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ABSTRACT

AUTOMATED BIOLOGICAL DATA ACQUISITION AND INTEGRATION USING
MACHINE LEARNING TECHNIQUES

Çarkacıoğlu, Levent

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Volkan Atalay

February 2009, 104 pages

Since the initial genome sequencing projects along with the recent advances on tech-

nology, molecular biology and large scale transcriptome analysis result in data accumula-

tion at a large scale. These data have been provided in different platforms and come from

different laboratories therefore, there is a need for compilation and comprehensive anal-

ysis. In this thesis, we addressed the automatization of biological data acquisition and

integration from these non-uniform data using machine learning techniques. We focused

on two different mining studies in the scope of this thesis. In the first study, we worked on

characterizing expression patterns of housekeeping genes. We described methodologies

to compare measures of housekeeping genes with non-housekeeping genes. In the second

study, we proposed a novel framework, bi-k-bi clustering, for finding association rules of

gene pairs that can easily operate on large scale and multiple heterogeneous data sets.

Results in both studies showed consistency and relatedness with the available literature.

Furthermore, our results provided some novel insights waiting to be experimented by the

biologists.

Keywords: bioinformatics, housekeeping genes, biclustering, association pattern discov-

ery, gene expression profiles
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ÖZ

MAKİNE ÖĞRENMESİ TEKNİKLERİ KULLANILARAK OTOMATİKLEŞMİŞ
BİYOLOJİK VERİ KAYNAŞIM VE KAZANCI

Çarkacıoğlu, Levent

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Volkan Atalay

Şubat 2009, 104 sayfa

İlk genom düzenleme projelerinden bu yana teknoloji, moleküler biyoloji ve büyük ölçekli

transkriptom analizindeki gelişmeler çok sayıda veri birikmesine sebep olmuştur. Bu

veriler farklı platformlar tarafından sağlanıp farklı labrotuvarlardan geldiklerinden dolayı

derlenmiş ve ayrıntılı bir analize ihtiyaç duyulmaktadır. Bu tezde farklı veri tabanları

üzerinde makine öğrenmesi teknikleri kullanarak, otomatikleşmiş biyolojik veri kaynaşım

ve kazancını inceledik. Bu tez kapsamında iki farklı madencilik çalışmasına odaklandık.

Birinci çalışmada ev idaresi genlerinin ifade desenlerinin nitelendirilmesi üzerinde çalıştık.

Ev idaresi olan ve ev idaresi olmayan genlere ait ölçüleri karşılaştırmak için metodolojiler

tanımladık. İkinci çalışmada ise, gen çiftleri için işbirliği kuralları bulmak amacı ile büyük

ölçekli ve çoklu hetorejen veri kümelerinde kolayca işleyebilen yeni bir çerçeveyi, bi-k-bi

kümeleme çerçevesini, önerdik. Her iki çalışmada elde ettiğimiz sonuçlar mevcut literatür

ile alaka ve uyum gösterdi. Bunun yanı sıra, elde ettiğimiz sonuçlar biyologlar tarafından

deneylendirilmeyi bekleyen bazı yeni kavramlar da sağladı.

Anahtar Kelimeler: bioinformatik, ev idaresi genleri, bikümeleme, işbirliği buluşu, gen

ifade profilleri
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CHAPTER 1

INTRODUCTION

The cell is the structural and functional unit of all known living organisms. Cells provide

structure for the body, convert food to energy, and carry out specialized functions. One

of the most important functions of the cell is to replicate itself. During replication, the

hereditary information is also carried to its offsprings. The hereditary information of the

cell is coded in a structure called Deoxyribonucleic Acid (DNA), as shown in Figure 1.1.

Figure 1.1: DNA structure.

The basic physical and functional unit of heredity in the DNA is called gene. In

humans, genes vary in size from a few hundred DNA bases to more than 2 million bases.

Recent studies estimated that humans have 20,000 to 25,000 genes.

Many functions in the cell are performed by large and complex molecules called

proteins. In the cell body, proteins are produced by structures, named as ribosome.

The information needed to make proteins is coded in genes. The information transfer
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from gene to ribosome in the cell takes place in two steps. In the first step, named as

transcription, the information in the gene is transferred to the messenger Ribonucleic Acid

(mRNA). In the second step, named as translation, the mRNA carrying the information

interacts with the ribosome. These two steps together, transcription and translation, are

named as gene expression.

The study of gene expression is a very important and complex process that allows

scientists to understand the responses of a cell to the changes in its environment.

1.1 Gene Expression Profiling Using Microarray Technology

Due to the advances in technology, it has been possible to deposit very small volumes of

many objects into a very small area. A microarray is an arrayed series of thousands of

microscopic spots, printed on a solid substance such as glass, plastic or silicon biochip,

as shown in Figure 1.2. These arrayed chips allow scientists to analyze expressions of

thousands of genes together.

Figure 1.2: A sample Affymetrix microarray chip.

The analysis of gene expressions using microarray chips consists of two steps. In the

first step, a biological experiment is performed. The flow of a microarray experiment is

given in Figure 1.3. RNA is first isolated from different tissues, developmental stages or

samples subjected to appropriate treatments. RNA is then labeled and hybridized to the

arrays using an experimental strategy that allows expression to be assayed and compared

between appropriate sample pairs. Common strategies include the use of a single label
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and independent arrays for each sample, or a single array with distinguishable fluorescent

dye labels for the individual RNAs [42, 51]. Two different mRNA populations, labeled

with different fluorescent dye (Cy5 red, Cye3 Green) and are excited by a laser. Each

fluorescent dye excites at a different wavelength, which is captured using a photo detector

attached to a filter tuned to the particular fluorescent label.

In the second step, experimental results of the first step are collected. A microarray

scanner is used to detect the fluorescent labels on each spot of the microarray. The more

fluorescent a spot is, the more copies of that gene were present in the RNA sample. The

microscope and camera work together to generate digital images of the array during this

scan. A sample image is shown in Figure 1.4. A special program is then applied for quan-

tization of the digital image. There exist many commercial and free software packages

for microarray image quantization. Although there are minor differences between these

software packages, most of them give high-quality, reproducible measures of hybridization

intensities [51]. They typically apply many image processing techniques on the image

and generate expression data of each spot in the array by subtracting background data

from the spot.

Microarray technology allows researchers simultaneously monitor expression levels of

thousands of genes in a single experiment. These experiments are valuable tools in the

understanding of genes, biological networks, and cellular states. Studies of microarray

experiments have targeted many important goals, such as finding differentially expressed

genes, defining pathways, drug targeting, clustering.

Measurement of the expression values of thousands of genes in a microarray experi-

ment is called, gene expression profiling. Gene expression profiling is based on the fact

that during the transcription step of gene expression, only a fraction of the genes are

expressed.

1.2 Problem Definition

In general, a microarray experiment is performed for a particular type of research. The

excess in the amount of microarray experiments with the research resulted in significant

data accumulation. Since these experiments have been provided in different platforms

and come from different laboratories, it is necessary to compile and analyze comprehen-

sively. In recent years, applications of data mining techniques for gene expression profiles

3



Figure 1.3: Microarray experiment flow (adapted from [68]).

using microarray experiments have became a matter of interest. In the very early stage of

microarray technology few experiments and spreadsheets were enough for analysis. How-

ever, due to increase in gene expression data sets, spreadsheets have been less adequate

tools. Therefore, application of machine learning techniques on gene expression data sets

has became more popular. At first, supervised and unsupervised machine learning tech-

niques have been applied on gene expression data. However, these methods have several

shortcomings. Therefore, in the recent years, biclustering, association pattern discovery

and pattern based clustering methods have also been studied. Most of the mining stud-

ies on gene expression profile analysis in the literature target single gene expression data

set and they cannot handle large amount of gene expression data that exists in public

databases in reasonable amount of time and space.

The basic problem is the automation of biological data acquisition and integration of

non-uniform microarray experiments submitted by different experimenters using machine

learning techniques. Specifically, the problem is to mine patterns of gene expression

profiles using multiple heterogeneous microarray data sets that can easily work on a

4



Figure 1.4: Scanned microarray digital image (adapted from [68]).

desktop computer with limited computational resources.

1.3 Contributions

In this thesis, we first constructed a large scale database consisting of microarray data

along with the associated metadata.

For this purpose, we first downloaded all available public Homo sapiens microarray

data sets and stored expression values for the spots of the microarray experiments in the

database. We then queried, constructed and stored the associated metadata for these

data sets. In order to make experiments comparable, we applied normalization methods

on this heterogeneous large scale database. Global mean normalization and ranking

methods has been applied on the database. After the construction of this large scale

database, we applied data mining techniques on the database. We mainly focused on

two different mining problems in the scope of this thesis. In the first problem, we worked

on characterizing expression patterns of housekeeping genes. Genes involved in cellular

maintenance functions and generally assumed to have expression levels unaffected by

experimental conditions are called housekeeping genes. We defined a set of measures

and described a methodology to compare measures of housekeeping genes with non-

housekeeping genes. In the first step of the methodology, we defined a measure for the

rank change of a gene within a set. In the second step, we defined a measure for the

ratio of the sets that a gene has rank change under a given threshold. However, the ratio

measure by itself does not give statistically significant results. Therefore, we defined a

measure for the percentage of occurrence of a gene in the third step. In the last step, we

5



computed and analyzed the ratio and percentage of occurrence values of housekeeping

and non-housekeeping genes for different threshold values.

Recent studies showed that several widely used housekeeping genes might have altered

expression under different experimental conditions. In this problem, we tested whether

a reduced set of genes is invariably expressed across different experimental conditions

so that they can be used as reference genes. Our contributions in this problem can be

summarized as follows.

• We defined a scaling process. By scaling all expression values into a comparable

platform, we were able to work on multiple data sets. We applied our scaling pro-

cess on approximately 142 million microarray spots from 9090 microarray samples

grouped into 381 data sets. However, previous studies in this area generally worked

on a few homogenous or specially curated data sets.

• Results have proven the claim that expressions of housekeeping genes are less vari-

able across different experiment sets when compared with the expressions of ran-

domly selected gene sets.

• We showed that cell specific reference gene sets are less variable than housekeeping

genes in terms of gene expression profiles. However, all previous studies focused to

find a general reference gene set.

In the second problem, we proposed a novel framework, called bi-k-bi clustering,

for finding association rules of gene pairs. The bi-k-bi clustering framework can easily

operate on large scale and multiple heterogeneous data sets.

The framework consists of three steps. In the first step, we applied normalization in

order to scale all microarray samples in our database into a comparable platform. In the

second step, we defined a function to find gene pairs with similar expression profiles from

the first step. In the last step, we applied the bi-k-bi clustering algorithm to the gene

pairs that have similar expression profiles and construct rules consisting of gene pairs and

associated samples. The bi-k-bi clustering algorithm in the third step consists of three

phases. In the first phase, a coarse analysis is performed and the working set has been

reduced by focusing on gene pairs having similar expression profiles with their associated

data sets. In second phase, a label for each gene in each experiment is assigned using

the k-means clustering algorithm. In the last phase, a detailed analysis is done on the
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labeled gene pairs with their associated microarray samples. The framework is tested on

all available data sets and more specifically five different functionally concise groups of

data sets independently.

Our contributions in this problem can be summarized as follows.

• We defined a similarity measure to find gene pairs having similar expression profiles.

• We defined a coarse to fine approach to work on large scale data in reasonable

amount of time and space. At the coarse stage, we eliminated gene pairs having

less similar expression profiles by using our similarity measure. At the fine stage,

we performed detailed analysis on the gene pairs having similar expression profiles.

• By the use of dynamic thresholding on expression profiles, we alleviated the disad-

vantages of crude thresholding on expression data.

• We extended a maximum frequent itemset algorithm to a biclustering algorithm

because available biclustering algorithms have high space complexity.

1.4 Organization

Organization of this manuscript is as follows. The next chapter describes the details for

the construction of the large scale microarray database used in our studies. Third chapter

presents the problem of characterizing expression patterns of housekeeping genes. Fourth

chapter describes our novel bi-k-bi clustering framework. Chapter 5 concludes and gives

some future directions on the thesis.
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CHAPTER 2

CONSTRUCTION OF THE LARGE

SCALE MICROARRAY DATABASE

The excess in the amount of microarray experiments requires the collection and service of

these data under a standard format. NCBI Gene Expression Omnibus (GEO) project is a

public repository for microarray experimental data submissions that consists of thousands

of microarray experiments [9]. GEO is a curated, online resource for gene expression data

browsing, query and retrieval.

A microarray sample is a biological experiment performed on a single microarray chip

to monitor expression levels of thousands of genes. Microarray samples experimented for

specific studies are grouped into data sets. Each dataset is associated with a platform file;

and association of spots between datasets and platforms are established using common

spot identifiers. GEO provides gene expression data in terms of microarray samples

(GSM) grouped in to datasets (GDS) with their associated platforms (GPL). Datasets

and platforms are submitted by different experimenters and they reside as separate files

in the GEO repository. A sample GDS file and its associated GPL file in the GEO

repository is given in Figure 2.1.

The remainder of this chapter is organized as follows. In the first section, we give

detailed information about the construction of gene expression data in our database.

In the next section, we describe the metadata construction for the data sets in our

database. In the last section, we describe normalization and ranking methods applied on

the expression values in our database. Database schema and implementation details of

the database are given in Appendix A.
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Figure 2.1: Sample GDS and GPL files (adapted from [9]).

2.1 Gene Expression Data Construction

We have downloaded all available public Homo sapiens microarray data sets with their

associated platform files from NCBI-GEO (August, 30, 2006) and stored these files in

our server. Then, we developed an application to process these files and store the pro-

cessed expression values in our database. The execution flow for this process is given in

Figure 2.2.

Since, NCBI-GEO contains microarray experiments submitted by different experi-

ments all over the world, there can occasionally be misconfigured data sets or misleading
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spot identifiers. We marked these sets as suspicious and ignored these data sets during

processing.

NCBI-GEO gene expression data may occasionally contain spots with missing ex-

pression values due to noise or unobserved signal in microarray images. There are two

common strategies employed by previous work to cope with missing spot values: the first

strategy is to treat the missing spot’s expression value as zero, while the second strategy

is to ignore the spot. We used both strategies to construct two different data sets. The

first data set, in which missing spot values were treated as zero, contains 155 million

microarray spots from 9090 microarray experiments grouped into 381 GEO data sets.

The second data set, in which missing spots were ignored, approximately contains 142

million microarray spots from 9090 microarray experiments grouped into 381 GEO data

sets.

Figure 2.2: GDS data extraction flow.

2.2 Metadata Construction

In general, a set of microarray experiments is conducted for a particular type of research

and referenced in medical publications. Such related experiments are grouped into GEO

data sets and each data set is associated with its respective publications. Most of these
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publications are categorized in a hierarchical structure using the controlled vocabulary

provided by the Medical Subject Headings (Mesh Headings) ontology. In order to store

the metadata for the data sets in our database we developed three applications. In the

first application, we downloaded the Mesh Ontology nodes from NCBI-Mesh Ontology

database and stored these nodes in our database. In the second application, we queried,

extracted, and then stored mesh headings of the associated publications from NCBI-

PubMed, NCBI-MESH Heading databases for the data sets in our database. Finally, in

the last application, we grouped data sets in our database into a hierarchical tree structure

with their associated mesh headings by using the Mesh Ontology. The execution flow for

metadata construction is given in Figure 2.3.

Figure 2.3: Metadata construction flow.

Of the 381 GEO data sets in our database, 341 are associated with 272 different med-

ical publications and 264 of these publications are associated with 5754 Mesh headings.

The grouping of data sets according to the selected Mesh Ontology nodes that we used

in our analysis is given in Table 2.1.
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2.3 Normalization and Ranking Methods

Data normalization is a process by which multiple sources of data are made comparable,

quantitatively. Yet, there are many different platforms from which microarray data are

extracted. Furthermore, these data sets include differential number of probe sets or

clones printed, some which belong to the same transcript. The platforms also differ in

their use of normalization, background correction and summarization protocols, which are

necessary for preprocessing of the microarray data. Various normalization and/or data

integration methodologies have been proposed [66]. Among these global normalization

and normalization based on invariant probe sets have been widely used. Different scaling

and normalization methods by examining their performance in terms of rank-intensity

plots (RIPs, intensities plotted against ranks) have been studied [29, 36, 46]. The results

in the previous studies indicated that gene expression data exhibit similar RIPs. Based

on this finding, ranking genes might represent a unifying method for integration and

comparison of multiple data sets without extensive manipulation of the original data

distribution.

In order to analyze gene expression values across several microarray samples, we

defined and applied a two step methodology on each sample in our database:

1. Global mean normalization over all spots in a microarray sample.

2. Linear and percentile ranking over the normalized spots within the same sample.

2.3.1 Global Mean Normalization

We preferred global mean normalization since it is one of the least intrusive methods

available and does not alter the distribution of microarray data. Accordingly, a log-

based sample mean value is subtracted from each spot’s log based expression value, for

each microarray sample in the database. Let n be the number of spots in a microarray

sample and E={ch1,ch2,...,chn} be the set of channel values of the spots within the

microarray sample. The function for global mean normalization of a spot channel value,

f GBN (chx), is given in Equation 2.1.

fGBN (chx) = log (chx)− log
(∑n

i=1 chi

n

)
(2.1)
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2.3.2 Linear and Percentile Ranking

Cross-experiment normalization can be achieved by using ranking methods. We applied

linear and percentile ranking methods independently on the normalized channel values

within each experiment in each GEO data set. This additional process provides a rank

for each gene within an experiment. The rank measure is comparable across experiments

and allows us to analyze the behavior of a gene on a larger scale.

Let n be the number of spots in a microarray sample and E= {ch1,ch2,...,chn} be

the set of channel values of the spots within the microarray sample. Functions we have

used for linear, RankLinear(chx), and percentile ranking, RankPercentile(chx), are given

in Equation 2.2 and Equation 2.5 respectively. It is important to note that, each spot is

ranked among the other spots only within the sample it belongs to.

RankLinear(chx) =
fGBM (chx)−Min (fGBM (E))

Max (fGBM (E))−Min (fGBM (E))
× 100 (2.2)

Qb(chx) = |fGBM (chi)|, ∀ chi ∈ E where fGBM (chi) < fGBM (chx) (2.3)

Qa(chx) = |fGBM (chi)|, ∀ chi ∈ E where fGBM (chi) = fGBM (chx) (2.4)

RankPercentile(chx) =
∑n

i=1 Qb (chx) + 0.5×Qa (chx)
n

× 100 (2.5)

The | | operator in the Equation 2.2 and Equation 2.5 indicates the cardinal function.

Each spot in a microarray sample is associated with at least one gene symbol. Some

genes may also have multiple probes within the same sample. In order to work with

a single rank value for each gene probe in the sample, we calculate, for each gene, an

average change of its rank within the sample. Let GS ={G1,G2,...,Gk} be the set of k

genes and S ={e1,e2,...,en} be a set of n microarray samples. For each gene Gi in a

sample ei, a single rank value, r(Gi,ei) is computed. For a gene that occurs multiple

probes in a sample, if the variation across rank values of the spots of that gene probe

does not exceed a threshold then the average gene probe rank value is used. Otherwise

all the probes for that gene are ignored for this sample. We plotted the average rank

change changes of genes that have multiple probe representations. We then, analyzed
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these changes and experimentally noticed that more than 20% change in the rank values

of the multiple probes of a gene, is most probably due to noise in the experiment and

we concluded that all the probes of that gene can be ignored. Given a set S, that has n

samples, we have at most n rank values for a gene Gi.
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Table 2.1: Data set distribution according to Mesh Ontology nodes used in analysis

Mesh Tree Number Mesh Tree Name Number of Sets

ALL ALL 381

A10 Tissues 77

A10.272 Epithelium 16

A10.690 Muscles 46

A11 Cells 223

A11.118 Blood Cells 47

A11.148 Bone Marrow Cells 14

A11.251 Cells, Cultured 157

A11.284 Cellular Structures 40

A11.329 Connective Tissue Cells 34

A11.436 Epithelial Cells 48

A11.627 Myeloid Cells 17

A11.733 Phagocytes 14

A11.872 Stem Cells 22

A15 Hemic and Immune Systems 74

A15.145 Blood 51

A15.378 Hematopoietic System 14

A15.382 Immune System 60

C04 Neoplasms 108

C04.557 Neoplasms by Histologic Type 68

C04.588 Neoplasms by Site 68

C04.697 Neoplastic Processes 16
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CHAPTER 3

IDENTIFICATION OF REFERENCE

GENE SETS

Recent advances in large scale transcriptome analysis resulted in significant data accu-

mulation. Since these data have been provided in different platforms and come from

different laboratories, there is a need for compilation and comprehensive analysis. To

analyze a gene of interest across several array experiments from different sources, the

gene’s expression data must be scaled in a comparable platform. Various normaliza-

tion methods are available to scale microarray data within the same experiment, yet it

becomes problematic to compare arrays of different sources without using references.

Previous studies have provided gene lists involved in cellular maintenance functions;

thus these genes are called housekeeping genes that are generally assumed to have ex-

pression levels unaffected by experimental conditions [23, 30]. However, recent studies

indicated that several widely used housekeeping genes might have altered expression un-

der different experimental conditions [60, 63]. Therefore, it is essential to confirm the

reliability of available housekeeping gene sets as well as to determine whether there are

other invariably expressed gene set(s) under large number of experimental conditions.

In this study, we aimed to test whether a reduced set of clones/probes is invariably

expressed across various biological phenomena so that they can be used as reference genes.

We have selected a set of housekeeping genes by Eisenberg et al. (2003) and Hsiao et

al. (2001). We analyzed the expression patterns of these selected genes in NCBI-GEO

Homo sapiens datasets in our database.

The remainder of this chapter is organized as follows. In the first section, we give brief

information about the related work done in this area. In the second section, we present
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detailed information about methods and materials used in the study. Computational

and experimental results are presented in the third section. Discussions of the study are

provided in the last section.

3.1 Related Work

During the last decade, there has been remarkable progress in the identification of tran-

scriptome blueprint of human cells through small or large-scale quantitative gene ex-

pression studies. Since the gene expression is major the determinant of the protein

abundance in the cell, transcriptome analysis experiments have been widely applied to

reveal the molecular mechanisms of disease conditions. Depending on the cell fate ex-

pression levels of genes varies. Previously it was assumed that there are certain genes

that care and manage cellular activities in different tissues and named as housekeeping

genes. But recent studies on identifying genes, which are ubiquitously and constantly

expressed, demonstrated that there are not such genes for all cell types. Housekeep-

ing genes were traditionally defined as ubiquitous genes (i.e., widely and persistently

expressed in all tissues) that perform necessary functions in normal cellular physiology.

Accordingly, Warrington et al. (2000) identified 535 transcripts that can qualify for the

above description. Similarly, Hsiao et al. (2001) reported a set of 451 maintenance genes

358 of which were common with those reported by Warrington et al. (2000). Many of

the housekeeping genes were found to be highly expressed; moreover, they belonged to

functional groups involved in cellular metabolism, protein biosynthesis and cell signaling

[30]. A cluster analysis based on these 451 housekeeping gene expression data could ac-

curately cluster related tissue samples together suggesting that many of them also were

differentially expressed among these 19 tissues. Later in another study, 575 human genes

were identified as constituvely expressed in all tissues [23]. This study also pointed out

that the gene structure of housekeeping genes are compact in terms of their organization

in genome. Lercher et al. (2002) have showed that ubiquitously expressed genes clus-

ter in their distribution throughout the genome base on SAGE (Serial Analysis of Gene

Expression) datasets. This finding also explained why highly expressed genes form tight

genomic expression modules since many of the ubiquitous genes were highly expressed.

More recently, Su et al. (2002) compiled expression of multiple independent tissues from

human and mouse to find that 6% of all genes studied were expressed ubiquitously yet
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differentially.

On the other hand, recent expression technologies require the determination of a set

of ubiquitously yet constantly expressed gene set(s) across biological phenomena (e.g.,

developmental stage, response to stress, pathological conditions) for accurate normaliza-

tion of microarray as well as real-time Reverse Transcription Polymerase Chain Reaction

(RT-PCR) datasets which are used for amplifying defined pieces of a RNA molecules.

For example, Warrington et al. (2000) have found only a subset of genes (i.e., 47 out of

535) as being not differentially expressed across multiple tissues. Hsiao et al. (2001) also

reported a smaller subset out of 451 as being relatively constantly expressed. Therefore,

it is crucial to determine whether such a gene sets exist among known housekeeping gene

sets using available microarray data that represent multiple normal, experimental and

pathological conditions. Furthermore, it is important to determine whether condition-

specific subsets of genes could be extracted as reference sets for normalization studies.

Several attempts have been made to compare microarray data from different platforms

and species. Studying experiment sets individually and comparison of these individual

results to obtain a meta-statistics also have been performed [39]. One recent study, Pan

et al. (2006) used a graph-theoretical approach in which individual microarray datasets

were analyzed for co-expression links within datasets and then consistent co-expression

links among experiments were extracted. Yoon et al. (2006) have applied a normaliza-

tion method that incorporates gene-specific mean and standard deviation information

from various GEO microarray datasets. They implemented within array standardization

and gene-specific multi-array normalization to integrate multiple microarray datasets.

Their method allowed for redistribution of the sample mean of a selected gene across

all available biological cases. Integration of multiple microarray datasets for functional

protein network detection has been recently proposed [31]. In this study, 40 different

datasets were obtained using dual channel and single channel methods from GEO to

extract normalized correlations between gene pairs [31].

Recent studies have focused on finding appropriate genes for normalization in many

cancers such as colon carcinoma, breast carcinomas, renal cell carcinoma and bladder

cancer [6, 34, 47, 47]. A recent study showed that ACTB, GAPDH and TBP were differ-

entially expressed in eight pathological stages of hepatitis C virus induced hepatocellular

carcinoma (HCC), and thus are inappropriate for normalization [64]. Another study

investigated the expression levels of candidate genes in hepatitis virus B related hepato-
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cellular carcinoma (HCC), comparing malignant and non-malignant samples [25]. This

study also showed that GAPDH and ACTB are regulated during HCC carcinogenesis.

On the contrary, a study aiming to validate reference genes in Caco-2 cells during differ-

entiation, identified GAPDH and ACTB as most stable genes among six candidates [50].

Reference gene expression was also studied in neutrophils, reticulocytes, and fibroblasts

[69, 53, 55].

These individual studies on reference gene selection clearly show that even the refer-

ence genes that have been used for normalization for long time are subject to differential

regulation under specific treatments or between different cell lines or tissues. This find-

ing discredits important gene expression studies conducted so far that showed expression

changes in different conditions or different cells after normalizing the expression values

with endogenous control genes that are themselves prone to regulation.

High throughput analysis encompassing different tissues and cell lines is necessary to

determine a pool of reference genes that can be used for normalization when analyzing

gene expression among or within different tissues or cell lines [33].

The use of two or more housekeeping genes for normalization has been suggested

to aid in reducing the effect of small differential expressions of housekeeping genes and

making the decision of which reference gene to use easier [21, 34].

3.2 Methods and Materials

3.2.1 Materials

In this study, we used the curated gene expression data in our database. The curation

details of the expression data in our database is described in Chapter 2.

In order to analyze the gene expression behavior of genes that may be used as refer-

ence genes, we have selected a set of experimentally determined housekeeping genes by

Eisenberg et al. (2003) that contains 566 genes.

3.2.2 Methods

Expression data for a certain gene is analyzed with respect to its variance across experi-

ments. Therefore, we first compute, for each gene, an average change of its rank in a GEO

data set. The idea is that housekeeping genes should exhibit relatively constant expres-

sion levels and their average rank change should be lower than that of non-housekeeping
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genes.

Let G={G1,...,Gm} be the set of m genes and S = {e1,...,en} be a GEO data set of

n microarray experiments. For gene Gi in experiment ej , a single rank value, r(Gi,ej),

is computed. The details for this rank computation of the spots in the database are

described in Chapter 2.

Given a set S with n experiments, we have at most n rank values for a gene. The

average amount of change in the rank of gene Gi, in set S is then computed by the

Coefficient of Variation, Cv(S,Gi), of r(Gi,ej) in S, as given in Equation 3.3.

µ (Si, Gi) =

∑N
j=1 r (Gi, ej)

N
∀ej ∈ S (3.1)

σ (S, Gi) =

√∑N
j=1 (r (Gi, ej)− µ (S, Gi))

2

N
∀ej ∈ S (3.2)

Cv (S,Gi) =
σ (S, Gi)
µ (S, Gi)

(3.3)

In this analysis, we compute a Cv(S,Gi) for gene Gi, in each GEO data set S. However,

not every gene is observed in all GEO data sets. Therefore most genes have Cv(S,Gi)

computed only for a subset of the GEO data sets.

The next step is to analyze the Cv(S,Gi) values, i.e., the average amount of change

in the rank of a gene in set S, by thresholding on this change value. For gene Gi and

threshold, t, we compute the ratio, Ratiot(Gi), of experiment sets in which a gene has

Cv(S,Gi) values lower than t, as shown in Equation 3.6. This ratio is computed by

considering only the GEO data sets in which the gene is observed. In this analysis,

housekeeping genes are expected to have higher Ratiot(Gi) values, since they should

generally exhibit low Cv(S,Gi) values in many GEO data sets. For different values of t,

i.e., 0.5, 0.1, 0.05, and 0.01, we compared housekeeping genes to five different randomly

selected sets of non-housekeeping genes. The sets of non-housekeeping genes are selected

such that they have the same mean rank distribution as that of the housekeeping gene

set.

R1 = {S|Cv (S, Gi) ≤ t} (3.4)

R2 = {S|Cv (S, Gi) ≥ 0} (3.5)

20



Ratiot (Gi) =
|R1|
|R2| (3.6)

The | | operator in the Equation 3.6 indicates the cardinal function.

Let f PO(r) be the function that gives the number of genes with Ratiot greater than

a given r and occur in at least in PO% of the datasets, as shown in Equation 3.7. We

plotted and compared the graph of f PO(r) for housekeeping genes and randomly selected

non-housekeeping genes. The plotted graphs are presented in the Section 3.3.

fPO (r) = {Gi|Ratiot (Gi) ≥ r} (3.7)

The Ratiot(Gi) value, by itself, does not provide a measure that can be used to

identify statistically significant reference genes. For example, a gene that is observed in

a single GEO data set and have a Cv(S,Gi) value smaller than the threshold will achieve

a perfect ratio. To cope with such cases, we performed another analysis by filtering the

genes based on the percentage of the number of sets that each gene is observed, which we

call percentage of occurrence, PO. For different values of PO, i.e.: 75%, 50%, 25% and 3%

with different Cv(S,Gi) thresholds, i.e.: 0.5, 0.1, 0.05 and 0.01, sorted Ratiot(Gi) graphs

comparing housekeeping and five different randomly selected sets of non-housekeeping

genes are analyzed in Section 3.3.

One of our major goals in this study is to define a reference gene set that can be

used for global normalization of microarray experiments. The Cv(S,Gi) measure can be

utilized to build a classifier that can be used to predict novel reference genes. We built a

classifier with a fixed PO = 75% and a fixed Ratiot = 0.90. We analyzed the accuracy of

our classifier in predicting the experimental housekeeping genes. The stringency of our

classifier is adjusted by varying the Cv(S,Gi) threshold t. We plot the receiver operating

characteristic of our classifier at different stringency levels. At a given threshold, t, our

classifier identifies a set of candidate reference genes. The experimental housekeeping

genes are regarded as true positives (TP) and the non-housekeeping genes are regarded

as false positives (FP) in this candidate reference gene set. For different Cv values, we

plot the graph of sensitivity and specificity measures, as given in Equation 3.8 and in

Equation 3.9.

Sensitivity =
TP

TP + FN
(3.8)
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Specificity =
TN

TN + FP
(3.9)

A good classifier is supposed to capture most of the known housekeeping genes while

providing a relatively small number of false positives. However, the false positives are

candidate reference genes that can be used for normalization purposes as well and they

are investigated further in Section 3.3.

3.3 Results

Recent studies have focused on housekeeping genes on a single or a few number of micro-

rarray experiment sets. One of our main goals in this study is to check the consistency of

these housekeeping genes across large scale experiment sets. For this purpose, we ranked

each gene within an experiment and defined measures over the rank values. We then

described methodologies to compare these measures of housekeeping genes with those of

randomly selected non-housekeeping genes. We paid attention for the randomly selected

non-housekeeping genes to have the same mean rank distribution as of those housekeep-

ing genes. Details for experiment sets, housekeeping gene set and further implementation

details are presented in Section 3.2.

In order to compare housekeeping genes with randomly selected non-housekeeping

genes, we plotted the graph of their sorted Ratiot(Gi) (which is the ratio of number of

sets a gene Gi has Cv below a threshold value t to the number of sets in which gene

Gi occurs) using thresholding on Cv values and filtering on the percentage of occurrence

values (PO). For Cv thresholds, t=0.5, 0.1, 0.05 and 0.01 and percentage of occurrences,

PO=75%, 50%, 25% and 5% we analyzed genes ordered by both linear ranking and

percentile ranking. When t=0.5, analyses performed using both the percentile- and

linearly-ranked GEO data sets have shown that nearly all genes (housekeeping or not)

exhibited high Ratiot values for all PO values. At t=0.1 and at t=0.05 as well, house-

keeping genes had significantly higher Ratiot values than those of random gene sets for

all PO values. Yet, percentile ranked genes resulted in higher Ratiot values than those of

linearly-ranked genes. Finally, for t = 0.01, Ratiot difference between the housekeeping

and non-housekeeping genes was relatively less in either the percentile- or linearly-ranked

GEO data sets; but again housekeeping genes behaved slightly better than the random

sets in all data tables for all PO values. For the sake of simplicity, we present the graphs
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of Ratiot for PO=50% for Cv thresholds a-) 0.5, b-) 0.1, c-) 0.05 and d-) 0.01 in Figure 3.1

while in Figure 3.2, graphs for Cv threshold 0.05 of different PO thresholds, a-) 75%, b-)

50%, c-) 25% and d-) 5% are shown.

Figure 3.1: Graph of ratio of the number of sets in which gene has coefficient of variation

less than a-) 0.5, b-) 0.1, c-) 0.05, d-) 0.01 to the number of sets in which the gene is

observed. Gene is observed at least 50% of the total sets. The x axis indicates the number

of genes having a ratio value greater than ratio value at the corresponding y axis. Curve

with red color presents housekeeping genes while curves with other colors shows 5 random

sets of genes excluding the housekeeping genes. Random sets of genes have the same

mean rank distribution as of those housekeeping genes.

As shown in Table B.1 and Table B.3, for different Cv values and PO values, we

applied Kolmogorov-Simirnov tests on graph data and statistically proved that house-

keeping genes behave significantly different than randomly selected non-housekeeping

gene sets. Bonferroni adjusted Kolmogorov-Simirnov tests were used to show randomly

selected non-housekeeping gene sets behave similarly as shown in Table B.2 and Ta-

ble B.4.

From the results, the claim that housekeeping gene expression is less variable across
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Figure 3.2: Graph of ratio of the number of sets in which gene has coefficient of variation

less than 0.05 to the number of sets in which the gene is observed. Gene is observed at

least a-) 75%, b-) 50%, c-) 25% and d-) 5% of the total sets. The x axis indicated the

number of genes having a ratio value greater than ratio value at the corresponding y axis.

Curve with red color presents housekeeping genes while curves with other colors shows 5

random sets of genes excluding the housekeeping genes. Random sets of genes have the

same mean rank distribution as of those housekeeping genes.

different experiment sets when compared with randomly selected gene sets is also con-

sistent in large scale analysis.

Another primary goal in this study is to define a set of genes that can be used for

global normalization of microarray experiments. In order to define such a reference gene

set we defined some measures and methodologies. We applied thresholding on the Cv

measures and filtering on PO values. We defined a reference gene as a gene that has a

Cv value less than the threshold in 90% of its occurrences and has a PO value greater

than 75%. In this methodology the selection of Cv threshold value is important. In order

to find a good Cv threshold value, we analyzed the sensitivity and specificity of this

reference selection for different Cv threshold values. For different Cv values, we plot the

graph of sensitivity and specificity measures (Receiver Operating Curve, ROC). Further

details for these measures and methodology can be found in the Section 3.2. The ROC
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graph is given in Figure 3.3.

Figure 3.3: ROC Curve for coefficient of variations (Cv) ranging from 0.01 to 10 for

genes observed at least 75% of the total sets and having ratio value (Ratiot) greater than

0.9. Ratiot is the number of sets in which the gene has Cv less than the threshold over

the total number of occurrences of that gene. The x axis indicated (1-specificity) for the

corresponding sensitivity in the y axis. Each point in the graph corresponds to a Cv

threshold.

Results of our computational experiments can be reached through the web site (http://

www.i-cancer.org/HKgenes) for the use of biological experimentalists. The global refer-

ence gene set we have found, which are computed by considering all available microarray

experiments in the database, is given in Appendix C and is also accessible from the web

site.

In addition, the initial results demonstrated that rather than focusing on a general

reference gene set, cell specific reference gene sets gave better results. Finding a reference

gene for the analysis of an experiment is a common problem of the experimentalists.

Different cells under different conditions may require using different reference gene sets.

Keeping these problems at the center of our research, we aimed to provide reference gene

sets for different cell types. Therefore, cell origin specific twenty reference gene sets,

according to the Mesh Ontology nodes given in Section 2, were generated based on the

Mesh Headings of the published microarray experimental data. The list of reference set

according to Mesh Headings are also accessible from the web site.
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3.3.1 Experimental Results

Expression levels of 17 housekeeping genes (AARS, ACTB, CFL1, EEF2, GAPDH,

GSTO1, H2AFZ, HBXIP, RPL30, RPL41, RPL7, RPN2, RPS10, RPS17, RPS3A, SOD1,

TPT1) were biologically experimented and measured in 16 different cell lines consisting

of 8 Hepatocellular Carcinoma cell lines (HepG2, Focus, Mahlavu, Hep3B, Hep3B-TR,

Huh7, SkHep1, PLC), 5 Breast Carcinoma cell lines (MDA-MB453, HCC1937, BT20,

T470, CAMA I) and 3 Colon Carcinoma cell lines (HCT116, HT29, SW620).

NormFinder and geNorm are softwares used in defining gene expression stability.

geNorm is a pair wise comparison-based model that calculates a gene expression stability

measure M for each gene based on the average pair wise variation between all tested genes.

The genes are ranked according to their expression stability through stepwise exclusion

of the gene with the highest M value indicating least stable expression. Hence, a low

stability M value indicates a gene with stable expression. NormFinder is a model-based

approach that estimates the variation between sample subgroups, such as hepatocellular

carcinogenesis (HCC), Breast and Colon Carcinoma cell lines, as well as the overall

expression variation of the tested genes.

We used geNorm and Normfinder softwares to rank stability values of these 17 candi-

date reference genes. The results are given in Table D.1 The ranking of the housekeeping

genes is almost similar with both softwares. RPS10, RPL41 and RPL30, RPS3A were the

most stable genes among all 16 cell lines according to geNorm and NormFinder respec-

tively. Two commonly used genes for normalization, ACTB and GAPDH, were less stable

than the ribosomal genes and ranked lower in the stability rank list of both softwares.

Stability within Hepatocellular Carcinoma, Breast Carcinoma and Colon Carcinoma cell

lines were also calculated separately. The ribosomal genes RPL30, RPL41, RPL7, RPS10

and RPS3A were stable within and among different cell lines.

Comparison of the actual expression values by analysis of variance (ANOVA) identi-

fied RPL30 as the most stable gene with lowest variance within and between the HCC,

Breast and Colon Carcinoma cell line groups, followed by RPL41, RPS10 and CFL1. The

variance within each of these three groups was low for RPS3A, RPS17, RPL7, ACTB,

H2AFZ, and HBXIP reference gene expression but the variance between the three groups

were high, indicating that these reference genes are suitable for normalization when cell

lines from one of the indicated group are being compared, but not when comparing cell
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lines from different sources like HCC, Breast and Colon Carcinoma. GSTO1, TPT1,

RPN2, SOD1 showed the highest variability in geNorm, NormFinder and ANOVA anal-

ysis, and hence were not accurate reference genes for normalization.

While the commonly used reference gene GAPDH was one of the stable genes in

hepatocellular carcinogenesis (HCC) cell lines, it was among the least stable genes in

Breast and Colon Carcinoma cell lines. It had a high variance in terms of stability value

and actual expression value between the three types of carcinoma cell lines investigated.

This suggested that GAPDH can be used as a reference gene when dealing with HCC

cell lines, but not Breast and Colon Carcinoma cell lines. ACTB was more stable than

GAPDH in Breast and Colon Carcinoma cell lines and had a stability value similar to

GAPDH in HCC cell lines.

Recent studies also showed that ACTB, GAPDH and TBP were differentially ex-

pressed in eight pathological stages of hepatitis C virus induced, and thus are inappro-

priate for normalization [64, 69]. Further, GAPDH and ACTB are regulated during HCC

[25]. Similarly, our results showed that when comparing expression levels in HCC, Breast

Carcinoma or Colon Carcinoma, other reference genes, especially RPL30, RPL41, RPL7,

RPS10 and RPS3A should be used for normalization rather than ACTB and GAPDH in

order to reach more reliable expression data.

3.4 Discussion

Recent advances in large scale transcriptome analysis result in data accumulation at a

large scale. Transcriptome data must be comparable although they are generated from

different experiments performed under various biological conditions. We downloaded all

Homo sapiens microarray experiments from NCBI-GEO and generate a curated large

gene expression database. Previous studies have provided lists gene lists involved in

cellular maintenance functions; thus these genes are called housekeeping genes and are

generally assumed to have their expression levels unaffected by experimental conditions.

We characterized expression patterns of the published set of housekeeping genes across

the large number of microarray experiments in this database. We have selected the sets

of housekeeping genes by Eisenberg et al. (2003) and Hsiao et al. (2001) in our analysis.

We described methodologies to compare these measures of housekeeping genes with

those of randomly selected non-housekeeping genes using the gene expression data in our
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curated database. Accordingly, the present study supports the claim that housekeeping

gene expression is less variable across different experiment sets when compared with

randomly selected gene sets. We further compared housekeeping genes published by Hsiao

et al. (2001) with randomly selected non-housekeeping genes independently. The results

showed similar behaviour compared with the results with housekeeping list published by

Eisenberg et al. (2003).

Since cells perform different activities in the body, gene pairs involved in cellular

functions varies among tissues. Therefore, except from the ribosomal protein genes that

are used to supply energy to the cell, it is not possible to find a general set of genes

that are involved and expressed in all cellular functions in all cell types. In addition,

along with the recent avilable literature our initial results demonstrated that rather than

focusing on a general reference gene set, cell specific reference gene sets gave better

results. Therefore, cell origin specific twenty reference gene sets were generated based on

the Mesh Headings of the published microarray experimental data.

Further, we performed biological experiments with some of the reference genes in our

results which are not published in the available literature. These experiments confirmed

14 novel genes that can be as reference genes within various cell types.

Future studies will include determination of different subsets of genes that could be

used as house-keeping gene sets for a particular biological condition (e.g., cancer); these

gene sets can be useful in microarray data normalization as well as real-time RT-PCR

confirmation studies used for amplifying defined pieces of RNA molecules.

28



CHAPTER 4

BI-K-BI CLUSTERING

Due to the increase in gene expression profile data sets in recent years, application of

data mining techniques on these data became a matter of interest. Various methods have

been proposed for mining gene expression profiles. However most of these methods have

several limitations.

The proposed methods generally work on a single gene expression data set and can-

not handle large number of gene expression data sets in public databases in reasonable

amount of time and space. As a solution we propose a two level biclustering approach

that works at the data set and experiment (i.e., condition) levels and discovers similar

behaving gene pairs in multiple data sets. Our approach does not produce a subset of

genes in a subset of conditions; rather, we report pairs of genes that behave similarly in a

subset of conditions. This property is a setback compared to existing methods; however,

it allows for mining gene expression patterns on a larger scale on a desktop computer

with limited computational resources.

In this study, we combined the ideas from biclustering and association pattern dis-

covery approaches. Our framework mainly consisted of a preprocessing phase followed by

three phases. In the preprocessing phase, we scaled gene expression values of all data sets

into a comparable platform and computed an all-to-all similarity measure over the whole

set for finding gene pairs with similar expression profiles. In the first phase of the bi-k-bi

clustering, we applied biclustering on gene pairs in order to eliminate unrelated gene

pairs and data sets. In the second phase, we assigned labels to each gene in each sample

of the working data set to indicate expression levels (high-expressed or low-expressed).

Finally, we generated rules of gene pairs associated with samples by applying bicluster-

ing on the working set. Our method outputted clusters of labeled gene pairs with their
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associated microarray samples. We aimed to help biologists to discover significant rela-

tionships among gene pairs and work easily on these relationships by concentrating on

their associated microarray samples.

We applied our framework on all available NCBI GEO Homo sapiens data sets and

more specifically five different functionally concise groups of NCBI GEO data sets inde-

pendently (i.e.: Breast Cancer, Normal Human Tissue, Obesity, Liver and Colon). We

searched for the existence of resulting gene pairs in protein-protein interaction databases

to recover those pairs that act in concert at the transcriptional as well as post-transcriptional

levels.

The remainder of this chapter is organized as follows. In the first section, we give

brief information about the related work done in this area. The detailed information

about methods and materials are given in the second section. In the third section, we

discuss the test results of our bi-k-bi clustering framework. Discussions of the framework

are provided in the last section.

4.1 Related Work

In the early stage of microarray technology few experiments and spreadsheets were

enough in analysis. As microarray samples get larger and larger, spreadsheets will be-

come less and less of an adequate tool for doing analysis and data mining techniques

should find more and more use in analyzing expression data in the samples.

During this early decade, both supervised and unsupervised data mining methods are

applied to gene expression data. Supervised methods use predefined sample groups and

try to assign any new sample to a proper group [28]. Unsupervised methods concentrate

on the idea that genes with similar expression profiles might share common mechanisms

and functions, thus can be grouped [28]. Support Vector Machines and Neural Networks

are examples studies of supervised techniques [14, 61]. Principal component analysis, sin-

gular value decomposition, k-means clustering, hierarchical clustering and self organizing

maps are sample studies of unsupervised techniques [1, 5, 58, 22, 57]. Both supervised

and unsupervised techniques discover co-regulated genes over the full set. These methods

also allow a gene or a condition to occur in more than one cluster/pattern.

In recent years, biclustering and association pattern discovery (APD) (a.k.a associ-

ation rule mining (ARM)) methods have been proposed to discover genes with similar
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expression profiles in a subset of conditions (samples) [13, 19, 35]. These methods also

allow a gene or a condition to occur in more than one cluster/pattern.

Cheng and Church (2000) introduced the concept of biclustering for gene expression

data and proposed a greedy approach based on a uniformity criterion. Their method

used randomly generated values to replace missing values in the data set. This approach

is likely to reduce the quality of the discovered biclusters. To address this problem, a

probabilistic algorithm (FLOC) that handles missing values and discovers higher quality,

overlapping biclusters has been proposed [65].

Ben-Dor et al. (2002) introduced the order preserving submatrix (OPSM) model

for biclustering that focuses on the coherence of relative order of conditions rather than

the coherence of expression values. The OPSM model is improved by allowing some

flexibility among conditions in an order equivalent group [44]. This new model is called

as, OP-Cluster, and is able to tolerate the effect of noise that reduces the efficiency of

the stricter OPSM model [44].

Pattern based clustering problem is related to the biclustering problem. The p-

Clustering algorithm is able to discover genes that exhibit similar expression patterns in

a subset of conditions [62]. Pei et al. (2003) improved the p-Clustering algorithm by

proposing a more efficient and scalable method, MaPle, to find maximal pattern-based

clusters. All of the biclustering methods mentioned above discover clusters of genes that

behave similarly in a subset of experimental conditions. However, the computational

resources required by existing biclustering methods do not allow for analysis of gene

expression data on a large scale.

Similar to biclustering methods association pattern discovery (APD) methods can be

used to discover genes with similar expression profiles in a subset of conditions. APD

methods were first used to discover associations among subsets of items from large trans-

action databases [4]. APD methods detect sets of elements that frequently co-occur in a

database and establish relationships between them of the form of X→ Y, meaning that,

when X occurs it is likely that Y also occurs [4].

Various methods have been proposed on associations and relationships among subsets

of genes (e.g.: X= {Condition1 (sample1), Condition2 (sample2) }, Y= {gene A ↑, gene
B ↓, gene C ↑}, which means, in Condition1 and Condition2 when gene A is up regulated,

gene B is down regulated and gene C is also up regulated) [11, 20, 26, 35, 59].

Most of the studies with APD methods work on homogeneously curated one or two
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data sets experimented for a specific study. APD methods that work on binary data use

thresholding on the expression values of genes [26]. It is clear that a crude discretization

such as using thresholding lead to certain loss of information. As a solution, a quan-

titative association rule mining approach has been proposed [26]. However, microarray

experiments are generally not sufficiently robust and noise-resistant. It is not easy to

decide whether or not an association of a small quantity is noise. Therefore, quantitative

associations among genes do not generally give valuable information to a biologist. An-

other disadvantage of existing APD methods is that these methods try to find out rules

over the whole set of genes. However, focusing on association rules among genes hav-

ing similar expression profiles reduces the working data set by eliminating uncorrelated

data patterns and is therefore expected to give more accurate results in a more efficient

manner.

4.2 Methods and Materials

We follow a three step methodology in our study. In the first step we apply normalization

in order to scale all microarray samples in our database into a comparable platform. In

the second step, we define a function to find gene pairs with similar expression profiles

from the first step. Finally, we apply the bi-k-bi clustering algorithm to the gene pairs

that have similar expression profiles and construct rules consisting of gene pairs and

associated samples. The overview of the proposed methodology is given in Figure 4.1

and explained in detail below.

4.2.1 Materials

In this study, we used the curated gene expression data in our database. The curation

details of the expression data in our database are described in Chapter 2.

4.2.2 Methods

4.2.3 Finding Gene Pairs Having Similar Expression Profiles

In order to find gene pairs having similar expression profiles we follow a three phase

procedure. In the first phase, we define a similarity measure for finding similar rank

behaving gene pairs and calculate this measure for each gene pair and each data set. In
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Figure 4.1: The overview of the three step methodology for mining gene expression data

from multiple data sets.

the next phase, we apply a filter to eliminate gene pairs that consists of housekeeping

genes. Finally, in the last phase, we construct a matrix from the values calculated in the

first phase and apply thresholding to discretize this matrix.

Phase 1

Three commonly used similarity measures for finding similar behaving gene pairs are the

Euclidean Distance, Pearson’s Correlation Coefficient, and Spearman Rank Correlation

Coefficient (ρ) [7]. Euclidean Distance and Pearson’s Correlation Coefficient methods

are sensitive to magnitude and shape [37]. Whereas, Pearson’s Correlation Coefficient

assumes approximate Gaussian distribution of the points and therefore it is not robust

for non-Gaussian distributions [32, 37]. On the other hand, Spearman Rank Correlation
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Coefficient does not require Gaussian distribution and it is more robust against outliers.

Therefore, we decided to use Spearman Rank Correlation Coefficient in our analysis.

Spearman Rank Correlation Coefficient has the drawback of data loss due to conse-

quence of ranking [32]. Since we look for gene pairs having similar patterns over scaled

expression values, the drawback of ranking has a negligible effect over our analysis.

Spearman Rank Correlation Coefficient is also sensitive to missing values. One of the

approaches for missing values is to ignore the missing value pairs during correlation com-

putation. Since not every gene is observed in all microarray samples, missing expression

value pairs are ignored during computation. In order to cope with the negative effect of

the “ignore” approach; we used Weighted Spearman Rank Correlation Coefficient, ρw, in

our analysis.

Let S={S1,S2,...,Sm} be m data sets in the database where Si ={ei1,ei2,...,ein} is a

set having n microarray samples where n ≥ 3 and GS={G1, G2,...,Gk} be the set of k

distinct genes in the database. Also let PS be the percentage of non-ignored value pairs

during Spearman Rank Correlation Coefficient calculation. We define a log based non

linear weight function, f w(PS), as given in Equation (4.1). Since, PS ∈ [0,100] then, by

using Equation (4.1), f w(PS) ∈ [1,2].

fw(PS) =





log(PS) for PS > 10

log(10) for PS ≤ 10
(4.1)

Let r(Gi,ek) be the average percentile ranked expression value of gene Gi and r(Gj ,ek)

be the average percentile ranked expression value of gene Gj in the microarray sample ek

of the data set Sa. We then define the Weighted Spearman Rank Correlation Coefficient,

ρw(Gi,j ,Sa), as given in Equation (4.3).

R(Gi,j , Sa) = {∀ek ∈ Sa|(r(ek, Gi), r(ek, Gj))} (4.2)

ρw(Gi,j , Sa) = ρ(R(Gi,j , Sa)) × fw(PSa) (4.3)

Phase 2

Gene pairs that are not modulated in microarray samples are expected to (and does)

have high ρw values. In this study we mainly focus on genes whose expression profiles are
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similarly affected among samples. Therefore, genes whose expressions are not modulated

in any of the experimental conditions, (i.e., housekeeping genes) does not have much

impact on the association rules of genes which we aim to find.

Previous studies by Hsiao et al. (2001) and Eisenberg et al. (2003) have provided gene

lists involved in cellular maintenance functions; thus these genes are called housekeeping

genes that are generally assumed to have expression levels unaffected by experimental

conditions. However, recent studies indicated that several widely used housekeeping

genes might have altered expression under different experimental conditions [63, 60].

Therefore, in order to eliminate genes that are not effected in microarray samples, we

use the Coefficient of Variation, Cv, as a filter.

Let Cv(Gi,Sa) be the Coefficient of Variation of gene Gi and Cv(Gj ,Sa) be the Coef-

ficient of Variation of gene Gj calculated using the percentile ranked expression values of

microarray samples of the data set Sa, as defined in Equation (4.4). Also let ρw(Gi,j ,Sa)

be the Weighted Spearman Rank Correlation Coefficient for Gi,j among the expression

values of Gi and Gj in the data set Sa, calculated by using Equation (4.3). We then

apply a filter on ρw(Gi,j ,Sa) using the Cv values as defined in Equation (4.5).

Cv(Gi, Sa) = Cv({r(Gi, ek)}) ∀ek ∈ Sa (4.4)

ρw(Gi,j , Sa) =





0 if Cv(Gi, Sa) ≤ tCv and Cv(Gj , Sa) ≤ tCv

ρw(Gi,j , Sa) otherwise
(4.5)

Phase 3

For each gene pair, Gi,j =(Gi, Gj) where Gi,Gj ∈ GS, and each data set S, we calculate

Weighted Spearman Rank Correlation Coefficient using Equation(4.5).

Given a query gene Gi, this calculation forms out a k × m matrix, A, with k rows

and m columns. This matrix is defined by its set of rows, X={Gi1,Gi2,Gi3,...,Gik} for

the given gene and its set of columns, Y={S1,S2, ... ,Sm}.

A cell in this matrix, aMN , is a real value representing the Weighted Spearman

Correlation Coefficient of Mth gene pair for the Nth working set as defined in Equation

(4.6).
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aMN = ρw(Gi,j , SN ) where M = Gi,j and N = SN (4.6)

Since ρ ∈ [-1,+1] and fw(P) ∈ [1,2] then ρw ∈ [-2,+2]. Setting the threshold, tρw=1.5,

for ρw makes ρ ≤ 0.75; which is a reasonable threshold for two random variables that

show similar behavior.

Weighted Spearman Rank Correlation gives a scale on the strength of the similarity of

two random variables. Therefore, in order to decide whether two genes behave similarly,

we apply thresholding and discretize the matrix to mark gene pairs versus sets showing

similar behavior. A cell, aMN , in the matrix is then defined in Equation (4.7).

aMN =





1 ρw(Gi,j , SN ) ≥ tρw where M = Gi,j and N = SN

0 ρw(Gi,j , SN ) < tρw where M = Gi,j and N = SN

(4.7)

There exist approximately 20,200 distinct genes among the 371 NCBI-GEO data

sets complied in our database. Therefore, the matrix we used in our analysis has more

than 150,000,000,000 members. By the use of the symmetry property of Spearman

Rank Correlation Coefficient, thresholding, filtering weight values during ρw calculation

and using the fact that microarray samples generally do not include all genes, we had

12,000,000,000 ρw calculations to construct this matrix.

4.2.4 Bi-k-Bi Clustering Algorithm

The bi-k-bi clustering algorithm was applied in three steps (Figure 4.2 and Algorithm 1)

which operates on the discretized matrix, A, defined in Section 4.2.3.

In the first step we perform a coarse analysis in order to reduce the working set

by focusing on gene pairs with their associated data sets in which they have similar

expression profiles. The second step is the assignment of labels for genes in microarray

samples by k-means clustering over all available gene expression data in our database.

Finally, a detailed analysis of labeled gene pairs associated with microarray samples, so

called rules, is performed. As it can be deduced, the first and last step should be done in

order, however, the second step, where we assign a label for each gene in each microarray

sample, can be performed in any order.
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Figure 4.2: Workflow of the bi-k-bi clustering algorithm.

Algorithm 1 Bi-k-Bi Clustering Algorithm
1: Find clusters of similar behaving gene pairs versus sets using the biclustering algo-

rithm, as described in Section 4.2.4.

2: Associate a label to each gene in each experiment using k-means clustering algo-

rithm, as described in Section 4.2.4.

3: loop

4: For each cluster of similar behaving gene pairs

5: Construct (sample,labeled gene pairs) using the function, ClusterLabel(C), defined

in Equation (4.11).

6: end loop

7: Find clusters of labeled gene pairs versus experiments, called as rules, using biclus-

tering algorithm, as described in Section 4.2.4.
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Finding Clusters of Gene Pairs That Have Similar Expression Profiles

After the discretization process of the matrix from the finding similar gene expression

pair step (Figure 4.1), we first focus on identification of both groups of gene and set

pairs in this matrix. It is important to keep in mind that we should find the groups of

gene pairs and sets having 1’s in the matrix which represent similarly behaved gene pairs

after bi-k-bi clustering algorithm. Biclustering algorithms are used for this purpose and

tools available in the literature [32, 19, 62, 70]. Initially in this study we used a freely

available Biclustering Analysis Toolbox (BiCAT) [8]. However due to the large size of

our matrixes we faced memory problems. For this reason, we designed and implemented

a time and memory efficient biclustering algorithm.

Association Pattern Discovery (APD) methods have been applied on gene expression

data in order to find out groups of co-regulated gene patterns [20, 18, 26, 28]. APD

originates from market basket analysis and aim to find interesting relationships hidden in

large data sets. Such relationships can be represented as frequent itemsets and association

rules. APD methods are inherited from the area of frequent itemsets and association rule

mining. However, studies done on this area have commonly been focused on finding gene

patterns as association rules [20].

Maximum Frequent Itemset (MFI) in transactional databases is the problem of mining

maximum itemsets from the transactional database. Thus, in a given set of items and

transaction set, MFI algorithms find out maximum sets of items occur for a given support.

For example, for support v, items that occur at least in v transactions are reported. It is

important to note that MFI reports the maximum itemsets and does not report subsets.

There have been many studies for mining frequent itemsets in the literature [2, 3, 27].

MAFIA is one of the MFI algorithms which performs best when mining long itemsets

and it outperforms other algorithms on dense data [15]. The algorithm applies space

pruning techniques and adaptive compression that makes optimal use of memory and

running time. A free implementation with source code of MAFIA is publicly available

(http://himalaya-tools.sourceforge.net /Mafia/doxygen-Mafia/index.html).

MAFIA, like most MFI algorithms, outputs the list of frequent itemsets for a given

support. Applying a post processing on this output by adding the associated transactions

of the itemsets, we can have biclusters of itemsets and transactions. (i.e., biclusters

having number of transactions greater than the support, v). The post processing has at
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most O(n2) time complexity, which does not have much effect on the running time of the

original MAFIA.

According to this approach, we modified the MAFIA algorithm in order to output

associated transactions with the itemsets. We use this modified algorithm as our biclus-

tering algorithm. We then represent transactions as data sets and itemsets as gene pairs

having similar expression profile using the discretized matrix defined in Section 4.2.3.

Let Gi,j ∈ GS and Sk ∈ S and v1 be the minimum number of sets in the clustered

results; applying our biclustering algorithm gives clusters as in Equation (4.8).

Clusterc = [{Gi,j}, {Sk}] where sizeof(S) ≥ v1 (4.8)

Labeling Gene Pairs in Experiments

In order to use association rules among the biclustered gene pairs, gene pairs having

similar expression profiles (i.e., biclusters constructed in the previous subsection) should

be labeled. In this step, we assign a label for each gene pair with the corresponding

experiment in which it occurs.

In order to label gene pairs in our database, a preprocessing step should be applied.

In this preprocessing step, rank values of the genes in the experiments are discretized.

High rank values are labeled with High (“High-expressed ”), low rank values with Low

(“Low-expressed ”).

It is clear that a crude discretization such as using thresholding on rank data lead to

certain loss of information [26]. In order to alleviate this loss of information we decided

to use clustering on the rank values for labeling. Since k-means clustering is a fast

and efficient clustering algorithm, we apply k -means clustering on all rank values and

assign a label for each gene in each experiment using these clusters. When the number

of clusters (i.e., k=2) are known k -means clustering is also advantageous in both time

and space complexity.

Let S = {e1,e2,...,en} be a set of n microarray experiments, Gi,j be a gene pair in

S and ek ∈ S. Also let li,k be the label assigned to gene Gi in ek and lj,k be the label

for gene Gj within the same experiment ek (i.e., li,k, lj,k ∈ {High, Low}). We define the

gene pair experiment labeling function, ExpLabel(Gi,j ,ek), for the gene pair Gi,j within

the experiment ek as in Equation (4.9).
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ExpLabel(Gi,j , ek) = li,j,k where li,j,k = [Gi(li,k), Gj(lj,k)] (4.9)

For a given set, we define the set labeling function, SetLabel(Gi,j ,S), as in Equation

(4.10).

SetLabel(Gi,j , S) = {ExpLabel(Gi,j , ek)} ∀ek ∈ S (4.10)

Let C be a bicluster, we define the cluster labeling function, ClusterLabel(C), as in

Equation (4.11).

ClusterLabel(C) = {SetLabel(Gi,j , Sm)} ∀Sm,∀Gi,j ∈ C (4.11)

Finally, we apply the function, ClusterLabel(C), in Equation (4.11) to all biclusters

found in Equation (4.8) and construct the data to be used in the third step of our bi-k-bi

clustering algorithm.

Extracting Rules

In the third step of our bi-k-bi clustering algorithm we aim to find association rules as

clusters of labeled gene pairs versus experiments. Thus, we apply biclustering algorithm

on the clusters of gene pairs with similar expression profiles obtained as a result of k-

means clustering. We use the same biclustering algorithm described in Section 4.2.4 and

find out sets of clusters, which we call them as rules, for a given support v2 (i.e., number

of experiments in the rule is greater than v2).

Let ek be an experiment and Gi,j be a gene pair in or database. Further, let v1 be

the support for the minimum number of data sets, gene pair Gi,j have similar expression

profiles and v2 be the support for the minimum number of experiments in a rule. This

final step of the algorithm outputs sets of rules as of the form given in Equation (4.12).

Rule = [{ExpLabel(Gi,j , ek)}, {ek}] for support v1 and v2 (4.12)

4.2.5 Illustrative Example

As an illustrative example, consider the randomly selected sample genes Gene1, Gene2,

Gene3 and NCBI GEO data sets GDS1, GDS2 and GDS3 from our database. The average

percentile rank values of these sample genes are given in Table 4.1.
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Table 4.1: Average percentile rank values of the genes for the illustrative example.

NCBI-GEO GDS NCBI-GEO

GSM

Average Percentile Rank

Gene1 Gene2 Gene3

GDS1

GSM11 36 51 45

GSM12 51 60 65

GSM13 38 57 -

GSM14 54 - -

GSM15 - - 55

GSM16 55 - 44

GDS2

GSM21 62 90 35

GSM22 59 86 21

GSM23 44 84 42

GDS3
GSM31 87 87 60

GSM32 94 93 46

First, we find gene pairs with similar expression profiles as described in Section 4.2.3.

For this purpose, we define thresholds tCv=0.2 and tρw=1.5. We then compute similarity

measures (PS , Cv, ρ, ρw) for each gene pair. The computed values for this illustrative

example are given in Table 4.2. By using these computed values and thresholds, we

prepare the input data for the bi-k-bi clustering framework as given in Table 4.3.

We apply the bi-k-bi clustering framework on the discretized matrix generated from

the gene pairs with similar expression profiles and data sets.

In the first phase of the framework, we apply biclustering and generate clusters as

described in Section 4.2.4. The resulting cluster for this illustrative example with support

v1=2 is given in Table 4.4.

In the second phase of the framework, we apply k -means to assign High/Low labels

to the genes and generate (sample, labeled gene pairs) for the clusters as described in

Section 4.2.4. List of labels for the genes in the microarray samples and the cluster for

this illustrative example are given in Table 4.5 and Table 4.6 respectively.

In the last phase of our framework, we apply biclustering and generate association

rules as described in Section 4.2.4. The resulting rule for this illustrative example with
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Table 4.2: Similarity measure values (PS , Cv, ρ, ρw) of the gene pairs in the illustrative

example where tCv=0.2

Gene pair GDS 1 GDS 2 GDS 3

Gene1 - Gene2

PS=50 PS=100 PS=100

Cv(Gene1)=0.19 Cv(Gene1)=0.17 Cv(Gene1)=0.05

Cv(Gene2)=0.08 Cv(Gene2)=0.03 Cv(Gene2)=0.04

ρ=1 ρ=1 ρ=1

ρw =1.69 ρw =2 ρw =2

Gene1 - Gene3

PS=50 PS=100 PS=100

Cv(Gene1)=0.19 Cv(Gene1)=0.17 Cv(Gene1)=0.05

Cv(Gene3)=0.18 Cv(Gene3)=0.32 Cv(Gene3)=0.18

ρ=-1 ρ=0.5 ρ=-1

ρw =-0.84 ρw =0 ρw =-2

Gene2 - Gene3

PS=33 PS=100 PS=100

Cv(Gene2)=0.08 Cv(Gene2)=0.03 Cv(Gene2)=0.04

Cv(Gene3)=0.18 Cv(Gene3)=0.32 Cv(Gene3)=0.18

ρ=1 ρ=-0.5 ρ=-1

ρw =1.51 ρw =0 ρw =-2

support v2=3 is given in Table 4.7.

4.3 Results

The proposed bi-k-bi clustering framework was applied on all available NCBI GEO Homo

sapiens data sets (i.e. 9090 microarray samples grouped into 372 data sets). Our findings

indicated that majority of the gene-pairs belonged to categories with known housekeeping

gene functions, such as ribosomal protein genes and metabolic pathway genes. House-

keeping genes generally are assumed to have expression levels unaffected by experimental

conditions thus are expected to exhibit relatively stable expression at high levels. Coef-

ficient of Variation parameter of the bi-k-bi clustering approach allowed us to determine

the most stably expressed genes in the database [17]. By applying an experimentally de-

fined Cv filter threshold on the Cv, i.e., 0.1, we filtered out the likely housekeeping genes
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Table 4.3: NCBI-GEO Data sets vs. gene pairs in the illustrative example where tρw ≥
1.5.

NCBI-GEO GDS Gene pairs

GDS1 [Gene1,Gene2],[Gene2,Gene3]

GDS2 [Gene1,Gene2]

GDS3 [Gene1,Gene2],[Gene1,Gene3], [Gene2,Gene3]

Table 4.4: Clusters for the illustrative example with support v1=2.

Cluster Name Cluster Members

c1 (2x2)

{[Gene1,Gene2],[Gene2,Gene3]}

x

{GDS1,GDS3}

thereby leaving gene-pairs potentially involved in cellular signaling processes as well as

those function among tissues and pathological states in highly divergent manners.

However, the results after Cv filtering may still contain so called housekeeping genes

that pass the Cv threshold since recent studies have indicated that several widely used

housekeeping genes have altered expression under experimental conditions [60, 63]. One

of the important aspects of the present study is its ability to associate a set of gene-pair

rules with subsets of the available microarray data. Therefore, we applied our frame-

work on five different groups of data sets: i) Breast Cancer, ii) Normal Human Tissue,

iii) Obesity, iv) Liver and v) Colon and extracted rules. For each group we constructed

a working set consisting of NCBI GEO microarray data sets [9]. We manually curated

working sets by using the free text titles and descriptions supplied by experimenters in

NCBI GEO data sets. Microarray sample and data set distribution of each working

set is as follows: i) Breast Cancer: 188 microarray samples grouped into 10 data sets;

ii) Normal Human: 120 microarray samples grouped into 5 data sets; iii) Obesity: 275

microarray samples grouped into 8 data sets; iv) Liver: 35 microarray samples grouped

into 2 data sets; and v) Colon: 132 microarray samples grouped into 9 data sets. The

corresponding NCBI GEO data sets with their titles for each working set were provided

in Table 4.8.
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Table 4.5: K-means clustering for the assignment of gene expression levels in the illus-

trative example: High and Low.

NCBI-GEO GDS NCBI-GEO

GSM

Assigned Labels

Gene1 Gene2 Gene3

GDS1

GSM11 LOW HIGH LOW

GSM12 HIGH HIGH HIGH

GSM13 LOW HIGH -

GSM14 HIGH - -

GSM15 - - HIGH

GSM16 HIGH - LOW

GDS2

GSM21 HIGH HIGH LOW

GSM22 HIGH HIGH LOW

GSM23 LOW HIGH LOW

GDS3
GSM31 HIGH HIGH HIGH

GSM32 HIGH HIGH LOW

We applied the bi-k-bi clustering framework on each working set independently. Cv

filter threshold, tCv, was set as 0.1 to specifically focus on gene-pairs with variable expres-

sion. Results for each subset can be accessed online (http://www.i-cancer.org/∼levent
/rules). A search engine that enables users to query genes within the result sets can also

be accessed through the web site (http://www.i-cancer.org/∼levent/query).
The most observed gene-pair rule in the breast cancer subsets, FOXM1-TPX2, existed

in 80% of the microarray samples, given in Table E.1, is analyzed. Microarray samples

valid and not valid for rule are listed in Table E.2 and Table E.3 respectively. Further,

the graph of rank values in the microarray samples of the genes in this rule is also given

in Figure E.1. Interestingly, a few of the experiment sets were included or excluded as

a whole for the rule determination. In particular, FOXM1-TPX1 rule was restricted to

all samples of GDS817, GDS820, GDS901 while this rule was not observed in any of

the samples of the experiment sets GDS901 and GDS1250. On the other hand, different

samples of GDS2250 were used for determining the FOXM1-TPX2 rule; for example,

normal breast tissue expression together with six non-basal-like and one basal-like tumor
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Table 4.6: Expression level assigned gene pairs vs. NCBI-GEO Microarray Samples for

the illustrative example.

Labeled gene pairs NCBI-GEO GSM

Gene1(HIGH),Gene2(HIGH) GDS1−GSM12, GDS3−GSM31, GDS3−GSM32

Gene1(HIGH),Gene2(LOW) -

Gene1(LOW),Gene2(HIGH) GDS1−GSM11, GDS1−GSM13,

Gene1(LOW),Gene2(LOW) -

Gene2(HIGH),Gene3(HIGH) GDS1−GSM12, GDS3−GSM31

Gene2(HIGH),Gene3(LOW) GDS1−GSM16, GDS3−GSM32,

Gene2(LOW),Gene3(HIGH) -

Gene2(LOW),Gene3(LOW) -

Table 4.7: Rules for the illustrative example with support v1=2 and v2=3.

Rule Name Rule Members

Rule1 (2x3)

{[Gene1(HIGH),Gene2(HIGH)],[Gene2(HIGH),Gene3(HIGH)] }

x

{ GDS1−GSM12, GDS3−GSM31, GDS3−GSM32 }

samples did not contribute to the rule [52]. These results might indicate that normal

cells do not exhibit FOXM1-TPX2 rule unlike subsets of breast tumors, i.e., basal-like.

Previous studies support our findings such that FOXM1 and TPX2 were up regulated in

breast tumor studies [54].

For the tissue expression pair-rules, the two most commonly observed composite rules

were [CHD1 (HIGH) - PSD4 (HIGH)] [CHD1 (HIGH) - ZNF384 (HIGH)] and [MBD6

(HIGH) - PSD4 (HIGH)] [POLDIP2 (HIGH) - SFXN4 (HIGH)]. The first rule was deter-

mined based on the tissue samples from GDS422 and GDS423. Similarly, [MBD6 (HIGH)

- PSD4 (HIGH)] [POLDIP2 (HIGH) - SFXN4 (HIGH)] rule was supported only by the

GDS423 and GDS424 experiment sets. These findings suggested that representative se-

quences of the same gene might be non-equivalent among different platforms influencing

the degree of the association due to either presence/absence of alternative splicing events,

multiple hits in the transcriptome, and/or dinucleotide content of the probesets. Since
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[CHD1 (HIGH) - PSD4 (HIGH)] [CHD1 (HIGH) - ZNF384 (HIGH)] rule was commonly

observed in all of the tissues studied (i.e., bone marrow, liver, heart, spleen, lung, kidney,

skeletal muscle, thymus, brain, spinal cord, prostate, and pancreas), this triplet might

represent an alternative reference gene set for non-diseased tissue normalization studies.

Moreover, CDH1, PSD4, and ZNF384 or MBD6 and PSD4, or POLDIP2 and SFXN4

genes were not shown to be co-expressed previously in the literature thus represent novel

links in cellular signaling pathways.

The most commonly observed pair-rule in comparing the adipocyte expression profil-

ing was [CRIP2 (HIGH) - RGS5 (HIGH)]; however this rule was not able to separate lean

versus obese type adipocytes. Furthermore, [CRIP2 (HIGH) - RGS5 (HIGH)] rule did not

hold in none of the preadipocyte/stromal vascular cells (GDS1480) or lean/obese skeletal

muscle tissue (GDS268) or some of the lean/obese adipocytes (i.e., some of GDS1493, all

of GDS1496, all of GDS1497, some of GDS1498). The same issue observed for the tissue

datasets explained in the previous paragraph was present for the lean/obese samples (20

non-obese. BMI 25+/-3 kg/m2, and 19 obese. BMI 55+/-8 kg/m2, non-diabetic Pima

Indians; [40]). GDS1493, GDS1495, GDS1496, GDS1497, and GDS1498 belonged to five

different platforms (HG-U95A-E) and although were used for the same set of adipocytes.

Nevertheless, each platform might contain different probesets for the same gene thus

might not always support the [CRIP2 (HIGH) - RGS5 (HIGH)] or other rules.

In liver datasets, [CD38 (LOW) - PENK (LOW)] [C2ORF27 (LOW) - HELZ (HIGH)]

[GYS1 (HIGH) - SNX9 (LOW)] rule was observed most commonly across almost all liver

experiment sets. The rule displayed low-high, high-low, and low-low expression pairs

suggesting positive and negative regulation on these gene-pairs and warrants further ex-

perimental confirmation in the context of liver cancer. Analyzing the pair-rules in and

experiment specific-manner rather than globally provided rules with functional impor-

tance. For example, composite rule [AKR1B10 (HIGH) - NQO1 (HIGH)] [TBC1D9B

(HIGH) - UBE2G1 (HIGH)] [HADHB (HIGH) - VNN1 (HIGH)] [CYP4F2 (HIGH) -

DIO1 (HIGH)] [CD38 (LOW) - PENK (LOW)] [C2ORF27 (LOW) - HELZ (HIGH)]

[GYS1 (HIGH) - SNX9 (LOW)] was able to separate the long-term high dose treatment

(i.e., 3 samples out of 4 150mg/kg/day for 15 days and 4 samples out of 5 400mg/kg/day

for 15 days) effects of peroxisome proliferator-activated receptor-a agonist ciprofibrate,

which caused hepatocellular carcinoma, from the vehicle control (5 out of 5) and low

dose treatment (3mg/kg/day and 30mg/kg/day for 15 days) on primate liver samples
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(GDS1442) [16]. Therefore, this rule might represent a novel co-expressed gene set that

is dose-dependently regulated by peroxisome proliferator -activated receptor- during liver

carcinogenesis.

Colon disease datasets investigated in the present study were more divergent in nature

including colon cancer cell lines (metastatic/non-metastatic, treated/untreated) as well

colon biopsy samples (normal, chrons disease, colitis) and primary tumors (with/without

recurrence). The most commonly observed gene-pair rule, [MRPL12 (HIGH) - RP2

(LOW)] was not able to separate colon cancer samples from other colon diseases nor

from cell line experiments. On the other hand, [GPR64 (LOW) - RRAD (LOW)] rule

seem to cluster almost all colon cancer cell lines together although it fails to distinguish

between colon cancer recurrence or colon diseases.

GEO data sets consists of biological experiments realized for a specific purpose. For

example, a GEO data set may contain microarray samples done on normal and cancer

tissues together where normal tissue samples are often used as control samples by the

experimenters. Microarray samples in rules generated by our framework consisted of

only control or target samples of data sets included. Only small number of rules included

mixtures of control and target samples of the same data set while misplaced samples

in these rules represented generally duplicates of original samples. Since most rules

were determined by the contribution of the majority of the members of a particular

microarray experiment set this suggested that experimental conditions together with

biological differences also played a role in the observed co-expression patterns of the

genes.

A literature survey performed on the genes in the rules generated by our framework

resulted in confirmation of expressional regulation of cancer-related genes. FOXM1,

TPX2, HIST1H1C, HIST1H2BK, IFIT3, RSAD2, ISG15, HIST1H2BE, DBF4, STIL,

KNTC2, MELK, IFIT2, DLG7, BUB1B, HCP5, OASL genes were the most commonly

occurring up-regulated genes in rules found using the Breast Cancer Working Set. In

previous breast cancer studies, some of these genes have been reported as being up-

regulated including FOXM1, TPX2, HIST1H1C, HIST1H2BK, KNTC2, MELK and

BUB1B [45, 54, 54, 10, 38, 43, 24].

In the light of all these information, we can say that rules found using the proposed

bi-k-bi clustering framework show consistency and relatedness with the literature.
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4.4 Discussion

As gene expression profile data sets became more available, application of data mining

techniques on these data give valuable hints about gene pattern associations. Several

methods have been proposed for mining gene expression profiles. However most of these

methods have several limitations.

In this paper, we proposed a novel framework, bi-k-bi clustering, for finding asso-

ciation rules of gene pairs that can easily operate on large scale data. Our framework

outputs rules consisting of labeled gene pairs with their associated microarray samples.

One of the most important aspects of this study is its ability to deal with large scale

and multiple heterogeneous data sets. By the use of dynamic thresholding on expression

profiles, we also alleviate the disadvantages of crude thresholding on expression data.

Available biclustering algorithms require space complexity on large amount of data.

For this purpose, we also modified an existing MFI algorithm for biclustering. The

proposed methods generally work on a single gene expression data set and cannot handle

large number of gene expression data sets in public databases in reasonable amount of

time and space. In our experiments, the available biclustering methods we tested were

not able to produce an output for the Breast Cancer Data Set with about 20,190 genes

and 188 conditions.

In order to test our framework, we applied it on all available NCBI GEO Homo

sapiens data sets and more specifically five different functionally concise groups of NCBI

GEO data sets independently (i.e.: Breast Cancer, Normal Human Tissue, Obesity, Liver

and Colon). Gene-pair rules and their association with a given sample set exhibited

concordance with the literature. Furthermore, our results provided novel insights into

the co-regulated gene pairs among a compendium of tissues as well as diverse conditions

of human cancers.
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Table 4.8: NCBI GEO datasets used in working sets.

Working
Set

NCBI GEO Dataset

Breast
Cancer

GDS360:BREAST CANCER AND DOCETAXEL TREATMENT
GDS817:BREAST CANCER CELL EXPRESSION PROFILES (HG-U95A)
GDS820:BREAST CANCER CELL EXPRESSION PROFILES (HG-U133A)
GDS823:BREAST CANCER CELL EXPRESSION PROFILES (HG-U133B)
GDS881:BREAST CANCER AND SELECTIVE ESTROGEN RECEPTOR
MODULATORS
GDS901:ESTROGEN RECEPTOR ALPHA L540Q MUTATION EFFECT ON
GENE INDUCTION BY ESTRADIOL: TIME COURSE
GDS1250:ATYPICAL DUCTAL HYPERPLASIA AND BREAST CANCER
GDS1326:BREAST CANCER CELLS REEXPRESSING ESTROGEN
RECEPTOR ALPHA RESPONSE TO 17BETA-ESTRADIOL
GDS1329:MOLECULAR APOCRINE BREAST TUMORS
GDS2250:BASAL-LIKE BREAST CANCER TUMORS

Normal
Human
Tissue

GDS422:NORMAL HUMAN TISSUE EXPRESSION PROFILING (HG-U95A)
GDS423:NORMAL HUMAN TISSUE EXPRESSION PROFILING (HG-U95B)
GDS424:NORMAL HUMAN TISSUE EXPRESSION PROFILING (HG-U95C)
GDS425:NORMAL HUMAN TISSUE EXPRESSION PROFILING (HG-U95D)
GDS426:NORMAL HUMAN TISSUE EXPRESSION PROFILING (HG-U95E)

Obesity

GDS268:OBESITY AND FATTY ACID OXIDATIONC
GDS1480:OBESITY: PREADIPOCYTE EXPRESSION PROFILE (HG-U133A)
GDS1481:OBESITY: PREADIPOCYTE EXPRESSION PROFILE (HG-U133B)
GDS1493:OBESITY: ADIPOCYTE EXPRESSION PROFILE (HG-U95A)
GDS1495:OBESITY: ADIPOCYTE EXPRESSION PROFILE (HG-U95B))
GDS1496:OBESITY: ADIPOCYTE EXPRESSION PROFILE (HG-U95C)
GDS1497:OBESITY: ADIPOCYTE EXPRESSION PROFILE (HG-U95D)
GDS1498:OBESITY: ADIPOCYTE EXPRESSION PROFILE (HG-U95E)

Liver

GDS1373:PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR
SUBTYPE ACTIVATION EFFECT ON LIVER CELL
GDS1442:PPARI AGONIST CIPROFIBRATE EFFECT ON LIVER

Colon

GDS559:INFLAMMATORY BOWEL DISEASE (HG-U133A)
GDS560:INFLAMMATORY BOWEL DISEASE (HG-U133B)
GDS709:ENTEROCYTE DIFFERENTIATION TIME COURSE
GDS756:COLON CANCER PROGRESSION
GDS1263:DUKES B COLON CANCER RECURRENCE
GDS1330:CROHN DISEASE AND ULCERATIVE COLITIS COMPARISON
GDS1386:COLORECTAL CARCINOMA SUBTYPE WITH
MICROSATELLITE INSTABILITY (HG-U133A)
GDS1387:COLORECTAL CARCINOMA SUBTYPE WITH MICROSATELLITE
INSTABILITY (HG-U133B)
GDS1942:TRANSGENIC KRAPPEL-LIKE FACTOR 4 INDUCTION: TIME
COURSE

49



CHAPTER 5

CONCLUSION

Due to the advances in technology, it has been possible to deposit very small volumes of

many objects in to a very small area. A microarray is an arrayed series of thousands of

microscopic spots, printed on a solid substance. Microarray technology allows researchers

simultaneously monitor expression levels of thousands of genes in a single experiment.

The excess in the amount of microarray experiments requires the collection and service

of these data under a standard format. NCBI Gene Expression Omnibus (GEO) project

is a public repository for microarray sample submissions from all over the world [9]. Since

these data have been provided in different platforms and come from different laboratories,

there is a need for compilation and comprehensive analysis.

As gene expression profile data sets became more available, application of data min-

ing techniques on these data give valuable hints about gene pattern associations. In this

thesis, our primary motivation is to address the automation of biological data acquisition

and integration from these non-uniform microarray experiments submitted by different

experiments using machine learning techniques. Several methods have been proposed

for mining gene expression profiles. However most of these methods have several short-

comings. In the scope of this thesis, we studied methods and techniques to alleviate

these shortcomings. We focused on mining problems that can easily work on large scale,

multiple heterogeneous data sets on a desktop computer with limited computational

resources.

At first, we download all Homo sapiens microarray experiments from NCBI-GEO and

constructed a large scale database from these experimental data along with its associated

metadata. After the construction of this curated database, we considered two different

mining problems.
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In the first problem, we aimed to characterize expression patterns of a published set

of housekeeping genes across large number of heterogeneous microarray experiments in

our curated database. However, most of the studies available in the literature generally

worked on a few homogenous or specially curated data sets. In order to work with multi-

ple heterogeneous data sets we defined and applied a scaling process on the constructed

database. We then described methodologies to compare measures of housekeeping genes

with those of randomly selected non-housekeeping genes. Our results have supported the

claim that housekeeping gene expression is less variable across different experiment sets

when compared with randomly selected gene sets. In addition, all previous studies in

characterization expression patterns of housekeeping genes focused to find a general ref-

erence gene set. However, our initial results demonstrated that rather than focusing on a

general reference gene set, cell specific reference gene sets gave better results. We further

generated cell origin specific twenty reference gene sets based on the Mesh Headings of

the published microarray experimental data. Future directions for this problem can be

summarized as follows.

• Reference gene set results can be analyzed and biologically experimented by the

scientists.

• Microarray database, described in Chapter 2, can be periodically updated and

enlarged with the inclusion of new microarray experiments from NCBI and other

available microarray repositories.

• The methodologies and measures can be executed for custom data sets submitted

by the users.

• Different subsets of genes can be determined and can be used as housekeeping

gene sets for a particular biological condition (e.g., cancer); these gene sets can be

useful in microarray data normalization as well as real-time Reverse Transcription

Polymerase Chain Reaction (RT-PCR) confirmation studies which are performed

to amplify defined pieces of RNA molecules.

In the second problem, we proposed a novel framework, bi-k-bi clustering, for finding

association rules of gene pairs that can easily operate on large scale and multiple hetero-

geneous data sets. Our framework proposed a two level biclustering approach that works

at the data set and experiment (i.e., condition) levels and discovers similar behaving
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gene pairs in multiple data sets. Our approach did not produce a subset of genes in a

subset of conditions; rather, we reported pairs of genes that behave similarly in a subset

of conditions. This property was a setback compared to existing methods; however, it

allowed for mining gene expression patterns on a larger scale on a desktop computer

with limited computational resources. Our motivation in this problem is to propose a

framework that help biologists discover significant gene pair relations and reason about

them using their associated microarray samples. We further targeted this framework to

work on a desktop computer in a reasonable time and space.

We applied the framework on all available GEO Homo sapiens data sets as well as

on five different groups of GEO data sets independently (i.e.: Breast Cancer, Normal

Human Tissue, Obesity, Liver and Colon) to test our framework. Gene-pair rules and

their association with a given sample set were in accord with the literature. Furthermore,

our results provided novel insights into the co-regulated gene pairs among a compendium

of tissues as well as diverse conditions of human cancers. Future directions for this

problem can be summarized as follows.

• Resulting rules from the tested data set groups can be biologically experimented

and analyzed by the scientists to discover novel gene pair relations.

• Rules for other user specified data set groups can be generated.

• The bi-k-bi clustering framework can be extended to work with custom data sets

submitted by the users. This extension will help scientists to concentrate and

discover novel rules from their own data sets.

• Instead of finding rules of gene pairs the bi-k-bi clustering framework can be ex-

tended for finding rules with all associated genes.
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APPENDIX A

DATABASE DETAILS

A.1 Implementation Details

MySQL database (Version 4 ) running on Linux operating system is used to store microar-

ray data. Schema for this database is given in Section A.2. In order to insert microarray

spot values along with the associated metadata to this database, we developed a number

of applications running on the Linux operating system. All these applications are devel-

oped with the C programming language and compiled with the GNU C compiler (gcc).

The brief information of these applications are given as follows.

• Raw Data Extraction: Stores raw channel data of the microarray samples. Fur-

ther, this application stores the GDS and GSM metadata in the database. It first

unzips the GDS and its associated GPL file. Then it extracts gene symbol and

channel value of the gene symbol for the corresponding spot using GDS and GPL

files.

• Normalization: Computes and stores the global mean normalized values of the

spots in the database.

• Ranking: Computes and stores linear and percentile rank values of the spots in

the database.

• Mesh Heading metadata construction: Connects to NCBI web site and down-

loads the Mesh Heading information of the data sets in the database (Some GDS

files that may not contain a PubMed Id. For these data sets, publication details are

manually queried from known journal and conference web sites).
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• Rank per gene computation: Computes the average percentile rank value of

each gene symbol in each GSM. In order to ignore the gene symbol, the application

also checks whether the rank change of a gene symbol within the GSM exceeds the

threshold (i.e.: 20) or not.

• Cv computation: Computes the Coefficient of Variation (Cv) for each gene among

all the data sets in the database.

• Mesh Ontology construction: Downloads the Mesh Heading Ontology (Mesh

Tree) from NCBI web site and stores the ontology in the database.

A.2 Database Schema

/*
Spot value of each GSM is stored in this table

*/
CREATE TABLE RANK_GEO_ALL_GSM_EI (

ROW_ID INT NOT NULL AUTO_INCREMENT,
DATASETNAME VARCHAR(30),
NAME VARCHAR(30),
ID VARCHAR(30),
GENESYMBOL VARCHAR(30),
LOG2_CHANNEL1_VALUE DOUBLE, /* Log Value of the Channel */
MEAN_CENTERED_LOG2_CH1_VALUE DOUBLE, /* Global Mean Centered Value */
RANK_MEAN_CENTERED_CH1_VALUE SMALLINT, /* Linear Rank Value */
PERC_MEAN_CENTERED_CH1_VALUE SMALLINT, /* Percentile Rank Value */
PRIMARY KEY (ROW_ID)

)TYPE=INNODB;

/*
Information about GSMs are stored in this table

*/
CREATE TABLE RANK_GEO_ALL_GSM_INFO_EI (

ROW_ID INT NOT NULL AUTO_INCREMENT,
GSMNAME VARCHAR(50) NOT NULL,
DATASETNAME VARCHAR(50) NOT NULL,
FEATURECOUNT INT,
CHANNELCOUNT SMALLINT,
AVG_LOG2_CHANNEL1 DOUBLE, /* Average LOG value of spots in the GSM */
PRIMARY KEY (ROW_ID,GSMNAME,DATASETNAME)

)TYPE=INNODB;
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/*
Associated PubMed Id for the GDSs are stored in this table

*/
CREATE TABLE RANK_GEO_ALL_PUBMED_GDS_EI (

ROW_ID INT NOT NULL AUTO_INCREMENT,
GDSNAME VARCHAR(30) NOT NULL ,
PUBMEDID INT NOT NULL, /* PubMed ID */
PRIMARY KEY (ROW_ID,GDSNAME,PUBMEDID)

)TYPE=INNODB;

/*
GDS file processed are stored in this table

*/
CREATE TABLE FILES_READ_GDS (

ROW_ID INT NOT NULL AUTO_INCREMENT,
FILENAME VARCHAR(100),
SIZE INT,
PRIMARY KEY (ROW_ID)

)TYPE=INNODB;

/*
Mesh Heading Information for PubMedIds in the RANK_GEO_ALL_PUBMED_GDS_EI
table are stored in this table

*/
CREATE TABLE PUBMED_MESH (

ROW_ID INT NOT NULL AUTO_INCREMENT,
PUBMEDID INT NOT NULL,
MESHHEAD VARCHAR(100) NOT NULL,
QUALIFIER VARCHAR(255) NOT NULL,
PRIMARY KEY (ROW_ID)

)TYPE=INNODB;

/*
Average Percentile Rank Value of genes in each GSM.

*/
CREATE TABLE PERCRANK_PER_GENE_EI (

ROW_ID INT NOT NULL AUTO_INCREMENT,
GDSNAME CHAR(10) NOT NULL,
GSMNAME CHAR(10) NOT NULL,
GENESYMBOL CHAR(50) NOT NULL,
AVG_PERC_RANK DOUBLE, /* Average Percentile Rank Value */
PRIMARY KEY (ROW_ID,GDSNAME,GSMNAME,GENESYMBOL)

)TYPE=INNODB;
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/*
CV values of genes are stored in this table

*/
CREATE TABLE GEO_PERC_CV_EI (

ROW_ID INT NOT NULL AUTO_INCREMENT,
GENESYMBOL CHAR(50) NOT NULL,
CV DOUBLE,
PRIMARY KEY (ROW_ID,GENESYMBOL)

)TYPE=INNODB;

/*
Housekeeping Gene symbols listed by Eisenberg,et.al.

*/
CREATE TABLE HKSET2 (

ROW_ID INT NOT NULL AUTO_INCREMENT,
NUCLEOTIDENAME VARCHAR(50),
GENESYMBOL VARCHAR(50),
PRIMARY KEY (ROW_ID)

)TYPE=INNODB;

/*
Mesh Ontology is stored in this table

*/
CREATE TABLE MESH_TREENUMBERS (

ROW_ID INT NOT NULL AUTO_INCREMENT,
MESHHEAD VARCHAR(100) NOT NULL,
TREENO VARCHAR(255) NOT NULL,
PRIMARY KEY (ROW_ID)

)TYPE=INNODB;
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APPENDIX B

RESULTS OF

KOLMOGOROV-SIMIRNOV TESTS

Tables for the two sample Kolmogorov-Simirnov Test (two-tailed test) results of the

hypothesis comparing pair wise Ratiot distributions of housekeeping genes with random

non-housekeeping genes and distributions of random genes among each other are given

in Table B.1, Table B.2 and Table B.3, Table B.4 repectively.

In Table B.1 and Table B.3, coefficient of variation thresholds are a-) 0.5, b-) 0.1, c-)

0.05, d-) 0.01 and genes are observed at least 50% of the total sets. In Table B.2 and

Table B.4, coefficient of variation threshold is 0.05 and genes are observed at least a-)

75%, b-) 50%, c-) 25% and d-) 5% of the total sets. The hypothesis used in tests is:

• H0: Two distributions are not different.

• Ha: Two distributions are different.

In Table B.1 and Table B.3, the computed p-values are lower than the significance

level (alpha=0.05) in all cases. Therefore, H0 is rejected with the risk it is true is lower

than 0.01%.

In Table B.2 and Table B.4, H0 is rejected in cases where the computed p-values

are lower than the significance level (alpha=0.05). Test results shown in bold face have

p-values higher than the significance level and H0 is accepted in these cases. However,

when Bonferroni adjustment is done on the p-values, H0 is rejected. The risk to reject

H0 while it is true is at most lower than 3%.
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APPENDIX C

REFERENCE GENE SET OVER ALL

SETS

Table C.1: Reference gene set over all sets (Cv=0.12 and

Sensitivity=0.5)

Gene

Symbol

Name Ratiot Percentile Rank Is in

HK

Set

Mean Median Std. Dev.

AARS (alanyl-tRNA synthetase) 0.926 85.659 91 16.005 No

ABCF1 (ATP-binding cassette; sub-family F

(GCN20); member 1)

0.941 80.98 86 17.601 No

ACADVL

(acyl-Coenzyme A dehydrogenase; very

long chain)

0.913 87.286 91 12.952 No

ACTB (actin; beta) 0.949 94.965 99 15.704 Yes

ACTG1 (actin; gamma 1) 0.971 95.342 99 14.66 Yes

ADAR (adenosine deaminase; RNA-specific) 0.929 90.092 94 13.87 Yes

ADI-

POR2

(adiponectin receptor 2) 0.939 84.809 87 11.649 No

ADRM1 (adhesion regulating molecule 1) 0.909 83.378 88 13.797 No
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AG-

PAT1

(1-acylglycerol-3-phosphate O-

acyltransferase 1 (lysophosphatidic acid

acyltransferase; alpha))

0.926 84.729 88 12.879 Yes

AHSA1 (AHA1; activator of heat shock 90kDa

protein ATPase homolog 1 (yeast))

0.935 85.409 89 13.125 Yes

AKR1A1

(aldo-keto reductase family 1; member

A1 (aldehyde reductase))

0.916 85.17 89 14.943 Yes

ALDH9A1

(aldehyde dehydrogenase 9 family;

member A1)

0.902 83.285 87 14.571 No

ALDOA (aldolase A; fructose-bisphosphate) 0.926 92.929 98 15.779 Yes

ANP32B

(acidic (leucine-rich) nuclear phospho-

protein 32 family; member B)

0.931 91.073 95.5 15.328 Yes

AP2S1 (adaptor-related protein complex 2;

sigma 1 subunit)

0.935 88.409 91.667 12.359 Yes

APEX1 (APEX nuclease (multifunctional DNA

repair enzyme) 1)

0.913 87.861 92 14.107 No

ARF1 (ADP-ribosylation factor 1) 0.935 88.726 95 19.684 Yes

ARF3 (ADP-ribosylation factor 3) 0.947 85.986 92 19.61 Yes

ARF4 (ADP-ribosylation factor 4) 0.937 89.188 93 13.693 Yes

ARF5 (ADP-ribosylation factor 5) 0.92 85.273 89 13.575 Yes

ARPC2 (actin related protein 2/3 complex; sub-

unit 2; 34kDa)

0.952 92.016 96 15.303 Yes

ARPC3 (actin related protein 2/3 complex; sub-

unit 3; 21kDa)

0.908 85.798 91 15.839 Yes

ATF4 (activating transcription factor 4 (tax-

responsive enhancer element B67))

0.952 92.415 96 14.716 Yes

ATP5A1 (ATP synthase; H+ transporting; mi-

tochondrial F1 complex; alpha subunit 1;

cardiac muscle)

0.924 92.503 97 14.54 Yes

69



Table C.1: Cont’d

ATP5G1 (ATP synthase; H+ transporting; mito-

chondrial F0 complex; subunit C1 (sub-

unit 9))

0.94 86.73 90 12.854 Yes

ATP5I (ATP synthase; H+ transporting; mi-

tochondrial F0 complex; subunit E)

0.969 92.411 94.5 8.863 Yes

ATP6V0B

(ATPase; H+ transporting; lysosomal

21kDa; V0 subunit b)

0.947 88.247 94 18.572 Yes

ATP6V0C

(ATPase; H+ transporting; lysosomal

16kDa; V0 subunit c)

0.945 90.741 94.5 13.877 Yes

ATP6V1E1

(ATPase; H+ transporting; lysosomal

31kDa; V1 subunit E1)

0.939 86.196 90 15.279 Yes

ATP6V1F

(ATPase; H+ transporting; lysosomal

14kDa; V1 subunit F)

0.958 90.552 93 11.547 Yes

ATP6V1G1

(ATPase; H+ transporting; lysosomal

13kDa; V1 subunit G1)

0.919 85.787 91 13.868 Yes

B2M (beta-2-microglobulin) 0.975 96.399 99 10.644 Yes

BANF1 (barrier to autointegration factor 1) 0.927 89.011 94 13.538 Yes

BCAP31 (B-cell receptor-associated protein 31) 0.943 89.347 94 13.947 Yes

BECN1 (beclin 1 (coiled-coil; myosin-like BCL2

interacting protein))

0.926 83.88 85.5 12.35 Yes

BRD2 (bromodomain containing 2) 0.94 84.245 86.333 9.798 No

C11ORF58

(chromosome 11 open reading frame 58) 0.923 86.13 91 13.773 No
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C14ORF2

(chromosome 14 open reading frame 2) 0.919 85.303 91 14.969 Yes

C19ORF10

(chromosome 19 open reading frame 10) 0.917 85.007 88 12.172 No

C7ORF24

(chromosome 7 open reading frame 24) 0.925 83.841 87 13.342 No

CALM2 (calmodulin 2 (phosphorylase kinase;

delta))

0.926 93.761 98 15.126 Yes

CANX (calnexin) 0.954 90.163 95 17.561 Yes

CAP1 (CAP; adenylate cyclase-associated

protein 1 (yeast))

0.958 91.646 95.5 13.317 No

CAPNS1

(calpain; small subunit 1) 0.92 88.136 96 21.604 Yes

CASC3 (cancer susceptibility candidate 3) 0.931 82.904 87 14.356 Yes

CCT3 (chaperonin containing TCP1; subunit

3 (gamma))

0.936 89.843 94 13.739 Yes

CCT4 (chaperonin containing TCP1; subunit

4 (delta))

0.929 86.215 95 17.527 No

CCT7 (chaperonin containing TCP1; subunit

7 (eta))

0.905 86.725 93 17.469 Yes

CD81 (CD81 molecule) 0.94 90.939 97 16.058 Yes

CDIPT (CDP-diacylglycerol–inositol 3-

phosphatidyltransferase (phosphatidyli-

nositol synthase))

0.957 88.245 92 13.971 No

CDK2AP1

(CDK2-associated protein 1) 0.909 87.181 93 15.485 No

CFL1 (cofilin 1 (non-muscle)) 0.974 94.945 99 15.778 Yes
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CHMP2A

(chromatin modifying protein 2A) 0.929 85.71 90 13.396 No

CIB1 (calcium and integrin binding 1

(calmyrin))

0.934 83.899 88 13.439 No

CIRBP (cold inducible RNA binding protein) 0.948 89.756 93.5 12.696 No

CKAP1 (tubulin folding cofactor B ) 0.922 86.926 90.333 13.088 Yes

CLIC1 (chloride intracellular channel 1) 0.901 90.014 97 16.581 No

CLSTN1 (calsyntenin 1) 0.902 84.539 89 16.557 Yes

CNIH (cornichon homolog (Drosophila)) 0.918 86.314 91 14.125 No

CO-

BRA1

(cofactor of BRCA1) 0.904 80.428 83 14.498 Yes

COPS6 (COP9 constitutive photomorphogenic

homolog subunit 6 (Arabidopsis))

0.971 86.604 88 11.116 Yes

COX6B1

(cytochrome c oxidase subunit Vib

polypeptide 1 (ubiquitous))

0.956 92.793 96 12.601 Yes

COX6C (cytochrome c oxidase subunit VIc) 0.937 91.712 97 15.523 No

COX7A2

(cytochrome c oxidase subunit VIIa

polypeptide 2 (liver))

0.961 93.552 97 14.196 Yes

COX7A2L

(cytochrome c oxidase subunit VIIa

polypeptide 2 like)

0.924 88.045 93 16.537 Yes

COX7B (cytochrome c oxidase subunit VIIb) 0.914 88.414 94 15.18 No

COX7C (cytochrome c oxidase subunit VIIc) 0.965 92.564 95.667 12.348 Yes

COX8A (cytochrome c oxidase subunit 8A

(ubiquitous))

0.958 93.52 97 13.918 Yes
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CPSF4 (cleavage and polyadenylation specific

factor 4; 30kDa)

0.918 78.131 80 11.377 No

CS (citrate synthase) 0.948 90.335 94 12.26 No

CSNK2B

(casein kinase 2; beta polypeptide) 0.922 88.671 94 16.042 Yes

CYB5R3

(cytochrome b5 reductase 3) 0.942 91.971 95 13.185 No

CYC1 (cytochrome c-1) 0.907 87.155 91 13.966 Yes

DAD1 (defender against cell death 1) 0.935 88.7 94 17.207 Yes

DCTN2 (dynactin 2 (p50)) 0.93 83.167 86 14.337 No

DCTN3 (dynactin 3 (p22)) 0.946 84.6 88 12.578 No

DDB1 (damage-specific DNA binding protein

1; 127kDa)

0.946 88.244 92 12.297 No

DDX48 (DEAD (Asp-Glu-Ala-Asp) box

polypeptide 48)

0.944 87.382 91 12.456 No

DDX5 (DEAD (Asp-Glu-Ala-Asp) box

polypeptide 5)

0.929 90.558 96 18.331 No

DNAJA1

(DnaJ (Hsp40) homolog; subfamily A;

member 1)

0.93 87.993 91 12.277 No

DRG1 (developmentally regulated GTP bind-

ing protein 1)

0.93 86.623 90 12.45 No

DULLARD

(dullard homolog (Xenopus laevis)) 0.95 85 89 16.587 Yes

DYNLL1

(dynein; light chain; LC8-type 1) 0.953 92.886 97 13.473 No

DYNLT1

(dynein; light chain; Tctex-type 1) 0.924 88.241 92 13.196 No
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ECHS1 (enoyl Coenzyme A hydratase; short

chain; 1; mitochondrial)

0.911 85.447 92 17.3 No

EEF1A1 (eukaryotic translation elongation fac-

tor 1 alpha 1)

0.93 94.242 99 15.134 No

EEF1B2 (eukaryotic translation elongation fac-

tor 1 beta 2)

0.959 94.59 98 12.635 No

EEF2 (eukaryotic translation elongation fac-

tor 2)

0.979 95.237 98 13.723 No

EI24 (etoposide induced 2.4 mRNA) 0.916 80.339 83.5 14.205 No

EIF2B2 (eukaryotic translation initiation factor

2B; subunit 2 beta; 39kDa)

0.927 77.183 80 12.372 No

EIF3S12 (eukaryotic translation initiation factor

3; subunit 12)

0.934 90.279 95 13.889 No

EIF3S2 (eukaryotic translation initiation factor

3; subunit 2 beta; 36kDa)

0.949 88.284 92 11.938 Yes

EIF3S3 (eukaryotic translation initiation factor

3; subunit 3 gamma; 40kDa)

0.937 91.133 96 15.845 No

EIF3S4 (eukaryotic translation initiation factor

3; subunit 4 delta; 44kDa)

0.929 89.707 94 12.958 Yes

EIF3S5 (eukaryotic translation initiation factor

3; subunit 5 epsilon; 47kDa)

0.941 90.756 96 18.856 Yes

EIF3S6 (eukaryotic translation initiation factor

3; subunit 6 48kDa)

0.904 91.67 96 14.61 No

EIF3S7 (eukaryotic translation initiation factor

3; subunit 7 zeta; 66/67kDa)

0.935 89.167 96 19.99 Yes

EIF4A2 (eukaryotic translation initiation factor

4A; isoform 2)

0.923 91.637 98 18.16 Yes

EIF4B (eukaryotic translation initiation factor

4B)

0.931 90.168 94.5 14.436 No

ERH (enhancer of rudimentary homolog

(Drosophila))

0.935 88.616 95 18.268 Yes
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ERP29 (endoplasmic reticulum protein 29) 0.913 88.348 94 15.547 No

ETF1 (eukaryotic translation termination fac-

tor 1)

0.915 84.25 88 13.268 No

ETHE1 (ethylmalonic encephalopathy 1) 0.904 79.975 84 15.04 No

FAM32A

(family with sequence similarity 32;

member A)

0.944 82.476 86 12.399 No

FAU (Finkel-Biskis-Reilly murine sar-

coma virus (FBR-MuSV) ubiquitously

expressed (fox derived); ribosomal pro-

tein S30)

0.962 93.723 98 18.297 Yes

FIBP (fibroblast growth factor (acidic) intra-

cellular binding protein)

0.913 82.547 87 13.303 No

FTH1 (ferritin; heavy polypeptide 1) 0.946 93.066 97 13.45 Yes

GABARAP

L2

(GABA(A) receptor-associated protein-

like 2)

0.959 91.951 95 11.259 Yes

GANAB (glucosidase; alpha; neutral AB) 0.912 87.137 91 12.511 Yes

GARS (glycyl-tRNA synthetase) 0.906 87.343 92 14.299 No

GDI1 (GDP dissociation inhibitor 1) 0.937 86.932 92 16.809 Yes

GDI2 (GDP dissociation inhibitor 2) 0.943 88.961 94 17.403 Yes

GLO1 (glyoxalase I) 0.925 88.122 94 18.466 No

GNB2 (guanine nucleotide binding protein (G

protein); beta polypeptide 2)

0.907 85.698 89 12.478 Yes

GNG5 (guanine nucleotide binding protein (G

protein); gamma 5)

0.935 89.914 95 13.639 No

GOT2 (glutamic-oxaloacetic transaminase

2; mitochondrial (aspartate aminotrans-

ferase 2))

0.923 85.95 90 14.019 Yes

GPAA1 (glycosylphosphatidylinositol anchor

attachment protein 1 homolog (yeast))

0.926 85.022 88.333 12.437 Yes
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GPX1 (glutathione peroxidase 1) 0.923 91.148 96 15.33 No

GPX4 (glutathione peroxidase 4 (phospholipid

hydroperoxidase))

0.939 91.121 95 12.617 Yes

GSTO1 (glutathione S-transferase omega 1) 0.937 90.035 94 13.538 No

H2AFZ (H2A histone family; member Z) 0.943 90.656 94 11.714 No

H3F3A (H3 histone; family 3A) 0.965 95.522 98 11.995 Yes

HADH2 (hydroxysteroid (17-beta) dehydroge-

nase 10 )

0.917 83.389 88 15.573 No

HADHB (hydroxyacyl-Coenzyme A

dehydrogenase/3-ketoacyl-Coenzyme A

thiolase/enoyl-Coenzyme A hydratase

(trifunctional protein); beta subunit)

0.946 90.819 94 11.808 Yes

HBXIP (hepatitis B virus x interacting protein) 0.953 89.04 92 12.786 No

HDGF (hepatoma-derived growth factor (high-

mobility group protein 1-like))

0.959 90.753 93.5 10.982 Yes

HINT1 (histidine triad nucleotide binding pro-

tein 1)

0.941 93.823 97 11.16 Yes

HLA-A (major histocompatibility complex;

class I; A)

0.931 93.954 99 14.997 No

HLA-G (HLA-G histocompatibility antigen;

class I; G)

0.915 87.686 94.75 19.633 Yes

HMGB1 (high-mobility group box 1) 0.923 85.77 94.667 17.465 Yes

HMGN1 (high-mobility group nucleosome bind-

ing domain 1)

0.94 90.374 96 15.911 No

HMGN2 (high-mobility group nucleosomal bind-

ing domain 2)

0.943 94.842 98 13.005 No

HMGN4 (high mobility group nucleosomal bind-

ing domain 4)

0.904 81.249 84 12.548 No
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HNRPC (heterogeneous nuclear ribonucleopro-

tein C (C1/C2))

0.919 85.057 92 21.648 No

HNRPK (heterogeneous nuclear ribonucleopro-

tein K)

0.944 91.231 96.5 17.852 Yes

HSBP1 (heat shock factor binding protein 1) 0.926 85.166 90 16.606 Yes

HSP90AA1

(heat shock protein 90kDa alpha (cy-

tosolic); class A member 1)

0.958 93.571 97.75 15.844 No

HYOU1 (hypoxia up-regulated 1) 0.936 87.481 92 13.435 Yes

IER2 (immediate early response 2) 0.933 90.927 95 12.127 Yes

IKBKG (inhibitor of kappa light polypeptide

gene enhancer in B-cells; kinase gamma)

0.902 77.387 79 12.734 No

ILF2 (interleukin enhancer binding factor 2;

45kDa)

0.92 84.184 90 18.837 Yes

ITGB4BP

(integrin beta 4 binding protein) 0.949 86.768 91 12.938 No

KARS (lysyl-tRNA synthetase) 0.932 89.835 95 17.833 Yes

KDELR2

(KDEL (Lys-Asp-Glu-Leu) endoplas-

mic reticulum protein retention receptor

2)

0.911 84.622 89 13.635 No

KRT10 (keratin 10 (epidermolytic hyperkerato-

sis; keratosis palmaris et plantaris))

0.904 83.352 88 16.998 No

LAPTM4A

(lysosomal-associated protein trans-

membrane 4 alpha)

0.952 92.447 96 11.915 No

LASP1 (LIM and SH3 protein 1) 0.927 87.622 94 17.666 Yes

LDHA (lactate dehydrogenase A) 0.949 93.581 98 15.961 Yes
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LSM3 (LSM3 homolog; U6 small nuclear RNA

associated (S. cerevisiae))

0.901 83.618 87 13.608 No

LTA4H (leukotriene A4 hydrolase) 0.939 88.004 91 13.455 No

LYPLA2 (lysophospholipase II) 0.945 85.945 88 13.139 Yes

MAR-

CKSL1

(MARCKS-like 1) 0.902 85.545 91 16.767 No

MDH1 (malate dehydrogenase 1; NAD (solu-

ble))

0.912 89.83 96 16.442 Yes

MGRN1 (mahogunin; ring finger 1) 0.927 80.149 84 15.134 No

MIF (SMT3 suppressor of mif two 3 homolog

4 (S. cerevisiae))

0.903 90.522 98 19.517 Yes

MLF2 (myeloid leukemia factor 2) 0.908 83.598 88 13.388 Yes

MRCL3 (myosin regulatory light chain MRCL3) 0.902 87.378 94 18.344 No

MRPL49

(mitochondrial ribosomal protein L49) 0.916 83.409 88 13.706 No

MYST2 (MYST histone acetyltransferase 2) 0.912 74.891 78 16.66 Yes

NACA (nascent-polypeptide-associated com-

plex alpha polypeptide)

0.968 95.573 98.5 12.09 Yes

NARS (asparaginyl-tRNA synthetase) 0.937 89.69 95 18.024 No

NCL (nucleolin) 0.961 93.296 97 13.34 Yes

NCOA4 (nuclear receptor coactivator 4) 0.932 89.811 95 15.989 No

ND-

UFA1

(NADH dehydrogenase (ubiquinone) 1

alpha subcomplex; 1; 7.5kDa)

0.943 93.347 97 13.056 Yes

NDU-

FAB1

(NADH dehydrogenase (ubiquinone) 1;

alpha/beta subcomplex; 1; 8kDa)

0.936 90.585 95 13.374 No
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NDUFB3

(NADH dehydrogenase (ubiquinone) 1

beta subcomplex; 3; 12kDa)

0.902 84.484 89 15.979 No

NDUFB5

(NADH dehydrogenase (ubiquinone) 1

beta subcomplex; 5; 16kDa)

0.946 87.597 91 12.4 No

NDUFS2

(NADH dehydrogenase (ubiquinone)

Fe-S protein 2; 49kDa (NADH-coenzyme

Q reductase))

0.943 85.939 90 13.479 No

NDUFS3

(NADH dehydrogenase (ubiquinone)

Fe-S protein 3; 30kDa (NADH-coenzyme

Q reductase))

0.932 87.626 92 14.107 No

NDUFS5

(NADH dehydrogenase (ubiquinone)

Fe-S protein 5; 15kDa (NADH-coenzyme

Q reductase))

0.963 92.672 96 11.779 Yes

NDUFS6

(NADH dehydrogenase (ubiquinone)

Fe-S protein 6; 13kDa (NADH-coenzyme

Q reductase))

0.935 86.411 90 13.479 No

NFE2L1 (nuclear factor (erythroid-derived 2)-

like 1)

0.913 82.222 88 17.618 No

NIFUN (IscU iron-sulfur cluster scaffold ho-

molog (E. coli) )

0.918 89.848 94 13.826 No

NME2 (non-metastatic cells 2; protein

(NM23B) expressed in)

0.957 93.534 97 13.017 Yes

NONO (non-POU domain containing; octamer-

binding)

0.949 89.066 95 19.616 Yes

NPC2 (Niemann-Pick disease; type C2) 0.949 89.689 95 15.517 No

NXF1 (nuclear RNA export factor 1) 0.919 82.726 87 14.365 Yes

OAZ1 (ornithine decarboxylase antizyme 1) 0.967 93.532 98.5 18.639 No

ODC1 (ornithine decarboxylase 1) 0.929 90.499 95 12.36 Yes

OS9 (amplified in osteosarcoma) 0.937 88.556 92 13.232 No

PABPC1

(poly(A) binding protein; cytoplasmic

1)

0.933 92.888 98 16.416 Yes
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PABPC4

(poly(A) binding protein; cytoplasmic

4 (inducible form))

0.92 86.835 91 13.878 No

PARK7 (Parkinson disease (autosomal reces-

sive; early onset) 7)

0.958 92.69 97 17.688 Yes

PCBP1 (poly(rC) binding protein 1) 0.936 90.51 95 15.644 No

PCMT1 (protein-L-isoaspartate (D-aspartate)

O-methyltransferase)

0.907 81.287 85.333 15.529 No

PEBP1 (phosphatidylethanolamine binding

protein 1)

0.914 86.217 91.5 16.607 No

PFN1 (profilin 1) 0.937 92.514 97 14.633 Yes

PGAM1 (phosphoglycerate mutase 1 (brain)) 0.958 92.488 97 13.858 No

PLOD3 (procollagen-lysine; 2-oxoglutarate 5-

dioxygenase 3)

0.933 83.31 86 12.652 No

POLR2G

(polymerase (RNA) II (DNA directed)

polypeptide G)

0.933 86.32 91 14.069 No

POLR2H

(polymerase (RNA) II (DNA directed)

polypeptide H)

0.929 83.104 86 11.704 No

PPP1CC

(protein phosphatase 1; catalytic sub-

unit; gamma isoform)

0.945 89.628 94 14.205 No

PPP1R11

(protein phosphatase 1; regulatory (in-

hibitor) subunit 11)

0.937 85.419 89 12.402 Yes

PPP6C (protein phosphatase 6; catalytic sub-

unit)

0.909 81.746 86 14.138 No

PPT1 (palmitoyl-protein thioesterase 1

(ceroid-lipofuscinosis; neuronal 1; infan-

tile))

0.911 85.404 90 15.788 No

PRDX1 (peroxiredoxin 1) 0.949 93.859 98 13.256 Yes

PRPF8 (PRP8 pre-mRNA processing factor 8

homolog (S. cerevisiae))

0.909 86.049 92 19.079 Yes
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PSAP (prosaposin (variant Gaucher disease

and variant metachromatic leukodystro-

phy))

0.944 92.733 97 14.567 No

PSMA1 (proteasome (prosome; macropain) sub-

unit; alpha type; 1)

0.901 86.2 94 15.625 No

PSMA4 (proteasome (prosome; macropain) sub-

unit; alpha type; 4)

0.927 88.458 92 12.358 No

PSMA6 (proteasome (prosome; macropain) sub-

unit; alpha type; 6)

0.935 91.702 96 14.149 No

PSMB3 (proteasome (prosome; macropain) sub-

unit; beta type; 3)

0.946 90.727 94 12.212 No

PSMB4 (proteasome (prosome; macropain) sub-

unit; beta type; 4)

0.918 89.58 94 14.69 Yes

PSMB6 (proteasome (prosome; macropain) sub-

unit; beta type; 6)

0.943 88.775 93 12.731 No

PSMB7 (proteasome (prosome; macropain) sub-

unit; beta type; 7)

0.939 87.1 91 12.578 Yes

PSMC1 (proteasome (prosome; macropain) 26S

subunit; ATPase; 1)

0.968 92.289 95 10.364 No

PSMC2 (proteasome (prosome; macropain) 26S

subunit; ATPase; 2)

0.917 84.637 88 12.182 No

PSMC5 (proteasome (prosome; macropain) 26S

subunit; ATPase; 5)

0.939 87.029 92 15.827 No

PSMD1 (proteasome (prosome; macropain) 26S

subunit; non-ATPase; 1)

0.916 84.531 89 14.58 No

PSMD2 (proteasome (prosome; macropain) 26S

subunit; non-ATPase; 2)

0.95 89.762 93 12.741 No

PSMD6 (proteasome (prosome; macropain) 26S

subunit; non-ATPase; 6)

0.913 85.486 91 15.861 No
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PSMD7 (proteasome (prosome; macropain)

26S subunit; non-ATPase; 7 (Mov34 ho-

molog))

0.926 83.364 86 12.004 No

PSME1 (proteasome (prosome; macropain) ac-

tivator subunit 1 (PA28 alpha))

0.959 89.749 94 12.799 No

PSME2 (proteasome (prosome; macropain) ac-

tivator subunit 2 (PA28 beta))

0.945 89.391 93 11.962 Yes

PTDSS1 (phosphatidylserine synthase 1) 0.952 89.62 93 12.802 Yes

PTP4A2 (protein tyrosine phosphatase type IVA;

member 2)

0.92 88.766 92.5 14.637 No

RAB8A (RAB8A; member RAS oncogene fam-

ily)

0.906 84.054 88 13.952 Yes

RABAC1

(Rab acceptor 1 (prenylated)) 0.933 88.487 93 13.785 Yes

RAC1 (ras-related C3 botulinum toxin sub-

strate 1 (rho family; small GTP binding

protein Rac1))

0.93 91.921 95.5 13.491 Yes

RAD23A

(RAD23 homolog A (S. cerevisiae)) 0.904 85.385 88 12.322 Yes

RAN (RAN; member RAS oncogene family) 0.93 91.681 95 12.311 Yes

RBMX (RNA binding motif protein; X-linked) 0.907 84.843 90 15.351 No

RHOA (ras homolog gene family; member A) 0.915 90.192 97.5 21.91 Yes

RHOG (ras homolog gene family; member G

(rho G))

0.911 83.634 88 14.911 No

RING1 (ring finger protein 1) 0.933 81.467 84.5 13.505 Yes

RNPS1 (RNA binding protein S1; serine-rich

domain)

0.93 86.552 91.5 18.598 Yes

RPL10A (ribosomal protein L10a) 0.949 92.091 98 19.777 Yes
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RPL11 (ribosomal protein L11) 0.947 93.402 99 18.579 Yes

RPL12 (ribosomal protein L12) 0.949 95.298 99 14.252 No

RPL13 (ribosomal protein L13) 0.965 92.765 98.75 19.627 Yes

RPL13A (ribosomal protein L13a) 0.965 96.004 99 13.176 Yes

RPL15 (ribosomal protein L15) 0.904 92.633 98 16.211 Yes

RPL19 (ribosomal protein L19) 0.939 93.226 99 19.572 Yes

RPL21 (ribosomal protein L21) 0.961 94.158 99 18.146 No

RPL22 (ribosomal protein L22) 0.967 94.784 97.2 11.95 No

RPL23A (ribosomal protein L23a) 0.952 94.018 99 15.782 No

RPL24 (ribosomal protein L24) 0.933 92.901 99 20.163 No

RPL27 (ribosomal protein L27) 0.973 94.484 99 17.652 Yes

RPL28 (ribosomal protein L28) 0.916 88.625 99 23.502 No

RPL29 (ribosomal protein L29) 0.958 95.353 98.5 12.452 Yes

RPL3 (ribosomal protein L3) 0.973 95.852 99 13.387 Yes

RPL30 (ribosomal protein L30) 0.962 94.383 99 18.104 No

RPL32 (ribosomal protein L32) 0.941 95.06 99 14.992 Yes

RPL34 (ribosomal protein L34) 0.948 92.766 99 20.247 Yes

RPL35 (ribosomal protein L35) 0.958 93.498 98 17.986 Yes

RPL36A (ribosomal protein L36a) 0.955 95.333 99 12.362 No

RPL36AL

(ribosomal protein L36a-like) 0.931 92.618 96 13.206 Yes

RPL37 (ribosomal protein L37) 0.927 94.077 99 16.235 Yes

RPL38 (ribosomal protein L38) 0.97 93.957 97.333 11.816 Yes

RPL4 (ribosomal protein L4) 0.933 93.318 98.333 17.631 No

RPL41 (ribosomal protein L41) 0.933 93.786 99 18.188 No

RPL6 (ribosomal protein L6) 0.958 93.461 98 18.981 No

RPL7 (ribosomal protein L7) 0.972 96.105 99 12.414 No
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RPL8 (ribosomal protein L8) 0.955 95.497 99 13.617 Yes

RPL9 (ribosomal protein L9) 0.968 93.767 99 18.444 No

RPLP0 (ribosomal protein; large; P0) 0.947 95.257 98.8 13.53 No

RPN2 (ribophorin II) 0.965 91.518 95 12.506 No

RPS10 (ribosomal protein S10) 0.976 96.491 99 11.661 Yes

RPS11 (ribosomal protein S11) 0.962 92.232 99 19.844 Yes

RPS13 (ribosomal protein S13) 0.969 96.238 99 12.376 Yes

RPS15 (ribosomal protein S15) 0.948 93.719 99 16.815 Yes

RPS16 (ribosomal protein S16) 0.967 95.918 99 12.538 Yes

RPS17 (ribosomal protein S17) 0.971 96.31 99 11.97 No

RPS18 (ribosomal protein S18) 0.955 95.939 99 13.673 Yes

RPS23 (ribosomal protein S23) 0.944 94.469 99 14.299 No

RPS24 (ribosomal protein S24) 0.95 93.272 99 19.099 Yes

RPS25 (ribosomal protein S25) 0.959 95.031 98 12.315 Yes

RPS26 (ribosomal protein S26) 0.901 85.651 96 18.834 No

RPS27 (ribosomal protein S27 (metal-

lopanstimulin 1))

0.908 93.194 99 16.497 No

RPS27A (ribosomal protein S27a) 0.964 93.965 98 17.508 Yes

RPS3 (ribosomal protein S3) 0.949 94.633 99 14.723 No

RPS3A (ribosomal protein S3A) 0.962 96.092 99 12.972 No

RPS4X (ribosomal protein S4; X-linked) 0.959 96.3 99 11.823 No

RPS5 (ribosomal protein S5) 0.95 93.301 99 18.893 Yes

RPS6 (ribosomal protein S6) 0.96 95.172 99 13.901 No

RPS7 (ribosomal protein S7) 0.955 94.847 98 13.464 No

RPS9 (ribosomal protein S9) 0.949 94.785 98 13.198 Yes

RRAGA (Ras-related GTP binding A) 0.913 86.945 92 13.936 Yes

RUSC1 (RUN and SH3 domain containing 1) 0.925 79.342 82 12.926 No

SCAMP3

(secretory carrier membrane protein 3) 0.911 82.887 87 13.77 Yes
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SDHA (succinate dehydrogenase complex; sub-

unit A; flavoprotein (Fp))

0.937 87.189 91 12.408 Yes

SDHC (succinate dehydrogenase complex;

subunit C; integral membrane protein;

15kDa)

0.922 81.433 85 12.87 No

SEC11L1

(SEC11 homolog A (S. cerevisiae)) 0.943 88.658 93 13.734 No

SEC61G (Sec61 gamma subunit) 0.902 87.012 92 13.907 Yes

SEPHS2 (selenophosphate synthetase 2) 0.901 78.587 80 12.537 No

SEPT2 (septin 2) 0.923 90.706 94.5 12.574 No

SEPW1 (selenoprotein W; 1) 0.924 88.251 92 13.179 No

SET (SET translocation (myeloid leukemia-

associated))

0.935 90.429 94.714 13.451 No

SFRS2 (splicing factor; arginine/serine-rich 2) 0.932 88.056 92.333 14.093 Yes

SFRS9 (splicing factor; arginine/serine-rich 9) 0.935 87.776 93.5 17.839 Yes

SHFM1 (split hand/foot malformation (ectro-

dactyly) type 1)

0.903 83.318 88 16.157 No

SIAHBP1

(fuse-binding protein-interacting re-

pressor)

0.938 87.498 91 13.504 Yes

SLC25A3

(solute carrier family 25 (mitochondrial

carrier; phosphate carrier); member 3)

0.959 93.23 98 17.605 Yes

SLC25A6

(solute carrier family 25 (mitochondrial

carrier; adenine nucleotide translocator);

member 6)

0.95 93.475 97 12.484 No
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SNRPB (small nuclear ribonucleoprotein

polypeptides B and B1)

0.922 88.557 94 15.825 Yes

SNRPD2

(small nuclear ribonucleoprotein D2

polypeptide 16.5kDa)

0.952 93.075 96 12.388 Yes

SNRPG (small nuclear ribonucleoprotein

polypeptide G)

0.927 87.325 93 16.384 Yes

SNX3 (sorting nexin 3) 0.944 92.295 95 11.479 Yes

SOD1 (superoxide dismutase 1; soluble (amy-

otrophic lateral sclerosis 1 (adult)))

0.962 93.632 97 11.849 Yes

SPAG7 (sperm associated antigen 7) 0.956 85.947 90 16.78 Yes

SRP14 (signal recognition particle 14kDa (ho-

mologous Alu RNA binding protein))

0.961 92.734 97 18.239 Yes

SRP19 (signal recognition particle 19kDa) 0.913 82.874 87 15.954 No

SRP9 (signal recognition particle 9kDa) 0.921 90.706 95 13.766 No

SSR2 (signal sequence receptor; beta

(translocon-associated protein beta))

0.959 90.43 95 14.483 Yes

SSR4 (signal sequence receptor; delta

(translocon-associated protein delta))

0.946 92.481 95 11.267 No

ST13 (suppression of tumorigenicity 13 (colon

carcinoma) (Hsp70 interacting protein))

0.909 80.986 87 16.01 No

SUMO3 (SMT3 suppressor of mif two 3 homolog

3 (S. cerevisiae))

0.905 85.098 91 17.719 Yes

SUPT5H

(suppressor of Ty 5 homolog (S. cere-

visiae))

0.908 79.375 82 12.256 No

TAF10 (TAF10 RNA polymerase II; TATA box

binding protein (TBP)-associated factor;

30kDa)

0.944 87.72 93 17.603 No

TALDO1

(transaldolase 1) 0.927 89.618 93 13.983 Yes
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TAX1BP1

(Tax1 (human T-cell leukemia virus

type I) binding protein 1)

0.913 87.383 90.5 12.606 No

TEGT (testis enhanced gene transcript (BAX

inhibitor 1))

0.946 91.11 95.5 15.957 Yes

TERF2IP

(telomeric repeat binding factor 2; in-

teracting protein)

0.929 83.561 87 12.822 Yes

TMED2 (transmembrane emp24 domain traf-

ficking protein 2)

0.913 86.102 93.667 21.14 No

TMEM147

(transmembrane protein 147) 0.949 89.124 93 12.748 No

TMEM66

(transmembrane protein 66) 0.944 89.777 93 12.26 No

TMSB10

(thymosin; beta 10) 0.951 95.04 98 13.06 Yes

TOMM20

(translocase of outer mitochondrial

membrane 20 homolog (yeast))

0.908 87.775 92 14.269 No

TOMM34

(translocase of outer mitochondrial

membrane 34)

0.924 80.269 82 10.876 No

TPT1 (tumor protein; translationally-

controlled 1)

0.968 96.054 99 13.058 No

TRIM28 (tripartite motif-containing 28) 0.914 87.701 93 15.719 Yes

TUBB (tubulin; beta) 0.964 92.963 96 10.651 Yes

TUBB2C

(tubulin; beta 2C) 0.953 93.172 97 11.478 No

87



Table C.1: Cont’d

TXNRD1

(thioredoxin reductase 1) 0.92 84.603 89 15.908 No

UBB (ubiquitin B) 0.967 93.684 97 12.144 Yes

UBC (ubiquitin C) 0.974 96.436 98.75 11.247 Yes

UBE1 (ubiquitin-activating enzyme E1

(A1S9T and BN75 temperature sensitiv-

ity complementing))

0.918 89.44 95 17.086 Yes

UBE2D3

(ubiquitin-conjugating enzyme E2D 3

(UBC4/5 homolog; yeast))

0.916 87.378 91.5 12.451 No

UQCRFS1

(ubiquinol-cytochrome c reductase;

Rieske iron-sulfur polypeptide 1)

0.936 91.877 96 12.759 Yes

UQCRH (ubiquinol-cytochrome c reductase

hinge protein)

0.95 92.651 96 13.053 Yes

UQCRQ (ubiquinol-cytochrome c reductase;

complex III subunit VII; 9.5kDa)

0.949 93.693 97 12.807 No

USP11 (ubiquitin specific peptidase 11) 0.911 85.366 90 15.103 Yes

VCP (valosin-containing protein) 0.94 85.904 88 12.01 No

VDAC2 (voltage-dependent anion channel 2) 0.959 91.582 96 12.5 No

VPS72 (vacuolar protein sorting 72 (S. cere-

visiae))

0.929 81.995 86 13.959 No

WB-

SCR1

(Williams-Beuren syndrome chromo-

some region 1)

0.944 90.961 95 14.32 No

XBP1 (X-box binding protein 1) 0.916 85.836 90 14.23 Yes

XPO6 (exportin 6) 0.955 85.116 89 14.396 No

YWHAB

(tyrosine 3-monooxygenase/tryptophan

5-monooxygenase activation protein;

beta polypeptide)

0.958 91.346 94.667 12.071 Yes
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YWHAQ

(tyrosine 3-monooxygenase/tryptophan

5-monooxygenase activation protein;

theta polypeptide)

0.958 92.683 96 11.7 Yes

ZNF289 (zinc finger protein 289; ID1 regulated) 0.929 82.425 86 11.827 No

ZNF384 (zinc finger protein 384) 0.908 80.674 83 11.565 Yes
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APPENDIX D

STABILITY VALUES FOR 17

HOUSEKEEPING GENES

Table D.1: Stability values for 17 housekeeping genes

Gene Symbol

Stability Value

Norm Finder geNorm

Over All HCC Breast Colon Over All HCC Breast Colon

RPS10 0,215 0,165 0,355 0,100 0,000 0,000 0,000 0,000

RPL41 0,224 0,250 0,246 0,094 0,000 0,000 0,000 0,000

RPL7 0,217 0,164 0,245 0,171 0,268 0,220 0,253 0,276

RPS3A 0,191 0,198 0,095 0,057 0,339 0,296 0,378 0,128

RPL30 0,174 0,089 0,223 0,188 0,365 0,310 0,310 0,247

HBXIP 0,288 0,246 0,277 0,243 0,438 0,449 0,165 0,201

CFL1 0,257 0,246 0,157 0,298 0,474 0,420 0,347 0,456

RPS17 0,332 0,164 0,419 0,324 0,508 0,270 0,499 0,309

EEF2 0,368 0,319 0,255 0,598 0,552 0,525 0,428 0,651

ACTB 0,408 0,364 0,204 0,276 0,597 0,503 0,466 0,410

GAPDH 0,331 0,211 0,523 0,331 0,635 0,384 0,780 0,523

H2AFZ 0,418 0,284 0,548 0,210 0,675 0,482 0,823 0,170

AARS 0,513 0,507 0,618 0,241 0,721 0,581 0,661 0,490

TPT1 0,539 0,613 0,397 0,326 0,764 0,717 0,548 0,348

SOD1 0,531 0,635 0,525 0,396 0,802 0,652 0,720 0,592

RPN2 0,617 0,666 0,247 0,437 0,854 0,786 0,592 0,557

GSTO1 0,868 0,997 0,985 0,366 0,942 0,905 0,932 0,377
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APPENDIX E

BI-K-BI CLUSTERING GENE-PAIR

RULE EXAMPLE

Table E.1: The most observed gene-pair rule in the breast

cancer datasets where p=70% and q=80%

Gene Pairs : [FOXM1 (HIGH) - TPX2 (HIGH)]

Experiments : [GDS1326_GSM41355], [GDS1326_GSM41356], [GDS1326_GSM41357],

(GDS_GSM) [GDS1326_GSM41352], [GDS1326_GSM41353], [GDS1326_GSM41354],

[GDS1326_GSM41349], [GDS1326_GSM41350], [GDS1326_GSM41351],

[GDS1329_GSM26883], [GDS1329_GSM26886], [GDS1329_GSM26887],

[GDS1329_GSM26903], [GDS1329_GSM26910], [GDS1329_GSM26871],

[GDS1329_GSM26880], [GDS1329_GSM26882], [GDS1329_GSM26884],

[GDS1329_GSM26888], [GDS1329_GSM26889], [GDS1329_GSM26892],

[GDS1329_GSM26893], [GDS1329_GSM26895], [GDS1329_GSM26898],

[GDS1329_GSM26900], [GDS1329_GSM26902], [GDS1329_GSM26905],

[GDS1329_GSM26906], [GDS1329_GSM26908],[GDS1329_GSM26912],

[GDS1329_GSM26804], [GDS1329_GSM26867], [GDS1329_GSM26868],

[GDS1329_GSM26870], [GDS1329_GSM26873], [GDS1329_GSM26875],

[GDS1329_GSM26876], [GDS1329_GSM26879], [GDS1329_GSM26881],

[GDS1329_GSM26890], [GDS1329_GSM26891], [GDS1329_GSM26894],

[GDS1329_GSM26896], [GDS1329_GSM26897], [GDS1329_GSM26899],

[GDS1329_GSM26901], [GDS1329_GSM26904], [GDS1329_GSM26907],

[GDS1329_GSM26909], [GDS1329_GSM26911], [GDS1329_GSM26914],
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[GDS2250_GSM85494], [GDS2250_GSM85495], [GDS2250_GSM85496],

[GDS2250_GSM85497], [GDS2250_GSM85498], [GDS2250_GSM85499],

[GDS2250_GSM85500], [GDS2250_GSM85504], [GDS2250_GSM85505],

[GDS2250_GSM85506], [GDS2250_GSM85509], [GDS2250_GSM85510],

[GDS2250_GSM85511], [GDS2250_GSM85512], [GDS2250_GSM85491],

[GDS2250_GSM85492], [GDS2250_GSM85473], [GDS2250_GSM85474],

[GDS2250_GSM85475], [GDS2250_GSM85476], [GDS2250_GSM85477],

[GDS2250_GSM85478], [GDS2250_GSM85479], [GDS2250_GSM85481],

[GDS2250_GSM85482], [GDS2250_GSM85483], [GDS2250_GSM85484],

[GDS2250_GSM85485], [GDS2250_GSM85486], [GDS2250_GSM85487],

[GDS2250_GSM85488], [GDS2250_GSM85489], [GDS2250_GSM85490],

[GDS360_GSM4901], [GDS360_GSM4902], [GDS360_GSM4904],

[GDS360_GSM4905], [GDS360_GSM4906], [GDS360_GSM4910],

[GDS360_GSM4913], [GDS360_GSM4916], [GDS360_GSM4918],

[GDS360_GSM4922], [GDS360_GSM4924], [GDS360_GSM4903] ,

[GDS360_GSM4907], [GDS360_GSM4908], [GDS360_GSM4914],

[GDS360_GSM4917], [GDS360_GSM4919], [GDS360_GSM4920],

[GDS360_GSM4921], [GDS360_GSM4923], [GDS817_GSM21240],

[GDS817_GSM21241], [GDS817_GSM21236], [GDS817_GSM21237] ,

[GDS817_GSM21238], [GDS817_GSM21239], [GDS820_GSM21246],

[GDS820_GSM21247], [GDS820_GSM21242], [GDS820_GSM21243],

[GDS820_GSM21244], [GDS820_GSM21245], [GDS881_GSM13097],

[GDS881_GSM13098], [GDS881_GSM13099], [GDS881_GSM13138],

[GDS881_GSM13139], [GDS881_GSM13140], [GDS881_GSM15900],

[GDS881_GSM15901], [GDS881_GSM15902], [GDS881_GSM15903],

[GDS881_GSM15904], [GDS881_GSM15905], [GDS881_GSM15906],

[GDS881_GSM15907], [GDS881_GSM15908], [GDS881_GSM15909],

[GDS881_GSM15910]
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Table E.2: List of GSMs among Breast Cancer datasets where

the rule [FOXM1 (HIGH) - TPX2 (HIGH)] is valid.

GDS GSM Detail

GDS1326 GSM41355 VALUE FOR GSM41355: ADLACZ+VEHICLE JM4; SRC: MDA-MB-

231

GDS1326 GSM41356 VALUE FOR GSM41356: ADLACZ+VEHICLE JMTM1; SRC: MDA-

MB-231

GDS1326 GSM41357 VALUE FOR GSM41357: ADLACZ+VEHICLE JMTM16; SRC: MDA-

MB-231

GDS1326 GSM41352 VALUE FOR GSM41352: ADLACZ+E2-8 JM6; SRC: MDA-MB-231

GDS1326 GSM41353 VALUE FOR GSM41353: ADLACZ+E2-8 JMTM2; SRC: MDA-MB-231

GDS1326 GSM41354 VALUE FOR GSM41354: ADLACZ+E2-8 JMTM17; SRC: MDA-MB-

231

GDS1326 GSM41349 VALUE FOR GSM41349: ADERALPHA+VEHICLE JM1; SRC: MDA-

MB-231

GDS1326 GSM41350 VALUE FOR GSM41350: ADERALPHA+VEHICLE JMTM4; SRC:

MDA-MB-231

GDS1326 GSM41351 VALUE FOR GSM41351: ADERALPHA+VEHICLE JMTM18; SRC:

MDA-MB-231

GDS1326 GSM41346 VALUE FOR GSM41346: ADERALPHA+E2-8 JM3; SRC: MDA-MB-

231

GDS1326 GSM41347 VALUE FOR GSM41347: ADERALPHA+E2-8 JMTM5; SRC: MDA-

MB-231

GDS1329 GSM26878 VALUE FOR GSM26878: PF14 ENPNT2N1G2; SRC: BIOPSY

GDS1329 GSM26883 VALUE FOR GSM26883: PF19 EPPUT4N0GU; SRC: BIOPSY

GDS1329 GSM26886 VALUE FOR GSM26886: PF22 ENPNT2N1G2; SRC: BIOPSY

GDS1329 GSM26887 VALUE FOR GSM26887: PF23 ENPNT2N0G2; SRC: BIOPSY

GDS1329 GSM26903 VALUE FOR GSM26903: PF39 EUPUT4N0GU; SRC: BIOPSY

GDS1329 GSM26910 VALUE FOR GSM26910: PF46 ENPNT4N1G3; SRC: BIOPSY

GDS1329 GSM26871 VALUE FOR GSM26871: PF06 ENPNT2N0G3; SRC: BIOPSY
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GDS1329 GSM26880 VALUE FOR GSM26880: PF16 ENPNT2N0G3; SRC: BIOPSY

GDS1329 GSM26882 VALUE FOR GSM26882: PF18 ENPNT2N1G3; SRC: BIOPSY

GDS1329 GSM26884 VALUE FOR GSM26884: PF20 ENPNT3N1G2; SRC: BIOPSY

GDS1329 GSM26888 VALUE FOR GSM26888: PF24 ENPNTIN0G3; SRC: BIOPSY

GDS1329 GSM26889 VALUE FOR GSM26889: PF25 ENPNT3N2G2; SRC: BIOPSY

GDS1329 GSM26892 VALUE FOR GSM26892: PF28 ENPNT2N1G3; SRC: BIOPSY

GDS1329 GSM26893 VALUE FOR GSM26893: PF29 ENPNT3N1G3; SRC: BIOPSY

GDS1329 GSM26895 VALUE FOR GSM26895: PF31 ENPNT2N0G3; SRC: BIOPSY

GDS1329 GSM26898 VALUE FOR GSM26898: PF34 ENPNT3N1G3; SRC: BIOPSY

GDS1329 GSM26900 VALUE FOR GSM26900: PF36 ENPNT2N0G2; SRC: BIOPSY

GDS1329 GSM26902 VALUE FOR GSM26902: PF38 ENPNT2N1G3; SRC: BIOPSY

GDS1329 GSM26905 VALUE FOR GSM26905: PF41 ENPNT3N1G2; SRC: BIOPSY

GDS1329 GSM26906 VALUE FOR GSM26906: PF42 ENPNT2N2G3; SRC: BIOPSY

GDS1329 GSM26908 VALUE FOR GSM26908: PF44 ENPNT3N0G3; SRC: BIOPSY

GDS1329 GSM26912 VALUE FOR GSM26912: PF48 ENPNT2N0G3; SRC: BIOPSY

GDS1329 GSM26804 VALUE FOR GSM26804: PF01 EPPPT2N0G2; SRC: BIOPSY

GDS1329 GSM26867 VALUE FOR GSM26867: PF02 EPPPT4N1G2; SRC: BIOPSY

GDS1329 GSM26868 VALUE FOR GSM26868: PF03 EPPPT3N0GU; SRC: BIOPSY

GDS1329 GSM26870 VALUE FOR GSM26870: PF05 EPPNT2N1G1; SRC: BIOPSY

GDS1329 GSM26873 VALUE FOR GSM26873: PF09 EPPPT3N1G2; SRC: BIOPSY

GDS1329 GSM26875 VALUE FOR GSM26875: PF11 EPPPT3N1G2; SRC: BIOPSY

GDS1329 GSM26876 VALUE FOR GSM26876: PF12 EPPPTIN0G2; SRC: BIOPSY

GDS1329 GSM26879 VALUE FOR GSM26879: PF15 EPPNTIN1G3; SRC: BIOPSY

GDS1329 GSM26881 VALUE FOR GSM26881: PF17 EPPNT2N1G3; SRC: BIOPSY

GDS1329 GSM26890 VALUE FOR GSM26890: PF26 ENPNT3N0G3; SRC: BIOPSY

GDS1329 GSM26891 VALUE FOR GSM26891: PF27 EPPNT4N1G2; SRC: BIOPSY

GDS1329 GSM26894 VALUE FOR GSM26894: PF30 EPPPT2N0G3; SRC: BIOPSY

GDS1329 GSM26896 VALUE FOR GSM26896: PF32 ENPNT3N1G2; SRC: BIOPSY

GDS1329 GSM26897 VALUE FOR GSM26897: PF33 EPPNTIN0G2; SRC: BIOPSY

GDS1329 GSM26899 VALUE FOR GSM26899: PF35 EPPPT2N1G3; SRC: BIOPSY

GDS1329 GSM26901 VALUE FOR GSM26901: PF37 EPPPT3N1G2; SRC: BIOPSY
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GDS1329 GSM26904 VALUE FOR GSM26904: PF40 EPPNT4N0G2; SRC: BIOPSY

GDS1329 GSM26907 VALUE FOR GSM26907: PF43 EPPPT2N1G2; SRC: BIOPSY

GDS1329 GSM26909 VALUE FOR GSM26909: PF45 EPPPT4N0G2; SRC: BIOPSY

GDS1329 GSM26911 VALUE FOR GSM26911: PF47 EPPPT3N1G3; SRC: BIOPSY

GDS1329 GSM26914 VALUE FOR GSM26914: PF50 EPPNT3N1G3; SRC: BIOPSY

GDS2250 GSM85494 VALUE FOR GSM85494: T183 U133P2; SRC: T183

GDS2250 GSM85495 VALUE FOR GSM85495: T117 U133P2; SRC: T117

GDS2250 GSM85496 VALUE FOR GSM85496: T161 U133P2; SRC: T161

GDS2250 GSM85497 VALUE FOR GSM85497: T30 U133P2; SRC: T30

GDS2250 GSM85498 VALUE FOR GSM85498: T84 U133P2; SRC: T84

GDS2250 GSM85499 VALUE FOR GSM85499: T115 U133P2; SRC: T115

GDS2250 GSM85500 VALUE FOR GSM85500: T44 U133P2; SRC: T44

GDS2250 GSM85504 VALUE FOR GSM85504: T175 U133P2; SRC: T175

GDS2250 GSM85505 VALUE FOR GSM85505: T178 U133P2; SRC: T178

GDS2250 GSM85506 VALUE FOR GSM85506: T41 U133P2; SRC: T41

GDS2250 GSM85509 VALUE FOR GSM85509: T74 U133P2; SRC: T74

GDS2250 GSM85510 VALUE FOR GSM85510: T162 U133P2; SRC: T162

GDS2250 GSM85511 VALUE FOR GSM85511: T145 U133P2; SRC: T145

GDS2250 GSM85512 VALUE FOR GSM85512: T119 U133P2; SRC: T119

GDS2250 GSM85491 VALUE FOR GSM85491: T151 U133P2; SRC: T151

GDS2250 GSM85492 VALUE FOR GSM85492: T152 U133P2; SRC: T152

GDS2250 GSM85473 VALUE FOR GSM85473: T118 U133P2; SRC: T118

GDS2250 GSM85474 VALUE FOR GSM85474: T134 U133P2; SRC: T134

GDS2250 GSM85475 VALUE FOR GSM85475: T140 U133P2; SRC: T140

GDS2250 GSM85476 VALUE FOR GSM85476: T141 U133P2; SRC: T141

GDS2250 GSM85477 VALUE FOR GSM85477: T146 U133P2; SRC: T146

GDS2250 GSM85478 VALUE FOR GSM85478: T147 U133P2; SRC: T147

GDS2250 GSM85479 VALUE FOR GSM85479: T149 U133P2; SRC: T149

GDS2250 GSM85481 VALUE FOR GSM85481: T21 U133P2; SRC: T21

GDS2250 GSM85482 VALUE FOR GSM85482: T56 U133P2; SRC: T56

GDS2250 GSM85483 VALUE FOR GSM85483: T116 U133P2; SRC: T116
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GDS2250 GSM85484 VALUE FOR GSM85484: T144 U133P2; SRC: T144

GDS2250 GSM85485 VALUE FOR GSM85485: T129 U133P2; SRC: T129

GDS2250 GSM85486 VALUE FOR GSM85486: T143 U133P2; SRC: T143

GDS2250 GSM85487 VALUE FOR GSM85487: T38 U133P2; SRC: T38

GDS2250 GSM85488 VALUE FOR GSM85488: T123 U133P2; SRC: T123

GDS2250 GSM85489 VALUE FOR GSM85489: T137 U133P2; SRC: T137

GDS2250 GSM85490 VALUE FOR GSM85490: T130 U133P2; SRC: T130

GDS360 GSM4901 VALUE FOR GSM4901: 44; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4902 VALUE FOR GSM4902: 51; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4904 VALUE FOR GSM4904: 113; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4905 VALUE FOR GSM4905: 118; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4906 VALUE FOR GSM4906: 136; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4910 VALUE FOR GSM4910: 358; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4913 VALUE FOR GSM4913: 377; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4916 VALUE FOR GSM4916: 432; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4918 VALUE FOR GSM4918: 438; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4922 VALUE FOR GSM4922: 555; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4924 VALUE FOR GSM4924: 562; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4903 VALUE FOR GSM4903: 71; SRC: HUMAN BREAST CANCER CORE

BIOPSY
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GDS360 GSM4907 VALUE FOR GSM4907: 142; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4908 VALUE FOR GSM4908: 273; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4914 VALUE FOR GSM4914: 413; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4917 VALUE FOR GSM4917: 437; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4919 VALUE FOR GSM4919: 447; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4920 VALUE FOR GSM4920: 458; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4921 VALUE FOR GSM4921: 492; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS360 GSM4923 VALUE FOR GSM4923: 558; SRC: HUMAN BREAST CANCER CORE

BIOPSY

GDS817 GSM21240 VALUE FOR GSM21240: NORMAL BREAST EPITHELIUM CON-

TROL REPLICATE 1 95A; SRC: HUMAN MAMMARY EPITHELIAL

CELLS

GDS817 GSM21241 VALUE FOR GSM21241: NORMAL BREAST EPITHELIUM CON-

TROL REPLICATE 2 95A; SRC: HUMAN MAMMARY EPITHELIAL

CELLS

GDS817 GSM21236 VALUE FOR GSM21236: BREAST CANCER CELLS MDA-MB-436

REPLICATE 1 95A; SRC: MDA-MB436 BREAST CANCER CELL LINE

GDS817 GSM21237 VALUE FOR GSM21237: BREAST CANCER CELLS MDA-MB-436

REPLICATE 2 95A; SRC: MDA-MB436 BREAST CANCER CELL LINE

GDS817 GSM21238 VALUE FOR GSM21238: BREAST CANCER CELLS HCC1954 REPLI-

CATE 1 95A; SRC: HCC1954 BREAST CANCER CELL LINE
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GDS817 GSM21239 VALUE FOR GSM21239: BREAST CANCER CELLS HCC1954 REPLI-

CATE 2 95A; SRC: HCC1954 BREAST CANCER CELL LINE

GDS820 GSM21246 VALUE FOR GSM21246: NORMAL BREAST EPITHELIUM CON-

TROL REPLICATE 1 133A; SRC: HUMAN MAMMARY EPITHELIAL

CELLS

GDS820 GSM21247 VALUE FOR GSM21247: NORMAL BREAST EPITHELIUM CON-

TROL REPLICATE 2 133A; SRC: HUMAN MAMMARY EPITHELIAL

CELLS

GDS820 GSM21242 VALUE FOR GSM21242: BREAST CANCER CELLS MDA-MB-

436 REPLICATE 1 133A; SRC: MDA-MB436 BREAST CANCER CELL

LINE

GDS820 GSM21243 VALUE FOR GSM21243: BREAST CANCER CELLS MDA-MB-

436 REPLICATE 2 133A; SRC: MDA-MB436 BREAST CANCER CELL

LINE

GDS820 GSM21244 VALUE FOR GSM21244: BREAST CANCER CELLS HCC1954 REPLI-

CATE 1 133A; SRC: HCC1954 BREAST CANCER CELL LINE

GDS820 GSM21245 VALUE FOR GSM21245: BREAST CANCER CELLS HCC1954 REPLI-

CATE 2 133A; SRC: HCC1954 BREAST CANCER CELL LINE

GDS881 GSM13097 VALUE FOR GSM13097: CONTROL A; SRC: MCF-7

GDS881 GSM13098 VALUE FOR GSM13098: CONTROL B; SRC: MCF-7

GDS881 GSM13099 VALUE FOR GSM13099: E2 8H A; SRC: MCF-7

GDS881 GSM13138 VALUE FOR GSM13138: E2 8H B; SRC: MCF-7

GDS881 GSM13139 VALUE FOR GSM13139: E2 48H A; SRC: MCF-7

GDS881 GSM13140 VALUE FOR GSM13140: E2 48H B; SRC: MCF-7

GDS881 GSM15900 VALUE FOR GSM15900: E2+ICI 8H A; SRC: MCF-7

GDS881 GSM15901 VALUE FOR GSM15901: E2+ICI 8H B; SRC: MCF-7

GDS881 GSM15902 VALUE FOR GSM15902: E2+ICI 48H A; SRC: MCF-7

GDS881 GSM15903 VALUE FOR GSM15903: E2+ICI 48H B; SRC: MCF-7

GDS881 GSM15904 VALUE FOR GSM15904: E2+RAL 8H A; SRC: MCF-7

GDS881 GSM15905 VALUE FOR GSM15905: E2+RAL 8H B; SRC: MCF-7

GDS881 GSM15906 VALUE FOR GSM15906: E2+RAL 48H A; SRC: MCF-7
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GDS881 GSM15907 VALUE FOR GSM15907: E2+RAL 48H B; SRC: MCF-7

GDS881 GSM15908 VALUE FOR GSM15908: E2+TOT 8H A; SRC: MCF-7

GDS881 GSM15909 VALUE FOR GSM15909: E2+TOT 8H B; SRC: MCF-7

GDS881 GSM15910 VALUE FOR GSM15910: E2+TOT 48H A; SRC: MCF-7

Table E.3: List of GSMs among Breast Cancer datasets where

the rule [FOXM1 (HIGH) - TPX2 (HIGH)] is not valid.

GDS GSM Detail

GDS1250 GSM45657 VALUE FOR GSM45657: ADH1; SRC: BREAST PRECANCEROUS

TISSUE

GDS1250 GSM45658 VALUE FOR GSM45658: ADH2; SRC: BREAST PRECANCEROUS

TISSUE

GDS1250 GSM45659 VALUE FOR GSM45659: ADH3; SRC: BREAST PRECANCEROUS

TISSUE

GDS1250 GSM45660 VALUE FOR GSM45660: ADH4; SRC: BREAST PRECANCEROUS

TISSUE

GDS1250 GSM45661 VALUE FOR GSM45661: ADHC1; SRC: BREAST PRECANCEROUS

TISSUE

GDS1250 GSM45662 VALUE FOR GSM45662: ADHC2; SRC: BREAST PRECANCEROUS

TISSUE

GDS1250 GSM45663 VALUE FOR GSM45663: ADHC3; SRC: BREAST PRECANCEROUS

TISSUE

GDS1250 GSM45664 VALUE FOR GSM45664: ADHC4; SRC: BREAST PRECANCEROUS

TISSUE

GDS1326 GSM41348 VALUE FOR GSM41348: ADERALPHA+E2-8 JMTM19;

SRC: MDA-MB-231

GDS1329 GSM26869 VALUE FOR GSM26869: PF04 EPPPT2N1G1; SRC: BIOPSY
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GDS1329 GSM26872 VALUE FOR GSM26872: PF07 EPPPT2N0G2; SRC: BIOPSY

GDS1329 GSM26874 VALUE FOR GSM26874: PF10 EPPPT4N1G2; SRC: BIOPSY

GDS1329 GSM26877 VALUE FOR GSM26877: PF13 EPPPT2N1G1; SRC: BIOPSY

GDS1329 GSM26885 VALUE FOR GSM26885: PF21 EPPPT2N1G2; SRC: BIOPSY

GDS1329 GSM26913 VALUE FOR GSM26913: PF49 EPPPT2N1G1; SRC: BIOPSY

GDS2250 GSM85513 VALUE FOR GSM85513: NB42 U133P2; SRC: NB42

GDS2250 GSM85514 VALUE FOR GSM85514: NB58 U133P2; SRC: NB58

GDS2250 GSM85515 VALUE FOR GSM85515: NB60 U133P2; SRC: NB60

GDS2250 GSM85516 VALUE FOR GSM85516: NB64 U133P2; SRC: NB64

GDS2250 GSM85517 VALUE FOR GSM85517: NB69 U133P2; SRC: NB69

GDS2250 GSM85518 VALUE FOR GSM85518: NB83 U133P2; SRC: NB83

GDS2250 GSM85519 VALUE FOR GSM85519: NB87 U133P2; SRC: NB87

GDS2250 GSM85493 VALUE FOR GSM85493: T37 U133P2; SRC: T37

GDS2250 GSM85501 VALUE FOR GSM85501: T81 U133P2; SRC: T81

GDS2250 GSM85502 VALUE FOR GSM85502: T50 U133P2; SRC: T50

GDS2250 GSM85503 VALUE FOR GSM85503: T4 U133P2; SRC: T4

GDS2250 GSM85507 VALUE FOR GSM85507: T73 U133P2; SRC: T73

GDS2250 GSM85508 VALUE FOR GSM85508: T92 U133P2; SRC: T92

GDS2250 GSM85480 VALUE FOR GSM85480: T133 U133P2; SRC: T133

GDS360 GSM4909 VALUE FOR GSM4909: 356; SRC: HUMAN BREAST CAN-

CER CORE BIOPSY

GDS360 GSM4911 VALUE FOR GSM4911: 359; SRC: HUMAN BREAST CAN-

CER CORE BIOPSY

GDS360 GSM4912 VALUE FOR GSM4912: 370; SRC: HUMAN BREAST CAN-

CER CORE BIOPSY
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GDS360 GSM4915 VALUE FOR GSM4915: 425; SRC: HUMAN BREAST CAN-

CER CORE BIOPSY

GDS823 GSM21252 VALUE FOR GSM21252: NORMAL BREAST EPITHELIUM CON-

TROL REPLICATE 1 133B; SRC: HUMAN MAMMARY EPITHELIAL

CELLS

GDS823 GSM21253 VALUE FOR GSM21253: NORMAL BREAST EPITHELIUM CON-

TROL REPLICATE 2 133B; SRC: HUMAN MAMMARY EPITHELIAL

CELLS

GDS823 GSM21248 VALUE FOR GSM21248: BREAST CANCER CELLS MDA-MB-

436 REPLICATE 1 133B; SRC: MDA-MB436 BREAST CANCER CELL

LINE

GDS823 GSM21249 VALUE FOR GSM21249: BREAST CANCER CELLS MDA-MB-

436 REPLICATE 2 133B; SRC: MDA-MB436 BREAST CANCER CELL

LINE

GDS823 GSM21250 VALUE FOR GSM21250: BREAST CANCER CELLS HCC1954 REPLI-

CATE 1 133B; SRC: HCC1954 BREAST CANCER CELL LINE

GDS823 GSM21251 VALUE FOR GSM21251: BREAST CANCER CELLS HCC1954 REPLI-

CATE 2 133B; SRC: HCC1954 BREAST CANCER CELL LINE

GDS881 GSM15911 VALUE FOR GSM15911: E2+TOT 48H B; SRC: MCF-7

GDS901 GSM16943 VALUE FOR GSM16943: WILD TYPE CONTROL SET A; SRC: MDA-

MB-231+ERALPHA-WT

GDS901 GSM18491 VALUE FOR GSM18491: WT CONTROL SAMPLE B; SRC: MDA-

MB-231ER+ BREAST CANCER CELLS

GDS901 GSM18492 VALUE FOR GSM18492: MDA-MB-231 BREAST CANCER CELLS

STABLY EXPRESSING WILD-TYPE ERA 1 HR TREATMENT SAM-

PLE A; SRC: MDA-MB-231ER+ BREAST CANCER CELLS

GDS901 GSM18493 VALUE FOR GSM18493: MDA-MB-231 BREAST CANCER CELLS

STABLY EXPRESSING WILD-TYPE ERA 1 HR TREATMENT SAM-

PLE B; SRC: MDA-MB-231ER+ BREAST CANCER CELLS
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GDS901 GSM18494 VALUE FOR GSM18494: MDA-MB-231 BREAST CANCER CELLS

STABLY EXPRESSING WILD-TYPE ERA 2 HR TREATMENT SAM-

PLE A; SRC: MDA-MB-231ER+ BREAST CANCER CELLS

GDS901 GSM18495 VALUE FOR GSM18495: MDA-MB-231 BREAST CANCER CELLS

STABLY EXPRESSING WILD-TYPE ERA 2 HR TREATMENT SAM-

PLE B; SRC: MDA-MB-231ER+ BREAST CANCER CELLS

GDS901 GSM18496 VALUE FOR GSM18496: MDA-MB-231 BREAST CANCER CELLS

STABLY EXPRESSING MUTANT ERA LQ CONTROL SAMPLE A;

SRC: MDA-MB-231ER+ BREAST CANCER CELLS

GDS901 GSM18497 VALUE FOR GSM18497: MDA-MB-231 BREAST CANCER CELLS

STABLY EXPRESSING MUTANT ERA LQ SAMPLE B; SRC: MDA-

MB-231ER+ BREAST CANCER CELLS

GDS901 GSM18498 VALUE FOR GSM18498: MDA-MB-231 BREAST CANCER CELLS

STABLY EXPRESSING MUTANT ERA LQ 1 HR TREATMENT OF 10

NM E2 SAMPLE A; SRC: MDA-MB-231ER+ BREAST CANCER CELLS

GDS901 GSM18499 VALUE FOR GSM18499: MDA-MB-231 BREAST CANCER CELLS

STABLY EXPRESSING MUTANT ERA LQ 1 HR TREATMENT OF 10

NM E2 SAMPLE B; SRC: MDA-MB-231ER+ BREAST CANCER CELLS

GDS901 GSM18500 VALUE FOR GSM18500: MDA-MB-231 BREAST CANCER CELLS

STABLY EXPRESSING MUTANT ERA LQ 2 HR TREATMENT OF 10

NM E2 SAMPLE A; SRC: MDA-MB-231ER+ BREAST CANCER CELLS

GDS901 GSM18501 VALUE FOR GSM18501: MDA-MB-231 BREAST CANCER CELLS

STABLY EXPRESSING MUTANT ERA LQ 2 HR TREATMENT OF 10

NM E2 SAMPLE B; SRC: MDA-MB-231ER+ BREAST CANCER CELLS
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