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ABSTRACT 

 

HARMONIC VIBRATION ANALYSIS OF LARGE STRUCTURES  

WITH LOCAL NONLINEARITY  

 

 

ABAT, Diren 

M.S. Department of Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat ÖZGÜVEN 

 

February 2009, 158 pages 

 

 

With the rapid development in today’s technology, reliability and performance 

requirements on components of various mechanical systems, which tend to be much 

lighter and work under much more severe working conditions, dramatically 

increased. In general, analysis techniques based on  simplified model of structural 

components with linearity assumption may provide time saving for solutions with 

reasonable accuracy. However, since most engineering structures are often very 

complex and intrinsically nonlinear, in some cases they may behave in a different 

manner which cannot be fully described by linear mathematical models, or linear 

treatments may not be applicable at all. In fact, some studies revealed that deviations 

in the modal properties of dynamic structures gathered from measured data are due 

to nonlinearities in the structure. Hence, in problems where accuracy is the primary 

concern, taking the nonlinear effects into account becomes inevitable.  

 

In this thesis, it is aimed to analyze the harmonic response characteristics of multi 

degree of freedom nonlinear structures having different type of nonlinearities. The 

amplitude dependencies of nonlinearities are modelled by using describing function 

method. To increase the accuracy of the results, effect of the higher order harmonic 



 

 
v 

 

terms will be considered by using multi harmonic describing function theory. 

Mathematical formulations are embedded in a computer program developed in 

MATLAB
®
 with graphical user interface. The program gets the system matricies 

from the file which is obtained by using substructuring analysis in ANSYS
®
, and 

nonlinearities in the system can easily be defined through the graphical user interface 

of the MATLAB
® 

program. 

 

Keywords: Structural Nonlinearity, MDOF Nonlinear Systems, Multi Harmonic 

Analysis, Describing Function, Local Nonlinearity, Nonlinear Dynamics, MDOF 

Systems.  
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ÖZ 

 

BÖLGESEL YAPISAL DOĞRUSALSIZLIK ĠÇEREN BÜYÜK SĠSTEMLERĠN  

HARMONĠK TĠTREġĠM ANALĠZĠ 

 

 

 

ABAT, Diren 

Yüksek Lisans,  Makina Mühendisliği Bölümü 

Tez Yöneticisi: Pr. Dr. H.Nevzat Özgüven 

 

ġubat 2009, 158 Sayfa 

 

 

 

Günümüz teknolojisinin geliĢimi ile beraber daha hafif olma ve daha ağır çevre 

koĢulları altında çalıĢma eğiliminde olan çeĢitli mekanik sistem bileĢenlerinin 

güvenilirlik ve performans gereksinimleri önemli bir artıĢ göstermiĢtir. Genel olarak, 

mekanik yapıların basit modelleri üzerinde doğrusallık varsayımı temel alınarak 

yapılan analiz yöntemleri makul doğruluklar ile kısa zamanda sonuç verebilmektedir. 

Fakat tasarlanan çoğu yapı, kompleks olmaları ve gerçekte doğrusal olmamalarından 

dolayı bir çok durumda doğrusal matematiksel modeller ile tam olarak 

tanımlanamamakta ya da doğrusallık tanımlamaları hiçbir durumda 

kullanılamamaktadır. Yapılan çalıĢmalar, gerçekleĢtirilen ölçümler ile elde edilen 

modal parametrelerdeki sapmaların gerçekten de doğrusalsızlıktan kaynaklandığını 

ortaya çıkarmıĢtır. Bu nedenle hassasiyetin önem kazandığı problemlerde doğrusal 

olmayan etkileri hesaba katmak kaçınılmaz olmaktadır.  

 

Bu çalıĢmada, çok serbestlik dereceli, değiĢik doğrusalsızlıklar içeren sistemlerin 

harmonik tepki özellikleri incelenmiĢtir. Doğrusalsızlıkların genlik bağımlılıkları 

tanımlayan iĢlev metodu kullanarak modellenmiĢtir. Sonuçların hassasiyetini 
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arttırmak için çok harmonikli tanımlayan iĢlev teorisi kullanılarak yüksek harmonik 

etkileri de hesaba katılmıĢtır. Kullanılan matematiksel denklemler ile MATLAB
® 

platformunda kullanıcı arayüze sahip bir program geliĢtirilmiĢtir. Program, sistem 

matrislerini  ANSYS
®
 tarafından oluĢturulan dosyadan alabilmekte ve değiĢik tipte 

doğrusalsızlıklar kullanıcı arayüzü ile kolayca tanımlanabilmektedir. 

 

 

Keywords: Yapısal Doğrusalsızlık, Çok Serbestlik Dereceli Doğrusal Olmayan 

Sistemler, Çok Harmonikli Analiz, Tanımlayan ĠĢlev, Lokal Doğrusalsızlık, 

Doğrusalsızlık Dinamiği, Çok Serbestlik Dereceli Sistemler. 
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NOMENCLATURE 

 

 

[C]  Viscous damping matrix 

 

{f}  Vector of external forcing 

 

{F} Complex amplitude vector of external forcing 

 

 Ff  Coefficient of friction damping element 

 

 Fp  Preload of the spring element 

 

[H]  Structural (hysteretic) damping matrix 

 

  i  Unit imaginary number             

 

[K]  Stiffness matrix 

 

[M]  Mass matrix 

 

  n  Degree of freedom 

 

 Q Set of harmonics  

 

{s}  Internal nonlinear forces vector 

 

 S  Complex harmonic nonlinear function 

 

x   Displacement vector 

 

x   Velocity vector 

 

x   Acceleration vector  

 

{X}  Complex amplitude vector of displacements 

 

  t  Time 

 

  v  Describing function 

 

 yab  Intercoordinate displacement between coordinates a and b 
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[α]  Receptance matrix 

 

 β  Coefficient of cubic stifness element 

 

 Δ  Nonlinearity matrix 

 

 ζ  Phase of harmonic nonlinear function 
 

j
  Phase of harmonic displacement response 

 

ab   Phase of intercoordinate harmonic displacement response 

 

 ψ  ωt 

 

 ω  Frequency of excitation 

 

 

Subscripts 

 

 a, b  General coordinate 

 

  ab  Intercoordinate 

 

  l  Harmonic order of the internal nonlinear force 

 

  m  Harmonic order of the response 

 

  p Number of harmonics in the approximated response 

 

  r Number of harmonics in the approximated nonlinear force 

 

 

Acronyms 

 

DFM  Describing Function Method 

 

DOF  Degree of Freedom 

 

FEM  Finite Element Method 

 

FD  Frequency Domain 

 

FRF  Frequency Response Function 
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CHAPTER 1 

 

 

INTRODUCTION 

1 INTRODUCTION 

1.1 Introduction 

 

With the rapid development in today’s technology, reliability and performance 

requirements, on components of various mechanical systems which tend to be much 

lighter and work under much more severe working conditions, are dramatically 

increased [1]. To meet these requirements, dynamic analysis should be carried out at 

the design stage which will require constructing an analytical model that can 

describe the dynamic characteristic of the structure. In general, analysis techniques 

on a simplified models of structural components with linearity assumption may 

provide time saving for solutions with reasonable accuracy.  However, since most 

engineering structures are often very complex and intrinsically nonlinear [2], in some 

cases they may behave in a different manner which cannot be fully described by 

linear mathematical models, or linear treatments may not be applicable at all. In fact, 

some studies revealed that deviations in the modal properties of dynamic structures 

gathered from measured data, are due to nonlinearities in the structure [3]. Hence, in 

problems where accuracy is the primary concern, taking the nonlinear effects into 

account becomes inevitable.  

 

Dynamic analysis of structures is based on representing the dynamic properties of a 

structure through some modelling techniques. Models can be Spatial Models, Modal 

Models and Response Models. Finite Element Method (FEM) is one of the most 

frequently used Spatial Modelling technique, which is based on constructing the 

mathematical model in terms of mass, stiffness and damping matrices and then 

solving the differential equation of the motion to find the dynamic response of the 
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structure (Figure 1.1). Another modelling technique which is used to create Modal 

Model, is based on extracting the dynamic properties of the system from 

experimentally obtained Frequency Response Function (FRF), by subsequent 

analysis on that measurements regarding natural frequencies, damping ratios and 

mode shapes [4]. Response Model, intends to define mathematical model by 

measuring the response of the structure to a prescribed forcing. All three types of 

models are based on well defined linear theory, and they are frequently used. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  Most popular spatial modelling technique, a finite element model 

 

 

 

If a structure is constructed with linear mathematical modelling techniques, then, 

principle of superposition is applicable for the dynamic analysis of that structure. As 

a conventional rule, superposition principle states that a linear system which 

responds as x1(t) to an input f1(t), and responds as x2(t) to an input f2(t), will response 

to ξ f1(t)+λ f2(t) (where ξ, λ are constants) as ξ x1(t)+ λ x2(t) for all f1(t) and f2(t)  and 

ξ and λ. Moreover, linearity assumption presumes that, if the excitation is sinusoidal, 

the response of the structure is purely sinusoidal which means no energy can transfer 

between different frequencies. From structural dynamics point of view, linearity 

assumption also claims that global behavior of a system can be predicted from local 

behavior. If a structure fails to obey superposition behavior, show amplitude or 
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frequency dependent response characteristics and isolated solutions exist;  it is 

implied that the structure is nonlinear.  

 

There are many sources of nonlinearity in most practical mechanical structures, 

which can be classified as geometrical, physical, structural or design nonlinearities 

and constraints [5]. These nonlinearities can exist locally or globally. Global 

nonlinearity is mainly caused by large amplitude of vibration and/or nonlinear 

material properties of components such as shock absorbers, vibration isolators, 

bearings, etc. which have amplitude dependent response characteristics. On the other 

hand, local nonlinearities can be found in the form of complex stiffness, friction 

characteristics and looseness in joints (physical nonlinearity); clearance or backlash 

(structural or design nonlinearity); and nonlinear damping (physical nonlinearity) 

which are inherently found in structural assemblies formed by many components [6]. 

As stated before, nonlinear behaviors of structures can not be fully described by 

linear theory, therefore to obtain accurate results, nonlinear modelling, analysis and 

solution techniques should be applied.  

 

Basically, there are two main approaches to analyze non-linear structures; time-

domain (TD) and frequency domain (FD) techniques. TD analysis is based on 

successive integration of the equation of motion of a system, which is described as a 

function of time,  to find the steady state response to a well defined excitation [7-8]. 

Although they yield accurate results, long transients of lightly damped structures, 

necessity of using small time steps for stiff structures combined with large systems 

makes the computational effort the primary concern when numerical integration is 

utilized during the solution. This makes TD analysis a cumbersome task for cases 

where many design iteration and optimization procedures should be applied. Because 

of such limitations and drawbacks of TD analysis, alternative and efficient 

counterpart, approximate FD analysis are developed based on the assumption of 

steady-state condition which is plausible for many engineering applications. These 

analyses are mainly concentrated on investigating the response of a system to 

periodic exitations and discarding the transient response during solution procedure. 
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1.1.1 Frequency Domain Analysis 

 

With the development of a computational tool, Fast Fourier Transformation, and its 

utilisation in measuring and data collection devices such as frequency response 

analysers and data acquisition systems, frequency domain analysis became a primary 

choice especially in steady state harmonic response analysis.  Since all the incidents 

happening in one load-cycle are represented by average quantities, the solution is 

generally regarded as “approximate” [9].  

 

Since harmonic forcing is still widely used in vibration simulation and testing,  the 

response of a system to a harmonic forcing is worth investigating. The response of a 

simple linear system to harmonic forcing reveals several important dynamic 

parameters that describes the system, namely natural frequencies, damping, phase-

lag characteristics, etc. The transfer function concept is used to define FRF of a 

linear system, which is determined by making several FRF measurements at different 

frequencies to identify the aforementioned dynamical properties. 

 

The block diagram of a linear system operating at frequency ω, shown in Figure 1.2, 

implies that, the response of the system under consideration has only frequency 

dependency and at any frequency, the frequency response function H(ω) (transfer 

function) of the sytem can be determined by the following equation: 

 

 

     
X( )

H( )
F( )

     (1.1) 
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Figure 1.2  Schematic block diagram representation of a linear system operating at 

frequency ω 

 

However, in nonlinear systems the response characteristics do not only depent on the 

frequency, but also depend on the amplitude of the response. Response amplitude 

dependency, makes nonlinear response analysis and system identification procedures 

a cumbersome task. A similar block diagram representation for such amplitude 

dependent harmonic response analysis is represented in Figure 1.3.  

 

 

 

 

 

       

 

 

 

 

 

Figure 1.3  Schematic representation of an amplitude dependent nonlinear system 

operating at frequency ω 
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The response of a broad type of nonlinear system to a harmonic excitation remains 

basically harmonic, despite the fact that there is a leakage of energy to frequencies at 

certain multiples of the excitation frequency. This is the characteristics of nearly all 

nonlinear systems and response at these higher frequencies is called “higher order 

harmonic” response.   

 

1.2 Literature Survey 

 

 

Studies on the vibration analysis of nonlinear structures are divided into two main 

groups. One of the objective in these studies is to find the harmonic responses of  the 

systems having different kind of nonlinearities which are well defined, quantified 

and modelled locally or globally. The other group of studies, which generally use the 

theoretical background on foregoing studies, concentrated on to detect, characterize, 

localize and quantify the nonlinearities in the systems analysed. 

 

As mentioned before, the former and commonly used nonlinear response analysis 

method is the numerical integration of the equation of the motion [7-8, 10-12]. In 

spite of the fact that this method gives very accurate results, long transients because 

of low damping levels, small time steps for accuracy requirements and large numbers 

of degrees-of-freedom result in a very costly computational procedure for steady-

state response analysis [13]. 

 

As an alternative procedure to aforementioned method, to elude its drawbacks, 

interests have been focused on alternative, approximate frequency-domain methods 

for determining the steady-state response of structures, particularly to periodic 

external excitation. The starting point in these methods is to convert the nonlinear 

ordinary differential equations (ODE) of motion, obtained through some 

discretization techniques such as Rayleigh-Ritz, Galerkin, assumed modes method, 

finite element method, etc,  into nonlinear algebraic equations by using such 

tecniques as harmonic balance, describing functions, perturbation method, etc. 

Finally these equations will be solved simultanously and iteratively.  
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Describing Function Method (DFM) is commonly used in many branches of 

engineering, namely, mechanical, electronical, and so on. The main idea underlying 

in DFM is modeling and studying nonlinear system behavior by replacing each 

nonlinear element with a (quasi)linear descriptor or describing function whose gain is 

a function of input amplitude [14]. In other words, DFM aims to find the relation 

between the response in fundamental harmonics and the excitation, by calculating the 

average restoring force occurring in one cycle. The theoretical basis of this method is 

related to the work, method of slowly-varying coeffcients, done by Van der Pol [15]. 

Bogoliubov and Mitropolsky [16] used a similar approach called method of 

equivalent linearization.  

 

Watanabe and Sato [17] used first order describing function to linearize the efects of 

nonlinear stifness in a beam and used their results to develop “nonlinear building 

block approach” , for coupling nonlinear structures having local nonlinearity. 

 

Budak and Özgüven [18] suggested a new method called “Iterative Receptance 

Method” for systems where nonlinear spring and damping forces can be expressed as 

polynomials. They calculated the quasilinear receptance matrix of a nonlinear system 

which is called “pseudo receptance matrix” (PRM) and thus analyzed harmonic 

response of structures with symmetrical nonlinearities. 

 

Tanrıkulu, et al. [19] suggested a new approach to obtain fundamental harmonic 

response analysis of multi degree of freedom (MDOF) systems. They used 

describing function approach and analyzed three type nonlinearities, which are cubic 

stiffness, coulomb damping and piecewise linear stiffness. 

 

Later, Kuran and Özgüven [20] developed a modal analysis approach for MDOF 

nonlinear structures. They extended their work to calculate the higher harmonic 

terms in the system responses. 

 

In a later work, Cigeroglu and Özgüven [21] used the frequency domain method 

developed in an earlier study [19] for forced harmonic response analysis of bladed 
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disks with dry friction dampers. They suggested a nonlinear model for a bladed disk 

assembly which includes all the blades with blade to blade and/or blade to cover 

plate dry friction dampers. Single harmonic describing function appraoch was used 

to analayze the nonlinear MDOF model of a bladed disk system. 

 

Čermelj, Boltežar [22] presented an approximate, FD approach to modelling 

complex structures with localised nonlinearities for FRF coupling in the frequency 

domain. They sub-structured these complex structures into its linear and nonlinear 

parts in the first stage and used harmonic-balance and describing-function-based 

approximation for the nonlinear part, introducing the multi-coordinate describing 

function and the multi-coordinate describing-function matrix to form harmonic 

nonlinear super-model. 

 

Siller and Imregun [23] used the method in [19] and presented an explicit 

formulation for the frequency response functions for nonlinear MDOF systems. The 

nonlinear formulation in this work was based on first-order describing functions and 

focused on cubic stiffness and friction damping nonlinearities. Their technique 

produces FRFs at selected coordinates only, regardless of the system’s size or the 

type of nonlinearity. 

 

Ferreira and Serpa [24] presented a study on the description and the application of 

the arc-length method to solve a system of nonlinear equations obtaining as a result 

the nonlinear frequency response. They considered the fundamental harmonic 

component by using the describing function approach and investigated the cubic 

stiffness and gap nonlinearities to illustrate the methodology. 

 

Maliha, et al. [25] obtained a nonlinear multi degree of freedom dynamic model for a 

spur gear pair on flexible shafts with flexible bearings and they used that model to 

employ the method developed in previous study [19] for multi harmonic vibration 

analysis of nonlinear systems with large number of degrees of freedom. The 

nonlinear elasticity term resulting from backlash is expressed by the describing 

function theory. 
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Özer, et al. [26]  introduced a new method for type and parametric identification of a 

nonlinear element in an otherwise linear structure. They used the describing function 

approach which contains only the first harmonic terms, for representing the 

nonlinearity in the structure.  

 

Ferreira [13] developed a nonlinear coupling approach to extend the scope of 

structural dynamic coupling procedures to nonlinear structures. A multi-harmonic 

analysis was introduced and the describing function methodology was extended to 

multi harmonic describing function (MHDF) approach to describe the so-called multi 

harmonic nonlinear receptance coupling approach. The suggested approach couples 

linear and nonlinear structures with different types of joints by specifying the 

describing functions for all the nonlinear joints. 

 

Nuij, et al. [27] suggested an extension to higher-order describing functions by 

introducing the concept of the harmonics generator. The resulting higher-order 

sinusoidal input describing functions relate the magnitude and phase of the higher 

harmonics of the periodic response of the system to the magnitude and phase of a 

sinusoidal excitation.  

 

Aydogan [28] presented a method to identify and to determine the location of cracks 

in  structural parts. The method presented was based on single harmonic describing 

functions, and capable of detecting and locating the crack even if only the 

fundamental harmonic is used. 

 

Majed and Raynaud [29] proposed two nonlinear formulations in order to study a 

structural behaviour that includes the effect of some localized nonlinearities. The 

former formulation is based on the exploitation of the eigensolutions of the 

associated conservative linear system and the characteristics of local nonlinearities, 

whereas the second formulation is using the linearized eigensolutions which are 

calculated with an iterative process.  
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Duarte and Machado [30] studied the system constituted by a mass subjected to two 

types of friction, namely, the viscous and the Coulomb friction. They used DFM to 

analayse the dynamics of elemental mechanical system and compared their work 

with standard models.  

 

Atkins, et al. [31] proposed an extension of the classical linear force appropriation 

method for nonlinear MDOF systems. Writers are focused on weakly nonlinear 

systems such that, a sinusoidal force will only produce superharmonic components in 

the response.  

 

Kim, et al. [32] presented a multi-term harmonic balance method (HBM) for 

nonlinear frequency response calculations of a torsional sub-system containing a 

clearance type nonlinearity. They investigated the number of harmonic terms that 

must be included in the HBM response calculations at given sinusoidal excitation 

and presented analytical predictions for super and sub-harmonic resonances. 

 

Kawamura, et al. [33] proposed an analytical approach for analysing the nonlinear 

forced vibration of a MDOF system by component mode synthesis method. They 

divided the system investigated into some components and derived nonlinear modal 

equation of each component using the free-interface vibration modes. They derived 

the modal responses of components by solving the modal equations of all 

components and the conjunction conditions simultaneously. They considered cubic 

stiffness type nonlinearity. 

 

Several studies [34-38] are also concentrated on analysing the response 

characteristics of nonlinear systems by using well defined HBM. Moreover, 

detection and identification of nonlinear systems using HBM is also studied by many 

researchers [39-40]  

 

Z.K. Peng, et al. [41] developed a new method based on the concept of nonlinear 

output frequency-response functions, which is derived from the Volterra-series (VS) 
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theory of nonlinear systems, for the estimation of the nonlinear stiffness and damping 

parameters of locally nonlinear MDOF systems.   

 

Besides, various studies [42-43] are also using VS theory to analyse the nonlinear 

systems. The same theory is also used for studies on detection characterization and 

identification of nonlinear systems [44-45].  

 

1.3 Objective of the Thesis 

 

In this thesis, it is aimed to analyze the harmonic response characteristics MDOF 

nonlinear structures to different types of nonlinearities. The amplitude dependencies 

of nonlinearities will be modelled by using DFM. To improve the accuracy of the 

results, effect of the higher order harmonic terms will be considered as well, by using 

multi harmonic describing function theory. The mathematical formulations will be 

embeded in a computer program developed in MATLAB
®
 with graphical user 

interface. The program will get the system matricies from the file which should be 

obtained by using substructuring analysis in ANSYS
®
 or manually editted for small 

size systems. The nonlinearities in the system can easily be defined through the 

graphical user interface of the MATLAB
® 

program. The substructuring analysis in 

ANSYS
® 

is described in Appendix B and
  

MATLAB
®
 source code for reading the 

ANSYS
®
 file is given in the Appendix D.  

 

1.4 Scope of the Study 

 

 

The outline of the thesis is given below:  

 

In  Chapter  2, the nonlinearities used in this thesis will be presented and modeling 

these nonlinearities via DFM will be discussed. 
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In Chapter 3, background knowledge on harmonic vibration anlysis of MDOF 

nonlinear structures will be given and the underlying mathematical background in 

single and multi-harmonic analysis will be explained. 

 

In  Chapter 4, the MATLAB
® 

computer program will be introduced and the basic 

capabilities of the program will be explained. 

 

In Chapter 5, the program will be verified by comparing the results of some cases 

studies of the previous works and also the solution of some case studies will be 

compared with TD solutions. 

 

In Chapter 6, program capabilities and compatibility with standart FEM software will 

be demonstrated by studying new case studies . 

 

Conclusions and future work will be given in Chapter 7. 
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CHAPTER 2 

 

 

MODELING NONLINEARITIES 

2 MODELING NONLINEARITIES 

2.1 Introduction 

 

The descriptive representation of systems by matrices presented a new approach for 

nonlinear analysis. The system is separated into linear and nonlinear components in 

such a way that the nonlinearities can also be represented by discrete models (as 

matrices). The approximate frequency domain linearization methods use techniques, 

such as DFM, that convert nonlinear differential equations of motion into nonlinear 

algebraic equations.  

 

However, the approximate linearization methods have some limitations. Methods can 

only be applied for obtaining a periodic solution of a nonlinear differential equation, 

because the assumed excitation has a sinusoidal form [13]. 

 

2.2 Modeling a System with Nonlinear Components 

 

The mathematical background in the formulations of this section is based on the 

study of first Budak and Özgüven [18], later Tanrıkulu, et al. [19] and the study that 

uses the theory of the former study to explain the multi harmonic describing function 

concept [13].  

 

Consider the differential equation of a nonlinear structure, modeled as an n degrees 

of freedom discrete system, subjected to an external excitation:  

 

  M x C x i H x K x s f      (2.1) 
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In above equation M , C , H and K  are the linear mass, viscous damping, 

hysteretic damping and stiffness matrices of the system, respectively. The 

vectors x , x  and x  are the displacement, velocity and acceleration vectors, 

and i stands for the unit imaginary number. Moreover, s  represents internal 

nonlinear forces, whereas f  represents external forcing.  The nonlinear force 

vector s  is considered to be a function of displacements and its derivatives in a 

general case ({s(x,x,x,...)}).    

 

An a
th

 element of the vector {s} can be expressed as a sum, 

 

1
aba

n

b
s s ,        (2.2) 

 

where 
ab

s  represents the nonlinear restoring force element acting between the 

coordinates a and b for a≠b, and between the ground and the coordinate a for a=b. 

Note that, 

ab ba
s s ,     (2.3) 

 

ab
s  is a function of the inter-coordinate displacement 

ab
y and its derivatives, 

 

ab ab ab ab ab
s s (y , y , y ,...)  ,    (2.4) 

 

where 

ab a b

ab a

y x x for a b,

y x for a b

              (2.5) 

 

Assuming that the external excitation is a sinusoidal force, then f can be written as: 
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i t i

f f (t) Im F e Im( F e )          (2.6) 

 

 

where, {F} is a harmonic excitation vector operating at frequency ω and generic 

angle  is defined as the product of frequency ω and time t. 

 

When a nonlinear system is subjected to a sinusoidal excitation, the response is 

generally not exactly sinusoidal, often periodic, having the same period as the 

excitation and can be represented by Fourier series as: 

 

            im t im

m m m
m 0 m 0 m 0

x(t) x(t) Im( X e ) Im( X e )         (2.7) 

 

where, subscript m indicates the m
th

 harmonic order and {x}m is the m
th

 displacement 

response order. Then the complex displacement response amplitude X at coordinate j 

in the m
th

 harmonic, 
j m

(X ) , can be written as: 

 

                                   
mj

i ( )

jj m m
(X ) X e         (2.8) 

 

where,  j m
X  is the magnitude and  

j m
( )  is the phase of the complex displacement 

j
X  at harmonic m. 

 

Let the response of the system, x(t) , given by Equation (2.7), is approximated by a 

set, Qp, of p harmonic terms written as: 

 

          1 2 3 pp
Q q ,q ,q ,...,q      (2.9) 

 

Here it should be noted that, the even q values in set Qp are due to nonlinearities with 

asymmetrical characteristics. If it is confined to symmetrical nonlinearities only, 

even q values will be neglected. 
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Then, the approximate response can be defined as: 

p

1

q

(q ) mp m q
x(t) x(t) x(t)           (2.10) 

 

The formulations given above describe the displacements of the main coordinates. 

On the other hand, the intercoordinate displacement response, between coordinates a 

and b, yab, can be expressed as: 

 

im t im
ab m ab m ab mab a b

m 0 m 0 m 0
y (t) x (t) x (t) (y ) (t) Im( (Y ) e ) Im( (Y ) e )  

(2.11) 

 

where: 

 t              (2.12) 

 

Similarly, the approximate response can be defined as: 

 

     
p p

1 1
p

q q
im

ab ab (q ) ab m ab m
m q m q

y (t) (y ) (t) (y ) (t) Im( (Y ) e )     (2.13) 

 

 

where: 

 

                                 
ab m

ab m a m b m

i( )

abab m m

(Y ) (X ) (X ) , (a b)

(Y ) (Y ) e

   (2.14) 

 

2.2.1 Mathematical Formulation for Internal Nonlinear Forces 

 

The internal nonlinear force vector s  in Equation (2.1) is response dependent, such 

that the force related to intercoordinate displacement can be expressed as 
ab ab

s (y ) . 

By assuming that the variable yab is in the form shown in Equation (2.13), it can be 

concluded that, nonlinear function 
pab ab (q )

s [(y ) ] is complex and is also a periodic 
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function of time. Thus, the function 
pab ab (q )

s [(y ) ] can also be expressed by a Fourier 

series. The number of terms considered in the Fourier series of nonlinear function, 

will be investigated separately, as single harmonic and multi harmonic formulations, 

in the next sections. 

 

2.2.1.1 Single Harmonic Formulation for Internal Nonlinear Forces 

 

 

Consider the matrix differential equation of motion of a nonlinear MDOF structure 

subjected to external sinusoidal excitation:  

 

    
i t i

M x C x i H x K x s Im( F e ) Im( F e )      (2.15) 

 

 

Then the steady-state solution can be represented by a Fourier series as: 

 

 

           im t im

m m m
m 0 m 0 m 0

x(t) x(t) Im( X e ) Im( X e )          (2.16) 

 

 

In some cases, where the higher harmonic terms of the response have small 

amplitudes relative to the fundamental (single) harmonic component, the response to 

this component is dominated and can be represented by the fundamental component 

of the Fourier series expansion of x(t) with acceptable numerical error. In such cases, 

the steady state response x(t)  can be formulated as: 

 

                          
i t i

1 11
x(t) x(t) Im( X e ) Im( X e )           (2.17) 

 

 

The response of a general coordinate j, xj can be written as: 

 

 

 
i

j j 1 j 1 j 1
x (x ) (x ) Im((X ) e ) ,                  (2.18) 
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where 

  
j 1

i ( )

j 1 j 1
(X ) | X | e                                           (2.19) 

 

Again, the same representation as in Equation (2.11) can be presented here, the inter-

coordinate displacement response x, between coordinates a and b, yab, can be 

expressed as: 

 
i

ab a b a 1 b 1 ab 1 ab 1 ab 1
y (t) x (t) x (t) (x ) (t) (x ) (t) (y ) (t) (y ) (t) (Y ) e  

 (2.20) 

 

where: 

 

                   
ab 1

ab 1 a 1 b 1

i ( )

abab 1 1

(Y ) (X ) (X ) , (a b)

(Y ) (Y ) e

   (2.21) 

 

 

By assuming that the variable yab is in the form shown in Equation (2.20), it can be 

concluded that, nonlinear function 
ab ab 1

s [(y ) ]  is complex and is also a periodic 

function of time. Thus, the function 
ab ab 1

s [(y ) ] can be expressed by a Fourier series 

as:  

 

                      im
ab m ab mab ab 1

m 0 m 0
s [(y ) ] (s ) Im( ( ) e ) S                     (2.22) 

 

 

where: 

 

      

mabi ( )

a ba b m m

2

ab ab 1a b 0
0

2
im

ab ab 1a b m
0

( ) e

1
( ) s [(y ) ]d

2

i
( ) s [(y ) ]e d (m 1)





S S

S

S

      (2.23) 
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If the nonlinear force 
ab ab 1

s [(y ) ]  is assumed to be dominated by the fundamental 

term like the response itself, the formulation for the approximated nonlinear force 

can be simplified as: 

 

                                   
i

ab ab 1 ab 1 ab 1
s [(y ) ] (s ) Im(( ) e ) S                               (2.24) 

 

where: 

 

   

1abi ( )

aba b 1 1

2
i

ab ab 1a b 1
0

( ) e

i
( ) s [(y ) ]e d

S S

S

                                (2.25) 

 

 

2.2.1.2 Multi Harmonic Formulation for Internal Nonlinear Forces 

 

 

When a structure is highly nonlinear, the effects of higher harmonic terms (multiples 

of the fundamental input frequency), which are the remainder of the Fourier series 

expansion of response in Equation (2.7), become considerable. Therefore, it is 

important not to neglect the effects of these terms during the solution procedure. 

 

 

The steady-state solution to Equation (2.1) can be represented by a Fourier series as: 

 

 

    im

m m
m 0 m 0

x(t) x(t) Im( X e )      (2.26) 

 

where: 

                                               
mj

i ( )

jj m m
(X ) X e               (2.27) 

 

 

The intercoordinate displacement response x, between coordinates a and b, yab, can 

be expressed as: 
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p p

1 1

q q
im

ab ab (q ) ab m ab mp m q m q
y (t) (y ) (t) (y ) (t) Im( (Y ) e )           (2.28) 

 

where: 

 

           
ab m

ab m a m b m

i( )

abab m m

(Y ) (X ) (X ) , (a b)

(Y ) (Y ) e

                            (2.29) 

 

 

 The set, Qp, for q1,…….,qp  was given by Equation (2.9). 

 

 

By assuming that the variable yab is in the form as in Equation (2.28), it can be 

concluded that, nonlinear function 
pab ab (q )

s [(y ) ]  is complex and is also a periodic 

function of time. 
pab ab (q )

s [(y ) ]  can be approximated by set, Qr, of r harmonic terms 

written as: 

 

                                   1 2 3 rr
Q q ,q ,q ,...,q             (2.30) 

 

 

Again it should be noted here that, if it is confined to symmetrical nonlinearities 

only, even numbered harmonics will be neglected like the set Qp given in Equation 

(2.9). 

 

Accordingly, the approximate nonlinear function 
prab (q ) ab (q )

(s ) [(y ) ]  can be written 

as: 

 

               
r r

p
1 1

r

q q
im

m mab abab (q ) ab (q )
m q m q

(s ) [(y ) ] (s ) Im( ( ) e )  S               (2.31) 

 

 

such that: 
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mab

p

p

i ( )

a ba b m m

2

ab ab (q )a b 0
0

2
im

ab ab (q )a b m
0

( ) e

1
( ) s [(y ) ]d

2

i
( ) s [(y ) ]e d , (m 1)





S S

S

S

  (2.32) 

 

 

2.3 Modeling Nonlinearities with Describing Function  

 

Understanding the dynamic behaviour of a mechanical system needs accurate 

analytical modelling throughout the design stage. As stated before, many complex 

mechanical structures are composed of several substructures connected by different 

kinds of joints and these joints have a considerable effect in the dynamic behaviour 

of the assembled structures. So, it is important to establish an accurate mathematical 

model for these joint components.  

 

Most of the studies concentrate on modeling a joint by investigating and identifying 

its dynamic characteristics [46-52]. The response at the joint caused by an external 

force is the general procedure for finding the force-response relationship of a joint. 

The results of these studies are used as an input for further studies, which is the 

development of an accurate general mathematical model of the joint behaviour by 

finding the parameters of the identified model. For simple cases, this can be obtained 

by curve fitting of the experimental force-response relationship. These relationships 

can be either linear or nonlinear.  

 

Separating the system into linear and nonlinear components facilitated vibration 

analysis since it allows the nonlinearities to be represented by discrete models. The 

linear joint models such as springs, viscous dampers and rigid connections, are 

investigated and well defined in the former studies.  On the other hand, the nonlinear 

joint models, which are amplitude dependent, are represented by local nonlinear 

coefficients (typically stiffness and/or damping related). The approximate frequency 
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domain quasi-linearization techniques, such as DFM are widely used to express these 

amplitude dependent coefficients [13, 18-21, 23]. 

 

 

The theoretical basis of this DFM is related to the Van der Pol method of slowly-

varying coefficients [15] and to the method of equivalent linearization proposed by 

Bogoliubov and Mitroposky [16]. The basic theory of the method depend upon the 

fact that, when subjected to a harmonic excitation, a wide variety of nonlinear 

systems exhibit a periodic, oscillatory response that is sufficiently close to a pure 

sinusoidal. The quasi-linearization technique that DFM is based on simply replaces 

the system nonlinearity by an approximate linear gain which depends upon the type, 

amplitude and the frequencies of the input.  

 

In most researches [9, 19, 21, 22, 26, 28, 53] the DFM is used to describe the relation 

between the fundamental harmonics of the response and the excitation, and in these 

studies the average restoring force occurring in one cycle is calculated. On the other 

hand, extensions to multiharmonic responses have been proposed by Kuran and 

Özgüven [20], Ferreira [13]. Apart from classical harmonic nonlinear vibration 

analysis, DFM is also widely used in many applications such as impact [54] and 

control [55-56]. 

 

2.3.1 Single Harmonic Describing Function 

 

 

The notion of single (fundamental) harmonic DFM can be expressed by considering 

a single degree of freedom system driven by a harmonic excitation which is given 

by: 

 

mx cx ihx kx s f sin t       (2.33)  

 

 

In above equation, m, c, h and k are the linear mass, viscous damping, hysteretic 

damping and stiffness values, respectively. x, 
.
x  and 

..
x  are the displacement, velocity 
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and acceleration of the mass m, and i stands for the unit imaginary number. s 

represents internal nonlinear forces, whereas f represents external forcing. The 

nonlinear force s is considered to be a function of displacements and velocities 

({s(x,x,x,...)}).    

 

The response of the nonlinear system x(t) is assumed to be close enough to a 

sinusoidal oscillation as:  

 

    1 1x (X) sin( t ) (X) sin     (2.34) 

 

where 

 

t             (2.35) 

 

 

In Equation (2.34), (X)1 is complex response amplitude, ω is the excitation frequency 

and θ is phase angle. 

 

Now it is reasonable to assume that the nonlinear function s(x, x)  is complex and 

also a periodic function of time, provided that little energy is leaked to frequencies 

other than the fundamental frequency. Therefore, it can be expressed in a Fourier 

series as: 

 

20 0 1 1 1 1
s(x, x) v(x, x)x ( ) ( , (X) ) ( ) ( , (X) )x i( ) ( , (X) )x

HigherHarmonicTerms

  S S S

   (2.36) 

 

 

Here, the bias term, (S)0  is defined as: 

 

2

1 10
0

1
( ) ((X) sin , (X) cos )d

2
S S    (2.37) 

 

 

The remaining real and imaginary parts of the fundamental harmonic are: 
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2

2

1 11
01

2

1 11
01

i
( ) ((X) sin , (X) cos )sin d

(X)

i
( ) ((X) sin , (X) cos )cos d

(X)

S S

S S

         (2.38) 

 

v(x, x)  defined in Equation (2.36) can be defined as the optimum equivalent linear 

complex stiffness representation of the nonlinear function s(x, x)  when the response 

of the nonlinear system x(t) is close enough to a sinusoidal oscillation. If s(x, x)  is          

symmetrical around the origin, then 
0

( )S  becomes zero. If the nonlinearity is not 

frequency dependent, then 
21

( )S becomes zero. Moreover, if the assumption that 

s(x, x)  is dominated by its fundamental term is valid, then Equation (2.36) can be 

simplified as: 

 

21 1 1 1 1
(v(x, x)) x ( ) ( , (X) )x i( ) ( , (X) )x S S         (2.39) 

 

where 
1

(v(x, x))  is called the first-order describing function which can be uniquely 

defined as: 

 

21 1 1
(v(x, x)) ( ) i( ) S S     (2.40) 

 

In nonlinear problems, if the kind of nonlinearity in s(x, x)  is known, the describing 

function v can be calculated from Equations (2.38) and (2.40).  
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2.3.2 Higher Harmonic Describing Function 

 

 

After accepting the hypothesis given by mathematical formulations in Section 

(2.2.1.2), the elements 
ab m

( )S , given by Equation (2.32), of the approximate 

nonlinear force 
pab ab (q )

(s )[(y ) ]  can be expressed as:  

 

 

a b m ab m ab m 1 2 p
( ) (v ) (Y ) (m q ,q ,..., q )S   (2.41) 

 

 

The corresponding m
th

 harmonic order describing function can be defined as: 

 

 

    ab m

ab m

ab m

( )
(v )

(Y )

S
     (2.42) 

 

 

By considering the m harmonics, Equation (2.42) can be written in matrix form as: 

 

 

 

     

1 11

2 22

p pp

qab ab qab q

qab ab qab q

qab ab qab q

( ) (Y )(v ) 0 0

( ) (Y )0 (v ) 0

( ) (Y )0 0 (v )





      



S

S

S

  (2.43) 

 

 

 

Equation (2.43) can be expressed in terms of the general coordinates, {X}, as: 
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1 1
1

1 1
1

2 2
2

2 2 2

p
p p

p
p p

ab q ab q
qa

ab q ab q
qb

ab q ab q
a q

q ab q ab qb

qa ab q ab q

qb ab q ab q

(v ) (v ) 0 0 0 0
( )

(v ) (v ) 0 0 0 0
( )

0 0 (v ) (v ) 0 0( )

0 0 (v ) (v ) 0 0( )

( ) 0 0 0 0 (v ) (v )

( ) 0 0 0 0 (v ) (v )









      





 

-
S

-
S

-S

-S

S -

S -

1

1

2

2

p

p

a q

b q

a q

b q

a q

b q

(X )

(X )

(X )

(X )

(X )

(X )

 

(2.44) 

 

 

Equation (2.44) can be written in more compact form as: 

 

 

a m a mab
m 1 2 pb m b m

( ) (X )
Δ (m = q ,q ,..., q )( ) (X )

S
S        (2.45) 

 

 

2.3.3 Multi Harmonic Describing Function 

 

After accepting the conjecture given by mathematical formulations in Section 

(2.2.1.2), the elements 
ab m

( )S , given by Equation (2.32), of the approximate 

nonlinear force 
prab (q ) ab (q )

(s ) [(y ) ]  can be expressed as:  

 

        
p

1

q

ab m abab m 1 2 r
q

( ) (v ) (Y ) (m q ,q ,..., q )S l l
l

  (2.46) 

 

 

The Equation (2.46) can be written in matrix format as: 

 

 

            

1 11 1 1 2 1

2 22 1 2 2 2

r p1

p

p

r r p

qab ab qab q q ab q q ab q q

qab ab qab q q ab q q ab q q

qab ab qab q q ab q q

( ) (Y )(v ) (v ) (v )

( ) (Y )(v ) (v ) (v )

( ) (Y )(v ) (v )





    



  



 

S

S

S

       (2.47) 
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and Equation (2.47) can be expressed as a function of general coordinate {X} as: 

 

 

 

1 1 1 1 1 2 1 2 1 11

1 1 1 1 1 2 1 2 1 11

2 1 22

2

p p

p p

r

r

ab q q ab q q ab q q ab q q ab q q ab q qqa

ab q q ab q q ab q q ab q q ab q q ab q qqb

ab q q ab q qqa

qb
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qb

(v ) (v ) (v ) (v ) (v ) (v )( )

(v ) (v ) (v ) (v ) (v ) (v )( )

(v ) (v )( )

( )

( )

( )





 

- - -S

- - -S

-S

S

S

S

1 2 2 2 2 2 2

2 1 2 1 2 2 2 2 2 2

p p

p p

r r r r r p r p1 1 2 2

r r r r1 1 2

ab q q ab q q ab q q ab q q

ab q q ab q q ab q q ab q q ab q q ab q q

ab q q ab q q ab q q ab q q ab q q ab q q

ab q q ab q q ab q q ab q q

(v ) (v ) (v ) (v )

(v ) (v ) (v ) (v ) (v ) (v )

(v ) (v ) (v ) (v ) (v ) (v )

(v ) (v ) (v ) (v )





      



- -

- - -

- - -

- -

1

1

2

2

p

pr p r p2

a q

b q

a q

b q

a q

ab q q ab q q b q

(X )

(X )

(X )

(X )

(X )

(X )(v ) (v )

 

 -

(2.48) 

 

 

Equation (2.48) can be written in a more compact form as: 

 

 

 
p

1 2 r
1=

ma aab
m mb b

q

q

( ) (X )
Δ (m = q ,q ,..., q )( ) (X )

S

S
l

l ll
          (2.49) 

 

 

where: 

 

   
ab m ab m

ab
m

ab m ab m

(v ) -(v )

Δ
-(v ) (v )

l l

l

l l

          (2.50) 

 

 

Accordingly, if the form of nonlinearity { s(x, x) } is known, all describing functions,  

ab m(v ) l  for m=qr  and l=qp  can be found for intercoordinate elements from equation: 

 

 

   
r p

p p-1r r

p

ab q ab (q ) ab q ab (q )

ab q q

ab (q )

(s ) ((y ) ) - (s ) ((y ) ))

(v )

(Y )

 
   (2.51) 
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and for ground elements: 

 

r p

p p-1r r

p

ab q ab (q ) ab q ab (q )

ab q q

ab (q )

(s ) ((x ) ) - (s ) ((x ) ))

(v )

(X )

 
  (2.52) 

 

 

It should be stated here that, in this study, the higher order terms of the response are 

calculated by considering multi harmonic describing function theory. Higher order 

describing function formulation is given just for information and completeness. 

 

2.4 Different Types of Nonlinearities and the Corresponding Describing 

Functions 

 

 

The representation of various nonlinear joints models by describing function 

aprroach will be summarised in this section. This joint models are formed by 

idealized representation of different nonlinearity models which describe the force 

and displacement/velocity/frequency relationships. Most common nonlinearities 

encountered in structural dynamics and their response behaviours are given in Figure 

2.1. 

 

2.4.1.1 Cubic Stiffness 

 

This model represents a massless nonlinear spring such that a force applied across 

the spring is proportional to the cube of the elongation of the spring, y (Figure 2.2). 

The equation that describes the relation between the force and the response can be 

written as: 

 

     
3

s y      (2.53) 
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Figure 2.1  Idealized types of various structural nonlinearities [40] 

 

 

 



 

 30 

Displacement

F
o
rc

e
 

 
 

Figure 2.2  Behaviour of a typical hardening cubic stiffness element 

 

 

 

It must be emphasized here that, although, the overall stiffness of the nonlinear 

spring changes with the amplitude y, the stiffness coefficient β defined in equation 

(2.53) remains constant and is not frequency dependent. Moreover, β can be positive 

or negative. In cases where β<0, the effective stiffness decreases as the level of 

excitation increases. This is why such stiffness elements are regarded as softening 

springs. The opposite case, where the spring constant β>0, is referred as hardening 

spring because as the forcing level increases, also the restoring forcing level 

increases. Examples of systems with hardening stiffness behaviour are clamped 

plates and beams, whereas buckling beams and plates are examples of systems 

having softening stiffness characteristics [6]. 

 

The effect of cubic stiffness nonlinearity on system responses is investigated in many 

studies such as [9, 13, 19-20, 22, 24]. These studies confirm the frequency response 

distortion characteristics of these systems, such that, for hardening systems as the 

βy
3
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level of excitation increases, the resonant frequency shifts up (Figure 2.3). As 

expected, the resonant frequency shifts down for softening systems.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3  Typical response distortion due to (hardening) cubic stiffness nonlinearity 

 
 

The describing functions of a nonlinear cubic stiffness element having cubic stiffness 

coefficient β defined in Equation (2.53), can be formulated by considering the first 2 

harmonics, first and third for both response and internal nonlinear force, as: 

 

2

ab 11 1

2

ab 13 1 3 1

2

ab 31 1

2 2

ab 33 1 3

3
(v ) βY

4
3 3

(v ) βY Y βY
2 4
1

(v ) - βY
4
3 3

(v ) - βY βY
2 4

=

=

=

=

    (2.54) 

 

The derivation of Equations (2.54) can be found in [13]. It should be stated here that 

the higher harmonic describing function of cubic stiffness element is given just for 

information. They will be computed by numerical integration rather than pre-defined 

formulas during response calculations. 
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2.4.1.2 Coulomb Friction 

 

 

Coulomb friction between two surfaces is one of the damping forms which cause 

nonlinearities in structures. This is why it is generally called as coulomb damping 

(Figure 2.4). The relationship between the sign of the relative velocity at the interface 

of the joint and the value of the resulting force can be given as: 

 

                    
f

s F sgn(y)      (2.55) 

 

Velocity

F
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e

 

Figure 2.4  Behaviour of Coulomb friction nonlinearity 

 

 

The Coulomb friction nonlinearity is most evident at low levels of excitation. In 

extreme situations stick-slip motion may exist. The previous studies [9, 13, 20, 22, 

and 36] reveal that the response distortion for this case appears at higher damping 

with lower excitation levels (Figure 2.5). For very small displacements, 

corresponding to the “stick-slip” stage, the nonlinear force given in Equation 2.55 is 

usually replaced by a linear elastic force proportional to the current amplitude of 

motion [9]. The “stick” and “stick-slip” stages will not be included in this work. 
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Figure 2.5  Typical response distortion due to Coulomb friction nonlinearity 

 

 

The describing functions of a coulomb friction damper having friction force Ff, 

defined in Equation (2.55), can be formulated by considering the first harmonics 

only, as: 

 

f
ab 11

1

4F
(v ) i

Y
=          (2.56) 

 

 

2.4.1.3 Piecewise Linear Stiffness 

 

 

Many structural and mechanical systems with nonlinear material or geometrical 

properties can be modeled as systems with piecewise linear stiffness (Example: 

preloaded bearings [6]) (Figure 2.6). Because of this prevalence, there are number of 

researches that analyze systems with piecewise stiffness nonlinearity [19-20, 40, 57, 

etc]. This type of nonlinearity can be expressed as a model with a massless nonlinear 

spring such that force applied across the spring is proportional to the elongation of 

the spring, but this proportionality constant is different at specified elongation values 
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(Figure 2.7). The equation that describes the relation between the force and the 

response can be written as: 

 

1

1 2 2

s k y, for y

s (k k ) k y for y

   (2.57) 

 

 

 

 
 

Figure 2.6  An example of a system with piecewise nonlinearity 
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Figure 2.7  Behaviour of a typical piecewise linear stiffness element 
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It can be deduced that two of the nonlinearities in Figure 2.1 are special cases of  this 

kind of nonlinearity. In fact, for saturation nolinearity, k2 in Equation (2.56) will be 

taken as 0, whereas for clearence (backlash) nonlinearity, k1 will be taken as 0.  

 

The describing functions of a piecewise linear stiffness element having system 

coefficients k1, k2 and δ defined in Equation (2.57), can be formulated by considering 

the first harmonics only, as: 

 

   
ab 11 1 1

1 2 2
ab 11 2 1

1 1 1

(v ) k for Y

2(k k )
(v ) arcsin( ) ( ) 1-( ) k for Y

Y Y Y

= ,

-
= + +

        (2.58) 

 

 

 

2.4.1.4 Arctan Stiffness 

 

 

The arctan spring (Figure 2.8) has a softening stiffness characteristic, however, the 

difference of this kind of stiffness nonlinearity from the cubic stiffness nonlinearity 

is that the stiffness of the arctan spring converges to (±ρ.π/2) for large amplitudes, 

whereas the softening cubic stiffness spring does not converge to a constant value 

[40]. The equation that describes the relation between the force and the response can 

be written as [40]: 

 

       s arctan( y)               (2.59) 

 

The coefficient  is the amplification factor whereas  is the compression factor. 

The describing functions of an arctan spring element having system coefficients , 

and  defined in Equation (2.59), can be formulated by considering the first 

harmonics only, as [40]: 
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2

ab 11 12

1

2ρ
(v ) y κ(Y ) +1 -1

κ(Y )

= ( )                               (2.60) 
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Figure 2.8  Behaviour of a typical arctan stiffness element 

 

2.4.1.5 Preloaded Spring Element 

 

 

Preloaded spring elements are encountered in many practical mechanical and 

structural systems either due to intentional pre-compression, unintended 

manufacturing or heat treatment process. The equation that describes the relation 

between the force and the response can be written as [58]: 

 

p

p p

y
s F ky for y 0

y

s [ F F ] for y 0

   (2.61) 

 

where Fp is the preload force value. Typical force-displacement relationship of 

preload stiffness element is given in Figure 2.10. 
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Figure 2.9  Behaviour of a typical preloaded stiffness element 

 

 

The describing function of a preloaded stiffness element having system coefficients 

Fp and k defined in Equation (2.61) can be formulated by considering the first 

harmonics only, as [59]: 

 

 
p

ab 11
1

4F
(v ) k

Y
=          (2.62) 
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CHAPTER 3 

 

 

HARMONIC VIBRATION ANALYSIS OF MDOF NONLINEAR 

STRUCTURES 

 

3 HARMONIC VIBRATION ANALYSIS OF MDOF STRUCTURES 

3.1 Introduction 

 

Construction of the ODE of motion of a MDOF system commences with spatial 

discretization of the system under investigation with various methods such as Ritz, 

Galerkin, FEM, variational formulations, etc. By discretization, a large system can be 

represented in a matrix form such that, the elements of the system matrices represent 

local mass, stiffness and damping coefficients and the matrix indexes of these 

coefficients represent the distribution of these elements in space. Budak and 

Özgüven [18] first suggested that nonlinear forces also can be expressed in a matrix 

form. The theoretical background of this section is again based on the study of 

Tanrıkulu, et al [19] and a later work of Ferreira [13], for modelling nonlinearities 

via a common quasilinearization technique, DFM which was presented in Chapter 2. 

In this chapter, multi harmonic response solution will be presented. Some equations 

of Chapter 2 may also be given here for completeness. 

 

3.2 Mathematical Formulation 

 

Consider a nonlinear structure under the harmonic external forcing. If the structure is 

modelled as a discrete system with n degrees of freedom, then the matrix differential  

equation  of  motion  can  be written as:  

 

M x C x i H x K x s(x,x) f     (3.1) 
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Assuming the external excitation is a sinusoidal force then f can be written as: 

 

            
i

f Im( F e )         (3.2)  

 

 

As stated in Section 2.2 and expressed by Equation (2.7), the response is generally 

not exactly sinusoidal, often periodic, having the same period as the excitation and 

can be represented by Fourier series written as: 

 

              im

m
m 0

x(t) Im( X e )                    (3.3)     

 

 

Since the nonlinear forces are response dependent, they can also be assumed to be 

periodic,  having the same period as the excitation and can be represented by Fourier 

series written as:  

 

im

m mm 0 m 0
s(x,x) s Im( e ) S         (3.4) 

 

 

If Equations (3.2), (3.3) and (3.4) are substituted, in complex form, into the matrix 

differential equation of motion (Equation 3.1), the following equation can be 

obtained by grouping terms with the same frequencies: 

 

2

m m mm M im C i H K X F[ ] S   (3.5) 

 

 

Equation (3.5) can be rewritten by using the receptance definition, as: 

 

 

    
1

m 1 2 3 4 pm m m[ ] X F , (m q ,q ,q ,q ,..., q )S           (3.6) 

 

 

where: 

 

  
2 1

m[ ] m M im C i H K[ ]      (3.7) 
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is the receptance matrix of the linear part of the structure at frequency mω. 

 

 

Budak and Özgüven [18] first suggested that nonlinear forces can be expressed in a 

matrix form. They developed a method for the harmonic vibration analysis of 

nonlinear structures, which has later been extended by Tanrıkulu, et al. [19] by using 

describing functions and in these studies the amplitude vector of nonlinear forces are 

expressed in the form: 

 

mm m
[ ] XS      (3.8) 

 

 

where, the elements o the matrix 
m

[ ]  , the nonlinearity matrix, are defined as: 

 
n

ab maa m
b 1

ab m ab m

[ ] (v )

[ ] (v ) (a b),

    (3.9) 

 

 

Later, Ferreira [13] extended the theory behind the Equations (3.8) and (3.9) to 

express the nonlinear forces by using multiharmonic describing function theory and 

express Equation (3.8) by using the corresponding describing function Equation 

(2.49), as: 

 

  
m

mm
1
[ ] XS l l

l
    (3.10) 

 

 

where, the elements o the matrix 
m

[ ]
l
 , the nonlinearity matrix, are defined as: 

 
n

ab maa m
b 1

ab m ab m

[ ] (v )

[ ] (v ) (a b),

ll

l l

                              (3.11) 
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If the single or higher order describing function theory is used for qualinearization of 

nonlinear forces, then Equation (3.6) can be rewritten as: 

 
1

m mm mm
[ ] X [ ] X F                  (3.12) 

 

 

Equation (3.12) can be extended to an assembled matrix equation by considering all 

m harmonics, which can be given as:  

 

-1
1 1

1 1

-1
2 2

2 2

-1
m mm m

[ ] [ ] 0 0 {X} {F}

{X} {F}
0 [ ] [ ] 0

{X} {F}0 0 [ ] [ ]

   

  




 

     



 

      (3.13) 

 

 

Then, the desired response solution can be obtained from the following equation: 

 

-1
-1
1 1

1 1

-1
2 2

2 2

-1
m mm m

[ ] [ ] 0 0{X} {F}

{X} {F}
0 [ ] [ ] 0

{X} {F}0 0 [ ] [ ]




 

    



   

   

    (3.14) 

 

 

Equation (3.14) can be written in a more compact form as: 

 

{X} [θ]{F}                                          (3.15) 

 

where; 
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-1
-1
1 1

-1
2 2

-1
m m

[ ] [ ] 0 0

0 [ ] [ ] 0

0 0 [ ] [ ]





   



  (3.16) 

 

 

On the other hand, if multi harmonic describing function theory is used for 

quasilinearization of nonlinear forces, Equation (3.6) can be rewritten as: 

 

m1
mm m m

1
[ ] X [ ] X Fl l

l
        (3.17) 

 

 

By considering m harmonics for the solution and the Equation (2.50), Equation 

(3.17) can be written in a matrix form as:  

 

 

-1
1 11 12 1m

1 1

-1
2 2

21 2 22 2m

-1
m mm1 m2 m mm

[ ] [ ] [ ] [ ] {X} {F}

{X} {F}
[ ] [ ] [ ] [ ]

{X} {F}[ ] [ ] [ ] [ ]

   

 




 

      





 (3.18) 

 

 

Then, the desired response solution can be calculated from the equation: 

 

-1
-1
1 11 12 1m

1 1

-1
2 2

21 2 22 2m

-1
m mm1 m2 m mm

[ ] [ ] [ ] [ ]{X} {F}

{X} {F}
[ ] [ ] [ ] [ ]

{X} {F}[ ] [ ] [ ] [ ]

   

  




 

 



  

   (3.19) 
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Equation (3.18) can be written in a more compact form as: 

 

{X} [θ]{F}                             (3.20) 

 

where; 

 

-1
-1
1 11 12 1m

-1
21 2 22 2m

-1
m1 m2 m mm

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]





   



  (3.21) 

 

 

In Equation 3.15 and 3.20,  is the response level dependent quasilinear receptance 

matrix of the structure. 

 

Equations (3.16) and (3.21), require to take the inverse of a large matrix to form [θ], 

if the system investigated is a large system. Therefore, the response calculation of a 

large structure for several frequencies by using Equations (3.16) and (3.21)  is 

numerically costly. However, in case the nonlinearity  in a structure is  local  then  

the  nonlinearity matrix would  be  highly  sparse.  Its  elements  can  be  considered  

as modifications  to  the  receptance  matrix  of  the  corresponding  linear  system  

at  the  desired  frequency.  This  kind of modification can be applied by using the 

method developed by Özgüven [61] for the harmonic response analysis of 

nonproportionally damped linear structures. The method in [61] is extended to 

nonlinear systems by Tanrıkulu, et al. [19] and Maliha, et al. [25], by considering the 

equation in which the dynamic stiffness matrix of the linear part can be partitioned as 

follows (in the following equations the subscript m is dropped for simplicity): 
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-1 -1
1 1 11111 12

-1 -1
2 2 221 22

{X } {X } {F }[ ] 0[ ] [ ]

{X } {X } {F }0 0[ ] [ ]

       (3.22) 

 

 

where subscript “11” stands for the matrix elements corresponding to the coordinates 

having nonlinear connection, whereas “22” stands for the matrix elements 

corresponding to the coordinates having no nonlinear connection. 

 

In Equation (3.22), 11[ ] matrix includes multi harmonic quasilinear coefficients of 

the nonlinear coordinates as well. Besides, 1{X }  includes the multi harmonic 

responses of the coordinates affected by nonlinearities. Then, quasilinear recepance 

matrix of the nonlinear system can be found from: 

 

-1

11 11 11 11

T -1
12 21 11 11 12

22 22 21 11 12

[ ] = [[I] + [ ][ ]] [ ]

[ ]=[ ] =[[I]+[ ][ ]] [ ]

[ ] = [ ] - [ ][ ][ ]

      (3.23) 

 

 

Additional computational time saving can be achieved by avoiding the matrix 

inversion in Equation (3.7), namely, in the equation which is used to find the 

receptance matrix of the linear system in large systems. In fact, the receptance matrix 

of the linear part of the system can be determined through the modal summation, 

which can be formulated for the m
th

 harmonic as: 

 

r r TN

2 2 2r 1
r r r

m 1 2 3 4 p
( )

{ }{ }
[ ] (m q , q , q , q ,..., q )

( m i )
    (3.24) 

 

where 
r

{ } is the r
th

 modal vector, 
r
 is the r

th
 natural frequency of the undamped 

linear part of the structure and 
r
is the r

th
 structural damping proportionality 

constant.  
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The receptance of the system can be found by taking reduced number of modal 

parameters into account by modal truncation such that N << n , which can reduce the 

computational effort drastically. 

 

Since the nonlinearity matrix is expressed in terms of analytically obtained 

describing functions defined as a function of unknown response values which is the 

X  vector, the solution requires an iterative procedure. 

 

j+1 j
{X} [θ] {F} (j = 1,2,3,...)      (3.25) 

 

In Equation (3.25), 
j+1

{X}  is the complex displacement amplitude vector at the 

(j+1)
th

 iteration step, while 
j

[θ]  is the quasilinear recepance matrix at the j
th

 iteration 

step that is obtained by using 
j

{X} . 

 

Then, {X} can be calculated from the quasilinear receptance matrix obtained by 

using either Equations (3.16) or (3.21), by updating at every iteration step. Such an 

iteration procedure is the implementation of the “fixed point iteration method”. 

Iterations are  to be repeated until a specified tolerance is reached. The convergence 

criteria can be specified as: 

 

j+1 j

j

|{X} {X} |
e = x100 

|{X} |
              (3.26) 

 

The number of iterations can be drastically reduced, if instead of 
j+1

{X} , the 

avaraged displacement  
j+1

{X*}  is used for the next iteration [19]. 

 

j+1 j

j+1

{X} {X}
{X*}

2
              (3.27) 
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Moreover, in  case  of  divergent  or  numerically  unstable  solutions,  relaxation  on  

the  fixed point iteration to obtain a fast convergence, can be applied as [21, 62] : 

 

j+1 j+1 j
{X*} (1 - ){X} {X} (0 λ 1)               (3.28) 

 

To obtain the multiple solutions due to nonlinearity, computations will be performed 

in the range of interest from low-to-high and then from high-to-low frequency 

values. The linear response of the system at a starting frequency is taken as the initial 

guess for the displacement vector {X}j at that frequency. After that, at other 

frequencies, the solution obtained at the previous frequency step is taken as the initial 

guess  [19, 21, 62].  
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CHAPTER 4 

 

 

COMPUTER PROGRAM: MH-NLS 

4 COMPUTER PROGRAM: MH-NLS 

4.1 Introduction 

 

The theory and the mathematical formulations described in the previous chapters are 

implemented in MATLAB
® 

environment and an original computer program, called 

“MH-NLS” (Multi Harmonic Non-Linear Solver), with a user friendly graphical user 

interface (GUI) is constructed, in order to analyze the nonlinear response 

characteristics of MDOF systems. The program is compatible with a popular finite 

element program, ANSYS
®
, and takes an output file of that program in the 

preprocessing stage to form the system matrices in structural dynamic analysis. In 

this chapter, this program will be introduced by defining its basic features. The user 

manual of the program is given in Appendix A. The logic of the program is 

summarized in the flow chart shown in Figure 4.12.  

 

4.2 Program Description 

 

MH-NLS is a MATLAB
® 

based GUI program which computes the harmonic 

nonlinear response of selected degrees of freedom of a nonlinear MDOF structure. 

The preprocessing stage of the program mainly consists of: 

 

 Defining the system to be analyzed, 

 Selecting the solution parameters and the method,  

 Setting the nonlinear connections and variables 

 Describing the response coordinates for output.  
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The output of the program is amplitude of the response and frequency response 

values of selected coordinates at predetermined forcing level over a frequency range. 

Program is capable of analyzing systems with following types of: 

 

 Cubic stiffness, 

 Coulomb damping, 

 Piecewise linear stiffness, 

 Preloaded stiffness, 

 Arctan stiffness, 

 

Apart from nonlinearities, user can also define linear local viscous dampers between 

coordinates. 

 

4.2.1 Preprocessing 

 

The preprocessing stage of MH-NLS, like preprocessing stages of other programs 

such as ANSYS
®
, PATRAN

®
, etc., prepares the program for the solution procedure. 

The starting point of the preprocessing stage is to introduce the system to be 

analyzed, namely, the mass, stiffness, damping and external forcing matrices of the 

system. This can be accomplished by simply loading of a text file which is an output 

of the ANSYS
®

 program. This text file can be created by the ANSYS
®  

program by 

following the instructions given in Appendix B. The content of a sample file which is 

created by analayzing the system given in Figure 5.10, is depicted in Appendix C.  

 

Loading operation is realized by a special algorithm which can read and form the 

system matricies from an output file of ANSYS
®
. This algorithm is given in 

Appendix D. The structural damping is modelled as proportional damping and the 

loss factor of the material is entered as an input before loading operation. Loading 

operation creates [M], [K], [H] matrices and {F} vector. Then undamped natural 

frequencies of the system are computed and displayed on the GUI window in order 

to guide the user for further parameter selections.  
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Solution parameters such as: 

 

 Lower and upper limits of the frequency range of interest 

 Number of frequency points  

 Allowable percentage error tolerance 

 Maximum iteration number  

 Relaxation number for converging and diverging solutions [21]  

 

can be entered through the GUI window.  

 

FRF matrix construction method can also be selected depending on the system size. 

For systems with small degrees of freedom, MATLAB
® 

gives fast solution with 

matrix inversion, whereas for large systems, modal summation with limited number 

of modes is the best choice in obtaining FRF of the linear part of the system for fast 

solution with reasonable accuracy. 

 

Next preprocessing stage is setting the position and parameters of the nonlinearities 

in the system. Nonlinearity types given in Section 2.4 can be easily defined by 

illustrative GUI windows that involve schematic diagrams and describing paramters 

for different types of nonlinearities (Appendix A). 

 

Although, the external force vector on the system can be modelled in ANSYS
®
 and 

laoded from the file created, it is also possible to define different force values on 

different coordinates. It is also possible to switch back again to the force vector 

loaded from the file for further usage in the solution procedure. 

 

Three types of solution methods are defined in the program, namely: 

 

 Single harmonic solution 

 Higher harmonic solution 
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 Multi harmonic solution. 

 

These three types of solution methods are based on corresponding describing 

function theories, which are single, higher and multi harmonic describing function 

theories. The selections other than single harmonic solution needs defining the 

number of harmonic component used in solution formulation. Single harmonic 

describing functions are programmed as formulas, whereas higher and multi 

harmonic describing functions are calculated with pre-defined numerical integration 

formulations. Because of the numerical integration procedure, higher and multi 

harmonic solutions are completed in much longer time than single harmonic solution. 

 

The last preprocessing stage is defining the response coordinate and FRF elements to 

be observed. The response coordinate X, elements of FRF matrix, α1 and α2, which 

can be any number in ranges 1≤ X ≤ n, 1≤ α1 ≤ n, 1≤ α2 ≤ n.  

 

In ANSYS
®
, the nodes are numbered and for each node the x, y, and z DOFs are 

specified. However in MH-NLS, each DOF is specified with a different number (See 

Table 4.1) which are also defined in ANSYS output file (given as row number in 

load vector definition). In specifying coordinates where a nonlinear element is 

connected or a force is applied and for output coordinate definition, one should use 

the coordinate numbers used in MH-NLS. 

 

 

Table 4.1  Renumbering strategy during file loading process 

 

MH-NLS Coordinates ANSYS
®
 Node Number DOF components of nodes 

1 1 UX 

2 1 UY 

3 2 UX 

4 2 UY 
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It can be seen from Table 4.1 that, the UY component of the first node in ANSYS
®

 is  

recognized as the second coordinate of the system by the program. To determine the 

renumbering of each DOF in defining nonlinearities, forcing and output coordinates, 

user should use the output file of ANSYS
®

. The renumbered DOFs are given as row 

numbers in the load vector defined in the ANSYS
® 

output file (See APPENDIX C).  

4.2.2 Solution Algorithm 

 

When the user clicks the solution button in the GUI, program first sets the solution 

parameters defined by the user. The next step is determining the necessary 

coordinates (NC) which will be used in the calculation procedure. These coordinates 

are the ones having nonlinear connection, external forcing and the coordinates for 

which response and FRF computations will be performed. As stated before in Section 

3.2, in systems where the nonlinearities are localized to a few coordinates only, 

arranging the systems matrices (SM) in such a partitioned way that the NC and all 

coordinates except NC can be arranged like: 

 

11 12

21 22

[SM] [SM]

SM
[SM] [SM]

       (4.1) 

 

 

will reduce the computational effort considerably. In Equation (4.1), 1 denotes NC 

and 2 denotes all coordinates except NC. The SM are symmetric such that: 

 

 

12 21[SM] [SM]      (4.2) 

 

 

By using the predetermined NC, the system matrices [M], [K], [H], {F} are 

reordered. In higher and multi harmonic solutions, further reordering will be 

performed on higher order FRF matrix. The methodology of this procedure is 

explained below: 

 



 

 52 

Whether the FRF matrix is constructed with matrix inversion or modal summation, 

the matrix will be in the form: 

 

1

2

m

[ ] 0 0

0 [ ] 0

[ ]

0 0 [ ]





   



          (4.3) 

 

 

The matrix can also be expressed by considering the NC as: 

 

 

11 12

21 22
1

11 12

21 22
2

11 12

21 22
m

[ ] [ ]
0 0

[ ] [ ]

[ ] [ ]
0 0

[ ] [ ][ ]

[ ] [ ]
0 0

[ ] [ ]





   



  (4.4) 

  

 

In order to be able to use the Equation (3.23), the matrix in Equation (4.4) should be 

reordered in such a way that the necessary coordinates of both single and multi 

harmonic components of the FRF matrix are collected. After obtaining [ ]  

(Equation 4.4), the submatrices 11[ ]  and 12[ ]  which will be used in Equation 

(3.23) will be in the following form: 
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11 1

11 2

11

11 m

[ ] 0 0

0 [ ] 0
[ ]

0 0 [ ]





   



        (4.5) 

 

12 1

12 2

12

12 m

[ ] 0 0

0 [ ] 0
[ ]

0 0 [ ]





   



        (4.6) 

 

Since all necessary information for the calculation is presented in 11[ ]  and 12[ ] , 

the other elements 21[ ]  and 22[ ]  are not necessary for further calculations. The 

required pseudo-receptance elements of  [ ] , 11[ ]  and 12[ ] , can easily be found by 

using Equation (3.23). Then the desired response values can be found by using the 

equation: 

 

  

(n.m)x1 (NCN.m)x1(NCN.m)x(NCN.m) (NCN.m)x(n-NCN).m

11 12[ ] [ ] F {X}   (4.7) 

 

where: 

 

NCN : Number of Necessary Coordinates 

m       : Harmonic Number 

n        : Degree of Freedom  

 

Equation (4.7) confirms that the result gives all the harmonic response components 

of NC. 
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The formulations given above can handle single and multiharmonic solution; 

however, different solution algorithm should be used for higher order solution. This 

situation can be explained by looking at the equation that gives response for higher 

order solution:  

 

-1
-1
1 1

1 1

-1
2 2

2 2

-1
m mm m

[ ] [ ] 0 0{X} {F}

{X} {F}
0 [ ] [ ] 0

{X} {F}0 0 [ ] [ ]




 

    



   

   

 (4.8) 

 

 

 

In Equation (4.8), all {F} terms other than 1{F}  are zero. Moreover, the inverse of 

the so-called pseudo dynamic stiffness matrix, which is the PRM, has the same 

diagonal characteristic like itself. As a result, the multiplication of the 

pseudoreceptance with forcing vector forms a response matrix having zero higher 

harmonic components. To avoid this situation and find the higher order harmonic 

terms of the response, Equation (4.8) can be divided into two equations: 

 

-1-1

1 1 1 1{X} [ ] [ ] {F}         (4.9) 

 

 

-1
2 22 2

-1
3 3

3 3

-1
m mm m

{X} {F}[ ] [ ] 0 0

{X} {F}0 [ ] [ ] 0 0

{X} {F}0 0 [ ] [ ]

   



   




 (4.10) 

 

 

Since the terms in the right hand side of Equation (4.10) is zero, the higher order 

responses can be found by using the iterative formulation by reordering the terms in 

Equation (4.10). 
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2 22 2

3 33 3

m mm m
j+1 jj

{X} {X}[ ] 0 0 [ ] 0 0

{X} {X}0 [ ] 0 0 0 [ ] 0 0

{X} {X}0 0 [ ] 0 0 [ ]

  

 

        

 

 

(4.11) 

 

 

The calculations in the solution algorithm are performed with constant frequency 

increment. For single harmonic solution, both low-to-high and high-to-low frequency 

sweeps are calculated whereas for higher and multi harmonic solutions only low-to-

high frequency sweep calculations are performed because of the calculation time 

concerns. In addition to the response and FRF plots, results can also be saved to text 

files for further use.  

 

The converging and diverging relaxation numbers are switched by the program by 

comparing the error obtained at present and previous steps. After relaxation, the 

average of the previous and current iteration of the response value will be used for 

further computations (Equation 3.27). When the convergence criterion is satisfied by 

the current iteration value, the program stops the iteration and switches to the 

forward frequency value in the frequency range. 
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Figure 4.1  Flow diagram of the harmonic nonlinear analysis 
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4.3 Post Processing 

 

The output of the program is both text files and the plots. For single harmonic 

solution, response plot is the simply the response to the prescribed harmonic forcing. 

However, for higher and multi harmonic responses, there will be “harmonic 

number+1” plots which are the response of all harmonics on the same window, the 

first harmonic response and the m
th 

harmonic response of the required coordinate 

(m=1, 2, …, qp) (Figure 4.2 and 4.3). 

 

The plot (Figure 4.4), which gives the FRF for given coordinates i and j and 

harmonic m in MH-NLS, is simply the i-j
th

 element of m
th

 diagonal (DOF x DOF) 

sized matrix of PRM (See APPENDIX A). 

  

The solution time for the calculation is displayed on the GUI window. 
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Figure 4.2  A typical response plot of all harmonic components 
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Figure 4.3  A typical response plot of second harmonic component 
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Figure 4.4  A typical FRF plot  
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CHAPTER 5 

 

5 VERIFICATION OF THE PROGRAM 

VERIFICATION OF THE PROGRAM 

 

 

In this chapter, case studies to demonstrate the validity of the computer program 

developed will be given. The results obtained by using the program will be compared 

with the frequency domain solutions of several case studies found in the literature. 

Finally, comparison with the time domain integration results will be presented by 

using further case studies. The case studies corresponding to the problems taken from 

literature are numbered using letter “L” while case studies corresponding to the time 

integration comparisons are numbered using letter “T”. 

 

5.1 Comparison of the Program Solutions with Results Given in Literature 

 

For comparison of the program solution with respect to the solutions found in the 

literature, some case studies of the previous works are solved and the solutions are 

compared. 

 

 

5.1.1 Case Study L.1 

 

Siller [9] ignores the multi harmonic effects and concentrates on single harmonic 

solution. Performed case study L.1, considered as sample case 1 in [9],  is a 3-DOF 

system, consist of 3 masses and each mass is linked to each other and to the ground 

by linear stiffness and damping elements, creating fully populated linear matrices. 

The system is excited by a single harmonic force at mass m2. The diagram of the 

system is given in Figure 5.1. 
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Figure 5.1  Diagram for case study L.1 [9] 

 

 

The numerical values of all the system coefficients are given below in matrix format: 

 

 

11

22

33

m 0 0 31.59 0 0

[M]= 0 m 0 = 0 55.401 0

0 0 m 0 0 24.212

  kg 

 

 

11 12 13

21 22 23

31 32 33

k k k 200491.263 -64920.98 -36279.371

[K]= k k k = -64920.98 398118.365 -17503.205

k k k -36279.371 -17503.205 132578.825

  N/m 

 

 

1

2

3

0

{ } 12

0

F

F F

F

 N 

 

 

The system is proportionally damped, where the loss factor is 0.12%  

 

The nonlinearities defined between coordinates are given in Table 5.1. In Figure 5.1, 

nonlinear connections are indicated as bold lines. 

 

Table 5.1 Nonlinearity definitions for case study L.1  

 

Nonlinear Connections:(DOF1-DOF2) Cubic Stiffness Coefficient:β (N/m
3
) 

2-3 7.82e6 

3-3(Ground) 1.44e7 

x1 x2 x3 
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The frequency domain solutions of case study L.1 given in [9] are presented in 

Figure 5.2 and Figure 5.3. Single harmonic solutions of the same system analyzed 

with MH-NLS are given in Figure 5.4 and 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2  Calculated nonlinear response for case study L.1 given in [9] 
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Figure 5.3  Calculated nonlinear response for case study L.1, zoom-in of the 

individual resonances [9] 

 

 

 

 

 

 

 

 



 

 63 

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Frequency [Hz]

R
es

po
ns

e 
[m

]

 

 

Linear

Nonlinear(Low to High Sweep)

Nonlinear(High to Low Sweep)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4  MH-NLS solution of case study L.1 
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Figure 5.5  MH-NLS solution of case study L.1, zoom-in of the individual 

resonances 

DOF 1 
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It is clear that the results are showing the same behavior as the results of the previous 

work [9]. Moreover, multi harmonic solution of the response of DOF 1 given in 

Figure 5.6 reveals that multi harmonic components have very small amplitudes 

relative to the fundamental harmonic component. It can be concluded that single 

harmonic solution gives satisfactory results with reasonable accuracy in this 

frequency range. Then it can be concluded that single harmonic solution assumption 

of [9] is valid. 
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          Figure 5.6  MH-NLS multi harmonic solution of DOF 1 of case study L.1, 

frequency range of interest: 9.5-15 Hz 

 

 

The multi harmonic effects can more clearly be observed in Figure 5.7 when the 

frequency range of interest is taken as 0-15 Hz . The frequencies corresponding to 

the peaks of the third harmonic component between 2.5-6 Hz and the peaks of the 

fifth harmonic component between 2-3 Hz, are due to the first natural frequency of 

the undamped part of the system (ω1/3, ω1/5) . The multi harmonic components are 

observable but again have no noticable effect on the total response at corresponding 
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frequency range since their amplitudes are negligible with respect to the fundamental 

harmonic component. 
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Figure 5.7  MH-NLS multi harmonic solution of DOF 1 of case study L.1, frequency 

range of interest: 0-15 Hz 

 

 
 

During the numerical solution attempts, it is observed that having smaller frequency 

increments would improve the accuracy of the results by accurately locating the 

jumping frequency, which also generally corresponds to the resonance frequency. 

This condition is investigated by several single harmonic solution trials for the 

second mode corresponding to the first DOF of the case study L.1 using different 

frequency increment and the results are given in Figure 5.8 and 5.9. 
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Figure 5.8  The effect of frequency increment at the observed resonance (jump) 

frequency of mode 2 corresponding to DOF 1, case study L.1   

 a) Main plot   b) Zoom-in ellipse region 1   c) Zoom-in ellipse region 2 
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Figure 5.9  The effect of frequency increment on response magnitude at resonance 

(jump) frequency of mode 2 corresponding to DOF 1, case study L.1 

   a) Main plot     b) Zoom-in ellipse region 3 

 

 

The results show that, with smaller frequency increment it is more probable to 

observe the correct jumping frequency. However user should be aware of the fact 

that smaller frequency increment means more computation time. The opportunity 

cost  between solution time and solution accuracy should be considered before 

starting the solution.  

a) 

b) 
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5.1.2 Case Study L.2 

 

Again the work performed by Siller [9] (sample case 2) is considered. In this case, 

the system in Figure 5.1 has Colulomb (Friction) damping type nonlinearity. All 

linear system properties, mass, stiffness, damping and forcing definitions, are same 

as case study L.1. 

 

The nonlinearities defined between coordinates are given in Table 5.2. Again in 

Figure 5.1, nonlinear connections are indicated as bold lines. 

 

 

Table 5.2 Nonlinearity definitions for case study L.1  

 

Nonlinear Connections:(DOF1-DOF2) Coulomb Friction Force: Ff (N) 

2-3 1.25 

3-3(Ground) 2.1 

 

 

The frequency domain solution of the case study L.2 given in [9] is presented in 

Figure 5.10. Single harmonic solutions of the same system analyzed with MH-NLS 

and time domain integration results are given in Figure 5.11. 

 

It is clear that the results in Figure 5.11 are showing the same behavior as the results 

of the previous work [9] but show some discrepancies at some regions (13-14 Hz). 

But it is clear that the results of MH-NLS are in an excellent agreement with TD 

integration results, which can be considered as exact solution, at these regions. 

Solution time comparison of single harmonic FD solution with respect to TD 

solutions of 3
rd

 DOF is given in Table 5.3. 
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Figure 5.10  Calculated nonlinear response for case study L.2 given in [9] 

 

 

 

Table 5.3 Solution Time Comparison for Case Study L.2, times for response 

calculation of the third DOF 

Solution Method 
Frequency Increment 

[Hz] Solution Time [s] 

Single Harmonic 0.006 14  

Time Integration (ODE 45) 

(60 s run for convergence ) 
0.4 201  
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Figure 5.11  Comparison of MH-NLS and TD solutions of case study L.2 
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5.2 Comparison of the Program Solution with Time Domain Solution 

 

 

In this section, six different systems will be analyzed by using the program MH-NLS 

with different kind of nonlinearities and the results will be compared with the time 

domain integration results. Time domain solutions are obtained by using the ODE 

integrators of MATLAB
®
. Integrations are performed by using several integrators 

like ODE45, ODE113, ODE15s, etc. according to the stiffness characteristics of the 

problem [64]. Integrations are continued until steady state is reached. 

 

5.2.1 Case Study T.1 

 

Consider the system shown in Figure 5.12. The linear and nonlinear parameters are 

given as follows: 

 

1 2

1 2 3

1 2 3

1

m 1 kg, m 5 kg,

k k k 500 N/m,

c c c 5 Ns/m,

F 25 N

 

 

Nonlinearities between coordinates are defined in Table 5.4 

 

Table 5.4 Nonlinearity definitions for case study T.1 

 

Nonlinear Connections: 

(DOF1-DOF2) 
Nonlinearity Type 

Nonlinearity 

Coefficients 

1-1(Ground) (s1
*
) Cubic Stiffness 

3
10  N/m

3
 

2-2(Ground) (s2
*
) Cubic Stiffness 

3
10  N/m

3
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The undamped natural frequencies of the system are ω1=1.894 Hz and ω2=5.177 Hz. 

Figure 5.13 shows the variation of multi harmonic solution components of the 

response (x1) with respect to the excitation frequency. 

 

 

 

Figure 5.12  A 2-DOF system with 2 nonlinear elements 
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Figure 5.13  Frequency domain (multi harmonic) solutions for case study T.1 

 

Figure 5.14 concentrated on fundamental harmonic response region and compares 

frequency domain solution with respect to time integration result: 
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Figure 5.14  Frequency domain (multi harmonic) and time domain integration results 

for case study T.1-zoom in of the fundamental harmonic response region. 

 

 

In Figure 5.14, there is an excellent agreement between frequency and time domain 

results for the frequencies around and beyond resonance where the fundamental 

harmonic is dominant in response. The power spectral density function estimate  of 

the response obtained from time domain solution when system is harmonically 

excited at 2 Hz is given in Figure 5.15. The figure confirms that the effect of the third 

harmonic component is not considerable as it is ~40 times lower than the 

fundamental harmonic component . 

 

Although, the multi harmonic components have no significant effect on the total 

response at the frequency range studied, it is interesting to study the peaks in Figure 

5.13 worth mentioning. The first peak of the third harmonic component of the 

response (~0.63 Hz) is due to the first natural frequency of the system (1.895/3 Hz). 

Similarly, the first peak of the fifth harmonic component of the response (~0.38 Hz) 

is again due to the first natural frequency of the system (1.895/5 Hz).  
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Figure 5.15  Power spectral density function estimate of x1 for case study T.1 when 

system is harmonically excited at 2 Hz  

 

5.2.2 Case Study T.2 

 

In this case study, again the system shown in Figure 5.12 is considered. The linear 

parameters are the same as the ones in case study T.1. Nonlinearities between 

coordinates are defined in Table 5.5. 

 

Table 5.5 Nonlinearity definitions for case study T.2 

 

Nonlinear Connections: 

(DOF1-DOF2) 
Nonlinearity Type 

Nonlinearity 

Coefficients 

1-1(Ground) (s1
*
) Cubic Stiffness 

5
8x10  N/m

3
 

2-2(Ground) (s2
*
) Cubic Stiffness 

5
8x10  N/m

3
 

 

 

Figure 5.16 gives multiharmonic frequency domain solution of x1 over 0-10 Hz 

frequency range. 
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Figure 5.16  Frequency domain (multi harmonic) solutions for case study T.2 

 

The magnified view of Figure 5.16, concentrated on the frequency range 0-4 Hz is 

given in Figure 5.17: 

0.5 1 1.5 2 2.5 3 3.5

10
-6

10
-4

10
-2

R
e

s
p

o
n
s
e

[m
]

Frequency[Hz]

 

 

Linear

Nonlinear(First Harmonic)

Nonlinear(Third Harmonic)

Nonlinear(Fifth Harmonic)

Nonlinear(Seventh Harmonic)

 

Figure 5.17  Frequency domain (multi harmonic) solutions between 0-4 Hz for case 

study T.2.  
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In this case study, multi harmonic components of the solution have some effect on 

the total response. The first peak of the third harmonic component of the response 

(~0.63 Hz) is corresponding to the first natural frequency of the undamped system 

(1.895/3 Hz). At this frequency, multiharmonic response components are very 

effective. This case can be observed through Figure 5.18 which gives power spectral 

density function estimate of response when system is harmonically excited at 0.63 

Hz. Moreover, the first peak of the fifth and seventh harmonic components of the 

response (~0.38 Hz, ~0.27 Hz ) is again corresponding to the first natural frequency 

of the undamped system (1.895/5, 1.895/7 Hz).  

 

 

2 4 6 8 10 12 14

10
-5

10
-4

10
-3

S
p

ec
tr

al
 D

en
si

ty
 [

m
2
/H

z]

Frequency[Hz]  

 

Figure 5.18  Power spectral density function estimate of x1 for case study T.2 when 

system is harmonically excited at 0.63 Hz  

 

 

The first harmonic component and time integration results are compared in Figure 

5.19. 
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Figure 5.19  Frequency domain (multi harmonic) and time domain integration results 

for case study T.2. 

 

By considering the amplitude and phase of the harmonic components, the amplitude 

of the total response is found and the results are compared with the time integration 

results and first harmonic component in the same plot at frequency range of 0-3 Hz 

(Figure 5.20).  
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Figure 5.20  Frequency domain and time domain integration results for case study 

T.2 by considering the phase of the harmonic components 
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Inconsistency between the time integration and frequency domain solutions, given in 

Figure 5.19, is an expected result; but it should be stated here that the time 

integration result follows the same path of high to low sweep of the frequency 

domain result. The situation can be observed by executing the single harmonic 

solution and time domain solution and plot them on the same graph (Figure 5.21). 

 

A conflict arises at this point between the results and the information given in [6]. 

Although, it is claimed by considering Figure 5.22 that,  in the interval [ωlow, ωhigh]  

the solution Y
(1) 

 and Y
(3)

 are possible with Y
(1) 

> Y
(3)

, the results given in Figure 5.8, 

5.9 in Section 5.1.1 and in Figure 5.19 are somewhat different. This differencies are  

mainly because of the fact that the converged solutions in regions Y
(1) 

 and Y
(3)

 are 

dependent on precise definition of the initial guess in frequency domain analysis and 

on precise definition of the initial condition in time domain analysis. Coarse 

frequency increment may cause to an early jump, which prevents accurately 

observing the correct jumping frequency of the system response. 
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Figure 5.21  Frequency domain (Single Harmonic) and time domain integration 

results for case study T.2. 
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Figure 5.22  Displacement response of a hardening Duffing oscillator [9] 

 

Best way to observe the multiharmonic effects on the solution is to give the results of 

single and multi harmonic solutions and compare them with time domain solutions 

on the same figure (Figure 5.23). By considering the plot, it can be concluded that 

the response can not be represented by the single harmonic component when the 

system is excited at 0.63 Hz which corresponds to one third of the first natural 

frequency. 
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Figure 5.23  Time Domain, Single Harmonic and Multi Harmonic Analyses results 

for case study T.2 when system is harmonically excited at 0.63 Hz 

The solution time comparisons of frequency domain and time domain solutions are 

given in Table 5.6. 

 

Table 5.6  Solution Time Comparison for Case Study T.2 

 

Solution Method 
Frequency Increment 

[Hz] 
Solution Time [s] 

Single Harmonic 0.01 6.36 

Multi Harmonic by 

considering 1
st
 and 3

rd
 

harmonics 

0.01 46.7 

Multi Harmonic by 

considering 1
st
 , 3

rd
 and 5

th
 

harmonics 

0.01 107 

Multi Harmonic by 

considering 1
st
 , 3

rd
 , 5

th
 and 

7
th

 harmonics 

0.01 248 

Time Integration (30 s run) 

ODE45 
0.4 288 

Time Integration (30 s run) 

ODE45 
0.1 1112 

 

 

5.2.3 Case Study T.3 

 

In this case study again the system shown in Figure 5.12 is considered. The linear 

parameters are the same as the case study T.1 except for the amplitude of the 

excitation force. The amplitude of the harmonic forcing in this case is taken as: 
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1
F 10 N  

 

Nonlinearities between coordinates are defined in Table 5.7. 

 

 

Table 5.7 Nonlinearity definitions for case study T.3 

 

Nonlinear Connections: 

(DOF1-DOF2) 
Nonlinearity Type 

Nonlinearity 

Coefficients 

1-1(Ground) (s1
*
) Coulomb Friction 

f
F 1.5 N 

2-2(Ground) (s2
*
) Cubic Stiffness 

5
8x10  N/m

3
 

 

 

Figure 5.24 and shows comparison of multi harmonic solution with respect to the 

time integration result. 
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Figure 5.24  First harmonic component of frequency domain (multi harmonic) and 

time domain integration results for case study T.3. 
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It can be observed from Figure 5.24 that frequency domain and time domain results 

are in an agreement except for the frequency range between 0-2 Hz. In this frequency 

range, multi harmonic components of the solution are pronounced and have to be 

considered. Moreover, time integration solution is again following the path of the 

high to low sweep of the frequency domain solution. The multi harmonic effects can 

be observed from multi harmonic solution results given in Figure 5.25 which 

concentrates on the frequency range between 0-4 Hz. 
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Figure 5.25  Frequency domain (multi harmonic) solutions between 0-4 Hz for case 

study T.3.  

 

 

From Figure 5.25, it can be concluded that at ~0.63 Hz, multi harmonic effects 

should be taken into consideration. The result in Figure 5.26, that shows the multi 

harmonic and time domain solution, and the spectral density function estimate of the 

response when the system is excited at 0.63 Hz given in Figure 5.27, verifies that 

system response at 0.63 Hz can better be represented by addition of first, third, fifth 

and seventh harmonic components : 
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Figure 5.26  Time Domain, Single Harmonic and Multi Harmonic Analyses results 

for case study T.3 when system is harmonically excited at 0.63 Hz 
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Figure 5.27  Power spectral density function estimate of x1 for case study T.3 when 

system is harmonically excited at 0.63 Hz 
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5.2.4 Case Study T.4 

 

Consider the system given in Figure 5.28.  

 

 

 

Figure 5.28  2 DOF system with 3 nonlinear elements 

 

The linear parameters and forcing definitions are same as the case study T.1. 

Nonlinearities between coordinates are defined in Table 5.8. 

 

 

Table 5.8 Nonlinearity definitions for case study T.4  

 

Nonlinear Connections: 

(DOF1-DOF2) 
Nonlinearity Type 

Nonlinearity 

Coefficients 

1-1(Ground) (s1
*
) Arctan Stiffness 

2  

600  

1-2 (s2
*
) Arctan Stiffness 

1  

500  

2-2(Ground) (s3
*
) Arctan Stiffness 

1  

500  

 

 

Figure 5.29 shows the variation of multi harmonic solution components of the 

response (x1) with respect to the excitation frequency. 
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Figure 5.29  Frequency domain (multi harmonic) solutions between 0-10 Hz for case 

study T.4.  

 

Figure 5.30 and shows comparison of first harmonic solution with respect to the time 

integration result. 
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Figure 5.30  First harmonic component of frequency domain (multi harmonic) and 

time domain integration results for case study T.4. 
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It can be observed from Figure 5.30 that frequency domain and time domain results 

are in an agreement except for the frequency range between 0-2 Hz. In this frequency 

range, multi harmonic components of the solution are significant and have to be 

considered. The result in Figure 5.31 that shows the spectral density function 

estimate of the response when the system is excited at 0.63 Hz, verifies that system 

response at 0.63 Hz can better be represented by addition of first and third harmonic 

components (Figure 5.32). 
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Figure 5.31  Power spectral density function estimate of x1 for case study T.4 when 

system is harmonically excited at 0.63 Hz  
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Figure 5.32  Time Domain, Single Harmonic and Multi Harmonic Analyses results 

for case study T.4 when system is harmonically excited at 0.65 Hz 

 

5.2.5 Case Study T.5 

 

Consider again the system given in Figure 5.28. The linear parameters and forcing 

definitions are same as the case study T.1. Nonlinearities between coordinates are 

defined in Table 5.9. 

 

 

Table 5.9 Nonlinearity definitions for case study T.5 

 

Nonlinear Connections: 

(DOF1-DOF2) 
Nonlinearity Type 

Nonlinearity 

Coefficients 

1-1(Ground) (s1
*
) Preloaded Stiffness 

p
F 0.5  N 

k 500  N/m 

1-2 (s2
*
) Preloaded Stiffness 

p
F 0.3  N 

k 300  N/m 

2-2(Ground) (s3
*
) Preloaded Stiffness 

p
F 0.4  N 

k 400  N/m 
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Figure 5.33 shows the variation of multi harmonic solution components of the 

response (x1) with respect to the excitation frequency. Figure 5.34 shows comparison 

of first harmonic solution with respect to the time integration result. 
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 Figure 5.33  Frequency domain (multi harmonic) solutions between 0-10 Hz 

for case study T.5.  
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Figure 5.34  First harmonic component of frequency domain (multi harmonic) and 

time domain integration results for case study T.5. 
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It can be observed from Figure 5.34 that frequency domain and time domain results 

are in an agreement except for the frequency value near 0.84 Hz. In this frequency 

range, multi harmonic components of the solution are effective and have to be 

considered. The result in Figure 5.35 that shows the spectral density function 

estimate of the response when the system is harmonically excited at 0.84 Hz, verifies 

that system response at 0.84 Hz can better be represented by addition of first and 

third harmonic components (Figure 5.36). 
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Figure 5.35  Power spectral density function estimate of x1 for case study T.5 when 

system is harmonically excited at 0.84 Hz  
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Figure 5.36  Time Domain, Single Harmonic and Multi Harmonic Analyses results 

for case study T.5 when system is harmonically excited at 0.84 Hz 
 

5.2.6 Case Study T.6 

 

Consider again the system given in Figure 5.28. The linear parameters are the same 

as the case study T.1 except for the amplitude of the excitation force. The amplitude 

of the harmonic forcing in this case is taken as: 
 

1
F 10 N  

 Nonlinearities between coordinates are defined in Table 5.10. 

 

 

Table 5.10 Nonlinearity definitions for case study T.6  

 

Nonlinear Connections: 

(DOF1-DOF2) 
Nonlinearity Type 

Nonlinearity 

Coefficients 

1-1(Ground) (s1
*
) Piecewise Linear Stiffness 

0.05  m 

1
k 100  N/m 

2
k 150  N/m 

1-2 (s2
*
) Cubic Stiffness 

5
8x10  N/m

3
 

2-2(Ground) (s3
*
) Coulomb Friction 

f
F 1N 
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Figure 5.37 shows the variation of multi harmonic solution components of the 

response (x1) with respect to the excitation frequency and time integration solution at 

the same plot. 
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Figure 5.37 Frequency domain (multi harmonic) and Time Domain solutions 

between 0-10 Hz for case study T.6.  

 

Again it can be observed from Figure 5.37 that frequency domain and time domain 

results are in an agreement except for the frequency value near ~2 Hz. At frequencies 

close to this frequency value, multi harmonic components of the solution are 

effective and have to be considered. The result in Figure 5.38 that shows the spectral 

density function estimate of the response when the system is excited at 2 Hz, verifies 

that system response at 2 Hz can better be represented by addition of first, third, fifth 

and seventh harmonic components (Figure 5.39). Moreover, the discrepancies 

between the time integration and multi harmonic results in Figure 5.39 is mainly 

because of the affects of the sub-harmonic components in the response which can be 

observed in  spectral function estimate given in Figure 5.38. 
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Figure 5.38  Power spectral density function estimate of x1 for case study T.6 when 

system is harmonically excited at 2 Hz  
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Figure 5.39  Time Domain, Single Harmonic and Multi Harmonic Analyses results 

for case study T.6 when system is harmonically excited at 2 Hz 
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CHAPTER 6 

 

 

CASE STUDIES 

6 CASE STUDIES 

 

In this chapter, several case studies are presented to demonstrate the application of 

the method and the program for large ordered systems and for various types of 

nonlinear elements. The discrete models are created by ANSYS
®
 by using the 

substructuring method described in Appendix B, and the output files are taken as the 

input for the program MH-NLS.  

 

6.1 Case Study A 

 

 

Two beam models (Figure 6.1 and 6.2) fixed at one end surfaces and joined through 

linear and nonlinear elements will be examined (Figure 6.3). The beams are meshed 

with SOLID 185 [65] elements and joined with four COMBIN 14 2D-3D [65] linear 

spring type elements through their nearby edges in order to ensure the connection of 

two beams which is necessary to form common system matrices (Figure 6.4). In the 

FEM model, each node has 3 DOF’s (in x, y and z directions). 

 

 

 

  

 

 

Figure 6.1  Dimensions of the first beam in case study A 

 

 

The spring constants of the linear spring type elements in three directions (x, y and z) 

are taken as 5000 N/m.   

600 mm 

5 mm 

80 mm 
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Figure 6.2  Dimensions of the second beam in case study A 
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Figure 6.3  The FEM models and fixed surfaces of 2 beams in case study A 

 
 

 

The material properties of two beams considered for the analysis are given in Table 

6.1 (A typical aluminum material). 

 

Table 6.1  Material properties for case study A 

 

Density 2700 kg/m
3
 

Modulus of Elasticity 60 GPa 

Poisson’s Ratio 0.3 

500 mm 

3 mm 

100 mm 

Fixed 

Surface of 

Beam 2 

Fixed 

Surface of 

Beam 1 

Y 

X 
Z 
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Figure 6.4  Connection of beams through edges with linear spring elements, zoom in 

circle region in Figure 6.3 

 

 

 

The FEM is constituted with 660 DOF after meshing procedure. In order to verify 

that the system matrices are extracted from ANSYS® correctly, linear modal 

analysis is made in ANSYS
®
 as well as by using the program developed and the 

natural frequencies obtained in both analyses are compared (Table 6.2). The results 

are found to be very close. The mode shapes corresponding to the first three natural 

frequencies are given in Figure 6.5. 

 

 

Table 6.2 First 9 natural frequencies of the system obtained by ANSYS
®
 and  

MH-NLS [Hz] 

 

Program Natural Frequencies (Hz) 

ANSYS
®

 78.7 94.2 142.2 182.9 186.4 309.3 487.5 583.9 634.4 

MH-NLS 76.9 92.7 141.6 182.6 185.8 309.2 487.3 583.7 634.3 



 

 97 

1

MN

MX

X
Y

Z

                                                                                
0

.545711
1.091

1.637
2.183

2.729
3.274

3.82
4.366

4.911

FEB 10 2009

15:49:57

NODAL SOLUTION

STEP=1

SUB =3

FREQ=142.279

USUM     (AVG)

RSYS=0

DMX =4.911

SMX =4.911

1

MN

MX

X
Y

Z

                                                                                
0

.347832
.695664

1.043
1.391

1.739
2.087

2.435
2.783

3.13

FEB 10 2009

15:50:14

NODAL SOLUTION

STEP=1

SUB =2

FREQ=94.25

USUM     (AVG)

RSYS=0

DMX =3.13

SMX =3.13

1

MN

MX

X
Y

Z

                                                                                
0

.274979
.549957

.824936
1.1

1.375
1.65

1.925
2.2

2.475

FEB 10 2009

15:50:30

NODAL SOLUTION

STEP=1

SUB =1

FREQ=78.716

USUM     (AVG)

RSYS=0

DMX =2.475

SMX =2.475

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Mode shapes of the first three modes for case study A 

Mode 1 

Mode 2 

Mode 3 



 

 98 

6.1.1 Case Study A.1 

 

The system introduced in Case Study A is used, and nonlinearity (bold line) is 

defined between the nodes (points) shown in Figure 6.6 in all three directions, x, y 

and z (Table 6.3). The forcing, loss factor and number of modes used in FRF 

calculations are given in Table 6.4.  
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Figure 6.6 Nonlinear connections for case study A.1 

 

 

 

Table 6.3  Nonlinearity definitions between nodes for case study A.1 

 

Nonlinear Connections: 

(Node 1-Node 2) 
Nonlinearity Type 

Nonlinearity 

Coefficients 

1-2 Cubic Stiffness 
8

5x10  N/m
3
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Table 6.4  Loss factor, forcing and number of modes used in FRF calculation for case 

study A.1 

 

Loss Factor 

Forcing 
Number of Modes used in FRF 

Calculation On 

node 

Value 

(N) 
Direction 

0.0012 

 (% 0.12) 

1 10 -Y 
15 

3 2 -Y 

 

 

 

The single harmonic response, pseudo receptance and multi harmonic response of 

node 1 in Y direction is given in Figure 6.7, 6.8 and 6.9 respectively. 
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Figure 6.7 Single harmonic response of 
1 y

X  (node 1 in Y direction), case study A.1 
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Figure 6.8 Pseudo receptance 
11 y
α  (in y direction), case study A.1 
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Figure 6.9 Multi harmonic response solution of 
1 y

X  (node 2 in Y direction), case 

study A.1 
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Figure 6.10 that shows the modal summation and matrix inversion results, 

confirming that using only 15 modes is enough to predict the response accurately at 

this frequency range. Computational time saving is complemented with accurate 

result. 
 

50 100 150 200

10
-6

10
-4

10
-2

R
e
s
p
o
n
s
e
[m

]

Frequency[Hz]

 

 

Linear

Nonlinear(Matrix Inversion)

Nonlinear(Modal Summation)

 

Figure 6.10 Modal summation and matrix inversion solutions comparison, case study 

A.1 

 

Solution time comparison for single and multi harmonic solutions with matrix 

inversion counterparts are given in Table 6.5 

 

Table 6.5  Solution Time Comparison for Case Study A.1 

Solution Method 
Frequency Increment 

[Hz] 
Solution Time [s] 

Single Harmonic  

(Modal Summation-15 Modes) 
0.25 33.24 

Single Harmonic  

(Matrix Inversion) 
0.25 964.98 

Multi Harmonic with 3 harmonic 

components 

(Modal Summation-15 Modes) 

0.25 291.35 

Multi Harmonic with 3 harmonic 

components 

(Matrix Inversion) 

0.25 >> 7200 
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6.1.2 Case Study A.2 

 

The system introduced in Case Study A is used and, nonlinearities (bold lines) are 

defined between the nodes (points) shown in Figure 6.11 in all three directions, x, y 

and z (Table 6.6). The forcing, loss factor and number of modes used in FRF 

calculations are given in Table 6.7.  
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Figure  6.11 Nonlinear connections for case study A.2 

 

 

 

Table 6.6  Nonlinearity definitions between nodes for case study A.2 

 

Nonlinear Connections: 

(Node 1-Node 2) 
Nonlinearity Type 

Nonlinearity 

Coefficients 

1-2 Cubic Stiffness 
5

5x10  N/m
3
 

3-4 Arctan Stiffness 
10  

250  
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Table 6.7  Loss factor, forcing and number of modes used in FRF calculation values 

for case study A.2 

 

Loss Factor 

Forcing 
Number of Modes used in FRF 

Calculation On 

node 

Value 

(N) 
Direction 

0.0012 

 (% 0.12) 

1 5 -Y 
15 

3 1 -Y 

 

 

 

 

The single harmonic response, pseudo receptance and multi harmonic response of 

node 1 in Y direction is given in Figure 6.12-13, 6.14 and 6.15 respectively. 
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Figure 6.12 Single harmonic response of 
1 y

X  (node 1 in Y direction), case study 

A.2 
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Figure 6.13 Single harmonic response of 
1 y

X  (close-up), case study A.2 
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 Figure 6.14 Pseudo receptance
11 y
α , case study A.2 
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Figure 6.15 Multi harmonic response solution of 
1 y

X  (node 1 in Y direction), case 

study A.2  

 
 

Figure 6.16 showing the modal summation and matrix inversion results confirm that 

using only 10 modes is enough to predict the response accurately. Computational 

time saving is again complemented with accurate result. 
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Figure 6.16 Modal summation and matrix inversion solutions comparison, case study 

A.2 
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Solution time comparison for single and multi harmonic solutions with matrix 

inversion counterparts are given in Table 6.8 

 

 

Table 6.8  Solution Time Comparison for Case Study A.2 

Solution Method 
Frequency Increment 

[Hz] 
Solution Time [s] 

Single Harmonic  

(Modal Summation-15 Modes) 
0.25 29.42 

Single Harmonic  

(Matrix Inversion) 
0.25 945 

Multi Harmonic with 3 

harmonic components 

(Modal Summation-15 Modes) 

0.25 511.22 

Multi Harmonic with 3 

harmonic components  

(Matrix Inversion) 

0.25 >>7200 

 

 

6.1.3 Case Study A.3 

 

The system introduced in Case Study A is used, and nonlinearities (bold lines) are 

defined between the nodes (points) shown in Figure 6.17 in all three directions, x, y 

and z (Table 6.9). The forcing, loss factor and number of modes used in FRF 

calculations are given in Table 6.10.  
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Figure 6.17 Nonlinear connections for case study A.3 

 

 

Table 6.9  Nonlinearity definitions between nodes for case study A.3 

 

Nonlinear Connections: 

(Node 1-Node 2) 
Nonlinearity Type 

Nonlinearity 

Coefficients 

5-6 Cubic Stiffness 5  N/m
3
 

1-2 Preloaded Stiffness 

3

p
F 1x10  N 

k 2000  N/m 

3-4 Preloaded Stiffness 

4

p
F 5x10  N 

k 3000  N/m 

 

 

 

Table 6.10  Loss factor, forcing and number of modes used in FRF calculation values 

for case study A.3 

 

Loss Factor 

Forcing 
Number of Modes used in FRF 

Calculation On 

node 

Value 

(N) 
Direction 

0.0012 

 (% 0.12) 

1 5 -Y 
15 

3 1 -Y 

● 

● 

 

Y 

X 
Z 

1 

2 

3 ● 
● 
4 

5 

6 
● 
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The single harmonic response, pseudo receptance and multi harmonic response of 

node 1 in Y direction is given in Figure 6.18, 6.19 and 6.20 respectively. 
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Figure 6.18 Single harmonic response of 
1 y

X  (node 1 in Y direction), case study 

A.3 
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 Figure 6.19 Pseudo receptance 
11 y
α  (in y direction), case study A.3 
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Figure 6.20 Multi harmonic response solution of 
1 y

X  (node 2 in Y direction), case 

study A.3  
 

 

Figure 6.21 showing the modal summation and matrix inversion results confirm that 

using only 15 modes is enough to predict the response accurately. Computational 

time saving is again complemented with accurate result. 
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Figure 6.21 Modal summation and matrix inversion solutions comparison, case study 

A.3 
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Solution time comparison for single and multi harmonic solutions with matrix 

inversion counterparts are given in Table 6.11 
 

Table 6.11  Solution Time Comparison for Case Study A.3 

Solution Method 
Frequency Increment 

[Hz] 
Solution Time [s] 

Single Harmonic  

(Modal Summation-15 Modes) 
0.25 56.92 

Single Harmonic  

(Matrix Inversion) 
0.25 971.23 

Multi Harmonic with 3 

harmonic components 

(Modal Summation-15 Modes) 

0.25 860.97 

Multi Harmonic with 3 

harmonic components 

 (Matrix Inversion) 

0.25 >>14400 

 
 

6.1.4 Case Study A.4 

 

The system introduced in Case Study A is used, and nonlinearities (bold lines) are 

defined between the nodes (points) shown in Figure 6.22 in all three directions, x, y 

and z (Table 6.12). The forcing, loss factor and number of modes used in FRF 

calculations are given in Table 6.13.  
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Figure 6.22 Nonlinear connections for case study A.4 
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Table 6.12  Nonlinearity definitions between nodes for case study A.4 

 

Nonlinear Connections: 

(Node 1-Node 2) 
Nonlinearity Type 

Nonlinearity 

Coefficients 

1-2 Piecewise Linear Stiffness 

4
5x10  m 

1
k 1000  N/m 

2
k 5000  N/m 

3-4 Piecewise Linear Stiffness 

3
10  m 

1
k 5000  N/m 

2
k 6000  N/m 

 

 

 

Table 6.13  Loss factor, forcing and number of modes used in FRF calculation for 

case study A.4 

 

Loss Factor 

Forcing 
Number of Modes used in FRF 

Calculation On 

node 

Value 

(N) 
Direction 

0.0012 

 (% 0.12) 

1 10 -Y 
15 

3 5 -Y 

 

 

The single harmonic response, pseudo receptance and multi harmonic response of 

node 1 in Y direction is given in Figure 6.23, 6.24 and 6.25 respectively. 
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Figure 6.23 Single harmonic response of 
1 y

X  (node 1 in Y direction), case study 

A.4 
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Figure 6.24 Pseudo receptance 
11 y
α  (in y direction), case study A.4 
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Figure 6.25 that shows the modal summation and matrix inversion results confirms 

that using only 15 modes is enough to predict the response accurately. Computational 

time saving is again complemented with accurate result. 
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Figure 6.25 Modal summation and matrix inversion solutions comparison, case study 

A.4 

 

 

Solution time comparison for single harmonic solution by considering the modal 

summation and matrix inversion results is given in Table 6.14 

 

Table 6.14  Solution Time Comparison for Case Study A.4 

Solution Method 
Frequency Increment 

[Hz] 
Solution Time [s] 

Single Harmonic  

(Modal Summation-15 Modes) 
0.25 32.54 

Single Harmonic  

(Matrix Inversion) 
0.25 939.34 
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6.2 Case Study B 

 

 

One punched beam and a hollow cylinder inside the hole of the beam, (Figure 6.26 

and 6.27), fixed at one end surfaces and joined through linear and nonlinear elements 

will be examined (Figure 6.28). The solid beam and cylinder elements are meshed 

with SOLID 185 [65] elements and joined with four COMBIN 14 2D-3D [65] linear 

spring type elements through neighbor 8 nodes in order to ensure the connection of 

two solids which is again necessary to form common system matrices (Figure 6.29). 

In the FEM model, each node has 3 DOF’s (in x, y and z directions). 

 
 

 

 

  

 

 

Figure 6.26  Dimensions of the punched beam in case study B 

 

 

The spring constants of the linear spring type elements in three directions (x, y and z) 

are taken as 2000 N/m.   

 

 

        

 

 

 
 

 

Figure 6.27  Dimensions of the hollow cylinder in case study B 
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Figure 6.28 The FEM models and fixed surfaces of 2 parts in case study B 

 

 

 

The material properties of two parts considered in the analysis are given in Table 

6.15.  

 

 

Table 6.15  Material properties for case study B 

 

Density 5000kg/m
3
 

Modulus of Elasticity 10 GPa 

Poisson’s Ratio 0.3 

 

Fixed 

surface of 

beam  

Fixed surface of 

hollow cylinder 
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Figure 6.29  Connection of parts through neighboring nodes with linear spring 

elements and coordinate system definition for case study B 

 

 

The FEM is constituted with 1032 DOF after meshing procedure. Again linear modal 

analysis is made in ANSYS
®
 as well as by using the program developed and the 

natural frequencies obtained in both analyses are compared (Table 6.16). The results 

are found to be almost the same. The mode shapes corresponding to the first three 

natural frequencies are given in Figure 6.30. 

 

Table 6.16 First 9 natural frequencies of the system obtained by ANSYS
®
 and  

MH-NLS [Hz] for case study B 

 

Program Natural Frequencies (Hz) 

ANSYS
®

 18.0 26.7 103.8 116.3 153.1 166.2 205.2 224.0 262.6 

MH-NLS 17.6 26.6 103.8 116.3 153.1 166.2 205.2 224.0 262.6 

Y 

X 

Z 
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Figure 6.30 Mode shapes of the first three modes for case study B 
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6.2.1 Case Study B.1 

 

The system introduced in Case Study B is used, and nonlinearities are defined 

between the nodes (points) with bold lines shown in Figure 6.31 in all three 

directions, x, y and z (Table 6.17). The forcing, loss factor and number of modes 

used in FRF calculation is given in Table 6.18.  
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Figure  6.31 Nonlinear connections, excitation and response nodes for case study B.1 

 

 

Table 6.17  Nonlinearity definitions between nodes for case study B.1 

 

Nonlinear Connections: 

(Node 1-Node 2) 
Nonlinearity Type 

Nonlinearity 

Coefficients 

1-2 Cubic Stiffness 
14

10  N/m
3
 

 

Y 

X 

Z 

1 

2 

3 

4 
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Table 6.18  Loss factor, forcing and number of modes used in FRF calculation values 

for case study B.1 

 

Loss Factor 

Forcing 
Number of Modes used in FRF 

Calculation On 

node 

Value 

(N) 
Direction 

0.0012  

(% 0.12) 

3 2 Z 
15 

4 2 Z 

 

 

The single harmonic response, pseudo receptance and multi harmonic response of 

node 4 in Z direction is given in Figure 6.32, 6.33 and 6.34 respectively. 
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Figure 6.32 Single harmonic response of 
4 z

X  (node 4 in Z direction), case study 

B.1 
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 Figure 6.33 Pseudo receptance 
44 z

α  (in z direction), case study B.1 
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Figure 6.34 Multi harmonic response solution of 
4 z

X  (node 4 in Z direction), case 

study B.1  
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Figure 6.35 showing the modal summation and matrix inversion results imply that 

using only 15 modes is enough to predict the response roughly accurate. But in 

Figure 6.36 that shows the comparison of the modal summation with 40 modes and 

matrix inversion results confirms that 40 modes is necessary to predict the response 

more accurately. 
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Figure 6.35 Modal summation (using 15 modes) and matrix inversion solutions 

comparison, case study B.1 
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Figure 6.36 Modal summation (using 40 modes) and matrix inversion solutions 

comparison, case study B.1 

 

Solution time comparison for single and multi harmonic solutions with matrix 

inversion counterparts are given in Table 6.19 
 

Table 6.19  Solution Time Comparison for Case Study B.1 

Solution Method 
Frequency Increment 

[Hz] 
Solution Time [s] 

Single Harmonic  

(Modal Summation-15 Modes) 
0.1 83.51 

Single Harmonic  

(Modal Summation-20 Modes) 
0.1 96.39 

Single Harmonic  

(Modal Summation-30 Modes) 
0.1 123.33 

Single Harmonic  

(Modal Summation-40 Modes) 
0.1 147.59 

Single Harmonic  

(Matrix Inversion) 
0.1 5621.32 

Multi Harmonic with 3 

harmonic components 

(Modal Summation-40 Modes) 

0.1 847.51 

Multi Harmonic with 3 

harmonic components 

(Matrix Inversion) 

0.1 >>36000 
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6.2.2 Case Study B.2 

 

The system introduced in Case Study B is used, and nonlinearities are defined 

between the nodes (points) with bold lines shown in Figure 6.37 in all three 

directions, x, y and z (Table 6.20). The forcing, loss factor and number of modes 

used in FRF calculation is given in Table 6.21.  
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Figure  6.37 Nonlinear connections, excitation and response nodes for case study B.2 

 

 

Table 6.20  Nonlinearity definitions between nodes for case study B.2 

 

Nonlinear Connections: 

(Node 1-Node 2) 
Nonlinearity Type 

Nonlinearity 

Coefficients 

1-2 Arctan Stiffness 
10  

10000  

5-6 Arctan Stiffness 
10  

20000  

Y 

X 

Z 

1 

2 

3 

4 

5 

6 
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Table 6.21  Loss factor, forcing and number of modes used in FRF calculation values 

for case study B.2 

 

Loss Factor 

Forcing 
Number of Modes used in FRF 

Calculation On 

node 

Value 

(N) 
Direction 

0.0012  

(% 0.12) 

3 2 Z 
40 

4 2 Z 

 

 

The single harmonic response, pseudo receptance and multi harmonic response of 

node 4 in Z direction is given in Figure 6.38, 6.39 and 6.40 respectively. 
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Figure 6.38 Single harmonic response of 
4 z

X  (node 4 in Z direction), case study 

B.2 
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Figure 6.39 Pseudo receptance 
44 z

α  (in z direction), case study B.2 
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Figure 6.40 Multi harmonic response solution of 
4 z

X  (node 4 in Z direction), case 

study B.2  
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Figure 6.41 showing the modal summation and matrix inversion results confirm that 

using only 40 modes is enough to predict the response accurately. Computational 

time saving is again complemented with accurate result at this frequency range. 
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Figure 6.41 Modal summation (using 40 modes) and matrix inversion solutions 

comparison, case study B.2 

 

Solution time comparison for single and multi harmonic solution is given in Table 

6.22 
 

Table 6.22  Solution Time Comparison for Case Study B.2 

Solution Method 
Frequency Increment 

[Hz] 
Solution Time [s] 

Single Harmonic  

(Modal Summation-40 Modes) 
0.1 249.38 

Single Harmonic  

(Matrix Inversion) 
0.1 6839.2 

Multi Harmonic with 3 

harmonic components 

(Modal Summation-40 Modes) 

0.1 860.97 

Multi Harmonic with 3 

harmonic components 

(Matrix Inversion) 

0.1 >>108000 
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6.2.3 Case Study B.3 

 

The system introduced in Case Study B is used and nonlinearities are defined 

between the nodes (points) with bold lines shown in Figure 6.42 in all three 

directions, x, y and z (Table 6.23). The forcing, loss factor and number of modes 

used in FRF calculation is given in Table 6.24.  

 

 

 

 

1

X

Y

Z

                                                                                

FEB 11 2009

01:13:09

ELEMENTS

 
 

Figure  6.42 Nonlinear connections, excitation and response nodes for case study B.3 
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Table 6.23  Nonlinearity definitions between nodes for case study B.3 

 

Nonlinear Connections: 

(Node 1-Node 2) 
Nonlinearity Type 

Nonlinearity 

Coefficients 

1-2 Preloaded Stiffness 

4

p
F 10  N 

9
k 10  N/m 

5-6 Piecewise Linear Stiffness 

3
10  m 

7

1
k 10  N/m 

8

1
k 10  N/m 

 

 

 

Table 6.24  Loss factor, forcing and number of modes used in FRF calculation values 

for case study B.3 

 

Loss Factor 

Forcing 
Number of Modes used in FRF 

Calculation On 

node 

Value 

(N) 
Direction 

0.0012  

(% 0.12) 

3 2 Z 
40 

4 2 Z 

 

 

 

The single harmonic response, pseudo receptance and multi harmonic response of 

node 4 in Z direction is given in Figure 6.43, 6.44 and 6.45 respectively. 
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Figure 6.43 Single harmonic response of 
4 z

X  (node 4 in Z direction), case study 

B.3 
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Figure 6.44 Pseudo receptance 
44 z

α  (in z direction), case study B.3 
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Figure 6.45 Multi harmonic response solution of 
4 z

X  (node 4 in Z direction), case 

study B.3  

 
 

Solution time comparison for single and multi harmonic solution is given in Table 

6.25 
 

Table 6.25  Solution Time Comparison for Case Study B.3 

Solution Method 
Frequency Increment 

[Hz] 
Solution Time [s] 

Single Harmonic  

(Modal Summation-40 Modes) 
0.1 109.68 

Single Harmonic  

(Matrix Inversion) 
0.1 6758.7 

Multi Harmonic with 3 

harmonic components 

(Modal Summation-40 Modes) 

0.1 1592.41 

Multi Harmonic with 3 

harmonic components 

(Matrix Inversion) 

0.1 >>72000 
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CHAPTER 7 

 

 

DISCUSSIONS, CONCLUSIONS and FUTURE WORK 

7 DISCUSSIONS and CONCLUSIONS and FUTURE WORK 

 

In this study, the method called “Iterative Receptance Method” which was developed 

in an earlier study [18] for forced harmonic response analysis of MDOF nonlinear 

structures is employed to analyze large structures having different types of local 

nonlinearities. The nonlinearities are quasilinearised using describing function 

theory. Furthermore, the effect of higher order harmonic terms is considered by using 

multi harmonic describing function formulation [13]. The mathematical formulations 

are embedded in a computer program developed in MATLAB
®
 with graphical user 

interface. The program inputs system matricies from a file which is obtained by 

using substructuring analysis in a commercial FEM software program, ANSYS
®
. 

Different types of nonlinearities in the system can easily be defined through the 

graphical user interface of the MATLAB
® 

program.  

 

During the verification of the program with time domain solutions, it is shown that 

frequency domain solution is faster than time domain solution even multi harmonic 

effects are considered. Although the computational effort for time domain analysis 

directly depends on the damping and stiffness characteristics of the structure, the 

computation time for frequency domain analysis depends on modes and harmonics 

considered. 

 

The results of the case studies imply that ignoring higher order terms can directly 

effect the accuracy of the results at specific frequency ranges. Elsewhere the effect of 

higher order terms become negligible, because they have much smaller amplitudes 

compared to the fundamental harmonic component. Even though the multi harmonic 

analyses are computationaly costly for large ordered systems, they should be taken 
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into consideration for frequency ranges where the multiples of the excitation 

frequency coincide with natural frequencies of the structure. 

 

The solution time comparisons for case studies with large numbers of DOFs show 

that the formulation, which avoids matrix inversion during the solution, decreases the 

computation time drastically without affecting the accuracy of the results. It should 

be noted here that matrix inversion avoided during linear FRF formulation and  

modal summation is used in comparisons. When the formulation (3.22) which also 

avoids inversion of a large ordered matrix to find the PRM is used, computational 

time saving becomes more pronounced.  

 

The program developed benefits from the mathematical background of the method 

proposed by Özgüven [61] by rearranging matrices so that the nonlinearity and 

input/output coordinates are collected in a sub-matrix. Hence, the computation of 

nonlinear response is achieved by evaluating few rows of pseudoreceptance matrix 

without inverting a matrix of size DOFxDOF. 

 

The frequency increment found to be directly effective on accurately locating the 

jumping frequency, which also corresponds to the resonance frequency in some 

systems. To increase the accuracy of the analysis, user tend to decrease the increment 

which definitly increases the solution time. Especially in large ordered systems this 

fact needs to be taken into consideration. The adaptable frequency increment can be 

a remedy for this case, which is one of the suggestions for future work. 

 

The program has no restriction other than the capabilities of the MATLAB
®
 except 

for the order of the system matrices that can be loaded from the ANSYS
®
 output file. 

The size of the output file grows violently as the numbers of DOF of the system 

under investigation increases. In fact, a system greater than 3000 DOF has an output 

file approximately 500MB which causes loading errors during file loading process. 

The improvement of the algorithm of file loading process is suggested as a future 

work.  
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The most valuable contribution of the program developed is the adaptation of the 

nonlinear harmonic response theory for a large engineering structure by using a 

commercial FEM software program for linear part of the vibration analysis. By using 

this program, the discrete model of a real engineering system can be analyzed by 

considering several type of nonlinearities in the system. In a future work, the 

capabilities of the program can be improved by introducing additional nonlinear 

behaviours. 
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APPENDIX A 

 

 

USER MANUEL OF THE PROGRAM: MH-NLS 

 

 

A.1 Layout of the Program 

 

The Figure 1 shows the typical layout of the program when the program is executed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 Layout of the program 
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A.2 Loading of the System File 

 

After making the substructuring analysis explained in Appendix B, in ANSYS
®
 to 

the system to be analyzed, change the format of the output file to text file which is 

created by ANSYS
®
. This can simply be done by adding an extension of “.txt” to the 

file (Figure 2).  

 

 

 

 

 

 

 

 

Figure A.2 Changing the extension of the file 

 

 

After executing the program, first browse for that file (Figure A.3), by the system 

matrices loading panel introduced in Figure A.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3 Selecting the ANSYS
®
 output file 
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After selecting the file and before loading operation, enter the loss factor if 

proportional structural damping exists in the structure. If not, enter 0. Then load the 

file (Figure A.4). 

 

 

 

Figure A.4 Loading the system matrices 

 

The program creates a prompt called “system matrices loading status” after loading 

operation finishes. After clicking “OK” , the linear undamped natural frequencies of 

the system are printed in the natural frequencies information panel (Figure A.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5 System matrices loading status prompt, and linear natural frequency 

information panel 
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Later, enter the solution parameters (Figure A.6). Program uses some default values 

for the analysis. Change them if necessary (however, unless necessary avoid 

changing the relaxation coefficients and percentage error). 

 

 
 

 

Figure A.6 Solution parameters definition panel 

 

Select FRF matrix construction method. If user selects modal summation method, 

than he/she must define the number of modes for FRF construction. If the number is 

greater than the degree of freedom, program will give a warning message when 

solution button is clicked (Figure A.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.7 The FRF construction method selection operation and warning message 
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Define Nonlinearities/Linear viscous dampers between coordinates. If nonlinearity 

exists between a coordinate and the ground, enter the same coordinate number. When 

“define nonlinearity” button is clicked, an input window for the corresponding 

nonlinearity will be opened (Figure A.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.8  Defining nonlinearities 
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The defined nonlinearity can be discareded by simply selecting the corresponding 

nonlinearity in the nonlinearity information box and after that pressing the “Del” 

button. 

 

Then, specify the external forcing. User can use the data file which may also contain 

the external excitation information, or can manually define new external forcing. 

When input file is selected, the editting boxes will inactive. They will become active 

when “define force” selection box is selected (Figure A.9). 

 

 

 

 

 

 

Figure A.8  External forcing definition 

 

 

Later on, user must specify the type of the solution by the solution type selection 

panel (Figure A.9).  

 

  

 

 

 

 

 

 

 

 

Figure A.9  Solution type selection 
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The final preprocessing stage is the definition of the response and FRF coordinates to 

be plotted, which are the main outputs of the program (Figure A.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.10  Response coordinate and FRF matrix indicies selection 
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Now user can click on the solution button. Results will be created as plots and output 

files. The solution time will be printed in the program window. User can exit the 

program after the process is completed (Figure A.11). 

 

 

 

 

 

 

 

 

 

 

 

Figure A.11 Solve, exit and info buttons 
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APPENDIX B  

 

 

OBTAINING A LISTING OF THE STIFFNESS and MASS MATRIX / LOAD 

VECTOR FROM ANSYS
®
, VERSION 11 

 

 

 

In order to obtain a listing of the stiffness, mass matrix and forcing vector from an 

ANSYS model, use the “Substructuring” option in the solution processor, and solve 

it. The GUI and command line options are given seperately.   

 

GUI Option [66]:  

 

1. Create the model, including all required real constants, material properties, 

constraints,  and applied loads.    

2. Enter the solution processor.  On the ANSYS Main Menu, select “Solution”. 

3. On the “Solution” menu, select “Analysis Type”, then “New Analysis”.  

4. On the “New Analysis” menu, select “Substructuring/CMS”, and click “OK”.  

5. On the “Solution” menu, under “Analysis Type”, select “Analysis Options”.  

6. On the box that opens, verify that “Substructuring” is selected, then click 

“OK”.  

7. On the “Substructuring Analysis” menu, there is a  “SEMATR Matrices to be 

generated” option. For this option, select “Stiffness+Mass”.  

8. On the same menu, there is a  “SEPR Items to be printed” option. For this 

option, select “LoadVect+Matrix”, then click “OK”.  

9. On the same menu, there is a  “[LUMPM] Use lumped mass approx?” option. 

For this option, select “Yes” option.  
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10. Select master degrees of  freedom.  Assuming you wish to include all 

unconstrained  degrees of freedom in your printed matrices, then select all dof 

in  the model as master dof. To do this, at the ANSYS command prompt, type 

the command: m,all,all  

11. Direct the ANSYS output to an output file.  At the ANSYS command prompt, 

type the command:  /output,filename (where filename is any name the user 

chooses). 

12. Solve.  On the “Solutions” menu, under the “Solve” heading, select “Current 

LS”, then click “OK”. Upon solving, you may get warnings, such as: Node 2 

UY master is superseded by a specified constraint.  This is simply because 

some of the master dof selected were constrained to zero displacement.   

These warnings are not a problem.       

13. Redirect the ANSYS output back to the output window.  At the ANSYS 

command prompt, type: /output  

 

Command Line Option:   

 

First, create the model, including all required real constants, meshes, material 

properties,  constraints, and applied loads.  Then, enter the commands below at the 

ANSYS command line.  

  

/SOL 

ANTYPE,7 

SEOPT,sfgf2,2,1,0,0  

LUMPM,1  

EQSLV,FRONT  

SEGEN,OFF    

M,ALL,ALL 

/OUTPUT, filename                             (where filename is defined by the user)  
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SOLVE    

/OUTPUT 

 

“After the above steps, whether the GUI option or command line option is used, an  

ASCII text file will be stored under the filename chosen (see Step 11 of the GUI 

Option instructions) in your ANSYS working directory. This file will contain the 

load vector and stiffness matrix listing.  It can be viewed with any text editor, such as 

Notepad, or any word processing program, such as Microsoft Word.  The listing may 

be preceded by other information, so you may have to scroll through the file some to 

find it.  Using Notepad, if desired, this information can be cut and pasted into another 

file” [66]. 
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APPENDIX C  

 

 

AN EXAMPLE OUTPUT FILE CREATED BY ANSYS
® 

 

 

 

 *****  ANSYS SOLVE    COMMAND  ***** 

 

 TRANSFER SOLID MODEL BOUNDARY CONDITIONS TO FINITE 

ELEMENT MODEL 

      CONSTRAINTS    TRANSFERRED FROM LINES         =      4 

 

 *** NOTE ***                            CP =      12.719   TIME= 16:19:22 

 There is no title defined for this analysis.                             

 

                       S O L U T I O N   O P T I O N S 

 

   PROBLEM DIMENSIONALITY. . . . . . . . . . . . .2-D                   

   DEGREES OF FREEDOM. . . . . . UX   UY   

   ANALYSIS TYPE . . . . . . . . . . . . . . . . .SUBSTRUCTURE          

   SUPERELEMENT FILE NAME . . . . . . . . . . .2d 

   LUMPED MASS MATRICES. . . . . . . . . . . . . .ON 

   MATRICES TO GENERATE. . . . . . . . . . . . . .K AND M        

   SUPERELEMENT PRINT OPTIONS. . . . . . . . . . .PRINT ALL          

   STRESS STIFFNESS MATRIX SPACE KEY . . . . . . .OFF 

   NUMBER OF MASTER DOF. . . . . . . . . . . . . .    12 

   GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC   

 

                      L O A D   S T E P   O P T I O N S 

 

   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     1 
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            **** CENTER OF MASS, MASS, AND MASS MOMENTS OF INERTIA 

**** 

 

  CALCULATIONS ASSUME ELEMENT MASS AT ELEMENT CENTROID 

 

  TOTAL MASS =   54.000     

                           MOM. OF INERTIA         MOM. OF INERTIA 

  CENTER OF MASS            ABOUT ORIGIN        ABOUT CENTER OF MASS 

 

  XC =  0.10000          IXX =   0.1350          IXX =    0.000     

  YC =  0.50000E-01      IYY =   0.6750          IYY =   0.1350     

  ZC =   0.0000          IZZ =   0.8100          IZZ =   0.1350     

                         IXY =  -0.2700          IXY =    0.000     

                         IYZ =    0.000          IYZ =    0.000     

                         IZX =    0.000          IZX =    0.000     

 

  *** MASS SUMMARY BY ELEMENT TYPE *** 

 

  TYPE      MASS 

     1   54.0000     

 

 Range of element maximum matrix coefficients in global coordinates 

 Maximum= 3.144791667E-08 at element 2.                                   

 Minimum= 3.144791667E-08 at element 2.                                   

 

   *** ELEMENT MATRIX FORMULATION TIMES 

  TYPE  NUMBER   ENAME      TOTAL CP  AVE CP 

 

     1       2  PLANE42       0.000   0.000000 

 Time at end of element matrix formulation CP= 12.734375.                 

 

 *** WARNING ***                         CP =      12.734   TIME= 16:19:22 
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 Node 1 UX master is superseded by a specified constraint.                

 

 *** WARNING ***                         CP =      12.734   TIME= 16:19:22 

 Node 1 UY master is superseded by a specified constraint.                

 

 *** WARNING ***                         CP =      12.734   TIME= 16:19:22 

 Node 5 UX master is superseded by a specified constraint.                

 *** WARNING ***                         CP =      12.734   TIME= 16:19:22 

 Node 5 UY master is superseded by a specified constraint.                

  

 Estimated number of active DOF= 8.                                       

 Maximum wavefront= 9.                                                    

 Number of Master DOF= 12.                                                

  

 Time at end of matrix triangularization CP= 12.734375.                   

1 

 ***** ANSYS - ENGINEERING ANALYSIS SYSTEM  RELEASE 11.0     ***** 

 ANSYS Multiphysics                                 

 00265231          VERSION=INTEL NT      16:19:22  AUG 03, 2008 CP=     12.734                                                                  

 

    ***** LOAD VECTOR NUMBER   1 ***** 

 

   ROW    NODE    DIR      VALUE 

 

     1         2  UX    10           

     2         3  UX    0.000000      

 

     ***** STIFFNESS MATRIX ***** 

 

   ROW   1   NODE     2     DEG. OF. FR. =  UX   

 

    1 1000    2-500        
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   ROW   2   NODE     2     DEG. OF. FR. =  UY   

 

    1-500     2 1000      

 

     ***** MASS MATRIX ***** 

 

   ROW   1   NODE     2     DEG. OF. FR. =  UX   

 

    1 1    2 0.00000000E+00      

 

   ROW   2   NODE     2     DEG. OF. FR. =  UY   

 

    1 0.00000000E+00    2 5   

    

 *** NOTE ***                            CP =      12.734   TIME= 16:19:22 

 Solution is done!                                                        

 

   *** PROBLEM STATISTICS 

  ACTUAL NO. OF ACTIVE DEGREES OF FREEDOM =      1 

  R.M.S. WAVEFRONT SIZE =     0.0 

  NUMBER OF MASTER DEGREES OF FREEDOM =     8 

 *** ANSYS BINARY FILE STATISTICS 

  BUFFER SIZE USED= 16384 

        0.063 MB WRITTEN ON TRIANGULARIZED MATRIX FILE: file.tri 

        0.063 MB WRITTEN ON SUBSTRUCTURE MATRIX FILE: 2d.sub 
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APPENDIX D 

 

 

CODE FOR LOADING SYSTEM MATRICES FROM THE FILE CREATED 

BY ANSYS
®
 

 

 

 

function [F,M,K,N]=Read_Ansys(Filename) 

  

HFile=fopen(Filename,'r'); 

  

    Str=fscanf(HFile,'%c'); 

     

    fclose(HFile); 

     

    T1Start=strfind(Str,'   ROW    NODE    DIR      VALUE')+... 

        length('   ROW    NODE    DIR      VALUE'); 

         

    T1End=strfind(Str,'     ***** STIFFNESS MATRIX *****'); 

     

    T1=textscan(Str(T1Start:T1End),'%f %f %s %f'); 

     

    T1{3}=char(T1{3}); 

     

    T1{3}(T1{3}=='U')=[]; 

     

    T1{3}=T1{3}'; 

     

    F=T1{4}; 

     

    N=length(T1{1}); 

     

    N2=N^2; 

     

    T2Start=T1End+length('     ***** STIFFNESS MATRIX *****')+2; 

     

    T2End=strfind(Str,' Solution is done!')-2-... 

        length(' *** NOTE ***                            CP =       5.312   TIME= 21:43:06'); 

     

    Headers=strfind(Str(T2Start:T2End),'   ROW')-1+T2Start; 
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    L=length('   ROW 240   NODE    96     DEG. OF. FR. =  UZ  '); 

     

    I=repmat(Headers,[L,1])+repmat((0:L-1)',[1,length(Headers)]); 

     

    Str(I)=' '; 

     

    Str=strrep(strrep(strrep(strrep(Str(T2Start:T2End),'E-','QQQ'),'-',' -'),'QQQ','E-'),... 

        '***** MASS MATRIX *****','                       '); 

     

    T2=textscan(Str,'%f %f'); 

     

    M=reshape(T2{2}(N2+1:2*N2)',[N,N]); 

     

    K=reshape(T2{2}(1:N2)',[N,N]); 

     

    Data=struct('Node',T1{2},'Dir',T1{3},'Force',F,'Stiff',K,'Mass',M); 

     

FF=fopen('F.txt','w'); 

 

KK=fopen('K.txt','w'); 

 

MM=fopen('M.txt','w'); 

  

fprintf(FF,['%0.4e',repmat('\t%0.4e',[1,size(F,2)-1]),'\r\n'],F'); 

  

fprintf(KK,['%0.4e',repmat('\t%0.4e',[1,size(K,2)-1]),'\r\n'],K'); 

  

fprintf(MM,['%0.4e',repmat('\t%0.4e',[1,size(M,2)-1]),'\r\n'],M'); 

  

fclose(FF); 

 

fclose(KK); 

 

fclose(MM); 

 

 

 


