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ABSTRACT

STRUCTURAL MODIFICATION WITH ADDITIONAL DEGREES OF
FREEDOM IN LARGE SYSTEMS

Canbaloglu, Giiveng
M.S., Department of Mechanical Engineering
Supervisor  : Prof. Dr. H. Nevzat Ozgiiven

Co-Supervisor : Dr. Halidun Fildis

June 2009, 162 Pages

In the design and development stages of mechanical structures, it is important to
predict the dynamic characteristics of modified structures. Since time and cost are
critical in design and development stage, structural modification methods predicting
the dynamic responses of modified structures from those of the original structure and

modification properties are very important, especially for large systems.

In this thesis structural modification methods are investigated and an effective
structural modification method for modifications with additional degrees of freedom
is adapted to structures with distributed modifications and the performance of the
method is investigated. A software program is developed in order to apply the
structural modification method with additional degrees of freedom. In the software,
the dynamic response of the modified structure is predicted by using the modal
analysis results of ANSYS for the original structure and dynamic stiffness matrix of
the modifying structure. In order to validate the approach used and the program

developed, the dynamic analysis results obtained for modified structures by ANSYS
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are compared with those obtained by using the software. In order to investigate the
performance of the structural modification method in real applications, the method is
applied to a scaled aircraft model, and the results are compared with experimental

results.

In order to demonstrate the importance of using the structural modification method
with additional degrees of freedom for distributed modification, lumped and

distributed models are used for a distributed modification and results are compared.

It is concluded in this study that using structural modification methods with
additional degrees of freedom for a distributed modification increases the accuracy of
the results, and it is observed that the method adapted is efficient for local

modifications.

Keywords: Structural modification method, distributed modification, GARTEUR.
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BUYUK SISTEMLERDE EK SERBESTLIiK DERECELIi YAPISAL
DEGISIKLIiK

Canbaloglu, Giiveng
Yiiksek Lisans, Makine Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. H. Nevzat Ozgiiven

Ortak Tez Yoneticisi : Dr. Halidun Fildis

Haziran 2009, 162 Sayfa

Mekanik yapilarin, tasarim ve gelistirme siirecinde, degisiklige ugramis yapilarin
dinamik davraniglarimi hesaplamak ©nem tagimaktadir. Tasarim ve gelistirme
stirecinde, zaman ve maliyet kritik oldugundan, 6zellikle biiyiik sistemlerde, yapisal
degisiklik yontemleri, degismis yapinin dinamik davraniginin, esas yapinin dinamik
davramig1 ile yapisal degisikligin dinamik bilgileri kullanilarak belirlenmesi

onemlidir.

Bu tezde yapisal degisiklik yontemleri incelenmis ve etkili bir ek serbestlik dereceli
yapisal degisiklik yontemi, dagitilmis parametreli degisiklige ugramis yapilara
uyarlanmis ve yontemin performansi incelenmistir. Ek serbestlik dereceli yapisal
degisiklik yontemini uygulamak i¢in bir program gelistirilmistir. Programda,
degismis yapinin dinamik cevabi, esas yap1 i¢cin ANSYS’te yapilmis olan analitik
bicim analizi sonuglar1 ve degisikligin dinamik direngenlik matrisi kullanilarak
hesaplanmigtir. Kullanilan yontemi ve gelistirilen programi dogrulamak igin,

degismis yap1 icin yapilmis olan analitik bicim analizi sonuglari, programdan elde
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edilmis sonuglarla karsilastirilmistir.  Yapisal degisiklik yOnteminin, gercek
yapilardaki performansini incelemek ic¢in, yontem 6lgeklendirilmis bir ucak modeli

tizerinde uygulanmis ve sonuglar deneysel sonuclarla karsilagtirilmistir.

Dagitilmis yapisal degisiklik i¢in ek serbestlik dereceli yapisal degisiklik yontemi
kullanmanin Onemini gostermek amaciyla, dagitilmis yapisal degisiklik igin
toplanmis parametreli ve dagitilmig parametreli modeller kullanilmis ve sonuclar

karsilastirilmistir.
Bu tezde, dagitilmis yapisal degisiklik icin, ek serbestlik dereceli yapisal degisiklik
yontemlerinin sonuclarin hassasiyetini arttirdigi sonucuna varilmistir ve uyarlanan

yontemin bolgesel degisiklikler icin etkili oldugu goriilmiistiir.

Anahtar Kelimeler: Yapisal degisiklik yontemi, dagitilmis parametreli degisiklik,
GARTEUR.
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CHAPTER 1

INTRODUCTION

1.1 Basics and Importance of Structural Modification

In the design stage of mechanical structures, the main objective is to satisfy the
design requirements with the minimum possible cost and time. Since the mechanical
structures are designed to be as strong as necessary, the overdesigned structures
which were designed previously are replaced with their substitutes which satisfy the
requirements with the minimum cost. However, in order to reduce the material usage
thus the cost, the mechanical structures has less strength than the overdesigned
structures; therefore the structural dynamics and strength of the structures become a
critical issue. Considering the aerospace industry, mechanical structures of the
aircrafts and the helicopters are designed according to the requirements which
prevent the mechanical and aerodynamical problems that can be encountered and
these design requirements are more severe compared to the ground-based structures;
therefore, the structural and aerodynamical reliability of the structures are more

critical.

Any modification applied on mechanical structures has an effect of changing the
dynamic properties of the original structure; therefore the modified structures have to
be reanalyzed, in order to obtain the new dynamic characteristics of them. After
every modification, reanalyzing the whole structure is a very time consuming and
cotly process. Especially for large ordered systems, after every structural

modification, the whole analytical model of the new structure should be built or the



structure has to be re-tested in order to ensure that the vibration characteristics of the
structure are satisfied. However, this is a very costly and time-consuming operation.
In order to understand the processes better, the following cycle shown in Figure 1.1

can be given [1].

d
[DESIGN }CANALYSIS}EROTOTYP?.C TEST F;FRODUCTION
4 +failed

RE-DESIGN

Figure 1.1 Simplified “Design to Production-Line” Cycle [1]

As seen in Figure 1.1, after any modification applied on the original structure or any
re-design process, the whole process from analysis to testing has to be repeated.
However by using structural dynamic modification techniques, the dynamic
properties of the modified structure can be predicted from the dynamic
characteristics of the original structure and the modification data. Therefore, after
every modification introduced on the original structure, there is no need to construct
the whole analytical model of the structure. Schematic view of the structural

modification analysis is given in Figure 1.2.

Modification Data

Predicting the Dynamic Properties

Structural Properties ﬂ of the Modified Structures

of the Original Structure

- /
Y

Structural Modification Analysis.

Figure 1.2 Schematic View of the Structural Modification Analysis



Due to the time and cost efficiency, structural dynamic modification techniques
becomes more important in the design stages. Dynamic characteristics of the original
structure are obtained experimentally or analytically. The finite element (FE) models
of the original structure can be constructed or modal testing can be conducted on the
original structure for obtaining dynamic behavior of the structure. In the analytical
approaches, the frequency response functions (FRFs) or the system matrices of the
original structure can be used in order to calculate the FRFs of the modified
structure. In the experimental approaches, the measured FRFs or the estimated modal

parameters can be used to estimate the FRFs of the modified structure.

1.2 Literature Survey

Structural modification methods focus on the change of dynamic behavior of a
structure due to modifications in mass, stiffness and damping properties of the
system. Global type of matrix changes due to these modifications were studied by
O’Callahan and Avitabile [2]. In this work, O’Callahan and Avitabile [2] presented a
structural modification procedure which uses complex (damped) modes obtained by
the finite element analysis (FEA) or modal analysis. By this procedure global matrix
changes in the mass, stiffness and damping were performed simultaneously. In later
work, Wallack, et al. [3] presented the local structural modifications technique for
the general matrix modifications by implementing the structural modification

technique in one eigen solution.

The beam or rib types of modifications are extensively used in the designs, in order
to increase the stiffness of the structures. Therefore these types of modifications were
studied by different researchers. In structural modification procedure, generally the
mass and stiffness matrices of a generalized beam element were used. O’Callahan
and Chou [4] performed the beam modification procedure by using a local eigen
value modification technique. Elliott and Mitchell [5] presented a method for

analyzing the beam type structural modifications by combining the Dual Modal



Space Modification Method (DMSM) and Transfer Matrix Method. In a later work
Tayeb and Williams [6] modeled straight, angled rib or beam like stiffeners and
presented the usage of these elements in the structural dynamic modification
analysis. Hutton [7] developed a FE based procedure in order to reanalyze the
vibration response of the modified structure on which physical changes such as
thickness and mass density are applied. In a further work, D’ Ambrogio [8] studied
the prediction of frequency response function of the modified structure subjected to
modification in the form of rib and plate stiffeners causing flexural rigidity change
and presented quasi-local characteristics of the additional dynamic stiffness matrix

due to structural modification.

In order to apply the structural modification techniques, the usage of both theoretical
and experimental data can be necessary. Wang, et al. [9] studied the effects of local
modifications on the dynamic characteristics of the existing structures, by using
experimentally obtained modal data of the original structure and the characteristics of
the modification. Then, in order to derive the dynamic properties of the modified
structure, Jones and Iberle [10] used the modal model derived from a set of measured
FRFs of the original structure and directly measured FRF data of the original
structure in structural modification procedure and compared these techniques. In later
work Imregun, et al. [11] studied the usage of both measured and theoretical data in
structural modifications by examining an alternative approach based on the FRF
data. Salvini and Sestieri [12] developed a method for predicting the FRF of a given
system from the experimentally determined FRF of the system itself subjected to
different constraint which are any type involving either translational or rotational

degree of freedoms (DOFs).

Structural dynamic modification problems can be divided into two categories: direct
structural dynamic modifications and inverse structural dynamic modifications.
Direct structural dynamic modification concentrates on the determination of

modified structure characteristics due to modification on the original structure.



Conversely, inverse structural dynamic modification is an optimization procedure
looking for necessary modifications in order to achieve the desired dynamic
behavior. Kyprianou, et al. [13, 14] focused on inverse structural dynamic
modifications. Li and He [15] presented a new approach for structural modifications
required to change the dynamic characteristics of an undamped system. Furthermore,
Park [16, 17] studied measured frequency response function based inverse structural
dynamic modification in order to obtain necessary structural modifications. In a later
work, Mottershead, et al. [18] presented an inverse method for assigning natural
frequencies and nodes of normal modes of vibration by the addition of grounded
springs and concentrated masses. The basic theory of direct structural modification

using experimental FRF was presented by Crowley, et al. [19].

The Sherman-Morrison [20] and Woodbury [21] developed general matrix-update
formulas which can be used in structural modification analysis. Ozgiiven [22]
proposed a matrix inversion method in order to find receptances of locally damped
structures from those of the corresponding undamped structure. Later a recursive
solution algorithm was presented in order to avoid the matrix inversion [23]. In a
further work [24], Ozgiiven presented an approach for reanalyzing a structure
subjected to structural modification with or without additional DOF. In this method,
by using FRF matrix of the original system and mass, stiffness and damping matrices
of the modifying structure, the exact FRFs of the modified structure were estimated
[24]. Sanlitirk [25] used the same approach, but avoided matrix inversion by

employing Sherman-Morrison method.

As alternative techniques in structural modifications, Bae, et al. [26] developed a
technique called Successive Matrix Inversion for static analysis. By using this
technique, the solutions of the any local modifications applied on a static FE model
were obtained. Then in later study, Successive Matrix Inversion for static analysis
was extended by Koksal, et al. [27] for the dynamic analysis of structures. In this

method the FRF matrix of a modified structure was obtained by using the FRF



matrix of the original structure and the modifying mass, stiffness and damping
matrices. In order to avoid the matrix inversions in the equations, power series
expansion method was used. Then in a further study, Koksal [28] studied the
comparison of structural modification techniques and used these techniques in a real
application of the modification of a jet aircraft. Mottershead et al. [29] also applied

structural modification technique on the tailcone of the helicopter.

In structural modification, transfer function methods can also be used. These
techniques were studied by Jingshuo, et al. [30]. In this work they presented a
method for structural dynamic modification using transfer functions, and then in a
later work [31], the concept of optimal modification was studied for structural

dynamic modification using transfer matrix and the sensitivity analysis.

The modeling approach of distributed modifications in structural dynamic
modifications was presented by D’ Ambrogio and Sestieri [32]. Later, D’ Ambrogio
and Sestieri [33] studied the condensation and the expansion techniques in order to
predict the dynamic effect of distributed modifications, since generally, dynamic
properties of an original structure are identified by experimental techniques
containing only translational DOF due to the difficulties in measuring rotational
DOF, and structural information of modifying structure contains both rotational and
translational DOF. Then in a further study, D’ Ambrogio and Sestieri [34] extended
the studies in order to obtain the dynamic characteristics of the modified structure
subjected to distributed modifications by coupling the theoretical data and
translational FRFs. Hang, et al. [35] focused on the distributed structural dynamics
modification with additional DOFs by using the original relationship developed by
Ozgiiven [24] and modeling method of the distributed modification developed by
D’Ambrogio and Sestieri [32]. In a recent work, Canbaloglu and Ozgiiven [36]
studied the structural modifications with additional DOFs for distributed

modifications proposing a different approach for modeling distributed modification



and applying it to a real structure by using the original relationship developed by

Ozgiiven [24].

In structural modification problems, the rotational DOF is an important issue to be
considered; therefore, Smiley [37] studied the necessity of rotational DOFs in the
structural analysis and focused on the procedure of implementing rotational DOFs in
structural modification analysis. Then in a later study, due to the effects of moment
transfer in the connection points in structural modification procedures, generation of
rotational DOFs from the existing translational DOFs by expansion techniques were
studied by O’Callahan, et al. [38, 39]. In structural modification analysis, rotational
DOFs are required for the beam and plate elements; therefore, O’Callahan and
Avitabile [40] presented an approximate method using both translational and
rotational DOFs in FE model in conjunction with the measured translational data in
order to obtain a modal database of rotational and translational DOFs . In a further
work, Mottershead, et al. [41] studied obtaining rotational receptances by using “T-
block” approach in order to apply a pure moment to a structure so that the rotational

receptances can be included in the structural modification analysis.

In structural dynamic modifications, truncation of modal data is another important
issue, since the errors due to truncation have a considerable effect on the accuracy of
the results. The modal model is usually truncated to finite number of modes, and this
truncation leads to inaccurate results in structural dynamic modification due to
limited number of modes used in the model. Braun and Ram [42] focused on this
problem and presented the impossibility of obtaining exact solutions in structural
modifications by using a truncated modal matrix. When the truncated modes were
represented by the residual terms, these residual terms can be included in the
structural dynamic modification technique and this technique was given by Sohaney
[43]. In a later study, truncation effects and errors introduced due to truncation in the
structural dynamic modification process were studied in detail by Avitabile, et al.

[44] in order to present a better understanding of truncation effects. Bucher and



Braun [45] focused on the effect of truncation of the modal data in structural
modifications and presented how to control and circumvent the effect of modal
truncation. Canbaloglu and Ozgiiven [36] studied the truncation effect in structural

dynamic modification with additional DOFs for distributed modifications.

1.3 Objective

The objective of this thesis is to obtain dynamic characteristics of a modified
structure from those of the original structure and modification data, when
modifications are distributed. This is accomplished by applying Ozgiiven’s structural
modification method with additional DOFs [24] for distributed modifications. It is
also aimed in this study to develop a computer program that can apply structural
modification method with additional DOFs to large structures and validate the results
with different theoretical and experimental case studies. In this thesis, it is also
intented to emphasize the importance and necessity of the structural dynamic

modifications with additional DOFs.

1.4 Scope of the Thesis

Based on the objective of the study performed in this thesis, the outline of the thesis

can be given as follows:

In Chapter 2, the theory of the structural dynamic modification methods with and
without additional DOFs will be given. The modeling approaches for distributed

modifications will also be explained in Chapter 2.

In Chapter 3, brief outline of the computer program developed in this thesis will be
given. The computer program will be verified with different structural modification

case studies in the same chapter.



In Chapter 4, in order to demonstrate the application of the program with a real case
study, the modification will be applied on a test structure (GARTEUR SM-AG19).
The results obtained from the computer program developed for structural
modification with additional DOFs are compared and validated with experimental

results.

In Chapter 5, the comparison of distributed and lumped modeling approaches for the
modifications will be given. In order to show the importance of the distributed
modeling by using additional DOFs when there are distributed modifications,

different case studies will be presented.

In Chapter 6 the discussion, conclusions and recommendations for future work will

be given.



CHAPTER 2

THEORY

2.1 Structural Modification without Additional Degrees of Freedom

2.1.1 Structural Modification by Using Sherman-Morrison Formula

Sherman-Morrison [20] formula is a simplified version of Woodbury’s study [21].
Sanlitiirk [25] proposed a structural modification method which is based on
Sherman-Morrison formula. In the method proposed by Sanlitiirk [25], direct
inversion of the modified matrix using the information of the original matrix and

modification is performed. Sherman-Morrison formula can be stated as follows;

Assume [A] is a non-singular square matrix and [A]" is the inverse of [A] matrix.

Modified matrix can be expressed in the form of following equation.
[A"]=[A]+[AA] = [A]+{u}{v}' @.1)

Then the inverse of [A"] can be written as [20]:

(tAT" {u})({} 1AT")
1+{v} AT {u}

*

(AT =[A]" -

(2.2)
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Sherman-Morrison formula is an extension of Woodbury formula where the
modification matrix is given by the multiplication of two vectors. This modification

matrix can be given as:
[AA]={u}{v}' (2.3)
The inverse of the modified matrix can be expressed by;

[A]=[A]" -[AI" W01+ VT [AT ' WU]) V] (AT (2.4)

Equation (2.4) is valid as long as [A],., is a square matrix. For n < N, if [A]and

NxN

([I 1+ VI [AT'[U ])are invertible, any matrix [AA] can be written as the

multiplication of two rectangular matrix [U], and [V]

Nxn nxN *

Although, the modifications are restricted to the cases where the modification can be
written in the form of {u}{v}", the main advantage of the Shermon-Morisson formula

is that, the inverse of the modified matrix can be calculated without any additional

matrix inversion.

For a given structure, the equation of motion can be written as:
[M i} +ilH){x} +[K){x} ={F} (2.5)

where [M], [H], [K] are mass, structural damping and stiffness matrices of the
structure respectively, {x} is the vector of generalized coordinates, {F} is the

generalized forcing vector and i is the unit imaginary number. In the frequency

domain, Equation (2.5) can be rearranged as:

11



(IK1- @’ [M]+ilH1){x} ={F} (2.6)

{x}=(IK1- @M1 +i[H]) {F} 2.7)
Then the receptance matrix is obtained as:
[a]=(IK1- &M 1+ilH]) 2.8)

For a structural modification problem, receptance matrix of the original structure can
be obtained by the modal summation, after modal analysis. If this original receptance
matrix is available, great simplification is introduced by the Sherman-Morrison

formula. The receptance matrix of the modified structure can be written as follows:
. -1
[71=([K]+[AK] - ([M]+[am])+i([H]+[AH]) 2.9)

where [AM |, [AH ], [AK] are the mass, structural damping and stiffness matrices of

modification respectively,

Using Equation (2.8), the following equation can be obtained.

-1 -1
[7]=([a]" +[aD]) (2.10)
where dynamic stiffness matrix [AD] is expressed as:

[AD]=[AK]|- @’ [AM |+i[AH ] (2.11)

12



Expressing the dynamic stiffness matrix [AD] as;

[AD]={u}{v}' 2.12)

The receptance matrix of the modified structure can be obtained by using the

Sherman-Morrison formula in the following form

(@) (Y @)
[7]=[a]- o) el (2.13)

In this form, the formulation may not decrease the computational time, since the
modification affects all the coordinates. However, when local modifications are
introduced to the original structure, the method has a great advantage in terms of

computational time for calculating receptance matrix of the modified structure.

As long as the modifications can be expressed in the form of {u}{v} , receptance

matrix of the modified structure can be obtained by using Sherman-Morrison
formula. When the modification and forcing coordinates are limited to a small
number of coordinates (compared to total coordinates), and the responses are to be
obtained at selected coordinates, Sherman-Morrison formula has a great advantage

and it can provide substantial savings in computational time.

For the cases stated above, the coordinates can be partitioned as active and inactive

coordinates. Both {x} and [&] can be portioned as:

e e

13



where subscripts i and a represent inactive and active coordinates, recpectively. If
the matrices above are inserted in Equation (2.13) the following equation can be

obtained.

o s ﬂ(ﬁiﬂ it e o)

w ntle i o) e

In the Equation (2.15) modifications are limited to active coordinates which are the

coordinates where the responses are to be calculated. In Equation (2.15) also {u} and

{v} vectors are partitioned as inactive and active coordinates.

For the cases where only the active coordinates are retained, still Sherman-Morrison
formula can be used in order to obtain the receptance matrix of the modified

structure. The following equation can be written for that case:

(1o, {u D) (£} 1@,
[7.]=le,1- 7 (2.16)
1+{v(t} [a(t(t]{ua}

As seen in Equation (2.16), it possible to perform the calculations by using the active
coordinates alone. This brings great advantage, since the size of the matrix is much

smaller than the total degrees of freedom of the structure

When the modification matrix can not be written as {u}{v}", then it is possible to

decompose the modification matrix into sub modification matrices and the

receptance matrix [a] can be calculated in n steps by considering one sub

modification matrix at a time. The sub matrices can be expressed as

14



[AK]=[AK,]+[AK,]+...+[AK, ] (2.17)
where [AKj]z{uj}{vj}T (2.18)

By replacing the terms [H] and [AH] with @[C] and @AC], respectively, all the
equations given can be used when there is viscous damping instead of structural
damping.

2.1.2 Matrix Inversion Method

The formulation is initially proposed by Ozgiiven [22] for the calculation of
receptances of damped structures by using the receptances of undamped structures
for a non-proportionally damped structure. In a later work, this method is extended to
structural modification problems with and without additional degrees of freedom

[24]. The formulation of Matrix Inversion Method is explained below.

For a structure, the equation of motion can be written as:
(M i} +ilH{x}+[KI{x}={F]} (2.19)

Steady response of the structure for a harmonic forcing at frequency @ is expressed

as:
-1

{x}=(IK1-@’[M]+ilH]) {F} (2.20)

By using Equation (2.20), the receptance matrix of the structure is given by

[a]=(IK1- & IM1+ilH]) 2.21)

15



If the structure is modified, then the receptance matrix of the modified system can be

written as:
[7]=([[K1+[AKT] - @ [[M1+[AM 1] +i[[H1+[AH]]) (2.22)

where [AK], [AM] and [AH] represents the stiffness, mass and structural damping

matrices of the modification, respectively.

By using Equation (2.22) the following equation can be written.
[7]" =[] +ID] (2.23)

where [D] is the dynamic stiffness matrix of the modification which can be

expressed as:

[D]=[AK]- @’ [AM ] +i[AH] (2.24)

If Equation (2.23) is pre-multiplied by [&] and post-multiplied by [y], the following

equation can be obtained.
la]=[7]+[a]D[7] (2.25)

By simple matrix manipulations, receptance matrix of the modified structure can be

expressed as:

[11=[[1]+[e]D1] [a] (2.26)
If the modifications are local, then the dynamic stiffness matrix can be partitioned as:

16



[D]= {[ﬁ;j] BH (2.27)

By using the partitioned dynamic stiffness matrix, the receptance matrix of the

modified structure can be written as [24]:

(7] =[[1]+[en,]10,1] [, ] (2.28)
[712]T :[7/21] = [an][[l]_[Dll]D/M]J (2.29)
[722] = [azz]_[azl][Du][%z] (2.30)

The important thing that should be pointed out is that, only a single matrix of an
order equal to the number of coordinates related with structural modification is

inverted in order to obtain the receptance matrix of the whole modified structure.

Instead of structural damping, if there is viscous damping [C], [H] and [AH] will

be replaced by @{C] and @[AC], respectively, in all the equations given above.

2.1.3 Extended Successive Matrix Inversion Method

Based on the Classical Successive Matrix Inversion Method which is used to obtain
the modified structural responses by considering only modified portion of stiffness
matrix [26], Extended Successive Matrix Inversion Method is developed [27]. In
this method, the modified structural responses are obtained by considering only the

modified portion of the dynamic stiffness matrix.

The equation of motion for an N degrees of freedom system can be written as:

17



(M i} +ilH{x}+[K1{x} ={F}

(2.31)

The response of the system to a harmonic forcing at a frequency o can be written as:

{x}=(IK1-@*[M1+ilH]) {F}
Then the receptance matrix [a'] of the system can be expressed as:

[a]=[1K1-@*(M]+iH]]

(2.32)

(2.33)

When the modification is introduced to the original structure, then the equation of

motion of the modified system can be written as:

(M +AM {3} +ilH + AH|{x} +[K + AK|{x} ={F]}

Making some manipulations, the following equation can be obtained.
[[K+AK]-@’[M +AM | +ilH + AH] |{x} ={ F)

Then, the harmonic response of the modified system can be expressed as:

{x}=[[K +AK]-@*[M +AM | +i[H + AH]| {F}

Then, the receptance matrix of the modified structure can be expressed as:

[7]=[K +AK1-*[M +AM | +ilH +AH]|

18
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Pre-multiplying Equation (2.35) by [&], we obtain:

(1]-[PI){x={F} (2.38)
where

{F}=[a]{F)} (2.39)
[P]=—[][[AK]- @’ [AM | +ilAH ] ] (2.40)

By using Equation (2.38) and Equation (2.39), the following equation can be

obtained.

[71=([1]-[P]) " [] (2.41)

In this method, power series expansion is used for the inversion of the matrix in
Equation (2.41) as successfully employed in Successive Matrix Inversion method

[261:
((1-[P))" =[2]+[P]+[PT +[PT +.. (2.42)
Then [T] matrix can be defined as:

[T]=[P]+[P] +[PT +.. (2.43)

For the matrix [T] given above, each of the elements of [T'] can be expressed as:

19



T, =B 4B+ 4B 4. (2.44)

where P* represents the (i,j)" element of [P](k)

By defining the k™ recursion factor as:
k) _ P, (k+1) P,j(k) (2.45)

then, Equation (2.44) can be expressed as follows, if the recursion factor is constant

through the expansion:

T. :Pij (1""77 +rij2+rlj3+...) (2.46)

)

In Equation (2.46), by using the series expansion for the recursive terms, 7 can be

written as:
T,=P/(1-1,) (2.47)

In order to eliminate the variability of the of the recursion factor, the modification
matrix is decomposed into separate matrices, since the recursion factor is different
through the series expansion. By decomposing, the following equation can be

obtained.

[AK]- @’ [AM ]+i[AH | =ﬁ:[[AKW]—wZ[AMU)]H[AHU)]] (2.48)

20



In Equation (2.48), [AKY], [AM "], [AH"’] represent the matrices that are
composed of the j™ columns of stiffness, mass and structural damping matrices,

respectively, and zero columns except the ™ columns.

The recursion factor is a constant for only one nonzero column of [T], therefore the

equation we can write

r=P, (2.49)

T,=P,/(1-r) (2.50)

Defining matrix [Y] and [Z] as the dynamic stiffness matrix of the modification and

original structure, respectively, the following equations can be written:
[Y] :[[AK]—a)Z[AM]H[AH]] (2.51)
[Z]=|[K]- & [M]+ilH]] (2.52)

If the j™ non-zero column of the structural modification is taken into consideration,

then, the dynamic stiffness matrix can be expressed as:
[Z”)] :[Z“‘“]+[Y(”] (2.53)

In Equation (2.53), [Y (j)] is a matrix which has the j" non-zero column of [¥]

matrix at its corresponding column, and zero columns elsewhere. [Z”_“] and
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[Z‘j)} represent the modified dynamic stiffness matrices in (j-1)™ and j™ steps,

respectively.

[Z(O)] denotes the initial [Z]matrix. Also [Z(H’T refers to [a], and [Z“)]_l

refers to [7] in Equation (2.41).

From Equation (2.42) and Equation (2.43), the inverse of Equation (2.53) can be

written as:

207 = (1) [z T 239

As seen in Equation (2.54), the modified FRF matrix can be calculated, by updating
the matrices in Equation (2.54) for each nonzero column of the modification matrix.
The sequence of the columns of the modification matrix used in the computation is
not important, because each column of the modification matrix contributes to the

dynamics of the system independently.

Furthermore, for a local modification, [Y ] will be a highly sparse matrix with many

zero columns and rows that correspond to the coordinates at which there is no

structural modification.

For all equations given above, if the system has viscous damping[C], instead of

structural damping, then [H] and [AH] will be replaced by @[C] and @[AC],

respectively.
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2.1.4 Ozgiiven’s Recursive Solution Algorithm

In order to calculate the receptances of a modified structure from those of the
original system and the modification matrices, Ozgiiven [23] developed a recursive
solution algorithm. This method can be used for structural modifications problems.
The derivation of the equations is given below [23] for a damping modification and

obviously it can be generalized for any type of modification.

Consider the equations of motion of a structure which has n degrees of freedom. The

equation of motion can be expressed as:

[M1{&}+ilH1{x} +[K1{x} ={F)} (2.55)

By solving the eigenvalue problem given below, the undamped modal data can be

obtained.

[K1{¢} =&’ [M ]{¢} (2.56)

Considering Equation (2.55) , the internal damping of the structure can be replaced
by a vector which is the set of equivalent forces that can be written in terms of the
damping values and the displacement of the structure. Then the equation of motion

takes the form:

[M1{5}+[K1{x} ={F} +{R} (2.57)

where {R} is a vector which represents damping forces given as:

{R} =—ilH1{x} (2.58)
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In Equation (2.57), there are two sets of external forces, one of which is expressed in

terms of the unknown dynamic displacement {x} of the structure, therefore it is

possible to consider the damped structure as an undamped structure which has two
sets of external forces one of which is given by Equation (2.58). By modal
summation the undamped receptances of the structure defined by Equation (2.57),

can be obtained.

For a typical coordinate s, the damping force on this coordinate can be written as:

R ==i) hx, (2.59)

k=1

By using the definition of receptance, the dynamic displacement of the p” coordinate

can be expressed as:

n

x,=> a (F+R) (2.60)
s=1

x, =Y., F—iy a > hx (2.61)
s=1 s=1 k=1

In Equation (2.60) and Equation (2.61) both x, and x, represent the displacements
in the damped system. Setting all external forces, except F; to zero and dividing all

term by F,, the receptance ¥, of the damped system can be calculated from

Equation (2.61) as:
Y, =0, =iy &, > h(x/F) (2.62)
s=1 k=1
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The term x, / F; in Equation (2.62) can be replaced by 7,; by using the definition of

the receptance. Then Equation (2.62) becomes:

Y, =0, =iy a, > h.y, (2.63)
s=1 k=1

Equation (2.63) is valid only for any p and j (p=1,2,...,n; j=1,2,...,n). Concentrating
on only a single element A, of the damping matrix, while the rest of the damping

elements are taken to be zero, Equation (2.63) can be written as:

v, =&, —ia,h. (p=1.2,...,n;j=1,2,....,n) (2.64)

P

By taking p=k, 7, can be expressed as:
v, =, [(+ieh,)  (p=1.2,...n) (2.65)

After the calculation of Vi (j=1,2,...,n) from Equation (2.65), the remaining
receptance values 7, (p=1,2,....,k-1,k+1,...,n; j=1,2,...,n) can be obtained from the

calculated values of y,. (j=1,2,...,n) by using Equation (2.64).

In the formulations given above, only one element of the damping matrix is
considered therefore these formulations give only the receptances of the system that
are composed of the undamped system and a single damping element £, . In order to
obtain the receptances of the damped structure, the calculated receptances should be
treated as new « values in Equation (2.64) and Equation (2.65). A new set of

receptances can be obtained by considering another damping element of the original

damping matrix [H].
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If this algorithm is repeated for all nonzero elements of [H ], the final receptance

matrix [7] gives the receptances of the damped system.

For locally damped structures, the damping matrix can be written as the addition of
proportional and non-proportional damping matrix and this brings great reduction in

the computational effort. The damping matrix can be written as:
[H]=[H],+[H], (2.66)

In Equation (2.66), [H ] , represents the proportional part of the damping matrix and

[H ] , represents the non-proportional part of the damping matrix. Non-proportional

damping matrix can be expressed as:

_|[H,] (0]
[H]N{ 0] [o]} (2.67)

By using Equation (2.65), Vi (j=1, 2,..., n) can be calculated and in order to find
y,;for only m values of p (m is the order of the sub matrix [H,,]), Equation (2.64)

can be used. Therefore, the final values of 7,

(p=1,2,...,m; j=1,2,...,n) which

include the effect of all the m* damping values can be obtained without computing
the receptances corresponding to undamped coordinates. Since the number of
damping elements is just m”, then the number of recomputations of each receptance

will be reduced from n” to m>.

Receptances of undamped nodes, can be calculated as follows [23]:
Vo =@y~ iz s z By I (2.68)
s=1 k=1
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for p=m+1,...,n and j=p,...,n.

By considering one column of the damping matrix at a time, formulation can be

further improved. If the k-th column of the damping matrix [H,,] is considered, by

using Equation (2.63) the following equation can be written.

}/Pj = apj - (ZZ aps Z hsk J 7kj (269)

For p=k, we can write

yy= % (=1,2,....n) (2.70)

(1 + ii %hskj
s=1

Once a, (j=1,2,...,n) are calculated which include the effect of the k-th column of

the damping matrix, the remaining elements of [#,] and [#,] can be obtained from

Equation (2.69) for j=1,2,...,n and p=1,2,....k-1,k+1,...,m.

The final values of the upper mxn portion of [7] can be calculated by repeating this

procedure m times (k=1, 2,..., m). Then the remaining elements of the receptance

matrix can be obtained from Equation (2.68).

If damping matrix is replaced by any general dynamic stiffness matrix, all the

formulations given above can be used for any structural modification problems:

Replacing [H,, | matrix by
[511]:([Kn]_6‘)2[1‘411]"'i[Hu])_1 (2.71)
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where [K, ], [M, ] and [H, ] are the stiffness, mass and hysteretic damping

matrices of the modifying structure, respectively.

The same equations can be used for structural modification problems.

By using Equation (2.71), the elements of [&,,] can be written as:

o, =k, —a’'m, +ih, (2.72)

In Equations (2.63) through (2.70), the damping terms ih  can be replaced by the

corresponding elements J,. Then the equations will be valid for structural

modification problems. However, these equations can be used in the given forms

only if there is no additional DOF due to the modifying structure.

2.1.5 Modeling of Distributed Modifications without Additional Degrees of

Freedom

In structural modification problems, modeling distributed modifications is more
difficult compared with lumped modifications. There are different approaches in the
literature. Especially, W. D’ Ambrogio, A. Sestieri extensively studied the distributed
modifications and developed a modeling approach for distributed modifications. The

method proposed by W. D’ Ambrogio, A. Sestieri [34] will be given below.
Assuming a FE model is not available for the original structure, and original

structure is only known experimentally, the FRF of a modified structure can be

obtained by the relationship given below.

[H]=(II1+[H,][AB]) ' [H,] 2.73)
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In Equation (2.73) [H] and [H,] represents the FRFs of the original and modified

structures, respectively, [/] is the identity matrix and [AB] is the dynamic stiffness

matrix of modifications introduced into the original structure.

Defining the subscripts “b” and “a” as interface DOFS between original and
modifying structure and original structure DOFs not on the interface “b”,

respectively, the following equation can be written:

[AB]{[O]"“ o], } (2.74)

[0],, [aB],

it can be shown that [H] is given by [34] :

ok okl frl) g

[d],, [H],] [[H], [Hl,]| [[H],

+[#,], (48], | [[Ho],, [H], ]

(2.75)

In the above equation the order of the inverted matrix is b which is smaller than the

total DOF of the structure (a+b).

The dynamic stiffness matrix of modifications [AB] appearing in Equation (2.74)

can be written as:

[AB]=[B]-[5,] (2.76)

As seen in Equation (2.76), [AB] is the difference between the dynamic stiffness

matrices of the modified and original structures. This corresponds to the dynamic

stiffness matrix of the modification only for lumped modifications; however for
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distributed modifications it must be computed by taking the difference of two
matrices. As an example, let us consider the effect of a rib stiffener with given
characteristics [34]. The bending stiffness of the whole system is certainly a function
of the rib's elasticity, but it is also very much dependent on the characteristics of the
original structure. Since doubling the thickness of a flexural beam does not double
the whole bending stiffness, the stiffness of the modified structure is not just the sum
of the stiffness of the two components. The stiffness increases eight times due to the

effect of the cross section area moment.

If both of the FE models are available for original structure and the modified one, the

difference between the two models, performed on the whole set of DOFs will

generate a [AB]| matrix which is given by

[AB]=-@’[AM ]+ jelAC]+[AK] (2.77)

In Equation (2.77), non-zero elements do not extend beyond the interface DOFs

between the original and modifying structures. This implies a local character of [AB],

when the entire finite elements DOFs are considered [34].

For complex structures, a good FE model may not be available in several practical
applications, then the original structure can be known only experimentally by
measuring the FRFs. For the modifying structure, usually the FE model of the
structure can be easily constructed. In order to obtain the dynamic characteristics of
the modified structure, FRF of the original structure and finite element of the
modifying structure should be coupled. In the FE model both translational and
rotational DOFs may exist however in experiments, only translational DOFs are
usually measured due to the difficulties encountered in measuring the rotational
DOFs. Therefore in order to have consistent DOFs for the original and modifying

structure, condensation procedures should be used. After elimination of rotational
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DOFs, the matrix [AB], reduced to the translational DOFs, can be expressed by the

equation given below.

[AB]=[B.]-[B,.] (2.78)

In Equation (2.78), [B.] and [B,,] are the condensed dynamic stiffness matrices of
the modified and the original structures, respectively. In this equation [B,] and [B, ]

become full matrices due to the condensation process, and the same holds for [AB]

when reduced to the translational DOFs.

In order to compute [AB] approximately, it is useful to consider non-local character
of the modification matrix [AB], when reduced to the translational DOFs. For

simplicity, when @=0 [AB] is given by:

[AK]=[AB(w=0)] (2.79)

It is possible to write [34]:

AK, =—

ij

J1x=0,i#j
where AKU represents the additional force arising, as a result of the modification, on
the i DOF for a displacement in j, when all the DOFs in [AK] are set to zero,

excluding x » Since the DOFs involved in [AK ] are only translations, there is no

constraints in the rotational DOFs. Therefore, although all the displacements,

exceptx; are blocked, there is an additional force on every DOF due to the imposed
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displacement which propagates to the interface area through the unconstrained

rotations.

However, the elements of [AK] tend to vanish when either i or j get far from the

interface because additional forces are rapidly decreasing as either i or j gets farther

from the connection area. The proof and further details are given in [34].

From Equation (2.78) for @=0, the following equation can be written.

[AK]=[K.]-[K,.] (2.80)

Due to the quasi-local character of [AK ], the relation given below can be expressed

when either i or j is far from the interface.

[K.]=[Ko] (2.81)

This difference can be approximately estimated by modeling only a portion of the

two considered structures which includes the interface DOFs. Similar situation holds

for [AB].

2.2 Structural Modification with Additional Degrees of Freedom

2.2.1 Ozgiiven’s Formulation

Ozgiiven [24] proposed a formulation for the structural modifications which

introduce additional DOFs to the structure. In the formulation the receptance matrix

of the modified structure [&] can be partitioned as follows (Figure 2.1):
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* The coordinates which correspond to the original structure only (a)

* The coordinates which are connection coordinates between the original and the

modifying structure (b)

* The coordinates which correspond to the modifying structure only (c)

Then the following equations can be written for the original and modifying

structures:
I l — X
_\l Wt
|~
Modifying Structure
Original Structure
Figure 2.1 Original and Modifying Structure
a“ aah -1
-1 .
CO I ST R A )
a() aO
o aab a’ -1 [a' ]—1 0 0 0 0
aba abb abc‘ = 0 O1+10 (283)
. b ¢ [Dmod]
a“ o o 0 0 0] O
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where [¢,] and [@] represent the receptance matrices of the original and modified

structures, respectively. Pre-multiplying Equation (2.83) by

o]
0 0 (2.84)
0 0 I
and post-multiplying by [«] gives
a o o]l [1 00 OJ_[_OfS’f_I_Q]_._[{)TSd]
alt ol 0|=[0 I o|[a]+|0i[a” © (D ][a] (2.85)
0 0 7] [0 00 0i01'“‘°d

After some matrix manipulations it is possible to write

I 0] [ 0 o | o

oS Sz
HI 0}{“‘? 0}[%&}{“% abc}{agb 0} (2.87)
00 0o I a” o 0 I

a

[ ]+ [ | o][Dmod]B:} =[] (2.88)

be

[ Lo Yol o] % ][ o] @

Then receptance submatrices of the modified system can be obtained as:
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= ° D ° 2.90
|:a,ca:| H:O O:|+|:O I:|[ mod]:l |:0:| ( )
1 e
a’t  a“ 00 0 I 0 I
CARCASEat O 2o

o ][ o] 1101, 2 | 29

In the equations above, in order to calculate complete receptance matrix of the
modified structure it is necessary to invert only a single matrix. The order of the
matrix to be inverted is equal to the DOF of the modifying structure, which is usually

much less than the total DOF of the system.
2.2.2 Extension of Ozgiiven’s Formulation

Starting from the original relationship developed by Ozgiiven [24] for structural
modifications and the description method for distributed modifications developed by
D’Ambrogio and Sestieri [34], Hang [35] proposed a different method for the
prediction of the FRFs for distributed structural modification with change in the

DOFs. The theory of the proposed method is given below.

When structural modifications introduce additional DOFs into the system, the

receptance FRF matrix of the modified structure [H 1] can be partitioned into three

parts as [35]:
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(a) DOFs belonging to the original structure only (indicated by subscript “a”)

(b) Interface DOFs, through which the modifying part is connected to the original

structure (indicated by subscript “b”)

(c) Passenger DOFs, belonging to the modifying structure only (indicated by

subscript “c”)

Then the following equations can be written for the original and the modified

structures:
. [H,, H,]|"
[Bo]:[Ho]lz{ " O“b} (2.94)
HOba HObb
Hlaa Hlab Hlac B [H ]—l 0
-1
[Bl]:[Hl] =\Hy, Hy Hy | = ’ 0 +[AB] (2.95)
cha chb chc 0 0 0
0 0 0
where [AB]=[B,]-[B,]=|0 [AB, AB, (2.96)
0 ABcb ABCC

By matrix manipulation, the receptance matrix of the modified structure can be
obtained as a function of the original receptance matrix and the delta dynamic
stiffness matrix introduced by the modifying part. Then the receptance matrices of

the modified structure can be given as:

[Hlbb ] = |:[I] + [H()bh ] [ABhb ] - [H()bh ] [Ath ] [ABCL‘ ]_1 [ABch ]:|_1 [HOhb]

= [IB]_I [HObb]

(2.97)
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[chb] = _[ABCC ]_1 [ABcb][thb] = _[a][Hlbh]

[Hy]=[[11+ [ Ho J1AB, 1~ [Ho, (88, 1[88, ] [4B, 1] [H,,]

=[] [Ho]
[#,..]=-188,1"[aB,][H,,]=~[e][H,,]

[, ]=[H,,]

[, ]=[H,,]

[ ]=[H,.]

[, ]=[88,]" ~[48.]"[AB, ][H,.]=[7]-[a][H,]
(Ao )= [ How | =[Hou [ B, || Hov | = [ Houo 1| A8, ][ H.,]
where [7]=[AB,]"

[a]=[aB.]"[48,]=[7][48,]

[,5] = [I]+[H0hb][ABbh]_[HOhb][ABbc][ABcc]_l [ABcb] = [I]+[H0bh][ABhb]_

[HOhb ] [Ath ] [a]

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

In above equations two matrices should be inverted for the computation of the

complete receptance matrix of the modified structure. The orders of matrix to be
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inverted are equal to the interface DOFs and the passenger DOFs, and these are much

less than the total DOFs of the modified system.

2.2.3 Modeling Approach for Distributed Modifications with Additional

Degrees of Freedom

In a structural modification problem the additional dynamic stiffness matrix due to

structural modification is given by [32]:

[AD]=[D]~[D,] (2.109)

In Equation (2.109) , [D] and [D,]| are the dynamic stiffness matrices of the

modified and original structures, respectively.

For lumped modifications, [AD] corresponds directly to dynamic stiffness matrix of

the modifying structure. However for distributed modifications, it has to be
calculated by using Equation (2.109) which may not correspond to the dynamic
stiffness matrix of the modifying structure. Dynamic stiffness matrices of the original
and modified structures should be available in order to apply Equation (2.109). This
requires availability of the FE models for original and modified structures. However,
if these FE models were available, then there would be limited advantage of using

structural modification method.

D’Ambrogio and Sestieri [34] overcame this drawback by using quasi-local

characteristics of additional dynamic stiffness matrix due to structural modification

[AD] . Bounded region which covers the modifying area is modeled for both original

and modified structures in order to obtain the additional dynamic stiffness matrix due
to structural modification. However there are two drawbacks in the approach

proposed by D’Ambrogio and Sestieri. These drawbacks are mainly due to the
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inaccurate modeling of the structure and quasi-local characteristics of the additional

dynamic stiffness matrix due to structural modification.

In order to illustrate the first drawback, the beams in Figure 2.2 and Figure 2.3 can be
considered. Beam model in Figure 2.2 is the original structure and it is modeled
using beam elements. When it is modified by adding a shorter beam on it as shown in
Figure 2.3, as the neutral planes of the thinner and thicker parts of the modified beam
will not coincide, the FE model will not represent the real structure accurately.
Modeling by using beam elements introduces certain errors independent from the
quality of the mesh. D’ Ambrogio and Sestieri discussed this error by modeling both
original and modifying structures using beam and brick elements in the FE model

[32].

The second error directly depends on the size of the bounded region which covers the

modifying area. The error introduced to [AD] will be smaller, when the bounded

region which covers the modifying area is larger. In this thesis, a different approach
is used in application of structural modification technique, in order to eliminate these
types of errors. When distributed modification is applied to an original structure in
such a way that additional DOF is introduced, then it is not necessary to use Equation
(2.109) in order to calculate the additional dynamic stiffness matrix due to structural
modification, as the problem will be a structural coupling problem. In that case, the
additional dynamic stiffness matrix due to structural modification will be the same as
the dynamic stiffness matrix of the modifying structure which can directly be used in

the structural modification method.

Figure 2.2 Original Beam
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Figure 2.3 Modified Beam

Assuming the FE models of the original and modifying beams are available and they
are modeled by using solid brick elements, distributed modifying beam structure

which is modeled by FEM introduces additional DOF to the original structure. The

finite element method provides [K,], [M,] and [H,] for the original

structure, [ K., ], [M ,e] and [H,,,] for the modifying structure. Then the dynamic

stiffness matrices of the original and modifying structure are given by:

[D,]=[K, |- [M,]+i[H,] (2.110)

[Droa | = [ Koa | = @ [M o ]+ i [H ] Q2.111)

DOFs of the original and modifying structure can be divided as:

¢ DOFs which belong to original structure only (indicated by superscript a)

e DOFs at the connection points (indicated by superscript c)

¢  DOFs which belong to modifying structure only (indicated by superscript b)

Force displacement relations and displacement compatibility equations can be

written as:
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Daa Dac xa
{fo}{ ” "H ‘j} (2.112)
Dy" D, X,

Dhb DbL‘ xb
{foad = { o dH " (2.113)

D DCL‘

mod mod mod

{x) ={x00) =12} (2.114)
{x}={x} (2.115)
(%} =1x"} 2.116)

Since the forces at the connection nodes are the sum of forces on the original and

modifying parts, the force equation can be written as:

Y H ) =17) 2.117)

Using Equation (2.112) and Equation (2.113), forces on the original and modifying

structure can be written as:

Y=o J{x )+ o5 =) (2.118)
Fioa} = Dt {xhos } [ Dios o) (2.119)

By first inserting Equation (2.115) and Equation (2.116) into Equation (2.118) and
Equation (2.119), then combining with Equation (2.117) one obtains
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{r}=[o J{x}+ (oo J{' Y+ [ 05" + D3 J{} (2.120)

Note that;
{7 ={r} (2.121)
=1} (2.122)

Then one obtains

) o o0 (e
{ry=1r = 05 [P +Dge] Do i (2.123)

b C b

Lo Duy D l¥

Equation (2.123) represents the assembly of two matrices (the dynamic stiffness
matrices of the original and modifying structures) and gives the dynamic stiffness
matrix of the modified structure. Therefore for distributed modifications, if
additional DOF is introduced to the structure, there is no need to use Equation
(2.109); instead, dynamic stiffness matrix of the modifying structure can directly be

used.

In this thesis, a new approach is proposed based on the modeling approach given
above and the formulation given by Ozgiiven [24]. As given in [24], FRF matrix of a
modified system can be partitioned as; DOFs which correspond to original structure
only (superscript a), DOFs at connection points (superscript b), and DOFs that
belong to modifying structure only (superscript ¢). Then Equation (2.90), (2.91),

(2.92) and (2.93) are used to obtain the receptance matrix of the modified structure.
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If additional DOF is introduced to the structure, without using Equation (2.109), the
dynamic stiffness matrix of the modification can be directly taken as the dynamic
stiffness matrix of the modifying structure for distributed modifications. Then using
Equation (2.90), (2.91), (2.92) and (2.93), receptance matrix of the modified system

can be calculated.
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CHAPTER 3

VERIFICATION OF STRUCTURAL MODIFICATION PROGRAM

3.1 Structural Modification Program

The computer program named “Structural Modification with Additional Degrees of
Freedom Program” is developed in MATLAB [49]. For the original structure, the
program uses two different text files which include mode shape matrix information
and natural frequency information, respectively. These two text files are extracted
from ANSYS by using a macro file written in this study. The FRF matrix is

calculated for the original structure by using Equation (3.1).

- q)irq)jr

%(w)=z 2 2., 2
So’l-w+ino.

r

3.1

For the modifying structure, the program uses two files which have the stiffness and
mass matrices of the modifying structure, respectively. These files are extracted from
the result file of the ANSYS modal analysis which has an extension of *“ *.full “.
However in order to have these stiffness and mass matrices, the file named “ rdfull.f
” which is in the ANSYS installation directory, should be compiled with Intel
Fortran compiler to create the * rdfull.exe” file. Then by running this “ rdfull.exe”
file with the result file of the ANSYS modal analysis which has an extension of
7* full” in a separate folder, these stiffness and mass matrices are extracted. In the

program, initial inputs which are the starting frequency, ending frequency, number of

frequency points and structural damping coefficient should be defined by the user.
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The number of nodes, the number of mode shapes to calculate FRF, connection
nodes of the original structure and the number of DOF per node for the original
structure should be defined by the user. For the modifying structure, number of nodes
and connection nodes on modifying structure should be specified by the user. As an
important point to be mentioned, the number of nodes, DOF per node and the
number of mode shapes to calculate FRF, has to match with the information in the
files created from the ANSYS. The FRF of the nodes specified by the user is
calculated for the original and modified structure. In order to compare the results of
the modified structure obtained from Ozgiiven’s formulation [24], FRF can be
calculated in the program which uses the direct ANSYS modal analysis result for the
modified structure. While computing the FRFs in the program, firstly the text files
that have the mode shape matrix and natural frequency information for the original
structure are read, then the stiffness and mass matrix information is read from the file
for the modifying structure. Original FRF matrix is obtained for the original
structure, and dynamic stiffness matrix is obtained for the modifying structure. As a
next step these matrices for the original and modifying structure are renumbered and
the FRFs of modified structure are calculated. The FRF curves for the selected nodes
are drawn on the graph for both original and modified structure. Furthermore, if it is
required, the FRFs for the modified structure can also be calculated by using directly

ANSYS modal analysis and the results can be displayed by the user.

3.2 Verification of the Program

In the program developed in this thesis, Ozgiiven’s formulation [24] for the structural
modification with additional degrees of freedom is used in order to calculate FRF of
the modified structure. In order to compare validity of the results obtained from the
program, the FRF is also calculated for the specified nodes by using ANSY'S solution
for the modified structure. In the following section, 5 different case studies are

presented to illustrate the validity of the program developed. In the first and second
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case studies free-free plate models with 6 DOF per node will be used. In the third
case study, a cantilevered plate will be used as a model. As a fourth case study, free-
free beam structure having 3 DOF per node will be modified by attaching smaller
beam under it. The final case study is the modification of an L-beam by attaching a
rib on it. In these different case studies, program will be validated with models that

have different boundary conditions and element types in the FE model.

3.2.1 Free-Free Plate

In this case study, a plate with dimensions 300mm x 300mm x Smm is used as an
original structure. Both the original plate and modifying plate which are shown in
Figure 3.1 and Figure 3.2, respectively are modeled in ANSYS 11.0 by using SHELL
63 elements which has 3 translational and 3 rotational DOFs, yielding a total 6 DOF
per node. The material used is aluminum which has the density of 2770 kg/m’,
Young’s Modulus of 71 GPa and Poisson’s ratio is taken as 0.33. The structural

damping factor is taken as 0.01 for both of the structures.

AN

MAR 2 Z003
2059243

Figure 3.1 FE Model of the Original Plate
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Figure 3.2 FE Model of the Modifying Plate

The geometrical and material properties of the original and modifying plates are
given in Table 3.1. As shown in Table 3.2, original plate was divided into 36
elements and it has 49 nodes with 6 DOF per node yielding 394 total DOFs. The
modifying plate was divided into 6 elements and it has 14 nodes with 6 DOF per

node, giving 84 total DOFs.

Table 3.1 Geometrical and Material Properties of the Plates

Original Plate Modifying Plate
Young’s Modulus (E) 71 GPa 71 GPa
Poisson’s Ratio (v) 0.33 0.33
Density (p) 2770 kg/m3 2770 kg/m3
Length 300mm 300mm
Width 300mm 50mm
Thickness Smm Smm

47




Table 3.2 FE Information of the Plate Models

Original Plate Modifying Plate
Number of Elements 36 6
Number of Nodes 49 14
DOF 294 84

There are 7 connection nodes between original and modifying structure. Connection
nodes for the original structure are nodes 14, 19, 18, 17, 16, 15, 8 and corresponding
connection nodes for the modifying structure are nodes 1, 3, 4, 5, 6, 7, 2. After the

modification, the modified structure which is shown in Figure 3.3 was obtained.

AN

ELEMENTS
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Figure 3.3 FE Model of the Modified Plate

The FRF values are calculated for the modified structure by the “Structural
Modification with Additional Degrees of Freedom Program” and the results shown in

Figure 3.4 are obtained for direct point FRF of node 2 of the original system in
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translational-z direction. As an option in the program, the calculated FRF by using
Ozgiiven’s formulation [24] can be compared with FRF calculated from ANSYS
solution for the modified structure in order to see the accuracy of the method. As
shown in Figure 3.5, both FRFs calculated from ANSYS solution for the modified
structure and the one obtained from structural modification method match exactly
except at higher frequencies. At higher frequencies there is a slight discrepancy in
the FRF curves which is due to the number of modes used to calculate the FRF of the

original structure as will be discussed in section 3.3.
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Figure 3.4 Direct Point FRF of Node 2 in Translational-z Direction for Original and

Modified Structures
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and FEA for Node 2 of Modified Structure in Translational-z Direction

3.2.2 Free-Free Plate with Finer Mesh

In this case study, the same plates were used as the original structure and modifying
structure, however finer mesh was used in the FE models of the original and
modifying plate which are shown in Figure 3.6 and Figure 3.7, respectively. The
material used is aluminum which has the density of 2770 kg/m3 , Young’s Modulus
of 71 GPa and Poisson’s ratio is taken as 0.33. Both the geometrical and material
properties of the original and modifying plates are shown in Table 3.3. As given in
Table 3.4, original plate was divided into 144 elements and it has 169 nodes with 6
DOF per node giving 394 total DOFs. The modifying plate was divided into 24
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elements and it has 39 nodes with 6 DOF per node yielding 234 total DOFs. The

structural damping factor is taken as 0.005 for both structures.
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Figure 3.6 FE Model of the Original Plate

AN

MAR 2 2009
21:03:02

ELEMENT &

Figure 3.7 FE Model of the Modifying Plate
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Table 3.3 Geometrical and Material Properties of the Plates

Original Plate Modifying Plate
Young’s Modulus (E) 71 GPa 71 GPa
Poisson’s Ratio (v) 0.33 0.33
Density (p) 2770 kg/m’ 2770 kg/m’
Length 300mm 300mm
Width 300mm 50mm
Thickness Smm Smm

Table 3.4 FE Information of the Plate Models

Original Plate Modifying Plate
Number of Elements 144 24
Number of Nodes 169 39
DOF 1014 234

There are 7 connection nodes between original and modifying structures. After the

modification, the modified structure which is shown in Figure 3.8 was obtained.
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Figure 3.8 FE Model of the Modified Plate
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The results shown in Figure 3.9 are obtained for direct point FRF of node 2 of the
original system in translational-z direction. In order to demonstrate the validity of the
method, FRF calculated from ANSYS solution for the modified structure is

compared with the results obtained from structural modification program in Figure
3.10.

The structural damping coefficient of the structures can be adjusted in the program,
without changing the FE model. In order to demonstrate this feature of the program,
the same problem was solved for a different structural damping coefficient of 0.01.

The results are shown in Figure 3.11 and Figure 3.12.
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Figure 3.9 Direct Point FRF of Node 2 in Translational-z Direction for Original and
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Figure 3.12 Comparison of Direct Point FRFs Obtained by Structural Modification

and FEA for Node 2 in Translational-z Direction

3.2.3 Cantilevered Plate

In this case study, a cantilevered plate with dimensions 300mm x 300mm x Smm is
used as an original structure (Figure 3.13) and it is modified by attaching the smaller
plate shown in Figure 3.14 to the free end of the plate. The material used is
aluminum which has a density of 2770 kg/m3, Young’s Modulus of 71 GPa and
Poisson’s ratio is taken as 0.33. Both the geometrical and material properties of the
original and modifying plates are shown in Table 3.5. As shown in Table 3.6,
original plate was divided into 64 shell elements with 6 DOF per node yielding 488
total DOFs. The modifying structure was divided into 16 shell elements with 6 DOF
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per node giving 144 total DOFs. The structural damping factor is taken as 0.0075 for

both structures.
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Figure 3.13 FE Model of the Original Plate
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Figure 3.14 FE Model of the Modifying Plate
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Table 3.5 Geometrical and Material Properties of the Plates

Original Plate Modifying Plate
Young’s Modulus (E) 71 GPa 71 GPa
Poisson’s Ratio (v) 0.33 0.33
Density (p) 2770 kg/m’ 2770 kg/m’
Length 300mm 300mm
Width 300mm 75mm
Thickness 2mm 2mm

Table 3.6 FE Information of the Plate Models

Original Plate Modifying Plate
Number of Elements 64 24
Number of Nodes 81 27
DOF 488 162

There are 9 connection nodes between original and modifying structures. After the

modification, the modified structure shown in Figure 3.15 was obtained.
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Figure 3.15 FE Model of the Modified Plate
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In Figure 3.16, direct point FRFs of node 60 of the original and modified systems in
translational-z direction are shown in the frequency range of 0-2000 rad/s. In order to
show the validity of the method, FRFs calculated from ANSYS solution for the
modified structure is compared with the results obtained from structural modification
program in Figure 3.17. As can be seen in Figure 3.17, both FRFs calculated from
ANSYS solution for the modified structure and the one obtained from structural
modification method match for the first 3 modes. At higher frequencies the effect of
truncation made in obtaining FRF of the original structure can be observed. Around
the fourth and fifth modes there are discrepancies in the FRF curves, which are due

to the number of modes used to calculate the FRF of the original structure.
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Figure 3.16 Direct Point FRF of Node 60 in Translational-z Direction for Original
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Figure 3.17 Comparison of Direct Point FRFs Obtained by Structural Modification
and FEA for Node 60 in Translational-z Direction

3.2.4 Free-Free Beam

In this case study, a free-free beam shown in Figure 3.18 is modified by attaching a
smaller beam under the original one. After the modification, the modified beam
shown in Figure 3.19 was obtained. The material used is aluminum which has a
density of 2770 kg/m’, Young’s Modulus of 71 GPa and Poisson’s ratio is taken as
0.33. The original beam has dimensions 300mm x 300mm x 5mm. Both the
geometrical and material properties of the original and modifying beams are shown
in Table 3.7. Original beam was divided into 24 brick elements with 3 DOF per node
yielding 723 total DOFs and the modifying structure was divided into 4 brick
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elements with 3 DOF per node giving 153 total DOFs, as shown in Table 3.8. The

structural damping factor is taken as 0.01 for both structures.
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Figure 3.18 FE Model of the Original Beam
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Figure 3.19 FE Model of the Modified Beam
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Table 3.7 Geometrical and Material Properties of the Beams

Original Plate Modifying Plate
Young’s Modulus (E) 71 GPa 71 GPa
Poisson’s Ratio (v) 0.33 0.33
Density (p) 2770 kg/m3 2770 kg/m3
Length 1200mm 200mm
Width 150mm 150mm
Thickness 25mm 25mm

Table 3.8 FE Information of the Beam Models

Original Plate Modifying Plate

Number of Elements 24 4
Number of Nodes 241 51
DOF 723 153

In Figure 3.20, direct point FRFs of node 61 of the original and modified system in
translational-z direction are shown in the frequency range of 0-4000 rad/s. In the
analysis, 1000 frequency points were used in the frequency range given above. In
order to show the validity of the method, FRFs calculated from ANSYS solution for
the modified structure are compared with the results obtained from structural

modification program in Figure 3.21.
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3.2.5 Free-Free L-Beam

In this case study, a free-free L-beam shown in Figure 3.22 is modified by attaching
a rib between the arms of it. The main objective of this modification is to increase
bending stiffness of the structure so that natural frequencies of the bending modes
increase. After the modification, the modified L-beam which is shown in Figure 3.23
was obtained. The material used is aluminum which has a density of 2770 kg/m’,
Young’s Modulus of 71 GPa and Poisson’s ratio is taken as 0.33. The vertical and
horizontal parts of L-beam have the dimensions of 150mm x 120mm x 15mm and
200mm x 120mm x 20mm, respectively. The material properties of the original and
modifying beams are shown in Table 3.9. Original L-beam was divided into 36 brick
elements with 3 DOF per node yielding 960 total DOFs and the modifying structure
was divided into 4 brick elements with 3 DOF per node giving 153 total DOFs as
shown in Table 3.10. The structural damping factor is taken as 0.0075 for both

structures.
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Figure 3.22 FE Model of the Original L-Beam
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Table 3.9 Material Properties of the Beams

Original L-Beam Modifying Beam
Young’s Modulus (E) 71 GPa 71 GPa
Poisson’s Ratio (v) 0.33 0.33
Density (p) 2770 kg/m’ 2770 kg/m’

Table 3.10 FE Information of the Beam Models

Original L-Beam Modifying Beam
Number of Elements 36 4
Number of Nodes 320 51
DOF 960 153

In Figure 3.24, direct point FRFs of node 193 of the original and modified system in
translational-x direction are shown in the frequency range of 0-10000 rad/s. In order
to see the accuracy of the structural modification method in this application, FRF
calculated from ANSYS solution for the modified structure is compared with the

results obtained from structural modification program in Figure 3.25.

Figure 3.23 FE Model of the Modified L-Beam
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Figure 3.25 Comparison of Direct Point FRFs Obtained by Structural Modification
and FEA for Node 193 in Translational-x Direction
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3.3 The Effect of Modal Truncation on the Structural Modification Method

In this section, the effect of modal truncation made in the computation of the FRFs of
the original structure on the accuracy of the structural modification method proposed
is demonstrated by using the cantilever plate given in section 3.1.2. The same
modification is applied to the original plate, and the results are obtained for the

modified plate.

In order to show the effect of truncation, the FRFs of the modified plate are predicted
by using different number of mode shapes in the calculation of FRFs of the original
structure. The direct point FRFs of node 30 of the original and modified system in
translational-z direction are calculated in the frequency range of 0-300 Hz by using

15, 30, 102 modes in turn. The results are shown in Figure 3.26 to Figure 3.28.

== == Original Structure (FEA)
-1 Modified Structure (Modification Method)
=== = Modified Structure (FEA)

g, A A

< 2NN R
5 i \ \, / )
6 J

0 25 50 75 100 125 150 175 200 225 250 275 300
Frequency (Hz)

Figure 3.26 Comparison of FRFs at 30Z30Z (15 Modes are Used in the Calculation
of FRFs of the Original Structure)
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Figure 3.27 Comparison of FRFs at 30Z30Z (30 Modes are Used in the Calculation
of FRFs of the Original Structure)
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Figure 3.28 Comparison of FRFs at 30Z30Z (102 Modes are Used in the Calculation
of FRFs of the Original Structure)
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As can be seen from Figure 3.26 to Figure 3.28, the effect of truncation made in
obtaining FRFs of the original structure can be observed at higher frequencies. The
method is sensitive to the accuracy of the FRFs of the original structure and using
higher number of the modes in the computation of the FRF of the original structure
increases the accuracy of the FRFs predicted for modified structure. Although FRFs
of the modified system is affected considerably, FRFs of the original structure are
not affected much from truncation. Therefore, it is concluded that the effect of
truncation is more pronounced for FRFs of the modified system than those of the

original system (especially at higher frequencies).
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CHAPTER 4

EXPERIMENTAL VALIDATION

4.1 Modal Test Theory

4.1.1 Introduction

A modal test is a test which is conducted in order to construct a mathematical model
of the structure based entirely on measured vibration data [47]. In modal test, not
only response is measured, but also the excitation is measured, so that, these
quantities can be related to each other and relationship between them can be defined.
When the mathematical model of the structure is constructed, the dynamic behavior
or vibration behavior of the structure under any loading can be obtained. However
the definition of mathematical model varies considerably from one application to
other, it can be estimate of natural frequency and damping factor in one case and a

full mass-spring dashpot model for the other [46].

The application areas of the modal test can differ. The most commonly used
application is obtaining the dynamic behavior of the structure in order to compare the
results with the corresponding data calculated from a finite element model. This
application is needed in order to validate the theoretical model with the experimental
results so that, the theoretical model can be used for predicting the response levels to
different excitations. Modal test can also be used in order to construct a mathematical

model of a structure which then may be used in a structural coupling. Another
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application of the modal test is to obtain a mathematical model which can be used to
predict the effects of modifications to the original structure which may be referred to

structural dynamic modifications application.

Modal test has 4 phases [47]:

e Test planning phase
e Measurement phase
¢ Analysis phase

e Modeling phase

4.1.1.1 Test Planning Phase

In modal testing it is vital to use correct equipment for different transduction, signal
processing and analysis tasks and to measure all the necessary parameters. This
means all the necessary quantities are included in parameter list and also all the

unnecessary data are excluded from the list.

Essentially, a modal test includes the measurement of a set of response functions.
These are usually measured as time-history records of various responses and
excitation signals and they are often processed at source to obtain the FRFs. The
structure is usually described by its FRF response model and it is fully defined by an
FRF matrix. It is enough to measure a single row or column of the FRF matrix in
order to obtain modal properties from measurements of responses. Based on the plan,
two proper excitation points should be selected and a point FRF should be measured
at these excitations points. Then the resonance frequencies on the two FRF curves
should be compared in order to establish whether there are any modes present in one
plot and absent from the other. The process of selecting and checking further

excitation points should continue, until all modes have been identified.
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After following these steps it is necessary to decide whether the excitation point
chosen is suitable for exciting all modes or whether it is preferable to excite some
modes from one point and others from other points. While selecting excitation
locations, it is necessary to ensure that the excitation point is not at or close to a

nodal line.

In test planning it is also important to choose response measurement locations. There
are a number of considerations in the selection of convenient points that will provide
clear visual interpretation of the resulting mode shapes, and in selection of DOFs
which are necessary to have an unambiguous correlation between tests and analyze
models. For the former one, with a uniform distribution of points that has a
sufficiently fine mesh, the mode shapes can be displayed. However this choice is not
necessarily the optimum set for the second case which may be a more quantitative
application such as model validation, updating or modification. There are different

procedures available to select proper measurement points that will satisfy the needs.

4.1.1.2 Measurement Phase

In the measurement phase, the main concern is to prepare the structure for test and
measure the data which will be used to obtain the mathematical model of the
structure and understand the dynamic behavior of the structure. Correct use of the
equipment and installation of the transducers are very important in order to eliminate
the systematic errors, because these types of errors are difficult to detect when they
are compared to noise errors. Since these systematic errors are not easy to detect,
when they are embedded into measured data, they may lead to serious errors in the
construction of mathematical model of the structure. Once these errors are
eliminated, the remaining part in the measurement phase is the measurement of
excitation force and the resulting forces at the convenient points chosen in the test
planning phase. The measured data will be displayed in the form of frequency

response functions (FRFs) which are the ratios of responses to excitations.
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4.1.1.3 Analysis Phase

In the analysis phase, the measured data are subjected to a process in order to
determine the specific parameters of a mathematical model so that this model
exhibits the same dynamic behavior as the measured in the modal test. The modal
model is constructed by using the modal properties of the system which describe the
dynamic characteristics of the structure. In this phase, curves are regenerated by
curve fitting techniques which use the modal parameters. Many curve fitting methods
operate on the response characteristic in the frequency domain, but there are also
algorithms which perform the curve fitting in the time domain. The main concern is
to obtain a curve which has the minimum discrepancy from the measured curve. For
the analysis of the data, there are various algorithms; however the most powerful
analysis methods are those which are performed on all FRF curves in a single
computation within a wide frequency range. However the performance of these
methods mostly depends on the consistency and uniformity across the complete set

of measured data.

4.1.1.4 Modeling Phase

The main objective in this phase is to provide some insight into the validity and
quality of the model which has been constructed. In the modeling phase the
inconsistencies in the modal data are checked. There are also other checks which
must be undertaken on the resulting model, such as verification that the modes are

suitably real, and not complex.

4.1.2 Limitations and Sources of Errors in Modal Testing

In modal testing, in order to construct a mathematical model that will exhibit the

same dynamic characteristics as the structure to be tested, knowledge of the errors
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and limitations in modal testing should be available. Due to different limitations and
sources of errors in modal testing, there is always certain inaccuracy in the tests.
These limitations and errors are random errors due to noise, limited number of
measured degrees of freedom, poor modal analysis of experimental data, non-linear
behavior of the structure or attached mechanical devices, systematic errors due to
signal processing of the measured data, difficulty in measuring rotational degrees of
freedom, systematic errors due to attachment of mechanical devices like springs,
transducers and stingers to the structures. These limitations and errors can be divided

into 3 groups [48]:

e Experimental data acquisition errors
e Signal processing errors and

e Modal analysis errors

These errors can be categorized within themselves, as given below [48]:

e Experimental data acquisition errors
o Quality
» Mechanical errors
e Mass loading effect of transducers
e Shaker-structure interaction
e Supporting of the structure
* Measurement noise
= Nonlinearity
o Quantity
= Measuring enough points on the structure
= Measuring enough degrees of freedom (i.e. Rotational DOFs)
¢ Signal processing errors
o Leakage

o Aliasing
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o Effect of window functions
o Effect of Discrete Fourier Transform

o Effect of averaging

e Modal analysis errors :
o Circle-Fit Modal Analysis
o Line-Fit Modal Analysis
o Global Modal Analysis

All these errors may lead to inaccurate and imprecise results in the modal test. If the
mechanical errors are considered, these types errors are embedded into the data
which are acquired. When shakers are used in modal test, the shaker dynamics may
affect the total dynamics of the structure to be tested. In shaker testing axial force
should be the only excitation of the structure therefore in order to provide this, a slim
rod which is called stinger is used to attach the shaker to the structure. A stinger is

stiff in the axial direction and flexible in the other directions.

Another important source of error is the mass loading effects of the transducers. In
order to measure the dynamic force and response of a structure, in terms of FRFs, it
is necessary to use accelerometers and force transducers; however usage of these
equipments introduces changes to the structure due to the addition of masses. The
input force excitation is partly spent on accelerating of the force transducer mass and
also the accelerometer mass [46]. This is the main reason of mass-loading effects of
transducers. Generally followed approach to resolve this problem is to use small
accelerometers or force transducers in order to minimize the mass loading effect.

Another approach is to employ mass-cancellation correction.
The boundary condition in modal test also plays an important role in the accuracy of

the model constructed. In the free-free condition the test structure should be freely-

supported in space and should not be attached at any of its coordinates; however it is
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not possible to provide a truly free-free support in practice. Therefore, this boundary
condition is approximated by supporting the test structure on very soft springs such
as light elastic cords or by hanging the structure with soft elastic bungee. However,
especially for flexible structures, the elastic modes may interfere with rigid body
modes and flexible modes may be affected from these rigid body modes. In the
grounded condition the selected points of the structure should be fixed; but it is not
possible to provide truly grounded condition in practical cases. All these

approximations introduce certain errors to the mathematical model constructed.

4.2 Application of Structural Modification Method on Garteur SM-AG19
Model

In the previous part of this thesis structural modification method was applied to
different theoretical models that were modeled by finite element method. In this
section the structural modification method will be applied to a real structure. In
order to apply the structural modification method to a real structure, GARTEUR SM-
AG19 test structure which is used in the literature for modal testing [50], was
constructed in Aselsan Inc. Microelectronics, Guidance and Electro Optics Division
and modal test is conducted both on the original and modified GARTEUR SM-AG19
test structure. GARTEUR is the abbreviation of Group for Aeronautical Research
and Technology in Europe and this GARTEUR SM-AGI19 structure has been
designed by a multinational research group. This structure has been designed in order
to use the same experimental data for different investigations on structural dynamics
and to have a common structure on which modal tests and modal analyses are
conducted. In this part, in order to show the performance of the structural
modification technique, GARTEUR SM-AGI19 model was modified with beams
under the wings which act as stiffeners causing increased flexural rigidity. The
GARTEUR SM-AG19 model which was constructed in Aselsan Inc
Microelectronics, Guidance and Electro Optics Division differs slightly from the

original GARTEUR SM-AG19 model. In this model there was no viscoelastic tape
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and additional dampers, so damping characteristics of the GARTEUR SM-AG19
model used in this study is different from the original one. The general view of the

GARTEUR SM-AG19 model constructed is shown in Figure 4.1.

Figure 4.1 General View of the GARTEUR SM-AG19 Model

In order to modify the original GARTEUR SM-AGI19 model, two beams were
attached under each wing. Two modal tests were performed: one on the original
model which has no additional beam under the wings and one on the modified
structure with additional beams under the wings. Firstly, in order to validate the finite
element model of the original GARTEUR SM-AGI19 model, the results obtained
from the finite element method and modal test were compared. As a second step, in

order to show the accuracy of the structural modification method, the results obtained
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from the finite element method for the modified GARTEUR SM-AG19 model and

modal test were compared.

4.2.1 Modal Test Setup and Configuration

The overall mass is GARTEUR SM-AG19 model constructed is 41 kg and as a
material, aluminum was used. The overall length of the structure is 1.5 m, the wing

span is 2.0 m. The details of the dimensions of the model are shown in Figure 4.2

Figure 4.2 Dimensions of the GARTEUR SM-AG19 (All dimensions are in mm)

In the construction of GARTEUR SM-AG19 model, bolted joints are used. The

details of the bolted joints are given in Figure 4.3.
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Figure 4.3 Details of Bolted Joints

Modal tests were performed with free-free boundary conditions. In order to provide
free-free boundary condition, the test-bed was hung from the attachment point on the
model to the metal cage support. As the attachment points, special hanging adaptor
was designed on the test-bed. For the suspension, 4 elastic bungees were used. The

details of the bungee, metal cage support and attachment point are shown in Figure

4.4 and Figure 4.5.

Metal Cage
Support

Elastic Bungees

Figure 4.4 View of Bungee and Metal Cage Support
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Attachment
Point

Figure 4.5 View of Attachment Point

The modal tests were performed by using modal impact hammer and accelerometers.
In the experiment, total 16 accelerometers were used. The accelerometer positions of
the experiment are shown in Figure 4.6. The directions and the nodes used for

excitation and measurement are given in Table 1 and Table 2 respectively.

Figure 4.6 Accelerometer Positions
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Table 4.1 Excitations Nodes and Directions

Excitation Nodes Directions

X y Y/
1 N N N
2 N
3 N N N
4 N N
5 N N
6 N N N
7 N
8 N N N
9 N
10 N
11 \ N
12 N N
13 N
14 N

Table 4.2 Measurement Nodes and Directions

Measurement Nodes Directions

X y z
. v
2 v
3 \ y
3 v
> v
6 \ y
7 v
5 v
9 v
10 \/
11 \/
12 3
13 y
14 N
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The only differences between the GARTEUR SM-AG19 model and modified system
are the beams attached under the wings. In order to prevent parameters that may
bring differences between the results of modal test of the original and modified

models, the same accelerometer configurations and types were used for the original

GARTEUR SM-AG19 model and modified system in the modal tests.

Modal test was conducted between 0-100 Hz and excitation in each DOF was
performed for 5 averages. PULSE 11.0 software and Pulse Front-End 3560C were
used in the modal tests. In the software, coherence values were monitored in the
selected frequency range during the excitation, according to the coherence values, it
was decided to repeat the hammer hit or not. Instrument and transducer properties are
given in Table 4.3 and Table 4.4 respectively. In Figure 4.7, data acquisition system

and modal hammer are shown.

Table 4.3 Instrumentation and Software Information

Instrumentation and Software
Bruel & Kjaer 4507 B
Accelerometer
Bruel & Kjaer 4508 B
Impact Hammer Bruel & Kjaer 8200+2646
Analyzer Pulse Front-End 3560C
Software Pulse 11.0
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Table 4.4 Transducer Properties

Frequency Range Input
Transducer Type 10% Sensitivity
Accelerometer Bruel & Kjaer 5
0.3-6k 10 mV/m/s
4507 B
Accelerometer Bruel & Kjaer )
0.3-8k 10 mV/m/s
4508 B

Figure 4.7 View of Data Acquisition System and Modal Hammer

4.2.2 Modal Test of Original Garteur SM-AG19 Model

The GARTEUR SM-AG19 model test setup and the measurement points on the test
setup are shown in Figure 4.8 and Figure 4.9. Total 16 accelerometers were used in

the modal test of original GARTEUR SM-AG19 model.
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Figure 4.9 View of Measurement Points on the Vertical Stabilizer and Right Wing

The screen shot from the user interface of PULSE 11.0 software during the modal
test is shown in Figure 4.10. In this figure the FRF measurement and coherence plot
and measurement control windows can be seen. The first 6 natural frequencies of the

original GARTEUR SM-AG19 model test setup are given in Table 4.5.
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Figure 4.10 The Screen Shot from the User Interface of PULSE 11.0

Table 4.5 The First 6 Natural Frequencies (Excluding Rigid Body Modes) of the
Original GARTEUR SM-AG19

Experimental Mode Number

Original Natural
Frequencies (Hz)

6

16.75

38

39.5

39.75

(o)W O, T I SN O I  NS J

46.25
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The mode shapes of the original test-bed for the first six flexible modes in the

frequency range of 0-50 Hz. are shown in Figure 4.11.

MODE SHAPE 1 MODE SHAPE 2
MODE SHAPE 3 MODE SHAPE 4
MODE SHAPE & MODE SHAPE 6

Figure 4.11 The Mode Shapes of the Original Test-bed
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For the original test-bed, direct point FRF of node 3 in z-direction is given in Figure

4.12.

2 1 1 1 1 1 1 1 1
1 Experimental FRF (Original Structure)
0 |

)

e -1

=S

Q.

g -2

i

S 3] /\

S "

\N

. \ T

0 5 10 15 20 25 30 35 40 45 50 55 60
Frequency (Hz)

Figure 4.12 Experimental FRF of Node 3 in z-Direction for Original Test-Bed

When the structure is excited at node 3 in z-direction, screen shot of the coherence

plot of the measurement at node 3 in z-direction is shown in Figure 4.13.

4_Coherence(Response 3,Force) - Current

1 Coherence{R esponse 3 Force] - Current
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Figure 4.13 Coherence Plot of the Measurement at Node 3 in z-direction
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4.2.3 Modal Test of Modified Garteur SM-AG19

GARTEUR SM-AG19 model was modified by attaching beams under the wings.
The mass of each beam under the wing is 0.554 kg. The modifying beams under the

wings can be seen in Figure 4.14.

Figure 4.14 View of the Modifying Beams

As seen in Figure 4.15, the modifying beams were attached under the wings by
bolted joints in order to provide rigid connections between the modifying beams and

wings.

Figure 4.15 Bolted Joints on Modifying Beams
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Natural frequencies of the modified GARTEUR SM-AG19 model are given in Table
4.6.

Table 4.6 The First 6 Natural Frequencies of the Modified GARTEUR SM-AG19

Model
Modified Natural
Mode Number Frequencies (Hz)
1 6.25
2 17.75
3 38.5
4 44
5 44.25
6 46.75

4.2.4 FE Model of Original and Modified Garteur SM-AG19 Model

In order to construct and analyze the finite element model of the test bed, ANSYS
11.0 was used. The test-bed was modeled using SOLID 186 elements which have 20
nodes per element. The FE model of the original GARTEUR SM-AG19 model
(Figure 4.16) consists of 140 SOLID 186 elements and the finite element model has
1380 nodes with 3 translational DOF per node yielding total DOF of 4140. The FE
model properties of the original GARTEUR SM-AG19 model are given in Table 4.7.
The material properties assigned to finite element model of GARTEUR SM-AGI19

model is given in Table 4.8.
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Table 4.7 FE Model Properties

Element Type Used In FEM SOLID 186
Number of Elements 140
Number of Nodes 1380
DOF 4140

Table 4.8 The Material Properties

Material Property Value
Density (p) 2770 kg/m3
Poisson’s Ratio (v) 0.33
Modulus of Elasticity (E) 71 GPa

Figure 4.16 FE Model of Original GARTEUR SM-AG19 Model

The modifying beams attached under the wings are modeled by using SOLID 186
elements. The finite element properties of the modifying beam is given in Table 4.9

and the geometrical and material properties of the modifying beam are given in Table
4.10.
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Table 4.9 FE Model Properties

Element Type Used In FEM SOLID 186
Number of of Elements 6
Number of Nodes 70
DOF 210

Table 4.10 The Material Properties

Modulus of Elasticity (E) 71 GPa
Poisson’s Ratio (v) 0.33
Density (p) 2770 kg/m’
Length 200mm
Width 100mm
Thickness 10mm

In the finite element model of the modified GARTEUR SM-AG19 model, same type
of elements and material were used. The FE model of the modified GARTEUR SM-
AG19 model is given in Figure 4.17. In the FE model, the modifying beams are
rigidly connected to the original GARTEUR SM-AG19 model, therefore no

additional stiffness was introduced to the interface nodes.

Figure 4.17 FE Model of the Modified GARTEUR SM-AG19 Model
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The modal analysis of the original GARTEUR SM-AG19 model is performed by
using ANSYS 11.0. Based on the results of modal analysis, first six mode shapes of

and the model natural frequencies are given in Figure 4.18 and Table 4.11

respectively.
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Figure 4.18 Mode Shapes of Original GARTEUR SM-AG19
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Table 4.11 Natural Frequencies of Original GARTEUR SM-AG19

Natural Frequencies (Hz)
Mode Number (FEA)

1 5.883
16.583
38.318
40.082
40.134
45.445

QN[N

The comparison of the natural frequencies of original GARTEUR SM-AG19 model
calculated from FE model and those obtained experimentally are shown in Table

4.12 along with percentage errors in FEA results.

Table 4.12 Comparison of FEA and Experimental Results

Experimental FEA Natural
Mode .
Number Natural Frequencies | Error (%)
Frequencies (Hz) (Hz)
1 6 5.883 -1.95
2 16.75 16.583 -1.00
3 38 38.318 0.84
4 39.5 40.082 1.47
5 39.75 40.134 0.97
6 46.25 45.445 -1.74

As seen from Table 4.12, natural frequencies calculated from FEA are very close to
those obtained experimentally. All the relative percentage errors in the natural

frequencies are below 2 %.
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4.2.5 Structural Modification on FE Model of Garteur SM-AG19 Model

In this section firstly, direct point FRF of node 217 in z-direction (transverse
direction) in the FE model of the GARTEUR SM-AG19 model is compared with the
corresponding FRF obtained experimentally. The position of the node 217 in the FE
model is shown in Figure 4.19. Then the structural modification is applied to the

original model by attaching beams under the wings.

AN

MAR Z 2009
21:04:10

ELEMENTS

Figure 4.19 View of Node 217 of the FE Model of GARTEUR SM-AG19 Model

In the software developed in this thesis, the FRFs obtained from analysis of the

original FE model were used in order to find the FRFs of the modified structure.
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These FRFs were compared with those obtained experimentally. The connection
nodes of the original model and the corresponding nodes of the modifying beams
were set as inputs. Starting frequency was set as 1 rad/s and the ending frequency
was selected as 380 rad/s. The structural damping coefficient was taken constant for
all modes and selected as 0.032. Direct point FRF of node 217 in Z direction was
selected as the required FRF, in order to compare it with the corresponding FRF

obtained experimentally (Figure 4.20).
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Figure 4.20 Direct Point FRF of Node 217 in z-Direction for Original and Modified
GARTEUR SM-AG19 Model
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By using the structural modification software, the driving FRF of the modified model
was obtained for node 217 in Z direction. The comparison of FRFs is shown in
Figure 4.21 to Figure 4.24. In these figures, Experimental FRF (Original Structure)
represents FRF obtained experimentally for the original structure; Experimental FRF
(Modified Structure) represents FRF obtained experimentally for the modified
structure. Theoretical FRF (FEA-Original Structure) is FRF calculated from ANSYS
11.0 for the original structure, Structural Modification FRF (Modified Structure) is
the FRF calculated from structural modification program by using 400 modes in the

calculation of the FRFs for the original structure.
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Figure 4.21 Experimental FRF at 3Z3Z for the Original and Modified GARTEUR SM-AG19 Model
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Figure 4.22 Theoretical (FEA) and Experimental FRF at 3Z3Z for Original GARTEUR SM-AG19 Model




86

Structural Modification FRF (Modified Structure)

— - - Theoretical FRF (FEA-Modified Structure)

Log[Receptance]

-4
-5 \//
-6 ‘ T
0 5 10 15 20 25 30 35 40 45 50 55 60

Frequency (H2)

Figure 4.23 Theoretical (Structural Modification Method) and Theoretical (FEA) FRF at 3Z37Z for Moditied GARTEUR SM-
AG19 Model
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Figure 4.24 Theoretical (Structural Modification Method), Theoretical (FEA) and Experimental FRF at 3Z3Z for Modified
GARTEUR SM-AG19



As seen from Figure 4.21, after the modification on the GARTEUR SM-AGI19
model the dynamic characteristics of the model has changed and natural frequencies
were shifted, therefore attaching beams under the wings has a considerable effect on
the driving FRF of node 3 in z-direction. In Figure 4.22, which is given for the
original structure, Theoretical FRF (FEA-Original Structure) is in good agreement
with the Experimental FRF (Original Structure). The slight mismatch in the
magnitudes of the FRFs at the resonances may be due to the constant loss factor used
for all modes in the finite element model of the structure to represent the damping in
the system. Also there is a mismatch in the first frequency which is the rigid body
mode. In the FE analysis the boundary condition was modeled as free-free for the
model; however in experiment free-free boundary condition of GARTEUR SM-
AG19 model was obtained by flexible suspension bungees, which do not provide an
exact free-free boundary conditions. Therefore, this approximation causes the rigid

body mode of the test-model to be higher.

In Figure 4.23, Structural Modification FRF (Modified Structure) is compared with
Theoretical FRF (FEA-Modified Structure) and a good agreement is obtained. In
Figure 4.24, Theoretical FRFs are compared with Experimental FRF (Modified
Structure). There is a good match between Structural Modification FRF (Modified
Structure) and Experimental FRF (Modified Structure) curves. In the third elastic
mode, there is a mismatch at the resonant frequency; this is mainly due to
discrepancy between FE model and the test model of the original structure. Moreover
the differences between the test and theoretical data are partly due to the effect of
modal truncation made in the computation of the FRFs of the original model, on the
accuracy of the structural modification method. In Figure 4.25, Theoretical
(Structural Modification Method) FRF calculated by using 400 and 1200 modes in
the calculation of the FRF of the original structure are compared in order to show the

effect of truncation.
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Figure 4.25 Theoretical (Structural Modification Method), Theoretical (FEA) and Theoretical (Structural Modification Method)-(1200
Modes) FRF at 3Z3Z for Modified GARTEUR SM-AG19 Model



4.3 Discussion of Mass Loading and Suspension Effect in Modal Testing

As given in the theory part of the modal test, the use of accelerometers and force
transducers introduces changes to the structure due to the addition of masses. The
response of a structure is affected from this mass loading affect of accelerometers
and force transducers. This mass loading is important when the mass to be cancelled
is of the same order as the apparent mass of the modes of the structure under the test.
Furthermore, in modal testing, free-free boundary conditions are provided by using
soft springs or soft bungees, therefore rigid body modes no longer have zero natural

frequencies.

In this section, the effects of mass loading of accelerometers and stiffness effect of
elastic bungees on the modal test are investigated. In order to show these effects, the
finite element models were constructed by adding the accelerometers as point masses

and suspension bungees as springs.

4.3.1 Effect of Mass Loading of Accelerometers in Modal Testing

In this section, accelerometers are modeled as point masses in the FE model and they
are lumped at the positions of measurement points. Based on the modal test
performed on original GARTEUR SM-AG19 model, the added masses are given in
Figure 4.26 and Table 4.13. Each accelerometer has a mass of 0.0048 kg.
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Figure 4.26 View of the Added Masses

Table 4.13 Location and Masses of Accelerometers

Measurement Corresponding Node
Nodes on FE model Mass Added (kg)
1 G 0.0048
2 F 0.0048
3 H 0.0096
4 E 0.0048
5 A 0.0048
6 D 0.0096
7 B 0.0048
8 C 0.0048
9 I 0.0048
10 K 0.0048
11 M 0.0048
12 N 0.0048
13 J 0.0048
14 L 0.0048
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The FE model constructed has the same mesh properties as that of the original
GARTEUR SM-AG19 model, only difference being the mass added to the structure
which represents mass loading effect of accelerometers. In Table 4.14, the first six
natural frequencies are compared for the GARTEUR SM-AG19 model and mass
loaded GARTEUR SM-AG19 model.

As seen in Table 4.14, adding accelerometers to the FE model of original GARTEUR
SM-AG19 model has a very slight effect on the natural frequencies, especially for
the first flexible modes. Therefore, for the test structure studied there is no
considerable shift in the natural frequencies due to mass loading of accelerometers in

the frequency range of interest.

Table 4.14 Comparison of Natural Frequencies

Change with
Natural Respect to
Natural . . .
Mode . . . Frequencies of Original Natural
Frequencies of Original .
Number Model (Hz) Model With Frequency of
Accelerometers (Hz) Original
Model (%)
1 5.881 5.859 -0.37
2 16.568 16.495 -0.44
3 38.278 38.126 -0.40
4 40.069 39.354 -1.78
5 40.117 39.404 -1.78
6 45.377 45.312 -0.14

4.3.2 Suspension Effect in Modal Testing

In this section, the suspension bungees used in the modal test of GARTEUR SM-

AG19 model were modeled as springs which have the same stiffness values of the
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suspension bungees. In modal test of GARTEUR SM-AG19 model the rigid body
mode was found as 2.75 Hz. In order to find equivalent stiffness value of the bungees

the following simple model which is shown in Figure 4.27 can be used.

IMGARTEUR SM-AG19 X

% kBU'NGEE

Figure 4.27 Simple Single Degree of Freedom (SDOF) Model

By using this simple model the stiffness of bungee can be found from the following

equation.
houncing :\/ Kaunces (4.1)
mGARTEUR SM-AG19
Mg arreur smacio = 40.857 kg 4.2)
Oppineing = 215 Hz (4.3)

Then stiffness of bungee was found as

Kpynope =12198 N/m (4.4)

Using this stiffness value in Equation (4.4), the FE model of the GARTEUR SM-
AG19 model with bungee was constructed. The FE model of the GARTEUR SM-
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AGI19 model with bungee is given in Figure 4.28. Based on this model, modal
analysis was performed on the model. The first six flexible natural frequencies are
compared for the GARTEUR SM-AG19 model and GARTEUR SM-AG19 model
with bungees in Table 4.15.

0.00 500.00 {mm)
1

300.00

Figure 4.28 FE Model of the GARTEUR SM-AG19 Model with Bungee

Table 4.15 Comparison of Natural Frequencies

Change with
Mode Natural Natral | SR
Number Frequency of Original Frequer.lcy of Original Frequency of
Model (Hz) Model With Bungees (Hz) . .
Original
Model (%)
1 5.881 6.001 2.04
2 16.568 16.569 0.01
3 38.278 38.272 -0.02
4 40.069 40.077 0.02
5 40.117 40.125 0.02
6 45.377 45.38 0.01
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It is seen from Table 4.15 that, addition of bungees into the finite element analysis,
has a very small effect on the natural frequencies of the flexible modes. The effect of

bungees is large only in the first mode as expected.

4.3.3 Combined Effect of Suspension and Mass Loading of Accelerometers in

Modal Testing

In this section both the bungees and the accelerometers are modeled in the FE model
of GARTEUR SM-AG19 model in order to study the combined effect of suspension

and mass loading of accelerometers (Figure 4.29).

NNSYS

WJ o~
0.00 GO0.00 {rmm)
[ |

300.00

Figure 4.29 GARTEUR SM-AG19 Model with Accelerometers and Bungee

As in previous section, accelerometers were modeled as point masses and they were
lumped at the positions of measurement points. Moreover, again the suspension
bungees used in the modal test of GARTEUR SM-AG19 model were modeled as

spring which has the same stiffness value of the suspension bungees. The same

107



SDOF model (Figure 4.27) was used in order to obtain the stiffness value of the
suspension bungees. By using this simple model the stiffness of bungee can be found

from the following equation.

Oy ouncing = \/ Kunore 4.5)
(MG ArTEUR $M-AG19 T M ACCELEROMETERS )

Mg pgroor svacre = 40.857 kg (4.6)

MacceLeroverers = 0-0768 kg 4.7)

Bypreing =215 Hz (4.8)

Then stiffness of bungees was found as

Kpunoer =12221 N/m (4.9)

Using this stiffness value, the finite element model of the GARTEUR SM-AG19
model with suspension bungees and accelerometers was constructed. The first six

flexible natural frequencies are compared for the GARTEUR SM-AG19 model and
GARTEUR SM-AG19 model with bungees and accelerometers in Table 4.16.

As seen in Table 4.16, for the first mode, the effect of suspension bungees can easily

be identified. However the changes in the natural frequencies are very small for the

first six flexible modes.
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Table 4.16 Comparison of Natural Frequencies

Change of
Natural
Natural Fl:eguency of
Frequency of Original Model
Natural -equency With Bungees | Experimental
Original Model
Mode |Frequency of| ... and Natural
. . With Bungees
Number | Original and Accelerometers | Frequency of
Model (Hz) with Respect to |Original Model
Accelerometers
(Hz) Natural
Frequency of
Original Model
(%)
1 5.881 5.975 1.6 6
2 16.568 16.492 -0.46 16.75
3 38.278 38.127 -0.39 38
4 40.069 39.361 -1.77 39.5
5 40.117 39.41 -1.76 39.75
6 45.377 45.321 -0.12 46.25
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CHAPTER 5

IMPORTANCE OF USING ADDITIONAL DOF IN MODELING
CONTINUOUS MODIFICATIONS

5.1 Introduction

When a modification is introduced to an original structure, the dynamic
characteristics of the original structure change. The correct prediction of this change
depends on the modification and the modeling approach used. When modification is
in the form addition of rigid mass elements at certain locations then modification can
be modeled as lumped elements without increasing the total DOF of the system.
However when the modification is in the form of additional distributed mass then the
modification can be modeled either as lumped or distributed, and the choice of the
modeling approach may give different results for the modified structure. When the
modification is modeled as distributed, the inertial effects of the modification are not
neglected and furthermore the additional DOFs are introduced to the original
structure. However, in the lumped modification approach, the inertial effects of the
modifying structure are neglected and this may bring certain errors to the results.
Furthermore, when the modification is in the form additional beam as in the case
study in section 3.2.4, it is unavoidable to use distributed modification method, as the

modification will also change the stiffness of the structure.
Considering the aircraft shown in Figure 5.1, the dynamic properties of the external

payloads under the wings affect the dynamics characteristics of the aircraft.

Therefore, while analyzing the whole aircraft with its external payloads, modeling
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the external payloads as lumped modifications leads to considerable errors. In order
to demonstrate the importance of the choice of modeling approach for the
modifications, two different case studies will be given in this chapter. In the first case
study, the FE model of a beam is modified with a smaller beam attached under it and
this modification is modeled both as lumped and distributed then the natural
frequencies and FRFs of these models are compared. In the second case study, in
order to demonstrate a modification under the wing of an aircraft, the FE model of
GARTEUR SM-AGI9 model is modified by attaching smaller beams under the
wings. These beams are modeled first as lumped and then distributed, and the results

are compared.

Figure 5.1 The Aircraft Model

5.2 Case Studies

5.2.1 Modification of a Beam Model

In this case study, the FE model of a beam is constructed by using ANSYS

Workbench 11.0 (Figure 5.2). The original beam model has connection parts under it
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which are used to represent the interface structure for the modifying beam attached
under the original one. After the FEA for the original beam, the natural frequencies
shown in Table 5.1 are obtained. In order to compare the results obtained with
different modeling approaches, the modifying part is modeled first as lumped and

then distributed.

NNSYS
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Figure 5.2 The FE Model of the Original Beam

Table 5.1 The Natural Frequencies of the Original Structure

Natural Frequencies

Mode Number of Original Model
(Hz)

90.303

248.6

412.34

486.17

512.18

802.62

826.26

~N N |0 BN =
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5.1.1.1 Distributed Model of the Modifying Beam

In this approach, the modifying beam is modeled as distributed therefore the inertial
effects of the modifying beam are not neglected. Moreover, the additional DOFs are
introduced to the original structure due to modeling approach of the structure. Based
on this modeling approach, the FE model of the modified beam shown in Figure 5.3

is constructed. The natural frequencies of the modified beam are given in Table 5.2.

W

0.00 300.00 (mim) w
L E— -
150,00

Figure 5.3 The FE Model of the Modified Beam

Table 5.2 The Natural Frequencies of Modified Model - Distributed Modeling

Natural Frequencies of
Mode Number Modified Model —
Distributed Modeling (Hz)

87.963

235.7

419.63

458.74

471.06

613.29

696.92

N NN (=
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5.1.1.2 Lumped Model of the Modifying Beam

In this approach, since the modifying beam is modeled as lumped, the inertial effects
of the modifying beam are neglected. Also the approach of lumped model simulates
the structural modifications without additional DOFs. In order to model the
modifying beam as lumped, the parts shown in Figure 5.4 are used. Each of these
parts has the half of the mass of the modifying beam. These parts are modeled as
rigid by taking a very high value of modulus of elasticity and lower value for the
poisson’s ratio. The FE model of the modified beam shown in Figure 5.5 is

constructed based on this modeling approach.

Figure 5.4 The Lumped Model of the Modifying Beam

nnnnn

Figure 5.5 The FE Model of the Modified Beam
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Performing the FEA, the natural frequencies are shown in Table 5.3 are obtained for

the modified beam.

Table 5.3 The Natural Frequencies of Modified Model — Lumped Modeling

Natural Frequencies of Modified
Model - Lumped Modeling (Hz)
81.468
237.89
409.07
440.78
459.44
715.03
722.19

Mode Number

N (N[N ||| =

5.1.1.3 Comparison of the Results

In this part, the natural frequencies and the corresponding mode shapes obtained by
using different modification models are compared. Moreover the FRFs of the node
24 in x-direction (Figure 5.6) are obtained by using both models and they are

compared.

Figure 5.6 The View of Node 24
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The mode shapes obtained by using lumped and distributed models are shown in

Figure 5.7 and Figure 5.8.
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Figure 5.7 Comparison of the Mode Shapes (1 — 5™ Mode Shapes)

116



000 400.00 {mm) @ 0.00 400.00 (mm) Y
L S— L — S—) -
HHHHH “ 200 1N

Figure 5.8 Comparison of the Mode Shapes (6" — 7" Mode Shapes)

The comparison of the natural frequencies is given in Table 5.4.

Table 5.4 Comparison of Natural Frequencies Obtained by Using Lumped and
Distributed Modification Models

Natural Natural .
. . Change with
Frequencies of Frequencies of Respect to
Mode Number |Modified Model - | Modified Model - ESP!
. . . Distributed
Distributed Lumped Modeling Modeling (%)
Modeling (Hz) (Hz) g7
1 87.963 81.468 -7.38
2 235.7 237.89 0.93
3 419.63 409.07 -2.52
4 458.74 440.78 -3.92
5 471.06 459.44 -2.47
6 613.29 715.03 16.59
7 696.92 722.19 3.63
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When the natural frequencies in Table 5.4 are investigated, it is seen that, for the first
seven natural frequencies except the second one, the lumped model introduces
considerable errors; especially in the 1** and 6™ natural frequencies these errors are
larger. Furthermore as seen in Figure 5.7 and Figure 5.8, the 4™ and 5™ mode shapes

and the 6™ and 7™ mode shapes switches.

In Figure 5.9, the comparison of FRFs obtained by using lumped and distributed
modification models for node 24 in x-direction is given. In Figure 5.9, “Modified
Structure (FEA)” represents the modified model with distributed modification and
“Modified Structure with Lumped Model (FEA)” represents the modified model with
lumped modification. As seen in Figure 5.9, there is a considerable discrepancy
around the first natural frequency which can also be seen from the values inTable

5.4.
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Figure 5.9 Comparison of FRFs for Node 24 in x-direction

118



5.2.2 Modification of a GARTEUR SM-AG19 Model

In this case study, the FE model of GARTEUR SM-AG19 model is constructed by
using Ansys Workbench 11.0 (Figure 5.10). The GARTEUR SM-AG19 model has
connections parts under it which is used to represent the interface structure for the
modifying beam attached under the wings. These connection parts are modeled as
rigid in the FE models. Performing the FEA for the original GARTEUR SM-AG19
model, the natural frequencies shown in Table 5.5 are obtained. As in the previous
case study, two different modeling approaches which are distributed and lumped
model approach are performed for the modifying structure. The natural frequencies

and the FRFs obtained from these two different models are compared.

NNSY'S

0.00 §00.00 (mm) S
[ ———

300.00

Figure 5.10 FE Model of the Original GARTEUR SM-AG19 Model

119



Table 5.5 The Natural Frequencies of the Original GARTEUR SM-AG19 Model

Mode Number Natural Fr;/;lolzie;;c(i}elsz ;)f Original
1 5.91
2 16.81
3 38.89
4 42.96
5 43.03
6 46.81

5.2.2.1 Distributed Model of the Modifying Beams

In this approach, the modifying beams attached under the wings are modeled as
distributed and additional DOFs are introduced to the original structure. Since the
modifying beam is modeled as distributed, the inertial effects of the modifying beam
are also included in the FEA of the modified structure. The FE model constructed for
the modified GARTEUR SM-AG19 model is shown in Figure 5.11. The natural

frequencies obtained from the FEA are also given in Table 5.6.

000 £00.00 (mm3 g
1
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Figure 5.11 The FE Model of the Modified GARTEUR SM-AG19 Model
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Table 5.6 The Natural Frequencies of Modified Model — Distributed Modeling

Mode Number Natural Frequencies of Modified
Model - Distributed Modeling (Hz)
1 4.62
2 15.83
3 30.61
4 33.83
5 34.32
6 35.31

5.2.2.2 Lumped Model of the Modifying Beams

In this approach, the modifying beams are modeled as lumped, thus the inertial
effects of the modifying structure are not introduced to the original structure. In order
to model the modifying beams as lumped, almost rigid parts each of which has the
half of the mass of the modifying beam are attached on the original GARTEUR SM-
AG19 model. The FE model constructed for the modified beam is shown in Figure

5.12. The natural frequencies obtained from the FEA are also given in Table 5.7.

000 500.00 (mim)
1

250.00

Figure 5.12 The FE Model of the Modified GARTEUR SM-AG19 Model

121



Table 5.7 The Natural Frequencies of Modified Model — Lumped Modeling

Mode Number | {100 mped Modeling (1)
1 459
2 1527
3 27.87
4 27.97
5 35.55
6 36.04

5.2.2.3 Comparison of the Results

In this part, the natural frequencies and the FRFs of the node 131 in x-direction
(Figure 5.13) obtained by using different modification models are compared. The

comparison of the natural frequencies is given in Table 5.8.
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Figure 5.13 The View of Node 131
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Table 5.8 Comparison of Natural Frequencies Obtained by Using Lumped and
Distributed Modification Models

Natural Natural .
. . Change with
Frequencies of Frequencies of Respect to
Mode Number | Modified Model - | Modified Model - . p
. . . . Distributed
Distributed Lumped Modeling Modeling (%)
Modeling (Hz) (Hz) g7
1 4.62 4.59 -0.65
2 15.83 15.27 -3.54
3 30.61 27.87 -8.95
4 33.83 27.97 -17.32
5 34.32 35.55 3.58
6 35.31 36.04 2.07

From Table 5.8, it is observed that, for the first six natural frequencies except the
first one, the lumped model introduces considerable errors; especially in the 3 and

4™ natural frequencies the lumped model leads to much larger errors.

In Figure 5.14, the comparison of FRFs obtained by using lumped and distributed

modification models for node 131 in x-direction is given.

Modified Structure (FEA)
=== = Modified Structure with Lumped Model (FEA) | |
=== == Qriginal Structure (FEA)
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Figure 5.14 Comparison of FRFs of Node 131 in x-direction
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As seen in Figure 5.14, between 0-50 Hz there is a considerable discrepancy between

the FRF curves around natural frequencies except for the first natural frequency.

5.3 Conclusions

As shown in the case studies, modeling approach of the modifying structure leads to
different results for the modified structures. Modeling distributed modifications as
lumped, causes considerable errors in the natural frequencies and the FRFs of the
modified structure. This emphasizes the choice of modeling approach for distributed

modifications.
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CHAPTER 6

RESULTS AND CONCLUSIONS

6.1 Summary of the Results and Conclusions

The main objective of this thesis is to obtain the dynamic characteristics of a
modified structure from those of the original structure and the system matrices of
distributed modifications by using structural modification methods with additional

DOFs.

In this thesis, the theories of the structural dynamic modification methods with and
without additional DOFs are studied in detail. The structural modification methods
without additional degrees of freedom and the modeling approaches for distributed
modifications without introducing additional DOFs to the original structure are
given. When additional DOFs are introduced to the original structure for a distributed
modification, then the modification problem becomes more complex. Therefore,
structural modification techniques with additional DOFs should be used in order to
solve such problems. The theoretical backgrounds of these methods are also
explained in the scope of this thesis. Furthermore, since the modifications in real life

are usually distributed, a modeling approach for distributed modifications is given.

In this thesis, Ozgiiven’s structural modification method with additional DOFs [24]
is applied to structures with distributed modifications. It is shown in this study that
distributed structural modifications in the form of, for instance a stiffener to a plate,

can successfully be treated as a structural modification problem with additional DOF.
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In order to apply the structural dynamic modification method developed by Ozgiiven
[24] for distributed modification problems, a computer program is developed in
MATLAB. The computer program developed in MATLAB has a graphical user
interface and is capable of solving structural dynamic modification problems with
additional DOFs. The computer program uses natural frequencies and the modal
vectors of the original structure, and mass and stiffness matrices of the modifying
structure. The natural frequencies and the modal vectors for the original structure are
extracted from the modal analysis results of the original structure performed in
ANSYS. The mass and stiffness matrices of the modifying structure are obtained by
using the “.full” modal analysis result file of ANSYS. The experimental results for
the natural frequencies and the mode shape vectors of the original structure can also
be used in the computer program developed in MATLAB. The details and user

manual of the computer program is given Appendix A.

The computer program developed to solve the structural modification problems with
additional DOFs is validated with different theoretical case studies. In the case
studies, plate and beam models are used and they are all modeled in ANSYS. In
order to show the capability of the computer program developed, different case
studies with different boundary conditions, different damping values and different
number of DOFs per node are solved and the results are validated by comparing
them with FEA results of the modified system. An original plate model that has 6
DOF per node is modified with a smaller plate and the dynamic characteristic of the
modified structure are obtained by using the computer program and they are
compared with those of the FEA of the modified structure. Since the structural
modification method with additional DOFs [24] is an exact method, a very good
agreement is observed in the results. The method is also applied to a beam structure
which has 3 DOFs per node. The FE model of the beam is modified with a smaller
beam attached under it and FRF of the modified structure is obtained by the program.

As in the previous case study a very good agreement is observed.
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Since FRF matrices of the original structure are used in the structural modification
method, the validity of the method strongly depends on accuracy of the FRFs of the
original structure. The FRFs of the original structure are obtained by using the modal
summation of the modal responses and the accuracy of the FRFs depends on the
modal truncation or the number of modes used in this summation. In order to show
the sensitivity of the method, FE of a beam is constructed in ANSYS and then it is
modified by attaching a smaller beam under it. While performing structural
modification method analysis in the computer program, the number of modes used in
the calculation of the FRFs of the original structure is varied, and the results for each
case are compared with those obtained from FEA of the modified structure. Due to
the modal truncation in the calculation of the FRFs of the original structure,
discrepancies are observed in the FRFs calculated at higher frequencies when
insufficient number of modes is used in calculating the FRFs of the original
structure. It is observed that, using higher number of the modes in the computation of
the FRFs of the original structure increases the accuracy of the FRFs predicted for
modified structure, and the effect of truncation is more pronounced on the FRFs of

the modified structure compared with that on the FRFs of the original structure.

Although the structural modification method with additional DOFs [24] is validated
with different theoretical case studies, in real life the applications are more complex.
Therefore in order to apply and validate the method when applied to a real structure,
the GARTEUR SM-AG19 structure designed by a multinational research group
(Group for Aeronautical Research and Technology in Europe) was constructed. This
GARTEUR SM-AG19 structure is being used extensively in the field of modal
testing in literature [50]. The GARTEUR SM-AGI9 structure is modified by
attaching beams under the wings of it. Modal tests are conducted on the original and
modified GARTEUR SM-AGI19 structures and the FRFs of both structures are
experimentally obtained. The experimental FRFs of the original and modified
structures are compared in order to see the effect of the modification under the wings

of the structure. It is observed that the natural frequencies of the structure have
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changed due to the modifications applied to the structure. Since the structural
modification method uses the modal data of the original structure, the FE model of
the original GARTEUR SM-AG19 structure is also obtained and FEA is performed
in ANSYS 11.0. In order to see the accuracy of the FE model of the original
GARTEUR SM-AG19 structure, the FRFs obtained theoretically and experimentally
are compared. It is observed that there is a good agreement between Theoretical FRF
(FEA-Original Structure) and the Experimental FRF (Original Structure). However,
due to the constant loss factor used for all modes in the FE model of the structure to
represent the damping in the system, there is a slight mismatch in the magnitudes of
the FRFs at some resonances. In the FE model, boundary conditions for the model
were taken as free-free; however in the experiment free-free boundary condition of
GARTEUR SM-AG19 model was obtained by flexible suspension bungees, which
do not provide exact free-free boundary conditions. Therefore it is observed that
there is a mismatch in the first frequency which corresponds to the rigid body mode.
The flexible suspension bungees used to provide free-free boundary conditions lead

to non-zero natural frequency for the rigid body mode of the test-model.

After the comparison of the Theoretical FRF (FEA-Original Structure) and the
Experimental FRF (Original Structure), the FRFs of the modified structure are
obtained by using the computer program developed. It is observed that Structural
Modification FRF (Modified Structure) is in good agreement with the Experimental
FRF (Modified Structure). However in the third elastic mode, there is a discrepancy
at the resonant frequency which is due to the discrepancy between FE model results
and the experimental results of the original structure. Furthermore, it is believed that,
the differences between two results are partly due to the effect of modal truncation

made in the computation of the FRFs of the original model.
Although there are some discrepancies between Structural Modification FRF

(Modified Structure) and the Experimental FRF (Modified Structure), from the
results of GARTEUR SM-AG19 model it is concluded that the structural
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modification method with additional DOFs is an effective method for predicting the

dynamic response of a modified structure.

Since most of the modifications in real life are distributed and introduce additional
DOFs to the original structures, using lumped parameter approaches for even mass
modifications may lead to incorrect results. Therefore, as the ultimate goal of this
thesis the importance of structural dynamic modifications with additional DOFs is
shown. In aircraft structures, for instance modeling an external payload under the
aircraft as a lumped mass may cause serious errors. When the modifications are
modeled as lumped masses, the inertial effects of the modifications are neglected,
therefore dynamic effects of the modification can not be totally introduced to the

original structure.

In order to show the effect of these two modeling approaches on the dynamic
response predictions of the modified structure, two different case studies are
performed. In both case studies modifications are modeled in ANSYS Workbench. In
this case studies, the modifications are modeled first as lumped and then as
distributed, and the differences between the results are studied. Firstly, the FE model
of a beam is modified by attaching a smaller beam under it, and the modification is
modeled first as lumped and then as distributed. The natural frequencies, mode
shapes and the FRFs obtained from these models are compared. It is observed that,
there is a considerable difference in the natural frequencies especially at certain
modes. Furthermore, it is seen that the order of the mode shapes are different in the
modified models. In the second case study, a more realistic model, GARTEUR SM-
AG19 model, is used as the original structure. The FE model of the GARTEUR SM-
AG19 model is modified by attaching an external payload to the connection parts
under the wings. As in the first case study, the modification is modeled first as
lumped and then as distributed. The natural frequencies and FRFs are compared for
both of modified models. It is observed that there is a considerable discrepancy

between the natural frequencies of the modified models. Also there are differences
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between the FRF curves of the modified models. It is concluded that lumped
modifications introduce considerable errors to the predictions for modified models.
Therefore, in order to obtain more accurate predictions for the modified structures,
the modifications should be modeled as distributed and structural dynamic
modifications with additional DOFs should be used in order to obtain the dynamic

response of modified structures.

As a summary, it is concluded in this study that an effective structural dynamic
modification method with additional DOFs can successfully be used for structural
dynamic modification problems with distributed modifications. A computer program
that is compatible with ANSYS and capable of applying structural dynamic
modification with additional DOFs for large systems is developed in MATLAB. The
predicted results obtained by using the program developed are validated with
different theoretical case studies. A real case application for structural modification
is demonstrated by using GARTEUR SM-AG19 model. As a last point, the
importance of distributed modifications and the structural dynamic modification

methods with additional DOFs are shown.

6.2 Recommendations for Future Work

The computer program developed in this thesis has not a stand-alone executable file,
therefore in order to have a stand alone executable file the program can be written by
using different visual programming codes. Also the graphical user interface of the

program can also be improved by using different visual programming codes.

In order to predict the FRFs of the modified GARTEUR SM-AG19 model, the
computer program uses the FEA results of the original structure and system matrices
of the modifying structure. However as an alternative approach, the modal test
results of the original GARTEUR SM-AG19 model may be used. Thus, whenever

the original structure is available, rather than the response predicted from FE model
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of the original structure, more accurate experimental results can be used. In this case
modal expansion techniques should be used in order to have consistent DOFs with

the FE of the modifying structure.

Since most of the assembly interfaces include joints in the real life applications and
these joints have non-linearity, non-linearity in the joints can be studied and this can
be included in the structural dynamic modification analysis. That is, the structural
dynamic modification method with additional DOFs may be extended to
modifications involving non-linearity to have a better prediction for the modified

structures.
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APPENDIX A

USER MANUAL

In this appendix, the user manual for the program developed in order to apply the

Structural Modification Method with Additional DOFs is given.

A.1 Computer Program Developed for Structural Modification Method with
Additional DOFs

In this thesis, a computer program is developed in order to apply Ozgiiven’s
structural modification method with additional DOFs to the structural modification
problems. The program is developed by using the MATLAB graphical user interface.

The general view of the graphical user interface can be seen in Figure A.1.
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Figure A.1 The General View of the Graphical User Interface
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A.1.1 Definition of the Files Used in the MATLAB Program

The computer program developed in MATLAB uses some files that are extracted
from the modal analysis performed in ANSYS 11.0. Furthermore, in order to extract
these files from ANSYS 11.0, some macro files and “.exe” files are used. The

definitions of these files are given below.

e FREQ_ORG.txt: The text file that contains the natural frequencies of the

original structure.

e MODAL_ORG.txt: The text file that contains the mode shape vectors of the

original structure.

o MASS MODIF.matrix: The file that contains the mass matrix information of

the modifying structure.

o STIFFNESS MODIF.matrix: The file that contains the stiffness matrix

information of the modifying structure.

e FREQ.txt: The text file that contains the natural frequencies of the modified

structure.

e MODAL.txt: The text file that contains the mode shape vector of the

modified structure

®  ModalDataExport_Org.txt: Macro file that should be read by the ANSYS

11.0 after the modal analysis of the original structure.

¢ ModalDataExport.txt: Macro file that should be read by the ANSYS 11.0

after the modal analysis of the modified structure.
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® userprog.exe: In order to extract the “STIFFNESS_MODIF .matrix” and
“MASS_MODIF.matrix”’, this file should be run with “file.full” file which is
obtained after the modal analysis performed in ANSYS 11.0 for the

modifying structure.

A.1.2 The Use of MATLAB Program

Before running the computer program developed in MATLAB, the following steps

should be performed.

¢ In order to extract the “FREQ_ORG.txt” and “MODAL_ORG.txt” files from
the ANSYS 11.0, “ModalDataExport_Org.txt” macro file should be read

from ANSYS after the modal analysis of the original structure.

¢ In order to extract the “FREQ.txt” and “MODAL.txt” files from the ANSYS
11.0, “ModalDataExport.txt”’ macro file should be read from ANSYS after

the modal analysis of the modified structure.

® By running the “userprog.exe” file, “STIFFNESS_MODIF.matrix” and
“MASS_MODIF .matrix” files should be extracted from the “file.full” file
which is obtained after the modal analysis performed in ANSYS 11.0 for the

modifying structure.

Since all these extracted files are read by the program written in MATLAB, these
files should be in the same folder with the source codes of MATLAB program. After
performing the steps given above, the computer program developed in MATLAB can
be run. In order to show the application of the program, the free-free plate given in
section 3.2.1 is used and step-by-step, the application of the program is shown

below:
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Set the number of frequency points that will be used in the analysis (Figure A.2).
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Figure A.2 Setting the Number of Frequency Points

Set the start and end frequencies for the analysis (Figure A.3).

File Edt View Insert Tools Deskiop Window Help

DzHag|keaaas|E 0@ =0
TIAL INPUT.
Original Structure

Modified Structure

DOF Number

INI
# of Frequency Points o ratis
DOF Number

Start Frequency I—1 radis
End Frequency. pr radis

ORIGINAL STRUCTURE PROPERTIES

# of Nodes

# of Eigenvectors:
Extracted
Connection Nodes l—

# of DOF -

per Node = °
Structural Damping

Coefficient

MODIFYING STRUCTURE PROPERTIES.

# of Nodes

Corresponding
Connection Nodes

Eution Group,
© Ansys Ful Model

Figure A.3 Setting the Start and End Frequency
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Set the number of nodes for the original structure (Figure A.4).
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Figure A.4 Setting the Number of Nodes of the Original Structure

Set the number of eigenvectors extracted from the FE program (Figure A.S).
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Figure A.S Setting the Number of Eigenvectors Extracted
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Set the connection nodes on the original structure (Figure A.6).
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Figure A.6 Setting the Connection Nodes on the Original Structure

Select the number of DOF per node for the original structure (Figure A.7).
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Set the structural damping coefficient (Figure A.8).
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Figure A.8 Setting the Structural Damping Coefficient

Set the number of nodes for the modifying structure (Figure A.9).
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Figure A.9 Setting the Number of Nodes of the Modifying Structure
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Set the corresponding connection nodes on the modifying structure (Figure A.10).
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Figure A.10 Setting the Connection Nodes on the Modifying Structure

Select the “Direct Point FRF” radio button, if direct point FRFs will be calculated
(Figure A.11). With this option all direct point FRFs are written in an Excell file.
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Figure A.11 Selecting the “Direct Point FRF” Radio Button
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Enter the indexes of the FRF to be calculated (Figure A.12).
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Press the “SOLVE” button and wait until the solution is performed (Figure A.13).
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Figure A.13 Pressing the “SOLVE” Button
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Press the “DRAW?” button to see the FRF curves calculated (Figure A.14).
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Figure A.14 Pressing the “DRAW” Button

Select the “Ansys Full Model” radio button and press “DRAW?” Button, in order to
compare the results with the FEA of the modified structure. (Figure A.15).
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APPENDIX B

CONFERENCE PAPER

Structural Modifications with Additional DOF - Applications to Real
Structures *

Guvencg Canbaloglu
ASELSAN INC.
Microelectronics, Guidance and Electro Optics Division
06750, Akyurt, Ankara, Turkey

H. Nevzat Ozgiiven
Department of Mechanical Engineering, Middle East Technical University
06531, Ankara, Turkey

Nomenclature

[D] Dynamic stiffness matrix
[K ] Stiffness matrix

[M] Mass matrix

[H] Structural damping matrix
{r} Force vector

{x} Displacement vector

[a] Receptance matrix

" Published in the Proceedings of the 27th International Modal Analysis Conference, Orlando,
Florida, 2009. (The typos found after submitting the paper are corrected in this version)
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Subsctripts

0 Original structure
mod Modifying structure
ABSTRACT

In structural dynamics, it is important to obtain the dynamic properties of a modified structure
from those of the original structure, especially for large systems. In this study, an effective
structural modification method for modifications with additional degrees of freedom is applied
to a real structure with distributed modifications in order to investigate the performance of the
method. In this method, which has been proposed in an earlier study by one of the authors of
this paper, the frequency response functions (FRFs) of the modified structure are calculated
from those of the original system and system matrices of the modifying structure. The
performance of the method is investigated by applying it to GARTEUR SM-AG19 model with
modifications in the form of beams attached under the wings acting as stiffeners causing
flexural rigidity. The receptances calculated by using the structural modification method are
compared with measured ones. A very good agreement is observed between predicted and
measured results, and it is concluded that the structural reanalysis method proposed can be
successfully and efficiently used for structures with distributed modifications.

1. INTRODUCTION

During the design of all mechanical structures it is required to fulfill certain mechanical
criteria. However, any modification applied to a structure has an effect of changing the
structural properties such as resonant frequencies, mode shapes and deformation
distribution. When, for instance, an aircraft is modified by attaching external payload to it, the
dynamic behavior of the aircraft changes and this change can be critical as it may cause
serious vibration problems; hence, dynamic behavior of the modified aircraft has to be
predicted in the design stage. In order to predict the dynamic behavior accurately, the finite
element (FE) model of the modified structure can be constructed. However it may be very
difficult and time-consuming to construct a new FE model for every modification. Therefore it
will be more practical to predict the dynamic behavior of the modified structure by using
dynamic response information of the original structure and dynamic data of the modifying
structure.

Structural modification methods focus on the change of dynamic behavior of a structure due
to modifications in mass, stiffness and damping properties of the system. Kyprianou, et al. [1]
divided the structural dynamic modification problems into two categories: inverse structural
dynamic modifications and direct structural dynamic modifications. Direct structural dynamic
modification concentrates on the determination of modified structure characteristics due to
modification on the original structure. Conversely, inverse structural dynamic modification is
an optimization procedure looking for necessary modifications in order to achieve the desired
dynamic behavior. Kyprianou, et al. [1, 2] focused on inverse structural dynamic modification.
Li and He [3] presented a new approach for structural modifications required to change the
dynamic characteristics of an undamped system. Furthermore, Park [4, 5] studied measured
frequency response function based inverse structural dynamic modification in order to obtain
necessary structural modifications. In a later work, Mottershead, et al. [6] presented an
inverse method for assigning natural frequencies and nodes of normal modes of vibration by
the addition of grounded springs and concentrated masses. In the direct structural dynamic
modification research area different studies were conducted on lumped and distributed
structural modifications with or without additional degrees of freedom (DOF). For lumped
modification problems, Ozgiiven [7] proposed a matrix inversion method in order to find
receptances of locally damped structures from those of the corresponding undamped
structure. Later a recursive solution algorithm was presented in order to avoid the matrix
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inversion [8]. In a further work [9], Ozgliven generalized this approach for reanalyzing a
structure subjected to structural modification with or without additional DOF. In this method,
the exact FRFs of the modified structure are calculated by using FRF matrix of the original
system and mass, stiffness and damping matrices of the modifying structure [9]. Sanhtlrk
[10] used the same approach, but avoided matrix inversion by employing Sherman-Morrison
method. However, this approach, like many others in this category, is for modifications
without additional DOF. In the direct structural dynamic modification, the number of studies
on distributed structural modification problems is limited due to the difficulties in coupling
continuous modifying structures with a structure. D’Ambrogio [11] studied the prediction of
frequency response function of the modified structure subjected to modification in the form of
rib and plate stiffeners causing flexural rigidity change and presented quasi-local
characteristics of the additional dynamic stiffness matrix due to structural modification. Since
dynamic properties of an original structure are identified by experimental techniques
containing only translational DOF due to the difficulties in measuring rotational DOF, and
structural information of modifying structure contains both rotational and translational DOF,
reduction or expansion techniques have to be applied in order to obtain consistent dynamic
properties for both of the structures. In a later work, D’Ambrogio and Sestieri [12-14]
proposed a modeling approach for the distributed modifications and introduced different
techniques to have consistent degrees of freedom for original and modifying structures. The
difficulty introduced by rotational DOF in structural dynamics modification has been
investigated by different researchers. Avitabile, et al. [15] developed and presented a
different technique to determine rotational DOF to be used in structural dynamic modification
problems. Hang, et al. [16] focused on the distributed structural dynamics modification with
additional DOF by using the original relationship developed by Ozglven [9] and modeling
method of the distributed modification developed by D’Ambrogio and Sestieri [12-14].

In this paper, using the original formulation of Ozgiiven [9], an approach is presented for
predicting the dynamic response of a structure with distributed modifications from the
response of the original structure itself and dynamic flexibility matrix of the modifying
structure. In this approach the frequency response function of the original structure can be
obtained either experimentally from modal testing or theoretically by using finite element
method (FEM), and the modifying structure is modeled in such a way that consistent DOF
are present at the connection nodes. The method proposed is validated by different case
studies. The effect of modal truncation made in calculating FRFs of the original structure on
the accuracy of the predicted FRFs is also investigated. In order to demonstrate the
performance of the method when used for real structures, the scaled aircraft test structure
GARTEUR SM-AG19 [17] is modified by attaching beams acting as stiffeners under the
wings, and theoretically calculated FRFs are compared with experimentally measured ones.

2. THEORY

2.1. Modeling Approach for Distributed Modifications
In a structural modification problem the additional dynamic stiffness matrix due to structural
modification is given by

[AD]=[D]-[D,] g
where [D] and [DO] are the dynamic stiffness matrices of the modified and original

structures, respectively. For lumped modifications [AD] corresponds directly to dynamic

stiffness matrix of the modifying structure. However for distributed modifications, it has to be
calculated by using Eq. (1) which may not correspond to the dynamic stiffness matrix of the
modifying structure. In order to apply Eq. (1), the dynamic stiffness matrices of the original
and modified structures should be available. This requires the computation of the FE models
for original and modified structures. However, if such FE models were available, the
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advantage of using structural modification method would be limited. D’Ambrogio and Sestieri
[12] overcame this drawback by using quasi-local characteristics of additional dynamic

stiffness matrix due to structural modification, [AD] In order to obtain the additional

dynamic stiffness matrix due to structural modification, bounded region which covers the
modifying area is modeled for both original and modified structures.

The approach proposed by D’Ambrogio and Sestieri has two drawbacks which are due to the
inaccurate modeling of the structure and quasi-local characteristics of the additional dynamic
stiffness matrix due to structural modification. The former error is due to not representing the
modified structure accurately: Let us consider the beam in Figure 1, which is modeled using
beam elements; if it is modified by adding a shorter beam on it as shown in Figure 2, as the
neutral planes of the thinner and thicker parts of the modified beam will not coincide, the
finite element model will not represent the real structure accurately. Modeling by using beam
elements introduces certain errors independent from the quality of the mesh. D’Ambrogio
and Sestieri discussed this error by modeling both original and modifying structures using
beam and brick elements in the FE model [12]. The latter error directly depends on the size
of the bounded region covering the modifying area. When the size of the bounded region

which covers the modifying area is larger, the error introduced to [AD]wiII be smaller. In

order to avoid such errors, a different approach for the application of the structural
modification technique is used in this paper. If distributed modification is applied to an
original structure in such a way that additional DOF is introduced, then it is not necessary to
use Eqg. (1) in order to calculate the additional dynamic stiffness matrix due to structural
modification, as the problem will be a structural coupling problem. In that case, the additional
dynamic stiffness matrix due to structural modification will be equal to the dynamic stiffness
matrix of the modifying structure which can directly be used in the structural modification
method.

Figure 1. Original Beam

Figure 2. Modified Beam

For instance, the dynamic stiffness matrices of the original and modifying structures for the
modified beam in Figure 2 are given by

[Do]:[Ko]_wz[Mo]"'i[Ho] (@)

[Dmod]:[I(mod]_a)2 [Mmod]+i[Hmod] (3)

where [KO], [MO] and [HO] represent stiffness mass and structural damping matrices of

the original structure, and similarly [Kmod], [Mmod] and [Hmod] are stiffness, mass and

structural damping matrices of the modifying structure They all can be obtained directly from
the FE models of the original and modifying beams. When additional DOF are introduced to
the original structure, the dynamic stiffness matrix of the modified structure can be obtained
by assembling the dynamic stiffness matrices of the original and modifying structures.
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Similarly, for distributed modifications, if additional DOF are introduced to the original
structure there is no need to use Eq. (1); instead, additional dynamic stiffness matrix due to
structural modification can directly be obtained from the FE model of the modifying structure.

2.2. Structural Modification Method with Additional DOF

In this section, the formulation given by Ozgliven [9] is summarized. FRF matrix of a
modified system can be partitioned as; DOFs which correspond to original structure only
(superscript a), DOFs at connection points (superscript b), and DOFs that belong to
modifying structure only (superscript ¢). Then the following equations can be written for
original and modifying structures.

aa ab ]!
-1 o % 2 .
O A R TAR @
aO a()
aa a ac 71 -1
o o b a a(;m a(()tb 0 0 0 0
a o o =||a o 0]+ 0 D» DX, (5)
o @ o o oo 0 [pi Do

where [afo] and [a] represent the receptance matrices of the original and modified
structure, respectively. Pre-multiplying Eq. (5) by

{aﬁ“ 0{3"} 0
ar  af 0 (6)
0 0
and post-multiplying by [a] gives
a“ o o] [7 00 01 (" 0).[D,0]
{ag" ag”} 0|=|0 I O|[a]+ 6-:[“0;(‘)’;“6 _____ [o] (7)
0 0 7] 000 ol(o IJ[“““]

After some matrix manipulations the receptance submatrices of the modified system can be

obtained as
a _I bb -1 ba
V} { 0} {% 0}-[Dmod]} {a( } (8)
o 10 0 0 I 0

a® o B I 0 a,(l);b 0 -l a0
= |D 0 9
|:a,cb a/cc:| _|:0 0j|+|: 0 I:| [ mod]:l |: 0 I:| ( )
5 | aba
[am] — [aga]_[ag | O][Dmod][aw} (10)
bb be

o ][ o] 1101, 2 | "

o

It should be noted that the order of the matrix to be inverted is equal to the DOF of the
modifying structure, which is usually much less than then the total DOF of the structure.
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3. NUMERICAL EXAMPLES

3.1. Free-Free Beam

The aim of this example is to demonstrate the accuracy of the structural modification method
when applied to distributed systems. In this example a free-free beam shown in Figure 3 is
modified by attaching a smaller beam under the original one. Original beam was divided into
24 brick elements (20 nodes per element) with 3 DOF per node yielding total DOF of 723.
The modifying structure was divided into 4 brick elements with 3 DOF per node yielding total
DOF of 153. The geometrical and material properties of the original and modifying beams
are given in Table 1. The predicted direct point FRF for the modified beam at node 64 in Z
direction is shown in Figure 5. The FE model of the modified structure is also constructed,
and the FRF of the same coordinate is obtained and compared with that obtained by the
structural modification method (Figure 5).

JAN 24 2008 JAN 24 2008
13:45:46 19:48:39

Figure 3. The FE model of the original bearm Figure 4. The FE model of the modified beam

Table 1. Geometrical and material properties of the original and modifying beams

Original Beam Modifying Beam
Young'’s Modulus 71 GPa 71 GPa
Poisson’s Ratio 0.33 0.33
Density 2770 kg/m® 2770 kg/m®
Length 1200mm 200mm
Width 150mm 150mm
Thickness 25mm 25mm

As can be seen from Figure 5, the predicted FRF with structural modification technique
matches exactly with the FRF calculated from finite element analysis (FEA) of the modified
structure, which is an expected result as the method is an exact one.
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Figure 5. Comparison of FRF at 642642

3.2. Cantilever Plate

In this second example, the effect of modal truncation made in the computation of the FRFs
of the original structure on the accuracy of the structural modification method proposed is
demonstrated. In this example, the cantilever plate shown in Figure 6 is modified by
attaching the plate shown in Figure 7 to the free edge of the original structure. Original plate
was divided into 64 shell elements with 6 DOF per node yielding total DOF of 488. The
modifying structure was divided into 16 shell elements with 6 DOF per node giving total DOF
of 144. The geometrical and material properties of the original and modifying plates are
given in Table 2. The direct point FRFs at node 30 in Z direction are predicted for the
modified structure by employing the method proposed and by using different number of
modes in calculating frequency response function of the original structure. The results are
shown in Figure 9 to 11. The effect of truncation made in obtaining FRF of the original
structure can be observed in higher frequencies. Using higher number of the modes in the
computation of the FRF of the original structure increases the accuracy of the FRF predicted
for modified structure.

EB 9 2008 FIE 9 2008
19:40:07 19:43:45

Figure 6. The FE model of the original plate Figure 7. The FE model of the modifying plate
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Table 2. Geometrical and material properties of the original and modifying plates

Original Beam

Modifying Beam

Young’s Modulus 71 GPa 71 GPa
Poisson’s Ratio 0.33 0.33
Density 2770 kg/m® 2770 kg/m®
Length 300mm 75mm
Width 300mm 300mm
Thickness 2mm 2mm
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Figure 8. The FE model of the modified plate
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Figure 9. Comparison of FRFs at
302307 (15 modes are used in the
calculation of FRFs original structure)
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Figure 10. Comparison of FRFs at
302307 (30 modes are used in the
calculation of FRFs original structure)
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3.3. GARTEUR SM-AG19 Model

In this part, in order to show the performance of the structural modification technique,
GARTEUR SM-AG19 model (Figure 12) is modified with beams under the wings which act
as stiffeners causing flexural rigidity (Figure 13). The GARTEUR SM-AG19 model
constructed differs slightly from the original GARTEUR SM-AG19 model. Viscoelastic tape
which is placed on the upper surface of the wings in the original model is not used in the
present study. In order to apply the structural modification technique, the finite element
models of the original and modifying structures are constructed. The solid brick elements are
used in the finite element model of GARTEUR SM-AG19 model which has 1380 nodes with
3 DOF per node yielding total DOF of 4140. Two beams each having dimensions of the
200mmx100mmx10mm are used as modifying structures. They are modeled with solid brick
elements and each beam has 70 nodes with 3 DOF per node resulting total DOF of 210 for
each modifying beam.

AN AN

ELEMENTS ELEMENTS
MAR 13 2008 MAR B 2008
19: 58228 21:19:38

Figure 12. FE model of GARTEUR SM-AG19 Figure 13. FE model of modified GARTEUR
SM-AG19
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Figure 15. Modifying beam Figure 16. View of the experimental structure

Modal test is conducted on the original and modified GARTEUR SM-AG19 model by using
an impact hammer. During the test, the same measurement and excitation equipment is
used for both original and modified structures. Accelerometer positions are shown in Figure
14. In Figures 15 and 16 modifying beam and the general view of the experimental structure
are given, respectively. Direct point FRFs measured at point 3 in Z direction (Figure 14) for
both original and modified structures are given in Figure 17.

—— Experimental FRF (Modified Structure)

—— Experimental FRF (Original Structure)
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Frequency (Hz)

Figure 17. Experimental FRF at 3Z3Z for the original and modified GARTEUR SM-AG19

In Figure 18, direct point FRF of point 3 in Z direction obtained from the FE model is
compared with that obtained experimentally in order to see the accuracy of the FE model of
GARTEUR SM-AG19 model. As can be seen from Figure 18 they are in good agreement.
The mismatch in the magnitudes of the FRF at the resonances may be attributed to the
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constant loss factor used for all modes in the finite element model of the structure to
represent the damping in the system. The FRF of the modified structure is obtained by using
the structural modification method proposed, and it is compared with the experimentally
measured one (Figure 19). Again, a good agreement is observed between the FRF
calculated by using the structural modification method and experimentally measured FRF.
The discrepancy around the third mode may be due to the slight differences between the
theoretical and experimental FRFs of the original structure. The truncation made in the
calculation of the FRF of the original structure can be one of the reasons for such slight
differences.
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Figure 18. Theoretical (FE method) and experimental FRF at 3237
for original GARTEUR SM-AG19
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Figure 19. Theoretical (structural modification method) and experimental FRF
at 3Z3Z for modified GARTEUR SM-AG19

159



The numerical examples given above show that the structural modification technique with
additional DOF is an effective method for analyzing distributed modifications. Main
advantage of the structural modification method employed is that there is no need to use
Eq. (1) for the calculation of the additional dynamic stiffness matrix due to structural
modification. Since additional DOF are introduced in modification, the structural modification
problem turns into a structural coupling problem and therefore dynamic stiffness matrix of the
modifying structure can directly be used in the structural modification method. Moreover,
since modification introduces additional DOF to the original structure, a more accurate model
is obtained for the modified structure.

4. CONCLUSIONS

In structural dynamic modification applications, difficulties may arise when modification is
distributed. The main difficulty is due to the rotational degrees of freedom. Obtaining the
additional dynamic stiffness matrix due to distributed structural modification is also another
difficulty in structural modification methods. Although there are some approaches to
overcome such difficulties by making simplifications and thus introducing inaccuracies; using
structural modification methods with additional degrees of freedom, which is equivalent to
treating the problem as a structural coupling problem, overcomes at least the later difficulty
mentioned above. Then, there is no need to partially model the modified and the original
structure in order to calculate the additional dynamic stiffness matrix due to distributed
structural modification, as proposed in some previous studies [12, 16]. In this paper, the
method proposed in an earlier study by one of the authors for structural dynamic
modifications with additional degrees of freedom [9] is applied to structures with distributed
modifications, the main objective being to investigate the performance of the method when
used for real structures with distributed dynamic modifications. In the method proposed, the
frequency response functions of the modified structure are calculated from those of the
original structure and the system matrices of the modifying structure.

Firstly, the validity of the approach proposed is demonstrated by applying it to a beam
problem: Theoretically calculated FRFs are compared with those obtained from the FE
analysis of the modified structure, and a perfect match was observed as expected, since the
method yields exact FRFs when exact values of the FRFs for the original structure are used.
It was shown in the second case study that the accuracy of the predictions strongly depends
on the accuracy of the FRFs used for the original structure. In order to study the effect of
modal truncation made in calculating the FRFs of the original structure on the accuracy of
the method, a cantilever plate which was modified by attaching a smaller plate to the free
edge was modeled by using FEM. It is observed that the performance of the structural
modification technique increases when the number of modes included in the computation of
FRFs of the original structure is increased.

The performance of the method when applied to a real structure is also investigated by
applying it to GARTEUR SM-AG19 model with modifications in the form of beams attached
under the wings acting as stiffeners causing flexural rigidity. The receptances calculated by
using the structural modification method are compared with experimentally measured ones.
A very good agreement is observed between the predicted and measured results. The
discrepancies in the magnitudes of the FRFs at resonances are attributed to the constant
loss factor used for all modes in the finite element model of the original structure to represent
the damping of the system. It is concluded in this study that the structural reanalysis method
proposed can be successfully and efficiently used for structures with distributed
modifications, and thus the problems encountered in approach such as the one suggested
by D’Ambrogio and Sestieri for distributed structural modification problems can be avoided.
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