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ABSTRACT 
 

INNER RING FATIGUE ANALYSIS OF ROLLING ELEMENT BEARINGS 

 

 

Eroğlu, Barış 

M.S., Department of Mechanical Engineering 

                                Supervisor: Prof. Dr. Haluk Darendeliler 

 

 

February 2009, 108 pages 

 

 

Rolling element bearings are the one of the most widely used machine elements in 

the industry. The most important criterion in bearing selection is the endurance life. 

The first attempts on the prediction of the endurance life of rolling elements bearings 

are done by Lundberg and Palmgren in 1950s (Harris, 1999). Their work adopted as 

an ANSI, ABMA and ISO standard which is widely used in industry today. The 

basic assumption of Lundberg-Palmgren formulation is that no matter how small the 

load applied on rolling element bearing, all material in the stressed volume is subject 

to fatigue failure.  

 

In this study, four main life theories; Weibull, Lundberg-Palmgren, Ioannides-Harris, 

and Zaretsky on rolling element bearings have been investigated. Three-dimensional 

finite element models of a bearing’s inner ring and rolling element have been 

prepared. The stress fields within the inner ring and the ball with respect to the 

applied load are obtained numerically. The fatigue life of the inner ring has been 

predicted by two methods that are widely used for fatigue analysis; Total Life 

Analysis (S-N method) and Crack Initiation Analysis (ε-N method). Obtained results 

are compared with ISO formulation. 

 



 v

As a result of the investigation, S-N and ε -N methods are determined to give more 

conservative results than ISO method for higher loads that cause stresses above the 

fatigue limit of the material. The used methods for bearing life prediction recognize 

the existence of the fatigue limit stress. Hence as the stresses within an operating 

bearing do not exceed the limit stress, the bearing can achieve infinite life. It is also 

observed that load variation has a direct influence on the bearing life. When the load 

significantly changes from the levels which create stress above the fatigue limit to 

the levels that result stress is below the fatigue limit, the bearing would have higher 

endurance life than predicted by ISO method. 

  

Keywords: Rolling Element Bearing, Fatigue Life, Finite Element Method 
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ÖZ 
 

RULMAN İÇ BİLEZİĞİNİN YORULMA ÖMRÜ ANALİZİ 

 

Eroğlu, Barış 

Yüksek Lisans, Makina Mühendisliği Bölümü 

                                Tez Yöneticisi: Prof. Dr. Haluk Darendeliler 

 

 

Şubat 2009, 108 sayfa 

 

Rulman endüstride en çok kullanılan makine elemanlarından biridir. Rulman 

seçiminde göz önünde tutulması gereken en önemli kıstas rulmanın yorulma 

ömrüdür. Rulman ömrünün öngörülebilmesi için ilk çalışmalar 1950’lerde Lundberg 

ve Palmgren tarafından yapılmıştır (Harris, 1999). Bu çalışmaların sonuçları ANSI, 

ABMA ve ISO standartlarına geçmiş ve günümüzde sanayide yaygın olarak 

kullanılmaktadır. Lundberg-Palmgren formülasyonu, rulmana etki eden kuvvet ne 

kadar küçük olursa olsun, gerilim altındaki hacmin yorulmaya maruz kalacağını 

kabul eder. 

 

Bu çalışmada, rulmanların yorulma ömrü için geliştirilmiş olan dört temel metot 

olan; Weibull, Lundberg-Palmgren, Ioannides-Harris, Zaretsky metodları 

incelenmiştir. Rulman iç bileziği ve bilyenin sonlu elemanlar modeli oluşturulmuş, iç 

bilezik ve bilya içindeki gerilim değerleri değişken rulman yüklerine göre sayısal 

olarak tespit edilmiştir. İç bilezik yorulma hesapları Tüm Ömür Analizi (S-N 

metodu) ve Çatlak Oluşumu Analizi (ε-N metodu) kullanılarak yapılmıştır. Elde 

edilen sonuçlar ISO formülasyonu ile karşılaştırılmıştır. 

 

Çalışmanın sonunda, S-N ve ε-N metotları ile gerçekleştirilen ömür hesaplarının ISO 

metoduna göre malzemenin yorulma sınırından daha yüksek gerilmeye neden olan 

yüksek yükler için daha muhafazakar sonuçlar verdiği tespit edilmiştir. Kullanılan 
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yöntemler malzemenin yorulma sınırını göz önünde bulundurmaktadır. Bundan 

dolayı rulman içindeki gerilmelerin sınır gerilmeden daha büyük olmadığı 

durumlarda rulman ömrü sınırsız olmaktadır. Buna ek olarak rulman üzerindeki 

değişken yüklerin rulman ömrüne doğrudan etki ettiği tespit edilmiştir. Rulmana 

etkiyen kuvvetin yarattığı gerilimlerin malzemenin yorulma sınırının üzerindeki 

seviyelerden, uygulanan kuvvetlerin yarattığı gerilimlerin yorulma sınırı altında 

kalan seviyelere değişmesi durumunda rulman ömrünün ISO formülasyonu ile 

öngörülenden daha fazla olacağı tespit edilmiştir. 

 

Anahta Kelimeler: Rulman , Yorulma Ömrü, Sonlu Elemanlar Metodu 
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CHAPTER 1 
 

 
INTRODUCTION 

 

 

In this chapter, a brief summary of bearing classification and bearing parts are given. 

Bearing materials, lubrication, definitions of characteristic life requirements, and 

failure modes of the rolling element bearings are discussed.   

 

The purpose of a rolling element bearing is to transmit a load between two structures 

while providing rotational freedom. Rolling element bearings are desirable when to 

compared other bearings, such as fluid film bearings, when low starting torque and 

low friction is required, and combined radial and thrust loads are present (Stella, 

2006). 

 

1.1 A GENERAL CLASSIFICATION OF ROLLING BEARINGS  

 

Rolling bearings are one of the most commonly used machine elements in many 

fields of industry and generally, are constructed by inner and outer rings, rolling 

elements that are running in the raceways. Standard shapes of rolling elements 

include the ball, cylindrical roller, needle roller, tapered roller, symmetrical and 

unsymmetrical barrel roller (Figure 1.1). 

 

 

 
 

Figure 1.1 Rolling elements for roller and ball bearings 
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The main parts of a rolling bearing are given in Figure 1.2. Generally the rolling 

elements are guided in a cage that ensures uniform spaces and prevents the contact 

between rolling elements. The cage of a separable bearing has the additional function 

of holding together the rolling element set and therefore facilitates the bearing 

mounting. Rolling elements together with the cage are circled by the inner and the 

outer rings. The protection of inner region of the bearing, i.e., rolling elements and 

their paths, is achieved by rubber seals or metal shields. 

 

 

 
 

Figure 1.2 Designation of a radial ball bearing (ORS Bearings, 2005) 

 

 

The radial and axial loading capacity with ball and roller elements forms 4 main 

branches on classification of bearings which is given in Figure 1.3. Further 

classification is done according to features like row number, roller shape, contact 

type etc. 
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Figure 1.3 Classification of rolling bearings (ORS Bearings, 2005) 
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1.2 STANDARDS AND TOLERANCES FOR ROLLING ELEMENT 

BEARINGS 

 

For standardization of rolling element bearings two ways are used. Firstly, the 

maximum or nominal dimensions are selected from the standard series which differ 

dimensionally by steps. Secondly, tolerances are assigned to the nominal dimensions. 

The tables of standards are issued by both the Antifriction Bearing Manufacturers 

Association (AFBMA) and the American Standards Association (ASA). 

 

Tolerances on bore, outside diameter, and width have also been specified by the 

related technical committees of AFBMA. The standards mentioned for the rolling 

element bearing do not specify the internal design of the bearing but includes 

tolerances on internal looseness in the bearing, race to bore eccentricity, race to face 

runout, etc. 

 

1.3 BEARING MATERIALS 

 

The rolling element bearing operation conditions require the use of materials that can 

withstand high compressive stresses over millions of cycles. To have this capability 

the material must be relatively free of foreign matter and such as non-metallic 

inclusions (Dambaugh, 2006).  

 

Both through-hardening and casehardening steels are used as bearing material. Of the 

through-hardening steels, AISI-E52100 (100Cr6) steel is the most widely used 

bearing steel in the industry (Harris, 2001). With carefully controlled furnace melt 

practices, foreign inclusions are held to a minimum. To improve the endurance of 

bearings much higher degree of cleanliness is obtained by vacuum melting 

techniques. The high carbon content, with chromium-alloy additions, ensures the 

development of uniform, high hardness with resulting high load-carrying capacity.  

 

The hardness of the 52100 steel for bearing applications are is set to be 60-65 

Rockwell C. At working temperatures above 260°C the hardness of the 52100 steel is 

decreases to less than 50 Rockwell C. Since hardness and load carrying capacity are 
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directly related, such a hardness drop will affect the load carrying capacity of the 

bearing. Generally, 230 °C is the maximum temperature at which 52100 is used. 

Above this temperature, materials with greater hardness retention like high-speed 

tool steels M50, M2, T1, and T5 are used (Music, 2005). Hybrid bearings have also 

increased in popularity in recent years. A hybrid bearing is one that has different 

materials for balls and races. Most of tests and calculation performed were done 

using a hot-pressed silicon nitride. In some tests hybrid bearings have exhibited 

longer fatigue lives than all steel bearings (Stella, 2006). 

 

For special environmental conditions various materials can be used. For bearings 

operating in corrosive media 440 C stainless steel is often used. This grade stainless 

steel is hardenable to Rockwell C 60 and will retain useful hardness to temperatures 

of 450 °C (Brändlein et. al., 1999). 

 

The cage parts are either stamped from sheet metal or machined from tube or cast. 

Stamped cages made from St4 sheet steel is used widely and for special applications 

brass is used. Plastic cages are cast. The rivets for fixing the cages together are made 

from USt 36-2 steel. The shield is made from St4 steel, and the seal made from FKM 

(Viton), NBR (Nitrile Butadiene Rubber) or ACM (Acrylic). The bearing materials 

are tabulated in Table 1.1. 
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Table 1.1 Bearing materials 

 

 
 

 

1.4 BEARING LUBRICATION 

 

The lubrication is a vital parameter for bearing life, the primary function of a 

lubricant is to lubricate the rolling and sliding contacts of a bearing to enhance its 

performance though the prevention of wear. Without appropriate lubrication in the 

contact areas on rolling elements and raceways where sliding and rolling occurs 

damage such as pitting, incipient welding, scuffing, development of oxide films can 

happen. Also the lack of adequate lubrication shortens the bearing life since the 

lubrication has the influence on fatigue development in the bearing life. 
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In the load-carrying areas of the rolling elements and raceways where very high 

Hertzian contact pressures occur, a load supporting lubricant film may be formed. 

The formation of a load-supporting lubricant film is directly influenced by the 

properties of the lubricant. 

 

Additionally, the lubricants minimize the frictional power loss of the bearing. It acts 

as a heat transfer medium to remove heat from the bearing. It can redistribute the 

heat energy within the bearing to minimize geometrical effects due to differential and 

thermal expansions. Lubricants can protect the precision surfaces of the bearing 

components from corrosion. It can remove wear debris from the roller contact paths. 

It can minimize the amount of extraneous dirt entering the roller contact paths, and it 

can provide a damping medium for separator dynamic motions (Harris, 2001). 

 

Both oils and greases are widely used for all types of rolling element bearings over a 

wide range of speeds and operating temperatures.  Since grease lubrication does not 

require special supply systems and permits very simple sealing, most bearings are 

grease-lubricated. Oil lubrication can also be preferred because it has advantage over 

grease in its ability to provide more positive lubrication to the bearing surfaces, to 

flush away contaminants such as water and dirt, and particularly to transfer heat from 

heavily loaded bearings. It is also advantageous to lubricate bearings from a central 

oil system used for other machine parts. 

 

1.5 LOAD CARRYING CAPACITY AND SERVICE LIFE 

 

When deciding on the appropriate bearing for a certain application, the load must be 

related to the carrying capacity of the bearing. A certain degree of safety must exist 

to prevent excessive plastic deformation and premature material fatigue of the 

raceways and rolling elements. In an excessively stressed rotating bearing, material 

fatigue causes rolling surfaces to flake. 

 

When necessary, wear must also to be taken into account. Unfavorable conditions 

such as dirt and lack of lubricant may increase wear, and therefore the clearance, to 

such an extent that the bearing ceases to fulfill its proper function. 
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1.5.1 Static Stressing 

 

In rolling bearing engineering the term static stressing refers to bearings carrying a 

load when stationary or when subjected to small oscillating motions; the load may be 

constant or variable. The term static therefore relates to the operation of the bearing, 

not to the type of load.  

 

Experience shows that rolling bearings under static load can be stressed to such a 

degree that minor plastic deformations occur in the rolling surfaces. These 

indentations and flattened areas, however, should not be of such an extent that they 

impair the rotation of the bearing. 

 

In rolling bearing engineering the definition of admissible static rolling element 

loading is that the total plastic deformation of rolling element and raceway does not 

exceed 0.01% of the rolling element diameter Db. For a ball of 10 mm diameter this 

corresponds to a plastic deformation of the two bodies of 1 μm. Experience has 

shown that such minor deformations neither impair the quiet running of a bearing at 

normal loading, nor shorten its fatigue life (Brändlein et al., 1999).  

 

1.5.2 Dynamic Stressing  

 

The term dynamic stressing refers to the loading of a rotating bearing. The load may 

be steady or varying as stated for static stressing, and here the term dynamic refers to 

the operation of the bearing, not to the action of the external load on the bearing.  

 

After longer running times, depending on the load, fatigue phenomena occur on the 

operating surfaces of rotating rolling bearings. As a rule these initiate from micro-

cracks below the surface. With further operation the cracks enlarge, and material 

pitting and flaking develop. Finally, the flaking extends over large areas of the 

operating surfaces. The first cracks emanate from weak points in the material or from 

inhomogeneities, which may be microscopically small non-metallic inclusions, non-

uniform distributions of alloying elements, etc. The inhomogeneities are randomly 

distributed in the material and of varying size. The concentration and consistency of 
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these weak points therefore vary and thus pitting may form accordingly at an earlier 

or later time. The stress in the individual bearing components also varies due to 

differing manufacturing tolerances (Brändlein et al., 1999).  

 

1.6 ROLLING ELEMENT BEARING DAMAGE 

 

Rolling element bearing damage is generally detected by unusual operational 

behavior of the bearing arrangement. Uneven running, uncommon running noise and 

unexpected temperature changes in the system usually indicate damaged rolling 

surfaces or an alteration of the radial clearance due to wear. High friction, hence 

resistance to smooth running, can indicate damaged rolling contact surfaces, 

detrimental preload or damage caused by unsatisfactory lubrication. The important 

types and causes of bearing damage are; fatigue, wear or plastic deformation. 

 

A bearing subjected to nominal loading fails due to material fatigue after certain 

running time. A detrimentally preloaded, overstressed bearing will also fail due to 

material fatigue, but after shorter running time. This also applies to abrasive wear. 

While a small amount of wear is natural and unavoidable in most bearing 

arrangements, severe wear due to heavy contamination and inadequate sealing must 

be considered as avoidable sources of damage (Eschmann et al., 1985). 

 

1.6.1 Plastic Deformation 

 

A rolling bearing subjected to excessive loading while stationary or performing small 

oscillating movements, becomes unserviceable due to plastic deformation at the 

contact surfaces. For this reason the static capacity of the bearing should be taken 

into account during the bearing selection phase. 
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1.6.2 Fatigue 

 

The rolling bearing approaches the end of its life when the rolling surfaces of its 

rings and rolling elements are damaged by material fatigue. Fatigue is by definition, 

the failure of material caused by repeated cycles well bellow the yield stress. In 

bearings, fatigue is seen in the area of contact between balls and raceways.  

 

Fatigue damage begins with the formation of minute cracks below the surface. This 

failure is physically manifested in bearings by the phenomenon spall (Figure 1.4). 

Spall is the propagation of cycle dependent loading cracks that occurs in the region 

of maximum stress (Stella, 2006). 

 

 

 
 

Figure 1.4 Ball bearing raceway with fatigue spall (Kotzalas, et. al., 2001) 
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1.6.3 Wear 

 

The forces transmitted in a bearing give rise to stresses of varying magnitudes 

between surfaces in both rolling and sliding motion. As a result of repeated loads in 

concentrated contacts, changes occur in the contact surfaces and in the regions 

bellow surfaces. These changes cause surface deterioration or wear (Figure 1.5). 

Wear is the loss or displacement of material from surface. Material displacement 

may occur by local plastic deformation or the transfer of material from one location 

to another by adhesion. When wear has progressed to the degree that it threatens the 

essential function of the bearing, the bearing is considered to have failed (Harris, 

2001). 

 

Wear occurs mainly due to dirt and foreign particles entering the bearing though 

inadequate sealing. Wear damage is often due to contaminated lubricant. Where 

rolling bearings, gears and other machine components are lubricated in a common 

system, abraded metallic particles may be conveyed between rolling elements and 

raceways. Abrasive foreign particles such as dust, sand, and grit roughen the contact 

surfaces and giving them a dull appearance (Eschmann, et al., 1985). 

 

 

 
 

Figure 1.5 Worn surfaces of rollers (FAG, 2003) 
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1.6.4 Corrosion Damage 

 

The result of severe rust on the running surfaces is uneven and noisy operation. The 

rust particles worn off by the rolling elements have an abrasive effect and generate 

wear (Figure 1.6). The rust pits are the starting points for subsequent flaking. Rust 

forms not only when water, acids, etc. penetrate the bearing, but also promoted by 

acidic lubricants. Another cause of corrosion is condensation, resulting mainly from 

sudden cooling of the bearing from operating temperature in very humid air. 

 

 

 
 

Figure 1.6 Corrosion of the outer ring of a deep groove ball bearing (FAG, 2003) 
 

 

1.6.5 Brinelling 

 

The raceways of correctly hardened rolling bearings occasionally show indentations 

regularly distributed over their entire circumference, corresponding approximately, 

in their shape, to the Hertzian contact area. As a result the bearing becomes noisy and 

uneven in operation. This damage is known as Brinelling and may have three 
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possible causes. The indentations may result from static overloading which leads to 

perceptible plastic deformation of the raceway. Similar damage may occur when a 

stationary rolling bearing is exposed to vibration and shock loads. The indents on 

inner and outer rings of a deep groove ball bearing are shown in Figure 1.7. 

 

 

 
 

Figure 1.7 Ball indentations in the shoulders of a deep groove ball bearing (FAG, 
2003) 

 

 

Vibrations have also been the cause of the indentations on the (Figure 1.8). 

Investigations have shown that such indentations are caused by fretting corrosion or 

false brinelling (Eschmann et al., 1985). 

 

 

 
 

Figure 1.8 False brinelling on a ball bearing (FAG, 2003) 
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CHAPTER 2 

 

LITERATURE SURVEY  

 

 
Historically, rolling bearing theory postulated that no rotating rolling element bearing 

can give unlimited service, because of the probability of the fatigue at the surfaces in 

rolling contact. Rolling contact fatigue is manifested as a flaking off of metallic 

particles from the surface of the raceways and/or rolling elements. For well 

lubricated, properly manufactured bearings, this flaking off usually commences as a 

crack below the surface and is propagated to the surface, eventually forming a pit or 

spall in the load carrying surface (Figure 2.1). 

 

 

a)           b)  

 

Figure 2.1 Fatigue damage on inner rings of deep groove ball bearings  
a) Pit formation, b) Spall formation (FAG, 2003) 

 

 

There are four major life theories that attempt to predict the life of a ball bearing 

assembly. The first was Weibull distribution that derived by W. Weibull in 1930s. 

He stated that the ultimate strength of the material can not be expressed by a single 

numerical value and that a statistical distribution was required for this purpose. 
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Weibull’s principal contribution is the determination of structural failure is a function 

of the volume under stress. The theory is based on the assumption that the initial 

crack leads to a break. For the fatigue failure of rolling bearings, it is investigated by 

experiments that many cracks initiate at bellow the surface and do not propagate to 

the surface (Harris, 2001). Thus Weibull Theory is not directly applicable to rolling 

bearings. In 1950s Lundberg and Palmgren extending the work of Weibull to rolling 

element bearings relating the shear stress, cycles and maximum critical shear stress 

depth to fatigue life (Zaretsky, 1995). Their combined work formed the standards for 

the load ratings and life of ball bearings of American Bearing Manufacturers 

Association (ABMA), International Organization for Standardization (ISO) and 

American National Standards Institute (ANSI). In 1985 Ioannides and Harris (1985) 

came up with the theory which proposed that the bearing steel had a fatigue limit or 

loading where the specimen life is infinite. The most recent work has been done by 

NASA and Zaretsky and others (2000) proposed a Weibull-based life theory that 

more accurately accounts for the exponents in the equations for critical shear stress. 

 

Other researchers have proposed modifications of the Lundberg theory; Lamagnere 

et.al. (1998) proposed a method for calculating load rating of rolling bearing for an 

infinite life. Their method based on the comparison between the local elastic shear 

stress built up around inhomogeneities present in bearing steels and microyield stress 

of martensitic matrix. Tallian (1992) has developed a mathematical model which also 

based on Lundberg-Palmgren model considering the tractive surface stress 

distributions, crack propagation, defect severity within the material and 

contamination. 

 

Wangquan and Cheng (1997) in their work inspect the needle roller bearings, at the 

end of the endurance tests they conduct, they find out that surface cracks did not lead 

the fatigue failure and the dominant fatigue mechanism was subsurface crack 

initiation and propagation. They claim the fatigue life of a needle roller bearing can 

be predicted by simply knowing the maximum contact pressure. 
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2.1 ROLLING BEARING FATIGUE MECHANICS 

 

Although several failure mechanisms can occur in bearing rolling element surfaces, 

the fatigue cracking typically develops at or beneath the surface of the loaded bearing 

elements as shown in Figure 2.2. 

 

 

 
 

Figure 2.2 Sub-surface fatigue cracking (Dambaugh, 2008) 

 

 

Contact pressure, which is defined as the normal stress in the surface at the point 

contact, is developed between the curved surfaces according to theories of Hertz. It 

has been so widely adopted in structural metal fatigue concepts that fatigue is 

generated in an area of a mechanical member that sees plasticity, or development of 

slip-bands under cyclic loading, typically occurring in small areas of a structure such 

as a stress riser or discontinuity (Pook, 2007). Hence the sub-surface stress important 

for rolling element bearing fatigue analyses, since the shear and von Mises stress 

have the maximum values below the surface.  
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2.2 SCATTER IN ROLLING BEARING FATIGUE LIFE RESULTS 

 

Weibull reliability analysis (Harris, 2001, Eschmann, 1985) is widely used in fatigue 

testing and is a primary means of evaluating bearing fatigue results. For rolling 

bearings reliability is a very important discussion of how much service life can be 

expected from a bearing design due to a very wide scatter of fatigue results can be 

found from tests. 

 

In Figure 2.3 from Eschmann, 1985 an example scatter plot from a test of thirty 6309 

ball bearings run until failure. Although the tested bearings are all identical and were 

run under identical conditions, it is seen that the shortest run time was about 15.e6 

cycles while the longest run time was 300e6 cycles, a 20:1 range. Due to wide 

scatter, it is clear that predicting a service life for a single bearing is not possible, and 

that statements on fatigue life can only be made in terms of expected reliability. 

 

 

 
 

Figure 2.3 Scatter plot of 6309 bearing fatigue test results (Eschmann, 1985) 
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The explanation of the wide scatter is that few “weak” points exist in the 

manufactured surfaces and in the base material. The weak points which are formed 

because of the non metallic inclusions (Harris 2001, Eschmann, 1985) distributed 

randomly within the material. If the highly stressed portion of the bearing consists 

inclusions that bearing gives lower fatigue life and if not higher fatigue live is 

observed. 

 

2.3 FATIGUE LIFE DISPERSION 

 

If a population of apparently identical rolling bearings is subjected to identical load, 

speed, lubrication, and environmental conditions, all the bearings does not exhibit the 

same life in fatigue. Since such a life dispersion exists, bearing manufacturers have 

chosen to use L10 and L50 values, where; 

 

L10 : The fatigue life that 90% of the bearing population will endure 

 

L50 : The median life, the life that 50% of the bearing population will endure 

 

2.4 LIFE THEORIES 

 

2.4.1 Weibull Equation 

 

The Weibull Equation was the first step into predicting the life of mechanical 

samples. The statistical analysis is used to determine the properties of solids. Weibull 

claimed that the material properties or strength of a control group of test specimens 

could be expressed by the following equation; 

 

∫ σ=−
V

dV)(n)F1ln(                            (2.1) 

 

The above equation describes the probability of rupture F due to a given stress 

distribution σ over volume V in which n(σ) is a material characteristic. Harris (2001) 

gives the Weibull distribution of rolling bearing fatigue life as; 
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where U is the probability of survival, L is the life, Am is the material factor for ball 

bearings, and e is called Weibull slope. Weibull also stated that the probability of 

survival S can be expressed as (Zaretsky et al., 1995); 
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where  

V : the stressed volume,  

c : empirical shear stress exponent, 

N : the number of stress cycles endured with probability of survival U. 

τcr : critical shear stress 

 

From the Equation (2.2) it can be seen lnln(1/U) vs. ln(L) plots a straight line. Figure 

2.4 shows a Weibull plot of bearing testing data. The Weibull slope e is a measure of 

bearing fatigue life dispersion (Harris, 2001). Weibull slope for a test group is given 

by; 
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in which (L1, U1) and (L2, U2) are any two points on the best straight line passing 

through the test data. The e value for ball bearings is accepted to be e = 10/9, and for 

roller bearings e = 27/20 (Eschmann et al., 1985). 
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Figure 2.4 Typical Weibull plot for ball bearings (Harris, 2001) 

 

 

2.4.2 Lundberg-Palmgren Equation 

 

As mentioned before, Weibull’s theory is based on the assumption that the initial 

crack at subsurface leads to failure on surface of the raceway. In the fatigue of rolling 

bearings experiments it is observed that many cracks initiate at below the surface and 

do not propagate to the surface (Harris, 2001). Thus Weibull Theory is not directly 

applicable to rolling bearings. In 1950s Lundberg and Palmgren theorized that 

consideration ought to be given to the fact that the probability of the occurrence of a 

fatigue break should be a function of the depth z0 below the load carrying surface at 

which the most severe shear stress occurs. The basic Lundberg-Palmgren equation 

relating the probability of survival, stress cycles to failure, fatigue stress and the 

depth at which that stress occurs is given as (Ioannides et al., 1990); 
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where 

τo : the maximum value of subsurface orthogonal shear stress (the stress orthogonal 

to the surface)  

zcr : the depth of critically stressed volume, 

h : empirical exponent 

 

During the examination of the failed bearings on the tests, Lundberg and Palmgren 

concluded that the maximum shear stress was representative of failure causing stress. 

They further considered that the stressed volume could be represented by the 

proportionality (Ioannides et al., 1990); 

 

daz2V 0π∝                              (2.6) 

 

where 2a is the semi-major axis of the Hertz contact ellipse, and d is the diameter of 

the stressed track. According to the Lundberg-Palmgren theory, life prediction of a 

rolling bearing raceway can be found by  the following equation; 
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or 
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where 

L : life in millions of revolutions, 

Q : contact normal load (N), 

Qc : basic dynamic capacity of the contact (N), 

p : empirical load-life exponent. 
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The dynamic capacity is defined as the equivalent load that 90% of the bearings can 

endure for one million revolutions of the inner ring. Endurance test of ball bearings 

have shown the load-life exponent to be very close to 3 (Harris, 2001). Lundberg-

Palmgren approach formed the standards for the load rating and life of ball bearings 

in ABMA, ISO, and ANSI. Figure 2.5 is a typical plot of fatigue life vs. load for ball 

bearing and endurance life ISO formula is given in the equation bellow.  

 
p

321n P
CaaaL ⎟
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⎞

⎜
⎝
⎛=                             (2.9) 

 

where 

C : basic dynamic capacity of the bearing, 

P : equivalent load on bearing, 

p : empirical load-life exponent (3 for ball bearings and 10/3 for roller bearings), 

Ln : fatigue life in millions of revolutions corresponding to reliability level (100 - n) 

a1 : reliability factor (a1 = 1 for n = 90 percent) 

a2 : material factor (a2 = 1 for precision bearings manufactured from good quality 

bearing steel hardened to 58 Rc minimum) 

a3 : lubrication factor (a3 is based upon the degree of separation of the surfaces in 

rolling contact effected by the lubricant; a3 = 1 for adequate separation) 

 

 
 

Figure 2.5 Load vs. life for ball bearings with 50% survivability (Harris, 2001) 
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Limitations of the Lundberg-Palmgren equation in structural fatigue point of 

view: Lundberg-Palmgren formulas represented a significant development in rolling 

bearing technology; however, it was not possible to correlate the fatigue of bearing 

surfaces in rolling contact so calculated to structural fatigue. It is widely known that 

materials tested for structural fatigue have typically exhibited a fatigue limit. 

 

According to the tests done on the bearing steel (100Cr6), for cyclic loading less than 

the fatigue limit, fatigue does not occur (Dambaugh, 2008). On the contrary, a basic 

assumption in the formulation of Lundberg-Palmgren is that no matter how small the 

load applied to a rolling bearing, all the material in the stressed volume V is subject 

to fatigue failure (Harris and McCool, 1996). This phenomenon is illustrated 

schematically by Figure 2.6. 

 

 

 
 

Figure 2.6 Load versus life for Lundberg-Palmgren Theory 

 

 

Ioannides and Harris (1985) during their researches on endurance characteristics of 

bearings observed that bearings manufactured from very clean steel, lubricated to 

achieve separation of rolling elements and raceways and kept free of contaminants 

may not experience fatigue failure. 
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Also Lundberg-Palmgren states that the critical stressed volume for fatigue failure is, 

as given in Equation (2.5), proportional to the product of the major axis of the 

contact ellipse, the depth to maximum shear stress, and the circumference of the 

raceway contact (Figure 2.7). On contrary Harris and Yu (1999) in their work prove 

that the effectively stressed volume in bearing substantially less than that of 

Lundberg-Palmgren assumed. 

 

 

 
 

Figure 2.7 Volume at risk to fatigue in rolling contact according to Lundberg-

Palmgren Equation (Harris, 2001) 

 

 

2.4.3 Ioannides-Harris Equation 

 

Ioannides and Harris worked from both Weibull and Lundberg-Palmgren, adding in 

the fatigue-limiting stress term, τ1, and published following equation (Ioannides and 

Harris, 1985); 

 

h
cr

c
1o

e

z
V)(N

~
U
1ln

Δτ−τ
Δ

                                     (2.10) 
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In Equation (2.10), z is the depth at which stress occurs and τ1 is an endurance limit 

shear stress. If τo < τ1 in any incremental volume, that volume will not experience 

fatigue failure. Only the volumes where τo > τ1 can fail in fatigue, not the entire 

volume V (Figure 2.8). Thus for sufficiently low loads, bearings will not fail in 

fatigue. Ioannides and Harris are used the orthogonal shear stress for the formula to 

be consistent with Lundberg-Palmgren equation but they also claimed another stress 

criterion such as von Mises or maximum shear stress can be used (Harris, 2001). 

 

 

 
 

Figure 2.8 Volume at Risk for Ioannides-Harris Equation (Harris, 2001) 

 

 

Since it is recognized that from the tests the crack propagation time is orders of 

magnitude shorter than time for crack initiation, the exact reason for use of z-h 

remains undefined. Ioannides and Harris continue the Lundberg-Palmgren model 

concept with the use of z-h (Ioannides and Harris, 1985).  

 

Using Equation (2.10) in conjunction with Equation (2.5), the life prediction 

equation can assume a form as following equation (Ioannides and Harris, 1985); 
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where Pu is the limit load for fatigue. The effect of the Equation (2.11), shown as a 

potential standard-like format for common bearing applications, is illustrated by 

Figure 2.9, which also show a comparison with the load vs. life curve given in Figure 

2.6. 

 

 

 
 

Figure 2.9 Load versus life, Ioannides-Harris model compared to Lundberg-
Palmgren model 

 

 

2.4.4 Zaretsky Equation 

 

Zaretsky in his research suggest that bearing life dispersions are dependent on the 

critical shear stress-life exponent. He found that for a wide ranging set of conditions, 

most stress-life exponents vary between 6 and 12. The Zaretsky formula is given in 

following equation (Zaretsky et al., 2000).  
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where 

A : material-life factor 

SH : maximum Hertz stress 

n : stress-life exponent  
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Parker and Zaretsky (1972) conduct endurance tests on bearing balls made from 

100Cr6 steel and suggest that for air melt processed steels the stress-life exponent n 

is approximately 9. However, for cleaner and vacuum-processed steels, n =12. 

 

Zaretsky claimed that since the Lundberg-Palmgren equation considers the depth of 

critically stressed volume their equation was propagation time dependent and crack 

propagation time was included to equation. However according to Zaretsky crack 

propagation was an extremely small time fraction for the total life or running time of 

the bearing. To decouple the dependence of bearing life and crack propagation rate, 

Zaretsky et al. (1995) dispensed with the Lundberg-Palmgren relation with the depth 

of critically stresses volume, z. 

 

2.4.5 Comparison of Life Theories 

 

Since the formulations for the endurance life of the bearings differs, it is necessary to 

compare the theories and outcomes of these theories. It can be seen from the 

Equations (2.3), (2.5), and (2.6) the formulations provide ratios between the life and 

stress values. The appropriate constants for the materials from the experiments 

should be added to the relations to calculate the life for bearings. Zaretsky et al. 

(1995) redefine the Weibull, Lundberg Palmgren, and Ioannides Harris formulations 

with the material factor A to compare the outcomes with the Zaretsky formulation. 

The redefined equations are as follows; 
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Lundberg-Palmgren Equation: 
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Ioannides-Harris Equation: 
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Zaretsky et al. (1995) use the appropriate material constants in the formulations and 

relates the life of the inner ring for different stress criterion by normalizing life 

values as L10 life of 1 million at maximum value of selected stress criterion. Zaretsky 

(1995) calculates the stress values for 3 different loads as given in Table 2.1 and 

propose the stress-life exponents, n, for the formulations by which the fatigue life of 

an inner ring can be relatively found from the maximum stress values within the ring 

by using the Equation (2.16). Comparison of relative life and stress-life exponents 

from four life equations is tabulated in Table 2.2. 
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Table 2.1 The ball loads and stress values (Zaretsky, 1995) 

 

Parameter 
Normal Load on Ball [N] 

623 1617 3333 
Max. Hertz stress, Smax [GPa] 1.4 1.9 2.4 
Max. Orthogonal shear stress, τo [GPa] 0.343 0.472 0.601 
Max. Shear stress, τ max [Gpa] 0.459 0.644 0.814 

Max. von Mises stress, σ  [Gpa] 0.821 1.154 1.465 
 

 

Table 2.2 Comparison of relative life for four life equations (Zaretsky, 1995) 

 

Normal 
Load 

on Ball 
[N] 

Relative Theoretical Lives [million cycles] 

Weibull Eq.  
(Based on τ max) 

Lundberg-
Palmgren Eq. 
(Based on τ o)

Ioannides-Harris Eq. Zaretsky Eq. 
Based on      
τ max 

Based on σ  Based on    
τ max 

Based on σ  

623 423.9 154.7 12112.0 4643.0 431.4 495.6 
1617 13.6 7.1 149.7 85.2 11.7 12.9 
3333 1.0 1.0 1.0 1.0 1.0 1.0 

n 10.8 9.0 16.8 15.1 10.8 11.1 
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Zaretsky, et al. (2000) conduct the calculations with the Lundberg-Palmgren, 

Ioannides-Harris and Zaretsky life theories and compare the results of the methods 

with the ISO formulation (Figure 2.10.). 

 

 

 
 

Figure 2.10 Comparison of three methods on rolling element bearing life (Zaretsky, 

et al. 2000) 

 

 

As seen in Figure 2.10 and Table 2.2 the results of the theories have significant 

differences. Of the three theories the most conservative one is Lundberg-Palmgren 

and the maximum difference in results of the theories are between 0.1% and 10% for 

ball bearings. 

 

2.5 THE AIM AND SCOPE OF THIS THESIS 

 

The increasing competition in the industry and the huge cost pressure on companies, 

require decreasing the budget for testing activities, while having the obligation to 
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offer good quality and reliable products. From that point of view, for a designer it is 

important to estimate the fatigue life of the rolling element bearing used in a system 

for predictive maintenance applications. From the stock expenses and stock planning 

point of view the necessary quantity of bearings that should be ready in the stock is 

another important issue. 

 

The main scope of this thesis is to use a numerical method for rolling element inner 

ring fatigue life prediction. The hypothesis of this thesis can be explained that since 

the fatigue limit stress and the effects of variable loading are put into consideration 

by structural fatigue analysis methods, these methods are applicable for the rolling 

element bearing life prediction purposes and give more realistic results than that of 

the ISO formulation. 

 

This work is intended to use a numerical method to calculate fatigue lives of bearings 

under different loading conditions. Organization of this thesis can be summarized as 

following steps. Firstly, classification, material properties, and bearing damage 

modes of rolling bearings are summarized in Chapter 1. Secondly, literature survey 

of the four main fatigue life methods for rolling element bearings are investigated 

and compared in Chapter 2. In this thesis, contact stress and load distribution for 

rolling element bearings are represented in Chapter 3. 

 

Fatigue theory is evaluated and the theory used for structural fatigue analysis is given 

in Chapter 4. Chapter 5 describes the details of the bearing fatigue and formulations 

used for fatigue prediction. In Chapter 6 a case study is for a selected bearing inner 

ring is given. The stress field evaluation within the inner ring and fatigue life 

calculations with structural fatigue methods, comparison of results with the published 

formulations are given in Chapter 6. Finally, in Chapter 7 summarizes the work 

done, also recommendations for further work are given in Chapter 7.  
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CHAPTER 3 

 

CONTACT STRESS AND LOAD DISTRIBUTION FOR 

ROLLING ELEMENT BEARINGS 

 
Loads acting between the rolling elements and raceways in rolling bearings develop 

only small areas of contact between the mating members. Consequently, although the 

elemental loading may only be moderate, stresses induced on the surfaces of the 

rolling elements and raceways are usually large which causes contact deformations. 

In this chapter, focus is placed on the contact stresses and load distribution within the 

bearing. 

 

3.1 DEFORMATION OF TWO BODIES CONTACTING AT A SINGLE 

POINT 

 

The classical solution for the local stress and deformation of two elastic bodies 

apparently contacting at a single point was established by Hertz in 1881. Today, 

contact stresses are frequently called Hertzian or Hertz stresses in recognition of this 

accomplishment. 

 

Two bodies of revolution having different radii of curvature in a pair of principal 

planes through the contact between the bodies may contact each other at a single 

point under the condition of no applied load. Such a condition is called point contact. 

 

To determine the deformation of two contacting bodies at a single point, denote the 

upper body by I and the lower body by II as shown in Figure 3.1. The principal 

planes are denoted by 1 and 2. Therefore, the radius of curvature of body I in plane 2 

is denoted by rI2. Since r denotes radius of curvature, curvature is defined as; 
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The curvature difference is given as; 

 

∑ρ
ρ−ρ+ρ−ρ

=ρ
)()()(G 2II1II2I1I                (3.3) 

 
For an elliptical contact area, the maximum compressive stress occurs at the 

geometrical center. The magnitude of this stress is; 

 

ab2
Q3

max π
=σ                   (3.4) 

 

where Q is normal force between rolling element and raceway, a and b are the 

semimajor and the semiminor axes of the projected elliptical area of contact and 

given as; 
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where 

a* : dimensionless semimajor axis of contact ellipse, 

b* : dimensionless semiminor axis of contact ellipse, 

υ1, υ2 : Poisson’s ratio for body I and body II respectively, 

EI, EII : modulus of elasticity for body I and body II respectively. 

 

The normal stress at other points within the contact area is given by the following 

equation in accordance with Figure 3.2; 
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Figure 3.2 Hertz stress distribution over a ball-raceway contact surface  
(ASME, 2003) 

 

 

Deformation at the center of the contact is given by the following formula; 
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In the above equation δ* is dimensionless contact deformation value. The a*, b* and 

δ* values which are the functions of G(ρ) and can be found from the Table 3.1 
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Table 3.1 Dimensionless contact parameters (Harris, 2001) 

 
G(ρ) a* b* δ* 

0 1 1 1 
0.1075 1.076 0.9318 0.9974 
0.3204 1.2623 0.8114 0.9761 
0.4795 1.4556 0.7278 0.9429 
0.5916 1.644 0.6687 0.9077 
0.6716 1.8258 0.6245 0.8733 
0.7332 2.011 0.5881 0.8394 
0.7948 2.265 0.548 0.7961 

0.83495 2.494 0.5186 0.7602 
0.87366 2.8 0.4863 0.7169 
0.90999 3.233 0.4499 0.6636 
0.93657 3.738 0.4166 0.6112 
0.95738 4.395 0.3830 0.5551 
0.9729 5.267 0.3490 0.496 

0.98379 6.448 0.3150 0.4352 
0.990902 8.062 0.2814 0.3745 
0.995112 10.222 0.2497 0.3176 

0.9973 12.789 0.2232 0.2705 
0.998185 14.839 0.2072 0.2427 
0.998916 17.974 0.18822 0.2106 
0.999479 23.55 0.16442 0.17167 
0.999853 37.38 0.1302 0.11995 

1 ∞ 0 0 

 

 

3.2 SUBSURFACE STRESSES 

 

Investigations indicate that the contact fatigue of a rolling bearing is a process of the 

initiation and the propagation of fatigue cracks. They initiate either from a point 

below contact surfaces of from a point at the surfaces. Besides defects at or below 

the surfaces, the initiation and propagation are mainly effected by the stress 

distribution below the surfaces, especially the shear stress distribution (Changsen, 

1991). 

 

Some early attempts to apply the fracture mechanics to the study of pit formation 

mechanism assume that the crack is initiated on the surface due to significant friction 

forces. Under cyclic contact loading the crack then propagates at a shallow angle to 
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the core by the combined action of shear forces. In 1950’s Lundberg Palmgren 

observe that in the case of high precision mechanical components and fine surface 

finish and good lubrication the fatigue crack is usually initiated under the contacting 

surface in the area of the largest stresses (Harris, 1996, ASME, 2003). 

 

The corresponding axis system for principal stresses (Sx, Sy, Sz) and shear stresses 

(τxz, τzy, τxy) is sketched in Figure 3.3. τxz is the one of the critical stress that causes 

the fatigue failure for some of the researchers and is called orthogonal shear stress. 

The subsurface stresses are derived by Harris (2001) and the results are given in plots 

which are illustrated in Figure 3.4 through Figure 3.6.  

 

 

 
 

Figure 3.3 Principal stresses occurring on element on Z axis below contact surface  
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Figure 3.4 Sx/σmax vs. b/a and z/b (Harris, 2001) 

 

 

 
 

Figure 3.5 Sy/σmax vs. b/a and z/b (Harris, 2001) 
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Figure 3.6 Sz/σmax vs. b/a and z/b (Harris, 2001) 

 

 

Lundberg and Palmgren assumed the maximum orthogonal shear stress which is 

formed below the contact surfaces to be significant in causing fatigue failure of the 

surfaces in rolling contact. However many researchers considers the Mises-Hencky 

distortion energy theory and scalar von Mises stresses a better criterion for rolling 

contact fatigue (Harris, 2001, ASME, 2003). von Misses stress is given by; 
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Octahedral shear stress, a vector quantity favored by some researchers, is directly 

proportional to σ  by the Equation (3.10) 
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3.3 INTERNAL LOAD DISTRIBUTION OF BALL BEARINGS 

 

To be able to go in detail in stress analyses, the distribution of an external load within 

the bearing shall be put into consideration. An applied load on a rolling element 

bearing is distributed over the outer ring of the bearing as shown in the following 

figure. 

 

 

 
 

Figure 3.7 Schematic illustration of load distribution on a rolling element bearing 

 

 

The loading variation for different ball locations considered by utilizing the 

following equation (Harris, 2001); 

 

m
max )]cos1(

2
11[QQ ψ−
κ

−=ψ              (3.11) 

 

where 

Qmax : maximum loaded rolling element load (N) 

Qψ : rolling element load depends the angle ψ from the azimuth (N) 

κ : load distribution factor, 0.5 for 0 clearance 

ψ : angle from the azimuth (rad, °) 

m : load deflection exponent, 1.5 for ball bearings 
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For static equilibrium the applied radial load must equal the sum of the vertical 

components of the rolling element loads, so; 
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Equation (3.13) can also be written in integral form; 
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or, 
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The radial integral, Jr(κ), has been evaluated by Changsen (Changsen, 1991) and 

given for various values of κ in Table 3.2. 

 

For ball bearings under pure radial load and zero clearance the maximum loaded ball 

load is found from the Stribeck’s equation (Harris, 2001); 
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Table 3.2 Load distribution integral Jr(κ) for point contact rolling element bearings 
(Changsen, 1991) 

 

κ Jr(κ) 
0 1/Z 

0.1 0.1156 

0.2 0.159 

0.3 0.1892 

0.8 0.2559 

1.25 0.2289 

2.5 0.1339 

5.0 0.0711 

 

 

or, it can also be given by the equation (ASME, 2003); 

 

α
=

cosiZ
F5Q r

max                (3.18) 

 

where 

Fr : radial load (N) 

α : contact angle (rad, °) 

Z : number of rolling elements per row 

i :  number of rows 

 

For a ball bearing with 0 clearance, Equation (3.11) becomes; 

 
5.1

max )]Cos1(11[QQ ψ−−=ψ               (3.19) 

 

The contact angle for a rolling element bearing is defined as the angle of the rolling 

element–raceway contact from the azimuth of the bearing. The contact angle is 

schematically illustrated in the following figure. 

 

 



 42

 
 

Figure 3.8 Schematic illustration of contact angle 

 

 

3.4 STATIC LOAD RATING OF BALL BEARING  

 

Rolling Bearings which are stationary, rotate at very low speeds, or make slow 

oscillating movements should not be selected by fatigue of the bearings but by the 

permanent deformation at the contact between rolling elements and raceways. 

 

Experience shows that rolling bearings under static load can be stressed to such a 

degree that minor plastic deformations occur in the rolling surfaces. These 

indentations and flattened areas, however, should not be of such an extent that they 

impair the rotation of the bearing. Admissible static rolling element loading, 

therefore, means that the total plastic deformation of rolling element and raceway 

does not exceed 0.01% of the rolling element diameter dw. On the basis of the 

international standard ISO 76, the static load rating is given a magnitude such that 

approximately this deformation occurs when the static equivalent load is equal to the 

load rating (Brändlein et al., 1999).  

 

Static load rating for i-row deep groove ball bearings is given as: 

 

α= cosiZDfC 2
b00                  (3.20) 
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where 

C0: static load rating (N) 

fo : factor based on bearing raceway material and raceway geometry 

i : number of rows 

Z : number of rolling elements per row 

Db: ball diameter (mm) 

α : contact angle  

 

Although f0 is depends on type, material and internal geometry of the bearing in 

international standard ISO76, f0 is specified to depend only on bearing types. For 

deep groove bearings the value of f0 is given as 12.26 (Changsen, 1987). 

 

In the latest revision of the ISO standard, it is stated that contact stresses at the center 

of contact at the maximum loaded rolling elements yield permanent deformations of 

0.0001D for the bearing types indicated as shown in the Table 3.3 (Changsen, 1991). 

 

 

Table 3.3 Contact stresses that causes 0.0001D permanent deformation  
(Changsen, 1991) 

 

Bearing Type Contact Stress (N/mm2) 
Self-aligning ball bearing 4600 

Other ball bearings 4200 
Roller bearings 4000 

 

 

For most radial ball bearing and roller bearing applications the force on the 

maximum loaded rolling element is approximated by the Equation (3.18). To relate 

this approximation with the static load rating of the bearing with setting     Fr = C0 

yields, 

 

α= cosiZQ2.0C max0                (3.21) 
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CHAPTER 4 

 

FATIGUE THEORY 
 

 

Fatigue is failure under a repeated or otherwise varying load which never reaches a 

level sufficient to cause failure in a single application. It can also be thought as the 

initiation and growth of a crack, or growth from a preexisting defect, until it reaches 

a critical size, such as separation into two or more parts. 

 

Fatigue analysis itself usually refers to one of two methodologies: the stress life or  

“S-N method”, commonly referred to as total life since it makes no distinction 

between initiating or growing a crack, and the local strain or strain-life (ε-N) method, 

commonly referred to as the “crack initiation method” which concerns only the 

initiation of a crack.  

 

 

4.1 TOTAL LIFE (S-N) ANALYSIS 
 

A metal subjected to a repeated or fluctuating load will fail at a stress level lower 

than that required to cause fracture on a single application of the load. The nominal 

stress (S-N) method was the first approach developed to try to understand this failure 

process and is still widely used in applications where the applied stress is nominally 

within the elastic range of the material and the number of cycles to failure is large. 

From this point of view, the nominal stress approach is best suited to that area of the 

fatigue process known as high-cycle fatigue (HCF). For relatively large cyclic loads 

that cause significant plastic deformations in the material is inspected by low-cycle 

fatigue (LCF) methodology. The transition from low-cycle fatigue to high- cycle 

fatigue generally occurs in the range 104 to105 cycles. 
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4.1.1 Stress Cycles 

 

Figure 4.1 details some typical fatigue stress cycles. In the Figure 4.1-(a) illustrates a 

fully-reversed stress cycle with a sinusoidal form. This is an idealized loading 

condition typical of that found in rotating shafts operating at constant speed without 

overloads. For this kind of stress cycle, the maximum and minimum stresses are of 

equal magnitude but opposite sign. Figure 4.1-(b) illustrates the more general 

situation where the maximum and minimum stresses are not equal. In this case they 

are both tensile and defining an offset for the cyclic loading. Figure 4.1-(c) illustrates 

a more complex, random loading pattern which is more representative of the cyclic 

stresses found in real structures. 

 

 

 
 

Figure 4.1 Typical fatigue stress cycles, 
a) Fully Reversed, b) Offset, c) Random (MSC. Software, 2005) 
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A fluctuating stress cycle can be considered to be made up of two components, a 

static or steady mean stress Sm, and alternating or variable stress amplitude, Sa. It is 

also often necessary to consider the stress range, Sr, which is the algebraic difference 

between the maximum and minimum stress in a cycle. 

 

minmaxr SSS −=                  (4.1) 

 

The stress amplitude, Sa , then is one half the stress range. 
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The mean stress is the algebraic mean of the maximum and minimum stress in the 

cycle. 
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Two ratios are often defined for the representation of mean stress, the stress or R 

ratio, and the amplitude ratio AR. 
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The S-N, or Wohler, diagram shown in Figure 4.2 is the standard way to characterize 

the behavior of materials under completely reversed loading. 
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Figure 4.2 Typical S-N curve plotted on semilog coordinates (Lee, 2005) 

 

 

S-N data are nearly always presented in the form of semilog or log-log plot of 

alternating stress, amplitude Sa or range Sr, versus cycles to failure, with the actual 

Wohler line representing the mean of the data. Certain materials, steels for example, 

display a fatigue limit (also called endurance limit), Se, which is defined as the 

maximum value of stress amplitude at zero mean stress which can be repeated an 

infinite number of times on a test specimen without causing a failure. For most 

engineering purposes, infinite life is taken to be 1 million cycles. S-N curves do not 

separate crack initiation from propagation, and only the total life to fracture is given 

(Fuchs et. al, 1980). 

 

 

 
 

Figure 4.3 Idealized form of the S-N curve 
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When plotted on log-log scales, the relationship between alternating stress, S, and 

number of cycles to failure, N can be described by a straight line in Figure 4.3. The 

slope of the line, t, can be derived from the following: 
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Sometimes, for convenience, the term 1/t is replaced by the letter k, 
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With the use of above equation any other coordinate pair (N-S), for a given stress 

amplitude S, the number of cycles can be calculated directly. Typically, No is taken 

to be 106 cycles and the corresponding stress amplitude is taken to be an endurance 

limit, usually denoted as Se or S6, so that the above equation may be rewritten as: 
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4.1.2 Combined Mean and Alternating Stress 

 

Mean stress component has significant effect on failure. When a tensile mean 

component of stress is added to the alternating component the material fails at lower 

alternating stresses than it does under fully reversed loading (Norton, 2006). 

 

Fatigue data collected from a series of tests designed to investigate different 

combinations of stress amplitude and mean stress are characterized in Figure 4.4 for 

a given number of cycles to failure. The diagram plots the mean stress, both tensile 
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and compressive, along the x-axis and the alternating constant stress amplitude along 

the y-axis. This kind of representation was first proposed by Haigh and is therefore 

commonly referred to as the Haigh diagram.  

 

 
 

Figure 4.4 High-cycle fatigue data showing the influence of mean stress 
(Norton, 2006) 

 

 

As seen in the figure the effect of mean stress is different for compressive and tensile 

values. Failure appears to be more sensitive to tensile mean stress, than compressive 

mean stress. 

 

Empirical relationships that relate alternating stress amplitude to mean stress have 

been developed. These relationships characterize a material with its ultimate tensile 

strength, Su. For infinite life design strategies, the methods use various curves to 

connect the endurance limit, Se, on the alternating stress axis to either the yield 

stress, Sy, ultimate strength, Su, or true fracture stress, Sf, on the mean stress axis. Of 

all the proposed relationships, Goodman and Gerber lines have been most widely 

used. 

 

The fatigue strength or endurance limit of the material is effectively increased by the 

introduction of a compressive mean stress, whether applied or residual. The fact 

provides an opportunity to decrease the effects of alternating tensile stresses by the 
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intentionally introduced mean compressive stresses. One way to this is to create 

residual compressive stress in the material in regions where large alternating 

components are expected (Norton, 2006). 

 

Typical dimensionless plots are shown in Figure 4.5, where Sa/Sf versus Sm/Su is 

plotted. Sf is fully reserved fatigue strength and Su is the ultimate tensile strength. It 

can be seen that many of the data is between the straight and curved lines. The 

straight line is the Goodman line and the curved is Gerber parabola. 

 

 

a)  
 

b)  
 

Figure 4.5 Effect of mean stress on alternating fatigue strength at long life. a) Steels 
based on ~10E7 cycles, b) Aluminum alloys based on ~5x10E7 cycles (Forrest, 

1962) 
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The modified Goodman and Gerber formulae are given in following equations; 

  

Modified Goodman Equation: 
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4.2 CUMULATIVE DAMAGE 

 

To predict life expectancy in parts with spectrum loading is one of the difficult 

problems concerned with limited fatigue life. The fatigue life in spectrum loading is 

a function of gathered effects on the part, at various stress levels, throughout its 

performance. 

 

Palmgren-Miner Rule: The Palmgren-Miner rule is based on an assumption of linear 

concept that the changing of the sequence of the loading cycles did not affect the 

fatigue life. The rule is a combined result, introduced first by Palmgren in analysis of 

ball bearings and adapted by Miner for aircraft structures (Zahavi, 1996). 

 

Life estimates made by employing Palmgren-Miner rule along with a cycle counting 

procedure. Target is to estimate how many of the blocks can be applied before failure 

occurs. This theory may be described using the S-N plot. 

 

In Figure 4.6, a spectrum of amplitudes of stress cycles is described as a sequence of 

constant amplitude blocks, each block having stress amplitude Si and the total 

number of applied cycles ni. The constant amplitude S-N curve, in log scale is also 

shown by Figure 4.7. 
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Figure 4.6 Spectrum of amplitudes of stress cycles (Arıduru, 2003) 

 

 

By using the S-N data, number of cycles of S1 is found as N1 which would cause 

failure. Operation at stress amplitude S1 for a number of cycles n1 smaller than N1 

produces a smaller fraction of damage which can be termed as D1 and called as the 

damage fraction. 

 

 

 
 

Figure 4.7 Constant amplitude S-N curve 

 

 

At each load level the theoretical life expectancy is Ni number of cycles. The 

damaging effect of a single cycle at this level is assumed to be; 
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i
i N

1D =                 (4.12) 

 

The damage after ni cycles at this level is; 
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The accumulated damage from the entire loading can be given by; 

 

∑ ∑ +++== ...
N
n

N
n

N
n

N
n

Dn
3

3

2

2

1

1

i

i
ii             (4.14) 

 

For practical application, the Miner equation can be revised as; 

 

∑ = MDn ii                 (4.15) 

 

Where M is an empirical constant which usually varies within the range (Zahavi, 

1996); 

 

2.2M7.0 ≤≤                 (4.16) 

 

4.3 CRACK INITIATION/STRAIN LIFE (ε-N) ANALYSIS  

 

In a notched component or specimen subjected to cyclic external loads, the behavior 

of material at the root of the notch is best considered in terms of strain. As long as 

there is elastic constraint surrounding a local plastic zone at the notch the strains can 

be calculated more easily than the stress (Shigley, 1989). This concept has motivated 

a finite fatigue life design philosophy based on relating the fatigue of notched parts 

to the life of small unnotched specimens that are cycled to the same strains as the 

material at the notch root. This is called strain control. Reasonable expected fatigue 

life, based on the initiation or formation of small macro cracks can be determined 
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knowing the local-time history at a notch in a component and the unnotched strain-

life fatigue properties of the material and assuming a reasonable damage theory 

(Fuchs et. al, 1980). Sraml et al. (2003) claims that although strain-life method is 

recommended for low cycle fatigue considerations it is claimed that the method can 

be used as advantage over the S-N method even in high cycle application, due to its 

less scatter-prone materials data. 

 

In performing smooth specimen tests which characterize fatigue performance, it must 

be recognized that fundamental material properties are being measured which are 

independent of component geometry.  

 

Strain-life fatigue curves plotted on log-log scale are shown in Figure 4.8, N or 2N is 

the number of cycles or reversals to failure, respectively. Failure criteria for strain-

life curves have not been consistently defined in that failure may be the life to a 

small detectable crack, life to a certain percentage decrease in load amplitude, or life 

to fracture. Differences in fatigue life depending on these three criteria may be small 

or appreciable (Shigley, 1989).  

 

 

 
 

Figure 4.8 Strain curves showing the total elastic and plastic strain components 
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4.3.1 Cyclic Stress-Strain Curve 

 

The cyclic response of a material describes the process of change in the resistance of 

a material to deformation due to cyclic loading. If a material is repeatedly cycled 

under fully reversed strain-controlled loading, the material respond in one of the 

following ways: cyclic hardening, cyclic softening, remaining stable, or some 

combination of these responses.  

 

If a specimen of a material is loaded in tension to beyond the yield stress to a 

maximum stress of σmax, point B in Figure 4.9 and at this point the loading reversed 

and the specimen is unloaded from point B through the zero stress level than loaded 

into compression to a stress level equal to - σmax and if the loading process started is 

continued, the loading direction is again reversed and the specimen is loaded back up 

to σmax, then a complete loop will be defined. The stress-strain loop illustrated in 

Figure 4.10 is called a hysteresis loop and defines, in stress-strain space, a single 

fatigue cycle. During the initial loading, the stress-strain response is according to the 

curve O-A-B where yielding starts at σa. On unloading, yielding begins in 

compression at point C where yielding starts at σc and |σa|>| σc|. This behavior is 

called Bauschinger Effect. 

 

 

 
 

Figure 4.9 A complete stress-strain cycle, a hysteresis loop. 
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The dimensions of the hysteresis loop are described by its total width, the total strain 

range Δε, and its height, the total stress range Δσ. The total strain range is the sum of 

its elastic and plastic components: 

 

pet εΔ+εΔ=εΔ                (4.17) 

where 

Δεe : elastic strain range 

Δεp : plastic strain range 

Δεt : total strain range 

 

The softening or hardening response of the material is believed to have relation with 

stability of the dislocation substructure within the metal crystal lattice of the material. 

In general, soft materials such as aluminum alloys with low dislocation densities tend 

to harden and hard materials such as steels tend to soften. A rule of thumb is that the 

material will harden if Su/Sy>1.4 and the material will soften is Su/Sy<1.2 (Lee, 

2005). For ratios between 1.2 and 1.4, the material can exhibit hardening, softening 

or both. These behaviors of materials indicate that use of monotonic material 

properties for fatigue life predictions can sometimes lead to inaccurate results. 

 

Figure 4.10 shows the cyclic softening and hardening effects for two different 

materials where the first two hysteresis loops are plotted. In both cases, the specimen 

is between fixed-strain limits and the load is allowed to find its own level. In case of 

hardening, the maximum stress reached in each successive strain cycle increases with 

number of cycles and in the case of softening the maximum stress decreased with 

imposed cycles. These processes do not continue for both cases. The stress will have 

a constant level and remain stable at that level until the first fatigue crack.  
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Figure 4.10 Cyclic hardening and softening under strain control 
(MSC Software, 2005) 

 

 

4.3.1.1 Determination of the cyclic stress-strain curve 

 

As mentioned before the stress-strain response of most materials changes with 

applied cyclic strains. However after small number of cycles the hysteresis loops 

stabilizes so the stress amplitude remains constant over the remaining portion of 

fatigue life. As shown in Figure 4.11, if the stress-strain coordinates of the tips from 

a number of stable hysteresis loops are plotted in stress-strain space, then the locus of 

these points defines the cyclic stress-strain curve. 
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Figure 4.11 Definition of the stable cyclic stress-strain curve 
(MSC Software, 2005) 

 

 

The cyclic stress-strain curve defines the relationship between stress and strain under 

cyclic loading conditions. The cyclic stress-strain curve can be compared directly 

with the monotonic stress-strain curve to quantitatively asses the cyclically induced 

changes in material behavior. 

 

In the plastic domain beyond the yield point the true stress-strain relationship can be 

expressed by Hollomon correlation (Zahavi, 1996); 

 
'n'K ε=σ                 (4.18) 

 

where 

K’ : cyclic strength coefficient 

n’ : cyclic strength exponent 
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The cyclic stress-strain curve is defined by; 
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The elastic and plastic components are defined as follows. The elastic strain is given 

with the equation; 

 

E
S

e =ε                 (4.20) 

 

and the plastic part of the strain is given by; 
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Since the many homogenous materials have symmetric behavior in tension and 

compression, Equation (4.19) can be rewritten in terms of strain range and stress 

range; 
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Equation (4.22) may be simplified with the help of data from cyclic tests, for the 

stress and strain that cause a specimen’s fracture at the first reversal of cyclic 

loading, the stress is referred as fatigue strength coefficient, and is denoted by σ'f, 

and the strain, referred as fatigue ductility coefficient, is denoted by ε'f (Figure 4.12). 

The cyclic strength coefficient K' can be expressed in terms of σ'f and ε'f  as; 
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Figure 4.12 Illustration of fatigue strength and fatigue ductility coefficients on strain-
life plot 

 

 

4.3.1.2 The Strain-Life Curve 

 

The method of fatigue life prediction is dependent on stress based method. It began 

with Basquin equation which is depended on empirical formula (Zahavi, 1996). 

Stress-life data can be represented by a straight line relationship when plotted using 

log scales. The relationship can be expressed in terms of true stress as: 

 
t

ffa )N2('SS =                (4.24) 

 

where 

Sa : true cyclic stress amplitude 

2Nf : number of load reversals to failure 

t : fatigue strength exponent 

 

Equation (4.24) can be written in terms of elastic strain amplitude as; 
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where 

εe : the elastic strain amplitude 

E : the modulus of elasticity 

 

Plastic strain component of a fatigue cycle may be related to life by; 

 
g

ffp )N2('ε=ε                (4.26) 

 

where 

εp  : the plastic strain amplitude 

ε'f : the regression intercept called fatigue ductility coefficient 

2Nf : number of reversals, to failure 

g : fatigue ductility exponent 

 

The total strain is the sum of elastic and plastic components as; 

 

pet ε+ε=ε                 (4.27) 

 

Utilizing the Equations (4.25), (4.26) and (4.27) gives: 
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which is the Manson-Coffin relationship between fatigue life and total strain (Lee, 

2005). 

 

If the formulae given in Equations (4.25) and (4.26) plotted on log-log scales, both 

curves become straight lines and the sum of them gives the strain-life curve of the 

material, (Figure 4.13). The cross point, between the elastic and plastic lines, divides 

the total strain range. This cross point occurs at transition life, 2Nt and it shows a 

transition from a plastic domain into elastic one. To the left of transition life 2Nt, the 

deformation is mainly plastic with only minor elastic strain. To the right, the 
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deformation is mainly elastic with insignificant plastic strain. At transition point 

elastic and plastic strains become equal; 

 

pe ε=ε                 (4.29) 

 

or, can be written as; 
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and transition life can be determined by; 
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Figure 4.13 Schematic of total strain-life curve  
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4.3.2 Effect of Mean Stress and Correction Approaches 

 

Most basic fatigue data are collected with testing procedures which employs fully 

reversed loading. However the products generally service under nonzero mean 

stresses. Therefore the influence of the mean stress shall be put into consideration 

during fatigue calculations.  

 

In Figure 4.14 the effect of mean stress on the strain-life curve is shown 

schematically. It can be observed from the figure that with compressive means the 

life is extended and for tensional means reducing the life of the material. Generally 

following modified approaches of the strain-life method are most often used for 

fatigue calculations: Morrow’s method, Smith-Watson-Topper (SWT) method (Lee, 

2005). 

 

 

 
 

Figure 4.14 Effect of mean stress on the strain-life curve (MSC Software, 2005). 

 

 

4.3.2.1 The Morrow Mean Stress Correction 

 

According to Morrow Correction the effect of mean stress can be taken into account 

by modifying the elastic part of the strain curve by mean stress, Sm (Suresh, 1991): 
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So, the total strain can be found from the formula, 
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The Morrow mean stress correction is illustrated graphically by Lee and Taylor 

(2005) and given by Figure 4.15. 

 

 

 
 

Figure 4.15 Morrow mean stress correction model (Lee, 2005) 

 

 

As illustrated in Figure 4.15, the formulation indicates that a tensile mean stress 

would reduce the fatigue strength, S'f , and a compressive mean stress would increase 

the fatigue strength coefficient. 
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4.3.2.2 The Smith-Watson-Topper Mean Stress Correction 

 

This approach considers the maximum stress present in any cycle for taking the mean 

stress into account. In this case, the damage parameter is taken to be the product of 

the maximum stress, σmax, and the strain amplitude, εa of a cycle.  

 

For fully reversed loading, the maximum stress is given by 

 
t

ffmax )N2('SS =                (4.34) 

 

and by multiplying the strain-life equation by this term gives, 
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The Smith-Watson-Topper approach predicts that no fatigue damage can occur when 

the maximum stress becomes zero or negative, which is not applicable for rolling 

element bearing fatigue. 

 

4.3.3 Neuber’s Rule 

 

Notch analysis is used to relate the nominal stress or strain changes in a component 

to the local stress response at a notch. This can be used to predict the crack initiation 

life of notched components by using fatigue life data from smooth laboratory 

specimens (Lee, 2005). 

 

Neuber is the first to analyze a grooved shaft subjected to monotonic torsional 

loading and derived a rule for nonlinear material behavior at the notched root. Once 

the elastic stress and strain distribution are determined for the fatigue calculations, in 

order to use ε-N method for fatigue life Neuber method is used to determine the 

purely elastic stress and strains in elasto-plastic stresses and strains. With the use of 

Neuber method the elastic stresses and strains are looked up on the elastic line and 

corrected to fall onto the cyclic stress-strain curve to determine the elastic-plastic 
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stresses and strains. This elastic-plastic strain is used to determine the damage on the 

strain-life damage curve. As seen in the Figure 4.16, Neuber’s elastic-plastic 

correction is based on the simple principle that the product of the elastic stress and 

strain should be equal to the product of the elastic-plastic stress and strain from the 

cyclic stress-strain curve (Sraml et al., 2003).  

 

 

 
 

Figure 4.16 Interpretation of the Neuber model (Lee, 2005) 

 

 

The Neuber’s rule is given by the following equation; 

 

eSK 2
t ΔΔ=εΔσΔ                (4.36) 

 

where 

Δσ : local stress range, 

Δε : local strain range, 

ΔS : nominal stress range, 

Δe : nominal strain range, 

Kt : Stress concentration factor. 
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Neuber hypothesized that the stress concentration factor (Kt) is the geometric mean 

of the true stress and strain concentration factors, i.e., 

 

εσ= KKK t                 (4.37) 

 

and 

 

S
K aσ=σ                 (4.38) 

 

a
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e
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ε =                 (4.39) 

 

where, Kσ is the true stress concentration factor and Kε is the true strain 

concentration factor, S and ea are the nominal stress and strain amplitudes, 

respectively, and σa and εa are the local true stress and strain amplitudes respectively. 

 

During the cyclic loading, it is assumed that the material follows the cyclic stress-

strain curve for the initial loading and hysteresis stress-strain behavior for the 

subsequent loading reversals. Therefore, in terms of the initial cyclic stress-strain 

curve the modified Neuber equation can be reduced to following equation. 

 

11
2
t11 eSK=εσ                 (4.40) 

 

where σ1 and ε1 are true stress and strain for initial loading respectively and S1 and e1 

are the nominal stress and strain for the initial loading, respectively. For hysteresis 

behavior Neuber equation can be written as; 

 

eSK 2
t ΔΔ=εΔσΔ                (4.41) 

 

where Δσ and Δε are true stress and strain ranges, respectively and ΔS and Δe are the 

nominal stress and strain ranges, respectively. 
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Figure 4.17 shows the application of the modified Neuber model to a notched plate 

subjected to first loading reversal, where the nominal strain Δε and Kt are known 

based on the applied nominal stress ΔS and notch geometry. The Neuber constant C 

can be calculated and a hyperbola of the local stress and strain changes (ΔσΔε = C) is 

generated. A hysteresis stress-strain curve for the material is needed to intersect the 

hyperbola for the solution of Δσ and Δε (Lee, 2005). 

 

 

 
 

Figure 4.17 Nominal stress reversal loading with the Neuber rule (Lee, 2005) 

 

 

Nominally Elastic Behavior 

 

When a notched component behaves elastically and plasticity takes place locally at 

the notch root (i.e., nominally elastic condition), the following equations hold (Lee, 

2005): 

 

For the initial cyclic stress-strain curve: 

 

E
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For the hysteresis stress-strain curve: 
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Substituting the elastic nominal stress-strain and the local cyclic stress-strain 

relations (Equations (4.42) and (4.45)) into the Neuber equations given by Equations 

(4.40) and (4.41) gives the following equations; 
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and 
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For given Kt and the nominal stress data, these equations for the local stress can be 

solved. Once the local stress is determined, Equation (4.43) or (4.45) is used to 

obtain the local strain value. 
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CHAPTER 5 

 

BEARING FATIGUE 
 

 

Every rolling bearing element has a definite fatigue life depending on the number of 

rolling cycles and the load. Fatigue damage begins with the formation of cracks 

bellow the surface. As loading continues, the cracks progress to the surface where 

they cause material to break (Eschmann et al., 1985). 

 

5.1 DYNAMIC LOAD CAPACITY OF ROLLING ELEMENT BEARING 

 

The dynamic load capacity (rating) C of a radial bearing corresponds to a purely 

radial constant load at which a large number of identical bearings each with rotating 

inner ring and fixed outer ring, reach a rating life of 1 million revolutions (Eschmann 

et al., 1985). Dynamic loading capacity for a radial bearing can be given by: 

 

for bearings with ball diameter, Db ≤ 25.4 mm 

 

8.1
b

3
27.0

cm DZ)cosi(fC α=                            (5.1) 

 

for bearings with ball diameter, Db > 25.4 mm 

 

4.1
b

3
27.0

cm DZ)647.3()cosi(fC α=                (5.2) 

 

where 

C : dynamic load capacity of the bearing, 

fcm : factor based on bearing raceway material and raceway geometry, 

i : number of rolling element rows in bearing 

α : nominal contact angle between the ball-raceway, 
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Z : number of rolling elements in a row, 

Db : ball diameter 

 

5.2 FATIGUE LIFE OF BEARINGS 

 

Rolling bearing theory postulated that no rotating bearing can give unlimited service 

because of the probability of fatigue of the surfaces in rolling contact. Fatigue life of 

a radial bearing is given by the following equation which is also accepted by ISO and 

ANSI/ABMA standards; 
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 where 

L : rating life (106 revolutions) 

P : applied load (N) 

 

The subscript 10 for the life in ISO formulation postulated that 90% of the bearing 

population will endure. 

 

5.3 EXTENDED BEARING LIFE CALCULATION 

 

The rating life L10 is for bearings of conventional rolling bearing steel (good quality 

hardened steel) operating under most appropriate condition (correct mounting, 

lubrication, sealing, temperature etc). 

 

To consider the effects mentioned, Lna life calculation is used with the help of 

adjustment factors a1, a2 and a3, so that, 

 

]srevolution10[LaaaL 6
10321na =                (5.4) 
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where 

a1 : Life adjustment factor for a probability other than the 10% failure rate. 

a2 : Life adjustment factor special material properties 

a3 : Life adjustment factor for special operating conditions 

 

- Life adjustment factor a1: 

The life calculation is generally based on a 10% failure rate. There are cases in which 

the calculation must be based on a smaller percentage. For such cases the factor a1 

can be determined from the failure distribution. Table 5.1 lists the respective values. 

 

 

Table 5.1 Life adjustment factor, a1 (Eschmann et al., 1985) 

 

Failure probability, % 10 5 4 3 2 1 

Life adjustment factor, a1 1 0.62 0.53 0.44 0.33 0.21 

 

 

- Life adjustment factor a2: 

The factor a2 accounts for the properties of material and its heat treatment. The 

fatigue tests on which the conventional rating life calculation is based were carried 

out with bearings of high quality rolling bearing steel. For this case the value of a2 is 

equal to 1. 

 

- Life adjustment factor a3: 

The factor a3 contains all operational conditions which have a positive or negative 

effect on the fatigue life. First of these is the lubrication. The highest life values are 

reached with the circumstances where there is no metal to metal contact exist 

between rolling element and raceways. 

 

a3 is further determined by the following equation (Harris, 1996); 

 

β
=λ

H                    (5.5) 
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where, H is the minimum lubricant film thickness between the rolling elements and 

raceways and β is the composite rms roughness of the “contacting” surfaces. When    

λ = 1, a3 = 1; λ > 3; a3 ≥ 2; and λ < 1, a3 < 1. 

Decreasing the lubricating film thickness and increasing metal to metal contact 

between rolling elements and the raceways and the contamination of the lubricant 

reduce the life. 

 

5.4 VARIABLE LOAD CONSIDERATION  

 

In many bearing arrangements, loads and rotary speed change either randomly or 

according to a work cycle. In these cases equivalent dynamic load must be calculated 

for the given load and speed values. 

 

In rolling element bearing arrangements with variable load and constant speed 

conditions the load for fatigue life calculation is approximated by following equation 
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100
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QQ ++=                 (5.6) 

 

where, Q1 is the load applied on bearing in q1 percent of operating life, Q2 is the load 

applied in q2 percent of operating life etc. 

 

5.5 FATIGUE LIFE CALCULATION FOR RACEWAYS  

 

The loading for the parts of the rolling bearing varies during the operation. For 

instance, a point on the inner raceway of a bearing with inner ring rotation may 

experience a load cycle as shown in Figure 5.1.  
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Figure 5.1 Load cycle for a point on inner raceway of a radial bearing (Harris, 2001) 

 

 

Although the maximum load and maximum stress is significant in causing fatigue 

failure, the statistical nature of fatigue failure requires that the load history to be 

considered. Lundberg et al. determined empirically that cubic mean load fits the test 

data very well for point contact (Harris, 2001). The cubic mean load for a rotating 

raceway is given by the following equation; 
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For a non-rotating ring the cubic mean load is given as; 
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where 

Qeμ : cubic mean load for rotating ring for fatigue life calculation, 

Qeυ : cubic mean load for non-rotating ring for fatigue life calculation, 

Qj : loading on rolling element in position j, 

Z : number of rolling element in bearing. 
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The basic dynamic capacity can be found by the following equations for inner and 

outer raceway, respectively; 

 

( )
( )

318.1
b

3.0

31

39.141.0

ci ZD
cos1

1
1f2

f21.98Q −⎟
⎠
⎞

⎜
⎝
⎛

α
γ

γ+
γ−

⎟
⎠
⎞

⎜
⎝
⎛

−
=             (5.9) 

 

( )
( )

318.1
b

3.0

31

39.141.0

co ZD
cos1

1
1f2

f21.98Q −⎟
⎠
⎞

⎜
⎝
⎛

α
γ

γ−
γ+

⎟
⎠
⎞

⎜
⎝
⎛

−
=           (5.10) 

 

The two geometrical parameter f and γ in Equation (5.9) and Equation (5.10) can be 

found for inner and outer ring by the equations given bellow; 
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where 

Qco : dynamic capacity of the outer ring, 

Qci : dynamic capacity of the inner ring, 

ri : raceway groove radius of the inner ring, 

ro : raceway groove radius of the outer ring, 

Db : ball diameter, 

dm : pitch diameter of the bearing. 

 

The fatigue life (L10) of a raceway can be calculated with ISO formulation, as 

follows: 
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where Lrw is the life of the raceway in million cycles, Qc is the dynamic capacity of 

the raceway, and Qe is the cubic mean load found by using Equation (5.9) or 

Equation (5.10). 

 

The fatigue life (L10) for entire bearing can be found from the following equation; 
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where 

L : life of the bearing (million cycles) 

Lrwo : life of the outer ring (million cycles), 

Lrwi : life of the inner ring (million cycles). 

 

Ball failure is not considered for endurance calculations because it is not frequently 

observed during tests. It was explained that, because a ball could change rotational 

axis, the entire ball surface is subjected to stress, spreading the stress cycles over 

greater volume consequently reducing the probability of ball fatigue prior to raceway 

fatigue failure (Harris, 2001). 

 

5.6 INCLUSION EFFECT ON BEARING FATIGUE LIFE  

 

As mentioned in Chapter 2.2 the explanation of the wide scatter in bearing fatigue 

lies in the random inhomogeneities in the microstructure. Some forms of 

inhomogeneities are pores and banding both of which are caused by improper 

solidification processes. More common sources of inhomogeneities are non-metallic 

inclusions. The content of these inclusions are controlled in bearing steels but the 

still exists with present technology but small in number (Dambaugh, 2006). In 

elastically stressed matrix beneath the surface of the raceway, any discontinuity will 

cause higher stresses, plastic deformation and hence crack initiation. 
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5.6.1 Stress Concentration 

 

The stress at the edge of a hole or at a notch root has higher value than the remote 

stress. This phenomenon is called “stress concentration” and fatigue cracks mostly 

initiate at the stress concentration regions. 

 

Figure 5.2 shows a circular hole in an infinite plate under a uniaxial remote tensile 

stress, σx0, in the x direction. The tangential normal stress, σθ, at points A and C is 

three times larger than σx0, that is σθ = 3 σx0, and stress concentration factor, Kt =3. 

For the machine element fatigue calculations, lost of stress concentration factors for 

different types of holes and notches are given in books and handbooks in the 

literature, one of which most widely used is written by Peterson (1974). 

 

 

 
 

Figure 5.2 Stress concentration at a circular hole 

 

 

5.6.2 Stress Concentration Factors for Inclusions 

 

For the notch effect evaluation, stress concentration factors are applicable to notches 

which may be seen by the naked eye, which is a notch greater than approximately 1 
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Table 5.2 Stress concentration factors for inclusions (Murakami, 2002) 

 

Ratio of Young’s 
modulus of 

inclusion and 
matrix,  

K = EI/EM 

Stress concentration 
factor, Kt 

Aspect Ratio, a/b 

0.1 0.5 1.0 

K = 0 
(Hole) 

Equator A 
σσ /x 0.000 0.000 0.000 
σσ /y 1.200 2.000 3.000 

Pole B 
σσ /x -1.000 -1.000 -1.000 
σσ /y 0.000 0.000 0.000 

K = 0.65 
(MnS inclusion) 

Equator A 
σσ /x -0.009 -0.014 0.000 
σσ /y 1.054 1.205 1.304 

Pole B 
σσ /x -0.137 -0.162 -0.152 
σσ /y 0.684 0.781 0.848 

K = 0.94 
(Cementite) 

Equator A 
σσ /x -0.001 -0.002 0.000 
σσ /y 1.007 1.025 1.035 

Pole B 
σσ /x -0.018 -0.019 -0.017 
σσ /y 0.957 0.973 0.983 

K = 1.82 
(Al2O3 inclusion) 

Equator A 
σσ /x 0.018 0.024 0.000 
σσ /y 0.895 0.722 0.649 

Pole B 
σσ /x 0.251 0.207 0.175 
σσ /y 1.615 1.301 1.175 
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CHAPTER 6 

 

RESULTS AND DISCUSSION 
 

 

In the case studies the ORS 624607 radial deep groove ball bearing is used to 

determine the contact stress and fatigue life of the inner ring. The dimensions of the 

bearing are given in Figure 6.1 

 

 

 
 

Figure 6.1 Main dimensions of the 624607 bearing 

 

 

Ball diameter, Db: 12.7 mm 

Pitch diameter, dm: 55 mm 
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Inner ring diameter, dir: 37 mm 

Outer ring diameter, dor: 73 mm 

Inner ring raceway radius, ri : 6.47 mm 

Inner ring raceway contact diameter, di : 42.30 mm 

Number of rolling elements, Z : 9 

Number of rows : 1 

Contact angle, α : 0° 
 
Also, the Young’s Modulus and Poisson’s ratio for the 100Cr6 bearing steel are     

E= 210000 MPa and υ=0.3. 

 

 

6.1 DETERMINATION OF FATIGUE LIFE OF THE INNER RING BY 

USING ISO FORMULATION 

 

In this part the ISO formulation is used to determine the fatigue life of the inner ring 

with respect to applied bearing force. 

 

6.1.1 Static Load Rating 

 

Static load rating of the bearing can be found with the use of Equation (3.20); 

 
α= cosiZDfC 2

b00  

 

)0(cos)7.12)(9)(1)(26.12(C 2
0 =  

 

N73.17796C0 =  

 

It is assumed that the bearing is operating under the load of 8898 N which is the half 

of the static load rating of the bearing.  
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6.1.2 Determination of Fatigue Life of the Inner Ring 

 

For a radial ball bearing the force on the maximum loaded ball can be found from 

Equation (3.18). Hence, 

 

αcos
5

max iZ
FQ r=  

 

)0)(cos9)(1(
)8898)(5(

max =Q  

 

NQ 3.4943max =   is the maximum ball load for the applied 8898 N force on bearing. 

 

The loading variation for different ball locations is given by Equation (3.11). For the 

values κ=0.5 and m=1.5 the Equation (3.19) can be used; 

 
5.1

max )]1(11[ ψψ CosQQ −−=  

 

At the instant when the center of a ball coincides with the azimuth of the bearing, the 

positions of the 9 balls are given in Figure 6.2. Since for 0 clearance condition the 

rolling elements only loaded at the upper half of the bearing, only the loads for upper 

part is considered. Loading that effect the balls and the raceways for different ball 

locations are found by use of Equation (3.19). These values are given in Table 6.1. 

 

 

Table 6.1 Loading for each ball location 

 

ψ Qψ (N) 

± 0 4943.3 

± 40 3314.3 

± 80 357.7 

± 120 0 

± 160 0 
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Figure 6.2 Location of the rolling elements 
 

 

The inner ring fatigue life is calculated with the Equations (5.9) and (5.14), for a 

non-rotating ring the equivalent load given with the Equation (5.8); 

 
3.0zj

1j

310
je Q

Z
1Q ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

=
υ  

 

[ ]
3.0

310310310
e 00)7.357(2)3.3314(2)3.4943(

9
1Q ⎟

⎠
⎞

⎜
⎝
⎛ ++++=υ  

 

N8.2903Qe =υ  

 

The basic dynamic capacity of inner raceway can be found from the Equation (5.9); 

 

( )
( )

318.1
b

3.0

31

39.141.0

ci ZD
cos1

1
1f2

f21.98Q −⎟
⎠
⎞

⎜
⎝
⎛

α
γ

γ+
γ−

⎟
⎠
⎞

⎜
⎝
⎛

−
=  
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( )
( )

318.1
3.0

31

39.141.0

ci )9()7.12(
0cos

23.0
23.01
23.01

1)51.0)(2(
)51.0)(2(1.98Q −⎟

⎠
⎞

⎜
⎝
⎛

+
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=  

 

N71.9579Qci =  

 

Where, the two geometrical parameter f and γ can be found for inner ring by the 

Equations (5.11) and (5.13), respectively; 

 

51.0
7.12

47.6
D
r

f
b

i
i ===  

 

230.0
55

)0(cos7.12
d
cosD

m

b ==
α

=γ  

 

The fatigue life of a raceway can be calculated with the use of Equation (5.14): 

 
3

e

ci
rw Q

Q
L ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

υ

 [million cycles] 

 

So, the fatigue life of a non-rotating inner ring raceway can be found by using the 

ISO formulation; 

 

9.35
N8.2903
N71.9579

Q
Q

L
33

e

ci
rw =⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

υ

  [million cycles] 

 

Further analytical calculations are done in similar way to obtain the results of the 

ISO for various loads on the inner ring and are illustrated in Figure 6.3. 
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Figure 6.3 Inner ring life calculated with ISO formulation 

 

 

6.2 DETERMINATION OF THE CONTACT STRESS 

 

The curvature sum for ball and raceway can be found from the Equation (3.2), 

 

∑ =−++=ρ 2078.0
47.6
1

15.21
1

35.6
1

35.6
1  

 

With the use of Equation (3.3), the curvature difference is found as; 

 

9696.0
2078.0

1543.00472.0)(G =
+

=ρ  

 

a*, b* values are found from the Table 3.1 with interpolation as; 

 

a* = 5.08158 

b* = 0.35623 
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Hence, substituting the values into Equations (3.5) & (3.6) using the values                

E= 210000 MPa, υ=0.3 and the maximum ball load of 4943.3 N; 

 

3
1

II

2
II

I

2
I*

E
1

E
1

2
Q3aa

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ υ−
+

υ−
ρ

=
∑

 

 
3

1
22

210000
)3.0(1

210000
)3.0(1

)2078.0)(2(
)3.4943)(3()0818.5(a ⎥

⎦
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⎢
⎣

⎡
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mm4376.3a =  
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3
1
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210000
)3.0(1
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⎦
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mm2409.0b =  

 

Substituting a and b values into Equation (3.4), the maximum contact stress is found 

as; 

 

ab2
Q3

max π
=σ  

 

MPa15.2851
)2409.0)(4376.3)(2(

)3.4943)(3(
max =

π
=σ  
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6.3 NUMERICAL CALCULATIONS 

 

To be able to conduct numerical endurance calculations and compare the results with 

the formulations in the literature a three-dimensional finite element ball-raceway 

model is created. The numerical stress analyses are conducted with the following 

assumptions; 

 

- The inner ring is mounted on a nonflexible shaft, 

- No significant surface shear stress occurs between ball-raceway contact, 

- Asperity contact induced stresses are not undertaken, 

- Hoop stresses because of press fitting operation to mount the bearing on shaft 

are neglected, 

- Residual stresses within the material are neglected, 

- Operational speed is sufficiently slow such that rolling element centrifugal 

loads are assumed to be insignificant, 

- Internal clearance of the bearing is 0 

- Lubrication effects are neglected 

- Thermal effects are neglected. 

 

6.3.1 Stress Analysis 

 

6.3.1.1 Numerical Model 

 

All the numerical simulations are done with the commercially available non-linear 

FE software, MSC. Marc Mentat (MSC. Software, 2005). To model the geometry of 

the ball bearing and inner ring, 16428 brick shape hexahedral elements are created. 

The contact areas are fine meshed and the areas far from the contact zone are meshed 

coarse to avoid time consuming numerical calculations. Since the geometry is 

symmetric, only one quarter of the ball and a segment of the inner ring are modeled 

as seen in Figure 6.4. To apply the necessary loading on the ball a node controlled 

“Loading Plane” is created and the load applied through this plane.  
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Figure 6.4 Numerical model of ball and raceway  

 

 

6.3.1.2 Determination of Element Size at Contact 

 

Topology of the finite element mesh will directly affect the results of the conducted 

analyses. Increasing the number of elements in the mesh will result in a more 

accurate representation of the stress in the geometry. However, the cost of increasing 

number of elements is the increase in computational time. 

 

In this study, element edge length is determined with consecutive simulations. By 

putting the applied load remain constant a series of analyses are performed, with 

mesh being refined at each step, finally converging to the solution. For the Hertz 

contact process the mesh size (edge length) in the contact zone is decreased from 

0.16 mm to 0.1 mm (Figure 6.5) and the stress values examined within the contact 

zone. 
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y

x 
 

Figure 6.5 Edge length at contact zone 

 

 

As seen in Figure 6.6 the stress values are changing with respect to the edge length of 

the elements significantly and converge to a certain value with the edge length of 0.1 

mm. Hence the effect of further refinement does not give a significant effect on the 

solution. Thus it is decided to use of 0.1 mm edge length is satisfactory for the 

analyses.  

 

 

 
 

Figure 6.6 Maximum Hertz stress in contact zone for various element edge lengths 
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6.3.2 Results of Stress Analysis and Comparison with Analytical Calculations 

 

The calculated stress values with FEA are compared by analytical results for 8898 N 

radial bearing load in Table 6.2. The Hertz stresses obtained both numerically and 

analytically for various bearing loads are given in Figure 6.7. 

 

 

Table 6.2 Analytical and numerical calculation results  

 

 Hertz Stress in Contact Area [MPa] 

Analytical Calculations 2851.15 

Numerical Calculations 2846.2 

% Difference 0.17 

 

 

 
 

Figure 6.7 Hertz stress at the surface of the raceway vs. applied load 

 

 

As mentioned in previous chapters the maximum stress is expected to be formed 

below the surface which also causes the crack initiation. It is proposed by several 

sources (Harris, 2001, ASME, 2003) the von Mises stress below the surface is a good 
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the surface to 0.5 mm depth is given in Figure 6.8 and the distribution of the von 

Mises stress within the inner ring is illustrated in Figure 6.9. 

 

 

 
 

Figure 6.8 Equivalent von Mises stress distribution below the surface 

 

 

 
 

Figure 6.9 von Mises stress distribution on inner ring 
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6.3.3 Stresses That Act on Observed Zone During Rolling 

 

To determine the stress variation and the loading history on the bearing inner ring 

during the ball rolling over the observed zone, successive numerical analyses 

conducted for different ball locations. For each location of the ball, the stress values 

at the point on azimuth of the inner ring are determined numerically under the 

bearing load of 8898 N (Figure 6.10).  

 

 

 
 

Figure 6.10 Schematic representation of ball position 

 

 

The loading variation for different ball locations considered by utilizing the Equation 

(3.19), calculated stress values of the point on azimuth for different ball locations are 

given in Table 6.3. It can be seen from the Table 6.3 that the maximum stress values 

are observed at 0.2 mm bellow the contact surface. Since this region also will be 

critical for fatigue calculations, the loading history for numerical fatigue calculations 

is defined with respect to 0.2 mm depth. 
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Table 6.3 Equivalent von Mises Stress for different ball positions at the observed 
location 

 

  Depth From Surface (mm) 

Angle From 
Azimuth, ψ 0 0.1 0.2 0.3 0.4 

0° 1283.71 1537.74 1609.15 1401.27 1379.85 
0.25° 1191.08 1450.45 1547.05 1362.17 1373.90 
0.51° 1083.36 1305.88 1379.01 1225.76 1261.13 
0.77° 597.82 848.88 1062.42 1024.55 1112.18 
1.02° 177.11 403.30 704.41 791.15 927.55 
1.28° 104.20 223.52 439.35 579.21 745.50 

 

 

Hence, for a fixed inner ring and rotating outer ring during a ball pass on the azimuth 

region, the stress variation within the observed point is given in Figure 6.11. For the 

fatigue calculations stress history is taken into account with respect to this variation. 

 

 

 
 

Figure 6.11 Numerically determined stress variation at Azimuth 
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6.3.4 Fatigue Analysis 

 

Fatigue life of the bearing is also calculated via commercially available package 

program MSC. Fatigue (MSC. Software, 2005) with following assumptions: 

 

- Since it is proposed by several sources (Harris, 2001, ASME, 2003) the von 

Mises stress is selected as the criterion for fatigue calculations. 

- Because of the purely compressive stress, for the ε-N method calculations 

Morrow correction and for the S-N method calculations Goodman correction is 

used. 

- The lubrication effects and hoop stresses in the bearing are not taken into 

account. 

- Temperature effects are neglected. 

- All the calculations conducted for L10 life of the inner ring. 

- For the Neuber Method Kt is assumed to be 1.2. 

 

The material properties of the 100Cr6 steel are given in Table 6.4. The S-N and ε-N 

curve of the material are also given in Figure 6.12 and Figure 6.13. The endurance 

properties of the material are obtained from the push-pull test. 

 

 

Table 6.4 Material properties of 100Cr6 steel (MSC Software, 2005) 

 

Material Name:SAE5210_517_H, DIN 100Cr6 Designation   
UTS: Ultimate Tensile Strength (MPa) Su 2647 
Fatigue Strength Coefficient (MPa) S'f 2647 
Elastic Modulus (MPa) E 2.1E+05 
Fatigue Ductility Coefficient ε'f 0.16 
Cyclic Strain Hardening Exponent n' 0.15 
Fatigue Strength Exponent t -0.09 
Fatigue Ductility Exponent g -0.58 
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Figure 6.12 S-N Curve of 100Cr6 Steel (MSC Software, 2005) 

 

 

 
 

Figure 6.13 ε-N Curve of 100Cr6 Steel (MSC Software, 2005) 

 

 

The material properties are used for the 100Cr6 steel are provided by the material 

library of the program which are referenced on a SAE Paper, No: 820682, by 

B.E. Broardman. 
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6.3.4.1 Consideration of reliability 

 

The standard S-N and ε-N curves are based on mean values that correspond to a 50 

percent of probability of failure. Since the bearing fatigue calculations based on 90 

percent of survival the modification of the data from the fatigue tests should be taken 

into consideration. It is necessary to add probability parameter P to the fatigue life 

curves (Figure 6.14). MSC. Fatigue considers the probability of survival with respect 

to material data in its material library. 

 

 
 

Figure 6.14 Schematic illustration of probability distribution on S-N curve  

 

 

6.3.4.2 Comparison of ε-N, S-N and ISO Methods under Constant Operating Load 

Conditions  

 

Several fatigue life calculations for different bearing loads are conducted for which 

the results are graphically illustrated in Figure 6.15. As seen in the figure the ε-N 

method gives the most conservative results. This can be explained by the fact that the 

required time for crack initiation is less than the time for first flaking particle from 

the raceway surface which is found by S-N method. The ε-N Method does not give a 

fatigue limit and since the material data is only provided till 2.0E+8 cycles the 

maximum life for ε-N calculation is limited to 2.0E+8 cycles. The S-N method give a 
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fatigue limit load of 4200 N where ISO method gives an endurance life even if the 

applied load decreases. 

 

 

 
 

Figure 6.15 Comparison of the inner ring life results from S-N and ε-N methods vs. 
ISO formulation 

 

 

6.3.4.3 Comparison of S-N, ε-N and ISO Methods under Variable Operating Load 

Conditions 
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capacity of the bearing and the load applied on bearing and the load selection is 

always done for the worst case condition, e.i. the maximum load that applied on 

bearing during the service life. In this part of the study several different loading 

conditions are inspected to compare the ISO methods and structural fatigue life 

calculations. 
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Firstly, 3 different loading cases are inspected. The assumptions for 3 cases which 

are graphically given in Figure 6.16 as follows: 

 

Case 1: The bearing operates under 7100 N on the half of the operating life, and 

under 6200 N on the other half of the service life. 

Case 2: The bearing operates under 7100 N on 20%, and under 6200 N on the 80% 

of the service life. 

Case 3: The bearing operates under 7100 N on 2%, and under 6200 N on the 98% of 

the service life. 

 

The inner ring fatigue life can be calculated according to ISO method with use of the 

formulations given in Chapter 5. From structural fatigue point of view, according to 

Palmgren-Miner rule, the damage effect of the load of 7100 N and 6200 N are 

different. If the operating time with 6200 N increases the life of the inner ring would 

be higher. The results of calculations with the ISO formulations S-N and ε-N method 

are given in Table 6.5. 

 

 
 

Figure 6.16 Loads and operation percentages for Case 1 through Case 3 
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Table 6.5 Endurance values for Case 1 through Case 3 

 

  ISO 
Formulation

ISO Formulation 
for variable 

loading 
S-N Method ε-N Method 

Case 1 
7.10E+07 

8.5E+07 7.20E+07 2.50E+07 
Case 2 9.6E+07 7.46E+07 3.20E+07 
Case 3 1.1E+08 7.50E+07 3.90E+07 

 

 

Both of the 7100 N and 6200 N creates von Mises stress of approximately 1600 MPa 

and 1520 MPa respectively which are higher than the endurance limit of the material. 

If the load decreases to a level during operating which creates stress lower than the 

fatigue limit of the material, more significant differences can be found between the 

ISO formulation and S-N method. For the next three cases the bearing assumed to 

operate between 7100 N and 4000 N (Figure 6.17) with the following assumptions: 

 

Case 4: The bearing operates under 7100 N on the half of the operating life, and 

under 4000 N on the other half of the service life. 

Case 5: The bearing operates under 7100 N on 20%, and under 4000 N on the 80% 

of the service life. 

Case 6: The bearing operates under 7100 N on 2%, and under 4000 N on the 98% of 

the service life. 
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Figure 6.17 Loads and operation percentages for Cases 4, 5, and 6 

 

 

Since the loading of 4000 N is bellow the fatigue limit load of the ring, the endurance 

life of the inner ring significantly increased with decreased operation percentage of 

the load of 7100 N. The calculated fatigue life values are given in Table 6.6.  

 

 

Table 6.6 Endurance values for Case 4 through Case 6 

 

  ISO 
Formulation

ISO Formulation 
for variable 

loading 
S-N Method ε-N Method 

Case 4 
7.10E+07 

1.2E+08 1.36E+08 3.30E+07 
Case 5 2.1E+08 3.40E+08 6.50E+07 
Case 6 3.6E+08 3.40E+09 1.50E+08 

 

 

Lastly for case 7, a more complex loading condition is defined where the loads varies 

between 7200 N and 1000 N as given in Figure 6.18. The fatigue lives are given in 

Table 6.7. For such kind and more complex loading conditions the MSC. Fatigue 

tool is useful to calculate fatigue life.  
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Figure 6.18 Loads and operation percentages for Case 7 

 

 

Table 6.7 Endurance values for Case 7 

 

  ISO 
Formulation

ISO Formulation 
for variable 

loading 
S-N Method ε-N Method 

Case 7  7.10E+07 2.7E+08 1.60E+08 4.50E+07 
 

 

The ISO formulation is widely used for fatigue life prediction in industry. However 

the method does not take into account the fatigue limit of the material. In this the S-N 

and ε-N methods are used to estimate the fatigue life of an inner ring of a rolling 

element bearing for various load conditions. 

 

With the use of three-dimensional finite element analysis, models of a rolling 

element bearing inner ring and ball have been developed and variation in the stress 

field within the inner ring has been obtained numerically under the given load. The 

stress field is used in the fatigue analysis by S-N and ε-N methods. Results compared 

with ISO formulation. 
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The ε-N method is observed to give shorter fatigue lives compared to S-N method. 

That difference can be explained by the fact that the required time for crack initiation 

is less than the time necessary for first flaking particle from the raceway surface 

which is found by S-N method.  

 

As a result of the study, the fatigue calculations are determined to give more 

conservative results than ISO method for higher loads that cause stresses higher than 

fatigue limit of the material. By use of S-N and ε-N methods for bearing endurance 

predictions, it is become possible to consider the fatigue limit stress of the bearing 

material. It is determined that, if the stresses within an operating bearing do not 

exceed the limit stress, the bearing can achieve infinite life. The variation of loading 

is evaluated to have a direct influence on bearing life. With the use of damage 

summation method, it is determined that if the stress values within the bearing 

changes from the higher levels to lower that bellow the fatigue stress limit of the 

material, the fatigue life of the inner ring significantly extends which is not 

recognized by ISO method. 
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CHAPTER 7 

 

CONCLUSIONS AND FURTHER RECOMMENDATIONS 
 

 

7.1 CONCLUSION 

 

In this thesis, to predict the fatigue life of the inner ring of a rolling element ball 

bearing, stress field within the bearing is obtained by using finite element method. 

Endurance estimations are done with the use of Total Life (S-N) and Crack Initiation 

(ε-N) Analysis methods, which are used for fatigue life analysis in the industry. At 

the end of the studies, following results are obtained; 

 

1. For the loads that create stresses higher than the fatigue limit of the material, 

S-N and ε-N methods are found to give more conservative results than ISO 

formulation. 

2. Since the ISO formulation method does not take into account the fatigue limit 

of the material, it is observed that the formulation underestimates the fatigue 

life of the bearing. 

3. S-N and ε-N methods consider the fatigue limit of the material hence, below 

the limit load these methods give unlimited service life. 

4. The variation of loading, which is determined by the Palmgren-Miner 

Damage Summation Method is evaluated to have a direct influence on 

bearing life. 
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7.2 SUGGESTIONS FOR FURTHER WORK 

 
In this study, the main parameter that has been taken into account in fatigue analysis 

was the stress distribution in the inner ring caused by the contact between raceway 

and rolling element. Although the contact between raceway and inner ring has an 

important role in rolling element bearing fatigue life, there are several additional 

aspects that should be put into consideration.  

 

The elastohydrodynamic lubrication is one of the important parameters in rolling 

contact fatigue. The thickness of the lubricant film provides separation between 

rolling element and raceway and prevents the asperity interaction between the rolling 

surfaces and improves the fatigue life of the bearing. Therefore consideration of the 

lubrication effects would be increase the accuracy of the analysis. 

 

Besides the contact of rolling element and raceway, there are several forms of 

imposed stress combinations which effects the generalized stress field that exist in 

rolling element bearing applications like surface shear stress, interference fit induced 

stress, centrifugal load stresses, contaminant caused stresses. The thermal effects, 

surface finishes of the raceway and rolling element, and residual stresses within the 

material are also other parameters influencing the fatigue life of a bearing and could 

be included the analysis. 
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