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ABSTRACT 

 

DETECTION AND CLASSIFICATION OF QRS COMPLEXES FROM THE ECG 
RECORDINGS 

 

Koç, Bengi 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Yeşim Serinağaoğlu Doğrusöz 

 

December 2008, 96 pages 

 

Electrocardiography (ECG) is the most important noninvasive tool used for 

diagnosing heart diseases. An ECG interpretation program can help the physician 

state the diagnosis correctly and take the corrective action. Detection of the QRS 

complexes from the ECG signal is usually the first step for an interpretation tool. 

The main goal in this thesis was to develop robust and high performance QRS 

detection algorithms, and using the results of the QRS detection step, to classify 

these beats according to their different pathologies. In order to evaluate the 

performances, these algorithms were tested and compared in Massachusetts Institute 

of Technology Beth Israel Hospital (MIT-BIH) database, which was developed for 

research in cardiac electrophysiology. 

In this thesis, four promising QRS detection methods were taken from literature and 

implemented: a derivative based method (Method I), a digital filter based method 

(Method II), Tompkin’s method that utilizes the morphological features of the ECG 

signal (Method III) and a neural network based QRS detection method (Method IV). 

Overall sensitivity and positive predictivity values above 99% are achieved with 
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each method, which are compatible with the results reported in literature. Method III 

has the best overall performance among the others with a sensitivity of 99.93% and 

a positive predictivity of 100.00%.  

Based on the detected QRS complexes, some features were extracted and 

classification of some beat types were performed. In order to classify the detected 

beats, three methods were taken from literature and implemented in this thesis: a Kth 

nearest neighbor rule based method (Method I), a neural network based method 

(Method II) and a rule based method (Method III). Overall results of Method I and 

Method II have sensitivity values above 92.96%. These findings are also compatible 

with those reported in the related literature. The classification made by the rule 

based approach, Method III, did not coincide well with the annotations provided in 

the MIT-BIH database. The best results were achieved by Method II with the overall 

sensitivity value of 95.24%.    

Keywords: Electrocardiography, ECG, QRS detection, feature extraction, 

classification
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ÖZ 

 

ECG SİNYALLERİNDEN QRS KOMPLEKS BULMA VE SINIFLANDIRMA 

 

Koç, Bengi 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Yrd. Doç. Dr. Yeşim Serinağaoğlu Doğrusöz 

 

Aralık 2008, 96 sayfa 

 

Elektrokardiyografi kalp rahatsızlıkları teşhisinde kullanılan müdahalesiz, en önemli 

yöntemdir. EKG yorumlama programları doktorlara doğru teşhisi koyup, gereğini 

yapabilmeleri için yardımcı olmaktadırlar. Yorumlama programlarında ilk aşama 

genellikle atımlardaki QRS komplekslerini bulmaktır. Bu tezin ana amacı, sağlam ve 

yüksek performanslı QRS komplekslerini bulma algoritmaları geliştirmek ve 

bulunan QRS komplekslerini kullanarak, atımları patolojilerine göre 

sınıflandırmaktır. Performansların değerlendirilmesi için, bu algoritmalar, kalp  

elektrofizyolojisi araştırmaları için geliştirilmiş olan "Massachusetts Institute of 

Technology Beth Israel Hospital (MIT-BIH) " veri tabanında test edilip, sonuçları 

karşılaştırılmıştır.     

Bu tezde, literatürden umut verici  dört algoritma seçilerek uygulanmıştır: türeve 

bağlı bir metot (Metot I), sayısal filtre metodu (Metot II), EKG sinyallerinin 

biçimsel özelliklerine dayalı Tompkin’in metodu (Metot III), ve yapay sinir ağı 

tabanlı QRS bulma metodu (Metot IV). Her bir metodun duyarlılık ve pozitif 

kestirim değerleri, toplamda, literatürde belirtilen değerlerle uyumlu olarak, %99’un 

üzerinde bulunmuştur. Metot III, %99.93 duyarlılık ve %100.00 pozitif kestirim 
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değerleri ile diğerleri arasında toplamda en iyi performansı göstermiştir.  

Bulunan QRS komplekslerinde bazı öznitelikler çıkartılıp, bunlara göre bazı atım 

tiplerinin sınıflandırması yapılmıştır. Bulunan atımların sınıflandırması için bu 

tezde, literatürden üç metot alınarak uygulanmıştır: K. en yakın komşu metodu 

(Metot I), sinir ağları tabanlı bir metot (Metot II), ve kural tabanlı bir metot (Metot 

III). Metot I ve Metot II’nin duyarlılık değerleri %92.96’nın üzerinde bulunmuştur. 

Bulunan bu değerler de literatürde belirtilen değerlerle uyumludur. Kural tabanlı 

sınıflandırma metodu (Metot III) sonuçları, MIT-BIH veri tabanı anotasyonları ile 

çok uyumlu bulunmamıştır. Metot II, %95.24 duyarlılık değeri ile en iyi sonuçları 

vermiştir. 

Anahtar Kelimeler: Elektrokardiyografi, EKG, QRS bulma, öznitelik çıkarma, 

sınıflandırma 
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CHAPTER 1 

1.                                      INTRODUCTION 

Electrocardiography (ECG) is a graphical representation of potential differences 

between points on the body surface versus time and it is the most important 

noninvasive  tool used for diagnosing the heart disease and guiding the therapy at 

both in-hospital and out-hospital applications.  

Applications of ECG interpretation programs are usually for long-term monitoring 

purposes such as at the intensive-care units (ICU) in hospitals, ambulatory usages, 

and battery powered monitoring systems. 

ICUs are for patients requiring special medical care. ICU display many parameters 

such as ECG, blood pressure, oxygen level in blood etc. When an abnormality exists, 

physicians working at the ICU must take immediate decisions that are usually very 

important for the patient life. An ECG interpretation program can help the physician 

to state the diagnosis correctly and take the corrective action. 

Similar to ICUs, for ambulatory applications, physician’s immediate decision and 

correct action are needed and ECG interpretation programs are helpful for that. 

Battery powered compact size ECG recordings (Holter recording) and interpretation 

tools allow long term monitoring of patients outside hospitals without distorting the 

regular life of the patient allowing the transient aspects monitoring of heart electrical 

activity. By extracting the abnormal ECG complex within thousands of beats and 

suggesting the diagnosis, home monitoring ECG interpretation programs are cost 

effective and make the patient life comfortable compared to hospital monitoring.  

ECG signal interpretation is an extensive area of research, but the basic steps are 

prefiltering, QRS detection, feature extraction and classification stages as illustrated 
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in Figure 1.1. Prefiltering stage is the digital filtering stage used to suppress artifacts 

such as baseline drift and in-coupling noise. The second stage is detection of the QRS 

complexes, which is the most important and characteristic feature generated by the 

depolarization wave passing through the ventricles. The third stage, which is a very 

extensive area of research, consists of finding the optimal set of features that 

maximize the classification performance in the last stage. In this stage other waves 

that constitute an ECG signal such as P, and T waves and the features depending on 

this waves such as PR interval and ST segment elevation or some other features such 

as QRS complex area, QRS complex maximum amplitude, QRS complex width and 

RR interval etc can be extracted. Finally in the last stage, classification of detected 

QRS beats according to extracted features is performed.  

The main goal in this thesis is to develop robust and high performance QRS detection 

algorithms, and using the results of the QRS detection step, to classify these beats 

according to their different pathologies.  

 

Preprocessing QRS 
Detection

Feature 
Extraction Classification

ECG
x(n)

 

Figure 1.1 Common structure of ECG interpretation 

1.1 Objectives of the Thesis 

This thesis aims to provide a first step to the development of an extensive ECG 

interpretation tool. Towards that end, first the QRS beats are detected from the ECG 

recordings, then using these detected QRS waveforms and features derived from the 

properties of these QRS waveforms are used to classify the QRS beats. The steps of 

this work can be summarized as follows: 

1) QRS detection step: 
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a. Implement a prefiltering step to suppress artifacts from the ECG signal 

to enhance the performances of the QRS detection algorithms 

b. Implement four promising QRS detection algorithms taken from 

literature: 

i. a derivative based method (Method I),  

ii. a digital filter based method (Method II),  

iii. Tompkin’s method that utilizes the morphological features of 

the ECG signal (Method III)  

iv. a neural network based QRS detection method (Method IV). 

c. Evaluate the performances of these QRS detection algorithms by 

testing and comparing the results in Massachusetts Institute of 

Technology Beth Israel Hospital (MIT-BIH) database, which was 

developed for research in cardiac electro-physiology. The comparisons 

are made  

i. between the results obtained by each method in this thesis,  

ii. the results of this thesis and those obtained in similar studies in 

literature. 

2) QRS beat classification step: 

a. Define and extract features from the ECG signals using the results of 

the QRS detection step obtained from the QRS detection algorithm 

with the best performance 

b. Implement three promising algorithms taken from literature to classify 

the detected QRS beats according to their different pathologies: 

i. K-th nearest neighbour rule (Classification Method I). 
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ii. Artificial neural networks (Classification Method II),  

iii. A rule based classification (Classification Method III).  

With the first two classification methods, only normal beats and 

premature ventricular contraction (PVC) beats are classified. With the 

third method, beats with various morphologies are classified.  

c. Evaluate the performances of these classification algorithms again by 

using the MIT-BIH database. Similar to the QRS detection step, the 

comparisons are made  

i. between the results obtained by each method in this thesis,  

ii. the results of this thesis and those obtained in similar studies in 

literature. 

3) Prepare a Graphical User Interface (GUI) for the implementation of the above 

steps of this thesis. 

1.2 Outline of the Thesis 

In Chapter 1, introduction to the subject matter is given. Then the objective of this 

thesis is stated. Finally, outline of the thesis report is presented. 

In Chapter 2, background information is provided. 

In Chapter 3, methods of the developed algorithms are explained.  

In Chapter 4, performance evaluation of the algorithms are provided.  

In Chapter 5, a brief summary on the performed study is given. This chapter also 

contains some concluding remarks and recommendations for future works. 

In Appendix A, graphical user interface (GUI) developed for these algorithms is 

explained. 



 

5

CHAPTER 2 

2.                                       BACKGROUND 

This chapter starts with brief explanation of medical background, followed by 

literature survey on QRS detection, feature extraction and classification. Then 

continues with background information on performance evaluation and ECG 

databases. 

2.1 Medical Background 

In this part anatomy, physiology and electrical activity of the heart are briefly 

explained based on the information provided in [1] and [2].  

2.1.1 Anatomy and Physiology of the Heart 

Location of the heart is in thorax; between the lungs behind the sternum and the 

diaphragm as illustrated in Figure 2.1 

 

Figure 2.1 Location of the heart [1] 
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The heart walls are composed of mainly cardiac muscle, called myocardium and some 

striations. Compartments of the heart are right atria, left atria, right ventricle and left 

ventricle. The anatomy of the heart and related vessels are illustrated in Figure 2.2. 

Valves of the heart are tricuspid (between right atrium and ventricle), mitral (between 

left atrium and ventricle), pulmonary (between right ventricle and pulmonary artery) 

and aortic (between left ventricle and aorta). Deoxygenated blood returned from the 

systemic circulation enters right atrium and through tricuspid valve goes to right 

ventricle. It is pumped out from right ventricle to lungs through pulmonary valve.  

From the lungs oxygenated blood enters to left atrium, through mitral valve goes to 

left ventricle. And then, oxygenated blood is pumped to whole body through aorta via 

the aortic valve.    

 

Figure 2.2 Anatomy of the hearth and related vessels [1] 

2.1.2 Electrical Activity of the Heart 

Mechanism of the electric activation in a heart muscle cell, myocyte, is the same as in 

a nerve cell.  
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The distribution of ions across the cell membrane creates a potential difference across 

the membrane of the cell. This potential difference is called the transmembrane 

potential. The transmembrane becomes charged and its potential increases during 

impulse propagation with action potential impulses. An action potential is a carrier of 

the information providing the control and coordination of organs like heart. An action 

potential is a wave of electrical discharge that propagates along the membrane of a 

cell. Depolarization increases the membrane potential and repolarization decreases the 

membrane potential so that membrane potential returns to its resting potential, as 

shown in Figure 2.3 [3]. 

 

Figure 2.3 Depolarization, repolarization and the resting phases of action potential 
[3]. 

In muscle cells, inflow of sodium ions across the cell membrane creates action 

potential with amplitude about 100 mV and duration is about 300 ms.  

Electrical activation between cardiac muscle cells propagates and mechanical 

contraction follows the electrical activation. 

Sinoatrial node (SA node) consisting of specialized, self-excitatory, pacemaker 

muscle cells is located at superior vena cava in right atrium. These pacemaker cells 

stimulate electrical activation about 70 times in a minute in a normal heart. Stimulated 
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action potentials propagate through the atria but not to the ventricles since there is a 

nonconducting barrier in the boundary between the atria and ventricles.    

AV node is located at the boundary between atria and ventricles.  Similar to SA node, 

AV node consists of specialized, self-excitatory, pacemaker muscle cells stimulating 

electrical activation about 50 times in a minute. But if the AV node is on the path of 

an electrical activity having higher frequency, the intrinsic frequency of the AV node 

does not appear. Since at normal conditions, the action potential stimulated by SA 

node pass through AV node and intrinsic frequency of AV node is about 50 

times/min, which is lower than SA node frequency which is of 70 times/min, SA node 

behaves just as a normal conducting path from atria to ventricles.  

Action potential propagation from AV node to ventricles is through a specialized 

bundle system, called bundle of His and its branches called Purkinje fibers.  

Critical points of the above process are as illustrated in Figure 2.4. 

 

Figure 2.4 Heart conduction system [1] 

2.1.3 ECG Waveform 

The waves of depolarization that propagate through the heart during each cardiac 

cycle create electrical impulses basically composed of P,QRS and T waves as 
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depicted in Figure 2.5. These impulses propagate through various body fluids such as 

blood, up to body’s surface and then surface electrodes if there exist. These signals 

are then captured by an electrocardiograph, which amplifies, filters and records the 

signal resulting in consecutive waveforms called as the ECG [2].    

 

Figure 2.5 Heart electrophysiology [1] 

As depicted in Figure 2.6, the main features of the ECG waveform that carry 

important information concerning cardiac heart are as follows: 

• P wave 

• QRS wave 

• T wave 

• QRS segment intervals 

 

These features are described in the following section. 
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Figure 2.6 QRS complex showing the sinus rhythm regions [2] 

2.1.3.1 P Wave 

The P wave is a result of electrical activity originating from atrial contraction 

(systole). In cardiovascular diseases (CVDs), the P wave can appear in an abnormal 

shape as seen, for example in Figure 2.7. Abnormality in P wave can be a sign of 

various heart diseases such as negative P wave is an indication of abnormality in 

polarization direction of atria which means that the origin of the peacemaker signal is 

not the SA node, but could come from somewhere else such as the atrium or the AV 

node. Broadened or notch shape in P wave is an indication of delay in depolarization 

of the left atrium, which possibly arise from problems in conduction system. P waves 

exceeding 3 mm on the ECG trace, usually an indication of right atrial enlargement (P 

pulmonale). In some cases, the P wave is not apparent because of a junctional rhythm 

or SA block, whereas in some other cases it may be replaced by small oscillations or 

fibrillation waves (atrial flutter) [2].    
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Figure 2.7.An example of various P-wave measurements from Lead II (a) Normal (b) 
broadened or notch, and (c) tall and peaked   [2] 

2.1.3.2 QRS complex 

The QRS complex is due to ventricular contraction (systole) and the most important 

waveform reflecting electrical activity within the heart. It forms the basis of  

automatic detection of heart rate and also a starting point for classification and data 

compression algorithms [4]. The shape and occurrence QRS complex gives important 

information on the mechanical action of the heart giving with operation of each 

chamber. 

The QRS complex is composed of the Q, R and S waves. Q wave is the first negative 

(downward) deflection. Followed the Q wave, R wave is the positive (upward) 

deflection. Any negative deflection following just after the R wave is named as the S 

wave. In some cases, two or more R waves can exist or R wave does not exist at all 

within one QRS complex as depicted in Figure 2.8. 

The electrode/lead from which ECG signal is measured also affects the appearance of 

the wave. For example, from lead VI (right hand side of the heart), a large S wave is 

seen due to left ventricular forces passing away from the electrode. Healthy Q waves 

do not normally exceed 2 mm in amplitude or 0.03 s in width and abnormally large Q 

waves can be indication of myocardial infarction (MI). The QRS complex is usually 

not longer than 0.1 s and with average duration of 0.06-0.08s [2].    
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Figure 2.8 Various QRS complexes in the ECG   [2] 

2.1.3.3 T Wave 

T wave is generated by  the ventricles relax (diastole) after ventricular contraction. 

Unlike the Q and R waves, T wave is due to repolarization. T wave normally occurs 

for 0.25-0.35 s after ventricular depolarization. The lower heart chambers are 

electrically relaxing and preparing for their muscle contraction, during T wave. Atria 

repolarization is difficult to observe because  it is masked by the larger QRS complex 

due to ventricular contraction. The T wave is in the same direction with the QRS 

complex because repolarization occurs in the direction opposite to depolarization. T 

waves are usually shorter than 5 mm in the standard leads. Abnormally tall T waves 

can be an indication of MI, whereas flattened T waves can be an indication of 

myxoedema and hypokalaemia. Slight T wave inversion can be due to 

hyperventillation and smoking however it is usually due to myocardial ischaemia, 

infarctions, ventricular hypertrophy, and bundle branch block [2].    

2.1.3.4 QRS Segment Intervals 

Both the shape and the time intervals of the waves are important in the evaluation of 
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cardiac health.  

PQ interval is defined as the time interval between the beginning of the P wave and 

the onset of the QRS complex. But since the Q wave is often absent in this interval; 

the term PR interval is used representing the time between the onset on atrial 

contraction which is normally about 0.16 s [2]. 

If the heart tissue is scarred or inflamed, PR interval usually becomes longer as more 

time is needed for the depolarization wave to propagate through the atrial 

myocardium and the AV node. Shortened PR interval may be the indication of 

junctional tissue originated impulse or the Wolff-Parkinson-White syndrome [2]. 

The ST segment as depicted in Figure 2.9, is a very important interval in a way that 

various CVD is reflected to this segment. It is usually a leveled straight line between 

the QRS complex and the T wave. If the heart muscle is damaged or does not receive 

sufficient blood, some disturbances appears in ventricular repolarization causing ST 

segments to be elevated or depressed depending on the observed ECG lead. Concave 

upward ST segments over many cardiac cycles is an indication of pericarditis. Shape 

of ST segment depression is characteristic to pathologies which can indicate 

ventricular hypertophy, acute myocardial ischemia, and sinus tachycardia [2].  

 

Figure 2.9 ST segments in the ECG   [2] 



 

14

QT interval, which is about 0.35 s., reflects the state of ventricular contractions. As 

heart rate increases, the duration of QT interval shortens. Although sometimes QT 

interval is difficult to measure, usually QT interval does not exceed half the time 

between the previous RR interval if the heart rate is between 60 and 90 beats/min. 

Longer QT intervals can be the indication of the risk of ventricular tachycardia or the 

presence of certain drugs like antidepressants. [2] 

2.1.4 ECG Lead System 

The voltages obtained during a normal ECG monitoring depend on the placement pf 

the recording electrodes (leads) on the body surface [2]. In order to achieve low 

contact impedance so that to maximize the ECG signal several lead placement and 

configurations are proposed for different purposes [5]. Among them three basic 

configurations are used in clinical applications. These are: 

• Standard clinical ECG  

• Vectorcardiogram (VCG) 

• Monitoring ECG (1 or 2 leads)  

Bipolar leads termed as I, II, and III are electrodes attached to the limbs. The potential 

difference is obtained by subtracting voltage of one lead from the voltage of another 

lead. For example for lead I, positive electrode is placed on the left arm and negative 

electrode is placed on the right arm. And the lead I potential is obtained by 

subtracting the right arm voltage from the left arm voltage [2].  

The potential difference of the unipolar leads is obtained by subtracting voltage of 

positive lead from an indifferent voltage that is either ground or a small potential such 

as Wilson terminal, which is composed of the three limb lead electrodes [2]. 

Placement of 12 leads is depicted in Figure 2.10 and Table 2.1. An example of ECG 

waveforms that are obtained from these leads  are depicted in Figure 2.11. 
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Figure 2.10 Placement of 12-Lead ECG [2] 

 

 

Figure 2.11 Example of ECG waveforms that are obtained from 12-Lead ECG [2] 
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Table 2.1 Placement of 12-Lead ECG [2] 

Lead Type + Electrode - Electrode 

I Bipolar Left arm Right arm 

II Bipolar Left foot Right arm 

III Bipolar Left foot Left arm 

V1 Unipolar 4th intercoastal space to the right of Ground 

V2 Unipolar 4th intercoastal space to the left of sternum Ground 

V3 Unipolar Midway between V2 and V4 Ground 

V4 Unipolar 5th intercoastal space Ground 

V5 Unipolar Left anterior axillary line on the same 

latitude as V4 

Ground 

V6 Unipolar Left midaxillary line on the same latitude 

as V4 

Ground 

aVR Unipolar Right arm Ground 

aVL Unipolar Left arm Ground 

aVF Unipolar Left foot Ground 

 

Standard clinical ECG is implemented in hospital to a resting patient by using 12 

leads (measured I, II, V1 to V6 and computed III, aVL, aVR and aVF). 

In VCG, 3 orthogonal leads are used to obtain 3 dimensional vector model for the 

cardiac electrical activity. 

Monitoring ECG, is implemented by using 1 or 2 leads to perform arrhythmia 

analysis in long term monitoring ICU, ambulatory or battery powered applications.  
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Since main objective in monitoring ECG applications is to recognize each heart beat 

and perform arrhythmia analysis, the leads at which R wave is most apparent are 

selected so that high signal to noise ratio is achieved. Since lead II has the highest R 

wave amplitude among the other leads in general, it is the first choice for monitoring 

applications. Second lead is considered as a backup source in case a malfunction such 

as loss of electrode occurs in lead II channel.   

2.2 Prefiltering  

Various sources of noise corrupt the ECG signal. The noise in recorded ECG may 

effect the interpretation of the recording and may lead an incorrect diagnosis [2]. 

Although some part of the noise is suppressed by hardware, there still exists some 

part of the noise in the recorded ECG. Therefore, prefiltering is necessary in order to 

attenuate artifacts before processing in the recorded ECG. The commonly 

encountered noises are described in the following sections [6]. 

Power line interference: The frequency content of power line interference is 50 or 

60 Hz as the fundamental component with its harmonics. The amplitude of the power 

line interference may be up to %50 of peak to peak ECG signal amplitude as depicted 

in Figure 2.12 [6]. 

 

Figure 2.12 Power line interference and motion artifacts [6] 

Electrode contact noise: As a result of contact loss between the electrode and skin, a 

transient step interference occurs called as electrode contact noise as depicted in 

Figure 2.13 [6]. 
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Figure 2.13 Electrode contact noise [6] 

Motion artifacts: Transient baseline changes occur which are called as motion 

artifacts as depicted in Figure 2.12 as a result of the changes in electrode-skin 

impedance with electrode motion [6]. 

Muscle contractions (EMG) artifacts:  

Artificial milivolt-level potentials are generated due to muscle contractions. These 

artifacts are usually considered as zero mean Gaussian noise  within DC to 10 kHz 

[6]. 

 

Figure 2.14 Respiration and EMG noise [6] 

Baseline drift and ECG amplitude modulation with respiration: Respiration drifts 

the baseline of the ECG by adding a sinusoidal at the respiration frequency about 0.15 

to 0.3 Hz as depicted in Figure 2.14 [6]. 

Electrosurgical Noise: ECG is destroyed if electrosurgical noise exists. 

Electrosurgical noise can be represented with a sinusoidal wave between 100 kHz to 1 
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MHz with amplitude in the order of % 200 of peak-to-peak ECG amplitude. 

Electrosurgical noise can not be filtered out since the sampling rate of ECG signal is 

in between 250 Hz to 1000 Hz which is below Nyquist rate which is not enough to 

prevent aliasing [6].  

Conclusion: Preprocessing of ECG signals is necessary to suppress the various noise 

components and increase the signal to noise ratio (SNR) as much as possible. In 

general, cascade of high pass and low pass filtering which means band pass filtering 

with pass band covering 10 Hz to 25 Hz is used in order to noise reduction and 

extraction of characteristic features of QRS complex [4].    

2.3 QRS Complex Detection  

Among the several waveforms that compose an ECG signal, the most important and 

characteristic one is the QRS complex reflecting the electrical activity of the heart 

during ventricular contraction. Both the time of QRS complex occurrence and the 

shape of QRS complex provide important information about the current state of the 

heart such as determination of heart rate and forming the starting point of the 

interpretation programs. QRS complex characteristic shape is also used for ECG data 

compression algorithms. Therefore, QRS complex is the basis for ECG analysis 

algorithms. 

Software QRS detection algorithms replaced hardware QRS detection algorithms for 

more than 35 years and after that many researches have been performed on software 

QRS detection [4]. In the early years computational load was the major drawback on 

software QRS detection but parallel to the developments in computer technology, 

computational load became less important and major objective became the detection 

performance of QRS complexes. However, the trend is now toward producing smaller 

and portable devices by employing PDA technology therefore accurate methods with 

less computational load became more important. 

The review by [6] provides implementation of several QRS detection algorithms and 
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comparisons between them. Their test results showed that none of the algorithms was 

able to detect the QRS complexes without false positives for all the noise types at the 

highest noise levels. It is concluded that algorithms based on amplitude and slope 

have the best results for EMG captured ECG and an algorithm utilizing a digital filter 

had the best performance for the composite noise corrupted data.  

A more recent review article, [4] provides approaches applied to QRS detection 

problem including derivative based algorithms, digital filters, artificial neural 

networks (ANN), genetic algorithms, wavelet transforms, filter banks and heuristic 

methods. Another review article, [7] outlines wavelet based algorithms used in ECG 

analysis.   

As stated in [4], many of the publications’ evaluation is not given, many of  the 

publications’ evaluation is not performed on standard databases or many of  the 

publications’ performance indices are not compatible (ie: sensitivity and positive 

predictability is not given). Therefore, the algorithms are not comparable effectively, 

although for many algorithms in the literature, sensitivities about %99 is claimed to 

be achieved. Additionally, only overall results are provided for detection rates, hiding 

the problems for individual records having pathological beats and noise corruption.  

A review of mature QRS detection algorithms, which are proved to be successful, is 

given in the following sections. 

2.3.1 Amplitude and Derivative Based Algorithms 

The most fundamental algorithms in QRS detection are the ones based on amplitude 

and derivative of the ECG signal. Many algorithms in literature use first derivative, 

second derivative, or weighted combination of first and second derivatives. 

Differentiation is a way of high pass filtering allowing detection of QRS complex 

from its characteristic steep slope.  QRS detection is achieved by comparing the 

feature obtained from derivative based algorithm, against a threshold. Signal-

depended threshold is used in order to adapt to the varying signal characteristics. 
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Amplitude or first derivative peaks among over threshold samples are defined in order 

to locate the QRS complexes.  

Let )0()( xnx = , )1(x ,…. )(nx  be the discrete samples of an ECG signal. The parts of 

ECG signal at which the linear combinations of first derivative, ( )ny ' , and second 

derivative , ( )ny '' , calculated. Several implementations are: 

 ( ) ( ) ( )nxnxny −+= 1'                                                                                             (2.1) 

( ) ( ) ( )11' −−+= nxnxny                                                                                         (2.2) 

( ) ( ) ( ) ( ) ( )221122' −−−−+−+= nxnxnxnxny                                                  (2.3) 

( ) ( ) ( ) ( )222'' −−−+= nxnxnxny                                                                         (2.4) 

( ) ( ) ( )nynynz ''' 1.13.1 +=                                                                                      (2.5) 

After calculating these features, the parts (usually consecutive ones) that exceed an 

amplitude threshold are taken as a part of QRS complex. Usually signal dependent 

amplitude thresholds are defined for threshold to adapt the changing signal 

characteristics as much as possible. For example, an amplitude threshold,θ , is 

computed as a fraction of the maximum ECG signal amplitude as follows: 

( )[ ]nxmaxγθ =                                                                                                        (2.6) 

where γ = 0.3, 0.4 have been widely used and maximum is determined from the 

current signal segment.  

In order to exclude the non-QRS segments having QRS like feature values, some 

heuristic rules usually on the timing and the sign of the feature are applied. Therefore, 

number of false positives is decreased. 

In a recent study performed by Arzeno, Deng and Poon [12], traditional Hamilton-
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Tompkins algorithm [11] and a Hilbert transform based algorithm are implemented 

and compared. It is concluded that Hilbert transform based algorithm had accuracy of 

99.13% sensitivity and 99.31% positive predictivity and Hamilton and Tompkins 

algorithm has the highest detection accuracy with 99.68% sensitivity and 99.63% 

positive predictivity.      

Moraes, Freitas and Costa [14] developed a derivative based QRS detection algorithm 

allowing 2nd QRS detection channel to confirm or reject the results obtained from 1st 

QRS detection channel. This algorithm offers a sensitivity of 99.22% and 99.73%.  

Amplitude and derivative based algorithms form the bases of QRS detection. Major 

principles have been described here. Further articles on amplitude and derivative 

based QRS detection include [2], [4], [5], [6], [8], [9], [10], [11], [12], [13], and [14]. 

2.3.2 Digital Filter Based Algorithms 

Digital filters are widely applied for QRS detection. Bandpass filters are commonly 

used to enhance the waveform of interest and supprest the rest of the waveforms. A 

pioneer algorithm implemented by [6], ECG signal is filtered by two different low 

pass filters having different cut off frequencies. The difference between the filter 

outputs is the band pass filtered ECG signal having relatively high frequency 

components, QRS complex, enhanced and others suppressed. This band-passed 

filtered signal, ( )ny2 ,  is further processed by a nonlinear operation, which leads 

suppression of small values, and further enhancing QRS complex with the cost of 

smoothing the peaks of QRS complex.  

( ) ( ) ( )
2

223 ⎥
⎦

⎤
⎢
⎣

⎡
= ∑

+

−=

mn

mnk

kynyny                                                                                        (2.7) 

Multiplication of backward difference (MOBD) algorithm that Suppappola and Sun 

[15] proposed, is based on AND combination of adjacent magnitudes of derivatives.  
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knxknxnz                                                                               (2.8) 

A sign constraint is defined (2.9) in order to avoid noisy segments to make high 

feature signal. Threshold is selected to be depended on feature maximum zmax. 

( ) 0=nz  if ( )[ ] ( )[ ]1−−≠− knxsignknxsign                                                            (2.9) 

Some algorithms utilize other heuristic constraints to avoid the effects of noise.  

QRS complexes are detected comparing the amplitudes in the band pass filtered 

signal with a variable v, where v is the maximum sample value of the recent segment. 

If, for example, ECG samples in the following segment are below v/2, a peak is 

detected. Some algorithms utilizes [16] recursive and nonrecursive median filters 

assuming that the QRS complex occur within the pass band of the filters. These filters 

are: 

( ) ( ) ( ) ( ) ( ) ( )[ ]mnxnxnxnymnymedianny ++−−= ,....,1,,1,.....,                            (2.10) 

( ) ( ) ( ) ( ) ( ) ( )[ ]mnxnxnxnxmnxmedianny ++−−= ,....,1,,1,.....,                             (2.11) 

Adaptive filters [17] have also been utilized with the objective of modeling the ECG 

signal as a superposition based on the past signal values: 

( ) ( ) ( )knxnany
p

k
k −=∑

=1
                                                                                          (2.12) 

where ka  are time variant coefficients adapting according to input signal statistics. A 

midprediction filter [18] has also been utilized based on the current signal segment: 

( ) ( ) ( )knxnany
p

pk
k −= ∑

−=

                                                                                         (2.13) 

Coefficients are obtained by using standard adaptation rules such as the least mean 

squares (LMS) algorithm. 
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Major principles of digital filter based QRS detection algorithms have been described 

here. Further articles on amplitude and derivative based QRS detection include [2], 

[4], [5], [6], [8], and [9]. 

2.3.3 Transform and Classification Based Algorithms 

Signal transforms have also been used to detect peaks in the ECG. 

Wavelet Based Algorithms: 

The wavelet transform is used to obtain time and frequency characteristics of the 

signal and is closely related to the filter bank method [2]. The algorithm [19] for 

singularity detection and classification is utilized by most of the wavelet methods 

applied to ECG peak detection. QRS complex detection is achieved by using local 

maxima of the wavelet coefficients and the singularity degree which is the local 

Lipschitz reqularity, α , estimated from 

( ) ( )jjjj
j nWfnWf ,2ln,2ln 11 −= ++α                                                                     (2.14) 

A review [7], provides application of wavelet analysis to the electrocardiogram. 

Ability of Daubechies, spline and Morlet transforms to recognize and describe 

isolated cardiac beats are compared in [20]. 

[21],[22] used a first-order derivative of the Gaussian function as the wavelet in order 

to characterize ECG waveforms. They showed that the algorithm based on modulus 

maxima-based wavelet analysis with the dyadic wavelet transform performed well 

even in the signal corrupted modeled baseline drift and high frequency noise. They 

used this method in order to determine various waveforms and intervals such as   the 

QRS complex width, T and P waves, and PR, ST and QT intervals. [23] described 

some improvements to this technique. [24] employed launch points and wavelet 

extreme in order to obtain amplitude and duration parameters from the ECG signal. 

[25] utilized a method based on comparison of the modulus maxima with a threshold 
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obtained from preselected initial beats. The performance of the algorithm is improved 

by updating the threshold according to the recent signal and post precessing in order 

to remove redundant R waves or noise peaks. The performance of this algorithm 

when tested in MIT/BIH database is considered to be good with sensitivity and 

positive predictivity of 99.90% and 99.94% respectively. [26] is a extended version of 

this algorithm by means of including the premature ventricular contraction (PVC) 

beats. By employing a fuzzy neural network, [26] achieved a 99.79% accuracy in 

classification of PVC beats. [27] identified peaks, onsets and offsets of the QRS 

complexes, and P and T waves by using the algorithm of [25]  applying a dyadic 

wavelet transform. 

The algorithm implemented by [28], utilizes the local maximums of two consecutive 

dyadic wavelet scales and comparing them in order to identify the source of the local 

maximum as being due to either R wave or noise. Sensitivity and positive predictivity 

of this algorithm is reported to be 96.84% and 95.20% respectively when tested in 

American Heart Association (AHA) database.  

[29] employed continuous wavelet transform (CWT) by extending the studies of [25] 

and [28]. Improved definition of the QRS modulus maxima curves are obtained by 

[29] because of the high time frequency resolution of their CWT based algorithm 

which allows better definition of spectral region corresponding to QRS maxima peak. 

Sensitivity and positive predictivity of this algorithm is 99.53% and 99.73% 

respectively when tested in Coronary Care Unit at the Royal Infirmary of Edinburgh 

database. Sensitivity and positive predictivity of this algorithm is 99.7% and 99.68% 

respectively when tested in MIT/BIH database. 

Further articles on wavelet transform based QRS detection include [2], [4], and [7]. 

ANN Based Algorithms: 

There are many neural network approaches on QRS detection proposed over the years 

such as multilayer perception (MLP), radial bases function (RBF), and learning vector 

quantization (LVQ) [4]. Figure 2.15 depicts the structure of MLP network. MLP 
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nerwork consist of several layers of interconnected neurons. In this network, each 

neuron represents a processing function: 

⎟
⎠

⎞
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⎝

⎛
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=

N

i
ii xwwfy

1
0                                                                                              (2.15) 

where iw  is the weight assigned to input ix . ( ).f  can be a linear or a nonlinear 

function. If ( ).f  is a nonlinear function, then in general it is defined as the logistic 

following function: 

 ( ) ue
uf −+
=

1
1  or ( ) ( )uuf tanh=                                                                           (2.16) 

 

Figure 2.15 Multilayer perception [4] 

RBF networks utilizes the following function: 
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                                                                                   (2.17) 

where  ( )nx  is the input data vector, N is the number of neurons, iw  are the 

coefficients, ic are the center vectors and iσ  are the standard deviations. Other 
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functions such as wavelets can be utilized instead of the exponential term in the 

equation. 

An input layer, a competitive layer, and a linear layer constitute a LVQ network. 

Input vectors are automatically assigned to subclasses by the competitive layer where 

N is the maximum number of subclasses that equals to the number of competitive 

neurons. Competitive layer assigns the input vectors based on the  Euclidian distance 

between the input vector and weight vector of each of the competitive neurons. Linear 

layer combines the subclasses in the competitive layer and the predefined target 

classes. Figure 2.16 depicts LVQ network structure.  

 

Figure 2.16 Structure of LVQ network [4] 

Parameters of the networks must be trained prior to the QRS detection task. Training 

of MLP and RBF networks are accomplished by supervised learning algorithms and 

training of LVQ networks are accomplished by unsupervised learning algorithms 

 [31] has been developed an adaptive matched filtering algorithm based on multilayer 

perception neural network for QRS detection. The algorithm offers a sensitivity of 

99.0 % and a positive predictivity of 98.5%. 

[32] has been proposed a compression technique with back propagating neural 
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network algorithm in order to reduce the computational load and achieved 1.9% 

detection error rate (ER): 

 
TB

UFNFPER ++
=                                                                                               (2.18) 

where FP is the number of false positives, FN is the number of false negatives, U is 

the unknown data and TB is the total number of QRS complexes. 

[33] proposed a back propagating neural network algorithm with an average accuracy 

of 91.16%. 

[30] employed ANNs  as nonlinear predictors, in order to predict the value of the  

( )1+nx  from the previous samples. Then the network is trained to recognize the 

nonexistence of the QRS wave. The segments in which the portions of QRS wave 

exists, makes the output of the network to have large errors, ( )ne , by which the QRS 

wave is detected. Since ECG signal contains more non-QRS segments than WRS 

segments, training the network to non-QRS segment prediction makes the network 

output convergent. QRS segments create sudden changes in the ECG signal lead 

sudden increase in the prediction errors, ( )ne  which is utilized as the feature for QRS 

detection.  

Further articles on neural network based QRS detection include [2] and [4]. 

Genetic Algorithms: 

Genetic algorithms are used in designing optimal polynomial filters for ECG signals 

[34] for which quasilinear filters (with consecutive and selected samples) and 

quadratic filters (with selected samples) are applied. Since many possible 

combinations slows down the algorithm and exhaustive search is needed in order to 

achieve the best genes, genetic algorithms are not preferred much in ECG signal 

analysis. 
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Conclusion: 

Major principles of software QRS detection has been described above. This field has 

matured to the extent where most of the algorithms available have been tried and 

tested on ECG recordings. In this thesis, four of the QRS detection algorithms that are 

known to be successful, are implemented and results are compared. A derivative 

based method (Method I) [6] and a digital filter based method (Method II) [6] which 

utilizes the fundamental concepts of QRS detection are implemented. Another method 

(Method III) [8] which utilized the morphological features which is known to be 

robust and popular by being the most cited reference is implemented. And a neural 

network based QRS detection method (Method IV) is implemented which is one of 

the promising technique as stated in the review chapter of [2]. 

2.4 Feature Extraction and Classification  

Aim of feature extraction and classification is to identify and discriminate the 

important and special characteristics in ECG signal, associated with a particular 

pathology. Feature extraction is a very important issue in classification problem. 

Decision of which feature to extract or to select the features to be used in 

classification problem among extracted features is often implemented intuitively or 

heuristically by considering discrimination, reliability, independence, optimality of 

features as described below: 

• Discrimination: The feature values of patterns in different classes should be as 

distinct as possible. 

• Reliability: The feature values of patterns in the same class should be as close as 

possible. 

• Independence: Correlation between features should be as small as possible.  

• Optimality: Total number of features should be as small as possible. 
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Among to many feature extraction and classification methods in the literature, the 

common ones are highlighted in the following paragraphs emphasizing the 

importance of extracting and selecting the correct features in CVD classification. 

One of the methods in ECG feature extraction is to utilize the morphological 

characteristics of the ECG. The morphological features such as maximum amplitude, 

RR duration, area under QRS waveform etc. can be extracted from detected QRS 

waves.  

 [35] compared the classification ability of the four classification methods (neural 

networks, K-th nearest neighbour rule, discriminant analysis and fuzzy logic) for 

normal beats and premature ventricular contractions by using morphological features. 

They achieved 82.1% specifity and 80.7% sensitivity by neural networks,  75.4% 

specifity and 80.9% sensitivity by K-th nearest neighbour rule, 88.5% specifity and 

81.7% sensitivity by discriminant analysis, 82.8% specifity and 85.8% sensitivity by 

fuzzy logic. 

[36] extracted twelve morphological features with Kth nearest neighbour 

classification rule, to classify five heart beat types (normal beats, left and right bundle 

branch blocks, premature ventricular contractions and paced beats) and achieved 

sufficiently high accuracies of 90.7% sensitivity and 95.5% specifity.  

Another method in ECG feature extraction is to utilize the higher order statistics 

(HOS). Cumulants with orders higher than two and linear combinations of lower 

order cumulants are referred as HOS which are employed to minimize the spread of 

features belonging to similar type of heart rhythm [37], [38]. 

Another method in ECG feature extraction is to utilize wavelet transform [39]. Six 

energy descriptors to be employed as features can be derived from wavelet 

coefficients from a single beat interval. Additionally, nine different continuous and 

discrete wavelet transforms can be employed as features. Daubechies wavelet 

transform provides overall correct classification of 97,5% for ventricular fibrillation 

and ventricular tachycardia.  [2].   
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One of the methods employed in heart beat classification is ANNs. Heart beat 

classification by ANN is first implemented by using MLP with back propagation 

algorithm [2]. [40] employed MLP for classification of normal and ventricular beats. 

[41] compared several ANN classifiers with accuracies 80% or above. [42] compared 

performances of MLP, LVQ and Kohenen’s self organizing map in classification of 

normal and PVC beats and obtained better overall performance MLP network.  

[43] proposed three ANN systems and in order to detect ventricular ectopic beats 

(VEB) by using AHA database. Two of the trained ANNs are used as local pattern 

recognizers for each record and the third one is used for global decision.  This method 

improved the gross sensitivity from 94.83% to 97.39% and the gross positive 

predictivity from 92.70% to 93.58% with the ANN system in place.  

Some of other classification algorithms developed using ANNs are such as [44], [45] 

and [46]. 

Conclusion: 

Major principles of feature extraction and classification have been described above. 

Studies on extracting and selecting best features representing a unique disease type, 

which is not shared by the others is continuing with the goal of better classification.   

In this thesis, morphological features are extracted, K-th nearest neighbor rule, 

artificial neural network, and a rule based classification algorithms are implemented, 

and results are compared. 

2.5 Performance Evaluation  

Sensitivity (Se) and positive predictivity (+P) are the essential parameters that are 

used to evaluate the performance of QRS detection algorithms [47]. A true positive 

(TP) is defined as a correctly detected or classified event, a false positive (FP) is 

defined as incorrectly detected or classified actually non-occurring event and a false 

negative (FN) is a missed event. Sensitivity is a measure of total detected beats 



 

32

among all beats in the signal analyzed.  Positive predictivity is a measure of true 

positive detected or classified beats among all detected or classified beats. 

Related formulas are provided below: 

FNTP
TPSe
+

=                                                                                                         (2.19) 

FPTP
TPP
+

=+                                                                                                       (2.20) 

In ideal case, both sensitivity and positive predictability are 1 or %100.  

2.6 ECG Databases 

There are several standard ECG databases available for performance evaluation of 

detection and classification of algorithms such as MIT-BIH Database, AHA Database, 

Ann Arbor Electrogram Libraries, CSE Database, European ST-T Database, QT 

Database, MGH Database, IMROVE Data Library, ECG Reference Data Set. 

MIT-BIH Database is a well-annotated and validated database of real ECG records 

that is provided by MIT and Boston’s Beth Israel Hospital. For QRS occurrence 

annotations, a slope-sensitive QRS detector is used, then the results were evaluated by 

two cardiologists working independently. Then, their annotations are compared and 

agreement is done between the results. However, a few unclassified beats are 

remained due to disagreement between the two cardiologists [48].    

MIT-BIH Database contains various databases for various conditions such as 

Arrhythmia Database, Noise Stress Test Database, Ventricular Tachyarrhythmia 

Database, ST Change Database, Malignant Ventricular Arrhythmia Database, Atrial 

Fibrillation/Flutter Database, ECG Compression Test Database, Supraventricular 

Arrhythmia Database, Long-Term Database, and Normal Sinus Rhythm Database. 

Furthermore, the records are corrupted by noise and artifacts which makes QRS 

detection and heatbeat classification challenging [2]. 
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Among these several standard databases of MIT-BIH, Arrhythmia Database is the 

most frequently used one for the performance evaluation of the QRS detection and 

arrhythmia classification algorithms. In addition, this database includes various Holter 

type ECG recordings of two leads that are rarely observed but clinically important. 

One of the lead is usually MDII (Modified Lead II) and the other one is either one of 

the Lead 1 (V1), Lead 2 (V2), Lead 3 (V3), Lead 4 (V4), Lead 5 (V5), Lead 6 (V6).   

A record from MIT-BIH Arrhythmia Database with annotations are provided in 

Figure 2.17 [49].   

  

Figure 2.17 A recording from MIT-BIH database (MITDB 233 record [49]) 
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CHAPTER 3 

3.                                       METHODS 

This chapter starts with the explanation of the prefiltering stage, followed with the 

details of the QRS detection, the feature selection and the classification algorithms 

implemented in this thesis.  

3.1 Prefiltering 

The first stage in QRS detection is the prefiltering stage. In this stage, the raw ECG 

signal is filtered in order to suppress the noise, and enhance the characteristic features 

of QRS complex, as explained in detail in section 2.2. One can utilize infinite impulse 

response (IIR) or finite impulse response (FIR) filters for this prefiltering stage. 

Infinite impulse response (IIR) filters are recursive filters that have the advantage of 

less computation than the finite impulse response (FIR) filters. However, nonlinear 

phase response of IIR filters causes phase distortion. Applying the IIR filter to the 

ECG signal in both directions is referred as the “zero phase IIR filter” and it is a 

solution to phase distortion problem in a way that distortions occurred by filtering the 

signal in one direction is corrected by filtering the signal in the reverse direction [3].  

For prefiltering, a band pass filter composed of cascaded bidirectional high pass filter 

and bidirectional low pass filter is obtained. Butterworth filter, which is a special kind 

of an IIR filter, has the advantage of having no ripples in either the pass band or the 

stop band, and thus implemented in this study for both the high pass and the low pass 

filtering stages. The resultant band pass filter has no ripples in either the pass band or 

the stop band and zero phase with cut of frequencies 0.67 Hz and 35 Hz. In the 

literature in general, band pass filters covering 10 Hz to 25 Hz are used for QRS 

detection [4]. Although these filters extract the characteristic features of QRS 

complex, some distortions in the wave shape of the ECG signal are usually 
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encountered since ECG signal energy is accumulated on a frequency band covering 

up to 40 Hz [5]. In this study, cut off frequencies are chosen such that the noise is 

attenuated while not distorting the ECG signal itself. Lower cut off frequency of 0.67 

is chosen because the slowest heart rate which is thought to be 40 bpm implies the 

lower cut off frequency to be greater that 0.67 Hz [3]. Higher cut off frequency of 35 

Hz, which is found empirically, is chosen because it is the lowest frequency covering 

the QRS complex while keeping the ECG signal undistorted.    

Figure 3.1 depicts the algorithm of the bidirectional filtering where x[n] is the raw 

ECG data, h[n] is the fifth order Butterworth IIR filter and “flip” step depicts the time 

reversal of the signal. This algorithm starts with applying the fifth order high pass 

Butterworth IIR filter having a cut-off  frequency of 0.67 Hz to x[n]. This resultant 

signal is then flipped and passed through the same filter again. Finally, the resultant 

signal is flipped one more time.  The frequency response of the fifth order high pass 

Butterworth IIR filter is depicted in Figure 3.2. 

 

Figure 3.1 Block diagram of a bidirectional filter. 

After this high pass filtering stage, the same procedure is applied to the output of the 

high pass filtering stage with a fifth order low pass Butterworth IIR filter having a 

cut-off  frequency of 35 Hz. The frequency response of the fifth order low pass 

Butterworth IIR filter is depicted in Figure 3.2. 

An example of ECG data before filtering and after filtering are depicted in Figure 3.4. 
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Figure 3.2 The frequency response of the Butterworth IIR high pass filter  
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Figure 3.3 The frequency response of  the Butterworth IIR low pass filter  
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Figure 3.4 An example illustrating the effect of filtering on ECG data 

3.2 QRS Complex Detection 

In this thesis, four of the QRS detection algorithms from literature that have been 

known to be successful are implemented and their results are compared. These 

methods are: 

• (Method I) A derivative based method [6], 

• (Method II) A digital filter based method that utilizes the fundamental concepts of 

QRS detection [6],  

• (Method III) Tompkin’s method [8], that utilizes the morphological features of the 

ECG signal. This method is known to be robust and and popular by being the 

most cited reference,  
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• (Method IV) A neural network based QRS detection method, which is one of the 

most promising techniques as stated in the review chapter of [2]. 

The algorithms in this study are not the exact copy of the algorithms in literature, and 

they should be considered as adaptations of the generic concepts.  

3.2.1 QRS Complex Detection – Method I 

QRS complex has not always the highest amplitude in a cardiac cycle due to artifacts, 

but it has the highest slope in a cardiac cycle. Therefore, differentiation forms the 

basis of many QRS detection algorithms. Differentiation is a way of realization of a 

high pass filter by amplifying the higher frequency components (QRS complex) and 

attenuating the lower frequency components (P and T waves) in an ECG signal.   

QRS detection algorithm implemented by [6] forms the basis of the differentiation 

algorithm implemented in this thesis. In this method, a variable derived from a 

weighted summation of first and second derivatives of the ECG signal is scanned and 

if certain duration within a window exceeds the threshold, this segment is taken as 

part of the QRS complex. Then the point having the maximum first derivative with in 

the group is taken as the QRS complex. Signal processing steps of this algorithm are 

given below. 

1.  “ ( )nTx ” is defined as the ECG signal as depicted in Figure 3.5. 

2. Absolute values of the first and second derivatives of the ECG signal are 

calculated as depicted in Figure 3.6 and Figure 3.7. 

( ) ( ) ( )TnTxnTxnTy 20 −−= , first derivative                                                  (2.1) 

( ) ( ) ( ) ( )4221 −+−∗−= nTxnTxnTxnTy , second derivative                        (2.2) 

3. The first and second derivatives ( ( )nTy0  and ( )nTy1 ), are scaled and then 

summed as depicted in Figure 3.8. 
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( ) ( ) ( )nTynTynTy 1*1.10*3.12 +=                                                                   (2.3) 

4. The points at which the scaled sum of the first and second derivatives ( ( )nTy2 ) 

exceeds a certain threshold is found.  

( ) 1=nTz  If ( ) ( ) ( )tesamplingranTy /1000*50/2 α≥                               

( ) 0=nz , otherwise                                                                                             (2.4)        

where α  is the local maximum of ( )nTy2  around the point of interest. 

5. Then over-threshold values are scanned and whenever an over-threshold value is 

detected, the next time interval of 440 ms are scanned. If 300 ms within this 440 

ms window exceed the threshold, this segment is taken as part of a QRS complex. 

The first sample at which the threshold is exceeded is taken as the point of 

detected QRS complex.  

A tuning procedure is applied to parameters in threshold stages until the best results 

are obtained.  

In some diseases such as left bundle branch block, two R waves may appear within 

one QRS complex, which causes the algorithm to detect false positives. We have 

added an extra step to improve the performance of the algorithm. This step includes 

not looking for another QRS complex for a duration of 0.1 seconds, which is the 

maximum possible QRS duration, whenever a QRS complex is detected. 

Besides detecting the QRS complex, this algorithm (the output of the scaled sum of 

the first and second derivatives) can also be used to extract a feature proportional to 

the duration of the QRS complex.   
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Figure 3.5 x(t), An example of the ECG signal 
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Figure 3.6 y0(t), Rectified first derivative 
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Figure 3.7 y1(t), Rectified second  derivative 
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Figure 3.8 y2(t), Scaled sum of rectified 1st and 2nd derivatives 
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Figure 3.9 Detected QRS complexes with starting and ending instants indicated 
(vertical lines) 

3.2.2 QRS Complex Detection – Method II 

QRS detection algorithm implemented by [6] forms the basis of the digital filter 

algorithm implemented in this thesis. In digital filter QRS detection method, 

waveforms in ECG signal other than the QRS complex are removed by using a band 

pass filter. This filtering is applied in two steps: First the signal is low pass filtered in 

order to eliminate unwanted high frequency components by using a three point 

moving average filter, then put through a stricter low pass filter by using a 28 ms 

moving average filter. Next, the output of the second low pass filter is subtracted from 

the output of the first one in order to obtain the band pass filtered signal. This result is 

then squared in order to make all differences positive and enhances the high 

frequency content of the QRS complex. Since QRS complex contains the higher 

frequency band of the remaining components of the signal, multiplying the result of 

the previous step by 28 ms moving average filter further enhances QRS complex and 

suppress small values with the cost of smoothing the peak of the QRS complex. Q, R 

and S points are relatively symmetrical shaped whereas baseline drift is usually not 

symmetrical. In order to distinguish between QRS complex and spurious peaks due to 

baseline drift, the peaks with no symmetry in the time axis for duration of 28 ms are 

eliminated. Finally, the points below a threshold are set to zero, and the over-
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threshold points within a 144 ms interval are grouped together. Flow chart of this 

algorithm is depicted in Figure 3.10 and signal processing steps are given below: 

1. “ ( )nTx ” is defined as the ECG signal as depicted in Figure 3.11: 

2. “ ( )nTx ” is smoothed using a three-point moving average filter as depicted in 

Figure 3.12: 

( ) ( ) ( ) ( )[ ]
4

*20 TnTxnTxTnTxnTy +++−
=    for ( ) 1:2 −= xlenghtn            (2.5) 

3. Output of the moving average filter is passed through a low pass filter as depicted 

in Figure 3.13: 

( ) ( )∑
+

−=
⎥⎦
⎤

⎢⎣
⎡

+
=

mn

mnk
kTy

m
nTy 0

12
11  for ( ) mylenghtmn −+= 0:1 , where m 

corresponds to a 12 ms duration ( 3=m  for 250 sps)                  (2.6) 

4. Difference between the expression in (2.6) and (2.7) is squared as depicted in 

Figure 3.14: 

( ) ( ) ( )[ ]2102 nTynTynTy −=   for ( )1:1 ylenghtn =                                           (2.7) 

5. Squared difference of (2.8) is filtered as depicted in Figure 3.15: 

( ) ( ) ( )
2

223 ⎥
⎦

⎤
⎢
⎣

⎡
= ∑

+

−=

mn

mnk
kTynTynTy  for ( ) mylenghtmn −+= 2:1 , where where m 

corresponds to a 12 ms duration ( 3=m  for 250 sps)                  (2.8) 

6.  The following array is formed for ( )3:1 ylengthmn +=  as depicted in Figure 

3.16: 

( ) ( )nTynTy 34 = , if ( ) ( )( ) ( ) ( )( )[ ] 000*00 >+−−− mTnTynTymTnTynTy  

( ) 04 =nTy , otherwise                                                                                        (2.9) 
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7. Over threshold samples of ( )nTy4  are scanned according to the following 

threshold definition: 

( ))2*:(4max*01.0 tesamplingranTnTythreshold +=  

for ( ) 2*)(4:1 tesamplingranTylengthn −=                                                    (2.10) 

8. Local maximum around over threshold samples is considered as a part of QRS 

complex as depicted in Figure 3.17.  
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Figure 3.10 Flowchart of digital filter based QRS detection algorithm. 
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Figure 3.11 x(t), An example of input ECG signal  
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Figure 3.12 y0(t) after moving average filtering. 



 

47

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time (s)

V
ol

ta
ge

 (m
V

)

 

Figure 3.13 y1(t) after low pass filtering. 
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Figure 3.14 y2(t) after square of the low pass filter input and output difference. 
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Figure 3.15 y3(t) after filtering of squared difference. 
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Figure 3.16 y4(t) array after logical operation. 
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Figure 3.17 Detected QRS complexes  

3.2.3 QRS Complex Detection – Method III 

Algorithm implemented by [8], forms the basis of this QRS algorithm implemented in 

this thesis. This algorithm employs slope, amplitude and width features of the QRS 

complex for detection. The processing steps of this algorithm are depicted in Figure 

3.18. The ECG signal is first passed through a band pass filter formed by cascading a 

low pass filter and a high pass filter in order to attenuate the noise. Then 

differentiation, squaring, and time averaging processes are applied to the signal. 

 

Figure 3.18 Processing steps for QRS detection with Method III.  

Band pass filter enhances the frequency band around 10 Hz at which the signal to 

noise ratio of QRS complex is at its maximum. The lower frequency band attenuated 

by the band pass filter includes the P wave, the T wave and the baseline drift. The 

higher frequency band attenuated by the band pass filter includes the 

electromyographic noise and the power line interference.     
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Differentiation, which is a nonlinear process, is the next step. Differentiation is 

employed in order to extract the high slopes. This step distinguishes the QRS complex 

from the other components that constitute an ECG signal. 

Then a nonlinear transformation is applied to the signal during which the signal 

samples are squared point by point. This transformation is applied in order to make 

the entire signal samples positive before the next integration step and enhance the 

higher frequencies of the signal, which are normally constituted by QRS complexes 

mostly.  

Then a moving window integrator is applied to the signal at which the area under the 

squared waveform over a 150-ms interval is summed. After summation of a 150-ms 

interval, one sample is advanced and the following 150-ms interval is summed for the 

next sample. The width of the interval is chosen to be 150 ms. so that time duration of 

extended abnormal QRS complexes are covered while overlapping of QRS complexes 

and following T waves are prevented. 

Adaptive amplitude thresholds are applied to the resultant signal in order to determine 

the occurrence of the QRS wave.  

Each of the stages in this QRS detection method are explained in detail in the 

following sections. Figure 3.19 depicts an example of input ECG signal.  
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Figure 3.19 An example of input ECG signal    

3.2.3.1 Band Pass Integer Filter 

The band pass filter attenuates the noise in the ECG signal by covering only the 

spectrum of QRS complexes. Therefore, it suppresses the EMG artifacts, power line 

interference, baseline drift, and T-wave interference. QRS energy is cumulated 

approximately in the 5-15 Hz range and the band pass filter enhances this band while 

attenuating the rest. The band pass filter, which is constituted by cascaded low pass 

and high pass filters, is a recursive integer filter at which zeros are canceled by the 

poles on the unit circle of the z-plane.    

Low Pass Integer Filter:   

The second-order low-pass filter is implemented  with the following transfer function: 
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( ) ( )
( )21

26

1
1

−

−

−

−
=

z
zzH                                                                                                     (2.11) 

The difference equation of the filter is: 

( ) ( ) ( ) ( ) ( ) ( )1262212 −+−−+−−−= nxnxnxnynyny                                         (2.12) 

The filter has a cut off frequency around 11 Hz with 5 samples (corresponding to 25 

ms for a sampling rate of 200 sps) delay, and gain of 36.  

Magnitude and phase responses of the low pass filter are depicted in Figure 3.20. The 

phase response of the filter is purely linear. Power line interference is attenuated by 

more than 35-dB attenuation of the frequency corresponding to 0.3 f/fs, which is 60 

Hz for sampling rate of 200 sps.  
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Figure 3.20 Low pass filter amplitude and phase responses  
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High Pass Integer Filter:   

Figure 3.21 depicts the high-pass filter, which is constituted by subtracting a first 

order low-pass filter from an all-pass filter with some delay. 

 

Figure 3.21 The high pass filter is implementation   

The integer coefficient low pass filter is implemented by the following transfer 

function: 

( ) ( )
( ) 1

32

1
1

−

−

−
−

==
z
z

zX
zYzH lp                                                                                         (2.13) 

The difference equation of the low pass filter is: 

 ( ) ( ) ( ) ( )TnTxnTxTnTynTy 32−−+−=                                                            (2.14) 

This low pass filter has a dc gain of 32 and a delay of 15.5 samples. The low pass 

filter is divided by its dc gain 32, then the resultant signal is subtracted from the 

original signal with delay in order to constitute the high pass filter.  The high pass 

filter has the following transfer function: 

 ( ) ( )
( )

( )
32

16 zH
z

zX
zPzH lp

hp −== −                                                                              (2.15) 

The difference equation of this filter is: 

( ) ( ) ( ) ( )[ ])32(
32
116 TnTxnTxTnTyTnTxnTp −−+−−−=                              (2.16) 
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This filter has its lower cut-off frequency at around 5 Hz, a delay of 16T 

(corresponding to 80 ms), and 1 as the gain. Figure 3.22 depicts the magnitude and 

phase response of the high pass filter, which has a purely linear phase. 

The resultant signal after the ECG signal depicted in Figure 3.19 is passed through the 

band pass filter is shown in Figure 3.23.  
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Figure 3.22 Magnitude and phase responses of the high pass filter  
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Figure 3.23 Band pass filtered ECG signal 

3.2.3.2 Derivative 

After the filtering process, the ECG signal is passed through the differentiation step in 

order to extract the high slope characteristic of the QRS complex. A five point 

derivative with the following transfer function is employed: 

( ) ( )431 22125.0 −−− −−+= zzzzH                                                                          (2.17) 

The corresponding difference equation with a delay of 2T (correspond to 10 ms): 

( ) ( ) ( ) ( ) ( )
8

4232 TnTxTnTxTnTxnTxnTy −−−−−+
=                                     (2.18) 

Figure 2.24 depicts the resultant ECG signal after band pass filtering and 

differentiation operations. In this figure, attenuation of P and T waves and 
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enhancement in peak to peak QRS complex can be seen.  
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Figure 3.24 ECG signal after band pass filtering and derivative operations 

3.2.3.3 Squaring Function 

The squaring function, which is a nonlinear process, is implemented with the 

following equation: 

( ) ( )[ ]2nTxnTy =                                                                                                      (2.19) 

All samples in the ECG signal become positive after this operation, which is 

important prior to the following integration process. This operation also nonlinearly 

amplifies the output of the previous derivative operation, which contained enhanced 

QRS complexes and suppressed non-QRS components.   

Figure 3.25 depicts the resultant signal after band pass, differentiation and squaring 

operations. 
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 Figure 3.25 The signal after squaring operation 

3.2.3.4 Moving Window Integral 

The slope information not always characterizes a QRS complex, because there are 

many pathologic QRS complexes with large amplitudes and long durations but not 

steep slopes. Therefore, moving window integration is employed in order to extract 

further information from the signal for QRS detection. 

Moving window integration is implemented with the following difference equation: 

( ) ( )( ) ( )( ) ( )[ ]nTxTNnTxTNnTx
N

nTy ++−−+−−= ...211                              (2.20) 

where N is the number of samples in the moving window corresponding to the width 

of the window. The value of N is chosen in order to optimize the following 

considerations: 
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• N should be great enough so that the window covers the widest possible QRS 

complex. 

• N should be small enough so that the window does not cover QRS complex and 

the T following T wave at the same time. 

Therefore, the width of the window is chosen to be 150 ms corresponding to 30 

samples for a signal with sampling rate of 200 sps.   

Figure 3.26 depicts the resultant signal after band pass filtering, differentiation, 

squaring and moving window integration operations.  
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Figure 3.26 Signal after moving window integration 
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3.2.3.5 Thresholding 

Output of the moving window integration is scanned for points exceeding local 

threshold given below: 

( )( )
11

2*:5max tesamplingrannythreshold +
=                                                       (2.21) 

Then, over-threshold values are scanned and whenever an over threshold value is 

detected the next time interval of 6 ms is scanned and if 4.6 ms within this 6 ms 

window exceed the threshold, this segment is taken as part of a QRS complex. The 

maximum first derivative within this segment is taken as the point of the detected 

QRS complex. The detected QRS complexes are depicted in Figure 3.27. 

The same step as described in section 3.2.1, regarding not looking for another QRS 

complex for a duration of 0.1 seconds is applied to this method. In addition, a tuning 

procedure is applied to parameters in threshold stages until the best results are 

obtained. 
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Figure 3.27 Detected QRS complexes  
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3.2.4 QRS Complex Detection – Method IV 

MLP based QRS detection algorithm described by [4] forms the basis of the this 

algorithm implemented in this thesis. In this algorithm, QRS complexes are 

recognized by a multilayer perceptron (MLP) which is a feed-forward artificial neural 

network model that maps sets of input data onto a set of appropriate output model 

[50]. In this study, two layers of neurons (nodes) are used with nonlinear activation 

functions which can distinguish ECG data that is not linearly separable or separable 

by a hyperplane [51]. A nonlinear activation function which is normalizable and 

differentiable is used for each neuron in the MLP. A sigmoid activation function is 

used that is described by ( ) ue
uf −+
=

1
1  with a range of 0 to 1.  The network consists 

of an input and an output layer with one hidden layer in between. The number of 

neurons in the input and the hidden layers are determined experimentally until the 

best results are obtained. Thus, network is constructed such that there are 21 nodes in 

the input layer, 5 neurons in the hidden layer and 1 neuron at the output layer.  

The ECG signals are down sampled to 100 sps which covers the frequency band of 

ECG signals in order to decrease the computational load and increase the 

computational speed.  

The input data set which is fed into the network for both training and test purposes, 

consists of a set of input vectors that correspond to the values of the ECG in a 200 ms 

sliding window as depicted in Figure 3.28. The number of variables of an input vector 

is 21 samples (1 sample for the positive peak, 10 samples for the prior of the positive 

peak and 10 samples after the positive peak).  

In order to define the weights of the network, a set of training vectors are fed into the 

input layer of the network with the target output defined as either 0.999 when the 

QRS is centered in the window or 0.001 otherwise. Figure 3.29 depicts an example of 

target outputs for vectors of the input signal depicted in Figure 3.28. 

After then test vectors are is fed into the network sequentially, and a threshold stage is 
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applied to the signal at the output node in order to locate the QRS complexes. This 

actual signal obtained at the output node is not the same as the target output defined 

above as expected. However, it has such a form that the QRS regions have peaks, 

which is detectable by a simple threshold stage.  

Figure 3.30 depicts the actual signal obtained from the output node, when sliding 

windows from the input signal depicted in Figure 3.28 is fed in to the input layer 

sequentially.  
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Figure 3.28 200 ms sliding window to be feed to the input layer 
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Figure 3.29 Target output for the ECG signal in Figure 3.28 
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Figure 3.30  Actual output for the ECG data in Figure 3.28 
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3.3 Feature Extraction and Classification  

After the QRS complexes are detected, certain features are extracted from the ECG 

signal. These features are then used in classification algorithms to differentiate normal 

beats from the abnormal ones. Extracted features and classification methods 

implemented in this thesis are provided in the following sections. 

3.3.1 Feature Extraction 

In this thesis, 16 morphological features are extracted from the detected QRS 

complexes. In order to achieve this, first some reference points are extracted. These 

reference points are the positive peak, the negative peak, the onset and the offset 

points as depicted in Figure 3.31. 

The positive peak of the pattern is the maximum point and the negative peak is the 

minimum point within the QRS complex. Onset of the identified pattern is defined as 

the local minimum around the point at which the sign of slope is changed prior to the 

positive peak. Offset of the identified pattern is set to the point having the same 

amplitude with the onset point after the negative peak.  

16 morphological features derived from these reference points are described in Table 

3.1 and some of them are illustrated in Figure 3.31. The features numbered from 1 to 

12 are taken from [35]; the features numbered from 13 to 16 are original contributions 

of this thesis. 
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Table 3.1 Morphological features derived from detected QRS complexes 

Number Label Description 

1 Pp Maximum amplitude of positive peak  

2 Pn Maximum amplitude of negative peak 

3 Width The time-interval between the onset and the offset of the 

identified pattern 

4 ArP Area between the line passing through the onset and 

offset points and the samples above this line 

5 ArN Area between the line passing through the onset and 

offset points and the samples below this line 

6 Area Total area of the QRS complex (ArP+ArN) 

7 No Number of samples crossing 70% of the amplitude 

difference between Pp and Pn 

8 Ima Time interval from QRS complex onset to positive peak. 

9 Imi Time interval from QRS complex onset to negative peak. 

10 S1 QRS slope calculated for the time-interval between the 

QRS complex onset and the first peak (Pp/Ima) 

11 S2 QRS slope calculated for the time-interval between 

positive peak and negative peak (Np /(Imi-Ima)) 

 

 

 



 

65

Table 3.1 (continued) Morphological features derived from detected QRS complexes 

Number Label Description 

12 Pp_dif Time interval between the occurance of Pp of the 

identified pattern and the occurance of Pp of the previous 

pattern  

13 Pp_ ratio The ratio between the Pp_dif of the identified pattern and 

the next pattern 

14 S3 QRS slope calculated for the time-interval between Pn 

and offset (Pn /(Offset_time-Np_time)) 

15 Amp_ratio Ratio of positive peak amplitude and negative peak 

amplitude (Pp/Pn)  

16 Area_ratio Ratio of positive area and negative area (Parea/Narea) 

 

 

 

 

Figure 3.31 Morphological features extracted from detected QRS complexes [35] 
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3.3.2 Classification 

Three classification algorithms are implemented in this study. These are:  

• (Classification Method I) K-th nearest neighbour rule,  

• (Classification Method II) Artificial neural network,  

• (Classification Method III) Rule based classification. 

These classification algorithms are explained in the following sections. 

3.3.2.1 Classifcation Method I 

In this method, Kth nearest neighbor rule is implemented [34] in order to classify 

normal and PVC beats. This rule operates in a multidimensional space classifying the 

n-dimensional feature set of an ECG beat based on the nearest points with known 

correct classification, in the feature space. 

The heartbeats are presented by n-dimensional vectors of features. Various 

combinations of features are applied to the training data set in order to achieve the 

optimal feature set which is found to be:  x = {Pp, Pn, Width, ArN, Area, Ima, Imi,   

Pp_dif, Pp_ ratio, Area_ratio}. The reference sets composed of Normal and PVC 

classes are formed from the first 80 seconds of the MITDB records 105 MDII and 122 

MDII. Each vector was previously labelled as belonging to one of the three classes by 

the database signal annotations. A new vector x (with unknown classification) is 

classified on the basis of the nearest vector from the used reference set. The distance 

between the vector x and each of the clusters jz  is computed as Euclidean distance to 

the mean vector of the corresponding cluster:  

( )∑
=

− −=
n

i

j
inormij zxd

1

2                                                                                         (2.22) 

where j is the cluster index, i is the parameter index, and n is number of the features 
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used. Vector x is classified as belonging to the class of the cluster jz at which jd  has 

a minimum. All features used in this equation is previously scaled so that they take on 

values ranging from 0 to 1 so that their different magnitudes do not yield unequal 

weights in the calculation of jz . 

3.3.2.2 Classifcation Method II  

In this algorithm [34], classification of normal, PVC and paced beats are performed 

by a MLP network of two layers. The activation function is described by a sigmoid 

function ranging from 0 to 1.  

Various combinations of features are applied to the input layer in order to achieve the 

optimal feature set which is found to be:  x = {Pp, Pn, Width, ArN, Area, Ima, Imi,   

Pp_dif, Pp_ ratio, Area_ratio}, The reference sets composed of  Normal and PVC 

classes are formed from the first 80 seconds of the MITDB records 105 MDII and 122 

MDII. Each vector was previously labelled as belonging to one of the three classes by 

the database signals annotations. The number of nodes in the hidden layers are 

determined experimentally until the best results are obtained. There are 10 nodes in 

the input layer, 4 neurons in the hidden layer and 1 node at the output layer. The 

target vector at the output is set to 0.999 if the “Normal” input is fed into the network; 

and it is 0.001 if a “PVC” input is fed into the network.  

After the training process is completed, test set is passed through the network. 

Threshold stage is applied to the signal at the output node in order to classify normal 

and PVC beats. 

3.3.2.3 Classifcation Method III  

The classification approach suggested by Tompkins [5] is a rule based algorithm 

utilizing a map of QRS duration and RR interval.   

R wave is the absolute maximum point within the QRS complex. RR interval is 

calculated from the time differences of the occurrences of consecutive QRS 
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complexes. QRS duration is calculated from the time difference between the 

occurrences of Q and S waves of the detected QRS complexes. Q wave is the first 

inflection point prior to R wave. Q wave is recognized by a change in the sign of 

slope.  S wave is the first inflection point after R wave. Similar to Q wave 

recognition, S wave is recognized by a change in the sign of the slope.  

In the mapping, a “Normal” region is set by allowing the algorithm to learn with the 

first 8 normal complexes. These 8 complexes are verified by the annotations in MIT-

BIH database. After the learning process, boundaries of “Normal” region are defined 

in the two-dimensional mapping space as illustrated in Figure 3.32. 

 

 

 

 

 

 

 

 

Figure 3.32 Rule based classification algorithm [5] 

Except for region “0”, boundaries of the other regions are set as the percentages of the 

mean value of the normal region. Boundaries of region “0” are set according to 

physiological limits. Region “0” covers physiologically impossible RR intervals or 

QRS durations. Therefore, any point that falls in region “0” is taken as noise.   

The boundaries of the regions are updated according to average RR interval of the 

most recent 8 beats which are classified as normal. Therefore, the algorithm adapts 
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itself to changes in heart rate, which may arise from physical exercise etc. According 

to these defined regions, criteria used for classification of different arrhythmias are 

described in Table 3.2. 

Table 3.2 Criteria used for classification of different arrhythmias based on QRS 
duration and RR interval 

Classification Criteria 

Normal A beat in the normal region. 

Asystole No R wave for more than 1.72 s; less than 35 beats/min. 

Dropped A long RR interval; beat in region 6. 

R on T A beat in region 2. 

Companseted PVC A beat in region 3, followed by another in region 5. 

Uncompanseted 

PVC 

A beat in region 3, followed by another in the normal 

region. 

Couplet Two consecutive beats in region 3 followed by a beat in the 

normal region, or in region 5. 

Paroxysmal 

Bradcardia 

At least three consecutive beats in region 5.  

Tachycardia Average RR interval is less than 0.5 sec.  

Fusion A beat in region 4. 

Escape A beat in region 5. 

Rejected A beat in region 0. (Beat has an RR interval of 200 ms or 

less, or QRS duration of 60 ms or less) 
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CHAPTER 4 

4. PERFORMANCE EVALUATION 

The tests performed in this study are performed on the first 80s of the records with 

sampling frequency of 360 sps, in MIT-BIH database. The results are provided in the 

following sections. 

4.1 QRS Complex Detection  

In this thesis, developed algorithms for QRS complex detection are tested on records 

containing normal sinus rhythm, paced rhythm, transition from paced to normal sinus 

rhythm, noise in lower signal, fusion PVC, first degree AVB, PVC, atrial fibrillation, 

APC, right bundle branch block, left bundle branch block beats. Since some records 

are used for training, the test set of method IV is smaller than the others. Initially, 

each recording is prefiltered as described in section 3.1, and then the QRS detection 

methods are applied to the prefiltered signal.  

The test results of QRS detection methods are provided in Table 4.1, Table 4.2, Table 

4.3 and Table 4.4.  

When Method I was used for QRS detection, there were four false negatives (i.e., 

QRS beats that were missed by the algorithm), and four false positives (i.e., parts of 

the ECG signal other than the QRS region that were falsely detected as a QRS beat). 

QRS detection of Method I is based on extracting relatively higher frequency content 

of QRS complex by differentiation. The type of the QRS beats that are missed by 

Method I have depressed ST segments and lower R peaks and the false positives are 

usually noisy regions of the ECG signal. Even though prefiltering is applied to the 

ECG signal, it is observed that Method I has the highest noise sensitivity among all 

other algorithms. A typical example of beat types which Method I fails to detect is 
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provided in Figure 4.1. In this figure, 2nd beat, which has a depressed ST segment is 

missed because its slope characteristic was under the threshold value. The 6th beat has 

also depressed ST segment, but the algorithm could detect that beat since its higher R 

peak amplitude results higher slope characteristic than the 2nd beat. Although 

decreasing the threshold value might seem to be a solution for detection of the missed 

2nd beat, this results in an increase in false positives due to increase in noise 

sensitivity and a sensitivity for elevated T waves.     
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Figure 4.1 An example of false negative with QRS Detection Method I 

A typical example of beat types which Method I detects falsely as a QRS beat is 

provided in Figure 4.2. In this figure, three beats are detected, but the second one is 

not a beat but a noise. Around this false positive (from about 7.6 s to 7.8 s), the ECG 

signal changes its slope rapidly. Since this algorithm depends only on the slope 

characteristic, the portions of the signal with rapid changes in slope such as in this 

example might be falsely detected as a QRS complex.  
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Figure 4.2 An example of false positive with QRS Detection Method I 

When Method II was used for QRS detection, there were nine false negatives, and no 

false positives. QRS detection of Method II is based on digital filtering. The type of 

the QRS beats that are missed by Method II have depressed ST segments in such a 

way that the negative area (usually the area between the baseline and the depressed 

ST segment) and the positive area (usually the area between the baseline and R peak 

peripheral) cancel each other during the moving average step in Method II. A typical 

example of beat types which Method I fails to detect is provided in Figure 4.3. In this 

figure, 2nd beat is missed because the area below the baseline and the area above the 

baseline cancel each other during moving average filtering step. Method II tends to 

miss the detection of this type of beats more than detecting extra beats; the number of 

false negatives is quite high although there are no false positives. This results in 

decrease in sensitivity with high positive predictivity, which is consistent with the 

results of [6]. According to the comparison made by [6], this method was found to be 

one of the best ones among others in terms of false positive detections. In that study, 

this method did not yield false positives in case of respiration, powerline interference, 

composite noise corrupted signal. However, in case of high EMG (ranging from DC. 

to 10 kHz) or baseline shift (ranging from 0.15 Hz. to 0.3 Hz) corruption (for noise 

levels above %75), this algorithm gave false positives. The band passed filter 

implemented in this study suppresses baseline shift and some portions of EMG noise 
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such that no false positives were detected in our results.  

Method II has better performance than Method I in terms of the total number of the 

false positives meaning that it is not sensitive to noise. However, it is unable to detect 

some pathologic beats as described above. 
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Figure 4.3 An example of false negative with QRS Detection Method II 

When Method III was used for QRS detection, there were three false negatives, and 

no false positives. QRS detection of Method III is based on extracting slope, 

amplitude and duration characteristics of the QRS complex. The types of the QRS 

beats that are missed by Method III have very low R amplitudes. A typical example of 

beat types which Method I fails to detect is provided in Figure 4.4. In this figure, 2nd 

beat is missed because it has very low amplitude, lower slope and duration. Although 

lowering the threshold value might seem to be a solution for detection of such missed 

beats, this results in an increase in false positives due to increase in noise sensitivity 

and a sensitivity for elevated T waves.     

After testing Method III with prefiltering stage described in section 3.1, another test is 

performed with Method III without this prefiltering stage. Same results were obtained 
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as expected since Method III has its own filtering stage within the algorithm. The 

cascaded filtering stages within Method III maximizes the QRS energy within 

approximately 5-15 Hz. range so that QRS detection stages within Method III are able 

to operate on 10 Hz at which the maximum SNR exists for QRS complex.  

By employing slope, amplitude and width information combined with the embedded 

prefiltering stages, Method III has the best performance among all the other 

algorithms. 
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Figure 4.4 An example of false negative with QRS Detection Method III 

When Method IV was used for QRS detection, there were 28 false negatives, and five 

false positives. QRS detection of Method IV is based on neural networks. Due to the 

perceptron convergence procedure Method IV, performance decreases, for the regions 

at which the distributions of the classes (a QRS complex or not a QRS complex) 

overlap. It is difficult to make a visual generalization of these overlapped regions. 

However, it is observed that this method fails to detect some pathological beats such 

as the ones with negative R wave. A typical example of beat types which Method IV 

fails to detect is provided in Figure 4.5. In this figure, 2nd beat with as abnormal 

negative R peak is missed. A typical example of beat types that Method IV detects 

falsely as a QRS beat is provided in Figure 4.6. In this figure, 2nd beat has elevated T 

wave, which is falsely detected as a QRS complex by this algorithm.  The effect of 
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further training in order to improve the performance of the algorithm is expected to 

oscillate the decision boundary only; resulting in no improvements in performance.  
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Figure 4.5 An example of false negative with QRS Detection Method IV 
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Figure 4.6 An example of false positive with QRS Detection Method IV 
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Table 4.1 .Test results of QRS complex detection method I 

Record TP FN FP Se +P 
MITDB 100 MDII 95 0 0 100.00 100.00 

MITDB 100 V5 95 0 0 100.00 100.00 
MITDB 102 V5 93 0 0 100.00 100.00 
MITDB 102 V2 102 0 0 100.00 100.00 

MITDB 103 MDII 95 0 0 100.00 100.00 
MITDB 103 V2 95 0 0 100.00 100.00 

MITDB 105 MDII 106 0 0 100.00 100.00 
MITDB 106 MDII 92 0 0 100.00 100.00 
MITDB 107 MDII 101 0 0 100.00 100.00 
MITDB 109 MDII 113 0 3 100.00 97.41 
MITDB 111 MDII 96 0 0 100.00 100.00 
MITDB 112 MDII 119 0 0 100.00 100.00 

MITDB 112 V1 116 0 0 100.00 100.00 
MITDB 113 MDII 80 0 0 100.00 100.00 
MITDB 114 MDII 76 0 0 100.00 100.00 
MITDB 115 MDII 87 0 0 100.00 100.00 
MITDB 117 MDII 69 0 0 100.00 100.00 
MITDB 118 MDII 100 0 0 100.00 100.00 
MITDB 119 MDII 91 0 0 100.00 100.00 

MITDB 119 V1 100 0 0 100.00 100.00 
MITDB 121 MDII 84 0 1 100.00 98.82 
MITDB 122 MDII 121 0 0 100.00 100.00 
MITDB 123 MDII 69 0 0 100.00 100.00 
MITDB 124 MDII 69 0 0 100.00 100.00 
MITDB 201 MDII 125 0 0 100.00 100.00 
MITDB 202 MDII 73 0 0 100.00 100.00 
MITDB 205 MDII 123 0 0 100.00 100.00 
MITDB 209 MDII 129 2 0 98.47 100.00 
MITDB 210 MDII 126 0 0 100.00 100.00 
MITDB 212 MDII 125 0 0 100.00 100.00 
MITDB 213 MDII 153 0 0 100.00 100.00 
MITDB 215 MDII 158 0 0 100.00 100.00 
MITDB 217 MDII 100 0 0 100.00 100.00 
MITDB 219 MDII 105 0 0 100.00 100.00 
MITDB 221 MDII 108 1 0 99.08 100.00 
MITDB 223 MDII 110 1 0 99.10 100.00 
MITDB 230 MDII 108 0 0 100.00 100.00 
MITDB 231 MDII 88 0 0 100.00 100.00 
MITDB 234 MDII 128 0 0 100.00 100.00 

Total 4023 4 4 99.90 99.90 
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Table 4.2 .Test results of QRS complex detection method II 

Record TP FN FP Se +P 
MITDB 100 MDII 95 0 0 100.00 100.00 

MITDB 100 V5 95 0 0 100.00 100.00 
MITDB 102 V5 93 0 0 100.00 100.00 
MITDB 102 V2 102 0 0 100.00 100.00 

MITDB 103 MDII 95 0 0 100.00 100.00 
MITDB 103 V2 95 0 0 100.00 100.00 

MITDB 105 MDII 106 0 0 100.00 100.00 
MITDB 106 MDII 92 0 0 100.00 100.00 
MITDB 107 MDII 101 0 0 100.00 100.00 
MITDB 109 MDII 110 0 0 100.00 100.00 
MITDB 111 MDII 96 0 0 100.00 100.00 
MITDB 112 MDII 119 0 0 100.00 100.00 

MITDB 112 V1 116 0 0 100.00 100.00 
MITDB 113 MDII 80 0 0 100.00 100.00 
MITDB 114 MDII 76 0 0 100.00 100.00 
MITDB 115 MDII 87 0 0 100.00 100.00 
MITDB 117 MDII 69 0 0 100.00 100.00 
MITDB 118 MDII 100 0 0 100.00 100.00 
MITDB 119 MDII 91 0 0 100.00 100.00 

MITDB 119 V1 100 0 0 100.00 100.00 
MITDB 121 MDII 83 0 0 100.00 100.00 
MITDB 122 MDII 121 0 0 100.00 100.00 
MITDB 123 MDII 69 0 0 100.00 100.00 
MITDB 124 MDII 69 0 0 100.00 100.00 
MITDB 201 MDII 124 1 0 99.20 100.00 
MITDB 202 MDII 73 0 0 100.00 100.00 
MITDB 205 MDII 123 0 0 100.00 100.00 
MITDB 209 MDII 131 0 0 100.00 100.00 
MITDB 210 MDII 121 5 0 96.03 100.00 
MITDB 212 MDII 125 0 0 100.00 100.00 
MITDB 213 MDII 153 0 0 100.00 100.00 
MITDB 215 MDII 158 0 0 100.00 100.00 
MITDB 217 MDII 100 0 0 100.00 100.00 
MITDB 219 MDII 105 0 0 100.00 100.00 
MITDB 221 MDII 108 1 0 99.08 100.00 
MITDB 223 MDII 109 2 0 98.20 100.00 
MITDB 230 MDII 108 0 0 100.00 100.00 
MITDB 231 MDII 88 0 0 100.00 100.00 
MITDB 234 MDII 128 0 0 100.00 100.00 

Total 4014 9 0 99.78 100.00 
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Table 4.3 .Test results of QRS complex detection method III 

Record TP FN FP Se +P 
MITDB 100 MDII 95 0 0 100.00 100.00 

MITDB 100 V5 95 0 0 100.00 100.00 
MITDB 102 V5 93 0 0 100.00 100.00 
MITDB 102 V2 102 0 0 100.00 100.00 

MITDB 103 MDII 95 0 0 100.00 100.00 
MITDB 103 V2 95 0 0 100.00 100.00 

MITDB 105 MDII 106 0 0 100.00 100.00 
MITDB 106 MDII 92 0 0 100.00 100.00 
MITDB 107 MDII 101 0 0 100.00 100.00 
MITDB 109 MDII 110 0 0 100.00 100.00 
MITDB 111 MDII 96 0 0 100.00 100.00 
MITDB 112 MDII 119 0 0 100.00 100.00 

MITDB 112 V1 116 0 0 100.00 100.00 
MITDB 113 MDII 80 0 0 100.00 100.00 
MITDB 114 MDII 76 0 0 100.00 100.00 
MITDB 115 MDII 87 0 0 100.00 100.00 
MITDB 117 MDII 69 0 0 100.00 100.00 
MITDB 118 MDII 100 0 0 100.00 100.00 
MITDB 119 MDII 91 0 0 100.00 100.00 

MITDB 119 V1 100 0 0 100.00 100.00 
MITDB 121 MDII 83 0 0 100.00 100.00 
MITDB 122 MDII 121 0 0 100.00 100.00 
MITDB 123 MDII 69 0 0 100.00 100.00 
MITDB 124 MDII 69 0 0 100.00 100.00 
MITDB 201 MDII 125 0 0 100.00 100.00 
MITDB 202 MDII 73 0 0 100.00 100.00 
MITDB 205 MDII 123 0 0 100.00 100.00 
MITDB 209 MDII 131 0 0 100.00 100.00 
MITDB 210 MDII 124 2 0 98.41 100.00 
MITDB 212 MDII 125 0 0 100.00 100.00 
MITDB 213 MDII 153 0 0 100.00 100.00 
MITDB 215 MDII 158 0 0 100.00 100.00 
MITDB 217 MDII 100 0 0 100.00 100.00 
MITDB 219 MDII 105 0 0 100.00 100.00 
MITDB 221 MDII 109 0 0 100.00 100.00 
MITDB 223 MDII 110 1 0 99.10 100.00 
MITDB 230 MDII 108 0 0 100.00 100.00 
MITDB 231 MDII 88 0 0 100.00 100.00 
MITDB 234 MDII 128 0 0 100.00 100.00 

Total 4020 3 0 99.93 100.00 
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Table 4.4 .Test results of QRS complex detection method IV 

Record TP FN FP Se +P 
MITDB 100 V5 95 0 0 100.00 100.00 
MITDB 102 V5 93 0 0 100.00 100.00 
MITDB 102 V2 102 0 0 100.00 100.00 

MITDB 103 MDII 95 0 0 100.00 100.00 
MITDB 103 V2 95 0 0 100.00 100.00 

MITDB 105 MDII 101 5 0 95.28 100.00 
MITDB 106 MDII 92 0 0 100.00 100.00 
MITDB 107 MDII 105 0 4 100.00 96.33 
MITDB 109 MDII 110 1 0 99.10 100.00 
MITDB 111 MDII 96 0 0 100.00 100.00 
MITDB 112 MDII 119 0 0 100.00 100.00 

MITDB 112 V1 116 0 0 100.00 100.00 
MITDB 113 MDII 81 0 1 100.00 98.78 
MITDB 114 MDII 76 0 0 100.00 100.00 
MITDB 115 MDII 87 0 0 100.00 100.00 
MITDB 117 MDII 69 0 0 100.00 100.00 
MITDB 118 MDII 100 0 0 100.00 100.00 
MITDB 121 MDII 83 0 0 100.00 100.00 
MITDB 122 MDII 121 0 0 100.00 100.00 
MITDB 123 MDII 69 0 0 100.00 100.00 
MITDB 124 MDII 69 0 0 100.00 100.00 
MITDB 201 MDII 125 11 0 91.91 100.00 
MITDB 202 MDII 73 0 0 100.00 100.00 
MITDB 205 MDII 123 0 0 100.00 100.00 
MITDB 209 MDII 130 1 0 99.24 100.00 
MITDB 210 MDII 126 7 0 94.74 100.00 
MITDB 212 MDII 125 0 0 100.00 100.00 
MITDB 219 MDII 103 2 0 98.10 100.00 
MITDB 221 MDII 109 0 0 100.00 100.00 
MITDB 223 MDII 110 1 0 99.10 100.00 
MITDB 230 MDII 108 0 0 100.00 100.00 
MITDB 231 MDII 88 0 0 100.00 100.00 
MITDB 234 MDII 128 0 0 100.00 100.00 

Total 3322 28 5 99.16 99.85 

 

The performances of the algorithms in literature which form the starting points of the 

algorithms implemented in this thesis and comparison of the results obtained in this 

thesis are provided in the following paragraphs. A direct comparison between our 
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results and those taken from the literature may not be possible since the datasets on 

which the algorithms are tested are not the same. However, the following discussions 

would still be valuable to assess the overall performances of the algorithms 

implemented in this thesis among each other. 

In [6], the authors tested Method I and Method II with synthesized noise composed of 

EMG, power line, respiration and baseline shift artifacts, and observed that for 

Method I sensitivity and positive predictivity have decreased to 70.00% and 77.78 % 

respectively when tested with 25 percent noise. For Method II, sensitiviy and positive 

predictivity are 95.00% and 100.00% respectively, even with 75% noise.    

In [12], it was found that that the sensitivity and positive predictivity of Method III 

are 99.68% and 99.63% respectively when tested on MIT-BIH database with datasets 

different from those used in this thesis. 

In [2], it is reported that sensitivity and positive predictivity of algorithms similar to 

Method IV are greater than 99% when tested with some parts of MIT-BIH database.  

The summary of overall test results of QRS detection methods of this thesis are 

provided in Table 4.5. Since the parameters in the algorithms are very well tuned to 

this dataset in order to obtain the best results, there is a possibility for their 

performances to decrease when tested with different datasets.   

Direct comparison of the results of Method I and II with the corresponding ones in 

literature is not reasonable since prefiltering stage is applied in this thesis however the 

ones in the literature are tested directly in noisy data sets. However in literature it is 

observed that noise sensitivity of Method I is higher that Method II and Method II 

tends to miss beats more than detecting extra beats (number of false negatives are 

greater than false positives) which are consistent with the results obtained in this 

study. 

Since the data sets used in the literature are not the same for Method III and IV, direct 

comparison of the results of this study with the corresponding ones in the literature is 
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not possible. However, there is no major difference in between the overall results of 

this study and the results in literature; therefore, one can say that the results observed 

in this thesis and the results reported in previous publications are in agreement in the 

general sense. 

Table 4.5 .Over all test results of QRS complex detection methods 

Record TP  FN FP Se +P 
Method I 4023 4 4 99.90 99.90 
Method II 4014 9 0 99.78 100.00 
Method III 4020 3 0 99.93 100.00 
Method IV 3322 28 5 99.16 99.85 

4.2 Feature Extraction and Classification 

After QRS complex detection by Method III which has the best results among the 

other detection algorithms as mentioned in the previous section, the reference sets 

composed of Normal and PVC beats formed by the first 80 second of the MITDB 

records 105 MDII and 122 MDII are utilized in classification Methods I and II. 

Statistical assessment (median value, 25–75% range around the median value and 

min–max range) of sixteen morphological features, in groups defined by the two 

major heartbeat classes (i.e., normal and PVC classes) are depicted in Figure 4.7. 

Those features whose statistical distributions for normal and PVC beats do not 

overlap are considered to have superior discrimination capability than the ones whose 

statistical distributions overlap for normal and PVC clusters. With this criterion in 

mind, discrimination property of the following set is observed to be superior than the 

others: {Width, ArN, Area, Imi,  Pp_dif, Pp_ratio, ArP,}. Within this set, it is 

observed that the feature {Parea} seems to be dependent on the other features in a 

way that absence of this feature in the set did not decrease the performance. 

Therefore, feature {ArP} is not used for classification. Additionally, although 

discrimination property of the features of the set {Pp, Pn, Ima, Area_ratio} seems to 

be poor, it is observed that their existence in the set improved the performance when 

they are used jointly with the selected feature set. Therefore, the optimal set of the 

features as being {Pp, Pn, Width, ArN, Area, Ima, Imi, Pp_dif, Pp_ratio, Area_ratio} 
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are obtained in an empirical way based on the trial of combinations of the features. 
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Figure 4.7 Statistical assessment (median value, 25–75% range around the median 
value and min–max range) of sixteen morphological features, in groups defined by 

the different heartbeat classes. 

In order to test the classification algorithms I and II, the records containing only 

normal and PVC beats are used which are: 106 MDII, 119 MDII, 221 MDII, 115 

MDII, 121 MDII, 123 MDII. These records contain 489 normal and 42 PVC beats.  

Sensitivity measure is used to assess the performance of the classification algorithms. 

The sensitivity measure evaluates the proportion of PVC beats that are correctly 

identified as PVC.  In this study, PVC beats correctly classified as PVC are referred 

to as true positive (TP), normal beats correctly classified as normal are referred to as 

true negative (TN), normal beats wrongly classified as PVC are referred to as false 

positive (FP) and PVC beats wrongly classified as normal are referred to as false 

negative (FN). 

Sensitivities for Method I and Method II are 92.86% and 95.24% respectively as 
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provided in Table 4.6. The results of both algorithms are comparable with the ones in 

the literature. For normal and PVC beats, [34] implemented classification methods 

similar to Method I and Method II. For three different datasets, obtained sensitivity 

values between 80.9% to 96.9% for a method similar to Method I, and between 80.7% 

to 97.7% for a method similar to Method II. 

 Table 4.6 .Test results for classification Method I and Method II  

Method # of TP # of TN # of FP # of FN Sensitivity 

Method I 39 475 14 3 92.86% 

Method II 40 489 0 2 95.24% 

 

Method III is assessed separately from Method I and Method II, because the type of 

beats classified with Method III are more diverse than those of the first two methods. 

For method III, classification results did not match very well with the MIT-BIH 

database annotations. An example of classification results with Method III and the 

MIT-BIH database annotations respectively for the same beat sequence are depicted 

in Figure 4.8 and Figure 4.9. Method III classifies this beat sequence as being 

“normal, normal, tachycardia, tachycardia, escape, normal, fusion, normal, normal, 

fusion” consequently. However, this beat sequence is annotated as being “normal, 

normal, PVC, PVC, normal, normal, normal, normal, normal, normal” by MIT-BIH 

database.  

In MIT-BIH database only the occurrence of beats and the associated pathologies are 

annotated but not the Q and S waves which are used to calculate the duration of the 

QRS complex. Therefore, a study has been carried out with a cardiologist, Prof. Dr. 

Nazım ARSLAN, over typical examples of detected Q and S waves. Dr. Arslan stated 

that although for the normal beats Q and S points are located correctly, for some 

pathological beats the algorithm fails to locate the waves correctly.  
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For example, the algorithm correctly detects the Q, R and S waves for the sample beat 

depicted in Figure 4.10. However, for the second beat in Figure 4.11, the algorithm 

locates the S wave, to the point depicted with second red circle although the correct 

location declared by the cardiologist is the one marked with blue circle. The Q wave 

depicted in Figure 4.12 is located by the algorithm as the green point however the 

correct location declared by the cardiologist is the one marked with the blue circle.   

Method III relies on correct definition of Q and S points, since the QRS duration is 

one of the two main features in this classification algorithm. When these points are 

estimated incorrectly, the performance of this algorithm drops, as we have observed 

in this study.  

 

Figure 4.8 An example of classification with Method III (“.”:Normal, “T” 
Tachycardia,“E”:Escape, “F”:Fusion) 
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Figure 4.9  MIT-BIH classification for the same signal in Figure 4.9 (“ . ”: Normal, 
“V”: PVC) 

 

 

 

Figure 4.10 A sample beat: detected Q, R and S waves are indicated with circles 
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Figure 4.11 An example to a false detection of the S wave: For the second beat the 
algorithm locates the S wave to the point marked with second red circle although the 

correct location is the one marked with blue circle.   

 

 

 

 

Figure 4.12 An example to a false detection of the Q wave: The algorithm locates the 
Q wave to the point marked with green circle although the correct location is the one 

marked with blue circle.   
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CHAPTER 5 

5. DISCUSSION AND CONCLUSIONS 

5.1 Summary and Discussion 

ECG is the most important noninvasive tool used for diagnosing the heart diseases. 

Among several waveforms that exist in an ECG signal, the most important and 

characteristic one is the QRS complex. 

QRS detection is a mature field since most of the algorithms available have been tried 

and tested on ECG recordings [2] and performances above 99% are achieved without 

much computational effort [4]. However, in literature, only overall results are 

provided for detection rates, hiding the problems for individual records having 

pathological beats and noise corruption [4]. Additionally, many of the algorithms are 

not tested in a standard database, which makes direct comparison of the algorithms 

questionable [4].  

In this study, for QRS detection four algorithms that are known to be successful are 

implemented and results are compared. A derivative based method (Method I) [6] and 

a digital filter based method (Method II) [6] that utilizes the fundamental concepts of 

QRS detection are implemented. Another method (Method III) [8] that utilizes the 

morphological features, which is known to be robust and popular by being the most 

cited reference, is implemented. In addition, a neural network based QRS detection 

method (Method IV) is implemented, which is reported to be one of the promising 

techniques as stated in the review chapter of [2]. Sensitivity and positive predictivity 

measures were used for performance evaluation of the algorithms. The results are 

given in Tables 4.1, 4.2, 4.3 and 4.4 for ach method, and these results are summarized 

in Table 4.5. Our observations show that Method III has the best performance.  

 The disadvantage of Method I is that it is sensitive to noise, yielding an increase in 

false positives. False positives may be decreased by increasing the threshold value, 
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but the cost is increase in false negatives. The disadvantage of Method II is that it 

fails to detect some type of pathologic beats yielding increase in false negatives.  The 

advantage of Method II is that it suppresses non-QRS segments so well that no false 

positives are observed. Although overall performance indices of Method IV are 

greater than 99.16% which can be considered to be satisfactory, its individual 

performance indices decrease to 91.91%, which cannot be acceptable for clinical 

usage. This method has the worst performance among all other methods. 

Nevertheless, ANN is still a promising technique as stated in [2] and [4]; ANN 

methods other than MLP can be considered in order to obtain better results. Method 

III has the advantage of combining the characteristic features of QRS complex such 

as amplitude, slope and duration yielding the best overall results among all the tested 

algorithms.  

There is no major difference in between the overall results of this study and the 

results in literature; therefore, one can say that the results observed in this thesis and 

the results reported in previous publications are in agreement in the general sense 

After detecting the beats by QRS detection Method III, classification of beats are 

performed. For this purpose, in addition to morphological features suggested by [35], 

four additional features are extracted. Various combinations of features are applied in 

a methodic way in order to obtain the optimal feature set. K-th nearest neighbour rule 

[34] (classification method I) and artificial neural network [34] (classification method 

II) classification algorithms are implemented in order to classify normal and PVC 

beats. Although the results are comparable with the similar ones in the literature, 

performance of these algorithms may decrease in the presence of pathological beats 

other than PVC.  

The rule based classification algorithm [5] (classification method III) implemented in 

this study utilizes two parameters: RR interval and QRS duration. The results of this 

algorithm did not match very well with the annotations in MIT-BIH database because 

the two parameters were not enough to make a global generalization rule and the 

performance of S point detection method decreases for some pathological beats as 
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described in section 4.2.    

5.2 Conclusions  

Among the QRS detection methods tested in this thesis, the best results were obtained 

with Method III; over 4000 beats were detected with this method, there were no false 

positives, and only three QRS beats were missed (marked as false negatives). Thus, 

the overall sensitivity and positive predictivity values of this method are 99.93% and 

100%, respectively. Since there were no false positives, the positive predictivity 

values were 100% for each MIT database record. The three false negatives were 

observed in two of the records. MITDB 210 MDII had two false negatives and 

MITDB 223 MDII had only one false negative, yielding sensitivity values of 98.41% 

and 99.10%, respectively, both of which are acceptable sensitivity values for clinical 

usage.  

Among the tested classification algorithms, the best results were obtained by Method 

II, which is a neural network based method. Only normal beats and the PVC beats 

were classified with this method. Out of 489 normal and 42 PVC beats, 40 beats were 

correctly marked as PVC (true positives), 489 beats were correctly marked as normal 

beats (true negatives), two PVC beats were incorrectly marked as normal (false 

negatives). There were no false positives with this classification method. These 

results produced a sensitivity value of 95.24%.  

5.3 Recommendation for Future Work 

This section summarizes some future research ideas related to the study presented in 

this thesis. Some of the future work suggestions are: 

• A more detailed study could be carried out on soft computing techniques for QRS 

detection, for example by employing back search algorithms for offline detection 

[4].  

• More research could be done on extracting waveforms other than QRS complex 
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and classification by including more pathological beats. Additional algorithms can 

be implemented for this purpose. 

• Neural network methods other than MLP could be considered to increase the 

performance of the NN based QRS detection algorithm. 

• Neural network algorithms could be studied more in order to utilize both detection 

and classification within one algorithm.  
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Appendix A: Graphical User Interface (GUI) 

MATLAB based Graphical User Interface (GUI) is prepared as depicted Figure A.1.  

 

Figure A.1  Graphical user interface 

Functions of the objects in the GUI layout are:  

• “Data read” menu allows user to choose the ECG data to be processed. Default 

ECG data is MITDB 100 MDII. 

• “Prefiltering” panel allows user to change the default cut off frequencies of the 

bandpass filter. “fc1” and “fc2” stand for the lower and higher cut off frequencies 

with 0.67 Hz  and 35 Hz as the default values respectively. 

• “Detection” panel allows user to choose QRS, Q, R, S detection methods. QRS 

popup menu includes four different methods as described in the previous sections. 

Default one for QRS selection is Method I (differentiation method). Pop up menus 

for Q, R, S detections include only one method for each one which are based on 

local maximum/minimums are implemented in this thesis.  These are 

implemented as pop up menus in order to allow enhancement of this study in 

future.  
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• “Classification” menu allows user to choose the classification methods among the 

three methods implemented in this thesis. Default one for classification is Method 

I (KNN method).  

• “Run” toggle button starts execution of the functions. 

After the toggle button is pressed two windows appear as depicted in Figure A.2 and 

Figure A.3.  The first one is illustrates the unfiltered ECG signal and the second one 

illustrates the filtered ECG signal, with Q, R, and S points and classification results 

for each heart beat is indicated. The following abbreviations are used in classification 

of heart beats: “N”: Normal, “PVC”: premature ventricular contraction, “uPVC”: 

uncompensated premature ventricular contraction, “C”: couplet, “D”: dropped, “RT”: 

R on T, “F”: Fusion, “E”: Escape, “PB”: paroxysmal bradcardia, “T”: tachycardia, 

“U”: unclassified. 
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Figure A.2  ECG signal before filtering 
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Figure A.3 Filtered ECG signal with Q, R, S points and classification results indicated  


