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ABSTRACT 

CALCULATION OF PHASE DIAGRAMS AND THE THERMODYNAMIC 

QUANTITIES FROM THE MEAN FIELD MODELS CLOSE TO PHASE 

TRANSITIONS IN MOLECULAR AND LIQUID CRYSTALS 

 

Şen, Sema 

                                Ph.D., Depatment of Physics 

Supervisor : Prof. Dr. Hamit Yurtseven 

 

February 2009, 121 pages 

 

 

 This study gives our calculations for the temperature-pressure and 

temperature-concentration phase diagrams using the mean field models applied to 

ammonium halides (NH4Cl, ND4Cl), ammonium sulfate ((NH4)2SO4/H2O), lithium 

potassium rubidium sulfate (LiK1-xRbxSO4), potassium pyrosulfate-potassium 

hydrogensulfate (K2S2O7-KHSO4), cholestanyl myristate-cholesteryl myristate 

(CnM-CrM), cholestanyl myristate-cholesteryl oleate (CnM-CO), benzene (C6H6) 

and ice. The phase line equations are derived from the free energies expanded in 

terms of the order parameters and they are fitted to the experimental data. Some 

thermodynamic quantities are calculated close to phase transitions in these 

crystalline systems. 

We also calculate the specific heat CV using the Raman frequency shifts for                       

NH4Br on the basis of an Ising model close to the λ-phase transition. A linear                       
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relationship is obtained between the specific heat CP and the frequency shifts 

(1/ν)(∂ν/∂T)P near the λ-point in NH4Br. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Phase Transition, Mean Field Models, Thermodynamic Quantities, 

Pippard Relation. 
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ÖZ 

MOLEKÜLER VE SIVI KRİSTALLERDE ORTALAMA ALAN 

MODELLERİYLE FAZ DİYAGRAMLARININ VE TERMODİNAMİK 

NİCELİKLERİNİN HESAPLANMASI 

 

Şen, Sema 

                                 Doktora, Fizik Bölümü 

Tez Yöneticisi : Prof. Dr. Hamit Yurtseven 

 

Şubat 2009, 121 sayfa 

 

 

 Bu çalışma amonyum bileşiklerine (NH4Cl, ND4Cl), amonyum sülfata  

((NH4)2SO4/H2O), lityum potasyum rubidyum sülfat (LiK1-xRbxSO4), potasyum 

pirosülfat-potasyum hidrojensülfata (K2S2O7-KHSO4), kolestanil miristat-kolesteril 

miristata (CnM-CrM), kolestanil miristat-kolesteril oleata (CnM-CO), benzene 

(C6H6) ve buza uygulanan ortalama alan modellerini kullanarak sıcaklık-basınç ve 

sıcaklık-konsantrasyon faz diyagramlarının hesaplanmasını vermektedir. Faz eğrisi 

denklemleri, düzen parametrelerinde açılan serbest enerjilerden türetilmiş ve 

deneysel verilere uydurulmuştur. Bu kristal sistemlerde faz geçişleri yakınında bazı 

termodinamik nicelikler hesaplanmıştır. 

 

 Ayrıca λ-faz geçişi yakınında Ising model temelinde NH4Br için Raman 

frekansı kaymaları kullanarak öz ısı CV hesaplanmıştır. NH4Br’de λ noktası  
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yakınında öz ısı CP ile frekans kaymaları (1/ν)(∂ν/∂T)P arasında doğrusal bir bağıntı 

elde edilmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Phase Transitions 

 

There are four states of material which are gas, solid, liquid and plasma. A 

distinct and homogeneous state of a system is known as a phase. 

Basically, phase transition is the change from one state to another because 

of small changes in temperature and pressure. Due to a phase transition, there is no 

change in the chemical composition of the material. The only change occurs in 

physical properties, for example the heat capacity. 

There are two classifications of phase transitions, Ehrenfest classification 

and modern classification. Ehrenfest classification labelled the phase transitions by 

the lowest derivative of the free energy. The free energy is discontinuous at the 

transition. First-order phase transition exhibit a discontinuity in the first derivative 

of the free energy with respect to the thermodynamic variable such as volume and 

entropy whereas second-order phase transitions have a discontinuity in a second 

derivative of the free energy such as specific heat, thermal expansivity. Under the 

Ehrenfest classification scheme, there could in principle be third, fourth, and 

higher-order phase transitions. The Ehrenfest scheme is an inaccurate method of 

classifying phase transitions, for it does not take into account the case where a 

derivative of the free energy diverges. 

In the modern classification scheme, phase transitions are divided into two 

broad categories, named similarly to the Ehrenfest classes: The first-order phase 

transitions are those that involve a latent heat. During such a transition, a system 

either absorbs or releases a fixed amount of energy. During this process, the 
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temperature of the system remains constant as the heat is added. The second class 

of phase transitions is the continuous phase transitions, also called second-order 

phase transitions. These have no associated latent heat [1]. 

 

1.2 Properties of Ammonium Halides 

1.2.1 Ammonium Bromide 

Ammonium bromide, NH4Br, is a substance used in manufacturing 

photographic chemicals and emulsion. It is also used as a flame retardant. 

Ammonium bromide can be prepared by the direct action of hydrogen bromide on 

ammonia. The chemical crystallizes in colourless prisms, possessing a saline taste; 

it sublimes on heating and is easily soluble in water. On exposure to air it gradually 

assumes a yellow colour and becomes acid in its reaction [2]. 

NH4Br undergoes a λ-type phase transition at T= 234 K (P= 0). Its λ-phase 

transition occurs from the disordered β phase to the antiferro-ordered γ phase, as 

the temperature decreases. β phase has the CsCl type structure with the  

symmetry, whereas the γ phase has a tetragonal structure with the  symmetry. If 

the temperature is lowered down to about 78 K, the antiferro-ordered γ phase is 

transformed into the ferro-ordered δ phase in NH4Br [3]. 

In the disordered β phase the  ions have two orientations like up and 

down orientations of a spin system, which are energetically equal in an Ising 

system. In this phase the  ions are randomly orientated [4], whereas in the 

antiferro-ordered γ phase they are orientated in the opposite direction in  

plane, but they are all parallel along the  axis. The  ions become all parallel 

to each other in the ferro-ordered δ phase at low temperatures in NH4Br. 

       1.2.2 Ammonium and Deutero-Ammonium Chloride 

 Ammonium chloride (NH4Cl) is, in its pure form, a clear white water-

soluble crystalline salt of ammonia. The aqueous ammonium chloride solution is 

mildly acidic [5].  
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 NH4Cl undergoes λ-phase transition at 242.5 K at zero pressure. As the 

pressure increases up to ~1.6 kbar, the transition temperature between phases II (β 

phase) and III (γ phase) shifts to 256 K at which the tricritical phase transition 

occurs, as observed experimentally [6]. As the pressure increases further up to ~2.8  

kbar, there occurs a second order phase transition at 268 K, as also observed 

experimentally [6]. However, the λ-phase transition in ND4Cl takes place at ~250 

K at atmospheric pressure, which is a multicritical point [7], as observed in NH4Cl 

at ~1.6 kbar [6]. As the pressure increases up to ~1.5 kbar, a second order phase 

change becomes dominant in ND4Cl [8], which occurs at ~2.8 kbar in NH4Cl [6]. 

Compared to the second order phase transition in ND4Cl at ~1.5 kbar, the first 

order phase transition at zero pressure in this crystal has minimal thermal hysteris 

[9, 10] which diminishes at 0.1 MPa to about 30 to 80 mK [7, 8, 11, 12]. 

Phase II (β phase) has the CsCl structure with the Oh
1-Pm3m symmetry. In 

this phase NH4
+ ions are distributed randomly between two energetically equivalent 

orientations [4]. Phase III (δ phase) has the CsCl structure with the Td
1- mP 34  

symmetry. In this phase all the NH4
+ ions are parallel to each other. 

1.2.3 Ammonium Sulphate 

 Ammonium sulfate, ((NH4)2SO4), is an inorganic chemical compound 

commonly used as a fertilizer. It contains 21% nitrogen as ammonium ions and 

24% sulfur as sulfate ions. Ammonium sulfate occurs naturally as the rare mineral 

mascagnite in volcanic fumaroles and due to coal fires on some dumps [13]. 

 (NH4)2SO4 exhibits a phase transition from the paraelectric orthorhombic 

phase with the space group   to the ferroelectric orthorhombic phase with the 

space group  [14, 15]. This ferroelectric phase involves ordering of two 

inequivalent (NH4)I and (NH4)II groups which are orientated antiparallel to one 

another. With these orientations of the tetrahedra, SO4
-2 is assigned as a pseudospin 

σ = ±1, which can then be considered in an Ising model [16]. 

The mechanism of an order-disorder type of phase transition in (NH4)2SO4 has 

been explained theoretically by means of the reorientation of the dipoles of the 
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distorted NH4
+ ions [17]. A soft mode model has also been suggested to explain the 

mechanism of the phase transition in (NH4)2SO4 [18]. 

 As a binary mixture, the (NH4)2SO4/H2O system’s equilibrium and 

metastability phase diagrams from 40 0C to -50 0C have been obtained [19]. 

(NH4)2SO4.4H2O melts at -19.35 0C. Below -19.35 ±0.05 0C, it undergoes a solid-

solid (solid I-solid II) phase transition to form a tetrahydrate phase [19], as also 

pointed out in our recent study [20]. 

1.3 Properties of Lithium Potassium Rubidium Sulfate 

 

LiK1-xRbxSO4 is one of the ferrielectric materials. At low temperatures, it is 

a ferroelastic crystal. Mixed LiK1-xRbxSO4 crystals exhibit successive phase 

transitions starting from phase II to phase V through phases III and IV, as the 

temperature is lowered. At very high temperatures, it undergoes the most 

symmetrical phase I, which has a hexagonal structure with the space group 

P63/mmc ( 4
6hD ), and the SO4

= ions are randomly oriented (complete disorder) here 

[21]. Phase II occurs at temperatures down to about 700 K on heating and cooling, 

which has an orthorhombic structure with the space group Pnma ( 16
2hD ) [22, 23]. It 

has been argued that phase II can have an incommensurate structure in the 

temperature interval 940 to 743 K and a modulated superstructure in the 

temperature interval 743 to 711 K [21, 24], as also indicated previously [25]. 

Below 700 K, phase II undergoes a pyroelectric phase III [26], which extends down 

to room temperature. This phase has a hexagonal structure with the space group 

P63( 6
6C ), as determined in earlier studies [27, 28]. As the temperature decreases 

further down to about 200 K, phase III transforms into phase IV, which occurs in a 

large temperature shift between the two phases (III and IV) on heating and cooling 

[25]. This is due to the fact that a first-order phase transition from phase III to 

phase IV is more pronounced here in comparison with the first-order transitions 

between II and III, and also between IV and V. Phase IV has a trigonal crystal 

structure with the space group P3/c ( 4
3vC ) [26, 29]. Below 190 K, phase IV 

disappears and phase V as a ferroelastic phase takes place, which has a monoclinic 
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structure with the space group Cc( 4
sC ) [30, 31]. As the temperature is lowered 

down to 20 K, it has been reported that a low-temperature phase VI occurs, on the 

basis of experimental measurements [32]. 

 

1.4 Properties of Potassium Pyrosulfate-Potassium Hydrogensulfate 

(Potassium bisulfate) 

 

Potassium pyrosulfate (potassium disulfate) is a chemical compound, with 

the molecular formula K2S2O7. From powder diffraction data, K2S2O7 has a 

monoclinic structure with the space group C2/c. In K2S2O7, the neighbouring 

chains are antiparallel.  It contains the pyrosulfate anion S2O7
2− which has a 

dichromate like structure and can be visualised as two corner sharing SO4 

tetrahedra, with a bridging oxygen atom [33]. Potassium pyrosulfate is most 

commonly found as a preservative in consumer foods. As a food additive or 

preservative K2S2O7 is also known as potassium metabisulphite. Potassium 

pyrosulfate is used in analytical chemistry; samples are fused with potassium 

pyrosulfate (or a mixture of potassium pyrosulfate and potassium fluoride, KF), to 

ensure complete dissolution prior to a quantitative analysis [34].  

Potassium bisulfate is the potassium salt of bisulfate anion, with the 

molecular formula KHSO4. This compound is commonly used in the conversion of 

tartrates to bitartrates in wine. Potassium bisulfate is also used as a disintegrating 

agent in analytical chemistry. A solution of potassium bisulfate behaves as if the 

two related compounds (K2SO4 and H2SO4) were side by side uncombined [34].  

The phase diagram of the catalytically important K2S2O7-KHSO4 solvent 

system exhibits an eutectic at  = 0.94 with a temperature of fusion of 205 

C. No compound is formed in the system, but the strong α→β solid-solid transition 

of K2S2O7, found at 318 0C with Htr = 21.8 kJ/mol, gives rise to a marked change 

in the slope of the liquidus curve at this temperature. 39K, 1H, 17O, and 33S NMR 

measurements on the molten K2S2O7-KHSO4 mixtures up to 540 C show that a 

fast ionic exchange takes place in the melt at all compositions. The conductivities 
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of the solid and molten K2S2O7-KHSO4 systems were measured at 13 different 

compositions in the whole composition range,  = 0-1 [35]. 

1.5 Properties of Cholesteryl Myristate-Cholestanyl Myristate and 

Cholestanyl Myristate-Cholesteryl Oleate Binary Systems 

Cholestany myristate (cholestanyl tetradecanoate) is bilayer and has the 

chemical formula of C41H74O2, cholesteryl myristate is monoclinic, space group A2 

and has the formula of C41H72O2. 

Cholesteryl Myristate-Cholestanyl Myristate Binary System: Cholesteryl 

myristate possesses stable smectic and cholesteric mesophases; that is, the 

mesophases are formed on heating the crystal as well as cooling the isotropic 

liquid. The crystal to smectic transition occurs at 72 0C, the smectic to cholesteric 

transition at 80 0C, and the cholesteric to isotropic transition at 85.5 0C. 

Cholestanyl myristate, on the other hand, melts directly to an isotropic liquid at 91 
0C. The mesophases are metastable; the cholesteric mesophase is only formed 

when the isotropic liquid is undercooled, and crystallization takes place so rapidly 

that the smectic phase has an extremely short lifetime [36]. 

Cholestanyl Myristate-Cholesteryl Oleate (C45H78O2) Binary System: Like 

cholestanyl myristate, cholesteryl oleate forms metastable mesophases, i.e., the 

mesophases are only formed by undercooling the isotropic liquid. The crystal to 

isotropic transition occurs at 51 0C, and the smectic to cholesteric and cholesteric to 

isotropic transitions occur at 42 and 47 0C, respectively [37, 38]. Unlike the 

mesophases of cholestanyl myristate, the mesophases of cholesteryl oleate can exist 

for several minutes below the crystal to isotropic transition temperature before 

crystallization occurs [36]. 

1.5 Properties of Benzene 

 

Benzene is one of the most investigated molecular organic compounds with 

the formula C6H6. It is sometimes abbreviated Ph–H. Benzene is a colorless and 

highly flammable liquid with a sweet smell and a relatively high melting point. It is 
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carcinogenic and its use as an additive in gasoline is now limited, but it is an 

important industrial solvent and precursor in the production of drugs, plastics, 

synthetic rubber, and dyes. Benzene is a natural constituent of crude oil, but it is 

usually synthesized from other compounds present in petroleum. Benzene is an 

aromatic hydrocarbon and the second [n]-annulene ([6]-annulene), a cyclic 

hydrocarbon with a continuous pi bond [39]. 

Its crystalline forms have been studied extensively. It crystallizes into the 

solid phase I below the melting temperature (278.5 K) at atmospheric pressure 

[40]. It is orthorhombic Pbca ( 15
24D ) in this phase with four molecules per unit cell, 

as determined by X-ray [41, 42], neutron [43] techniques. When the solid I phase is 

heated up to 373 K at 1.2 GPa, solid II [44] phase occurs. This phase has the 

monoclinic structure. As the pressure increases up to 4 GPa at room temperature, 

solid phase II is transformed into the solid III [44, 45] phase, which has also the 

monoclinic structure. This phase is then transformed into another solid phase III' 

above 11 GPa [40]. This transition between the solid phases III and III' is of a 

second order, whereas the solid I-II and II-III transitions are of a first order. At 

higher pressures of about 24 GPa, it has been indicated by the X-ray diffraction 

pattern that there exists a new phase called IV [39]. It has been reported that III'-IV 

transition is an irreversible chemical transformation which has a first order in 

character, as also observed at 30 GPa by Pruzan et al. [46]. 

The melting curves for the solid phases I and II intersect the I-II equilibrium 

line at the triple point L-I-II (T1) with the coordinates 12±0.5 kbar and 204±5 0C 

[45, 47]. Also, there exists a second triple point L-II-III (T2) with the coordinates 

22.5±0.5 kbar and 335±5 0C, as given in the phase diagram of benzene [45] (see 

also Fig. 1). At higher pressure and temperature, the existence of a third triple point 

(T3) with the coordinates 5 GPa and 4000C has been obtained experimentally [48]. 

Above 40 kbar and 580 0C, benzene disassociates, a phase called decomposed 

compounds, as indicated in the experimentally determined T-P phase diagram [48]. 

So, decomposition which is due to pressurization of hydrocarbons, contains 

amorphous carbon [49]. Also, this static pressurization is associated with an 
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opening of the benzene rings, which leads to a formation of polymer by highly 

cross-linked carbon chains [46]. 

1.7 Properties of Ice 

 Ice is a solid phase, usually crystalline, of a non-metallic substance that is 

liquid or gas at room temperature, such as ammonia ice or methane ice. However, 

the word "ice" normally means water ice, technically restricted to one of the 15 

known crystalline phases of water. In non-scientific contexts, it usually describes 

ice Ih, which is known to be the most abundant of these phases. It can appear 

transparent or an opaque bluish-white color, depending on the presence of 

impurities such as air. The addition of other materials such as soil may further alter 

the appearance. The most common phase transition to ice Ih occurs when liquid 

water is cooled below 0 °C (273.15 K, 32 °F) at standard atmospheric pressure.  

Ice appears in nature in forms as varied as snowflakes and hail, icicles, 

glaciers, pack ice, and entire polar ice caps. It is an important component of the 

global climate, particularly in regard to the water cycle. Furthermore, ice has 

numerous cultural applications, from the ice cooling one's drink to winter sports 

and ice sculpture. 

As a naturally occurring crystalline solid, ice is considered a mineral 

consisting of hydrogen oxide. An unusual property of ice frozen at a pressure of 

one atmosphere is that the solid is some 8% less dense than liquid water. Ice is the 

only known non-metallic substance to expand when it freezes. Ice has a density of 

0.9167 g/cm³ at 0 °C, where as water has a density of 0.9998 g/cm³ at the same 

temperature. Liquid water is densest, essentially 1.00 g/cm³, at 4 °C and becomes 

less dense as the water molecules begin to form the hexagonal crystals of ice as the 

temperature drops to 0 °C. This is due to hydrogen bonds forming between the 

water molecules, which line up molecules less efficiently (in terms of volume) 

when water is frozen. The result of this is that ice floats on liquid water, which is 

an important factor in Earth's climate. Density of ice increases slightly with 

decreasing temperature (density of ice at −180 °C (93 K) is 0.9340 g/cm³) [50].  
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CHAPTER 2 

 

 

THEORY 

 

 

 

2.1 Classification of Phase Transition 

 

There are three distinct types of thermal behaviour occuring along lines 

separating different phases or modifications of a substance, the normal transition 

with latent heat, the λ-transition without latent heat but a very high (perhaps 

infinite) peak of specific heat, and the so-called second-order transition in which 

there is no latent heat and a finite discontinuity in specific heat. The first and last 

members of a classification introduced by Ehrenfest, in which the “order” of a 

transition is determined by the lowest order of differential coefficients of the Gibbs 

function which shows a discontinuity on the transition line. Thus in a phase 

transition which involves latent heat, g is continuous across the line, but its 

derivatives ( g/ T)P and ( g/ P)T are discontinuous; such a transition is said to be 

of the first order. In the transition of a superconductor in zero magnetic field there 

is no latent heat and no volume change, so that the first derivatives of g are 

continuous, but the second derivatives, representing specific heat, expansion 

coefficient and compressibility are discontinuous, so that this is a transition of the 

second order [51]. 

First-order transitions are solid-liquid-vapour transitions. Many allotropic 

transitions in solids are the examples of the first-order phase transition. Second-

order transitions are superconducting transition in zero field. λ-transitions are 

order-disorder transformation in β-brass, ammonium salts, crystalline quartz, solid 

hydrogen and many other solids [51]. 
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2.2 Pippard Relations 

 Pippard [51] has established his relations which relate the specific heat CP 

to the thermal expansivity αP and αP to the isothermal compressibility κT linearly. 

The Pippard relations are important thermodynamically to correlate the 

thermodynamic quantities Cp, αp and κT in the vicinitiy of the λ-transition line. 

This modified version of the Pippard relations which we have obtained, can also be 

important spectroscopically to correlate the spectroscopic parameters, in particular, 

the frequency shifts with those thermodynamic quantities considered in the vicinity 

of the λ-phase line. Thus, by measuring the frequency shifts (1/ν) (∂ν/∂T)p and 

(1/ν) (∂ν/∂P)T experimentally, the thermodynamic quantities, namely, Cp, αp and 

κT can be predicted close to the λ-transition line by means of our modified Pippard 

relations. Since our relations contain the isobaric (γP)and isothermal (γT) mode 

Grüneisen parameters, the thermodynamic quantities Cp, αp and κT can be 

predicted using the frequencies of the appropriate modes of a crystalline system 

close to the λ-phase transitions. Considering several modes of a crystalline system, 

when appropriate for its λ-phase transition, those thermodynamic quantities can 

then be predicted for each mode separately and all these predictions can be 

compared with the experimentally measured quantities. Thus, by means of the 

modified Pippard relations, calculated Cp, αp and κT
 can be re-examined when 

compared with those measured experimentally close to the λ-transition line [52]. 

The spectroscopically modified Pippard relations [52] are as follows: 

                                                           (2.1) 

and  

                                                                (2.2) 

In Eqs. (2.1) and (2.2) isobaric and isothermal mode Grüneisen parameters are 

defined as: 
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                                                                                            (2.3) 

and  

                                                                                                (2.4) 

respectively. αP (Eq. 2.3) is the thermal expansivity and T (Eq. 2.4) is the 

isothermal compressibility [52]. 

2.3 Ising Model 

 Ising model is the drosophila of the theory of phase transitions. It is 

remarkably simple to express: 

Consider a lattice in d dimensions. At each lattice point, labelled by i, 

resides a classical spin σi which can take two values +1 or -1. The total energy of 

the system is given by the Ising Hamiltonian 

∑ ,                                                                                                (2.5)  

where J is the interaction parameter      

 This model was introduced by Ising in 1925, while working with Lenz on 

his PhD thesis to understand ferromagnetism in metals such as iron. Since the 

energy of the system is decreased by J if any two neighbouring spins point in the 

same direction while it is increased when they point in the opposite direction, 

energetically the system would prefer to be in a state where all spins point in the 

same direction. This is the ferromagnetic state that Ising and Lenz were after and it 

has thermal fluctuations that destroy this ordered phase and cause the magnet to 

lose its (ferro-) magnetic property. Though this model and many variants have 

served for generations of physicists as an invaluable tool to understand phase 

transitions and critical phenomena [53].  

The critical behaviour of the specific heat can be described near the λ-phase 

transition on the basis of an Ising model. The two orientations of the ions can be 
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identified with the spin-up and the spin-down orientations in an Ising model. The 

Ising part of the free energy is 

                                                                                                (2.6) 

where α is the critical exponent, A0 and A1 are constatnts. ε=|T-TC|/TC denotes the 

reduced temperature with the critical temperature TC. Using Eq. (2.6), the second 

derivative of the free energy with respect to the temperature gives a power-law 

formula for the specific heat CVI expressed as  

1 2 | |                                                               (2.7) 

where α is now the critical exponent for the specific heat CVI and J is the 

interaction energy between the nearest-neigbour ions in the crystal. In Eq. (2.7) C0 

denotes the background specific heat, as we have used for the analysis of NH4Br 

[54]. 

2.4 Mean Field Model 

 A many-body system with interactions is generally very difficult to solve 

exactly, except for exteremely simple cases (Gaussian field theory, 1D Ising 

model). The great difficulty (e.g. when computing the partition function of the 

system) is the treatment of combinatorics generated by the interaction terms in the 

Hamitonian when summing over all states. The goal of the mean field theory is to 

resolve these combinatorial problems. 

 The main idea of the mean field theory is to replace all interactions to any 

one body with an average or effective interaction. This reduces any multi-body 

problem into an effective one-body problem. The ease of solving the problems in 

mean field theory means that some insight into the behaviour of the system can be 

obtained at a relatively low cost. 

 In the mean field theory, the Hamiltonian may be expanded in terms of the 

magnitude of fluctuations around the mean of the field. In general, dimensionality 

plays a strong role in determining whether a mean-field approach will work for any 

particular problem. In mean field theory, many interations are replaced by one 
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effective interaction. Then, it naturally follows that if the field or particle exhibits 

many interactions in the original system, mean field theory will be more accurate 

for such a system.  

 While mean field theory arose primarily in the field of statistical mechanics, 

it has more recently been applied elsewhere, for example in inference in graphical 

models theory in artificial intelligence [55]. 

The mean field theory is a means by which to approximate the specific 

interactions between a given molecule and all the other molecules in the system. A 

common feature of mean field theories is the identification of an order parameter 

[56]. 

For our calculations, we first define the free energies of liquid and solid 

with the order parameter by means of the mean field theory. The free energy of the 

liquid is 

0                                                                                                                   (2.8) 

and the free energy of the solid phase is 

                                                                            (2.9) 

where ψ is the order parameter and ,   and  are the coefficients which 

depend on temperature and pressure or concentration according to their usage. In 

order to express the order parameter in terms of the coefficients, we minimize the 

free energy with respect to its order parameter. We then obtain 

3 /                                                                    (2.10) 

Thus, using the temperature and pressure or concentration dependences of the 

coefficients ,   and , the order parameter can be obtained as the functions of 

temperature and pressure or concentration.        

2.5 Ferroelectricity 

 In classical electromagnetism, the polarization density (or electric 

polarization, or simply polarization) is the vector field that expresses the density of 
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permanent or induced electric dipole moments in a dielectric material. The 

polarization vector P is defined as the dipole moment per unit volume. In the SI 

unit system its unit is coulombs per square metre [57]. Fig. 2.1 shows the 

polarization as a function of temperature for a second order phase transition [58]. 
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Figure 2.1 Spontaneous polarization versus temperature, for a scond-order phase 
transition 

 

 

In a homogeneous linear and isotropic dielectric medium, the polarization is 

aligned with and proportional to the electric field E. In an anisotropic material, the 

polarization and the field are not necessarily in the same direction. Then, the i th 

component of the polarization is related to the j th component of the electric field 

according to:  

∑                                                                                                    (2.11) 
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where ε0 is the permittivity of free space, and χ is the electric susceptibility tensor 

of the medium [57].   

 The dielectric constant ε of an isotropic or cubic medium relative to vacuum 

is defined in terms of the macroscopic field E: 

1                                                                                              (2.12) 

where P is polarization and χ is susceptibility [58]. 

The ferroelectric effect is an electrical phenomenon whereby certain ionic 

crystals may exhibit a spontaneous dipole moment. The term ferroelectricity refers 

to the similarity with ferromagnetism, in which a material exhibits a permanent 

magnetic moment [59]. A ferroelectric crystal exhibits an electric dipole moment 

even in the absence of an external electric field. In the ferroelectric state the center 

of the positive charge of the crystal does not coincide with the center of negative 

charge [60]. 

The plot of polarization versus electric field for the ferroelectric state shows 

a hysteresis loop (Fig. 2.2). A crystal in a normal dielectric state usually does not 

show significant hysteresis when the electric field is increased and then reversed, 

both slowly [58]. The phenomenon of hysteresis can conceptually be explained as 

follows: a system can be divided into subsystems or domains, much larger than an 

atomic volume, but still microscopic. Such domains occur in ferroelectric and 

ferromagnetic systems, since individual dipoles tend to group with each other, 

forming a small isotropic region. Each of the system's domains can be shown to 

have a metastable state. The metastable domains can in turn have two or more 

substates. Such a metastable state fluctuates widely from domain to domain, but the 

average represents the configuration of lowest energy. The hysteresis is simply the 

sum of all domains, or the sum of all metastable states [60]. 
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Figure 2.2 The hysteresis loop. 

 

Ferroelectric materials often have very large dielectric constants, and thus 

are often found in capacitors. They also often have unusually large nonlinear 

optical coefficients [59]. 

Ferroelectricity usually disappears above a certain temperature called the 

transition temperature. Above the transition the crystal is said to be in a paraelectric 

state [58]. Paraelectricity is a phenomenon, or rather "crystal phase", where electric 

dipoles are unaligned (i.e. unordered domains that are electrically charge) and thus 

have the potential to align in an external electric field and strength it [61]. 

Paraelectric materials have a characteristic of a rapid drop in the dielectric constant 

as the temperature increases [58]. In comparison to ferroelectricity phase, the 

domains are unordered and the internal field is weak [61].  
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CHAPTER 3 

 

 

CALCULATIONS AND RESULTS 

 

 

 

3.1 Lambda-Phase Transition in Ammonium Bromide 

 

 λ-transitions ocur in various systems such as the order-disorder 

transformation in β-brass, ammonium salts (ammonium halides), crystalline quartz 

and many other solids [51], as stated in section 2.1. Also, this λ-shape in the 

specific heat CP appears in liquid helium and the antiferromagnetic transition in 

MnBr2 is a symmetrical λ-transition. Two dimensional Ising model of the order-

disorder transformation exhibits also a symmetrical λ-transition [51]. Here we 

consider the λ-type of phase transition that occurs in the specific heat CP of 

ammonium bromide. The λ-transition takes place at 234 K (Tλ) in NH4Br as an 

order-disorder transition. 

3.1.1 Critical Behaviour of the Specific Heat Calculated Using the Raman 

Frequencies of the Lattice and Internal Modes Near the Lambda-Phase 

Transition in Ammonium Bromide 

 The critical behaviour of the specific heat can be interpreted quantitatively 

from the Raman frequency shifts in NH4Br. By means of correlations between the 

specific heat CVI (or CP) and the Raman frequency shifts   or   close 

to the λ-phase transition of NH4Br, the specific heat can be calculated from the 

Raman data. This is done by assuming that the specific heat and the Raman 

frequency shifts exhibit similar critical behaviour with the same critical exponent α 

near the λ-phase transition of NH4Br. Thus, expressing the critical behaviour of the 

frequency shifts   by a power-law formula  
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                                                                                                    (3.1) 

with the critical exponent α and the amplitude A, we can evaluate the specific heat 

CVI as a function of temperature in NH4Br near its λ-phase transition according to 

Eq. (2.7). In order to find the critical exponent α, first of all we integrate Eq. (3.1) 

                                                                                                  (3.2) 

After integration, we find 

| |                                                                                          (3.3) 

with the critical frequency νC of the Raman mode and taking the logarithm of both 

sides, we obtain the relation 

1 | |                                                              (3.4) 

for the λ-phase transition in NH4Br. A plot  ln(ν/νC) as a function of the reduced 

temperature ε in a log-log scale gives the critical exponent α for the frequency shift  

 of those Raman modes considered in NH4Br. Once, we determined the 

critical exponent α from the Raman frequency data, this will then describe the 

critical behaviour of the specific heat CVI according to Eq. (2.7). So, using the 

Raman frequencies of those modes studied at various temperatures close to the λ-

phase transition in NH4Br, the specific heat CVI can be calculated by means of Eq. 

(2.7) for an Ising model and it can be compared with the thermodynamically 

measured CP values for its crystalline system. 

 In this section, we calculate the specific heat CVI as a function of 

temperature using the Raman frequencies for the ν7 (56 cm-1) and the ν2 (1684 cm-1) 

modes in NH4Br near the λ-phase transition [54]. In order to calculate the specific 

heat CVI, we first calculate the critical exponent α and the amplitude A by using the 

log-log graph of ln(ν/νC) against the reduced temperature ε. Fig. 3.1 shows the log-

log graph of ln(ν/νC) versus the reduced temperature ε for the ν7 (56 cm-1) mode of 

NH4Br (P=0, TC=234 K). By using Fig. 3.1, we obtain  
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|ln / | 1.89 0.81| |                                                                  (3.5) 

By equating Eqs. (3.4) and (3.5), we obtain the critical exponent α and the 

amplitude A whose values are given in Table 3.1.  

 

 

Table 3.1 Values of the critical exponent α and the amplitude A for the Raman 

frequency shifts  of the frequency ν7 (56 cm-1) mode in NH4Br (P=0) within 

the interval of the reduced temperature ε according to Eq. (3.4). νC indicates the 

critical frequency of this mode (TC=234 K) 

Raman Mode α A×10-4 (K-1) νC (cm-1) ε=| |/TC 

ν7 (56 cm-1) 0.19 5.23 57.05 3×10-3<ε<7×10-2
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Figure 3.1 ln(ν/νC) as a function of the reduced temperature ε=| |/TC in a log-

log scale for the ν7 (56 cm-1) Raman mode of NH4Br (P=0, TC=234 K) according to 

Eq. (3.4). νC denotes the critical frequency. The observed frequencies are shown by 

squares [54]. 
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Similarly, we also analyzed the temperature dependence of the Raman 

frequency shifts for the internal mode of ν2 (1684 cm-1) below and above TC 

according to Eq. (3.4). In a log-log scale a plot of ln(ν/νC) against the reduced 

temperature ε, gives the equation for below TC as 

/ 5.28 0.55                                                                        (3.6)                         

Equating Eqs (3.4) and (3.6), we find the critical exponent α=0.45 (T<TC) and  

 / 5.74 0.43                                                                       (3.7)                        

By using Eqs (3.4) and (3.7), we obtain α=0.57 (T>TC), as tabulated in Table 3.2. 

Our plots are given in Figs. 3.2 and 3.3, respectively, for T<TC and T>TC in NH4Br 

(P=0, TC=234 K). 
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Figure 3.2 ln(ν/νC) as a function of the reduced temperature ε=| |/TC in a log-

log scale for the ν2 (1684 cm-1) Raman mode of NH4Br (P=0, TC=234 K) below TC 

according to Eq. (3.4). νC denotes the critical frequency. The observed frequencies 

are shown by squares [54]. 
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Table 3.2 Values of the critical exponent α and the amplitude A for the Raman 

frequency shifts  of the frequency ν2 (1684 cm-1) mode within the interval 

of the reduced temperature ε  in NH4Br (P=0, TC=234 K) according to Eq. (3.4). 

Our values of C0 and J2A1 below and above TC are also given. 

ν2 (1684 cm-1) α A×10-4 

(K-1) 

ε=| |/TC  C0(J/ mol K) - J2A1(J/mol) 

T<TC 0.45 0.12    1.5×10-2<ε<7.4×10-2 60 2831.71 

T>TC 0.57 0.059 0.3×10-2<ε<7×10-2 70 1225.37 
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Figure 3.3 ln(ν/νC) as a function of the reduced temperature ε=| |/TC in a log-

log scale for the ν2 (1684 cm-1) Raman mode of NH4Br (P=0, TC=234 K) above TC 

according to Eq. (3.4). νC denotes the critical frequency. The observed frequencies 

are shown by squares [54]. 
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From our analysis of the Raman frequency data for both modes ν7 (56 cm-1) 

and ν2 (1684 cm-1), we were then able to calculate the specific heat CVI according 

to Eq. (2.7). To calculate the specific heat CVI, we also needed the value of J2A1. 

We used the observed CP data [3] at various temperatures as CVI in Eq. (2.7) with 

C0=0. Thus, the J2A1 values were calculated, as given in Table 3.2 and Table 3.3. 

 

 

Table 3.3 Values of the critical exponent α, the background specific heat C0 and 

J2A1 due to the ν7 (56 cm-1) Raman mode (Table 3.1) below and above TC, 

according to Eq. (2.7) in NH4Br (P=0, TC=233.8 K) 

ν7 (56 cm-1) Α C0 (J/mol K) - J2A1 (J/mol) 

T<TC 0.19 32 6435.10 

T>TC 0.19 -25 6248.87 

 

 

 

After calculating J2A1 values, we calculated the specific heat CVI as a 

function of temperature according to Eq. (2.7). The observed CP [2] and the 

calculated CVI values against temperature are shown in Fig. 3.4 for the ν7 (56 cm-1) 

Raman mode. 

Similarly, we calculated the J2A1 values for the ν2 (1684 cm-1) mode in 

NH4Br, as given in Table 3.2. Finally, we plot the specific heat (observed CP [3] 

and calculated CVI) against the temperature graph for the ν2 (1684 cm-1) mode in 

Fig. 3.5.  
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Figure 3.4 Specific heat CVI calculated as a function of temperature for the first 

order phase transition (P=0, TC=234 K) using the frequencies of the ν7 (56 cm-1) 

Raman mode in NH4Br. Observed CP data [3] is also shown here. 

 

 

Our calculated CVI using the frequencies of the Raman modes of ν7 (56    

cm-1) and ν2 (1684 cm-1), as given by Figs. 3.4 and 3.5, respectively, exhibit a λ-

type of phase transition with the observed CP [3] for NH4Br. Agreement is better 

below Tλ for the CVI values calculated here for both phonons, whereas above Tλ the 

calculated CVI values are much lower than those observed CP due to the ν7 (56 cm-1) 

Raman mode of NH4Br (Fig. 3.4). For the ν2 (1684 cm-1) Raman mode above Tλ, 

agreement between the calculated CVI and the observed CP data [3], is reasonably 

good (Fig. 3.5).  

 



24 
 

200 210 220 230 240 250 260 270
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

S
pe

ci
fic

 H
ea

t (
J/

m
ol

 K
)

Temperature (K)

 Observed CP

 Calculated CVI

Figure 3.5 Specific heat CVI calculated as a function of temperature for the first 

order phase transition (P=0, TC=234 K) using the frequencies of the ν2 (1684 cm-1) 

Raman mode in NH4Br. Observed CP data [3] is also shown here. 

 

 

 Discrepancies which occur close to the transition temperature just below 

and above Tλ (Figs. 3.4 and 3.5), may be due to the fact that we compare our 

calculated CVI with the observed CP instead of CV which is not accessible 

experimentally. Although there are discrepancies, in particular close to Tλ, our 

calculated values of the specific heat CVI are reasonably in good agreement with 

the observed CP for NH4Br, as we see from Figs. 3.4 and 3.5. 

 Above Tλ, there occurs some discrepancy in the specific heat CVI calculated 

using the frequency of the  ν7 (56 cm-1) Raman mode of NH4Br, as shown in Fig. 

3.4 in comparison with the observed CP data. This can be explained on the basis of 

the pseudospin-phonon coupling in an Ising model due to Yamada et al. [62] for 
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NH4Br. The ν7 (56 cm-1) mode is the disorder-allowed Raman mode at the zone 

boundary (M point) in the Brillouin zone of the disordered β phase in NH4Br, 

which is relocated at the zone center (Γ point) in the Brillouin zone of the antiferro-

ordered γ phase in this crystal. In this intermediate phase (γ phase), two 

orientations of the NH4
+ ions in analogy with the up and down orientations of 

spins, are accompanied by the antiparallel displacements of  ions from the 

corner site in the  plane. As pointed out by Yamada et al. [50], displacements 

of  ions correspond to the polarization of a normal mode (TA1 branch) at (110) 

zone boundary in the disordered β phase of NH4Br. Thus, due to this interaction 

with the NH4
+ ions of the ν7 (56 cm-1) phonon in an Ising pseudospin-phonon 

coupled model [62], which becomes much more important above Tλ than below Tλ, 

contributions to the specific heat CVI are lowered above Tλ, as shown in Fig. 3.4. 

 Also, in our analysis of the frequency shifts  for the ν7 (56 cm-1) 

Raman mode of NH4Br, we obtained the same value of α=0.19 below and above Tλ 

(Fig. 3.1), which was then used to calculate the specific heat CVI for the transition 

between the disordered β and the antiferro-ordered γ phases in crystal. If the critical 

behaviour of the frequency shifts for the ν7 (56 cm-1) Raman mode is not the same 

in the β and γ phases of NH4Br, in other words, the temperature dependence of  

 is accompanied with a different value of the critical exponent α above Tλ, 

this may effect our calculated values of CVI in the β phase. As a result of this, our 

calculated CVI values can agree better with the observed CP [3] above Tλ in NH4Br, 

as we obtained for the ν2 (1684 cm-1) mode (Fig. 3.5) using two different values of 

the critical exponent α below and above Tλ (Table 3.2). 

 For the β-γ transition we studied here as a second order phase transition in 

NH4Br, the values of the critical exponent α deduced for the ν7 (56 cm-1) mode 

(Table 3.1) and the  ν2 (1684 cm-1) mode (Table 3.2), can be compared with the 

predictions of an Ising model. Our value of α=0.19 (below and above Tλ) due to the 

ν7 (56 cm-1) mode is close to the critical exponent value of 0.125 (=1/8) for the 

specific heat CP predicted from a three-dimensional Ising model.However, our 

values of α=0.45 (T<Tλ) and α=0.57 (T>Tλ) due to the ν2 (1684 cm-1) mode in 

NH4Br, are very large compared to the Ising value. Our values can be reasonably 
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compared with the value of α'≈0.67 obtained from the experimental measurements 

of CP data for NH4Cl [63]. 

3.1.2 Pippard Relations Applied To The Lambda-Phase Transition In 

NH4Br 

Eq.(2.1) assumes that the specific heat CP varies linearly with the frequency 

shifts (1/ν)(∂ν/∂T)P. Similarly, Eq.(2.2) assumes that the thermal expansivity αP 

varies linearly with the frequency shifts (1/ν)(∂ν/∂P)T close to the λ-point. We also 

assume here that the mode Grüneisen parameters γP and γT remain constant across 

the λ-phase transitions. 

In this study we applied Eqs.(2.1) and (2.2) to NH4Br close to its λ-phase 

transition (Tλ=234 K, P=0). For this application we used the observed frequencies 

for the lattice mode of ν7 (56 cm-1) and for the internal mode of ν2 (1684 cm-1) in 

NH4Br [49]. By analyzing the temperature dependence of the frequency shifts 

 for those modes according to a power-law formula (Eq. 3.1), we 

established the first Pippard relation (Eq. 2.1) [46], as also given in our recent study 

[64]. 

According to the calculation in section 3.1.1, we established a linear 

variation of CP with the  for this lattice mode of ν7 (56 cm-1) in NH4Br 

(P=0) with the critical exponent value of α=0.19 and the amplitude value of 

A=5.23 10-4. In order to draw a graph of CP versus  , we should calculate 

the values by using the power law formula (Eq. 3.1). We calculated the 

reduced temperature ε-α and multiplied with the amplitude A to obtain the values of 

.  Figs. 3.6 and 3.7 represent the specific heat CP [65] as a function of the 

frequency shifts  for the ν7 (56 cm-1) lattice mode of NH4Br below and 

above Tλ, respectively (Tλ=234 K, P=0) [64].  
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Figure 3.6 The specific heat Cp as a function of the frequency shift for the 

lattice mode of ν7 (56 cm-1) Raman mode of NH4Br close to the λ-phase transition 

below Tλ (P=0, Tλ=234 K) according to Eq.(2.1). The specific heat Cp data is taken 

from Ref. [65]. 

 

 

Similarly, we obtained the values of  for the internal mode of                 

ν2 (1684 cm-1) using the calculation in section 3.1.1. Figs. 3.8 and 3.9 give our 

linear plots of CP [64] against  for the ν2 (1684 cm-1) Raman mode of NH4Br 

below and above Tλ, respectively. 
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Figure 3.7 The specific heat Cp as a function of the frequency shift for the 

lattice mode of ν7 (56 cm-1) Raman mode of NH4Br close to the λ-phase transition 

above Tλ (P=0, Tλ=234 K) according to Eq.(2.1). The specific heat Cp data is taken 

from Ref. [65]. 

 

 

  From our plots (Figs. 3.6-3.9), we deduced the values of the slope (dP/dT)λ 

and the intercept T(dS/dT)λ according to Eq. (2.1) for the Raman modes of  ν7 

(56cm-1) and  ν2(1684cm-1), as tabulated in Tables 3.4 and 3.5, respectively. In 

order to deduce the values of the slope (dP/dT)λ, we used the values of V=Vλ at 

T=Tλ and the mode Grüneisen parameter γP, as given in Tables 3.4 and 3.5, for the 

ν7 (56 cm-1) and  ν2 (1684cm-1) modes, respectively. The Vλ values were calculated 

here by means of the relation 
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Figure 3.8 The specific heat Cp as a function of the frequency shift for the 

internal mode of ν2 (1684 cm-1) Raman mode of NH4Br close to the λ-phase 

transition below Tλ (P=0, Tλ=234 K) according to Eq.(2.1). The specific heat Cp 

data is taken from Ref. [65]. 

 

 

∆ /                                                            (3.8) 

where ν1 and V1 are the values of the frequency and volume at room temperature 

(T=296 K), and ΔP is defined as the order-disorder contribution to the frequency 

(ΔP≠0, T Tλ and ΔP=0,  T> Tλ), as given in an earlier study [66]. Using the values 

of γP and ΔP [66], the Vλ values were calculated for the ν7 (56 cm-1) and  

ν2(1684cm-1) modes (Eq. 3.8), and then the values of the slope (dP/dT)λ were 

obtained according to Eq. (2.1) below and above Tλ in NH4Br (Tables 3.4 and 3.5). 



30 
 

0 1 2 3 4 5 6

80

90

100

110

120

130

140

150

160

T>T
λ

C
P (J

/m
ol

.K
)

-(1/ν)(dν/dT)Px10-4 (K-1)

240.35 K

238.99 K

236.43 K

234.48 K

234.34 K

234.27 K

234.25 k

234.13 k

234.09 K

(dP/dT)
λ
=41.5 bar/K

Figure 3.9 The specific heat Cp as a function of the frequency shift for the 

internal mode of ν2 (1684 cm-1) Raman mode of NH4Br close to the λ-phase 

transition above Tλ (P=0, Tλ=234 K) according to Eq.(2.1). The specific heat Cp 

data is taken from Ref. [65]. 

 

 

Table 3.4 Values of the Raman frequency of ν7(56 cm-1) mode, νλ(at Tλ), its mode 

Grüneisen parameter γp [65], the order-disorder contribution to the frequency, Δp 

[66] and the volume Vλ (at Tλ) (Eq. 3.8). Values of the slope (dP/dT)λ and the 

intercept (Eq. 2.1) are also given here within the range of reduced temperature ε 

below and above Tλ in NH4Br. 

Tλ=234
K 

νλ(cm-1) γp Δp 

(cm-1) 
Vλ(cm3

/mol) 
(dP/dT)λ 

(bar/K) 
T(dS/dT)λ 

(J/mol.K) 
ε =|T-Tλ|/Tλ  
 

T< Tλ 57.05 7.9 7.50 40.742 40.4 47.42 1.37 10-3<ε<7.13 10-2

T> Tλ 57.05 7.9 0 40.022 44.5 19.66 3.85 10-4<ε<2.71 10-2
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Table 3.5 Values of the Raman frequency of ν2(1684 cm-1) mode, νλ(at Tλ), its 

mode Grüneisen parameter γp [65], the order-disorder contribution to the 

frequency, Δp [66] and the volume Vλ (at Tλ) (Eq. 3.8). Values of the slope (dP/dT)λ 

and the intercept (Eq. 2.1) are also given here within the range of reduced 

temperature ε below and above Tλ in NH4Br. 

Tλ=234
K 

νλ(cm-1) γp Δp 

(cm-1) 
Vλ(cm3

/mol) 
(dP/dT)λ 

(bar/K) 
T(dS/dT)λ 

(J/mol.K) 
ε =|T-Tλ|/Tλ  
 

T< Tλ 1686.6 0.25 4.64 40.391 65.3 81.64 1.37 10-3<ε<7.13 10-2

T> Tλ 1687.7 0.25 0 39.84 41.5 72.19 3.85 10-4<ε<2.71 10-2

 

 

3.2 Calculation of the Phase Diagram Using the Mean Field Theory 

 A phase diagram is common way to represent the various phases of a 

substance and the conditions under which each phase exists. 

 A phase diagram is a plot of pressure (P or lnP) vs temperature (T). Lines 

on the diagram represent conditions (T,P) under which a phase change is at 

equilibrium. That is, at a point on a line, it is possible for two (or three) phases to 

coexist at equilibrium. In other regions of the plot, only one phase exists at 

equilibrium [67]. 

 Phase diagrams provide a graphical means of presenting the results of 

experimental studies of complex natural processes, such that at a given temperature 

and pressure for a specific system at equilibrium the phase or phases present can be 

determined [68]. 

 Phase diagrams (temperature vs pressure or temperature vs concentration) 

can be calculated for various physical systems using the mean field theory. By 

expanding the free energy in terms of the order parameters according to the 

Landau–phenomenological theory, the phase line equations can be derived. 

Assuming the temperature and pressure (or concentration) dependence of the 

coefficients in the free energy expansion, the temperature versus pressure (T-P) or 

the temperature versus concentration (T-X) phase diagrams of the systems can be 

calculated.  
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 In order to interpret the experimentally measured phase diagrams, the phase 

line equations derived from the Landau–phenomenological theory can be fitted to 

the experimental data. Below, we derive the phase line equations from the mean 

field theory and they are fitted to the experimental data for various physical 

systems. 

3.2.1 Ammonium and Deutero-Ammonium Chloride 

We have two solid phases of NH4Cl and ND4Cl, solid II and solid III. 

According to Eq. (2.9), we can write the free energy of these two solid phases as 

 II                                                                                 (3.9) 

and 

III                                                                                 (3.10) 

where ψ and η are the order parameters of solid II and solid III, respectively. Solid 

II and III phases are both considered as ordered phases in NH4Cl and ND4Cl as the 

pressure increases to 40 kbar, according to the experimental T-P phase diagrams in 

those crystalline systems [69]. Here, the coefficients 2, 4 and 6 (Eq.3.9), and b2, 

b4 and b6 (Eq.3.10) depend on both temperature and pressure. We also consider that 

2>0, 4<0 and 6>0 (Eq. 3.9), and b2>0, b4<0 and b6>0 (Eq. 3.10) as the condition 

for a first-order phase transition. This is in accordance with the experimental results 

for both NH4Cl and ND4Cl that at higher pressures the transition is likely of a first 

order [69]. We note that in Eqs. (3.9) and (3.10) the odd powers of Ψ and η are not 

included for symmetry reasons. 

 From minimization of the free energies with respect to the order parameters, 

as given in the section 2.4, we have 

3 /                                                                    (3.11) 

and  

3 /                                                                     (3.12) 
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By substituting Eq. (3.11) into Eq. (3.9), the free energy of solid II phase in NH4Cl 

and ND4Cl can be expressed as  

3 /                                                      (3.13) 

Similarly, by substituting Eq. (3.12) into Eq. (3.10), the free energy of solid III 

phase in NH4Cl and ND4Cl can be written as 

3 /                                                      (3.14) 

On the transition line between phase II and phase III in NH4Cl and ND4Cl, 

we have FII=FIII or 

3
2

27
2

27
3 /

3
2

27
 

                                                              3 /   =h=0              (3.15) 

This is the phase line equation for the transition between solid II and solid III 

phases in NH4Cl and ND4Cl at high pressures.  

We calculated here T-P phase diagrams of NH4Cl and ND4Cl between the 

solid II and solid III transition. For this calculation, the phase line equation (Eq. 

3.15) was expressed in terms of the temperature and pressure dependence of the 

coefficients 2, 4, 6 and b2, b4 and b6 in the polynomial form. We assume here 

that the coefficients 2 and 4 are temperature dependent only and that their 

dependences are given by 

/                                                                                           (3.16) 

/                                                                                           (3.17) 

which corresponds to 2 ~ 4
2. We choose 6=1, Tt is the transition temperature. 

We also assume that the coefficients b2, b4 and b6 depend on the pressure only, and 

that their dependences are as follows: 

                                                                                             (3.18) 
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                                                                                               (3.19) 

                                                                                               (3.20) 

which corresponds to b2 ~ b4
2 ~ b6

2. Pt represents the transition pressure. In Eqs.        

(3.16-3.20) 20,  40, b20, b40 and b60 are all constants. 

 By substituting these temperature and pressure dependences ( Eqs. 3.16-3.20) 

into the phase line relation ( Eq. 3.15), we then obtain  

3                                          

                         +  

                     3 / =h=0            (3.21) 

after some algebra, we get 

  

                    1
/

                                     (3.22) 

where 

3 /                                                                  (3.23) 

The bracket in the last term of Eq. (3.22) can be expanded to a power series up to 

the quadratic term and we can neglect the higher order terms. This then gives  

                               (3.24) 

where  

   ,     ,                                                          (3.25) 

Eq. (3.24) can be rewritten as  

                     (3.26) 
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with the parameters A=h0, B= - h0γ1, C= - h0γ2 and D= - h0γ3. In this expression h0, 

γ1, γ2 and γ3 are constants. As given in Eqs. (3.23) and (3.25), the coefficients A, B, 

C and D which are defined as the functional forms of 20, 40, b20, b40 and b60, are 

related to the coefficients h0, γ1, γ2 and γ3 of the polynomial (Eq. 3.26). So, by 

means of the phase line relation (Eq. 3.15), which we derived from the mean field 

theory, the coefficients  2, 4 and 6 of the free energy FII (Eq.3.13), and the 

coefficients b2, b4 and b6 of the free energy FIII (Eq. 3.14) can be calculated as 

functional forms since they are coupled to each other. The physical meaning of 

these coefficients 2, 4,  6 (Eq. 3.13) and b2, b4 and b6 (Eq. 3.14) is the same as in 

the Landau mean field theory. In Eq. (3.26) (Tt, Pt) represents coordinates of the 

transition point on the T-P phase line between solid II and solid III phases in 

NH4Cl and ND4Cl. Here we took Tt= -30.240C at Pt= 0 kbar [55]. Eq. (3.26) which 

we derived from the mean field theory, was then fitted to the experimental T-P data 

for NH4Cl and ND4Cl [66]. From this fitting, we obtained the values of the best-

fitted equations as: 

28.48 8.16 0.17 0.0015                                                    (3.27) 

25.02 7.22 0.16 0.0017                                                    (3.28) 

for both NH4Cl (Eq. 3.27) and ND4Cl (Eq. 3.28). Figs 3.10 and 3.11 give our plots 

for T-P phase diagrams of NH4Cl and ND4Cl, respectively, according to Eq. (3.26). 

The observed data [69] is also shown in our plots [70]. Equating Eq. (3.26) to the 

Eqs. (3.27) and (3.28), we can calculate the parameters h0, γ1, γ2, γ3 which are given 

in Table 3.6. 

 

 

Table 3.6 Values of the parameters h0, γ1, γ2 and γ3 using the experimental data 

from the T-P phase diagrams of NH4Cl and ND4Cl [69] according to Eq. (3.26) 

Crystal h0 γ1 (0C/kbar) γ2 (0C/kbar2) γ3 (0C/kbar3) 

NH4Cl 0.942 8.66 -0.18 0.0016 

ND4Cl 1.07 6.75 -0.15 0.0016 
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Figure 3.10 Phase diagram of NH4Cl for solid II-solid III transition to 40 kbar. 

Solid line represents our calculated phase line. The experimental data [69] is also 

shown here. 
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Figure 3.11 Phase diagram of ND4Cl for solid II-solid III transition to 40 kbar. 

Solid line represents our calculated phase line. The experimental data [69] is also 

shown here. 
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3.2.2 Ammonium Sulfate 

 

 There are two solid phases, solid I and solid II, and liquid phase of 

(NH4)2SO4 and according to section 2.4, their free energies can be written as: 

                                                                                 (3.29) 

                                                                                 (3.30) 

and  

0                                                                                                                   (2.8) 

where μ and ν are the order parameters of the solid I and II phases, respectively. 

Since we study here a T-X phase diagram of the (NH4)2SO4/H2O system, we 

assume that in Eqs. (3.29) and (3.30) the parameters α2, α4 and α6; β2, β4 and β6 are 

all dependent upon the temperature and concentration. Due to the fact that the 

phase lines in the T-X phase diagram of this system represent a first order phase 

transition, we take α2>0, α4<0 and α6>0; β2>0, β4<0 and β6>0.  

 In order to apply the condition for the first order transition between liquid and 

solid I phases, we minimize the free energy FI with respect to the order parameter 

μ, which gives  

3 /                                                                   (3.31) 

Inserting Eq. (3.31) into Eq. (3.29), we get 

3 /                                                      (3.32) 

To write the phase line equation of liquid-solid I, we must equate the free energies 

of these two phases 

                                                                                                                (3.33) 

Then, we can write 

3 / 0                                                      (3.34) 

After some calculations, we obtain 

2 9 4 3 /                                                     (3.35) 

Finally, we can  find the phase line equation for the liquid-solid I transition as 

4                                                                                                         (3.36) 

or 

 4 0                                                                                        (3.37) 
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This is the phase line equation for the liquid-solid I transition, which represents the 

melting curve in the phase diagram of (NH4)2SO4/H2O. 

In order to obtain T-X phase diagram of (NH4)2SO4/H2O, as we have given 

in our recent study [20], we used here our phase line equation, namely, Eq. (3.37) 

for the liquid-solid I. This was expressed as a functional form of both temperature 

and concentration in the following: 

0             (3.38) 

where (Tm, Xm) denote the coordinates of the melting point. From the experimental 

T-X phase diagram of (NH4)2SO4/H2O, the melting point is located at                      

Tm = -19.515 0C and Xm = 39.950 as the weight percent of the ammonium sulphate 

[19]. In Fig. 3.12 we plot the melting curves of liquid-solid I (Eq. 3.38). The 

observed T-X data is also given in Fig. 3.12. 
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Figure 3.12 Our calculated phase diagram of (NH4)2SO4/H2O. Calculated phase 

lines are represented by solid lines. Experimental data [19] is also shown here. 
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 In order to calculate the phase line equation by using Fig. 3.12, we fitted the 

experimental data for liquid-solid I transition and we obtained the equation as: 

 0.121 0.295 0.00305 0.000196                                  (3.39) 

Then equating Eqs. (3.38) and (3.39), we can get the coefficients α1, α2, α3 which 

are given in Table 3.7. 

 

 

Table 3.7 Values of the coefficients which we obtained, when the equations 

indicated were fitted to the experimental data [19] for the liquid-solid I (L-I), 

liquid-solid II (L-II) and solid I-solid II (I-II) transitions in (NH4)2SO4/H2O. w 

denotes % weight of ammonium sulphate. 

L-I Eq. (3.38) L-II Eq. (3.46) I-II Eq. (3.56) 

α1 (0C/w)  -0.986 β1 (0C/w)  10.043 γ1 (0C/w) -2.024 

α2 (0C/w2)  -0.0204 β2 (0C/w2)  -0.136  γ2 (0C/w2) 0.0364  

α3 (0C/w3)  -1.96x10-4 β3 (0C/w3)  0.040  γ3 (0C/w3) -2.7x10-3

 

 

 

Similarly, the phase line equation for the melting curve between liquid and 

solid II phases, can be obtained from the free energy FII (Eq. 3.30). By minimizing 

FII with respect to the order parameter ν, we obtain the expression for ν in terms of 

the coefficients β2, β4 and β6 as follows: 

3 /                                                                    (3.40) 

Also, by substituting Eq. (3.40) into Eq. (3.30), we get 

3 /                                                      (3.41) 

Next, equate the free energies of liquid (Eq. 2.8) and solid II (Eq. 3.41) 

                                                                                                               (3.42) 

Then, we can write 

3 / 0                                                       (3.43) 



40 
 

After some calculations, we can finally find the phase line equation for the liquid-

solid II transition as 

4                                                                                                         (3.44) 

or 

 4 0                                                                                         (3.45) 

This is the phase line equation for the liquid-solid II transition, which represents 

the melting curve in the phase diagram of (NH4)2SO4/H2O. 

Similarly, the functional form of both temperature and concentration for the 

liquid-solid II is given as: 

0              (3.46) 

Fig. 3.12 also shows the liquid-solid II phase transition. Our fitted phase line 

equation of liquid-solid II transition is: 

  3193.60 212.43 4.93 0.040                                       (3.47) 

By equating Eqs. (3.46) and (3.47), we can calculate the coefficients β1, β2 and β3 

whose values are written in Table 3.7. 

  In order to derive the phase line equation for the transition between two 

solid phases, namely, solid I and solid II, we use the condition that  

0                                                                                                 (3.48) 

for the first order transition, as indicated above. In order to calculate this difference 

between two free energies of the solid phases, we first define the free energies of 

the solid phases (Eqs. 3.32 and 3.41) as 

                                                                                                                (3.49) 

and  

                                                                                                               (3.50) 

where 

9 3 /                                                             (3.51) 

                                                                                                            (3.52) 

9 3 /                                                             (3.53) 
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and  

                                                                                                            (3.54)  

By obtaining the difference between FI and FII according to Eq. (3.48), we get 

0                                                                                                  (3.55) 

This represents the phase line equation for the transition between solid I and solid 

II in  (NH4)2SO4/H2O. 

Similarly, the functional form of both temperature and concentration for the 

solid I-solid II is given as: 

0               (3.56) 

Fig. 3.12 also shows the solid I-solid II phase transition. Our fitted phase line 

equation of liquid-solid II transition is: 

 292.10 17.86 0.36 0.0027                                             (3.57) 

By equating Eqs. (3.56) and (3.57), we can calculate the coefficients γ1, γ2 and γ3 

whose values are written in Table 3.7. 

 3.2.3 Lithium Potassium Rubidium Sulfate 

There are four solid phases in a mixed crystal of LiK1-xRbxSO4. We expand 

the free energies of phases II, III, IV, and V in terms of their order parameters ψ, η, 

ξ, and φ, respectively. This gives  

                                                                              (3.58) 

                                                                                (3.59) 

                                                                                  (3.60) 

                                                                               (3.61) 

In the above relations, the coefficients 42 , aa , and 6a  (eq. 3.58), b2, b4, and b6 (eq. 

3.59), c2, c4, and c6 (eq. 3.60), and d2, d4, and d6 (eq. 3.61) are assumed to depend 

upon the temperature T and concentration X. In those relations (eqs. 3.58-3.61), we 

take 0,0 42 <> aa , and 06 >a  (eq. 3.58), b2>0, b4<0, and b6>0 (eq. 3.59), c2>0, 
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c4<0, and c6>0 (eq. 3.60), and d2>0, d4<0, and d6>0 (eq. 3.61) as for a first-order 

transition exhibited by a mixed crystal of LiK1-xRbxSO4. 

 In order to express the order parameters in terms of the coefficients, we 

minimize the free energies (eqs. 3.58-3.61) with respect to their order parameters 

(ψ, η, ξ, and φ). We then obtain 

3 /                                                                    (3.62) 

3 /                                                                     (3.63) 

3 /                                                                       (3.64) 

3 /                                                                   (3.65) 

Thus, using the temperature and concentration dependences of the coefficients 

42 , aa , and 6a (eq. 3.62), b2, b4, and b6 (eq. 3.63), c2, c4, and c6 (eq. 3.64) and d2, 

d4, and d6 (eq. 3.65), the order parameters (ψ, η, ξ, and φ) can be obtained as 

functions of temperature and concentration. 

 In order to obtain a T –X phase diagram of LiK1-xRbxSO4 from our mean 

field model, we use the condition for a first-order phase transition according to 

which we equate the free energies of two phases along the transition line. We apply 

this condition for all the phase transitions occuring in this mixed crystal.  

  First of all, we calculate the solid II-solid III phase transition. By equating 

FII to FIII, we then get the phase line equation as 

                                                  (3.66) 

This can be written as an f function given by  

0                                (3.67) 

By employing the temperature and concentration dependences of the f function, 

which is due to the temperature and concentration dependences of the coefficients 

42 , aa , and 6a and b2, b4, and b6, (Eq. 3.67) can be written in a function form as  
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0                                      (3.68) 

where f0, α1, and α2 are constants. In Eq. (3.68), Xt denotes an equal concentration 

of Rb and K (Xt=0.5) according to the experimental phase diagram of LiK1-

xRbxSO4 [25]. Tt corresponds to a constant temperature at X=Xt for the II-III phase 

transition in this mixed crystal [25]. From Eq. (3.68), we can obtain the T-X phase 

line equation as 

2                        (3.69) 

for the II-III phase transition on cooling in LiK1-xRbxSO4 [70]. 

By fitting the experimental data [25], we calculated here the T-X phase 

diagram of LiK1-xRbxSO4 for the II-III phase transition. When we fitted Eq. (3.69) 

to the experimental data [25], these relations were reduced to a quadratic equation 

given by  

                                                                                             (3.70) 

where a , b, and c are constants. Using  the experimental measurements that have 

been taken for the II-III, III-IV, and IV-V transitions on cooling and heating [25], 

we calculated our phase line equations between cooling and heating curves. This is 

because of the condition for a first-order transition according to which the free 

energies are equal for the II-III, III-IV, and IV-V transitions in LiK1-xRbxSO4 [71]. 

Using the values of Tt and Xt, as given in Table 3.8 for the II-III transition 

in Eq. (3.69), the quadratic relation (Eq. 3.70) was employed and the coeffiicents a

, b, and c were obtained. We tabulate the values of a , b, and c in Table 3.8 for the 

II-III transition of LiK1-xRbxSO4. Table 3.9 gives the values of α1, α2, and f0 from 

the fitting of Eq. (3.69) to the experimental data [25] for the II-III transition of this 

crystal. We present the experimental values for Tt and Xt on cooling and heating 

[25] for the II-III, III-IV and IV-V transitions in LiK1-xRbxSO4 in Table 3.10. 
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Table 3.8 Values of the coefficients a , b, and c according to Eq. (3.70) at the 

temperature Tt and concentration Xt (Rb) for the transitions indicated on the basis 

of the experimental (cooling and heating) T-X phase diagram of LiK1-xRbxSO4 

[25]. 

Phase transition Tt (K) Xt (c. a ) a (K) b (K/ c. a ) c[K/( c. a )2] 
II-III 600.43 0.50 708.77 -116.21 -200.46 
III-IV 409.42 0.50 224.82 295.54 144.67 
IV-V 119.37 0.20 178.82 -85.64 -1045.40 

 

 

 

Figure 3.13 shows our calculated T-X phase diagram obtained using the 

phase line equations for the II-III, III-IV and IV-V transitions of LiK1-xRbxSO4, 

respectively, together with the experimental data points [25]. 
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Figure 3.13 T-X phase diagram calculated from our mean field model for the 

phases indicated for LiK1-xRbxSO4. Solid lines represent our calculated phase lines. 

Experimental data on heating and cooling is also shown here [25]. 
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Table 3.9 Values of the coefficients for the transitions according to equations 

indicated in LiK1-xRbxSO4. 

Phase transitions K/ c. a  K/( c. a )2 Parameters Equations 

II-III α1=-200.46 α2=-316.67 f0=1.000 3.69 

III-IV β1=441.09 β2=144.96 h0=0.998 3.75 

IV-V γ1=-501.79 γ2=-1041.24 k0=1.004 3.80 

 

 

Table 3.10 Values of the measured temperature Tt and concentration Xt (Rb) on 

cooling and heating for the transitions indicated, as given in the experimental T-X 

phase diagram of LiK1-xRbxSO4 [25]. 

Phase 
transitions 

Cooling Heating 

Tt (K) Xt (c. a ) Tt (K) Xt (c. a )2 

II-III 594.40 0.50 606.46 0.50 

III-IV 375.23 0.50 446.60 0.50 

IV-V 112.32 0.20 127.42 0.20 

 

 

 Similarly for the solid III-solid IV phase transition, we have  

                                                                                                            (3.71) 

Using Eqs. (3.59) and (3.60), Eq. (3.71) becomes 

                                                      (3.72) 

Using the h function here, Eq. (3.72) can be expressed as  

0                                    (3.73) 

By regarding the temperature and concentration dependences of the coefficients b2, 

b4, and b6 and c2, c4, and c6, the h function can be written as  
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0                                      (3.74) 

where h0, β1, and β2 are constants. Hence, the T-X phase line equation can be 

obtained from Eq. (3.74) as  

2                       (3.75) 

for the III-IV phase transition, where Xt denotes the equal concentrations of Rb and 

K (Xt=0.5), as before according to the experimental T-X phase diagram of          

LiK1-xRbxSO4 [25]. 

For the III-IV transition of LiK1-xRbxSO4, Eq. (3.75) was fitted to the 

experimental data [25]. From our fitting, the coefficients β1, β2, and h0 (Eq. 3.75) 

was obtained, as given in Table 3.9 for the III-IV transition. By using the Tt and Xt 

values (Table 3.8) in Eq. (3.75), the values of the coefficients a , b, and c were 

deduced according to Eq. (3.70) for the III-IV transition of LiK1-xRbxSO4, as given 

in Table 3.8 [70]. 

Finally, we calculate the solid IV-solid V phase transition as 

                                                                                                             (3.76) 

Using Eqs. (3.60) and (3.61), we have 

                                                   (3.77) 

By defining a functional k, Eq. (3.77) can be written as  

0                                 (3.78) 

By employing the temperature and concentration dependences of the coefficients 

c2, c4, and c6, and d2, d4, and d6, the functional k can be expressed in a quadratic 

form as functions of temperature and concentration, given by 

0                                      (3.79)  

where k0, γ1, and γ2 are constants. Thus, the phase line equation for the IV-V 

transition can be obtained as  
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2                        (3.80) 

where Xt=0.20 (concentration of Rb %20) according to the experimental data in the 

T-X phase diagram of LiK1-xRbxSO4 [25]. Tt corresponds to a constant temperature 

on the phase line between phases IV and V in this mixed crystal. For the IV-V 

transition of LiK1-xRbxSO4, Eq. (3.80) was fitted to the experimental data [25] and, 

the coefficients γ1, γ2, and k0 were extracted, which we tabulate in Table 3.9 for the 

IV-V phase transition of this mixed crystal. Again, using the values of Tt and Xt 

(Table 3.8), values of a , b, and c according to Eq. (3.70) were obtained, as given in 

Table 3.8 for the IV-V phase transition in  LiK1-xRbxSO4. 

3.2.4 Potassium Pyrosulfate-Potassium Hydrogensulfate (Potassium 

bisulfate) 

For this system, we have four phases, which are labelled as liquid, solid I, 

solid II and solid III.  We obtain the phase line equations for the liquid-solid I, 

liquid-solid II, solid I-solid II, solid II-solid III and liquid-solid III transitions for 

the K2S2O7-KHSO4 system by using the mean field theory [72]. In order to 

calculate the phase line equations, first, we define the free energies of these four 

phases. The free energies of the solid phases are expanded in terms of the order 

parameters. Using the conditions for the first order or second order transitions, the 

phase line equations are derived in terms of the coefficients given in the free 

energy expansion [72].  

0                                                                                                                   (2.8) 

                                                                               (3.81) 

                                                                                 (3.82) 

                                                                                 (3.83) 

where ψ, η and μ are the order parameters of solid I, solid II and solid III, 

respectively. Minimizing the free energies with respect to the their order 

parameters gives 
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3 /                                                                    (3.84) 

3 /                                                                     (3.85) 

3 /                                                                      (3.86) 

Inserting these order parameters (Eqs. 3.84-3.86) into the free energy equations 

(Eqs. 3.81-3.83), we get 

3 /                                                       (3.87) 

3 /                                                             (3.88) 

3 /                                                              (3.89) 

After writing the free energies of the solid states, the phase line equations are 

obtained by using the first order condition in K2S2O7-KHSO4. First of all, we 

calculate the liquid-solid I phase transition by using the equation of 

                                                                                                                (3.90) 

or 

0 3 /                                                         (3.91) 

Then, we get 

3 /                                                           (3.92) 

Next, we eliminate the denominators and take the square of both sides. Finally we 

get the phase line equation as 

4                                                                                                         (3.93) 

This is the phase line equation for liquid-solid I in K2S2O7-KHSO4. 

Next, to calculate the phase line equation for liquid-solid II, we equate the 

free energies of these two phases. 

                                                                                                               (3.94) 

We get 
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0 3 /                                                          (3.95) 

We calculate the liquid-solid II phase line equation as phase line equation for 

liquid-solid I. 

4                                                                                                          (3.96) 

This is liquid-solid II phase line equation in K2S2O7-KHSO4. 

 The third phase transition is liquid-solid III transition. To get the phase line 

equation for this transition, we, similarly, equate the free energies of both phases. 

                                                                                                             (3.97) 

This gives us 

0 3 /                                                           (3.98) 

Doing the same calculations with the liquid-solid I part, we obtain 

4                                                                                                           (3.99) 

This is liquid-solid III phase line equation in K2S2O7-KHSO4. 

 The fourth phase transition in K2S2O7-KHSO4 is solid I-solid II phase 

transition. Equating the free energies of solid I and solid II, we get 

 3 / 3 /     (3.100)  

Eq. (3.100) is the phase line equation for the solid I-solid II transition. 

Finally, we calculate the fifth phase transition in K2S2O7-KHSO4, which is solid 

II-solid III phase transition.  

                                                                                                           (3.101) 

Inserting Eqs. (3.88) and (3.89) into Eq. (3.101), the phase line equation for the 

solid II-solid III transition is obtained as  
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3 / 3 /         (3.102) 

 After obtaining the five phase line equations for the transitions of liquid-

solid I (L-I)(Eq. 3.93), liquid-solid II (L-II) (Eq. 3.96), liquid-solid III (L-III) 

(3.99), solid I-solid II (I-II) (3.100) and solid II-solid III (II-III) (Eq. 3.102), we fit 

the experimental data [35] in a quadratic form as given below: 

0                                                                     (3.103) 

where τ =T-Tt and ξ = X-Xt represent the temperature and concentration variables 

with the triple point (Tt, Xt). For the K2S2O7-KHSO4 system we consider the triple 

point as the melting point. 

By writing the temperature and concentration dependencies of the 

coefficients in the free energies of solid I, solid II and solid III, we get the phase 

line equations of five phase transitions as given above (Eq. 3.103). By fitting the 

experimental data [35], we obtain the T-X phase diagram of K2S2O7-KHSO4 

system. After obtaining this T-X phase diagram, we calculate the values of the 

coefficients α1 and α2 for the transitions L-I, L-II, L-III, I-II and II-III which are 

given in Table 3. 11. In Eq. (3.103), for the transitions among the liquid-solid I (α- 

K2S2O7+liquid) and liquid-solid II (β- K2S2O7+liquid), the melting point has the 

coordinates of Tt=318 0C and Xt=0.45, as measured experimentally [35]. This is 

also the triple point among the phase lines of L-I, L-II and I-II in K2S2O7-KHSO4. 

With those values of the fitted parameters α1 and α2, we calculated phase lines for 

the transitions considered here and we obtained T- 
4KHSOX  phase diagram, as given 

in Fig. 3.14. Experimental data points are also plotted here. For the phase lines 

related to the transitions of L-I, L-II and I-II we used the values of the triple point, 

as given above. For the transitions of L-III and II-III, we used the values of the 

melting point or the coordinates of the triple point, namely, Tt=205 0C and Xt=0.92 

[35] for this system. The melting curve between liquid and solid II also terminates 

at this triple point [72]. 
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Table 3.11 Values of the fitted parameters α1 and α2 for the transitions indicated 

here for the K2S2O7-KHSO4 solvent system according to Eq. (3.103). 

Eq. 3.1 α1 ( 0C/mole ) α2 ( 0C/mole2 ) 

L-I 267.002 64.451 

L-II 37.378 422.292 

I-II 43.534 89.964 

L-III -106.25 312.5 

II-III 5.989 15.211 

 

 

Figure 3.14 Phase diagram of the K2S2O7-KHSO4 system obtained from 

Conductance(■), DEA (♦), TA (▲) and NIR (●) measurements [35]. Our 

calculated phase lines using the mean field theory, are shown as solid lines. 
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3.2.5 Cholestanyl Myristate (CnM)-Cholesteryl Myristate (CrM) and 

Cholestanyl Myristate (CnM)-Cholesteryl Oleate (CO) 

We have three different temperature versus concentration diagrams for 

binary mixtures of cholestanyl myristate-cholesteryl myristate and cholestanyl 

myristate-cholesteryl oleate. We calculate four phases transition of the first binary 

mixture, cholestanyl myristate-cholesteryl myristate and six phase transition for the 

binary mixture of cholestanyl myristate-cholesteryl oleate.  

We start with the phase transitions of cholestanyl myristate-cholesteryl 

myristate. First, we have isotropic liquid- cholesteric phase transition. As 

mentioned in the section 2.4, we write the free energy of the isotropic liquid as 

0                                                                                                                   (2.8) 

The free energy of the cholesteric phase is:  

                                                                              (3.104)  

where η is the orientational order parameter, ,  and  are dependent on the 

temperature and concentration and FCL denotes the free energy of the cholesteric 

(C) phase which undergoes the isotropic liquid (L) [73]. After defining the free 

energies of these two states, we minimize the free energy FCL with respect to the 

orientational order parameter η and we get 

3 /                                                                  (3.105) 

Using the ansazt 1, we write  

3 / 1                                           (3.106) 

Insert Eq. (3.106) into Eq. (3.105), 

                                                             (3.107) 

Using Eq. (3.107) into Eq. (3.104), we get 

                                                                                           (3.108) 
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To get the phase line equation, we equate the free energies of the isotropic liquid 

(Eq. 2.8) and the cholesteric (Eq. 3.108) phases: 

2                                                                                                    (3.109) 

After writing the phase line equation, we calculate the temperature and 

concentration dependence of the phase line by assuming the temperature and the 

concentration dependencies of the coefficients which are given below: 

/                                                                                         (3.110) 

                                                                                 (3.111) 

/                                                                                         (3.112) 

Using the Eqs. (3.109)-(3.112), we obtain 

                                 (3.113) 

This is the phase line equation for the isotropic liquid-cholesteric transition. 

The second phase transition is the cholesteric-smectic phase transition. 

Since the orientational order parameter η exists in both cholesteric and smectic 

phases, for the transition between the two phases, we expand the free energy in 

terms of the positional order parameter ψ of the smectic phase. The free energy of 

the smectic phase for the cholesteric – smectic transition is then expressed as [73] 

                                                                            (3.114) 

In this free energy expansion the coefficients b2, b4 and b6 are taken as temperature 

and concentration dependent. We minimize the free energy FCS with respect to the 

positional order parameter ψ and using the ansatz  1, similarly as the above 

phase transition calculations, we get 

                                                                                                        (3.115) 

By inserting Eq. (3.115) into Eq. (3.114) and equating this obtained equation to Eq. 

(3.108) , we get 

2 2                                                             (3.116) 
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The temperature and concentration dependencies of the coefficients are given 

below: 

/                                                                          (3.117) 

                                                                              (3.118) 

/                                                                          (3.119) 

By using Eqs. (3.110)-(3.112), (3.116) and (3.117)-(3.119), we end up with the 

phase line equation of cholesteric – smectic transition: 

                                                      (3.120) 

where we assume that 2 0. 

 The third phase transition is smectic-isotropic liquid phase transition. We 

expand the free energy in terms of the two order parameters, orientational order 

parameter η and the positional order parameter ψ of the smectic phase. Since the 

free energy of the isotropic liquid phase is zero (Eq. 2.8), we then write [59] 

                      (3.121) 

In this expansion c is the coupling constant between the two order parameters η 

and ψ. The coupling constant c can also depend on temperature and concentration.  

By inserting Eqs. (3.107) and (3.115) into Eq. (3.121), we finally end up 

with the below equation 

                                                          (3.122) 

To obtain the phase line equation, we use the equality of the free energies of the 

isotropic liquid (Eq 2.8) and the smectic (Eq. 3.122) phases 

2 2 2                                        (3.123) 
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and finally insert Eqs. (3.110)-(3.112)  and (3.117)-(3.119) into Eq. (3.123) with 
/ / . 

2   

                             

                                                                (3.124)   

Eq. (3.124) is the phase line equation for the smectic – isotropic liquid transition in 

a binary mixture of cholesteryl myristate-cholestanyl myristate.  

The fourth phase in a binary mixture of cholesteryl myristate-cholestanyl 

myristate is the isotropic liquid-solid solution phase transition. By defining the 

long-range order parameter Q for the solid solution phase (free energy is zero in the 

isotropic liquid phase), the free energy of the solid solution can be expanded 

simply in terms of the order parameter Q. The free energy of the solid phase for the 

transition between the isotropic liquid and the solid solution is then written as [73] 

                                                                                      (3.125) 

Here the coefficients c2, c4 and c6 are also assumed to depend upon the temperature 

and concentration. Minimizing the free energy FS with respect to the order 

parameter Q gives 

/
                                                                                      (3.126) 

By inserting Eq. (3.126) into Eq. (3.125), we have 

3 /                                                        (3.127) 

To obtain the phase transition, equate Eq. (3.127) to Eq. (2.8) which gives 

3 /                                                               (3.128) 

After some calculations, we obtain 
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4                                                                                                         (3.129) 

This is the phase line equation of the isotropic liquid-solid solution. The 

temperature and the concentration dependencies of the coefficients are given 

below: 

                                                                                             (3.130) 

/                                                                                          (3.131) 

                                                                                   (3.132) 

By inserting Eqs. (3.130)-(3.132) into Eq. (3.129), we obtain 

                                               (3.133) 

Eq. (3.133) represents the phase line equation for the transition of isotropic liquid - 

solid solution [73]. 

The fifth phase transition is the isotropic liquid-(solid CnM+liquid) phase 

transition in a binary mixture of cholestanyl myristate-cholesteryl oleate. Since the 

solid phase of cholestanyl myristate (CnM) is the ordered phase with the long-

range order parameter ψ below the transition temperature TC, the free energy of 

this phase can be expressed as  

                                                                         (3.134) 

The free energy of the isotropic liquid phase is zero (Eq. 2.8), as before. The 

coefficients 42 , aa and 6a  are taken as functions of temperature and concentration. 

In order to obtain the phase line equation for the transition of isotropic liquid-(solid 

CnM+liquid), we minimize the free energy FCnM with respect to the long-range 

order parameter ψ and use the ansazt 1. This gives 

                                                                                                           (3.135) 

By inserting Eq. (3.135) into Eq. (3. 134), we get  

                                                                                         (3.136) 

and then equating Eq.(3.136) to Eq. (2.8), we get 
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2                                                                                                    (3.137) 

This is the phase line equation of the isotropic liquid-(solid CnM+liquid) transition 

in a binary mixture of cholestanyl myristate-cholesteryl oleate. The temperature 

and the concentration dependencies of the coefficients are given below: 

/                                                                                         (3.138) 

                                                                                 (3.139) 

/                                                                                         (3.140) 

when we insert these three equations into Eq. (3.137), we get the temperature and 

concentration dependent phase line equation of the isotropic liquid-(solid 

CnM+liquid) in a binary mixture of cholestanyl myristate-cholesteryl oleate: 

                                 (3.141) 

 The sixth one is the isotropic liquid-(solid CO+liquid) phase transition. For 

this transition, we define the free energy of (solid CO+liquid) phase according to 

the long-range order parameter η. 

                                                                              (3.142) 

where the coefficients b2, b4 and b6 are also temperature and concentration 

dependent as before. By minimizing the free energy FCO of the (solid CO+ liquid) 

phase for a binary mixture of cholestanyl myristate (CnM)-cholesteryl oleate (CO) 

and using the ansazt  1, we then obtain the relation 

                                                                                                            (3.143) 

After inserting Eq. (3.140) into Eq. (3.139), we find the free energy of (solid CO 

+liquid) as: 

                                                                                           (3.144) 

By equating Eqs. (3.141) to (2.8), we get the phase line equation of the isotropic 

liquid-(solid CO+liquid) transition. 

2                                                                                                     (3.145) 
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Let’s assume that the temperature and the concentration dependencies of the 

coefficients as follows: 

/                                                                                         (3.146) 

                                                                                  (3.147) 

/                                                                                         (3.148) 

Finally use Eqs. (3.146)-(3.148) in Eq. (3.145). This gives 

                                  (3.149) 

This is the phase line equation for the isotropic liquid-(solid CO+liquid) transition 

in CnM-CO mixture. 

 The seventh transition is the (solid CO+liquid)-(solid CO+solid CnM) 

transition. Since both solid phases, solid CO and (solid CO+solid CnM) have the 

order parameters, the mean field theory can be used by expanding the free energies 

in terms of both order parameters and their coupling (solid CO+solid CnM). Thus, 

the free energy of the (solid CO+liquid) phase is given by Eq. (3.142). Similarly, 

the free energy of the (solid CO+solid CnM) phase can be written as 

              (3.150) 

where c is the coupling parameter for the (solid CO+liquid) – (solid CO+solid 

CnM) phase transition, which can depend on the temperature and concentration, as 

the coefficients 642 ,, aaa  ,b2, b4 and b6 in Eq.(3.150). First, we calculate the free 

energy of (solid CO+solid CnM) in the following form by using the Eqs. 

(3.135)and (3.143) 

                                                 (3.151) 

To obtain the phase line equation, equate the free energies of (solid CO+liquid) and 

(solid CO+solid CnM). 

                                            (3.152) 

And, then we obtain 
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                                                                                   (3.153) 

Finally, we obtain the phase line equation as 

                                                                                                 (3.154) 

Insert Eqs. (3.138), (3.139), (3.140), (3.146) and (3.147) into Eq. (3.154) and by 

using )(21 CXXccc −+=  with c1=c0b40 and c2=c0b41, we get 

  

                                                                       (3.155) 

Thus,  the phase line equation is given by Eq. (3.155) for the (solid CO+liquid) and 

(solid CO+solid CnM) transition. 

 The eight phase transition is the (solid CnM+liquid)-(solid CO+solidCnM) 

transition. To calculate the equation of this transition, we equate the free energies 

of (solid CnM+liquid) phase (Eq. 3.136) and (solid CO+solid CnM) phase (Eq. 

3.151). 

                                           (3.156) 

As before, all the coefficients 642 ,, aaa , b2, b4 and b6 and c are assumed to depend 

upon the temperature and concentration. We calculate the phase equation of this 

transition similar to the seventh phase transition, we finally get 

                                                                                                 (3.157) 

Insert Eqs. (3.138), (3.139), (3.146), (3.147) and (3.148) into Eq. (3.157) and by 

using )(21 CXXccc −+=  with c1=c0a40 and c2=c0a41, we then obtain 

  

                                                                               (3.158) 
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This is the phase line equation for the ( solid CnM+liquid) – (solid CO+solid 

CnM).
 

We also calculate here in a separate T-X phase diagram for a binary mixture 

of cholestanyl myristate (CnM)-cholesteryl oleate (CO) for their transitions of the 

isotropic liquid-cholesteric and cholesteric-smectic using the mean field theory as 

the ninth and tenth phase transitions in this system. We start with the isotropic 

liquid-cholesteric phase transition. By defining again the orientational order 

parameter η for the cholesteric phase, the free energy can be expanded in terms of η 

for the isotropic liquid-cholesteric transition. Since the free energy of the isotropic 

liquid is zero Eq. (2.8), the free energy of the cholesteric phase can be written as  

                                                                              (3.159) 

Here, 42 , aa and 6a  are taken as the coefficients which depend on temperature and 

concentration, as before. By minimizing the free energy FCL with respect to the 

order parameter η and using the ansazt 12
4

62 <<
a

aa , we obtain that 

                                                                                                           (3.160) 

By inserting the order parameter equation (Eq. 3.160) into the free energy equation 

(Eq. 3.159), we find 

                                                                                           (3.161) 

and then equating Eq.(3.161) to FL=0 (Eq. 2.8), we get 

2                                                                                                    (3.162) 

Let us assume that the temperature and the concentration dependencies of the 

coefficients are given below: 

/                                                                                         (3.163) 

                                                                                 (3.164) 

/                                                                                         (3.165) 

Then, we find the phase line equation given by  
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                                 (3.166) 

for the isotropic liquid-cholesteric transition in a binary mixture of cholestanyl 

myristate (CnM) – cholestery oleate (CO). 

 Finally, we calculate the cholesteric-smectic phase transition. Since both 

cholesteric and smectic phases have the orientational order parameter, for the 

transition between cholesteric and smectic phases we can only expand the free 

energy of the smectic phase in terms of the positional (translational) order 

parameter ψ due to smectic layering. This gives  

                                                                            (3.167) 

In Eq. (3.167) the coefficients can depend on temperature and concentration, as 

before. The phase line equation for the cholesteric-smectic transition in this 

mixture (CnM – CO), can be obtained by minimizing the free energy FCS with 

respect to ψ with the ansatz of 12
4

62 <<
b

bb . We then obtain that 

                                                                                                           (3.168) 

And inserting Eq. (3.168) into Eq. (3.167), we obtain 

                                                                                            (3.169) 

Finally, we equate the free energies of smectic (Eq. 3.167) and cholestric (Eq. 

3.161) phases, we get 

2 2                                                             (3.170) 

The temperature and concentration dependencies of the coefficients are given by 

Eqs. (3.163)-(3.165) for 42 ,aa and 6a , and  

/                                                                          (3.171) 

                                                                              (3.172) 

/                                                                          (3.173) 
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By using Eqs. (3.163)-(3.165) and (3.171)-(3.173) and in Eq. (3.170), we end up 

with the phase line equation of the cholesteric – smectic transition as 

                                                  (3.174) 

We plot our phase lines calculated from the mean field theory for the two 

binary mixture systems considered here. Fig. 3.15 gives the concentration 

dependence of the temperature or T-X (CrM) phase diagram of cholestanyl 

myristate (CnM)-cholesteryl myristate (CrM). The experimental data points [74] 

are also shown in the figure. We give T-X (CnM) phase diagram for a binary 

mixture of cholestanyl myristate (CnM)-cholesteryl oleate (CO) with the 

experimental data points [74] in Fig. 3.16. Finally, Fig. 3.17 gives our calculated 

phase diagram, T- X (CnM) of the cholestanyl myristate (CnM)-cholesteryl oleate 

(CO) system. The experimental data [74] are also plotted in this figure. 
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Figure 3.15 T-X(CrM) phase diagram of a binary mixture of cholestanyl myristate 

(CnM) – cholesteryl myristate (CrM). The experimental data points are taken from 

Ref. [74]. 



63 
 

0 20 40 60 80 100

30

40

50

60

70

80

90

 

T 
(0 C

)

W t. %  Cholestanyl Myristate

Solid CO+Solid CnM

Solid CnM+Liquid

Liquid

Solid CO+
Liquid

 

Figure 3.16 T-X(CnM) phase diagram of a binary mixture of cholestanyl myristate 

(CnM)-cholesteryl oleate (CO). The experimental data points are taken from Ref. 

[74]. 
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Figure 3.17 T-X(CnM) phase diagram of a binary mixture of cholestanyl myristate 

(CnM)-cholesteryl oleate (CO). The experimental data points are taken from Ref. 

[74]. 
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For a binary mixture of cholesteryl myristate (CrM)-cholestanyl myristate 

(CnM), we obtained the phase line equations, Eqs. (3.113), (3.120), (3.124) and 

(3.133), for the transitions of the isotropic liquid – cholesteric, cholesteric – 

smectic, smectic – isotropic liquid and isotropic liquid – solid solution, 

respectively. Our phase line equations (3.113, 3.120, 3.124 and 3.133) were then 

fitted to the experimental data for binary phase map of cholestanyl myristate 

(CnM)-cholesteryl myristate (CrM) system obtained by differential scanning 

calorimetry (DSC) and microscopy [60]. The experimental binary phase map of 

CnM-CrM system was obtained as temperature (T) against weight percent (w %) of 

CrM [73]. Since our phase line equations (3.113, 3.120, 3.124 and 3.133) were 

obtained as a quadratic equation in terms of the coefficients which depend on 

temperature and concentration, we were able to deduce the values of the fitting 

parameters for all the transitions studied here. From our phase line equations, 

concentration or the weight percent of cholesteryl myristate (CrM) as a function of 

temperature for a binary mixture of cholestanyl myristate (CnM) – cholesteryl 

myristate (CrM), can be expressed as  

                                                                                           (3.175) 

where ba,  and c are constants. Table 3.12 gives the values of the fitting parameters 

ba,  and c for the transitions considered according to the experimental phase 

diagram [74]. 

 

Table 3.12 Values of the parameters ba,  and c according to Eq. (3.175) for the 

phase transitions indicated of a binary mixture of cholestanyl myristate (CnM) – 

cholesteryl myristate (CrM). 

Phase Transition (0C) b(0C/wt%CrM) c x10-4 [0C/(wt% CrM)2] 

Liquid-Cholesteric 80.35 0.17 1.89 

Liquid-Smectic 76.99 -0.33 5.62 

Liquid-Solid 
(LowTemperatures) 

71.04 0.22 3.54 

Liquid-Solid 
(HighTemperatures) 

80.20 0.26 -12.00 

Smectic-Cholesteric 76.99 0.14 34.70 
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For a binary mixture of cholestanyl myristate (CnM)-cholesteryl oleate 

(CO), we also obtained the phase line equations, Eqs. (3.141), (3.149), (3.155) and 

(3.158) for the transitions of isotropic liquid-(solid CnM+liquid), isotropic liquid-

solid CO, (solid CnM+liquid)-(solid CO+solid CnM) and solid CO-(solid 

CO+solid CnM), respectively. Our phase line equations (Eqs. 3.141, 3.149, 3.155 

and 3.158) were then fitted to the experimental data [74] according to Eq. 3.175, 

where X represents weight percent (w %) of cholestanyl myristate (CnM) for a 

binary mixture of CnM-CO. We summarize the values of the fitted parameters ba,  

and c in Table 3.13 for a binary mixture of cholestanyl myristate-cholesteryl oleate. 

For this binary mixture, the phase line equations were derived from the mean field 

theory for its transitions of the isotropic liquid-cholesteric and cholesteric-smectic, 

as given by Eqs. (3.166) and (3.174), respectively. When fitted to the experimental 

data [74] according to Eq. (3.175), the values of the parameters ba,  and c were 

deduced, as tabulated in Table 3.14 for a mixture of CnM-CO [73]. 

 

 

Table 3.13 Values of the parameters ba,  and c according to Eq. (3.175) for the 

phase transitions indicated of a binary mixture for cholestanyl myristate (CnM)-

cholesteryl oleate (CO). 

Phase Transition a (0C) b (0C/wt% CnM) c x10-3 [0C/(wt% CnM)2] 

Liquid-                  
(Solid CnM+Liquid) 

49.87 1.04 -6.52 

Liquid-Solid CO 46.30 1.32 -90.08 

(Solid CnM+Liquid) -     
(Solid CO+Solid CnM) 

45.51 0.022 -0.13 

Solid CO -               
(Solid CO+Solid CnM) 

45.53 -0.0076 0.048 
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Table 3.14 Values of the parameters ba,  and c according to Eq. (3.175) for the 

phase transitions indicated for a binary mixture of cholestanyl myristate (CnM)-

cholesteryl oleate (CO). 

Phase Transition a (0C) b(0C/wt% CnM) c x10-3 [0C/(wt% CnM)2] 

Isotropic Liquid 
-Cholesteric 

46.34 0.22 -1.77 

Cholesteric-Smectic 41.00 0.19 0.46 

  

 

3.2.6 Benzene 

There are nine phases of benzene, namely, liquid, solid I, solid II, solid III, 

solid III', solid IV, decomposed compounds, polymer 1 and polymer 2. Among 

these nine phases, we calculate all together fourteen phase transitions. Thirteen of 

these phase transitions are the first order phase transitions and one of them is the 

second order transition. First, we calculate the phase transition between liquid and 

solid I phases. For this transition, we use the free energies of the liquid (Eq. 2.8) 

and solid I which is given below. 

                                                                             (3.176) 

where ψ is the order parameter of solid I and it describes the reorientations of the 

benzene molecules in the orthorhombic structure. By minimizing the free energy of 

the solid I phase of benzene, the order parameter ψ can be obtained as 

3 /                                                                  (3.177) 

By inserting Eq. (3.177) into Eq. (3.176), we get 

3 /                                                     (3.178) 

The condition for a first order transition ( 0,0 42 <> aa  and 06 >a ) between 

liquid and solid I phases requires the equality of the free energies of these two 

phases (Eq. 2.8 and 3.178). 

4   or  4 0                                                              (3.179) 
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which is the phase line equation for the liquid-solid I transition in benzene. 

 The second phase transition is the liquid-solid II transition. The free energy 

of solid II has the order parameter η which describes the reorientations in the 

monoclinic structure, as given below: 

                                                                               (3.180) 

By minimizing the free energy of the solid II phase of benzene, we get 

3 /                                                                   (3.181) 

By inserting Eq. (3.181) into Eq. (3.180), we obtain 

3 /                                                     (3.182) 

To obtain the phase line equation, we equate the free energies of the liquid and 

solid II phases (Eq. 2.8 and 3.182), which gives 

4   or  4 0                                                               (3.183) 

This is the phase line equation for the liquid-solid II transition in benzene. 

 The third phase transition is the liquid-decomposed compounds transition. 

The free energy of the decomposed compounds has the order parameter Q. At 

higher temperatures, since the hydrocarbons dissociate, this is characterized by Q. 

                                                                             (3.184) 

By minimizing the free energy of the decomposed compounds phase according to 

order parameter Q, we have 

3 /                                                                    (3.185) 

By inserting Eq. (3.185) into Eq. (3.184), we get 

3 /                                                     (3.186) 

We equate the free energies of the liquid phase and the decomposed compounds 

phase (Eq. 2.8 and 3.186) which gives 
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4   or  4 0                                                                (3.187) 

This equation is the phase line equation for the liquid-decomposed compounds 

transition in benzene. 

 The fourth phase transition is the solid I-solid II phase transition. To 

calculate this phase line equation, we equate the Eqs. (3.178) (solid I free energy) 

and (3.182) (solid II free energy) as follows: 

3   

                                                                  3 / 0                   (3.188) 

This is the phase line equation of solid I-solid II phase transition. 

 The fifth one is the solid II-solid III transition. To calculate the phase line 

equation, first we expand the free energy of solid III phase. 

                                                                              (3.189) 

where ξ is the order parameter and it represents the molecular disorder by 

polymerization. By minimizing the free energy of solid III phase with respect to the  

order parameter ξ, we have 

3 /                                                                  (3.190) 

By inserting Eq. (3.190) into Eq. (3.189), we get 

3 /                                                   (3.191) 

The phase line equation is found by equating the free energies of solid II (Eq. 

3.182) and solid III (Eq. 191). 

3 /   

                                                                   3 / 0                 (3.192)                        

This is the phase line equation for the solid II-solid III transition in benzene. 
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 Next, we calculate the liquid-solid IV phase transition. At higher 

temperatures, the molecular disorder that occurs in the solid phase III increases by 

the chemical transformation in the solid phase IV prior to melting which is denoted 

by . The free energy of liquid is given by Eq. (2.8). By expanding the free energy 

of solid IV and using the order parameter , we get 

                                                                             (3.193) 

Similarly, by minimizing the free energy with respect to the order parameter, we 

calculate the free energy as 

3 /                                                     (3.194) 

Equating the Eqs. (2.8) and (3.194), we obtain 

4   or  4 0                                                                (3.195) 

Eq. (3.195) is the phase line equation of liquid-solid IV transition. 

 Then, we calculate the phase line equation of solid II-solid IV as the 

seventh phase transition. To find this phase line equation, we equate the free 

energies of solid II (Eq. 3.182) and solid IV (Eq. 3.194) 

3 /   

                                                                   3 / 0                  (3.196) 

This is the phase line equation of liquid-solid IV transition. 

 The nexth phase transition is the solid III-solid IV phase transition. The 

equality between the free energies of solid III (Eq. 3.191) and solid IV (Eq. 3.194) 

gives the phase line equation as 

3 /   

                                                                   3 / 0                  (3.197) 
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This is the phase line equation of solid III-solid IV phase transition. 

 The nineth phase transition is the solid IV-decomposed compounds 

transition. To calculate the phase line equation for the solid IV-decomposed 

compounds, we equate Eq. (3.186) and Eq. (3.194) 

3 /   

                                                                   3 / 0                  (3.198) 

Eq. (3.198) is the phase line equation for the solid IV-decomposed compounds 

phase transition. 

 The tenth phase transition is the decomposed compounds-polymer 2 

transition. The polymer 2 has no ordering like the liquid phase of benzene, with the 

free energy 

0                                                                                                             (3.199) 

The phase line equation is calculated using 

                                                                                                         (3.200) 

and we get 

4   or  4 0                                                                (3.201) 

Eq. (3.201) is the phase line equation of the decomposed compounds-polymer 2 

transition. 

 The next phase transition, solid III-polymer 2, is calculated by using Eqs. 

(3.191) and (3.199) 

4   or  4 0                                                             (3.202) 

This is the phase line equation of the solid III-polymer 2 phase transition. 

 The twelfth one is the polymer 1-polymer 2 phase transition. The free 

energy of the polymer 1 has the order parameter ν and can be writen as 
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                                                                             (3.203) 

By minimizing the free energy with respect to the order parameter and inserting 

this into the free energy equation, we obtain 

3 /                                                   (3.204) 

Equating the Eqs. (3.194) and (3.199), we obtain 

4   or  4 0                                                             (3.205) 

Eq. (3.205) is the phase line equation of polymer 1-polymer 2 transition. 

 The thirteenth phase transition is the polymer 1-solid III'. For this phase 

transition, solid III' has the free energy equation as stated below 

                                                                                         (3.206)  

By minimizing the free energy, we get 

                                                                                                            (3.207) 

Inserting this order parameter equation into the free energy equation, we obtain 

                                                                                                      (3.208) 

Finally, using (3.204) and (3.208), we have 

3 / 0                                           (3.209) 

This is the phase line equation for the solid III'-polymer 1 transition. 

 The final phase transition is the solid III- solid III'. This transition is of a 

second order. To calculate the phase line equation, we rewrite the free energy of 

solid III' as 

                       (3.210) 
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which is not in the same form as given by Eq. (3.206) for the III-III' transition of 

benzene. This is due to the fact that the solid phases III and III' have the same ξ 

which is the molecular disorder by polymerization, as stated above. Additionally, 

in the solid III' phase there exist the reorientations of the benzene molecules by 

polymerization, denoted by μ which is not defined in the solid III phase. As the 

solid phase III is transformed into the solid phase III', this order parameter μ 

describes the solid phase III' by coupling with the molecular disorder ξ by the 

polymerization of both the solid phases III and III'. This coupling is quadratic and k 

denotes the coupling constant in Eq. (3.210). As the transition occurs from the solid 

III to solid III' phase, the molecular disorder by polymerization ξ disappears and 

the reorientational order parameter μ is the only one that describes the ordering 

mechanism in the solid III' phase of benzene. From this point of view, the transition 

between the solid III and III' phases, which is of a second order can be described by 

deriving the phase line equation.  

By minimizing the free energy FIII' (Eq. 3.210) with respect to the molecular 

disorder ξ, we get the ξ= ξ0 expressed in terms of the coefficients c2, c4, c6, k and 

the reorientational order parameter µ, as given by  

3 3 /                                                (3.211) 

By assuming that 2
462 / ddd <<1 and 2

46
2 / ddkμ <<1, Eq. (3.211) can be written as  

                                                                                              (3.212) 

When we substitute 2
0ξ  (Eq. 3.212) into the free energy FIII' (Eq. 3.210), we then 

obtain FIII' in terms of the reorientational order parameter µ only, as given below: 

                                                                   (3.213) 

where 

                                                                                            (3.214) 

                                                                                    (3.215) 



73 
 

                                                                                   (3.216) 

and  

                                                                                                 (3.217)  

Thus, the phase line equation between the solid III and solid III' phases can 

be obtained by using a second order transition that B2=0. This gives 

8 4 3 0                                                                (3.218) 

  Since the coefficients given in the free energy expansions depend upon 

the temperature and pressure, the fourteen phase line equations can be expressed 

with the temperature and pressure dependence as given below: 

0                                           (3.219) 

or 

2                                         (3.220) 

where Tt and Pt represent the coordinates of the triple point for benzene (Fig. 3.16), 

α1 and α2 are constants. By fitting a quadratic expression  

                                                                                           (3.221)  

which is equivalent to Eq. (3.220), to the experimental T-P data the coefficients a , 

b and c are first determined. This then provides to determine the coefficients α1 and 

α2 in Eq. (3.220). 
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Figure 3.18 T-P phase diagram calculated from the mean field theory for benzene. 

Solid lines represent our calculated phase lines. The experimental data points are 

also shown here for the observed T-P phase diagram of benzene [48]. T1, T2 and T3 

are the triple points, A denotes the decomposition point and the chemical 

transformation line is defined by the points A, B, C and D [48]. 

 

 

 We determined here the coefficients a , b and c by fitting Eq. (3.221) to 

the experimental T-P data [48] for benzene for all the transitions studied. By the 

equivalent expression (Eq. 3.220), we were then able to determine the coefficients 

α1 and α2 for those transitions of benzene. Table 3.15 summarizes the values of a , 

b, c (Eq. 3.221) and α1 and α2 (Eq. 3.220) which we obtained for the transitions 

indicated in benzene. Fig 3.18 gives our calculated phase lines by also showing the 

experimental data points [48] in the T-P phase diagram of benzene. In our recent 
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work, we have given T-P phase diagram except the III-III' transition in benzene 

[75]. 

 

 

Table 3.15 Values of the coefficients a , b and c determined from fitting Eq.(3.221) 

to the experimental data [48] and, the values of α1 and α2 obtained from Eq. 

(3.220) with the coordinates of the triple point (Tt, Pt) for the  phase  transitions 

indicated of benzene. 

Phase 
Transition 

a (0C) b(0C/ 
GPa) 

c(0C/ 
(GPa)2) 

Tt(0C) Pt 

(GPa) 
α1(0C/ 
GPa) 

α2(0C/ 
(GPa)2) 

Liquid- 
Solid I 

34.1 81.4 46.3 204 1.20 192.52 46.3 

Liquid- 
Solid II 

115.74 45.23 23.3 335 2.25 150.08 23.3 

Liquid- 
Solid IV 

37.8 126.6 2.9 590 4.00 149.8 2.9 

Solid I- 
Solid II 

7737.28 -11596.9 4429.01 204 1.20 -967.32 4429.01 

Solid II-
Solid III 

-10500.9 4059.96 -379.8 400 5.1 186.0 -379.8 

Solid II-
Solid IV 

286.9 21.1 0.19 400 5.1 23.04 0.19 

Solid III-
Solid IV 

21.3 82.5 -1.7 400 5.1 65.16 -1.7 

Liquid-
Decomposed 

711.2 -28.7 -0.39 590 4.00 -31.8 -0.39 

Decomposed
-Solid IV 

600.1 11.2 -3.4 590 4.00 -16.0 -3.4 

Decomposed
-Polymer 2 

4586.5 -1256.2 96.4 515 7.00 93.4 96.4 

Polymer 2- 
Solid III 

773.5 -45.3 1.2 410 12.0 -16.5 1.2 

Polymer 1- 
Polymer 2 

5812.4 -941.6 40.95 410 12.0 41.2 40.95 

Polymer 1-
Solid III' 

-396.0 114.3 -4.0 410 12.0 18.3 -4.0 

Solid III-
Solid III' 

-26046.8 4391 -183 410 12.0 -1  -183 
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 3.2.7 Ice 

 The free energies of the phases I, II, III, V, VI, VII and VIII of ice can be 

written as 

                                                                                (3.222) 

where i = 1, 2, 3, 5, 6, 7, 8 and ψi is the order parameter of phases I (i=1), II (i=2), 

III (i=3), V (i=5), VI (i=6), VII (i=7) and VIII (i=8). In Eq. (3.222) we take ia > 0, 

bi <0 and ci >0 since all the phase lines for ice are of first order. In Eq. (3.222) the 

coeflicients ia , bi and ci depend upon both temperature and pressure. Since the 

order parameter can be taken as zero for the liquid phase, the free energy of the 

liquid phase can be equal to zero (Eq. 2.8). Minimizing Eq.(3.222) with respect to 

ψi gives 

3 /                                                                     (3.223) 

By making the ansatz 

,  and                                                               (3.224) 

where 0ia  and ci0, are positive constants, bi0 is a negative constant and n is a real 

number. In Eq. (3.224) fi depends on both temperature and pressure, and fi is 

chosen as positive. Since the order parameter ψi as a positive physical quantity 

depends on, in general, the temperature and pressure (for a given T-P phase 

diagram of ice), 2/12 )3( iii cab −  in Eq. (3.223) becomes solvable under the 

assumption (3.224). By a positive function fi that depends on both the temperature 

and pressure, the order parameter ψi becomes as a function of temperature and 

pressure. Inserting Eq. (3.224) into Eq. (3.223) gives 

                                                                                                       (3.225) 

where 

3 /                                                              (3.226) 

By substituting Eq. (3.225) into Eq. (3.222), we get 
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                                                                                                       (3.227) 

where 

                                                                         (3.228)                         

By choosing n=1/3, Eqs. (3.224), (3.225) and (3.227) become 

                                                                                                          (3.229) 

/ /                                                                                                   (3.230) 

/                                                                                                      (3.231) 

/                                                                                                      (3.232) 

                                                                                                             (3.233) 

In Eqs. (3.224), (3.225) and (3.227), n=1/3 is chosen because the functional form of 

the free energy Fi (Eq. 3.229) is the simplest that one can get, which is obtained 

from Eq. (3.227) with n=1/3. Since fi(T,P) is determined by the temperature and 

pressure dependence of the function g(T,P) as given below, the simplest form of Fi 

(Eq. 3.229) makes it easier for fitting the phase line equations to the experimental 

data for the T-P phase diagram of ice. Otherwise, the fitting procedure requires too 

many fitting parameters. 

In order to obtain the phase diagram of ice, as we have calculated recently 

[76] which is given in Fig. 3.19, we choose the temperature and pressure dependent 

function fi≡fi(T,P) as  

),(),(),(),( 12121313111 PTgdPTgdPTgdPTf LL +−−=                                 (3.234) 

),(),(),(),(),( 26262525232312122 PTgdPTgdPTgdPTgdPTf −−−−=            (3.235) 

),(),(),(),(),( 353523231313333 PTgdPTgdPTgdPTgdPTf LL −++−=           (3.236) 

),(),(),(),(),( 565625253535555 PTgdPTgdPTgdPTgdPTf LL −++−=           (3.237) 
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Table 3.16 The functions fi (T,P), g (T,P) and gLi (T,P) with the temperature and 

pressure ranges, which are defined in the equations indicated (third column) for i=1 

to 7 for the liquid-solid phases (first column) of ice. Values of the parameters 

obtained from the equations (fifth column) fitted to the experimental data [77], are 

also given here. 

Liquid-

Solid 

Phase 

i fi (T,P) g(T,P)  

T(0C), P(kbar) 

gLi (T,P) 

T(0C), P(kbar) 

αLi1 αLi2 αLi3 

L-I 1 Eq.(3.234) g12=0,-74<T<-33     

P=1.8 

g13=0,-33<T<-21     

P=1.8 

T+αL11P+αL12P2

=0 

-21<T<0              

0≤P<1.8 

7.9166 
0C/kbar 

2.0833 
0C/ 

(kbar)2 

-- 

L-III 3 Eq. (3.236) g13=0, 

g23=0,-33<T<-24     

1.8<P<3.2 

g35=0,-24<T<-16     

P=3.2 

T+αL31- αL32P=0 

-24<T<-16        

1.8<P<3.2 

27.428 
0C  

3.5714 
0C/kbar 

-- 

L-V 5 Eq. (3.237) g35=0, 

g25=0,-64<T<-24     

3.2<P<6 

g56=0,-64<T<0        

P=6 

T+αL51-

αL52P+αL53P2=0 

-16<T<0              

3.2<P<6 

75.428

5 0C 

25.428 
0C/kbar 

2.1428 
0C/ 

(kbar)2 

L-VI 6 Eq. (3.238) g56=0, 

g26=0,-74<T<-64     

6<P<6.2 

g67=0,1<T<83         

P=20.8 

g68=0,-74<T<1        

18<P<20.8 

T+αL61- αL62P=0 

When 6<P<6.2,    

0<T<1 

When 

6.2<P<20.8, 

1<T<83 

57.537

2 0C 

10.738 
0C/kbar 

-- 

L-VII 7 Eq. (3.239) g67=0 ,                     

g78=0 ,T=1               

20.8<P<30 

T+αL71- αL72P=0 

82<T<112        

20.8<P<24.6 

75.736

8 0C 

7.6315 
0C/kbar 

-- 
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 Below, the phase line equations are derived using the fi(T,P) functions (Eqs. 

3.234-3.240) for the liquid-solid and solid-solid transitions in ice. Here, we give as 

examples liquid-solid I transition among all the liquid-solid transitions and also 

solid I-solid III transition among all the solid-solid transitions. The other liquid-

solid transitions are treated similar to the liquid-solid I transition and the results are 

given in Table 3.16. The other solid-solid transitions are also treated similar to the 

solid I-solid III transition. Our results of the other solid-solid transitions are also 

tabulated in Tables 3.17 and 3.18. 

 

Table 3.17 The function g (T,P) and the values of the parameters obtained from the 

equations fitted (third column) to the experimental data [77] for the solid-solid 

transitions (first column) of ice. 

Solid-Solid 

Transition 

g(T,P) Equation Fitted Parameter 

I-II g12(T,P)=0 T+ α121-α122P=0 α121=402 0C,    

α122=205 0C/kbar  

I-III g13(T,P)=0 P-α131=0 α131=1.8 kbar 

II-III g23(T,P)=0 T+ α231-α232P=0 α231=44.514 0C, 

α232=6.4285 0C/kbar 

II-V g25(T,P)=0 T- α251+α252P=0 α251=21.7143 0C, 

α252=14.2857 0C/kbar 

II-VI g26(T,P)=0 T- α261+α262P=0 α261=236 0C,      

α262=50 0C/kbar 

III-V g35(T,P)=0 P-α351=0 α351=3.2 kbar 

V-VI g56(T,P)=0 P-α561=0 α561=6 kbar 

VI-VII g67(T,P)=0 P-α671=0 α671=20.8 kbar 

VI-VIII g68(T,P)=0 T+ α681-α682P=0 α681=486.5 0C,      

α682=23.4375 0C/kbar 

VII-VIII g78(T,P)=0 T- α781=0 α781=1 0C 
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Table 3.18 The functions fi (T,P) defined in equations indicated (second column), 

Fi for i=1 to 8 with the temperature and pressure ranges, g (T,P) and the phase line 

equations for the solid-solid transitions (first column) of ice. 

Solid-Solid 
Transition 

fi(T,P) Fi=Fi0fi 
Eq.(2.8) 
for Fi0 

Temperature 
and Pressure 
Range T(0C), 
P(kbar) 

g(T,P) Phase Line 
Equation 

I-II Eq.(3.234) 
for I(i=1) 
Eq.(3.235) 
for II(i=2) 

F1=F2 -74<T<-33 
1.6<P<1.8 

gL1=0, g13=0, 
g23=0, g25=0, 
g26=0 

d12(F10+F20)g12=0 
g12(T,P)=0 

I-III Eq.(3.234) 
for I(i=1) 
Eq.(3.236) 
for III(i=3) 

F1=F3 -33<T<-21 
P=1.8 

gL1=0, g12=0, 
gL3=0, g23=0, 
g35=0 

d13(F10+F30)g13=0 
g13(T,P)=0 

II-III Eq.(3.235) 
for II(i=2) 
Eq.(3.236) 
for III(i=3) 

F2=F3 -33<T<-24 
1.8<P<3.2 

g12=0, g25=0, 
g26=0, gL3=0, 
g35=0 

d23(F20+F30)g23=0 
g23(T,P)=0 

II-V Eq.(3.235) 
for II(i=2) 
Eq.(3.237) 
for V(i=5) 

F2=F5 -64<T<-24 
3.2≤P<6 

g12=0, g23=0, 
g26=0, gL5=0, 
g35=0, g56=0 

d25(F20+F50)g25=0 
g25(T,P)=0 

II-VI Eq.(3.235) 
for II(i=2) 
Eq.(3.238) 
for VI(i=6) 

F2=F6 -74<T<-64 
P=6.2 

g12=0, g23=0, 
g25=0, gL6=0, 
g56=0, g67=0, 
g68=0 

d26(F20+F60)g26=0 
g26(T,P)=0 

III-V Eq.(3.236) 
for III(i=3) 
Eq.(3.237) 
for V(i=5) 

F3=F5 -24<T<-16 
P=3.2 

gL3=0, g13=0, 
g23=0, gL5=0, 
g25=0, g56=0 

d35(F30+F50)g35=0 
g35(T,P)=0 

V-VI Eq.(3.237) 
for V(i=5) 
Eq.(3.238) 
for VI(i=6) 

F5=F6 -64<T<0       
P=6 

gL5=0, g35=0, 
g25=0, gL6=0, 
g26=0, g67=0 

d56(F50+F60)g56=0 
g56(T,P)=0 

VI-VII Eq.(3.238) 
for VI(i=6) 
Eq.(3.239) 
for VII(i=7) 

F6=F7 1≤T≤83   
P=20.8 

gL6=0, g56=0, 
g26=0, g68=0, 
gL7=0, g78=0 

d67(F60+F70)g67=0 
g67(T,P)=0 

VI-VIII Eq.(3.238) 
for VI(i=6) 
Eq.(3.240) 
for VIII(i=8) 

F6=F8 -74≤T≤1 
17.6≤T<20.8 

gL6=0, g56=0, 
g26=0, g67=0, 
g78=0 

d68(F60+F80)g68=0 
g68(T,P)=0 

VII-VIII Eq.(3.239) 
for VII(i=7) 
Eq.(3.240) 
for VIII(i=8) 

F7=F8 T=1   
20.8<P<30 

gL7=0, g67=0, 
g68=0 

d78(F70+F80)g78=0 

g78(T,P)=0 
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 For the liquid-solid I transition for ice, the phase line equation is FI=0 since 

the free energy change for this transition is zero, so that using Eq. (3.229) we 

obtain the phase line equation for L-I transition as  

0),(1 =PTf                                                                                                       (3.241) 

Using Eq. (3.234), Eq. (3.241) becomes 

0),(),(),( 1212131311 =+−− PTgdPTgdPTgd LL                                              (3.242) 

Experimentally, the L-I transition occurs in the region -21<T≤0 0C and 0≤P≤1.8 

kbar  (see Fig. 3.19). In this pressure and temperature region g12(T,P)=0 and 

g13(T,P)=0 (see Table 3.17). Hence, in this region from Eq. (3.242) we obtain the 

phase line equation for the L-I transition as 

0),(1 =PTg L                                                                                                     (3.243) 

Using this function gL1(T,P), the parameters αL11 and αL12 (Table 3.16) are 

obtained from fitting to the experimental data (see Fig. 3.19). The choice for the 

functions gLi(T,P) is based on the experimental T-P phase diagram of ice (Fig. 

3.19). Depending on the phase boundaries observed experimentally among the 

liquid and ice phases of I, III, V, VI and VII, the temperature and pressure 

dependence of the function g(T,P) is constructed, as given in Table 3.16.  

 For the solid I-solid III transition for ice, the phase line equation is F1=F3 so 

that using Eq. (3.229) we obtain the phase line equation for the I-III transition as 

),(),( 330110 PTfFPTfF =                                                                                 (3.244) 

where F10 and F30 are given by Eq. (3.228). Using Eqs. (3.234) and (3.236), Eq. 

(3.244) becomes 

{ }),(),(),( 121213131110 PTgdPTgdPTgdF LL +−−  

{ }),(),(),(),( 3535232313133330 PTgdPTgdPTgdPTgdF LL −++−=  (3.245) 
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Experimentally, the I-III transition occurs in the region -33 ≤ T ≤ -21 0C and P=1.8 

kbar (see Fig. 3.19). In this pressure and temperature region gL1(T,P)=0, 

g12(T,P)=0, gL3(T,P)=0, g23(T,P)=0 and g35(T,P)=0 (see Table 3.18). Hence, in this 

region from Eq. (3.245) we get 

0),()( 13301013 =+ PTgFFd                                                                               (3.246) 

Therefore, from Eq. (3.246) we obtain the phase line equation for the I-III 

transition as 

0),(13 =PTg                                                                                                     (3.247) 

Using this function g13(T,P), the parameter α131 (Table 3.17) is obtained from 

fitting the experimental data (see Fig. 3.19). 

 Using the free energy Fi (Eq. 3.222) for the phases I, II, III, V, VI, VII and 

VIII of ice,the thermodynamic functions such as the specific heat, order parameter 

and the susceptibility can be predicted as functions of temperature and pressure for 

the transitions among the phases indicated. Here, as examples, we predicted the 

temperature dependence of the specific heat Cp, the order parameter ψ and the 

inverse susceptibility χ-1 for the liquid-solid I and solid I-solid III transitions in ice. 

This was demonstrated numerically for both transitions. 

First, for the liquid-solid I transition the thermodynamic quantities can be 

calculated. The free energy of the solid I can be written according to Eq. (3.222) as 

6
11

4
11

2
11 ψψψ cbaFI ++=                                                                                   (3.248) 

By minimizing the free energy FI with respect to the order parameter ψ1, we get 

032 4
11

2
111 =++=

∂
∂

ψψ
ψ

cbaF

I

I                                                                         (3.249) 

For the liquid-solid I transition on the phase line, we have the change in free energy 

as FI-FL=0, which gives 

06
11

4
11

2
11 =++ ψψψ cba                                                                                    (3.250) 
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From Eqs. (3.249) and (3.250), the order parameter ψ1 can be expressed as 

1

1

1

12
1

2
2 b

a
c

b
−=−=ψ                                                                                          (3.251) 

By substituting Eq. (3.251) into the free energy FI (Eq. 3.248), we then obtain the 

FI in terms of its coefficients as 

3
1

1
3
1

1

2
1 82

b
ca

b
a

FI −=                                                                                             (3.252) 

 In order to obtain the temperature and pressure dependence of the 

thermodynamic functions starting from the free energy FI of solid I (Eq. 3.252), we 

assume that  

2/12
1211101 ])()()([ ttt PPaPPaTTaa −+−+−=                                              (3.253) 

and                   

 1,)( 1
2/1

101 =−= cTTbb t                                                                               (3.254) 

where Tt and Pt represent the transition temperature and pressure along the phase 

line, respectively, and 121110 ,, aaa  and b10 are constants. 

 By employing the phase line equation from Eq. (3.251) for the liquid-solid I 

transition, 

11
2
11 4 cabf −=                                                                                                  (3.255) 

the coefficients in Eqs. (3.253) and (3.254) can be evaluated. This is done by 

writing our expression gL1(T,P) fitted to the experimental data [62] for the liquid-

solid I (Table 3.16) in the form  

[ ]{ }2
121101 )()()(),( tLtLt PPPPTTfPTf −+−−−= αα                                    (3.256) 

where Pt=0 kbar and Tt=0 0C and f0 is a constant. 



85 
 

 By using the temperature and pressure dependence of the coefficients 1a  

and b1 (Eqs. 3.253 and 3.254) in Eq. (3.255), f1 can be written as 

2
121110

2
101 )(4)(4))(4(),( ttt PPaPPaTTabPTf −−−−−−=                          (3.257) 

By equating Eq. (3.257) to Eq. (3.256), the coefficients 11a  and 12a  can be obtained 

as 

4
,

4
12

012
11

011
LL fafa αα

==                                                                       (3.258) 

Since we calculated the coefficients αL11 and αL12 (Table 3.16) from fitting 

gL1(T,P) to the experimental data [76] for the liquid-solid I transition, the 

coefficients 11a  and 12a  can be calculated numerically from Eq. (3.258). By taking 

f0=1, we obtained the values of =11a 1.9792 0C/kbar and 12a =0.5208 0C/(kbar)2. 

From Eq. (3.257), we also have 

10
2

100 41 abf −==                                                                                             (3.259) 

or by choosing 10a =2, we get b10=3. 

 The temperature dependence of the specific heat Cp can now be predicted 

by knowing the values of the coefficients. Using the definition )/( 22 TFTC p ∂∂=  

and by substituting the temperature and pressure dependence of the coefficients 1a  

(Eq. 3.253)and b1 (Eq. 3.254) into the free energy FI (Eq. 3.252) of the solid I, the 

specific heat Cp(I) can be reduced to the form 

( ) 2/1
3
10

3
106

)()( −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= tpp TTT

b
a

LCIC                                                               (3.260) 

where Cp(L) is the specific heat of the liquid phase close to the liquid-solid I 

transition. For this form of Cp(I), we neglected the terms such as (T-Tt)-3/2, (T-Tt)-5/2 

and (T-Tt)-7/2 since they are weakly divergent close to the melting line for solid I. 

Using the values of 10a  and b10 given above in Eq. (3.260), the temperature 

dependence of the specific heat Cp(I) for the liquid-solid I transition is obtained as 
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2/1

9
16)()( −−⎟

⎠
⎞

⎜
⎝
⎛ −+= tpp TTTLCIC                                                                 (3.261) 

with the critical exponent α=1/2 according to the power-law formula Cp≈⎪T-Tt⎪-α 

for the critical behaviour of the specific heat. We demonstrated the specific heat 

Cp(I) as a function of temperature according to Eq. (3.261) where Tt=0 0C within 

the temperature range -21 0C < T < 0 0C (Table 3.16) for the liquid-solid I 

transition in ice, as plotted in Fig. 3.20. 
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Figure 3.20 Calculated specific heat Cp as a function of temperature for the liquid-

solid I transition in ice according to Eq. (3.261). Solid curve represents the best fit 

to values given here. 
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The temperature dependence of the order parameter ψ1 can be predicted for 

the liquid-solid I transition using Eq. (3.251). By substituting the temperature 

dependence of  given in Eq. (3.253) and b1 Eq. (3.254) into Eq. (3.251),  we 

obtain that 

4/110
1 )(

2
TT

b
t −=ψ                                                                                         (3.262) 

in the solid I phase of ice. Using b10=3, the order parameter ψ1 can be calculated as 

a function of temperature within the temperature interval -21 0C < T < 0 0C from 

Eq. (3.262) with the critical exponent β=1/4 according to the power law formula    

ψ∼⎪Tt-T⎪-β for the order parameter. We plot ψ1 as a function of temperature for the 

liquid-solid I transition using Eq. (3.262) where Tt=0 0C in Fig. 3.21. 
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Figure 3.21 Calculated order parameter ψ as a function of temperature for the 

liquid-solid I transition in ice according to Eq. (3.262). Solid curve represents the 

best fit to values given here. 
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The temperature dependence of the susceptibility Iχ  can also be predicted 

for the liquid-solid I transition using the definition 221 / ψχ ∂∂=− F . By taking the 

second derivative of the free energy FI (Eq. 3.248) with respect to the order 

parameter ψ1, the inverse susceptibility can be obtained as  

( )4
11

2
11

2
1

1 1562 ψψχ cbaI ++=−                                                                          (3.263) 

By Eq. (3.251), this can be expressed as 
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Using Eq. (3.253) and Eq. (3.254) in Eq. (3.264), the temperature and pressure 

dependence of the inverse susceptibility 1−
Iχ  of the solid I can be obtained as 
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By taking P=Pt=1.8 kbar and Tt=0 0C for the liquid-solid I transition and using the 

values of  10a  and b10, the temperature dependence of the inverse susceptibility 

1−
Iχ  from Eq. (3.265) can be reduced to 

tI TT −=−

2
351χ                                                                                                (3.266) 

This represents the critical behaviour of the susceptibility according to the power 

law      χ∼⎪T-Tt⎪-γ with the critical exponent γ=1 for the liquid-solid I transition in 

ice. We demonstrated the temperature dependence of the susceptibility Iχ  within 

the temperature interval -21 0C < T < 0 0C at P=1.8 kbar using Eq. (3.266) where      

Tt=0 0C, as plotted in Fig. 3.22. 

 For solid I-solid III transition, the thermodynamic quantities are also 

calculated. The free energy of the solid III can be expressed in terms of the order 

parameter ψ3 according to Eq. (3.222) 

6
33

4
33

2
33 ψψψ cbaFIII ++=                                                                                (3.267) 
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as the free energy of the solid I (Eq. 3.248). Since the solid I-solid III transition is 

of a first order, we have FI=FIII or, 

6
11

4
11

2
11 ψψψ cba ++ - )( 6

33
4
33

2
33 ψψψ cba ++ =0                                                (3.268) 
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Figure 3.22 Calculated inverse susceptibility 1−
Iχ  as a function of temperature for 

the liquid-solid I transition in ice according to Eq. (3.266). Straight line represents 

the best fit to the values given here. 

 

 

From the liquid-solid I transition (FI=FL=0), ψ1 can be solved using Eq. (3.248) as,
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which gives a positive value for 2
1ψ . Similarly, from the liquid-solid III transition 

(FIII=FL=0), ψ3 can be solved using Eq. (3.267) as 

( )[ ]2/1
33

2
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2
3 3

3
1 cabb
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⎛
=ψ                                                                    (3.270) 

which is also the solution for a positive 2
3ψ . By defining the functions f1 (Eq. 

3.255) and f3 as 

33
2
33 4 cabf −=                                                                                                 (3.271) 

2
1ψ  (Eq. 3.269) and 2

3ψ  (Eq. 3.270) can be expressed as 

1

2/1
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2
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1 6
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c
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and  

3
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2
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3 6
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c
fbb ++
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By substituting 2
1ψ  (Eq. 3.272) into the FI (Eq. 3.248), one gets 

2
1c
gFI =                                                                                                             (3.274) 

where  

[ ]2/3
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2
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3
1 )3(9

54
1 fbfbbg +++−=                                                                 (3.275) 

Also, by substituting 2
3ψ  (Eq. 3.273) into the FIII (Eq. 3.267), we have 

2
3

3 c
dF =                                                                                                             (3.276) 

where 
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By writing FI=FIII, the phase line equation for the solid I-solid III transition can be 

established. This gives  

2
1c
g

2
3c

d
− =h                                                                                                        

(3.278) By choosing c1= c3=c, the phase line equation for the solid I-solid III 

transition then becomes 
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 The temperature dependence of the specific heat Cp for the solid I-solid III 

transition, can be obtained from the free energies FI (Eq. 3.274) and FIII (Eq. 

3.276). Using the temperature and pressure dependence of 1a  and b1 (Eqs. 3.253 

and 3.254) in FI (Eq. 3.274) through Eqs. (3.255) and (3.275), the specific heat Cp 

for the solid I phase can be obtained as a function of temperature 

[ ]2/12/1
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2
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2
1010 )()3(2)92(

18
1)( −− −−+−= tp TTTababbIC                           (3.280) 

Similarly, by assuming the temperature and pressure dependence of the coefficients 

3a , b3 and c3 as 

2
3231303 )()()( ttt PPaPPaTTaa −+−+−=                                                    (3.281) 

and 

1,)( 3
2/1

303 =−= cTTbb t                                                                               (3.282) 

the temperature dependence of the specific heat Cp for the solid III phase can be 

obtained as a function of temperature 
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Eq. (3.283) is obtained by substituting Eqs. (3.281) and (3.282) into Eq. (3.276) by 

means of Eqs. (3.271) and (3.277). 

 The temperature dependence of the specific heat Cp(I) and Cp(III) for the 

solid I (Eq. 3.280) and solid III (Eq. 3.283) can be demonstrated numerically using 

the values of 23010 == aa  and 33010 == bb , which reduces to 

2/1)(
39

1)()( −−== tpp TTTIIICIC                                                                

(3.284) 

We plot Cp(I) or Cp(III) as a function of temperature in Fig. 3.23 within the 

temperature interval  -33 0C < T < -21 0C for P=1.8 kbar (Table 3.17) according to 

Eq. (3.284) where Tt= -21 0C. 
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Figure 3.23 Calculated specific heat Cp as a function of temperature for the solid I-

solid III transition in ice at 1.8 kbar according to Eq. (3.284). Solid curve 

represents the best fit to values given here. 
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 The order parameter ψ can be obtained at various temperatures for the solid 

I-solid III transition within the temperature interval -33 0C < T < -21 0C at 1.8 kbar 

in ice. Using Eqs. (3.253) and (3.254) at P=Pt=1.8 kbar in Eq. (3.269) for 1ψ  of the 

solid I phase, one gets 

[ ] 2/1
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2/1
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2
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2
1 )()3(

3
1

tTTbab −−−=ψ                                                             (3.285) 

or below the transition temperature (Tt= -21 0C) 
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Similarly, using Eqs. (3.281) and (3.282) at P=Pt=1.8 kbar in Eq. (3.270), we get 

for the solid III phase  
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By using the above values of 3010 aa =  and 3010 bb =  in Eqs. (3.286) and (3.287), 

the temperature dependence of the order parameters 1ψ  and 3ψ  can be expressed 

as 
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−==ψψ                                                                      (3.288) 

We plot the order parameter ( 1ψ = 3ψ ) as a function of temperature for the solid I-

solid III transition of ice in Fig. 3.24. 

 Finally, the temperature dependence of the susceptibility can be predicted 

for the solid I-solid III transition in ice from the free energies of FI (Eq. 3.248) and 

FIII (Eq. 3.267). By taking the second derivative of FI with respect to the 1ψ  and 

using the temperature and pressure dependence of the coefficients 1a  and b1 (Eqs. 

3.253 and 3.254) as we performed for the liquid-solid I transition, we obtain the 

inverse susceptibility 1−
Iχ  by Eq. (3.265). At P=Pt=1.8 kbar, it will depend on the 
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temperature as given by Eq. (3.266) where Tt= -21 0C. Similarly, for the solid III 

we have the same temperature dependence of the inverse susceptibility 1−
IIIχ , as 

given by Eq. (3.266). We plot the temperature dependence of the inverse 

susceptibility 1−
Iχ = 1−

IIIχ  within the same temperature interval (-33 0C < T < -21 0C) 

at P=1.8 kbar for the solid I-solid III transition of ice in Fig. 3.25. 

 

 

-34 -32 -30 -28 -26 -24 -22 -20
0.0

0.2

0.4

0.6

0.8

ψ
1,

3

T (0C)

P=1.8 kbar

Figure 3.24 Calculated order parameter ψ as a function of temperature for the solid 

I-solid III transition in ice at 1.8 kbar according to Eq. (3.288). Solid curve 

represents the best fit to values given here. 
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Figure 3.25 Calculated inverse susceptibility 1−
Iχ  as a function of temperature for 

the solid I-solid III transition in ice at 1.8 kbar according to Eq. (3.266). Straight 

line represents the best fit to the values given here. 

 

 

3.3 Calculation of the Spontaneous Polarization and the dielectric Constant 

Using a Mean Field Model Close to the Paraelectric-Ferroelectric Phase 

Transition in Ammonium Sulphate 

In section 2.5 we have described the ferroelectric properties of crystals in 

terms of polarization and the dielectric constant. In this section we calculate the 

spontaneous polarization and the dielectric constant close to the paraelectric-

ferroelectric phase transition in ammonium sulfate. 

We give here a mean field model which can describe the ferroelectric-

paraelectric phase transition for ferroelectric materials. We expand the free energy 

in terms of the spontaneous polarization P (order parameter), 

                                                                       (3.289)                        
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where we assume that 0a  and 6a  are constants, 2a  and 4a  depend on temperature. 

We give the temperature dependencies of the coefficients 2a  and 4a  for the 

ferroelectric and paraelectric phases, separately below. Eq. (3.289) describes a first 

order phase transition with 04 <a  and 06 >a . By minimizing the free energy with 

respect to the spontaneous polarization, we get 

2 4 6 0                                                                        (3.290) 

The above equation can be solved for the spontaneous polarization P. The P=0 

solution defines the paraelectric phase. The quadratic solution gives  

/
                                                                                     (3.291) 

which describes the ferroelectric phase. By using the temperature dependencies of 

the coefficients 2a  and 4a , the spontaneous polarization can be calculated as a 

function of temperature according to Eq. (3.291). 

 The temperature dependence of the electric susceptibility χ can also be 

derived from the free energy (Eq. 3.289). By taking the second derivative of the 

free energy with respect to the polarization, 
TP

F
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=−
2

2
1χ or the first derivative of 

the electric field defined as 
TP

FE ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= with respect to the polarization, we get the 

temperature dependence of the electric susceptibility as 

2 12 30                                                                          (3.292)                       

By taking the spontaneous polarization being zero (P=0) in the paraelectric phase, 

2                                                                                                   (3.293) 

represents the temperature dependence of the electric susceptibility or equivalently, 

the dielectric constant ε in the paraelectric phase (T>TC), whereas Eq. (3.292) is the 

χ relation in the ferroelectric phase (T<TC). 

 Eq. (3.291) can be represented in terms of the coefficients  2a , 4a  and 6a  

by substituting Eq. (3.290), the P2 solution (with the minus sign in root square) into 
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Eq. (3.291). Using the ansatz 12
4

62 〈〈
a
aa

 and by expanding the root square term in 

Eq. (3.291) as  

3 /                                                                         (3.294) 

By inserting Eq. (3.294) into Eq. (3.291), we obtain the spontaneous polarization as 

                                                                                             (3.295) 

Inserting Eq. (3.295) into Eq. (3.292) and aftersome algebra, the reciprocal electric 

susceptibility (Eq. 3.292) becomes  

12                                                                                  (3.296) 

Thus, Eq. (3.296) represents the temperature dependence of the dielectric constant 

in the ferroelectric phase.  

We calculate here the temperature dependence of the spontaneous 

polarization P and the electric susceptibility χ or the dielectric constant ε for the 

ferroelectric-paraelectric phase transition in (NH4)2SO4. This calculation was 

performed for the three different frequencies, namely, 100, 500 and 2000 Hz on the 

basis of the experimental data for (NH4)2SO4 [78]. We fitted the expressions for the 

dielectric constant (Eqs. 3.293 and 3.296) which we derived from the mean field 

model, to the experimental data for (NH4)2SO4 [78]. For our fits, we assumed the 

temperature dependence of the coefficients as  

                                                       (3.297) 

for the paraelectric phase (T>TC) according to Eq. (3.293). 

 For the ferroelectric phase, we assumed the temperature dependencies of the 

coefficients 2a  and 4a  for our fits as  

                                                                                             (3.298) 

                                                                                  (3.299) 

and  

                                                                                                           (3.300) 
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On the basis of the temperature dependence of the coefficient 2a  (Eq. 3.297), the 

dielectric constant ε (Eq. 3.293) can be written as  

2 2 2                                                 (3.301) 

in the paraelectric phase. 

 Similarly, using the temperature dependencies of the coefficients 2a  (Eq. 

3.298) and 4a  (Eq. 3.299) and 6a (Eq. 3.300), the dielectric constant ε (Eq. 3.296) 

can be written as  

12                       (3.302) 

in the ferroelectric phase. 

 Finally, the temperature dependence of the spontaneous polarization (Eq. 

3.295) can be written in terms of the temperature-dependent 2a , 4a and 6a  terms 

as  

                                       (3.303) 

Thus, we fitted first Eq. (3.302) to the experimental data for the dielectric constant 

[79] and determined the coefficients 20a , 40a  and 41a   at the frequency of 100 Hz 

for (NH4)2SO4 in the ferroelectric phase (T<TC). We chose here 160 =a . Our fitted 

values of 20a , 40a  and 41a  are tabulated within the temperature interval in Table 

3.19. We plot 1/(ε-1) as a function of TC-T at 100 Hz for (NH4)2SO4 in the 

ferroelectric phase (T<TC) in Fig. 3.26 with the observed data [79]. We then fitted 

Eq. (3.301) to the experimental data [78] for (NH4)2SO4 at 100 Hz and calculated 

the coefficients 20a , 21a  and 22a , as given in Table 3.20 for the paraelectric phase 

(T>TC). Fig. 3.27 gives  1/(ε-1) at various T-TC values. Observed data for 100 Hz 

[78] are also given in Fig. 3.27. 
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Table 3.19 Values of the parameters calculated according to Eq.(3.302) within the 

temperature interval given for the frequencies indicated in the ferroelectric phase 

(T<Tc) of  (NH4)SO4. The figure numbers are also given here to indicate the 

parameters used for each frequency. 

Frequency(Hz) a20 x10-4/oC  ‐a40  ‐a41 x10-3/oC ∆T (K)= Tc‐T  Figs.

100 1.80 0.0498 2.252 0< ∆T < 16  3.26 

500 5.3118 0.07452 4.2575 0< ∆T < 20  3.28 

2000 16.268 0.1174 7.963 0< ∆T < 20  3.31 
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Figure 3.26 Inverse susceptibility χ-1=1/(є-1), є is the dielectric constant, calculated 

from Eq. (3.302) as a function of Tc-T in the ferroelectric phase (T<Tc) of  

(NH4)2SO4 at the frequency of 100 Hz. (■) represents the observed data [78]. 
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Table 3.20 Values of the parameters calculated according to Eq.(3.301) within the 

temperature interval given for the frequencies indicated in the paraelectric phase 

(T>Tc) of (NH4)SO4. The figure numbers are also given here to indicate the 

parameters used for each frequency. 

Frequency(Hz) a20  ‐ a21 x10-4/oC a22 x10-6/oC2 ∆T (K)= T‐Tc  Figs.

100 0.00642 1.183 1.288 0< ∆T < 55  3.27 

500 0.01444 6.85 24.55 0< ∆T < 18  3.29 

500 0.01023 0.5967 0.4158 20< ∆T < 85  3.30 

     2000  0.02039 2.1988      2.002 0< ∆T < 80  3.32 
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Figure 3.27 Inverse susceptibility χ-1=1/(є-1), є is the dielectric constant, calculated 

from Eq.(3.301) as a function of T-Tc in the paraelectric phase (T>Tc) of  

(NH4)2SO4 at the frequency of 100 Hz. (■) represents the observed data [78]. 
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Similar calculation was also carried out at the frequencies of 500 and 2000 

Hz for the ferroelectric and paraelectric phases of (NH4)2SO4. By fitting Eq. 

(3.302) to the observed data at the frequencies of 500 and 2000 Hz [78], the 

coefficients 20a , 40a  and 41a  were determined within the temperature intervals in 

the ferroelectric phase, as given in Table 3.19. Also, by fitting Eq. (3.301) to the 

observed data [78], the coefficients 20a , 21a  and 22a  were determined within the 

temperature interval in the paraelectric phase, as tabulated in Table 3.20. Fig. 3.28 

represents our calculated (Eq. 3.302) 1/(ε-1) against TC-T in the ferroelectric phase 

(T<TC) with the observed data [78]. Figs. 3.29 and 3.30 give our fits in the 

temperature intervals, as indicated in Table 3.20, for 1/(ε-1) against T-TC in the 

paraelectric phase. The observed data [78] are also shown there. We plot in Figs. 

3.31 and 3.32 our calculated values of 1/(ε-1) according to Eqs. (3.302) and 

(3.301), respectively against TC-T (T-TC) at the frequency of 2000 Hz in 

(NH4)2SO4.  
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Figure 3.28 Inverse susceptibility χ-1=1/(є-1), є is the dielectric constant, calculated 

from Eq.(3.302) as a function of Tc-T in the ferroelectric phase (T<Tc) of  

(NH4)2SO4 at the frequency of 500 Hz. (■) represents the observed data [78]. 
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Figure 3.29 Inverse susceptibility χ-1=1/(є-1), є is the dielectric constant, calculated 

from Eq.(3.301) as a function of T-Tc  in the paraelectric phase (T>Tc) within the 

temperature interval indicated for (NH4)2SO4 at the frequency of 500 Hz. (■) 

represents the observed data [78]. 
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Figure 3.30 Inverse susceptibility χ-1=1/(є-1), є is the dielectric constant, calculated 

from Eq.(3.301) as a function of T-Tc  in the paraelectric phase (T>Tc) within the 

temperature interval indicated for (NH4)2SO4 at the frequency of 500 Hz. (■) 

represents the observed data [78]. 
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Figure 3.31 Inverse susceptibility χ-1=1/(є-1), є is the dielectric constant, calculated 

from Eq. (3.302) as a function of Tc-T in the ferroelectric phase (T<Tc) within the 

temperature interval indicated for (NH4)2SO4 at the frequency of 2000 Hz. (■) 

represents the observed data [78]. 
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Figure 3.32 Inverse susceptibility χ-1=1/(є-1), є is the dielectric constant, calculated 

from Eq. (3.301) as a function of T-Tc  in the paraelectric phase (T>Tc) within the 

temperature interval indicated for (NH4)2SO4 at the frequency of 2000 Hz. (■) 

represents the observed data [78]. 
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Since we determined the coefficients 20a , 40a  and 41a  for the ferroelectric 

phase at the frequencies of 100, 500 and 2000 Hz (Table 3.19), we were able to 

evaluate the spontaneous polarization as a function of temperature according to Eq. 

(3.303) for (NH4)2SO4. Figs. (3.33-3.35) give our calculated polarization at various 

temperatures at the frequencies of 100, 500 and 2000 Hz, respectively. 
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Figure 3.33 Polarization calculated from Eq. (3.303) as a function of Tc-T for 

(NH4)2SO4 at the frequency of 100 Hz. (■) represents our calculated values of the 

polarization at various temperatures and the solid line is the best fit (Eq. 3.303). 
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Figure 3.34 Polarization calculated from Eq. (3.303) as a function of Tc-T for 

(NH4)2SO4 at the frequency of 500 Hz. (■) represents our calculated values of the 

polarization at various temperatures and the solid line is the best fit (Eq. 3.303). 
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Figure 3.35 Polarization calculated from Eq. (3.303) as a function of Tc-T for 

(NH4)2SO4 at the frequency of 2000 Hz. (■) represents our calculated values of the 

polarization at various temperatures and the solid line is the best fit (Eq. 3.303). 
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CHAPTER 4 

 

DISCUSSION 

 

 

 For the λ-phase transition, we first calculated the critical exponent and by 

using the values of the critical exponent, we plotted the specific heat against the 

temperature for the ν7 (56 cm-1) and ν2 (1684 cm-1) Raman modes. For the 

disordered β-antiferro-ordered γ phase transition which is a second order phase 

transition in NH4Br, the values of the critical exponent α which we deduced from 

the Raman frequencies of the ν7 (56 cm-1) and ν2 (1684 cm-1) modes, can be 

compared with the predictions of an Ising model. Our value of α=0.19 (below and 

above Tλ) due to the ν7 (56 cm-1) mode is close to the critical exponent value of 

0.125 (=1/8) for the specific heat CP predicted from a three dimensional Ising 

model. However, our values of α=0.45 (T< Tλ) and α=0.57 (T> Tλ) due to the ν2 

(1684 cm-1) mode in NH4Br, are very large compared to the Ising value. Those 

values can be reasonably compared with the value of α'≈0.67 obtained from the 

analysis of the experimental measurements of CP data for NH4Cl [3]. 

 According to Figs. 3.4 and 3.5, there are discrepancies that occur close to 

the transition temperature Tλ. These discrepancies may be due to the fact that we 

compared our calculated CVI with the observed CP instead of CV which is not 

accessible experimentally. Although there are discrepancies, our calculated values 

of the specific heat CVI are reasonably in good agreement with the observed CP for 

NH4Br. There are also some discrepancies for ν7 (56 cm-1) above Tλ. This 

discrepancy can be explained on the basis of the pseudospin-phonon coupling in an 

Ising model due to Yamada et al. [62]. If the critical behaviour of the frequency 

shifts for the ν7 (56 cm-1) Raman mode is not the same in the β and γ phases, in 

other words, the temperature dependence of the frequency shifts is accompanied 
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with a different value of the critical exponent α above Tλ, this may affect our 

calculated values of CVI in the β phase. As a result of this, our calculated CVI values 

can possibly agree better with the observed CP [3] above Tλ, as we obtained for the 

ν2 (1684 cm-1) mode using two different values of the critical exponent below and 

above Tλ [54]. 

 After this calculation, we calculated a linear variation between the specific 

heat and the frequency shifts according to the Pippard relation by using the 

calculated critical exponent values for both ν7 (56 cm-1) and ν2 (1684 cm-1) Raman 

modes below and above Tλ (=234 K). By using this linear variation, we obtained 

the values of the (dP/dT)λ for two seperate temperature regions and from the slope 

values, we see that (dP/dT)λ varies considerably, depending on entirely the 

temperature interval where the analysis was performed. 

The values of the slope (dP/dT)λ which we deduced using the Raman 

frequencies of the ν7 (56 cm-1) and ν2 (1684 cm-1) modes, can be compared with 

the previous values of 62.1 bar/K for the ν5 (134 cm-1) and 90.1 bar/K for the ν5 

(177 cm-1) Raman modes in NH4Br [79]. All our values obtained in this study and 

also those given in the earlier study [79] for the (dP/dT)λ, can be compared with the 

(dP/dT)λ value of 58.68 bar/K which is the value of  Garland and Young [80] from 

their plot of CP against αV for NH4Br. Our slope values given here for NH4Br can 

also be compared with the earlier values of 105.5 bar/K for the lattice mode of ν5 

(174 cm-1) [52] and 94.9 bar/K for the internal mode of ν2 (1708 cm-1) [81] in 

NH4Cl (Tλ=241.5 K). Another comparison can be made between our (dP/dT)λ 

values for the ν7 (56 cm-1) mode (Table 3.4) and ν2 (1684 cm-1) mode (Table 3.5) 

in NH4Br (P=0), and those (dP/dT)C values which have been obtained recently [82] 

for the ν7 (93 cm-1) and ν5 (144 cm-1) disorder-induced modes of NH4Cl close to its 

tricritical phase transition (P≅1.6 kbar). As has been reported in the previous study 

[83], the (dP/dT)C values are 151 bar/K for the ν7 (93 cm-1) mode (T>TC)and 93.9 

bar/K (T< TC), and 129.5 bar/K (T>TC) for the ν5 (144 cm-1) mode in NH4Cl 

(P≅1.6 kbar, TC=257.17K). We also note here that the values of the intercept 

T(dS/dT)λ for the lattice mode of ν7 (56 cm-1) (Table 3.4), are considerably lower 
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than those given for the internal mode of ν2 (1684 cm-1) (Table 3.5) in NH4Br at the 

λ point. 

By knowing the values of (1/ν)(∂ν/∂P)T and γT, we can calculate the 

isothermal compressibility κT using Eq. (2.4). Thus, the thermodynamic quantities 

such as the specific heat CP, the thermal expansivity αP and the isothermal 

compressibility κT can be calculated by means of our spectroscopically modified 

Pippard relations (Eqs. 2.1 and 2.2). This then provides us to obtain the 

thermodynamic data from the frequencies measured accurately for NH4Br close to 

its λ-transition line. Also, a linear variation of the thermal expansivity αp with the 

frequency shifts (1/ν)(∂ν/∂P)T can be tested close to the λ-transition line for 

NH4Br. Thus, the thermal expansivity and isothermal compressibility can be 

calculated from the frequencies measured as a function of pressure in NH4Br [64]. 

  In section 3.2, we calculated the phase diagrams using the mean field theory 

for NH4Cl, ND4Cl, (NH4)2SO4/H2O, LiK1-xRbxSO4, K2S2O7-KHSO4, CnM-CrM, 

CnM-CO, C6H6 and ice. By fitting the phase diagrams for these nine structures, we 

calculated the temperature and pressure or concentration dependence of the 

coefficients. This gave us the temperature and pressure or concentration 

dependence of the free energies and the order parameters of these materials. 

Furthermore, this led us to predict the temperature and pressure dependence of 

some other thermodynamic quantities such as the specific heat, isothermal 

compressibility and thermal expansivity. Our mean field models studied here do 

not only predict the phase line equations for the T-P (or X) phase diagram, but also 

they predict the temperature and pressure (or concentration) dependencies of the 

free energy, order parameter and the relevant thermodynamic quantities. 

Furthermore, since the Raman intensity is proportional to the order parameter, from 

the temperature dependence of the order parameters ψ, the Raman intensity can be 

calculated and compared with the experimentally measured intensities of those 

modes involved in the mechanism of the λ-phase transitions. Also, by taking the 

temperature derivative of the order parameter, the specific heat can be calculated. 

As examples, the specific heat CP, the order parameter ψ and the inverse 

susceptibility χ-1 were calculated as functions of temperature at 1.8 kbar for the 
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solid I-solid III transition in ice, as shown in Figs. (3.23-3.25), respectively. This 

was done by calculating the coefficients in the free energy expansion, which were 

used in the expressions of CP, ψ and χ-1 for ice. Similar treatment can be performed 

for the other materials studied here. The temperature dependence of some 

thermodynamic quantities close to phase transitions in benzene (C6H6) by using the 

coefficients obtained in the free energy, is in progress and this work will be 

published elsewhere. 

We calculated in section 3.3 the temperature dependence of the dielectric 

constant by the relations derived from our mean field model for the ferroelectric 

and paraelectric phases of (NH4)2SO4. This calculation was carried out at the 

frequencies of 100, 500 and 2000 Hz for (NH4)2SO4. By fitting the equations to the 

experimental data [78], we deduced the values of the coefficients (Tables 3.19 and 

3.20). As we see from our plots (Figs. 3.26-3.32), the quadratic fits are reasonably 

good and they can be compared well with the observed data [78]. In particular, at 

the frequency of 100 Hz (Figs. 3.26 and 3.27), the observed data is very well 

represented by the predictions of our mean field model. At higher frequencies (500 

and 2000 Hz) our fits (Figs. 3.28-3.32) are not as good as that for 100 Hz because 

of some scattered data which is not well represented by a quadratic function 

according to our mean field model. At the frequency of 500 Hz, we fitted the 

equation to the experimental data [78] in the paralectric phase (T>TC) for two 

different temperature intervals (Figs. 3.29 and 3.30). This was due to the fact that 

the experimental measurements were ranged from 0 to 90 K (T-TC).  

By knowing the values of the coefficients (Table 3.21) from the fits of the 

dielectric constant ε, we were then able to evaluate the spontaneous polarization for 

various temperatures at the frequencies of 100, 500 and 2000 Hz in (NH4)2SO4. As 

shown in Figs. (3.33-3.35), our calculated values of the spontaneous polarization 

exhibit usual critical behaviour in the ferroelectric phase. As the temperature 

increases, the spontaneous polarization grows which indicates the ordering due to 

the reorientation of the NH4
+ ions. As shown in Figs. (3.33-3.35), the spontaneous 

polarization exhibits almost the same critical behaviour within the temperature 

interval in the ferroelectric phase. Our values of the spontaneous polarization 
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calculated at the frequencies of 100, 500 and 2000 Hz, can be compared with the 

experimental measurements. 
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CHAPTER 5 

 

CONCLUSIONS 

 

 

 Using the mean field models, the T-P and T-X phase diagrams of various 

physical systems such as NH4Cl, ND4Cl, (NH4)2SO4/H2O, LiK1-xRbxSO4, K2S2O7-

KHSO4, cholesteric systems (CnM-CrM, CnM-CO), benzene (C6H6) and ice, were 

calculated in this study. By fitting the phase line equations derived from the mean 

field models to the experimental data for these systems, the T-P and T-X phase 

diagrams were obtained. This was done by assuming the temperature and pressure 

(or concentration) dependence of the coefficients in the phase line equations. These 

dependences were chosen in the simplest form and the phase line equations were 

fitted to the experimental data by means of the quadratic polynomials. 

By expressing the thermodynamic quantities such as the order parameter, 

specific heat and the susceptibility in terms of the coefficients expanded in the free 

energies of those systems studied here, their critical behaviour has been predicted, 

as examplified for ice. For the liquid-solid I and solid I-solid III transitions in ice, 

the temperature dependences of the specific heat CP, the order parameter ψ and the 

inverse susceptibility χ-1 were obtained. The critical behaviour of CP, ψ and χ was 

described with the values of the critical exponents α= 1/2, β=1/4 and γ=1, 

respectively from the mean field models. According to the universal scaling law 

α+2β+γ ≥ 2, summation of our exponent values gives the value of 2. In fact, the 

exponent value for the order parameter ψ should be equal to 1/2 for a second order 

transition in the mean field theory. Our value of β=1/4 which is the tricritical value 

in the mean field theory indicates that the transitions of the liquid-solid I and solid 

I-solid III in ice are not of a second order type, but instead, most likely they are 

nearly second order or weakly first order. Also, the mean field theory gives for a 
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second order transition the value of α=0 for the specific heat. Our value of the 

α=1/2 is the tricritical value in the mean field theory. This is also another indication 

that ice exhibits a weakly first order or nearly second order transition regarding 

liquid-solid I and solid I-solid III transitions since the tricritical behaviour is just 

the transition between the first order and the second order. As performed for ice, by 

deriving the temperature dependence of the order parameter, specific heat and the 

susceptibility from the free energy, the values of the critical expoonents can be 

extracted for all the physical systems studied here. Thus, the type of phase 

transitions can be determined for those systems whose T-P or T-X phase diagrams 

were obtained using the mean field theory. Experimental measurements for the 

order parameter, heat capacity and the susceptibility close to phase transitions as 

given in the T-P or T-X phase diagrams of the physical systems studied here, can 

examine our predictions on the basis of the mean field models. 

In this study, spontaneous polarization and the dielectric constant were 

calculated as a function of temperature for constant frequencies from a mean field 

model of ammonium sulphate. By expanding the free energy in terms of the 

spontaneous polarization up to the sixth order term, spontaneous polarization and 

the dielectric constant (or dielectric susceptibility) were calculated at various 

temperatures for fixed frequencies of 100, 500 and 2000 Hz, as stated above. This 

was done by assuming the temperature dependence of the coefficients in the free 

energy of the mean field model. The calculated inverse susceptibility in the 

quadratic form was fitted to the experimental data for the fixed frequencies studied 

for (NH4)2SO4. This mean field model given here is the simplest one since the 

sublattice structure of (NH4)2SO4 has not been considered here. According to the 

two sublattice model for this molecular crystal, the free energy has been expanded 

in terms of two polarizations P1 and P2 with the linear coupling P1P2 [83]. Another 

sublattice model up to  ( ) with the linear coupling term P1P2 which considers 

dipole-dipole interactions has also been introduced [84]. The critical behaviour of 

spontaneous polarization and the dielectric susceptibility has been studied using the 

experimental data for both sublattice models [83, 84]. In a more recent study [85] 

by considering a quadratic coupling term  which describes the quadrupole-

quadrupole interactions, a two sublattice model has been introduced to calculate the 
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temperature dependence of dielectric susceptibility using the experimental data for 

the dielectric constant of (NH4)2SO4 [83, 84]. In general, polarization and dielectric 

susceptibility are the frequency dependent and it should be of interest to study the 

dynamical properties of ammonium sulfate close to the paraelectric-ferroelectric 

phase transition in this system. 

 In this study, the critical behaviour of the specific heat was predicted on the 

basis of and Ising model by analyzing the Raman frequency shifts for the lattice 

and internal modes of NH4Br close to the λ-transition point. The specific heat CP 

was related linearly to the Raman frequency shifts (1/ν)(∂ν/∂T)P for the λ-phase 

transition of NH4Br. 

 Calculations of the phase diagrams and predictions for the critical behaviour 

of the thermodynamic quantities from the mean field models studied here indicate 

that our methods given are adequate to investigate the mechanism of phase 

transitions for the physical systems of interest. 
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