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ABSTRACT 
 

 

STRUCTURAL MODIFICATION WITH ADDITIONAL DEGREES OF 

FREEDOM IN LARGE SYSTEMS 

 

 

Canbaloğlu, Güvenç 

M.S., Department of Mechanical Engineering 

Supervisor : Prof. Dr. H. Nevzat Özgüven 

Co-Supervisor : Dr. Halidun Fildiş 

 

June 2009, 162 Pages 

 

 

In the design and development stages of mechanical structures, it is important to 

predict the dynamic characteristics of modified structures. Since time and cost are 

critical in design and development stage, structural modification methods predicting 

the dynamic responses of modified structures from those of the original structure and 

modification properties are very important, especially for large systems.  

 

In this thesis structural modification methods are investigated and an effective 

structural modification method for modifications with additional degrees of freedom 

is adapted to structures with distributed modifications and the performance of the 

method is investigated. A software program is developed in order to apply the 

structural modification method with additional degrees of freedom. In the software, 

the dynamic response of the modified structure is predicted by using the modal 

analysis results of ANSYS for the original structure and dynamic stiffness matrix of 

the modifying structure. In order to validate the approach used and the program 

developed, the dynamic analysis results obtained for modified structures by ANSYS 



 v 

are compared with those obtained by using the software. In order to investigate the 

performance of the structural modification method in real applications, the method is 

applied to a scaled aircraft model, and the results are compared with experimental 

results. 

 

In order to demonstrate the importance of using the structural modification method 

with additional degrees of freedom for distributed modification, lumped and 

distributed models are used for a distributed modification and results are compared.   

 

It is concluded in this study that using structural modification methods with 

additional degrees of freedom for a distributed modification increases the accuracy of 

the results, and it is observed that the method adapted is efficient for local 

modifications. 

 

Keywords: Structural modification method, distributed modification, GARTEUR. 
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ÖZ 

 

 

BÜYÜK SİSTEMLERDE EK SERBESTLİK DERECELİ YAPISAL 

DEĞİŞİKLİK 

 

 

Canbaloğlu, Güvenç 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi  : Prof. Dr. H. Nevzat Özgüven 

Ortak Tez Yöneticisi : Dr. Halidun Fildiş 

 

Haziran 2009, 162 Sayfa 

 

 

Mekanik yapıların, tasarım ve geliştirme sürecinde, değişikliğe uğramış yapıların 

dinamik davranışlarını hesaplamak önem taşımaktadır. Tasarım ve geliştirme 

sürecinde, zaman ve maliyet kritik olduğundan, özellikle büyük sistemlerde, yapısal 

değişiklik yöntemleri, değişmiş yapının dinamik davranışının, esas yapının dinamik 

davranışı ile yapısal değişikliğin dinamik bilgileri kullanılarak belirlenmesi 

önemlidir. 

 

Bu tezde yapısal değişiklik yöntemleri incelenmiş ve etkili bir ek serbestlik dereceli 

yapısal değişiklik yöntemi, dağıtılmış parametreli değişikliğe uğramış yapılara 

uyarlanmış ve yöntemin performansı incelenmiştir. Ek serbestlik dereceli yapısal 

değişiklik yöntemini uygulamak için bir program geliştirilmiştir. Programda,  

değişmiş yapının dinamik cevabı, esas yapı için ANSYS’te yapılmış olan analitik 

biçim analizi sonuçları ve değişikliğin dinamik direngenlik matrisi kullanılarak 

hesaplanmıştır. Kullanılan yöntemi ve geliştirilen programı doğrulamak için, 

değişmiş yapı için yapılmış olan analitik biçim analizi sonuçları, programdan elde 
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edilmiş sonuçlarla karşılaştırılmıştır. Yapısal değişiklik yönteminin, gerçek 

yapılardaki performansını incelemek için, yöntem ölçeklendirilmiş bir uçak modeli 

üzerinde uygulanmış ve sonuçlar deneysel sonuçlarla karşılaştırılmıştır.  

 

Dağıtılmış yapısal değişiklik için ek serbestlik dereceli yapısal değişiklik yöntemi 

kullanmanın önemini göstermek amacıyla, dağıtılmış yapısal değişiklik için 

toplanmış parametreli ve dağıtılmış parametreli modeller kullanılmış ve sonuçlar 

karşılaştırılmıştır. 

 

Bu tezde, dağıtılmış yapısal değişiklik için, ek serbestlik dereceli yapısal değişiklik 

yöntemlerinin sonuçların hassasiyetini arttırdığı sonucuna varılmıştır ve uyarlanan 

yöntemin bölgesel değişiklikler için etkili olduğu görülmüştür. 

 

Anahtar Kelimeler: Yapısal değişiklik yöntemi, dağıtılmış parametreli değişiklik, 

GARTEUR. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Basics and Importance of Structural Modification 

 

In the design stage of mechanical structures, the main objective is to satisfy the 

design requirements with the minimum possible cost and time. Since the mechanical 

structures are designed to be as strong as necessary, the overdesigned structures 

which were designed previously are replaced with their substitutes which satisfy the 

requirements with the minimum cost. However, in order to reduce the material usage 

thus the cost, the mechanical structures has less strength than the overdesigned 

structures; therefore the structural dynamics and strength of the structures become a 

critical issue. Considering the aerospace industry, mechanical structures of the 

aircrafts and the helicopters are designed according to the requirements which 

prevent the mechanical and aerodynamical problems that can be encountered and 

these design requirements are more severe compared to the ground-based structures; 

therefore, the structural and aerodynamical reliability of the structures are more 

critical.  

 

Any modification applied on mechanical structures has an effect of changing the 

dynamic properties of the original structure; therefore the modified structures have to 

be reanalyzed, in order to obtain the new dynamic characteristics of them. After 

every modification, reanalyzing the whole structure is a very time consuming and 

cotly process. Especially for large ordered systems, after every structural 

modification, the whole analytical model of the new structure should be built or the 
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structure has to be re-tested in order to ensure that the vibration characteristics of the 

structure are satisfied. However, this is a very costly and time-consuming operation.  

In order to understand the processes better, the following cycle shown in Figure 1.1 

can be given [1].   

 

 

 

 

Figure 1.1 Simplified “Design to Production-Line” Cycle [1] 

 

 

As seen in Figure 1.1, after any modification applied on the original structure or any 

re-design process, the whole process from analysis to testing has to be repeated. 

However by using structural dynamic modification techniques, the dynamic 

properties of the modified structure can be predicted from the dynamic 

characteristics of the original structure and the modification data. Therefore, after 

every modification introduced on the original structure, there is no need to construct 

the whole analytical model of the structure. Schematic view of the structural 

modification analysis is given in Figure 1.2. 

 

 

 

 

Figure 1.2 Schematic View of the Structural Modification Analysis 
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Due to the time and cost efficiency, structural dynamic modification techniques 

becomes more important in the design stages. Dynamic characteristics of the original 

structure are obtained experimentally or analytically. The finite element (FE) models 

of the original structure can be constructed or modal testing can be conducted on the 

original structure for obtaining dynamic behavior of the structure. In the analytical 

approaches, the frequency response functions (FRFs) or the system matrices of the 

original structure can be used in order to calculate the FRFs of the modified 

structure. In the experimental approaches, the measured FRFs or the estimated modal 

parameters can be used to estimate the FRFs of the modified structure. 

 

1.2 Literature Survey 

 
Structural modification methods focus on the change of dynamic behavior of a 

structure due to modifications in mass, stiffness and damping properties of the 

system. Global type of matrix changes due to these modifications were studied by 

O’Callahan and Avitabile [2]. In this work, O’Callahan and Avitabile [2] presented a 

structural modification procedure which uses complex (damped) modes obtained by 

the finite element analysis (FEA) or modal analysis. By this procedure global matrix 

changes in the mass, stiffness and damping were performed simultaneously. In later 

work, Wallack, et al. [3] presented the local structural modifications technique for 

the general matrix modifications by implementing the structural modification 

technique in one eigen solution. 

 

The beam or rib types of modifications are extensively used in the designs, in order 

to increase the stiffness of the structures. Therefore these types of modifications were 

studied by different researchers. In structural modification procedure, generally the 

mass and stiffness matrices of a generalized beam element were used. O’Callahan 

and Chou [4] performed the beam modification procedure by using a local eigen 

value modification technique. Elliott and Mitchell [5] presented a method for 

analyzing the beam type structural modifications by combining the Dual Modal 



 4 

Space Modification Method (DMSM) and Transfer Matrix Method. In a later work 

Tayeb and Williams [6] modeled straight, angled rib or beam like stiffeners and 

presented the usage of these elements in the structural dynamic modification 

analysis. Hutton [7] developed a FE based procedure in order to reanalyze the 

vibration response of the modified structure on which physical changes such as 

thickness and mass density are applied. In a further work, D’Ambrogio [8] studied 

the prediction of frequency response function of the modified structure subjected to 

modification in the form of rib and plate stiffeners causing flexural rigidity change 

and presented quasi-local characteristics of the additional dynamic stiffness matrix 

due to structural modification. 

 

In order to apply the structural modification techniques, the usage of both theoretical 

and experimental data can be necessary. Wang, et al. [9] studied the effects of local 

modifications on the dynamic characteristics of the existing structures, by using 

experimentally obtained modal data of the original structure and the characteristics of 

the modification. Then, in order to derive the dynamic properties of the modified 

structure, Jones and Iberle [10] used the modal model derived from a set of measured 

FRFs of the original structure and directly measured FRF data of the original 

structure in structural modification procedure and compared these techniques. In later 

work Imregun, et al. [11] studied the usage of both measured and theoretical data in 

structural modifications by examining an alternative approach based on the FRF 

data. Salvini and Sestieri [12] developed a method for predicting the FRF of a given 

system from the experimentally determined FRF of the system itself subjected to 

different constraint which are any type involving either translational or rotational 

degree of freedoms (DOFs). 

 

Structural dynamic modification problems can be divided into two categories: direct 

structural dynamic modifications and inverse structural dynamic modifications. 

Direct structural dynamic modification concentrates on the determination of 

modified structure characteristics due to modification on the original structure. 
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Conversely, inverse structural dynamic modification is an optimization procedure 

looking for necessary modifications in order to achieve the desired dynamic 

behavior. Kyprianou, et al. [13, 14] focused on inverse structural dynamic 

modifications. Li and He [15] presented a new approach for structural modifications 

required to change the dynamic characteristics of an undamped system. Furthermore, 

Park [16, 17] studied measured frequency response function based inverse structural 

dynamic modification in order to obtain necessary structural modifications. In a later 

work, Mottershead, et al. [18] presented an inverse method for assigning natural 

frequencies and nodes of normal modes of vibration by the addition of grounded 

springs and concentrated masses. The basic theory of direct structural modification 

using experimental FRF was presented by Crowley, et al. [19]. 

 

The Sherman-Morrison [20] and Woodbury [21] developed general matrix-update 

formulas which can be used in structural modification analysis. Özgüven [22] 

proposed a matrix inversion method in order to find receptances of locally damped 

structures from those of the corresponding undamped structure. Later a recursive 

solution algorithm was presented in order to avoid the matrix inversion [23]. In a 

further work [24], Özgüven presented an approach for reanalyzing a structure 

subjected to structural modification with or without additional DOF. In this method, 

by using FRF matrix of the original system and mass, stiffness and damping matrices 

of the modifying structure, the exact FRFs of the modified structure were estimated 

[24]. Şanlıtürk [25] used the same approach, but avoided matrix inversion by 

employing Sherman-Morrison method. 

 

As alternative techniques in structural modifications, Bae, et al. [26] developed a 

technique called Successive Matrix Inversion for static analysis. By using this 

technique, the solutions of the any local modifications applied on a static FE model 

were obtained. Then in later study, Successive Matrix Inversion for static analysis 

was extended by Köksal, et al.  [27] for the dynamic analysis of structures. In this 

method the FRF matrix of a modified structure was obtained by using the FRF 
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matrix of the original structure and the modifying mass, stiffness and damping 

matrices. In order to avoid the matrix inversions in the equations, power series 

expansion method was used.  Then in a further study, Köksal [28] studied the 

comparison of structural modification techniques and used these techniques in a real 

application of the modification of a jet aircraft. Mottershead et al. [29] also applied 

structural modification technique on the tailcone of the helicopter. 

 

In structural modification, transfer function methods can also be used. These 

techniques were studied by Jingshuo, et al. [30]. In this work they presented a 

method for structural dynamic modification using transfer functions, and then in a 

later work [31], the concept of optimal modification was studied for structural 

dynamic modification using transfer matrix and the sensitivity analysis. 

 

The modeling approach of distributed modifications in structural dynamic 

modifications was presented by D’Ambrogio and Sestieri [32]. Later, D’Ambrogio 

and Sestieri [33] studied the condensation and the expansion techniques in order to 

predict the dynamic effect of distributed modifications, since generally, dynamic 

properties of an original structure are identified by experimental techniques 

containing only translational DOF due to the difficulties in measuring rotational 

DOF, and structural information of modifying structure contains both rotational and 

translational DOF. Then in a further study, D’Ambrogio and Sestieri [34] extended 

the studies in order to obtain the dynamic characteristics of the modified structure 

subjected to distributed modifications by coupling the theoretical data and 

translational FRFs. Hang, et al. [35] focused on the distributed structural dynamics 

modification with additional DOFs by using the original relationship developed by 

Özgüven [24] and modeling method of the distributed modification developed by 

D’Ambrogio and Sestieri [32]. In a recent work, Canbaloglu and Özgüven [36] 

studied the structural modifications with additional DOFs for distributed 

modifications proposing a different approach for modeling distributed modification 
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and applying it to a real structure by using the original relationship developed by 

Özgüven [24]. 

 

In structural modification problems, the rotational DOF is an important issue to be 

considered; therefore, Smiley [37] studied the necessity of rotational DOFs in the 

structural analysis and focused on the procedure of implementing rotational DOFs in 

structural modification analysis. Then in a later study, due to the effects of moment 

transfer in the connection points in structural modification procedures, generation of 

rotational DOFs from the existing translational DOFs by expansion techniques were 

studied by O’Callahan, et al. [38, 39]. In structural modification analysis, rotational 

DOFs are required for the beam and plate elements; therefore, O’Callahan and 

Avitabile [40] presented an approximate method using both translational and 

rotational DOFs in FE model in conjunction with the measured translational data in 

order to obtain a modal database of rotational and translational DOFs . In a further 

work, Mottershead, et al. [41] studied obtaining rotational receptances by using “T-

block” approach in order to apply a pure moment to a structure so that the rotational 

receptances can be included in the structural modification analysis. 

 

In structural dynamic modifications, truncation of modal data is another important 

issue, since the errors due to truncation have a considerable effect on the accuracy of 

the results. The modal model is usually truncated to finite number of modes, and this 

truncation leads to inaccurate results in structural dynamic modification due to 

limited number of modes used in the model. Braun and Ram [42] focused on this 

problem and presented the impossibility of obtaining exact solutions in structural 

modifications by using a truncated modal matrix. When the truncated modes were 

represented by the residual terms, these residual terms can be included in the 

structural dynamic modification technique and this technique was given by Sohaney 

[43]. In a later study, truncation effects and errors introduced due to truncation in the 

structural dynamic modification process were studied in detail by Avitabile, et al. 

[44] in order to present a better understanding of truncation effects. Bucher and 
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Braun [45] focused on the effect of truncation of the modal data in structural 

modifications and presented how to control and circumvent the effect of modal 

truncation. Canbaloglu and Özgüven [36] studied the truncation effect in structural 

dynamic modification with additional DOFs for distributed modifications.  

 

1.3 Objective 

 

The objective of this thesis is to obtain dynamic characteristics of a modified 

structure from those of the original structure and modification data, when 

modifications are distributed. This is accomplished by applying Özgüven’s structural 

modification method with additional DOFs [24] for distributed modifications. It is 

also aimed in this study to develop a computer program that can apply structural 

modification method with additional DOFs to large structures and validate the results 

with different theoretical and experimental case studies. In this thesis, it is also 

intented to emphasize the importance and necessity of the structural dynamic 

modifications with additional DOFs. 

 

1.4 Scope of the Thesis 

 

Based on the objective of the study performed in this thesis, the outline of the thesis 

can be given as follows: 

 

In Chapter 2, the theory of the structural dynamic modification methods with and 

without additional DOFs will be given. The modeling approaches for distributed 

modifications will also be explained in Chapter 2.  

 

In Chapter 3, brief outline of the computer program developed in this thesis will be 

given. The computer program will be verified with different structural modification 

case studies in the same chapter. 
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In Chapter 4, in order to demonstrate the application of the program with a real case 

study, the modification will be applied on a test structure (GARTEUR SM-AG19). 

The results obtained from the computer program developed for structural 

modification with additional DOFs are compared and validated with experimental 

results.   

 

In Chapter 5, the comparison of distributed and lumped modeling approaches for the 

modifications will be given. In order to show the importance of the distributed 

modeling by using additional DOFs when there are distributed modifications, 

different case studies will be presented.  

 

In Chapter 6 the discussion, conclusions and recommendations for future work will 

be given.  
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CHAPTER 2 

 

 

THEORY 

 

 

 

2.1 Structural Modification without Additional Degrees of Freedom 

 

2.1.1 Structural Modification by Using Sherman-Morrison Formula  

 

Sherman-Morrison [20] formula is a simplified version of Woodbury’s study [21]. 

Şanlıtürk [25] proposed a structural modification method which is based on 

Sherman-Morrison formula. In the method proposed by Şanlıtürk [25], direct 

inversion of the modified matrix using the information of the original matrix and 

modification is performed. Sherman-Morrison formula can be stated as follows; 

 

Assume [ ]A  is a non-singular square matrix and 1[ ]A −  is the inverse of  [ ]A  matrix. 

Modified matrix can be expressed in the form of following equation. 

 

{ }{ }*[ ] [ ] [ ] [ ]
T

A A A A u v= + ∆ = +     (2.1)               

 

Then the inverse of *[ ]A  can be written as [20]: 

 

{ }( ) { }( )
{ } { }

1 1

* 1 1

1

[ ] [ ]
[ ] [ ]

1 [ ]

T
A u v A

A A
v A u

− −

− −

−
= −

+
      (2.2) 
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Sherman-Morrison formula is an extension of Woodbury formula where the 

modification matrix is given by the multiplication of two vectors. This modification 

matrix can be given as: 

 

{ }{ }[ ]
T

A u v∆ =    (2.3) 

 

The inverse of the modified matrix can be expressed by; 

 

( )* 1 1 1 1[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]T TA A A U I V A U V A− − − −= − +    (2.4) 

 

Equation (2.4) is valid as long as [ ]
NxN

A is a square matrix. For n ≤ N, if [ ]A and 

( )1[ ] [ ] [ ] [ ]TI V A U−+ are invertible, any matrix [ ]A∆  can be written as the 

multiplication of two rectangular matrix  [ ]
Nxn

U  and  [ ]
nxN

V . 

 

Although, the modifications are restricted to the cases where the modification can be 

written in the form of{ }{ }
T

u v , the main advantage of the Shermon-Morisson formula 

is that, the inverse of the modified matrix can be calculated without any additional 

matrix inversion. 

 

For a given structure, the equation of motion can be written as: 

 

{ } { } { } { }[ ] [ ] [ ]M x i H x K x F+ + =��       (2.5) 

  

where [ ]M , [ ]H , [ ]K  are mass, structural damping and stiffness matrices of the 

structure respectively, { }x  is the vector of generalized coordinates, { }F  is the 

generalized forcing vector and i  is the unit imaginary number. In the frequency 

domain, Equation (2.5) can be rearranged as: 
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( ){ } { }2[ ] [ ] [ ]K M i H x Fω− + =     (2.6) 

 

{ } ( ) { }
12[ ] [ ] [ ]x K M i H Fω

−

= − +     (2.7) 

 

Then the receptance matrix is obtained as: 

 

[ ] ( )
12[ ] [ ] [ ]K M i Hα ω

−

= − +  (2.8) 

 

For a structural modification problem, receptance matrix of the original structure can 

be obtained by the modal summation, after modal analysis. If this original receptance 

matrix is available, great simplification is introduced by the Sherman-Morrison 

formula. The receptance matrix of the modified structure can be written as follows: 

 

 [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ]( )( )
1

2
K K M M i H Hγ ω

−

= + ∆ − + ∆ + + ∆  (2.9) 

 

where [ ]M∆ , [ ]H∆ , [ ]K∆  are the mass, structural damping and stiffness matrices of 

modification respectively, 

 

Using Equation (2.8), the following equation can be obtained. 

 

[ ] [ ] [ ]( )
11

Dγ α
−

−
= + ∆  (2.10) 

 

where dynamic stiffness matrix [ ]D∆  is expressed as: 

 

[ ] [ ] [ ] [ ]2
D K M i Hω∆ = ∆ − ∆ + ∆  (2.11) 
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Expressing the dynamic stiffness matrix [ ]D∆  as; 

 

[ ] { }{ }
T

D u v∆ =  (2.12) 

 

The receptance matrix of the modified structure can be obtained by using the 

Sherman-Morrison formula in the following form 

 

 
{ }( ) { }( )
{ } { }

[ ] [ ]
[ ] [ ]

1 [ ]

T

T

u v

v u

α α
γ α

α
= −

+
 (2.13) 

 

In this form, the formulation may not decrease the computational time, since the 

modification affects all the coordinates. However, when local modifications are 

introduced to the original structure, the method has a great advantage in terms of 

computational time for calculating receptance matrix of the modified structure. 

 

As long as the modifications can be expressed in the form of { }{ }
T

u v , receptance 

matrix of the modified structure can be obtained by using Sherman-Morrison 

formula. When the modification and forcing coordinates are limited to a small 

number of coordinates (compared to total coordinates), and the responses are to be 

obtained at selected coordinates, Sherman-Morrison formula has a great advantage 

and it can provide substantial savings in computational time.  

 

For the cases stated above, the coordinates can be partitioned as active and inactive 

coordinates. Both { }x  and [ ]α  can be portioned as: 

 

{ }
{ }
{ }

i

a

x
x

x

  
=  
  

        { }
[ ] [ ]
[ ] [ ]

ii ia

ai aa

α α
α

α α

 
=  
 

     (2.14) 
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where subscripts i  and a  represent inactive and active coordinates, recpectively. If 

the matrices above are inserted in Equation (2.13) the following equation can be 

obtained. 

 

[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ }

0 0

0 0
1

T

ii ia ii ia

a aai aa ai aa
ii ia ii ia

T

ai aa ai aa ii ia

a aai aa

u v

v u

α α α α

α α α αγ γ α α

γ γ α α α α

α α

                                    = −   
           

+     
       

   (2.15) 

 

In the Equation (2.15) modifications are limited to active coordinates which are the 

coordinates where the responses are to be calculated. In Equation (2.15) also { }u  and 

{ }v vectors are partitioned as inactive and active coordinates.  

 

For the cases where only the active coordinates are retained, still Sherman-Morrison 

formula can be used in order to obtain the receptance matrix of the modified 

structure. The following equation can be written for that case: 

 

{ }( ) { }( )
{ } { }

[ ] [ ]
[ ] [ ]

1 [ ]

T

aa a a aa

aa aa T

a aa a

u v

v u

α α
γ α

α
= −

+
   (2.16) 

 

As seen in Equation (2.16), it possible to perform the calculations by using the active 

coordinates alone. This brings great advantage, since the size of the matrix is much 

smaller than the total degrees of freedom of the structure  

 

When the modification matrix can not be written as { }{ }
T

u v , then it is possible to 

decompose the modification matrix into sub modification matrices and the 

receptance matrix [ ]α  can be calculated in n steps by considering one sub 

modification matrix at a time. The sub matrices can be expressed as 
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1 2[ ] [ ] [ ] ... [ ]
n

K K K K∆ = ∆ + ∆ + + ∆   (2.17) 

 

where  { }{ }[ ]
T

j j j
K u v∆ =     (2.18) 

 

By replacing the terms [ ]H  and [ ]H∆  with [ ]Cω  and [ ]Cω ∆ ,  respectively, all the 

equations given can be used when there is viscous damping instead of structural 

damping.  

 

2.1.2 Matrix Inversion Method 

 

The formulation is initially proposed by Özgüven [22] for the calculation of 

receptances of damped structures by using the receptances of undamped structures 

for a non-proportionally damped structure. In a later work, this method is extended to 

structural modification problems with and without additional degrees of freedom 

[24]. The formulation of Matrix Inversion Method is explained below.  

 

For a structure, the equation of motion can be written as: 

 

 { } { } { } { }[ ] [ ] [ ]M x i H x K x F+ + =��  (2.19) 

 

Steady response of the structure for a harmonic forcing at frequency ω  is expressed 

as: 

 

{ } ( ) { }
12[ ] [ ] [ ]x K M i H Fω

−

= − +  (2.20) 

 

By using Equation (2.20), the receptance matrix of the structure is given by 

 

[ ] ( )
12[ ] [ ] [ ]K M i Hα ω

−

= − +  (2.21) 
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If the structure is modified, then the receptance matrix of the modified system can be 

written as: 

 

[ ] [ ] [ ] [ ]( )
12[ ] [ ] [ ] [ ] [ ] [ ]K K M M i H Hγ ω

−

= + ∆ − + ∆ + + ∆  (2.22) 

 

where [ ]K∆ , [ ]M∆  and [ ]H∆  represents the stiffness, mass and structural damping 

matrices of the modification, respectively. 

 

By using Equation (2.22) the following equation can be written. 

 

[ ] [ ]
1 1

[ ]Dγ α
− −

= +  (2.23) 

 

where [ ]D  is the dynamic stiffness matrix of the modification which can be 

expressed as: 

 

[ ] 2[ ] [ ] [ ]D K M i Hω= ∆ − ∆ + ∆  (2.24) 

 

If Equation (2.23) is pre-multiplied by [ ]α  and post-multiplied by [ ]γ , the following 

equation can be obtained. 

 

[ ] [ ] [ ] [ ][ ]Dα γ α γ= +  (2.25) 

 

By simple matrix manipulations, receptance matrix of the modified structure can be 

expressed as: 

 

[ ] [ ] [ ] [ ]
1

[ ]I Dγ α α
−

 = +   (2.26) 

 

If the modifications are local, then the dynamic stiffness matrix can be partitioned as: 
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[ ] [ ]
[ ] [ ]

11 0
[ ]

0 0

D
D

 
=  
 

 (2.27) 

 

By using the partitioned dynamic stiffness matrix, the receptance matrix of the 

modified structure can be written as [24]: 

 

[ ] [ ] [ ] [ ]
1

11 11 11 11[ ]I Dγ α α
−

 = +   (2.28) 

 

[ ] [ ] [ ] [ ] [ ]12 21 21 11 11[ ]
T

I Dγ γ α γ = = −   (2.29) 

 

[ ] [ ] [ ][ ][ ]22 22 21 11 12Dγ α α γ= −  (2.30) 

 

The important thing that should be pointed out is that, only a single matrix of an 

order equal to the number of coordinates related with structural modification is 

inverted in order to obtain the receptance matrix of the whole modified structure. 

 

Instead of structural damping, if there is viscous damping [ ]C , [ ]H  and [ ]H∆  will 

be replaced by [ ]Cω  and [ ]Cω ∆ , respectively, in all the equations given above. 

 

2.1.3 Extended Successive Matrix Inversion Method  

 

Based on the Classical Successive Matrix Inversion Method which is used to obtain 

the modified structural responses by considering only modified portion of stiffness 

matrix [26], Extended Successive Matrix Inversion Method is developed [27].  In 

this method, the modified structural responses are obtained by considering only the 

modified portion of the dynamic stiffness matrix.  

 

The equation of motion for an N degrees of freedom system can be written as: 
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{ } { } { } { }[ ] [ ] [ ]M x i H x K x F+ + =��  (2.31) 

 

The response of the system to a harmonic forcing at a frequency ω can be written as: 

 

{ } ( ) { }
12[ ] [ ] [ ]x K M i H Fω

−

= − +  (2.32) 

 

Then the receptance matrix [ ]α  of the system can be expressed as: 

 

[ ]
12[ ] [ ] [ ]K M i Hα ω

−
 = − +   (2.33) 

 

When the modification is introduced to the original structure, then the equation of 

motion of the modified system can be written as: 

 

{ } { } { } { }[ ] [ ] [ ]M M x i H H x K K x F+ ∆ + + ∆ + + ∆ =��  (2.34) 

 

Making some manipulations, the following equation can be obtained. 

 

{ } { }2[ ] [ ] [ ]K K M M i H H x Fω + ∆ − + ∆ + + ∆ =   (2.35) 

 

Then, the harmonic response of the modified system can be expressed as: 

 

{ } { }
12[ ] [ ] [ ]x K K M M i H H Fω

−
 = + ∆ − + ∆ + + ∆   (2.36) 

 

Then, the receptance matrix of the modified structure can be expressed as: 

 

[ ]
12[ ] [ ] [ ]K K M M i H Hγ ω

−
 = + ∆ − + ∆ + + ∆   (2.37) 
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Pre-multiplying Equation (2.35) by [ ]α , we obtain: 

 

[ ] [ ]( ){ } { }'I P x F− =  (2.38) 

 

where 

 

{ } [ ]{ }'F Fα=  (2.39) 

 

[ ] [ ] 2[ ] [ ] [ ]P K M i Hα ω = − ∆ − ∆ + ∆   (2.40) 

 

By using Equation (2.38) and Equation (2.39), the following equation can be 

obtained. 

 

[ ] [ ] [ ]( ) [ ]
1

I Pγ α
−

= −  (2.41) 

 

In this method, power series expansion is used for the inversion of the matrix in 

Equation (2.41) as successfully employed in Successive Matrix Inversion method 

[26]: 

 

[ ] [ ]( ) [ ] [ ] [ ] [ ]
1 2 3

...I P I P P P
−

− = + + + +  (2.42) 

 

Then [ ]T  matrix can be defined as: 

 

[ ] [ ] [ ] [ ]
2 3

...T P P P= + + +  (2.43) 

 

For the matrix [ ]T  given above, each of the elements of [ ]T  can be expressed as: 
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 (1) (2) ( )... ...k

ij ij ij ijT P P P= + + + +  (2.44) 

 

where ( )k

ijP  represents the (i,j)th element of [ ]
( )k

P . 

 

By defining the kth recursion factor as:  

 

( ) ( 1) ( )/k k k

ij ij ijr P P
+=  (2.45) 

 

then, Equation (2.44) can be expressed as follows, if the recursion factor is constant 

through the expansion: 

 

( )2 31 ...
ij ij ij ij ij

T P r r r= + + + +  (2.46) 

 

In Equation (2.46),  by using the series expansion for the recursive terms, 
ij

T can be 

written as:  

 

( )/ 1
ij ij ij

T P r= −  (2.47) 

 

In order to eliminate the variability of the of the recursion factor, the modification 

matrix is decomposed into separate matrices, since the recursion factor is different 

through the series expansion. By decomposing, the following equation can be 

obtained. 

 

2 ( ) 2 ( ) ( )

1

[ ] [ ] [ ] [ ] [ ] [ ]
N

j j j

j

K M i H K M i Hω ω
=

 ∆ − ∆ + ∆ = ∆ − ∆ + ∆ ∑   (2.48) 
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In Equation (2.48), ( )[ ]jK∆ , ( )[ ]jM∆ , ( )[ ]jH∆  represent the matrices that are 

composed of the jth columns of stiffness, mass and structural damping matrices, 

respectively, and zero columns except the jth columns. 

 

The recursion factor is a constant for only one nonzero column of [ ]T , therefore the 

equation we can write 

 

 
jj

r P=  (2.49) 

 

Then Equation (2.47) can be expressed as: 

 

( )/ 1ij ijT P r= −  (2.50) 

 

Defining matrix [ ]Y  and [ ]Z  as the dynamic stiffness matrix of the modification and 

original structure, respectively, the following equations can be written: 

 

[ ] 2[ ] [ ] [ ]Y K M i Hω = ∆ − ∆ + ∆    (2.51) 

 

[ ] 2[ ] [ ] [ ]Z K M i Hω = − +    (2.52) 

 

If the jth non-zero column of the structural modification is taken into consideration, 

then, the dynamic stiffness matrix can be expressed as: 

 

( ) ( 1) ( )j j jZ Z Y−     = +        (2.53) 

 

In Equation (2.53), ( )jY    is a matrix which has the jth non-zero column of [ ]Y  

matrix  at its corresponding column, and zero columns elsewhere. ( 1)jZ −    and 



 22 

( )jZ    represent the modified dynamic stiffness matrices in (j-1)th and j
th steps, 

respectively.  

 

(0)Z    denotes the initial [ ]Z matrix. Also 
1( 1)jZ

−
−    refers to [ ]α , and 

1( )jZ
−

    

refers to [ ]γ  in Equation (2.41).  

 

From Equation (2.42) and Equation (2.43), the inverse of Equation (2.53) can be 

written as: 

 

[ ] [ ]( )
1 1( ) ( 1)j jZ I T Z

− −
−   = +     (2.54) 

 

As seen in Equation (2.54), the modified FRF matrix can be calculated, by updating 

the matrices in Equation (2.54) for each nonzero column of the modification matrix. 

The sequence of the columns of the modification matrix used in the computation is 

not important, because each column of the modification matrix contributes to the 

dynamics of the system independently. 

 

Furthermore, for a local modification, [ ]Y  will be a highly sparse matrix with many 

zero columns and rows that correspond to the coordinates at which there is no 

structural modification. 

 

For all equations given above, if the system has viscous damping[ ]C , instead of 

structural damping, then [ ]H  and [ ]H∆  will be replaced by [ ]Cω  and [ ]Cω ∆ , 

respectively. 
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2.1.4 Özgüven’s Recursive Solution Algorithm 

 

In order to calculate the receptances of a modified structure from those of the 

original system and the modification matrices, Özgüven [23] developed a recursive 

solution algorithm. This method can be used for structural modifications problems. 

The derivation of the equations is given below [23] for a damping modification and 

obviously it can be generalized for any type of modification. 

 

Consider the equations of motion of a structure which has n degrees of freedom. The 

equation of motion can be expressed as: 

 

{ } { } { } { }[ ] [ ] [ ]M x i H x K x F+ + =��  (2.55) 

 

By solving the eigenvalue problem given below, the undamped modal data can be 

obtained. 

 

{ } { }2[ ] [ ]K Mφ ω φ=  (2.56) 

 

Considering Equation (2.55) , the internal damping of the structure can be replaced 

by a vector which is the set of equivalent forces that can be written in terms of  the 

damping values and the displacement of the structure. Then the equation of motion 

takes the form: 

 

{ } { } { } { }[ ] [ ]M x K x F R+ = +��     (2.57) 

 

where { }R  is a vector which represents damping forces given as: 

 

{ } { }[ ]R i H x= −  (2.58) 
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In Equation (2.57), there are two sets of external forces, one of which is expressed in 

terms of the unknown dynamic displacement { }x  of the structure, therefore it is 

possible to consider the damped structure as an undamped structure which has two 

sets of external forces one of which is given by Equation (2.58). By modal 

summation the undamped receptances of the structure defined by Equation (2.57), 

can be obtained.  

 

For a typical coordinate s, the damping force on this coordinate can be written as: 

 

1

n

s sk k

k

R i h x
=

= − ∑  (2.59) 

 

By using the definition of receptance, the dynamic displacement of the thp coordinate 

can be expressed as: 

 

1

( )
n

p ps s s

s

x F Rα
=

= +∑  (2.60) 

 

1 1 1

n n n

p ps s ps sk k

s s k

x F i h xα α
= = =

= −∑ ∑ ∑  (2.61) 

 

In Equation (2.60) and Equation (2.61) both 
p

x  and 
k

x  represent the displacements 

in the damped system. Setting all external forces, except 
j

F  to zero and dividing all 

term by 
j

F , the receptance 
pj

γ  of the damped system can be calculated from 

Equation (2.61) as: 

 

1 1

( / )
n n

pj pj ps sk k j

s k

i h x Fγ α α
= =

= − ∑ ∑   (2.62)                
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The term /
k j

x F   in Equation (2.62) can be replaced by
kj

γ  by using the definition of 

the receptance. Then Equation (2.62) becomes: 

 

1 1

n n

pj pj ps sk kj

s k

i hγ α α γ
= =

= − ∑ ∑                (2.63) 

 

Equation (2.63) is valid only for any p and j (p=1,2,…,n; j=1,2,…,n). Concentrating 

on only a single element 
sk

h  of the damping matrix, while the rest of the damping 

elements are taken to be zero, Equation (2.63) can be written as: 

 

pj pj ps sk kj
i hγ α α γ= −        (p=1,2,…,n; j=1,2,…,n)        (2.64) 

    

By taking p=k, 
kj

γ  can be expressed as: 

 

/(1 )
pj kj ks sk

i hγ α α= +       (p=1,2,…,n)  (2.65) 

 

After the calculation of 
kj

γ  (j=1,2,…,n) from Equation (2.65), the remaining 

receptance values 
pj

γ  (p=1,2,…,k-1,k+1,…,n; j=1,2,…,n) can be obtained from the 

calculated values of 
kj

γ  (j=1,2,…,n) by using Equation (2.64). 

 

In the formulations given above, only one element of the damping matrix is 

considered therefore these formulations give only the receptances of the system that 

are composed of the undamped system and a single damping element 
sk

h . In order to 

obtain the receptances of the damped structure, the calculated receptances should be 

treated as new α  values in Equation (2.64) and Equation (2.65). A new set of 

receptances can be obtained by considering another damping element of the original 

damping matrix [ ]H . 
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If this algorithm is repeated for all nonzero elements of [ ]H , the final receptance 

matrix [ ]γ  gives the receptances of the damped system.  

 

For locally damped structures, the damping matrix can be written as the addition of 

proportional and non-proportional damping matrix and this brings great reduction in 

the computational effort. The damping matrix can be written as: 

 

[ ] [ ] [ ]
P N

H H H= +  (2.66)

  

In Equation (2.66), [ ]
P

H  represents the  proportional part of the damping matrix and 

[ ]
N

H  represents the non-proportional part of the damping matrix. Non-proportional 

damping matrix can be expressed as: 

 

[ ]
[ ] [ ]
[ ] [ ]

11 0

0 0N

H
H

 
=  
 

 (2.67) 

 

By using Equation (2.65), 
kj

γ  (j=1, 2,…, n) can be calculated and in order to find 

pj
γ for only m values of p (m is the order of the sub matrix [ ]11H ), Equation (2.64) 

can be used. Therefore, the final values of 
pj

γ  (p=1,2,…,m; j=1,2,…,n) which 

include the effect of all the m2 damping values can be obtained without computing 

the receptances corresponding to undamped coordinates. Since the number of 

damping elements is just m2, then the number of recomputations of each receptance 

will be reduced from n2 to m2. 

 

Receptances of undamped nodes, can be calculated as follows [23]: 

 

1 1

n n

pj pj ps sk kj

s k

i hγ α α γ
= =

= − ∑ ∑  (2.68) 
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for p=m+1,…,n and j=p,…,n.  

 

By considering one column of the damping matrix at a time, formulation can be 

further improved. If the k-th column of the damping matrix [ ]11H  is considered, by 

using Equation (2.63) the following equation can be written. 

 

1 1

n n

pj pj ps sk kj

s k

i hγ α α γ
= =

 
= −  

 
∑ ∑  (2.69) 

 

For p=k, we can write 

 

1

1

kj
kj m

ks sk

s

i h

α
γ

α
=

=
 

+ 
 

∑
                        (j=1,2,…,n) (2.70) 

 

Once 
kj

α  (j=1,2,…,n) are calculated which include the effect of the k-th column of 

the damping matrix, the remaining elements of [ ]11γ  and  [ ]12γ  can be obtained from 

Equation (2.69) for j=1,2,…,n and p=1,2,…,k-1,k+1,…,m.  

 

The final values of the upper mxn portion of [ ]γ  can be calculated by repeating this 

procedure m times (k=1, 2,…, m). Then the remaining elements of the receptance 

matrix can be obtained from Equation (2.68). 

 

If damping matrix is replaced by any general dynamic stiffness matrix, all the 

formulations given above can be used for any structural modification problems: 

 

Replacing [ ]11H  matrix by 

 

[ ] ( )
12

11 11 11 11[ ] [ ] [ ]K M i Hδ ω
−

= − +  (2.71) 
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where 11[ ]K , 11[ ]M  and 11[ ]H  are the stiffness, mass and hysteretic damping 

matrices of the modifying structure, respectively. 

 

The same equations can be used for structural modification problems.  

 

By using Equation (2.71), the elements of  [ ]11δ  can be written as: 

 

2
sk sk sk sk

k m ihδ ω= − +  (2.72) 

 

In Equations (2.63) through (2.70), the damping terms 
sk

ih can be replaced by the 

corresponding elements 
sk

δ . Then the equations will be valid for structural 

modification problems. However, these equations can be used in the given forms 

only if there is no additional DOF due to the modifying structure. 

 

2.1.5 Modeling of Distributed Modifications without Additional Degrees of 

Freedom 

 

In structural modification problems, modeling distributed modifications is more 

difficult compared with lumped modifications. There are different approaches in the 

literature. Especially, W. D’Ambrogio, A. Sestieri extensively studied the distributed 

modifications and developed a modeling approach for distributed modifications. The 

method proposed by W. D’Ambrogio, A. Sestieri [34] will be given below. 

 

Assuming a FE model is not available for the original structure, and original 

structure is only known experimentally, the FRF of a modified structure can be 

obtained by the relationship given below. 

 

[ ] ( )
1

0 0[ ] [ ][ ] [ ]H I H B H
−

= + ∆  (2.73) 
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In Equation (2.73) [ ]H  and [ ]0H  represents the FRFs of the original and modified 

structures, respectively, [ ]I  is the identity matrix and [ ]B∆  is the dynamic stiffness 

matrix of modifications introduced into the original structure. 

 

Defining the subscripts “b” and “a” as interface DOFS between original and 

modifying structure and original structure DOFs not on the interface “b”,  

respectively, the following equation can be written: 

 

[ ]
[ ] [ ]
[ ] [ ]
0 0

0
aa ab

ba bb

B
B

 
∆ =  

∆ 
    (2.74) 

 

it can be shown that [H] is given by [34]  : 

 

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ]

[ ] [ ] [ ] [ ]

0 0 0

0 0 0

1

0 0 0

aa ab aa ab ab

bb bb

ba bb ba bb bb

bb bb ba bb

H H H H H
B I

H H H H H

H B H H
−

     
= − ∆      

     

  + ∆   

 (2.75) 

 

In the above equation the order of the inverted matrix is b which is smaller than the 

total DOF of the structure (a+b). 

 

The dynamic stiffness matrix of modifications [ ]B∆  appearing in Equation (2.74) 

can be written as: 

 

[ ] [ ] 0[ ]B B B∆ = −   (2.76) 

 

As seen in Equation (2.76), [ ]B∆  is the difference between the dynamic stiffness 

matrices of the modified and original structures. This corresponds to the dynamic 

stiffness matrix of the modification only for lumped modifications; however for 
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distributed modifications it must be computed by taking the difference of two 

matrices. As an example, let us consider the effect of a rib stiffener with given 

characteristics [34]. The bending stiffness of the whole system is certainly a function 

of the rib's elasticity, but it is also very much dependent on the characteristics of the 

original structure. Since doubling the thickness of a flexural beam does not double 

the whole bending stiffness, the stiffness of the modified structure is not just the sum 

of the stiffness of the two components. The stiffness increases eight times due to the 

effect of the cross section area moment. 

 

If both of the FE models are available for original structure and the modified one, the 

difference between the two models, performed on the whole set of DOFs will 

generate a [ ]B∆  matrix which is given by 

 

[ ] 2[ ] [ ] [ ]B M j C Kω ω∆ = − ∆ + ∆ + ∆  (2.77) 

 

In Equation (2.77), non-zero elements do not extend beyond the interface DOFs 

between the original and modifying structures. This implies a local character of[ ]B∆ , 

when the entire finite elements DOFs are considered [34]. 

 

For complex structures, a good FE model may not be available in several practical 

applications, then the original structure can be known only experimentally by 

measuring the FRFs. For the modifying structure, usually the FE model of the 

structure can be easily constructed. In order to obtain the dynamic characteristics of 

the modified structure, FRF of the original structure and finite element of the 

modifying structure should be coupled. In the FE model both translational and 

rotational DOFs may exist however in experiments, only translational DOFs are 

usually measured due to the difficulties encountered in measuring the rotational 

DOFs. Therefore in order to have consistent DOFs for the original and modifying 

structure, condensation procedures should be used.  After elimination of rotational 
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DOFs, the matrix [ ]B∆ , reduced to the translational DOFs, can be expressed by the 

equation given below. 

 

[ ] [ ] [ ]0c cB B B∆ = −  (2.78) 

 

In Equation (2.78), [ ]cB  and [ ]0cB  are the condensed dynamic stiffness matrices of 

the modified and the original structures, respectively. In this equation [ ]cB  and [ ]0cB  

become full matrices due to the condensation process, and the same holds for [ ]B∆  

when reduced to the translational DOFs.  

 

In order to compute [ ]B∆  approximately, it is useful to consider non-local character 

of the modification matrix [ ]B∆ , when reduced to the translational DOFs. For 

simplicity, when ω =0 [ ]B∆  is given by: 

 

[ ] [ ]( 0)K B ω∆ = ∆ =  (2.79) 

 

It is possible to write [34]: 

 

0,i

i
ij

j x i j

F
K

x
= ≠

∆
∆ =  

 

where
ij

K∆  represents the additional force arising, as a result of the modification, on 

the i
th DOF for a displacement in j, when all the DOFs in [ ]K∆  are set to zero, 

excluding 
j

x . Since the DOFs involved in [ ]K∆  are only translations, there is no 

constraints in the rotational DOFs. Therefore, although all the displacements, 

except
j

x  are blocked, there is an additional force on every DOF due to the imposed 
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displacement which propagates to the interface area through the unconstrained 

rotations.  

 

However, the elements of [ ]K∆  tend to vanish when either i or j get far from the 

interface  because additional forces are rapidly decreasing as either i or j gets farther 

from the connection area. The proof and further details are given in [34]. 

 

From Equation (2.78) for ω =0, the following equation can be written. 

 

[ ] [ ] [ ]0c cK K K∆ = −  (2.80) 

 

Due to the quasi-local character of [ ]K∆ , the relation given below can be expressed 

when either i or j is far from the interface. 

 

[ ] [ ]0c cK K≈  (2.81) 

 

This difference can be approximately estimated by modeling only a portion of the 

two considered structures which includes the interface DOFs. Similar situation holds 

for [ ]B∆ . 

 

2.2 Structural Modification with Additional Degrees of Freedom  

 

2.2.1 Özgüven’s Formulation 

 

Özgüven [24] proposed a formulation for the structural modifications which 

introduce additional DOFs to the structure. In the formulation the receptance matrix 

of the modified structure [ ]α  can be partitioned as follows (Figure 2.1):  
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• The coordinates which correspond to the original structure only (a)  

 

• The coordinates which are connection coordinates between the original and the 

modifying structure (b)  

 

• The coordinates which correspond to the modifying structure only (c)  

 

Then the following equations can be written for the original and modifying 

structures: 

 

 

 

 

Figure 2.1 Original and Modifying Structure 

 

 

[ ] [ ] [ ] [ ]
1

1 20 0
0 0 0 0

0 0

aa ab

ba bb
K M i H

α α
α ω

α α

−

−  
= = − + 
 

 (2.82) 

 

[ ]
[ ]

1

1

0

mod

0 0 0 0

0 0

0 0 0 0

aa ab ac

ba bb bc

ca cb cc
D

α α α
α

α α α

α α α

−

−     
     = +     
         

 (2.83) 
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where [ ]0α  and [ ]α  represent the receptance matrices of the original and modified 

structures, respectively. Pre-multiplying Equation (2.83) by  

 

[ ]0

0

0

0 0 I

α
 
 
 
  

 (2.84) 

  

and post-multiplying by [ ]α  gives  

 

[ ]

[ ]

[ ]
[ ]

0 mod
0 0

0 0 0
mod

0 0 .0 00

0 00 0 0
.

0 0 0 0 00 0

ab
aa ab

ba bb bb

DI

I
D

II

αα α

α αα α α

             = +                    

 (2.85) 

 

After some matrix manipulations it is possible to write 

 

[ ]0 0
mod

0 0
.

0 0 0 0

bb ba ba

ca

I
D

I

α α α

α

       
+ =       

         
 (2.86) 

 

[ ]0 0
mod

0 0 0
.

0 0 0 0

bb bb bc bb

cb cc

I
D

I I

α α α α

α α

       
+ =       

         
 (2.87) 

 

[ ]0 mod 00
ba

aa ab aa

ca
D

α
α α α

α

 
     + =      

 
 (2.88) 

 

[ ]0 00 0
bb bc

ab ac ab ab

cb cc
D

α α
α α α α

α α

 
     + =      

 
 (2.89) 

  

Then receptance submatrices of the modified system can be obtained as: 
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[ ]
1

0 0
mod

0 0
.

0 0 0 0

ba bb ba

ca

I
D

I

α α α

α

−
       

= +       
        

 (2.90) 

  

[ ]
1

0 0
mod

0 0 0
.

0 0 0 0

bb bc bb bb

cb cc

I
D

I I

α α α α

α α

−
       

= +       
        

 (2.91) 

 

[ ]0 0 mod0
ba

aa aa ab

ca
D

α
α α α

α

 
     = −       

 
 (2.92) 

  

[ ] [ ]0 0
bb bc

ab ac ab

cb cc
I D

α α
α α α

α α

  
   = −     

   
 (2.93) 

 

In the equations above, in order to calculate complete receptance matrix of the 

modified structure it is necessary to invert only a single matrix. The order of the 

matrix to be inverted is equal to the DOF of the modifying structure, which is usually 

much less than the total DOF of the system. 

 

2.2.2 Extension of Özgüven’s Formulation 

 

Starting from the original relationship developed by Özgüven [24] for structural 

modifications and the description method for distributed modifications developed by 

D’Ambrogio and Sestieri [34], Hang [35] proposed a different method for the 

prediction of the FRFs for distributed structural modification with change in the 

DOFs. The theory of the proposed method is given below. 

 

When structural modifications introduce additional DOFs into the system, the 

receptance FRF matrix of the modified structure [ ]1H  can be partitioned into three 

parts as [35]: 
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(a) DOFs belonging to the original structure only (indicated by subscript “a”) 

 

(b) Interface DOFs, through which the modifying part is connected to the original 

structure (indicated by subscript “b”) 

 

(c) Passenger DOFs, belonging to the modifying structure only (indicated by 

subscript “c”) 

 

Then the following equations can be written for the original and the modified 

structures: 

 

[ ] [ ]
1

1 0 0
0 0

0 0

aa ab

ba bb

H H
B H

H H

−

−  
= =  

 
 (2.94) 

 

[ ] [ ]
[ ]

[ ]

1
11 1 1

1 0
1 1 1 1 1

1 1 1

0

0

0 0 0

aa ab ac

ba bb bc

ca cb cc

H H H
H

B H H H H B

H H H

−

−

−

   
   = = = + ∆   
     

 (2.95) 

 

where  [ ] [ ] [ ]1 0

0 0 0

0

0
bb bc

cb cc

B B B B B

B B

 
 

∆ = − = ∆ ∆  
  ∆ ∆  

 (2.96) 

 

By matrix manipulation, the receptance matrix of the modified structure can be 

obtained as a function of the original receptance matrix and the delta dynamic 

stiffness matrix introduced by the modifying part. Then the receptance matrices of 

the modified structure can be given as: 

 

[ ] [ ] [ ][ ] [ ][ ][ ] [ ] [ ]

[ ] [ ]

11

1 0 0 0

1

0

bb bb bb bb bc cc cb bb

bb

H I H B H B B B H

Hβ

−−

−

 = + ∆ − ∆ ∆ ∆
 

=

 (2.97) 
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[ ] [ ] [ ][ ] [ ][ ]
1

1 1 1cb cc cb bb bb
H B B H Hα

−
= − ∆ ∆ = −  (2.98) 

[ ] [ ] [ ][ ] [ ][ ][ ] [ ] [ ]

[ ] [ ]

11

1 0 0 0

1

0

ba bb bb bb bc cc cb ba

ba

H I H B H B B B H

Hβ

−−

−

 = + ∆ − ∆ ∆ ∆
 

=

 (2.99) 

 

[ ] [ ] [ ][ ] [ ][ ]
1

1 1 1ca cc cb ba ba
H B B H Hα

−
= − ∆ ∆ = −  (2.100) 

 

[ ] [ ]1 1

T

bc cb
H H=  (2.101) 

 

[ ] [ ]1 1

T

ab ba
H H=  (2.102) 

 

[ ] [ ]1 1

T

ac ca
H H=  (2.103) 

 

[ ] [ ] [ ] [ ][ ] [ ] [ ][ ]
1 1

1 1 1cc cc cc cb bc bc
H B B B H Hγ α

− −
= ∆ − ∆ ∆ = −  (2.104) 

 

[ ] [ ] [ ][ ][ ] [ ][ ][ ]1 0 0 1 0 1aa aa ab bb ba ab bc caH H H B H H B H= − ∆ − ∆  (2.105) 

 

where  [ ] [ ]
1

cc
Bγ

−
= ∆  (2.106) 

 

[ ] [ ] [ ] [ ][ ]
1

cc cb cb
B B Bα γ

−
= ∆ ∆ = ∆  (2.107) 

 

[ ] [ ] [ ][ ] [ ][ ][ ] [ ] [ ] [ ][ ]

[ ][ ][ ]

1

0 0 0

0

bb bb bb bc cc cb bb bb

bb bc

I H B H B B B I H B

H B

β

α

−
= + ∆ − ∆ ∆ ∆ = + ∆ −

∆
  (2.108) 

 

In above equations two matrices should be inverted for the computation of the 

complete receptance matrix of the modified structure. The orders of matrix to be 
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inverted are equal to the interface DOFs and the passenger DOFs, and these are much 

less than the total DOFs of the modified system. 

 

2.2.3 Modeling Approach for Distributed Modifications with Additional 

Degrees of Freedom 

  

In a structural modification problem the additional dynamic stiffness matrix due to 

structural modification is given by [32]: 

 

[ ] [ ] [ ]0D D D∆ = −  (2.109) 

  

In Equation (2.109) , [ ]D  and [ ]0D  are the dynamic stiffness matrices of the 

modified and original structures, respectively.  

 

For lumped modifications, [ ]D∆ corresponds directly to dynamic stiffness matrix of 

the modifying structure. However for distributed modifications, it has to be 

calculated by using Equation (2.109) which may not correspond to the dynamic 

stiffness matrix of the modifying structure. Dynamic stiffness matrices of the original 

and modified structures should be available in order to apply Equation (2.109). This 

requires availability of the FE models for original and modified structures. However, 

if these FE models were available, then there would be limited advantage of using 

structural modification method.  

 

D’Ambrogio and Sestieri [34] overcame this drawback by using quasi-local 

characteristics of additional dynamic stiffness matrix due to structural modification 

[ ]D∆ . Bounded region which covers the modifying area is modeled for both original 

and modified structures in order to obtain the additional dynamic stiffness matrix due 

to structural modification. However there are two drawbacks in the approach 

proposed by D’Ambrogio and Sestieri. These drawbacks are mainly due to the 
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inaccurate modeling of the structure and quasi-local characteristics of the additional 

dynamic stiffness matrix due to structural modification. 

 

In order to illustrate the first drawback, the beams in Figure 2.2 and Figure 2.3 can be 

considered. Beam model in Figure 2.2 is the original structure and it is modeled 

using beam elements. When it is modified by adding a shorter beam on it as shown in 

Figure 2.3, as the neutral planes of the thinner and thicker parts of the modified beam 

will not coincide, the FE model will not represent the real structure accurately. 

Modeling by using beam elements introduces certain errors independent from the 

quality of the mesh. D’Ambrogio and Sestieri discussed this error by modeling both 

original and modifying structures using beam and brick elements in the FE model 

[32].  

 

The second error directly depends on the size of the bounded region which covers the 

modifying area. The error introduced to [ ]D∆ will be smaller, when the bounded 

region which covers the modifying area is larger. In this thesis, a different approach 

is used in application of structural modification technique, in order to eliminate these 

types of errors. When distributed modification is applied to an original structure in 

such a way that additional DOF is introduced, then it is not necessary to use Equation 

(2.109) in order to calculate the additional dynamic stiffness matrix due to structural 

modification, as the problem will be a structural coupling problem. In that case, the 

additional dynamic stiffness matrix due to structural modification will be the same as 

the dynamic stiffness matrix of the modifying structure which can directly be used in 

the structural modification method.    

 

 

 

 

Figure 2.2 Original Beam 
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Figure 2.3 Modified Beam 

 

 

Assuming the FE models of the original and modifying beams are available and they 

are modeled by using solid brick elements, distributed modifying beam structure 

which is modeled by FEM introduces additional DOF to the original structure. The 

finite element method provides [ ]0K , [ ]0M  and [ ]0H  for the original 

structure, [ ]modK , [ ]modM  and [ ]modH  for the  modifying structure. Then the dynamic 

stiffness matrices of the original and modifying structure are given by: 

 

[ ] [ ] [ ] [ ]2
0 0 0 0D K M i Hω= − +  (2.110) 

  

[ ] [ ] [ ] [ ]2
mod mod mod modD K M i Hω= − +  (2.111) 

  

DOFs of the original and modifying structure can be divided as:  

 

• DOFs which belong to original structure only (indicated by superscript a) 

 

• DOFs at the connection points (indicated by superscript c) 

 

•  DOFs which belong to modifying structure only (indicated by superscript b) 

 

Force displacement relations and displacement compatibility equations can be 

written as:    
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{ } 00 0

0 0 0

aaa ac

o ca cc c

xD D
f

D D x

    
=   

    
 (2.112) 

  

{ } modmod mod
mod

mod mod mod

bbb bc

cb cc c

xD D
f

D D x

    
=   

    
 (2.113) 

  

{ } { } { }0 mod
c c cx x x= =  (2.114) 

  

{ } { }0
a ax x=  (2.115) 

 

{ } { }mod
b bx x=  (2.116) 

  

Since the forces at the connection nodes are the sum of forces on the original and 

modifying parts, the force equation can be written as: 

 

{ } { } { }0 mod
c c cf f f+ =   (2.117) 

 

Using Equation (2.112) and Equation (2.113), forces on the original and modifying 

structure can be written as: 

  

{ } { } { }0 0 0 0 0
c ca a cc cf D x D x   = +      (2.118) 

  

{ } { } { }mod mod mod mod mod
c cb b cc cf D x D x   = +      (2.119) 

 

By first inserting Equation (2.115) and Equation (2.116) into Equation (2.118) and 

Equation (2.119), then combining with Equation (2.117) one obtains 
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{ } { } { } { }0 mod 0 mod
c ca a cb b cc cc cf D x D x D D x     = + + +        (2.120) 

  

Note that;  

 

{ } { }0
c cf f=  (2.121) 

  

{ } { }b b

c
f f=  (2.122) 

  

Then one obtains  

 

{ }
0 0

0 0 mod mod

mod mod

0

0

aa aca a

c ca cc cc cb c

b bbc bb

D Df x

f f D D D D x

f xD D

    
    

 = = +      
     
    

  (2.123) 

  

Equation (2.123) represents the assembly of two matrices (the dynamic stiffness 

matrices of the original and modifying structures) and gives the dynamic stiffness 

matrix of the modified structure. Therefore for distributed modifications, if 

additional DOF is introduced to the structure, there is no need to use Equation 

(2.109); instead, dynamic stiffness matrix of the modifying structure can directly be 

used.  

 

In this thesis, a new approach is proposed based on the modeling approach given 

above and the formulation given by Özgüven [24]. As given in [24], FRF matrix of a 

modified system can be partitioned as; DOFs which correspond to original structure 

only (superscript a), DOFs at connection points (superscript b), and DOFs that 

belong to modifying structure only (superscript c). Then Equation (2.90), (2.91), 

(2.92) and (2.93) are used to obtain the receptance matrix of the modified structure. 
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If additional DOF is introduced to the structure, without using Equation (2.109), the 

dynamic stiffness matrix of the modification can be directly taken as the dynamic 

stiffness matrix of the modifying structure for distributed modifications. Then using 

Equation (2.90), (2.91), (2.92) and (2.93), receptance matrix of the modified system 

can be calculated. 
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CHAPTER 3 

 

 

VERIFICATION OF STRUCTURAL MODIFICATION PROGRAM 

 

 

 

3.1 Structural Modification Program 

 

The computer program named “Structural Modification with Additional Degrees of 

Freedom Program” is developed in MATLAB [49]. For the original structure, the 

program uses two different text files which include mode shape matrix information 

and natural frequency information, respectively. These two text files are extracted 

from ANSYS by using a macro file written in this study. The FRF matrix is 

calculated for the original structure by using Equation (3.1).  

 

2 2 2
1

( )
N

ir jr

ij

r r r
i

α ω
ω ω ηω=

Φ Φ
=

− +
∑   (3.1) 

   

For the modifying structure, the program uses two files which have the stiffness and 

mass matrices of the modifying structure, respectively. These files are extracted from 

the result file of the ANSYS modal analysis which has an extension of “ *.full “. 

However in order to have these stiffness and mass matrices, the file named “ rdfull.f 

” which is in the ANSYS installation directory, should be compiled with Intel 

Fortran compiler to create the “ rdfull.exe” file. Then by running this “ rdfull.exe” 

file with the result file of the ANSYS modal analysis which has an extension of 

”*.full” in a separate folder, these stiffness and mass matrices are extracted. In the 

program, initial inputs which are the starting frequency, ending frequency, number of 

frequency points and structural damping coefficient should be defined by the user. 
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The number of nodes, the number of mode shapes to calculate FRF, connection 

nodes of the original structure and the number of DOF per node for the original 

structure should be defined by the user. For the modifying structure, number of nodes 

and connection nodes on modifying structure should be specified by the user. As an 

important point to be mentioned, the number of nodes, DOF per node and the 

number of mode shapes to calculate FRF, has to match with the information in the 

files created from the ANSYS. The FRF of the nodes specified by the user is 

calculated for the original and modified structure. In order to compare the results of 

the modified structure obtained from Özgüven’s formulation [24], FRF can be 

calculated in the program which uses the direct ANSYS modal analysis result for the 

modified structure. While computing the FRFs in the program, firstly the text files 

that have the mode shape matrix and natural frequency information for the original 

structure are read, then the stiffness and mass matrix information is read from the file 

for the modifying structure. Original FRF matrix is obtained for the original 

structure, and dynamic stiffness matrix is obtained for the modifying structure. As a 

next step these matrices for the original and modifying structure are renumbered and 

the FRFs of modified structure are calculated. The FRF curves for the selected nodes 

are drawn on the graph for both original and modified structure.  Furthermore, if it is 

required, the FRFs for the modified structure can also be calculated by using directly 

ANSYS modal analysis and the results can be displayed by the user. 

 

3.2 Verification of the Program 

 

In the program developed in this thesis, Özgüven’s formulation [24] for the structural 

modification with additional degrees of freedom is used in order to calculate FRF of 

the modified structure. In order to compare validity of the results obtained from the 

program, the FRF is also calculated for the specified nodes by using ANSYS solution 

for the modified structure. In the following section, 5 different case studies are 

presented to illustrate the validity of the program developed. In the first and second 
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case studies free-free plate models with 6 DOF per node will be used. In the third 

case study, a cantilevered plate will be used as a model. As a fourth case study, free-

free beam structure having 3 DOF per node will be modified by attaching smaller 

beam under it. The final case study is the modification of an L-beam by attaching a 

rib on it.  In these different case studies, program will be validated with models that 

have different boundary conditions and element types in the FE model. 

 

3.2.1 Free-Free Plate  

 

In this case study, a plate with dimensions 300mm x 300mm x 5mm is used as an 

original structure. Both the original plate and modifying plate which are shown in 

Figure 3.1 and Figure 3.2, respectively are modeled in ANSYS 11.0 by using SHELL 

63 elements which has 3 translational and 3 rotational DOFs, yielding a total 6 DOF 

per node. The material used is aluminum which has the density of 2770 kg/m3, 

Young’s Modulus of 71 GPa and Poisson’s ratio is taken as 0.33. The structural 

damping factor is taken as 0.01 for both of the structures. 

 

 

 

 

Figure 3.1 FE Model of the Original Plate 
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Figure 3.2 FE Model of the Modifying Plate 

 

 

The geometrical and material properties of the original and modifying plates are 

given in Table 3.1. As shown in Table 3.2, original plate was divided into 36 

elements and it has 49 nodes with 6 DOF per node yielding 394 total DOFs. The 

modifying plate was divided into 6 elements and it has 14 nodes with 6 DOF per 

node, giving 84 total DOFs. 

 

 

Table 3.1 Geometrical and Material Properties of the Plates 

 

  Original Plate Modifying Plate 

Young’s Modulus (E) 71 GPa 71 GPa 

Poisson’s Ratio (νννν) 0.33 0.33 

Density (ρρρρ) 2770 kg/m3 2770 kg/m3 

Length 300mm 300mm 

Width 300mm 50mm 

Thickness 5mm 5mm 
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Table 3.2 FE Information of the Plate Models 

 

  Original Plate Modifying Plate 

Number of Elements 36 6 

Number of Nodes 49 14 

DOF 294 84 

 

 

There are 7 connection nodes between original and modifying structure. Connection 

nodes for the original structure are nodes 14, 19, 18, 17, 16, 15, 8 and corresponding 

connection nodes for the modifying structure are nodes 1, 3, 4, 5, 6, 7, 2. After the 

modification, the modified structure which is shown in Figure 3.3 was obtained.   

 

 

 

 

Figure 3.3 FE Model of the Modified Plate 

 

 

The FRF values are calculated for the modified structure by the “Structural 

Modification with Additional Degrees of Freedom Program” and the results shown in 

Figure 3.4 are obtained for direct point FRF of node 2 of the original system in 
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translational-z direction. As an option in the program, the calculated FRF by using 

Özgüven’s formulation [24] can be compared with FRF calculated from ANSYS 

solution for the modified structure in order to see the accuracy of the method. As 

shown in Figure 3.5, both FRFs calculated from ANSYS solution for the modified 

structure and the one obtained from structural modification method match exactly 

except at higher frequencies. At higher frequencies there is a slight discrepancy in 

the FRF curves which is due to the number of modes used to calculate the FRF of the 

original structure as will be discussed in section 3.3.  

 

 

 

 

Figure 3.4 Direct Point FRF of Node 2 in Translational-z Direction for Original and 

Modified Structures 
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Figure 3.5 Comparison of Direct Point FRFs Obtained by Structural Modification 

and FEA for Node 2 of Modified Structure in Translational-z Direction 

 

 

3.2.2 Free-Free Plate with Finer Mesh  

 

In this case study, the same plates were used as the original structure and modifying 

structure, however finer mesh was used in the FE models of the original and 

modifying plate which are shown in Figure 3.6 and Figure 3.7, respectively. The 

material used is aluminum which has the density of 2770 kg/m3, Young’s Modulus 

of 71 GPa and Poisson’s ratio is taken as 0.33. Both the geometrical and material 

properties of the original and modifying plates are shown in Table 3.3. As given in 

Table 3.4, original plate was divided into 144 elements and it has 169 nodes with 6 

DOF per node giving 394 total DOFs. The modifying plate was divided into 24 
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elements and it has 39 nodes with 6 DOF per node yielding 234 total DOFs. The 

structural damping factor is taken as 0.005 for both structures.  

 

 

 

 

Figure 3.6 FE Model of the Original Plate 

 

 

 

 

Figure 3.7 FE Model of the Modifying Plate 
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Table 3.3 Geometrical and Material Properties of the Plates 

 
  Original Plate Modifying Plate 

Young’s Modulus (E) 71 GPa 71 GPa 

Poisson’s Ratio (νννν) 0.33 0.33 

Density (ρρρρ) 2770 kg/m3 2770 kg/m3 
Length 300mm 300mm 
Width 300mm 50mm 

Thickness 5mm 5mm 
 

 

Table 3.4 FE Information of the Plate Models 

 
  Original Plate Modifying Plate 

Number of Elements 144 24 
Number of Nodes 169 39 

DOF 1014 234 
 

 

There are 7 connection nodes between original and modifying structures. After the 

modification, the modified structure which is shown in Figure 3.8 was obtained.   

 

 

 

 

Figure 3.8 FE Model of the Modified Plate 
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The results shown in Figure 3.9 are obtained for direct point FRF of node 2 of the 

original system in translational-z direction. In order to demonstrate the validity of the 

method, FRF calculated from ANSYS solution for the modified structure is 

compared with the results obtained from structural modification program in Figure 

3.10.  

 

The structural damping coefficient of the structures can be adjusted in the program, 

without changing the FE model. In order to demonstrate this feature of the program, 

the same problem was solved for a different structural damping coefficient of 0.01. 

The results are shown in Figure 3.11 and Figure 3.12. 

 

 

 

 

Figure 3.9 Direct Point FRF of Node 2 in Translational-z Direction for Original and 

Modified Structures 
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Figure 3.10 Comparison of Direct Point FRFs Obtained by Structural Modification 

and FEA for Node 2 in Translational-z Direction 

 

 

 

 

Figure 3.11 Direct Point FRF of Node 2 in Translational-z Direction for Original 

and Modified Structures 
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Figure 3.12 Comparison of Direct Point FRFs Obtained by Structural Modification 

and FEA for Node 2 in Translational-z Direction 

 

 

3.2.3 Cantilevered Plate 

 

In this case study, a cantilevered plate with dimensions 300mm x 300mm x 5mm is 

used as an original structure (Figure 3.13) and it is modified by attaching the smaller 

plate shown in Figure 3.14 to the free end of the plate. The material used is 

aluminum which has a density of 2770 kg/m3, Young’s Modulus of 71 GPa and 

Poisson’s ratio is taken as 0.33. Both the geometrical and material properties of the 

original and modifying plates are shown in Table 3.5. As shown in Table 3.6, 

original plate was divided into 64 shell elements with 6 DOF per node yielding 488 

total DOFs. The modifying structure was divided into 16 shell elements with 6 DOF 
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per node giving 144 total DOFs. The structural damping factor is taken as 0.0075 for 

both structures.  

 

 

 

 

Figure 3.13 FE Model of the Original Plate 

 

 

 

 

Figure 3.14 FE Model of the Modifying Plate 
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Table 3.5 Geometrical and Material Properties of the Plates 

 
  Original Plate Modifying Plate 

Young’s Modulus (E) 71 GPa 71 GPa 

Poisson’s Ratio (νννν) 0.33 0.33 

Density (ρρρρ) 2770 kg/m3 2770 kg/m3 
Length 300mm 300mm 
Width 300mm 75mm 

Thickness 2mm 2mm 
 

 

Table 3.6 FE Information of the Plate Models 

 
  Original Plate Modifying Plate 

Number of Elements 64 24 
Number of Nodes 81 27 

DOF 488 162 
 

 

There are 9 connection nodes between original and modifying structures. After the 

modification, the modified structure shown in Figure 3.15 was obtained.   

 

 

 

 

Figure 3.15 FE Model of the Modified Plate 
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In Figure 3.16, direct point FRFs of node 60 of the original and modified systems in 

translational-z direction are shown in the frequency range of 0-2000 rad/s. In order to 

show the validity of the method, FRFs calculated from ANSYS solution for the 

modified structure is compared with the results obtained from structural modification 

program in Figure 3.17. As can be seen in Figure 3.17, both FRFs calculated from 

ANSYS solution for the modified structure and the one obtained from structural 

modification method match for the first 3 modes. At higher frequencies the effect of 

truncation made in obtaining FRF of the original structure can be observed. Around 

the fourth and fifth modes there are discrepancies in the FRF curves, which are due 

to the number of modes used to calculate the FRF of the original structure.  

 

 

 

 

Figure 3.16 Direct Point FRF of Node 60 in Translational-z Direction for Original 

and Modified Structure 
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Figure 3.17 Comparison of Direct Point FRFs Obtained by Structural Modification 

and FEA for Node 60 in Translational-z Direction 

 

 

3.2.4 Free-Free Beam 

 

In this case study, a free-free beam shown in Figure 3.18 is modified by attaching a 

smaller beam under the original one. After the modification, the modified beam 

shown in Figure 3.19 was obtained. The material used is aluminum which has a 

density of 2770 kg/m3, Young’s Modulus of 71 GPa and Poisson’s ratio is taken as 

0.33. The original beam has dimensions 300mm x 300mm x 5mm. Both the 

geometrical and material properties of the original and modifying beams are shown 

in Table 3.7. Original beam was divided into 24 brick elements with 3 DOF per node 

yielding 723 total DOFs and the modifying structure was divided into 4 brick 
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elements with 3 DOF per node giving 153 total DOFs, as shown in Table 3.8. The 

structural damping factor is taken as 0.01 for both structures.  

 

 

 

 
Figure 3.18 FE Model of the Original Beam 

 

 

 

 

Figure 3.19 FE Model of the Modified Beam 
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Table 3.7 Geometrical and Material Properties of the Beams 
 

  Original Plate Modifying Plate 

Young’s Modulus (E) 71 GPa 71 GPa 

Poisson’s Ratio (νννν) 0.33 0.33 

Density (ρρρρ) 2770 kg/m3 2770 kg/m3 

Length 1200mm 200mm 

Width 150mm 150mm 

Thickness 25mm 25mm 

 

 

Table 3.8 FE Information of the Beam Models 

 

  Original Plate Modifying Plate 

Number of Elements 24 4 

Number of Nodes 241 51 

DOF 723 153 

 

 

In Figure 3.20, direct point FRFs of node 61 of the original and modified system in 

translational-z direction are shown in the frequency range of 0-4000 rad/s. In the 

analysis, 1000 frequency points were used in the frequency range given above. In 

order to show the validity of the method, FRFs calculated from ANSYS solution for 

the modified structure are compared with the results obtained from structural 

modification program in Figure 3.21.  
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Figure 3.20 Direct Point FRF of Node 61 in Translational-z Direction for Original 

and Modified Structure 

 

 

 

 

Figure 3.21 Comparison of Direct Point FRFs Obtained by Structural Modification 

and FEA for Node 61 in Translational-z Direction 
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3.2.5 Free-Free L-Beam 

 

In this case study, a free-free L-beam shown in Figure 3.22 is modified by attaching 

a rib between the arms of it. The main objective of this modification is to increase 

bending stiffness of the structure so that natural frequencies of the bending modes 

increase. After the modification, the modified L-beam which is shown in Figure 3.23 

was obtained. The material used is aluminum which has a density of 2770 kg/m3, 

Young’s Modulus of 71 GPa and Poisson’s ratio is taken as 0.33. The vertical and 

horizontal parts of L-beam have the dimensions of 150mm x 120mm x 15mm and 

200mm x 120mm x 20mm, respectively. The material properties of the original and 

modifying beams are shown in Table 3.9. Original L-beam was divided into 36 brick 

elements with 3 DOF per node yielding 960 total DOFs and the modifying structure 

was divided into 4 brick elements with 3 DOF per node giving 153 total DOFs as 

shown in Table 3.10. The structural damping factor is taken as 0.0075 for both 

structures.  

 

 

 

 

Figure 3.22 FE Model of the Original L-Beam 
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Table 3.9 Material Properties of the Beams 

 
  Original L-Beam Modifying Beam 

Young’s Modulus (E) 71 GPa 71 GPa 

Poisson’s Ratio (νννν) 0.33 0.33 

Density (ρρρρ) 2770 kg/m3 2770 kg/m3 
 

 

Table 3.10 FE Information of the Beam Models 

 
  Original L-Beam Modifying Beam 

Number of Elements 36 4 
Number of Nodes 320 51 

DOF 960 153 
 

 

In Figure 3.24, direct point FRFs of node 193 of the original and modified system in 

translational-x direction are shown in the frequency range of 0-10000 rad/s. In order 

to see the accuracy of the structural modification method in this application, FRF 

calculated from ANSYS solution for the modified structure is compared with the 

results obtained from structural modification program in Figure 3.25. 

 

 

 

 

Figure 3.23 FE Model of the Modified L-Beam 
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Figure 3.24 Direct Point FRF of Node 193 in Translational-x Direction for Original 

and Modified Structure 

 

 

 

 

Figure 3.25 Comparison of Direct Point FRFs Obtained by Structural Modification 

and FEA for Node 193 in Translational-x Direction 
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3.3 The Effect of Modal Truncation on the Structural Modification Method 

 

In this section, the effect of modal truncation made in the computation of the FRFs of 

the original structure on the accuracy of the structural modification method proposed 

is demonstrated by using the cantilever plate given in section 3.1.2. The same 

modification is applied to the original plate, and the results are obtained for the 

modified plate.  

 

In order to show the effect of truncation, the FRFs of the modified plate are predicted 

by using different number of mode shapes in the calculation of FRFs of the original 

structure. The direct point FRFs of node 30 of the original and modified system in 

translational-z direction are calculated in the frequency range of 0-300 Hz by using 

15, 30, 102 modes in turn. The results are shown in Figure 3.26 to Figure 3.28. 
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Figure 3.26 Comparison of FRFs at 30Z30Z (15 Modes are Used in the Calculation 

of FRFs of the Original Structure) 
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Figure 3.27 Comparison of FRFs at 30Z30Z (30 Modes are Used in the Calculation 

of FRFs of the Original Structure) 
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Figure 3.28 Comparison of FRFs at 30Z30Z (102 Modes are Used in the Calculation 

of FRFs of the Original Structure) 
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As can be seen from Figure 3.26 to Figure 3.28, the effect of truncation made in 

obtaining FRFs of the original structure can be observed at higher frequencies. The 

method is sensitive to the accuracy of the FRFs of the original structure and using 

higher number of the modes in the computation of the FRF of the original structure 

increases the accuracy of the FRFs predicted for modified structure.  Although FRFs 

of the modified system is affected considerably, FRFs of the original structure are 

not affected much from truncation. Therefore, it is concluded that the effect of 

truncation is more pronounced for FRFs of the modified system than those of the 

original system (especially at higher frequencies). 
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CHAPTER 4  

 

 

EXPERIMENTAL VALIDATION 

 

 

 

4.1 Modal Test Theory 

 

4.1.1 Introduction 

 

A modal test is a test which is conducted in order to construct a mathematical model 

of the structure based entirely on measured vibration data [47].  In modal test, not 

only response is measured, but also the excitation is measured, so that, these 

quantities can be related to each other and relationship between them can be defined. 

When the mathematical model of the structure is constructed, the dynamic behavior 

or vibration behavior of the structure under any loading can be obtained. However 

the definition of mathematical model varies considerably from one application to 

other, it can be estimate of natural frequency and damping factor in one case and a 

full mass-spring dashpot model for the other [46]. 

 

The application areas of the modal test can differ. The most commonly used 

application is obtaining the dynamic behavior of the structure in order to compare the 

results with the corresponding data calculated from a finite element model. This 

application is needed in order to validate the theoretical model with the experimental 

results so that, the theoretical model can be used for predicting the response levels to 

different excitations. Modal test can also be used in order to construct a mathematical 

model of a structure which then may be used in a structural coupling. Another 
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application of the modal test is to obtain a mathematical model which can be used to 

predict the effects of modifications to the original structure which may be referred to 

structural dynamic modifications application. 

 

 Modal test has 4 phases [47]: 

 

• Test planning phase 

• Measurement phase 

• Analysis phase 

• Modeling phase 

 

4.1.1.1 Test Planning Phase 

 

In modal testing it is vital to use correct equipment for different transduction, signal 

processing and analysis tasks and to measure all the necessary parameters. This 

means all the necessary quantities are included in parameter list and also all the 

unnecessary data are excluded from the list.  

 

Essentially, a modal test includes the measurement of a set of response functions. 

These are usually measured as time-history records of various responses and 

excitation signals and they are often processed at source to obtain the FRFs. The 

structure is usually described by its FRF response model and it is fully defined by an 

FRF matrix. It is enough to measure a single row or column of the FRF matrix in 

order to obtain modal properties from measurements of responses. Based on the plan, 

two proper excitation points should be selected and a point FRF should be measured 

at these excitations points. Then the resonance frequencies on the two FRF curves 

should be compared in order to establish whether there are any modes present in one 

plot and absent from the other. The process of selecting and checking further 

excitation points should continue, until all modes have been identified. 
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After following these steps it is necessary to decide whether the excitation point 

chosen is suitable for exciting all modes or whether it is preferable to excite some 

modes from one point and others from other points. While selecting excitation 

locations, it is necessary to ensure that the excitation point is not at or close to a 

nodal line. 

 

In test planning it is also important to choose response measurement locations. There 

are a number of considerations in the selection of convenient points that will provide 

clear visual interpretation of the resulting mode shapes, and in selection of DOFs 

which are necessary to have an unambiguous correlation between tests and analyze 

models. For the former one, with a uniform distribution of points that has a 

sufficiently fine mesh, the mode shapes can be displayed. However this choice is not 

necessarily the optimum set for the second case which may be a more quantitative 

application such as model validation, updating or modification. There are different 

procedures available to select proper measurement points that will satisfy the needs. 

 

4.1.1.2 Measurement Phase 

 

In the measurement phase, the main concern is to prepare the structure for test and 

measure the data which will be used to obtain the mathematical model of the 

structure and understand the dynamic behavior of the structure. Correct use of the 

equipment and installation of the transducers are very important in order to eliminate 

the systematic errors, because these types of errors are difficult to detect when they 

are compared to noise errors. Since these systematic errors are not easy to detect, 

when they are embedded into measured data, they may lead to serious errors in the 

construction of mathematical model of the structure. Once these errors are 

eliminated, the remaining part in the measurement phase is the measurement of 

excitation force and the resulting forces at the convenient points chosen in the test 

planning phase. The measured data will be displayed in the form of frequency 

response functions (FRFs) which are the ratios of responses to excitations. 
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4.1.1.3 Analysis Phase 

 

In the analysis phase, the measured data are subjected to a process in order to 

determine the specific parameters of a mathematical model so that this model 

exhibits the same dynamic behavior as the measured in the modal test. The modal 

model is constructed by using the modal properties of the system which describe the 

dynamic characteristics of the structure. In this phase, curves are regenerated by 

curve fitting techniques which use the modal parameters. Many curve fitting methods 

operate on the response characteristic in the frequency domain, but there are also 

algorithms which perform the curve fitting in the time domain. The main concern is 

to obtain a curve which has the minimum discrepancy from the measured curve. For 

the analysis of the data, there are various algorithms; however the most powerful 

analysis methods are those which are performed on all FRF curves in a single 

computation within a wide frequency range. However the performance of these 

methods mostly depends on the consistency and uniformity across the complete set 

of measured data. 

 

4.1.1.4 Modeling Phase 

 

The main objective in this phase is to provide some insight into the validity and 

quality of the model which has been constructed. In the modeling phase the 

inconsistencies in the modal data are checked. There are also other checks which 

must be undertaken on the resulting model, such as verification that the modes are 

suitably real, and not complex. 

 

4.1.2 Limitations and Sources of Errors in Modal Testing 

 

In modal testing, in order to construct a mathematical model that will exhibit the 

same dynamic characteristics as the structure to be tested, knowledge of the errors 
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and limitations in modal testing should be available. Due to different limitations and 

sources of errors in modal testing, there is always certain inaccuracy in the tests. 

These limitations and errors are random errors due to noise, limited number of 

measured degrees of freedom, poor modal analysis of experimental data, non-linear 

behavior of the structure or attached mechanical devices, systematic errors due to 

signal processing of the measured data, difficulty in measuring rotational degrees of 

freedom, systematic errors due to attachment of mechanical devices like springs, 

transducers and stingers to the structures. These limitations and errors can be divided 

into 3 groups [48]: 

 

• Experimental data acquisition errors  

• Signal processing errors and 

• Modal analysis errors  

 

These errors can be categorized within themselves, as given below [48]: 

 

• Experimental data acquisition errors  

o Quality 

� Mechanical errors 

• Mass loading effect of transducers 

• Shaker-structure interaction 

• Supporting of the structure 

� Measurement noise 

� Nonlinearity 

o Quantity 

� Measuring enough points on the structure 

� Measuring enough degrees of freedom (i.e. Rotational DOFs) 

• Signal processing errors 

o Leakage 

o Aliasing 
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o Effect of window functions 

o Effect of Discrete Fourier Transform 

o Effect of averaging 

 

• Modal analysis errors : 

o Circle-Fit Modal Analysis 

o Line-Fit Modal Analysis 

o Global Modal Analysis 

 

All these errors may lead to inaccurate and imprecise results in the modal test. If the 

mechanical errors are considered, these types errors are embedded into the data 

which are acquired. When shakers are used in modal test, the shaker dynamics may 

affect the total dynamics of the structure to be tested. In shaker testing axial force 

should be the only excitation of the structure therefore in order to provide this, a slim 

rod which is called stinger is used to attach the shaker to the structure. A stinger is 

stiff in the axial direction and flexible in the other directions. 

 

Another important source of error is the mass loading effects of the transducers. In 

order to measure the dynamic force and response of a structure, in terms of FRFs, it 

is necessary to use accelerometers and force transducers; however usage of these 

equipments introduces changes to the structure due to the addition of masses. The 

input force excitation is partly spent on accelerating of the force transducer mass and 

also the accelerometer mass [46]. This is the main reason of mass-loading effects of 

transducers. Generally followed approach to resolve this problem is to use small 

accelerometers or force transducers in order to minimize the mass loading effect. 

Another approach is to employ mass-cancellation correction. 

 

The boundary condition in modal test also plays an important role in the accuracy of 

the model constructed. In the free-free condition the test structure should be freely-

supported in space and should not be attached at any of its coordinates; however it is 
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not possible to provide a truly free-free support in practice. Therefore, this boundary 

condition is approximated by supporting the test structure on very soft springs such 

as light elastic cords or by hanging the structure with soft elastic bungee. However, 

especially for flexible structures, the elastic modes may interfere with rigid body 

modes and flexible modes may be affected from these rigid body modes. In the 

grounded condition the selected points of the structure should be fixed; but it is not 

possible to provide truly grounded condition in practical cases. All these 

approximations introduce certain errors to the mathematical model constructed. 

 

4.2 Application of Structural Modification Method on Garteur SM-AG19 

Model  

 

In the previous part of this thesis structural modification method was applied to 

different theoretical models that were modeled by finite element method. In this 

section the structural modification method will be applied to a real structure.  In 

order to apply the structural modification method to a real structure, GARTEUR SM-

AG19 test structure which is used in the literature for modal testing [50], was 

constructed in Aselsan Inc.  Microelectronics, Guidance and Electro Optics Division 

and modal test is conducted both on the original and modified GARTEUR SM-AG19 

test structure. GARTEUR is the abbreviation of Group for Aeronautical Research 

and Technology in Europe and this GARTEUR SM-AG19 structure has been 

designed by a multinational research group. This structure has been designed in order 

to use the same experimental data for different investigations on structural dynamics 

and to have a common structure on which modal tests and modal analyses are 

conducted. In this part, in order to show the performance of the structural 

modification technique, GARTEUR SM-AG19 model was modified with beams 

under the wings which act as stiffeners causing increased flexural rigidity. The 

GARTEUR SM-AG19 model which was constructed in Aselsan Inc 

Microelectronics, Guidance and Electro Optics Division differs slightly from the 

original GARTEUR SM-AG19 model. In this model there was no viscoelastic tape 
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and additional dampers, so damping characteristics of the GARTEUR SM-AG19 

model used in this study is different from the original one. The general view of the 

GARTEUR SM-AG19 model constructed is shown in Figure 4.1. 

 

 

 

 

Figure 4.1 General View of  the GARTEUR SM-AG19 Model 

 

 

In order to modify the original GARTEUR SM-AG19 model, two beams were 

attached under each wing. Two modal tests were performed: one on the original 

model which has no additional beam under the wings and one on the modified 

structure with additional beams under the wings. Firstly, in order to validate the finite 

element model of the original GARTEUR SM-AG19 model, the results obtained 

from the finite element method and modal test were compared. As a second step, in 

order to show the accuracy of the structural modification method, the results obtained 
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from the finite element method for the modified GARTEUR SM-AG19 model and 

modal test were compared. 

 

4.2.1 Modal Test Setup and Configuration  

 
The overall mass is GARTEUR SM-AG19 model constructed is 41 kg and as a 

material, aluminum was used.  The overall length of the structure is 1.5 m, the wing 

span is 2.0 m. The details of the dimensions of the model are shown in Figure 4.2 

 

 

 

 

Figure 4.2 Dimensions of the GARTEUR SM-AG19 (All dimensions are in mm) 

 

 

In the construction of GARTEUR SM-AG19 model, bolted joints are used. The 

details of the bolted joints are given in Figure 4.3. 
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Figure 4.3 Details of Bolted Joints 

  

 

Modal tests were performed with free-free boundary conditions. In order to provide 

free-free boundary condition, the test-bed was hung from the attachment point on the 

model to the metal cage support. As the attachment points, special hanging adaptor 

was designed on the test-bed. For the suspension, 4 elastic bungees were used. The 

details of the bungee, metal cage support and attachment point are shown in Figure 

4.4 and Figure 4.5. 

 

 

 

 

Figure 4.4 View of Bungee and Metal Cage Support 

Elastic Bungees 

Metal Cage 
Support 
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Figure 4.5 View of Attachment Point 
 

 

The modal tests were performed by using modal impact hammer and accelerometers. 

In the experiment, total 16 accelerometers were used. The accelerometer positions of 

the experiment are shown in Figure 4.6. The directions and the nodes used for 

excitation and measurement are given in Table 1 and Table 2 respectively.     

 

 

 

 

Figure 4.6 Accelerometer Positions 
 

Attachment 
Point 
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Table 4.1 Excitations Nodes and Directions 

 

Directions 
Excitation Nodes 

x y z 
1 √ √ √ 
2     √ 
3 √ √ √ 
4 √   √ 
5 √   √ 
6 √ √ √ 
7     √ 
8 √ √ √ 
9   √   

10   √   
11 √  √ 
12 √  √ 
13   √   
14   √   

 

 

Table 4.2 Measurement Nodes and Directions 

 

Directions 
Measurement Nodes 

x y z 
1     √ 
2     √ 
3 √   √ 
4     √ 
5     √ 
6 √   √ 
7     √ 
8     √ 
9   √   

10   √   
11     √ 
12     √ 
13   √   
14   √   
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The only differences between the GARTEUR SM-AG19 model and modified system 

are the beams attached under the wings. In order to prevent parameters that may 

bring differences between the results of modal test of the original and modified 

models, the same accelerometer configurations and types were used for the original 

GARTEUR SM-AG19 model and modified system in the modal tests.  

 

Modal test was conducted between 0-100 Hz and excitation in each DOF was 

performed for 5 averages. PULSE 11.0 software and Pulse Front-End 3560C were 

used in the modal tests. In the software, coherence values were monitored in the 

selected frequency range during the excitation, according to the coherence values, it 

was decided to repeat the hammer hit or not. Instrument and transducer properties are 

given in Table 4.3 and Table 4.4 respectively. In Figure 4.7, data acquisition system 

and modal hammer are shown. 

 

 

Table 4.3 Instrumentation and Software Information 

 

Instrumentation and Software 

Accelerometer 
Bruel & Kjaer 4507 B 

 Bruel & Kjaer 4508 B 

Impact Hammer Bruel & Kjaer 8200+2646 

Analyzer Pulse Front-End 3560C 

Software Pulse 11.0 
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Table 4.4 Transducer Properties 

 

Transducer Type 
Frequency Range 

10% 
Input 

Sensitivity 
Accelerometer Bruel & Kjaer 

4507 B 
0.3-6k 10 mV/m/s2 

Accelerometer Bruel & Kjaer 

4508 B 
0.3-8k 10 mV/m/s2 

 

 

     

 

Figure 4.7 View of Data Acquisition System and Modal Hammer 

 

 

4.2.2 Modal Test of Original Garteur SM-AG19 Model 

  

The GARTEUR SM-AG19 model test setup and the measurement points on the test 

setup are shown in Figure 4.8 and Figure 4.9. Total 16 accelerometers were used in 

the modal test of original GARTEUR SM-AG19 model.  
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Figure 4.8 View of Measurement Points on the Left Wing and Vertical Stabilizer 

 

 

        

 

Figure 4.9 View of Measurement Points on the Vertical Stabilizer and Right Wing 

 

 

The screen shot from the user interface of PULSE 11.0 software during the modal 

test is shown in Figure 4.10. In this figure the FRF measurement and coherence plot 

and measurement control windows can be seen. The first 6 natural frequencies of the 

original GARTEUR SM-AG19 model test setup are given in Table 4.5.  
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Figure 4.10 The Screen Shot from the User Interface of PULSE 11.0 
 

 

Table 4.5 The First 6 Natural Frequencies (Excluding Rigid Body Modes) of the 

Original GARTEUR SM-AG19 

 

Experimental Mode Number 
Original Natural 
Frequencies (Hz) 

1 6 

2 16.75 

3 38 

4 39.5 

5 39.75 

6 46.25 
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The mode shapes of the original test-bed for the first six flexible modes in the 

frequency range of 0-50 Hz. are shown in Figure 4.11. 

 

 

 

 

Figure 4.11 The Mode Shapes of the Original Test-bed 
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For the original test-bed, direct point FRF of node 3 in z-direction is given in Figure 

4.12. 
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Figure 4.12 Experimental FRF of Node 3 in z-Direction for Original Test-Bed 

 

 

When the structure is excited at node 3 in z-direction, screen shot of the coherence 

plot of the measurement at node 3 in z-direction is shown in Figure 4.13. 

 

 

 

 

Figure 4.13 Coherence Plot of the Measurement at Node 3 in z-direction 
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4.2.3 Modal Test of Modified Garteur SM-AG19 

 

GARTEUR SM-AG19 model was modified by attaching beams under the wings. 

The mass of each beam under the wing is 0.554 kg. The modifying beams under the 

wings can be seen in Figure 4.14. 

 

 

 

 

Figure 4.14 View of the Modifying Beams 

 

 

As seen in Figure 4.15, the modifying beams were attached under the wings by 

bolted joints in order to provide rigid connections between the modifying beams and 

wings.  

 

 

 

 

Figure 4.15 Bolted Joints on Modifying Beams 
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Natural frequencies of the modified GARTEUR SM-AG19 model are given in Table 

4.6. 

 

  

Table 4.6 The First 6 Natural Frequencies of the Modified GARTEUR SM-AG19 

Model 

 

Mode Number 
Modified Natural 
Frequencies (Hz) 

1 6.25 

2 17.75 

3 38.5 

4 44 

5 44.25 

6 46.75 
 

 

4.2.4 FE Model of Original and Modified Garteur SM-AG19 Model 

 

In order to construct and analyze the finite element model of the test bed, ANSYS 

11.0 was used. The test-bed was modeled using SOLID 186 elements which have 20 

nodes per element. The FE model of the original GARTEUR SM-AG19 model 

(Figure 4.16) consists of 140 SOLID 186 elements and the finite element model has 

1380 nodes with 3 translational DOF per node yielding total DOF of 4140. The FE 

model properties of the original GARTEUR SM-AG19 model are given in Table 4.7. 

The material properties assigned to finite element model of GARTEUR SM-AG19 

model is given in Table 4.8. 
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Table 4.7 FE Model Properties 

 

Element Type Used In FEM SOLID 186 
Number of Elements 140 

Number of Nodes 1380 
DOF 4140 

 

 

Table 4.8 The Material Properties 

 

Material Property Value 
Density (ρ) 2770 kg/m3 

Poisson’s Ratio (ν) 0.33 
Modulus of Elasticity (E) 71 GPa 

 

 

 

 

Figure 4.16 FE Model of Original GARTEUR SM-AG19 Model 

 

 

The modifying beams attached under the wings are modeled by using SOLID 186 

elements. The finite element properties of the modifying beam is given in Table 4.9 

and the geometrical and material properties of the modifying beam are given in Table 

4.10. 
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Table 4.9 FE Model Properties 

 

Element Type Used In FEM SOLID 186 
Number of of Elements 6 

Number of Nodes 70 
DOF 210 

 

 

Table 4.10 The Material Properties 

 

Modulus of Elasticity (E) 71 GPa 

 Poisson’s Ratio (νννν) 0.33 

Density (ρρρρ) 2770 kg/m3 
Length 200mm 
Width 100mm 

Thickness 10mm 
 

 

In the finite element model of the modified GARTEUR SM-AG19 model, same type 

of elements and material were used. The FE model of the modified GARTEUR SM-

AG19 model is given in Figure 4.17. In the FE model, the modifying beams are 

rigidly connected to the original GARTEUR SM-AG19 model, therefore no 

additional stiffness was introduced to the interface nodes. 

 

 

 

 

Figure 4.17 FE Model of the Modified GARTEUR SM-AG19 Model 
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The modal analysis of the original GARTEUR SM-AG19 model is performed by 

using ANSYS 11.0. Based on the results of modal analysis, first six mode shapes of 

and the model natural frequencies are given in Figure 4.18 and Table 4.11 

respectively. 

 

 

 

 

 

 

Figure 4.18 Mode Shapes of Original GARTEUR SM-AG19 
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Table 4.11 Natural Frequencies of Original GARTEUR SM-AG19 

 

Mode Number 
Natural Frequencies (Hz) 

(FEA) 
1 5.883 

2 16.583 

3 38.318 

4 40.082 

5 40.134 

6 45.445 
 

 

The comparison of the natural frequencies of original GARTEUR SM-AG19 model 

calculated from FE model and those obtained experimentally are shown in Table 

4.12 along with percentage errors in FEA results. 

 

 

Table 4.12 Comparison of FEA and Experimental Results 

 

Mode 
Number 

Experimental 
Natural  

Frequencies (Hz) 

FEA Natural  
Frequencies 

(Hz) 
Error (%) 

1 6 5.883 -1.95 

2 16.75 16.583 -1.00 

3 38 38.318 0.84 

4 39.5 40.082 1.47 

5 39.75 40.134 0.97 

6 46.25 45.445 -1.74 
 

 

As seen from Table 4.12, natural frequencies calculated from FEA are very close to 

those obtained experimentally. All the relative percentage errors in the natural 

frequencies are below 2 %. 
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4.2.5 Structural Modification on FE Model of Garteur SM-AG19 Model  

 

In this section firstly, direct point FRF of node 217 in z-direction (transverse 

direction) in the FE model of the GARTEUR SM-AG19 model is compared with the 

corresponding FRF obtained experimentally. The position of the node 217 in the FE 

model is shown in Figure 4.19. Then the structural modification is applied to the 

original model by attaching beams under the wings. 

 

 

 

 

Figure 4.19 View of Node 217 of the FE Model of GARTEUR SM-AG19 Model 

 

 

In the software developed in this thesis, the FRFs obtained from analysis of the 

original FE model were used in order to find the FRFs of the modified structure. 
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These FRFs were compared with those obtained experimentally. The connection 

nodes of the original model and the corresponding nodes of the modifying beams 

were set as inputs. Starting frequency was set as 1 rad/s and the ending frequency 

was selected as 380 rad/s. The structural damping coefficient was taken constant for 

all modes and selected as 0.032. Direct point FRF of node 217 in Z direction was 

selected as the required FRF, in order to compare it with the corresponding FRF 

obtained experimentally (Figure 4.20). 

 

 

 

 

Figure 4.20 Direct Point FRF of Node 217 in z-Direction for Original and Modified 

GARTEUR SM-AG19 Model 
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By using the structural modification software, the driving FRF of the modified model 

was obtained for node 217 in Z direction. The comparison of FRFs is shown in 

Figure 4.21 to Figure 4.24. In these figures, Experimental FRF (Original Structure) 

represents FRF obtained experimentally for the original structure; Experimental FRF 

(Modified Structure) represents FRF obtained experimentally for the modified 

structure. Theoretical FRF (FEA-Original Structure) is FRF calculated from ANSYS 

11.0 for the original structure, Structural Modification FRF (Modified Structure) is 

the FRF calculated from structural modification program by using 400 modes in the 

calculation of the FRFs for the original structure. 
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Figure 4.21 Experimental FRF at 3Z3Z for the Original and Modified GARTEUR SM-AG19 Model 
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Figure 4.22 Theoretical (FEA) and Experimental FRF at 3Z3Z for Original GARTEUR SM-AG19 Model 
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Figure 4.23 Theoretical (Structural Modification Method) and Theoretical (FEA) FRF at 3Z3Z for Modified GARTEUR SM-

AG19 Model 
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Figure 4.24 Theoretical (Structural Modification Method), Theoretical (FEA) and Experimental FRF at 3Z3Z for Modified 

GARTEUR SM-AG19 
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As seen from Figure 4.21, after the modification on the GARTEUR SM-AG19 

model the dynamic characteristics of the model has changed and natural frequencies 

were shifted, therefore attaching beams under the wings has a considerable effect on 

the driving FRF of node 3 in z-direction. In Figure 4.22, which is given for the 

original structure, Theoretical FRF (FEA-Original Structure) is in good agreement 

with the Experimental FRF (Original Structure). The slight mismatch in the 

magnitudes of the FRFs at the resonances may be due to the constant loss factor used 

for all modes in the finite element model of the structure to represent the damping in 

the system. Also there is a mismatch in the first frequency which is the rigid body 

mode. In the FE analysis the boundary condition was modeled as free-free for the 

model; however in experiment free-free boundary condition of GARTEUR SM-

AG19 model was obtained by flexible suspension bungees, which do not provide an 

exact free-free boundary conditions. Therefore, this approximation causes the rigid 

body mode of the test-model to be higher.  

 

In Figure 4.23, Structural Modification FRF (Modified Structure) is compared with 

Theoretical FRF (FEA-Modified Structure) and a good agreement is obtained. In 

Figure 4.24, Theoretical FRFs are compared with Experimental FRF (Modified 

Structure). There is a good match between Structural Modification FRF (Modified 

Structure) and Experimental FRF (Modified Structure) curves. In the third elastic 

mode, there is a mismatch at the resonant frequency; this is mainly due to 

discrepancy between FE model and the test model of the original structure. Moreover 

the differences between the test and theoretical data are partly due to the effect of 

modal truncation made in the computation of the FRFs of the original model, on the 

accuracy of the structural modification method. In Figure 4.25, Theoretical 

(Structural Modification Method) FRF calculated by using 400 and 1200 modes in 

the calculation of the FRF of the original structure are compared in order to show the 

effect of truncation.  
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Figure 4.25 Theoretical (Structural Modification Method), Theoretical (FEA) and Theoretical (Structural Modification Method)-(1200 

Modes) FRF at 3Z3Z for Modified GARTEUR SM-AG19 Model 
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4.3 Discussion of Mass Loading and Suspension Effect in Modal Testing 

 

As given in the theory part of the modal test, the use of accelerometers and force 

transducers introduces changes to the structure due to the addition of masses. The 

response of a structure is affected from this mass loading affect of accelerometers 

and force transducers. This mass loading is important when the mass to be cancelled 

is of the same order as the apparent mass of the modes of the structure under the test. 

Furthermore, in modal testing, free-free boundary conditions are provided by using 

soft springs or soft bungees, therefore rigid body modes no longer have zero natural 

frequencies.  

 

In this section, the effects of mass loading of accelerometers and stiffness effect of 

elastic bungees on the modal test are investigated. In order to show these effects, the 

finite element models were constructed by adding the accelerometers as point masses 

and suspension bungees as springs.  

 

4.3.1 Effect of Mass Loading of Accelerometers in Modal Testing  

 

In this section, accelerometers are modeled as point masses in the FE model and they 

are lumped at the positions of measurement points. Based on the modal test 

performed on original GARTEUR SM-AG19 model, the added masses are given in 

Figure 4.26 and Table 4.13. Each accelerometer has a mass of 0.0048 kg. 
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Figure 4.26 View of the Added Masses 

 

 

Table 4.13 Location and Masses of Accelerometers 

 

Measurement 
Nodes 

Corresponding Node  
on FE model Mass Added (kg) 

1 G 0.0048 

2 F 0.0048 

3 H 0.0096 

4 E 0.0048 

5 A 0.0048 

6 D 0.0096 

7 B 0.0048 

8 C 0.0048 

9 I 0.0048 

10 K 0.0048 

11 M 0.0048 

12 N 0.0048 

13 J 0.0048 

14 L 0.0048 
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The FE model constructed has the same mesh properties as that of the original 

GARTEUR SM-AG19 model, only difference being the mass added to the structure 

which represents mass loading effect of accelerometers. In Table 4.14, the first six 

natural frequencies are compared for the GARTEUR SM-AG19 model and mass 

loaded GARTEUR SM-AG19 model.  

 

As seen in Table 4.14, adding accelerometers to the FE model of original GARTEUR 

SM-AG19 model has a very slight effect on the natural frequencies, especially for 

the first flexible modes. Therefore, for the test structure studied there is no 

considerable shift in the natural frequencies due to mass loading of accelerometers in 

the frequency range of interest. 

 

 

Table 4.14 Comparison of Natural Frequencies 

 

Mode 
Number 

Natural  
Frequencies of Original 

Model (Hz) 

Natural  
Frequencies of Original 

Model With 
Accelerometers (Hz) 

Change with 
Respect to 

Natural 
Frequency of 

Original 
Model (%) 

1 5.881 5.859 -0.37 

2 16.568 16.495 -0.44 

3 38.278 38.126 -0.40 

4 40.069 39.354 -1.78 

5 40.117 39.404 -1.78 

6 45.377 45.312 -0.14 
 

 

4.3.2 Suspension Effect in Modal Testing 

 

In this section, the suspension bungees used in the modal test of GARTEUR SM-

AG19 model were modeled as springs which have the same stiffness values of the 
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suspension bungees.  In modal test of GARTEUR SM-AG19 model the rigid body 

mode was found as 2.75 Hz. In order to find equivalent stiffness value of the bungees 

the following simple model which is shown in Figure 4.27 can be used. 

 

 

 

 

Figure 4.27 Simple Single Degree of Freedom (SDOF) Model 

 

 

By using this simple model the stiffness of bungee can be found from the following 

equation. 

 

GARTEUR SM-AG19

BUNGEE
bouncing

k

m
ω =    (4.1) 

 

GARTEUR SM-AG19m = 40.857  kg (4.2) 

 

2.75
bouncing

ω = Hz (4.3) 

 

Then stiffness of bungee was found as  

 

12198
BUNGEE

k =  N/m (4.4) 

 

Using this stiffness value in Equation (4.4), the FE model of the GARTEUR SM-

AG19 model with bungee was constructed. The FE model of the GARTEUR SM-
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AG19 model with bungee is given in Figure 4.28. Based on this model, modal 

analysis was performed on the model. The first six flexible natural frequencies are 

compared for the GARTEUR SM-AG19 model and GARTEUR SM-AG19 model 

with bungees in Table 4.15. 

 

 

 

 

Figure 4.28 FE Model of the GARTEUR SM-AG19 Model with Bungee 

 

 

Table 4.15 Comparison of Natural Frequencies 

 

Mode 
Number 

Natural  
Frequency of Original 

Model (Hz) 

Natural  
Frequency of Original 

Model With Bungees (Hz) 

Change with 
Respect to 

Natural 
Frequency of 

Original 
Model (%) 

1 5.881 6.001 2.04 

2 16.568 16.569 0.01 

3 38.278 38.272 -0.02 

4 40.069 40.077 0.02 

5 40.117 40.125 0.02 

6 45.377 45.38 0.01 
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It is seen from Table 4.15 that, addition of bungees into the finite element analysis, 

has a very small effect on the natural frequencies of the flexible modes. The effect of 

bungees is large only in the first mode as expected.  

 

4.3.3 Combined Effect of Suspension and Mass Loading of Accelerometers in 

Modal Testing 

 

In this section both the bungees and the accelerometers are modeled in the FE model 

of GARTEUR SM-AG19 model in order to study the combined effect of suspension 

and mass loading of accelerometers (Figure 4.29).  

 

 

 

 

Figure 4.29 GARTEUR SM-AG19 Model with Accelerometers and Bungee 

 

 

As in previous section, accelerometers were modeled as point masses and they were 

lumped at the positions of measurement points. Moreover, again the suspension 

bungees used in the modal test of GARTEUR SM-AG19 model were modeled as 

spring which has the same stiffness value of the suspension bungees.  The same 
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SDOF model (Figure 4.27) was used in order to obtain the stiffness value of the 

suspension bungees. By using this simple model the stiffness of bungee can be found 

from the following equation. 

 

GARTEUR SM-AG19 ACCELEROMETERS( )
BUNGEE

bouncing

k

m m
ω =

+
(4.1)(4.2)(4.3)(4.4) (4.5) 

 

GARTEUR SM-AG19m = 40.857 kg (4.6) 

 

ACCELEROMETERS 0.0768m = kg (4.7) 

 

2.75
bouncing

ω = Hz (4.8) 

 

Then stiffness of bungees was found as  

 

12221
BUNGEE

k =  N/m (4.9) 

  

Using this stiffness value, the finite element model of the GARTEUR SM-AG19 

model with suspension bungees and accelerometers was constructed. The first six 

flexible natural frequencies are compared for the GARTEUR SM-AG19 model and 

GARTEUR SM-AG19 model with bungees and accelerometers in Table 4.16. 

 

As seen in Table 4.16, for the first mode, the effect of suspension bungees can easily 

be identified. However the changes in the natural frequencies are very small for the 

first six flexible modes. 
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Table 4.16 Comparison of Natural Frequencies 

Mode 
Number 

Natural 
Frequency of 

Original 
Model (Hz) 

Natural 
Frequency of 

Original Model 
With Bungees 

and 
Accelerometers 

(Hz) 

Change of 
Natural 

Frequency of 
Original Model 
With Bungees 

and 
Accelerometers 
with Respect to 

Natural 
Frequency of 

Original Model 
(%) 

Experimental 
Natural 

Frequency of 
Original Model 

1 5.881 5.975 1.6 6 

2 16.568 16.492 -0.46 16.75 

3 38.278 38.127 -0.39 38 

4 40.069 39.361 -1.77 39.5 

5 40.117 39.41 -1.76 39.75 

6 45.377 45.321 -0.12 46.25 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 110 

CHAPTER 5 

 

 

IMPORTANCE OF USING ADDITIONAL DOF IN MODELING 

CONTINUOUS MODIFICATIONS 

 

 

 

5.1 Introduction 

 

When a modification is introduced to an original structure, the dynamic 

characteristics of the original structure change. The correct prediction of this change 

depends on the modification and the modeling approach used. When modification is 

in the form addition of rigid mass elements at certain locations then modification can 

be modeled as lumped elements without increasing the total DOF of the system. 

However when the modification is in the form of additional distributed mass then the 

modification can be modeled either as lumped or distributed, and the choice of the 

modeling approach may give different results for the modified structure. When the 

modification is modeled as distributed, the inertial effects of the modification are not 

neglected and furthermore the additional DOFs are introduced to the original 

structure. However, in the lumped modification approach, the inertial effects of the 

modifying structure are neglected and this may bring certain errors to the results. 

Furthermore, when the modification is in the form additional beam as in the case 

study in section 3.2.4, it is unavoidable to use distributed modification method, as the 

modification will also change the stiffness of the structure. 

 

Considering the aircraft shown in Figure 5.1, the dynamic properties of the external 

payloads under the wings affect the dynamics characteristics of the aircraft. 

Therefore, while analyzing the whole aircraft with its external payloads, modeling 
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the external payloads as lumped modifications leads to considerable errors. In order 

to demonstrate the importance of the choice of modeling approach for the 

modifications, two different case studies will be given in this chapter. In the first case 

study, the FE model of a beam is modified with a smaller beam attached under it and 

this modification is modeled both as lumped and distributed then the natural 

frequencies and FRFs of these models are compared. In the second case study, in 

order to demonstrate a modification under the wing of an aircraft, the FE model of 

GARTEUR SM-AG19 model is modified by attaching smaller beams under the 

wings. These beams are modeled first as lumped and then distributed, and the results 

are compared. 

 

 

 

 

Figure 5.1 The Aircraft Model 

 

 

5.2 Case Studies  

 

5.2.1 Modification of a Beam Model 

 

In this case study, the FE model of a beam is constructed by using ANSYS 

Workbench 11.0 (Figure 5.2). The original beam model has connection parts under it 
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which are used to represent the interface structure for the modifying beam attached 

under the original one. After the FEA for the original beam, the natural frequencies 

shown in Table 5.1 are obtained. In order to compare the results obtained with 

different modeling approaches, the modifying part is modeled first as lumped and 

then distributed. 

 

 

 

 

Figure 5.2 The FE Model of the Original Beam 
 

 

Table 5.1 The Natural Frequencies of the Original Structure 

 

Mode Number 
Natural Frequencies 

of Original Model 
(Hz) 

1 90.303 

2 248.6 

3 412.34 

4 486.17 

5 512.18 

6 802.62 

7 826.26 
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5.1.1.1 Distributed Model of the Modifying Beam 

 

In this approach, the modifying beam is modeled as distributed therefore the inertial 

effects of the modifying beam are not neglected. Moreover, the additional DOFs are 

introduced to the original structure due to modeling approach of the structure.  Based 

on this modeling approach, the FE model of the modified beam shown in Figure 5.3 

is constructed. The natural frequencies of the modified beam are given in Table 5.2. 

 

 

 

 

Figure 5.3 The FE Model of the Modified Beam 

 

 

Table 5.2 The Natural Frequencies of Modified Model - Distributed Modeling 

 

Mode Number 
Natural Frequencies of 

Modified Model – 
Distributed Modeling (Hz) 

1 87.963 

2 235.7 

3 419.63 

4 458.74 

5 471.06 

6 613.29 

7 696.92 



 114 

5.1.1.2 Lumped Model of the Modifying Beam 

 
In this approach, since the modifying beam is modeled as lumped, the inertial effects 

of the modifying beam are neglected. Also the approach of lumped model simulates 

the structural modifications without additional DOFs. In order to model the 

modifying beam as lumped, the parts shown in Figure 5.4 are used. Each of these 

parts has the half of the mass of the modifying beam. These parts are modeled as 

rigid by taking a very high value of modulus of elasticity and lower value for the 

poisson’s ratio. The FE model of the modified beam shown in Figure 5.5 is 

constructed based on this modeling approach.  

 
 

 

 

Figure 5.4 The Lumped Model of the Modifying Beam 

 

 

 

 

Figure 5.5 The FE Model of the Modified Beam 
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Performing the FEA, the natural frequencies are shown in Table 5.3 are obtained for 

the modified beam. 

 

 

Table 5.3 The Natural Frequencies of Modified Model – Lumped Modeling 

 

Mode Number 
Natural Frequencies of Modified 
Model - Lumped Modeling (Hz) 

1 81.468 
2 237.89 
3 409.07 
4 440.78 
5 459.44 
6 715.03 
7 722.19 

 

 

5.1.1.3 Comparison of the Results 

 
In this part, the natural frequencies and the corresponding mode shapes obtained by 

using different modification models are compared. Moreover the FRFs of the node 

24 in x-direction (Figure 5.6) are obtained by using both models and they are 

compared.  

 

 

 

 

Figure 5.6 The View of Node 24 
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The mode shapes obtained by using lumped and distributed models are shown in 

Figure 5.7 and Figure 5.8. 

 

 

  

  

  

  

  

 

Figure 5.7 Comparison of the Mode Shapes (1st – 5th Mode Shapes) 
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Figure 5.8 Comparison of the Mode Shapes (6th – 7th Mode Shapes) 

 

 

The comparison of the natural frequencies is given in Table 5.4. 

 

 

Table 5.4 Comparison of Natural Frequencies Obtained by Using Lumped and 

Distributed Modification Models 

 

Mode Number 

Natural 
Frequencies of 

Modified Model - 
Distributed 

Modeling (Hz) 

Natural 
Frequencies of 

Modified Model – 
Lumped Modeling 

(Hz) 

Change with 
Respect to 
Distributed 

Modeling (%) 

1 87.963 81.468 -7.38 

2 235.7 237.89 0.93 

3 419.63 409.07 -2.52 

4 458.74 440.78 -3.92 

5 471.06 459.44 -2.47 

6 613.29 715.03 16.59 

7 696.92 722.19 3.63 
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When the natural frequencies in Table 5.4 are investigated, it is seen that, for the first 

seven natural frequencies except the second one, the lumped model introduces 

considerable errors; especially in the 1st and 6th natural frequencies these errors are 

larger. Furthermore as seen in Figure 5.7 and Figure 5.8, the 4th and 5th mode shapes 

and the 6th and 7th mode shapes switches.  

 

In Figure 5.9, the comparison of FRFs obtained by using lumped and distributed 

modification models for node 24 in x-direction is given. In Figure 5.9, “Modified 

Structure (FEA)” represents the modified model with distributed modification and 

“Modified Structure with Lumped Model (FEA)” represents the modified model with 

lumped modification. As seen in Figure 5.9, there is a considerable discrepancy 

around the first natural frequency which can also be seen from the values inTable 

5.4. 
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Figure 5.9 Comparison of FRFs for Node 24 in x-direction 
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5.2.2 Modification of a GARTEUR SM-AG19 Model 

 

In this case study, the FE model of GARTEUR SM-AG19 model is constructed by 

using Ansys Workbench 11.0 (Figure 5.10). The GARTEUR SM-AG19 model has 

connections parts under it which is used to represent the interface structure for the 

modifying beam attached under the wings. These connection parts are modeled as 

rigid in the FE models. Performing the FEA for the original GARTEUR SM-AG19 

model, the natural frequencies shown in Table 5.5 are obtained. As in the previous 

case study, two different modeling approaches which are distributed and lumped 

model approach are performed for the modifying structure. The natural frequencies 

and the FRFs obtained from these two different models are compared.  

 

 

 

 

Figure 5.10 FE Model of the Original GARTEUR SM-AG19 Model 

 

 

 



 120 

Table 5.5 The Natural Frequencies of the Original GARTEUR SM-AG19 Model 

 

Mode Number 
Natural Frequencies of Original 

Model (Hz) 

1 5.91 

2 16.81 

3 38.89 

4 42.96 

5 43.03 

6 46.81 
 

 

5.2.2.1 Distributed Model of the Modifying Beams 

 

In this approach, the modifying beams attached under the wings are modeled as 

distributed and additional DOFs are introduced to the original structure. Since the 

modifying beam is modeled as distributed, the inertial effects of the modifying beam 

are also included in the FEA of the modified structure. The FE model constructed for 

the modified GARTEUR SM-AG19 model is shown in Figure 5.11. The natural 

frequencies obtained from the FEA are also given in Table 5.6. 

 

 

 

 

Figure 5.11 The FE Model of the Modified GARTEUR SM-AG19 Model 
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Table 5.6 The Natural Frequencies of Modified Model – Distributed Modeling 

 

Mode Number 
Natural Frequencies of Modified 

Model – Distributed Modeling (Hz) 

1 4.62 

2 15.83 

3 30.61 

4 33.83 

5 34.32 

6 35.31 
 

 

5.2.2.2 Lumped Model of the Modifying Beams 

 

In this approach, the modifying beams are modeled as lumped, thus the inertial 

effects of the modifying structure are not introduced to the original structure. In order 

to model the modifying beams as lumped, almost rigid parts each of which has the 

half of the mass of the modifying beam are attached on the original GARTEUR SM-

AG19 model. The FE model constructed for the modified beam is shown in Figure 

5.12. The natural frequencies obtained from the FEA are also given in Table 5.7. 

 

 

 

 

Figure 5.12 The FE Model of the Modified GARTEUR SM-AG19 Model 
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Table 5.7 The Natural Frequencies of Modified Model – Lumped Modeling 

 

Mode Number 
Natural Frequencies of Modified 
Model – Lumped Modeling (Hz) 

1 4.59 

2 15.27 

3 27.87 

4 27.97 

5 35.55 

6 36.04 
 

 

5.2.2.3 Comparison of the Results 

 

In this part, the natural frequencies and the FRFs of the node 131 in x-direction 

(Figure 5.13) obtained by using different modification models are compared. The 

comparison of the natural frequencies is given in Table 5.8. 

 

 

 

 

Figure 5.13 The View of Node 131 
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Table 5.8 Comparison of Natural Frequencies Obtained by Using Lumped and 

Distributed Modification Models 

 

Mode Number 

Natural 
Frequencies of 

Modified Model - 
Distributed 

Modeling (Hz) 

Natural 
Frequencies of 

Modified Model - 
Lumped Modeling 

(Hz) 

Change with 
Respect to 
Distributed 

Modeling (%) 

1 4.62 4.59 -0.65 
2 15.83 15.27 -3.54 
3 30.61 27.87 -8.95 
4 33.83 27.97 -17.32 
5 34.32 35.55 3.58 
6 35.31 36.04 2.07 

 

 

From Table 5.8, it is observed that, for the first six natural frequencies except the 

first one, the lumped model introduces considerable errors; especially in the 3rd and 

4th natural frequencies the lumped model leads to much larger errors.  

 

In Figure 5.14, the comparison of FRFs obtained by using lumped and distributed 

modification models for node 131 in x-direction is given.  
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Figure 5.14 Comparison of FRFs of Node 131 in x-direction 
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As seen in Figure 5.14, between 0-50 Hz there is a considerable discrepancy between 

the FRF curves around natural frequencies except for the first natural frequency.  

 

5.3 Conclusions 

 
As shown in the case studies, modeling approach of the modifying structure leads to 

different results for the modified structures. Modeling distributed modifications as 

lumped, causes considerable errors in the natural frequencies and the FRFs of the 

modified structure. This emphasizes the choice of modeling approach for distributed 

modifications. 
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CHAPTER 6 

 

 

RESULTS AND CONCLUSIONS  

 

 

 

6.1 Summary of the Results and Conclusions 

 

The main objective of this thesis is to obtain the dynamic characteristics of a 

modified structure from those of the original structure and the system matrices of 

distributed modifications by using structural modification methods with additional 

DOFs.  

 

In this thesis, the theories of the structural dynamic modification methods with and 

without additional DOFs are studied in detail. The structural modification methods 

without additional degrees of freedom and the modeling approaches for distributed 

modifications without introducing additional DOFs to the original structure are 

given. When additional DOFs are introduced to the original structure for a distributed 

modification, then the modification problem becomes more complex. Therefore, 

structural modification techniques with additional DOFs should be used in order to 

solve such problems. The theoretical backgrounds of these methods are also 

explained in the scope of this thesis. Furthermore, since the modifications in real life 

are usually distributed, a modeling approach for distributed modifications is given. 

 

In this thesis, Özgüven’s structural modification method with additional DOFs [24] 

is applied to structures with distributed modifications. It is shown in this study that 

distributed structural modifications in the form of, for instance a stiffener to a plate, 

can successfully be treated as a structural modification problem with additional DOF. 
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In order to apply the structural dynamic modification method developed by Özgüven 

[24] for distributed modification problems, a computer program is developed in 

MATLAB. The computer program developed in MATLAB has a graphical user 

interface and is capable of solving structural dynamic modification problems with 

additional DOFs.  The computer program uses natural frequencies and the modal 

vectors of the original structure, and mass and stiffness matrices of the modifying 

structure. The natural frequencies and the modal vectors for the original structure are 

extracted from the modal analysis results of the original structure performed in 

ANSYS. The mass and stiffness matrices of the modifying structure are obtained by 

using the “.full” modal analysis result file of ANSYS. The experimental results for 

the natural frequencies and the mode shape vectors of the original structure can also 

be used in the computer program developed in MATLAB. The details and user 

manual of the computer program is given Appendix A.  

 

The computer program developed to solve the structural modification problems with 

additional DOFs is validated with different theoretical case studies. In the case 

studies, plate and beam models are used and they are all modeled in ANSYS. In 

order to show the capability of the computer program developed, different case 

studies with different boundary conditions, different damping values and different 

number of DOFs per node are solved and the results are validated by comparing 

them with FEA results of the modified system. An original plate model that has 6 

DOF per node is modified with a smaller plate and the dynamic characteristic of the 

modified structure are obtained by using the computer program and they are 

compared with those of the FEA of the modified structure. Since the structural 

modification method with additional DOFs [24] is an exact method, a very good 

agreement is observed in the results. The method is also applied to a beam structure 

which has 3 DOFs per node. The FE model of the beam is modified with a smaller 

beam attached under it and FRF of the modified structure is obtained by the program. 

As in the previous case study a very good agreement is observed.  
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Since FRF matrices of the original structure are used in the structural modification 

method, the validity of the method strongly depends on accuracy of the FRFs of the 

original structure. The FRFs of the original structure are obtained by using the modal 

summation of the modal responses and the accuracy of the FRFs depends on the 

modal truncation or the number of modes used in this summation. In order to show 

the sensitivity of the method, FE of a beam is constructed in ANSYS and then it is 

modified by attaching a smaller beam under it. While performing structural 

modification method analysis in the computer program, the number of modes used in 

the calculation of the FRFs of the original structure is varied, and the results for each 

case are compared with those obtained from FEA of the modified structure. Due to 

the modal truncation in the calculation of the FRFs of the original structure, 

discrepancies are observed in the FRFs calculated at higher frequencies when 

insufficient number of modes is used in calculating the FRFs of the original 

structure. It is observed that, using higher number of the modes in the computation of 

the FRFs of the original structure increases the accuracy of the FRFs predicted for 

modified structure, and the effect of truncation is more pronounced on the FRFs of 

the modified structure compared with that on the FRFs of the original structure. 

 

Although the structural modification method with additional DOFs [24] is validated 

with different theoretical case studies, in real life the applications are more complex. 

Therefore in order to apply and validate the method when applied to a real structure, 

the GARTEUR SM-AG19 structure designed by a multinational research group 

(Group for Aeronautical Research and Technology in Europe) was constructed. This 

GARTEUR SM-AG19 structure is being used extensively in the field of modal 

testing in literature [50]. The GARTEUR SM-AG19 structure is modified by 

attaching beams under the wings of it. Modal tests are conducted on the original and 

modified GARTEUR SM-AG19 structures and the FRFs of both structures are 

experimentally obtained. The experimental FRFs of the original and modified 

structures are compared in order to see the effect of the modification under the wings 

of the structure. It is observed that the natural frequencies of the structure have 
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changed due to the modifications applied to the structure. Since the structural 

modification method uses the modal data of the original structure, the FE model of 

the original GARTEUR SM-AG19 structure is also obtained and FEA is performed 

in ANSYS 11.0. In order to see the accuracy of the FE model of the original 

GARTEUR SM-AG19 structure, the FRFs obtained theoretically and experimentally 

are compared. It is observed that there is a good agreement between Theoretical FRF 

(FEA-Original Structure) and the Experimental FRF (Original Structure). However, 

due to the constant loss factor used for all modes in the FE model of the structure to 

represent the damping in the system, there is a slight mismatch in the magnitudes of 

the FRFs at some resonances. In the FE model, boundary conditions for the model 

were taken as free-free; however in the experiment free-free boundary condition of 

GARTEUR SM-AG19 model was obtained by flexible suspension bungees, which 

do not provide exact free-free boundary conditions. Therefore it is observed that 

there is a mismatch in the first frequency which corresponds to the rigid body mode. 

The flexible suspension bungees used to provide free-free boundary conditions lead 

to non-zero natural frequency for the rigid body mode of the test-model.  

 

After the comparison of the Theoretical FRF (FEA-Original Structure) and the 

Experimental FRF (Original Structure), the FRFs of the modified structure are 

obtained by using the computer program developed. It is observed that Structural 

Modification FRF (Modified Structure) is in good agreement with the Experimental 

FRF (Modified Structure). However in the third elastic mode, there is a discrepancy 

at the resonant frequency which is due to the discrepancy between FE model results 

and the experimental results of the original structure. Furthermore, it is believed that, 

the differences between two results are partly due to the effect of modal truncation 

made in the computation of the FRFs of the original model. 

 

Although there are some discrepancies between Structural Modification FRF 

(Modified Structure) and the Experimental FRF (Modified Structure), from the 

results of GARTEUR SM-AG19 model it is concluded that the structural 
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modification method with additional DOFs is an effective method for predicting the 

dynamic response of a modified structure.  

 

Since most of the modifications in real life are distributed and introduce additional 

DOFs to the original structures, using lumped parameter approaches for even mass 

modifications may lead to incorrect results. Therefore, as the ultimate goal of this 

thesis the importance of structural dynamic modifications with additional DOFs is 

shown. In aircraft structures, for instance modeling an external payload under the 

aircraft as a lumped mass may cause serious errors. When the modifications are 

modeled as lumped masses, the inertial effects of the modifications are neglected, 

therefore dynamic effects of the modification can not be totally introduced to the 

original structure.  

 

In order to show the effect of these two modeling approaches on the dynamic 

response predictions of the modified structure, two different case studies are 

performed. In both case studies modifications are modeled in ANSYS Workbench. In 

this case studies, the modifications are modeled first as lumped and then as 

distributed, and the differences between the results are studied. Firstly, the FE model 

of a beam is modified by attaching a smaller beam under it, and the modification is 

modeled first as lumped and then as distributed. The natural frequencies, mode 

shapes and the FRFs obtained from these models are compared. It is observed that, 

there is a considerable difference in the natural frequencies especially at certain 

modes. Furthermore, it is seen that the order of the mode shapes are different in the 

modified models. In the second case study, a more realistic model, GARTEUR SM-

AG19 model, is used as the original structure. The FE model of the GARTEUR SM-

AG19 model is modified by attaching an external payload to the connection parts 

under the wings. As in the first case study, the modification is modeled first as 

lumped and then as distributed. The natural frequencies and FRFs are compared for 

both of modified models. It is observed that there is a considerable discrepancy 

between the natural frequencies of the modified models. Also there are differences 
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between the FRF curves of the modified models. It is concluded that lumped 

modifications introduce considerable errors to the predictions for modified models. 

Therefore, in order to obtain more accurate predictions for the modified structures, 

the modifications should be modeled as distributed and structural dynamic 

modifications with additional DOFs should be used in order to obtain the dynamic 

response of modified structures.     

 

As a summary, it is concluded in this study that an effective structural dynamic 

modification method with additional DOFs can successfully be used for structural 

dynamic modification problems with distributed modifications. A computer program 

that is compatible with ANSYS and capable of applying structural dynamic 

modification with additional DOFs for large systems is developed in MATLAB. The 

predicted results obtained by using the program developed are validated with 

different theoretical case studies. A real case application for structural modification 

is demonstrated by using GARTEUR SM-AG19 model. As a last point, the 

importance of distributed modifications and the structural dynamic modification 

methods with additional DOFs are shown.     

  

6.2 Recommendations for Future Work 

 
The computer program developed in this thesis has not a stand-alone executable file, 

therefore in order to have a stand alone executable file the program can be written by 

using different visual programming codes. Also the graphical user interface of the 

program can also be improved by using different visual programming codes.  

 

In order to predict the FRFs of the modified GARTEUR SM-AG19 model, the 

computer program uses the FEA results of the original structure and system matrices 

of the modifying structure. However as an alternative approach, the modal test 

results of the original GARTEUR SM-AG19 model may be used. Thus, whenever 

the original structure is available, rather than the response predicted from FE model 
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of the original structure, more accurate experimental results can be used. In this case 

modal expansion techniques should be used in order to have consistent DOFs with 

the FE of the modifying structure. 

 

Since most of the assembly interfaces include joints in the real life applications and 

these joints have non-linearity, non-linearity in the joints can be studied and this can 

be included in the structural dynamic modification analysis. That is, the structural 

dynamic modification method with additional DOFs may be extended to 

modifications involving non-linearity to have a better prediction for the modified 

structures. 
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APPENDIX A 

 

 

USER MANUAL 

 

 

 

 

In this appendix, the user manual for the program developed in order to apply the 

Structural Modification Method with Additional DOFs is given. 

 

A.1 Computer Program Developed for Structural Modification Method with 

Additional DOFs 

 
In this thesis, a computer program is developed in order to apply Özgüven’s 

structural modification method with additional DOFs to the structural modification 

problems. The program is developed by using the MATLAB graphical user interface. 

The general view of the graphical user interface can be seen in Figure A.1. 

 

 

 

 

Figure A.1 The General View of the Graphical User Interface 
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A.1.1 Definition of the Files Used in the MATLAB Program 

 
The computer program developed in MATLAB uses some files that are extracted 

from the modal analysis performed in ANSYS 11.0. Furthermore, in order to extract 

these files from ANSYS 11.0, some macro files and “.exe” files are used. The 

definitions of these files are given below. 

 

• FREQ_ORG.txt: The text file that contains the natural frequencies of the 

original structure.  

 

• MODAL_ORG.txt: The text file that contains the mode shape vectors of the 

original structure. 

 

• MASS_MODIF.matrix: The file that contains the mass matrix information of 

the modifying structure. 

 

• STIFFNESS_MODIF.matrix: The file that contains the stiffness matrix 

information of the modifying structure. 

 

• FREQ.txt: The text file that contains the natural frequencies of the modified 

structure. 

 

• MODAL.txt: The text file that contains the mode shape vector of the 

modified structure 

 

• ModalDataExport_Org.txt: Macro file that should be read by the ANSYS 

11.0 after the modal analysis of the original structure. 

 

• ModalDataExport.txt: Macro file that should be read by the ANSYS 11.0 

after the modal analysis of the modified structure. 
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• userprog.exe: In order to extract the “STIFFNESS_MODIF.matrix” and 

“MASS_MODIF.matrix”, this file should be run with “file.full” file which is 

obtained after the modal analysis performed in ANSYS 11.0 for the 

modifying structure.  

 

A.1.2 The Use of MATLAB Program 

 

Before running the computer program developed in MATLAB, the following steps 

should be performed. 

 

• In order to extract the “FREQ_ORG.txt” and “MODAL_ORG.txt” files from 

the ANSYS 11.0, “ModalDataExport_Org.txt” macro file should be read 

from ANSYS after the modal analysis of the original structure. 

 

• In order to extract the “FREQ.txt” and “MODAL.txt” files from the ANSYS 

11.0, “ModalDataExport.txt” macro file should be read from ANSYS after 

the modal analysis of the modified structure. 

 

• By running the “userprog.exe” file, “STIFFNESS_MODIF.matrix” and 

“MASS_MODIF.matrix” files should be extracted from the “file.full” file 

which is obtained after the modal analysis performed in ANSYS 11.0 for the 

modifying structure.  

 

Since all these extracted files are read by the program written in MATLAB, these 

files should be in the same folder with the source codes of MATLAB program. After 

performing the steps given above, the computer program developed in MATLAB can 

be run. In order to show the application of the program, the free-free plate given in 

section 3.2.1 is used and step-by-step, the application of the program is shown 

below: 
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Set the number of frequency points that will be used in the analysis (Figure A.2). 

 

 

 

 

Figure A.2 Setting the Number of Frequency Points 

 

 

Set the start and end frequencies for the analysis (Figure A.3). 

 

 

 

 

Figure A.3 Setting the Start and End Frequency 
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Set the number of nodes for the original structure (Figure A.4). 

 

 

 

 

Figure A.4 Setting the Number of Nodes of the Original Structure 

 

 

Set the number of eigenvectors extracted from the FE program (Figure A.5). 

 

 

 

 

Figure A.5 Setting the Number of Eigenvectors Extracted 
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Set the connection nodes on the original structure (Figure A.6). 

 

 

 

 

Figure A.6 Setting the Connection Nodes on the Original Structure 

 

 

Select the number of DOF per node for the original structure (Figure A.7). 

 

 

 

 

Figure A.7 Selecting the Number of DOF per Node for the Original Structure 
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Set the structural damping coefficient (Figure A.8). 

 

 

 

 

Figure A.8 Setting the Structural Damping Coefficient 

 

 

Set the number of nodes for the modifying structure (Figure A.9). 

 

 

 

 

Figure A.9 Setting the Number of Nodes of the Modifying Structure 
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Set the corresponding connection nodes on the modifying structure (Figure A.10). 

 

 

 

 

Figure A.10 Setting the Connection Nodes on the Modifying Structure 

 

 

Select the “Direct Point FRF” radio button, if direct point FRFs will be calculated 

(Figure A.11). With this option all direct point FRFs are written in an Excell file.  

 

 

 

 

Figure A.11 Selecting the “Direct Point FRF” Radio Button 
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Enter the indexes of the FRF to be calculated (Figure A.12). 

 

 

 

 

Figure A.12 Entering the Indexes of the FRF to be Calculated 

 

 

Press the “SOLVE” button and wait until the solution is performed (Figure A.13). 

 

 

 

 

Figure A.13 Pressing the “SOLVE” Button 
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Press the “DRAW” button to see the FRF curves calculated (Figure A.14). 

 

 

 

 

Figure A.14 Pressing the “DRAW” Button 

 

 

Select the “Ansys Full Model” radio button and press “DRAW” Button, in order to 

compare the results with the FEA of the modified structure. (Figure A.15). 

 

 

 

 

Figure A.15 Selecting the “Ansys Full Model” Radio Button 
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Subscripts 
 
0  Original structure 
mod  Modifying structure 

 
ABSTRACT 
In structural dynamics, it is important to obtain the dynamic properties of a modified structure 
from those of the original structure, especially for large systems. In this study, an effective 
structural modification method for modifications with additional degrees of freedom is applied  
to a real structure with distributed modifications in order to investigate the performance of the 
method. In this method, which has been proposed in an earlier study by one of the authors of 
this paper, the frequency response functions (FRFs) of the modified structure are calculated 
from those of the original system and system matrices of the modifying structure. The 
performance of the method is investigated by applying it to GARTEUR SM-AG19 model with 
modifications in the form of beams attached under the wings acting as stiffeners causing 
flexural rigidity. The receptances calculated by using the structural modification method are 
compared with measured ones. A very good agreement is observed between predicted and 
measured results, and it is concluded that the structural reanalysis method proposed can be 
successfully and efficiently used for structures with distributed modifications.      
 
1. INTRODUCTION 

 
During the design of all mechanical structures it is required to fulfill certain mechanical 
criteria. However, any modification applied to a structure has an effect of changing the 
structural properties such as resonant frequencies, mode shapes and deformation 
distribution. When, for instance, an aircraft is modified by attaching external payload to it, the 
dynamic behavior of the aircraft changes and this change can be critical as it may cause 
serious vibration problems; hence, dynamic behavior of the modified aircraft has to be 
predicted in the design stage. In order to predict the dynamic behavior accurately, the finite 
element (FE) model of the modified structure can be constructed. However it may be very 
difficult and time-consuming to construct a new FE model for every modification. Therefore it 
will be more practical to predict the dynamic behavior of the modified structure by using 
dynamic response information of the original structure and dynamic data of the modifying 
structure.  
 
Structural modification methods focus on the change of dynamic behavior of a structure due 
to modifications in mass, stiffness and damping properties of the system. Kyprianou, et al. [1] 
divided the structural dynamic modification problems into two categories: inverse structural 
dynamic modifications and direct structural dynamic modifications. Direct structural dynamic 
modification concentrates on the determination of modified structure characteristics due to 
modification on the original structure. Conversely, inverse structural dynamic modification is 
an optimization procedure looking for necessary modifications in order to achieve the desired 
dynamic behavior. Kyprianou, et al. [1, 2] focused on inverse structural dynamic modification. 
Li and He [3] presented a new approach for structural modifications required to change the 
dynamic characteristics of an undamped system. Furthermore, Park [4, 5] studied measured 
frequency response function based inverse structural dynamic modification in order to obtain 
necessary structural modifications. In a later work, Mottershead, et al. [6] presented an 
inverse method for assigning natural frequencies and nodes of normal modes of vibration by 
the addition of grounded springs and concentrated masses. In the direct structural dynamic 
modification research area different studies were conducted on lumped and distributed 
structural modifications with or without additional degrees of freedom (DOF). For lumped 
modification problems, Özgüven [7] proposed a matrix inversion method in order to find 
receptances of locally damped structures from those of the corresponding undamped 
structure. Later a recursive solution algorithm was presented in order to avoid the matrix 
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inversion [8]. In a further work [9], Özgüven generalized this approach for reanalyzing a 
structure subjected to structural modification with or without additional DOF. In this method, 
the exact FRFs of the modified structure are calculated by using FRF matrix of the original 
system and mass, stiffness and damping matrices of the modifying structure [9]. Şanlıtürk 
[10] used the same approach, but avoided matrix inversion by employing Sherman-Morrison 
method. However, this approach, like many others in this category, is for modifications 
without additional DOF. In the direct structural dynamic modification, the number of studies 
on distributed structural modification problems is limited due to the difficulties in coupling 
continuous modifying structures with a structure. D’Ambrogio [11] studied the prediction of 
frequency response function of the modified structure subjected to modification in the form of 
rib and plate stiffeners causing flexural rigidity change and presented quasi-local 
characteristics of the additional dynamic stiffness matrix due to structural modification. Since 
dynamic properties of an original structure are identified by experimental techniques 
containing only translational DOF due to the difficulties in measuring rotational DOF, and 
structural information of modifying structure contains both rotational and translational DOF, 
reduction or expansion techniques have to be applied in order to obtain consistent dynamic 
properties for both of the structures. In a later work, D’Ambrogio and Sestieri [12-14] 
proposed a modeling approach for the distributed modifications and introduced different 
techniques to have consistent degrees of freedom for original and modifying structures. The 
difficulty introduced by rotational DOF in structural dynamics modification has been 
investigated by different researchers. Avitabile, et al. [15] developed and presented a 
different technique to determine rotational DOF to be used in structural dynamic modification 
problems. Hang, et al. [16] focused on the distributed structural dynamics modification with 
additional DOF by using the original relationship developed by Özgüven [9] and modeling 
method of the distributed modification developed by D’Ambrogio and Sestieri [12-14]. 
 
In this paper, using the original formulation of Özgüven [9], an approach is presented for 
predicting the dynamic response of a structure with distributed modifications from the 
response of the original structure itself and dynamic flexibility matrix of the modifying 
structure. In this approach the frequency response function of the original structure can be 
obtained either experimentally from modal testing or theoretically by using finite element 
method (FEM), and the modifying structure is modeled in such a way that consistent DOF 
are present at the connection nodes. The method proposed is validated by different case 
studies. The effect of modal truncation made in calculating FRFs of the original structure on 
the accuracy of the predicted FRFs is also investigated. In order to demonstrate the 
performance of the method when used for real structures, the scaled aircraft test structure 
GARTEUR SM-AG19 [17] is modified by attaching beams acting as stiffeners under the 
wings, and theoretically calculated FRFs are compared with experimentally measured ones. 
 
2. THEORY 
 
2.1. Modeling Approach for Distributed Modifications  
In a structural modification problem the additional dynamic stiffness matrix due to structural 
modification is given by  

 [ ] [ ] [ ]0D D D∆ = −  (1) 

where [ ]D  and [ ]0D  are the dynamic stiffness matrices of the modified and original 

structures, respectively. For lumped modifications [ ]D∆ corresponds directly to dynamic 

stiffness matrix of the modifying structure. However for distributed modifications, it has to be 
calculated by using Eq. (1) which may not correspond to the dynamic stiffness matrix of the 
modifying structure. In order to apply Eq. (1), the dynamic stiffness matrices of the original 
and modified structures should be available. This requires the computation of the FE models 
for original and modified structures. However, if such FE models were available, the 
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advantage of using structural modification method would be limited. D’Ambrogio and Sestieri 
[12] overcame this drawback by using quasi-local characteristics of additional dynamic 

stiffness matrix due to structural modification, [ ]D∆ . In order to obtain the additional 

dynamic stiffness matrix due to structural modification, bounded region which covers the 
modifying area is modeled for both original and modified structures.  
 
The approach proposed by D’Ambrogio and Sestieri has two drawbacks which are due to the 
inaccurate modeling of the structure and quasi-local characteristics of the additional dynamic 
stiffness matrix due to structural modification. The former error is due to not representing the 
modified structure accurately: Let us consider the beam in Figure 1, which is modeled using 
beam elements; if it is modified by adding a shorter beam on it as shown in Figure 2, as the 
neutral planes of the thinner and thicker parts of the modified beam will not coincide, the 
finite element model will not represent the real structure accurately. Modeling by using beam 
elements introduces certain errors independent from the quality of the mesh. D’Ambrogio 
and Sestieri discussed this error by modeling both original and modifying structures using 
beam and brick elements in the FE model [12]. The latter error directly depends on the size 
of the bounded region covering the modifying area. When the size of the bounded region 

which covers the modifying area is larger, the error introduced to [ ]D∆ will be smaller. In 

order to avoid such errors, a different approach for the application of the structural 
modification technique is used in this paper. If distributed modification is applied to an 
original structure in such a way that additional DOF is introduced, then it is not necessary to 
use Eq. (1) in order to calculate the additional dynamic stiffness matrix due to structural 
modification, as the problem will be a structural coupling problem. In that case, the additional 
dynamic stiffness matrix due to structural modification will be equal to the dynamic stiffness 
matrix of the modifying structure which can directly be used in the structural modification 
method.    
  

 
 
 

Figure 1. Original Beam 
 
 
 

 
 

Figure 2. Modified Beam 
 

 
For instance, the dynamic stiffness matrices of the original and modifying structures for the 
modified beam in Figure 2 are given by 
  

 [ ] [ ] [ ] [ ]2
0 0 0 0D K M i Hω= − +  (2) 

 [ ] [ ] [ ] [ ]2
mod mod mod modD K M i Hω= − +    (3) 

where [ ]0K , [ ]0M  and [ ]0H  represent stiffness mass and structural damping matrices of 

the original structure, and similarly  [ ]modK , [ ]modM  and [ ]modH  are stiffness, mass and 

structural damping matrices of the  modifying structure They all can be obtained directly from 
the FE models of the original and modifying beams. When additional DOF are introduced to 
the original structure, the dynamic stiffness matrix of the modified structure can be obtained 
by assembling the dynamic stiffness matrices of the original and modifying structures. 
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Similarly, for distributed modifications, if additional DOF are introduced to the original 
structure there is no need to use Eq. (1); instead, additional dynamic stiffness matrix due to 
structural modification can directly be obtained from the FE model of the modifying structure.   
 
2.2. Structural Modification Method with Additional DOF 
In this section, the formulation given by Özgüven [9] is summarized. FRF matrix of a 
modified system can be partitioned as; DOFs which correspond to original structure only 
(superscript a), DOFs at connection points (superscript b), and DOFs that belong to 
modifying structure only (superscript c). Then the following equations can be written for 
original and modifying structures. 

 [ ] [ ] [ ] [ ]
1

1 20 0
0 0 0 0

0 0

aa ab

ba bb
K M i H

α α
α ω

α α

−

−  
= = − + 
 

 (4) 

 

1 1

0 0

mod mod0 0

mod mod

0 0 00

00

00 0 0

aa ab ac aa ab

ba bb bc bb bcba bb

ca cb cc cb cc

D D

D D

α α α α α

α α α α α

α α α

− −      
      = +        

           

 (5) 

where [ ]0α  and [ ]α  represent the receptance matrices of the original and modified 

structure, respectively. Pre-multiplying Eq. (5) by  
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0

0
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I
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and post-multiplying by [ ]α  gives  

 [ ]
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0 mod
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mod

0 0 .0 00
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.

0 0 0 00 0 0

ab
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ba bb bb
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 (7) 

After some matrix manipulations the receptance submatrices of the modified system can be 
obtained as 
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It should be noted that the order of the matrix to be inverted is equal to the DOF of the 
modifying structure, which is usually much less than then the total DOF of the structure.  
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3. NUMERICAL EXAMPLES 
 
3.1. Free-Free Beam  
The aim of this example is to demonstrate the accuracy of the structural modification method 
when applied to distributed systems. In this example a free-free beam shown in Figure 3 is 
modified by attaching a smaller beam under the original one. Original beam was divided into 
24 brick elements (20 nodes per element) with 3 DOF per node yielding total DOF of 723. 
The modifying structure was divided into 4 brick elements with 3 DOF per node yielding total 
DOF of 153. The geometrical and material properties of the original and modifying beams 
are given in Table 1. The predicted direct point FRF for the modified beam at node 64 in Z 
direction is shown in Figure 5. The FE model of the modified structure is also constructed, 
and the FRF of the same coordinate is obtained and compared with that obtained by the 
structural modification method (Figure 5). 
 
 

 
 Figure 3. The FE model of the original beam Figure 4. The FE model of the modified beam 
 
 

Table 1. Geometrical and material properties of the original and modifying beams  
 Original Beam Modifying Beam 

Young’s Modulus 71 GPa 71 GPa 
Poisson’s Ratio 0.33 0.33 

Density 2770 kg/m3 2770 kg/m3 
Length 1200mm 200mm 
Width 150mm 150mm 

Thickness 25mm 25mm 
 
As can be seen from Figure 5, the predicted FRF with structural modification technique 
matches exactly with the FRF calculated from finite element analysis (FEA) of the modified 
structure, which is an expected result as the method is an exact one.  
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Figure 5.  Comparison of FRF at 64Z64Z  

 
3.2. Cantilever Plate 
In this second example, the effect of modal truncation made in the computation of the FRFs 
of the original structure on the accuracy of the structural modification method proposed is 
demonstrated. In this example, the cantilever plate shown in Figure 6 is modified by 
attaching the plate shown in Figure 7 to the free edge of the original structure. Original plate 
was divided into 64 shell elements with 6 DOF per node yielding total DOF of 488. The 
modifying structure was divided into 16 shell elements with 6 DOF per node giving total DOF 
of 144. The geometrical and material properties of the original and modifying plates are 
given in Table 2. The direct point FRFs at node 30 in Z direction are predicted for the 
modified structure by employing the method proposed and by using different number of 
modes in calculating frequency response function of the original structure. The results are 
shown in Figure 9 to 11. The effect of truncation made in obtaining FRF of the original 
structure can be observed in higher frequencies. Using higher number of the modes in the 
computation of the FRF of the original structure increases the accuracy of the FRF predicted 
for modified structure.  
 
 

  
 Figure 6. The FE model of the original plate   Figure 7. The FE model of the modifying plate 
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Table 2. Geometrical and material properties of the original and modifying plates 
 Original Beam Modifying Beam 

Young’s Modulus 71 GPa 71 GPa 
Poisson’s Ratio 0.33 0.33 

Density 2770 kg/m3 2770 kg/m3 
Length 300mm 75mm 
Width 300mm 300mm 

Thickness 2mm 2mm 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. The FE model of the modified plate 
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Figure 9. Comparison of FRFs at 
30Z30Z (15 modes are used in the 

calculation of FRFs original structure) 

Figure 10. Comparison of FRFs at 
30Z30Z (30 modes are used in the 

calculation of FRFs original structure) 
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Figure 11. Comparison of FRFs at 30Z30Z (102 modes 

are used  in the calculation of FRFs of the 
original structure)  

 
3.3. GARTEUR SM-AG19 Model 
In this part, in order to show the performance of the structural modification technique, 
GARTEUR SM-AG19 model (Figure 12) is modified with beams under the wings which act 
as stiffeners causing flexural rigidity (Figure 13). The GARTEUR SM-AG19 model 
constructed differs slightly from the original GARTEUR SM-AG19 model. Viscoelastic tape 
which is placed on the upper surface of the wings in the original model is not used in the 
present study. In order to apply the structural modification technique, the finite element 
models of the original and modifying structures are constructed. The solid brick elements are 
used in the finite element model of GARTEUR SM-AG19 model which has 1380 nodes with 
3 DOF per node yielding total DOF of 4140. Two beams each having dimensions of the 
200mmx100mmx10mm are used as modifying structures. They are modeled with solid brick 
elements and each beam has 70 nodes with 3 DOF per node resulting total DOF of 210 for 
each modifying beam.  
 
 

   
Figure 12. FE model of GARTEUR SM-AG19    Figure 13. FE model of modified GARTEUR  
                                                                                                       SM-AG19   
           



 158 

 
Figure 14. Accelerometer positions 

 
 

                 
        Figure 15. Modifying beam              Figure 16. View of the experimental structure 
              
 
Modal test is conducted on the original and modified GARTEUR SM-AG19 model by using 
an impact hammer. During the test, the same measurement and excitation equipment is 
used for both original and modified structures. Accelerometer positions are shown in Figure 
14. In Figures 15 and 16 modifying beam and the general view of the experimental structure 
are given, respectively. Direct point FRFs measured at point 3 in Z direction (Figure 14) for 
both original and modified structures are given in Figure 17.  
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Figure 17. Experimental FRF at 3Z3Z for the original and modified GARTEUR SM-AG19 

 
In Figure 18, direct point FRF of point 3 in Z direction obtained from the FE model is 
compared with that obtained experimentally in order to see the accuracy of the FE model of 
GARTEUR SM-AG19 model. As can be seen from Figure 18 they are in good agreement. 
The mismatch in the magnitudes of the FRF at the resonances may be attributed to the 
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constant loss factor used for all modes in the finite element model of the structure to 
represent the damping in the system. The FRF of the modified structure is obtained by using 
the structural modification method proposed, and it is compared with the experimentally 
measured one (Figure 19). Again, a good agreement is observed between the FRF 
calculated by using the structural modification method and experimentally measured FRF. 
The discrepancy around the third mode may be due to the slight differences between the 
theoretical and experimental FRFs of the original structure. The truncation made in the 
calculation of the FRF of the original structure can be one of the reasons for such slight 
differences.  
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Figure 18. Theoretical (FE method) and experimental FRF at 3Z3Z 

 for original GARTEUR SM-AG19 
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Figure 19. Theoretical (structural modification method) and experimental FRF  

at 3Z3Z for modified GARTEUR SM-AG19 
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The numerical examples given above show that the structural modification technique with 
additional DOF is an effective method for analyzing distributed modifications. Main 
advantage of the structural modification method employed is that there is no need to use  
Eq. (1) for the calculation of the additional dynamic stiffness matrix due to structural 
modification. Since additional DOF are introduced in modification, the structural modification 
problem turns into a structural coupling problem and therefore dynamic stiffness matrix of the 
modifying structure can directly be used in the structural modification method. Moreover, 
since modification introduces additional DOF to the original structure, a more accurate model 
is obtained for the modified structure.  
  
 
4. CONCLUSIONS 

 
In structural dynamic modification applications, difficulties may arise when modification is 
distributed. The main difficulty is due to the rotational degrees of freedom. Obtaining the 
additional dynamic stiffness matrix due to distributed structural modification is also another 
difficulty in structural modification methods. Although there are some approaches to 
overcome such difficulties by making simplifications and thus introducing inaccuracies; using 
structural modification methods with additional degrees of freedom, which is equivalent to 
treating the problem as a structural coupling problem, overcomes at least the later difficulty 
mentioned above. Then, there is no need to partially model the modified and the original 
structure in order to calculate the additional dynamic stiffness matrix due to distributed 
structural modification, as proposed in some previous studies [12, 16]. In this paper, the 
method proposed in an earlier study by one of the authors for structural dynamic 
modifications with additional degrees of freedom [9] is applied to structures with distributed 
modifications, the main objective being to investigate the performance of the method when 
used for real structures with distributed dynamic modifications. In the method proposed, the 
frequency response functions of the modified structure are calculated from those of the 
original structure and the system matrices of the modifying structure.  
 
Firstly, the validity of the approach proposed is demonstrated by applying it to a beam 
problem: Theoretically calculated FRFs are compared with those obtained from the FE 
analysis of the modified structure, and a perfect match was observed as expected, since the 
method yields exact FRFs when exact values of the FRFs for the original structure are used. 
It was shown in the second case study that the accuracy of the predictions strongly depends 
on the accuracy of the FRFs used for the original structure. In order to study the effect of 
modal truncation made in calculating the FRFs of the original structure on the accuracy of 
the method, a cantilever plate which was modified by attaching a smaller plate to the free 
edge was modeled by using FEM. It is observed that the performance of the structural 
modification technique increases when the number of modes included in the computation of 
FRFs of the original structure is increased. 
 
The performance of the method when applied to a real structure is also investigated by 
applying it to GARTEUR SM-AG19 model with modifications in the form of beams attached 
under the wings acting as stiffeners causing flexural rigidity. The receptances calculated by 
using the structural modification method are compared with experimentally measured ones. 
A very good agreement is observed between the predicted and measured results.  The 
discrepancies in the magnitudes of the FRFs at resonances are attributed to the constant 
loss factor used for all modes in the finite element model of the original structure to represent 
the damping of the system. It is concluded in this study that the structural reanalysis method 
proposed can be successfully and efficiently used for structures with distributed 
modifications, and thus the problems encountered in approach such as the one suggested 
by D’Ambrogio and Sestieri for distributed structural modification problems can be avoided. 
 



 161 

ACKNOWLEDGEMENT 
 
The authors would like to thank ASELSAN Inc. Microelectronics, Guidance and Electro 
Optics Division for supporting this work.   
 
REFERENCES 
 
[1] Kyprianou A., Mottershead J. E., Ouyang H., “Structural modification. Part 2: 
Assignment of natural frequencies and antiresonances by an added beam”, Journal of 
Sound and Vibration, 2005, 284(1–2), p.267–281. 
 
[2] Kyprianou A., Mottershead J. E., Ouyang H., “Assignment of natural frequencies by an 
added mass and one or more springs”, Mechanical Systems and Signal Processing, 2004, 
18(2), p.263–289. 
 
[3] Li T., He J., “Local structural modification using mass and stiffness changes”, 
Engineering Structures, 1999, 21(11), p.1028-1037. 
 
[4] Park Y. H., Park Y. S., “Structural modification based on measured frequency response 
functions: An exact eigen properties reallocation,” Journal of Sound and Vibration, 2000, 
237(3), p.411–426. 
 
[5] Park Y. H., Park Y. S., “Structure optimization to enhance its natural frequencies based 
on measured frequency response functions”, Journal of Sound and Vibration, 2000, 229(5), 
p.1235–1255. 
 
[6] Mottershead J. E., Mares C., Friswell M. I., “An inverse method for the assignment of 
vibration nodes”, Mechanical Systems and Signal Processing, 2001, 15(1), p.87–100. 
 
[7] Özgüven, H. N., “Determination of receptances of locally damped structures”, 
Proceedings of the Second International Conference on Recent Advances in Structural 
Dynamics, 1984, 2, Southampton, England, p.887-892. 
 
[8] Özgüven, H. N., “A new method for harmonic response of non-proportionally damped 
structures using undamped modal data”, Journal of Sound and Vibration, 1987, 117(2), 
p.313-328. 
 
[9] Özgüven, H. N., “Structural modifications using frequency response functions”, 
Mechanical Systems and Signal Processing, 1990, 4(1), p.53-63. 
 
[10] Şanlıtürk, K. Y., “An efficient method for linear and nonlinear structural modifications”, 
Proceedings of ESDA2002: 6th Biennial Conference on Engineering Systems Design and 
Analysis, ESDA2002/APM-028, 2002, Istanbul, Turkey. 
 
[11] W. D’Ambrogio, “Consistent modeling of continuous structural dynamic modifications”, 
Proceedings of the 9th International Modal Analysis Conference, 1991, Florence, Italy. 
 
[12] W. D’Ambrogio, A. Sestieri, “Using distributed modifications to change the dynamic 
behavior of structures”, Proceedings of the 17th International Modal Analysis Conference, 
1999, Kissimmee, Florida. 
 
[13] W. D’Ambrogio, A. Sestieri, “Coupling theoretical data and translational FRFs to 
perform distributed structural modification”, Mechanical Systems and Signal Processing, 
2001, 15(1), p.157–172. 



 162 

 
[14] W. D’Ambrogio, A. Sestieri, “Predicting the effect of distributed structural modifications 
by alternative techniques”, Proceedings of the 19th International Modal Analysis Conference, 
2001, Kissimmee, Florida. 
 
[15] Avitabile P., O’Callahan J.C., Lieu I.W., Madden R., “An efficient method of 
determining rotational degrees of freedom from analytical and experimental modal data”, 
Proceedings of the 4th International Modal Analysis Conference, 1986,  Los Angeles, 
California. 
 
[16] Hang H., Shankar K., Lai J., “Distributed structural dynamic modifications without 
rotational degrees of freedom”, Proceedings of the 25th International Modal Analysis 
Conference, 2007, Orlando, Florida, USA. 
 
[17] Link M., Friswell M., “Working group 1: Generation of validated structural dynamic 
models- results of a benchmark study utilizing the Garteur SM-AG19 test-bed”, Mechanical 
Systems and Signal Processing, 2003, 17(1), p.9-20. 
 

 
 
 


