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ABSTRACT 
 
 

A HYBRID METHODOLOGY IN PROCESS MODELING:  

“FROM-TO CHART PROCESS DISCOVERY” 

 

 
 

Esgin, Eren 

MS, Department of Information Systems 

Supervisor: Asst. Prof. Pınar Şenkul 

Co-Supervisor: Prof. Dr. Nazife Baykal 

 

 

 

February 2009, 175 pages 

 

 

 
The managing of complex business processes, which are changed due to globalization, calls 

for the development of powerful information systems that offer generic process modeling and 

process execution capabilities.  

 

Even though contemporary information systems are more and more utilized in enterprises, 

their actual impact in automatizing complex business process is still limited by the difficulties 

encountered in design phase. Actually this design phase is time consuming, often subjective 

and incomplete. 

 

In the scope of this study, a reverse approach is followed. Instead of starting with process 

design, the method of discovering interesting patterns from the navigation traces is taken as 

basis and a new data analysis methodology named “From-to Chart Based Process 

Discovery” is proposed. 



  v

In this hybrid methodology “from-to chart”, which is fundamentally dedicated to material 

handling issues on production floor, is used as the front-end to monitor the transitions among 

activities of a realistic event log and convert these raw relations into optimum activity 

sequence. Then a revised version of process mining, which is the back-end of this 

methodology, upgrades optimum activity sequence into process model. 

 

Keywords: From-to Chart Based Process Discovery, Process Modeling, Process Mining, 

From-to Chart, Event Logs 
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ÖZ 
 
 

SÜREÇ MODELLEMEDE HİBRİT BİR METODOLOJİ:  

“NEREDEN-NEREYE ÇİZELGESİNE DAYALI SÜREÇ BULUŞU” 

 

 
 

Esgin, Eren 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Danışmanı: Yard. Doç. Pınar Şenkul 

Tez Yardımcı Danışmanı: Prof. Dr. Nazife Baykal 

 

 

 

Şubat 2009, 175 sayfa 

 

 
 

Küreselleşme sonucunda dönüşüme uğrayan karmaşık iş süreçlerinin yönetimi için jenerik 

süreç modelleme ve süreç uygulama kabiliyetlerine sahip güçlü bilgi sistemlerinin 

geliştirilmesine ihtiyaç duyulmaktadır. 

 

Güncel bilgi sistemlerinin kurumlarda yoğun olarak kullanılmasına rağmen, iş süreçlerinin 

otomasyonundaki gerçek etkileri tasarım safhasında karşılaşılan problemlerle 

kısıtlanmaktadır. Aslında bu tasarım safhası zaman alıcı, çoğunlukla öznel ve eksiktir. 

 

Bu çalışmanın kapsamında, ters bir yaklaşım izlenmiştir. Süreç tasarımıyla başlamak yerine, 

olay kayıtlarından ilginç eğilimler keşfetme methodu esas alınıp “Nereden-nereye 

Çizelgesine Dayalı Süreç Buluşu” adında yeni bir veri analiz metodolojisi önerilmektedir.
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Bu hibrit metodolojide, temel olarak üretim yerinde malzeme taşıma problemlerinin 

çözümünde yararlanılan “nereden-nereye çizelgesi” olay tarihçelerinde yer alan işlemler 

arasındaki geçişleri izlemek ve bu ham ilişkileri optimum işlem dizisine dönüştürmek 

amacıyla ön-uç olarak kullanılmaktadır. Daha sonra metodolojinin arka-ucu olan revize 

edilmiş süreç madenciliği ile, elde edilen optimum işlem dizisi süreç modeline dönüştürülür. 

 

Anahtar kelimeler: Nereden-nereye Çizelgesine Dayalı Süreç Buluşu, Süreç Modelleme, 

Süreç Madenciliği, Nereden-nereye Çizelgesi, Olay Kayıtları 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
The rapid development in information technologies (IT) and the tendency towards more open 

economies has lead to the evolution of the globalization concept, with the suggestion that the 

world is one broad market, which can be accessed by all regions and societies. Globalization 

has been evaluated as a new era, which opens world market to rural regions and thereby 

new opportunities for growth at local level. The changes that are seen in the market field are 

so rapid, volatile and costly, that only the most flexible forms of organization and cooperation 

between business firms will be able to interpret these trends of change to become more 

competitive. 

 

Ultimate step in this effective enterprise transformation should be to achieve full and 

consistent reengineering of process breakdown, organizational structure and business 

performance metrics, which are three major top-down operational management structures. 

With clarity of global business architecture with respect to “who does what, why, how and 

when”, mapping of business processes across all global value chain constituent is 

theoretically possible by the leverage affect of contemporary information systems (e.g. 

Enterprise Resource Planning-ERP, Workflow Management Systems-WFMS, Customer 

Relationship Management- CRM, Supply Chain Management- SCM and Product Data 

Management-PDM), which offer basic process modeling and process execution capabilities. 

 

Even though contemporary information systems are intensively utilized in enterprises, their 

actual impact in automating complex business processes is still constrained by the difficulties 

encountered in the design phase [4]. Actually crucial problems are resulting from the 

discrepancy between process design (i.e. the construction of predefined reference process 

model) and process enactment (i.e. the actual execution of the process) [15]. Unfortunately 

process design is typically performed by a small group of consultants, managers and 

specialists [1]. Designed process model is influenced by the personal understandings, e.g.
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models are often normative in the sense that they represent what “should” be done rather 

than describing the actual process, because of the lack of deep knowledge about the 

business process (domain) on hand (i.e. lengthy discussions with operational-level works 

and management are needed) [12]. As a result, process models tend to be rather incomplete, 

subjective and at a too high level [14]. 

 

As stated above, traditional process modeling in contemporary information systems 

concentrates on the design and configuration phases, while less attention is dedicated to the 

enactment phase and few organizations systematically hold runtime data which can be 

baseline for re-design [12]. In the scope of the thesis, it is aimed to develop a data analysis 

methodology, named “From-to Chart Based Process Discovery” (FTCBPD) to “reverse” 

this design-oriented approach. Instead of starting with a process design, FTCBPD 

methodology attempts to discover interesting patterns from the navigation traces, which can 

be handled as a main data source for end-user behavior analysis, and translate this 

discovered knowledge into process model [18]. In this perspective, FTCBPD methodology 

consists of two components: from-to chart and process mining. 

 

From-to chart is an analytical tool, which is basically used in monitoring material handling 

routes between operations, machines, departments or work centers on the production floor 

[25]. It is a symmetric square matrix with the number of rows and columns equal to the 

number of operations, machines, departments or work centers in the problem. FTCBPD 

methodology inherits this tool from industrial engineering domain and implements it in a 

distinct field, process discovery, as the basic bookkeeping material in monitoring transitions 

among activities (transactions) occurred in process instances and figuring out if there exist 

any specific order of the occurrences for representing in process model. 

 

As the second component, process mining is a type of association rule mining algorithm, 

which is used to distill behavioral process knowledge from a set of real time execution [14]. 

Although association rule mining algorithm represents intra-transaction relationships, 

process mining highlights the correlation between activities (transactions) according to 

timeline [22]. Therefore minimal information in event log has to essentially contain timestamp 

for each event, which can be used to extract additional causality information by sorting all log 

entries in the order they take place in a process instance.  

 

Unlike contemporary information systems, process mining is not biased or restrictive by 

perceptions [12]. However if end-users alter the system doing things differently (e.g. finding 

out short cuts or changing standard operation procedures (SOPs) entirely), the event log can 

still deviate from the actual work being done [12]. Nevertheless it is useful in conformance 



 3

checking with reference models. Also note that process mining is not an instrument to 

(re)design business process directly [12]. The goal is to understand what is really happening 

in enactment phase and evaluate the conflictions with the reference model in diagnosis 

phase. This approach is vital for any re-design effort. The big picture view of FTCBPD 

methodology is visualized in Figure 1.1. 
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As represented in Figure 1.1, FTCBPD is a hybrid methodology which integrates two 

components dedicated to distinct domains. Main cutting edge characteristic of FTCBPD 

methodology in process discovery field is the implementation of from-to chart, which is an 

analytical tool in material handling monitoring in plant layout issues, as the front-end to 

monitor the transitions among activities (transactions) in process instances, which are 

embedded in event logs, and convert the raw successive relations into an activity sequence, 

which is optimum with respect to moment (i.e. distance  flow× ) minimization. Besides, 

process mining component is the back-end of FTCBPD methodology, which upgrades 

intermediate product, namely optimum activity sequence, into three process model 

representations with distinct information level: from-to chart, dependency/frequency graph 

and control flow graph.  

 

Another novelty feature of FTCBPD methodology in process modeling field is the 

development of evaluation metrics (e.g. minimum support threshold (MST), minimum 

confidence threshold (MST) and modified lift), which are used as the major stick yard to 

control the level of robustness and complexity of the discovered process model from large 

amounts event logs. Instead of borrowing from statistics, these metrics are formulated by 

familiarizing with original formations in association rule mining.  

 

The major contributions of FTCBPD methodology in process discovery fields are as follows: 

i. Implementation of from-to chart as the basic bookkeeping entity in monitoring 

relations (transitions) among the activities occurred in event logs. Optimum 

activity sequence, which rearranged in a straight line formation, constitutes the 

backbone of discovered process model. 

ii. Development of evaluation metrics, which are based on the original formations 

used in association rule mining. These metrics are fundamentally used in rule 

induction procedure.  

iii. Verification of discovered process model with respect to completeness, 

soundness and average arc traffic metrics in accuracy and minimality 

perspectives.  

 

This study is composed of seven chapters. Traditional approaches in workflow technology 

and process mining as a new era in process modeling are introduced in Chapter 2. Prior 

aspects and approaches in process mining are summarized in Chapter 3. Proposed 

methodology is explained in detail in Chapter 4. Evaluation of proposed methodology with 

respect to distinct key performance metrics are discussed in Chapter 5. Limitations and 

suggestions for future work are explained in Chapter 6. Finally, Chapter 7 concludes the 

work.  
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CHAPTER 2 
 
 

PROBLEM ANALYSIS 
 
 
 
2.1. Major Aspects in Enterprise Transformation 
With the increasing interest and wide deployment of information systems, it is seen a 

growing demand for new emerging architectures and technologies that support effective 

enterprise transformation, which implies strategic business agility in terms of how efficiently 

an enterprise can respond to its competitors and how timely an enterprise can predict new 

opportunities that may arise in the future. 

 

In the globalized economy, enterprises face sophisticated challenges that require rapid and 

possibly continual transformations. As a result, enterprises are intensively focused on the 

strategic management of fundamental changes with respect to markets, products and 

services. Additionally, this transformation typically has a direct impact on the business 

processes of the enterprise such that, there has been a tendency from data orientation to 

process orientation within the organizations [13]. Degree of this enterprise transformation 

may range from traditional Business Process Improvement (BPI), which is a common key 

word for techniques under the Business Intelligence (BI) technology [17], to paradigm shift in 

the processes supported by the enterprise. Fundamental of enabling this widespread 

enterprise transformation is the development of novel instruments and techniques for 

transforming the business processes of the enterprise.  

 

 

2.2. Traditional Approach in Workflow Technology 
Managing of complex business processes of today’s organizations calls for the development 

of process-aware information systems (PAIS), as a way to bridge the perceived gap between 

organization and software through process technology by controlling and monitoring the flow 

of work [7]. ERP (Enterprise Resource Planning), WFMS (Workflow Management 
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Systems), CRM (Customer Relationship Management), SCM (Supply Chain Management) 

and PDM (Product Data Management) can be classified as PAIS [20]. While WFMS are 

generally evaluated as “a generic software instrument which allows for definition, execution, 

registration and control of workflows”, modern ERP, CRM and PDM systems also have a 

process engine, which embeds workflow technology [7].  

 

Despite workflow technology’s promise on widely covering all tasks of an enterprise, it is 

burdened with a set of fundamental problems that cause a fair deal of inefficiencies in 

practical use. Major drawback of such an approach is that the prescribed process model (i.e. 

reference model) leads to an inherit lack of flexibility, which means a lack of a capability to 

yield to transform without loss of identity [20], and functionality surplus [18].  

 

The requirement to develop a reference model as a prerequisite to use a new technology is 

an overwhelming vision to the managers of large, on-going projects [3]. The dilemma is that 

the more a project is problematic, the more it can benefit from the process technologies, but 

also willingness of project managers lessens towards devoting resources in new methods 

and tools [3].  

 

Moreover the problem that is most responsible for the inflexibility of traditional workflow 

paradigm is its strongly push-oriented nature of routing, enforcing what to do instead of 

leaving the choice to the end-users [17]. As a result, a completely described workflow design 

phase is required to enact a given workflow process [1].  

 

On the other hand, creating a workflow design is complicated, time-consuming process and 

typically, there are discrepancies between the actual workflow process and the process as 

perceived by the management [14]. The causality links in the mechanism (closed loop) that 

take place in traditional workflow technology can be modeled by a reinforcement cycle 

introduced by Senge in [32] as in Figure 2.1. 
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Figure 2.1 Reinforcement Cycle for Traditional Approach in Workflow Technology 
 

In traditional workflow technology, the major concentration is on the design and configuration 

phases, which are driven by ideas of management on improving the business processes on 

hand, as represented in Figure 2.2. Less concentration is dedicated to the enactment phase 

and few enterprises systematically hold runtime data which is the baseline for re-design (i.e. 

the diagnosis phase is missed) [12]. Hence the initial design of traditional workflow 

technology is often subjective, incomplete and at a too high level [14]. 

 

 

 
  

Figure 2.2 Traditional Workflow Technology Life Cycle [12] 
 

Another crucial problem is the partitioning of work in order to make it easy to allocate, while 

this work is usually performed at a far more detailed level by the employees involved [17]. 
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Furthermore, distribution of work is closely linked to authorization issue such that, employees 

are always presented with all activities they are allowed to perform. 

Another shortcoming in traditional workflow technology is the concept of “context tunneling”, 

in which employees have no overview about the process as a whole [17].  As a result, this 

attitude enforces standardization in highly knowledge-intensive labor.  

 

 

2.3. Process Mining 
As stated above, modeling an existing process is influenced by personal understandings, 

e.g. models are often normative in the sense that they state what should be done rather than 

describing the actual process [12]. As a result models tend to be rather subjective. Instead of 

hand-designing the business process, it is proposed to “reverse” the process by a more 

objective and automated way of modeling to collect the information related to that business 

process and discover the underlying workflow process from the low-level information history, 

which is called event log [14].  

 

The term process mining is used for this objective method of distilling structured process 

knowledge from a set of real executions (i.e. event logs) [1]. Hence, process mining comes 

up with an “a posteriori” process model, which explains end-user behaviors embedded in 

event logs, in contrast to the ideal picture drawn in “a priori” model [12].  

 

Technically, process mining is a specialized form of association mining algorithm such that, 

patterns discovered by process mining indicate the correlations between activities while 

association rule represents intra-transaction (i.e. itemset) relations [22]. In association rule 

mining of transaction database, the mining results are about which items are brought 

together frequently, those items must come from the same transaction. While the outcomes 

of process mining are about which activities are brought together in a certain order by the 

same process instance, those activities come from different event logs [22].   

 

Actually, process mining is not biased by perceptions or normative behavior unlike to 

traditional workflow technology. However, if end-users alter the system by performing 

activities differently (e.g. finding out short cuts or changing standard operation procedures 

(SOPs) entirely), the log can still diverge from the actual work being done [12]. Nevertheless, 

it is useful to confront man-made models with models discovered through process mining.  

 

Additionally, process mining is not an instrument to directly re-design workflow processes 

[12]. The major aim is to understand what is really happening in the business process. 



 9

Despite the fact that process mining is not an instrument for design phase, it is clear that a 

good visualization of the existing workflow process is essential for any re-design effort.    

 

Since the goal of process mining is to extract information about processes from event logs, it 

is assumed that minimal information in event records should represent these features [19]: 

i. Each event refers to an activity (i.e. a clear-cut step in the process). 

ii. Each event refers to a case (process instance). Processes are by definition case-

based, i.e. every piece of work is performed for a specific case [15]. Examples of 

cases are mortgage, a repair claim, a tax declaration, a purchasing order or a 

request for travel.  

iii. Each event can have a performer also referred to as originator (i.e. the end-user 

executing or initiating the activity). 

iv. Events have a timestamp and are totally ordered by case identifier. 

 

Any information system using transactional infrastructure such as ERP, CRM or WFMS 

offers this information in some form. Note that it does not mean the existence of a workflow 

management system. The only assumption made in FTCBPD methodology is that; it is 

possible to construct event logs from execution history. For instance, Table 2.1 shows an 

example of a log involving 21 events, seven activities and six originators.  

 
Table 2.1 Event Log Example 

 
Case ID Activity Originator Timestamp 
case 1 pr_sy_trip01 eesgin 2008-05-07:10.01 
case 2 pr_sy_trip01 ucicek 2008-05-07:09.10 
case 2 pr_sy_trip02 acelik 2008-05-07:09.55 
case 4 pr_sy_trip01 dderici 2008-05-07:09.12 
case 4 pr_sy_trip02 stavukcu 2008-05-07:09.55 
case 1 pr_sy_trip05 eesgin 2008-05-08:09.03 
case 1 pr_sy_trip08 dderici 2008-05-08:11.20 
case 2 pr_sy_trip08 stavukcu 2008-05-08:11.01 
case 2 pr_sy_trip06 stavukcu 2008-05-08:11.20 
case 2 pr_sy_trip07 dderici 2008-05-08:14.32 
case 3 pr_sy_trip01 eesgin 2008-05-08:09.12 
case 3 pr_sy_trip05 ucicek 2008-05-08:10.32 
case 4 pr_sy_trip05 stavukcu 2008-05-08:10.29 
case 4 pr_sy_trip08 acelik 2008-05-08:11.56 
case 1 pr_sy_trip06 stavukcu 2008-05-09:10.35 
case 3 pr_sy_trip03 stavukcu 2008-05-09:10.22 
case 3 pr_sy_trip08 acelik 2008-05-09:12.10 
case 4 pr_sy_trip07 ucicek 2008-05-09:10.43 
case 1 pr_sy_trip07 acelik 2008-05-10:15.10 
case 3 pr_sy_trip06 dderici 2008-05-10:08.56 
case 3 pr_sy_trip07 eesgin 2008-05-10:10.02 

 

 

Event logs such as the one shown in Table 2.1 are used as the baseline for process mining. 

Process mining is distinguished into three perspectives: 
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a. The Process Perspective (“How?”):  
The process perspective concentrates on the control-flow aspect, i.e. the ordering of the 

activities. The goal of process perspective is to find out a good behavioral characterization of 

all process instances on hand [19]. For the process perspective, the process instance and 

activity attributes of an event log is taken into consideration. 

 

b. The Organizational Perspective (“Who?”):  
The organizational perspective focuses on the originator attribute of an event log, i.e. which 

performers are concerned and how they are associated. The goal is to either structure the 

organization by classifying people in terms of roles (profiles) and organizational units or to 

show interactions between individual performers which are represented by social network 

analysis (SNA) [19]. 

 

c. The Case Perspective (“What?”):  
The case perspective focuses on the features of cases. Cases can be featured by their 

patterns in the process or by the originators working on a case [19]. However, cases can also 

be characterized by the values of the corresponding data elements, e.g. if a case represents 

a travel request, it may be interesting to know type of the travel or destination. In other 

words, the case perspective handles the case as a whole and attempts to draw relations with 

respect to the various properties of a case [19].    

 

In a simple scenario where workflows are handled from a “data perspective” only, classical 

mining techniques, such as the “market basket analysis”, can be proper to discover 

interesting and potentially useful information about the business data on hand. However, 

these classical techniques do not fit to scenarios where one looks at workflows from a 

“control-flow perspective”, in which the fundamental concentration is instead on the casual 

successive relations and on the constraints on the occurrence of the activities [4].    

 

The main idea of process mining is to discover, monitor and improve real processes (not 

proposed or assumed processes) by extracting knowledge from event logs. Clearly process 

mining is relevant to operation procedure where much flexibility is allowed or required such 

that; the more ways in which end-users and organizations deviate, the more variability and 

the more interesting is to observe and analyze end-user behavior as they are executed [7]. In 

this aspect, it is considered three basic types of process mining:  

 

a. Process Discovery:  
The aim of process discovery is to extract information from event logs in the form of process 

models. These may be process models, e.g. an event- based process chain (EPC) or Petri 
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net, but also other models such as social networks (e.g. sociogram) or time-charts describing 

the performance (e.g. flow times) [8].  Process discovery does not require an a-priori model 

(i.e. reference model); however the discovered model may be used for delta analysis, i.e., 

comparing the discovered model representing the actual business process with the 

reference model representing the predefined business process [8]. 

 

This form of data analysis is termed process discovery, because inherent in every project is 

a business process (whether known or unknown, whether good or bad, whether stable or 

unpredictable) and for every business process there is some underlying model that is 

dedicated to describe it. The challenge in this technique is to use that information to describe 

the process in a form suitable for generic model-based process technologies and a 

representation that allows the domain expert to understand and evaluate the discovered 

process model [3]. 

 

b. Conformance Checking:  
Unlike process discovery, conformance checking requires a-priori model to which it 

compares the observed behavior as recorded in the event log. Conformance checking may 

be used to perceive discrepancies but it is also possible to see which parts of the process 

are really used and where bottlenecks (e.g. closed loops) occur [21]. 

 

“Rediscovery problem” is a significant issue in conformance checking such that; the 

proposed mining algorithm is required to be able to discover a process model functionally 

equivalent to the source process model (i.e. reference model), on which the basis of 

complete event log is generated [11].   

  

c. Extension:  
Like conformance checking, there is a-priori model which is enriched with a new aspect or 

perspective discovered in the user behavior analysis. For instance, process mining 

applications may be implemented in ERP systems for revising system settings (i.e. 

Customizing1) or simplifying the personalization2 of the system for the end-user [18].   

As represented in Figure 2.3, contemporary information systems have improved to 

comprehensive information technology (IT) supported business solutions that extensively 

support and enhance organizations in their operations. However this situation is only true for 

                                                 
1 Customizing in ERP terminology enables the end-user to select and parameterize, with respect to his 
duities and demands, the desired processes with the appropriate functionality from the set of various 
functionalities embedded to the information system. 
 
 
2 Personalization means to adjust the system to meet the work requirements of specific end-users or 
end-user groups. It aims to speed up and simplify the business transactions of system processes.  
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such systems that are well-aligned with organizational requirements [8]. Although this 

alignment phase sometimes implies unexpected configuration and customization efforts in 

the implementation process and it may result in significant “hidden” implementation costs [8], 

reference and enterprise models (i.e. transformed version of reference models) are 

generated as the documentation of this alignment phase. Actually, reference and enterprise 

models play a crucial role in representing re-engineered standard operation procedures 

(SOPs) implemented in business processes of the enterprise. 

 

 

 
 

Figure 2.3 Types of Process Mining [7] 

 

Unfortunately reference and enterprise models are only of limited use in supervising end-

users. This is mainly due to a lack of flexibility in configuration of completely described 

process design. To overwhelm this problem, process mining aims to derive a “good” process 

model with as little information as possible in a posteriori manner (i.e. process mining is not a 

proactive methodology, since it requires a sufficient amount of runtime data to extract 

interesting information or patterns). 

 

Beside the capabilities and advantages served by process mining, there are two crucial 

issues encountered in realistic event logs, which are basically inherited from data mining 

notion: 
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a. Completeness:  
For larger and complicated business processes, mining is more difficult, since process model 

exhibits alternative and parallel patterns and then event log will typically not reflect all 

possible routes [12]. For instance, consider 10 activities which can be executed in parallel. 

The total number of permutation is 10! = 3628800. It is not realistic that each potential 

interleaving exists in the event log. Moreover, certain patterns through the process model 

may have a low probability (e.g. surprise-type relations) and therefore remain undetected. As 

a result the event log is not complete in the sense that it does not capture all possible 

behavior. 

 

b. Noise:  
Parts of the event log may be incorrect, incomplete, detoriated or refer to exceptions. Events 

can be logged incorrectly because of human or technical errors. Events can be missed in the 

event log if some of the activities are performed manually or handled by an exterior system 

or organizational unit [12]. Additionally events can imply to rare or undesired events [12]. For 

instance, in a hospital environment a patient started a treatment into hospital X and 

continues his treatment in the hospital Y; in the event log of hospital Y the treatment 

activities that occurred in the hospital X cannot be traced [14]. Clearly, exceptions which are 

traced in the event log for only once should not automatically become part of the discovered 

process model [12]. 

 
To tackle these issues, FTCBPD methodology is proposed in this study. Proposed 

methodology is relatively robust and has options to focus on the main process instead of 

attempting to model the full details of the behavior exhibited in the “locally complete” event 

logs. Basically this characteristic is accomplished by the end-user or domain expert through 

the adjustable probability threshold parameters in “Threshold Values” view at the selection 

screen of generic tool named ProMiner, in which FTCBPD methodology is realized.     
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CHAPTER 3 
 
 

LITERATURE REVIEW 
 
 
 

Process-oriented systems have been increasingly attracting data mining society, as the 

application of inductive process mining techniques become widespread in both the analysis 

of complex business processes and the design of new process models. Prior studies about 

process mining concentrate fundamentally on conceptual and algorithmic aspects of this 

area of data mining.  

 

 

3.1. Conceptual Aspects in Process Mining 
Prior studies concentrated on conceptual aspects in process mining generally emphasizes 

the significance of logging functionality in information systems and integration of clear-cut  

process mining perspectives (i.e. process, organizational and case perspectives in process 

mining) in order to constitute a hybrid perspective in process mining.  

 

In [21], which is a report of the four workshops organized within the context of the Dagstuhl 

seminar on “The Role of Business Processes in Service Oriented Architectures”, Aalst firstly 

handles the issue of obtaining event logs in process-aware and traditional information 

systems. It is emphasized that the topic of holding event logs is closely related to the 

correlation of service-oriented architecture (SOA) messages. Just like a process engine 

needs to know which messages are relevant for an exact process instance, process mining 

is only possible if events are related with the right corresponding process instances by an 

attribute, e.g. caseID. After establishing the way in which process logs can be obtained, 

Aalst focuses on the classification of the various process mining techniques.  

     

As stated in “Problem Analysis” chapter, traditional workflow management systems confront 

a crucial problem in business process alignment, since these information systems are 

typically considered too inflexible. In general, business process flexibility is the capability to
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react to the external changes by adjusting only those components of a business process, 

which requires to be changed and keeping other parts stable. 

 

In this aspect, [20] highlights the process mining usage in analysis and improvement of 

process flexibility. Since traditional information systems are unaware of the performed 

deviations and thus unable to record information about these deviations, the missing 

traceability limits the benefit of process mining, whose capabilities obviously depend on the 

content and the quality of the available event log.  

 

Furthermore, existing mining approaches mainly handle process mining perspectives 

separately, whereas ad-hoc changes often constitute a combination of control-flow and data-

flow adaptations. In [20], Aalst et al. propose the enrichment of obtained event logs, which 

basically hold syntactical information about the business process, with semantic information, 

i.e. context information. Consequently process mining techniques can be able to capture the 

reactive and stimulus entities for the change in event logs.  

 

Likewise [20], [17] aims to handle both case and control-flow perspectives in an integrated 

fashion, which concentrates on the association between process mining and case handling 

paradigm. The basic idea in case handling paradigm is to lean the progress in process 

modeling on the availability of defined data elements. While production workflow is strongly 

process-oriented, the case handling paradigm basically concentrates on the case itself, 

which is the fundamental object to be produced. 

 

In [8] Recker et al. concentrate on the development and application of a generic engineering 

process for configurable reference modeling. As enterprise systems (ES) are developed in a 

generic manner in order to provide rapid reactions to the requirements of a wide variety of 

organizations, industry sectors and countries, their implementation emerges the problem of 

alignment business process and information technologies. Alignment, however, implies 

indispensable configuration and customization effort in the implementation phase and may 

result in significant implementation costs that exceed the price of software licenses by 

significant factors. Process for model-driven ES configuration consists of the steps 

specification, configuration, transformation and deployment as well as the feedback loops 

controlling and consolidation. 

 

 

3.2. Algorithmic Aspects In Process Mining 
Prior studies based on algorithmic aspects in process mining specialize on the 

methodologies, which aim to build up behavioral structure with respect to the underlying 
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event logs. Approaches dedicated to control-flow perspective can be classified into three 

prescriptive types: 

a. Correlation-based approaches aim to extract interesting correlations, frequent 

patterns, associations or casual connections among activities in the transaction 

database. 

b. Classification-based approaches aim to induce a rule set, which is constituted of 

metrics introduced in correlation-based approaches, from event logs and build 

automatically a classifier to prescribe the type of log-based relations as causal (c), 

exclusive (e), parallel (p) and inverse casual relation (i). 

c. Clustering-based approaches differ from previous approaches in taking account 

global constraints and performance measures on log traces beside mere “structural” 

local constraints. This is achieved by representing each event as a point at a 

properly identified space of features and constructing process model by combining 

sub-patterns (i.e. clusters), which hold executions sharing the same structure and 

the same unexpected behavior. 

 

 

3.2.1. Correlation-based Approaches 
The idea of applying process mining in the context of workflow management was first 

introduced in [10]. In this study, two issues are handled. The first issue is to discover a 

workflow graph generating activities appearing in a given workflow log. The second issue is 

to find the definitions of relation conditions. As a shortcoming, given the nature of workflow 

graphs there is not any requirement to identify the nature (AND or OR) of joins and splits. 

Moreover workflow graphs are acyclic. The only way to deal with pattern iteration is to 

enumerate all occurrences of a given activity. Therefore there is a crucial effort to associate 

activity occurrences belonged to the same activity type. Additional redundancies may occur 

in activity identification. 

 

Cook and Wolf have investigated similar issues in the context of software engineering 

process. In [3] they describe three methodologies for process discovery ranging from the 

purely algorithmic to purely statistical: one using neural networks named RNET, one using a 

purely algorithmic approach named KTAIL and one Markovian approach named MARKOV. 

The approach underlying these three methods is to view the process discovery problem as 

one of grammar inference, in which sample sentences given in a language and some 

sentences specifically not in the language suppose a grammar that represents the language. 

In other words, the data describing the behavior of a process are viewed as sentences in a 

language; the grammar of this language is then limited to the formal process model.  
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Major shortcoming of grammar inference is that the grammar inference methods generally 

do not support seeding the underlying algorithm with pre-known information about the 

process model (or grammar). Often end-user will have domain knowledge about the process 

under study, and may formulate a backbone of the process model. Additionally grammar 

inference methods assume a single state machine. In the typical process model, activities 

generally occur concurrently, which produce an event stream that may have non-

deterministic orderings of events. 

 

The authors consider KTAIL and MARKOV methods as the most promising approaches, 

while RNET method is evaluated as to be insufficient mature to be used in practical 

applications. KTAIL method builds a finite state machine where states are complex if their 

futures (in terms of possible behaviors in the next k steps) are identical. Finite state machine 

(FSM) is the preferred representation in this study rather than other powerful representations 

such as Petri nets not to make software process prescribing more sophisticated. Actually 

FSMs are quite convenient and sufficiently powerful for describing historical patterns of 

actual behavior. Another significant point is results presented in [3] are limited to sequential 

behavior.  

 

On the other hand, Weijters and Aalst propose a rediscovery technique in [1]. This technique 

can deal with noise and can also be used to validate workflow processes by uncovering and 

measuring the discrepancies between the prescriptive models (e.g. reference models) and 

actual process executions. Compared to Cook and Wolf’s existing work, Weijters and Aalst 

focus on workflow processes with concurrent behavior, i.e. detecting concurrency is one of 

the fundamental concerns. Therefore AND/OR connectors are aimed to be explicitly 

distinguished in the process model. To accomplish this goal, WorkFlow nets, which are a 

subset of Petri nets, is combined with techniques from machine learning (ML). Moreover 

Weijters and Aalst propose metrics (i.e. local and global metrics), which are quiet different 

from the proposed metrics in [3] (i.e. entropy, event type counts, periodicity and causality), to 

find explicit representations for a broad range of process models.     

    

Proposed technique in [1] is composed of three steps: Step (i) construction of 

dependency/frequency table, Step (ii) generation of a  dependency/frequency graph out of a 

dependency/frequency table and Step (iii) reconstruction of the Workflow net out of 

dependency/frequency graph and dependency/frequency table. 

 

Dependency/frequency table figures out the following information from event logs: 

a. The overall frequency of task A (notation of A# ) 

b. The frequency of task A directly preceded by task B (notation of AB# < ) 
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c. The frequency of task A directly followed by task B (notation of BA# > ) 

d. A local metric that indicates the strength of the dependency relation between task A 

and task B (notation of B$A L→ ) 

e. A more global metric that indicates the strength of the dependency relation (notation 

of B$A→ ) 

 

Sample dependency/frequency table for event type T6 is represented in Table 3.1: 

 
Table 3.1 Dependency/Frequency Table for event type T6 (A=T6) [1] 

 

 
 

 

Local metric (d) expresses the tendency of succession relation by comparing the magnitude 

of BA# > and AB# >  with total inter-traffic, 1## +>+> ABBA , at a local level. The 

definition of local metric is as follows:  

 
( ) ( ) 3.1)(eq.ABBAABBABA L 1##/##$ +>+>>−>=→  

 

The last metric, global metric (e), is more global than local metric because not only direct 

following events are involved. The underlying intuition is as follows: If it is a frequent case 

that, when task A occurs, shortly later task B also occurs, then it is reasonable that task A 

causes the occurrence of task B. In a transaction stream, task A occurs before task B and n 

is the number of intermediary events between them, the B$A→ deÿÿndenÿÿ cÿÿnter is 

incremÿÿted with a factor nσ . σ is a dependency fall factor (i.e. σ  is in [0.0…1.0]).    
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After dependency/frequency table is constructed, dependency scores ( DS ) between tasks 

pairs say task X and Y (i.e. notation Y) DS(X, ) is calculated. This dependency scores are 

used in the formulation of a heuristic rule, which is the baseline of dependency/frequency 

graph. Dependency score is calculated as follows: 

 

( ) ( ) ( )( ) 3.2) (eq.YXYXYXDS L 2$$, 22
÷→+→=  

 

For each task pairs, dependency score is calculated. Then the heuristic rule is executed 

such that: 

Given a task A, suppose X is the task for which   M X)DS(A, = is maximal.  

Then  YA→ if and only if M 0.95  Y)DS(A, ×<  

Then  AY → if and only if M 0.95  A)DS(Y, ×<  

 

As stated above  M 0.95× is the upper bound for dependency scores. Threshold value of 

0.95 is the only parameter used to ensure robustness for noise and concurrent processes. 

With respect to  M 0.95× threshold value, relation among tasks are determined and 

represented in dependency/frequency graph. Dependency/frequency graph is a FSM-like 

graph-based representation, on which tasks are represented as blocks and relations among 

tasks are represented in arcs. 

 

The last step is the upgrade of dependency/frequency graphs to Workflow nets. Major value-

adding operation in this step is detecting the types of splits and joins. Dependency scores in 

dependency/frequency graph and information in the dependency/frequency table contain 

useful information to determine the types of splits and joins intuitively.   

 

According to this intuitive operation, dependency score, which is approximately equal to total 

number of incoming or outgoing transitions of the underlying activity, implies an AND-

connection, while dependency scores complementing each other to total number of incoming 

or outgoing transitions of the underlying activity implies an OR-connection. Unfortunately 

proposed mining technique in [1] have still problems with handling complex interconnected 

structures in combination with short loops. Proposed mining technique in this study is 

realized as a tool named “Little Thumb”. 

 

Formal approaches stated above are based on an assumption of a weak notion of 

completeness (i.e. if one activity can be followed by another activity, this should occur at 

least once in the event log) and noise-free event log (i.e. everything that is registered in the 
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log is correct and erroneous-free). Actually impractical situations logs are rarely complete 

and noise free. Hence HeuristicMiner approach stated in [13] anticipates three threshold 

parameters to handle this issue: (i) the dependency score, (ii) the positive observation score, 

(iii) the relative to best threshold.  

 

Approaches, which suffer from the drawback that the nature of splits and joins is not 

discovered, suppose that the threshold value usage is unnecessary for dependency relations 

according to “all activities connected” heuristic. As the major novelty of [13], Weijters et al. 

propose a measurement to express the type of splits and joins instead of the intuitive 

heuristic approaches like in [1]. According to this measurement: 

 

)3.3.(eq
CABA
BCCB

CBA ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

>+>
>+>

=∧⇒  

 

The CABA >+>  notation indicates the number of positive observations and BCCB >+>  

notation indicates the number of times activity B and C appear directly after each other. 

 

In the following study [15], Weijters and Aalst introduce two additional parameters: noise 

factor N and a threshold value σ  instead of dependency scores, which are calculated in [1] 

to determine the significance of the relation. The value σ  is automatically calculated using 

the following equation: ⎟
⎠
⎞

⎜
⎝
⎛ ×

+=
T#

L#NRound1σ . N is the noise factor with default value of 0.05, 

L#  is the number of trace lines in the workflow log and T#  is the number of activity types 

in the related business process. Frequencies stated in dependency/frequency table 

(parameters b and c) are compared with noise factor N  and calculated σ  to determine 

whether underlying relation is worth to be represented in dependency/frequency graph.  

 

Weijters and Aalst enhance a significant novelty to the present approach in [1], which resides 

in the fact that they use a global learning approach, named “logistic regression model” and 

find a threshold value that can be used to detect direct successions in [14]. As the basic 

material, dependency/frequency table is used as in [1]. Addition to existing parameters in 

dependency/frequency table, the frequency of task B directly succeeded by another task A, 

but before the next appearance of B (i.e. notation of AB >>> ) and the frequency of task A 

directly succeeded by another task B, but before the next appearance of A (notation of 

BA >>> ) parameters are added.  
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Additionally local and global metrics introduced in [1], which indicates the strength of the 

relation locally and globally, are revised in [14] such that: 

 

a. The local metric (LM): Considering tasks A and B, the local metric LM expresses 

the tendency of succession relation by comparing the magnitude of ( BA > ) versus 

( AB > ).  

 
( ) 3.4)(eq.ABBAN

N
BA

Pwhere
N

PPPLM >+>=
+
>

=
+
−×

×−=
11

196.1  

 

In general, it is concluded that LM can have a value (i) close to 1 when there is a 

perfect tendency of succession between X and Y, (ii) in the neighborhood of 0.5 

when there is both a succession between X and Y and between Y and X, but a clear 

tendency cannot be identified and (iii) zero when there is no succession relation 

between X and Y. 

 

b. The global metric GM: The previous measure LM was expressing the tendency of 

succession by comparing the magnitude of B)(A >  versus A)(B >  at a local level. 

Therefore, GM measure is built. 

 

( ) 3.5)(eq.
BA

LABBAGM
##

#
×

×>−>=  

 

In conclusion, for determining the likelihood of succession between two events A and 

B, the GM metric is indeed a global metric because it takes into account the overall 

frequency of events A and B with respect to L# , while the LM metric is a local 

metric because it compares the magnitude of A)(B >  with B)(A > . 

 

c. The causality metric CM: The casualty metric is calculated as following: if task B 

occurs after task A and n is the number of events between A and B, then CM is 

incremented with a factor nσ , where σ  is a causality factor, σ  is in [0.0,1.0]. The 

causality metric CM was firstly introduced in [1]. But it is labeled as “global” in this 

prior study. In [14] there is a clear distinction between causality and global identities 

of the metrics.   
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The idea of the logistic regression model is to combine these three metrics described above 

and to find a probability Π  over which two tasks A and B can be considered to be in the 

direct succession relation. The form of logistics regression model is such that; 

 

( ) )6.3log 3210 (eq.CMBGMBLMBB
-1

×+×+×+=⎟⎟
⎠

⎞
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⎝

⎛
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Π

 

 

where the ratio (
( )Π
Π
-1

) represents the odds. The significance of individual logistic 

regression coefficients, Bis, is given by the Wald statistics which indicates significance in the 

model; that means all independent variables have a significant effect on direct succession 

predictability. 

 

As stated above, relations represented in dependency/frequency graph are classified as 

direct succession and succession in [14] and the probability of these relations are determined 

by logistic regression model. Definitions of these relation types are given in “Proposed 

Method” chapter.    

Global learning method proposed in [14] uses information contained in workflow logs to 

discover the direct successor relations between events. This method is able to find almost all 

direct connections in the presence of parallelism, noise and an incomplete log.  In [16] 

Maruster, Weijters and Aalst implement another variant of this method on simulated hospital 

event logs, containing information about which medical actions took place over time. 

Technique in [16] does not work well for all kind of Workflow nets, as one experiment 

involving none-free-choice showed.   

  

In [11], the goal of proposed method, named “alpha algorithm”, is twofold: first of all, a mining 

algorithm is sought to rediscover sound Workflow nets, i.e. based on a complete workflow 

log the corresponding workflow process model can be derived without any extra behaviors. 

Second, given such an algorithm, it is aimed to indicate the class of workflow nets which can 

be rediscovered. Clearly, this class set should be as large as possible. Note that in the prior 

studies [1, 3, 14, 15, 16] there is not any mining algorithm which is able to rediscover all sound 

Workflow nets. As a way of representation, Maruster, Weijters and Aalst attempt to generate 

concrete Petri net for a broad range of process models rather than a set of dependency 

relation between events like in [1]. 

 

Actually the preliminary results presented in [1, 14, 15, 16] only provide heuristics and 

basically concentrate on issues such as noise, basic parallelism, basic closed loops. The 

approach described in [11] differs from these approaches in the sense that for the alpha 
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algorithm it is proven that for certain subclasses (e.g. non-free choice, basic and arbitrary 

loops, hidden tasks, noise, basic and complex parallelism) it is possible to find the right 

workflow model. Also alpha algorithm can mine timed workflow logs and calculate several 

kinds of timing information (e.g. waiting/synchronization times, flow times, utilization) to 

performance metrics. On the other hand, the major limitation of alpha algorithm is that 

certain kind of multiple tasks having the same title cannot be detected. 

 

In [12], distinct tools, which are driven by different problem areas in process mining, are 

compared. Handled tools are EMiT, Little Thumb, InWoLvE and Process Miner:  

 EMiT (Enhanced Mining Tool) is a graphical process model including all kinds of 

performance metrics. Because of its graphical-based structure, it is able to handle 

rediscovery problem effectively.  

 Little Thumb, which is firstly introduced in [1], concentrates on incomplete logs and 

noise. However in a noisy and incomplete situation, one erroneous event can 

completely confuse the derivation of a right conclusion. For this reason Little Thumb 

attempts to develop a heuristic mining technique which is less sensitive for noise 

and the incompleteness of the log.   

 Although approaches previously presented assume that a task name should be a 

unique identifier within the process, in the graphical models it is not possible to have 

multiple building blocks referring to the same task. InWoLvE (Inductive Workflow 

Learning via Examples) attempts to deal with duplicate tasks with lattice of task 

mappings in the workflow logs, which is inherited from machine learning and 

grammatical inference. Between the mappings there is a partial ordering (more 

general than/more specific than). The lattice is limited by a top or most general 

mapping (i.e. every task instance with name X is mapped to one single task node 

with name X) and a bottom or most specific element (the mapping is bijection 

between task instances in the event log and task nodes of the workflow model). 

 The last tool, Process Miner, exploits the properties of block-structured workflows 

through rewriting rules. Block-structured models are composed of blocks which are 

nested. These building blocks of block-structured models can be differentiated into 

operators and constants. Operators construct the process main flow, while constants 

are the tasks or sub-workflows that are embedded inside the process flow.       

 

In [19], Aalst et al. aimed to demonstrate the applicability of process mining in general and 

developed algorithms and tools in particular. The industrial application in this study involves 

one of the twelve offices of the Dutch National Public Works Department, which is primarily 

responsible for the construction and maintenance of the road and water infrastructure in its 

providence. The focus of this study is not limited to the control-flow perspective. In this case 
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study, the organizational and case perspectives are also handled. As a supporting tool, ProM 

framework, which integrates EMiT, Little Thumb and MiSoN tools, is used in this application. 

 

As a hybrid methodology in process mining, Gomez et al. introduce “Application Usage 

Mining” concept in [18]. Application usage mining is explained as the examination of the 

user’s behavior in the business application systems (e.g. ERP) by applying the basic 

approaches, notions and methods inherited from Web Usage Mining. Basically this 

application indicates some significant differences, which are caused by the fact that there are 

some logical as well as technical gap between a web application of e.g. electronic shopping 

and a business application system. In a web application the connection between a guest and 

provider is not obligatory. The visitor has the freedom to navigate through the providers’ web 

pages. Along with the usage of a business application system the employee should optimally 

perform the assigned tasks and business processes of the enterprise.  

 

  

3.2.2. Classification-based Approaches 
Tackling the problem of process discovery at a more robust level is subsequently introduced 

by Weijters and Aalst in [14] using an empirical data-driven approach namely logistic 

regression model, which is able to detect the casual relations (i.e. direct successors) from 

event logs. However that logistic regression approach requires a global threshold value for 

deciding when there is a direct regression between two tasks. The usage of global threshold 

has the shortcoming of being too rigid, thus real relations may not be found out and false 

relations may be caught.  

 

In this aspect, [2] aims to use machine learning techniques to stimulate classification rules for 

(i) casual relations and (ii) parallel/exclusive relations assuming the existence of noisy 

information in event log and imbalance in execution priorities. 

 

The construction of a so-called dependency/frequency table from the event log information is 

the starting point of the method as in [1]. Afterwards three relational metrics, i.e. causality 

metric (CM), local metric (LM) and global metric (GM), are calculated for each task pair 

occurred in process instances. Relational metrics and dependency/frequency table materials 

are inherited from [1] and [14]. 

 

Actually the CM, LM and GM metrics have been developed specifically to be used as 

predictor attributes for determining decision rule sets. They are less practical for deciding 

between exclusive and parallel relations, for which it is required to develop other adequate 

predictors. Because the rule set to be induced using these three metrics as predictors must 
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be in a general condition, the normalized form of YX >  and XY >  are also taken into 

account as predictors. Thus YX and XY metrics are introduced. 

 

Last operation in [2] is to detect the existing log-based relations between tasks by applying 

the predictive features of the introduced metrics to the learning material generated in 

dependency/frequency table. In this operation “Ripper” is chosen as the appropriate learning 

algorithm, which induces minimal description-length rule sets. It has been shown that Ripper 

is competitive with the intensively-used alternative algorithm, C4.5rules, in terms of error 

rates, but more capable than C4.5rules on noisy data. 

 

Because of supervised nature of classification, a training dataset has to be provided, each of 

which has been labeled with a class. Each instance in training dataset is labeled 

corresponding to the log-based relations that can exist between two tasks: (c) for causal, (e) 

for exclusive, (p) for parallel and (i) for an inverse casual relation. Following rule set in Figure 

3.1 is constructed for detecting log-based relations. 

 

 

 
 

Figure 3.1 Rule Set Constructed by Ripper [2] 
 

As a result, the contribution of [2] can be seen as successfully complementing the work 

reported in [11]: it resolves shortcomings of the alpha algorithm, in dealing with issues about 

causality and parallel/exclusive relations exhibition in noise and incomplete process logs.  

 

 

3.2.3. Clustering-based Approaches 
Currently correlation and classification based techniques focus on structural aspects of the 

process and disregard all non-structural data that are still kept by many real systems, such 

as information about activity executors, timestamps, parameter values, as well as different 

performance measures. 
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In [6] Chiaravalloti et al. present an enhanced process mining approach, where different 

process variants (use cases) can be discovered by clustering log traces, based on both 

structural aspects and performance measures. For this aim, an information-theoretic 

framework is used, where the structural information as well as performance measures is 

represented by proper auxiliary domains, which is correlated to the central domain, namely 

DT, of logged process instances. Hence beside the list of activity identifiers, each cluster is 

equipped with a number of metrics, which are meant to characterize some performance 

measures for the enactment phase at hand. 

 

Major problem in this multi-dimensional extension is that there may well exist two auxiliary 

dimensions X, XI ∈ {A, Z1,…ZN} with X ≠ XI, such that the best co-clustering solution for the 

pair DT and DX does not conform with the best co-clustering for DT and DX
I. The solution to 

jointly optimize all pair-wise loss functions is to linearly combine them in a global function, by 

using N+1 weights ßA, ß1,… ßN with the characteristic of 
1

1
=+∑

=

N

i
iA ββ

, which are meant to 

quantify the relevance that the corresponding auxiliary domain should have in concentrating 

on the co-clustering of the whole log data.  

 

In parallel to [6], [5] continues on the way of the investigation of data mining techniques for 

process mining through hierarchical clustering of the event logs, in which each trace is seen 

as a point of a properly identified space of features. As a major distinction in this study, 

previous approach is extended to process mining by proposing an algorithm which is able to 

discover not only the behavioral structural of a given business process, but also enrich the 

discovered schema with some interesting global constraints, in order to provide the designer 

with a refined view of the process. In this aspect, local constraints basically reflect behavioral 

aspect, while global constraints are richer in nature and their representation strongly 

depends on the particular application domain of the modeled business process. Thus they 

are often expressed using other complex formalisms, mainly associated with clear 

semantics. 

 

Lastly, [4] aims to precisely investigate the unconnected patterns, which are sets of the 

patterns that frequently occur together in some event log data, by designing and 

implementing efficient solutions for the frequent unconnected patterns discovery (FUPD) 

problem, in which a set of frequent patterns is given as input and all subsets of this set that 

are frequent as well have to be discovered.  
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Proposed technique in [4] can be used for singling out sets of arbitrary sub-processes that 

are very often executed together and may be abstractly seen as a sub-process in the 

workflow schema. Hence these unconnected patterns can be used by the system 

administrators to identify interesting and useful correlations among sub-processes which are 

apparently not related with each other. 
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CHAPTER 4 
 
 

PROPOSED METHOD 
 
 
 

4.1. From-to Chart as a Basic Analytical Technique in Plant Layout 
The basic from-to chart is a square matrix for summarizing material handling between 

related operations, machines, departments or work centers on the production floor [25] with 

high volume production rate [35]. The sequence of operations is written down the left-hand 

side of the form and across the top. While the vertical sequence of activities is the “from” 

side of the matrix, the horizontal sequence of activities is the “to” matrix [26]. This analytical 

technique is extremely useful for [25]: 

a. Designing relative locations of operations. 

b. Demonstrating material flow patterns. 

c. Showing degree of self-sufficiency of each operation. 

d. Interpreting possible production control problems. 

e. Planning interrelationships between several products, parts, materials, etc. 

f. Representing quantitative relationships between operations and the related handling 

between them. 

g. Evaluating alternative flow patterns. 

h. Improving distances traveled during a process. 

 
The number of rows and columns in the matrix is equal to the number of operations under 

consideration. Additionally operation titles are listed in identical order across the top of the 

columns and down the row on the left hand side of the matrix. Initial row or column sequence 

may represent geographical arrangement in the plant, logical arrangement of process flow or 

proposed sequence as represented in Figure 4.1. 
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Figure 4.1 From-to Chart as a Basic Analytical Technique in Plant Layout [25] 
 

Basic data for entry into from-to chart are prepared by tabulating the flow paths of each 

concentrated part, product or material such that; for each move of related entity from 

operation i to operation j, current score at the (i, j)th element of matrix is incremented by one. 

Thus accumulated scores in each element represent the total number of moves from and to 

the underlying operation. Entry of data into the matrix can be done in several ways, 

depending on objective or desired result of the analysis [25]. Scores may also represent: 

a. Number of moves between operations. 

b. Quantity of material moved per time period. 

c. Weight of material moved per time period. 

d. Combination of quantity × weight per time period. 

e. Ratio of total through each operation to each subsequent operation. 

f. Move time. 

g. Move cost. 

 

Constructed from-to chart has to be analyzed for better arrangements of operations to 

reduce handling, costs, distances, production control problems, etc. [25]. Major use-cases 

occurred at from-to chart are as follows: 

a. All entries below the diagonal indicate back-tracking, i.e., backwards from the 

order indicated by the numbers representing the operations. 

b. All entries in the upper right or far right indicate skipping past several adjacent 

operations to get to their next operation. 

c. Items moving from one operation to an adjacent operation result in the marks 

falling in the elements along and just above the diagonal. This represents 

straight-line (direct) flow.  
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Major use cases are visualized at prior from-to chart in Figure 4.2. 

 

 

 
 

Figure 4.2 Major Use Cases Occurred at From-to Chart 
 

Intuitively it is seen that the best layout can be devised by rearranging the columns and rows 

to put the elements with larger scores just above the diagonal and fewer ones below the line 

[25]. Actually this may be possible for one material, but it is not possible for all materials in 

production portfolio systematically. 

 

According to [35], from-to chart is a descriptive material to reduce a large volume data into a 

workable formation such that, the construction of a from-to chart does not result directly in 

the solution of a layout problem. On the other hand, a more quantitative approach to 

minimize material handling is obtained by taking “moments” of the accumulated score at 

each element around the diagonal (i.e. “support point”) and aiming for the lowest moment 

total at from-to chart as stated in [25]. The number of elements away from the diagonal is 

used as the distance from the diagonal, i.e. moment arm1. Objective function to minimize the 

total moment of from-to chart is formulated as follows: 
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Parameters stated in the objective function are:  

ijf
 indicates total move from operation i to operation j. 

                                                 
1 To make moment computation simple, suppose all operations (machines) are of the same size and 
the distance between the working points of each pair of adjacent operation (machine) is one unit.     
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p  is the back-tracking penalty point assigned to each entry below the diagonal. Back-

tracking penalty point is doubled to enforce the model towards a straight line arrangement 

[26].  

Range of back-tracking penalty is such that;   
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4.2. From-to Chart Based Process Discovery Methodology (FTCBPD) 
As stated in the “Problem Analysis” chapter, managing complex business processes calls for 

the development of powerful information systems, which are able to control and support the 

underlying processes. To support a structured business process, such process-aware 

information systems have to offer generic process modeling and process execution 

capabilities [2].  

 

Although information systems that are not process-aware (e.g. ERP system), are built 

around a large set of database tables instead of designed around explicit process models, it 

seems a crucial tendency towards building information systems on a process layer, making 

logging at the right level is a standard functionality [21].  We would even like to claim that 

“logging should be first class citizen” for any information system that is used to support 

processes. 

 

In this aspect, this study aims to develop a methodology named “From-to Chart Based 
Process Discovery” (FTCBPD), which is information system-independent. FTCBPD 

methodology does not assume the presence of a process engine as in process-aware 

information systems. The major requirement of this methodology is that it is possible to 

construct event logs, which can be pulled up and used as a main data source for process 

discovery.  

 

FTCBPD methodology aims to discover interesting patterns from event logs in the form of 

straight-line, skipping and back-tracking type relations among activities (transactions) and 

convert this discovered knowledge into the form of business models as output (i.e. from-to 

chart, dependency/frequency graph and control flow graph) without any domain knowledge 

about the underlying business process.  

 

In general, this is a very difficult challenge to meet. To scope the problem, we have 

concentrated our efforts on models of the process perspective, rather than, on models of the 
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relationships between artifacts produced by the business process or on the models of the 

roles and responsibilities of the actors in the process.    

 

The novelty of FTCBPD methodology in process discovery field resides in the fact that; we 

use a global instrument, which is essentially designed for material flow analysis in industrial 

engineering domain, named “From-to Chart”, as baseline to monitor transitions among 

activities (transactions) occur in business processes. FTCBPD methodology inherits the 

square, symmetric matrix characteristic of from-to chart and applies some modifications and 

add-ins to this tool.  

 

Major modifications and add-ins applied to classical from-to chart are listed below: 

a. Instead of operation, machine or department titles, activity (transaction) titles 

retrieved from event logs are embedded as attribute titles to from-to chart matrix in 

FTCBPD methodology. 

b. Although traditional from-to chart implementation uses original total tally marks 

directly in rearrangement phase of the matrix to find out the layout with minimum 

material handling, FTCBPD methodology compares total tally marks by evaluation 

metrics (i.e. minimum support threshold- MST, minimum confidence threshold- MCT 

and modified lift) prior to rearrangement of from-to chart.  

This comparison operation may reset tally mark values, which are “weak” according 

to local or global evaluation metrics (MST and MCT), or negativate tally marks, 

which implies that occurrence of successor activity is negatively correlated to the 

occurrence of predecessor activity.  

c. In the traditional from-to chart implementation, the matrix is rearranged to minimize 

material handling by neighboring the operations with higher material inter-traffic. 

While rearranging the matrix, unchanging and doubled back-tracking penalty point is 

assigned to back-tracking use cases. On the other hand, this back-tracking penalty 

point is determined by end-user in FTCBPD methodology and can be adjusted for 

what-if analysis. 

d. In the traditional from-to chart implementation while rearranging the matrix, there is 

not any insight about the initial operation in the operation sequence. Because parts, 

products or materials with distinct flow paths (production routes) are handled on the 

same production floor according to job shop philosophy.  

On the other hand, constructed from-to chart in FTCBPD methodology is populated 

by process instances belonged to a single business process. In other words, the 

constructed from-to chart is dedicated to a single business process. Hence the end-

user can anticipate the initiator activity (transaction) in discovered process model. 
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Additionally this domain knowledge may reduce the complexity of rearrangement 

operation from )O(n! to )1)!-O((n .    

e. The traditional from-to chart implementation attempts to arrange operations in a 

straight line, thus the results in traditional from-to chart implementation are limited to 

sequential behavior. But business processes exhibit more sophisticated behaviors 

(i.e. basic parallelism) additional to sequential behavior.  

Although mining of non-observable AND/OR connections is difficult since they are 

not explicitly present in event log [13], FTCBPD methodology is able to detect and 

handle basic pair-wise parallelism with respect to AND threshold set in the “Process 

Modeling Factors” view. Additionally FTCBPD methodology imposes restrictions on 

the structure of basic one-step closed loops to guarantee the correction of 

discovered process model by “Eliminate one-step closed loops in discovered 

process model” application. Thus one-dimensional activity sequence, which is an 

“intermediate product” of rearrangement operation, is upgraded to two-dimensional 

process model. 

 

FTCBPD methodology is realized in a tool named ProMiner. Selection screen of ProMiner is 

presented in Figure 4.3.  

 

 

 
 

Figure 4.3 Selection Screen of ProMiner 
 

Functionalities of the views (i.e. source file, threshold values, process modeling factors and 

verification factors) at the selection screen are given in APPENDIX C. 
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In ProMiner, process model can be visualized in four forms corresponding to four 

levels/steps of process discovery: 

 

a. Initial State of From-to Chart 
Initial state of the from-to chart represents the original tally mark values in FROMTOCHART 

table prior to evaluation of these tally marks. This information may be useful to understand 

the mechanism of evaluation and rearrangement operations in FTCBPD methodology. 

Screenshot of “Initial State of From-to Chart” frame is represented in Figure 4.4. 

 

 

 
 

Figure 4.4 Initial State of From-to Chart Frame 
 

b. From-to Chart 
Constructed from-to chart textually summarizes the successive activities (transactions) of 

each activity (transaction) take place in the discovered process model. Fields of the output 

are “transaction” and “successive transactions”. Screenshot of “From-to Chart” frame is 

represented in Figure 4.5. 
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Figure 4.5 Discovered Process Model in From-to Chart Form 
 

c. Dependency/Frequency Graph (D/F Graph) 
Dependency/frequency graph is a kind of finite state machine (FSM) which visually 

represents activities as blocks, dependency scores of each transition among activities (i.e. 

number of repetition for the underlying transition and total outgoing transition number of the 

source activity) and type of these transitions.  

 

Although there are more powerful representations than finite state machines (e.g. push-down 

automata, Petri nets etc.) which are arguably better suited for representing business process 

[3], finite state machines are quite convenient and sufficiently powerful for describing 

behavioral patterns of actual behavior. The underlying reason of this argument is that; the 

more powerful the representation, the more complex the discovery problem [3]. 

 

The color legend describing type of the transition is stated below: 

 Red color indicates straight-line (direct) flow among activities (transactions). 

 Blue color indicates transitions that skip past several adjacent activities 

(transactions) to get to their next activity (transaction). 

 Green color indicates back-tracking. 
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Screenshot of “Dependency/Frequency Graph” frame is represented in Figure 4.6. 

 

 

 
 

Figure 4.6 Discovered Process Model in Dependency/Frequency Graph Form 
 

d. Control Flow Graph 
If “Detect AND/OR connections” check-box in “Process Modeling Factors” view is marked, 

control flow graph can be visualized. In this output, pair-wise connection types, which are 

determined with respect to AND threshold, are represented in the discovered process model 

by linear connectors in addition to dependency scores (i.e. repetition number and confidence 

value of the underlying transition). The color legend describing type of the connection is 

stated below: 

 Red color linear connector indicates AND-type connection. 

 Blue color linear connector indicates OR-type connection. 

 

The transitions among activities are in straight-line appearance instead of intermittent form 

used in dependency/frequency graph. Screenshot of “Control Flow Graph” frame is 

represented in Figure 4.7. 
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Figure 4.7 Discovered Process Model in Control Flow Graph Form 
 

Moreover end-user can list connections and their characteristics (e.g. source transaction, 

connection type, connected transactions, connection score) by “Connection List” button on 

control flow graph frame. 

 

 

 
 

Figure 4.8 Connection List Frame 
 

FCTBPD methodology is apparently a sequential approach (i.e. AND, OR and XOR 

connectors are merely used for distinguishing check-box marked or unmarked use cases), 

which is composed of nine operations: 

1. “Create FROMTOCHART Table” operation aims to create FROMTOCHART 

database table and instantiate this table with null valued tuples. 

2. “Populate FROMTOCHART Table” operation aims to mark the transitions, which are 

captured in transaction streams, into the appropriate element of FROMTOCHART. 

At the end of this operation, row and column total of each activity type is computed 

and then inserted into TALLYMARK table. 
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3. “Evaluate Tally Marks in FROMTOCHART Table” operation aims to prune down the 

rules by eliminating “weak” accumulated tally marks in FROMTOCHART table with 

respect to selected evaluation metric(s). 

4. “Rearrange FROMTOCHART Table” operation aims to find out “the most frequent” 

activity sequence in training dataset by taking moment for each non-zero tally mark 

in FROMTOCHART table. Thus activities with higher inter-traffic are neighbored in 

the activity sequence with respect to the minimum moment objective function and 

this activity sequence acts as the backbone for discovered process model. 

5. “Construct Process Model” operation aims to drive direct successive, successive 

and backtracking type transitions among activities (transactions) with respect to 

evaluated tally marks in FROMTOCHART. This form of process model is 

represented as dependency/frequency graph. 

6. “Eliminate One-Step Closed Loops at Discovered Process Model” operation aims to 

detect and eliminate one-step closed loops, which are the bottlenecks (deadlocks) of 

the underlying business process. 

7. “Construct AND/OR Connections at Discovered Process Model” operation aims to 

detect connection types (i.e. AND-split, AND-join, OR-split and OR-join) by 

interpreting discovered transitions (patterns) of each activity type in discovered 

process model  with respect to AND threshold and represent these connections in 

control flow graph by linear connectors. 

8. “Verify Discovered Process Model” operation aims to find out the best process 

model by challenging process models, which are discovered at each iteration, with 

respect to completeness verification metric. Additionally soundness and average arc 

traffic characteristics of optimum process model are reported at this operation. 

9. “Report Process Instances” operation aims to construct transaction streams of each 

process instance in training and testing datasets and write down constructed 

transaction streams into a text file.     

 

 

 

 

 

 

 

 

 

 

 



 39

Algorithm of FTCBPD methodology is represented in Figure 4.8: 

 

 

  
Figure 4.8 Event-Based Process Chain (EPC) Diagram for FTCBPD Methodology 
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Figure 4.8 (continued)  
 



 41

 
 

Figure 4.8 (continued)  
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4.2.1. Operational Perspective of FTCBPD Methodology 
 

 

4.2.1.1. Create FROMTOCHART  Table Operation 
The starting point of FTCBPD methodology is the creation of a so-called FROMTOCHART 

table from the event log information. FROMTOCHART is the basic bookkeeping material, on 

which major transitions among activities (transactions) in process instances are marked 

(weaved) and direct succession, succession and back-tracking type relations between 

adjacent activities are interpreted. Structure of FROMTOCHART is stated in data dictionary, 

APPENDIX A. 

 

As the first step, if an older version exists in database schema, FROMTOCHART table is 

dropped. Then activity titles are retrieved distinctly from TRANSACTIONLOG table, which 

stores event logs. Hence only activities (transactions), which contribute to the process 

instances, are represented as blocks at dependency/frequency graph and control flow graph. 

Retrieved activity titles are added dynamically to CREATE TABLE statement as attributes2. 

In addition, retrieved activity titles are added to INSERT statement dynamically to insert null 

tuples (i.e. tuples with not-null tcode attribute and null values at dynamically created activity 

type attributes) into FROMTOCHART table. Hence symmetric and square matrix 

characteristics of traditional from-to chart are reflected to FTCBPD methodology.  

 

Pseudo-code for “Create FROMTOCHART Table” operation is stated below: 
 

 
 
 

 

 

 

 

                                                 
2  Header of CREATE TABLE statement is "CREATE TABLE FROMTOCHART (tcode VARCHAR (20) 
NOT NULL, ". This portion of the statement is constant. 
  
Activity types, which take place in process instances, are added by " INTEGER (4) DEFAULT “0”, " tag 
dynamically to the CREATE TABLE statement.  
 
Footer of CREATE TABLE statement is "PRIMARY KEY (tcode));" which defines the primary key of 
FROMTOCHART table. 
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Activity diagram of “Create FROMTOCHART Table” operation is stated at Figure 4.9: 

 

 

 
 

Figure 4.9 Activity Diagram of “Create FROMTOCHART Table” Operation 
 

 

4.2.1.2. Populate FROMTOCHART Table Operation 
Firstly complete log (transaction stream) belonged to a process instance has to be retrieved 

in the following way: Per process instance, all event log entries have to appear in the order in 

which they took place in timeline. In other words, event logs have to be arranged by process 

instances and then ordered by timestamp in ascending order. Thus transaction streams are 

constructed successfully. Sample transaction streams in Figure 4.10 indicate process 

instance identifier (i.e. caseID) and activities executed for the underlying process instance in 

the order of timestamp. 

 

 
 

Figure 4.10 Sample Transaction Streams 
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Retrieved process instance index (i.e. retrievedIndex) variable is used to determine the 

dataset (training or test), to which underlying process instance will be dedicated. After the 

dataset is determined, predecessor and successor activities are parsed for each transition in 

transaction streams, which are assigned to training dataset. Then current tally mark of 

(predecessor, successor)th element in FROMTOCHART table is incremented by one. As a 

result, all transitions among activities (transactions) in process instances, which are assigned 

to training dataset, are marked (weaved) to FROMTOCHART table. 

 

As the last step, current row and column totals of each activity in FROMTOCHART table are 

calculated and inserted into TALLYMARK table, since these values are influenced by 

“Evaluate Tally Marks in FROMTOCHART Table” operation3. Also this information in 

TALLYMARK table is used in evaluation operation.  

 
Pseudo-code of “Populate FROMTOCHART table” operation is as follows: 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
                                                 
3 Tally marks are reset to zero or multiplied by minus one in “Evaluate tally marks in FROMTOCHART 
table” operation. Thus current row and columns total of FROMTOCHART table diminish after this 
operation. 
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Activity diagram of “Populate FROMTOCHART Table” operation is stated at Figure 4.11: 

 

 

Construct transaction stream
of process instance I

Retrieve transaction stream 
of each process instance from

transactionlog table

transactionlog

Increment retrievedIndex
by 1

{retrievedIndex 
% foldNumber = 0}

Parse transaction stream
as predecessor and successor

Increment current tally mark of
(predecessor, successor)th element

in fromtochart table 
by 1

Increment retrievedIndex
variable by 1

fromtochart

Compute row and column
total of transaction T

fromtochart

tallymark

{end of
process 

instances}
{not}

Skip to a new 
process instance 

I+1

{retrievedIndex 
% foldNumber <> 0}

Skip to a new 
process instance 

I+1

{end of
transaction stream}

{not}

Set predeccessor = successor
Successor = following activity 

in transaction stream

{end of
transactions}

{not
}

Skip to a new 
transaction T+1

Insert row and column
totals of transaction T
into tallymark table

 
 

Figure 4.11 Activity Diagram of “Populate FROMTOCHART Table” Operation 
 

 

4.2.1.3. Evaluate Tally Marks in FROMTOCHART Table Operation 
While frequent pattern mining concentrates on the discovery of associations and correlations 

among entities in large transactional or relational datasets, which are overstated by massive 

amounts of data continuously being collected and stored, an indispensable requirement of 

rule induction procedure is emerged [24]. By “Evaluate Tally Marks in FROMTOCHART 

Table” operation, it is aimed to prune down the rules on the basis of some evaluation 

metrics.  
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In traditional from-to chart implementation, total score of each element is directly taken into 

consideration in rearrangement of the matrix. But by pruning down the “weak” scores prior to 

rearrangement, it is attempted to eliminate their effect on the optimum activity sequence in 

FTCBPD methodology. These evaluation metrics (except modified lift) are tuned by end-

users. There are three evaluation metrics used in FTCBPD methodology: 

 

a. Minimum Confidence Threshold 
Minimum confidence threshold (MCT) is the ratio of transitions, which are from predecessor 

A to successor B, to total transitions which are initiated by activity A (i.e. row total of activity 

A in FROMTOCHART table). Basically, formulation of MCT is similar to classical confidence 

definition in association rule mining except predecessor and successor notations [23].  

 

)3.4.(

)2.4.(
*

eq
A

BA
Confidence

eq
A

BA
MCT

∪
=

>
>

=

 

 

Parameters stated in the metric are:  
BA >  is total number of transitions from activity A to activity B. 
*>A  is total number of transitions initiated by activity A (row total of activity A in 

FROMTOCHART table). 

 

MCT takes into account the magnitude of BA >  and *>A . In this aspect, MCT is 

analogous to local metric (LM) stated in [14] and briefly explained in “Literature Review” 

chapter. LM expresses the tendency of succession relation by comparing the magnitude of 

|BA| >  versus |AB| > . The idea of LM measure concentrates on pair-wise moves. By 

this way, it is aimed to challenge activities dually, come up with the “strongest” pair-wise 

direct successive relations and then construct process model based on these discovered 

direct successive relations. The formulation of local metric (LM) is given in “Literature 

Review” chapter. 

 

b. Minimum Support Threshold 
The previous metric, MCT is expressing the tendency of succession by comparing the 

magnitude of BA >  and *>A  at local level. But for determining the likelihood of 
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succession between two activities A and B, minimum support threshold (MST) is indeed a 

global metric because it takes into account the overall process instances.  

MST is the ratio of transitions, which are from predecessor A to successor B, to total number 

of process instances dedicated to training dataset (i.e. L# ). In initial version of MST, it is 

decided to place overall total of scores, which are marked to FROMTOCHART table, as the 

denominator of MST. However it would make the metric highly sensitive to number of activity 

types, which is a domain-dependent parameter (i.e. number of activity type is related to the 

underlying business process). Correlation between number of activity types and size stated 

in “Experimental Results” chapter highlights this implication. Since MST and MCT metrics 

are adjusted by end-users, end-users have to take into consideration the number of activity 

types while setting MST value in that case. Actually this case is seemingly unrealistic. As a 

result, MST is designated to be independent to the number of activity types.    

 

As in MCT, MST is similar to classical support definition in association rule mining except 

predecessor and successor notations [23]. 
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Parameters stated in the metric are:  

BA >  is total number of transitions from activity A to activity B. 

 
L# is total number of process instances in training dataset. 

 

MST is similar to global metric (GM), which is stated in [14] and briefly explained in 

“Literature Review” chapter. GM expresses the likelihood of succession between two 

activities A and B by overall frequency of activities A and B. The difference of transitions 

between activity A and B in GM measure ( ABBA >−> ) aims to eliminate the effect of noise 

in event logs and monitor direct succession relation among pair-wise activities. The 

formulation of global metric (GM) is given in “Literature Review” chapter. 

 

The level of robustness in discovered process model can be easily controlled by the end-

user or domain expert through the probability threshold parameters in “Threshold Values” 
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view. These parameters can also be used to manage the complexity of the discovered model 

from large amounts of data; eliminating low-probability sequences, even if they are not due 

to the noise factor [3]. While extracting certain sequential patterns whose support and 

confidence value exceed a predefined MST and MCT, some sequential patterns with a high 

confidence value that do not satisfy MST are still interesting. This type of patterns is called 

surprise, whose occurrence rate differs significantly from the expected occurrence by 

treading every activities equal [22].  

 

c. Modified Lift 
Support and confidence measures are practical barriers, which are “supervised” by end-user. 

Thus lowered MST and MCT values may encourage FTCBPD methodology in representing 

all patterns exhibited in training dataset and they may turn into insufficient evaluation metrics 

at filtering out uninteresting rules. To tackle this weakness, a correlation measure named 

modified lift can be used to augment the support-confidence framework for process mining 

rules. 

 

Modified lift is a simple correlation measure that is given as follows. The occurrence of 

activity B is independent of the occurrence of activity A if B)P(*  *)P(A  B)P(A >×>=> ; 

otherwise, activities A and B are dependent and correlated. 

 
 

 

 
Parameters stated in the metric are: 

BA >  is total number of transitions from activity A to activity B. 

*>A  is total number of transitions initiated by activity A (row total of activity A at 

FROMTOCHART table). 

B>*  is total number of transitions attained to activity B (column total of activity B at 

FROMTOCHART table). 

G#  is gross total tally mark in FROMTOCHART table. 
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One of the modifications performed on original lift measure stated in [23] is predecessor and 

successor notations. But major modification is performed on the evaluation procedure of tally 

marks with respect to calculated lift value such that; 

 If the resulting value of modified lift is greater than 1, then activities A and B are 

positively correlated, meaning that the occurrence of activity A triggers the occurrence of 

activity B. Thus tally mark of element (A, B) does not change. 

 If the resulting value of modified lift is equal to 1, then activities A and B are independent 

and there is not any correlation between these activities. Thus tally mark of element (A, 

B) is reset to zero. 

 If the resulting value of modified lift is less than 1, then activities A and B are negatively 

correlated, meaning that the occurrence of activity A discourages the occurrence of 

activity B. Thus tally mark of element (A, B) is multiplied by minus 1. 

 

This “minus one” factor is inherited from “the Big M method” in linear programming. If a linear 

programming has any ≥ or = constraints, a starting basic feasible solution may not be readily 

apparent. The Big M method is a version of the Simplex Algorithm that first finds a basic 

feasible solution by adding “artificial” variables to the problem. The objective function of the 

original linear programming must, of course, be adjusted to ensure that the artificial variables 

are all equal to 0 at the conclusion of the simplex algorithm [27].  

 

When the Big M method is applied, the major argument is to determine “how large M should 

be”. Because extremely large coefficients may dominate objective function and deviate the 

optimum solution. In this aspect, multiplying tally mark by minus 1 can be evaluated as a 

“realistic” value to instruct the rearrangement operation that activity A and B are negatively 

correlated without affecting optimum activity sequence. Consequently rearrangement 

operation tends to separate these activity pairs due to decrement in moment calculation. 

 

d. Predetermine Arc Traffic in Process Model Feature 
Theoreticians consider a process model to be “good” if it is accurate and minimal. By 

accurate they emphasize that the process model represent all and only the behaviors of the 

processes in the training dataset. Minimality implies that the process model contains the 

fewest number of activities (transactions) and transitions, which do not needlessly 

complicate the patterns identified with extra activities and transitions [3].  

 

In this aspect, “Predetermine arc traffic in process model” feature is added to “Threshold 

Values” view to accomplish a predefined minimality level in discovered process model. This 

feature aims to construct a user-driven transition list (namely transition top list), whose limit 
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(TTLL) is determined by number of activity types (|AT|) and average arc traffic (AAT) as 

follows:  

 

⎣ ⎦ 4.8)(eq.AAT|AT| TLLT ×=  

 

Parameters stated in the formula are:  

TLLT  is the transaction top list limit. 

|AT|  is the number of activity types in discovered process model. 

AAT  is average arc traffic parameter set in “Threshold Values” view. 

 

Consequently TTL acts as an upper bound for transitions represented in discovered process 

model by only holding the transitions with higher evaluation metric value(s).   

 

As the first step in “Rearrange Tally Marks in FROMTOCHART Table” operation, each tally 

mark in FROMTOCHART table is retrieved. Afterwards retrieved tally marks are challenged 

with selected evaluation metric(s). If tally mark is unsatisfactory with respect to evaluation 

metric(s) in this challenging step, then it is reset to zero (or multiplied by minus one). 

Otherwise, it is checked whether “Predetermine arc traffic in process model” feature is 

activated. If this feature is activated, then current size of transaction top list (TTL) is 

controlled. In the case of “full” TTL, the last element of TTL is compared with current tally 

mark. If current tally mark provides a better evaluation metric value, then the last element is 

replaced with the current tally mark and tally mark of popped element in FROMTOCHART 

table is reset to zero (or multiplied by minus one). Otherwise current tally mark is reset to 

zero (or multiplied by minus one). In the case of “empty” TTL, a new element tracing current 

tally mark is directly pushed into TTL. 
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Pseudo-code of “Evaluate Tally Marks in FROMTOCHART Table” operation is as follows: 
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Activity diagram of “Evaluate Tally Marks in FROMTOCHART Table” operation is stated at 

Figure 4.12: 

 

 

 
 

Figure 4.12 Activity Diagram of “Evaluate Tally Marks in FROMTOCHART Table” Operation 
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Figure 4.12 (continued)  

 

 

4.2.1.4. Rearrange FROMTOCHART Table Operation 
“Rearrange FROMTOCHART Table” operation is the “engine component” of FTCBPD 

methodology, which aims to find out the optimum activity (transaction) sequence that 

provides the minimum overall moment in FROMTOCHART table. Intuitively, the best 

sequence is accomplished by positioning the elements with higher tally marks along and 

above the diagonal. Hence straight-line transitions between the activities with higher inter-

traffic are concentrated. Unfortunately this qualitative solution is not directly applicable in 

systematic manner, since neighboring two activities with high inter-traffic may lead to 

indispensable increase in total moment value due to other activities, which are also in a 
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strong interaction with these two activities. Therefore a permutative approach is implemented 

in rearranging the columns of FROMTOCHART table to find out “the most frequent” activity 

sequence. 

 

Initial step in rearrangement of FROMTOCHART table is to generate activity sequences. 

This is performed by Permutation object, which creates activity sequences from the seed set, 

composed of activity types occurred in event logs. The length of generated activity sequence 

is determined by the number of existing activity types. 

 

Each generated activity sequence is checked whether the first element matches the initiator 

activity (transaction) set by end-user in “Process Modeling Factors” view. If it does not 

match, this sequence is discarded. Otherwise activities in generated sequence are added to 

SELECT statement iteratively. After SELECT statement is prepared, tuples in 

FROMTOCHART are retrieved according to the order emphasized at the generated activity 

sequence. This order is crucial to calculate the “moment arm” accurately.  

 

In the following step, each tuple’s moment value is calculated locally. The most significant 

notion in this step is the diagonal (i.e. support point), which is the nominal position of column, 

whose name matches to tcode attribute value of underlying row. Tally marks in the 

underlying row are multiplied by relative distance of related column to the diagonal 

( |diagonal - column| ). In the case of back-tracking ( diagonal  column edconcentrat < ), 

calculated moment value is multiplied by back-tracking penalty point, which is set by the end-

user in “Process Modeling Factors” view. By this way, back-tracking relations are 

discouraged in the optimum activity sequence. Sample moment calculations are given in 

Figure 4.13.   

 

 
Generated

Activity 
Sequence

DIAGONAL
(Support Point)

 
Figure 4.13 Sample Moment Calculations 
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Figure 4.13 (continued) 

 

After all tuples are traversed, calculated total moment value is compared to local optimum 

moment value (i.e. minimum moment value during rearrangement operation). If it is less than 

local optimum moment value, then local optimum moment and local optimum activity 

sequence variables are revised such that; local optimum moment is equalized to calculated 

total moment value and local optimum activity sequence variable is set to current activity 

sequence. At the end of activity sequence generation, local optimum moment and local 

optimum activity sequence variables are assigned to global optimum variables. Process 

model represented in dependency/frequency graph and control flow graph is constructed 

according to this global optimum activity sequence variable. 

 

Pseudo-code of “Rearrange FROMTOCHART Table” operation is as follows: 
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Activity diagram of “Rearrange FROMTOCHART Table” operation is stated at Figure 4.14: 
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Figure 4.14 Activity Diagram of “Rearrange FROMTOCHART Table” Operation 
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4.2.1.5. Construct Process Model Operation 
Operations up to “Construct Process Model” aim to find out the activity (transaction) 

sequence, which minimizes the distance that is taken by the transitions among activities, by 

locating the activities with higher inter-traffic in neighboring positions. Although this activity 

sequence is the backbone of discovered process model, it is based on the philosophy of 

arranging the operations in a straight line. Hence activity sequence is limited to sequential 

behavior. Consequently this outcome has to be upgraded to process model by major value-

adding modifications such that; 

a. Discovering one-to-one, one-to-many relations among activities (transactions) and 

constructing dependency/frequency graph with respect to these relations. 

b. Monitoring the discovered successors and predecessors of the activities and 

eliminating one-step closed loops. 

c. Discovering basic parallelisms in discovered process model and representing 

these relations by pair-wise AND/OR connectors in control flow graph.   

 

In this aspect, “Construct Process Model” operation aims to discover one-to-one, one-to-

many relations among activities (transactions) by concentrating on the evaluated tally marks 

in FROMTOCHART table. Evaluated tally marks are the essential stick yard to determine 

whether the underlying move is worth to be visualized in dependency/frequency graph and 

control flow graph such that; 

 Tally mark at (i, j)th element, which is greater than zero (non-reset tally mark), 

highlights that the underlying transition is significant with respect to evaluation 

metric(s). Therefore successor of the transition (activity j) is added to the 

successor activity list of predecessor (activity i) and predecessor of the transition 

(activity i) is added to the predecessor activity list of successor (activity j). 

 Negative or zero-value tally mark indicates that the transition is challenged by 

the evaluation metric(s). Therefore “Construct Process Model” operation skips 

these elements in FROMTOCHART table. 

 

There are three types of relations presented in discovered process model: 

 

a. Direct succession relation: 

Let S be an optimum activity sequence over T, a set of activities, i.e. S ∈ T* (i.e. a 

permutation of T) and A, B ∈ T. Then B directly succeeds A if and only if position of A (pA) 

and position of B (pB) at S are two successive integers such that; 1  p  p AB += , where pA, pB 

∈ [1, |S|]. 
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This implication is similar to direct succession relation definition in [14]. That definition states 

that; 

 

 
 

In fact, the philosophy of “a significant difference in transition numbers indicates direct 

succession among these activities” (i.e. σ ) is implicitly emphasized in rearrangement 

operation such that; if the effect of relatively “larger” tally mark gained by positioning it closer 

to the diagonal compensates the effect of “fewer” tally mark that is exaggerated by back-

tracking penalty point, rearrangement operation tends to place underlying activity pair at 

adjacent positions in the activity sequence. Thus a straight-line type relation among these 

activities is constructed.  

 

b. Succession relation: 

Let S be an optimum activity sequence over T, a set of activities, i.e. S ∈ T* (i.e. a 

permutation of T) and A, B ∈ T. Then B succeeds A if and only if position of A (pA) and 

position of B (pB) at S are two integers such that; 1  p  p AB +> , where pA, pB ∈ [1, |S|]. 

 

This implication is also similar to succession relation definition in [14]. That definition states 

that; 

 

 
 

Actually every unevaluated tally mark (i.e. non-reset or unnegativated tally mark) in 

FROMTOCHART table, in which predecessor and successor activities are not neighboring in 

optimum activity sequence, accomplishes the rule stated at succession relation.  
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c. Back-tracking relation: 

Let S be an optimum activity sequence over T, a set of activities, i.e. S ∈ T* (i.e. a 

permutation of T) and A, B ∈ T. Then B backtracks A if and only if position of A (pA) and 

position of B (pB) at S are two integers such that; AB p  p < , where pA, pB ∈ [1, |S|]. 

 

Three types of relations are visualized in Figure 4.15. 

 

 

 
 

Figure 4.15 Relation Type Visualization in Dependency/Frequency Graph 
 

Pseudo-code of “Construct Process Model” operation is as follows: 
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Activity diagram of “Construct Process Model” operation is stated at Figure 4.16: 

 

 

 
 

Figure 4.16 Activity Diagram of “Construct Process Model” Operation 

 

 

4.2.1.6. Eliminate One-Step Closed Loops at Discovered Process Model Operation  
Although the most important outcome from a process mining perspective is the discovery of 

the main flow in the underlying business process, it can be clearly be seen that detecting the 

existence of closed loops in discovered business process is also crucial in monitoring the 

bottlenecks, which cannot be deduced from the predefined process model.  
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If “Eliminate one-step closed loops at discovered process model” check-box in “Process 

Modeling Factors” view is marked, this operation is activated in FTCBPD methodology. Basic 

one-step closed loops4 are identified and eliminated according the condition stated below: 

“If a successor of an activity has presented the underlying activity in its own 

successor activity list, then the transition is removed from the successor activity list 

of the activity at latter position in global optimum activity sequence.” 

 

Pseudo-code of “Eliminate One-Step Closed Loops at Discovered Process Model” operation 
is as follows: 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
4 0-step closed loops indicates the recursion, while 1-step closed loops is used for loops length of one 
activity (i.e. ABA).  
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Activity diagram of “Eliminate One-Step Closed Loops at Discovered Process Model” 

operation is stated at Figure 4.17: 

 

 

 
 

Figure 4.17 Activity Diagram of “Eliminate One-Step Closed Loops at Discovered Process Model” 
Operation 
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4.2.1.7. Construct AND/OR Connections at Discovered Process Model Operation 
What we seek to infer from event log are recurring patterns of behavior, specifically those 

involving direct succession, succession and back-tracking. For our purposes, 

dependency/frequency graph provides a good staring point for expressing those relations. 

Although dependency/frequency graph is quiet convenient and sufficiently powerful for 

describing the patterns of actual behavior, additional representation is required to provide a 

useful process model, which prescribes business process in a grammar inference. In this 

aspect AND/OR connections are useful entities, which converts graph-oriented meta-model 

(i.e. dependency/frequency graph) into block-oriented meta-model (i.e. control flow graph), 

which is always well-formed and sound [12].  

 

Block-structured models are made up from blocks which are nested. These building blocks 

of the meta-model can be differentiated into activities (transactions) and connectors. 

Activities (transactions) build the process flow, while connectors are the places, denotes the 

parallelism among predecessors or successors of underlying activities (transactions) [12]. 

Unfortunately, mining of these non-observable connections is difficult, since they are not 

present in the event log explicitly. However (i) information in the dependency/frequency 

graph and (ii) the dependency score of the transitions in the dependency/frequency graph 

contains useful information to indicate the types of these connections (AND or OR) in the 

discovered process model.  

 

“Construct AND/OR Connections at Discovered Process Model” operation handles the 

transitions of underlying activity (transaction) stated in successor and predecessor activity 

lists in pair-wise fashion. There are two formulas of calculating connection scores with 

respect to the type of connections (join or split) as stated in [13]: 
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While SPLITCBA ∧⇒  term indicates the score of potential split-type connection between 

activities B and C, which are successors of activity A in discovered process model, 

JOINCBA ∧⇒  term indicates the score of potential join-type connection between activities B 

and C, which are predecessors of activity A in discovered process model. 
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The denominators of formulas, CABA >+>  and ACAB >+> , indicates the total number 

of  outgoing and incoming observations and the numerator, BCCB >+> , indicates the 

number of times activity B and C appear directly after each other. 

 

In quantitative aspect, connection scores, which are greater than the AND threshold set by 

the end-user in “Process Modeling Factors” view, implies an AND-connection between the 

related activities. Otherwise it is an OR-connection. 

 

On the other hand detecting the type of a connection can be implemented intuitively such 

that; it is sufficient to interpret tally marks of predecessors or successors of underlying 

activity in FROMTOCHART table. In the case of an AND-connection, it is expected a 

“significant” positive value between the predecessors or successors. If it is an OR-

connection, the patterns between the predecessors or successors do not appear in the 

matrix.  

 

Additionally dependency score of a transition is a good indicator for determining connection 

type intuitively such as; dependency score, which is approximately equal to total number of 

incoming or outgoing transitions of the underlying activity, implies an AND-connection, while 

dependency scores complementing each other to total number of incoming or outgoing 

transitions of the underlying activity implies an OR-connection [1]. 

 

For instance, connection between “Display Travel Request” and “Advance Payment” 

activities (transactions) are OR-join, since total incoming transition number of “Travel 

Request Confirmation” activity (180 observations) is approximately equal to the aggregation 

of transition number outgoing from “Advance Payment” (117 observations) and transition 

number outgoing from “Display Travel Request” (28 observations). In other words; 

 
Payment AdvanceRequest Travely DisplaonConfirmati Request  Travel +≥  
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This use case is represented in Figure 4.18. 

 

 

 
 

Figure 4.18 Intuitive Way in Determination of Connection Type 
 

Pseudo-code of “Construct AND/OR Connections at Discovered Process Model” operation is 
as follows: 
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Activity diagram of “Construct AND/OR Connections at Discovered Process Model” 

operation is stated at Figure 4.19: 

 

 

Retrieve activity I
from global optimum

activity sequence

Generate activity pair from 
predecessor list of activity I

Compute connection score
of generated activity pair

{Activity pair 
exists}

Add a new OR-join type
connection to 

connection list of activity I

{connection score <
AND Threshold}

Add a new AND-join type
connection to 

connection list of activity I

{connection score >=
AND Threshold}

{not}

Generate activity pair from 
successor list of activity I

{not}

Compute connection score
of generated activity pair

{Activity pair 
exists}

Add a new OR-split type
connection to 

connection list of activity I

{connection score <
AND Threshold}

Add a new AND-split type
connection to 

connection list of activity I

{connection score >=
AND Threshold}

Skip to new activity I+1

{Last activity
in global 

activity sequence
}

{not
}

 
 

Figure 4.19 Activity Diagram of “Construct AND/OR Connections at Discovered Process Model” 
Operation 

 

 

4.2.1.8. Verify Discovered Process Model Operation 
After enhancing the notion of basic parallelism and elimination of one-step closed loops to 

global optimum activity sequence, “Verify Discovered Process Model” operation aims to 

check to ensure that discovered process model conforms its specifications and represents 

the behaviors exhibited at event logs. FTCBPD methodology is able to implement two 

verification methods: 
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a. Holdout 
Holdout method reserves a certain amount of event log for testing and uses the remainder 

for training. In practical terms, it is common to hold one-third of the data out for testing and 

use the remaining two-third for training [24]. 

 

Unfortunately the sample used for training (or testing) may not be uniformly representative 

(i.e. a class of transition would necessarily be over-represented in the test dataset, since 

none of its instances is encountered in the training dataset). Also this non-uniform 

representation problem is exaggerated by surprise-type sequential patterns, which do not 

satisfy support threshold while accomplishing a high confidence. Therefore there should be 

one simple check that might be worthwhile: each of the behavior sub-patterns in the full 

dataset should be represented in about the right proportion in the training and testing 

datasets. To handle this limitation, a variation of holdout method named threefold cross-

validation, in which the holdout method is repeated three times, is implemented in FTCBPD 

methodology.   

 
b. Cross-Validation 
In k-fold cross-validation, the original data are randomly partitioned into k mutually exclusive 

subsets or folds, D1, D2, D3… Dkn each of approximately equal size [23]. Training and testing 

is performed k times. In iteration i, partition Di is reserved as the test set and remaining 

partitions are collectively used to train the model. The variance of the resulting accuracy 

estimate is diminished as fold number is increased [14].  

 

Unlike the holdout and random sub-sampling methods, each sample is used for the same 

number of times for training and once for testing. Therefore, the representation problem in 

holdout method is demoted by this characteristic of cross-validation [23]. 

 

In general, stratified 10-fold cross-validation is recommended as verification method, since 

ten is about the appropriate number of folds to get the best estimate [24]. In FTCBPD 

methodology fold number is determined by the end-user in “Verification Parameters” view.      

 

For a given set of event logs, there are an infinite number of possible process models that 

can be constructed. Goal of FTCBPD methodology is to construct a “good” process model. 

But how do we measure this goodness? To answer this question, the meaning of “good” 

term must be first understood: 

Theoreticians consider a process model to be good if it is both accurate and minimal. By 

accurate it is meant that process model represents all legal sentences in the language and 

rejects all illegal sentences [3]. For our purposes, accuracy implies that we are modeling all 
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and only the behaviors of the business process. By minimal, theoreticians emphasize that 

the process model exhibits the fewest number of activities necessary [3]. 

 

Actually accuracy and minimality are in a sense, in conflict. The simplest way to achieve 

accuracy is to discover an independent path through the process model for each sample 

dataset, which typically refers to a high degree of redundancy. On the other hand, the 

simplest way to achieve minimality is to create a single activity (transaction) with self-

transitions for each possible input [3]. 

 

Like [3], notions such as fitness and appropriateness have been quantified in [7]. An event 

log and process model “fit” if the process model can generate each trace in the event log. In 

other words, the process model should be able to discover every transition observed in the 

event log [7]. Unfortunately a high degree of fitness only does not imply that the model is 

indeed suitable, since spaghetti-like process model do not provide meaningful information. 

Therefore a second dimension is introduced: appropriateness. Appropriateness attempts to 

answer the question “Does the model reflect the observed process in a suitable way?” and 

evaluate the process model from a structural and behavior perspective. In [7] it is stated that 

a “good” process model should somehow be minimal in structure to clearly exhibit the 

described behavior, referred to as structural appropriateness, and minimal in behavior in 

order to represent as closely as possible what actually occurs, which is called behavioral 

appropriateness.          

 

In the domain of FTCBPD methodology, this definition of “goodness” is particularly 

applicable. Thus a “goodness” definition with respect to FTCBPD methodology is one that: 

a. Fully handles the sample behaviors it is given, subject to constraints on noise 

in the dataset. 

b. Successfully describes patterns made up of direct successive, successive and 

back-tracking type relations. 

c. Does not needlessly confuse the patterns identified with extra activities 

(transactions) and transitions. 

 

FTCBPD methodology to compensate the argument about measurement of the process 

model goodness provides a conformance checker that supports three tuning verification 

metrics stated below: 
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a. Completeness 
When it comes to process mining, the notion of completeness is very important. Like in any 

data mining or machine learning context one cannot assume to have monitored all 

possibilities in the “training material” (i.e. event log at hand) [7]. 

 

A mining algorithm could be very precise in the sense that it assumes that only the 

sequences in the log are precise. This implies that the algorithm actually does not provide 

more insights that what is already in the event log. It seems better to use Occam’s Razor 

stated in [7], i.e., “one should not increase, beyond what is necessary, the number to entities 

required to explain anything”, to seek the simplest model that can describe what is in the 

event log. Therefore FTCBPD methodology assumes that the event log is “locally complete”. 

 

Different algorithms assume different notions of completeness. These notions illustrate the 

different attempts to strike a balance between overfitting and underfitting. A model is 

overfitting if it does not generalize and only allows for the precise behavior recorded in the 

event log. This overfitting term implies that the corresponding mining technique assumes a 

very strong notion of completeness: “If it is not in the event log, it is not possible.” An 

underfitting model over-generalizes the patterns seen in the event log, i.e., it allows for more 

behavior even when there are no indications in the event log that highlights this additional 

behavior [7].  

 

In FTCBPD methodology, completeness metric refers to the percentage of transitions in 

discovered process model that are corresponding with some transition in the event log as 

stated in [5]: 
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Parameters stated in the metric are:  

PL  is a test dataset of event log for business process P. 

s  is a transition in PL .   

PM  is a disjunctive process model discovered by FTCBPD methodology. 

 

b. Soundness 
In the case of non-uniform distribution of transitions among training and testing datasets, an 

underfitting process model may be constructed, which allows for more behavior, having no 
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compliant representation in the training dataset. Thus a verification metric, named 

soundness is dedicated to interpret this type of tendencies. 

 

Soundness is the percentage of transitions having no corresponding complement in the 

event log as stated in [5]: 

 

( )
{ }

{ } )12.4.(
..

, eq
PMss

PMstsLPsPMss
LPMsoundnesss P ∈

=∈∃¬∧=
=  

 

Given two real numbers µ and σ between 0 and 1 (typically σ is small where µ is close to 1) 

it is said that PM is; 

 σ-sound with respect to PL , if ( )PLPMsoundnesss , ≤ σ i.e. the smaller the sounder 

 µ-complete with respect to PL , if ( )PLPMssscompletene , ≥ µ i.e. the larger the 

more complete. 

 

It is aimed to discover an alternative process model PM for a given business process P 

which is σ-sound and µ-complete, for some given σ and µ. Actually it is easy to see that a 

trivial process model satisfying the above conditions always exists, consisting in the union of 

exactly one process model modeling each of the instances in LP. However such model 

would not be a syntactic view of business process P, because of its size 

being |LP|  |PM| = , where L}  s|{s |LP| ∈= . We therefore introduce a third metric, named 

average arc traffic, which acts as an upper bound on the size of PM.        

 

c. Average Arc Traffic 
Process model with a large soundness metric value implies that discovered process model 

allows for more behavior even when there are not any indications in training dataset. 

Although transitions and activities (transactions) arise from the commonality of activities and 

relations highlighted in the training dataset, there may exist no compliance in transaction 

stream assigned to testing dataset because of the non-uniform representation problem. 

Hence discovered process model attains the status of underfitting “spaghetti-like” 

representation. 

 

In minimality perspective, average arc traffic interprets discovered process model in term of 

the number of transitions per activity (transaction) in discovered process model: 
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Parameters stated in the metric are:  

s  is a transition in PM .   

a  is an activity (transaction) in PM .   

PM  is a disjunctive process model discovered by FTCBPD methodology. 

 

Verification of discovered process model is performed fundamentally with respect to 

completeness metric instead of a multi-objective fashion that takes into account 

completeness, soundness and average arc traffic metrics simultaneously. Discovered 

process models constructed at each iteration of process modeling are challenged with 

respect to the completeness value. At the end of process modeling session, process model 

with the maximum completeness value is subjected as the optimum process model. 

Soundness, average arc traffic and average arc length characteristics of discovered process 

model are also reported in verification operation. 

              

Furthermore “Predetermine arc traffic in process model” feature in “Threshold Values” view 

enables the end-user to designate an upper bound for the minimality perspective prior to 

executing process modeling. FTCBPD methodology takes this structural requirement 

(constraint) into consideration in evaluation of tally marks with respect to underlying 

evaluation metric(s). Tally marks, which are not worth to be tracked in transition top list (i.e. 

transition top list is an array, whose size is determined by average arc traffic and activity type 

number in FROMTOCHART table), are discarded. Hence transition traffic in discovered 

process model is held beneath a predetermined level.     
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Pseudo-code of “Verify Discovered Process Model” operation is as follows: 
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Activity diagram of “Verify Discovered Process Model” operation is stated at Figure 4.20: 

 

 

Check the parsed transition
in discovered process model

Construct transaction stream
of process instance I

Retrieve transaction stream 
of each process instance from

transactionlog table

transactionlog
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Skip to a new 
Process instance 

I+1

{end of
transaction stream}{not}
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in transaction stream
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of discovered process model
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{Exists}

Increment 
missedTransitionNumber
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{not}

{not}

{Exists}

Set the related transition
in discovered process model

as ‘observed’

 
  

Figure 4.20 Activity Diagram of “Verify Discovered Process Model” Operation 
 
 
 
4.2.1.9. Report Process Instances Operation 
At the end of process modeling, ProMiner constructs transaction streams (i.e. a form that is 

independent of originator and timestamp parameters) of all process instances in training and 



 74

testing datasets and writes constructed transaction streams on a text file under the program 

folder.  

 

Pseudo-code of “Report Process Instances” operation is as follows: 
 

 
 

 

Activity diagram of “Report Process Instances” operation is stated at Figure 4.21: 

 

 

 
 

Figure 4.21 Activity Diagram of “Report Process Instances” Operation 
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4.2.2. Technical Perspective of ProMiner Implementation 
FTCBPD methodology is basically a database application, which refers to a particular 

database (i.e. thesis database) and the associated program that implements the database 

queries and updates.  

 

Application program, which is developed in Java, consists of 42 classes. These classes 

serve different functionalities as follows: 

 Interface involves the functionalities provided to an interfacing entity (e.g. 

displaying discovered process model in the form of dependency/frequency 

graph). 

 Algorithmic/Data manipulation process involves the functionalities provided to 

transform data item to create another one by means of mathematical and/or 

logical operations (e.g. from-to chart implementation). 

 Permanent data access/storage involves the functionalities provided to an 

interfacing entity to access (read/write) permanent group or collection of related 

and self-contained data in the world. 

 

According to functionality types stated above, size distribution of the classes with respect to 

functionality types are summarized in terms of line of code (LOC) in Table 4.1. 

 
Table 4.1 Size Distribution of Classes in Application Program 

 

Class Name Interface Size 
Algorithmic/Data 

Manipulation 
Process Size 

Permanent Data 
Access/Storage 

Size 
Total Size 

(LOC) 

BlockCoordinates     38 38 
BlockDiagram 282     282 
BlockDiagramwithConnections 288     288 
Combinatoric   96   96 
CombinatoricException   8   8 
ConnectionFrame 28     28 
ConnectionLinkedList     81 81 
ConnectionNode     84 84 
ConnectionTable     121 121 
DefineBusinessProcessFrame 22     22 
DefineTcodeFrame 86     86 
DependencyFrequencyGraph 32     32 
FromtoChartImplementation   694 347 1041 
FromtoChartImplementationThread   68   68 
FromtoChartRearrangementFactors 299     299 
ImportTableOperation     814 814 
InitialFromtoChartFrame 26     26 
InitialFromtoChartTable     301 301 
LinkedList     6 6 
MainGUI 106     106 
MenuBar 416     416 
MyFileFilter 235     235 
OperationThread   106   106 
Permutations   173   173 
PredecessiveTcodeLinkedList     116 116 
PredecessiveTcodeNode     64 64 
ProcessModel 33     33 
ProcessModelFrame 26     26 
ProcessModelTable     99 99 
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Class Name Interface Size 
Algorithmic/Data 

Manipulation 
Process Size 

Permanent Data 
Access/Storage 

Size 
Total Size 

(LOC) 

ProcessPerspective 231     231 
Prototype   17   17 
SourceFile 31     31 
StatusBar 55     55 
SuccessiveTcodeLinkedList     116 116 
SuccessiveTcodeNode     84 84 
TcodeObject     39 39 
ThresholdValues 112     112 
ThresholdValuesforProcessPerspective 162     162 
TransitionLinkedList     96 96 
TransitionNode     64 64 
VerificationFactors 123     123 
WrapLogOperation   91 45 136 

 

 

Thesis database component of FTCBPD methodology is managed by MySQL 4.1.8 

relational database management system (RDBMS). Data dictionary of thesis database is 

given in APPENDIX A and entity relationship diagram is given in APPENDIX B. 
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CHAPTER 5    
 
 

EXPERIMENTAL RESULTS 
 
 
 
In this section, FTCBPD methodology is briefly evaluated with respect to three key 

performance metrics. Our evaluation is based on experiments that are conducted on distinct 

industrial applications varying on each of the below enumerated parameters.  

 

 

5.1. Basic Concepts in Experimental Procedure 
Applications in this study involve three distinct business processes. First one is the travel 

management business process, which aims to manage all travel activities including booking 

trips and handling of expenses associated with travel. This business process is built as a 

sub-component of the finance module (i.e. SAP FI/CO) on a widespread ERP-system1 the 

software product SAP R/32 and it is on live at 64 provincial offices of a public institution till 

2004. Reference model, which is designed for this business process, consists of seven 

activity types, which are “create travel request”, “change travel request”, “display travel 

request”, “advance payment”, “travel request confirmation”, “disbursement entry” and 

“deduction”. As stated in [21], ERP-systems like SAP and PeopleSoft are based on a large 

set of database tables, instead of designing around explicit processes. Therefore information 

about a process instance (case) is scattered around various tables and functions recording 

different aspects at different levels (i.e. while TRANSACTIONLOG table in ERP-system 

holds the execution timestamp and originator parameters of an underlying transaction 

without any case identifier, TABLELOG table holds the operational information (insert, delete 

and update) of a case with respect to timestamp and originator). Typically an application, 

named “Log wrapper”, is developed to link these information sources to concrete

                                                 
1 The abbrevation “ERP” means Enterprise Resource Planning.  
 
 
2 SAP and R/3 are trademarks of SAP AG, Systems. Applications and Products in Data Processing, 
Neurottstr. 16, 69190 Walldorf, Germany. 
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event logs prior to process modeling3. As a result it is often difficult, time-consuming and 

labor-intensive to collect the right event logs in travel management business process. 

 

Second business process presents the activity pattern of repair, whose event logs are 

obtained from Process Mining Research Group at Eindhoven University of Technology [33]. 

This business process consists of nine activity types, which are “first contact”, “make ticket”, 

“arrange survey”, “inform client survey”, “survey”, “repair ready”, “ready inform client”, “send 

ticket to financial administration” and “ticket ready”.  

 

The last business process is about credit card application, which is terminated by credit card 

delivery or rejection notification. Likewise in repair example, event logs that belong to credit 

card application business process are obtained from Process Mining Research Group at 

Eindhoven University of Technology [33]. This business process consists of eight activity 

types, which are “receive application”, “check for completeness”, “get more information”, 

“check loan amount”, “perform checks”, “make decision”, “notify result” and “deliver credit 

card”. 

 

Parameters varying in the experiments are classified into two groups: case-related and 

execution-related parameters. Case related parameters are the characteristics of the 

concentrated event logs such as: 

 

a. The number of activity types in the business process. Three different business 

processes with 7, 8 and 9 activity types are used in the experiments. 

 

b. The amount of information in the event logs. Event logs with 100, 200, 300, 400, 

500 and 600 process instances for each business process are obtained. 

 

As well, execution-related parameters are the inputs set by the end-user at the selection 

screen of ProMiner. It is observed that at least three parameters may strongly influence the 

key performance metrics: 

 

a. Evaluation metric in “Threshold Values” view. Ten evaluation metrics with 

MST=0.100 and MCT=0.100, MST=0.125 and MCT=0.100, MST=0.150 and 

MCT=0.100, MST=0.175 and MCT=0.100, MST=0.200 and MCT=0.100, MST=0.100 

and MCT=0.275, MST=0.100 and MCT=0.450, MST=0.100 and MCT=0.625, 

                                                 
3 “Log wrapper” application fills the “missing” case identifier of each TRANSACTIONLOG table record 
by retrieving the caseID attribute value of the record in TABLELOG table with a maximum 
timestampthat is smaller than timestamp value of underlying TRANSACTIONLOG table record.     
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MST=0.100 and MCT=0.800 and modified lift values are conducted in the 

experiments. 

 

b. Verification method in “Verification Parameters” view. Six verification methods 

with cross-validation with 10 folds, cross-validation with 20 folds, cross-validation 

with 30 folds, cross-validation with 40 folds, cross-validation with 50 folds and 

holdout values are conducted in the experiments.  

 

c. Back-tracking penalty point in “Process Modeling Factors” view. Five use 

cases with back-tracking penalty point=1, back-tracking penalty point=2, back-

tracking penalty point=3, back-tracking penalty point=4 and back-tracking penalty 

point=5 are conducted in the experiments. 

 

While monitoring the effects of the parameters on the key performance metrics, ceteris 

paribus4 policy is qualified to individually construct the logical connection between key 

performance metrics and concentrated parameter by ruling out the effects of remaining 

parameters which may override this logical connection. Hence the effect of a single 

independent variable on the dependent variable can be isolated. According to “with other 

things the same” nature of ceteris paribus policy, default values are determined for the 

execution-related parameters as stated in Table 5.1. 

 
Table 5.1 Default Values for Execution-related Parameters 

 
Execution-related Parameter Default Value 

Evaluation Metric in 
"Threshold Values" view 

MST=0.100 and MCT=0.100 

Verification Method in 
"Verification Parameters" view 

Cross-Validation with 10 folds 

Back-tracking Penalty Point in 
"Process Modeling Factors" view 

Back-tracking 
penalty point=2 

 

 

Another significant notion in the experimental procedure is the key performance metrics, 

which are used to compare and evaluate the effects of case-related and execution-related 

parameters in FTCBPD methodology. There are three perspectives in determining key 

performance metrics such as: 

 

 

 

                                                 
4 Ceteris paribus is a Latin phrase, literally translated as “with other things the same”. It is commonly 
rendered in English as “all other things being equal.” 
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a. Accuracy Perspective 
The ultimate aim of FTCBPD methodology is to construct a process model that successfully 

identifies the patterns made up with sequencing, selection and iteration in the event-logs. In 

this aspect, accuracy performance metric aims to measure the percentage of transitions 

extracted from training dataset that are compliant with some transition in testing dataset. 

Hence accuracy is represented by completeness verification metric introduced in “Proposed 

Method” chapter. 

 

b. Minimality Perspective 
Key performance metrics in minimality perspective aim to monitor structural complexity of the 

discovered process model. Actually these metrics are meaningful in the case of “less 

effective” evaluation metrics (i.e. MST and MCT with lower values) such that, “less effective” 

evaluation metrics lower the practical barriers and this setting encourages the methodology 

to exhibit all behaviors represented in the training dataset. Hence FTCBPD methodology 

comes up with process model having a high level accuracy. On the other hand, the 

“spaghetti-like” process model with a high level in arc traffic is useless to visualize the 

backbone of the underlying business process. Key performance metrics in minimality 

perspective are represented by soundness and average arc traffic verification metrics 

introduced in “Proposed Method” chapter. 

 

c. Non-functional Perspective 
In fact, non-functional requirements (constraints) as processing time and size are not 

primarily taken into consideration in “goodness” definition of the discovered process model. 

Additionally classification of risky business process re-engineering (BPR), which is 

represented in Figure 5.1, as a long-term organization change strengthens this implication. 

 

 

 
 

Figure 5.1 Forms of Organizational Change 
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On the other hand, process time and size are useful metrics to monitor the operational 

bottlenecks of FTCBPD methodology and future work of this study can be figured by these 

key performance metrics. 

 

As a result, based on the 462 executions (i.e. 3 business processes × 6 amount of material × 

22 execution-related parameters + 3 activity types × 22 execution-related parameters) 

performed on a machine with Intel(R) Pentium(R) M processor 1.60 GHz and 2.0 GHz RAM, 

it is possible to highlight the effects of case-related and execution-related parameters on the 

key performance metrics in part 5.2 and 5.3 In part 5.4, it is aimed to monitor the 

effectiveness of modified lift as an evaluation metric in FTCBPD methodology. In the last 

part, an inter-evaluation is performed to compare FTCBPD methodology with the 

approaches stated in prior studies.  

 

 

5.2. Evaluation Based on Amount of Information in the Event Logs 
In this experiment, key performance metrics (i.e. completeness, soundness, average arc 

traffic, processing time and size) varying with respect to the amount of information in the 

event logs and execution-related parameters (i.e. evaluation metric, verification methods and 

back-tracking penalty point) are measured for each business process. Tabulated form of 

obtained key performance metrics’ measurements are represented in APPENDIX J. 

 

 

5.2.1. The Effect of Number of Process Instances on the Learning Scheme 
As the rule of thumb, successful data mining involves far more than selecting learning 

algorithm and running it over the available data. For one thing, many learning schemes have 

various parameters, which are handled as execution-based parameters in this study, and 

appropriate values must be chosen for these. In most cases, results can be improved by a 

suitable choice of parameters and this appropriate choice depends on the size of available 

data at hand.  

 

In this aspect, it is desired as much of the data as possible for training to analyze user 

behaviors on a wider spectrum, monitor major interesting patterns in this data and get a 

good process model. On the other hand, there is a dilemma in this experiment such that; 

according to the runtime data of the concentrated business processes, completeness and 
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number of process instances are negatively-correlated according to correlation coefficient5 

stated below: 
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Calculated correlation coefficient of completeness and number of process instances with 

respect to execution-related parameters and business processes are tabulated in Tables 5.2 

and 5.3. 
 

 
Table 5.2 Correlation between Number of Process Instances and Completeness  
With respect to Minimum Support Threshold (MST) value and Business Process 

 

Business 
Process 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

Travel Management -0.904 -0.599 -0.582 -0.146 0.391 
Credit Card Application -0.937 -0.937 -0.937 -0.937 -0.937 

Repair -0.768 -0.768 -0.768 -0.768 -0.768 

 

 

Table 5.3 Correlation between Number of Process Instances and Completeness  
With respect to Minimum Confidence Threshold (MCT) value and Business Process 

 

Business 
Process 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking pp=2 

Modified Lift 
CV with 10-fold 

backtracking pp=2 

Travel Management -0.100 -0.764 -0.952 -0.278 -0.234 
Credit Card Application -0.937 -0.937 -0.946 -0.946 -0.937 

Repair -0.768 0.341 -0.655 0.000 -0.768 

 

 

Correlation between number of process instances and completeness is visualized in Figure 

5.2, 5.3 and 5.4. 

 

 

                                                 
5 Correlation coefficient measures the statistical correlation between two entities. Calculated correlation 
coefficient ranges from 1 for perfectly correlated results, through 0 when there is no correlation at all, to 
-1 when the results are perfectly correlated negatively. 
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Completeness vs. Number of Process Instances
(With Respect to Evaluation Metrics)
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Figure 5.2 Correlation between Number of Process Instances and Completeness  

With respect to Evaluation Metrics for Travel Management Business Process 
(Details of this figure are given in Table J3.1 of Appendix J3) 
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Figure 5.3 Correlation between Number of Process Instances and Completeness  
With respect to Evaluation Metrics for Credit Card Application Business Process 

(Details of this figure are given in Table J1.1 of Appendix J1) 
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Completeness vs. Number of Process Instances
(With Respect to Evaluation Metrics)
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Figure 5.4 Correlation between Number of Process Instances and Completeness  
With respect to Evaluation Metrics for Repair Business Process 

(Details of this figure are given in Table J2.1 of Appendix J2) 

 

The underlying catalyst of the negative correlation between number of process instances 

and completeness is the addition of “fresh” data in each trial, which exhibits new patterns 

and behaviors.  

 

Increase in the number of process instances directly implies a higher minimum support 

threshold (MST), since this case-related parameter is the denominator of minimum support 

threshold (MST) formula. Consequently “periodic” patterns (i.e. transitions appeared nearly 

in every process instance) are not affected in the training dataset by this higher MST value. 

On the other hand, “niche” patterns (i.e. transitions not appeared nearly in every process 

instance) are mostly pruned in evaluation operation. 

 

While the variety of the transitions in the training dataset increases with the effect of the 

“fresh” data added at each trial, relatively “niche” and “weak” transitions (i.e. non-periodic 

transitions with smaller support and confidence values) are challenged by the higher MST 

value. Hence discovered process models are constructed upon the “standard” and “strong” 

transitions (i.e. transitions with larger support and confidence values), which are uniformly 

presented in the training and testing datasets.  

 



 85

Pruning of relatively “niche” transitions in the training dataset means decrease in total 

number of transitions in the discovered process model and decrease in the average arc 

traffic key performance metric. This result can also be monitored by the negative correlation 

between number of process instances and average arc traffic especially in travel 

management business process, which constitutes of transitions with smaller support and 

confidence values in Tables 5.4 and 5.5. 

 

 
Table 5.4 Correlation between Number of Process Instances and Average Arc Traffic 

With respect to Minimum Support Threshold (MST) value and Business Process 
 

Business 
Process 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

Travel Management -0.660 -0.967 -0.917 -0.655 0.925 
Credit Card Application 0.000 0.000 0.000 0.000 0.000 

Repair 0.000 0.000 0.000 0.000 0.000 

 
 

Table 5.5 Correlation between Number of Process Instances and Average Arc Traffic  
With respect to Minimum Confidence Threshold (MCT) value and Business Process 

 

Business 
Process 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking pp=2 

Modified Lift 
CV with 10-fold 

backtracking pp=2 

Travel Management -0.263 -0.710 -0.875 -0.146 0.690 
Credit Card Application 0.000 0.000 0.000 0.000 0.000 

Repair 0.000 0.828 -0.655 0.000 0.000 

 

 

Correlation between number of process instances and average arc traffic in travel 

management business process is visualized in Figure 5.5. 
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Average Arc Traffic vs. Number of Process Instances
(With Respect to to Evaluation Metrics)
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Figure 5.5 Correlation between Number of Process Instances and Average Arc Traffic 

With respect to Evaluation Metrics for Travel Management Business Process 
(Details of this figure are given in Table J3.3 of Appendix J3) 

 

 

Decrease in the average arc traffic (total transition number of the discovered process model) 

may result in a less sound process model, since discovered process model with more 

transitions is potential to exhibit more behaviors even when there are no indications in the 

testing dataset. In this aspect, there is a negative correlation between number of process 

instances and soundness especially in travel management business process in Tables 5.6 

and 5.7. 

 

 
Table 5.6 Correlation between Number of Process Instances and Soundness 

With respect to Minimum Support Threshold (MST) value and Business Process 
 

Business 
Process 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

Travel Management 0.131 -0.131 -0.655 -0.809 0.000 
Credit Card Application 0.000 0.000 0.000 0.000 0.000 

Repair 0.000 0.000 0.000 0.000 0.000 
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Table 5.7 Correlation between Number of Process Instances and Soundness  
With respect to Minimum Confidence Threshold (MCT) value and Business Process 

 

Business 
Process 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking pp=2 

Modified Lift 
CV with 10-fold 

backtracking pp=2 

Travel Management -0.655 -0.655 -0.655 0.000 -0.123 
Credit Card Application 0.000 0.000 0.000 0.000 0.000 

Repair 0.000 0.000 0.000 0.000 0.000 

 

 

Correlation between number of process instances and soundness in travel management 

business process is visualized in Figure 5.6. 
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Figure 5.6 Correlation between Number of Process Instances and Soundness 
With respect to Evaluation Metrics for Travel Management Business Process 

(Details of this figure are given in Table J3.2 of Appendix J3) 

 

 

While discovered process model turns into a simpler formation with respect to structural 

reduction in the training dataset, leverage effect of the “fresh” data results in encountering 

more “niche” patterns (transitions) at the process instances dedicated to the testing dataset 

with respect to closed system perspective. Hence testing dataset turns into a more overfitting 

formation. Actually the representation gap between training and “overfitted” testing datasets 

would be exacerbated by the fact that; the behavior would be necessarily be over-

represented in the testing dataset since none of its instances made it into the training 
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dataset. As a result, increase in the amount of the information leads to decrease in 

completeness key performance metric. 

 

To conclude, the amount of information available in the event logs is a case-related 

characteristic, which is independent of FTCBPD methodology. Thus it is not seemingly 

reasonable to draw conclusions specific to the capabilities of FTCBPD methodology. 

Although more process instances enable the underlying data mining algorithm to transform 

this data into more accurate knowledge, negative correlation between number of process 

instances and completeness notices a dilemma. The underlying reason of this dilemma is 

the representation discrepancies between “fresh” data added at each trial. This outcome is 

also motivated by improper random sampling of each pattern (transition) in both training and 

testing datasets.   

           

The mechanism triggered by increase in number of process instances is modeled by a 

reinforcement cycle as in Figure 5.7: 

 

 

Process instance
number increases.

“Fresh” data 
exhibits new 
patterns and 
behaviors.

Due to the 
increase in the 
process number 

MST exaggerates.

“Niche” transitions 
with smaller MST 
or MCT values in 

discovered process 
model are 

challenged by the 
exaggerated 
thresholds.

Discovered 
process model 

consists of 
basically 

“dominant” and 
“standard” 
transitions.

Arc traffic 
decreases.

By the effect of 
reduction in arc 

traffic, soundness 
potentially 
decreases.

Testing dataset 
becomes more 

“overfitted” 
according to 

closed system 
perpective.

Completeness 
decreases.

 
 

Figure 5.7 Reinforcement Cycle for the Effect of Number of Process Instances 
On the Learning Scheme  

 

 

5.2.2. The Effect of Threshold Values on the Learning Scheme 
Minimum support and minimum confidence thresholds (MST and MCT) are the probability 

threshold parameters to control the level of the robustness of discovered process model. 
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Additionally these parameters can be used to control the complexity of discovered process 

model from large amounts of data, ignoring low-probability transitions.  

 

In “Evaluate Tally Marks in FROMTOCHART Table” operation, support and confidence 

values of the tally marks at each element in FROMTOCHART table are compared with set 

MST and MCT values and “significant” tally marks with respect to MST and MCT (i.e. tally 

marks that are not reset in the evaluation operation) are worth to be represented as a 

transition in discovered process model somehow6.   

According to the functionality of MST and MCT in FTCBPD methodology, increase in 

threshold values results in pruning the “weak” transitions with smaller support or confidence 

values in the business processes (e.g. travel management). On the other hand, business 

processes with “strong” transitions (e.g. credit card application and repair) are not affected 

by low increase in threshold values.   

 

This causality is strengthened by the negative correlation between threshold values and 

average arc traffic key performance metric in Tables 5.8 and 5.9. 

 
Table 5.8 Correlation between Minimum Support Threshold (MST) and Average Arc Traffic 

With respect to Number of Process Instances and Business Process 
 

Number of 
Process 

Instances 

Travel 
Management Credit Card Application Repair 

100 -0.917 0.000 0.000 
200 -0.937 0.000 0.000 
300 -1.000 0.000 0.000 
400 -0.972 0.000 0.000 
500 -0.866 0.000 0.000 
600 -0.707 0.000 0.000 

 
 

Table 5.9 Correlation between Minimum Confidence Threshold (MCT) and Average Arc Traffic 
With respect to Number of Process Instances and Business Process 

 
Number of 
Process 

Instances 

Travel 
Management Credit Card Application Repair 

100 -0.894 -0.866 -0.926 
200 -0.988 -0.866 -0.945 
300 -0.928 -0.866 -0.866 
400 -0.991 -0.866 -0.866 
500 -0.992 -0.866 -0.866 
600 -0.994 -0.866 -0.866 

 
 

                                                 
6 This “somehow” term denotes that, the existence of the transitions is clarified in evaluation operation, 
but the length of these transitions and relative positions of the activities (transactions) are not 
determined yet. This issue is handled at rearrangement operation and finalized by optimum activity 
sequence, which is the intermediate product of FTCBPD methodology.  
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According to experimental results, average arc traffic is more sensitive to the alterations in 

MCT, since range of MCT is wider than the MST’s (i.e. MCT varies in the range of [0.100, 

0.800], while MST range is [0.100, 0.200]). Correlation between threshold values and 

average arc traffic is visualized in Figures 5.8 - 5.13. 
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Figure 5.8 Correlation between Evaluation Metrics and Average Arc Traffic 
With respect to Number of Process Instances for Travel Management Business Process 

(Details of this figure are given in Table J3.3 of Appendix J3) 
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Average Arc Traffic vs. Evaluation Metrics
(With respect to Number of Process Instances)
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Figure 5.9 Correlation between Evaluation Metrics and Average Arc Traffic 

With respect to Number of Process Instances for Travel Management Business Process 
(Details of this figure are given in Table J3.3 of Appendix J3) 
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Figure 5.10 Correlation between Evaluation Metrics and Arc Traffic 

With respect to Number of Process Instances for Credit Card Application Business Process 
(Details of this figure are given in Table J1.3 of Appendix J1) 
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Average Arc Traffic vs. Evaluation Metrics
(With respect to Process Instance Number)
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 Figure 5.11 Correlation between Evaluation Metrics and Arc Traffic 
With respect to Number of Process Instances for Credit Card Application Business Process 

(Details of this figure are given in Table J1.3 of Appendix J1) 
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Figure 5.12 Correlation between Evaluation Metrics and Arc Traffic 
With respect to Number of Process Instances for Repair Business Process 

(Details of this figure are given in Table J2.3 of Appendix J2) 
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Average Arc Traffic vs. Evaluation Metrics
(With respect to Number of Process Instances)
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Figure 5.13 Correlation between Evaluation Metrics and Arc Traffic 
With respect to Number of Process Instances for Repair Business Process 

(Details of this figure are given in Table J2.3 of Appendix J2) 
 
 

Pruning of relatively “weak” transitions in the discovered process model means the loss of 

extra-ordinary behaviors, which are not over-represented in the testing dataset. Thus this 

tendency in minimality perspective potentially results in numerically decrease in soundness.  

As a result, the major reflection of increase in threshold values for the same amount of 

information in event logs is the decrease in completeness, since crucial increase in threshold 

values may prune the “standard” and “strong” transitions, which are uniformly represented in 

the testing dataset. Consequently discovered process model cannot correspond to the most 

of the behaviors in testing dataset. Negative correlation between thresholds values and 

completeness arc traffic strengthens this implication in Tables 5.10 and 5.11. 
 

   Table 5.10 Correlation between Minimum Support Threshold (MST) and Completeness 
With respect to Number of Process Instances and Business Process 

 
Number of 
Process 

Instances 

Travel 
Management Credit Card Application Repair 

100 -0.928 0.000 0.000 
200 -0.960 0.000 0.000 
300 -0.989 0.000 0.000 
400 -0.940 0.000 0.000 
500 -0.866 0.000 0.000 
600 -0.707 0.000 0.000 
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   Table 5.11 Correlation between Minimum Confidence Threshold (MCT) and Completeness 
With respect to Number of Process Instances and Business Process 

 
Number of 
Process 

Instances 

Travel 
Management Credit Card Application Repair 

100 -0.848 -0.866 -0.919 
200 -0.861 -0.866 -0.921 
300 -0.849 -0.866 -0.866 
400 -0.926 -0.866 -0.866 
500 -0.963 -0.866 -0.866 
600 -0.971 -0.866 -0.866 

 
 

Likewise in average arc traffic, completeness is more sensitive to the alterations in MCT, 

since structural reduction with respect to pruning of transitions by the exaggerating MCT 

value results in significant representation gap between discovered process model and 

testing population. Correlation between threshold values and completeness is visualized in 

Figures 5.14 - 5.19. 

 

 

Completeness vs. Evaluation Metrics
(Due to Number of Process Instances)
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Figure 5.14 Correlation between Evaluation Metrics and Completeness 
With respect to Number of Process Instances for Travel Management Business Process 

(Details of this figure are given in Table J3.1 of Appendix J3) 
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Completeness vs. Evaluation Metrics
(With respect to Number of Process Instances)
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Figure 5.15 Correlation between Evaluation Metrics and Completeness 
With respect to Number of Process Instances for Travel Management Business Process 

(Details of this figure are given in Table J3.1 of Appendix J3) 
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Figure 5.16 Correlation between Evaluation Metrics and Completeness 
With respect to Number of Process Instances for Credit Card Application Business Process 

(Details of this figure are given in Table J1.1 of Appendix J1) 
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Completeness vs. Evaluation Metrics
(With respect to Number of Process Instances)
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Figure 5.17 Correlation between Evaluation Metrics and Completeness 
With respect to Number of Process Instances for Credit Card Application Business Process 

(Details of this figure are given in Table J1.1 of Appendix J1) 
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Figure 5.18 Correlation between Evaluation Metrics and Completeness 
With respect to Number of Process Instances for Repair Business Process 

(Details of this figure are given in Table J2.1 of Appendix J2) 
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Figure 5.19 Correlation between Evaluation Metrics and Completeness 
With respect to Number of Process Instances for Repair Business Process 

(Details of this figure are given in Table J2.1 of Appendix J2) 
 

 

To conclude, minimum support and minimum confidence thresholds (MST and MCT) are the 

sole stick yard in determining the representation of the underlying transition in discovered 

process model. Thus the level of robustness and complexity of discovered process model 

are controlled by these execution-related parameters of FTCBPD methodology. Moreover 

MST and MCT satisfy robustness for the amount of noise.   

    

In general, slightly increasing MST and MCT values initially eliminate low-probability 

transitions. This situation is seemingly affirmative in minimality perspective. But after these 

threshold values reach to critical levels, “standard” and “strong” behaviors (transitions) are 

started to be challenged. As a result, all key performance metrics (completeness, soundness 

and average arc traffic) are negatively affected by the increase in threshold values after the 

critical level.     
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The mechanism triggered by increase in threshold values can be modeled by a 

reinforcement cycle as in Figure 5.20. 

 

 

 
 

Figure 5.20 Reinforcement Cycle for the Effect of the Threshold Values 
On the Learning Scheme 

 

 

5.2.3. The Effect of Fold Number on the Learning Scheme 
According to the fold number tuned by the end-user in “Verification Parameters” view, the 

initial event log is randomly partitioned into mutually exclusive subsets or folds each of 

approximately equal size. Then each sample is used the same number of times for training 

(i.e. fold number – 1 times) and once for testing. In this aspect, cross-validation is an iterative 

method with an iteration number, which is equal to fold number set in the selection screen. 

 

On the other hand, holdout verification method implemented in FTCBPD methodology is a 

version of threefold cross-validation, in which the data is divided randomly into three parts, 

two-thirds for training and one-third for testing, and repeat the procedure three times so that 

in the end, every instance has been used exactly once for testing. 

 

For the same amount of information in the event log, the fold number increase implies 

decrease in the size of each fold (i.e. decrease in the number of process instances per fold). 
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Thus lesser process instances are dedicated for testing, while more process instances are 

dedicated for training. Actually the major effect of fold number on the learning scheme 

emphasizes this shrinkage in the size of testing dataset, in which some process instances 

with “niche” and “weak” transitions are shifted from testing to training dataset. Moreover 

FTCBPD methodology tends to fill this testing dataset with “standard” and ordinary behaving 

process instances to maximize the completeness by accomplishing uniform representation in 

training and testing datasets according to the iterative fashion of verification method.  

   

Unfortunately for the same threshold values (MST = 0.100 and MCT = 0.100), transferred 

(shifted) process instances do not provide any significant information gain (i.e. new patterns 

and behaviors that are unknown in the prior trials with lesser fold number), since support or 

confidence values of the transitions in these transferred process instances are challenged by 

the default threshold values. Consequently transition traffic (i.e. average arc traffic) in 

discovered process model is not influenced by this data transfer according to shrinkage in 

testing dataset. This mechanism is strengthened by zero-valued correlation coefficient 

between fold number and average arc traffic in Table 5.12. 

 
Table 5.12 Correlation between Fold Number and Average Arc Traffic 
With respect to Number of Process Instances and Business Process 

 
Number of 
Process 

Instances 

Travel 
Management Credit Card Application Repair 

100 0.000 0.000 0.000 
200 0.000 0.000 0.000 
300 0.000 0.000 0.000 
400 0.000 0.000 0.000 
500 0.000 0.000 0.000 
600 0.000 0.000 0.000 

 

 

Unchanging average arc traffic with respect to alteration in fold number is visualized in 

Figures 5.21, 5.22 and 5.23. 
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Average Arc Traffic vs. Fold Number
(With respect to Number of Process Instances)
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Figure 5.21 Correlation between Fold Number and Average Arc Traffic 
With respect to Number of Process Instances for Travel Management Business Process 

(Details of this figure are given in Table J3.3 of Appendix J3) 
 

 

Average Arc Traffic vs. Fold Number
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Figure 5.22 Correlation between Fold Number and Average Arc Traffic 
With respect to Number of Process Instances for Credit Card Application Business Process 

(Details of this figure are given in Table J1.3 of Appendix J1) 
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Average Arc Traffic vs. Fold Number
(With respect to Number of Process Instances)
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Figure 5.23 Correlation between Fold Number and Arc Traffic 
With respect to Number of Process Instances for Repair Business Process 

(Details of this figure are given in Table J2.3 of Appendix J2) 
 
 

While transferring process instances from testing dataset to training does not enhance any 

new patterns and behaviors in the discovered process model, major effect of fold number 

alteration on the learning scheme can be monitored in soundness and completeness key 

performance metrics. 

 

“Niche” transitions in the testing dataset makes testing dataset overfitting at the prior trials. 

Thus discovered process model cannot exhibit the behaviors, which occur in “overfitted” 

testing dataset. Fortunately by transferring these “niche” transitions to training dataset 

according to the shrinkage in the size of testing dataset, the representation gap between 

training and testing datasets is reversed. Consequently while process instances in testing 

dataset represent “standard” behaviors, training dataset becomes overrepresented by the 

leverage effect of the transferred process instances with “niche” transitions.  

 

As a result, discovered process model becomes sounder and more complete with respect to 

the outcomes at the prior trials with lesser fold number. Positive correlation between fold 

number and soundness highlights this implication in Table 5.13. 
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Table 5.13 Correlation between Fold Number and Soundness 
With respect to Number of Process Instances and Business Process 

 
Number of 
Process 

Instances 

Travel 
Management Credit Card Application Repair 

100 0.847 0.886 0.821 
200 0.765 0.886 0.454 
300 0.934 0.669 0.336 
400 0.711 0.000 0.000 
500 0.626 0.000 0.000 
600 0.929 0.000 0.000 

 
 

Correlation between fold number and soundness is visualized in Figures 5.24, 5.25 and 5.26. 
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Figure 5.24 Correlation between Fold Number and Soundness 
With respect to Number of Process Instances for Travel Management Business Process 

(Details of this figure are given in Table J3.2 of Appendix J3) 
 

 

Event logs with larger than 300 process instances in credit card application and repair 

business processes indicate an uncorrelated relationship between fold number and 

soundness. This situation may occur due to the proper random sampling in both training and 

testing datasets and standardization of behaviors (transitions) in “fresh” data. 
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Soundness vs. Fold Number
(With respect to Number of Process Instances)
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Figure 5.25 Correlation between Fold Number and Soundness 
With respect to Number of Process Instances for Credit Card Application Business Process 

(Details of this figure are given in Table J1.2 of Appendix J1) 
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Figure 5.26 Correlation between Fold Number and Soundness 
With respect to Number of Process Instances for Repair Business Process 

(Details of this figure are given in Table J2.2 of Appendix J2) 
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Positive correlation between fold number and completeness is tabulated in Table 5.14. 

 
Table 5.14 Correlation between Fold Number and Completeness 

With respect to Number of Process Instances and Business Process 
 

Number of 
Process 

Instances 

Travel 
Management Credit Card Application Repair 

100 0.783 0.870 0.810 
200 0.915 0.740 0.478 
300 0.920 0.972 0.891 
400 0.928 0.870 0.782 
500 0.963 0.969 0.889 
600 0.929 0.837 0.867 

 
 

Correlation between fold number and completeness is visualized in Figures 5.27, 5.28 and 

5.29. 
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Figure 5.27 Correlation between Fold Number and Completeness 
With respect to Number of Process Instances for Travel Management Business Process 

(Details of this figure are given in Table J3.1 of Appendix J3) 
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Completeness vs. Fold Number
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Figure 5.28 Correlation between Fold Number and Completeness 
With respect to Number of Process Instances for Credit Card Application Business Process 

(Details of this figure are given in Table J1.1 of Appendix J1) 
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Figure 5.29 Correlation between Fold Number and Completeness 
With respect to Number of Process Instances for Repair Business Process 

(Details of this figure are given in Table J2.1 of Appendix J2) 
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To conclude, cross-validation and holdout (threefold cross-validation), which are embedded 

to FTCBPD methodology, are two standard methods of data mining in predicting the 

performance of discovered process model. With respect to the increase in fold number (and 

shrinkage in the size of fold), single fold dedicated for testing is turned into a more flexible 

formation (bag), in which FTCBPD methodology easily fills with process instances exhibiting 

“standard” behaviors. Additionally iterative fashion in both cross-validation and holdout 

methods (i.e. fold number parameter of verification method indicates for how many times 

process modeling is executed) encourages FTCBPD methodology in this learning tendency. 

Actually this result indicates a parallelism with the model testing part of [14], which states 

that; the variance of the resulting estimate is reduced as fold number, k is increased. As a 

result, discovered process model turns into a sounder and more complete status without any 

increase in average arc traffic (i.e. any behavior gain).  

 

The mechanism triggered by increase in fold number is modeled by a reinforcement cycle as 

in Figure 5.30. 

 

 

Fold number of the 
verification 

method increases.

Process instance 
number per fold 

decreases.

More process 
instances are 
dedicated for 

training.
Arc traffic does not 

change.

Training dataset 
becomes 

overfitted.
Thus soundness 

increases.

For the same 
amount of 

information in the 
event log, 

completeness 
increases.

Process instances 
with “niche” 

transitions are 
transfered to the 
training dataset.  

 
Figure 5.30 Reinforcement Cycle for the Effect of the Fold Number 

On the Learning Scheme 
 

Beside the effect on the learning scheme, fold number of the underlying verification method 

directly affects the total processing time, since fold number indicates the iteration number for 
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how many times process modeling is executed. As a result, total processing time can be 

formulated such that; 

 
)2.5.(eqnumberfoldtimeprocessingunitimetrocessingptotal ×=  

 
Positive correlation between fold number and total processing time strengthens this 

implication in Table 5.15. 

 
Table 5.15 Correlation between Fold Number and Total Processing Time 

With respect to Number of Process Instances and Business Process 
 

Number of 
Process 

Instances 

Travel 
Management Credit Card Application Repair 

100 1.000 0.997 0.998 
200 1.000 0.998 0.998 
300 1.000 0.998 0.997 
400 1.000 0.996 0.998 
500 1.000 0.997 0.997 
600 1.000 0.998 0.995 

 

  

Linearity of the relation between total processing time and fold number highlights the perfect 

correlation tabulated above. Correlation between fold number and total processing time can 

be visualized in Figures 5.31, 5.32 and 5.23. 
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Figure 5.31 Correlation between Fold Number and Total Processing Time 
With respect to Number of Process Instances for Travel Management Business Process 

(Details of this figure are given in Table J3.4 of Appendix J3) 
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Total Processing Time vs. Fold Number
(With respect to Number of Process Instances)
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Figure 5.32 Correlation between Fold Number and Total Processing Time 
With respect to Number of Process Instances for Credit Card Application Business Process 

(Details of this figure are given in Table J1.4 of Appendix J1) 
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Figure 5.33 Correlation between Fold Number and Total Processing Time 
With respect to Number of Process Instances for Repair Business Process 

(Details of this figure are given in Table J2.4 of Appendix J2) 
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5.2.4. The Effect of Number of Process Instances on Non-Functional Key 
Performance Metrics 

In operational perspective, the amount of information in the event logs influences the running 

time of “Populate FROMTOCHART Table”, “Verify Discovered Process Model” and “Report 

Process Instances” operations. This can be drawn from the operational-level complexity 

stated in part 5.3.1.  

 

At “Populate FROMTOCHART Table” operation transaction streams of the process 

instances, which are dedicated to training dataset, are constructed by grouping the tuples in 

TRANSACTIONLOG table by case identifier (e.g. caseID) in the ascending order of 

timestamp(i.e. transaction log date and time). Afterwards transitions in each stream are 

inserted (weaved) into the appropriate element of FROMTOCHART table. In this aspect if 

there are more process instances in TRANSACTIONLOG table, it implies more grouping by 

case identifier. Thus it requires more running time to complete “Populate FROMTOCHART 

Table” operation. 

 

Similarly at “Verify Discovered Process Model” operation, transaction streams of the process 

instances, which are dedicated to testing dataset, are constructed by grouping the tuples in 

TRANSACTIONLOG table by case identifier in the ascending order of time stamp. Thus 

increase in number of process instances implies increase in running time for “Verify 

Discovered Process Model” operation.  

 

At “Report Process Instances” operation, transaction stream of each process instance is 

constructed and every constructed transaction stream is written on a text file. As at “Populate 

FROMTOCHART Table” operation, running time of “Report Process Instances” operation is 

dependent to the number of process instances in TRANSACTIONLOG table.  

 

As a result, unit processing time is increased by increase in the number of process 

instances. Nearly perfect correlation between number of process instances and total process 

time highlights this implication in Tables 5.16 and 5.17. 

 
Table 5.16 Correlation between Number of Process Instances and Total Processing Time 

With respect to Minimum Support Threshold (MST) value and Business Process 
 

Business 
Process 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

Travel Management 0.989 0.986 0.984 0.984 0.984 
Credit Card Application 0.991 0.994 0.993 0.990 0.988 

Repair 0.629 0.981 0.985 0.995 0.990 
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Table 5.17 Correlation between Number of Process Instances and Total Processing Time 
With respect to Minimum Confidence Threshold (MCT) value and Business Process 

 

Business 
Process 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking pp=2 

Modified Lift 
CV with 10-fold 

backtracking pp=2 

Travel Management 0.988 0.987 0.987 0.986 0.985 
Credit Card Application 0.993 0.988 0.989 0.990 0.992 

Repair 0.892 0.987 0.985 0.963 0.938 

 
 

Correlation between number of process instances and total processing time is visualized in 

Figures 5.34, 5.35 and 5.36. 
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Figure 5.34 Correlation between Number of Process Instances and Total Processing Time 
With respect to Number of Process Instances for Travel Management Business Process 

(Details of this figure are given in Table J3.4 of Appendix J3) 
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Total Processing Time vs. Number of Process Instances
(With respect to Evaluation Metrics)
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Figure 5.35 Correlation between Number of Process Instances and Total Processing Time 
With respect to Number of Process Instances for Credit Card Application Business Process 

(Details of this figure are given in Table J1.4 of Appendix J1) 
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Figure 5.36 Correlation between Number of Process Instances and Total Processing Time 

With respect to Number of Process Instances for Repair Business Process 
(Details of this figure are given in Table J2.4 of Appendix J2) 
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Another effect of number of process instances is on the total size of the database, which 

consists of TRANSACTIONLOG, FROMTOCHART, INITIALFROMTOCHART, 

TALLYMARK, TCODES and BUSINESSPROCESSES tables. Number of process instances 

case-related parameter basically dominates the size of TRANSACTIONLOG table, which 

holds imported event logs, since increase in number of process instances directly implies 

increase in the line of event logs. Other tables compose the autonomous portion of total size. 

Correlation between number of process instances and total size highlights a perfect positive 

relationship between size and number of process instances in Table 5.18. 

 
Table 5.18 Correlation between Number of Process Instances and Total Size 

With respect to Business Process 
 

Travel  
Management 

Credit Card  
Application Repair 

1.000 1.000 1.000 

 

 

The size of TRANSACTIONLOG table is expanded by the increase in number of process 

instances. The unchanging residue between total size and the size of TRANSACTIONLOG 

table indicates autonomous portion. Correlation between number of process instances and 

total size is visualized in Figures 5.37, 5.38 and 5.39. 
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Figure 5.37 Correlation between Number of Process Instances and Total Size 

With respect to Tables for Travel Management Business Process 
(Details of this figure are given in Table J3.5 of Appendix J3) 
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Total Size vs. Number of Process Instances
(With respect to Tables)
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Figure 5.38 Correlation between Number of Process Instances and Total Size 

With respect to Tables for Credit Card Application Business Process 
(Details of this figure are given in Table J1.5 of Appendix J1) 
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Figure 5.39 Correlation between Number of Process Instances and Total Size 

With respect to Tables for Repair Business Process 
(Details of this figure are given in Table J2.5 of Appendix J2) 
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5.3.    Evaluation Based on Number of Activity Types 
In this experiment, key performance metrics (i.e. completeness, soundness, average arc 

traffic, process time and size) varying according to the number of activity types and 

execution-related parameters (i.e. evaluation metrics, verification methods and back-tracking 

penalty point) are measured for each industrial application. Number of process instances is 

set to 500 as the default value for the amount of information in the event logs. 

 

Number of activity types is a domain-dependent parameter, which indicates the complexity of 

concentrated business process. For business processes with larger number of activity types, 

discovering process model is potentially much more difficult and time-consuming, since 

process model may exhibit alternative and parallel routings due to this structural complexity. 

Additionally, event logs typically do not contain all possible combinations. Hence a 

completeness problem may emerge in mining process model.  

 

According to correlation coefficient, there is not any clear evidence that the number of 

activity types have a significant influence on the key performance metrics in accuracy and 

minimality perspectives (i.e. completeness, soundness and average arc traffic). This result is 

in parallel with the outcomes stated in [12]. Calculated correlation coefficient of number of 

activity types and execution-related parameters are in Tables 5.19, 5.20, 5.21 and 5.22. 

 
Table 5.19 Correlation between Number of Activity Types and Completeness 

With respect to Fold Number 
 

MST=0.100  
and MCT=0.100 

Holdout 
backtracking pp=2 

MST=0.100  
and MCT=0.100 
CV with 10-fold 

backtracking pp=2 

MST=0.100  
and MCT=0.100 
CV with 20-fold 

backtracking pp=2 

MST=0.100  
and MCT=0.100 
CV with 30-fold 

backtracking pp=2 

MST=0.100  
and MCT=0.100 
CV with 40-fold 

backtracking pp=2 

MST=0.100  
and MCT=0.100 
CV with 50-fold 

backtracking pp=2 

0.882 0.767 0.305 0.549 -0.141 -0.259 

 
 

Table 5.20 Correlation between Number of Activity Types and Average Arc Traffic 
With respect to Minimum Support Threshold (MST) Value 

 
MST=0.100  

and MCT=0.100 
CV with 10-fold 

backtracking pp=2 

MST=0.125  
and MCT=0.100 
CV with 10-fold 

backtracking pp=2 

MST=0.150  
and MCT=0.100 
CV with 10-fold 

backtracking pp=2 

MST=0.175  
and MCT=0.100 
CV with 10-fold 

backtracking pp=2 

MST=0.200  
and MCT=0.100 
CV with 10-fold 

backtracking pp=2 

0.478 0.478 0.352 0.256 0.350 

 

 

Table 5.21 Correlation between Number of Activity Types and Average Arc Traffic 
With respect to Minimum Confidence Threshold (MCT) Value 

 
MST=0.100 and 

MCT=0.275 
CV with 10-fold 

backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking pp=2 

Modified Lift 
CV with 10-fold 

backtracking pp=2 

0.900 0.612 0.404 0.584 -0.700 
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Table 5.22 Correlation between Number of Activity Types and Soundness 
With respect to Back-tracking Penalty Point 

 
MST=0.100  

and MCT=0.100 
CV with 10-fold 

backtracking pp=1 

MST=0.100  
and MCT=0.100 
CV with 10-fold 

backtracking pp=2 

MST=0.100  
and MCT=0.100 
CV with 10-fold 

backtracking pp=3 

MST=0.100  
and MCT=0.100 
CV with 10-fold 

backtracking pp=4 

MST=0.100  
and MCT=0.100 
CV with 10-fold 

backtracking pp=5 

0.000 0.000 0.000 0.000 0.000 

 
 

 

On the other hand, major effect of number of activity types is on the non-functional key 

performance metrics (i.e. processing time and size). Tabulated form of obtained key 

performance metrics’ measurements are represented in APPENDIX K. 

 

 

5.3.1. The Effect of Number of Activity Types on Non-Functional Key 
Performance Metrics 

In processing time aspect, describing the effort with “Big O notation”, which indicates the 

worst-case run time for an algorithm, is an appropriate way to determine the key (case-

related or execution-related) parameters and define approximate total processing time in 

terms of these parameters. According to Big O notation, the complexity of each operation 

(and sub-operation) in FTCBPD methodology is tabulated in Table 5.23. 

 
Table 5.23 Operational-level Complexity of FTCBPD Methodology 

 
Operation Complexity 

1 Create FROMTOCHART Table O(|AT|) 
2 Populate FROMTOCHART Table O(|AT|×|PI|+|AT|²) 
 2.1 Populate FROMTOCHART Table O(|AT|×|PI|) 
 2.2 Populate TALLYMARK Table O(|AT|²) 

3 Evaluate Tally Marks in FROMTOCHART Table O(|AT|²) 
 3.1 Evaluate Tally Marks due to MST and MCT O(|AT|²) 
 3.2 Evaluate Tally Marks due to modified lift O(|AT|²) 

4 Rearrange FROMTOCHART Table O(|AT|!) 
5 Construct Process Model O(|AT|²) 
6 Eliminate One-Step Closed Loops at Discovered Process Model O(2×|AT|²) 
 6.1 Detect One-Step Closed Loops O(|AT|²) 
 6.2 Delete One-Step Closed Loops O(|AT|²) 

7 Construct AND/OR Connections at Discovered Process Model O(2×|AT|²) 
 7.1 Construct Split-type Connections O(|AT|²) 
 7.2 Construct Join-type Connections O(|AT|²) 

8 Verify Discovered Process Model O(|AT|³×|PI|) 
9 Report Process Instances O(|AT|×|PI|) 
|AT| : number of activity types occurred in event logs 
|PI| : number of process instances in event logs 
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“Create FROMTOCHART Table” and “Evaluate Tally Marks in FROMTOCHART Table” 

operations are on the order of |AT| and |AT|2, since row and column count of “squared” 

FROMTOCHART table is determined by the number of activity types of the concentrated 

business process. 

 

Additionally “Populate FROMTOCHART Table”, “Verify Discovered Process Model” and 

“Report Process Instances” operations are directly related to number of process instances 

and number of activity types, since these case-related parameters affect the amount 

information in the event logs. The effect of number of process instances is stated in part 

5.2.4. In addition to number of process instances, the number of activity types increments 

total trace lines in event logs according to the assumption of “The more activity types, the 

longer transaction streams”7.  

 

“Rearrange FROMTOCHART Table” operation, which is the “engine component” of FTCBPD 

methodology, discovers the intermediate product, optimum activity sequence with respect to 

minimum moment value. But this crucial operation is the bottleneck of FTCBPD methodology 

in processing time aspect, because of factorial complexity. The major reason of order |AT|! is 

the Permutation object that generates activity sequences, which are used as an input to 

determine relative location of diagonal and calculate moment value for each activity 

arrangement. The activity sequence length is determined by the width of FROMTOCHART 

table (i.e. attribute number of FROMTOCHART table) and this attribute number is 

designated by the number of activity types occur in the event logs at “Create 

FROMTOCHART Table” operation. 

 

At “Construct Process Model”, “Eliminate One-Step Closed Loops in Discovered Process 

Model” and “Construct AND/OR Connections in Discovered Process Model” operations, 

optimum process model is tracked by a one-dimensional array type data structure, which is 

structurally independent from FROMTOCHART table. Each element in the array holds 

predecessors and successors of the underlying activity (transaction) by distinct linked-lists8 

embedded into the array element and the maximal limit of these linked-lists is the number of 

activity types (i.e. the zero-step closed loops are also handled). Therefore these operations 

are the order of |AT|2 (i.e. O(|AT|) order for linear search in one-dimensional array and other 

O(|AT|) order for linear search in successor (predecessor) activity linked-list).   

  

                                                 
7 Number of activity types acts as the average (standard) length of a single transaction stream.  
 
 
8 These linked-lists upgrade one-dimension array type process model into two-dimension structure. 
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Positive correlation between number of activity types and processing time strengthens the 

complexity determinations in Tables 5.24 and 5.25. 
 

 

Table 5.24 Correlation between Number of Activity Types and Process Time 
With respect to Minimum Support Threshold (MST) value 

 
MST=0.100  

and MCT=0.100 
CV with 10-fold 

backtracking pp=2 

MST=0.125  
and MCT=0.100 
CV with 10-fold 

backtracking pp=2 

MST=0.150  
and MCT=0.100 
CV with 10-fold 

backtracking pp=2 

MST=0.175  
and MCT=0.100 
CV with 10-fold 

backtracking pp=2 

MST=0.200  
and MCT=0.100 
CV with 10-fold 

backtracking pp=2 

0.927 0.920 0.923 0.921 0.924 

 

 
Table 5.25 Correlation between Number of Activity Types and Process Time 

With respect to Minimum Confidence Threshold (MCT) value 
 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking pp=2 

Modified Lift 
CV with 10-fold 

backtracking pp=2 

0.921 0.921 0.921 0.918 0.925 

 

 

Optimum activity sequence and each activity (object) embedded to this sequence is 

represented in Figure 5.40.  

 

 

 
 

Figure 5.40 Data Structure of Optimum Activity Sequence and Activity Object 
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Correlation between number of activity types and processing time is visualized in Figure 

5.41.  

 

 

Total Processing Time vs. Number of Activity Types
(With respect to Evaluation Metrics)

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

450,00

Travel management
business process with 7

activity types

Credit card application
business process with 8

activity types

Repair business process
with 9 activity types

Number of Activity Types

T
o

ta
l 

P
ro

c
e
s
s
in

g
 T

im
e
 

(s
e
c
.)

MST=0.100 and MC T=0.100
C V  with 10-fold
backtracking pp=2

MST=0.125  and MC T=0.100
C V  with 10-fold
backtracking pp=2

MST=0.150 and MC T=0.100
C V  with 10-fold
backtracking pp=2

MST=0.175 and MC T=0.100
C V  with 10-fold
backtracking pp=2

MST=0.200  and MC T=0.100
C V  with 10-fold
backtracking pp=2

MST=0.100 and MC T=0.100
C V  with 10-fold
backtracking pp=2

MST=0.100 and MC T=0.275
C V  with 10-fold
backtracking pp=2

MST=0.100  and MC T=0.450
C V  with 10-fold
backtracking pp=2

MST=0.100 and MC T=0.625
C V  with 10-fold
backtracking pp=2

MST=0.100 and MC T=0.800
C V  with 10-fold
backtracking pp=2

 
 

Figure 5.41 Correlation between Number of Activity Types and Total Processing Time 
With respect to Evaluation Metrics 

(Details of this figure are given in Table K.4 of Appendix K) 
 
 

As stated in prior experiments, total processing time is determined by number of process 

instances, number of activity types and verification method fold number parameters. In order 

to notice the effect of these parameters on processing time, a linear regression is performed 

in WEKA (Waikato Environment for Knowledge Analysis), which is a data mining workbench 

developed by Machine Learning (ML) Group of the University of Waikato [34]. According to 

this linear regression, total processing time of FTCBPD methodology can be predicted as 

follows: 

 

( ) )4.5.(6062.0|!|
)3.5.(6062.0|!|
eqFN AT0.0001  time  processing total

eq AT0.0001 time  processing unit
×−×=

−×=
 

 

Parameters stated in the predictor are: 

|| AT  is the number of activity types of the concentrated business process. 

FN  is the fold number of the verification method. 
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Unfortunately the effect of number of process instances (|PI|) emphasized in operational-

level complexity determinations is eliminated by number of activity types (|AT|) in processing 

time predictor, because of the running time coefficient of rearrangement operation. As a 

result, FTCBPD methodology is limited by the complexity of concentrated business process 

with respect to processing time. Results of the related linear regression are stated in 

APPENDIX D. 

 

Another effect of number of activity types is on the total size of the database. This case-

related parameter basically dominates TRANSACTIONLOG table, since total trace lines in 

event logs are exaggerated by number of activity types for the same number of process 

instances. Positive correlation between number of activity types and size, which is worth of 

0.940, strengthens this implication. Additionally, relationship between number of activity 

types and processing time is visualized in Figure 5.42. 
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Figure 5.42 Correlation between Number of Activity Types and Total Size 

With respect to Tables 
(Details of this figure are given in Table K.5 of Appendix K) 

 

The size of TRANSACTIONLOG table is exaggerated by the increase in number of process 

instances. The unchanging residue between total size and the size of TRANSACTIONLOG 

table indicates autonomous portion, which is composed of the total size of FROMTOCHART, 

INITIALFROMTOCHART, TALLYMARK, TCODES and BUSINESSPROCESSES tables. 
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While the size of TRANSACTIONLOG table is determined by number of process instances 

and number of activity types, any significant change does not occur in FROMTOCHART 

table with respect to the increase in number of activity types. But FROMTOCHART table is 

structurally dependent to this parameter, since column number is designated by number of 

activity types occur in the event logs. 

 

Similar to total processing time, a linear regression is performed in WEKA for modeling size 

requirement. According to this linear regression, total size of a process modeling application 

can be predicted as follows: 

 
)5.5.(2921.7|||| eqPIAT0.0717   sizetotal +××=  

 

Parameters stated in the predictor are: 

|| AT  is the average (standard) length of a transaction stream. 

|| PI  is the number of process instances in the imported event logs. 

 

According to the discovered predictor for total size, || AT  is the total trace lines dedicated to 

a single process instance, while |||| PIAT ×  indicates approximate total trace lines in the 

event logs. In this aspect, 0.0717 is the unit size (i.e. indexing and data) of a tuple in 

TRANSACTIONLOG table and 7.2921 autonomous portion is the total size of other tables. 

Results of the related linear regression are stated in APPENDIX E. 

 

 

5.4.    Evaluation Based on Modified Lift 
The initial modification performed on original lift metric in association rule mining is the 

addition of predecessor and successor notations as the probability terms. But the major 

modification is the evaluation procedure of the underlying tally mark with respect to 

calculated lift value. 

 

The first version named “modified lift two-branch use” has two branches similar to 

“supervised” minimum support and minimum confidence thresholds (MST and MCT). While 

tally marks with positive correlation are not altered, negatively correlated or non-correlated 

tally marks are reset to zero. 

 

The second lift version named “modified lift three-branch use” attempts to reflect the 

negative correlation to rearrangement operation. For this reason, tally marks with negative 

correlation are multiplied by minus one to make these tally marks attractive in “Rearrange 
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FROMTOCHART Table” operation, since this operation tends to increase the “moment arm” 

of the underlying activity (transaction) pairs with negative tally mark with respect to moment 

minimizing objective function. Hence activities (transactions) with negative correlation are 

assigned to non-neighboring (relatively distant) positions at optimum activity sequence. On 

the other hand, reduction in local moment value according to separating activity (transaction) 

pairs with negative tally mark may be compensated by extra increase in total moment value 

due to rearrangement of other activities (transactions) that are positively correlated with 

these activities.  

 

Pseudo-codes of “modified lift two-branch use” and “modified lift three-branch use” 

evaluation metrics are stated below: 

 

 

 

 
 

 

5.4.1. Comparison of Two Versions of Modified Lift 
In behavioral perspective of discovered process model (i.e. transition number, transition 

variety in discovered process model and pattern of these transitions), methodologically there 

is not a significant distinction between two versions of modified lift evaluation metric. 

Because the sole decision rule in representing the behaviors (transitions) in discovered 

process model is the tally mark of the underlying transition to be greater than zero and 

modified lift two-branch use and three-branch use propose the same strategy in handling 

tally marks with positive correlation. Therefore multiplying the tally mark by minus one or 

resetting it to zero does not make any sense in completeness, soundness and average arc 

traffic key performance metrics. 

 

While additional evaluation procedure (i.e. multiplying negatively correlated tally mark by 

minus one) does not result in any enhancement in behavioral structure of the discovered 

process model, average length of the transitions may be incremented by the tendency 
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towards separating activity pairs in rearrangement of activity sequence. Thus a new 

measurement, named average transition length, is introduced to monitor the effect of 

modified lift on discovered process model. 

 

)6.5.(eq
TTN
TLT  length   transition   average =  

 

Parameters stated in this formula are: 

TLT  is the total length of transitions represented in discovered process model. 

TTN  is the total number of transitions in discovered process model. 

 

To determine whether additional evaluation procedure results in significant effects on 

discovered process model with respect to average transition length, a dependent t-test9 is 

performed in this experiment. According to the differences obtained for each 36 dependent 

observations at travel management business process, calculated t-value (2.726) is greater 

than tabled t-value (2.03). Hence it is concluded that; additional evaluation procedure (i.e. 

multiplying by minus one) significantly increases average (and total) length of the transitions 

in the discovered process model. Dependent means t-test can be summarized as follows: 

 
Table 5.26 Dependent t-test Summary 

 
t-Test: Paired Two Sample for Means 
   

  
Modified Lift  
3-Branch Use 

Modified Lift  
2-Branch Use 

Mean 1.668888889 1.594722222 
Variance 0.029484444 0.006048492 
Observations 36 36 
Pearson Correlation 0.332668196  
Hypothesized Mean Difference 0  
df 35  
t Stat 2.726018917  
P(T<=t) one-tail 0.00497253  
t Critical one-tail 1.68957244  
P(T<=t) two-tail 0.00994506  
t Critical two-tail 2.030107915   

 
 

Related information about dependent means t-test is stated in APPENDIX F. 

 

 

 

                                                 
9 “Dependent” term denotes that the second observation is related to the first since the same training 
and testing datasets are being handled. 
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5.4.2. Effect of Modified Lift on Learning Scheme 
In this experiment, it is aimed to concentrate on the characteristics of modified lift and 

compare this metric with MST and MCT evaluation metrics with respect to key performance 

metrics (i.e. completeness). 

The underlying assumptions in this experiment are as follows: 

 Every activity type in the event logs appears in each process instance for only once. 

In other words, the same activity cannot be used in two different parts of a process 

cycle. Hence number of activity types ( || AT ) acts as the standard length of a 

transaction stream dedicated to a single process instance and |||| PIAT ×  

indicates approximate total trace lines in the event logs. 

 According to the first assumption, gross total tally mark ( G# ) marked into 

FROMTOCHART table can be formalized such that; 

 
5.7)(eq.L#|ATG# ×=|  

 

Parameters stated in the predictor are: 

G#  is gross total tally mark in FROMTOCHART table. 

|AT|  is the number of activity types in event logs. 

L#  is the number of process instances in event logs.  
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Firstly some algebraic conversions are applied to modified lift formula as follows: 

[ ]

5.13)(eq.|AT|  
B)sup(A,
B)conf(A, lift Modified

5.12)(eq.
  

L#
BA

|AT|  B)conf(A, lift Modified

5.11)(eq.-1|AT|1,      where
  BA
L#  |AT|  B)conf(A, lift Modified

5.10)(eq.
B*

L#  |AT|  B)conf(A, lift Modified

5.9)(eq.
B*

L#  |AT|  
*A
BA

lift Modified

5.8)(eq.L#  |ATG#      where
B*  *A

G#  BA
 lift Modified

ξ

ξ

ξ
ξ

×=

×
>

×=

∈
×>

×
×=

>
×

×=

>
×

×
>
>

=

×=
>×>

×>
= |

 

 

 

In equation 5.9, the first multiplier is turned into explicit form of confidence formulation 

(i.e. ),( BAconf ), while the numerator of the second multiplier, gross total tally mark, is 

converted to L#  |AT| × notation according to the second assumption. Then explicit form of 

confidence formulation is replaced with implicit form in equation 5.10. 

 

In equation 5.11, the denominator of second multiplier,
B* >

, is turned into 
ξ  BA ×>

, 

where ξ  denotes the overall ratio of transition from activity (transaction) A to activity 

(transaction) B, denoted as 
BA >

, to total incoming traffic towards activity (transaction) B. 

 

In equation 5.12, explicit form of support formulation (i.e. B)sup(A, ) is introduced at the 

second multiplier by shifting total number of process instances, denoted as L# , to the 

denominator. Finally explicit form of support formulation is replaced with implicit form in 

equation 5.13. 

As a result, it is noticed in equation 5.13 that; modified lift tends to represent the transitions 

with higher confidence and lower support value according to the converted modified lift 
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formula. Actually this finding is in parallel with [23], which refers original lift as the lift of the 

association (correlation) rule BA ⇒ . 

 

Secondly it is aimed to interpret the relationship between modified lift and other developed 

evaluation metrics, MST and MCT. For this reason, two dependent t-tests are performed to 

determine whether there is a significant performance difference between modified lift and 

MST, MCT evaluations metrics with respect to completeness metric. 

 

In the first t-test, MST value is gradually increased from 0.100 up to 0.200 while MCT value 

is set to 0.100. According the differences obtained for each 30 observations at travel 

management business process, calculated t-value (4.72) is greater than tabled t-value 

(2.05). Hence it is concluded that; discovered process model evaluated by modified lift three-

branch use has a better level of correspondence to the behaviors exhibited in event logs 

than gradually increasing MST.  Dependent means t-test can be summarized as follows: 
 
 
 

Table 5.27 Dependent t-test Summary 
 

t-Test: Paired Two Sample for Means 
   

  Modified Lift Gradually 
Increasing MST 

Mean 91.7085 86.84816667 
Variance 6.225648534 22.54805214 
Observations 30 30 
Pearson Correlation -0.130931841  
Hypothesized Mean Difference 0  
df 29  
t Stat 4.715121687  
P(T<=t) one-tail 2.80E-05  
t Critical one-tail 1.699126996  
P(T<=t) two-tail 5.60E-05  
t Critical two-tail 2.045229611   

 
 

 

In the second t-test, MCT value is gradually increased from 0.100 up to 0.200 while MST 

value is set to 0.100. According the differences obtained for each 30 observations, 

calculated t-value (2.81) is greater than tabled t-value (2.05). Hence it is concluded that; 

discovered process model evaluated by modified lift three-branch use has a better level of 

correspondence to the behaviors exhibited in event logs than gradually increasing MCT. 

Dependent means t-test can be summarized as follows: 
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Table 5.28 Dependent t-test Summary 
 

t-Test: Paired Two Sample for Means 
   

 Modified Lift Gradually 
Increasing MCT 

Mean 91.7085 89.3435 
Variance 6.225648534 12.72714509 
Observations 30 30 
Pearson Correlation -0.125668257  
Hypothesized Mean Difference 0  
df 29  
t Stat 2.814011752  
P(T<=t) one-tail 4.35E-03  
t Critical one-tail 1.699126996  
P(T<=t) two-tail 8.70E-03  
t Critical two-tail 2.045229611   

 
 

 

To conclude, although modified lift three-branch use has a better performance than MST and 

MCT evaluation metrics in accuracy perspective, the closeness of calculated t-value to 

tabled t-value in the second dependent t-test (i.e. 2.81 rather than 4.71) emphasizes the 

tendency of modified lift three-branch use towards representing the transitions with high 

confidence and low support value, which are called surprised-type behaviors. Additionally 

this closeness of process modeling executions parameterized with gradually increasing MCT 

to the executions parameterized with modified lift can be figured out in Figure 5.43 - 5.48. 
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Figure 5.43 Residual Analysis between Modified Lift and Gradually Increasing MST/MCT 
For 100 Process Instances 

(Details of this figure are given in observations table of Appendix G and H) 
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Completeness vs. RunID
(With Respect to Evaluation Metrics)
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Figure 5.44 Residual Analysis between Modified Lift and Gradually Increasing MST/MCT 
For 200 Process Instances 

(Details of this figure are given in observations table of Appendix G and H) 
 

 

Completeness vs. RunID
(With Respect to Evaluation Metrics)

60.000

65.000

70.000

75.000

80.000

85.000

90.000

95.000

100.000

11 12 13 14 15

RunID

C
o

m
p

le
te

n
e
s
s

Gradually Increasing M CT Gradually Increasing M ST M odif ied Lif t  
 

Figure 5.45 Residual Analysis between Modified Lift and Gradually Increasing MST/MCT 
For 300 Process Instances 

(Details of this figure are given in observations table of Appendix G and H) 
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Completeness vs. RunID
(With Respect to Evaluation Metrics)
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Figure 5.46 Residual Analysis between Modified Lift and Gradually Increasing MST/MCT 
For 400 Process Instances 

(Details of this figure are given in observations table of Appendix G and H) 
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Figure 5.47 Residual Analysis between Modified Lift and Gradually Increasing MST/MCT 
For 500 Process Instances 

(Details of this figure are given in observations table of Appendix G and H) 
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Completeness vs. RunID
(With Respect to Evaluation Metrics)
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Figure 5.48 Residual Analysis between Modified Lift and Gradually Increasing MST/MCT 
For 600 Process Instances 

(Details of this figure are given in observations table of Appendix G and H) 
 

Related information about dependent means t-tests are stated in APPENDIX G and H. 
 

 

5.5. Comparison of FTCBPD Methodology with Prior Approaches 
The fundamental requirement in process discovery field is the existence of a bookkeeping 

entity, which holds the moves (transitions) among activities (transactions) occurred in event 

logs. Thus “significant” patterns can be monitored and process model can be built up onto 

these patterns. The structure of this bookkeeping entity may range from unsophisticated two-

dimensional array type data structures to database tables.    

 

As stated in [1, 12, 14, 15] transitions among activities (transactions) captured in transaction 

streams are handled in dependency/frequency table, which is dedicated to a single activity 

(transaction). Thus number of dependency/frequency tables created in the underlying 

problem is determined by the number of activity types occurred in event logs. 

 

In this table, interactions of the underlying activity (transaction) with other activities 

(transactions) are evaluated by different parameters (i.e. A# , AB# < , BA# > , B$A L→  

and B$A→ ) as stated in “Literature Review” chapter. According to calculated dependency 

score in Little Thumb [1] or local, global and causality metric values in logistic regression 

model [14], which are based on dependency/frequency table, pair-wise transitions, which are 
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worth to be represented in discovered process model, are determined. Consequently 

process model is shaped by these driven transitions. 

 

In this methodology, from-to chart, which is an essential analytical tool in material handling 

monitoring on production floor, is implemented as the bookkeeping material. Unlike to prior 

approaches, there is only one from-to chart and all captured transitions (moves) among 

activities (transactions) are populated (weaved) into this table. Therefore instead of 

traversing all relatively “small in size” tables in order to construct process model, this from-to 

chart serves a “big picture view” for more readily analyzing the underlying business process. 

Additionally, “Rearrange FROMTOCHART Table” operation aims to find out “the most 

frequent” activity sequence in event logs by taking into consideration overall inter-traffics 

among activities in from-to chart according to an optimization fashion. Although dimensions 

of from-to chart is theoretically dependent to number of activity types occurred in event logs, 

any significant correlation between number of activity types and the size of FROMTOCHART 

table is discovered as stated in part 5.3.1. 

 

Another distinction between FTCBPD methodology and prior approaches is the evaluation 

metrics, which are used to prune down the “weak” patterns. Prior approaches have a 

tendency towards the development their own “unsupervised” metrics, which are borrowed 

from statistics. By combining metric values a threshold value is found out, and then 

significance or types of the relations are determined according this threshold value. In 

FTCBPD methodology, it is aimed to enhance metrics, which are inherited from association 

rule mining (i.e. support, confidence and lift), with predecessor and successor notations in 

order to shift concentration onto inter-transaction relations (patterns) (i.e. correlation between 

activities) rather than intra-transaction perspective in association rule mining. 

 

As the last argument in this comparison, verification procedure of discovered process model 

can be handled. Theoreticians consider a process model to be good if it is both accurate and 

minimal. In this aspect, while discovered process model fully accounts for the sample 

behaviors given in training and testing population and successfully classifies types of 

relations (transitions), the structure of process model is not unnecessarily complicated by 

represented relations (transitions). In prior approaches, performance of process modeling is 

solely quantified by the correspondence of discovered process model to the behaviors 

exhibited in testing population. Minimality concept is not directly taken into consideration.       

 

Likewise in prior studies, FTCBPD methodology determines the best process model with 

respect to completeness metric, which refers to the percentage of transitions that are 

compliant with some transitions in the event logs. On the other hand, “Predetermine arc 
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traffic in process model” feature enables the end user to declare an upper bound for 

transition number (i.e. arc traffic) in discovered process model. Thus FTCBPD methodology 

represents the most significant transitions, which are held in transition top list (TTL) in the 

end of process modeling session. 
 
The results for default values of execution-related parameters given in Table 5.1 result in an 

average performance of 96.936. Optimum control flow graphs of the underlying business 

processes are given in APPENDIX I.  
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CHAPTER 6 
 
 

LIMITATIONS AND FUTURE WORK 
 
 
FTCBPD methodology attempts to distill a structured process description in the form of from-

to chart, dependency/frequency graph and control flow graph from a set of real executions. 

In this study, apriori model (i.e. reference model) is not taken into consideration; however, 

the discovered process model may be used for delta analysis, i.e., comparing the mined 

model representing the actual business process with the reference model representing the 

predefined process, as a future research. In this delta analysis, actual and proposed 

business processes may be converted into from-to chart representations. The size of these 

from-to charts may be normalized to the size of the activity type union set. For the columns 

and rows added through the normalization, the corresponding elements in the normalized 

from-to chart are set to zero. By subtracting these matrixes, it can be detected discrepancies 

between actual and proposed process models. As an obvious way to capture the degree of 

discrepancies, sum of squares of elements in subtraction process matrix can be used in 

terms of distance metric. As a result, it is possible to monitor which sub-patterns are really 

performed and where bottlenecks are occurred.   

 

Another future research is about representing the connections in the process model. As 

stated in the following chapters, “Construct AND/OR Connections in Discovered Process 

Model” operation handles the transitions of underlying activity (transaction) in successor and 

predecessor activity lists dually. Then connection score of each neighboring activity pairs are 

calculated and calculated connection score is compared with AND threshold to determine 

type of the connection. Afterwards, split or join type connections are visualized at control flow 

graph by linear connectors in a pair-wise fashion. In the case of multiple connections of an 

activity (transaction), it may be time-consuming and complex to combine these connections 

into a simpler formation.  

 

For instance in Figure 6.1, there are three connectors combining three predecessors of 

“Travel Request Confirmation” activity (i.e. Connection number is calculated by dual
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 combination of successor or predecessor number, sconnectionC 3
2
3

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ) such that; an AND-

join between “Advance Payment” and “Display Travel Request” activities, an OR-join 

between “Change Travel Request” and “Advance Payment” activities and an OR-join 

between “Change Travel Request” and “Display Travel Request” activities as stated in 

connection list, Figure 6.2. In a further version of FTCBPD methodology, connectors can be 

consolidated according to “dispersion property” in logic as follows:  

 
( )[ ]Request Travel angeChRequest TravelDisplay  Payment Advance ∨∧  

 

 Actually this reconstruction in representing connections may require a new block type like 

“places” in Petri-nets (i.e. “places” correspond to a condition that can be used as pre- or 

post-condition for tasks in Petri-nets) instead of linear connectors in control flow graph. 

 

 

 
 

Figure 6.1 Multiple Connections among  
Predecessors of “Travel Request Confirmation” Activity 

 

 

 
 

Figure 6.2 Connection List of Underlying Control Flow Graph 
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Although the challenge in process discovery is to derive a “good” process model that spans 

significant behaviors highlighted in the navigation traces in the form of log, protocol or trace 

data, the major limitation of process discovery performed by FTCBPD methodology is the 

total processing time, which is dominated by “Rearrange FROMTOCHART Table” operation. 

Calculating local moment for each generated activity sequence is just like traversing all local 

optimum points. However, finding out the activity sequence with the minimum moment value 

is not the whole story such that; optimum activity sequence is limited to sequential behavior 

and this one-dimensional activity sequence has to be upgraded to two-dimensional process 

model, which represents direct successive, successive and back-tracking type relations. 

Consequently future search can be concentrated on the heuristics handling permutative 

issues to improve FTCBPD methodology in processing time direction. 
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CHAPTER 7 
 
 

CONCLUSION 
 
 
 
In the increasingly globalized economy, enterprises face complex challenges that can 

require rapid and possibly continual transformation. As a result, more and more enterprises 

are focused on the strategical management of fundamental changes with respect to markets, 

products and services. Consequently the fundamental to enabling this transformation of an 

enterprise is the development of new information systems for comprehensive IT-supported 

business solutions that presumptively support and enhance enterprises in business process 

perspective. 

 

Although contemporary information systems lead to significant efficiency gains in 

transformed business processes, they are developed in a generic way, which is driven by 

explicit process models (i.e. reference models). Hence a completely specified and well-

conducted design phase is required to enact a transformed business process. Actually 

creating a design is a complicated, time-consuming phase and typically, there are 

discrepancies between the actual business process and the processes as perceived by the 

management. Therefore this study aims to propose a data analysis methodology, named 

“From-to Chart Based Process Discovery” (FTCBPD) to “reverse” this design-oriented 

approach. 

 

Instead of starting with a process design, FTCBPD methodology attempts to distill interesting 

patterns from the navigation traces, which can be pulled up as a main data source for end-

user behavior analysis, and translate these discovered patterns into process model with low-

level domain knowledge. Structurally FTCBPD methodology integrates two components: 

from-to chart and process mining.   

 

From-to chart, which is inherited from industrial engineering domain, is a fundamental 

analytical tool used in monitoring material handling routes between operations, machines,
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departments or work centers on the production floor. In addition to its monitoring 

functionality, from-to chart can be turned into a decision support instrument in optimization of 

plant layout with respect to minimum material handling. The novelty of FTCBPD 

methodology in process discovery field resides in the fact that; this analytical tool is used as 

the baseline to monitor transitions among activities (transactions) occurs in business process 

and activity (transaction) sequence, which is rearranged in a straight line according to 

optimization capability, constitutes the backbone of discovered process model.  

 

As the second component, process mining is a type of association rule mining algorithm, 

which is used to distill a structured process description from a set of real execution. In order 

to extract causality relations among activities (transactions), minimal information in event log 

has to contain time stamp for each event, which is used to sort all log entries in the order 

they take place in a process instance.  

 

Unlike to design-oriented contemporary information systems, process mining is not biased or 

normative by perceptions. However if end-users alter the system doing things differently, the 

event log can still deviate from the actual work being done. Moreover process mining is not 

an instrument to (re-)design business process directly. The goal is to understand what is 

really going on in enactment phase and evaluate the conflictions with the reference model in 

diagnosis phase. 

 

The major functionality of this process mining component in FTCBPD methodology is to 

upgrade one-dimensional optimum activity sequence, which assimilates “average” behaviors 

and patterns highlighted in event logs, into three process model representations: 

i. From-to chart textually summarizes direct successive, successive and back-tracking 

relations among activities (transactions). 

ii. Dependency/frequency graph is a form of finite state machine (FSM), which 

visualizes the transitions among activities (transactions) with dependency scores. 

iii. Control flow graph enriches dependency/frequency graph by exhibiting type of the 

connections (i.e. AND-split, AND-join, OR-split and OR-join) between predecessors 

and successor pairs of each activities (transactions) in discovered process model. 

 

As another cutting-edge feature of FTCBPD methodology, the evaluation metrics (i.e. 

minimum support threshold-MST, minimum confidence threshold-MCT and modified lift) 

used in process mining component can be emphasized. These metrics act as the major stick 

yard to control the level of robustness and complexity of the discovered model from large 

amounts of data; ignoring low-probability sequences, even if they are not the result of noise. 
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While formulating these metrics, it is attempted to familiarize them with original formations in 

association rule mining. 

In order to test the performance of FTCBPD methodology, event logs of three distinct 

business processes with varying complexity level and amount of information (i.e. process 

instance number) are obtained. According to 396 test runs, the average percentage of 

transitions that were correctly handled in discovered process model is 96.9361. This level of 

correspondence implies that; FTCBPD methodology has a relatively good performance in 

discovering process model like logistic regression model with 94.3 completeness value 

stated in [14].  

 

On the other hand, major limitation of FTCBPD methodology is the total processing time, 

which is highly dependent on the complexity level (i.e. number of activity types) of 

concentrated business process. The underlying reason of this shortcoming is the 

rearrangement operation with order |AT|!, whose running time is exaggerated by activity type 

number. 

 

To conclude, this study aims to develop a data analysis methodology in the mature field of 

process discovery. Although several generic process mining tools (i.e. ProM, Little Thumb, 

EMIT and InWoLvE) are dedicated to this field, we attempt to handle process discovery 

issue by FTCBPD methodology, which integrates components from distinct disciplines. 

        

 
 

                                                 
1 This value is the average of completeness obtained in travel management (97.368), credit card 
application (94.828) and repair (98.611) business processes.  



 138

REFERENCES 
 

 

 

 

1. Weijters, T. A. J. M. M., & Aalst, W. M. P. v. d. (2003). Rediscovering Workflow 
Models from Event-Based Data Using Little Thumb. Integrated Computer-Aided 
Engineering, 10(2), 151-162. 

 
 

2.  Maruster, L., Weijters, T., & Bosch, A. v. d. (2006). A Rule-Based Approach for 
Process Discovery. Data Mining and Knowledge Discovery, 13(1), 67-87. 

 
 

3. Cook, J. E., & Wolf, A. L. (1996). Discovering Models of Software Processes from 
Event-Based Data. ACM Transactions on Software Engineering and Methodology 
(TOSEM), 7(3), 215-249. 

 
 

4.  Greco, G., Guzzo, A., Luigi, P., & Sacca, D. (2004). Mining Expressive Process 
Models by Clustering Workflow Traces. Paper presented at the PAKDD 2004, 
Heidelberg. 

 
 

5. Greco, G., Guzzo, A., Manco, G., & Sacca, D. (2007). Mining Unconnected Patterns 
in Workflows. Information Systems, 32(5), 685-712. 

 
 

6. Chiravalloti, A. D., Greco, G., Guzzo, A., & Pontieri, L. (2006). An Information-
Theoretic Framework for Process Structure and Data Mining. Data Warehousing and 
Knowledge Discovery, 4081, 248-259. 

 
 

7. Aalst, W. M. P. v. d., Rubin, V., Dongen, B. F., E., K., & Gunther, C. W. (2007). 
Process Mining: A Two-Step Approach Using Transition Systems and Regions. 
Business Process Management, 4714, 375-383. 

 
 

8. Recker, J., Mendling, J., Aalst, W. M. P. v. d., & Rosemann, M. (2006). Model-Driven 
Enterprise Systems Configuration. Advance Information Systems Engineering, 4001, 
369-383. 

 
 

9. Kindler, E., Rubin, V., & Schafer, W. (2006). Process Mining and Petri Net 
Synthesis. Paper presented at the Business Process Management Workshop.  

 
 

10. R., A., D., G., & Leymann, F. (1998). Mining Process Models from Workflow Logs. 
Paper presented at the Sixth International Conference on Extending Database 
Technology.



 139

11. Aalst, W. M. P. v. d., Weijters, T. A. J. M. M., & Maruster, L. (2004). Workflow 
Mining: Discovering Process Models from Event Logs. Transaction on Knowledge 
and Data Engineering, 16(9), 1128-1142. 

 
 

12. Aalst, W. M. P. v. d., Dongen, B. F., Herbst, J., L., M., Schimm, G., & Weijters, T. A. 
J. M. M. (2003). Workflow Mining: A Survey of Issues and Approaches. Data & 
Knowledge Engineering, 47(2), 237-267. 

 
 

13. Weijters, T. A. J. M. M., Aalst, W. M. P. v. d., & Medeiros, A. K. A. (2006). Process 
Mining with the HeuristicMiner Algorithm. Paper presented at the BETA Working 
Paper Series, WP 166,, Eindhoven University of Technology. 

 
 

14. Maruster, L., Weijters, T. A. J. M. M., Aalst, W. M. P. v. d., & Bosch, A. v. d. (2002). 
Process Mining: Discovering Direct Successors in Process Logs. Lecture Notes in 
Computer Science, 2534, 364-373. 

 
 

15. Weijters, T. A. J. M. M., & Aalst, W. M. P. v. d. (2003). Process Mining Discovering 
Workflow Models from Event-Based Data. Integrated Computer-Aided Engineering, 
10. 

 
 

16. Maruster, L., Aalst, W. M. P. v. d., Weijters, T. A. J. M. M., Bosch, A. v. d., & 
Daelemans, W. (2001). Automated Discovery of Workflow Models for Hospital Data. 
Paper presented at the Proceeding BNAIC-01. 

 
 

17. Gunther, C. W., & Aalst, W. M. P. v. d. (2006). Process Mining in Case Handling 
Systems. Paper presented at the Multikonferenz Wirtschaftsinformatik 2006.  

 
 

18. Gomez, J. M., Kassem, G., Rauntenstrauch, C., & Melato, M. (2003). Analysis of 
User’s Behaviour in Very Large Business Application Systems with Methods of the 
Web Usage Mining- A Case Study on SAP® R/3®. Advance in Web Intelligence, 
2663, 954-964. 

 
 

19. Aalst, W. M. P. v. d., Reijers, H. A., Weijters, T. A. J. M. M., van, D. B. F., de, M. A. 
K. A., Song, M., et al. (2007). Business Process Mining: An Industrial Application. 
Information Systems, 32(5), 713-732. 

 
 

20. Aalst, W. M. P. v. d., Gunther, C., Recker, J., & Reichert, M. (2006). Using Process 
Mining to Analyze and Improve Process Flexibility. Paper presented at the 
BPMDS’06.  

 
 

21. Aalst, W. M. P. v. d. (2006). Workshop Report: Process Mining, Monitoring 
Processes and Services. Paper presented at the Dagstuhl Seminar Proceedings, 
Dagstuhl, Germany. 

 
 

22. Zhao, Q., & Bhowmick, S. S. (2003). Sequential Pattern Mining: a Survey. 
Singapore: Nanyang Technological University. 



 140

23. Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques. San 
Francisco: Morgan Kaufmann. 

 
 

24. Witten, I. H., & Frank, E. (2000). Data Mining Practical Machine Learning Tools and 
Techniques with Java Implementations. San Francisco: Morgan Kaufmann. 

 
 

25. Apple, J. M. (1972). Material Handling Systems Design. New York: The Ronald 
Press Company. 

 
 

26. Meyers, F. E., & Stephens, M. P. (2005). Manufacturing Facilities Design and 
Material Handling. New Jersey: Pearson Prentice Hall. 

 
 

27. Winston, W. L., & Goldberg, J. B. (2004). Operations Research: Applications and 
Algorithms: Thomson Delmar Learning. 

 
 

28. Deitel, H. M., & Deitel, P. J. (2005). Java How to Program. New Jersey: Pearson 
Prentice Hall. 

 
 

29. Sahni, S. (2000). Data Structures, Algorithms and Applications in Java. Singapore: 
Mc Graw Hill. 

 
 

30. Dalbey, J. (2008). Pseucode Standard, from 
http://notes.ump.edu.my/fkee/Hazizulden/BEE1222/Handouts/Pseudocode%20Stan
dard.pdf 

 
 

31. Elmasri, R., & Navathe, S. B. (2003). Fundamentals of Database Systems. Boston: 
Pearson Addison Wesley. 

 
 

32. Senge, P. M. (1990). Beşinci Disiplin. İstanbul: Yapı Kredi Yayınları. 
 
 

33. Eindhoven University of Technology (2008). Process Mining, from  
http://prom.win.tue.nl/research/wiki/ 
 
 

34. The University of Waikato (2008). WEKA Software, from  
http://www.cs.waikato.ac.nz/ml/weka/ 
 
 

35. Francis, R. L., McGinnis L. F. & White, J. A. (1992). Facility Layout and Location: An 
Analytical Approach. New Jersey: Prentice Hall. 
 
 



 141

APPENDICES 
 
 

APPENDIX A   Data Dictionary 
 
 
 
TRANSACTIONLOG table is used to bookkeep the event logs retrieved from concentrated 

information system. Event logs are the minimal information assumed to be present in 

FTCBPD methodology. Structure of TRANSACTIONLOG table is stated below: 

 
Table A.1 Structure of TRANSACTIONLOG Table 

 

Attribute Data Type Length Primary 
Key Description 

transactionlogdate DATE   Yes Execution date of the underlying event. 
transactionlogtime TIME   Yes Execution time of the underlying event. 

uname VARCHAR 12 Yes Originator of the underlying event. 
tcode VARCHAR 20 Yes Activity type of the underlying event. 

caseID BIGINT 10 Yes 
Case identifier of the underlying event. 
Tuples are grouped by caseID to construct 
each process instance (cycle). 

 

 

FROMTOCHART table is the basic material (environment) of FTCBPD methodology. 

Predecessor and successor relations between activities (transactions) captured in 

TRANSACTIONLOG table are marked into FROMTOCHART table. Then “significant” 

transitions are monitored by “Evaluate Tally Marks in FROMTOCHART Table” operation and 

direct successive, successive and back-tracking relations are determined due to these driven 

“significant” transitions. Except tcode attribute, attributes are added to FROMTOCHART 

dynamically not to deal with the activity types that do not take place in event logs. Structure 

of FROMTOCHART table is stated below: 
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Table A.2 Structure of FROMTOCHART Table 

 

Attribute Data Type Length Primary 
Key Description 

tcode VARCHAR 20 Yes 
Source activity of the related transition. 
This attribute resembles "from" side of the 
from-to chart. 

successortcode INT 4 No 

Total number of transitions from source to 
destination activity. 
This attribute is dynamically added to 
FROMTOCHART table, if underlying 
'successortcode' activity type exists in event 
logs.  

 

 

INITIALFROMTOCHART table is used to hold the original tally mark values in 

FROMTOCHART table prior to “Evaluate Tally Marks in FROMTOCHART Table” operation. 

In other words, INITIALFROMTOCHART table is like an initial view of FROMTOCHART 

table. Tally marks held in INITIALFROMTOCHART table belong to the process model with  

the highest completeness in current process modeling run. Structurally  

INITIALFROMTOCHART table is similar to FROMTOCHART table as stated below: 

 
Table A.3 Structure of INITIALFROMTOCHART Table 

 

Attribute Data Type Length Primary 
Key Description 

tcode VARCHAR 20 Yes 
Source activity of the related transition. 
This attribute resembles "from" side of the 
from-to chart. 

successortcode INT 4 No 

Total number of transitions from source to 
destination activity. 
This attribute is dynamically added to 
INITIALFROMTOCHART table, if underlying 
'successortcode' activity type exists in event 
logs.  

 

 

TALLYMARK table is used to hold row and column totals of the activity types in 

FROMTOCHART table prior to “Evaluate Tally Marks in FROMTOCHART Table” operation. 

Row total of the underlying activity type is crucial in confidence calculation, while column 

total is used in modified lift calculation. TALLYMARK table is populated just after population 

of FROMTOCHART table not to lose the original tally mark values. Structure of TALLYMARK 

table is stated below: 
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Table A.4 Structure of TALLYMARK Table 

 

Attribute Data Type Length Primary 
Key Description 

tcode VARCHAR 20 Yes Activity type of underlying tuple. 

rowtotaltallymark INT 4 No Row total of underlying activity type in 
FROMTOCHART before evaluation. 

columntotaltallymark INT 4 No Column total of underlying activity type in 
FROMTOCHART before evaluation. 

 

 

BUSINESSPROCESSES table is a domain table, which hold business process definitions 

that are defined in the system prior to process modeling. Structure of 

BUSINESSPROCESSES table is stated below: 

 
Table A.5 Structure of BUSINESSPROCESSES Table  

 

Attribute Data Type Length Primary 
Key Description 

businessprocess VARCHAR 25 Yes Business process definition. 
 

 

TCODES table is another domain table, that holds the conversion of each activity type code, 

which belongs to a predefined business process in BUSINESSPROCESSES table. Since 

activity types are tracked by “language-independent” transaction codes in 

TRANSACTIONLOG table, FTCBPD methodology is localized in a flexible manner by 

TCODES table. This conversion is used especially in dependency/frequency and control flow 

graphs. Structure of TCODES table is stated below: 

 

Table A.6 Structure of TCODES Table  

 

Attribute Data Type Length Primary 
Key Description 

tcode VARCHAR 20 Yes Activity type of underlying tuple. 

businessprocess VARCHAR 25 Yes 
Related business process. 
Foreign key of BUSINESSPROCESSES and 
TCODES relation. 

ktext VARCHAR 59 No Definition of activity type. 
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APPENDIX B   Entity/Relationship (ER) Diagram 
 
 
 
Beside the classical representation of entity/relationship (ER) diagram, ER diagram of thesis 

database is in a relationless form. In fact, whenever an attribute of one entity type (i.e. table) 

refers to another entity type (i.e. table), some relationships exist. On the other hand in thesis 

database, a tuple in a table does not directly refer to another tuple in a distinct table except 

the relationship between TCODES and BUSINESSPROCESSES tables.  

 

Operations in FTCBPD methodology (similar to aggregate functions added to SQL-99 for 

more statistical calculations) convert “relatively raw” data into a more value-added formation 

and then populate this “intermediate” information into a distinct table. For instance, “Populate 

FROMTOCHART Table” operation constructs transaction streams by grouping tuples in 

TRANSACTIONLOG table due to caseID attribute and ordering these grouped tuples by time 

stamp (i.e. transactionlogdate and transactionlogtime attributes). Then each transition that 

exists in transaction streams are inserted into FROMTOCHART table. Consequently this 

value-chain-based approach implies three information levels as represented in ER diagram. 

  

On the other hand, a relationship exists between TCODES and BUSINESSPROCESSES 

tables to hold the assignment of transaction code to the business process.  
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Figure B.1 ER Diagram of thesis Database 
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APPENDIX C   An Example Run at ProMiner 
 
 
 
Step 1: Importing Event Logs 
First of all, source text file has to be constituted by order of transaction date, transaction 

time, originator, activity type and case identifier parameters. Additionally these parameters 

have to be separated by a semicolon (“;”) in the source file. A view of source file example is 

represented in Figure C.1. 

 

 

 
 

Figure C.1 A view of source file example 

 

In order to import event logs, select “Utilities> Import Tables> TransactionLog Table” short 

cut from the menu bar of ProMiner as represented in Figure C.2. 

 

 

 
 

Figure C.2 Import TRANSACTIONLOG table Application 
 

After clicking on “TransactionLog Table” menu item, a file chooser is displayed. End-user 

has to select the appropriate source file at this file chooser. By selecting the file, ProMiner 

replaces the existing records in TRANSACTIONLOG table with the prepared records in 
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source file. Thus ProMiner only takes the imported records into consideration in process 

model. 

In this example run, 500 process instances worth of 2379 records are imported to 

TRANSACTIONLOG table. Additionally the file path of the underlying source file is reflected 

to “Source File” view at the selection screen.  

 

 

 
 

Figure C.3 “Source File” View at Selection Screen 
 

 

Step 2: Defining Business Process 
If it is the first run of the discovered business process (domain), end-user has to introduce 

the business process to ProMiner. In order to define business process, select “Utilities> 

Define Business Process” short cut from the menu bar of ProMiner as represented in Figure 

C.4. 

 

 

 

 
Figure C.4 Define Transaction Code Application 

 

After clicking on “Define Business Process” menu item, a “Define Business Process” pop-up 

is displayed. At this pop-up, business process definition has to be entered. If business 

process definition exceeds the anticipated limit, an error message is displayed. Thus 

application is not completed successfully. 

 

 

 

 
Figure C.5 Define Business Process Pop-up 
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Step 3: Defining Transaction Codes of Discovered Business Process 
If it is the first run of the discovered business process (domain), end-user has to introduce 

the activity (transaction) codes domain information to ProMiner. In order to define transaction 

codes, select “Utilities> Define Transaction Code” short cut from the menu bar of ProMiner 

as represented in Figure C.6. 

 

 

 

 
Figure C.6 Define Transaction Code Application 

 

After clicking on “Define Transaction Code” menu item, a “Define Transaction Code” pop-up 

is displayed. At this pop-up, transaction code and transaction code definition data has to be 

entered and related business process has to be chosen from list of available business 

processes in the combo box. If one of the entered values exceeds the anticipated limit, an 

error message is displayed. Thus application is not completed successfully.  

 

 

 

 
Figure C.7 Define Transaction Code Pop-up 

 

 

Step 4: Setting the Parameters in Selection Screen 
Prior to executing process modeling, end-user has to set execution-related parameters in 

selection screen. Firstly, evaluation metrics and their threshold values are set by the radio 

buttons on “Threshold Values” view. Actually, threshold setting part is only activated in 

“Evaluate tally marks due to MST and MCT” evaluation metric selection. “Predetermine arc 

traffic in process modeling” check-box is marked in order to declare an upper-bound for 

transition number in discovered process model. 
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Figure C.8 “Threshold Values” View at Selection Screen 

 

Afterwards, concentrated business process is selected from the list of predefined business 

processes in the system. Due to the business process selection, activity (transaction) list at 

initiator transaction (activity) combo box is revised. End-user proposes the first transaction at 

discovered process model.  

 

In order to lessen back-tracking transitions in discovered process model, end-user can set 

higher penalty points to back-tracking type transitions by  buttons at “Back-tracking penalty 

point” field. Additionally one-step closed loops can be detected and eliminated at discovered 

process model by marking “Eliminate one-step closed loops” check-box.    

  

As the last parameter on “Process Modeling Factors” frame, AND/OR connection can be 

denoted on control flow graph due to AND threshold in the case of marking “Detect AND/OR 

connections” check-box. If this check-box is not marked, end-user cannot visualize control-

flow graph.  

 

 

 

 
Figure C.9 “Process Modeling Factors” View at Selection Screen 

 

At “Verification Parameters” view, end-user proposes verification method by radio buttons. In 

the case of cross-validation selection, fold number is set by  buttons. For holdout method, 

the fold number is set to 3, because of threefold cross-validation. 
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Figure C.10 Verification Parameters” View at Selection Screen 

 

In the end of setting operation, end-user clicks on   at the bottom of the 

selection screen to start up the process modeling. In this example run, parameters are set as 

presented in Figure C.11 

 

 

 

   
Figure C.11 Selection Screen View of ProMiner 

 

 

Step 5: Executing Process Modeling by FTCBPD Methodology 
 

 

Step 5.1: Creating and Populating FROMTOCHART Table 
Firstly, FROMTOCHART table is created in thesis database by a dynamic manner such that; 

activity types existing in TRANSACTIONLOG table are distinctly selected. Then new 

attributes are added to CREATE TABLE SQL statement in the name of selected activity 
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types additional to tcode attribute. In this aspect, WYSIWYC (what you see is what you 

create) philosophy is implemented in FROMTOCHART table creation.    

According to cross-validation with 20 folds verification method, 475 process instances in 

training dataset is grouped by case identifier and then lined up by transaction date and time 

in ascending order. Thus transaction streams are constructed. Afterwards, transitions in 

constructed transaction streams are inserted into FROMTOCHART table. In the end of 

populating FROMTOCHART table, row and column totals of activity types are calculated due 

to original (un-evaluated) tally marks and inserted into TALLYMARK table. Initial states of 

FROMTOCHART and TALLYMARK tables are presented in Table C.1 and Table C.2. 

 
Table C.1 Initial State of FROMTOCHART Table 
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pr_sy_trip01 0 288 104 45 38 0 0 

pr_sy_trip05 0 0 284 12 37 0 2 

pr_sy_trip08 0 0 1 4 22 318 131 

pr_sy_trip02 0 28 28 0 5 0 0 

pr_sy_trip03 0 19 60 0 0 13 28 

pr_sy_trip06 0 0 0 0 18 0 312 

pr_sy_trip07 0 0 0 0 0 0 0 
 

 

 Table C.2 Initial State of TALLYMARK Table  

 

tcode rowtotaltallymak columntotaltallymark 
pr_sy_trip01 475 0 
pr_sy_trip05 335 335 
pr_sy_trip08 476 477 
pr_sy_trip02 61 61 
pr_sy_trip03 120 120 
pr_sy_trip06 330 331 
pr_sy_trip07 0 473 

 

 

Step 4.2: Evaluating Tally Marks in FROMTOCHART Table due to MST and MCT 
Basic criteria in this operation can be formulated as follows: 
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Firstly tally marks that are smaller than 71.25 (calculated support threshold) are reset to zero 

globally as follows: 

 

  Table C.3 Evaluating Tally Marks due to Calculated Support Threshold 
 

tcode 

pr
_s

y_
tr

ip
01

 

pr
_s

y_
tr

ip
05

 

pr
_s

y_
tr

ip
08

 

pr
_s

y_
tr

ip
02

 

pr
_s

y_
tr

ip
03

 

pr
_s

y_
tr

ip
06

 

pr
_s

y_
tr

ip
07

 

 

C
al

cu
la

te
d 

Su
pp

or
t 

Th
re

sh
ol

d 

pr_sy_trip01 0 288 104 45 38 0 0  71.25 
pr_sy_trip05 0 0 284 12 37 0 2  71.25 
pr_sy_trip08 0 0 1 4 22 318 131  71.25 
pr_sy_trip02 0 28 28 0 5 0 0  71.25 
pr_sy_trip03 0 19 60 0 0 13 28  71.25 
pr_sy_trip06 0 0 0 0 18 0 312  71.25 
pr_sy_trip07 0 0 0 0 0 0 0  71.25 

 

 

Afterwards, tally marks that are smaller than local calculated confidence threshold are reset 

to zero. Theoretically calculated support threshold, global metric of FTCBPD methodology, 

acts as a upper-bound for tally marks in FROMTOCHART table, since total process instance 

is the maximum row total for unrepeated activity types. Therefore resetting operations are 

mostly performed due to this metric. Final state of FROMTOCHART table is presented in 

Table C.4. 

 

Table C.4 Evaluating Tally Marks due to Calculated Confidence Threshold 
 

tcode 

pr
_s

y_
tr

ip
01

 

pr
_s

y_
tr

ip
05

 

pr
_s

y_
tr

ip
08

 

pr
_s

y_
tr

ip
02

 

pr
_s

y_
tr

ip
03

 

pr
_s

y_
tr

ip
06

 

pr
_s

y_
tr

ip
07

 

 

C
al

cu
la

te
d 

C
on

fid
en

ce
 

Th
re

sh
ol

d 

pr_sy_trip01 0 288 104 0 0 0 0  71.25 
pr_sy_trip05 0 0 284 0 0 0 2  50.25 
pr_sy_trip08 0 0 0 0 0 318 131  71.4 
pr_sy_trip02 0 0 0 0 0 0 0  9.15 
pr_sy_trip03 0 0 0 0 0 0 0  18 
pr_sy_trip06 0 0 0 0 0 0 312  49.5 
pr_sy_trip07 0 0 0 0 0 0 0  0 

   

 

Step 4.3: Rearranging FROMTOCHART Table 
The core of this operation is the Permutation object, which generates activity sequences in 

the same number of activity types in FROMTOCHART table. If the initial element of 

generated activity sequence is different from the initiator transaction code set in Step 2, this 

outcome is discarded. Otherwise moment of this activity sequence is calculated according to 
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this objective function as stated in “Proposed Method” chapter: 

pijfZMin
N

i

N

j
ij ×−×= ∑∑

= =1 1
 

 

For instance, the first generated activity sequence is {pr_sy_trip01, pr_sy_trip05, 

pr_sy_trip08, pr_sy_trip02, pr_sy_trip03, pr_sy_trip06, pr_sy_trip07}.  

Thus calculated moment for this activity sequence is as follows: 

 

2570

3121

13143183

2841

10422881

=

×=

×+×=

×=

×+×=

momentCalculated

moment

moment

moment

moment

06pr_sy_trip
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05pr_sy_trip

01pr_sy_trip

 

 

If calculated moment value of one of the consequently generated activity sequences is 

smaller than the local optimum moment (i.e. minimum moment value during rearrangement 

operation), then local optimum activity sequence is revised. Since activities pr_sy_trip02, and 

pr_sy_trip03 increments the moment arms of activities pr_sy_trip06 and pr_sy_trip07, these 

activities have to be shifted to the end of activity sequence. Hence global optimum activity 

sequence is {pr_sy_trip01, pr_sy_trip05, pr_sy_trip08, pr_sy_trip02, pr_sy_trip03, 

pr_sy_trip06, pr_sy_trip07} with 1672 moment value. 

 

 

Step 4.4: Constructing Process Model 
After rearrangement of FROMTOCHART table, if tally mark of an element is greater than 

zero, this element indicates that the underlying transition represented by this element is 

worth to be taken into consideration in process model. Therefore from-to chart, which is a 

textual visualization form of discovered process model, is constructed as follows: 

 

Table C.5 From-to Chart 
 

Transaction Code Successive Transaction Codes 
pr_sy_trip01 pr_sy_trip05, pr_sy_trip08  
pr_sy_trip05 pr_sy_trip08 
pr_sy_trip08 pr_sy_trip06, pr_sy_trip07  
pr_sy_trip06 pr_sy_trip07 
pr_sy_trip07   
pr_sy_trip02   
pr_sy_trip03   
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Step 4.5: Eliminating One-Step Closed Loops 
Since there are not any one-step closed loops (i.e. one-step closed loops visually 

corresponds to elements with non-zero tally mark value that are in mirror-image position 

according to diagonal), this operation is skipped in this example. 

 

 

Step 4.6: Constructing AND/OR Connections in Discovered Process Model 
In this operation, connection score for each predecessor and successor pairs of every 

activity type in discovered process model is calculated. Connections, whose score is less 

than AND threshold set in Step 2, is labeled as OR-connection, otherwise connections are 

labeled as AND-threshold. Connection scores are calculated according this formula as 

stated in “Proposed Method” chapter: 
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As a result, there occur four AND-type connections in control flow graph of discovered 

process model.  

 

In the end of process modeling, two extra buttons are enabled next to “Execute” button. By 

clicking on  button, end-user can display the process model in distinct 

four forms that are ranged in complexity order as follows: 
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Figure C.12 Initial State of From-to Chart 

 

 

 
Figure C.13 Discovered Process Model in From-to Chart Form 
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Figure C.14 Discovered Process Model in Dependency/Frequency Graph Form 

 

 

 

  
Figure C.15 Discovered Process Model in Control Flow Graph Form 

 

 

By clicking on  on previous frame, connections that take place on control 

flow graph can be listed as follows:  
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Figure C.16 Connection List Frame 

 

 

For more details about the outputs of ProMiner, please read “From-to Chart Based Process 

Discovery (FTCBPD)” part in “Proposed Method” chapter. 

 

 

Step 6: Verifying Discovered Process Model 
According to 25 process instances (i.e. one-twentieth of 500 process instances due to cross-

validation with 20 folds verification method) 83 transitions in test dataset is handled correctly 

in discovered process model, while 6 transitions are missed. Thus completeness percentage 

of discovered process model is 93.258. Additionally end-user can learn more about other 

performance values (i.e. soundness, arc traffic, average transition length) by clicking on 

 button on the selection screen. 

 

 

 
  Figure C.17 Performance Values of Discovered Process Model 
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Step 7: Displaying Transaction Streams 
In the end of process modeling, ProMiner builds up all transaction streams (i.e. a form that is 

independent of originator and time stamp parameters) of all process instances (process 

instances in training and testing datasets)  and writes built transaction streams under the 

program folder as follows: 

 

 
  Figure C.18 Transaction Streams File  
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APPENDIX D   Linear Regression for Processing Time 
 
 
 

As starting point, a linear equation for unit processing time, yi, is parametrized according to 

operational-level complexity of FTCBPD methodology. 

 

5433
2

2
3

1 |||||||||||||!| ccATcPIATcATcPIATcATyi +×+××+×+××+×=  

 

Afterwards a linear regression is performed in WEKA to determine the coefficients, cjs. 

Run information of the linear regression is stated below: 

 
=== Run information === 
 
Scheme:       weka.classifiers.functions.LinearRegression -S 0 -R 
1.0E-8 
Relation:     unitProcessTime 
Instances:    396 
Attributes:   6 
              |AT|! 
              |AT|^3*|PI| 
              |AT|^2 
              |AT|*|PI| 
              |AT| 
              unitProcessTime 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
Linear Regression Model 
 
unitProcessTime = 
 
      0.0001 * |AT|! + 
      0      * |AT|^3*|PI| + 
     -0.6062 
 
Time taken to build model: 0.07 seconds 
 
=== Cross-validation === 
=== Summary === 
 
Correlation coefficient                  0.9971 
Mean absolute error                      0.5308 
Root mean squared error                  1.1023 
Relative absolute error                  3.9817 % 
Root relative squared error              7.6486 % 
Total Number of Instances                396      
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APPENDIX E   Linear Regression for Size 

 
 
 

=== Run information === 
 
Scheme:       weka.classifiers.functions.LinearRegression -S 0 -R 
1.0E-8 
Relation:     size 
Instances:    18 
Attributes:   2 
              |AT|*|PI| 
              size 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
Linear Regression Model 
 
size = 
 
      0.0715 * |AT|*|PI|+ 
     -4.4412 
 
Time taken to build model: 0.01 seconds 
 
=== Cross-validation === 
=== Summary === 
 
Correlation coefficient                  0.9233 
Mean absolute error                     34.3501 
Root mean squared error                 41.3324 
Relative absolute error                 40.0428 % 
Root relative squared error             38.4517 % 
Total Number of Instances               18      
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APPENDIX F   Dependent Means T-Test  
for Two Versions of Modified Lift 

 
 

 

In this dependent means t-test, it is aimed to interpret the effect of additional evaluation 

procedure (i.e. multiplying negatively correlated tally mark by minus one) on discovered 

process model. As the measure of this effect, average length of transition is used. As a test 

bed, 36 observations of modified and classical lift evaluation metrics are compared in this 

test. 

 

Calculated t-value is used to decide between two statistical hypotheses: 

 H0: There is not a clear distinction between two versions of mofied lift evaluation 

metrics (μMODIFIED LIFT TWO-BRANCH  = μMODIFIED LIFT TWO-BRANCH). 

 HA: The population evaluated due to modified lift three-branch use has a higher 

average transition length than modified lift two-branch use (μMODIFIED LIFT THREE-BRANCH 

> μMODIFIED LIFT TWO-BRANCH). 

 

36 observations varying due to the amount of information in event log (i.e. process instance 

number) and verification method fold number are as follows: 

  

Table F.1 Observations 
 

RunID Run  
Characteristics 

Modified  
Lift 

3-Branch  
Use 

Modified  
Lift 

2-Branch  
Use 

D  RunID Run  
Characteristics 

Modified  
Lift 

3-Branch 
Use 

Modified  
Lift 

2-Branch 
Use 

D  RunID Run  
Characteristics 

Modified  
Lift 

3-Branch  
Use 

Modified  
Lift 

2-Branch 
Use 

D 

1 

Holdout 
backtracking 
pp=2 
100 process 
instances 

2.09 1.55 0.54 

 

13 

Holdout 
backtracking 
pp=2 
300 process 
instances 

2.00 1.54 0.46 

 

25 

Holdout 
backtracking 
pp=2 
500 process 
instances 

1.71 1.71 0.00 

2 

CV with 10-fold 
backtracking 
pp=2 
100 process 
instances 

1.44 1.44 0.00 

 

14 

CV with 10-fold 
backtracking 
pp=2 
300 process 
instances 

1.93 1.64 0.29 

 

26 

CV with 10-fold 
backtracking 
pp=2 
500 process 
instances 

1.62 1.62 0.00 

3 

CV with 20-fold 
backtracking 
pp=2 
100 process 
instances 

1.60 1.60 0.00 

 

15 

CV with 20-fold 
backtracking 
pp=2 
300 process 
instances 

1.93 1.64 0.29 

 

27 

CV with 20-fold 
backtracking 
pp=2 
500 process 
instances 

1.62 1.62 0.00 

4 

CV with 30-fold 
backtracking 
pp=2 
100 process 
instances 

1.44 1.29 0.15 

 

16 

CV with 30-fold 
backtracking 
pp=2 
300 process 
instances 

1.93 1.64 0.29 

 

28 

CV with 30-fold 
backtracking 
pp=2 
500 process 
instances 

1.62 1.62 0.00 

5 

CV with 40-fold 
backtracking 
pp=2 
100 process 
instances 

1.44 1.44 0.00 

 

17 

CV with 40-fold 
backtracking 
pp=2 
300 process 
instances 

1.93 1.64 0.29 

 

29 

CV with 40-fold 
backtracking 
pp=2 
500 process 
instances 

1.62 1.62 0.00 

6 

CV with 50-fold 
backtracking 
pp=2 
100 process 
instances 

1.44 1.44 0.00 

 

18 

CV with 50-fold 
backtracking 
pp=2 
300 process 
instances 

1.93 1.64 0.29 

 

30 

CV with 50-fold 
backtracking 
pp=2 
500 process 
instances 

1.62 1.62 0.00 

7 

Holdout 
backtracking 
pp=2 
200 process 
instances 

1.92 1.54 0.38 

 

19 

Holdout 
backtracking 
pp=2 
400 process 
instances 

1.62 1.62 0.00 

 

31 

Holdout 
backtracking 
pp=2 
600 process 
instances 

1.73 1.64 0.09 

8 

CV with 10-fold 
backtracking 
pp=2 
200 process 
instances 

1.54 1.62 -0.08 

 

20 

CV with 10-fold 
backtracking 
pp=2 
400 process 
instances 

1.62 1.62 0.00 

 

32 

CV with 10-fold 
backtracking 
pp=2 
600 process 
instances 

1.62 1.62 0.00 
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RunID Run  
Characteristics 

Modified  
Lift 

3-Branch  
Use 

Modified  
Lift 

2-Branch  
Use 

D  RunID Run  
Characteristics 

Modified  
Lift 

3-Branch 
Use 

Modified  
Lift 

2-Branch 
Use 

D  RunID Run  
Characteristics 

Modified  
Lift 

3-Branch  
Use 

Modified  
Lift 

2-Branch 
Use 

D 

9 

CV with 20-fold 
backtracking 
pp=2 
200 process 
instances 

1.54 1.62 -0.08 

 

21 

CV with 20-fold 
backtracking 
pp=2 
400 process 
instances 

1.62 1.62 0.00 

 

33 

CV with 20-fold 
backtracking 
pp=2 
600 process 
instances 

1.62 1.62 0.00 

10 

CV with 30-fold 
backtracking 
pp=2 
200 process 
instances 

1.54 1.62 -0.08 

 

22 

CV with 30-fold 
backtracking 
pp=2 
400 process 
instances 

1.62 1.62 0.00 

 

34 

CV with 30-fold 
backtracking 
pp=2 
600 process 
instances 

1.62 1.62 0.00 

11 

CV with 40-fold 
backtracking 
pp=2 
200 process 
instances 

1.54 1.62 -0.08 

 

23 

CV with 40-fold 
backtracking 
pp=2 
400 process 
instances 

1.62 1.62 0.00 

 

35 

CV with 40-fold 
backtracking 
pp=2 
600 process 
instances 

1.62 1.62 0.00 

12 

CV with 50-fold 
backtracking 
pp=2 
200 process 
instances 

1.54 1.62 -0.08 

 

24 

CV with 50-fold 
backtracking 
pp=2 
400 process 
instances 

1.62 1.62 0.00 

 

36 

CV with 50-fold 
backtracking 
pp=2 
600 process 
instances 

1.62 1.62 0.00 

 

 

t-value Calculation: 

( )
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−
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∑

n
DDn

D
t  

 
 
The parameters used in the formula are: 

D  is the difference for a single observation. 
n  is the total observation number. 

 

7260.2
9795.0
67.2

35
5763.33
67.2

35
1289.71307.136
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≅==

−×
=t  

 
 
Dependent means t-test is summarized as follows: 
 

Table F.2 Dependent Means T-Test Summary 
 

t-Test: Paired Two Sample for Means 
   

  
Modified Lift  
3-Branch Use 

Modified Lift  
2-Branch Use 

Mean 1.668888889 1.594722222 
Variance 0.029484444 0.006048492 
Observations 36 36 
Pearson Correlation 0.332668196  
Hypothesized Mean Difference 0  
df 35  
t Stat 2.726018917  
P(T<=t) one-tail 0.00497253  
t Critical one-tail 1.68957244  
P(T<=t) two-tail 0.00994506  
t Critical two-tail 2.030107915   

 
Since t0.05, 35 (2.0301) is smaller than calculated t-value (2.7260), null hypothesis, H0, is 
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rejected. Thus it is concluded that, the population evaluated due to modified lift three-branch 

use has a higher average transition length than modified lift two-branch use (μMODIFIED LIFT 

THREE-BRANCH > μMODIFIED LIFT TWO-BRANCH). In other words, additional evaluation procedure (i.e. 

multiplying negatively correlated tally mark by minus one) significantly increases average 

(and total) length of the transitions in the discovered process model. 
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APPENDIX G   Dependent Means T-Test 

for Gradually Increasing MST 
 
 
 

In this dependent means t-test, it is aimed to interpret basic discrepancies in completeness 

key performance metric between minimum support threshold (MST) and modified lift 

evaluation metrics. Therefore 30 observations evaluated by gradually increasing MST and 

modified lift are compared in this test. 

 

Calculated t-value is used to decide between two statistical hypotheses: 

1. H0: There is not a clear distinction between gradually increasing MST and modified 

lift with respect to completeness (μGRADUALLY INCREASING MST = μMODIFIED LIFT). 

2. HA: The population evaluated due to modified lift has a higher completeness ratio 

than slightly increasing MST (μMODIFIED LIFT > μGRADUALLY INCREASING MST). 

 

30 observations varying due to the amount of information in event log (i.e. number of 

process instances) are as follows: 

 
Table G.1 Observations 

 
RunID Run 

Characteristics 

Gradually  
Increasing 

MST 

Modified  
Lift D  RunID Run 

Characteristics 

Gradually 
Increasing 

MST 

Modified
Lift D  RunID Run 

Characteristics 

Gradually  
Increasing  

MST 

Modified
Lift D 

1 

100 PIN 
CV with 10-fold 
backtracking 
pp=2 

97.368 90.476 6.892 

 

11 

300 PIN
CV with 10-fold 
backtracking 
pp=2 

92.373 96.610 -4.237 

 

21 

500 PIN 
CV with 10-fold 
backtracking 
pp=2 

88.235 89.189 -0.954 

2 

100 PIN 
CV with 10-fold 
backtracking 
pp=2 

95.000 90.476 4.524 

 

12 

300 PIN
CV with 10-fold 
backtracking 
pp=2 

88.393 96.610 -8.217 

 

22 

500 PIN 
CV with 10-fold 
backtracking 
pp=2 

88.235 89.189 -0.954 

3 

100 PIN 
CV with 10-fold 
backtracking 
pp=2 

92.500 90.476 2.024 

 

13 

300 PIN
CV with 10-fold 
backtracking 
pp=2 

86.441 96.610 -10.169 

 

23 

500 PIN 
CV with 10-fold 
backtracking 
pp=2 

86.096 89.189 -3.093 

4 

100 PIN 
CV with 10-fold 
backtracking 
pp=2 

92.500 90.476 2.024 

 

14 

300 PIN
CV with 10-fold 
backtracking 
pp=2 

84.746 96.610 -11.864 

 

24 

500 PIN 
CV with 10-fold 
backtracking 
pp=2 

86.096 89.189 -3.093 

5 

100 PIN 
CV with 10-fold 
backtracking 
pp=2 

85.000 90.476 -5.476 

 

15 

300 PIN
CV with 10-fold 
backtracking 
pp=2 

81.356 96.610 -15.254 

 

25 

500 PIN 
CV with 10-fold 
backtracking 
pp=2 

86.096 89.189 -3.093 

6 

200 PIN 
CV with 10-fold 
backtracking 
pp=2 

93.902 92.593 1.309 

 

16 

400 PIN
CV with 10-fold 
backtracking 
pp=2 

89.189 89.865 -0.676 

 

26 

600 PIN 
CV with 10-fold 
backtracking 
pp=2 

89.732 91.518 -1.786 

7 

200 PIN 
CV with 10-fold 
backtracking 
pp=2 

85.185 92.593 -7.408 

 

17 

400 PIN
CV with 10-fold 
backtracking 
pp=2 

89.189 89.865 -0.676 

 

27 

600 PIN 
CV with 10-fold 
backtracking 
pp=2 

84.753 91.518 -6.765 

8 

200 PIN 
CV with 10-fold 
backtracking 
pp=2 

83.951 92.593 -8.642 

 

18 

400 PIN
CV with 10-fold 
backtracking 
pp=2 

85.135 89.865 -4.730 

 

28 

600 PIN 
CV with 10-fold 
backtracking 
pp=2 

84.753 91.518 -6.765 

9 

200 PIN 
CV with 10-fold 
backtracking 
pp=2 

77.632 92.593 -14.961 

 

19 

400 PIN
CV with 10-fold 
backtracking 
pp=2 

85.135 89.865 -4.730 

 

29 

600 PIN 
CV with 10-fold 
backtracking 
pp=2 

84.753 91.518 -6.765 

10 

200 PIN 
CV with 10-fold 
backtracking 
pp=2 

76.543 92.593 -16.050 

 

20 

400 PIN
CV with 10-fold 
backtracking 
pp=2 

80.405 89.865 -9.460 

 

30 

600 PIN 
CV with 10-fold 
backtracking 
pp=2 

84.753 91.518 -6.765 
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t-value Calculation: 

( )
1

22

−

−×
=

∑ ∑
∑

n
DDn

D
t  

 
The parameters used in the formula are: 

D  is the difference for a single observation. 

n  is the total observation number. 

 

7151.4
924.30
810.145

29
359.27732

810.145

29
556.21260097.163330

810.145
≅==

−×
=t  

 

Dependent means t-test is summarized as follows: 
 

Table G.2 Dependent Means T-Test Summary 
 

t-Test: Paired Two Sample for Means 
   

  Modified Lift Gradually 
Increasing MST 

Mean 91.7085 86.84816667 
Variance 6.225648534 22.54805214 
Observations 30 30 
Pearson Correlation -0.130931841  
Hypothesized Mean Difference 0  
df 29  
t Stat 4.715121687  
P(T<=t) one-tail 2.80E-05  
t Critical one-tail 1.699126996  
P(T<=t) two-tail 5.60E-05  
t Critical two-tail 2.045229611   

 

 

Since t0.05, 29 (2.0452) is smaller than calculated t-value (4.7151), null hypothesis, H0, is 

rejected. Thus it is concluded that, completeness obtained by modified lift is better than the 

performance of gradually increasing MST in accuracy perspective (μMODIFIED LIFT > μGRADUALLY 

INCREASING MST).  
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APPENDIX H   Dependent Means T-Test  
for Gradually Increasing MCT 

 
 
 

In this dependent means t-test, it is aimed to interpret basic discrepancies in completeness 

key performance metric between minimum confidence threshold (MCT) and modified lift 

evaluation metrics. Therefore 30 observations evaluated by gradually increasing MCT and 

modified lift are compared in this test. 

 

Calculated t-value is used to decide between two statistical hypotheses: 

3. H0: There is not a clear distinction between gradually increasing MCT and modified 

lift with respect to completeness (μGRADUALLY INCREASING MCT = μMODIFIED LIFT). 

4. HA: The population evaluated due to modified lift has a higher completeness ratio 

than slightly increasing MCT (μMODIFIED LIFT > μGRADUALLY INCREASING MCT). 

 

30 observations varying due to the amount of information in event log (i.e. process instance 

number) are as follows: 

 
Table H.1 Observations 

 
 
 
 
 

RunID Run 
Characteristics 

Gradually 
Increasing 

MCT 

Modified 
Lift D  RunID Run 

Characteristics 

Gradually 
Increasing

MCT 

Modified
Lift D  RunID Run 

Characteristics 

Gradually 
Increasing 

MCT 

Modified
Lift D 

1 
100 PIN 
CV with 10-fold 
backtracking pp=2 

97.368 90.476 6.892 

 

11 
300 PIN 
CV with 10-fold 
backtracking pp=2 

92.373 96.610 -4.237 

 

21 
500 PIN 
CV with 10-fold 
backtracking pp=2 

88.235 89.189 -0.954 

2 
100 PIN 
CV with 10-fold 
backtracking pp=2 

97.368 90.476 6.892 
 

12 
300 PIN 
CV with 10-fold 
backtracking pp=2 

91.071 96.610 -5.539 
 

22 
500 PIN 
CV with 10-fold 
backtracking pp=2 

88.235 89.189 -0.954 

3 
100 PIN 
CV with 10-fold 
backtracking pp=2 

95.000 90.476 4.524 
 

13 
300 PIN 
CV with 10-fold 
backtracking pp=2 

88.393 96.610 -8.217 
 

23 
500 PIN 
CV with 10-fold 
backtracking pp=2 

88.235 89.189 -0.954 

5 
100 PIN 
CV with 10-fold 
backtracking pp=2 

87.500 90.476 -2.976 
 

15 
300 PIN 
CV with 10-fold 
backtracking pp=2 

83.929 96.610 -12.681 
 

25 
500 PIN 
CV with 10-fold 
backtracking pp=2 

88.235 89.189 -0.954 

6 
200 PIN 
CV with 10-fold 
backtracking pp=2 

93.902 92.593 1.309 
 

16 
400 PIN
CV with 10-fold 
backtracking pp=2 

89.189 89.865 -0.676 
 

26 
600 PIN 
CV with 10-fold 
backtracking pp=2 

89.732 91.518 -1.786 

7 
200 PIN 
CV with 10-fold 
backtracking pp=2 

90.244 92.593 -2.349 
 

17 
400 PIN
CV with 10-fold 
backtracking pp=2 

89.189 89.865 -0.676 
 

27 
600 PIN 
CV with 10-fold 
backtracking pp=2 

87.892 91.518 -3.626 

8 
200 PIN 
CV with 10-fold 
backtracking pp=2 

90.000 92.593 -2.593 
 

18 
400 PIN
CV with 10-fold 
backtracking pp=2 

89.189 89.865 -0.676 
 

28 
600 PIN 
CV with 10-fold 
backtracking pp=2 

87.892 91.518 -3.626 

9 
200 PIN 
CV with 10-fold 
backtracking pp=2 

85.526 92.593 -7.067 
 

19 
400 PIN
CV with 10-fold 
backtracking pp=2 

89.189 89.865 -0.676 
 

29 
600 PIN 
CV with 10-fold 
backtracking pp=2 

87.892 91.518 -3.626 

10 
200 PIN 
CV with 10-fold 
backtracking pp=2 

82.500 92.593 -10.093 
 

20 
400 PIN
CV with 10-fold 
backtracking pp=2 

84.459 89.865 -5.406 
 

30 
600 PIN 
CV with 10-fold 
backtracking pp=2 

87.892 91.518 -3.626 
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t-value Calculation: 

( )
1

22

−

−×
=

∑ ∑
∑

n
DDn

D
t  

 

The parameters used in the formula are: 

D  is the difference for a single observation. 

n  is the total observation number. 

 

8140.2
213.25
950.70

29
333.18435

950.70

29
903.5033308.78230

950.70
≅==

−×
=t  

 
Dependent means t-test is summarized as follows: 
 

Table H.2 Dependent Means T-Test Summary 
 

t-Test: Paired Two Sample for Means 
   

 Modified Lift Gradually 
Increasing MCT 

Mean 91.7085 89.3435 
Variance 6.225648534 12.72714509 
Observations 30 30 
Pearson Correlation -0.125668257  
Hypothesized Mean Difference 0  
df 29  
t Stat 2.814011752  
P(T<=t) one-tail 4.35E-03  
t Critical one-tail 1.699126996  
P(T<=t) two-tail 8.70E-03  
t Critical two-tail 2.045229611   

 

 

Since t0.05, 29 (2.0452) is smaller than calculated t-value (2.8140), null hypothesis, H0, is 

rejected. Thus it is concluded that, completeness obtained by modified lift is better than the 

performance of gradually increasing MCT in accuracy perspective (μMODIFIED LIFT > μGRADUALLY 

INCREASING MCT).  

 

Although, previous and current dependent means t-tests emphasize that; discovered 

process model based on modified lift evaluation metric serves better correspondence to the 

behaviors exhibited in testing population, closeness of calculated t-value (2.81) to tabled t-
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value (2.04) in this test (i.e. smallness of difference in each observation, namely Di, to zero) 

highlights the tendency of modified lift towards representing transitions (patterns) with higher 

confidence and lower support values.  
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APPENDIX I   Optimum Control Flow Graphs 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 170

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 171

 

 

 

 

 

 

 

 

 

 



 
 

                                                               172 
 

 APPENDIX J1   Runtime Data (With respect to Number of Process Instances) Credit Card Application Business Process 
                           
                           
 TABLE J1.1 – COMPLETENESS (%)                     

|P
I|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking 

pp=2 

Modified Lift 
CV with 10-fold 
backtracking 

pp=2 
 

|P
I|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold 
backtracking 

pp=2  

|P
I|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=5 

100 94.828 94.828 94.828 94.828 94.828 94.828 94.828 94.828 77.586 77.586 94.848  100 87.815 94.828 96.429 100.000 100.000 100.000  100 94.828 94.828 94.828 94.828 94.828 

200 92.742 92.742 92.742 92.742 92.742 92.742 92.742 92.742 76.613 76.613 92.742  200 97.064 92.742 94.828 100.000 100.000 100.000  200 92.742 92.742 92.742 92.742 92.742 

300 89.706 89.706 89.706 89.706 89.706 89.705 89.706 89.706 75.000 75.000 89.706  300 86.364 89.705 93.407 94.828 95.556 100.000  300 89.706 89.705 89.706 89.706 89.706 

400 88.339 88.339 88.339 88.339 88.339 88.339 88.339 88.339 74.205 74.205 88.339  400 86.714 88.339 92.742 97.297 94.828 95.918  400 88.339 88.339 88.339 88.339 88.339 

500 86.364 86.364 86.364 86.364 86.364 86.364 86.364 86.364 72.995 72.995 86.364  500 86.640 86.364 88.889 89.381 93.151 94.828  500 86.364 86.364 86.364 86.364 86.364 

600 87.500 87.500 87.500 87.500 87.500 87.500 87.500 87.500 73.611 73.611 87.500  600 86.364 87.500 89.706 92.742 93.407 91.139  600 87.500 87.500 87.500 87.500 87.500 
             
 TABLE J1.2 – SOUNDNESS (%)                

|P
I|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking 

pp=2 

Modified Lift 
CV with 10-fold 
backtracking 

pp=2 
 

|P
I|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold 
backtracking 

pp=2  

|P
I|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=5 

100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  100 0.000 0.000 0.000 28.571 28.571 28.571  100 0.000 0.000 0.000 0.000 0.000 

200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  200 0.000 0.000 0.000 14.286 14.286 14.286  200 0.000 0.000 0.000 0.000 0.000 

300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  300 0.000 0.000 0.000 0.000 0.000 14.286  300 0.000 0.000 0.000 0.000 0.000 

400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  400 0.000 0.000 0.000 0.000 0.000 0.000  400 0.000 0.000 0.000 0.000 0.000 

500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  500 0.000 0.000 0.000 0.000 0.000 0.000  500 0.000 0.000 0.000 0.000 0.000 

600 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  600 0.000 0.000 0.000 0.000 0.000 0.000  600 0.000 0.000 0.000 0.000 0.000 
             
 TABLE J1.3 – ARC TRAFFIC (transition number per transaction)                

|P
I|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking 

pp=2 

Modified Lift 
CV with 10-fold 
backtracking 

pp=2 
 

|P
I|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold 
backtracking 

pp=2  

|P
I|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=5 

100 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.75 0.75 0.88  100 0.88 0.88 0.88 0.88 0.88 0.88  100 0.88 0.88 0.88 0.88 0.88 

200 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.75 0.75 0.88  200 0.88 0.88 0.88 0.88 0.88 0.88  200 0.88 0.88 0.88 0.88 0.88 

300 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.75 0.75 0.88  300 0.88 0.88 0.88 0.88 0.88 0.88  300 0.88 0.88 0.88 0.88 0.88 

400 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.75 0.75 0.88  400 0.88 0.88 0.88 0.88 0.88 0.88  400 0.88 0.88 0.88 0.88 0.88 

500 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.75 0.75 0.88  500 0.88 0.88 0.88 0.88 0.88 0.88  500 0.88 0.88 0.88 0.88 0.88 

600 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.75 0.75 0.88  600 0.88 0.88 0.88 0.88 0.88 0.88  600 0.88 0.88 0.88 0.88 0.88 
             
 TABLE J1.4 – TOTAL PROCESSING TIME (sec.)                

|P
I|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking 

pp=2 

Modified Lift 
CV with 10-fold 
backtracking 

pp=2 
 

|P
I|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold 
backtracking 

pp=2  

|P
I|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=5 

100 37.86 37.86 37.56 38.15 40.16 37.86 37.92 38.44 38.06 39.06 38.63  100 13.42 37.86 75.67 113.590 151.56 192.11  100 39.22 37.86 39.42 38.86 39.88 

200 45.48 45.85 45.12 45.30 44.77 45.48 44.95 44.50 44.42 44.70 45.73  200 14.35 45.48 90.80 135.68 182.46 225.83  200 46.79 45.48 46.15 46.17 46.09 

300 55.25 57.45 54.01 53.70 54.20 55.25 54.70 54.70 54.42 54.32 56.05  300 17.09 55.25 110.14 162.22 216.16 275.02  300 54.86 55.25 55.59 55.74 55.27 

400 66.59 66.19 66.23 66.11 66.65 66.59 66.29 66.62 65.51 66.87 66.90  400 22.41 66.59 133.42 189.34 266.60 336.81  400 66.65 66.59 66.58 66.52 66.78 

500 80.34 78.33 80.49 78.54 81.53 80.34 78.17 79.20 79.18 79.89 80.44  500 25.89 80.34 163.65 242.53 327.95 409.24  500 80.74 80.34 83.54 80.64 80.56 

600 97.20 94.58 93.68 94.63 94.18 97.20 93.89 96.84 95.68 95.16 96.51  600 31.75 97.20 193.94 284.19 377.85 467.92  600 96.87 97.20 96.78 98.32 97.64 
             
 TABLE J1.5 – TOTAL SIZE (KB)                

|P
I|

 

businessprocesses 
table 

fromtochart 
table 

transactionlog 
tuple number 

initialfromtochart 
table 

tallymark 
table 

tcodes 
table 

transactionlog 
table 

TOTAL 
SIZE 

    

 

       

 

     

100 2.1 2.3 848 2.2 2.2 2.9 66.2 77.9                   

200 2.1 2.3 1696 2.3 2.2 2.9 107.4 119.2                   

300 2.1 2.3 2544 2.3 2.2 2.9 147.7 159.5                   

400 2.1 2.3 3392 2.3 2.2 2.9 195.9 207.7                   

500 2.1 2.3 4240 2.3 2.2 2.9 237.1 248.9                   

600 2.1 2.3 5088 2.3 2.2 2.9 281.3 293.1                   
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 APPENDIX J2   Runtime Data (With respect to Number of Process Instances) Repair Business Process 
                           
                           

 TABLE J2.1 – COMPLETENESS (%)                     

|P
I|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold
backtracking 

pp=2 

Modified Lift 
CV with 10-fold
backtracking 

pp=2 

 

|P
I|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold
backtracking 

pp=2 
 

|P
I|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=5 

100 98.611 98.611 98.611 98.611 98.611 98.611 98.611 95.833 75.000 62.500 98.611  100 97.321 98.611 100.000 100.000 100.000 100.000  100 98.611 98.611 98.611 98.611 98.611 

200 96.250 96.250 96.250 96.250 96.250 96.250 96.250 88.750 62.500 62.500 96.250  200 100.000 96.250 97.222 100.000 100.000 100.000  200 96.250 96.250 96.250 96.250 96.250 

300 97.596 97.596 97.596 97.596 97.596 97.596 97.596 97.596 62.500 62.500 97.596  300 95.296 97.596 99.038 98.611 100.000 100.000  300 97.596 97.596 97.596 97.596 97.596 

400 96.382 96.382 96.382 96.382 96.382 96.382 96.382 96.382 62.500 62.500 96.382  400 94.657 96.382 98.611 98.077 98.611 98.214  400 96.382 96.382 96.382 96.382 96.382 

500 96.543 96.543 96.543 96.543 96.543 96.543 96.543 96.543 62.500 62.500 96.543  500 94.792 96.543 96.875 97.656 97.115 98.611  500 96.543 96.543 96.543 96.543 96.543 

600 95.474 95.474 95.474 95.474 95.474 95.474 95.474 95.474 62.500 62.500 95.474  600 94.361 95.474 96.875 95.833 98.333 97.727  600 95.474 95.474 95.474 95.474 95.747 
             
 TABLE J2.2 – SOUNDNESS (%)                

|P
I|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold
backtracking 

pp=2 

Modified Lift 
CV with 10-fold
backtracking 

pp=2 

 

|P
I|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold
backtracking 

pp=2 
 

|P
I|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=5 

100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  100 0.000 0.000 20.000 20.000 20.000 20.000  100 0.000 0.000 0.000 0.000 0.000 

200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  200 20.000 0.000 0.000 20.000 20.000 20.000  200 0.000 0.000 0.000 0.000 0.000 

300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  300 20.000 0.000 0.000 0.000 20.000 20.000  300 0.000 0.000 0.000 0.000 0.000 

400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  400 0.000 0.000 0.000 0.000 0.000 0.000  400 0.000 0.000 0.000 0.000 0.000 

500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  500 0.000 0.000 0.000 0.000 0.000 0.000  500 0.000 0.000 0.000 0.000 0.000 

600 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  600 0.000 0.000 0.000 0.000 0.000 0.000  600 0.000 0.000 0.000 0.000 0.000 
             

 TABLE J2.3 - ARC TRAFFIC (transition number per transaction)                

|P
I|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold
backtracking 

pp=2 

Modified Lift 
CV with 10-fold
backtracking 

pp=2 

 

|P
I|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold
backtracking 

pp=2 
 

|P
I|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=5 

100 1.11 1.11 1.11 1.11 1.11 1.11 1.11 0.89 0.89 0.56 1.11  100 1.11 1.11 1.11 1.11 1.11 1.11  100 1.11 1.11 1.11 1.11 1.11 

200 1.11 1.11 1.11 1.11 1.11 1.11 1.11 0.89 0.56 0.56 1.11  200 1.11 1.11 1.11 1.11 1.11 1.11  200 1.11 1.11 1.11 1.11 1.11 

300 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 0.56 0.56 1.11  300 1.11 1.11 1.11 1.11 1.11 1.11  300 1.11 1.11 1.11 1.11 1.11 

400 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 0.56 0.56 1.11  400 1.11 1.11 1.11 1.11 1.11 1.11  400 1.11 1.11 1.11 1.11 1.11 

500 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 0.56 0.56 1.11  500 1.11 1.11 1.11 1.11 1.11 1.11  500 1.11 1.11 1.11 1.11 1.11 

600 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 0.56 0.56 1.11  600 1.11 1.11 1.11 1.11 1.11 1.11  600 1.11 1.11 1.11 1.11 1.11 
             

 TABLE J2.4 – TOTAL PROCESSING TIME (sec.)                

|P
I|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold
backtracking 

pp=2 

Modified Lift 
CV with 10-fold
backtracking 

pp=2 

 

|P
I|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold
backtracking 

pp=2 
 

|P
I|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=5 

100 304.52 299.41 311.89 302.32 304.40 304.52 304.38 304.82 304.06 305.42 310.40  100 93.77 304.52 608.08 915.97 1226.97 1529.78  100 308.55 304.52 309.15 305.44 311.41 

200 319.68 334.15 320.80 317.47 321.96 319.68 320.13 318.03 314.02 313.97 341.42  200 94.51 319.68 636.92 932.54 1252.50 1557.58  200 363.55 319.68 367.09 362.68 367.14 

300 325.61 332.17 330.06 330.51 330.76 325.61 331.98 335.79 335.10 333.17 328.86  300 104.97 325.61 664.88 991.67 1341.87 1616.75  300 327.78 325.61 328.99 330.18 332.29 

400 347.75 360.21 357.94 358.39 361.47 347.75 355.66 353.56 347.20 347.10 352.51  400 106.61 347.75 692.39 1027.67 1355.01 1685.10  400 355.65 347.75 346.53 349.14 351.65 

500 350.66 378.69 377.64 376.98 377.38 350.66 371.21 380.36 382.38 404.08 360.87  500 108.79 350.66 760.50 1023.14 1380.84 1814.70  500 347.16 350.66 351.25 350.38 351.86 

600 322.98 397.30 395.79 397.84 404.67 322.98 479.45 412.52 402.87 414.25 381.25  600 114.65 322.98 746.83 1115.22 1503.22 1847.64  600 381.36 322.98 382.29 382.59 382.53 
             

 TABLE J2.5 – TOTAL SIZE (KB)                

|P
I|

 

businessprocesses 
table 

fromtochart 
table 

transactionlog 
tuple number 

initialfromtochart 
table 

tallymark 
table 

tcodes 
table 

transactionlog 
table 

TOTAL 
SIZE 

    

 

       

 

     

100 2.1 2.3 836 2.4 2.2 2.7 78.9 90.6                   

200 2.1 2.3 1688 2.4 2.2 2.7 157.4 169.1                   

300 2.1 2.3 2532 2.3 2.2 2.7 227.6 239.2                   

400 2.1 2.3 3392 2.4 2.2 2.7 302.4 314.1                   

500 2.1 2.3 4228 2.3 2.2 2.7 382.3 393.9                   

600 2.1 2.3 5080 2.3 2.2 2.7 455.8 467.4                   
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 APPENDIX J3   Runtime Data (With respect to Number of Process Instances) Travel Management Business Process 
                           
                           
 TABLE J3.1 – COMPLETENESS (%)                     

|P
I|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold
backtracking 

pp=2 

Modified Lift 
CV with 10-fold
backtracking 

pp=2 

 

|P
I|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold
backtracking 

pp=2 
 

|P
I|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=5 

100 97.368 95.000 92.500 92.500 85.000 97.368 87.500 87.500 87.500 62.500 90.476  100 93.333 97.368 100.000 100.000 100.000 100.000  100 97.368 97.368 97.368 97.368 97.368 

200 93.902 85.185 83.951 77.632 76.543 93.902 79.310 77.011 72.840 19.540 92.593  200 91.822 93.902 97.500 100.000 100.000 100.000  200 93.902 93.902 93.902 93.902 93.902 

300 92.373 88.393 86.441 84.746 81.356 92.373 77.966 77.966 76.271 34.146 96.610  300 89.717 92.373 96.552 100.000 100.000 100.000  300 92.373 92.373 92.373 92.373 92.373 

400 89.189 89.189 85.135 85.135 80.405 89.189 82.581 78.065 67.105 38.065 89.865  400 86.536 89.189 94.521 91.304 97.368 100.000  400 89.189 89.189 89.189 89.189 89.189 

500 88.235 88.235 86.096 86.096 86.096 88.235 83.243 75.936 57.754 37.433 89.189  500 86.319 88.235 94.382 93.103 97.826 100.000  500 88.235 88.235 88.235 88.235 88.235 

600 89.732 84.753 84.753 84.753 84.753 89.732 82.960 75.336 56.250 36.607 91.518  600 88.005 89.732 94.444 93.333 94.545 100.000  600 89.732 89.732 89.732 89.732 89.732 
            
 TABLE J3.2 – SOUNDNESS (%)                

|P
I|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold
backtracking 

pp=2 

Modified Lift 
CV with 10-fold
backtracking 

pp=2 

 

|P
I|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold
backtracking 

pp=2 
 

|P
I|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=5 

100 0.000 0.000 25.000 14.286 0.000 0.000 16.667 16.667 16.667 0.000 11.111  100 0.000 0.000 0.000 55.556 33.333 55.556  100 0.000 0.000 0.000 0.000 0.000 

200 0.000 0.000 0.000 16.667 0.000 0.000 0.000 0.000 0.000 0.000 8.333  200 0.000 0.000 33.333 50.000 16.667 58.333  200 0.000 0.000 0.000 0.000 0.000 

300 0.000 12.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.692  300 0.000 0.000 11.111 11.111 22.222 44.444  300 0.000 0.000 0.000 0.000 0.000 

400 12.500 0.000 0.000 0.000 0.000 12.500 0.000 0.000 0.000 0.000 16.667  400 0.000 12.500 0.000 25.000 12.500 25.000  400 12.500 12.500 12.500 12.500 12.500 

500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.333  500 0.000 0.000 0.000 14.286 0.000 14.286  500 0.000 0.000 0.000 0.000 0.000 

600 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.692  600 0.000 0.000 0.000 12.500 12.500 25.000  600 0.000 0.000 0.000 0.000 0.000 
            

 
TABLE J3.3 – ARC TRAFFIC (transition number per transaction)  

 
       

 
     

|P
I|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold
backtracking 

pp=2 

Modified Lift 
CV with 10-fold
backtracking 

pp=2 

 

|P
I|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold
backtracking 

pp=2 
 

|P
I|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=5 

100 1.29 1.29 1.14 1.00 0.57 1.29 0.86 0.86 0.86 0.43 1.29  100 1.29 1.29 1.29 1.29 1.29 1.29  100 1.29 1.29 1.29 1.29 1.29 

200 1.71 1.14 1.00 0.86 0.71 1.71 1.14 1.00 0.57 0.14 1.71  200 1.71 1.71 1.71 1.71 1.71 1.71  200 1.71 1.71 1.71 1.71 1.71 

300 1.29 1.14 1.00 0.86 0.71 1.29 0.71 0.71 0.57 0.29 1.86  300 1.43 1.29 1.29 1.29 1.29 1.29  300 1.29 1.29 1.29 1.29 1.29 

400 1.14 1.00 0.86 0.86 0.71 1.14 0.86 0.71 0.57 0.29 1.71  400 1.14 1.14 1.14 1.14 1.14 1.14  400 1.14 1.14 1.14 1.14 1.14 

500 1.00 1.00 0.86 0.86 0.86 1.00 0.86 0.71 0.43 0.29 1.71  500 1.00 1.00 1.00 1.00 1.00 1.00  500 1.00 1.00 1.00 1.00 1.00 

600 1.14 0.86 0.86 0.86 0.86 1.14 0.86 0.71 0.43 0.29 1.86  600 1.14 1.14 1.14 1.14 1.14 1.14  600 1.14 1.14 1.14 1.14 1.14 
            
 TABLE J3.4 – TOTAL PROCESSING TIME (sec.)                

|P
I|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold
backtracking 

pp=2 

Modified Lift 
CV with 10-fold
backtracking 

pp=2 

 

|P
I|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold
backtracking 

pp=2 
 

|P
I|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=5 

100 7.67 8.37 8.04 8.05 7.70 7.67 7.72 7.92 7.76 7.79 7.88  100 2.83 7.67 14.90 22.24 28.98 36.14  100 7.88 7.67 7.65 7.74 7.68 

200 12.30 11.96 12.21 12.07 12.06 12.30 11.98 12.50 12.32 12.01 12.03  200 4.49 12.30 23.26 34.15 45.66 56.67  200 12.28 12.30 11.95 11.88 11.88 

300 17.68 17.36 17.60 17.34 17.38 17.68 17.29 17.45 17.76 17.18 17.48  300 5.84 17.68 34.60 49.67 65.90 83.78  300 17.19 17.68 17.02 17.28 17.58 

400 24.65 25.13 24.47 24.55 24.64 24.65 24.83 24.48 24.43 25.08 24.42  400 8.36 24.65 48.00 70.94 92.23 114.74  400 24.49 32.70 24.47 24.24 24.35 

500 32.70 32.99 32.70 32.73 32.79 32.70 32.79 33.20 32.77 32.80 32.81  500 10.93 32.70 63.38 93.25 124.81 154.63  500 32.38 32.70 32.57 33.72 32.57 

600 43.29 43.68 44.23 44.10 44.68 43.29 43.56 43.57 43.60 44.10 44.00  600 14.64 43.29 83.89 124.59 164.13 203.95  600 43.80 43.29 43.02 43.58 43.39 
            
 TABLE J3.5 – TOTAL SIZE (KB)                

|P
I|

 businessprocesses 
table 

fromtochart 
table 

transactionlog 
tuple number 

initialfromtochart 
table 

tallymark 
table 

tcodes 
table 

transactionlog 
table 

TOTAL 
SIZE 

    

 

       

 

     

100 2.1 2.3 512 2.4 2.2 2.7 45.0 56.7                   

200 2.1 2.4 1026 2.4 2.2 2.7 88.1 99.9                   

300 2.1 2.4 1476 2.4 2.2 2.7 129.7 141.5                   

400 2.1 2.4 1933 2.4 2.2 2.7 169.5 181.3                   

500 2.1 2.4 2383 2.4 2.2 2.7 204.1 215.9                   

600 2.1 2.4 2855 2.4 2.2 2.7 247.5 259.3                   
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 APPENDIX K   Runtime Data (With respect to Number of Activity Types)  
                           
                           

 TABLE K.1 – COMPLETENESS (%)                        

|A
T|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking pp=2 

Modified Lift 
CV with 10-fold
backtracking 

pp=2 

 

|A
T|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold
backtracking 

pp=2 
 

|A
T|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=5 

7 88.235 88.235 86.096 86.096 86.096 88.235 83.243 75.936 57.754 37.433 89.189  7 86.319 88.235 94.382 93.103 97.826 100.000  7 88.235 88.235 88.235 88.235 88.235 

8 86.364 86.364 86.364 86.364 86.364 86.364 86.364 86.364 72.995 72.995 86.364  8 86.640 86.364 88.889 89.381 93.151 94.828  8 86.364 86.364 86.364 86.364 86.364 

9 96.543 96.543 96.543 96.543 96.543 96.543 96.543 96.543 62.500 62.500 96.543  9 94.792 96.543 96.875 97.656 97.115 98.611  9 96.543 96.543 96.543 96.543 96.543 
              

 TABLE K.2 – SOUNDNESS (%)                   

|A
T|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking pp=2 

Modified Lift 
CV with 10-fold
backtracking 

pp=2 

 

|A
T|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold
backtracking 

pp=2 
 

|A
T|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=5 

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.333  7 0.000 0.000 0.000 14.286 0.000 14.286  7 0.000 0.000 0.000 0.000 0.000 

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  8 0.000 0.000 0.000 0.000 0.000 0.000  8 0.000 0.000 0.000 0.000 0.000 

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  9 0.000 0.000 0.000 0.000 0.000 0.000  9 0.000 0.000 0.000 0.000 0.000 
              

 TABLE K.3 – ARC TRAFFIC (transition number per transaction)                   

|A
T|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking pp=2 

Modified Lift 
CV with 10-fold
backtracking 

pp=2 

 

|A
T|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold
backtracking 

pp=2 
 

|A
T|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=5 

7 1.00 1.00 0.86 0.86 0.86 1.00 0.86 0.71 0.43 0.29 1.71  7 1.00 1.00 1.00 1.00 1.00 1.00  7 1.00 1.00 1.00 1.00 1.00 

8 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.75 0.75 0.88  8 0.88 0.88 0.88 0.88 0.88 0.88  8 0.88 0.88 0.88 0.88 0.88 

9 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 0.56 0.56 1.11  9 1.11 1.11 1.11 1.11 1.11 1.11  9 1.11 1.11 1.11 1.11 1.11 
              

 TABLE K.4 – TOTAL PROCESSING TIME (sec.)                   

|A
T|

 MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.125 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.150 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.175 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.200 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.275 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.450 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.625 

CV with 10-fold 
backtracking pp=2 

MST=0.100 and 
MCT=0.800 

CV with 10-fold 
backtracking pp=2 

Modified Lift 
CV with 10-fold
backtracking 

pp=2 

 

|A
T|

 

MST=0.100 and 
MCT=0.100 

Holdout 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 20-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 30-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 40-fold
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 50-fold
backtracking 

pp=2 
 

|A
T|

 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=1 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=2 

MST=0.100 and 
MCT=0.100 

CV with 10-fold 
backtracking 

pp=3 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=4 

MST=0.100 and 
MCT=0.100 

CV with 10-fold
backtracking 

pp=5 

7 32.70 32.99 32.70 32.73 32.79 32.70 32.79 33.20 32.77 32.80 32.81  7 10.93 32.70 63.38 93.25 124.81 154.63  7 32.38 32.70 32.57 33.72 32.57 

8 80.34 78.33 80.49 78.54 81.53 80.34 78.17 79.20 79.18 79.89 80.44  8 25.89 80.34 163.65 242.53 327.95 409.24  8 80.74 80.34 83.54 80.64 80.56 

9 350.66 378.69 377.64 376.98 377.38 350.66 371.21 380.36 382.38 404.08 360.87  9 108.79 350.66 760.50 1023.14 1380.84 1814.70  9 347.16 350.66 351.25 350.38 351.86 
              

 TABLE K.5 – TOTAL SIZE (KB)                   

|A
T|

 

businessprocesses 
table 

fromtochart 
table 

transactionlog 
tuple number 

initialfromtochart 
table 

tallymark 
table 

tcodes 
table 

transactionlog 
table 

TOTAL 
SIZE     

 
       

 
     

7 2.1 2.4 2383 2.4 2.2 2.7 204.1 215.9                   

8 2.1 2.3 4240 2.3 2.2 2.9 237.1 248.9                   

9 2.1 2.3 4228 2.3 2.2 2.7 382.3 393.9                   
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