

#### THE HYDRAULIC JUMP AT AN ABRUPT ENLARGEMENT

# A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUNCAY KAAN ALBAYRAK

# IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN THE DEPARTMENT OF CIVIL ENGINEERING

**NOVEMBER 1997** 

Approval of the Graduate School of Natural and Applied Sciences

Prof.Dr. Tayfur Öztürk Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science

Prof.Dr Fuat Erbatur Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science

Assoc. Prof.Dr. Nuray Denli Tokyay Supervisor

**Examining Committee Members** 

Prof.Dr. Metin Ger

Prof. Dr. Tülay Özbek

Prof. Dr. Mustafa Göğüş

Assoc. Prof. Dr. Nuray Denli Tokyay

Asst. Prof. Dr. Zafer Bozkuş

Muety-

M. Cir

Mary Mayer

#### **ABSTRACT**

#### HYDRAULIC JUMP AT AN ABRUPT ENLARGEMENT

Albayrak, Tuncay Kaan
M.S., Department of Civil Engineering
Supervisor: Assoc. Prof. Dr. Nuray Denli Tokyay
November 1997, 108 pages

The hydraulic jump at an abrupt enlargement may occur in two different forms namely R-jump and S-jump depending on the upstream Froude number, the relative magnitudes of the tailwater depth and the width ratio with respect to the initial depth of the jump. The characteristics of the R- and S-jumps at an abrupt enlargement have been investigated both experimentally and theoretically. To predict the relative depth ratio for known upstream conditions, the momentum equation is written for the outlet section and the end of the jump. For R-jumps, a coefficient of friction is introduced to estimate the friction force. For Sjumps, to calculate the pressure force on the expanded walls, the backed-up depth is simply estimated as the arithmetic mean of the depths of the jet at the outlet and tailwater. The data obtained from the experiments on R- and S-jumps are compared with the new approaches introduced in the present study and the approaches in the literature. For practical design purposes, a scaling factor called as modified Froude number, is introduced.

Key Words: Hydraulic Jump, Abrupt enlargement, R-Jump, S-Jump, Modified Froude Number

#### ÖZ

# ANİ KANAL GENİŞLEMELERİNDE OLUŞAN HİDROLİK SIÇRAMA

Albayrak, Tuncay Kaan Yüksek Lisans, İnşaat Mühendisliği Bölümü Tez Yöneticisi : Doç. Dr. Nuray Denli Tokyay Kasım 1997, 108 sayfa

Ani kanal genişlemelerinde hidrolik sıçrama, menba suyu Froude sayısına, kuyruk suyu ve genişleme oranına bağlı olarak iki değişik şekilde oluşur. Bu oluşumlar, R-tipi sıçrama ve S-tipi sıçrama olarak adlandırılmaktadır. R- ve S-tipi sıçramalar hem deneysel hem de teorik olarak incelenmiştir. Belirli menba suyu Rroude sayısına ve genişleme oranına bağlı olarak,her iki sıçrama için, genişlemenin hemen başı ile sıçramanın sonu arasında momentum denklemleri kurularak kuyruk suyu yüksekliği hesaplanmasında teoriler geliştirilmiştir. R-tipi sıçramada sürtünme kuvvetinin, S-tipi sıçramada ise genişleme duvarlarında oluşan kuvvetin hesaplanması için yeni yaklaşımlar geliştirilmiştir. Deney verileri, literatürdeki yaklaşımlar ve yeni yaklaşımlar ile kıyaslanmıştır. Pratik tasarım yöntemleri için, uyarlanmış Froude sayısı ölçek faktörü olarak tanımlanmıştır.

Anahtar Kelimeler:Hidrolik Sıçrama, Ani Kanal Genişlemeleri,
R-tipi Sıçrama, S-tipi Sıçrama, Uyarlanmış
Froude Sayısı

To My Family

#### **ACKNOWLEDGMENTS**

This research was suggested and has been carried out under the supervision of Assoc. Prof. Dr. Nuray Denli Tokyay in the Hydromechanic Laboratory of Civil Engineering at the Middle East Technical University, in Ankara, Turkey.

I express sincere appreciation to Assoc. Prof. Dr. Nuray Denli Tokyay for her guidance and insight throughout the research. Thanks go to the other faculty members, Prof. Dr. Metin Ger for his suggestions and comments and Hydromechanics Laboratory staff of the University, Turgut Ural is gratefully acknowledged. To my love, I offer sincere thanks for her faith in me and her willingness to endure with me. To my family, thanks for their faith also.

#### TABLE OF CONTENTS

| Pag                                                | 3  |
|----------------------------------------------------|----|
| ABSTRACTii                                         | i  |
| ÖZi                                                | V  |
| ACKNOWLEDGMENTS v                                  | i  |
| TABLE OF CONTENTSvi                                | i  |
| LIST OF FIGURESis                                  | K  |
| LIST OF TABLES xi                                  | i  |
| LIST OF SYMBOLSxii                                 | i  |
| CHAPTER                                            |    |
| 1. INTRODUCTION                                    | 1  |
| 1.1 General                                        | 1  |
| 1.2 Formation of A Hydraulic Jump At An Abrupt     |    |
| Enlargement                                        | 3  |
| 1.3 Review of Literature                           | 4  |
| 1.4 Scope of The Study                             | 6  |
| 2. THEORETICAL CONSIDERATIONS                      | 8  |
| 2.1 General                                        | 8  |
| 2.2 Occurrence of A Hydraulic Jump At An Abrupt    |    |
| Enlargement1                                       | 1  |
| 2.3 General Momentum Equation Applied To Hydraulic |    |
| Jump At An Abrupt Enlargementl                     | 2  |
| 2.3.1 R-Jump                                       | 5  |
| (i) Kuznetsov Approach:                            | 6  |
| (ii) Rajaratnam and Subramanya Approach:           | 7  |
| (iii) New Approach1                                | 8  |
| Modified Froude Number for Abrupt Enlargement      | 'n |

| 2.3.2 S-Jump Studies                              | 21 |
|---------------------------------------------------|----|
| (i) Unny Approach:                                | 22 |
| (ii) Abramov Approach:                            | 22 |
| (iii) Rajaratnam and Subramanya Approach:         | 23 |
| (iv) Herbrand's Approach:                         | 24 |
| (v) Hager Approach:                               | 26 |
| (vi) New Approach                                 | 27 |
| 2.4 Energy Dissipation Characteristics            | 32 |
| 2.5 Length Characteristics                        | 33 |
| 3. EXPERIMENTS AND EXPERIMENTAL APPARATUS         | 34 |
| 3.1 Description of Apparatus                      | 34 |
| 3.2 Discharge Measurements                        | 35 |
| 3.3 Experimental Procedure                        | 38 |
| 4. RESULTS AND DISCUSSION OF RESULTS              | 40 |
| 4.1 Observations                                  | 40 |
| 4.2 Results and Discussion of Results For R-Jumps | 52 |
| 4.2.1 Sequent Depth For R-Jumps                   | 52 |
| Prediction of Y:                                  | 54 |
| 4.2.2 Length Characteristics of R-Jump            | 55 |
| 4.2.3 Energy Dissipation in R-Jumps               | 56 |
| 4.3 Results and Discussion of Results For S-Jumps | 71 |
| 4.3.1 Sequent Depth for S-Jumps                   | 71 |
| Prediction of Y:                                  | 73 |
| 4.3.2 Length Characteristics of S-Jump            | 75 |
| 4.3.3 Energy Dissipation in S-Jumps               | 76 |
| 5. CONCLUSIONS AND RECOMMENDATIONS                | 95 |
| Conclusions                                       | 95 |
| Recommendations                                   | 96 |
| REFERENCES                                        | 97 |
| ADDENING                                          | 00 |

#### LIST OF FIGURES

| Figures |                                              |    |
|---------|----------------------------------------------|----|
| 2.1     | Definition Sketch For R-Jump                 | 9  |
| 2.2     | Definition Sketch For S-Jump                 | 10 |
| 2.3.a   | Forces Acting On The Fluid Body For R-Jump   | 12 |
| 2.3.b   | Forces Acting On The Fluid Body For S-Jump   | 13 |
| 3.1     | Schematic Representation of The Experimental |    |
|         | Arrangament                                  | 36 |
| 3.2     | Calibration Curve                            | 37 |
| 4.1.a   | A System of Diagonal Surface Waves           | 40 |
| 4.1.b   | A System of Diagonal Surface Waves           | 41 |
| 4.1.c   | A System of Diagonal Surface Waves           | 41 |
| 4.2     | Free Horizontal Spread of A Streamflow       | 42 |
| 4.3     | Cross sectional Profiles of The Jet          | 44 |
| 4.4     | Longitudinal Profiles of The Jet             | 44 |
| 4.5     | Hydraulic Jump With An Oblique Front         | 45 |
| 4.6     | Hydraulic Jump With Normal Front             | 46 |
| 4.7.a   | A View of R-Jump                             | 47 |
| 4.7.b   | A View of R-Jump                             | 47 |
| 4.7.c   | A View of R-Jump                             | 48 |
| 4.7.d   | A View of R-Jump                             | 48 |
| 4.8.a   | Unstable Nonuniform Flow                     | 49 |
| 4.8.b   | Unstable Nonuniform Flow                     | 49 |
| 4.9.a   | A View of S-Jump                             | 50 |
| 4.9.b   | A View of S-Jump                             | 51 |
| 4.9.c   | A View of S-Jump                             | 51 |

| 4.10 Variation of The Relative Depth Ratio, Y With $F_{ro}$ 53    |
|-------------------------------------------------------------------|
| 4.11.a Comparison of Present Data With New Approaches,            |
| $\alpha$ =0.8057                                                  |
| 4.11.b Comparison of Present Data With New Approaches,            |
| $\alpha$ =0.5058                                                  |
| 4.11.c Comparison of Present Data With New Approaches,            |
| $\alpha$ =0.3059                                                  |
| 4.12.a Comparison of Rajaratnam's Data With New Approaches,       |
| $\alpha$ =0.8360                                                  |
| 4.12.b Comparison of Rajaratnam's Data With New Approaches,       |
| $\alpha$ =0.6761                                                  |
| 4.12.c Comparison of Rajaratnam's Data With New Approaches,       |
| $\alpha$ =0.5062                                                  |
| 4.12.d Comparison of Rajaratnam's Data With New Approaches,       |
| $\alpha$ =0.3363                                                  |
| 4.13.a Comparison of Present Data With The Approaches in The      |
| Literature, α=0.8064                                              |
| 4.13.b Comparison of Present Data With The Approaches in The      |
| Literature, α=0.5065                                              |
| 4.13.c Comparison of Present Data With The Approaches in The      |
| Literature, α=0.3066                                              |
| 4.14 Variation of The Relative Depth Ratio, Y With F <sub>M</sub> |
| For R-Jump67                                                      |
| 4.15 Variation of The Length of Surface Roller of R-Jump68        |
| 4.16 Variation of The Length of R-Jump69                          |
| 4.17 Energy Dissipation Characteristics For R-Jump70              |
| 4.18 Variation of The Relative Depth Ratio, Y With Fro            |
| For S-Jump72                                                      |
| 4.19.a Comparison of Present Data With New Approaches,            |
| $\alpha = 0.80$ 77                                                |

| 4.19.b Comparison of Present Data With New Approaches,            |
|-------------------------------------------------------------------|
| $\alpha = 0.50$                                                   |
| 4.20.a Comparison of Present Data With New Approaches,            |
| $\alpha$ =0.8079                                                  |
| 4.20.b Comparison of Present Data With New Approaches,            |
| α=0.5080                                                          |
| 4.21.a Comparison of Herbrand's Data With New Approaches,         |
| $\alpha$ =0.71481                                                 |
| 4.21.b Comparison of Herbrand's Data With New Approaches,         |
| α=0.5082                                                          |
| 4.21.c Comparison of Herbrand's Data With New Approaches,         |
| $\alpha$ =0.28683                                                 |
| 4.22.a Comparison of Rajaratnam's Data With New Approaches,       |
| α=0.8384                                                          |
| 4.22.b Comparison of Rajaratnam's Data With New Approaches,       |
| $\alpha$ =0.6785                                                  |
| 4.22.c Comparison of Rajaratnam's Data With New Approaches,       |
| α=0.5086                                                          |
| 4.22.d Comparison of Rajaratnam's Data With New Approaches,       |
| α=0.3387                                                          |
| 4.23.a Comparison of Present Data With The Approaches in The      |
| Literature, α=0.8088                                              |
| 4.23.b Comparison of Present Data With The Approaches in The      |
| Literature, α=0.5089                                              |
| 4.24 Variation of The Relative Depth Ratio, Y With F <sub>M</sub> |
| For S-Jump90                                                      |
| 4.25 Variation of The Relative Depth Ratio, Y With F <sub>M</sub> |
| For S-Jump91                                                      |
| 4.26 Variation of The Length of Surface Roller of S-Jump92        |
| 4.27 Variation of The Length of S-Jump93                          |
| 4.28 Energy Dissipation Characteristics For S-Jump94              |

#### LIST OF TABLES

| Table |                                                       | Page |
|-------|-------------------------------------------------------|------|
| 2.1   | The Approaches For R-Jump                             | 30   |
| 2.2   | The Approaches For S-Jump                             | 31   |
| A.1   | Classical Jump Data Taken In This Study, $\alpha=1.0$ | 99   |
| A.2   | R-Jump Data Taken In This Study, α=0.80               | 101  |
| A.3   | R-Jump Data Taken In This Study, α=0.50               | 102  |
| A.4   | R-Jump Data Taken In This Study, α=0.30               | 103  |
| A.5   | S-Jump Data Taken In This Study, α=0.80               | 104  |
| A.6   | S-Jump Data Taken In This Study, α=0.50               | 105  |
| A.7   | Rajaratnam's Data For R-Jump                          | 106  |
| A.8   | Rajaratnam's Data For S-Jump                          | 107  |
| A.9   | Herbrand's Data For S-Jump                            | 108  |

#### LIST OF SYMBOLS

| у                | the depth of flow;                             |
|------------------|------------------------------------------------|
| u                | the mean velocity of flow;                     |
| b                | the width of the supercritical stream;         |
| t                | subscript to denote the tailwater;             |
| o                | subscript to denote the upstream flow;         |
| В                | the width of the expanded section;             |
| Y                | relative depth ratio;                          |
| α                | relative width ratio;                          |
| $\mathbf{F_r}$   | Froude number;                                 |
| Q                | discharge;                                     |
| q                | unit discharge;                                |
| g                | gravitational acceleration;                    |
| $F_{\mathbf{f}}$ | the bed shear force;                           |
| $C_s$            | consolidated shear force coefficient;          |
| $F_{\mathbf{w}}$ | the pressure force on the channel enlargement; |
| F                | the specific force;                            |
| γ                | the specific weight of fluid;                  |
| E                | energy of the flow;                            |
| $\mathbf{E_{l}}$ | head loss through the jump;                    |
| $L_{j}$          | length of the jump;                            |
| $L_r$            | length of the surface roller;                  |
| $L_{o}$          | length of separation zone in R-jump;           |
| $L_1$            | length between outlet and the toe of R-jump;   |
| ρ                | mass density of fluid;                         |
| θ                | parameter used for backed-up depth.            |
| $F_{M}$          | Modified Froude Number                         |
|                  |                                                |

#### CHAPTER I

#### INTRODUCTION

#### 1.1 General

Hydraulic jump is a local phenomenon which transfers a supercritical flow into a subcritical one, accompanied by considerable turbulence and energy loss. Therefore, the hydraulic jump may be practically used to dissipate energy in water flowing over dams, weirs, and other hydraulic structures. When a flow takes place over a spillway or under a sluice gate, it becomes supercritical and has a tremendous kinetic energy. As a result, erosion of the channel downstream from the structure may take place. Hence, for such flows, in order to prevent erosion, a considerable portion of kinetic energy of the flow must be dissipated. Various methods of energy dissipation might be used.

One of the most effective methods for the energy dissipation is to form a hydraulic jump. As the flow becomes subcritical after the jump, the velocity of the flow will reduce and hence it becomes incapable of scouring the downstream channel bed.

There are other practical applications of the hydraulic jump, (Chow, 1958), such as; "(i) to recover head or raise the water level on the downstream side of a measuring flume and thus maintain high water level in the channel for irrigation or other water distribution purposes. (ii) to increase weight on an apron

and thus reduce uplift pressure under a masonry structure by raising the water depth on the apron. (iii) to increase the discharge of a sluice by holding back tailwater, since the effective head will be reduced if the tailwater is allowed to drawn the jump. (iv) to indicate special flow conditions, such as the existence of supercritical flow or the presence of a control section so that a gaging station may be located; (v) to mix chemicals used for water purification; (vi) to aerate water for city water supplies; and (vii) to remove air pockets from water-supply lines and prevent air locking."

Whenever a hydraulic jump is used as an energy dissipater, it is usually confined to a paved channel section which is known as the stilling basin. In practice, to reduce the size and hence the cost of the stilling basin, some accessories such as sills, baffle blocks, abrupt and gradual channel bottom variations (positive and negative steps) or channel enlargements are used. Such controls have additional advantages for it improves the dissipation function of the basin, stabilizes the jump action and in some cases increases the factor of safety.

Although the simple hydraulic jump has been studied in literature for about 150 years, the hydraulic jump at an abrupt expansion has been studied only during the last two decades. Former researches show that although the hydraulic jump at an abrupt enlargement requires smaller tailwater depths than that of simple hydraulic jump with the same upstream conditions, the energy dissipation is much greater than that of simple jump. This means hydraulic jump at an abrupt enlargement is a powerful energy dissipater and needs a shallower basin which may reduce the cost.

Moreover, hydraulic jump at sudden expansion may also take place if only one of the gate is open in a flow through many gated overflow spillways. In these respects, the hydraulic jump forming at an abrupt enlargement needs to be studied. In the present study, the hydraulic jumps at abrupt enlargements have been studied both experimentally and theoretically.

### 1.2 Formation Of A Hydraulic Jump At An Abrupt Enlargement

The hydraulic jump at an abrupt enlargement may occur in two different forms depending on the upstream Froude number, the relative magnitudes of the tailwater depth and the width ratio with respect to the initial depth of the jump.

Consider a supercritical flow in a rectangular channel which has an abrupt symmetrical expansion in width. As the supercritical flow enters the abrupt enlargement, it expands freely until it occupies the full width of the channel and then creates a system of diagonal surface waves due to successive reflections. However, if the flow at a downstream section of the enlargement is subcritical. a hydraulic jump with an oblique front is formed somewhere downstream. With an increase in the tailwater depth, the jump moves upstream and its front gradually becomes normal. However, the jump soon reaches a limiting position. Any further increase in the tailwater depth causes the jump to collapse and the tailwater spills on the upstream supercritical flow, the jet twists and deflects to one side of the expanded section, creating an unstable nonuniform flow situation. The jump formed under this tailwater condition is termed the repelled jump and is designated as R-JUMP, (Rajaratnam, 1968).

With a further increase in the tailwater level, the outlet gradually submerges, but the jet still be unstable, oscillating rather violently. However, at a certain higher tailwater level, the jet ceases to oscillate, the flow becomes stable and phenomenon resembles the familiar hydraulic jump with small submergence. The minimum tailwater situation at which the stable flow takes place after the collapse of the R-jump is designated as *stable* (*spatial*) *jump or S-JUMP*, (Rajaratnam, 1968). Further increase in the tailwater causes greater submergence and the flow resembles a submerged jump.

#### 1.3 Review of Literature

In 1961, Unny investigated the spatial hydraulic jumps in a channel expansion. His paper deals with a fundamental physical analysis of the spatial jump. He thought that the existing formula for the depth ratio in a spatial jump are more or less empirical in nature and contain many inconsistencies. By putting proper boundary conditions to the well known formula for the classical jump, he has developed a new formula. As a result of experiments, he showed that the factors introduced into the general formula were absolute constants and supported his theoretical analysis.

In 1964, Kuznetsov investigated the free horizontal spread of the streamflow in the tailwater of hydro structures, which is useful for the selection of the best shape of the chute outlets. As a result of the tests performed, Kuznetsov (1964) gave an equation for the computation of the sequent depth of the R-jump which includes an empirical coefficient to take into account the nonuniform

distribution of velocity and discharge across the cross section of the channel.

In 1968, Rajaratnam and Subramanya investigated the hydraulic jump at an abrupt expansion both theoretically and experimentally. They defined the jumps as R-Jump and S-Jump. They derived the expressions related with R-Jump and S-Jump. They saw that at the tailwater ranges between R-Jump and S-Jump, unstable and undesirable flow conditions occurred. For R-Jump, the momentum equation which neglects the total bed shear force could not predict the sequent depth and an empirical equation to predict the sequent depth had been developed. For S-Jump, they compared their experimental results with the equations of Abramov and Unny, and an equation obtained from simple momentum equation, and stated that all was unsatisfactory for predicting the sequent depth. The length characteristics of both jumps had also been studied.

In 1972, Herbrand studied the spatial hydraulic jump both theoretically and experimentally. A simple, usable relationship was established for designing a laterally expanded stilling basin. No consideration was made for wall friction influence or for the coefficients of velocity and pressure distribution in the end sections. The investigator showed that a shallower stilling basins is occurred and the spatial hydraulic jump tends to augment the instability and asymmetry of the discharge, and for spatial jumps, energy dissipation is greater than in regular basins.

In 1984, *Hager* analyzed the hydraulic jump in non-prismatic, rectangular, horizontal channels. Distinction is made between the cases in which flow is non-separated and separated from the

channel side-walls, respectively. Results included a rational prediction of the sequent depth ratio in terms of the inflow Froude number and the channel width ratio, the relative energy dissipation and the length characteristics of the roller and the jump. His study aimed to establish rational hydraulic approaches for hydraulic jump in gradual and abrupt channel enlargements. The results were compared with each other and with the classical jump in prismatic rectangular channels. Several advantages of the channel enlargements was discussed in Hager's studies. He also observed that Herbrand investigated jumps located just at the transition zone while Rajaratnam considered jumps downstream of the abrupt enlargement.

#### 1.4 Scope of The Present Study

In the present study, the characteristics of the hydraulic jumps at abrupt enlargements are studied both theoretically and different experimentally for width ratios. General onedimensional momentum equation is used for the analysis of the jump. For R-jumps, a coefficient of friction is introduced to predict the relative depth ratio for a given geometry and upstream flow conditions. The case, in which friction force is neglected, is also studied. For S-jumps, to predict the relative depth ratio, it is important to estimate the force on the expanded walls, and hence the backed-up depth. The backed-up depth is approximated as a simple arithmetic mean of the depth of the jet at the outlet section and the tailwater and a prediction formula for the relative depth ratio is obtained from momentum equation. The results are compared with the data obtained in the present study and the data available in literature. A modified Froude number is introduced as a scaling factor both for R- and S-jumps. The relative depth ratio

both for R- and S-jumps are obtained as a function of modified Froude number. The length characteristics and the energy dissipation in both jumps are also studied.

The theoretical considerations in the literature and the new approaches are given in Chapter II. Experiments done for R-Jump and S-Jump are explained in Chapter III. The observations on the flow and the results, and the discussion of the results are given in Chapter IV. Conclusions and recommendations are presented in Chapter V. The data obtained in the present study and the available data in literature are given in Appendix.

#### CHAPTER II

#### THEORETICAL CONSIDERATIONS

#### 2.1 General

At an abrupt enlargement, hydraulic jump occurs in two different forms, depending on the upstream Froude number, relative magnitudes of the tailwater depths and the width ratio. These two forms which are designated as R-Jump and S-Jump, are shown in Fig. (2.1) and Fig. (2.2).

In Fig. (2.1) and Fig. (2.2);  $y_0$  and  $u_0$  are the depth and the mean velocity at the outlet section, respectively;  $y_t$  and  $u_t$  are the tailwater depth and the corresponding velocity, respectively, b is the width of the supercritical stream and B is the width of the expanded section where the jump takes place.

At an abrupt expansion in width, either R-Jump or S-Jump will occur depending on the relative depth ratio,  $Y = y_t/y_o$ , for a given relative width ratio,  $\alpha = b/B$ , and the Froude number of the upstream supercritical flow,  $F_{ro} = q_o / \sqrt{gy_o^3}$ 

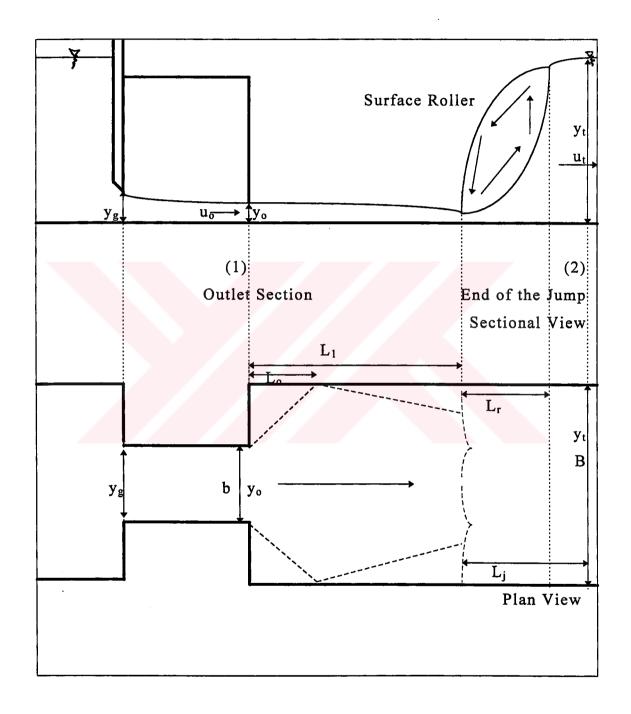



Fig. (2.1) Definition Sketch For R-Jump.

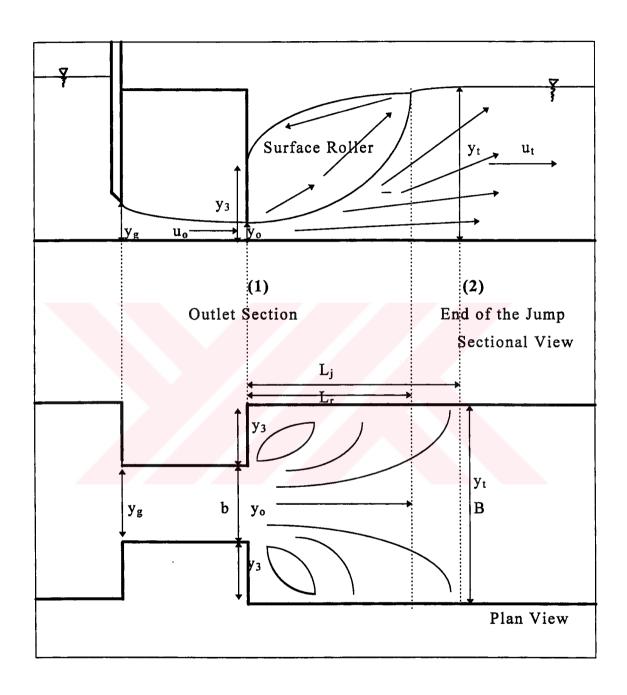



Fig. (2.2) Definition Sketch For S-Jump.

# 2.2 Occurrence Of A Hydraulic Jump At An Abrupt Enlargement

If a supercritical flow in a rectangular channel enters to a channel section where the width is enlarged abruptly, it expands freely until it occupies the full width of the channel and forms oblique surface waves which reflect and appear as a system of diagonal surface waves. If this supercritical flow encounters a tailwater depth of a subcritical flow, then a hydraulic jump with an oblique front is formed somewhere downstream. With an increase in the tailwater depth, the jump moves upstream and its front gradually becomes normal. Under this tailwater condition, R-Jump is formed. If the tailwater depth is slightly greater than the sequent depth of the R-jump, an unstable nonuniform flow is created and backward flow sets in and the jet twists and deflects to one side of separation zone. If the tailwater depth is further increased, the outlet gradually submerges, but the jet still be unstable, oscillating rather violently. At a certain higher tailwater depth, the flow becomes stable and S-Jump with small submergence is occurred. Further increase of tailwater causes greater submergence and the flow resembles a submerged jump.

For the given upstream conditions of a hydraulic jump, to obtain the downstream condition, one dimensional linear momentum equation has successfully been used in literature. In the application of the momentum equation to a hydraulic jump at an abrupt enlargement, it is necessary to estimate the pressure distribution and magnitudes of the forces acting on the corners of the enlargements and the wall shear stresses.

# 2.3 General Momentum Equation Applied To Hydraulic Jump At An Abrupt Enlargement

To predict the tailwater depth,  $y_t$ , for the hydraulic jump at an abrupt enlargement, the momentum equation can be written between the sections (1) and (2) as shown in Fig. (2.3).

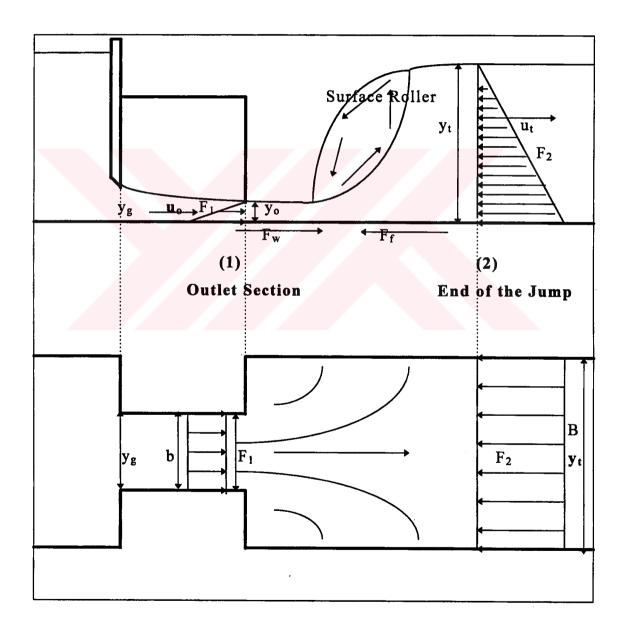



Figure (2.3.a) Forces Acting On The Fluid Body For R-Jump.

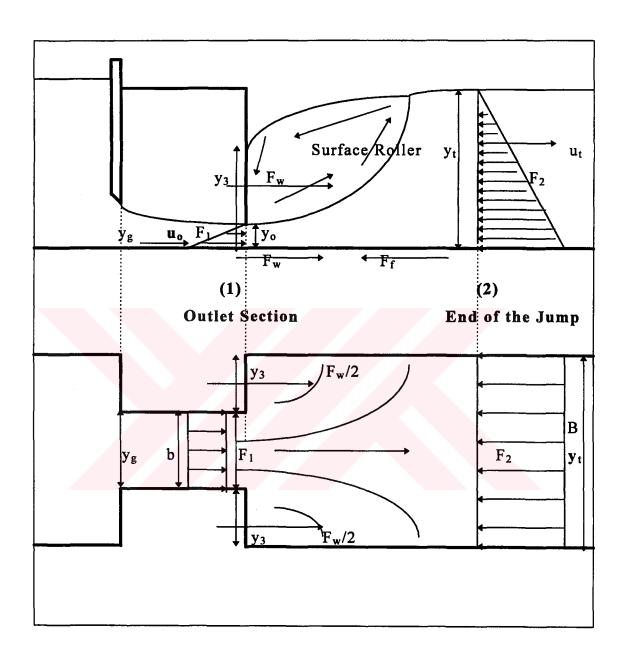



Figure (2.3.b) Forces Acting On The Fluid Body For S-Jump.

By assuming that the pressure distribution at sections (1) and (2) are hydrostatic and the momentum correction factors,  $\beta_1$  and  $\beta_2$ , may be taken as unity, the momentum equation between section (1) and section (2) can be written as

$$bF_1 + \frac{F_w}{\gamma} = BF_2 + \frac{F_f}{\gamma}$$
 .....(2.1)

where;

 $F_f$ : the bed shear force between sections (1) and (2),

Fw: the pressure force on the water due to channel enlargement,

 $\gamma$ : the specific weight of fluid.

 $F_i$ : the specific force at  $i^{th}$  section, i = 1,2 and defined as

$$F_i = \frac{1}{2} y_i^2 + \frac{q_i^2}{gy_i}, \qquad i=1,2 \qquad .....(2.2)$$

where;

y<sub>i</sub>: the depth of flow at i<sup>th</sup> section,

q: the unit discharge,

g: the acceleration of gravity,

Substitution of Eq. (2.2) into Eq. (2.1) yields that

$$b(\frac{1}{2}y_o^2 + \frac{q_o^2}{gy_o}) - B(\frac{1}{2}y_t^2 + \frac{q_t^2}{gy_t}) = \frac{(F_f - F_w)}{\gamma} \qquad \dots (2.3)$$

Dividing both side of Equation (2.3) by  $(\frac{1}{2}By_0^2)$ , the equation can be written as

$$\frac{b}{B}\left(1 + \frac{2q_o^2}{gy_o^3}\right) - \left(\frac{y_t^2}{y_o^2} + \frac{2q_t^2}{gy_t} \frac{1}{y_o^2}\right) = \frac{2(F_f - F_w)}{B\gamma y_o^2} \qquad \dots (2.4)$$

Let  $Y=y_t/y_0$  be the depth ratio and  $\alpha=b/B$  be the relative width ratio, and  $F_{ro}{}^2=q_o{}^2/g{y_o}^3$  be the Froude number of the upstream supercritical flow. In terms of these variables defined, and by using the equation of continuity,  $q_t=\alpha q_o$ , Eq. (2.4) can be written as

$$\alpha(1+2F_{ro}^2)-(Y^2+\frac{2\alpha^2F_{ro}^2}{Y})=\frac{2(F_f-F_w)}{B\gamma y_o^2} \qquad .....(2.5)$$

For the known upstream flow conditions ( $F_{ro}$  and  $y_o$ ) and the channel geometry ( $\alpha$ ), Eq. (2.5) can be solved for the depth ratio Y, provided that the values of  $F_f$  and  $F_w$  are known.

The friction force  $F_f$  and the force on the expanded walls,  $F_w$ , take different values depending on the type of jump, that is whether an R-jump or S-jump takes place.

#### 2.3.1 R-Jump

Experiments show that, the two triangular areas (Fig. 2.1) formed at the corners of the abrupt enlargement contain almost no water. Hence, in case of R-jumps  $F_w$  can be taken as zero. On the other hand, the friction force can be written as (Rajaratnam and Subramanya, 1968).

$$F_f = C_s \rho Q u_o \qquad (2.6)$$

where  $C_s = a$  consolidated shear force coefficient.

By taking  $F_w = 0$ , and using Eq. (2.6), the right-hand side of the Eq. (2.5) can be written as

$$\frac{2F_f}{\gamma B y_o^2} = 2C_s \alpha F_{ro}^2 \qquad (2.7)$$

By inserting Eq. (2.7) into Eq. (2.5) and rearranging it, the following equation can be obtained;

$$Y^3 - \alpha (1 + 2F_{ro}^2 (1 - C_s))Y + 2F_{ro}^2 \alpha^2 = 0$$
 .....(2.8)

Solution of Eq. (2.8) depends on the form and the value of C<sub>s</sub>.

The approximations on estimation of the force  $F_f$  and/or  $C_s$ , and hence the solution of Eq. (2.8) in literature can be summarized as follows:

#### (i) Kuznetsov Approach:

Kuznetsov (1964) studied the formation of a hydraulic jump at an abrupt enlargement experimentally, and gave a relation to compute the sequent depth of the jump as

$$Y = \frac{K}{2} (\sqrt{(\alpha^2 + 8F_{ro}^2 \alpha)} - \alpha)$$
 (2.9)

where  $K = f(\alpha)$ , and it is given as

$$K = 0.8-(0.9-\alpha)0.15 = 0.665+0.15 \alpha$$
 .....(2.10)

#### (ii) Rajaratnam and Subramanya Approach:

Rajaratnam and Subramanya (1968) investigated the hydraulic jump at an abrupt enlargement both theoretically and experimentally. They introduced the definitions of R- and S-jumps. In their theoretical analysis, the momentum equation was written between the outlet section and the section where the jump ends. The pressure distribution at the two sections is assumed to be hydrostatic and the momentum correction factors taken as unity. The force on the expanded walls  $F_w$  are taken as zero. On the other hand, by neglecting the friction force, an approximate solution of Eq. (2.8) is given as

$$Y = \frac{1}{2} (\sqrt{(\alpha^2 + 8F_{ro}^2 \alpha)} - \alpha) \qquad .....(2.11)$$

When  $\alpha=1$ , Eq. (2.11) becomes the well-known solution of simple hydraulic jump.

Rajaratnam and Subramanya (1968) stated that the coefficient K in Kuznetsov approach is apparently used to account for the neglect of friction force. They also tested the validity of Eq. (2.10), by using the data collected in their study. Their results show that K is a function of both  $F_{ro}$  and  $\alpha$ ; only beyond a certain value of  $F_{ro}$  does K become independent of  $F_{ro}$ . It is also stated that the values of K obtained in their study are considerably larger than those predicted by Eq. (2.10).

The friction force  $F_f$  is approximated by introducing a consolidated shear force coefficient as given in Eq. (2.6). It is

also shown that for a given value of  $\alpha$ ,  $C_s$  increases with  $F_{ro}$  to a certain value beyond which it is constant. The constant value of  $C_s$  increases with decreases in the value of  $\alpha$ .

The depth ratio Y is expressed by an empirical relation for the values of  $\alpha$  in the range 0.30 to 0.90 as

$$Y = 0.75 + (\alpha + 0.30)(F_{ro} - 0.85)$$
 .....(2.12)

#### (iii) New Approach

In the present study, for the solution of Eq. (2.8), two approaches are considered; the first approach assumes that the friction force,  $F_f$ , is negligible and hence  $C_s = 0$ ; in the second approach, the consolidated shear force coefficient  $C_s$  is considered as a function of  $\alpha$ .

a) If friction force,  $F_f$  is negligible, then  $C_s = 0$ . Therefore Eq. (2.8) reduces to:

$$Y^3 - \alpha (1 + 2F_{ro}^2)Y + 2F_{ro}^2 \alpha^2 = 0$$
 .....(2.13)

The solutions of third-degree polynomial given by Eq. (2.13) are quite complicated. However, an approximate solution can be obtained with an error in the order of  $(\alpha^2-\alpha^3)$ . By adding a term  $(\alpha^2-\alpha^3)$ , Eq. (2.13) can be written as:

$$Y^3 - \alpha (1 + 2F_{ro}^2)Y + \alpha^2 (1 + 2F_{ro}^2) - \alpha^3 = 0$$
 .....(2.14)

 $Y=\alpha$  is a solution of Eq. (2.14). Therefore it can be reduced to a second degree polynomial as

$$Y^2 + \alpha Y - \alpha (1 + 2F_{ro}^2) + \alpha^2 = 0$$
 .....(2.15)

The positive root of Eq. (2.15) is:

$$Y = \frac{1}{2} (\sqrt{(4\alpha(1+2F_{ro}^2)-3\alpha^2)} - \alpha) \qquad .....(2.16)$$

When  $\alpha=1$ , it reduces to the well-known simple hydraulic jump relation.

b) If  $F_f$  is not negligible, then it is necessary to know the value of  $C_s$ . Rajaratnam and Subramanya (1968) noted that  $C_s = C_s$  ( $\alpha, F_{ro}$ ), and that as  $\alpha$  decreases,  $C_s$  increases. Also, the increase in  $C_s$  with the increase in  $F_{ro}$  is quite small. In the present study, considering all these arguments,  $C_s$  is taken to be a function of  $\alpha$  only. A simple relation for  $C_s$ , enhancing convenience for the solution and in agreement with the aforementioned physical aspects, may be assumed as

$$C_s = 1 - \sqrt{\alpha} \qquad \dots (2.17)$$

By substituting Eq. (2.17), Eq.(2.8) can be written as

$$Y^3 - \alpha (1 + 2\sqrt{\alpha} F_{ro}^2) Y + 2\alpha^2 F_{ro}^2 = 0$$
 .....(2.18)

 $Y = \sqrt{\alpha}$  is a solution of Eq.(2.18). Therefore it can be reduced to a second degree polynomial as

$$Y^2 + \sqrt{\alpha} Y - 2\alpha \sqrt{\alpha} F_{ro}^2 = 0$$
 .....(2.19)

The positive root of Eq. (2.19) is then given by

$$Y = \frac{1}{2} \sqrt{\alpha} \left( \sqrt{(1 + 8\sqrt{\alpha} F_{ro}^{2})} - 1 \right) \qquad .....(2.20)$$

When  $\alpha=1$ , it reduces to the simple hydraulic jump relation.

#### Modified Froude Number for Abrupt Enlargement

The momentum equation for hydraulic jump occurring at an abrupt enlargement reduces to Eq. (2.13) if the right-hand side of Eq.(2.5) is negligible.

Considering that the friction force  $F_f$  and the force on the wall have an effect to cancel each other, the following analysis can be done:

Let v=1/Y, then Eq. (2.13) can be written as

$$v^{3} - \frac{(1+2F_{ro}^{2})\alpha v^{2}}{2\alpha^{2}F_{ro}^{2}} + \frac{1}{2\alpha^{2}F_{ro}^{2}} = 0 \qquad (2.21)$$

as Y becomes very large,  $v^3$  will approach to zero. Therefore Eq.(2.21) will reduce to

$$(1+2 F_{ro}^2)\alpha v^2 = 1$$
 .....(2.22)

Now replacing v<sup>2</sup> by 1/Y<sup>2</sup> and solving for Y, one can get that

$$Y = \sqrt{\alpha(1 + 2F_{rg}^2)}$$
 .....(2.23)

Let us define the modified Froude number as

$$F_{\rm M} = \sqrt{\alpha (1 + 2F_{\rm ro}^2)}$$
 .....(2.24)

In order to take into account the terms neglected the relative depth ratio may be considered as a function of  $F_M$ , i.e.

$$Y=f(F_M)$$
 .....(2.25)

#### 2.3.2 S-Jump Studies

When an R-jump takes place at an abrupt enlargement, any increase in the tailwater causes the jump to collapse and the tailwater spills on the upstream supercritical flow, and a backward flow sets in and the jet twists and deflects to one side forming an unstable flow. Further increase in tailwater will submerge the outlet and at a certain tailwater level, a kind of submerged stable jump will occur. This type of jump is named as S-jump.

In formulating the general momentum equation for a simple hydraulic jump, friction force is neglected and average cross sectional values are used without any correction to account for nonuniform velocity distribution. This approach has been justified for all practical purposes, because the effects of the local and time variations of velocity as well as that of the non-hydrostatic pressure and the air entrainment on the depth ratio are small and, in part, tend to cancel each other out. By the same reasoning the friction force may be disregarded in case of S-jumps.

In case of S-jumps, although the friction force may be neglected, the force on the expanded walls must be considered. By neglecting the friction force in Eq. (2.8) and solving it for  $F_{ro}$ , one can obtain that

$$F_{ro}^{2} = \frac{Y^{3} - \alpha Y - \frac{2F_{w}}{\gamma B y_{o}^{2}} Y}{2\alpha (Y - \alpha)}$$
 .....(2.26)

The solution of Eq. (2.26) depends on the value of F<sub>w</sub>.

There are several investigations on S-jump in literature which may be summarized as follows:

#### (i) Unny Approach:

Unny (1961) has obtained a semiempirical formula for the case of  $\alpha=0.50$ ,

$$Y = \frac{1}{2} (1 + 2.2 \frac{y_1}{b} F_{ro}^2) \left( \sqrt{(1 + \frac{8F_{ro}^2}{1 + 2.2 \frac{y_1}{b} F_{ro}^2})} \right) - 1 \right) \qquad \dots (2.27)$$

where y<sub>1</sub> is the mean supercritical depth before spatial jump.

#### (ii) Abramov Approach:

The sequent depth ratio in an S-jump, is given by Abramov(1966), (from Rajaratnam and Subramanya(1968)), as

$$Y = \frac{K_1 + 14}{10(K_1 + 2)} \left( \sqrt{(1 + 600 \frac{K_1 + 2}{(K_1 + 14)^2} F_{ro}^2)} - \right) \qquad \dots (2.28)$$

in which  $K_1$  is an empirical factor which could be taken as 3 to 4 for B/b<10 and 5 to 6 for B/b>10.

#### (iii) Rajaratnam and Subramanya Approach:

In S-jumps, the forward flow occupies the whole width of the channel at the end of the jump. Further, the backed-up depth at the outlet is almost constant in the lateral direction. With these observations and neglecting the integrated bed-shear stress, Rajaratnam and Subramanya (1968) writes the momentum equation between the outlet and the end of the jump as

$$\frac{1}{2}\gamma By_3^2 - \frac{1}{2}\gamma By_t^2 = \rho Qu_t - \rho Qu_0 \qquad ....(2.29)$$

where  $y_3$  is the backed-up depth. If  $y_3 = \theta y_0$ , Eq. (2.29) can be reduced to the form:

$$Y^3 - Y(2F_{ro}^2 \alpha + \theta^2) + 2F_{ro}^2 \alpha^2 = 0$$
 .....(2.30)

Rajaratnam and Subramanya (1968) stated that "based on the experimental results, as a first approximation  $\theta$  was given an average value of 4.0, and Eq. (2.27), Eq.(2.28) and Eq.(2.30) was evaluated for all runs and is compared with the experimental results and have all been found to be unsatisfactory for predicting the sequent depth. It is suggested that to write a reasonably correct equation, it is necessary to predict the backed-up depth, the width and the nature of the forward flow at the end of the jump, and the shear force on the bed. As an alternate method, a

simple formula based on the dimensional analysis and using the present experimental results is developed."

They have introduced the concept of the characteristic length of the outlet which is nothing but the hydraulic radius at the outlet section given by

$$r' = \frac{by_o}{b + 2y_o}$$
 .....(2.31)

They obtained a simple relation for the sequent depth of S-jumps by using data fit as

$$\frac{y_t}{r} = 1.08F_{ro}' + 1.40 \tag{2.32}$$

where 
$$F_{ro} = \frac{u_o}{\sqrt{gr}}$$
.

# (iv) Herbrand's Approach:

Herbrand (1972) studied the S-jumps experimentally and tried to obtain a relation for the sequent depth by using one-dimensional momentum equation.

In Eq.(2.26), the force on the expanded walls may be obtained by considering a hydrostatic pressure distribution on the expanded walls as:

$$F_w = \frac{1}{2}\gamma y_3^2(B-b)$$
 .....(2.33)

By inserting Eq. (2.33) into Eq.(2.26), and rearranging, one can obtain that:

$$Y^3 - Y (\alpha + (1-\alpha)\theta^2 + 2\alpha F_{ro}^2) + 2\alpha^2 F_{ro}^2 = 0$$
 .....(2.34)

To solve Eq. (2.34) for the given upstream conditions, It is necessary to estimate the value of backed-up depth  $y_3$ .

Herbrand (1972) states that it is quite difficult to draw general conclusions as to the size of  $y_3$  due to the non-hydrostatic pressure distribution in the separation zone and the strong air entrainment. Consequently, he introduced further simplifying assumptions as  $\theta=1$  and  $F_w=0$ , which reduces the S-jump equation, Eq.(2.34) into R-jump equation, Eq.(2.8).

Herbrand (1972) also stated that "if one also recognizes that on the tailwater side the momentum is small in comparison with the static water pressure force and that the change in momentum which results from expanding the basin is even smaller, then one is lead to the conclusion that the pressure must be the same in the classical and in the expanding stilling basin, i.e."

$$\frac{1}{2}\gamma By_s^2 = \frac{1}{2}\gamma by_c^2 \qquad .....(2.35)$$

where  $y_s$  is the depth of S-jump in the expanding stilling basin and  $y_c$  is the depth of classical jump. With these considerations, Eq. (2.35) yields

$$\frac{y_s}{y_c} = \sqrt{\alpha} \qquad (2.36)$$

He concluded that "the application of Eq. (2.36) to sizing a spatial stilling basin implies that the basin has to be widened by the square of the factor by which the actual depth is smaller than the calculated depth. If one obeys this rule then the hydraulic preconditions for the jump are still valid."

## (v) Hager Approach:

Hager (1985) studied S-jumps theoretically by using onedimensional momentum equation given by Eq.(2.26). He gave upper, intermediate and lower limits for Eq. (2.26) by using different approximations on the estimation of  $F_w$ .

For upper limit, Hager assumes that the force on the expanded walls is given by

$$F_w = \frac{1}{2} \gamma (B-b) y_t^2$$
 .....(2.37)

If Eq. (2.37) is substituted into Eq.(2.26), it becomes

$$F_{ro}^2 = \frac{Y(Y^2 - 1)}{2(Y - \alpha)} \qquad .....(2.38)$$

An intermediate case is given by assuming that the force on the expanded walls can be computed by using the depth of the jet,  $y_0$  as

$$F_w = \frac{1}{2} \gamma (B-b) y_0^2$$
 .....(2.39)

for which Eq. (2.26) becomes

$$F_{ro}^{2} = \frac{Y(Y^{2}-1)}{2\alpha(Y-\alpha)} \qquad (2.40)$$

For the lower limit, the minimum condition is  $F_w = 0$ . Therefore Eq.(2.26) becomes

$$F_{ro}^2 = \frac{Y(Y^2 - \alpha)}{2\alpha(Y - \alpha)} \tag{2.41}$$

## (vi) New Approach

All the discussions on S-jumps in literature (Rajaratnam and Subramanya (1968), Herbrand (1972), Hager (1985)) show that it is quite important to estimate the force on the expanded walls, F<sub>w</sub>.

In the present study, the force on the expanded wall is estimated by using two approaches:

- i)  $F_w$  can be assumed to be given by hydrostatic pressure distribution due to backed-up depth  $y_3$ .
- ii) Analogous to the abrupt expansion in a pipe,  $F_w$  may be obtained by assuming uniform pressure distribution  $\gamma y_3$  within the separation zone.

Whichever approach is used, it is necessary to estimate the value of backed-up depth  $y_3$ . The simplest model is to assume that  $y_3$  is the arithmetic average of  $y_0$  and  $y_t$ , i.e

$$y_3 = \frac{1}{2}(y_0 + y_t) = \frac{1}{2}y_0(1 + \frac{y_t}{y_0})$$
 .....(2.42)

or

$$\theta = \frac{y_3}{y_0} = \frac{1}{2}(1+Y) \tag{2.43}$$

Case i) The force F<sub>w</sub> is considered as given by hydrostatic pressure distribution as:

$$F_w = \frac{1}{2} \gamma (B-b) y_3^2$$
 (2.44)

or

$$\frac{2F_{\rm w}}{\gamma B y_{\rm o}^2} = \theta^2 (1 - \alpha) \tag{2.45}$$

Substution of Eq. (2.45) into Eq.(2.26) yields a relation between  $F_{ro}$  and Y as

$$F_{ro}^{2} = \frac{Y^{3} - \alpha Y - \theta^{2} (1 - \alpha)}{2\alpha (Y - \alpha)}$$
 (2.46)

If  $\theta$  may be approximated by Eq.(2.43), Eq.(2.46) becomes

$$F_{ro}^{2} = \frac{Y^{3} - \alpha Y - \frac{1}{4}(Y + 1)^{2}Y(1 - \alpha)}{2\alpha(Y - \alpha)} \qquad .....(2.47)$$

Case ii) If the pressure distribution within the separation pocket is assumed to be uniform and equal to  $\gamma y_3$ , then the force  $F_w$  becomes:

$$F_w = \gamma (B-b)y_3^2$$
 .....(2.48)

or in the non-dimensional form:

$$\frac{2F_{w}}{\gamma By_{0}^{2}} = 2\theta^{2}(1-\alpha) \qquad (2.49)$$

Hence, by substituting Eq. (2.49) into Eq. (2.26), the relation between  $F_{ro}$  and Y becomes

$$F_{ro}^{2} = \frac{Y^{3} - \alpha Y - 2\theta^{2}(1 - \alpha)}{2\alpha(Y - \alpha)}$$
 (2.50)

Again, if  $\theta$  is assumed to be given by Eq.(2.43), Eq.(2.50) will take the form:

$$F_{ro}^{2} = \frac{Y^{3} - \alpha Y - \frac{1}{2}(Y + 1)^{2}Y(1 - \alpha)}{2\alpha(Y - \alpha)} \qquad .....(2.51)$$

All the approaches in the literature and new approaches in this study derived from momentum equation for R- and S-jumps are tabulated in Table (2.1), and Table (2.2), respectively.

Table 2.1 The Approaches For R-Jump

|                                                  | R-Jump                                                                                                                                                 |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kuznetsov<br>Approach (1964)                     | $Y = \frac{K}{2} (\sqrt{(\alpha^2 + 8F_{ro}^2 \alpha)} - \alpha) $ (2.9)<br>$K = 0.8 - (0.9 - \alpha)0.15 $ (2.10)                                     |
|                                                  | Approximate Solution; (by neglecting $F_f$ )                                                                                                           |
| Rajaratnam &<br>Subramanya<br>Approach<br>(1968) | $Y = \frac{1}{2} (\sqrt{(\alpha^2 + 8F_{ro}^2 \alpha)} - \alpha) $ (2.11)<br>Empirical Formula;<br>$Y = 0.75 + (\alpha + 0.30)(F_{ro} - 0.85) $ (2.12) |
| New Approach                                     | If $F_f$ is negligible, $Y = \frac{1}{2} \left( \sqrt{(4\alpha(1 + 2F_{ro}^2) - 3\alpha^2)} - \alpha \right) \qquad (2.16)$                            |
|                                                  | If $F_f$ is not negligible, $Y = \frac{1}{2} \sqrt{\alpha} \left( \sqrt{(1 + 8\sqrt{\alpha} F_{ro}^2)} - 1 \right) \qquad (2.20)$                      |

Table 2.2 The Approaches For S-Jump

|                                         | S-Jump                                                                                                                                                                                                                      |                 |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Rajaratnam & Subramanya Approach (1968) | If $y_3 = \theta y_o$<br>$Y^3 - Y(2F_{ro}^2 \alpha + \theta^2) + 2F_{ro}^2 \alpha^2 = 0$<br>By using data fit as $\frac{y_t}{r} = 1.08F_{ro} + 1.40  (2.32)$ $F_{ro}' = \frac{u_o}{\sqrt{gr'}},  r' = \frac{by_o}{b+2y_o}.$ | (2.30)<br>where |
| Herbrand<br>Approach, (1972)            | $Y^3 - Y (\alpha + (1-\alpha)\theta^2 + 2\alpha F_{ro}^2) + 2\alpha^2 F_{ro}^2 = 0$                                                                                                                                         | (2.34)          |
|                                         | For upper limit, $F_w = \frac{1}{2} \gamma (B-b) y_t^2$                                                                                                                                                                     |                 |
|                                         | $F_{ro}^2 = \frac{Y(Y^2 - 1)}{2(Y - \alpha)}$                                                                                                                                                                               | (2.38)          |
| Hager Approach, (1985)                  | For intermediate case, $F_w = \frac{1}{2} \gamma (B-b) y_0^2$                                                                                                                                                               |                 |
|                                         | $F_{ro}^2 = \frac{Y(Y^2 - 1)}{2\alpha(Y - \alpha)}$                                                                                                                                                                         | (2.40)          |
|                                         | For the lower limit, $F_w = 0$ ,                                                                                                                                                                                            |                 |
|                                         | $F_{ro}^2 = \frac{Y(Y^2 - \alpha)}{2\alpha(Y - \alpha)}$                                                                                                                                                                    | (2.41)          |
|                                         | Hydrostatic pressure, $F_w = \frac{1}{2} \gamma (B-b) y_3^2$ ,                                                                                                                                                              |                 |
|                                         | $\theta = \frac{y_3}{y_0} = \frac{1}{2}(1+Y)$                                                                                                                                                                               |                 |
| New Approach                            | $F_{ro}^{2} = \frac{Y^{3} - \alpha Y - \frac{1}{4}(Y + 1)^{2}Y(1 - \alpha)}{2\alpha(Y - \alpha)}$                                                                                                                           | (2.47)          |
|                                         | Uniform Pressure, $F_w = \gamma (B-b)y_3^2$ , $\theta = \frac{y_3}{y_0} = \frac{1}{2}(1+Y)$                                                                                                                                 |                 |
|                                         | $F_{ro}^{2} = \frac{Y^{3} - \alpha Y - \frac{1}{2}(Y + 1)^{2}Y(1 - \alpha)}{2\alpha(Y - \alpha)}$                                                                                                                           | (2.51)          |

# 2.4 Energy Dissipation Characteristics

The energy dissipation due to a hydraulic jump may be found by application of the one-dimensional energy equation between Sections (1) and (2). If  $E_0$  is the energy of the supercritical stream at the outlet,

$$E_o = y_o + \frac{u_o^2}{2g}$$
 .....(2.52)

and Et is the energy at the end of the jump,

$$E_{t} = y_{t} + \frac{u_{t}^{2}}{2g}$$
 (2.53)

the energy dissipation in the hydraulic jump is

$$h_1 = E_0 - E_t$$
 (2.54)

and the relative energy dissipation is

$$\frac{h_1}{E_o} = 1 - \left(\frac{y_t}{y_o + \frac{u_o^2}{2g}} + \frac{\frac{u_t^2}{2g}}{y_o + \frac{u_o^2}{2g}}\right) \qquad (2.55)$$

The relative energy dissipation is a function of  $F_{\text{ro}}$  ,  $\alpha$  and can be written as

$$\frac{h_l}{E_o} = 1 - (\frac{\alpha^2 F_{ro}^2 Y^2 + 2Y}{2 + F_{ro}^2}) \qquad (2.56)$$

In previous investigations given by Rajaratnam and Subramanya (1968) and Herbrand (1972), it is observed that abrupt enlargements possess substantially higher relative energy dissipation than that of simple hydraulic jump for a given  $F_{ro}$ .  $\alpha$ =1.0 is the case of simple hydraulic jump. Eq.(2.56) shows also that the relative energy dissipation increases as  $\alpha$  decreases. Consequently, the stilling basins with abrupt enlargements are powerful energy dissipaters.

### 2.5 Length Characteristics

The length of jump may be defined as the distance measured from the front face of the jump to a point on the surface immediately downstream from the roller and the length of the roller may be defined as the distance from the face of the jump to the point where the surface roller ends. These lengths can not be determined easily by theory, but it has been investigated experimentally in the present study and also in Rajaratnam's studies.

#### CHAPTER III

#### **EXPERIMENTS AND EXPERIMENTAL APPARATUS**

#### 3.1 Description of Apparatus

The experimental work was conducted in a horizontal open channel, 50 cm deep, 25 cm wide and 10.5 m long schematically represented in Fig.(3.1). The channel was made of concrete and fiberglass. The walls of the middle section, which was about 3.53 m long, was made of fiberglass. The remaining parts at the entry and outlet of the channel were made of concrete. To form an abrupt enlargement in the channel, three different fiberglass apparatus were used in the fiberglass part of the rectangular channel by contracting the channel width. Two adjustable sluice gates were used to control the upstream and downstream water depths. These sluice gates were made of fiberglass. The upstream sluice gate was placed 3.80 m from the channel entry and the width of the gate was changed by changing the downstream channel width. The downstream sluice gate was placed at the end of the channel over the free fall.

Water was supplied from a constant head tank through a 18 cm pipe which was regulated by a valve. Water issuing out from the downstream sluice gate was collected in a basin connected to a return channel. Discharge was measured, by a triangular weir placed at the end of the return channel. The maximum capacity of the channel was 23.5 lt/sec. The surface elevations were measured by a movable point gage.

Another point gage was used to measure the head over the triangular weir. The lengths of the jumps were measured by engineering steel tape and milimetric papers placed along the channel.

## 3.2 Discharge Measurements

The discharge measurements were regulated with a valve at the supply pipe, and the flow rate was measured by using a triangular weir which had 30° notch angle. The head on the triangular weir was measured by a point gage located 3.60 m upstream of the weir. The discharge was obtained from the calibration curve of the weir, shown in Fig. (3.2).

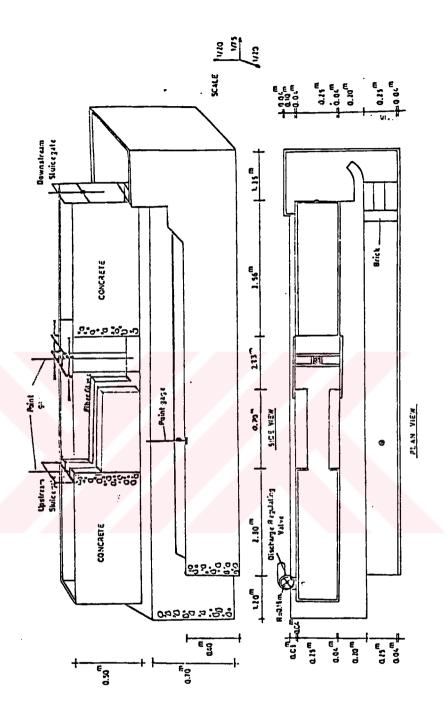



Fig.(3.1) Schematic Representation of The Experimental Arrangement

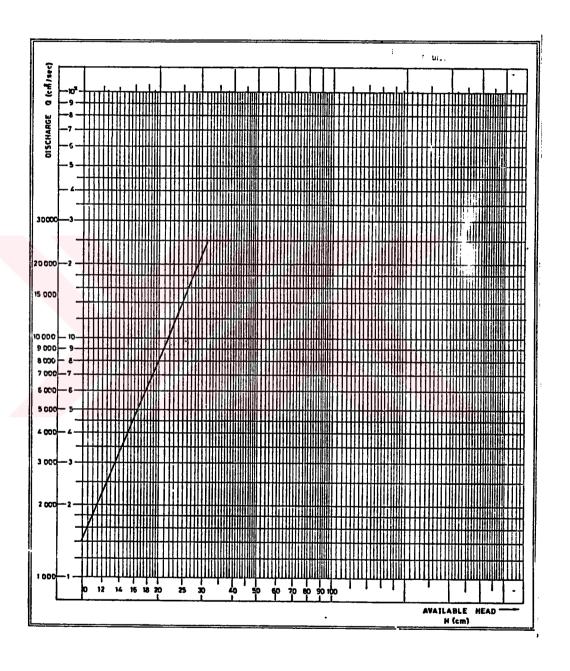



Fig. (3.2) Calibration Curve

## 3.3 Experimental Procedure

The experiments were conducted for four values of the width ratios  $\alpha=b/B=1$ , 0.80, 0.50, and 0.30 for R-Jump and  $\alpha=b/B=0.80$  and 0.50 for S-Jump. On the whole 174 experiments were done, 33 of them belonged to simple hydraulic jump, 92 of them belonged to R-jumps and the remaining 49 belonged to S-jumps.

The following measurements were taken for each experimental run; (i) Measurement of discharge from the supply tank by using the calibration curve; (ii) measurement of the distance of the toe and the heel of the jump from the beginning of the transition designated as  $L_1$  and  $L_j$ , respectively and length of the surface roller,  $L_r$ ; (iii) depth of flow at the beginning of the transition and depth of water at the separation zones of both sides designated as  $y_0$  and  $y_3$ , respectively; (iv) tailwater depth,  $y_t$  and depth of water at the toe of the jump could not be measured directly because of the oscillating nature of the toe of the jump; (v) length of the separation zone from the transition and designated as  $L_0$ ; (vi) the width of the channel ,B and the width of the supercritical stream at the outlet, b. All measurements were made along the longitudinal center line. All of the data are given in Appendix.

For a certain width ratio, and discharge, upstream flow conditions were fixed by adjusting the upstream sluice gate. The depth of water under the upstream sluice gate is changed in the ranges of 1.5 cm to 6 cm for the values of the upstream Froude number. Then, by changing the setting of the downstream sluice gate, the downstream depths of water, the depths of tailwater, were adjusted to obtain R-Jump or S-Jump.

In the experiments, for the fixed upstream supercritical flow conditions, first the supercritical stream occupied the full width of the channel and a system of diagonal surface waves were formed. Then, by adjusting the downstream sluice gate to a relatively high tailwater level somewhere downstream, a hydraulic jump with an oblique front was formed. The depth of tailwater was controlled by the downstream sluice gate. With the increase in the tailwater, the jump moved upstream and its front gradually became normal. Then the tailwater depth was increased till the limiting position was reached. All measurements for the characteristics of the jump (yo, yt, L1, Lo, Lr, Lj), and the head on the weir were made. If the tailwater depth was slightly increased, the jump moved upstream and an unstable nonuniform flow was observed. The backward flow set in and deflected to one side. The depth of the deflected wave was deeper than the tailwater depth.

The tailwater depth was increased by the downstream gate and the outlet gradually submerged, but the jet was still unstable and oscillated violently. However, at a certain tailwater level, the jet ceased to oscillate and the flow became stable and a hydraulic jump with a small submergence was formed. That was S-Jump. The characteristics of the jump and the discharge measurements were made.

#### CHAPTER IV

#### RESULTS AND DISCUSSION OF RESULTS

#### 4.1 Observations

When a supercritical flow in a rectangular channel enters a wider channel at an abrupt symmetrical enlargement, the supercritical stream expands freely until it occupies the full width of the channel and then creates a system of diagonal surface waves due to successive reflections as shown in Fig. 4.1.



Fig. 4.1.a A System of Diagonal Surface Waves





Fig. 4.1 (b,c) A System of Diagonal Surface Waves

Kuznetsov (1964) describes the different regions in a free horizontal spread of a supercritical flow at an abrupt expansion and the formation of the jump quite well. For this reason, this description is given below:

Kuznetsov (1964) explains the free horizontal spread of a streamflow as "the movement in which water mass in the tailrace does not affect the spread of the upper part of the spilling jet", and he shows the pattern of the free horizontal spread of a water stream schematically as reproduced in Fig. 4.2.

In Fig. 4.2, Kuznetsov (1964) divides the whole stream arbitrarily into three regions:

A - inside, leaf-shaped, spreading region;

B - outside region separated from A by bottom rollers;

C - region at the corner of the structure, (separation zone)

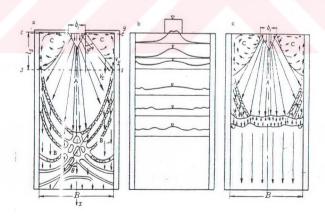



Fig. 4.2 Free Horizontal Spread of A Streamflow

Kuznetsov (1964) states that their results showed that " in region B a series of bottom rollers are formed. The upstream rollers form a boundary which separates regions A and B. The bottom rollers have a rotational and translational (helical) movement. With the increase in angle  $\theta$  the translational movement decreases whereas the rotational movement increases (Fig. 4.2.a). The liquid mass coming from the region A flows over the bottom rollers, inducing a wave motion, and changes the direction of the velocities toward the stream axis. In region B the directions of the bottom and surface currents coincide. Thus, region B constitutes the zone of junction between the flashy stream of region A and the calm stream in the tailrace. At the junction there is a series of slanting wave-jumps in which the bottom rollers are analogous to the rollers of slanting wave-jumps in the two dimensional problem. As the tailwater level increases, a hydraulic jump with a surface roller forms gradually at the end of region A."

Later, in 1968 Rajaratnam and Subramanya defined the jump formed in this way as R-jump. In the present study similar flow patterns have been observed. A typical cross sectional and longitudinal profiles of the free horizontal spread of supercritical jet is shown in Figs. 4.3 and 4.4, respectively.

In Fig. 4.3, a typical cross sectional profile of the jet for  $\alpha$ =0.30 and  $F_{ro}$  =2.83 is shown at distances 0, 5 cm, 10 cm, 20 cm, 40 cm, 60 cm, 80 cm downstream of outlet section, where abrupt enlargement takes place. The corresponding typical longitudinal profiles of the jet along the centerline and sidewalls of the channel and also along sections A, B, C, D, E and F which are 2.5 cm apart each other are shown in Fig. 4.4.

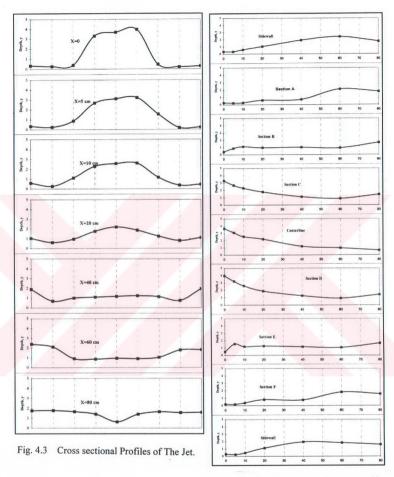



Fig. 4.4 Longitudinal Profiles of The Jet.

If the supercritical flow spreading at an abrupt expansion encounters a tailwater depth for which flow is subcritical, a hydraulic jump with an oblique front is formed somewhere downstream as shown in Fig. 4.5.



Fig. 4.5 Hydraulic Jump With An Oblique Front

An increase in the tailwater depth will cause the jump to move upstream and its front gradually becomes normal, as shown in Fig.4.6.



Fig. 4.6 Hydraulic Jump With Normal Front

However, the jump soon reaches a limiting position. Any further increase in the tailwater depth causes the jump to collapse and the tailwater spills on the upstream supercritical flow on one side and an unstable nonuniform flow is observed. The stable jump forming with a normal front at this limiting tailwater level (just before the unstable nonuniform flow occurs) is called repelled or R-jump. Typical examples of R-jump are shown in Fig. 4.7





Fig. 4.7 (a,b) A View of R-Jump





Fig. 4.7 (c,d) A View of R-Jump

If the tailwater is slightly greater than the sequent depth of the R-jump, the perfect jump in region A and the slanting wave-jumps in region B move upward, backward flow sets in and the jet twists and deflects to one side of separation zone C, creating an unstable nonuniform flow situation as shown in Fig. 4.8.



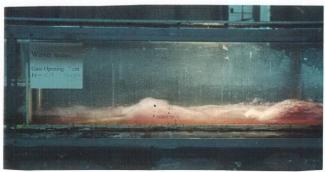



Fig. 4.8 (a,b) Unstable Nonuniform Flow

The outlet gradually submerges with a further increase in the tailwater level, but the jet still be unstable, oscillating rather violently. However, at a certain higher tailwater level, the jet ceases to oscillate, the flow becomes stable and phenomenon resembles the familiar hydraulic jump with small submergence. The minimum tailwater situation at which the stable flow takes place after the collapse of the R-jump is S-Jump as shown in Fig.4.9. Further increase of tailwater causes greater submergence and the flow resembles a submerged jump.



Fig. 4.9.a A View of S-Jump





Fig. 4.9 (b,c) A View of S-Jump

#### 4.2 Results and Discussion of Results For R-Jumps.

#### 4.2.1 Sequent Depth For R-Jumps

For all the series, having  $\alpha$ = 0.80, 0.50 and 0.30, in the entire range of  $F_{ro}$  tested, R-Jump had an essentially normal front with a strong surface roller. The jump was stable and the stability improved with increase in the Froude number. The ranges of the Froude number of the upstream supercritical flow in the experiments performed for three different width ratios are given below:

| $\alpha=0.80$   | $1.89 \leq F_{ro} \leq 6.33$  |
|-----------------|-------------------------------|
| $\alpha = 0.50$ | $1.94 \le F_{ro} \le 6.63$    |
| $\alpha = 0.30$ | 1 45 <f<3 21<="" td=""></f<3> |

The variation of the relative sequent depth, Y with  $F_{ro}$  and  $\alpha$  for all the experiments done in the present study is shown in Fig. 4.10. In each case, the value of  $\alpha$  was kept constant and the values of discharge, Q and the supercritical flow depth,  $y_o$  were variable. Fig. 4.10 shows that for a given  $\alpha$ , the relative depth versus  $F_{ro}$  values fall on a single line in the range tested, indicating the insignificant effect of  $b/y_o$  ratio.

The comparison of the R-jump data with the classical jump  $(\alpha=1.0)$  data is also given in Fig.4.10, together with  $\alpha=0.80$ , 0.50, 0.30. Fig.4.10 shows that for a given value of  $F_{ro}$ , the relative depth ratio, Y decreases with a decrease in the value of  $\alpha$ .

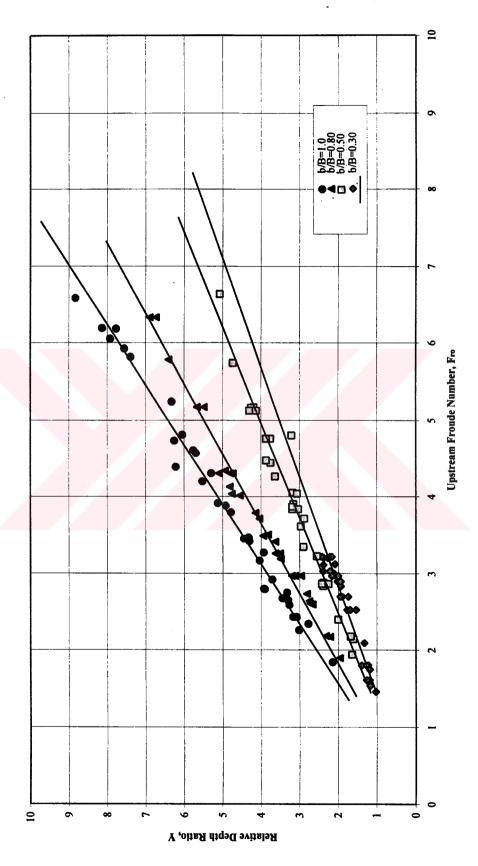



Fig. 4.10 Variation of The Relative Depth Ratio, Y With Fro

#### Prediction of Y:

The R-jump data taken in the present study and in the literature are compared with the new approaches in Fig.4.11 and 4.12, respectively.

Fig. 4.11 and 4.12 show that the new approach which considers the friction force as given by Eq.(2.6) and Eq.(2.17) gives good results for all  $\alpha$  values tested except  $\alpha$ =0.30 and  $\alpha$ =0.33. For  $\alpha$ =0.30, the new approach which takes  $F_f$ =0 (Eq.2.16) gives better results. However, this is not conclusive, because in the present study for  $\alpha$ =0.30, the range of the Froude number is quite small, because of the capacity of the channel used in the experiments. On the other hand, Rajaratnam's data for  $\alpha$ =0.33 is in between two approaches as shown in Fig.4.12.d. Fig.4.12.d shows the same trend with the data taken in the present study; when  $F_{ro} \le 4$ , the data is closer to the line given by Eq.(2.16) which considers  $F_f$ =0, as  $F_{ro}$  becomes larger than 4, it approaches to Eq.(2.20) which considers  $F_f \ne 0$ , with a maximum error of 16%.

Present data with the approaches in the literature (Kuznetsov (1964) and Rajaratnam and Subramanya (1968)) is also compared in Fig.4.13. These figures show that Rajaratnam and Subramanya's empirical relation (Eq. 2.12) predicts the relative depth ratio values better than their approximate solution (Eq.2.11) and also better than Kuznetsov approach (Eq. 2.9) in the range of  $\alpha$ =0.80, 0.50 and 0.30 measured.

At section 2.3.1, a modified Froude number is introduced which assumes that the relative depth ratio is a function of modified Froude number,  $F_M$ . The present data and Rajaratnam's data (which is the only available data for R-jumps in the literature) are plotted as Y versus  $F_M$  in Fig. 4.14. The values of  $\alpha$  in Fig. 4.14 are  $\alpha$ =0.30, 0.33, 0.50, 0.67, 0.80 and 0.83. This figure shows that the modified Froude number is a good scaling factor for hydraulic jumps at abrupt enlargements. The best line passing through these data points is Y=0.83 $F_M$  with a correlation coefficient of 99%.

Therefore, for all practical design purposes the relative depth ratio for R-jumps can be written as

Y=0.83 
$$\sqrt{\alpha(1+2F_{ro}^2)}$$
 .....(4.1)

# 4.2.2 Length Characteristics of R-Jump

As explained at section 2.3.2, Herbrand (1972) discusses that in sizing a spatial stilling basin the value of  $\sqrt{\alpha}$  becomes an important scaling factor. In fact the previous discussions shows that modified Froude number and hence  $\sqrt{\alpha}$  are the important factors for hydraulic jumps occurring at abrupt enlargements. Therefore, the length of the surface roller and the length of the jump are plotted as  $\sqrt{\alpha} L_r/y_t$  versus  $F_M$  and  $\sqrt{\alpha} L_j/y_t$  versus  $F_M$  in Figs. 4.15 and 4.16, respectively. The mean curve through the data shows that  $\sqrt{\alpha} L_r/y_t$  reaches a limit value about 3.0 for  $F_M \cong 8.0$  in the range of  $\alpha$  studied as shown in Fig. 4.15. Regarding the length of the jump, Fig. 4.16 shows considerable scatter as expected. Because the measurement of the length of the jump is a difficult task. In general, R-jump requires a longer stilling basin than the

corresponding simple hydraulic jump. In fact Fig. 4.16 shows that  $\sqrt{\alpha} L_j/y_t$  approximately approaches a limit as 6.7. For simple hydraulic jumps,  $L_j/y_t$  is about 6.0. On the other hand, the tailwater depth ratio for simple hydraulic jump to R-jump is about  $\sqrt{\alpha}$ . Therefore, for R-jumps,  $L_j/y_t$  is approximately 6.7. This indicates that the jump length for R-jump is about 11% larger than that of simple hydraulic jump. In fact Rajaratnam and Subramanya (1968) states also that for R-jumps  $L_j/y_t$  is about 15% larger than that of a simple jump.

### 4.2.3 Energy Dissipation in R-Jumps

The energy dissipation in R-jump is computed by using Eq.(2.56) and it is plotted against  $F_{ro}$  for  $\alpha$ =0.30, 0.50, 0.80 and 1.0 in Fig. 4.17. This plot shows that the relative energy dissipation is a function of  $F_{ro}$  and  $\alpha$ . It is observed that abrupt enlargements possess substantially higher relative energy dissipation than that of simple hydraulic jump for equal  $F_{ro}$ . Eq.(2.56) shows also that the relative energy dissipation increases as  $\alpha$  decreases. Consequently, the stilling basins with abrupt enlargements are powerful energy dissipaters.

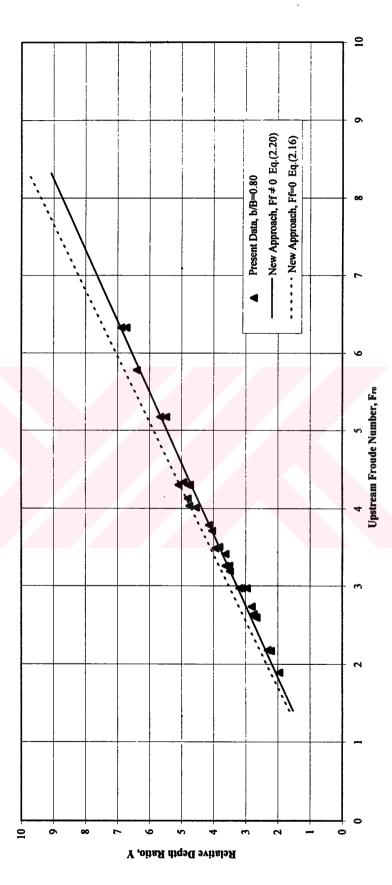



Fig. 4.11.a Comparison of Present Data With New Approaches,  $\alpha$ =0.80

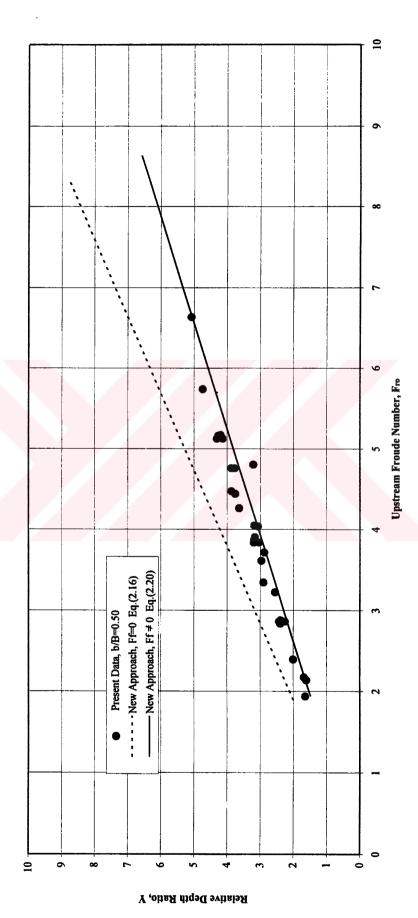



Fig. 4.11.b Comparison of Present Data With New Approaches,  $\alpha$ =0.50

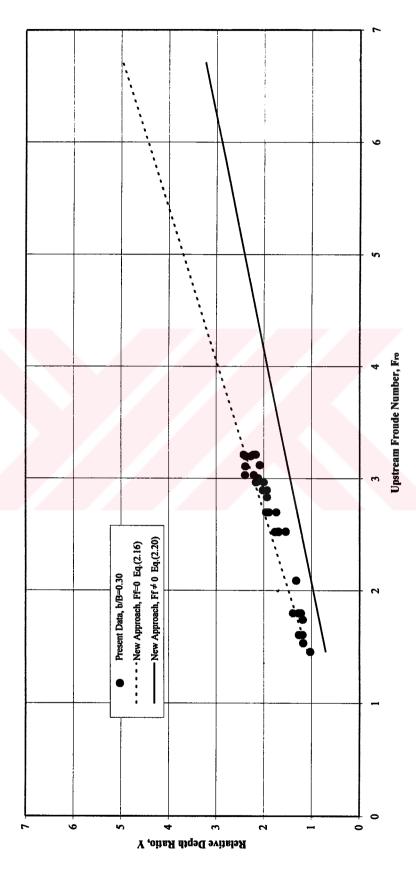



Fig. 4.11.c Comparison of Present Data With New Approaches,  $\alpha$ =0.30

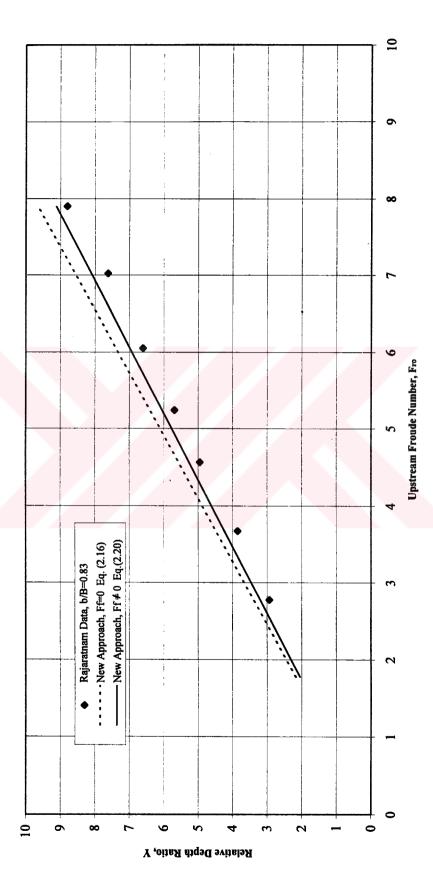



Fig. 4.12.a Comparison of Rajaratnam's Data With New Approaches,  $\alpha=0.83$ 

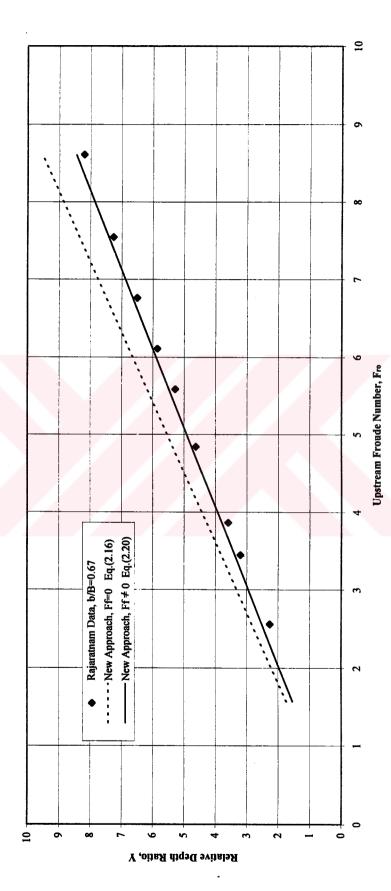



Fig. 4.12.b Comparison of Rajaratnam's Data With New Approaches,  $\alpha=0.67$ 

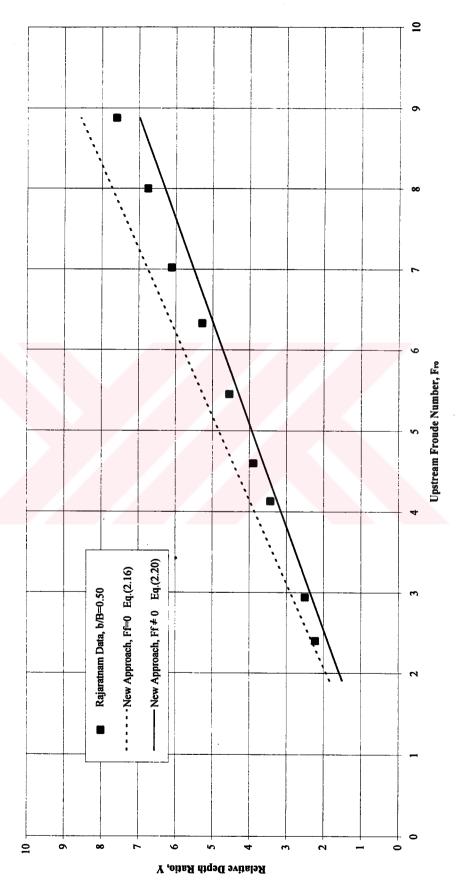



Fig. 4.12.c Comparison of Rajaratnam's Data With New Approaches,  $\alpha=0.50$ 

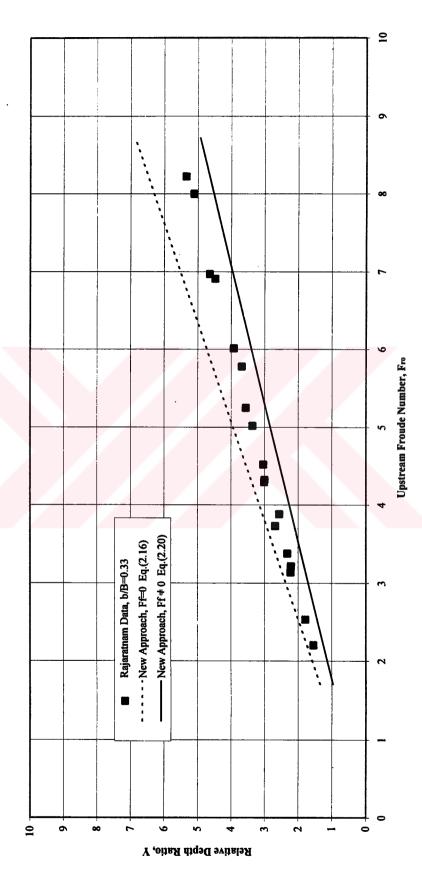



Fig. Fig. 4.12.d Comparison of Rajaratnam's Data With New Approaches, α=0.33

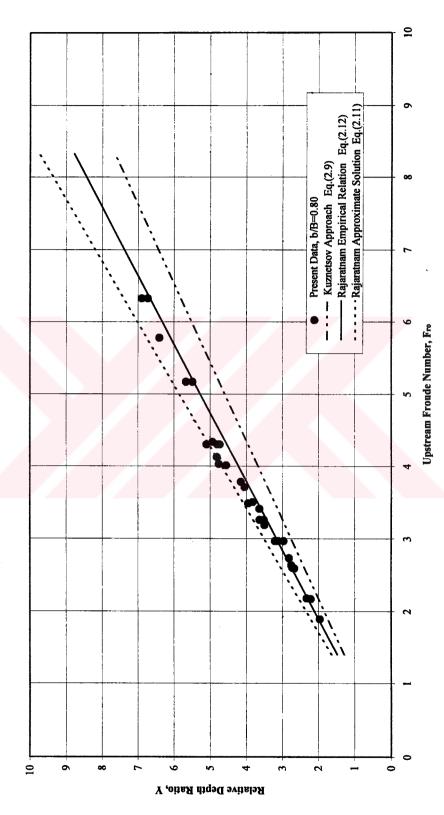



Fig. 4.13.a Comparison of Present Data With The Approaches in The Literature,  $\alpha$ =0.80

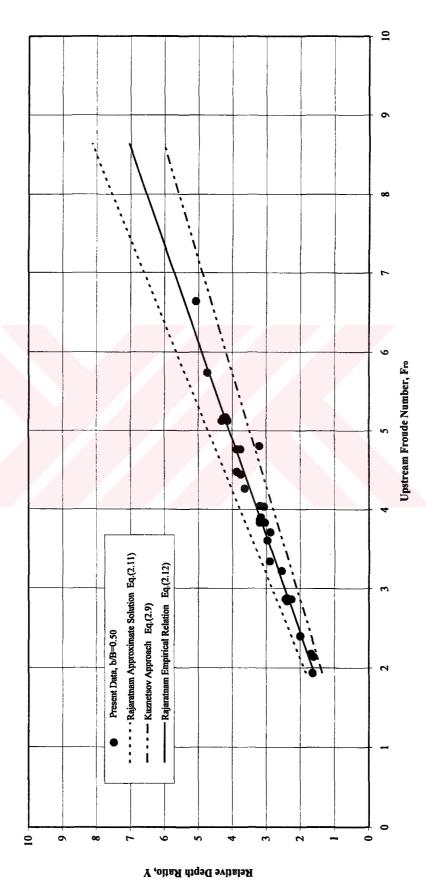



Fig. 4.13.b Comparison of Present Data With The Approaches in The Literature,  $\alpha$ =0.50

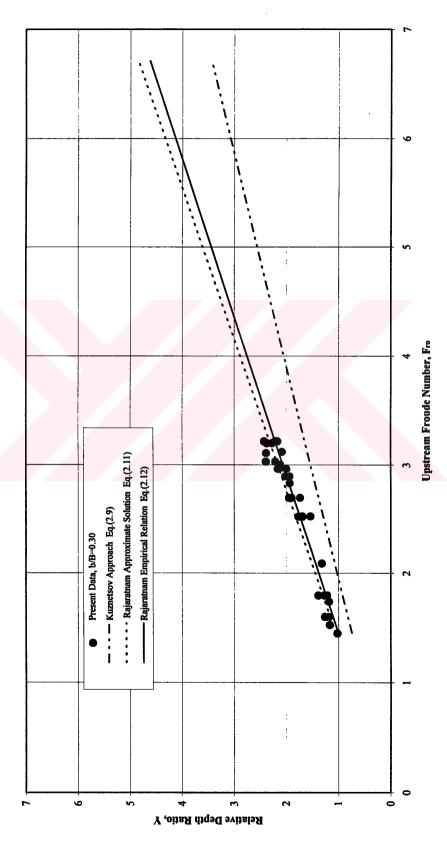



Fig. 4.13.c Comparison of Present Data With The Approaches in The Literature,  $\alpha$ =0.30

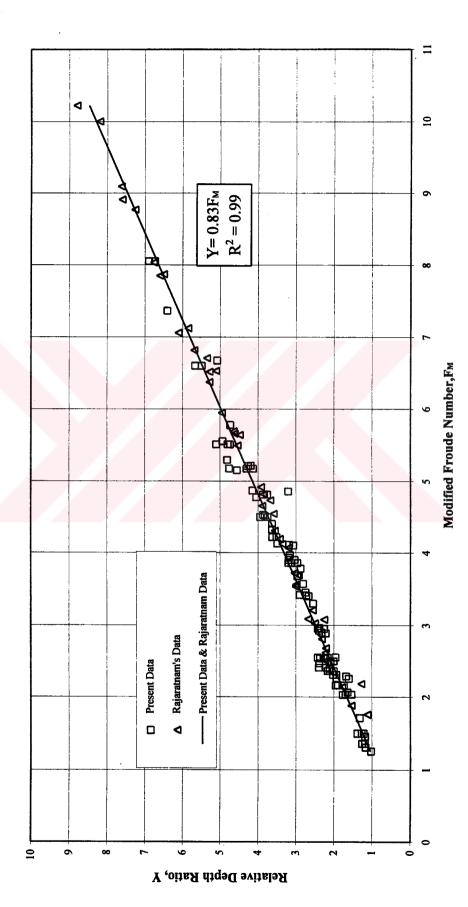



Fig. 4.14 Variation of The Relative Depth Ratio, Y With  $F_M$ , R-Jump.

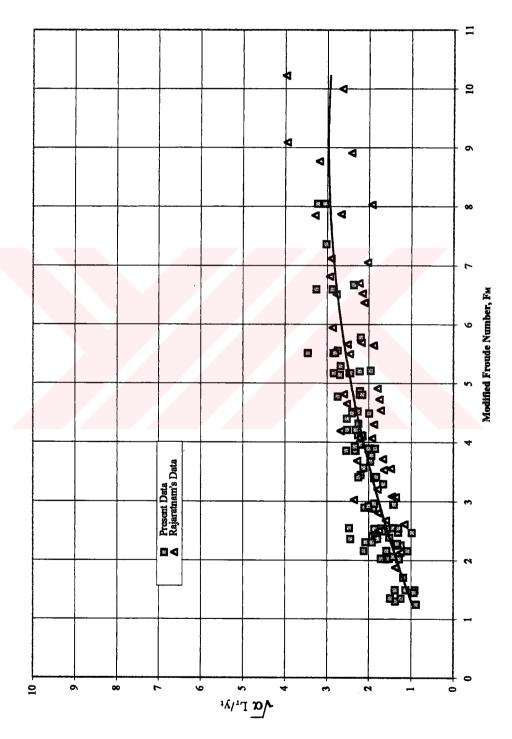



Fig. 4.15 Variation of The Length of Surface Roller of R-Jump.




Fig. 4.16 Variation of The Length of R-Jump.

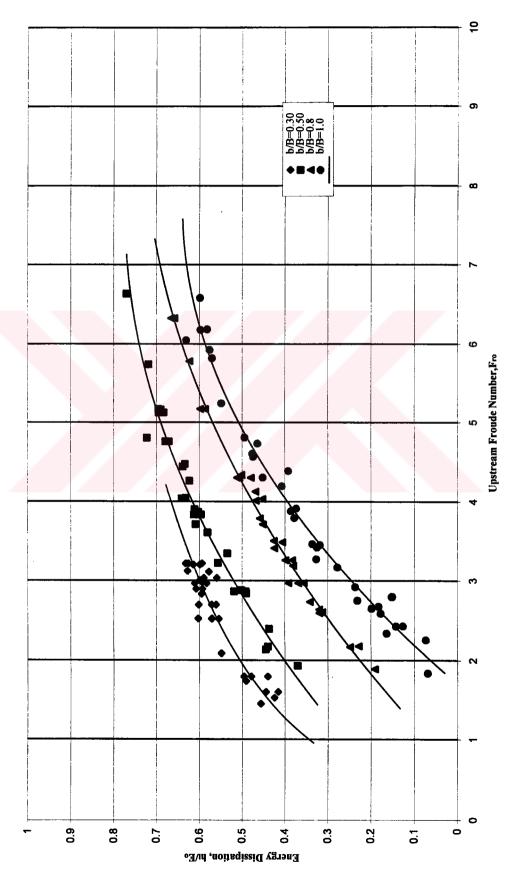



Fig. 4.17 Energy Dissipation Characteristics For R-Jump.

# 4.3 Results and Discussion of Results For S-Jumps

### 4.3.1 Sequent Depth for S-Jumps

The ranges of the Froude number of the upstream supercritical flow in the experiments performed for  $\alpha$ = 0.80 and 0.50 are given below:

 $\alpha$ =0.80 1.89 $\leq$ F<sub>ro</sub> $\leq$ 6.33  $\alpha$ =0.50 1.94 $\leq$ F<sub>ro</sub> $\leq$ 9.12

Fig. 4.18 shows the variation of the relative depth ratio, Y with  $F_{ro}$  and  $\alpha$  for all the experiments done in the present study.

The comparison of the S-jump data ( $\alpha$ =0.80 and 0.50) with the simple hydraulic jump ( $\alpha$ =1.0) data is also shown in Fig.4.18 and it is observed that the relative depth ratio, Y decreases with a decrease in the value of  $\alpha$  for a given value of  $F_{ro}$ .

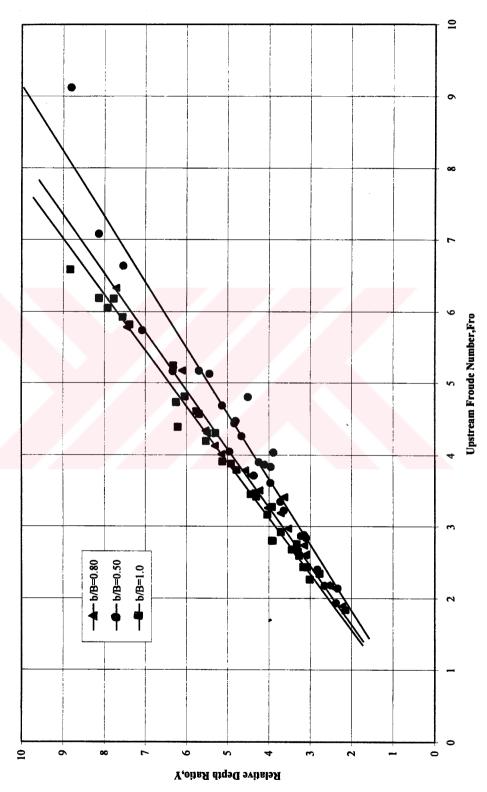



Fig. 4.18 Variation of The Relative Depth Ratio, Y With Fro, S-Jump

#### Prediction of Y:

At section 2.3.2, two new approaches are introduced for the estimation of the force on the expanded walls. In the first approach given by Eq.(2.46),  $F_w$  is considered as given by hydrostatic pressure distribution due to backed-up depth,  $y_3$ . In the second approach given by Eq. (2.50),  $F_w$  is considered as given by uniform pressure distribution due to  $\gamma y_3$ . The values of the backed-up depth are measured in the experiments. The Y values computed by using Eq.(2.46) and Eq.(2.50) and the measured  $y_3$  values are compared with the data in Figs. 4.19.a and 4.19.b, respectively.

Figs. 4.19 show that Eq.(2.46) which assumes that the force on the wall,  $F_w$  can be computed by using hydrostatic pressure distribution due to the backed-up depth,  $y_3$ , gives quite good results. However, to use Eq.(2.46), one needs to know the backed-up depth,  $y_3$ .

On the other hand, at section 2.3.2, the backed-up depth,  $y_3$  is approximated simply as the arithmetic average of  $y_0$  and  $y_t$  as given by Eq.(2.37) and (2.38). With this assumption Eq.(2.46) yields Eq.(2.47) and Eq.(2.50) yields Eq.(2.51).

The prediction of Y by using Eqs.(2.47) and (2.51) are compared with the data taken in the present study and data of Herbrand and data of Rajaratnam and Subramanya in Figs.4.20, 4.21 and 4.22, respectively.

Figs. 4.20 show that Eq. (2.47) and Eq. (2.51) have the same trend and two approaches give quite good results for  $\alpha$ =0.80. However, for  $\alpha$ =0.50, when  $F_{ro}$  >5, the present data is getting away from the

line given by Eq.(2.47) and (2.51), respectively with a maximum error of 16%.

In Figs.4.21, Herbrand(1972)'s data is compared with the new approaches (Eq. 2.47 and Eq.2.51) for  $\alpha$ =0.714, 0.50, 0.286. It is observed that Eq.2.47 gives better results than Eq. (2.51) for  $\alpha$ =0.714. However, for  $\alpha$ =0.50 and 0.286, Eq.(2.47) has the same trend with Herbrand's data but with a maximum error of 10%.

In Figs. 4.22, Rajaratnam and Subramanya(1968)'s data is also compared with the new approaches (Eq. 2.47 and Eq.2.51) for  $\alpha$ =0.83, 0.67, 0.50, 0.33. It is observed that Eq.2.47 gives better results than Eq. (2.51) for  $\alpha$ =0.83 and 0.67. However, for  $\alpha$ =0.50, when  $F_{ro} \leq 5$ , the data has the same trend with the line given by Eq.(2.47), as  $F_{ro}$  becomes larger than 5, it approaches to Eq.(2.51) with a maximum error of 6% due to the change in the value of b/y<sub>0</sub> from 8.3 to 3.4. Also, for  $\alpha$ =0.33, when  $F_{ro} \leq 4.5$ , the data approaches to Eq.(2.51) with a maximum error of 22%, as  $F_{ro}$  becomes larger than 4.5, the data has a trend through Eq.(2.47) with a maximum error of 7%.

Present data with the approaches in the literature (Hager (1985)) is also compared in Fig.4.23. These figures show that, for  $\alpha$ =0.80, when  $F_{ro}\leq 4$ , Hager's intermediate and lower limits (Eq.2.40 and Eq.2.41) predict the relative depth ratio values better than upper limit approach (Eq.2.38), as  $F_{ro}$  becomes larger than 4, the trend of the data could not be predicted. For  $\alpha$ =0.50, the data is in between Hager's three approaches, (Eq.2.38, Eq.2.40, Eq.2.41). Three approaches have all been found to be unsatisfactory for predicting the sequent depth.

At section 2.3.1, a modified Froude number is introduced which assumes that the relative depth ratio is a function of modified Froude number,  $F_M$ . The present data, Rajaratnam's data and Herbrand's data are plotted as Y versus  $F_M$  in Fig. 4.24. The values of  $\alpha$  in Fig. 4.24 are  $\alpha$ =0.286, 0.30, 0.33, 0.50, 0.67, 0.714, 0.80 and 0.83. This figure shows that the modified Froude number is a good scaling factor for hydraulic jumps at abrupt enlargements. Fig. 4.24 show that Rajaratnam's data separates from the present data and Herbrand's data and it is parallel to the best fit. It is important to note in the experimental set up used by Rajaratnam (1968), the jet is issuing out from a nozzle.

Therefore, the same plot is repeated by excluding Rajaratnam's data in Fig. 4.25, for which the best fit line is Y=1.006F<sub>M</sub> with a correlation coefficient of 95%.

Therefore, for all practical design purposes the relative depth ratio for S-jumps can be written as

$$Y = \sqrt{\alpha(1 + 2F_{ro}^2)}$$
 .....(4.2)

### 4.3.2 Length Characteristics of S-Jump

In sizing the length characteristics of S-jump, the value of  $\sqrt{\alpha}$  and modified Froude number are used as scaling factors. Therefore, the length of the surface roller and the length of the jump are plotted as  $\sqrt{\alpha} \, L_r/y_t$  versus  $F_M$  and  $\sqrt{\alpha} \, L_j/y_t$  versus  $F_M$  in Figs. 4.26 and 4.27, respectively. Regarding the length of the roller and the jump, Figs. 4.26 and 4.27 show considerable scatter as expected.

### 4.3.3 Energy Dissipation in S-Jumps

The energy dissipation in S-jump is obtained by the application of Eq.(2.56) and it is plotted against  $F_{ro}$  for  $\alpha$ =0.50, 0.80 and 1.0 in Fig. 4.28. This plot shows that the relative energy dissipation is a function of  $F_{ro}$  and  $\alpha$ . It is observed that abrupt enlargements possess substantially higher relative energy dissipation than that of simple hydraulic jump for equal  $F_{ro}$ . Eq.(2.56) shows also that the relative energy dissipation increases as  $\alpha$  decreases. Consequently, the relative energy dissipation relating to the reduced depth is greater than in the regular basins.

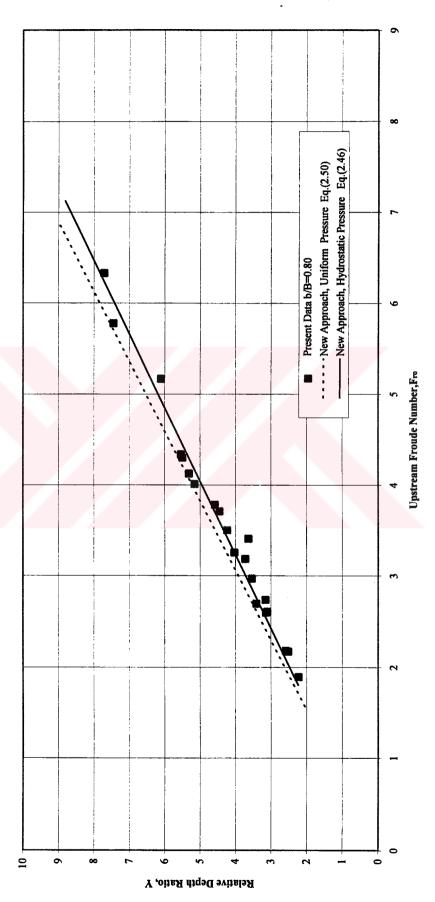



Fig. 4.19.a Comparison of Present Data With New Approaches,  $\alpha$ =0.80

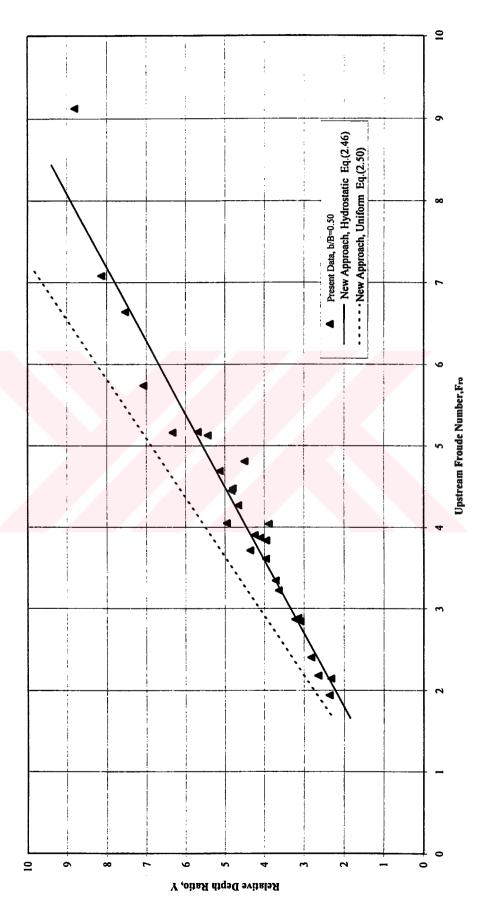



Fig. 4.19.b Comparison of Present Data With New Approaches,  $\alpha$ =0.50

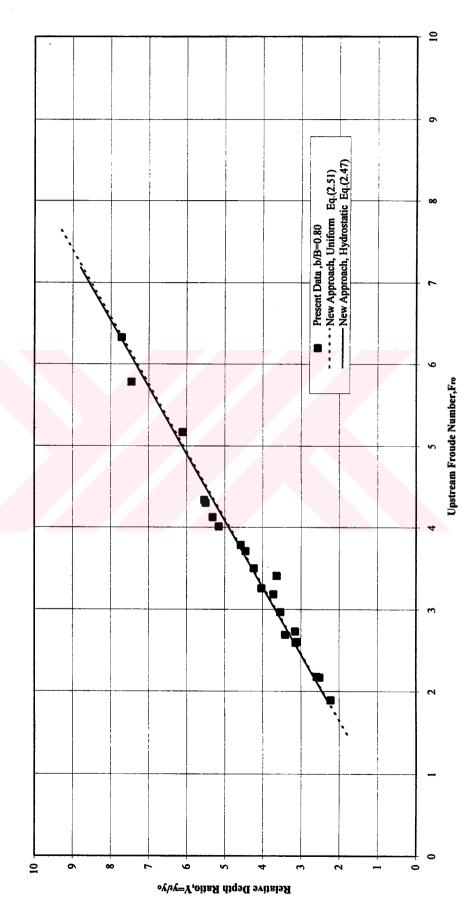



Fig. 4.20.a Comparison of Present Data With New Approaches,  $\alpha$ =0.80

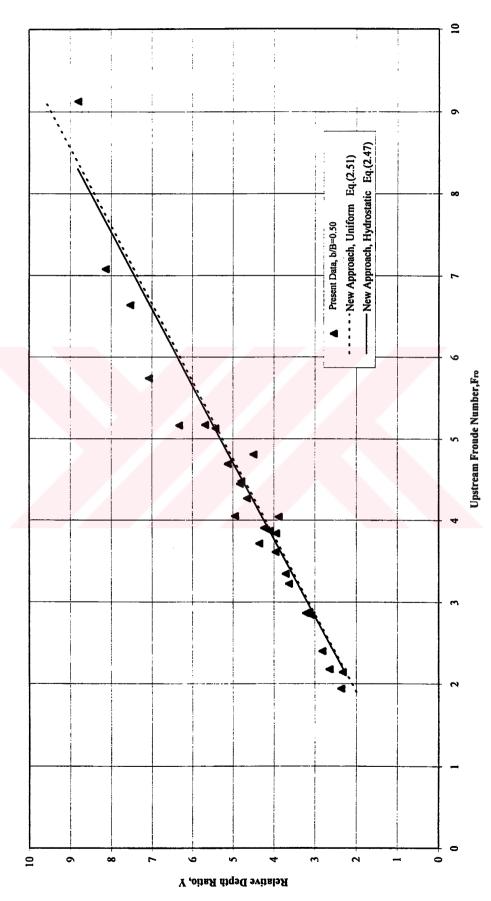
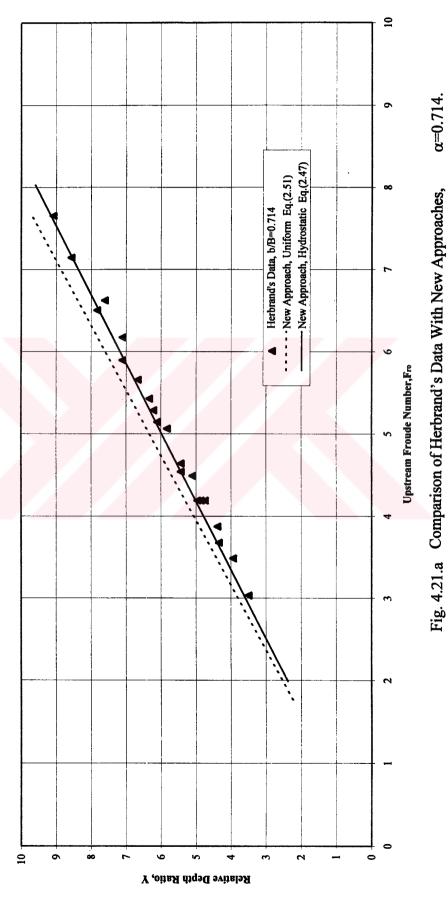
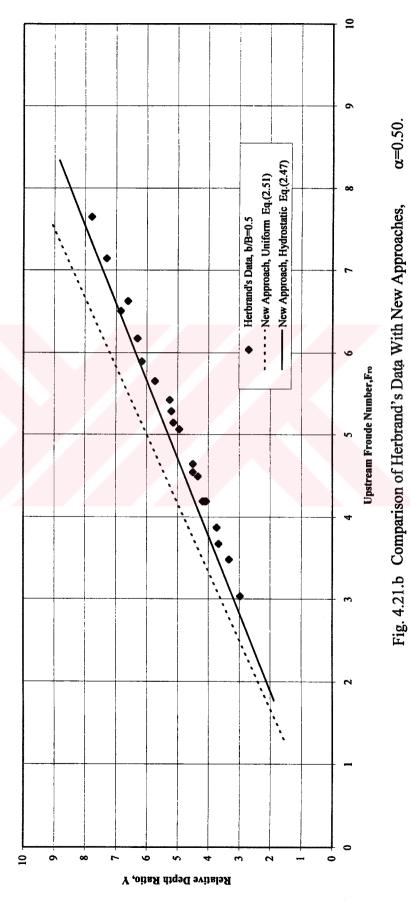





Fig. 4.20.b Comparison of Present Data With New Approaches,  $\alpha$ =0.50





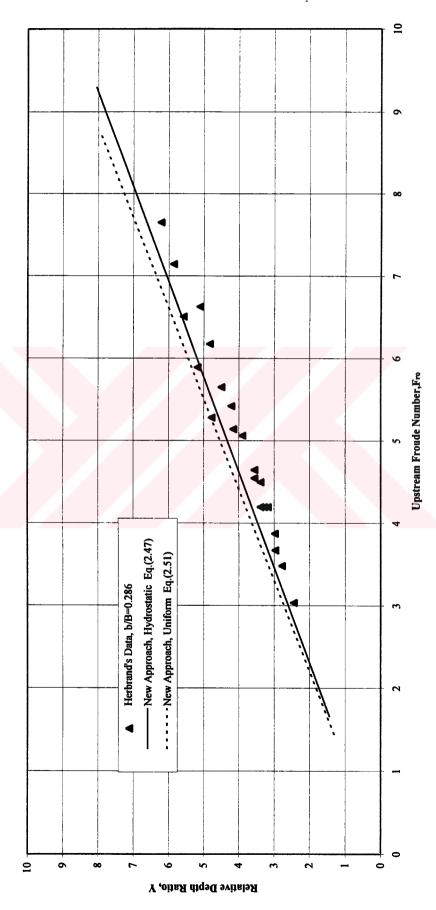



Fig. 4.21.c Comparison of Herbrand's Data With New Approaches,  $\alpha$ =0.286.

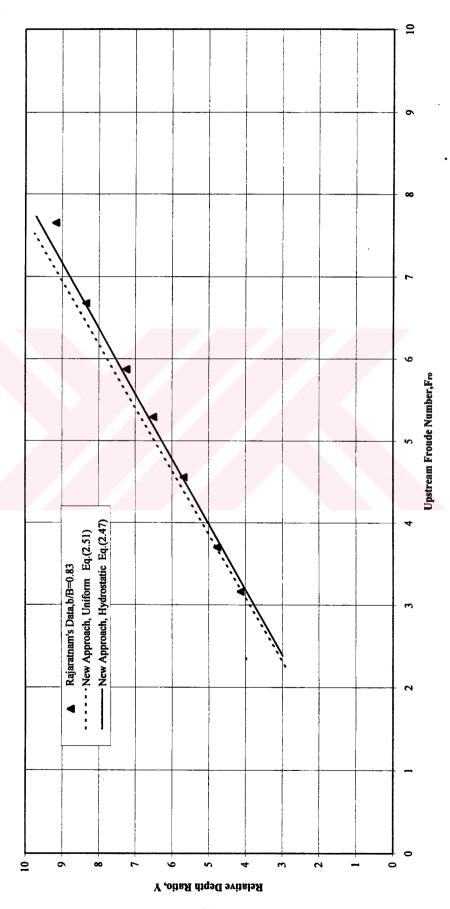



Fig. 4.22.a Comparison of Rajaratnam's Data With New Approaches,  $\alpha$ =0.83

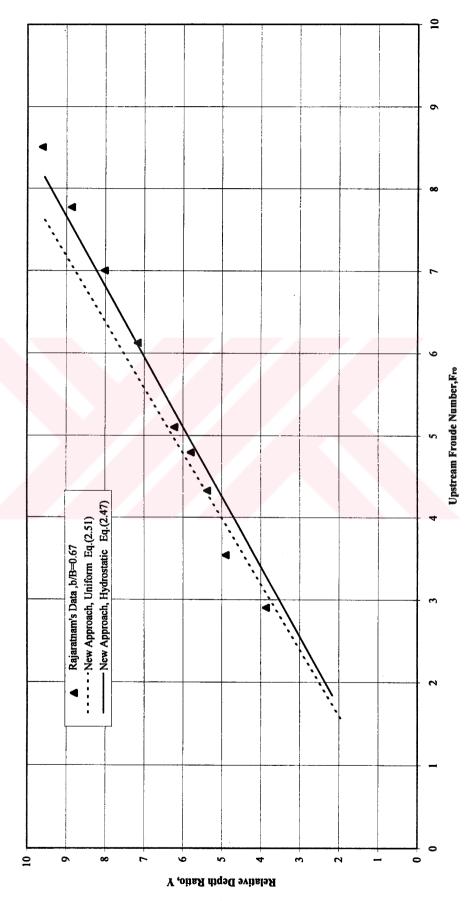



Fig. 4.22.b Comparison of Rajaratnam's Data With New Approaches,  $\alpha$ =0.67

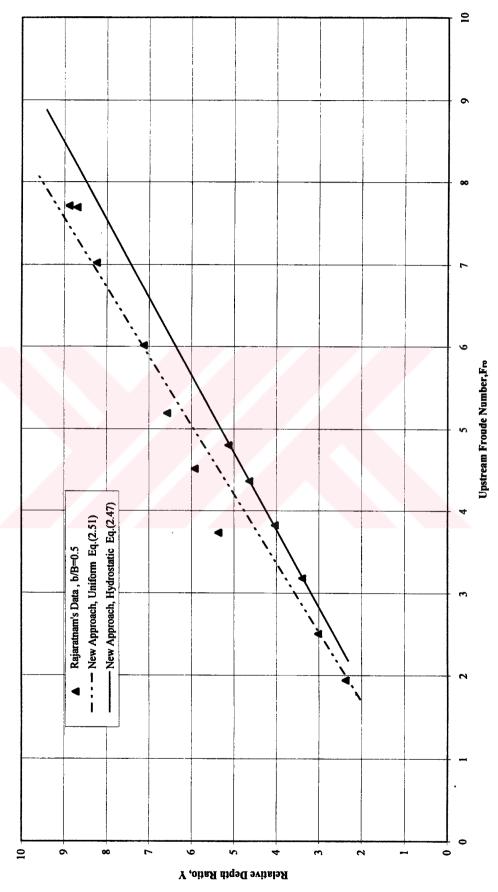



Fig. 4.22.c Comparison of Rajaratnam's Data With New Approaches,  $\alpha$ =0.50

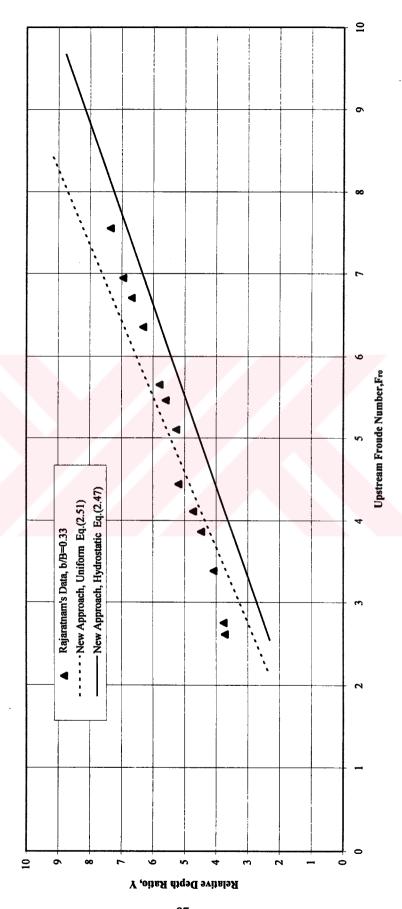



Fig. 4.22.d Comparison of Rajaratnam's Data With New Approaches,  $\alpha$ =0.33

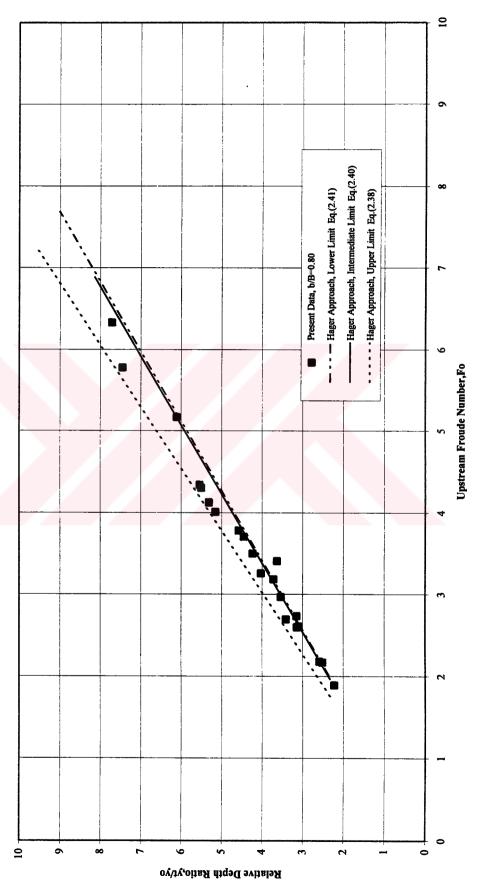



Fig. 4.23.a Comparison of Present Data With The Approaches in The Literature,  $\alpha$ =0.80

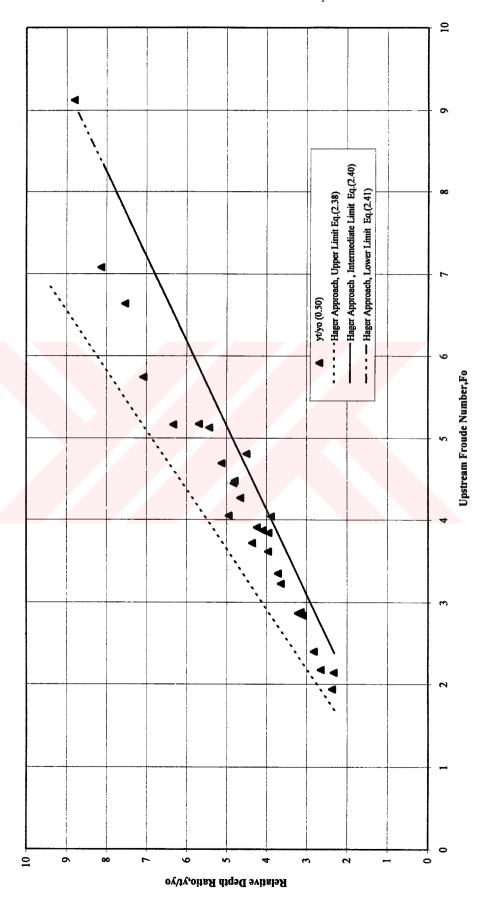



Fig. 4.23.b Comparison of Present Data With The Approaches In The Literature,  $\alpha$ =0.50

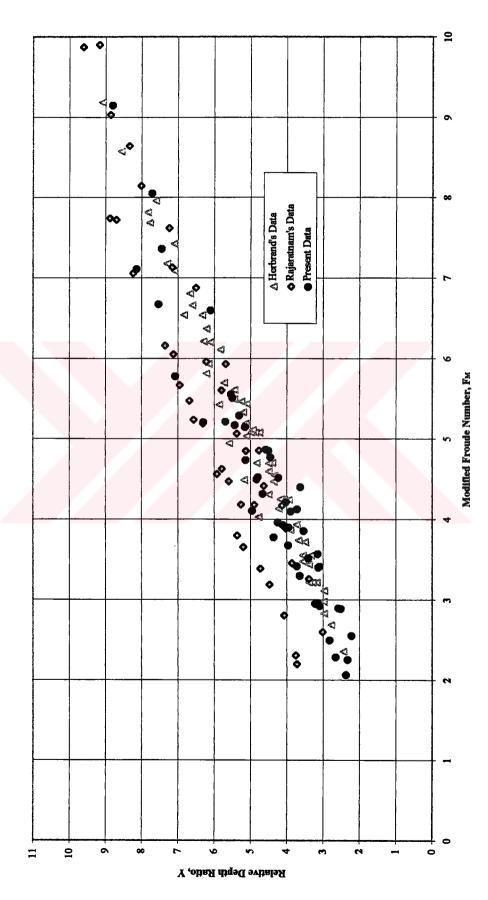



Fig. 4.24 Variation of The Relative Depth Ratio, Y With FM For S-Jump

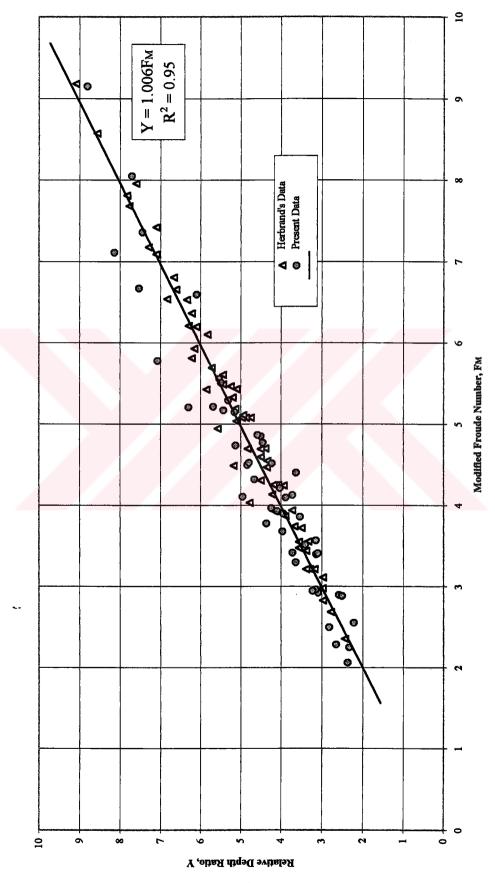



Fig. 4.25 Variation of The Relative Depth Ratio, Y With FM For S-Jump

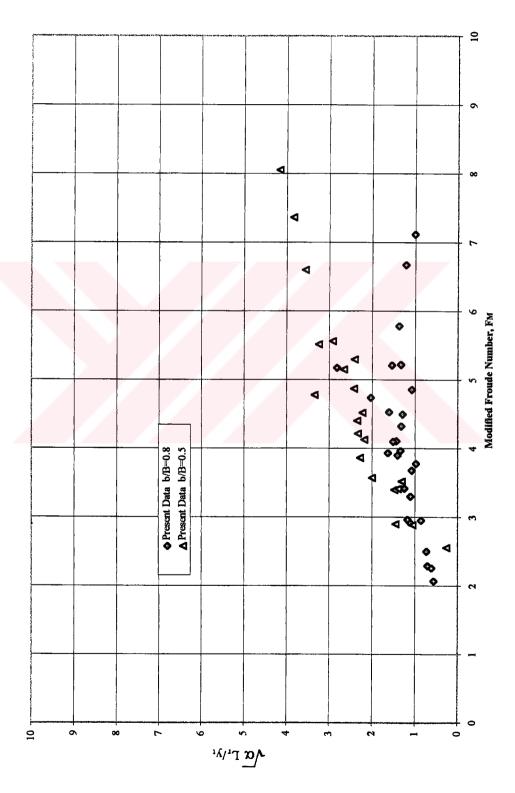



Fig. 4.26 Variation of The Length of Surface Roller of S-Jump

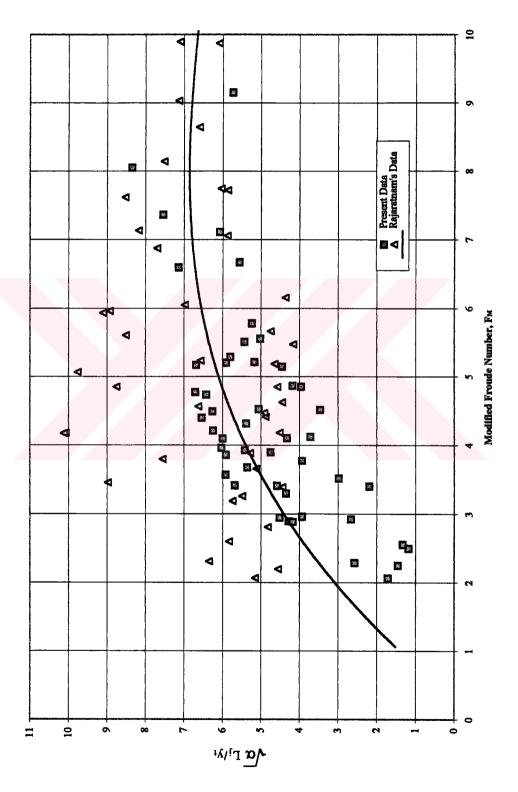



Fig. 4.27 Variation of The Length of S-Jump

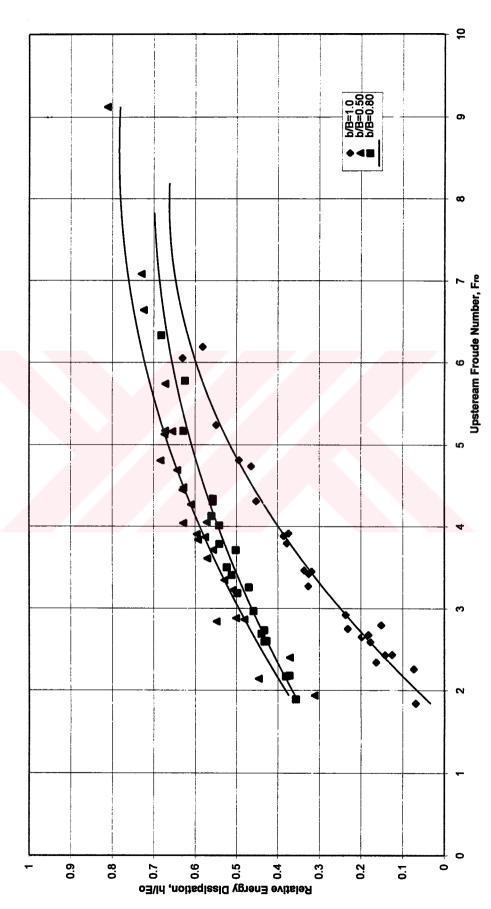



Fig. 4.28 Energy Dissipation Characteristics For S-Jump

#### CHAPTER V

## CONCLUSIONS and RECOMMENDATIONS

#### Conclusions

The following conclusions can be drawn from the present study:

- 1) Hydraulic jumps at an abrupt enlargement have smaller tailwater depths than the simple hydraulic jump with the same inflow conditions, hence requires shallower stilling basins.
- 2) Hydraulic jumps at abrupt enlargements possess substantially higher relative energy dissipation than that of a simple of a jump for equal  $F_{ro}$ . Consequently, the stilling basins with abrupt enlargements are powerful energy dissipaters of the stilling basins with abrupt
- 3) Modified Froude number introduced as  $\sqrt{\alpha(1+2F_{ro}^2)}$  is an important factor for scaling hydraulic jumps occurring at abrupt enlargements.
- 4) For R-jumps, the relative depth ratio can be obtained from  $Y=0.83 \sqrt{\alpha(1+2F_{ro}^2)}$  for the range of  $\alpha$  tested,  $0.30 \le \alpha \le 0.83$ .
- 5) For S-jumps, the relative depth ratio can be obtained from  $Y = \sqrt{\alpha(1 + 2F_{ro}^2)}$  for the range of  $\alpha$  tested,  $0.286 \le \alpha \le 0.80$ .

## Recommendations for future research

- 1) The hydraulic jump at an abrupt enlargement should be studied numerically.
- 2) The unstable nonuniform flow between R-jump and S-jump may be studied.

## REFERENCES

- 1) CHOW, V. T., (1958), 'Open Channel Hydraulics', Mc Graw Hill Book Company, Inc. New York.
- 2) HENDERSON, F. M., (1966), 'Open Channel Flow', Mc Millan Publishing C. O. New York.
- 3) UNNY, T. E.,(1961), 'The Spatial Hydraulic Jump', Proceedings, 10th International Association for Hydraulic Congress, Belgrade, Yugoslavia, pp.32-42.
- 4) RAJARATNAM, N. and SUBRAMANYA, K., (1968), 'Hydraulic Jumps Below Abrupt Symmetrical Expansions', Proc. ASCE, J. Hydraulic Division, Vol. 94, HY3, pp. 481-503.
- 5) HERBRAND, K.,(1972), 'The Spatial Hydraulic Jump', Journal Of Hydraulic Research, no. 3, pp.205-218.
- 6) HAGER, W. H., (1985), 'Hydraulic Jump In Non Prismatic Rectengular Channels', Journal Of Hydraulic Research, Vol. 23, no. 1, pp. 21-35.
- 7) KUSNETSOW, S. K., (1964), 'Free Horizontal Spread of the Stream Flow in the Tail Water of Hydro Structures', Soviet Hydro Engineering (English Translation), Israel Program for Scientific Translations, Jerusalem, pp. 346-349.
- 8) MAGALHAES, L. E. DE M., and MINTON, P., (1975), 'Design Implications of Hydraulic Jumps At Sudden Enlargements', Proc. Instn. Civ. Engrs., Part 2, 59, pp. 169-174.
- 9) SMITH, CLIFF D., (1989), 'The Submerged Hydraulic Jump In An Abrupt Lateral Expansion', Journal Of Hydraulic Research, Vol. 27, no. 2, pp. 257-266.

- 10) ARBHABHIRAMA A., and ABELLA A.U., (1971), 'Hydraulic Jump Within Gradually Expanding Channel', Journal of Hydraulic Division, Proc. of ASCE, Vol 97, HY1, pp. 31-42.
- 11) FRANCE, P. W., (1981), 'Analysis of the Hydraulic Jump Within a Diverging Rectengular Channel', Proc. Inst. Civil Engrs., Vol 71, Part II, pp. 369-378.
- 12) LAWSON, J. D., and PHILLIPS, B.C., (1983), 'Circular Hydraulic Jump', Proc. ASCE., J. Hydraulic Engineering Vol. 109, Nr. 4, pp. 505-518.
- 13) KOLOSEUS, H.J. and AHMAD, D., (1969), 'Circular Hydraulic Jump', Proc. ASCE., J. Hydraulic Division, Vol. 95, HY1, pp. 1065-1078.
- 14) GÜR, ZERRİN, (1988), 'The Hydraulic Jump At An Abrupt Drop', A Master's Thesis In Civil Engineering Middle East Technical University.

## APPENDIX

Table A.1 Classical Jump Data Taken In This Study.  $\alpha = 1.0$ 

Table A.1 'Continued'

|                            |       |       |       |               |       |       |       |       |       | ····  |       |
|----------------------------|-------|-------|-------|---------------|-------|-------|-------|-------|-------|-------|-------|
| Et (cm)                    | 0.084 | 0.074 | 0.164 | 0.156         | 0.117 | 0.120 | 0.163 | 0.100 | 0.109 | 0.158 | 0.140 |
| Eo (cm)                    | 0.110 | 280'0 | 0.313 | <i>1</i> 67.0 | 0.162 | 0.178 | 0.262 | 0.122 | 0.131 | 0.238 | 0.151 |
| Lr (cm)                    | 15    | 8     | 20    | 47            | 26    | 30    | 09    | 20    | 20    | 50    | 40    |
| L <sub>j</sub> (cm)        | 25    | 15    | 80    | 89            | 39    | 90    | 100   | 30    | 30    | 80    | 55    |
| L <sub>1</sub> (cm)        | 113   | 40    | 130   | 112           | 140   | 130   | 180   | 09    | 110   | 140   | 145   |
| $\mathbf{F}_{\mathbf{ro}}$ | 2.75  | 2.43  | 4.61  | 4.57          | 3.17  | 3.27  | 3.79  | 2.59  | 2.34  | 3.46  | 2.26  |
| Q (It/s)                   | 7.5   | 6.2   | 16.0  | 15.0          | 11.0  | 12.0  | 17.0  | 9.5   | 12.0  | 17.0  | 15.5  |
| yt/yo                      | 3.33  | 3.07  | 5.76  | 5.69          | 4.04  | 3.93  | 4.78  | 3.27  | 2.77  | 4.32  | 3.01  |
| yt (cm)                    | 7.65  | 92.9  | 15.55 | 14.8          | 10.9  | 11    | 15.3  | 9.15  | 6.7   | 14.7  | 12.8  |
| yo (cm)                    | 2.3   | 2.2   | 2.7   | 2.6           | 2.7   | 2.8   | 3.2   | 2.8   | 3.5   | 3.4   | 4.25  |
|                            |       |       |       |               |       |       |       |       |       |       |       |

Table A.2 R-Jump Data Taken In This Study For  $\alpha$ =0.80

| O (lt/s)             | v3 (cm)   v4 (cm)   v4/v6   Lo (cm)     | Li (cm) Li (cm) | Li (cm) | E <sub>o</sub> (cm) | Et (cm) |
|----------------------|-----------------------------------------|-----------------|---------|---------------------|---------|
| 6.33 1.53            | 10.30 6.73 8                            | 85 35           | 85      | 0.321               | 0.107   |
| 1.53                 | 10.55 6.90 8                            | 60 38           | 08      | 0.321               | 0.110   |
|                      | 9.80 6.41 8                             | 38 33           | 74      | 0.271               | 0.102   |
| 1.60                 | 7.70 4.81 5                             | 40 23           | 48      | 0.152               | 0.081   |
| 5.17 2.26            | 12.40 5.49 9                            | 111 45          | 85      | 0.324               | 0.130   |
| 2.26                 | 0.12 12.80 5.66 9 4                     | 49 41           | 99      | 0.324               | 0.134   |
| 2.32                 | 0.13 11.45 4.94 7 8                     | 82 35           | _ 78    | 0.241               | 0.120   |
| 3.78 2.25            | 9.33 4.15 6                             | 66 23           | 40      | 0.184               | 0.099   |
| 2.23                 | 0.24 6.13 2.75 3 5                      | 50 15           | 26      | 0.100               | 0.068   |
| 3.00                 | 0.09 14.20 4.73 10 1                    | 110 45          | 80      | 0.307               | 0.150   |
| 3.00                 | 0.10 14.40 4.80 10 8                    | 80 45           | 85      | 0.307               | 0.152   |
| 3.00                 | 5.10 10                                 | 00 59           | 8.5     | 0.307               | 0.160   |
| 4.01 2.93            | 13.35 4.56 9                            | 108 40          | 85      | 0.265               | 0.141   |
| 12.60 4.03 2.92      | 4.76 9                                  |                 | 77      | 0.266               | 0.146   |
| 2.93                 | 0.09 11.20 3.82 9 7                     | _               | 47      | 0.209               | 0.120   |
| 2.94                 | 3.95 9                                  |                 | 50      | 0.208               | 0.123   |
| 2.85                 | 9                                       | 45 25           | 43      | 0.173               | 0.107   |
| 2.59 2.87            | 0.36 7.65 2.67 4 4                      |                 | 24      | 0.125               | 0.085   |
| 4.20                 | 0.10 17.00 4.05 9 9                     | 95 52           | 140     | 0.331               | 0.181   |
| 4.27                 | 0.10 15.00 3.51 8 1                     | 110 42          | 8       | 0.269               | 0.162   |
| 3.26                 | 3.63 8                                  | 45 40           | 90      | 0.269               | 0.166   |
| -                    | 2.96 7                                  |                 | 83      | 0.227               | 0.138   |
| -                    | 0.16 13.10 3.12 7 1                     | 105 34          | 85      | 0.227               | 0.143   |
| 2.97 4.20            | 13.45 3.20 7                            | 48 38           | 86      | 0.227               | 0.146   |
| 4.10                 | 0.50 11.17 2.72 \$ 4                    | 43 28           | 65      | 0.180               | 0.124   |
| 2.18 4.05            | 9.40 2.32 7                             | 21 22           | 55      | 0.137               | 0.105   |
| 4.90                 | 3.63 9                                  | 102 50          | 124     | 0.334               | 0.192   |
| 11.50 1.89 4.55      | 2.20 8.90 1.96 5                        | 35 14           | 35      | 0.127               | 0.103   |
| 13.85 2.17 4.70      | 1.95   10.40   2.21   5                 | 31 22           | 55      | 0.158               | 0.118   |
| 18.00 2.73 4.80 0.15 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                 | 28      | 7220                | 0.149   |

Table A.3 R-Jump Data Taken In This Study,  $\alpha$ =0.50

|                     |        |        | _      |        |        | _      | _      | r—     |        | _      |        | _      |        |        | _      | _      | _      | _      |        | _      | _      | _      | _      |        |        |        | _      |        | _      | _      |
|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Et (cm)             | 0.0688 | 0.0639 | 0.0570 | 0.0457 | 0.0800 | 0.0707 | 0.0509 | 0.0371 | 0.0994 | 0.1031 | 0.0911 | 0.0933 | 0.0737 | 0.0571 | 0.1210 | 0.1126 | 0.0954 | 0.0882 | 0.0733 | 0.0535 | 0.1215 | 0.1146 | 0.1194 | 0.1068 | 0.0872 | 0.0922 | 0.0664 | 0.1449 | 0.1154 | 0.0783 |
| E <sub>o</sub> (cm) | 0.2991 | 0.2270 | 0.1867 | 0.1643 | 0.2578 | 0.1956 | 0.1302 | 0.0658 | 0.3251 | 0.3251 | 0.2835 | 0.2835 | 0.2003 | 0.1121 | 0.3301 | 0.2986 | 0.2455 | 0.2103 | 0.1471 | 0.0963 | 0.3386 | 0.2957 | 0.2957 | 0.2294 | 0.1811 | 0.1811 | 0.1055 | 0.3645 | 0.2601 | 0.1397 |
| L <sub>i</sub> (cm) | 78     | 98     | 48     |        | 09     | 57     | 35     | 10     | 82     | 83     | 70     | 72     | 26     | 53     | 107    | 8      | 75     | 72     | 45     | 18     | 115    | 85     | 82     | 2      | 99     | 57     | 32     | 130    | 96     | 45     |
| L (cm)              | 22     | 19     | 15     |        | 24     | 19     | 13     | ∞      | 33     | 34     | 27     | 27     | 21     | 15     | 37     | 34     | 28     | 23     | 18     | 6      | 35     | 28     | 32     | 92     | 16     | 17     | 12     | 45     | 25     | 13     |
| Lı (cm)             | 82     | 20     | 54     | 09     | 69     | 65     | 65     | 46     | 105    | 62     | 95     | 72     | 74     | 28     | 50     | 43     | 75     | 43     | 27     | 59     | 95     | 11     | 28     | 33     | 74     | 23     | 21     | 87     | 91     | 29     |
| Lo (cm)             | 15     | 14     | 10     | 6      | 17     | 15     | 10     | 80     | 17.5   | 17.5   | 17     | 17     | 13     | 6      | 18     | 17     | 14     | 12     | 6      | 7      | 17     | 15     | 15     | 13     | 11     | 11     | 9      | 18     | 13     | 9      |
| ydyo                | 5.08   | 4.73   | 4.19   | 3.21   | 4.26   | 3.75   | 2.88   | 2.00   | 4.13   | 4.30   | 3.76   | 3.87   | 3.18   | 2.39   | 3.87   | 3.63   | 3.16   | 2.96   | 2.38   | 1.60   | 3.07   | 3.04   | 3.19   | 2.90   | 2.25   | 2.42   | 1.63   | 3.19   | 2.55   | 1.67   |
| y (cm)              | 09.9   | 6.15   | 5.45   | 4.20   | 7.67   | 6.75   | 4.75   | 3.40   | 9.50   | 9.90   | 8.65   | 8.90   | 6.93   | 5.32   | 11.60  | 10.75  | 9.00   | 8.30   | 6.81   | 4.70   | 11.35  | 10.75  | 11.30  | 10.10  | 8.00   | 8.60   | 00.9   | 13.70  | 10.70  | 6.95   |
| y3 (cm)             | 0.16   | 0.20   | 0.20   | 0.20   | 0.18   | 0.12   | 0.15   | 0.21   | 0.13   | 0.13   | 0.16   | 0.16   | 0.15   | 0.20   | 0.14   | 0.20   | 0.20   | 0.24   | 0.35   | 0.33   | 0.18   | 0.21   | 0.21   | 0:30   | 0.30   | 0.30   | 0.38   | 0.13   | 0.30   | 0.43   |
| y <sub>o</sub> (cm) | 1.30   | 1.30   | 1.30   | 1.31   | 1.80   | 1.80   | 1.65   | 1.70   | 2.30   | 2.30   | 2.30   | 2.30   | 2.18   | 2.23   | 3.00   | 2.96   | 2.85   | 2.80   | 2.86   | 2.93   | 3.70   | 3.54   | 3.54   | 3.48   | 3.55   | 3.55   | 3.67   | 4.30   | 4.20   | 4.15   |
| Fro                 | 6.63   | 5.74   | 5.17   | 4.80   | 5.16   | 4.44   | 3.71   | 2.40   | 5.13   | 5.13   | 4.76   | 4.76   | 4.05   | 2.84   | 4.47   | 4.26   | 3.90   | 3.61   | 2.88   | 2.14   | 4.04   | 3.83   | 3.83   | 3.34   | 2.86   | 2.86   | 1.94   | 3.87   | 3.22   | 2.18   |
| Q (lt/s)            | 3.85   | 3.33   | 3.00   | 2.82   | 4.88   | 4.20   | 3.08   | 2.08   | 7.00   | 7.00   | 6.50   | 6.50   | 5.10   | 3.70   | 9.10   | 8.50   | 7.35   | 6.62   | 5.45   | 4.20   | 11.25  | 10.00  | 10.00  | 8.50   | 7.50   | 7.50   | 5.33   | 13.50  | 10.86  | 7.20   |
| b/B                 | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    |
| y <sub>8</sub> (cm) | 1.5    | 1.5    | 1.5    | 1.5    | . 2.0  | 2.0    | 2.0    | 2.0    | 3.0    | 3.0    | 3.0    | 3.0    | 3.0    | 3.0    | 4.0    | 4.0    | 4.0    | 4.0    | 4.0    | 4.0    | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    | 0.9    | 6.0    | 9.9    |

Table A.4 R-Jump Data Taken In This Study, α=0.30

|         |      | 0.0.43   | _    | , ,                 |         |         | ,                 |         |         |        | •                   |                     |         |
|---------|------|----------|------|---------------------|---------|---------|-------------------|---------|---------|--------|---------------------|---------------------|---------|
| yg (cm) | b/B  | Q (lt/s) | Fro  | y <sub>o</sub> (cm) | y3 (cm) | yı (cm) | yı/y <sub>o</sub> | Lo (cm) | Lı (cm) | L (cm) | L <sub>i</sub> (cm) | E <sub>0</sub> (cm) | Eı (cm) |
| 2       | 0.30 | 2.7      | 3.11 | 2.35                |         | 5.6     | 2.38              | 10      | 70      | 10     | 20                  | 0.137               | 0.076   |
| 3       | 0.30 | 2.8      | 1.80 | 3,47                |         | 4.8     | 1.38              | 10      | 60      | - 8    | 15                  | 0.091               | 0.077   |
| 3       | 0.30 | 4.0      | 3.00 | 3.10                |         | 6.6     | 2.11              | 14      | 60      | 18     | 35                  | 0.171               | 0.097   |
| 3       | 0,30 | 4.5      | 3.20 | 3.24                |         | 7.4     | 2.27              | 18      | 79      | 21     | 35                  | 0.198               | 0.106   |
| 3       | 0.30 | 4.5      | 3.20 | 3.24                |         | 7.7     | 2,37              | 18      | 39      | 26     | 40                  | 0.198               | 0.106   |
| 3       | 0.30 | 4.8      | 2.83 | 3.67                |         | 7.1     | 1.93              | 18      | 88      | 16     | 31                  | 0.184               | 0.110   |
| 3       | 0.30 | 4.5      | 3.03 | 3.36                |         | 8.0     | 2.39              | 16      | 40      | 28     | 40                  | 0.188               | 0.107   |
| 4       | 0.30 | 4.8      | 3,12 | 3.44                |         | 7.2     | 2.08              | 10      | 50      | 17     | 32                  | 0.202               | 0.110   |
| 4       | 0.30 | 6.0      | 3.03 | 4.07                |         | 9.0     | 2.21              | 19      | 56      | 30     | 44                  | 0.228               | 0.128   |
| 5       | 0.30 | 7.4      | 3.21 | 4.50                |         | 10.0    | 2.21              | 19      | 73      | 31     | 59                  | 0.277               | 0.147   |
| 5       | 0.30 | 7.4      | 3,21 | 4.50                |         | 9.8     | 2.17              | 19      | 95      | 23     | 40                  | 0.277               | 0.147   |
| 5       | 0.30 | 7.4      | 3.21 | 4.50                |         | 10.9    | 2.42              | 19      | 20      | 49     | 37                  | 0.277               | 0.149   |
| 5       | 0.30 | 6.0      | 2.70 | 4.40                |         | 7.6     | 1.73              | 15      | 95      | 15     | 30                  | 0.204               | 0.129   |
| 5       | 0.30 | 6.0      | 2.70 | 4.40                |         | 8.3     | 1.89              | 15      | 43      | 24     | 41                  | 0.204               | 0.128   |
| 5       | 0.30 | 6.0      | 2.70 | 4.40                |         | 8,6     | 1.95              | 13      | 20      | 33     | 47                  | 0.204               | 0.128   |
| 5       | 0.30 | 4.0      | 1.80 | 4.40                |         | 5.4     | 1.22              | 9       | 36      | 11     | 18                  | 0.115               | 0.102   |
| 5       | 0.30 | 4.0      | 1.80 | 4.40                |         | 5.6     | 1.27              | 9       | 28      | 14     | 20                  | 0.115               | 0.100   |
| 5       | 0,30 | 2.7      | 1.53 | 3.77                |         | 4.4     | 1.17              | 8       | 13      | 11     | 17                  | 0.082               | 0.076   |
| 6       | 0.30 | 8.5      | 2.96 | 5.21                | 0.21    | 10.4    | 2.00              | 17      | 85      | 35     | 75                  | 0.281               | 0.161   |
| 6       | 0,30 | 8.5      | 2.97 | 5.20                | 0.21    | 11.0    | 2.12              | 17      | 52      | 36     | 78                  | 0,282               |         |
| 6       | 0.30 | 8.5      | 2.96 | 5.21                | 0.21    | 11.3    | 2.16              | 17      | 25      | 50     | 70                  |                     | 0.161   |
| 6       | 0.30 | 7.0      | 2.52 | 5.10                |         |         |                   |         |         |        |                     | 0.281               | 0.162   |
|         |      |          |      |                     | 0.24    | 8.6     | 1.69              | 14      | 74      | 20     | 38                  | 0.213               | 0.143   |
| 6       | 0.30 | 7.0      | 2.52 | 5.10                | 0.24    | 9.0     | 1.76              | 14      | 40      | 26     | 50                  | 0.213               | 0.142   |
| 6       | 0.30 | 6.7      | 2.52 | 4.95                | 0.23    | 7.6     | 1.54              | 13      | 75      | 21     | 34                  | 0.207               | 0.143   |
| 6       | 0.30 | 6.7      | 2.52 | 4.95                | 0.23    | 8.4     | 1.69              | 13      | 34      | 26     | 39                  | 0.207               | 0.139   |
| - 6     | 0.30 | 4.7      | 1.60 | 5,25                | 0.63    | 6.2     | 1.18              | 10      | 41      | 14     | 25                  | 0.120               | 0.110   |
| 6       | 0.30 | 4.7      | 1.60 | 5.25                | 0.63    | 6.6     | 1.26              | 10      | 15      | 18     | 28                  | 0.120               | 0.109   |
| 7       | 0.30 | 4.7      | 1.74 | 4.97                | 1.10    | 5.9     | 1.18              | 10      | 40      | 10     | 17_                 | 0.125               | 0.113   |
| 7       | 0.30 | 3.8      | 1.45 | 4.90                | 1.20    | 5.0     | 1.02              | 8       | 23      | 8      | 12                  | 0.101               | 0.100   |
| 7       | 0.30 | 10.0     | 2.89 | 5.90                | 0.19    | 11.9    | 2.02              | 19      | 42      | 45     | 62                  | 0.306               | 0.180   |
| 7       | 0.30 | 10.0     | 2.89 | 5.90                | 0.19    | 11.4    | 1.93              | 19      | 85      | 40     | 65                  | 0,306               | 0.180   |
| 7       | 0.30 | 7.4      | 2.09 | 6.00                | 0.33    | 7.9     | 1.32              | 12      | 77      | 17     | 25                  | 0.191               | 0.154   |

Table A.5 S-Jump Data Taken In This Study,  $\alpha$ =0.80

| y <sub>B</sub> (cm) | P/B | Q (lt/s) | Fro  | y2 (cm) | y3 (cm) | yı (cm) | 3.4/30 | Lr (cm) | L <sub>i</sub> (cm) | E <sub>o</sub> (cm) | Et (cm) |
|---------------------|-----|----------|------|---------|---------|---------|--------|---------|---------------------|---------------------|---------|
| 2                   | 8.0 | 7.50     | 6.33 | 1.53    | 7.5     | 11.8    | 7.71   | 55      | 110                 | 0.381               | 0.121   |
| 2                   | 8.0 | 6.85     | 5.78 | 1.53    | 5.6     | 11.4    | 7.45   | 49      | 96                  | 0.311               | 0.117   |
| . 2                 | 8.0 | 5.23     | 4.13 | 1.60    | 6.4     | 8.5     | 5.31   | 23      | 55                  | 0.200               | 0.088   |
| 3                   | 8.0 | 11.00    | 5.17 | 2.26    | 8.3     | 13.8    | 6.11   | 55      | 110                 | 0.385               | 0.1143  |
| 3                   | 8.0 | 9.60     | 4.34 | 2.32    | 8.2     | 12.9    | 5.54   | 42      | 72                  | 0.300               | 0.133   |
| 3                   | 8.0 | 8.00     | 3.78 | 2.25    | 7.4     | 10.3    | 4.58   | 28      | 48                  | 0.235               | 0.108   |
| 3                   | 8.0 | 5.50     | 2.69 | 2.20    | 6.2     | 7.5     | 3.41   | 11      | 25                  | 0.142               | 0.079   |
| 4                   | 8.0 | 14.00    | 4.30 | 3.00    | 10.8    | 16.5    | 5.50   | 60      | 100                 | 0.385               | 0.171   |
| 4                   | 8.0 | 12.60    | 4.01 | 2.93    | 10.6    | 15.1    | 5.15   | 45      | 75                  | 0.342               | 0.157   |
| 4                   | 8.0 | 11.00    | 3.50 | 2.93    | 9.4     | 12.4    | 4.23   | 31      | 48                  | 0.274               | 0.130   |
| 4                   | 0.8 | 9.60     | 3.19 | 2.85    | 8.0     | 10.6    | 3.72   | 26      | 44                  | 0.225               | 0.113   |
| 4                   | 9.0 | 7.90     | 2.59 | 2.87    | 7.3     | 9.0     | 3.14   | 15      | 22                  | 0.170               | 0.096   |
| 9                   | 8.0 | 20.00    | 3.71 | 4.20    | 10.5    | 18.7    | 4.45   | 70      | 140                 | 0.394               | 0.196   |
| ė                   | 8.0 | 18.00    | 3.26 | 4.27    | 11.5    | 17.2    | 4.03   | 45      | 120                 | 0.341               | 0.181   |
| 9                   | 9.0 | 16.00    | 2.97 | 4.20    | 10.7    | 14.9    | 3.54   | 38      | 98                  | 0.292               | 0.158   |
| 9                   | 0.8 | 13.54    | 2.60 | 4.10    | 6.6     | 12.7    | 3.10   | 20      | 65                  | 0.238               | 0.136   |
| 9                   | 9.0 | 11.13    | 2.18 | 4.05    | 8.5     | 10.5    | 2.58   | 17      | 50                  | 0.181               | 0.114   |
| 7                   | 9.0 | 23.16    | 3.41 | 4.90    | 10.8    | 17.8    | 3.63   | 47      | 130                 | 0.393               | 0.192   |
| 7                   | 9.0 | 11.50    | 1.89 | 4.55    | 9.2     | 10.1    | 2.22   | 3       | 15                  | 0.173               | 0.112   |
| 7                   | 8.0 | 13.85    | 2.17 | 4.70    | 9.8     | 11.8    | 2.51   | 14      | 55                  | 0.209               | 0.129   |
| 7                   | 0.8 | 18.00    | 2.73 | 4.80    | 10.8    | 15.1    | 3.15   | 34      | 100                 | 0.287               | 0.163   |

Table A.6 S-Jump Data Taken In This Study,  $\alpha$ =0.50

| ye (cm) | b/B | Q (lt/s) | Fa   | y2 (cm) | y3 (cm) | y (cm) | yt/yo | Lr (cm) | L <sub>j</sub> (cm) | E <sub>2</sub> (cm) | Es (cm) |
|---------|-----|----------|------|---------|---------|--------|-------|---------|---------------------|---------------------|---------|
| 1       | 0.5 | 2.75     | 9.12 | 0.84    | 5.0     | 7.4    | 8.81  | 10      | 60                  | 0.400               | 0.075   |
| 1       | 0.5 | 2.21     | 7.08 | 0.86    | 4.7     | 7.0    | 8.14  | 10      | 09                  | 0.262               | 0.071   |
| 1.5     | 0.5 | 3.85     | 6.63 | 1.30    | 7.4     | 8.6    | 7.54  | 17      | 11                  | 0.360               | 0.099   |
| 1.5     | 0.5 | 3.33     | 5.74 | 1.30    | 7.0     | 9.2    | 7.08  | 18      | 89                  | 0.284               | 0.093   |
| 1.5     | 0.5 | 3.00     | 5.17 | 1.30    | 5.6     | 7.4    | 5.69  | 14      | 54                  | 0.230               | 0.075   |
| 1.5     | 0.5 | 2.82     | 4.80 | 1.31    | 4.1     | 5.9    | 4.50  | 6       | 33                  | 0.192               | 0.061   |
| 2       | 0.5 | 4.88     | 5.16 | 1.80    | 9.5     | 11.4   | 6.33  | 25      | 98                  | 0.335               | 0.115   |
| 2       | 0.5 | 4.20     | 4.44 | 1.80    | 6.3     | 8.7    | 4.83  | 91      | 11                  | 0.241               | 0.089   |
| 2       | 0.5 | 3.08     | 3.71 | 1.65    | 5.2     | 7.2    | 4.36  | 10      | 40                  | 0.166               | 0.073   |
| 2       | 0.5 | 2.08     | 2.40 | 1.70    | 3.0     | 4.8    | 2.82  | 5       | 90                  | 0.079               | 0.050   |
| 3       | 0.5 | 7.00     | 5.13 | 2.30    | 8.9     | 12.5   | 5.43  | 50      | 118                 | 0.391               | 0.128   |
| 3       | 0.5 | 6.40     | 4.69 | 2.30    | 8.5     | 11.8   | 5.13  | 34      | 107                 | 0.338               | 0.120   |
| 3       | 0.5 | 5.10     | 4.05 | 2.18    | 7.8     | 10.8   | 4.95  | 72      | 99                  | 0.257               | 0.110   |
| 3       | 0.5 | 3.70     | 2.84 | 2.23    | 8.9     | 6.9    | 3.09  | 11      | 26                  | 0.158               | 0.071   |
| 4       | 0.5 | 9.10     | 4.47 | 3.00    | 9.6     | 14.4   | 4.80  | 33      | 103                 | 0.396               | 0.147   |
| 4       | 0.5 | 8.50     | 4.26 | 2.96    | 9.3     | 13.8   | 4.66  | 26      | 105                 | 0.362               | 0.141   |
| 4       | 0.5 | 7.35     | 3.90 | 2.85    | 9.0     | 12.1   | 4.25  | 23      | 103                 | 0.307               | 0.124   |
| 4       | 0.5 | 6.62     | 3.61 | 2.80    | 8.3     | 11.1   | 3.96  | 11      | 84                  | 0.265               | 0.114   |
| 4       | 0.5 | 5.45     | 2.88 | 2.86    | 6.8     | 9.0    | 3.15  | 15      | 50                  | 0.186               | 0.093   |
| 4       | 0.5 | 4.20     | 2.14 | 2.93    | 6.2     | 6.8    | 2.33  | 9       | 14                  | 0.129               | 0.071   |
| 5       | 0.5 | 11.25    | 4.04 | 3.70    | 10.0    | 14.4   | 3.89  | 31      | 122                 | 0.402               | 0.149   |
| 5       | 0.5 | 10.00    | 3.83 | 3.54    | 9.4     | 14.0   | 3.95  | 28      | 94                  | 0.354               | 0.144   |
| 5       | 0.5 | 8.50     | 3.34 | 3.48    | 8.9     | 13.0   | 3.72  | 23      | 104                 | 0.283               | 0.133   |
| 5       | 0.5 | 7.50     | 2.86 | 3.55    | 8.2     | 11.5   | 3.23  | 14      | 7.3                 | 0.228               | 0.118   |
| 5       | 0.5 | 5.33     | 1.94 | 3.67    | 6.2     | 8.7    | 2.37  | 7       | 21                  | 0.131               | 0.000   |
| 9       | 0.5 | 13.50    | 3.87 | 4.30    | 10.6    | 17.7   | 4.10  | 41      | 135                 | 0.428               | 0.181   |
| 9       | 0.5 | 10.86    | 3.22 | 4.20    | 10.2    | 15.3   | 3.64  | 24      | 94                  | 0.320               | 0.157   |
| 9       | 0.5 | 7.20     | 2.18 | 4.15    | 8.4     | 11.0   | 2.65  | =       | 40                  | 0.182               | 0.113   |

•-:•

Table A.7 Rajaratnam's Data For R-Jump

| b/B  | Fro  | Vt, in inches | Y    | Lj, in inches | Lr, in inches |
|------|------|---------------|------|---------------|---------------|
| 0.5  | 4.13 | 3.7           | 3.43 | 26            | 14            |
| 0.5  | 5.45 | 4.9           | 4.54 | 26            | 17            |
| 0.5  | 6.33 | 5.7           | 5.28 | 35            | 17            |
| 0.5  | 7.02 | 6.6           | 6.11 | 53            | 19            |
| 0.5  | 8    | 7.3           | 6.76 | 56            | 20            |
| 0.5  | 8.88 | 8.2           | 7.6  | 70            | 28            |
| 0.5  | 2.4  | 2.4           | 2.22 | 15            | 6             |
| 0.5  | 2.94 | 2.7           | 2.5  | 15            | 9             |
| 0.5  | 4.6  | 4.2           | 3.89 | 32            | 15            |
| 0.33 | 3.38 | 2.9           | 2.32 | 44            | 9             |
| 0.33 | 4.52 | 3.8           | 3.04 | 65            | 11            |
| 0.33 | 5.78 | 4.6           | 3.68 | 41            | 14            |
| 0.33 | 6.97 | 5.8           | 4.64 | 47            | 22            |
| 0.33 | 8    | 6.4           | 5.11 | 43            | 24            |
| 0.33 | 8.22 | 6.7           | 5.35 | 41            | 26            |
| 0.33 | 5.02 | 4.2           | 3.36 | 46            | 16            |
| 0.33 | 3.88 | 3.2           | 2.56 | 23            | 10            |
| 0.33 | 2.53 | 5.5           | 1.78 | 36            | 12            |
| 0.33 | 3.14 | 6.9           | 2.22 | 34            | 14            |
| 0.33 | 3.73 | 8.3           | 2.68 | 38            | 21            |
| 0.33 | 4.32 | 9.3           | 3    | 55            | 24            |
| 0.33 | 2.2  | 2.5           | 1.54 | 30            | 6             |
| 0.33 | 3.22 | 3.6           | 2.21 | 34            | 10            |
| 0.33 | 4.29 | 4.9           | 3.01 | 30            | 14            |
| 0.33 | 5.25 | 5.8           | 3.56 | 32            | 19            |
| 0.33 | 6.91 | 7.3           | 4.48 | 49            | 24            |
| 0.33 | 6.01 | 6.4           | 3.92 | 47            | 20            |
| 0.67 | 2.56 | 2.4           | 2.26 | 21            | 4             |
| 0.67 | 3.86 | 3.8           | 3.59 | 35            | 8             |
| 0.67 | 4.84 | 4.9           | 4.62 | 70            | 15            |
| 0.67 | 5.58 | 5.6           | 5.28 | 56            | 19            |
| 0.67 | 6.11 | 6.2           | 5.85 | 58            | 22            |
| 0.67 | 6.76 | 6.9           | 6.5  | 57            | 22,5          |
| 0.67 | 7.54 | 7.7           | 7.26 | 60            | 30            |
| 0.67 | 8.61 | 8.7           | 8.2  | 68            | 28            |
| 0.67 | 3.44 | 3.4           | 3.2  | 26            | 8             |
| 0.83 | 2.77 | 3.2           | 2.93 | 16            | 8             |
| 0.83 | 3.67 | 4.2           | 3.85 | 43            | 12            |
| 0.83 | 4.56 | 5.4           | 4.95 | 53            | 17            |
| 0.83 | 5.24 | 6.2           | 5.69 | 48            | 20            |
| 0.83 | 6.05 | 7.2           | 6.6  | 50.5          | 26            |
| 0.83 | 7.02 | 8.3           | 7.62 | 70            | 36            |
| 0.83 | 7.9  | 9.6           | 8.8  | 77.5          | 42            |

Table A.8 Rajaratnam's Data For S-Jump

| b/B  | Fro  | <b>y</b> o, in inches | y3, in inches | <b>y</b> t, in inches | Y    | Lj, in inches |
|------|------|-----------------------|---------------|-----------------------|------|---------------|
| 0.50 | 4.51 | 1.08                  | 4.60          | 6.40                  | 5.93 | 60            |
| 0.50 | 5.19 | 1.08                  | 4.80          | 7.10                  | 6.57 | 66            |
| 0.50 | 6.01 | 1.08                  | 4.70          | 7.70                  | 7.13 | 76            |
| 0.50 | 7.02 | 1.08                  | 5.40          | 8.90                  | 8.24 | 74            |
| 0.50 | 7.71 | 1.08                  | 5.40          | 9.60                  | 8.89 | 82            |
| 0.50 | 3.73 | 1.08                  | 4.50          | 5.80                  | 5.37 | 62            |
| 0.50 | 7.69 | 1.08                  | 5.50          | 9.40                  | 8.70 | 78            |
| 0.50 | 1.94 | 2.65                  | 4.50          | 6.30                  | 2.38 | 46            |
| 0.50 | 2.50 | 2.65                  | 5.60          | 8.00                  | 3.02 | 66            |
| 0.50 | 3.18 | 2.65                  | 5.80          | 9.00                  | 3.40 | 70            |
| 0.50 | 3.82 | 2.65                  | 7.50          | 10.70                 | 4.04 | 80            |
| 0.50 | 4.36 | 2.65                  | 8.80          | 12.30                 | 4.64 | 85            |
| 0.50 | 4.80 | 2.65                  | 8.90          | 13.60                 | 5.13 | 88            |
| 0.33 | 2.75 | 1.25                  | 4.00          | 4.70                  | 3.76 | 52            |
| 0.33 | 3.86 | 1.25                  | 4.50          | 5.60                  | 4.48 | 56            |
| 0.33 | 4.44 | 1.25                  | 5.15          | 6.50                  | 5.20 | 58            |
| 0.33 | 5.46 | 1.25                  | 4.90          | 7.00                  | 5.60 | 60            |
| 0.33 | 6.35 | 1.25                  | 5.50          | 7.90                  | 6.32 | 64            |
| 0.33 | 6.94 | 1.25                  | 5.60          | 8.70                  | 6.96 | 72            |
| 0.33 | 7.55 | 1.25                  | 5.90          | 9.20                  | 7.36 | 70            |
| 0.33 | 2.61 | 1.69                  | 5.40          | 6.30                  | 3.73 | 50            |
| 0.33 | 3.38 | 1.69                  | 5.70          | 6.90                  | 4.08 | 58            |
| 0.33 | 4.11 | 1.69                  | 5.90          | 8.00                  | 4.73 | 62            |
| 0.33 | 5.10 | 1.69                  | 6.00          | 8.90                  | 5.27 | 70            |
| 0.33 | 5.65 | 1.69                  | 6.60          | 9.80                  | 5.80 | 76            |
| 0.33 | 6.70 | 1.69                  | 7.60          | 11.30                 | 6.69 | 82            |
| 0.67 | 3.54 | 1.06                  | 3.60          | 5.20                  | 4.91 | 64            |
| 0.67 | 4.32 | 1.06                  | 3.50          | 5.70                  | 5.38 | 68            |
| 0.67 | 5.10 | 1.06                  | 3.70          | 6.60                  | 6.23 | 72            |
| 0.67 | 6.12 | 1.06                  | 3.90          | 7.60                  | 7.17 | 76            |
| 0.67 | 7.00 | 1.06                  | 4.00          | 8.50                  | 8.02 | 78            |
| 0.67 | 7.77 | 1.06                  | 4.20          | 9.40                  | 8.87 | 82            |
| 0.67 | 8.50 | 1.06                  | 4.70          | 10.20                 | 9.62 | 76            |
| 0.67 | 2.90 | 1.06                  | 2.75          | 4.10                  | 3.87 | 45            |
| 0.67 | 4.79 | 1.06                  | 3.60          | 6.15                  | 5.80 | 64            |
| 0.83 | 3.16 | 1.09                  | 2.50          | 4.50                  | 4.13 | 50            |
| 0.83 | 3.70 | 1.09                  | 2.60          | 5.20                  | 4.77 | 50            |
| 0.83 | 6.67 | 1.09                  | 3.80          | 9.10                  | 8.35 | 66            |
| 0.83 | 4.55 | 1.09                  | 3.00          | 6.20                  | 5.69 | 62            |
| 0.83 | 5.29 | 1.09                  | 3.30          | 7.10                  | 6.51 | 60            |
| 0.83 | 5.87 | 1.09                  | 3.50          | 7.90                  | 7.25 | 74            |
| 0.83 | 7.65 | 1.09                  | 3.60          | 10.00                 | 9.17 | 78            |

Table A.9 Herbrand's Data For S-Jump

|       |                                 |                                                                                                                                                                            |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.44  | 2.78                            | 2.97                                                                                                                                                                       | 2.98                                                                                                                                                                                                                                                                  | 3.18                                                                                                                                                                                                                                                                                                                                                             | 3.29                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.286 | 0.286                           | 0.286                                                                                                                                                                      | 0.286                                                                                                                                                                                                                                                                 | 0.286                                                                                                                                                                                                                                                                                                                                                            | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.97  | 3.33                            | 3.67                                                                                                                                                                       | 3.73                                                                                                                                                                                                                                                                  | 4.07                                                                                                                                                                                                                                                                                                                                                             | 4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.5   | 0.5                             | 0.5                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.5   | 3.94                            | 4.35                                                                                                                                                                       | 4.39                                                                                                                                                                                                                                                                  | 4.75                                                                                                                                                                                                                                                                                                                                                             | 4.87                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.714 | 0.714                           | 0.714                                                                                                                                                                      | 0.714                                                                                                                                                                                                                                                                 | 0.714                                                                                                                                                                                                                                                                                                                                                            | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.78  | 4.33                            | 4.78                                                                                                                                                                       | 4.86                                                                                                                                                                                                                                                                  | 5.25                                                                                                                                                                                                                                                                                                                                                             | 5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1     | 1                               | 1                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.03  | 3.48                            | 3.67                                                                                                                                                                       | 3.87                                                                                                                                                                                                                                                                  | 4.19                                                                                                                                                                                                                                                                                                                                                             | 4.19                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 1 3.78 0.714 3.5 0.5 2.97 0.286 | 1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286 | 1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.67         0.286 | 1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.67         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286 | 1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.67         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286 | 1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.67         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286 | 1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.67         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286 | 1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         4.35         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.67         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.61         0.714         5.11         0.5         4.34         0.286 | 1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         4.35         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.67         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.61         0.714         5.11         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.5         0.286 | 1       3.78       0.714       3.5       0.5       2.97       0.286         1       4.33       0.714       4.35       0.5       3.33       0.286         1       4.78       0.714       4.35       0.5       3.67       0.286         1       4.86       0.714       4.75       0.5       4.07       0.286         1       5.25       0.714       4.87       0.5       4.12       0.286         1       5.39       0.714       4.97       0.5       4.18       0.286         1       5.47       0.714       4.97       0.5       4.18       0.286         1       5.61       0.714       5.11       0.5       4.34       0.286         1       6.08       0.714       5.44       0.5       4.5       0.286         1       6.01       0.714       5.44       0.5       4.5       0.286 | 1       3.78       0.714       3.5       0.5       2.97       0.286         1       4.33       0.714       4.35       0.5       3.33       0.286         1       4.78       0.714       4.35       0.5       3.67       0.286         1       4.86       0.714       4.39       0.5       4.07       0.286         1       5.25       0.714       4.87       0.5       4.12       0.286         1       5.39       0.714       4.97       0.5       4.18       0.286         1       5.47       0.714       4.97       0.5       4.18       0.286         1       5.61       0.714       5.11       0.5       4.34       0.286         1       6.08       0.714       5.44       0.5       4.5       0.286         1       6.01       0.714       5.83       0.5       4.5       0.286         1       6.51       0.714       5.83       0.5       4.94       0.286 | 1       3.78       0.714       3.5       0.5       2.97       0.286         1       4.33       0.714       4.35       0.5       3.33       0.286         1       4.78       0.714       4.35       0.5       3.67       0.286         1       4.86       0.714       4.39       0.5       4.07       0.286         1       5.25       0.714       4.87       0.5       4.12       0.286         1       5.39       0.714       4.97       0.5       4.18       0.286         1       5.47       0.714       4.97       0.5       4.18       0.286         1       5.61       0.714       5.11       0.5       4.34       0.286         1       6.08       0.714       5.44       0.5       4.5       0.286         1       6.01       0.714       5.83       0.5       4.94       0.286         1       6.84       0.714       6.11       0.5       5.13       0.286 | 1       3.78       0.714       3.5       0.5       2.97       0.286         1       4.33       0.714       4.35       0.5       3.33       0.286         1       4.78       0.714       4.35       0.5       3.67       0.286         1       4.86       0.714       4.39       0.5       3.73       0.286         1       5.25       0.714       4.75       0.5       4.07       0.286         1       5.39       0.714       4.87       0.5       4.12       0.286         1       5.47       0.714       4.97       0.5       4.18       0.286         1       5.61       0.714       5.44       0.5       4.34       0.286         1       6.08       0.714       5.44       0.5       4.5       0.286         1       6.01       0.714       5.44       0.5       4.5       0.286         1       6.51       0.714       5.83       0.5       4.94       0.286         1       6.84       0.714       6.11       0.5       5.13       0.286         1       7.06       0.714       6.22       0.5       5.13       0.286 </th <th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.38         0.714         4.35         0.5         3.47         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.75         0.5         4.12         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.61         0.714         5.11         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.5         0.286           1         6.01         0.714         5.44         0.5         4.5         0.286           1         6.84         0.714         6.11         0.5         5.13         0.286           1         7.06         0.714         6.34         0.5         5.25         0.286     &lt;</th> <th>1       3.78       0.714       3.5       0.5       2.97       0.286         1       4.33       0.714       4.35       0.5       3.33       0.286         1       4.78       0.714       4.35       0.5       3.67       0.286         1       4.86       0.714       4.39       0.5       4.07       0.286         1       5.25       0.714       4.75       0.5       4.07       0.286         1       5.39       0.714       4.87       0.5       4.12       0.286         1       5.47       0.714       4.97       0.5       4.18       0.286         1       5.61       0.714       5.11       0.5       4.34       0.286         1       6.08       0.714       5.44       0.5       4.5       0.286         1       6.01       0.714       5.44       0.5       4.5       0.286         1       6.51       0.714       6.11       0.5       5.13       0.286         1       7.06       0.714       6.34       0.5       5.25       0.286         1       7.54       0.714       6.67       0.5       5.73       0.286     <!--</th--><th>1       3.78       0.714       3.5       0.5       2.97       0.286         1       4.33       0.714       4.35       0.5       3.33       0.286         1       4.78       0.714       4.35       0.5       3.73       0.286         1       4.86       0.714       4.39       0.5       3.73       0.286         1       5.25       0.714       4.39       0.5       4.07       0.286         1       5.39       0.714       4.87       0.5       4.12       0.286         1       5.39       0.714       4.97       0.5       4.18       0.286         1       5.47       0.714       5.41       0.5       4.34       0.286         1       6.08       0.714       5.44       0.5       4.5       0.286         1       6.01       0.714       5.44       0.5       4.5       0.286         1       6.51       0.714       6.11       0.5       4.94       0.286         1       7.01       0.714       6.34       0.5       5.25       0.286         1       7.54       0.714       6.67       0.5       5.73       0.286     <!--</th--><th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         4.35         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.67         0.286           1         4.86         0.714         4.39         0.5         4.07         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.87         0.5         4.18         0.286           1         5.49         0.714         4.87         0.5         4.34         0.286           1         5.61         0.714         5.44         0.5         4.5         0.286           1         6.08         0.714         5.44         0.5         4.5         0.286           1         6.08         0.714         5.83         0.5         4.5         0.286           1         7.06         0.714         6.11         0.5         5.73         0.286     <!--</th--><th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         4.35         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.73         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         6.08         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.5         0.286           1         6.84         0.714         5.43         0.5         5.13         0.286           1         7.06         0.714         6.71         0.5         5.25         0.286</th><th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.38         0.714         4.35         0.5         3.47         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.39         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.3         0.286           1         6.01         0.714         5.44         0.5         4.5         0.286           1         6.51         0.714         6.11         0.5         5.2         0.286           1         7.06         0.714         6.67         0.5         5.2         0.286     <th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.38         0.714         4.35         0.5         3.47         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.39         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.34         0.286           1         5.61         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.34         0.286           1         6.01         0.714         5.44         0.5         4.3         0.286           1         6.84         0.714         6.11         0.5         5.2         0.286     &lt;</th></th></th></th></th> | 1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.38         0.714         4.35         0.5         3.47         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.75         0.5         4.12         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.61         0.714         5.11         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.5         0.286           1         6.01         0.714         5.44         0.5         4.5         0.286           1         6.84         0.714         6.11         0.5         5.13         0.286           1         7.06         0.714         6.34         0.5         5.25         0.286     < | 1       3.78       0.714       3.5       0.5       2.97       0.286         1       4.33       0.714       4.35       0.5       3.33       0.286         1       4.78       0.714       4.35       0.5       3.67       0.286         1       4.86       0.714       4.39       0.5       4.07       0.286         1       5.25       0.714       4.75       0.5       4.07       0.286         1       5.39       0.714       4.87       0.5       4.12       0.286         1       5.47       0.714       4.97       0.5       4.18       0.286         1       5.61       0.714       5.11       0.5       4.34       0.286         1       6.08       0.714       5.44       0.5       4.5       0.286         1       6.01       0.714       5.44       0.5       4.5       0.286         1       6.51       0.714       6.11       0.5       5.13       0.286         1       7.06       0.714       6.34       0.5       5.25       0.286         1       7.54       0.714       6.67       0.5       5.73       0.286 </th <th>1       3.78       0.714       3.5       0.5       2.97       0.286         1       4.33       0.714       4.35       0.5       3.33       0.286         1       4.78       0.714       4.35       0.5       3.73       0.286         1       4.86       0.714       4.39       0.5       3.73       0.286         1       5.25       0.714       4.39       0.5       4.07       0.286         1       5.39       0.714       4.87       0.5       4.12       0.286         1       5.39       0.714       4.97       0.5       4.18       0.286         1       5.47       0.714       5.41       0.5       4.34       0.286         1       6.08       0.714       5.44       0.5       4.5       0.286         1       6.01       0.714       5.44       0.5       4.5       0.286         1       6.51       0.714       6.11       0.5       4.94       0.286         1       7.01       0.714       6.34       0.5       5.25       0.286         1       7.54       0.714       6.67       0.5       5.73       0.286     <!--</th--><th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         4.35         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.67         0.286           1         4.86         0.714         4.39         0.5         4.07         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.87         0.5         4.18         0.286           1         5.49         0.714         4.87         0.5         4.34         0.286           1         5.61         0.714         5.44         0.5         4.5         0.286           1         6.08         0.714         5.44         0.5         4.5         0.286           1         6.08         0.714         5.83         0.5         4.5         0.286           1         7.06         0.714         6.11         0.5         5.73         0.286     <!--</th--><th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         4.35         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.73         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         6.08         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.5         0.286           1         6.84         0.714         5.43         0.5         5.13         0.286           1         7.06         0.714         6.71         0.5         5.25         0.286</th><th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.38         0.714         4.35         0.5         3.47         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.39         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.3         0.286           1         6.01         0.714         5.44         0.5         4.5         0.286           1         6.51         0.714         6.11         0.5         5.2         0.286           1         7.06         0.714         6.67         0.5         5.2         0.286     <th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.38         0.714         4.35         0.5         3.47         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.39         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.34         0.286           1         5.61         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.34         0.286           1         6.01         0.714         5.44         0.5         4.3         0.286           1         6.84         0.714         6.11         0.5         5.2         0.286     &lt;</th></th></th></th> | 1       3.78       0.714       3.5       0.5       2.97       0.286         1       4.33       0.714       4.35       0.5       3.33       0.286         1       4.78       0.714       4.35       0.5       3.73       0.286         1       4.86       0.714       4.39       0.5       3.73       0.286         1       5.25       0.714       4.39       0.5       4.07       0.286         1       5.39       0.714       4.87       0.5       4.12       0.286         1       5.39       0.714       4.97       0.5       4.18       0.286         1       5.47       0.714       5.41       0.5       4.34       0.286         1       6.08       0.714       5.44       0.5       4.5       0.286         1       6.01       0.714       5.44       0.5       4.5       0.286         1       6.51       0.714       6.11       0.5       4.94       0.286         1       7.01       0.714       6.34       0.5       5.25       0.286         1       7.54       0.714       6.67       0.5       5.73       0.286 </th <th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         4.35         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.67         0.286           1         4.86         0.714         4.39         0.5         4.07         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.87         0.5         4.18         0.286           1         5.49         0.714         4.87         0.5         4.34         0.286           1         5.61         0.714         5.44         0.5         4.5         0.286           1         6.08         0.714         5.44         0.5         4.5         0.286           1         6.08         0.714         5.83         0.5         4.5         0.286           1         7.06         0.714         6.11         0.5         5.73         0.286     <!--</th--><th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         4.35         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.73         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         6.08         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.5         0.286           1         6.84         0.714         5.43         0.5         5.13         0.286           1         7.06         0.714         6.71         0.5         5.25         0.286</th><th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.38         0.714         4.35         0.5         3.47         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.39         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.3         0.286           1         6.01         0.714         5.44         0.5         4.5         0.286           1         6.51         0.714         6.11         0.5         5.2         0.286           1         7.06         0.714         6.67         0.5         5.2         0.286     <th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.38         0.714         4.35         0.5         3.47         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.39         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.34         0.286           1         5.61         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.34         0.286           1         6.01         0.714         5.44         0.5         4.3         0.286           1         6.84         0.714         6.11         0.5         5.2         0.286     &lt;</th></th></th> | 1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         4.35         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.67         0.286           1         4.86         0.714         4.39         0.5         4.07         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.87         0.5         4.18         0.286           1         5.49         0.714         4.87         0.5         4.34         0.286           1         5.61         0.714         5.44         0.5         4.5         0.286           1         6.08         0.714         5.44         0.5         4.5         0.286           1         6.08         0.714         5.83         0.5         4.5         0.286           1         7.06         0.714         6.11         0.5         5.73         0.286 </th <th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         4.35         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.73         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         6.08         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.5         0.286           1         6.84         0.714         5.43         0.5         5.13         0.286           1         7.06         0.714         6.71         0.5         5.25         0.286</th> <th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.38         0.714         4.35         0.5         3.47         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.39         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.3         0.286           1         6.01         0.714         5.44         0.5         4.5         0.286           1         6.51         0.714         6.11         0.5         5.2         0.286           1         7.06         0.714         6.67         0.5         5.2         0.286     <th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.38         0.714         4.35         0.5         3.47         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.39         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.34         0.286           1         5.61         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.34         0.286           1         6.01         0.714         5.44         0.5         4.3         0.286           1         6.84         0.714         6.11         0.5         5.2         0.286     &lt;</th></th> | 1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         4.35         0.5         3.33         0.286           1         4.78         0.714         4.35         0.5         3.73         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.75         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         6.08         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.5         0.286           1         6.84         0.714         5.43         0.5         5.13         0.286           1         7.06         0.714         6.71         0.5         5.25         0.286 | 1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.38         0.714         4.35         0.5         3.47         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.39         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.3         0.286           1         6.01         0.714         5.44         0.5         4.5         0.286           1         6.51         0.714         6.11         0.5         5.2         0.286           1         7.06         0.714         6.67         0.5         5.2         0.286 <th>1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.38         0.714         4.35         0.5         3.47         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.39         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.34         0.286           1         5.61         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.34         0.286           1         6.01         0.714         5.44         0.5         4.3         0.286           1         6.84         0.714         6.11         0.5         5.2         0.286     &lt;</th> | 1         3.78         0.714         3.5         0.5         2.97         0.286           1         4.33         0.714         3.94         0.5         3.33         0.286           1         4.38         0.714         4.35         0.5         3.47         0.286           1         4.86         0.714         4.39         0.5         3.73         0.286           1         5.25         0.714         4.39         0.5         4.07         0.286           1         5.39         0.714         4.87         0.5         4.12         0.286           1         5.47         0.714         4.97         0.5         4.18         0.286           1         5.47         0.714         4.97         0.5         4.34         0.286           1         5.61         0.714         5.44         0.5         4.34         0.286           1         6.08         0.714         5.44         0.5         4.34         0.286           1         6.01         0.714         5.44         0.5         4.3         0.286           1         6.84         0.714         6.11         0.5         5.2         0.286     < |