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ABSTRACT 
 
 

ANALYSIS OF KOCH FRACTAL ANTENNAS 
 
 
 

İrgin, Ümit 

M.Sc., Department of Electrical and Electronics Engineering 

       Supervisor: Prof. Dr. M. Tuncay Birand 

 

June 2009, 89 pages  

 

 

Fractal is a recursively-generated object describing a family of complex shapes that 

possess an inherent self-similarity in their geometrical structure. When used in 

antenna engineering, fractal geometries provide multi-band characteristics and 

lowering resonance frequencies by enhancing the space filling property. Moreover, 

utilizing fractal arrays, controlling side lobe-levels and radiation patterns can be 

realized. 

 

In this thesis, the performance of Koch curve as antenna is investigated. Since 

fractals are complex shapes, there is no well–established for mathematical 

formulation to obtain the radiation properties and frequency response of Koch 

Curve antennas directly. The Koch curve antennas became famous since they 

exhibit better frequency response than their Euclidean counterparts. The effect of 

the parameters of Koch geometry to antenna performance is studied in this thesis. 

Moreover, modified Koch geometries are generated to obtain the relation between 

fractal properties and antenna radiation and frequency characteristics. 

 

Keywords: Fractal Antennas, Self Similarity, Space Filling Antennas, Koch Curve, 

Modified Koch Antenna, 
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ÖZ 
 
 

KOCH FRAKTAL ANTENLERİN ANALİZİ 
 

 
İrgin, Ümit 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

                   Tez Yöneticisi: Prof. Dr. M. Tuncay Birand 

 

Haziran 2009, 89 sayfa  

 

Fraktal kendini yineleyen bir obje olup kendi geometrisinde öz benzerliğe sahip 

bütün complex şekil ailelerini tanımlar. Fraktallar, anten mühendisliğinde 

kullanıldığında, çoklu bantlı karakter ve uzay kaplayıcılığı arttırarak resonans 

frekanslarını daha aşağılara çekebilme özellikleri sağlar. Ayrıca, fraktal dizileri 

kullanılarak, yan lopların seviyesinin ve ışıma örüntüsünün kontrolü 

gerçekleştirilebilir.  

 

Bu tezde, Koch Eğrisi geometrisinin anten olarak kullanım performansı 

incelenmektedir. Fraktallar, kompleks yapılar olduklarından, Koch Eğrisi 

antenlerinin ışıma özellikleri ve frekans tepkilerini direkt olarak veren köklü bir 

matematiksel bir formül bulınmamaktadır. Koch Eğrisi antenleri Öklid 

geometrisinden türemiş muadillerine göre daha iyi freakans tepkisi gösterdikleri 

için ün kazanmışalrdır. Koch geometrisinin parametrelerinin anten performansına 

olan etki incelenmektedir bu tezde. Ayrıca, fraktal özellikleri ile anten ışıma ve 

frekans tepkilerinin arasındaki ilişkiyi detaylı  incelemek için tadil edilmiş Koch 

geometrili antenler oluşturulmuştur. 

 

Anahtar Kelimeler: Fraktal Antenler, Öz Benzerlik, Uzay Kaplayan (dolduran) 

Antenler, Koch Eğrisi, Tadil edilmiş Koch Anten 
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CHAPTER 1 

 

INTRODUCTION 
 

 

The cellular phones first appeared in 1970s. In first generation analog technology 

was used with Frequency Division Multiple Access (FDMA), which would only 

transmit voice, even with the lack of the security. In next generation, with the 

advances in wireless technology, digital techniques, (Time Division Multiple 

Access (TDMA) and Code Division Multiple Access (CDMA)) took part in 

communication, enhancing sending a low rate data as well as voice. In 3G, it is 

planned that over than 2 Mbps rate capacity can be enhanced transmitting video in 

addition to voice in the expense of using multiple bands. 

 

In new era of communications, in 3G wireless communication systems, data, voice, 

and video must be transmitted; on the other hand the device is to be designed low 

profile. As a result, the antenna used in this system must be low profile and small 

sized. These requirements indicate using electrically small but efficient antennas 

and antennas providing multiband frequency operation to realize 3G wireless 

communication. 

 

Studies on fractal shaped antennas showed that the fractal geometries succeeded in 

improving antenna radiation and frequency response characteristics. Utilizing 

geometries like Koch Curve, Hilbert Curve, Minkowski Loop and Koch Snowflake 

overcome the performance limited small antennas. The small antennas tend to 

posses low radiation resistance and highly reactive part of the antenna input 

impedance. However, having same maximum dimension (Dmax), the space filling 

property of the fractals enhances increase in the radiation resistance and decrease in 

the resonance frequency comparing to antennas utilizing Euclidean geometries. 
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In this thesis, properties of Koch Curve fractal geometry and performance of Koch 

fractal antennas are studied. In chapter 2, the well known fractal geometries are 

mentioned with their fractal dimensions. Since the fractals are complex shapes and 

can not be classified in the realms of Euclidean geometry, the concept, fractal 

dimension, D, is introduced.  

 

In chapter 3, the Koch Curve geometry is defined with mathematical expressions. 

Afterwards, the properties of electrically small Koch antennas are analyzed as well 

as mentioning the limits of the electrically small antennas. 

 

In chapter 4, the performances of the strictly self similar Koch Curve antennas are 

studied by assessing the results of the simulations that are performed by using CST 

MWS® software tool. The radiation properties and frequency response of the 

antennas are observed by varying the fractal parameters, indention angle (θ) and 

the iteration number (n). 

 

In chapter 5, modified (not strictly self similar) Koch geometries are generated to 

find out the effect of spatial distribution of the geometry (which is also function of 

indention angle) to antenna performance. Both simulation and experimental results 

are compared at the end of the section. 

 

In chapter 6, a geometry which is a combination of Koch curve and Sierpinski 

Triangle Gasket is utilized as antenna geometry. Sierpinski Triangle Gasket 

antennas are famous with their multiband frequency characteristics and log 

periodicity in their resonance frequencies. It was tried to obtain an antenna having 

close resonance frequencies and similar radiation patterns in resonance frequencies 

by superimposing Koch geometry to Sierpinski Triangle Gasket. 

 

As a final remark, it should be recalled that term “fractal” stands for infinitely 

iterated geometry in mathematics, and finitely iterated geometries are named as 

“prefractal” geometries. However, in engineering literature, since infinitely 

iteration is impossible for implementations, prefractal geometries are regarded and 

named as fractal geometries. 
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CHAPTER 2 

FRACTAL GEOMETRIES AND FRACTAL 
ANTENNAS 

 

2.1 Fractals in Nature 

Fractal geometries can be observed easily in the nature such as coastlines, 

mountains, clouds, snow flakes, leaves and trees. The term fractal was first coined 

by the French mathematician B.B. Mandelbrot in 1970s after his breakthrough 

findings on irregular and fragmented geometric topologies found in the nature that 

can not be explained in the realms of Euclidean geometry. The term fractal has its 

origins from the Latin word fractus which is also related to verb fangere, which 

means to break [1].  

 

 Mandelbrot defined the fractals as “the shapes made of parts similar to the whole 

in some way” [1]. In [1] measuring the coastline of England was given as an 

example to understand the term fractal. The results heavily depended on the scale 

of the map used with the same measuring tools [3]. In Figure 2.1, West coastlines 

of Britain in different scales are illustrated. As seen in Figure 2.1, the total length 

of the coastline increases, when scale(a) is used instead of scale (d) , since more 

details are considered in the measurement. For scale (d) the coastline of Britain 

seems to be rough and consisted of continuous and differentiable curve segments. 

However when one of these segments are observed in a larger scale, it is 

encountered that the segment indeed consisted of smaller sub-segments possessing 

non-differentiable points in it. For infinitely large magnifying scales, the coastline 

exhibits a continuous but nowhere differentiable curve. 

 

  The fractals can also be restated “as rough of fragmented geometric shapes that 

can be sub-divided in parts, each of which is approximately a reduced-size copy of 
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Figure 2.1 Britain’s west coastline with different scales. (a) Scale 1:1,000,000 

(b) Scale 1:2,000,000, (c) Scale 1:4,000,000 and (d) Scale 1:10,000,000 [2] 

 

the whole” [1]. The fractals are generally self similar; the segments of the fractal 

curves are scaled versions of the parent curve. If all the segments of a fractal curve 

are same scaled versions of parent curve, this type of fractal is called strictly self-

similar. However, there exist randomly scaled fractals that are found frequently in 

the nature. 

 

Self-similarity is the one of the most appealing characteristics of the fractals. The 

fractals illustrated in Figure 2.2, shows the self-similarity of some well known 

fractals. 

2.2 Fractal Dimension 

Since the fractals can not be explained simply in Euclidean geometry, the fractals 

are described by the concept of fractal dimension, D. “A fractal is a set for which 

the Hausdorff Besicovich dimension strictly exceeds its topological dimension” 

[1]. Fractals can also have integer dimensions. Dimension of the geometry was 

defined in several ways for various studies on fractals. Self similarity dimension 
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and Hausdorff dimension are the most widely used definitions. Hausdorff 

Besicovich dimension can be rewritten as; 

1 2
1 2

1 1 1.......... 1
DD D

m
m

k k k
h h h

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + + =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
           (2.1) 

Where, km, is the number of copies of the initiator scaled by hm and m is the number 

of different scale that fractal contains. [31], [35]. Self–similarity dimension is 

simpler than Hausdorff Besicovich dimension. Calculation of the self similarity 

dimension is obtained as follows; the geometry is divided into scaled down, but 

identical copies of itself. For n copies of the original geometry (parent) that are 

scaled down by a factor of m, self-similarity dimension, D can be calculated as; 

log
log

nD
m

= −             (2.2) 

Indeed self similarity dimension can be also calculated by Hausdorff Besicovich 

dimension, which can be applied to any fractal geometry. The detailed definitions 

and applications of fractal dimension can be found in [36].  

 

         Table 2.1 Fractal dimensions of the fractals illustrated in Figure 2.2 

Fractal Curve Fractal Dimension (D) 

Koch Curve 1.26186 

Sierpinski Carpet 1.89279 

Cantor Set 0.6389 

Minkowski Loop 1.46498 

Sierpinski (Triangle) Gasket 1.58496 

Hilbert Curve (infinitely iterated) 2 

Koch Snowflake 1.26186 

 

2.3 Fractals in Antenna Engineering 

Antennas with fractal geometry become popular after the studies of N. Cohen [4]. 

He studied the improvements of antenna radiation properties by utilizing Koch 

curves, Sierpinski carpets, Meander line and Minkowski loop. 
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Figure 2.2 Self similar well known fractal geometries [5, 6]  
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Koch curves are generally studied in monopole configuration. Puente et al [7] 

studied the shift of resonance frequencies of Koch monopole antenna as a function 

of iteration. By more detailed research in [8], Puente showed that there exists a 

limit of shift of resonance frequency even if the physical length increases. Vinoy 

[9] studied generalized Koch curve in dipole configuration to relate self similarity 

dimension to the shift in resonance frequency. The main aim these studies were to 

explore space filling properties of the antennas. Miniaturization of fractal antennas 

were investigated in [10], [11].  

 

S. Best studied the effectiveness of space-filling properties of fractal antennas [12]. 

Moreover, in [13] the superiority of the performance of less complex shapes over 

fractal antennas were brought out.  

 

Puente in [14], found out that fractal tree fractal antenna exhibits multiband 

characteristics and the reason for that was associated to self similarity of the 

antenna. Several other self-similar geometries, especially Sierpinski (triangle) 

gaskets and Sierpinski carpets have also been explored to observe the self-

similarity effect of fractals on multiband characteristics in references [15], [16] and 

[17]. The multiband properties of these antennas were attributed to self-similar 

current distributions over these antennas [18]. It was also shown that multiband 

property of self similar fractal antennas can be controlled by perturbing the 

geometry [19].  

 

A stacked antenna configuration with multiple layers of fractal geometries was 

utilized to increase bandwidth in [20].  

 

Werner [21] studied on fractal arrays to achieve desired radiation pattern. In [22] it 

was observed that for controlling side lobe levels, multiband operation and wide 

bandwidth, fractal arrays yielded promising results.   
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CHAPTER 3 

 

KOCH CURVES AS ELECTRICALLY SMALL 
ANTENNAS 

 

The Koch curves are proposed by Swedish mathematician Helge von Koch in 

1904. The Koch curves are composed of bent linear curves, yielding geometry with 

undefined derivative after infinitely many iterations. In Figure 3.1, a standard Koch 

curve derived from a straight line is illustrated.  

 

 
Figure 3.1 Iteratively construction of standard Koch geometric curves 

 

The generation of Koch curves starts with bending an initial straight line, called 

initiator, from determined regions. To obtain the first iteration of a standard Koch 

curve, initiator is portioned into three equal segments and the middle segment is 

replaced by a equilateral triangle without base, while two other segment remain 

unchanged. For the next iteration the same procedure is applied to all individual 
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segments and the iterations continue until ideal Koch geometry, nowhere 

differentiable geometry is produced. 

 

As seen in Figure 3.1, as the iteration number increases, the total length of the 

geometry increases meanwhile the height of the curve remains its initial value. 

Each segment of previous iteration curve is scaled by 1/3 and new iterated curve 

consists of four of those scaled segments. The length of the curve is (4/3)k, where k  

is the iteration number. 

3.1 Generation of Strictly Self-Similar Generalized Koch 
Curves 

 

The generation of Koch curves can be explained by using an iterative function 

system (IFS). In order to express a general formulation, the scaling ratio of the 

segments, s, and the indention angle, θ, are defined as function parameters.    

 

 
Figure 3.2 The strictly self similar generalized Koch curve as a function of 

indention angle, θ [9] 
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IFS uses affine transformation of the geometry in the coordinate system. In a 2D 

coordinate system, assuming that the initiator exists as straight line from (0,0) to 

(1,0) coordinates, the transformations can be done as in [9] ; 

 

 1

1 0

10

x xsW
y y

s

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞

= ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥

⎢ ⎥⎣ ⎦

                                                                                          (3.1) 
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1 1 1cos sin

1 1 0sin cos

x xs sW s
y y

s s

θ θ

θ θ

⎡ ⎤− ⎛ ⎞⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎜ ⎟= +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎢ ⎥⎣ ⎦

                                                             (3.2) 
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1 1 1cos sin (1 cos )
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x xs s sW
y y

s s s

θ θ θ

θ θ θ

⎡ ⎤ ⎛ ⎞+⎜ ⎟⎢ ⎥⎛ ⎞ ⎛ ⎞
= + ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟

⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥− ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

                                              (3.3) 
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1 10

1 00

sx xsW s
y y

s

⎡ ⎤ −⎛ ⎞⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎜ ⎟= +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎢ ⎥⎣ ⎦

                                                                           (3.4) 

 

The iterated the curve is obtained by  

1 2 3 4( , ) ( , ) ( , ) ( , ) ( , )W x y W x y W x y W x y W x y= ∪ ∪ ∪                                             (3.5) 

Since for a strictly self similar Koch curve, the overall height is same as the initial 

height of the initiator, the scaling factor, s, is defined as 

1 1
2(1 cos )s θ

=
+

                                                                                                    (3.6) 

and the self similarity fractal dimension becomes 

[ ]
log 4

log 2(1 cos )
D

θ
=

+
                                                                                           (3.7) 

For a standard Koch geometry, s=3 and θ=60º, the IFS transformation is 

1

1 0
3

10
3

x x
W

y y

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞

= ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥

⎢ ⎥⎣ ⎦

                                                                                           (3.8) 
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2
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x x
W

y y

⎡ ⎤− ⎛ ⎞⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎜ ⎟= +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎢ ⎥⎣ ⎦

                                                      (3.9) 
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⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥− ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

                                          (3.10) 
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W
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⎡ ⎤ ⎛ ⎞⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎜ ⎟= +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎢ ⎥⎣ ⎦

                                                                               (3.11)        

 

and self similarity fractal dimension becomes  

log 4
log3

D = =1.2619                                                    (3.12)                           

3.2 Electrically Small Koch Antennas 

3.2.1 Electrically Small Antennas: 

The electrically small antennas are investigated in details by H.A.Wheeler [23] for 

the first time. “A small antenna is one whose size is a small fraction of the 

wavelength. It is a capacitor or an inductor, and it is tuned to resonance by a reactor 

of opposite kind. Its bandwidth of impedance matching is subject to a fundamental 

limitation measured by its “radiation power factor” which is proportional to its 

“effective volume”.” [23] 

 

Wheeler modeled small antennas as series resistance-inductance (RL) circuit or 

parallel conductance-capacitance (GC) circuits to express the power factor of the 

antenna that is related to frequency bandwidth of impedance matching between 

antenna and the generator. Conductance and resistances represented radiation 

resistance and L and C represented reactive part of the antenna impedance. 
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Investigating power factor for small antennas, Wheeler [24] coined term 

“radiansphere”, that is the volume having a radius of one radianlength (1/2π 

wavelength) [25]. It can be interpreted as the boundary between near field and far 

field of a small antenna. “A small antenna is one somewhat smaller than 

radiansphere (maximum dimension of a small antenna is less than radianlength), 

but it has a “sphere of influence” occupying the radiansphere.” [24].  

                    
     Figure 3.3 Radiation power factor in terms of equivalent volume [23] 

 

In Figure 3.3, the small antennas of both kinds (C and L) occupying equal 

cylindrical volumes. Those models are used to relate the radiation power factor 

(PF) and the size. 

 
     Figure 3.4 Effective volume of axial electrical dipole of same height [23] 
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The radiation power factor is found to be proportional to volume and also the shape 

factor. The cylindrical volume (V=Ab) is multiplied by a shape factor (ka or kb >1) 

to give the effective volume (V´= kaAb or kbAb ).  

 

 

The formula derived in [23] as 
'1

6 c

Vrad PF p
Vπ

= =                                                                                      (3.13) 

where, 
34

3 2cV π λ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

.                                                                                                  (3.14) 

 

             
Figure 3.5 Spherical coil with magnetic core and its relation to radiansphere [23] 

 

In Figure 3.5, Wheeler [23] derives one theoretical case of a small coil which has 

the greatest radiation PF obtainable within a spherical volume. The effective 

volume of an empty spherical coil has a shape factor 3/2, filling the perfect 

magnetic core (km=∞ ) multiplies the effective volume by 3: 

 
32 (3)(3 / 2) 2

9m
s s

V V ap
V V

π
λ

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

                                                                     (3.15) 
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“Wheeler asserts that outside the sphere occupied by the antenna, there is stored 

energy that conceptually fills the radian sphere, but there is none inside the antenna 

sphere. In a rigorous description of the electromagnetic field from a small dipole of 

either kind, the radiation power in the far field is accompanied by the stored energy 

which is mostly located in the near –field (inside the radiansphere). Since there is 

no stored energy inside the spherical coil, this removes the “avoidable” stored 

energy, leaving only the “unavoidable” amount outside the inductor but mostly 

inside the radian sphere. This unavoidable stored energy is what imposes a 

fundamental limitation on the obtainable radiation PF” [25]. 

 

3.2.2 Fundamental Limits of Radiation Q of Electrically Small Antennas: 

 

Chu [26] derived a theoretical formula that minimum radiation quality factor, Q, of 

an antenna, which fits inside a sphere of a given radius, is calculated. Later, 

Harrington extended this approximate theory [27]. 

 

According to formulation in [26], [27] the radiation Q is expressed as 

2

2

e
e m

rad

m
m e

rad

wW W W
P

Q
wW W W
P

⎧ >⎪⎪= ⎨
⎪ >
⎪⎩

                                                                                      (3.16) 

where, We is the time-average, non-propagating, stored electric energy, 

 Wm is the time-average, non-propagating, stored magnetic energy, 

 ω denotes radian frequency,  

and Prad denotes radiated power. 

       

In Chu’s theory, [26] the antenna is enclosed by a sphere of radius a, the smallest 

possible sphere which completely encloses the antenna. The fields of the antenna 

external to the sphere are represented in terms of a weighted sum of spherical wave 

functions and the modes exhibit power orthogonality carrying power independently 

of one another. From the spherical wave-function expansion, the radiation Q is 

calculated in terms of the time average, non-propagating energy external to the 



 
15

sphere and the radiated power. For the minimum Q, any stored energy in the sphere 

must be avoided. 

 

The formula derived in [26] gives minimum obtainable Q; 

3 3

1 1Q
k a ka

= +                                                                                                     (3.17) 

 

3.2.3 Electrically Small Koch Antennas: 

When the antenna is operated as an electrically small antenna, radiation efficiency 

of the antenna becomes poor, due to its low radiation resistance and highly stored 

reactive energy in the neighborhood of the antenna, i.e. high Q. Even that antenna 

is coupled to the feeding circuit via a matching circuit; the matched bandwidth is 

very narrow. 

 

As presented in [24], [13], the electrically small antenna is one “whose maximum 

dimension is less than one radianlength λ/2π”. The electrically small antenna limit 

(ESAL) is 1ka = , where a can get minimum value as the radius of the radiansphere 

which encloses the antenna (radius of the sphere can be considered as the 

maximum dimension of the antenna, Dmax) and k (k=2π/λ) is the wave number. 

Keeping a constant, one can get the maximum frequency that the antenna operates 

as an electrically small antenna. For the frequencies below that frequency the 

antenna is expected to possess electrically small antenna characteristics. Here arises 

a question: “Can the self resonance frequency of an antenna be lowered to 

electrically small antenna frequency limit?”   

 

The self resonance frequency is where minimum antenna Q is achieved without 

externally loading the antenna. To answer “yes” to this question one should be able 

to minimize the Q of the antenna even if the antenna behaves as electrically small 

antenna, i.e. high Q.  Apparently, the Q and the radiation power factor (p) are 

basically inversely proportional. As denoted in equation (3.13) to increase the p, 

the effective volume of the antenna must be increased. Since, space filling of a 



 
16

constant volume space, increases the effective volume; the geometry of the antenna 

must be modified so as to increase the perimeter of the antenna without changing 

Dmax.  When highly iterated Koch and Minkowski curves used as antennas, the 

“volume space filling” property of the fractals may yield lower resonance 

frequencies than antennas with simple geometries.    

 

The first use of the Koch curves as antenna was realized by N. Cohen [4]. He 

reported that the Minkowski loop antenna presented a low resonant frequency, 

comparing to its electrical length. In spite of their large perimeters, these fractal 

loops enclose a finite, limited surface. In the same manner, a small dipole of 

constant end-to end length (height) can be fitted to limited volume, even if the total 

length of the antenna is increased.  

 

By the revealed improvements in antenna resonance frequency, the “fractal shaped 

antennas” became a new research topic for antenna engineers in last decades. 

Researchers investigated many fractal antennas to relate the antenna radiation 

properties, such as, input impedance, current distribution over the antenna, and 

radiation pattern to the geometry of the antenna. Since the geometry of the fractal 

curves are characterized by fractal dimension, D, in following sections, the studies 

on Koch type antennas in this thesis are related to D as well as comparing the 

results with previous studies. 

 

Subsequent to N.Cohen; Puente, Romeu and Cardama investigated the behavior of 

a standard Koch curve (θ=60º) as an electrically small monopole antenna. They 

mainly studied the fundamental limitations and quality factor (Q) of Koch small 

antenna, input impedance, current distribution over the antenna and radiation 

patterns; as a function of iteration number. It was observed that as the iteration 

number of the antenna increases, the perimeter increases as (4/3)k (k as the iteration 

number), as a result, the resonance frequency of the antenna decreases. Another 

observation is the decrease of the Q of the antenna when incrementing the iteration 

number. By the authors these result are related to D of Koch curve being greater 

than D of a straight line which is equal to 1. [8] 
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In [9] the influence of varying D of Koch curve as a function of θ, on primary self 

resonance frequency, the input impedance at this frequency and the ratio of first 

two resonant frequencies, was investigated. Based on the results of his numerical 

simulations and experiments, he asserted that the D of Koch curve was an 

important mathematical property of fractals when used in antenna engineering. 

 

Since the analysis of the fractals antennas is more complex than simple, antennas 

with linear geometries (straight lines, circular loops, etc.), there still does not exist 

well established implicit mathematical expressions to characterize these antennas. 

Instead of analytical methods, the analyses of the antennas are generally performed 

by using numerical methods.                     
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CHAPTER 4 

 

PERFORMANCE OF STRICTLY SELF SIMILAR 

 GENERALIZED KOCH ANTENNAS 
 

 

Many researchers studied Koch curve to determine design parameters of the Koch 

antennas. ([4],[8],[9]) The findings in those experiments and numerical simulations 

led many researchers to attribute the significance of the fractal dimension, D as an 

important antenna design parameter. The fractals have D>1, and always have 

greater D than of a straight line which has D=1. The results comparing fractal 

antennas with Euclidean ones, revealed the achievement of lower resonance 

frequencies in favor of fractal antennas. 

 

 In [4] and [8] the standard Koch curves as a function of iteration number, was 

studied in monopole antenna configuration to investigate the preeminence of these 

antennas to standard linear monopole antennas of same end-to-end height. The 

improvements in antenna properties were linked to possessing higher D of Koch 

curve than the Euclidean ones. In [9], including the standard Koch curve geometry, 

space-filling property of strictly self-similar generalized Koch curves with various 

iterations were studied. In [31] the self-similar generalized Koch curves were 

modified and the properties of these antennas were studied. The common reasoning 

of improvements for Koch antennas was attached to increase of D, as was done in 

[8].  

 

However, later, researchers in [32] investigated the influence of the fractal 

dimension on antenna performance by carrying out simulations and measurements. 

The studied fractals were Koch monopoles (D=1.26), Sierpinski Gasket (D=1.58), 
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Hilbert monopoles (D=2) and Peano monopoles (D=2). Upon the results observed, 

“increasing the fractal dimension did not always improve the antenna radiation and 

frequency response properties and geometry itself is played main role for these 

properties of antenna” was reported in [32]. This study was done by comparing 

different types of fractals, not changing the parameters of one fractal. 

 

In this thesis, the investigation of D on antenna properties was demoted to Koch 

curves. The standard Koch curves, generalized strictly self-similar Koch curves and 

modified Koch curves were investigated and the results were compared.  

4.1 Fractal Dimension of Strictly Self-Similar Koch Curves 

 

As explained in Chapter 2.2, there are different definitions of D. Since D is a 

numeric value which gives the idea on the space- filling property of the fractal 

curve, in this chapter generalized Hausdorf-Besicovich dimension measurement is 

used to express the fractal self similarity dimension. 

 

Recalling the equation (2.1), the fractal dimension, D of any fractal can be found 

as; 

1 2
1 2

1 1 1.......... 1
DD D

m
m

k k k
h h h

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + + =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
                  

where km is the number of copies of the initiator scaled by hm and m is the number 

of different scale that fractal contains. 

 

For a generalized strictly self similar Koch curve, m=1, km=4 and 

hm=s= 1
2(1 cos )θ+

. Rewriting the equation (2.1), the fractal dimension can be 

found; 

1 1
D

mk
s

⎛ ⎞ =⎜ ⎟
⎝ ⎠

                                                                                                          (4.1) 



 
20

14 11
2(1 cos )

D

θ

⎛ ⎞
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟+⎝ ⎠

                                                                                            (4.2) 

 

    4
2(1 cos )logD θ+=                                                                                                   (4.3) 

 

 

Table 4.1 Fractal Dimension (D) of a generalized Koch curve as a function of θ 

Indention Angle 

(θ) 

Fractal Dimension 

(D) 

10º 1.0055 

20º 1.0226 

30º 1.0526 

40º 1.0986 

50º 1.1654 

60º 1.2619 

70º 1.4041 

80º 1.6247 

90º 2.0000 

 

 

 

 
Figure 4.1 Generalized Koch curves of first four iterations with two different                

indention angles (The fourth iteration is enclosed by a circle with diameter equal to 

height of initiator) [9] 
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For a standard Koch curve, θ=60º, and D=1.2619. As function of θ, D gets values 

from 1 to 2, by incrementing θ from 0 to 90º. It can be seen in Figure 4.1, space-

filling increases as the indention angle increases. When θ=90º maximum total 

length of the antenna is achieved while the end to end height remains constant. The 

length of the subsections for a given iteration is a function of angle of indention θ 

[9]. The total length of nth  iterated Koch curve can be found as 

       , 0
2

1 cos

n

nL Lθ θ
⎛ ⎞= ⎜ ⎟+⎝ ⎠

                                                      (4.4) 

where L0 is the length of the initiator. 

4.2 Performance Results of Simulated Strictly Self Similar 
Generalized Koch Antennas 

 

In this part strictly self similar generalized Koch curves are simulated as dipole 

antennas. The antennas were formerly simulated in FEKO® simulation program, 

which is a MoM based simulation tool. However, same simulations were done in 

CST MWS® simulation tool, which uses time domain numeric calculation utilizing 

FIT (Finite Integration Technique) to accurately mesh the geometries [28]. The 

simulation results of both simulation tools came out almost same. In the rest of the 

thesis the CST MWS® simulation results have been presented due to easiness of 

use to work on simulation output results. The accuracy of the CST MWS® tool is 

investigated in [29]. 

4.2.1 Antenna Simulation Models: 

The antenna wire radius is chosen to be 0.15 mm, which leads to 0.6mm line width 

when antenna is to be printed on a dielectric by using the formula [30]. The wire is 

made from perfect electrical conductor (PEC). The end to end heights of the 

antennas simulated throughout this chapter are kept as 16 cm. The simulation is 

performed in 0 to 3GHz. The antennas are fed from the center of the geometry as 

seen in Figure 4.2. 
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For simulation, the mesh type is selected as hexahedral; the mesh line per 

wavelength is set 30, lower mesh and mesh line limits are both chosen as 16. Since 

the geometry posses more detailed segments as iteration number increases. For 2nd 

or above iterations the PEC metal edges are refined with factor 5. 

 

 

 
Figure 4.2 Strictly self similar Koch dipole of θ=60º simulation model for 1st 

iteration 

 

 
Figure 4.3 Detailed mesh view of strictly self similar Koch dipole of θ=60º 

simulation model for 3rd iteration.  
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Figure 4.4 Simulation results for the return losses of the Koch dipole antennas of 

1st iteration with varying indention angles 

 

4.2.2 Simulation Results for Return Loss (dB): 

The distinctive property of Koch curve antennas comparing to simple wire 

antennas, is enhancement of lowering the resonance frequencies. To illustrate basic 

relation between Koch geometry (for a strictly self-similar Koch geometry, 

indention angle, θ is the determinative factor) and resonance frequency, in Figure 

4.4, the return loss (in dB scale) for the 1st iteration of the Koch curves are 

displayed. It is clear that, even for the first iteration, the resonance frequencies of 

the antenna shift downward with increasing indention angle. For θ=80º, both 1st 

and 2nd resonance frequencies occur at minimum values comparing the 1st and 2nd   

resonances frequencies of other antennas in the figure. Moreover, for θ=80º, a 3rd 

resonance frequency takes place below 3GHz. 

 



 
24

 
Figure 4.5 Simulation results for the return losses of the Koch dipole antennas of 

2nd iteration with varying indention angles 

 

 

 
Figure 4.6 Simulation results for the return losses of the Koch dipole antennas of 

3rd iteration with varying indention angles 
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Table 4.2 The resonance frequencies as a function of both indention angle and 

iteration number. 

 

Indention 

Angle (θ) 

Fractal 

Iteration 

Number 

1st 

Resonance 

Frequency 

(GHZ) 

2nd 

Resonance 

Frequency 

(GHZ) 

3rd 

Resonance 

Frequency 

(GHZ) 

4th 

Resonance 

Frequency 

(GHZ) 

0º 

(Straight Dipole) 

 

 

---- 

 

0.8674 

 

2.6742 

 

---- 

 

---- 

1 0.8460 2.6112 ---- ---- 

2 0.8378 2.5747 ---- ---- 

 

20º 

3 0.8371 2.5652 ---- ---- 

1 0.8046 2.4421 ---- ---- 

2 0.7687 2.3225 ---- ---- 

 

40º 

3 0.75441 2.2699 ---- ---- 

1 0.7020 2.0445 ---- ---- 

2 0.6584 1.9058 ---- ---- 

 

60º 

3 0.6309 1.8072 2.8837 ---- 

1 0.6608 1.8394 2.8629 ---- 

2 0.5405 1.4376 2.1876 2.9354 

 

80º 

3 0.4881 1.2543 1.8709 2.475 

 

It is obvious that there is an inverse relation between the occurrence of resonance 

frequencies and both indention angle and iteration number. Keeping iteration 

number constant, the maximum decrease in 1st resonance frequency is obtained for 

θ=80º. Referring to the Table 4.2, the rate of decrease in resonance frequencies 

increases as the θ values approaches to 90º.  

 

Moreover, the first and 2nd resonance frequencies of the Koch curve with θ=80º of 

the 1st iteration is still lower than those of the Koch curve of θ=40º of 3rd iteration. 

Indeed the total length for the former case is 27.265 cm and 23.2384 cm for the 
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latter case. One can claim that the low resonance frequencies of higher indention 

angles are due to the total length the curves possessing higher values than more 

iterated curves with low indention angle. However, this claim can be refuted by 

noticing the 1st resonance frequency of Koch curve with θ=60º of 1st iteration and 

the 1st resonance frequency of Koch curve with θ=460º of 3rd iteration. Despite the 

larger total length the latter has, the former presents lower resonance frequency.  

 

In [9] it was asserted that D, which is a function of θ, plays an important role in 

decreasing the resonant frequencies. In the same reference, the primary resonance 

frequency of a self similar Koch dipole is presented as a function of resonant 

frequency of a linear dipole of same height, iteration number, and fractal dimension 

by using curve fitting technique for the results obtained in their studies. 

 

 
Figure 4.7 Simulation results for real and imaginary part of the input impedances 

of strictly self similar Koch curve antennas of 1st iteration with different indention 

angles. 
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Figure 4.8 Simulation results for real and imaginary part of the input impedances 

of strictly self similar Koch curve antennas of 2nd iteration with different indention 

angles. 

 

The input impedance of an antenna can be written as in in inZ R jX= +  and the 

resonance frequencies depend on the input impedance of the antenna. Both real and 

imaginary parts of the self similar Koch antennas are sketched as function of 

iteration stage numbers and indention angles in Figures (4.7-4.9).  

4.2.3 Simulation Results for Quality Factor (Q): 

Noticing on the Figures (4.7-4.9) where imaginary parts of the impedances are 

plotted, one can see the resonance types; if '( ) 0oX w >  where ( ) 0oX w = , ow is 

called as the “natural resonant frequency”, else if '( ) 0oX w <  where ( ) 0oX w = , 

ow  is called as the “natural antiresonant frequency”. Since the antenna is to be 

coupled to a microwave network with a reference impedance of 50 + j0 ohms via 
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transmission lines; minimum return loss is achieved when real part of the input 

impedance of the antenna gets values in the close to 50 Ohm and imaginary part 

gets values around 0 Ohm. This condition is encountered at natural resonant 

frequencies; not at the antiresonant frequencies due to high real part of the antenna 

input impedance at those frequencies even if imaginary part is zero. 

 

 
 Figure 4.9 The real and imaginary part of the input impedances of a strictly self 

similar Koch curve of 3rd iteration with different indention angles. 

 

In [33], an approximate measurement of quality factor (Q) is stated as 
' ( )

2 ( )
o

z
o

Z w
Q w

R w
=                                                                 (4.5) 

Indeed, in [8] to calculate Q the following formulation is used; 

                            
2

in in
cv

in

dX XwQ
R dw w

⎛ ⎞= ±⎜ ⎟
⎝ ⎠

                                                           (4.6) 
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“+” is used when average stored electric energy, eW  is greater than average stored 

magnetic energy mW ,  

“-” is used when average stored magnetic energy, mW , is greater than average stored 

electric energy, eW . 

The formulation (4.6) is rewritten in the form [33] 

 '( ) ( )
2cv oQ X

Rin
ωω ω=                                                                              (4.7) 

The derivations of these formulas are obtained in [33]. In [33] 

_( ) ( )o added resonatorZ w Z w X= +  refers to input impedance of the antenna after adding 

a compensating element ( _added resonatorX ) to obtain “zero” reactance at resonance. 

Qcv is not used because this formula does not provide a reasonable estimate of 

exact Q for the frequencies about the antiresonance. As a result, in this thesis 

calculation of Q is done by utilizing Qz which gives reasonably approximate values 

of exact Q of the lossy and lossless wire antennas in non-dispersive media. 

 

 
Figure 4.10 Approximate Q of the strictly self similar Koch dipole antennas in the 

vicinity of ESAL region. 
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The Figure 4.10 represents the approximate Q of the strictly self similar Koch 

antennas possessing the first three lowest primary resonance frequencies in Table 

4.2. Koch curve with θ=80º of 3rd iteration presents the minimum Q for fESAL, i.e. 

ka=1, and it is followed by Koch curve with θ=60º of 3rd iteration. The sequencing 

of  minimum Q of the antenna types at fESAL is same as the order of resonance 

frequencies listed in Table 4.2 .Keeping frequency constant as reference, real part 

of input impedance increases and the imaginary part of input impedance decreases 

in magnitude, as the resonance frequency approaches to that reference frequency. 

As a result, Q at that frequency is minimized.  

 

 Electrically small antenna limit frequency is same for all the antennas simulated in 

this section since the end to end height is kept constant and can be found as;  

   1ka =  

   2 1aπ
λ

=                                                         

2 1 298.416ESAL
f a f MHz

c
π

= ⇒ =                         (4.8) 

c=3x108 m/s and a=0.16 m 

 

In [8], a standard Koch curve (θ=60º) with end to end height of 6 cm, is used as 

monopole antenna. In that paper when sketching Q of the antennas with various 

iteration versus ka, “a” was considered as 6 cm and for f < 0.8GHz the antennas 

were considered as electrically small antennas. According to [24] electrically small 

(short) monopole can be defined to be one whose overall height, h, is less than 

λ/4π. As a result, for the monopole configuration the definition of radiancircle and 

ESAL must be redefined as ka=0.5 instead of ka=1. The minimum Q that can be 

achieved is a limit and it is impractical to reach that value. If the fESAL were to be 

calculated as in [8], it would be surprising to encounter a resonance frequency 

(fr=488.1 MHz) even below fESAL=596.832 MHz. In [13] ka is equated to 0.5, since 

the studies in [13] are done by using monopole antennas.  
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Figure 4.11 Simulation results for radiation patterns of the straight dipole at 1st and 

2nd resonance frequencies. 



 
32

 
Figure 4.12 Simulation results for radiation patterns of the strictly self similar 

Koch curve dipole antennas with θ= 40º of 1st iteration at 1st and 2nd resonance 

frequencies. 
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Figure 4.13 Simulation results for radiation patterns of the strictly self similar 

Koch curve dipole antennas with θ= 40º of 3rd iteration at 1st and 2nd resonance 

frequencies. 
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Figure 4.14 Simulation results for radiation patterns of the strictly self similar 

Koch curve dipole antennas with θ= 80º of 1st iteration at 1st and 2nd resonance 

frequencies. 
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Figure 4.15 Simulation results for radiation patterns of the strictly self similar 

Koch curve dipole antennas with θ= 80º of 3rd iteration at 1st and 2nd resonance 

frequencies. 
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Figure 4.16 Simulation results for radiation patterns of the strictly self similar 

Koch curve dipole antennas with θ= 80º of 3rd iteration at 3rd and 4th resonance 

frequencies. 
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4.2.4 Simulation Results for Radiation Patterns and Current Distribution over 

the Antennas: 

In Figures (4.11-4.16) the far field radiation patterns in polar forms (two elevation 

cuts, xz and yz planes; azimuth cut, xy plane) are illustrated (Only co-polarization 

is considered).  

 

In Figure 4.11, the radiation patterns of linear dipole with overall length equal to 16 

cm, are displayed at 1st and 2nd resonance frequencies; for 1st resonance, 

symmetrical omnidirecitonal radiation pattern is observed, on the other hand high 

level side lobes are observed at 2nd resonance since the antenna possess 

(electrically) length larger than 1λ at 2nd resonance. 

 

In Figure 4.12, the radiation patterns of strictly self-similar Koch dipole with θ= 

40º of 1st iteration is figured for 1st and 2nd resonance frequencies; for the 1st 

resonance, omnidirecitonal pattern is observed likewise the linear dipole, while at 

2nd resonance, the nulls in the elevation cut planes tend to disappear. For yz plane 

cut radiation pattern exhibits asymmetry. The asymmetry is due to the geometry of 

the antenna being asymmetrical in yz plane. In Figure 4.13, 3rd iteration is 

illustrated. The effect of iteration can be observed noticing the 2nd resonance 

frequencies. The side lobe levels increase more for 3rd iteration. 

 

In Figures (4.14-4.16), the radiation patterns of strictly self-similar Koch dipole 

with θ= 80º of 1st and 3rd iterations are figured respectively. In both iterations, for 

the 1st resonance frequencies the antennas exhibit omnidirecitonal radiation 

patterns. However, comparing the radiation patterns at 2nd resonance frequencies 

for both iterations, the side lobe levels decrease, and at the azimuth cut of patterns, 

the radiation at xy plane (Theta = 90º) decreases. Main lobe of the radiation pattern 

orients to end fire directions of the antenna. (Theta=0º and Theta=180º) 

 

In Figure 4.16, 3rd and 4th resonances of strictly self-similar Koch dipole with θ= 

80º of 3rd iteration are displayed. At 3rd resonance frequency, side-lobes are 
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observed. Main lobe exists at Theta=90º, and end fire radiation is observed. For 

indention angle, θ= 80º, the middle segments of the antenna become folded by 

100º, and horizontal polarization stands out for that high indention angled antennas, 

when their radiation patterns at 2nd or further iterations are surveyed. For 4th 

resonance, this effect is observed clearly as there exits a null point at Theta=90º for 

xz cut of the radiation pattern. For yz cut, where the Koch geometry lies, the nulls 

almost disappear due to the current distribution of the antenna. The current in y 

direction does not completely cancels out anymore. 

 

To associate the radiation patterns with the surface current distribution of the 

antenna for the frequencies and geometrical configurations mentioned above, 

magnitude of tangential component of the current distributions over the antennas 

are plotted in Figures (4.17-4.22). For the 1st resonance frequencies, the current 

distribution over the antenna seems to be sinusoidal with maximum at the center 

(feed), however for further resonance frequencies, the current standing wave 

patterns undergo 180º phase reversal before reaching end points. As a result, the 

current in all parts of the antenna does not have same phase.  

 

Moreover, in Figure 4.20, for the 1st resonance frequency of strictly self-similar 

Koch Dipole of 1st iteration with θ=80º, the current standing wave pattern does not 

undergo phase reversal and due to high indention angle, the middle segments of the 

antenna are closely located. Cancellation of the opposite currents in these segments 

can be seen in the figure. 
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Figure 4.17 Simulation results for current distribution over straight dipole at 1st 

and 2nd resonances 

 

 
 

 
Figure 4.18 Simulation results for current distribution over strictly self-similar 

Koch Dipole of 1st iteration with θ=40º at 1st and 2nd resonances 
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Figure 4.19 Simulation results for current distribution over strictly self-similar 

Koch Dipole of 3rd iteration with θ=40º at 1st and 2nd resonances 

 

 
 

 
Figure 4.20 Simulation results for current distribution over strictly self-similar 

Koch Dipole of 1st iteration with θ=80º at 1st and 2nd resonances 
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Figure 4.21 Simulation results for current distribution over strictly self-similar 

Koch Dipole of 3rd iteration with θ=80º at 1st and 2nd resonances 

 

 
 

 
Figure 4.22 Simulation results for current distribution over strictly self-similar 

Koch Dipole of 3rd iteration with θ=80º at 3rd and 4th resonances 
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4.2.5 Simulation Results for the Normalized Electrical Length of Antennas: 

The relation between current distribution, 1st resonance frequency and fractal 

iteration was studied in [8] for the standard Koch curve monopole antenna. In [8] 

two definition were made; “the physical length of the antenna (lp), as total length of 

the antenna normalized to its height, lp= (4/3)n (n is the iteration number) and the 

normalized electrical length of the antenna, le, as the normalized physical length 

that a linear monopole antenna should have its 1st resonance at the same frequency 

of a given Koch monopole, that is defined as 
0

(4 / 3)n r
e n

r

fl
f

= , where fr
n

 and fr
0 are 

resonant frequencies of the K0 (linear monopole) and Kn (nth iterated standard Koch 

monopole) antennas, respectively.” [8]  

 

In this thesis, this formula is generalized for the generalized strictly self-similar 

Koch dipole antennas. As a result, in this case lp is modified as ( )2 /[1 cos ] n
pl θ= +  

  

The Figures (4.23-4.26), shows the le and lp relation for the first three iterations of 

the strictly self similar Koch dipoles whose resonance frequencies are tabulated in 

Table 4.2. Apparently, the electrical length does not increase at the same rate that 

the physical length increases. Moreover, the electrical length tends to saturate to a 

limiting value even if the physical length increases exponentially for each iteration. 

In [8], this phenomenon was attributed the exponentially growth of number of 

segments as the fractal iteration increases.  

 

Considering Figure 4.27, where the ratio of normalized electrical length to 

normalized physical length of generalized Koch dipoles with various indention 

angles as a function of iteration number is plotted, for θ=20º the ratio deviates the 

least over the iterations. This can be related to possessing less complex geometry of 

dipoles with low indention angles compared to those with high indention angles. 

 

 In [12] for Meander line and Hilbert curve dipoles the effect of current distribution 

in lowering the resonant frequency was discussed. “It was demonstrated that highly 
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compressed meandered space-filling geometries such as self-similar fractals, are 

less effective at lowering resonant frequency. The space-filling nature of the 

Hilbert curve fractal geometry was shown to be at an inherent disadvantage in 

terms of lowering resonant frequency because of the high degree of meandering 

and wire compression associated with the fractal curve. The primary disadvantage 

of the space-filling fractal based geometry is the high degree of coupling between 

parallel wires with opposite current vectors causing a significant reduction in the 

effective length of the total wire within each arm. Arrangement of wire in a less 

compressed simpler geometry offers significant advantages in achieving lower 

resonant frequencies.”[12]   

 

 

 
Figure 4.23 le vs. lp relation for first three iteration levels of the generalized Koch 

dipole with indention angle 20º 
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Figure 4.24 le vs. lp relation for first three iteration levels of the generalized Koch 

dipole with indention angle 40º 

 

 
Figure 4.25 le vs. lp relation for first three iteration levels of the generalized Koch 

dipole with indention angle 60º 
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Figure 4.26 le vs. lp relation for first three iteration levels of the generalized Koch 

dipole with indention angle 80º 

 

 
Figure 4.27 le/lp with iteration levels of the generalized Koch dipole with various 

indention angles. (Only integer numbers in x-axis are to be considered)  
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A strictly self similar Koch dipole with θ=80º of 3rd iteration with current 

distribution is illustrated in Figure 4.21.  Due to high space filling of the geometry, 

the segments are closely oriented. Since the segments are not parallel oriented, the 

coupling between parallel lines is not expected as highly as in the case of Hilbert 

curve, whose indention angle is, indeed, 90º. However, the performance properties 

of strictly self similar Koch dipoles with high indention angles are doubtful. Total 

overall length of the antenna (perimeter) being large, the loss resistance of the 

antenna becomes large. 
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CHAPTER 5 

 

PERFORMANCE OF MODIFIED AND NOT 
STRICTLY SELF SIMILAR KOCH ANTENNAS 

 
Recalling the equation (2.1), the fractal dimension, D of any fractal as a measure of 

Hausdorf-Besicovich dimension can be found as; 

 1 2
1 2

1 1 1.......... 1
DD D

m
m

k k k
h h h

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + + =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

The studies on strictly self similar Koch type antennas showed that incrementing 

indention angle also increases D. According to the results in [9], it was asserted 

that D is an important design parameter since increase in D yields lower resonance 

frequencies. Later, in [31] another variant of Koch monopoles with dimensions 

smaller than the conventional Koch monopoles were studied. 

  
Figure 5.1 The modified Koch generation in [31]  

The generation of the modified Koch curve in [31] is illustrated in Figure 5.1. In 

this configuration s1=s4, and s3=s2; for the 1st iteration s1 and s4 are kept 1/3 of the 
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initial length L, as in the case of standard Koch curve generation of 1st iteration. 

However, indention angle is varied, resulting s3 and s2 segments being dependent 

on α (or θ, as indention angle is represented throughout this thesis). In [31] based 

on the results, it was observed that when α, consequently D is increased, the 

resonances appeared in lower frequencies. 

 

5.1 Performance of Simulated Koch Curve Antennas with 
Not strictly Self-Similar Geometry 

In this part of the thesis, the relation of D with lowering the resonance frequency is 

reexamined for another modified Koch curve antenna generated in this thesis. The 

definition of D is calculated in the realms of Hausdorf-Besicovich dimension 

(equation (2.1)) which is used both in [31] and [35]. 

 

The modified Koch curve is generated from an initiator of 8 cm length. As in [31] 

s1=s4, and s3=s2, however s2 is dependent on s1, via the formulation of 

1

1

arctan
4

s
s

θ =
−

. Four different types of the curve are investigated as antenna 

configuration by varying s1 from 0.5 cm to 3.5 cm with 1 cm increment for each 

type. Only 1st iteration is studied since for further iterations, implementation 

becomes a serious problem. The curves are illustrated in Figure 5.2. The curves are 

also labeled as A, B, C and D.   

 

The antennas are configured as dipole antennas with end to end height of 16 cm 

like other Koch types studied in this thesis. (Geometries in Figure 5.2 are utilized 

as one arm of the dipole) The antennas are simulated at CST MWS® simulation 

tool for the frequency range of 0 to 3 GHz. The antenna is modeled with PEC wires 

with radius of 0.15 mm for each type. 
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Figure 5.2 Geometry of modified Koch curves  
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For simulation, the mesh type is selected as hexahedral; the mesh line per 

wavelength is set 30, lower mesh and mesh line limits are both chosen as 15. The 

PEC metal edges are refined with factor 5 to increase the accuracy of simulation. 

 

Generation of Modified Koch Geometry Antennas: 

1 2
1 2

1 1 1.......... 1
DD D

m
m

k k k
h h h

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + + =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
                                             

For these modified Koch curves the formula above can be arranged as; 

1 2
1 2

1 1 1
D D

k k
h h

⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                                                                     (5.1)                              

since s1=s4, and s3=s2, k1=k2=2;  

and 1
1 8

sh =  and 
2 2

1 1
2

(4 )
8

s s
h

+ −
=  

 D is calculated in MATLAB® using numerical methods. 

 

Table 5.1 Geometrical properties of modified Koch curve 

GEOMETRY

LABEL  

 

θ (º) 

 

S1 (cm) 

 

S2 (cm) 

TOTAL 

LENGTH (cm) 

 

D 

A 8.13 0.5 3.5355 16.142 5.6159 

B 30.96 1.5 2.9154 17.6616 2.6840 

C 59.04 2.5 2.9154 21.6616 3.6230 

D 81.87 3.5 3.5355 28.142 10.8016 

 

Simulation results for the return loss (dB) of Modified Koch Geometry 

Antennas: 

The return losses of the modified antennas in dB scale are given in Figure 5.3, 

similar to the return loss results in the previous chapter; as the indention angle 

increases the resonance frequencies are lowered. However, the relation asserted in 

[9], [31] between D and lowering the resonance frequency does not hold in this 

case. Because Antenna-A has higher fractal dimension than Antenna-B and 

antenna-C, however, both resonance frequencies (1st and 2nd) of Antenna-B and 

Antenna-C are lower than those of Antenna-A. 
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Figure 5.3 The simulation results for the return losses of Modified Koch Antenna 

for the 1st iteration 

 

 Table 5.2 Simulation results for the resonance frequencies of modified Koch 

antennas  

 

GEOMETRY 

LABEL 

 

θ ( º ) 

1st 

Resonance 

Frequency 

(GHZ) [fr
1] 

2nd 

Resonance 

Frequency 

(GHZ) [fr
2] 

 

 

fr
2/ fr

1 

Linear Dipole ------ 0.8674 2.6742 3.083 

A 8.13 0.8584 2.6667 3.106 

B 30.96 0.7981 2.42 3.032 

C 59.04 0.7228 2.1241 2.9408 

D 81.87 0.6605 1.7934 2.7152 
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Looking at Table 5.2 and Table 4.2 the modified Koch dipoles and 1st iterations of 

the strictly self similar Koch dipoles exhibit similar radiation properties for very 

close indention angles and total length. For example, total length of Antenna-D is 

28.142 cm and the total length of strictly self similar Koch dipole with indention 

angle 80º of 1st iteration is 27.26 cm; the 1st and 2nd resonance frequencies of the 

former are 0.6605 GHz and 1.7934 GHz respectively and for the latter 0.6608 GHz 

and1.8394 GHz respectively.  

 

In Figures (5.4-5.5), the simulation results for radiation patterns of the antennas 

listed in Table 5.2 are illustrated for the 2nd resonance frequencies. The patterns 

exhibit similar characteristics like the antennas of 1st iteration in chapter 4 for close 

indention angles in Table 5.2 and Table 4.2 

 

 

 

 

 

 

 



 
53

 
 

Figure 5.4 The simulation results for radiation pattern of Antenna-A and Antenna-

B for both 1st and 2nd resonance frequencies.  
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Figure 5.5 The simulation results for radiation pattern of Antenna-C and Antenna-

D for both 1st and 2nd resonance frequencies.  
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5.2 Performance Results of the Koch Curve Antenna 
Modified by Varying Indention Angle  

In previous chapters the effect of iteration and indention angle over antenna 

radiation properties were discussed. In a standard IFS the scaling factor which is a 

function of indention angle θ, remains same (see equation (3.6)), passing from one 

iteration to next iteration.  

 

 
Figure 5.6 The view of simulation model of Koch monopole antenna with varying 

indention angles 

 

 

Generation of the curve that is utilized in antenna in Figure 5.6 can be explained 

starting from the segments yielded in higher iterations (the details of the curve), 

then noticing how these segments forms the whole curve. Looking through Figure 

5.7, may be helpful to visualize the generation of the curve. In Figure 5.7 circled 

part-A is a standard Koch curve of 2nd iteration. The end to end length (height) of 
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part A is 7.637 mm. Looking at the circled part-B, one sees that B consists of four 

copies of part-A, forming a larger Koch curve with indention angle equal to 30º. 

The last illustration in Figure 5.7, shows how the whole curve is derived form part-

B segments. The boundaries of part-Bs are shown by red points P1 and P2, or 

alternatively P2 and P3. Part-B segments are attached by indention angle 10º.  

 

 

 

 
Figure 5.7 Detailed view of Figure 5.6 
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Notice that, the whole curve does not consist of four equal part-B segments. The 

curve is truncated where height of the antenna reaches 8 cm. Instead of truncating 

the antenna; resizing part-A segments of the curve utilized in antenna, would yield 

smaller segments, and implementation of these segments for practical purpose 

would be difficult.  

 

The aim of designing such an antenna is to modify the number of resonance 

frequencies in a given band and closeness of these frequencies one to another.  

 

For both simulation and experimental measurement, the antenna is modeled of 

lossy copper wire line (electrical conductivity 5.8x107 S/m) printed over RO 5880 

lossy dielectric material (εR=2.2, tanδ=9x10-4) to yield approximate results obtained 

in experimental verification. The width of copper line is 0.35 mm and the thickness 

of the copper line is 0.02 mm. These arrangements are sustained in implementation 

for experimental verification. For both simulation and practical implementation, the 

antenna is configured as a monopole antenna, fed by 50 Ohm SMA connector over 

a circular metallic (Aluminum) ground plane of radius 24 cm.  

The implemented (printed) antenna is illustrated in Figure 5.9. The simulation is 

done in CST MWS®, by arranging mesh lines per wavelength as 20, lower mesh 

limit as 16, and mesh line limit ratio as 14. 

 

The simulation results are compared with the simulation results of a linear 

monopole of height 8 cm, modeled with same conditions (same wire type, length, 

thickness, dielectric substrate, etc.) explained in previous paragraph. The 

performance comparison of the return loss of both antennas in 0-6 GHz can be seen 

in Figure 5.8. The experimental verification can be seen in Figure 5.10, the return 

loss of the implemented antenna is measured via Agilent E8358A Network 

Analyzer in 0.5-6 GHz frequency 1 port calibration. 

 

As seen in Figure 5.8, the linear dipole possess three resonance frequencies in 0-6 

GHz range whereas the antenna illustrated in Fig 5.6, posses five resonance 

frequencies in the same range. It was observed in chapter 4.2 that as the indention  
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Figure 5.8 The simulation results for the return loss (dB) of linear monopole and 

Koch monopole antenna shown in Figure 5.6 

 

 

angle increased for a constant iteration, the rate of decrease in resonance frequency 

increased. 

 

Koch antenna in Figure 5.6 can be considered as a monopole antenna having fractal 

geometry generated with an IFS algorithm that indention angle changes for each 

iteration stage, i.e., indention angle 10º for the 1st iteration, 30º for 2nd iteration and 

60º for 3rd iteration. The resonance frequency (primary resonance frequency is 

0.7016 GHz) has not lowered as in the case of strictly self similar Koch dipole 

antenna of 1st iteration with indention angle 80º (primary resonance is 0.6638 GHz) 

having total length of 27.26 cm. (The overall length of the dipole version of the 

antenna shown in Figure 5.36 is 35.7 cm). The geometry of the strictly self similar 

antenna with indention angle 80º of 1st iteration is less complex than that of antenna 

in Figure 5.36. At Table 4.2, noticing to 1st resonance frequencies of strictly self 

similar Koch antenna with indention angle 60º of 1st iteration and strictly self 

similar Koch antenna with indention angle 40º of 3rd iteration, it is seen that the 

indention angle in 1st iteration determines the rate of decreasing resonance 

frequency.  
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The geometry of the antenna in Figure 5.6 has low indention angle for the 1st 

iteration. Even using further iterations with higher indention angles, performance 

of lowering the primary resonance frequency of the antenna in Figure 5.6 (note that 

total length of the antenna exponentially increases as a function of iteration) barely 

reaches the performance of a less complex self similar Koch antenna with 

indention angle 60º of 1st iteration monopole antenna, as they possess very close 

primary resonance frequencies. 

  

The closely distribution of the segments yields high mutual coupling. As a result, 

the effective electrical length of the antenna decreases.     

 

 

   
Figure 5.9   Implementation of the Koch monopole antenna in Figure 5.6 
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 Figure 5.10 Experimental validation of the return loss (dB) Koch dipole antenna 

shown in Figure 5.6 

 

 

Table 5.3 The resonance frequency of the antenna illustrated in Figure 5.6 

nth Resonance Frequency Resonance Frequency 

(GHz) 

1 /n n
r rf f+

 

n=1 0.7016 2.915 

n=2 2.045 1.621 

n=3 3.314 1.37 

n=4 4.541 1.268 

n=5 5.7616 ----- 

 

 

Moreover, as the total length of the wire length increases, the loss resistance 

increases. As a result, the antenna efficiency decreases.  
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5.3 Performance Results of Koch Similar Curve Antenna  

In Figure 4.27, the ratio of physical length of the antenna to electrical length of the 

antenna for strictly self similar Koch dipoles with different indention angles are 

given. The figure implies that as the indention angle increases the ratio decreases 

when iteration number is increased. Low ratio implies low antenna radiation 

efficiency, since total loss resistance of the antenna increases as the physical length 

increases (the width of the lines are kept constant). However, the reduction rate of 

1st resonance frequency does not increase as a function of iteration stage.  

 

In this chapter, a Koch similar curve is generated and utilized to acquire high le/lp 

ratio as well as achieving decrease the resonance frequency. The generation of the 

model is illustrated in Figure 5.11. The generation of the curve is as follows; a 

segment A, which is a 1st iterated strictly self similar Koch curve with θ=80º having 

end to end height 2.347 mm, is created. Segment B is also a 1st iterated strictly self 

similar Koch curve, with θ=60º. However, one sub-segment of B is replaced with 

segment A. 

Same procedure for segment B is applied to generate segment C and segment D, 

with the indention angles 40º and 20º respectively. However, one sub-segment of D 

is truncated where end to end length of the geometry reaches 8 cm. 

 

  

 
Figure 5.11 Generation steps for Koch similar curve 
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Figure 5.12 Wire model for simulation of Koch similar dipole 

 

 

In Figure 5.12, the wire model for simulation of Koch similar dipole is illustrated. 

The end to end length is kept as 16 cm to compare the results with those in 

previous chapters. The overall length of the geometry is 21.3 cm. The simulation is 

done in CST MWS® in 0.5 to 6 GHz frequency range. 

 

 

 
Figure 5.13 The simulation results for return losses of the Koch similar dipole and 

16 cm dipole  
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The simulation result of return losses of the antenna that is shown in Figure 5.12 

and a dipole with height of 16 cm, is plotted in Figure 5.13. The 1st resonance 

frequencies of 16 cm dipole and Koch similar dipole are 0.867 GHz, 0.727 GHz. 

The dipole antenna having its 1st resonance at 0.727 GHz has overall length of 20.3 

cm assuming the dipole has its 1st resonance when the length of the antenna is λ/2. 

This is the electrical length of the antenna illustrated in Figure 5.12, according to 

the definition of normalized electrical length explained in chapter 4.2.5. le/lp  is 

found as 0.953. The electrical length of the antenna is close to physical length of 

the antenna.  

 

1st resonance frequency of 3rd iterated strictly self similar Koch dipole with 

indention angle of 40º, is 0.75441 GHZ as indicated in Table 4.2. The total length 

of the antenna is 23.238 cm. In Figure 4.27 the le/lp ratio is less than 0.9.  

 

For the experimental measurement, the antenna is made of lossy copper wire line 

(electrical conductivity 5.8x107 S/m) printed over RO 5880 lossy dielectric material 

(εR=2.2, tanδ=9x10-4) The width of copper line is 0.35 mm and the thickness of the 

copper line is 0.02 mm. These arrangements are sustained for simulation of the 

printed antenna in CST MWS®. For both simulation and practical implementation, 

the antenna is configured as a monopole antenna, fed by 50 Ohm SMA connector 

over a circular metallic (Aluminum) ground plane of radius 24 cm.  

The implemented (printed) antenna is illustrated in Figure 5.14. The comparison of 

the simulation and experimental results for the return loss of the antenna is given in 

Figure 5.15. The return loss of the implemented antenna is measured via Agilent 

E8358A Network Analyzer in 0.5-6 GHz frequency 1 port calibration. 

 

 

 

 



 
64

 
 

Figure 5.14 Physical implementation of Koch similar monopole antenna   

 

 

 
Figure 5.15 Comparison of the simulation and experimental results for the return 

loss of Koch similar antenna 
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CHAPTER 6 

 

KOCH CURVE SUPERIMPOSED SIERPINSKI 
TRIANGLE GASKET MONOPOLE ANTENNA 

 

In previous chapters the Koch curves were utilized as antenna geometries to find 

out the relation between the geometry of the antenna and the resonance frequencies 

of the antenna, and it was shown that the space-filling property of the Koch 

geometries enhances lowering the resonance frequency.  

 

In [18] and [34], the multiband properties of the standard Sierpinski Triangular 

antenna were investigated. In [16], the multiband properties of generalized 

Sierpinski Gasket antenna were studied. In these studies, the multiband behavior of 

the antenna was attributed to self similar current distribution over the antenna at 

resonance frequencies. 

 

 In this chapter a generalized Sierpinski Triangle Gasket (mod-3) monopole is 

simulated to observe the effect of geometry to the antenna radiation properties. 

Based on this geometry, a geometry which is a combination of Koch Curve and 

Sierpinski Triangle was created. The created geometry is simulated using CST 

MWS® electromagnetic simulation tool and also the antenna was implemented 

practically.  

 

6.1   Sierpinski Triangle Gasket Monopole Antennas 

To generate 1st iteration of a standard Sierpinski Triangle gasket, first, main 

equilateral triangle is divided into four equal pieces, which are indeed ½ scaled 
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versions of the main triangle. Afterwards, the central triangle is subtracted from the 

whole geometry. The generation of the standard Sierpinski Triangle gasket is 

illustrated in Figure 6.1. Same procedure is applied to all remaining triangles 

iteratively to generate further iterations. If the iteration is applied infinitely, the 

ideal Sierpinski Triangle gasket is obtained.  

 
Figure 6.1 Generation of Standard Sierpinski Triangle geometry 

 

A new type of Sierpinski Triangle gasket was derived in [37], by using well known 

Pascal’s Triangle. These types of Sierpinski Triangles are called as mod-p 

Sierpinski Gasket. The generation of mod-p geometries is explained as follows, 

“Consider an equilateral triangular grid whose rows shall be labeled by n= 1, 2, 

3…. Each row contains n nodes and to each node a number is attached. This 

number is the coefficient of binomial expansion of 1( )nx y −+ . Now delete from this 

grid those nodes that are attached to numbers that are exactly divisible by p, where 

p is a prime number. The illustration of derivation of Sierpinski Gaskets from 

Pascal’s triangle is found in Figure 6.2.” [16]  

 
Figure 6.2 Derivation of the Sierpinski Gaskets from Pascal’s Triangle [16] 
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The standard Sierpinski Triangular Gasket can be regarded as mod-2 Sierpinski 

gasket. Mod-3 and mod-5 Sierpinski Gaskets of 3rd iteration in monopole antenna 

configuration is seen in Figure 6.3. 

         

                        
Figure 6.3 Two Sierpinski Gaskets a) mod-3 Sierpinski gasket for 3rd iteration  

b) mod-5 Sierpinski gasket for 3rd iteration [16] 

 

 

To observe the effect of self- similar geometry of Sierpinski Triangle Gasket to 

antenna radiation properties and frequency response, a mod-3 Sierpinski Gasket 

monopole of 2nd iteration is created in CST MWS®. The geometry of the antenna is 

illustrated in Figure 6.4. 

 

For the CST MWS® simulation, the antenna height is chosen as 6.2 cm and the 

antenna material is lossy copper. The antenna is printed on RO 5880 dielectric 

substrate with εR=2.2. The thicknesses of the metal and dielectric substrate are 

chosen as 0.02 mm and 1mm, respectively. The antenna is modeled as monopole 

over a round metal plate (Aluminum) with radius 24 cm as ground plane. The 

antenna is fed from the tip of the antenna as seen in Figure 6.4.  
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Figure 6.4 Simulation model of mod-3 Sierpinski Gasket of 2nd iteration monopole 

antenna in CST MWS® 

 

The antenna is simulated from 0 to 12 GHz. The meshing parameters are as 

follows; lines per wavelength is 16, lower mesh limit is 14, mesh line limit ratio is 

100 and subgridding is activated.   

 

 
Figure 6.5 The return loss of simulated modeled antennas for a) self-similar mod-3 

Sierpinski antenna in Figure 6.4 b) Koch modified Sierpinski antenna in Figure 6.8   
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As seen in Figure 6.5, according to the simulation results for the self similar mod-3 

Sierpinski antenna (green curve), the antenna possesses four main resonance 

frequencies in simulation frequency range. For the 2nd and further resonance 

frequencies, the resonance frequencies are to be log periodic spaced with a factor of 

approximately 1.63, as seen from the Table 6.1. This ratio is almost same for the 

mod-3 Sierpinski Gasket monopole antenna with 3rd iteration (but different antenna 

height) studied in [16].  

 

Table 6.1 Simulation results for the resonance frequencies of the antenna in Figure 

6.4 

nth resonance Resonance Frequency (GHZ) fn+1/fn 

1 0.7629 ----- 

2 2.7486 3.6 

3 4.5775 1.66 

4 7.4526 1.63 

 

 

The simulation results for the radiation patterns of the antenna modeled in Figure 

6.4 are shown in Figures 6.6-6.7. For the 1st resonance antenna exhibits 

omnidirecitonal pattern as expected. For the 2nd and further resonance frequencies 

the antenna pattern in elevation for φ=90º-270º cut, the pattern keeps 

omnidirecitonal characteristics to some extend, however ,the antenna pattern in 

elevation for φ=0º-180º cut, main beam radiates at different elevation angles. 

According to the simulation results the antenna pattern loses its periodicity of 

similar radiation pattern at resonance frequencies. 
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Figure 6.6 The simulation results for radiation patterns of the antenna in Figure 6.4 

at 1st and 2nd resonance frequencies 
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Figure 6.7 The simulation results for radiation patterns of the antenna in Figure 6.4 

at 1st and 2nd resonance frequencies 
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6.2   Koch Superimposed Sierpinski Monopole Antenna 

To explore the effect of Koch geometry to antenna radiation characteristics and 

frequency response of the Sierpinski Gasket antennas, which are presented as 

multiband antennas in [16] and [18]; a modified geometry that is a combination of 

Koch geometry and mod-3 Sierpinski antenna is derived. For simulation the 

geometry is created in CST MWS® and illustrated in Figure 6.8. 

 

 
Figure 6.8 The simulation model of Koch Modified Sierpinski monopole antenna 

 

 

 
Figure 6.9 The view of simulation models Sierpinski monopole antennas 
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The antenna in Figure 6.8 has height of 6.2 cm, and the geometries are compared in 

Figure 6.9.  The Koch superimposed Sierpinski monopole antenna is not directly 

derived from a mod-3 Sierpinski Triangular gasket. The antenna in Figure 6.8 

consists of 7, six-arm star shaped segments. From the center of the segments a 

1/ 3  scaled and 30º rotated versions of these segments are removed.  

 

For both simulation and experimental measurement of the printed antenna, the 

antenna is made from lossy copper the antenna material is lossy copper. The 

antenna is printed on RO 5880 dielectric substrate with εR=2.2. The thicknesses of 

the metal and dielectric substrate are chosen as 0.02 mm and 1mm, respectively. 

The antenna is modeled as monopole over a round metal plate (Aluminum) with 

radius 24 cm as ground plane. The antenna is fed from the tip of the antenna as 

seen in Figure 6.8.  

 

 

 
Figure 6.10 Comparison of the return loss (dB) results for simulation and 

experimental measurement model of Koch Modified Sierpinski Monopole Antenna 
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The simulation results for the return loss of the antenna are plotted in Figure 6.5.  

In the plot, the frequency response of the Koch superimposed Sierpinski triangle 

and the mod-3 Sierpinski monopole antennas that are illustrated in Figure 6.9, can 

be compared. The log periodic behavior of the resonance frequencies of the mod-3 

Sierpinski monopole does not exist for the Koch superimposed one. The main 

resonance frequencies (the resonances where return loss is less than -10 dB) of the 

Koch Superimposed one appear at lower frequencies than those of self- similar 

mod-3 Sierpinski Triangle monopole. Moreover, for the Koch superimposed 

Sierpinski Triangle monopole, there exist resonances where return loss can not 

reach -7 dB or lower values. 

 

   
Figure 6.11 The physical implementation of the antenna in Figure 6.8 

 

The comparison for the return loss of the simulation and experimental results are 

shown in Figure 6.10.  The 1st main resonance frequency of the antenna occurs at 

the same frequency for the simulation and experimental measurement. However, 

2nd resonance frequency shifts towards 5 GHz. The shift can be attributed to 

physical affect of the soldering of the sharp tip of the antenna to the feed connector.  
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The radiation pattern of the antenna is simulated in CST MWS® and the results are 

plotted in Figure 6.13 and Figure 6.14. Two elevation plane cuts (at xz (φ=0º) and 

yz (φ=90º)) and one azimuth plane (xy (θ=90º)) are plotted for each of the main 

resonance frequencies and the frequencies where return loss of the antenna is about 

-4 dB. 

 

 The radiation pattern of the physically implemented antenna is measured in 

Aselsean Inc. Anechoic Chamber Test Facilities. The measurement is done in 2-8 

GHz range and the measurement frequency points are determined as the main 

resonance frequencies and the frequencies where return loss of the antenna is about 

-5 dB. For frequencies below 2GHz omnidirecitonal radiation patterns are 

expected. The radiation patterns exhibited similar radiation patterns for main 

resonance frequencies and the frequencies where the return loss is less than – 5 dB.  

 

During measurements, the antenna (AUT) is in receiver mode and the source 

antenna is transmitter mode. Source antenna is linearly polarized 2-8 GHz horn. So 

co-polarized pattern of the AUT is measured when the source antenna is vertically 

placed in the test region. The results of the measurements are given in Figure 6.15 

and Figure 6.16 for the co-polarized pattern. Since the implementation is done as 

monopole antenna, the θ range for the radiation pattern plots are considered from 0º 

to 90º. The set up of the anechoic chamber can be seen in App. A. 

 

The superimpose of Koch geometry to Sierpinski Gasket monopole antenna did not 

improve the frequency response of the antenna. Rather than achieving closely 

spaced resonance frequencies, resonances where return loss is about -5dB at those 

frequencies appeared. This can be attributed to disruption of self similarity of mod-

3 Sierpinski gasket. However, the current distribution on the antenna has not 

changed in the resonances; as a result the pattern similarity of the antenna is 

preserved. 
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Figure 6.12 The Koch superimposed Sierpinski Triangle monopole antenna under 

test in tapered anechoic chamber in Aselsan Inc. facilities  
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Figure 6.13 The simulation results for the radiation patterns of the antenna in 

Figure 6.8 for f=2.2 GHz and f=3.5 GHZ 
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Figure 6.14 The simulation results for the radiation patterns of the antenna in 

Figure 6.8 for f=4.5 GHz and f=7 GHZ 
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Figure 6.15 The experimental measurement results for the radiation patterns of the 

antenna in Figure 6.11 for f=2.2 GHz and f=3.5 GHZ 
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Figure 6.16 The experimental measurement results for the radiation patterns of the 

antenna in Figure 6.11 for f=4.7 GHz and f=7 GHZ 
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CHAPTER 7 
 

CONCLUSION 
 

 

Even if the use of the fractal geometries in science and engineering is new to 

literature, the fractals are frequently encountered in many applications. The fractal 

geometries have become popular in antenna engineering since N. Cohen introduced 

several fractal geometries enhancing antenna radiation and input impedance 

properties when utilized an antennas. However, there is no guarantee for improving 

antenna radiation and input impedance properties when utilizing any kind of fractal 

geometry. Only few of the fractals improved radiation performance when used as 

antenna 

 

Based on the studies in literature, a number of antennas utilizing self similar fractal 

geometries were found to exhibit multiband frequency characteristics and 

decreased resonance frequencies. The antennas utilizing Koch Curve, Minkowski 

Loop, Hilbert Curve and Koch Loop geometries are shown to succeed in 

decreasing the resonance frequencies and improving radiation efficiency of 

electrically small antennas due to space filling property of these fractal geometries. 

Moreover, the multiband property of Sierpinski Carpet and Sierpinski Triangle 

Gasket Antennas were studied.  

 

In this thesis, the effects of properties and parameters of Koch geometry to antenna 

radiation and frequency response are studied. The performances of the Koch 

antennas are investigated via varying the indention angle of the generalized self 

similar Koch curves. The Koch antennas possessing higher indention angle 

exhibited lower resonance frequencies than those possessing lower indention 

angles. Even 1st iteration of Koch antennas having higher indention angles 
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exhibited lower resonance frequencies than 3rd iteration of Koch antennas having 

lower indention angles. The indention angle at 1st iteration dominated the rate of 

decreasing the resonance frequency. To verify this phenomena a modified Koch 

curve is defined in chapter 5.2, whose indention angle at 1st iteration is low. Low 

indention angle resulted low rate of decreasing resonance frequency. To 

compensate the low rate of decrease of the resonance frequency, the geometry of 

the antenna is further iterated with higher indention angles. Even if the iteration 

angle increased and the length of the antenna increased due to further iterating the 

geometry, the resulting antenna could not reach the performance of an antenna with 

less complex geometry (a strictly self similar Koch curve with high indention angle 

of 1st iteration) 

 

However, for the Koch antennas with low indention angles, the electrical length of 

the antenna is close to physical length of the antenna. Even if Koch antennas with 

high indention angles achieved maximum rate of decrease in primary resonance 

frequency, the ratio of electrical length of those antennas to their physical length is 

small. In chapter 5.3 a Koch similar curve is generated and implemented as 

antenna, to obtain antenna having high ratio of electrical length to physical length 

as well as decreasing the primary resonance frequency of the antenna better than 

Koch antennas with low indention angles. 

 

In chapter 5.1 it is shown that the fractal dimension, D can not be a design 

parameter for modified Koch antennas. It is shown that antennas with geometries 

having lower D can have lower primary resonance frequency than antennas having 

higher D. 

 

In chapter 6, Koch geometry is combined with Sierpinski (Triangle) Gasket. The 

Sierpinski gasket monopole possesses log periodic behavior in resonance 

frequencies. It was expected to make the resonance frequencies appear closer. 

However, superimposing Koch curve to Sierpinski could not achieve bringing the 

resonance frequencies closer and log-periodic behavior of the antenna is lost. 
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The Koch geometry is known as a space filling curve, that when utilized as antenna 

it is expected to possess primary resonance frequency lower than its Euclidean 

counterpart of same end-to-end height. However, the decreasing of the resonance 

frequency is dependent to parameters of the geometry. The geometry must be 

modified (optimized) to achieve efficient antenna as well as having low resonance 

frequency. The optimization parameters can be basically indention angle and 

iteration level. Moreover, by using genetic algorithm certain loads can be added to 

geometry to obtain versatility of changing resonance frequencies.  

 

In future studies, for improving increasing radiation efficiency, the printed Koch 

fractal antennas can be implemented as slot antennas. The strip dipole and slot are 

complementary antennas. The solution from the slot can be found from the solution 

of an equivalent dipole by using duality and Babinet’s principles. The resulting 

antenna may yield higher radiation resistance and lower loss resistance. 
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APPENDIX 
 

 

A. ASELSAN Tapered Anechoic Chamber Measurement 
System [38] 
 

 
The measurements and evaluation of the sinuous antennas are performed in an 

anechoic chamber (see Figure A.1). Anechoic chamber is a reflection free (i.e. the 

reflectivity levels of the absorbers covering the whole room are very low, about–20 

dB) room inside of which is covered by absorbers.The tapered anechoic chamber is 

designed in the shape of pyramidal horn that tapers from the small source end to a 

large rectangular test region, and with high quality absorbing material covering the 

side walls, floor and ceiling. The tapered anechoic chamber in the R&D department 

of Aselsan Inc. is used with an azimuth over elevation positioner holding up the 

antenna under test, a polarization positioner holding up the standard transmitter 

antenna, an Agilent PNA model vector network analyzer, and HP PII series 

computers using programs written in HP VEE program at Aselsan and which 

communicate with the above listed equipment through the aid of HP-IB’s .Antenna 

measurement set up in anechoic chamber is shown in Figure A.2. 
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 Figure A.1 Top view of the Tapered Anechoic Chamber in Aselsan Inc    
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Figure A.2 Antenna Measurement Setup in Anechoic Chamber 
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