by PCA; four features by wrapper and five features by CFS and

FFS (Table 7.1, Figure 7.6). In contrast to other feature selection algorithms,

the feature number in PCA methods (Table 7.1) is the number of projected

eigenvectors.

Figure 7.6: The classification error curves on FFS, CFS, PCA and Wrapper based
selected ranked features

Table 7.1: Minimum classification error obtained by four feature selection algo-
rithms. The number of features of methods giving the error is shown in brackets

FSS(5) CFS(5) PCA(2) Wrapper(4)
Error(%) 4.35 4.35 3.00 2.60
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For a practical sorter system, it is preferable to reach to lowest error with

fewer number of features. The lowest error is achieved by four wrapper based

selected features. It is possible to get good results with PCA ordered features.

However, It is impractical to use the PCA-processed features because the PCA

uses all the features at hand for all unique projection although it gives lower

classification error.

When the classification results with five FFS ordered features are analyzed, it

observed that 10 of 181 SRT Cont hazelnut and 3 of 104 SRT UnCont hazelnuts

were misclassified. However none of the misclassified SRT Cont hazelnuts con-

tain aflatoxin. The mean aflatoxin level of the test set including hazelnut from

SRT Cont and SRT UnCont group is 608 ppb and the algorithm classified the

kernels in to two classes whose aflatoxin contamination levels are 1095 ppb and

0.7 ppb.

The feature extraction step (Figure 4.7), which is the focus of proposed study,

positively affects the success of the feature selection algorithm by providing the

most discriminative features in hyperspectral data. This statement is validated

(Figure 7.7, 7.8 and 7.9) by comparing the classification results when feature

selection algorithms (CFS, FFS and PCA) are applied after feature extraction or

applied to candidate feature set in the 192 dimensional space. This comparison

could not be performed with wrapper model because of the extensive computation

due to the high number of feature subset combination.

Lower classification error curves are obtained when working with extracted

feature set than those with candidate feature set by all these feature selection

algorithms. It is observed from the Figures 7.7, 7.8 and 7.9 that the 2D feature

extraction algorithm generates high discriminative features by pruning both in

spectral and spatial-frequency domains. It also enables us to select the sufficient

spectral band by eliminating the irrelavant ones. This will dicrease the image

acquisition and processing cost of the food inspection and sorter systems.
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Figure 7.7: The classification error curves with the features selected from candi-
date and extracted features by FFS algorithm

Figure 7.8: The classification error curves with the features selected from candi-
date and extracted features by CFS algorithm
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Figure 7.9: The classification error curves with the features selected from candi-
date and extracted features by PCA algorithm

7.2 Problem 2: Classification of SRT Afla+ and

SRT Afla- Hazelnuts

In this problem, the SRT hazelnuts are categorized by assigning the ones

over 4 ppb aflatoxin concentration to SRT Afla+ and the remaining ones to

SRT Afla− groups. The average aflatoxin level of 96 SRT Afla+ and 189

SRT Afla− group hazelnuts are 1883 ppb and 0.06 ppb respectively. Same

procedure in the first classification problem (Section 7.1) was applied for the new

data set. The spectral pruning in feature extraction step pruned the spectral

bands of 420-430, 440-450 and 480-510 but kept the spectral bands of 400, 410,

460, 470 nm (Figure 7.10) ntact. The subbands in spatial-frequency axis of all

spectral bands are completely pruned except the 420-430 nm spectral band.

The extracted features are then ranked by feature selection algorithms and

used in linear classifier. The extracted feature map whose features are ranked by

FFS and CFS algorithms are given in Figure 7.10. The darkness and the number

on the nodes indicate the relevance of the features in those nodes.
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Figure 7.10: Spectral Spatial-Frequency feature map of SRT Afla+ and 189
SRT Afla− data which were ranked by a) by FFS, b) by CFS algorithm.

The selected features are fed into the linear classifier in four fold validation as

in Problem 1. However, lower classification accuracies are obtained compared to

the classification of SRT Cont and SRT UnCont classes. The minimum classi-

fication error is obtained with the 6 features by PCA; 3 features by wrapper and

four features by CFS and FFS (Table 7.2, Figure 7.11). The spectral pruning in

feature extraction step pruned the spectral bands of 420-430, 440-450 and 480-510

but kept the spectral bands of 400, 410, 460, 470 nm (Figure 7.10) for the new

data set.
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Figure 7.11: The classification error curves of SRT Afla+ and SRT Afla− data
by FFS, CFS, PCA and Wrapper based selected features

Table 7.2: Minimum classification error obtained by four feature selection algo-
rithms.

FSS(4) CFS(4) PCA(6) Wrapper(3)
Error(%) 10.34 10.34 10.34 7.69

The lowest error of 7,69% is achieved with three features selected by Wrapper

model. When the classification results with 4 FFS ordered features are ana-

lyzed, it is observed that the algorithm misclassified 3 of the 96 SRT Afla+

hazelnuts and 39 of the 189 SRT Afla− hazelnuts. Two of the 3 misclassi-

fied SRT Afla+ hazelnuts are from SRT UnCont; the remaining misclassified

kernel is from SRT WaterCont group, originally. Whereas, 38 of the 39 misclas-

sified SRT Afla− hazelnuts are from SRT WaterCont, one of the 39 is from

SRT UnCont class, originally.
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The effect of feature extraction step in the proposed algorithm can also be

observed with SRT Afla+ and SRT Afla− data set with three different feature

selection algorithms (Figure 7.12, 7.13 and 7.14). It is observed that better

classification error curves are obtained with extracted (pruned) features than

candidate features.

Figure 7.12: The classification error curves with the features selected from can-
didate and extracted features by FFS algorithm

Figure 7.13: The classification error curves with the features selected from can-
didate and extracted features by CFS algorithm
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Figure 7.14: The classification error curves with the features selected from can-
didate and extracted features by PCA algorithm

The CFS based feature selection algorithm has similar performance compared

to the FFS feature selection algorithm (Figure 7.6 and Figure 7.11). When the

classification problems P1 and P2 of SRT hazelnuts are compared, better results

are obtained in classifying SRT Cont and SRT UnCont kernels. The aflatoxin

level of the SRT hazelnuts decreased to 0.7 ppb from 608 ppb by removal of

the SRT Cont hazelnuts and decreased to 0.84 ppb from 608 ppb by removal

of the SRT Afla+ hazelnuts. It is recommended to separate SRT Cont kernels

from hazelnut lots to decrease aflatoxin level because the contaminated kernels

SRT WaterCont are likely contain aflatoxin. These nuts are also not preferred

by consumers because of bad taste and appearance.

7.3 Problem 3: Classification of SHD Cont and

SHD UnCont Hazelnuts

In this problem, the Shelled hazelnuts,SHD category, are divided into mold

contaminated SHD Cont and uncontaminated SHD UnCont groups wihtout

considering the aflatoxin concentration. The average aflatoxin level of the 81

SHD UnCont and 150 SHD Cont group hazelnuts are 0.36 ppb and 938 ppb

respectively. Same procedure in the first classification problem (Section 7.1) was
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applied for the new data set. The hyperspsctral images of the SHD category hazel-

nuts are lower then the SRT category hazelnuts. In contrast to SRT hazelnuts,

we used the spectral band images of 550nm and 600 nm because of their posi-

tive effects on classification results of SHD hazelnuts. Recall that these spectral

bands have higher FWHM range compared to the other spectral bands between

400 nm and 510 nm. Moreover, in contrast to the SRT hazelnuts, the algorithm

did not prune the subbands both in spectral and spatial-frequency axis. The

pruning algorithm only pruned the spectral bands of 460 and 470 nm. However,

the algorithm pruned the subbands in LL and HH region of spatial-frequency

axis of images (Figure 7.15). Figure 7.15 also shows the extracted feature loca-

tion obtained 2D pruning algorithm and the features that is ranked by FFS based

feature selection algorithm. The CFS algorithm ranked the features similar to

FFS algorithm in that they selected the same features for the first 10.

Figure 7.15: Spectral Spatial-Frequency feature map of SHD Cont and
SHD UnCont data which were ranked by a) by FFS algorithm

Recall that the numbers and the color darkness on the map shows the order
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of the selected features. It is observed that most discriminative feature is the

LL subband of the spectral bands of 600 nm. When the classification results

with the feeatures ranked by FFS, CFS and PCA algorithm are compared, high

classification errors are obtained with the first a few features and the addition of

new features marjinally effects the error (Figure 7.16).

Figure 7.16: The classification error curves of SHD Cont and SHD UnCont
data by FFS, CFS and PCA based selected features

The minimum classification error is obtained with the 78 PCA ranked; two

wrapper, CFS and FFS ranked features (Table 7.3). The algorithm missclassified

10/81 SHD UnCont and 37/150 SHD Cont hazelnuts with FFS ranked features.

However wrapper based selected features give better classification accuracy of

15.85% compared to other methods.
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Table 7.3: Minimum classification error of SHD Cont and SHD UnCont data
obtained by four feature selection algorithms. The number of features of methods
giving the error is shown in brackets

FSS(2) CFS(2) PCA(78) Wrapper(2)
Error(%) 18.88 18.88 18.02 15.85

The effect of feature extraction step for classifying the SHD Cont and SHD UnCont

data set with three different feature selection algorithms can be seen in Figures

7.17, 7.18 and 7.19. It is observed that better classification error curves are

obtained with extracted (pruned) features than candidate features.

Figure 7.17: The classification error curves with the features selected from can-
didate and extracted features of SHD category hazelnuts by FFS algorithm
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Figure 7.18: The classification error curves with the features selected from can-
didate and extracted features by of SHD category hazelnuts CFS algorithm

Figure 7.19: The classification error curves with the features selected from can-
didate and extracted features by of SHD category hazelnuts PCA algorithm

7.4 Problem 4: Classification of SHD Afla+ and

SHD Afla− Hazelnuts

In this problem, the SHD hazelnuts are categorized by assigning the ones

with 4 ppb aflatoxin concentration to SHD Afla+ and the remaining ones to
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SHD Afla− groups. The average aflatoxin level of 53 SHD Afla+ and 179

SHD Afla− group hazelnuts are 3146 ppb and 0.05 ppb respectively. The algo-

rithm pruned the spectral bands of 480 and 490 nm in spectral axis. Similarly, all

the spatial-frequency subbands of the 450, 510 and 550 nm images are completely

pruned(Figure 7.20). Figure 7.20 also shows the order of the features that are

selected by FFS algorithm. As in stated before the algorithm does not make a

comprehensive pruning to the low quality images (such as SHD hazelnut images).

The most discriminative feature in the map is located in the spectral band of 510

nm.

Figure 7.20: Spectral Spatial-Frequency feature map of SHD Afla+ and
SHD Afla− data which were ranked by a) by FFS algorithm

The lowest classifiation error of 17% is obtained with the features that are

selected by wrapper approach. The CFS and FFS algorithm results similar error

curve which are worst then the curve obtained by PCA selected features(7.21).

Minimum classification error for SHD Afla+ and SHD Afla− data set is ob-

tained with 115 PCA ranked, 95 FFS ranked, 18 CFS ranked and two wrapper
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ranked features (Table 7.4).

Figure 7.21: The classification error curves of SHD Afla+ and SHD Afla−
data by FFS, CFS and PCA based selected features

Table 7.4: Minimum classification error of SHD Afla+ and SHD Afla− data
obtained by four feature selection algorithms. The number of features of methods
giving the error is shown in brackets

FSS(95) CFS(18) PCA(115) Wrapper(2)
Error(%) 37 38 30 17

The feature extraction step in the algorithm does not positively effects the

performance of feature selection algorithm at classification of the SHD Afla+

and SHD Afla− hazelnuts (Figure 7.22, 7.23 and 7.24). This is thought to be

from the low quality of images. The decrease in quality may suppress the possible

discriminative features in the images.
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Figure 7.22: The classification error curves with the features selected from can-
didate and extracted features of SHD category hazelnuts by FFS algorithm

Figure 7.23: The classification error curves with the features selected from can-
didate and extracted features of SHD category hazelnuts by CFS algorithm
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Figure 7.24: The classification error curves with the features selected from can-
didate and extracted features of SHD category hazelnuts by PCA algorithm
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chapter 8

Conclusions

In this thesis, an algorithm is develeoped to extract discriminative features

from acoustic and hyperspectral data by using Local Discriminant Bases search.

The original LDB algorithm is adapted to two dimensional searches to extract

the most discriminant features in data. The feature extraction process decreases

the feature dimension by both eliminating the irrelevant ones and/or by merging

the ones that do not provide extra information on their own. Another dimension

reduction is performed by selecting the extracted features by various feature se-

lection algorithms. Our aim is to achieve high classification accuracy with fewer

number of features. The number of extracted feature for mimimum error error is

obtained by classification accuracy and a basic LDA classifier is used to get this

accuracy. One can try other non-linear classifiers, like neural networks or Sup-

port Vector Machine, to achieve better classification accuracies with the extracted

features.

The developed algorithm is implemented on both impact acoustic and hyper-

spectral data of hazelnut kernels for classification. This application is stemmed

from the need of separating contaminated or potentially contaminated hazelnut

kernels by non-invasive and fast methods that can perform real time in practical

systems. The usage of fewer number of features with less amouth of data enables

the production of low cost and high thoughput sorting systems.

We conducted an experimental study on detecting the effect of hazelnut shell

on aflatoxin contamination and it observed that shell of hazelnut form a strong

barrier against mold contamination. However, any damage on shell eliminates

this capability. Therefore the hazelnuts with cracked shell should be separated

from the regular shell hazelnut by using impact acoustic signal. The relevant

features in acoustic signal are extracted by searching the local discriminant bases
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first in time, then in frequency axis. The extracted features are then selected

by feature selection algorithms and used in linear classifier. A classification ac-

curacy of 96.5% is obtained with 64 LBD features. We observed that the most

discriminative feature locations were concentrated in the high frequency bands

corresponding to the early and post impact regions as indicated in Figure 6.3.The

LDB based features give better classification accuracy compared to other types of

features. In addition, the features obtained by feature extraction step positively

effect the classification compared to candidate feature set. The developed algo-

rithm can be implemented to real-time sorting devices due to its high throughput

up to 25 nuts/sec. This limitation in throughput stemmed from the time required

for each acoustic signal, not from the computation time.

Unlike to InH hazelnuts, the risk in SHD and SRT category hazelnuts can

not be eliminated by impact acoustic. We used hyperspectral imaging for clas-

sification in shelled (SHD) and shelled&roasted (SRT) categories. Two different

classification problems are defined for each category hazelnuts. The first prob-

lem is based on classifying contaminated (Cont) or uncontaminated (UnCont);

second one is on classifying aflatoxin contaminated (Afla+ ) or aflatoxin free

(Afla-) hazelnuts. The developed algorithm for hyperspectral images starts by

obtaining a candidate feature set by generating two feature trees on spectral and

spatial-frequency axis in order. The features trees are then pruned to get the

most discriminative ones in spectral and spatial-frequency axis.

For the separation problem of Cont and UnCont group hazelnuts in SRT cat-

egory, the candidate feature set of 192 dimensions is decreased to 12 by adaptive

pruning in both axes. Four different feature selection algorithms are performed

on extracted feature set to decrease the feature dimension if possible. A classifi-

cation accuracy of 95.6% is achieved by the first five CFS or FFS ranked features.

A better accuracy of 97.4% is achieved by the first four wrapper based ranked

features. The most discriminant feature is defined as the LL subband of the spec-

tral bands of 430 nm. For aflatoxin Afla+ versus Afla- separation problem in the

same category, the algorithm decreased to feature dimension from 192 to 14 in

which the most discriminative one is the pruned form of the spectral bands of 440

and 450 nm. Relatively poor classification accuracies are obtained compared to
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the first problem of this category. A classification accuracy of 89.66% is obtained

by FFS, CFS and PCA ordered features. However, better accuracy of 92.31%

is obtained by the first wrapper based ranked features. The extracted features

positively affect the classification accuracies compared to candidate feature set.

These can be observed from the Figures 7.7- 7.9 and Figures 7.12-7.14. The afla-

toxin level of the SRT hazelnuts decreased to 0.7 ppb from 608 ppb by removal

of the SRT Cont hazelnuts and decreased to 0.84 ppb from 608 ppb by removal

of the SRT Afla+ hazelnuts. It is recommended to separate SRT Cont kernels

from hazelnut lots to decrease aflatoxin level because the contaminated kernels

are high risk ones and these nuts are also not preferred by consumers because of

bad taste and appearance.

The system does not produce good results for the SHD category hazelnuts as

with the SRT category hazelnuts. As stated in Chapter 5, the hazelnuts in SHD

category do not reflect sufficient light with existing hyperspectral imaging system

under UV illumination even at high exposure times. Therefore, the images of

SHD category hazelnuts are very low quality compared to SRT category hazel-

nuts. We included the images of the spectral bands at 550 and 600 nm to increase

the information we have. For the UnCont and Cont group classification problem

of SHD category hazelnuts, the feature extraction procedure did not decrease

the feature dimension to reasonable levels. The most discriminative features are

concentrated on LL region of spectral bands. Minimum classification accuracy

of 18% is achieved with two FFS and CFS ordered features, whereas the same

accuracy is obtained with 78 PCA ordered features. The lowest accuracy of 15.85

% is achieved with two wrapper based ranked features. The extracted features

marginally decreased the error curves compared to candidate feature set (Figure

7.17-7.19). For the SHD Afla+ and SHD Afla- classification problem, worse clas-

sification accuracies around 30% are achieved with CFS, FFS and PCA ranked

features. The lowest classification accuracy 17% for SHD Afla+ and SHD Afla-

classification is achieved with two wrapper based selected features.
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8.1 Future work

The limitations in this study originated from the hyperspectral imaging sys-

tem with UV illumination. The existing illumination conditions are not suitable

for SHD category hazelnuts. These nuts can be illuminated by light sources

performing in IR, NIR or VIS region.

We used a rotating filter wheel to skip to other filters of same FWHM. The

reflectance of a combined filter is estimated by combining the reflectance of in-

dividual filters. An electronically tunable filter with tunable FWHM may help

taking more spectral images at any pass band region. This may help to identify

the best spectral bands for any specific classification problem.

Final classification accuracy of the system is obtained with the selected fea-

tures among the extracted feature set. The feature extraction procedure did

not take the correlation between features in the data into account. The feature-

feature correlation is considered in feature selection step. The feature selection

and extraction algorithm may be combined to get most discriminant as well as

independent features.

The developed algorithm is fast, robust and can be applied to real-time food

grading and sorting systems by just using the identified filters for imaging.

The feature extraction algorithm can be applied to other hyperspectral data

and we are also working on satellite images as well as other food items.
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