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ABSTRACT 

 
 
 

DEVELOPMENT OF A MULTIGRID ACCELERATED EULER SOLVER ON 
ADAPTIVELY REFINED TWO- AND THREE-DIMENSIONAL CARTESIAN 

GRIDS  
 

 

Çakmak, Mehtap 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Haluk Aksel 

Co-Supervisor: Asst. Prof. Dr. Cüneyt Sert 

 

 

July 2009, 166 pages 

 

 

Cartesian grids offer a valuable option to simulate aerodynamic flows around 

complex geometries such as multi-element airfoils, aircrafts, and rockets. Therefore, 

an adaptively-refined Cartesian grid generator and Euler solver are developed. For 

the mesh generation part of the algorithm, dynamic data structures are used to 

determine connectivity information between cells and uniform mesh is created in the 

domain. Marching squares and cubes algorithms are used to form interfaces of cut 

and split cells. Geometry-based cell adaptation is applied in the mesh generation. 

After obtaining appropriate mesh around input geometry, the solution is obtained 

using either flux vector splitting method or Roe’s approximate Riemann solver with 

cell-centered approach. Least squares reconstruction of flow variables within the cell 

is used to determine high gradient regions of flow. Solution based adaptation method 

is then applied to current mesh in order to refine these regions and also coarsened 

regions where unnecessary small cells exist. Multistage time stepping is used with 

local time steps to increase the convergence rate. Also FAS multigrid technique is 

used in order to increase the convergence rate. It is obvious that implementation of 
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geometry and solution based adaptations are easier for Cartesian meshes than other 

types of meshes. Besides, presented numerical results show the accuracy and 

efficiency of the algorithm by especially using geometry and solution based 

adaptation. Finally, Euler solutions of Cartesian grids around airfoils, projectiles and 

wings are compared with the experimental and numerical data available in the 

literature and accuracy and efficiency of the solver are verified.  

 

 

 

Keywords: Cartesian Grid Generation, Ray-Casting Method, Marching Squares and 

Cubes Algorithm, Euler Equations, Least Square Reconstruction Algorithm, 

Multigrid Method  
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ÖZ 
 
 
 

İKİ VE ÜÇ BOYUTLU UYARLAMALI KARTEZYEN HESAPLAMA AĞLARI 
İÇİN ÇOKLU AĞ YÖNTEMİ İLE HIZLANDIRILMIŞ EULER ÇÖZÜCÜSÜ 

GELİŞTİRİLMESİ 
 

 

Çakmak, Mehtap 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Haluk Aksel 

Ortak Tez Yöneticisi: Yard. Doç. Dr. Cüneyt Sert 

 

Temmuz 2009, 166 sayfa 

 

 

Kartezyen yöntemi, uçaklar, roketler ve helikopterler gibi karmaşık geometriler 

çevresindeki hava akışını modellemek için doğru yaklaşımı sundu. Bu doğru 

modellemeyi gerçekleştirebilmek için kartezyen ağ üreticisi ve üç boyutlu Euler 

çözücüsü geliştirildi. Çözücü kısmı için, zamana bağlı olmayan iki veya üç boyutlu 

Euler denklemleri kullanıldı, akı formülasyonları ise akı vektör ayrıştırması 

yöntemleri ve akı fark ayrıştırması yöntemi kullanılarak gerçekleştirildi. Hücre 

merkezli sonlu hacim yöntemi kullanıldı. Ağ üretme kısmında ise, hücreler 

arasındaki bağlantı bilgisini belirlemek için dinamik veri yapıları kullanıldı ve 

geometriye bağlı hücre adaptasyonu, ağ üretme işleminde uygulandı. Çözüm elde 

edildikten sonra da, çözüme bağlı gradyan bilgisi göz önüne alınarak çözüme bağlı 

adaptasyon güncel ağa uygulandı. Yakınsamanın hızlandırılabilmesi için yerel zaman 

adımlarıyla birlikte çok kademeli zaman uygulaması kullanıldı ve yine yakınsamanın 

hızlandırılması için çoklu ağ yöntemi de kullanıldı. Son olarak, bu çözücü 

kullanılarak elde edilen veriler literatürde mevcut deneysel sonuçlarla 

karşılaştırıldılar.     
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 
 

Fluid-flow problems generally have complex governing equations. Therefore, most 

of the fluid-flow problems cannot be solved by analytical methods due to the 

nonlinear terms in their governing equations. However, analytical solutions are 

sometimes possible when nonlinear terms are negligibly small. But generally, 

nonlinear terms are not as small as to be neglected. If the nonlinearities are important 

for the fluid-flow problems, then numerical methods and algorithms are used to solve 

and analyze these problems.  

 

Computational Fluid Dynamics (CFD) is an important field of fluid dynamics which 

enables one to obtain numerical solutions of complex fluid-flow problems including 

nonlinear terms and also simulate fluid-flows that cannot be observed in laboratory 

situations due to the some flight regimes that cannot be simulated in wind tunnels; 

such as higher Mach numbers and higher flow field temperatures. Numerical 

solutions of many complex problems; such as compressible or incompressible, 

laminar or turbulent, single or multiphase flows are possible with CFD.  

 

CFD techniques today are very powerful due to the high speed and large memory 

computers; however, turbulence modeling, selection of the accurate numerical 

techniques, algorithmic efficiency, surface modeling and grid generation around 

complicated and multi-component geometries are still barriers to CFD maturation, 

especially in three dimensions. Therefore, various new approaches to deal with these 

problems are being developed. For example, in order to handle grid generation 

problems and reduce the user intervention to generate grid, the grid generation and 

adaptation processes are tried to be automated. In addition, more accurate and 
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efficient solutions are tried to be obtained by means of the advances in numerical 

methodologies.   

 

Steps of finding approximate solutions of complex flow problems can be 

summarized as follows. Firstly, fundamental physical principles of any fluid flow are 

expressed in the form of conservative or nonconservative governing equations. These 

can be either integral equations or partial differential equations. Then, flow domain 

must be split into sub-domains called elements or cells. The collection of all cells is 

called a mesh or grid. Then, the equations governing the motion of fluid are replaced 

with discretized algebraic forms and solved to obtain approximate solutions for the 

flow field values at each of the sub-domains [1]. Since one of the most difficult steps 

is grid generation, Cartesian Grid is an attractive approach to CFD. It enables to 

create grids around complex geometries easily. Furthermore, grid and solution 

adaptations are possible without user interventions, i.e. automatically with Cartesian 

Grids.  

 

1.1 Grid Generation and Adaptation 
 

As it was mentioned, grid generation is an important and time-consuming problem of 

CFD. It requires considerable expertise, since not only understanding of 

mathematical formulation and numerical algorithms is necessary, but also 

understanding of physical principles of flow problems is very important for obtaining 

satisfactory resolution in flow domain. Therefore, in order to solve discretized 

algebraic equations of any fluid flow, an efficient grid, which resolves the physical 

properties of flow, minimizes the errors and uses as fewer grid points as possible to 

save the memory usage must be generated [2]. This is a hard task. Therefore, fully 

automatic grid generation techniques are necessary in order to handle these 

difficulties.  

 

Grid adaptation is to put more grid points in the regions where the large gradients in 

the flow field properties exist and remove grid points from the regions where these 
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gradients are insignificant in order to decrease the local resolution of the grid. In 

other words, the aim of grid adaptation is to capture the physics of the flow 

effectively without using excessive grid points.  There are two types of grid 

adaptation and their combination is also possible.  The first one is r-refinement (grid 

point redistribution) and the other is h-refinement (grid point embedding). R-

refinement is applied to the current grid by moving the grid points to the regions that 

need more resolution due to the high flow field gradients without changing the actual 

number of grid points. In this way, connectivity information does not change. H-

refinement is the modification of current grid by changing connectivity information. 

This change is either adding extra grid points where the higher resolution of current 

grid is necessary or removing redundant grid points. For example, h-refinement is 

performed for Cartesian grid method by dividing parent cells in order to obtain child 

cells for refinement or removing children of a parent cell to obtain parent cell instead 

of its children for coarsening. 

 

Grid generation methods can be classified into two groups: structured and 

unstructured. Both of these have advantageous and disadvantageous properties. 

Examples of these grids are given in Figure 1.1.  

 

 
         (a)               (b) 

Figure 1.1 Examples of (a) structured and (b) unstructured grids 
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1.1.1 Structured Grid 
 

A structured grid is composed of quadrilaterals in two-dimensions and hexahedra in 

three-dimensions. It is one that grid points (vertex, node) are transferred from 

physical space (Cartesian coordinates for two-dimensional problems: x, y) to 

computational space (ζ, η) and they are represented by the indices i, j. Hence, 

connectivity information of the grid is implicitly known by the indices of grid points. 

For example, neighbors of a grid point are found by adding or subtracting an integer 

value to or from its indices [3]. This simplification in data structure has an important 

effect on creating efficient and simpler codes owing to the fact that the calculation of 

fluxes and gradients is simpler compared to unstructured grids. Besides, 

implementation of implicit scheme to structured grids is easier than that to 

unstructured grids. In addition, computer memory usage is less than unstructured 

grid. Since incrementing grid points near the boundary of the geometry is achieved 

easily by decreasing the spacing between them, viscous solutions of flow problems 

are obtained more effectively and accurately than that in unstructured grids.  Finally, 

for a structured grid, each cell has only one neighboring cell on each of its faces. A 

smooth grid is obtained by means of this rule. These are the advantages of structured 

grid. However, structured grid generation around complex geometries is a very big 

problem. Therefore, although it has a lot of advantages, in general it is not a 

preferred grid generation technique. In order to generate structured grid around 

complex, multi-component geometries, some approaches such as multi-block and 

Chimera technique are used but these methods are very complicated and also 

decrease the advantages of structured grid. Furthermore, generating structured grid 

around complex geometry by using any one of these methods takes man-months. 

Detailed information can be found in reference [3]. In addition, transformation of 

governing equations from physical space to computational space is a very difficult 

task. The final disadvantage of structured grids is that an implementation of h-

refinement causes the huge increase of grid points since adding a point to a 

structured grid requires adding a line on which the points lie [4]. Therefore, r-

refinement is more suitable for structured grids than h-refinement. 
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1.1.2 Unstructured Grid 
 

An unstructured grid is composed of mostly triangular and rarely quadrilateral cells 

in two-dimensions and of hexahedral, prismoidal, pyramidal and mostly tetrahedral 

cells in three-dimensions. There is no need for transformation between physical and 

computational space. In addition, for an unstructured grid, there is no ordering for 

grid points and neighboring cells. In other words, grid points in unstructured grids 

cannot be identified by their indices. As a result, complicated data structure is 

mandatory to construct the connectivity information between cells.  

 

Memory requirement of unstructured grids is higher and computational efficiency of 

unstructured grids is lower than those of structured girds because of the necessity of 

complex data structure. But, in spite of these disadvantages, nowadays unstructured 

grid methods become increasingly popular since it is capable of handling 

geometrically complex problems. Furthermore, grid adaptation especially h-

refinement technique is easier to accomplish on unstructured grids than on structured 

grids. The final and the most attractive advantage of unstructured grids is that an 

unstructured grid is very suitable to automatic grid generation and adaptation. 

 

By the way, Advancing Front Method and Delaunay Triangulation Method are the 

most widely used techniques to generate two-dimensional unstructured grids. 

Detailed information can be found in references [5] and [6]. 

 

1.1.3 Cartesian Grid 
 

Cartesian grids are a special type of unstructured grids. In fact, this method is one of 

the earliest and simplest methods used for mesh generation. However, in the past, it 

was almost impossible to deal with curved boundaries accurately due to limited 

memory and simplicity of data structures so it was not a popular method. Contrary to 

the past, Cartesian grids are now very attractive and popular method due to their 
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inherent simplicity and the ability to generate automatic meshes especially around 

complex and multi-component geometries.  

 

It consists of squares in two-dimensions and cubes in three-dimensions which are 

placed parallel to the coordinate axes. It requires complicated data structures such as 

quadtree and octree data structures for two-dimensional and three-dimensional 

problems, respectively. However, it has many advantages which make it popular. 

One of its advantages is that the generation of Cartesian grid is easy even for 

complex geometries. In addition, automatic mesh generation with a minor user 

intervention is possible and geometric and surface adaptations are easy to implement. 

For example, denser mesh around shock waves can be generated easily by means of 

solution adaptation applied to Cartesian grid method. Hence, effective results are 

obtained in a short time without huge number of grids. 

 

Another important advantage is that implementation of higher order schemes and 

multigrid method can be accomplished easily due to the permission of data structure. 

Finally, since the edges of square and the faces of cubic elements are aligned with 

the coordinate axes, there is no need for any complex formulation of velocity vectors 

in order to get normal and tangential components of them with respect to edges and 

faces. Consequently, flux formulation is simpler than other grid generation methods. 

Non-adapted and geometrically adapted Cartesian grids about the geometry are given 

in Figure 1.2. 

      

The most difficult aspect of Cartesian grid is the complexity associated with the 

computational cells that have intersections with boundaries. These cells are called cut 

or split cells according to their total number of separate computational volumes. 

Samples of cut and split cells are shown in Figures 1.3 and 1.4, respectively. These 

are irregular cells and violate all the simplicity of Cartesian grids. However, these 

cells are very important for the Cartesian grid method since they play a key role in 

dealing with curved boundaries and obtaining accurate computational results. But 

sometimes small cut or split cells can cause time stepping problems. They may put 
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severe restrictions on convergence rate and lead to inaccuracies, i.e. damage the 

stability criteria. In this work, this problem is solved by coarsening of small cells 

which will be explained in the next chapters. Another difficulty of this grid is that 

traditional Cartesian grid is insufficient to model viscous flows [7].      

 

 
Figure 1.2 Examples of (a) non-adapted and (b) geometrically adapted Cartesian 

grids 

 
Figure 1.3 Example of a cut cell  

 

 
Figure 1.4 Example of a split cell  
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In 1993, De Zeeuw [4] wrote a computer code to solve two-dimensional Euler 

equations using a Cartesian grid. He used quadtree data structure and multigrid 

scheme to increase the convergence rate of the solution.  

 

In 1994, Coirier [8] wrote a code to solve two-dimensional Euler and Navier Stokes 

equations using Cartesian grids. He used binary tree data structure and he refined and 

coarsened the cells according to the solution.  

 

In 1995 and 1996 Melton, Aftosmis and Berger [9] developed techniques for 

handling complex surface geometries and their code CART3D solved three 

dimensional Euler equations using Cartesian grid accurately. 

 

In 2004, Hunt [10] developed a code to solve the three-dimensional Euler equations 

by using parallel block adaptive Cartesian method. Data structure and handling the 

geometry were very similar to studies of Aftosmis. These references are the 

milestones of this study. 

 

1.2 Scope of the Thesis 
 

The purpose of this thesis is to develop an automatic, adaptive Cartesian grid for 

solving inviscid, compressible flows around simple and complex geometries. In this 

chapter, brief information regarding CFD and mesh generation techniques is given. 

Besides, past works about Cartesian method are summarized in the review of 

literature section. In Chapter 2, quadtree data structure and two dimensional grid 

generation are discussed. A number of topics like terminology for Cartesian grids, 

determination of neighbor cells, information about special computational cells, 

inside-outside testing methods, marching squares technique and adaptation types are 

explained as well. In Chapter 3, octree data structure and different aspects of three 

dimensional grid generation from two dimensional grid generation are discussed. 

Two and three dimensional flow solvers, including flux formulation, temporal 

discretization, reconstruction and multigrid method are discussed in Chapter 4. 
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Chapter 5 gives the results of various test cases to validate the code accuracy. 

Finally, in Chapter 6, summary of the present work and conclusions are presented. 
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CHAPTER 2 
 
 
 

TWO DIMENSIONAL DATA STRUCTURE AND GRID 

GENERATION 

 
 
 
 
2.1 Quadtree Data Structure 
 

As it is mentioned in the introduction chapter, Cartesian grid is a special type of 

unstructured grid and for an unstructured grid, ordering information of grid points 

and neighboring cells is not apparent like structured grid. Therefore, connectivity 

(i.e. ordering) information has to be constructed since it is mandatory for flux 

calculations, reconstruction, multigrid method, refinement and coarsening etc. 

Namely, data structure is necessary to store connectivity and flow information for 

each cell.  

 

For the Cartesian method, data structure is complicated since the number of cells 

cannot be predetermined. Hence, dynamic data structure is used. By this way, the 

number of cells can vary during the execution of the program. 

 

In the literature, there are various methods used for two dimensional fluid flow 

problems to identify connectivity information such as two dimensional arrays, linked 

list, binary tree and quadtree data structures. In this work, the most appropriate 

method is chosen as quadtree data structure due to its advantages. 

 

First and the foremost, the data structure conversion of the developed code from two 

dimensional to three dimensional grid generation is easy. In other words, the logic 
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behind the quadtree and octree data structure is very similar; therefore, developed 

two dimensional grid generation code is easily converted to a three dimensional grid 

generation code. Furthermore, a local change in the grid such as cell refinement and 

coarsening and the implementation of multigrid method are very easy for the 

quadtree data structure due to its flexibility when compared to this change and 

implementation in two dimensional arrays or linked list. Since each element has a 

fixed index in the two dimensional arrays or has a fixed another element that follows 

it in the linked list, the implementation of multigrid and local changes in the grid 

require the generation of multiple grids [4].  

 

Quadtree data structure can be thought as a family tree which demonstrates the 

relationships beginning from the oldest individual and then covering its children and 

grandchildren. The oldest individual of the family tree becomes the root of the 

quadtree data structure. Since each cell in the quadtree data structure has parent and 

four children, connectivity information is extracted from relationship between 

parent-children information. Figure 2.1 illustrates the quadtree data structure, root 

and children cells.   

 

In the developed code, all cells are identified with nine pointers which are its parent, 

four children and four neighbors. These pointers and others stored for all cells can be 

seen below as: 

• 1 word: Its parent 

• 4 words: Its four children 

• 4 words: Its four edge neighbors 

• 2 words: Its x and y coordinates of the centroid 

• 1 word: Its level 

• 1 word:  The definer for computational cells which is called “compcell” 

in the developed code and this will be explained in the multigrid section  

• 1 word: The definer of parent cell which can be coarsened while the 

application of multigrid. This pointer is called “perform” in the developed 

code and this will also explained in the multigrid section. 

 11



 

 

 
Figure 2.1 Illustration of the quadtree data structure  

 

Pointer indicating the parent states that it is also a cell and this cell is the parent of its 

children. Each cell has a parent and four children whether it is assigned to another 

cell or to zero. The cell whose parent is assigned to zero is the root cell and the cells 

whose children are assigned to zero are the computational or leaf cells. Four pointers 

indicating children state that they are also cells and they are the children of their 

parent. Finally, instead of determining neighboring cells when they are needed, they 

are stored for each cell. If a cell has no neighbor, i.e. its neighbor is the far-field, it is 

set as zero. Determination of neighboring cells is given in the next chapter for three 

dimensional cells since the process for three-dimensions is more complicated than 

that for two-dimensions. Only an example figure (Figure 2.2) is given to illustrate the 

process for two-dimensions roughly and show the numbering of children cells.  
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Figure 2.2 An example of neighboring cells and numbering of children cells 

 

Moreover, coordinates of the centroid and level of each cell are important parameters 

for the developed code. Calculation of coordinates of the centroid of a cell is 

discussed in the next chapter for a three dimensional grid instead of a two 

dimensional one. The level of a cell is used for many reasons. Level of a cell is 

necessary for the calculation of coordinates of the centroid and length of an edge of a 

cell. Besides, coordinates of four corners are calculated with the use of level. There is 

a restriction called one level rule in the developed code. This rule enables grid 

smoothness and facilitates the flux calculation and application of reconstruction 

schemes. In addition, neighbor cells through the vertices of a cell can easily 

determined by means of this restriction. One level rule simply states that the level 

differences between two edge or vertex neighbors cannot exceed one. If this rule 

removed from the developed code, the solution accuracy would be harmed. Besides, 

one level rule prevents the data structure to become much more complicated.  
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By the way, as it is seen from Figure 2.1, the level of root cell is zero and level of its 

children is 1. In other words, level of a child cell is one level higher than its parent 

level. 

 

There are two types of neighbors for two dimensional problems. One is edge 

neighbor which is stored for each cell and the other is vertex neighbor which is 

determined when it is required. Since vertex neighbors are not used as many times as 

edge neighbors and also they easily determined by the edge neighboring information, 

storage of them would be inefficient usage of memory.   

 

Effective memory usage is very important for computer codes. Therefore, the 

programmer must balance the memory usage and computational time. In order to 

balance them, the necessity of stored information is explored. If the information is 

used repetitively in the developed code and calculation of it takes a long time, 

storage of this information is more logical. Coordinates of four cell corners can be 

given as an example to this case. On the other hand, if the information is used rarely 

and determination of it takes a short time, it is logical not to store this information. 

Determination of vertex neighbors can be given as an example to the second case. 

 

As it is mentioned before, there are special cells which have no children cells. These 

are called computational or leaf cells and the all calculations are performed on these 

cells. They are divided into four groups according to their types. These are inside, 

outside, cut and split cells. In fact, inside cells cannot be thought as computational 

cells due to the fact that flux calculations are not performed on these cells. Therefore, 

in the developed code, the variables that are stored for computational cells except 

inside cells can be given below as: 

• 4 words: Conservatives variables for continuity, x-momentum, y-

momentum and energy equations 

• 4 words: Its four corners 

• 1 word: Its type  
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• 1 word: Its total square index. This will be discussed in the Marching 

Squares Algorithm section. 

• 2 words: Its refinement or coarsening criteria 

• 2 words: Divergence and curl of velocity vector 

• 2 words: Lengths of edge projections in x and y directions  

• 4 words: For forcing function which will be discussed in multigrid 

section 

 

Each of the four pointers for corner structures defines one corner of a cell and this 

corner structure stores the x and y coordinates of the cell corner and a variable φ. 

This φ variable of one corner is used to determine whether this corner is inside or 

outside the given geometry. Detailed information regarding φ value and 

determination of cell type will be given in the next section. Numbering of corners 

can be seen in Figure 2.3.  

 
Figure 2.3 Identification of corners 
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Since the centroid and area of a cut or split cell is not directly calculated like outside 

cells, these types of computational cells require additional information to be stored. 

Calculation of centroid and area of these special cells are discussed later. In the 

developed code, the variables stored for cut cells can be seen below as: 

• 3 words: x and y coordinates of centroid and area of a cell 

• 4 words: x and y coordinates of cut locations (px[0], px[1], py[0] and 

py[1]) 

 

Some of the stored variables for split cells are twice as much as those for cut or 

outside cells because some of the split cells are composed of two separate 

computational control volumes. Flux, divergence and curl calculations are performed 

twice for a split cell since it has two separate control volumes. These doubled 

variables are conservative variables, divergence and curl of velocity vectors, edge 

projections, centroids, areas and cut point locations. On the other hand, split cells 

have single refinement criterion like outside and cut cells.  

 

A demonstration of numbering of the intersection points of cell edges and the 

geometry for a cut cell is seen in Figure 2.4. 

 

 
Figure 2.4 Demonstration of cut locations 

 

Finally, calculation of centroid and area of cut cells can be summarized in this 

section because cell centroid and area are used in the formulation of least square 

reconstruction scheme and the calculation of the divergence and the curl of the 
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velocity vector. It is clearly seen that the numbering of corners and also cut locations 

are given in the counter-clockwise sense. This facilitates the calculation procedure.  

 

Firstly, outside part of cut cells are triangulated beginning from the first cut point 

(px[0] and py[0]), traversing the outside corners in the counter-clockwise sense and 

ending with the second cut point (px[1] and py[1]). Then the cross-product of vectors 

along faces of each of the triangles is evaluated. This product gives the area of each 

triangle. Summation of areas of all triangles which constitutes the outside area of cut 

cells is calculated. As a result, the area of the cut cell is obtained. The procedure is 

the same for split cells. The centroid of cut cell is calculated by using the following 

equation: 
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where Ci and Ai in the formula refer to the centroid and area of each triangle. 

 

An example of triangulation process is given in Figure 2.5. Outside corners of any 

cut cell are known automatically by means of a formed table. This table is called 

corner-table and given in the next section. 
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Figure 2.5 An example of triangulation process 

 

2.2 Initial Grid Generation and Geometry Adaptation 
 

Grid generation for two-dimensional Cartesian grids can be achieved in three steps. 

Initial step is the creation of the domain and uniform mesh generation. The 

determination of cell types by inside-outside test is the second step. Afterwards, 

geometric adaptation, which consists of three parts: box, cut & split cell and 

curvature adaptation, is applied to the uniform mesh. By the way, there are additional 

important intermediate steps between box adaptation and cut & split cell adaptation. 

These are marching squares method and the determination and classification of the 

split cells.  

 

2.2.1 Creating the Domain and Uniform Mesh Generation 
 

Initially, the geometry around which the external flow is solved is specified to the 

developed code as line segments. It is important that these line segments have to 

follow a sequence starting from a point and ending up with this point. In other words, 

line segments have to form a closed loop whose rotation direction is counter-

clockwise. 
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Afterwards, since the geometry is not nondimensionalized to prevent computation 

errors due to the division such as machine zero effect, the maximum length of the 

given geometry is important to create the appropriate domain for solving the problem 

accurately and robustly. The multiplication of the maximum length by the size factor 

gives the domain size. This domain size is the length of the edges of the root cell.  

Then since the developed solver is external flow solver, the given geometry is placed 

to either the mid point of the created domain or the desired location of the user near 

the center of root. 

 

Finally, uniform mesh for the two dimensional Cartesian method is obtained by 

dividing squares successively starting from the root until the level of computational 

cells reaches the desired level. This step is very important to obtain sufficiently small 

cells before geometry and solution adaptation steps. The given geometries (three-

element airfoil and NACA0012) and uniform meshes around them are given in 

Figure 2.6 and 2.7.  

 

 
Figure 2.6 Three-element airfoil and uniform mesh around it  
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Figure 2.7 NACA0012 airfoil and uniform mesh around it 

 

When sufficient resolution around the geometry is not obtained during the uniform 

mesh generation, sometimes small parts of multi-component geometries are not 

realized; therefore, adaptation steps do not notice these parts due to the insufficient 

resolution. As a result, incorrect mesh generations are obtained. In order to prevent 

this failure, some determination techniques are implemented into the developed code. 

But this does not mean that these implementations prevent all of these failures. In 

other words, the user of the program is always aware of the possibilities of these 

errors. For example, before these techniques, slat of the three-element airfoil in 

Figure 2.6 was not detected without sufficient resolution, i.e. with uniform mesh 

which has low desired level. But, it is possible now. 

 

It is beneficial to indicate that there is no need to check the one level rule in the 

uniform mesh step. After creation of new cells with the division of their parent cells, 

centroidal coordinates and their neighbors have to be set. These procedures are 

discussed for three dimensional problems instead of two dimensional ones due to the 

complexity. 

 

The increase of total number of cells during the uniform mesh is exponential. 

Therefore, it is stated in references [11] and [12] that desired level may be kept 
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within the limit of two or three to avoid this increase. However, in the developed 

code, there is no restriction on the number of desired level for uniform mesh because 

coarsening of cells is applicable in this code. Therefore, although exponential 

increase occurs at the beginning of the mesh generation, this number decreases by 

means of coarsening process during the solution adaptation. Besides, exponential 

increase does not harm the convergence rate in a detectable manner on account of 

multigrid method. As it was mentioned before, higher desired level is necessary in 

some cases where small geometry components exist. Moreover, solution refinement 

is sometimes much more efficient with higher initial resolution. This can be 

exemplified in Figures 2.8 and 2.9 by comparison of pressure coefficients with 

AGARD data [13].    

 

 
 

Figure 2.8 Pressure coefficients of upper part of NACA0012 airfoil  

 

 

 21



 
 

Figure 2.9 Pressure coefficients of lower part of NACA0012 airfoil  

 

For example, green points indicate a mesh whose uniform division number (unidiv) 

is 2 and solution refinement cycle (refcycle) is 3 in Figures 2.8 and 2.9. When the 

pressure coefficients of two cases with uniform division 2 and 6, which have the 

same number of solution refinement cycles, are compared, it is clearly seen that 

locations of the shock on the upper and lower parts of NACA0012 airfoil are 

determined more accurately for the case with higher desired level. Besides, pressure 

coefficients of this case are nearer to the AGARD data. This validates the statement 

that initial resolution is important for accurate results. The reason of inaccurate 

results of the case whose uniform division is 2 is that the interaction between far-

field boundary conditions and geometry is really effective due to the huge cells near 

the far-field. Although these huge cells are refined during the application of solution 

refinement, they harm the result because the solutions of initial iterations are without 

solution adaptation. Figure 2.10 shows two grids. First one is the mesh obtained after 

the geometric adaptation. The uniform division number of this case is 2. Second one 
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is the mesh which is obtained after the solution refinement. This mesh is obtained 

after three refinement cycle. 

 

   

Figure 2.10 Geometric- adapted and solution-adapted meshes, respectively 

 

2.2.2 Inside-Outside Determination 

 
After uniform mesh generation, corners of sufficiently small cells are tested whether 

they are inside of the given geometry or not. This is called inside-outside testing. 

This step is obligatory for Cartesian grids because the cells that are cut by the given 

geometry are determined by this test.  

 

There are various methods for the determination of a point whether it is located at the 

inside or outside part of a closed polygon. The most popular ones are Ray Casting 

and Winding Number methods.  

 

In this thesis, Ray-Casting method is used due to its numerous advantages over 

Winding Number method. However, there is a restriction in order to apply both of 

these methods. This restriction is that the given geometry must be a closed loop 
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although it consists of holes in it. Information regarding Winding Number method 

can be found in references [10] and [12].  

 

2.2.2.1 Ray Casting Method 

 

In this approach, a ray (line) which can be x = constant, y = constant or another line 

is cast from a point in two dimensional problems and the number of interactions 

between this ray and the line segments of the geometry is counted. If this number is 

odd then the point is inside the geometry, else it lies outside the geometry.  

 

 
Figure 2.11 An example for Ray Casting Method 
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For example, three different cases are shown in Figure 2.11.  In the first case, a ray is 

cast from point P1 in the positive x-direction (y = constant line) and it intersects four 

times with the simple-closed geometry. This means according to ray casting method 

that this point lies outside the geometry. In the second case, ray of point P2 in the 

positive x-direction intersects with the geometry once; therefore, it is inside the 

geometry. These two cases do not violate the rule of ray casting method. However, a 

ray in the positive x-direction which is cast from point P3 intersects with the 

geometry three times. In other words, three line segments of the geometry are cut by 

this ray. Therefore, ray casting method allocates point P3 as an inside point. The 

reason of this problem is that the end points of line segments have to be counted 

once. But instead of counting end points once, changing the direction of ray is much 

more logical when it intersects with an end point of any line segment. As a result, 

probable mistakes due to this intersection are eliminated. That is to say, when the 

ray, which is cast from point P3, changes to a x = constant line (ray in the positive y 

direction), the number of intersection becomes zero and this means point lies outside 

the geometry. Consequently, in the developed program, rays are cast along 

alternating directions until the ray does not intersect with endpoints of line segments. 

There is one more special case where the rule of ray casting method is violated. If the 

point is coincident with any line segment of the geometry, the number of intersection 

can be either odd or even although it must be odd. Therefore, firstly, the coincidence 

must be checked and if there is no coincidence, the testing method is applied to the 

point. If it is coincident with any one of the line segments, the point is on the 

geometry and it is immediately allocated as an inside point.   

 

As it is mentioned before, ray casting method has various advantages when it is 

compared to winding number method. The first advantage is that unlike winding 

number method, ray casting method does not require to visit all of the line segments 

of the geometry. For example, if the ray is in the positive x direction, the line 

segments whose y coordinates of both end points are larger or smaller than the y 

coordinate of the point from which the ray is cast are not tested since their 

intersection is impossible. Another advantage is that ray casting method does not 
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suffer from floating point round off errors [10]. The final advantage is that 

implementation of ray casting method into the three dimensional problems is easier 

and more accurate than that of other methods.  

 

After the testing of each of four corners of a cell, type of this cell has to be 

determined according to the test results since this step is obligatory step for Cartesian 

grids. Then, φ value of each corner which was mentioned before is allocated. φ value 

of inside corner is set to -1, while φ value of outside corner is set to 1. This value is 

necessary in the marching squares method which is discussed later. As it is 

mentioned before, there are four types of computational cells. If all corners of a cell 

are outside of the geometry, the cell type is set as outside and if all corners are inside 

then the cell type is set as inside. Types of other remaining cells are set as cut cells. 

By this way, cut cells are determined. Figure 2.12 gives examples of these types of 

cells. However, there are some exceptions which violate rules of this determination. 

Two cases given in Figure 2.13 illustrate some of these exceptions. Although four 

corners of two sample cells in Figure 2.13 are outside, they are cut by the given 

geometry. These cells are set as split cells because classifying these cells as outside 

cells causes error during the flux calculations and they are discussed later in the next 

section. 

 

 
 

Figure 2.12 Examples of types of cells 
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Figure 2.13 Sample two exceptions 

 

After determining types of cells, cells around the body except inside cells are refined 

by three different ways until fine meshes are obtained around the body. The general 

name of these processes is geometric adaptation. 

 

2.2.3 Geometric Adaptation 
 

The adaptation process can easily be applied to a Cartesian grid; therefore, high 

resolution around the geometry as a result of adaptation enables more accurate 

results when compared to other types of grids. Geometric adaptation is applied to the 

uniform mesh after determination of cell types in three steps: box adaptation, cut & 

split cell adaptation and curvature adaptation. The amount of application of these 

adaptations is determined by the user. Suitable grid for solver part is obtained after 

all of these adaptations.  

 

2.2.3.1 Box Adaptation  

 

The first step of geometric adaptation is the box adaptation. By means of this 

adaptation, uniform mesh around the given geometry is refined and fine meshes are 

obtained in an imaginary rectangular box. The imaginary rectangular box includes 

cells which are inside the box or in contact with the box and these cells are flagged 

for refinement. After determining of these flagged cells, they are refined until a 
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desired resolution is obtained inside the box. But it is important that one level rule is 

considered while the refinement of flagged cells. If the levels of the edge or vertex 

neighbors of flagged cell are one level lower than its level, firstly they are refined 

and then the cell is refined. After the application of box adaptation to the uniform 

mesh in Figure 2.6, Figure 2.14 is obtained. 

 

 
Figure 2.14 Application of box adaptation to three-element airfoil 

 

As it was mentioned before, there are some intermediate steps between box 

adaptation and cut cell adaptation. These are discussed now.  
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2.2.3.1.1 Determination and Classification of Split Cells 

 

After the types of cells are determined according to the rule given in the inside-

outside testing section, it is seen that there are some exceptions and these exceptions 

necessitate some modifications in type determination. Therefore, additional type is 

added to the developed code called split cell. These cells have one or more separate 

control volumes. Flux calculation of split cells which have only one control volume 

is the same as cut cells. On the other hand, flux calculation of split cells which have 

two or more control volumes is different. Separate flux calculations are performed 

for each of separate control volumes of a split cell. Although split cells make the data 

structure more complicated, it is obligatory for the implementation of multigrid 

method. This will be exemplified with an example in the multigrid method section. 

Besides its complexity, split cells increase the computational time and decrease the 

usage of memory effectively. In the literature, some works assume split cells as one 

control volume in order to escape from more complexity in the data structure like 

references [4] and [12].  

 

In this work, split cells are handled to ease the implementation of multigrid method. 

As it is mentioned before, classification of cells according to their types are 

performed after inside-outside testing. In this step, cells are divided into three 

groups: inside, outside and cut cells. Afterwards, all cells are tested again to 

determine how many cut points each of cells has. This test is called the determination 

of split cells. In fact, outside and inside cells should not have cut points and cut cells 

should have only two cut points. However, some cells violate this rule. For example, 

although types of two cells in Figure 2.13 are set as outside after inside-outside 

testing, they have two and four cut points, respectively. In addition, first two cells in 

Figure 2.15 are set as cut cell but they have four cut points instead of two. The last 

cell in Figure 2.15 is set as inside, but it is cut by the geometry.  
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Figure 2.15 Three examples of split cells 

 

As it is mentioned before, there is a pointer called total square index for all 

computational cells. This pointer makes easier the flux calculation process. Finding 

the value of this pointer for outside, inside and cut cells is discussed in the next 

section.  

 

After all of computational cells are tested to find exceptions and set them as split 

cells, classification of these split cells are done. Split cells are classified in respect of 

their total square index values. Therefore, finding these values for split cells can be 

summarized here. If a cell is cut cell according to the inside-outside testing but it has 

four cut points, it is set as split cell and its total square index remains the same.  If a 

cell is outside cell according to the test but it has two or four cut points, it is set as 

split cell and its total square index is assigned to -15 or -25, respectively. If a cell is 

inside cell according to the test but it has two or four cut points, it is set as a split cell 

and its total square index is assigned to -20 or -30, respectively. Finally, if a cell is 

cut cell according to the inside-outside test but it has more than four cut points, it is 

set as split cell and its total square index is assigned to -40. Split cells whose total 

square index is -40 are recursively refined until other types of split cells are obtained 

since the flux formulation for this case is very difficult to handle when compared to 

other types. This type of split cell is rarely found and after one or two refinement 

they are eliminated.  
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After classification of split cells, their cut point locations have to be determined. But 

it is important to note that numbering of cut points is not done randomly. Cut points 

for each cell follow a sequence. Hence, calculation of cut or split cell area, centroid 

and calculation of fluxes are very easy because of this sequence. Furthermore, each 

control volume of split cells can be considered as a cut cell and its flux calculations 

are performed like cut cells by means of total square indexes indicated in Appendix 

A. These indicated total square indexes are different from the actual classification 

total square index. For example, total square index of the cell given in Figure 2.16 is 

-25 in order to classify it. It is an outside cell as to inside-outside testing. After 

determination test, it is set as a split cell because it has four cut points. First control 

volume of split cells is the part which possesses cut locations p0 and p1. Second 

control volume is the part which has cut points p2 and p3. Flux calculation of the 

first control volume in Figure 2.16 is done assuming this part as a cut cell whose total 

square index is three. As seen in Figure 2.16, if the first control volume is assumed a 

cut cell, its total square index is directly calculated as three. Flux calculation of the 

second control volume is done assuming this part as a cut cell whose total square 

index is twelve. As seen in Figure 2.16, if the second control volume is assumed a 

cut cell, its total square index is directly calculated as twelve.  In other words, total 

square index of split cell is -25 in order to classify it and total square indexes of each 

control volume of this split cell can be seen from the Figure 2.16 inside of the control 

volumes.  
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Figure 2.16 Numbering of cut points of a split cell and assuming it like a cut cell for 

flux calculations 

 

2.2.3.1.2 Marching Squares Method  

 

After box adaptation and determination of split cells, locations of cut points of cut 

cells are tried to be found by using marching squares algorithm for two-dimensional 

problems since its implementation is easy. Besides, memory usage is lower than 

other methods. Generally, in the literature, line or polygon clipping algorithms were 

used for two-dimensional flow problems to determine the cut locations and the part 

of cell that resides in the geometry. These algorithms are performed by testing each 

of four edges whether they are cut or uncut. Then as a result of clipping, cut and 

uncut edges and cut locations are stored separately and portion of cut edges that 
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resides outside of the geometry is stored in the memory. This brings about excessive 

memory usage. For example, minimum additional eight pointers have to be stored for 

these values.  On the other hand, in marching squares algorithm, cut edges are 

automatically known by a table; hence, cut locations are found and stored easily. In 

other words, there is no need to check all edges whether they are cut by the 

geometry. This is not a big problem for two dimensional problems but for three 

dimensional problems, there are twelve edges and testing of each of them will be 

time consuming. In this work, by means of one pointer, cut and uncut edges and 

portion of cut edges that resides outside of the geometry are found easily.  Finally, 

marching squares algorithm is used in three-dimensional problems in order to find 

the area of cut surfaces and portions of those surfaces that are used for flux 

calculations.     

 

Marching squares algorithm starts by indexing each corners and edges of a cell from 

0 to 3. This can be seen from Figure 2.3. Then total square index value depending on 

number of corners which have negative φ value is determined. Square indexes of 

each corners according to their phi values and the loop used in the developed code in 

order to calculate total square index are given below. 

• If  φ of corner 0 = -1  then square index = 1 

• If  φ of corner 1 = -1  then square index = 2 

• If φ of corner 2 = -1  then square index = 4 

• If φ of corner 3 = -1  then square index = 8  

 
Figure 2.17 Loop for calculating total square index value of a computational cell 
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For example in Figure 2.18, corner 0 and corner 3 of the cell are inside the body. 

Hence, if total square index of this cell is calculated with the given algorithm, the 

result becomes 9. This value is obtained by adding 1 and 8, since φ values of corner 0 

and 3 are both -1, respectively. Then by means of a table called line table given in 

Figure 2.19, cut edges are determined. For example, cut edges of the cell given in 

Figure 2.18 are edge 0 and edge 2 respectively according to the line table in Figure 

2.19 since its square index is nine. By the way, green numbers in Figure 2.19 are 

comments and they indicate the total square index. Since the cut edges are known 

automatically by the table, intersection points of cut edges and line segments of the 

geometry are calculated. For this case, x coordinates of intersection points are known 

automatically since they are equal to x coordinates of corner 0 and corner 2, 

respectively. The only problem is to determine y coordinates of intersections. They 

can be found easily by using the line segment which cuts the cell. By the way, 

calculating the locations of cut points of split cells is very similar to cut cells.  

 

 
Figure 2.18 An example for explaining the calculation of total square index of a cell 
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Moreover, flux calculations of cut cells with the aid of this algorithm can be 

summarized here because it is mentioned that cut, uncut edges and outer portions of 

cut cells are not stored in the developed code. Instead, the table called corner table in 

Figure 2.19 includes almost the whole data that is necessary for flux calculations. 

Cut, uncut edges and outside portions of cut edges for the case in Figure 2.18 will be 

explained by means of the corner table in Figure 2.19. Since total square index of this 

case is nine, the corresponding row to this square index is 1, 2, -1, -1. These numbers 

(from 0 to 3) point out the number of outside corners of a cell. First and second 

outside corners for this case are corners 1 and 2, respectively. It is extremely 

important to note that rotation direction beginning from first cut point (p0) by 

passing the outside corners and ending with second cut point (p1) is always counter-

clockwise. The first cut edge is the edge which possesses first cut point (p0) and first 

outside corner (corner 1) according to corner table. Namely, the first cut edge is edge 

0 which is the edge located before corner 1 in the counter-clockwise sense. Instead of 

storing the neighbor for flux calculation, after the determination of first cut edge, it is 

automatically known that the first flux calculation for this case is done between the 

cell and east neighbor of this cell.  Then it is time to determine other neighbors for 

flux calculations by means of this table. After the first cut edge, there are two 

possibilities. Second edge can be an uncut edge or cut edge. If the subsequent 

number is -1 in the corner table, this means that the next edge is a cut edge. If the 

subsequent number is a number from 0 to 3, this means that the next edge is an uncut 

edge. For this case, subsequent number is 2; therefore, next edge is an uncut edge 

which possesses corner 1 (the first index of row) and corner 2 (subsequent number). 

Namely, the second edge for flux calculation is edge 1 which is the edge located 

before corner 2 in the counter-clockwise sense.  Neighbor of this cell on edge 1 is the 

north neighbor of the cell. After the determination of second neighbor for flux 

calculation, third neighbor is tried to find by means of corner 2. The number coming 

after corner 2 is -1; hence, the third edge is a cut edge which possesses corner 2 and 

the second cut point (p1) according to corner table. Namely, the third cut edge is 

edge 2, which is the edge located after corner 2 in the counter-clockwise sense and of 
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course, this edge is the last edge for flux calculation since the next number is -1. The 

same procedure is followed for other cut cells whose square index is different from 9.  

 

 

 
Figure 2.19 The tables for marching squares algorithm 

 

2.2.3.2 Cut and Split Cell Adaptation  

 

In order to obtain higher resolution around the geometry, split and cut cells are 

flagged for refinement. The difference between box adaptation and cut and split cell 

adaptation is that neighbors of cells that are flagged for refinement are also flagged 

for refinement in order to obtain smooth grid around the geometry. As a result, 

transition between cells near the geometry and cells far from the geometry becomes 

smooth and degradation of solution due to level differences in the critical regions is 

prevented. After the application of cut and split cell adaptation to the box adapted-

grid in Figure 2.14, Figure 2.20 is obtained. 
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Figure 2.20 Application of cut and split cell adaptation to three-element airfoil 

 

2.2.3.3 Curvature Adaptation  

 

All cut and split cells have interfaces and if the curvature between two interfaces is 

high, this means that this region necessitates more resolution since regions like that 

cause high gradients. Therefore, cut or split cells which have neighbor interfaces 

(this can be edge or vertex neighbors only) are tested whether the curvature between 

their interfaces are higher. The curvature between two neighboring interfaces is the 

angle between the normal vectors of these interfaces. If the angle is higher than the 

threshold angle and then these cells are flagged for refinement and this process is 
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called curvature adaptation. Detailed information can be found in reference [11]. 

After the application of curvature adaptation, Figure 2.21 is obtained. 

 

 
 

Figure 2.21 Application of curvature adaptation to three-element airfoil 
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CHAPTER 3 
 
 
 

THREE DIMENSIONAL DATA STRUCTURE AND GRID 
GENERATION 

 
 

 
 

3.1 Octree Data Structure 
 

The octree data structure is chosen in order to build connectivity information for 

three-dimensional grid because of the simplicity of conversion of the code from two-

dimensional grid generation to three-dimensional grid generation.  

 

Like the quadtree data structure, the octree data structure starts with the root cell and 

other members of the data structure become its children, grandchildren and etc. Any 

cell in the data structure is identified with fifteen pointers. One is for its parent; eight 

of them are for its children and the rest of them (six of them) are for its surface 

neighbors. Although the maximum possible number of neighbors is twenty six, only 

eight of them are stored. Others are determined when they are necessary. As a result, 

memory is used effectively. The pointers stored for all cells are given below: 

• 1 word: Its parent 

• 8 words: Its children 

• 6 words: Its surface neighbors 

• 1 word: Its level 

• 3 words: Its x, y, and z coordinates of the centroid 

• 2 words: Parameters for multigrid method which are called perform and 

compcell in the developed code. These will be explained in the section of 

multigrid method. 
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Similar to the quadtree data structure, level of a cell is a very important parameter 

and it is always one higher than the level of its parent. Centroidal coordinates of a 

cell are the function of the level of the cell, domain size and centroidal coordinates of 

its parent and they are calculated by the equations given below. Equations (3.1) to 

(3.8) are for the calculation of centroidal coordinates of children of a parent starting 

from first child to eighth child, respectively. L, n and c indexes in these equations are 

the domain size, level of the cell and center of the cell, respectively.  
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One level rule is applied to the developed code like two-dimensional ne. 

data structure does not become much more complicated. A cell in three-dimensional 

rid has six surface neighbors which are called east, west, north, south, top and 

bottom neighbors. It is mentioned that since the determination of these neighbors for 

o Hence, the 

g
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three-dimensional grids is more complicated than that for two-dimensional grids, this 

procedure for the first child is summarized in this section. Determination of 

neighbors of other children is similar to the first one. Therefore, others are not 

explained here. Numbering of children of a parent is shown in Figure 3.1.   

 
 

Figure 3.1 Numbering of children 

 

Three surface neighbors of the first child in Figure 3.1 are automatically known

ecause they are the children of its parent. Namely, west, south and bottom 

neighbors of the first child are second, fourth and fifth children of its parent, 

 

b
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respectively.  There are three possibilitie rs according to the one 

(i.e. it is not the far-field), the east neighbor of the first child is 

lso assigned to null. Otherwise, if the east neighbor of its parent is not assigned to 

s for other neighbo

level rule. The first possibility is that the neighbor of a cell is one level lower than 

the cell’s level. Other possibility is that both the cell and its neighbor are at the same 

level and finally, neighbor’s level is one higher than the level of the cell. There is 

only one neighbor if the level of neighbor is the same or one lower. However, if the 

level of neighbor is one higher than the level of the cell, this means that this cell has 

four neighbors along the same surface. Instead of storing all of these four neighbors, 

only the parent of these neighboring cells is stored in order to prevent the excessive 

usage of memory.  

 

East, north and top neighbors of the first child are determined by means of the 

neighboring information of its parent. For example, if the east neighbor of its parent 

is assigned to null 

a

null, it is checked whether it has children or not. If it has no child, then east neighbor 

of the first child is set as the east neighbor of its parent. In this case, level difference 

between the first child and its east neighbor becomes one and neighbor’s level is one 

level lower than the first child’s level. If the east neighbor of first child’s parent has 

children then the second child of the east neighbor of the parent is set as the east 

neighbor of the first child. This neighbor is at the same level as the cell. In fact, this 

cell might have children. Even this cell have children, it is set as the east neighbor to 

prevent complexity. But it is checked during the flux calculation and reconstruction 

schemes whether the neighboring cell, whose level is the same with the considered 

cell, has children. If yes, then its neighboring children are used in the calculations. 

Namely, the east neighbor of the first child is set as the second child of the east 

neighbor of the parent although this east neighbor has children. But in the 

calculations, four children of this neighbor are used. These children are the second, 

third, sixth and seventh children of the second child of the east neighbor of the first 

child’s parent.  
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If the north neighbor of the parent of the first child is not set as null and it has no 

children, it is set as the north neighbor of the first child. However, if it has children, 

urth child of the north neighbor of first child’s parent is set as the north neighbor of 

as the top neighbor 

f the first child. However, if it has children, fifth child of the top neighbor of first 

was 

plained here for the first child of a parent cell. Other twelve neighbors are edge 

nsional grid generation is very 

ifficult when compared to two-dimensional one, split cells are not handled. Instead, 

iven below: 

fo

the first child. If this cell has also children, third, fourth, seventh and eighth children 

of this cell are used in flux calculations as the surface neighbors.  

 

Finally, if the top neighbor of the parent of the first child is not set as null and it has 

no children, the top neighbor of the parent of the first child is set 

o

child’s parent is set as the top neighbor of the first child. If this cell has also children, 

fifth, sixth, seventh and eighth children of this cell are used in flux calculations. 

  

As it is mentioned before, a cell has maximum twenty six neighbors. Six of them are 

surface neighbors and they are stored. Determination of these neighbors 

ex

neighbors. These are determined by means of surface neighbors of a cell. But 

sometimes a cell has no edge neighbor along one of its edges. The reason of this case 

is that the level of the surface neighbor is one lower than the level of the cell. The 

rest of eight neighbors are the corner neighbors. Like edge neighbors, they are also 

determined by means of surface neighbors of the cell. 

 

Finally, in three-dimensional grid generation, there are three types of computational 

cell: inside, outside and cut cells. Since the three-dime

d

these irregular cells which are not inside, outside or cut cells are recursively refined 

until these three types are obtained. Consequently, the data structure is not as 

complicated as in two-dimensional grid generation code. 

 

It is beneficial to state that there are additional stored variables for computational and 

cut cells. The pointers stored for computational cells are g
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• 5 words: Conservatives variables for continuity, x-momentum, y- 

momentum, z-momentum and energy equations 

• 8 words: Its eight corners 

• 1 word: Its type  

• 1 word: Its total cube index 

ent criteria 

l of velocity vector and strength of the 

ow: 

 3 words: x, y and z centroidal coordinates of a cut cell 

s of a triangle which forms the cut 

nal grid generation, centroid and area of cut cells are calculated by 

iangulation of the outside part of cut cells. In three-dimensional grid, centroid and 

• 2 words: Its refinem

• 3 words: Divergence and cur

entropy wave 

• 5 words: For forcing functions 

 

The pointers stored for cut cells are given bel

•

• 9 words: x, y and z corner coordinate

surfaces 

 

In two-dimensio

tr

volume of cut cells are calculated by means of division of the outside part into 

tetrahedrons. As a result, volumes and centroids of each tetrahedron are calculated 

and summation of them gives the total volume. If four vertex coordinates of a 

tetrahedron are known as shown in Figure 3.2, calculation of its volume is the 

absolute value of scalar triple product. It is given in Equation 3.9.  
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Figure 3.2 Coordinates of four vertex of a tetrahedron 
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3.2 Initial Grid Generation and Geometry Adaptation 
 

Three-dimensional grid generation is very similar to two-dimensional grid 

generation. In order to generate three-dimensional grid, first of all, geometry is 

introduced to the code and then uniform mesh is generated around the geometry. The 

last step of grid generation is geometric adaptation and this is achieved in two steps: 

box and cut cell adaptation. 
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3.2.1 Creating Domain and Uniform Mesh Generation 
 

As it is mentioned, introduction of the geometry around which the external flow will 

be analyzed is the initial step of three-dimensional grid generation. Surface or 

volume mesh of the geometry is used for the introduction according to the inside-

outside testing method. There are two different methods used for inside-outside 

testing. One is ray casting which is explained in the previous chapter and the other is 

a method which is associated with cross product and will be explained later. In order 

to use both of these methods, both surface and volume meshes of the geometry are 

required. Surface and volume meshes are composed of triangles and tetrahedrons, 

respectively. After the generation of a mesh by means of GAMBIT software, it is 

exported as a file whose extension is “.neu”.  Examples of generated surface mesh 

around a sphere and its output file from GAMBIT are shown in Figure 3.3 and 

Appendix B, respectively. 

 

 
Figure 3.3 Example surface mesh on a sphere 

 

After the introduction of the geometry, uniform mesh is generated around the given 

geometry. For example, if the uniform division number for the uniform mesh is set as 

three, the root cell is divided three times successively. As a result, Figure 3.4d is 

obtained.  
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Figure 3.4 Root cell and different uniform meshes with different uniform division 

numbers 

 

3.2.2 Inside-Outside Determination 

 

As it is mentioned before, there are two different types of inside-outside testing 

method. Cross product of a corner with volume mesh is the first method which is 

used in the developed code. But the execution time of this testing method is very 

long when it is compared to the ray casting method and, therefore, it is not preferred. 

In spite of its ineffectiveness, this method is explained here because it is sometimes 

used due to its reliability. 
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In the first method, each of the tetrahedron meshes (volume meshes) of the given 

geometry is tested whether a corner of a cell is inside of this tetrahedron or not. 

Namely, if the volume mesh of the given geometry is composed of n-tetrahedrons, 

each corner of a cell is tested n-times. Therefore, it takes long time. In addition, for 

each tetrahedron, four terms are calculated. Figure 3.5 is an example of this method. 

Point P can be considered one of the corners of a cell and vertices of any tetrahedron 

are demonstrated as 1, 2, 3 and 4 in Figure 3.5. If all of the four terms, which are 

computed by using Equations 3.10, 3.11, 3.12 and 3.13, are positive or all are 

negative or all are zero, then the point P is inside of the tetrahedron. Otherwise, it is 

outside of the tetrahedron [14]. In other words, if the signs of all terms are the same 

then it means that this corner is inside of the tested tetrahedron. 

 

 
Figure 3.5 Inside-outside determination of point P in 3D 

 

 Term 1= [|21|x|32|]●|P2| (3.10) 

 Term 2= [|31|x|43|]●|P3| (3.11) 

 Term 3= [|34|x|23|]●|P3| (3.12) 

 Term 4= [|41|x|24|]●|P4| (3.13) 

 

where  
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Ray casting method was discussed in Chapter 2 for two-dimensional case. In this 

case, a ray intersects with the line segments of the given geometry (line-line 

intersection in two-dimensions). In three-dimensions, how many times a ray, which 

is cast from one of the eight corners of a cell, is intersected with the triangular 

surface meshes of a given geometry are counted. This type of intersection is line-

triangle intersection in three-dimensions and the determination of this type of 

intersection is discussed in detail in reference [15].   

 

After the inside-outside test of all corners of a cell, cell type is determined. If all of 

the eight corners are inside the geometry then it is an inside cell.  Otherwise, if all of 

the eight corners are outside the geometry then it is an outside cell. Other cells which 

have both inside and outside corners are set as cut cell. After the cell type 

determination, geometric adaptation starts. 

 

3.2.3 Geometric Adaptation 
 

The purpose of the geometric adaptation in three-dimensions is the same as in the 

two-dimensional case. However, in this part, curvature adaptation is not applied to 

the geometry since the only application of box and cut cell adaptations is found to be 

satisfactory. In addition, it is more complicated than box and cut cell adaptations for 

three-dimensional case. This will be identified as a future work. 
 
3.2.3.1 Box Adaptation 

 

In order to obtain high resolution around the given geometry, box adaptation is an 

important step of geometric adaptation. After the box adaptation around a sphere, 

slice of Cartesian volume mesh in xy plane can be seen from Figure 3.6. Like two-

dimensional grid generation, one level rule is applied to the surface, edge and corner 
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neighbors during geometric adaptation. Therefore, smooth grid is obtained as seen 

Figure 3.6. 

 

After the box adaptation, cut surfaces of cut cells are tried to be determined by 

marching cubes algorithm. Marching squares algorithm was discussed in Chapter 2 

and marching cubes is similar to the marching squares. In two-dimensions, cut edges 

are tried to be found by means of total square index of a cell and a given table. In 

three-dimensions, cut surfaces are determined by means of total cube index of a cell 

and a table which is given in Appendix C.   

 

 
Figure 3.6 Application of box adaptation to sphere surface mesh exported from 

GAMBIT 

 50



Numbering of edges and corners of a cell is shown in Figure 3.7. Like marching 

squares algorithm, total cube index is calculated by examining the φ  values of each 

corner of a cell. Total cube indexes of outside and inside cell are 0 and 255, 

respectively. Cube indexes of each corner according to their φ  value used in the 

developed code are given below: 

• If  φ  of corner 0 = -1 then cube index = 1 

• If  φ of corner 1 = -1 then cube index = 2 

• If φ  of corner 2 = -1 then cube index = 4 

• If φ of corner 3 = -1  then cube index = 8  

• If φ of corner 4 = -1  then cube index = 16 

• If φ  of corner 5 = -1 then cube index = 32 

• If φ  of corner 6 = -1 then cube index = 64 

• If φ  of corner 7 = -1 then cube index = 128  

 
Figure 3.7 Numbering of edges and vertexes of a three dimensional cell 
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For example, total cube index of a cell whose zeroth, first and second corners are 

only inside of the geometry is 7. Cut edges of this cell and triangular cut surfaces are 

found by means of the table in Appendix C. The row corresponds to this total cube 

index in the triangle table is given below: 

 

According to this information, cut edges are 2, 8, 3, 10 and 9. When cut edges are 

known, cut locations on cut edges are found the method given in reference [15] 

which is called line-triangle intersection. After finding cut locations on these edges, 

three triangles which pass along these cut locations can be drawn by means of 

following the given sequence in the triangle table in Appendix C. Inside and outside 

portions of the cell whose cube index is 7 are seen from the Figure 3.8a. According 

to the table, this cell has three triangular cut surfaces as seen in Figure 3.8b. Corners 

of the first triangle are on the second, eighth and third edges, respectively. Corners of 

the second triangle are on the second, tenth and eighth edges, respectively. Corners 

of the third triangle are on the tenth, ninth and eighth edges, respectively. 

 

It is important to note that normal vectors of each triangular surface are pointing to 

the outside part of the cell. This feature of triangles facilitates the flux, volume and 

centroid calculations. 
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   (a)       (b) 

Figure 3.8 Marching Cube Algorithm 

 

3.2.3.2 Cut Cell Adaptation 

 

Cut cell adaptation is also very important part of geometric adaptation since both the 

cut cells and their outside surface, edge and corner neighbors are refined. As a result, 

critical regions such as shocks, expansion waves are easily detected and solution 

refinement is applied to the grid in a more reliable manner. After the application of 

cut cell adaptation to the Figure 3.6, Figure 3.9 is obtained.  
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Figure 3.9 Cut cell adaptation  
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CHAPTER 4 
 

 
 

FLOW SOLVER 
 

 
 
 
A Cartesian grid generation method for the solution of the steady-state Euler 

equations was discussed in Chapters 2 and 3. In this chapter, first of all, integral form 

of three-dimensional inviscid and compressible governing equations (Euler 

Equations) is introduced. Then, spatial and temporal discretizations of these integral 

forms of equations are discussed. Numerical flux construction schemes are explained 

for three dimensional cases in order to calculate fluxes through the surfaces of the 

cells. These schemes are the Approximate Riemann Solver of Roe and Liou’s 

Advection Upstream Splitting method (AUSM). For most of the test cases, first-order 

spatial accuracy is used for the conserved variables in the flux calculations in order 

to use multigrid application. The developed solver couldn’t perform second order 

flux calculations with multigrid applications.  

 

The finite volume formulation of the three-dimensional conservative Euler equations 

is achieved by using a cell-centered approach. Solution adaptation is used for 

resolving more critical regions in the solution domain because the Cartesian grid is 

very suitable for automatic grid generation. As a result of solution adaptation, 

sufficient resolution around critical regions is obtained without increasing the total 

grid number considerably. Primitive variables are reconstructed using the least 

squares methods to achieve solution adaptation. In order to ensure accurate and 

bounded values, limiters are employed in the reconstruction process. Divergence and 

curl of velocity vector and the strength of the entropy wave are used for resolving the 

critical regions. The combination of these three criteria is expected to give better 

results than a single one.  
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Multigrid convergence acceleration technique (Full Approximation scheme) is used 

in order to increase the convergence rate. Firstly, the problem under consideration is 

solved on a fine mesh. Then the grid are coarsened and refined successively in order 

to obtain the improved solution in a short time. 

 

4.1 Three Dimensional Euler Equations 
 

In the developed code, discretized forms of the integral equations are used; therefore, 

firstly, it is beneficial to introduce integral conservative form of Euler Equations. 
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Dot product of the flux and normal vectors gives the fluxes perpendicular to the 

surface and it is defined as Ф and given in Equation (4.4). 

 

  (4.4) 
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where  is the normal velocity to the surface pointing the outside 

of the cell, 

zyxn wnvnunV ++=

ρ  is the density of the fluid, kwjviu
rrr

++=v is the fluid velocity vector. 

E  is the specific total energy, H  is the specific total enthalpy and p is the fluid 

static pressure. Thermodynamic relations regarding E , H  and p are given in the 

following equations.  

 

 
2

222 wvueE ++
+=  (4.5) 

 
ρ
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)(1()1(
222 wvuEep ++

−−=−= γργρ  (4.7) 

 

where  is the specific internal energy and γ = cp/cv is the ratio of specific heats. In 

the developed code, initial values of some variables are chosen close to unity in order 

to decrease the computational load. For example, far-field density and static pressure 

are chosen as 1 and 1/γ, respectively. Far-field speed of sound is calculated as 1 by 

using the following equation.  

e

 

  
∞

∞
∞ = ρ

γpc                   (4.8) 
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As a result, ma nitude of the r-field velocity vector, vg fa , is obtained directly as

input Mach nu  

 

tegral form of Euler Equations is solved easily by using finite volume method. 

volumes do not change in 

e. Therefore, flow variables can be stored at the centroids of cells and it can be 

 the 

mber. 

4.1.1 Spatial Discretization of Euler Equations 
 

In

Firstly, physical domain is divided into cells whose control 

tim

assumed that they do not vary inside of the control volume. As a result, it is possible 

to write 
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∂
∂
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q qd  (4.9) 
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Moreover, the surface integral in Equation (4.1) can be approximated by the sum of 

e fluxes through each face of a control volume. Consequently, spatial discre

rm of the Equation (4.1) becomes 

 

th tized 
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Residuals of a cell are nonlinear functions of the conservative variables and they may 

e defined as  

 

As a result, Equation (4.10) may be written as 
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 (4.12) 

inally, it is important to note that choosing the appropriate numerical flux 

construction scheme is very important to obtain the accurate results from spatial 

tization.  

 

 separate discretization in time is required for the solver part of the developed code. 

oral discretization is 

necessary for obtaining zero residuals quickly by means of multistage time stepping.

F

discre

 

4.1.2 Temporal Discretization of Euler Equations 

A

Although the steady-state Euler Equations are solved, temp

 

Left hand side of Equation (4.12) is discretized in time as the equation given below. 
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It is important to note that residuals of a cell is a function of flow variables as seen in 

e  determ

e temporal discretization scheme. In other words, if the residuals are calculated by 

Equation 4.11; therefore, tim step at which the residuals are calculated ines 

th

using flow variables obtained at time steps n and (n + 1), this scheme is called 

implicit scheme and can be given by 
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Otherwise, if the residuals are calculated by using flow variables obtained at the n 

me step, this scheme is called explicit scheme and can be given by 
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where  is equal to  )( 1+nRes q )()()()( 11 nnnn ResResRes qq
q

qq −
∂

∂
+= ++  accord

e Taylor Series when the higher orders are neglected.  

 

4.1.2.1 Multistage Time Stepping (Runge-Kutta Method) 

he discretized Euler equations are solved by starting from a known initial solution 

time stepping scheme is 

iven by 

ing to 

th

 

T

in the explicit multistage time stepping method. Three-stage 

g
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303 qqq Restυα
 

31 qq =+n  

  

Residuals are found by using this initial solution. Then the improved solutions are 

obtained by means of some iteration. In Equation (4.16), kα  denotes the stage 

efficients and Δt is the time step. CFL numbers and stage coefficients for 3, 4 and co

5 stages time stepping are presented in Table 4.1 which is taken from reference [3]. 

For the results in the developed code, three-stage time stepping scheme is used with 

the first order accuracy. 
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Table 4.1 Stage coefficients and CFL numbers for the first order multistage scheme 
for two dimensional problems 

  

 3 4 5 

υ  1.5 2.0 2.5 

1α  0.1481 0.0833 0.0533 

2α  0.4 0.2069 0.1263 

3α  1.0 0.4265 0.2375 

4α   1.0 0.4414 

5α    1.0 

 

  Table 4.2 Stage coefficients and CFL number for the first order two-stage scheme 
for three dimensional problems 

 2 

υ  1.0 

1α  0.4361 

2α  1.0 

 

.1.2.2 Local Time Step 

he main disadvantage of explicit multistage scheme is the limitation on the time 

or an unsteady flow, the minimum local time step is chosen among the all 

calculations of discretized governing equations. Hence, local time stepping for steady 

4

 

T

step. It cannot be chosen arbitrarily because of the stability problems. Therefore, 

computation of local time step of each cell is an important issue. It depends on the 

cell size and the flow properties. It is important to note that there are large size 

differences between outside and cut cells in Cartesian method.  

 

F

calculated local time steps for each cell and it is used for all cells and this is a big 

disadvantage for convergence rate. On the other hand, for steady problems, every cell 

has its own local time step and these values are used for each cell during the 
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problems is a valuable option to increase the convergence rate. Namely, steady 

problems are not restricted to use only the minimum local time step during the 

calculation. 

 

In two-dimensional problems, local time step of each cell is calculated by using the 

llowing equation fo
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where  and  are the convective spectral radii and they are calculated by using 

e absolute values of the projections of edges (Sx and Sy) in x and y directions as 

: 
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where ccell is the local speed of sound which is calculated by using the flow variables 

tored at the cell centroid.  

ms, local time step of each cell is calculated by means of 

e following equation 

s

  

In three-dimensional proble
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where  is the normal velocity to a face and  is the area of this face. As it is seen 

from Equation (4.20), local time step of a cell have to be calculated at every iteration 

since normal velocity and local speed of sound are changing continuously. 

nV iA

 

4.2 Flux Computation 
 

One of the most important part of three-dimensional flow solver is the calculation of 

fluxes, Фi, through each face. In this study, two different methods are used for the 

calculation of fluxes. These are approximate Riemann solver of Roe [10], [16] and 

[17] and Liou’s Advection Upstream Splitting Method (AUSM) [16], [18] and [11]. 

In the two-dimensional code, the former one is used for most of the cases, while the 

latter one is used for the most of the cases in the three-dimensional code. 

 

4.2.1 Approximate Riemann Solver of Roe 
 

Fluxes for each face are calculated at the mid-point of the face by using the flow 

variables of two neighboring cells. The flow variables of the cell whose flux value 

will be calculated are denoted as the left side and the neighboring cell is represented 

as right side. 
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It is important to note that third term at the right hand side of Equation (4.21) is 

calculated by using Roe-averaged quantities. These quantities are given below. 

 

 RLRL ρρρ =  (4.23) 
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The normal velocity calculated by using Roe-averaged values is presented in the 

following equation 
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Eigen values can be calculated by using the calculated normal velocity as 
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while the wave strengths are computed by  
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where LR ρρρ −=Δ , LR ppp −=Δ , LR uuu −=Δ , LR vvv −=Δ , LR www −=Δ  

and .  ( ) (R nnn VVV −= )LΔ

 

Finally, right characteristic vectors are given below: 
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4.2.2 Liou’s Advection Upstream Splitting Method (AUSM) 
 

This method is chosen for the developed code since it is less complicated and 

expensive than Van Leer and Steger-Warming flux splitting methods. In this method, 

Mach number and pressure appearing in the convection flux terms are split. 
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Flux values may be written as 
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Split Mach number 
2

1M  and split pressure 
2

1p  are the average of left and right 

sides.  
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4.3 Initial Guess and Boundary Conditions 
 

As it is mentioned before, the discretized Euler equations are solved by starting from 

a known initial solution in the explicit multistage time stepping method. Therefore, 

the far-field boundary conditions are set as the initial guess for all cells.  

 

For external fluid flows, there are two types of boundary conditions. These are far-

field and solid wall boundary conditions. The first boundary condition is necessary 

for a cell whose neighbor is the far-field. In this case, ghost cell whose size is the 

same as the size of the cell is used and flow variables for this ghost cell are equated 

to the far-field conditions. Flow variables of the ghost cell and the cell, which 

neighbors the far-field, are assigned to the right and left states, respectively, for the 

flux calculations.  

 

The second boundary condition is necessary for cut or split cells. The flux through 

the interface between a cut cell and the given geometry is also calculated by means 

of a ghost cell whose size, density, pressure and specific total enthalpy are the same 
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as this cut cell. The velocity components of the ghost cell in normal and tangential 

directions are the same as the magnitudes of the cell. The only difference is the 

direction of the normal component of the velocity vector. These properties are 

depicted for two-dimensions in Figure 4.1.  

 
Figure 4.1 Example of a ghost cell in 2D  

 

4.4 Multigrid Method 
 

Fedorenko [19] and [20] developed the first multigrid scheme to solve Poisson 

equations. This scheme was then modified in order to use it for elliptic boundary 

value problems by mathematicians. But the effective multigrid method was 

developed by Brandt [21]. In addition, multigrid method for nonlinear problems was 

developed by Brandt and this method is called Full Approximation Storage (FAS) 

scheme. Another achievement regarding multigrid method is Full Multigrid (FMG) 

scheme. This scheme is based on the nested iteration and multigrid method [22]. The 

last improved multigrid method is Algebraic Multigrid (AMG) method. Multigrid 

method is mostly applied to linear and nonlinear boundary value problems. Other 

applications are hyperbolic, elliptic and Eigen value problems.  
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The purpose of the multigrid method is to accelerate the convergence rate of a 

problem. Multigrid method is based on two principles. The first one is error 

smoothing. High frequency errors are tried to be eliminated effectively in this 

principle by starting with an initial guess and using some iterative methods such as 

Jacobi or Gauss Seidel. Although high frequency errors are smoothed after some 

iterations in this step, low frequency errors improved slightly. The other principle is 

coarse grid principle and this principle tries to eliminate low frequency errors by 

using coarse level of grids. This is achieved by transforming the solutions from the 

present grid to the coarsened grids and performing iterations on these grids. 

Transforming the solutions from the present grid to the coarsened grids is called 

restriction. As a result, low frequency errors on the present grid act as high frequency 

errors on the coarsened grids. Hence, they can be eliminated iteratively on the 

coarsened grids. Finally, solutions which are obtained by using coarsened grids are 

interpolated to the fine grid and this process is called prolongation. In other words, 

low and high frequency errors are tried to be eliminated by using different levels of 

grids [23].   

 
4.4.1 Multigrid Method for Linear Problems 
 

The matrix notation in the following equation denotes the system of linear equations 

[24]. 

  (4.41) bx =A

 

where x is the exact solution of this system and y is the approximation to the exact 

solution. Bold symbols are used to indicate the vectors. xh  and yh  notations are used 

to indicate that vectors are belong to the Ωh level of mesh. Error vector is found by 

using 

  (4.42) eyx =−

 

Residual vector is calculated easily for linear problems as follows 
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  (4.43) ybr A−=

 

where r denotes the residual vector. Residual vector becomes zero if and only if the 

error vector becomes zero since the system is linear.  Therefore  

 

  (4.44) re =A

 

Finally, the improved approximate solutions are obtained by using error vector. 

 

  (4.45) eyy +=new

 

Multigrid method is generally composed of four steps: (i) fine grid iterations, (ii) 

restriction, (iii) prolongation and (iv) correction and final iterations [25].  

 

(i) Fine Grid Iterations: Initially, some iteration is performed on the finest mesh 

with mesh spacing h in order to reduce high frequency errors. After these iterations, 

approximate solutions, which are denoted yh, are obtained. After the implementation 

of these solutions into Equation (4.43), residual vector rh on this mesh level is found 

as 

  (4.46) hhhh A ybr −=

 

(ii) Restriction: In this step, mesh spacing is increased from h to ch. This new mesh 

is coarser than the finest mesh. Iterations are performed on this new mesh in order to 

eliminate low frequency errors. Generally, c index is chosen as 2. This facilitates the 

coarsening algorithm in Cartesian grids since transforming the mesh spacing from h 

to 2h is to delete children of a parent and to set this parent as a computational cell.  

 

In order to perform iterations on this coarse mesh, residual vector, r2h and coefficient 

matrix, A2h on the coarse level mesh are required. Transfer of residual vector on the 
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fine grid with mesh spacing h to mesh spacing 2h is called restriction process and the 

operator used for this transfer is called restriction operator and denoted by . h
hI 2

 

  (4.47) hhh
hI 22 rr =

 

This transfer is achieved by averaging the residual vectors of children in Cartesian 

grids. Figure 4.2 depicts the transfer of residual vectors of children to their parent for 

two dimensional heat problems. 

 
Figure 4.2 Restriction of residual vector in 2D  
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After the transfer of residual vector, it is time to find coefficient matrix on the grid 

whose mesh spacing is 2h. The error vector on 2h level mesh is set as zero and then 

iterations are performed to find the improved solution for error vector. Gauss Seidel 

method is chosen for the iterations in the developed code. This process is given in the 

following equation  
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  (4.49) hhhA 222 re =

 

The improved error vector, which is found by using Equation 4.49, can be thought to 

be the low frequency errors. Improved approximate solution yh(new), whose low and 

high frequency errors are decreased effectively and rapidly, are obtained by 

interpolating and adding these errors to the approximate solution yh. 

 

(iii) Prolongation: Error vectors which are found on the mesh with mesh spacing 2h 

are interpolated to the mesh whose spacing is h. In a coarse grid, there are fewer 

points than the fine grid. Namely, interpolated information number on the coarse grid 

is lower. Therefore, interpolation operator is used. As a result, prolonged error 

vectors are obtained and these are denoted by e’h. In the code, which is developed for 

solution of two dimensional heat transfer problem, linear interpolation operator, , 

is used. For this code, linear interpolation process is given in the following equation 

for the third child of the parent whose error vector is denoted by . 

h
hI 2

h2
1e
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Figure 4.3 Prolongation of error vector in 2D  

 

(iv) Correction and Final Iterations: After the calculation of error vectors for the 

fine grid in the third step, approximate solutions, which are calculated in the first 

step, are corrected by these error vectors and as a result, improved approximate 

solutions are obtained. 

 

  (4.52) hhnewh ')( eyy +=

 

Both low frequency errors and the difference between the approximate solution and 

the exact solution are decreased by this correction. Finally, since the approximations 

are used during the restriction and prolongation processes, a few iterations are 

required in order to decrease the effect of these approximations on the solution.  

 

Initially, multigrid method was tested for two dimensional heat transfer problems 

since it is a linear problem. Afterwards, multigrid application is implemented to 

Euler solver. Examples of multigrid cycles are given in Figure 4.4 and an example of 

mesh levels which was used for heat transfer problem is given in Figure 4.5.  
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(a) W-cycle 

 
(b) V-cycle 

Figure 4.4 Multigrid cycles  

 

 
 

Figure 4.5 Different levels of meshes used in multigrid method 
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4.4.2 Multigrid Method for Nonlinear Problems 
 

Studies of Jameson [26] and De Zeeuw [4] are very helpful for the implementation of 

multigrid method to Euler solvers. There are two possible methods for solving 

nonlinear problems with using multigrid method. These are Newton method and Full 

Approximation Storage (FAS) scheme. FAS method, which is developed for solving 

Euler Equations, is used in the code since the governing equations are nonlinear. 

Nonlinear systems of equations can be given as follows in matrix notation. 

 

  (4.53) ( ) bx =A

 

where x and y are the exact and approximate solutions, respectively. The notation 

A(.), rather than A, indicates the nonlinear coefficient matrix. Error and residual 

vector are given by in Equations 4.54 and 4.55, respectively. 

 

  (4.54) yxe −=

and 

  (4.55)  ( )ybr A−=

 

respectively. The following equation is obtained by subtracting Equation (4.55) from 

Equation (4.53).  

 

 ( ) ( ) ryx =− AA  (4.56)  

 

Although, error vector is the difference between the exact and approximate solution 

(Equation 4.54), it is not concluded that ( ) ( )yxe AA −= . The reason of this 

condition is that matrix coefficient is nonlinear. The term (y + e) can be written in 

Equation (4.56) instead of using the exact solution x. As a result, the following 

equation is obtained. 
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 ( ) ( ) ryey =−+ AA  (4.57) 

 

After some iteration is performed on the finest grid, approximate solution yh on the 

mesh with mesh spacing h is obtained and this solution is improved by using error 

vector on this level of mesh. This process is summarized below: 

• Error vector on the grid with mesh spacing 2h is found by using the following 

equation. 

 

 ( ) ( ) hhhhhh AA 222222 ryey =−+  (4.58) 

 

• The unknowns in Equation 4.58 are the approximate solution and residual 

vector. These are found by using  

 

  (4.59) hh
h

h I yy 22 =

and 

 ( )[ ]hhhh
h

hh
h

h AII ybrr −== 222  (4.60) 

 

respectively. 

• As a result, improved approximate solution is obtained as 

 

  (4.61) hh
h

hnewh I 2
2

)( eyy +=

 

The effects of the multigrid method to the residuals and the convergence rate for the 

two and three dimensional Euler problems will be examined in Chapter 5 on 

discussion of results. Now, the implementation of multigrid method to the developed 

code is summarized. Like linear problems, implementation of multigrid method to 

nonlinear problems is achieved in four steps. These steps are (i) fine grid iterations, 

(ii) restriction, (iii) prolongation, and (iv) correction and final iterations. 
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(i) Fine grid iterations: Initially, some iterations are performed on the finest mesh 

with mesh spacing h by using explicit multistage time stepping scheme  in order to 

solve discretized Euler equations as follows: 

 

  guessinitialh _0 =q

 [ ]hhhh Rest FFqqq +
Ω
Δ

−= )( 0
1

01
αυ   

 ……………         (4.62) 

 [ ]hh
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mhh
m Res

t FFqqq +
Ω
Δ

−= − )( 10
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where FFh term is the forcing function and this term is initially set as zero for the 

computational cells which form the finest grid. After the iterations on the finest 

mesh, high frequency errors are effectively reduced but low frequency errors are 

slightly reduced. Therefore, residual vectors on coarser grids are utilized to decrease 

these errors on the finest mesh. The last process in this step is the calculation of the 

residual vector on the finest mesh, which is denoted by , at the end of the 

iterations.  

)( h
mRes q

 

(ii) Restriction: In this step, the finest mesh with mesh spacing h is coarsened to 2h, 

4h and 8h levels of meshes. The levels of meshes are depicted in Figure 4.6. 
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Figure 4.6 Multigrid level settings 

 

Transfer of the grid from h level to 2h level is summarized in order to explain 

coarsening process. First of all, parents, whose children are all computational cells, 

are flagged [27]. For example, blue cell in the two-dimensional grid of Figure 4.7a, is 

a parent cell. All of its four children are computational cells. Namely, any one of its 

children has children. On the other hand, green cell in Figure 4.7b is also a parent 

cell but its first child is not a computational cell. Hence, the green cell is not flagged. 

Parents are flagged by using a pointer which is called perform.  

 

 

(a) h and 2h levels of multigrids 
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(b) h and 2h levels of multigrids 

Figure 4.7 Examples of coarsening process 

 

When the flagging process is completed, testing of one level rule is applied to the 

flagged parent. In other words, if the flagged parent cells do not violate the one level 

rule when they are coarsened, they are set as computational cells. This setting is 

performed by using another pointer which is called compcell. Instead of deleting 

children of a parent, which will be coarsened and set as a computational cell, it is 

assumed that it has no children by using this pointer.   

 

There are two flagged parents in Figure 4.8a. These are pink and green cells. These 

cells are flagged since all of their children are computational cells. After the testing 

of one level rule, green cell is coarsened and it becomes a computational cell in the 

grid with mesh spacing 2h since it does not violate the one level rule when it is 

coarsened. This is seen from Figure 4.8b. On the other hand, if the pink cell was 

coarsened, it would violate the one level rule as seen from Figure 4.8c. Therefore, 

although it was flagged in the flagging process, it is not coarsened in the grid with 2h 

spacing not to violate one level rule as seen from Figure 4.8b. 
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(a) h level of multigrid 

 
(b) 2h level of multigrid which is formed with testing one level rule 
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(c) 2h level of multigrid which is formed without testing one level rule 

Figure 4.8 Examples of one level rule testing process 

 

When a coarsened grid is obtained, restriction of approximate solutions and forcing 

functions of the computational cells, which form the grid with 2h mesh spacing, are 

required. These are calculated by using  
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and 
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respectively, where 
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h
hI 2  and  are volume weighted collection and residual collection operators, 

respectively.  

h

hI
2∧

 

After the determination of approximate solutions and forcing function for 

computational cells for the 2h level of multigrid, new approximate solutions are 

found as  
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Finally, new residual vectors, , are calculated by using the solutions of 

Equation (4.66) if higher levels of multigrid are used in the multigrid method such as 

4h and 8h. 

)(Re 2h
ms q

 

(iii) Prolongation: The purpose of this step is to interpolate the approximate 

solutions, which are calculated in the restriction process. The following equation 

exemplifies this process with the interpolation of approximate solutions which are 

calculated for 4h level of multigrid to the finer multigrid with mesh spacing 2h. 
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)(42
4

2)(2 qqqq −+=          (4.67) 

 

 82



where  is the prolongation operator and there are two different prolongation 

operators. These are gradient and injection operators which are given as 

h
hI 2

4

 

 ( ) ( ) rqq d442
4 •∇= hhh

hI          (4.68) 

and 

 ( ) hhh
hI 442

4 qq =          (4.69) 

 

, respectively. Injection operator is used in this work due to its simplicity. V-cycle 

and saw-tooth cycle are tested for the solution of Euler Equations in Chapter 5 during 

the discussion of results. The only difference between these cycles is that multistage 

time stepping scheme is also applied to the prolongation step in V-cycle. For this 

time stepping scheme, initial guess is taken as the improved approximate solutions, 

, and forcing functions are taken as the same values in the restriction step. In 

order to use the same forcing function values in restriction and prolongation steps, 

forcing function, which is calculated in the restriction step, must be stored. This 

causes storage of excessive number of variables. When the convergence rates of V-

cycle and saw-tooth cycle are compared, a slight difference is observed. This will be 

verified in Chapter 5 during the discussion of results. Therefore, saw-tooth cycle is 

mostly used in this work due to its less memory requirement. 

)(2
0

newhq

(iv) Correction and final iterations: In the prolongation step, improved 

approximation solutions of the finest mesh, qh(new) are calculated. Then, these values 

are substituted into the following equations and some iteration is performed.  
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As a result, approximate solutions, whose low and high frequency errors are reduced, 

are obtained.  

 

4.4.3 Importance of Split Cells in Multigrid Application 
 

In literature, previous suggestions for eliminating irregular cells in the mesh 

generation are the recursive refinement until these cells vanish with refinement 

application. However, the fundamental principle of multigrid method is to eliminate 

the low frequency errors by using coarser meshes. Therefore, split cells are mostly 

required for multigrid applications as mentioned before since irregular cells form at 

the coarser multigrid levels. In other words, recursive refinement is not a solution for 

irregular cell in multigrid application.  

 

Especially, grids around multi-element airfoils require recursive refinements in order 

to eliminate irregular cells. For example, the grid in Figure 4.9 is generated around 

NLR7301 airfoil and a flap. Only five split cells remain in the grid after recursive 

refinements and they are located at the trailing edges of the main airfoil and the flap. 

Split cells are colored red in Figures 4.9 to 4.14. But they cannot be seen in Figure 

4.9 since they are very small cells. Therefore, their types can be transferred from split 

to outside cells by modifying the geometry. Irregular cells are vanished by erasing 

the sharp trailing edges slightly where split cells are found. As a result of this erasing 

process, split cells become outside cells. Moreover, this modification affects the 

solution very slightly. By this method, complexities due to split cells are removed. 

However, if the grid in Figure 4.9 is taken as the first level of multigrid, h level, one 

coarser level becomes Figure 4.10. As it is seen in Figure 4.10, numbers of split cells 

increase and this time, the elimination of these split cells by modifying the geometry 

causes a little more solution errors. This can be also negligible. But as it is seen from 

Figures 4.11 to 4.14, numbers of split cells are continuously increasing at each 

coarser level. Finally, all the cells around the flap become split cells at the coarsest 

level, 32h level and modifying the geometry means erasing the flap part wholly. But 

this has a great effect on the solution and it can be said that the contributions of 
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multigrid method in convergence rate go away. Six multigrid levels are used for the 

tests in Section 5.1.4 and the coarsest grid which has 32h mesh spacing is depicted in 

Figure 4.15. The grids in Figures 4.14 and 4.15 are the same. Generated grid around 

the geometry in Figure 4.15 is colored green and it is clearly seen that the leading 

edge part of the flap is only eliminated by using split cells instead of eliminating the 

whole flap. 

 

 
Figure 4.9 h multigrid level around NLR 7301 airfoil and flap 
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Figure 4.10 2h multigrid level around NLR 7301 airfoil and flap 

 
Figure 4.11 4h multigrid level around NLR 7301 airfoil and flap 
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Figure 4.12 8h multigrid level around NLR 7301 airfoil and flap 

 
Figure 4.13 16h multigrid level around NLR 7301 airfoil and flap 
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Figure 4.14 32h multigrid level around NLR 7301 airfoil and flap 

 
Figure 4.15 The coarsest mesh for six level multigrids in Section 5.1.4 
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4.5 Reconstruction 
 

As it is mentioned before, flow variables are stored at the centroids of the cells and 

first order schemes are used to calculate flux calculations through the faces. 

Reconstruction is required for second order schemes and the determination of cells to 

be refined and coarsened. Therefore, least squares reconstruction method is used in 

the developed code to calculate gradients of flow variables in a cell and estimate the 

value of these variables at a certain point inside the cell.    

 

4.5.1 Least Squares (Minimum Energy) Reconstruction 
 

The following equation is presented the linear reconstruction. 

 

 ( ) ( ) ( )cccc zz
dz
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−+−+−+=
wwwww  (4.70) 

 

where  is the vector of primitive variables at a certain point in a cell and  is the 

vector of primitive variables at the centroid of this cell. xc, yc and zc are the 

coordinates of the centroid.  

w cw

  (4.71) 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

p
w
v
u
ρ

w

 

In Equation (4.70), the only unknown is the gradient of primitive flow variables. In 

order to find the unknown variables, the following equation is used. The derivation 

and detailed information regarding this equation can be found in references [28], 

[29], [11] and [8].  

 

 ( ) ijij BwL =∇  (4.72) 
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where ,  L  and are given below, respectively and this equation can be solved 

by using Cramer’s rule. The subscript, n,c, together in the following equations 

denotes the variables of the neighboring cells. 
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4.5.2 Gradient Limiting  
 

The purpose of limiting procedure is to prevent obtaining variables at a certain point 

in a cell, which exceeds the flow variables of this cell and its neighbors. When a 

limiter is applied to Equation (4.70),  it takes the following form 
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Limiter value, ϕ , must be between 0 and 1. The limiter value presented here is taken 

from the paper written by Barth and Jespersen [29].  
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and 

                 (4.79) ( icc www ,maxmax = )

)
  

                 i=1,…,nNeighbors  (4.80) ( icc www ,minmin =

 

 The values in Equation (4.78),  and ,  are the maximum and 

minimum values calculated in a cell by using Equation (4.70), respectively. 

Generally, maximum and minimum primitive variables are obtained at the vertices of 

the cell. 
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j
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j
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4.5.3 Solution Refinement and Coarsening 
 

As it is mentioned before, one of the most valuable properties of Cartesian grids is 

that it enables solution refinement and coarsening. Hence, satisfactory resolution is 

provided to critical regions such as shock locations and stagnation points by solution 

refinement. Large gradients at these locations minimizes by refining cells. Moreover, 

some regions where unnecessary high resolution exists are coarsened.  

 

The criteria used in the developed code are the divergence and curl of the velocity 

vectors and the strength of the entropy wave [10]. These criteria for each cell are 

calculated by 

 

 5.0Ω•∇= vDτ  (4.81) 

 5.0Ω×∇= vCτ  (4.82) 

 5.02 Ω∇−∇= ρτ cpEW  (4.83) 

 

Then, the standard deviations of these three criteria are calculated for the whole mesh 

by the following equation 
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After the calculations of standard deviations of three criteria, it is time to determine 

cells to be refined and coarsened. A cell is selected for refinement if ( ) αα στ >i  for 

any α and selected for coarsening if ( ) αα στ 1.0<i  for all α. 
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CHAPTER 5 
 
 
 

RESULTS AND DISCUSSIONS 

 
 
 
 
Inviscid Euler flow around single & multi-element airfoils, wing and projectile will 

be analyzed in this chapter by using the codes which are developed for two and three 

dimensional problems. Test cases are divided into three groups. The first group is 

two-dimensional test cases, the second group is for the convergence history 

investigations with multigrid application and the final group is three-dimensional test 

cases. The results of these cases are compared with experimental and other numerical 

results, depending upon availability.   

 

5.1 Two Dimensional Test Problems  
 

In this section, both single and multi-element airfoils are examined. Test problems 

are tabulated below. 

Table 5.2 Two dimensional test problems 

Test Problem Airfoil Profile M∞ α Reference 

5.1.1 NACA0012 0.85 1° [13] 

5.1.2 NACA0012 1.2 7° [13] 

5.1.3 RAE2822 0.75 3° [13] 

5.1.4 NLR7301+flap 0.185 6° [30] 

5.1.5 30p30n 0.2 8° [31] 
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5.1.1 Problem 1: Transonic Flow about NACA0012 Airfoil  
 

The first problem is the inviscid flow around a NACA0012 airfoil at a Mach number 

of 0.85 and an angle of attack of 1°. NACA0012 profile is widely used in order to 

validate developed solvers since the experimental data for many Mach numbers and 

angle of attacks are found easily in literature. Transonic flow is selected in order to 

demonstrate that shock locations and surface pressure coefficients can be obtained 

accurately and effectively by using Cartesian mesh. Importance of solution 

adaptation is depicted by comparing solutions with and without solution adaptation. 

As it is mentioned, solution adaptation enables to resolve high gradient regions by 

automatic meshing without increasing total number of cells extremely. The far-field 

boundary is approximately located 25 chords ahead of the airfoil similar to the 

reference case. The developed flow solver is iterated until the average density 

residual reaches 10-12. For the computed solutions, six levels of meshes are used in 

the multigrid method. Table 5.2 gives the lift, drag coefficients, total number of cells 

and convergence histories for the results which are computed by the developed 

solver and extracted from reference [13]. The numerical solutions which are 

extracted from reference [13] are obtained by using Euler equations. 

 

Table 5.2 Comparison of results for transonic flow around NACA0012 airfoil at M∞ 

= 0.85 and α = 1 

 CL CD # of cells Time (s) 

Results from reference [13] 0.3584 0.058 20480 - 

Results with solution 

adaptation 

0.3219 0.0611 18641 1012 

Results without solution 

adaptation 

0.2361 0.0763 3538 68 

 

As seen from the table 5.2, computed lift and drag coefficients of the solution-

adapted case are in agreement with the results in reference [13]. Solution-adapted 

case underestimates the lift coefficient by 10 % and overestimates the drag 
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coefficient by 5 %.  In order to visualize the benefit of automatic solution adaptation 

in Cartesian grid, geometric adapted-grid and both geometric and solution-adapted 

grid are shown in Figures 5.1 and 5.2, respectively. Three refinement cycles are 

applied to the grid in Figure 5.1 to obtain the grid in Figure 5.2. 

 

 
Figure 5.1 Geometric-adapted grids around NACA 0012 
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Figure 5.2 Both geometric and solution-adapted grids around NACA 0012 

 

Pressure coefficient distribution is shown in Figure 5.3. Pressure contours of 

solutions with and without solution adaptation are depicted in Figures 5.4 and 5.5, 

respectively. Mach contours of solution-adapted case and extracted case from 

reference [13] are shown in Figures 5.6 and 5.7, respectively. It is clearly seen in 

Figure 5.3 that both upper and lower shock locations are captured well for the 

solution-refined case. Approximately 1 % chord length error is seen for both upper 

and lower shocks according to the reference solution. As seen in Figures 5.3 and 5.5, 

lower shock cannot be captured for the geometric-adapted grid. Maximum pressure 

loss occurs at the downstream of the shocks. As seen in Figures 5.6 and 5.7, Mach 

contours are alike. Besides, Mach number reaches to 1.35 just before the upper shock 

wave.  
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Figure 5.3 Pressure coefficient distribution on NACA0012 airfoil at M∞ = 0.85 and α 

= 1 
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Figure 5.4 Pressure contours of the solution-adapted grid on NACA0012 airfoil at 

M∞ = 0.85 and α = 1 

 
Figure 5.5 Pressure contours of the grid without solution adaptation on NACA0012 

airfoil at M∞ = 0.85 and α = 1 
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Figure 5.6 Mach contours of the solution-adapted grid on NACA0012 airfoil at M∞ = 

0.85 and α = 1 
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Figure 5.7 Mach contours in reference [13] on NACA0012 airfoil at M∞ = 0.85 and α 

= 1 

 

5.1.2 Problem 2: Supersonic Flow about NACA0012 Airfoil  
 

The second problem is the flow around NACA0012 airfoil at a Mach number of 1.2 

and angle of attack of 7°. The purpose of this test case is to analyze whether the 

developed solver captures bow and oblique shocks accurately. First and second order 

schemes are used to calculate fluxes.  

 

For all test cases in this section, the far-field boundary is approximately located 15 

chords ahead of the airfoil. The developed flow solver is iterated until the average 

density residual reaches 10-12. Multigrid method is not used due to some problems 
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regarding second order scheme in the developed solver. Two refinement cycles are 

applied to the grids. Table 5.3 gives the lift, drag coefficients, total number of cells 

and convergence history for results which are computed by the developed solver and 

extracted from reference [13]. 

 

Table 5.3 Comparison of results for supersonic flow around NACA0012 M∞ = 1.2 

and α = 7° 

Case # Descriptions of Test Cases CL CD # of 

cells 

Time 

(s) 

Case-1 First Order Scheme with 

AUSM  

0.5236 0.162 11761 887  

Case-2 Second Order Scheme with 

AUSM without limiter 

0.5216 0.156 13784 23241 

Case-3 Second Order Scheme with 

AUSM with limiter 

0.5217 0.1556 14081 16515  

Case-4 First Order Scheme with 

Roe’s flux differencing 

method 

0.5201 0.1614 11717 1335 

Case-5 Second Order Scheme with 

Roe’s flux differencing 

method without limiter 

0.5219 0.156 13561 32211  

Case-6 Second Order Scheme with 

Roe’s flux differencing 

method with limiter 

0.5227 0.1555 13796 18733  

Case-7  Results from reference [13] 0.5196 0.1543 10209 - 

 

As seen from Table 5.3, computed lift and drag coefficients of the test cases are in 

agreement with the results in reference [13]. For example, the third case 

overestimates the lift coefficient by 0.4 % and overestimates the drag coefficient by 

0.8 %.  Pressure coefficient distributions of these cases are shown in Figures 5.8 and 

5.9. Although pressure coefficient distributions are slightly different from each other, 
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there are visible differences in pressure contours of the computed solutions, as seen 

in Figure 5.10. 

 

 
Figure 5.8 Pressure coefficient distributions for 1st, 2nd and 3rd test cases on 

NACA0012 airfoil at M∞ = 1.2 and α = 7° 
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Figure 5.9 Pressure coefficient distributions for 4th, 5th and 6th test cases on 

NACA0012 airfoil at M∞ = 1.2 and α = 7° 
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Figure 5.10 Pressure contours around NACA0012 at M∞ = 1.2 and α = 7° 
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Figure 5.11 Mach contours of test case-1 around NACA0012 at M∞ = 1.2 and α = 7° 

 

 

The reason of the differences in pressure contours is that there is pollution in second 

order schemes, especially ones without limiter. As seen in Figures 5.10 and 5.11, a 

strong bow shock exists before the leading edge of the airfoil and strength of this 

shock becomes weaker near the far-field region of the domain. Although bow shock 

is captured in second order schemes, pollution which is called carbuncle instability 

exists in the computed solutions [32]. This instability affects the region in front of the 

bow shock and the most visible pollution exists in the second order schemes without 

limiters (case-2 and case-5). Since the limiters damp the oscillations in the solution, 

absence of limiter causes more pollution. The bow shock is approximately located at 

a 55 % chord length distance away from the leading edge. 

 

5.1.3 Problem 3: Transonic Flow about RAE2822 Airfoil  
 

The third problem is the flow around RAE2822 airfoil at a Mach number of 0.75 and 

angle of attack of 3°. The purpose of this test case is to analyze flow around a non-

symmetric airfoil and to stress the importance of number of refinement cycles.  For 
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all test cases in this section, the far-field boundary is approximately located 10 

chords ahead of the airfoil. The developed flow solver is iterated until the average 

density residual reaches 10-12. For the computed solutions, six levels of meshes are 

used in the multigrid method. Table 5.4 gives the lift, drag coefficients, total number 

of cells and convergence history for results which are computed by the developed 

solver and extracted from reference [13]. 

 

Table 5.4 Comparison of results for transonic flow around RAE 2822 airfoil at M∞ = 

0.75 and α = 3° 

Case #  Descriptions of Test Cases CL CD # of 

cells 

Time 

(s)  

Case-1 No Solution Refinement  0.7446 0.0705 2308 36  

Case-2 One Refinement Cycle 0.8573 0.0546 4848 52  

Case-3 Two Refinement Cycles 0.9214 0.0476 10029 163  

Case-4 Three Refinement Cycles 0.9538 0.046 18492 428  

Case-5 Four Refinement Cycles 0.9731 0.0446 32268 1477  

Case-6 Five Refinement Cycles 0.9881 0.0444 54254 3478  

Case-7  Results from reference [13] 1.1044 0.0448 20480 - 

 

 

As seen from Table 5.4, computed lift and drag coefficients of the test cases are 

directly proportional to the number of refinement cycles. For example, the sixth case 

underestimates the lift coefficient by 10.5 % and underestimates the drag coefficient 

by 0.9 %.As the number of refinement cycle increases, the differences between the 

computed and reference coefficients decreases. Pressure coefficient distributions of 

these cases are shown in Figure 5.12. 
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Figure 5.12 Pressure coefficient distributions on RAE 2822 airfoil at M∞ = 0.75 and 

α = 3° 

 

As seen in Table 5.4 and Figure 5.12, the best results are the 5th and 6th cases where 

numbers of refinement cycles are four and five, respectively. It is important to note 

that when the number of refinement cycle exceeds five, very slight difference is 

observed for the drag and lift coefficients although the convergence time increases 

extremely. In other words, finer grids do not improve the solution accuracy but they 

result in longer computations. Therefore, the optimum refinement cycle number for 

this flow is five. Pressure and Mach contours of the 6th case are given in Figures 5.13 

and 5.14, respectively.  
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Figure 5.13 Pressure contours of case-6 on RAE 2822 airfoil at M∞ = 0.75 and α = 3°  

 
Figure 5.14 Mach contours of case-6 on RAE 2822 airfoil at M∞ = 0.75 and α = 3°  
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As seen in Figure 5.14, Mach number just before the upper shock reaches to 1.4. In 

addition, shock wave on the upper surface of the airfoil is accurately captured for the 

6th case since capturing the shock accurately depends on using finer mesh around the 

shock. The grid, which is used for 6th case, is shown in Figure 5.15. Finer meshes 

around the shock are easily seen in this figure. As it is seen in Figure 5.12, results for 

the lower surface pressure coefficient distributions are quite successful. However, the 

upper surface pressure coefficient distributions around the leading edge region for 

the 6th case are slightly underestimated.  

 
Figure 5.15 Grid used in the 6th case around RAE 2822 airfoil 

 

5.1.4 Problem 4: Subsonic Flow about a Two-element Airfoil  
 

The fourth problem is the flow around NLR7301 airfoil and flap at a Mach number 

of 0.185 and angle of attack of 6°. The purpose of this test case is to analyze flow 

around a multi-element airfoil. The far-field boundary is approximately located 15 

chords ahead of the airfoil. The developed flow solver is iterated until the average 

density residual reaches 10-12. For the computed solution, six levels of meshes are 
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used in the multigrid method. The computed lift and drag coefficients are 1.49 and 

0.1481, respectively. The comparison between the calculated and experimental [30] 

pressure coefficient distributions are given in Figure 5.16. 

 

 
Figure 5.16 Pressure coefficient distribution on two-element airfoil at M∞ = 0.185 

and α = 6° 
 

It is clearly seen in Figure 5.16 that the peak on the upper surface is not captured in 

this case. Hence, the underestimation of pressure coefficient results in lower lift 

coefficient. One of the reason is the flow regime is not suitable for the code since this 

flow is not compressible, it is an incompressible flow. Both the computed solution 

and other numerical solution [33] cannot capture the peak although the other 
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numerical results are obtained from the laminar flow solver. Finally, Mach contours 

are depicted in Figure 5.17.  

 

 
Figure 5.17 Mach contours of two-element airfoil at M∞ = 0.185 and α = 6° 

 

5.1.5 Problem 5: Subsonic Flow about a Three-element Airfoil  
 

The fifth problem is the flow around three-element airfoil at a Mach number of 0.2 

and angle of attack of 8°. The far-field boundary is approximately located 15 chords 

ahead of the airfoil. The developed flow solver is iterated until the average density 

residual reaches 10-12. For the computed solution, four levels of meshes are used in 

the multigrid method. The computed lift and drag coefficients are 1.28 and 0.1954, 

respectively. The comparison between the calculated and experimental pressure 

coefficient distributions are given in Figure 5.18. The Reynolds number for the 

experimental case is 9x10-6. As it is seen in this figure, pressure coefficient 

distribution of the first element of the geometry cannot be captured due to the very 

low far-field Mach number. In addition, upper surface pressures are underestimated. 
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Solution-adapted meshes around the geometry and the computed Mach contours are 

depicted in Figures 5.19 and 5.20, respectively. 

 

 
Figure 5.18 Pressure coefficient distributions on three-element airfoil at M∞ = 0.2 

and α = 8°  
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Figure 5.19 Mach contours of three-element airfoil at M∞ = 0.2 and α = 8°  

 

 

  
(a) Meshes around the slat     (b) Meshes around the flap 

 

Figure 5.20 Solution-adapted meshes around the three-element airfoil 
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5.2 Convergence History with Multigrid Applications  

 

All test cases in this section are performed for a flow around NACA0012 airfoil at a 

Mach number of 0.85 and angle of attack of 1° which is examined in the previous 

section. Since the developed solver for this flow condition is already validated, it is 

time to examine convergence histories for different aspects of multigrid application 

such as using different multigrid cycles, levels of meshes or different prolongation 

operators. First of all, performance of saw-tooth and V-cycles are examined. Then, 

the performances of the injection and gradient prolongation operators are discussed. 

Afterwards, the optimum number of steps, i.e. total number of mesh levels, is 

determined. Finally, optimum iteration numbers on each step are found. Table 5.5 

summarizes all the test cases. 

 

Table 5.5 Test cases for multigrid application 

Case-1 Determination of multigrid cycle for no solution refinement 

Case-2 Determination of multigrid cycle for solution refinement 

Case-3 Determination of prolongation operator for solution refinement 

Case-4 Determination of the optimum number of multigrid levels  

Case-5 Determination of iteration numbers for each multigrid level 

 

Geometric-adapted and both geometric and solution-adapted grids, which are used in 

this section, are given in Figures 5.21 and 5.22, respectively. Effects of multigrid 

method on the 1st and 2nd test cases can be seen in Figures 5.23 and 5.24, respectively 

and also in Tables 5.6 and 5.7, respectively. It is clearly seen that multigrid method 

enables better convergence for the 1st test case, which is without solution refinement, 

than the 2nd test case. According to the values in Tables 5.6 and 5.7, the ratio 

between the convergence rates of the solutions with and without multigrid method is 

about 7 % for the 1st test case. On the other hand, the ratio between the convergence 

rates of the solutions with and without multigrid method is about 10 % for the 2nd test 

case. As a result of these ratios, the noticeable effect of multigrid method to the 

convergence acceleration is verified. In Figures 5.23 and 5.24, there is a slight 
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convergence rate difference between saw-tooth and V-cycles. But it is important to 

note that forcing functions have to be stored for V-cycles and this causes higher 

memory usage than the saw-tooth cycle. Since the convergence difference between 

these cycles is low and saw-tooth cycle uses the memory more effectively, most of 

the test cases in this study are performed by using saw-tooth cycle.   

   

 
Figure 5.21 Geometric-adapted grid 
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Figure 5.22 Geometric and solution-adapted grid 
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Figure 5.23 Convergence histories of the 1st test case 
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Figure 5.24 Convergence histories of the 2nd test case 
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Table 5.6 Convergence histories of the 1st test case 

 Cycle Iteration Number Time (s) 

No Multigrid 16405 16405 7907 

Saw-tooth Cycle 49 3430 579 

V-cycle 32 3840 535 

 

Table 5.7 Convergence histories of the 2nd test case 

 Cycle Iteration Number Time(s) 

No Multigrid 19660 19660 2894 

Saw-tooth Cycle 80 5600 253 

V-cycle 65 7800 284 

 

 

As it was mentioned in the previous chapter, there are two different prolongation 

operators, which are called injection and gradient operators. Results of  the 3rd test 

case, which can be seen in Figure 5.25 and Table 5.8 demonstrates that the 

convergence rates of the solutions with injection and gradient operator are nearly 

identical. Therefore, the simplest operator, which is injection, is used for most of the 

test cases in this study. 
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Figure 5.25 Convergence histories of the 3rd test case 
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Table 5.8 Convergence histories of the 3rd test case 

 Cycle Iteration # Time(s) 

Saw-tooth cycle with injection operator 80 5600 253 

Saw-tooth cycle with gradient operator 84 5880 257 

V-cycle with injection operator 65 7800 284 

V-cycle with gradient operator 63 7560 276 

 

 

One of the factors, which has an important effect on the convergence rate in 

multigrid method, is the number of multigrid levels. Since the performances of lower 

number of levels are very low, convergence accelerations of 4 and more multigrid 

levels are compared in the 4th test case. As seen in Figure 5.26 and Table 5.9, six and 

seven multigrid levels give the best results for denser meshes because denser meshes 

require more coarse levels to eliminate low frequency errors effectively. But it is 

important to note that six and seven multigrid levels may be too much for coarser 

meshes. Therefore, it can be suggested that six and seven multigrid levels are 

appropriate for denser meshes and three and four multigrid levels are suitable for 

coarser meshes. 

 

 

 

 

 

 

 

 

 121



 
Figure 5.26 Convergence histories of the 4th test case 
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Table 5.9 Convergence histories of the 4th test case 

 Cycle Iteration # Time(s) 

4 multigrid levels 187 9350 641 

5 multigrid levels 112 6720 350 

6 multigrid levels 80 5600 253 

7 multigrid levels 72 5760 230 

8 multigrid levels 74 6660 250 

 

Finally, numbers of iterations on each multigrid level have to be determined in order 

to get the maximum efficiency from the multigrid method. Convergence rate for 

different number of iterations using six multigrid levels are analyzed and the results 

of these tests are given in Figure 5.27 and Table 5.10. Iteration numbers between 10 

and 20 give the best results for this condition. Therefore, the number of iterations is 

chosen as 10 for the most test cases in this study. 
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Figure 5.27 Convergence histories of the 5th test case 
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Table 5.10 Convergence histories of the 5th test case 

 Cycle Iteration # Time(s) 

30 iterations on each multigrid level 31 6510 302 

25 iterations on each multigrid level 37 6475 296 

20 iterations on each multigrid level 45 6300 289 

15 iterations on each multigrid level 54 5670 272 

10 iterations on each multigrid level 80 5600 253 

5 iterations on each multigrid level 170 5950 297 

 

 

5.3 Three Dimensional Test Cases  
 

5.3.1 Transonic Flow about a Wing  
 

The inviscid flow around a constant cross-section wing whose profile is NACA0012 

airfoil is tested at a Mach number of 0.799 and an angle of attack of 2.26°. Aspect 

ratio of this wing is chosen as 20 in order to diminish vortex effects at the wing tips 

and obtain solutions as if the test is two dimensional. Hence, the solution can be 

compared with the results of two dimensional experiments in reference [34]. In 

addition, the computed results are compared with the inviscid results in reference 

[35].  

 

The far-field boundary is approximately located 5 times the maximum length of the 

wing ahead of the wing. In other words, the domain size of the generated grid is 100 

chords. For that reason, since the domain is too large when compared to the chord of 

the wing section, obtaining finer grid near the input geometry is really difficult. The 

developed flow solver is iterated until the average density residual reaches 10-7. For 
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the computed solutions, six levels of meshes used in the multigrid application. One 

refinement cycle is applied to the geometric-adapted grid and it is given in Figure 

5.28. Pressure coefficient distributions are shown in Figure 5.29 and Mach contours 

of this case is shown in Figure 5.30. It is clearly seen in Figure 5.29 that both the 

shock wave location and its peak point cannot be captured accurately due to coarse 

grid although solution refinement is applied. But the number of refinement cycle is 

not satisfactory. Moreover, the surface mesh of the wing exported from GAMBIT is 

not very good due to large aspect ratio.  

 

 

 
Figure 5.28 Slices of the solution-adapted grid 
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Figure 5.29 Pressure coefficient distributions around the wing at M∞ = 0.799 and α = 

2.26°  
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Figure 5.30 Mach contours in xz plane at y=0 at M∞ = 0.799 and α = 2.26°  

 

5.3.1 Transonic Flow about a Projectile 

 

The inviscid flow around a secant-ogive-cylinder-boat tail projectile (SOCBT) with a 

boat tail angle 7° is tested at a Mach number of 0.95 and an angle of attack of 0°. The 

pressure coefficient distributions are compared with the experimental results 

extracted from [36] and Mach contours are compared with the computed results in 

reference [36]. The configuration of SOCBT can be found in both [37] and [38]. The 

far-field boundary is located 10 times the maximum length of the projectile ahead of 

the tail. The developed flow solver is iterated until the average density residual 

reaches 10-7. One refinement cycle is applied to the geometric-adapted grid and a 

slice, which is taken in xz plane at y=0, and the created surface mesh around the 

projectile are given in Figures 5.31 and 5.32, respectively. 
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Figure 5.31 A slice of the mesh in xz plane at y=0  
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Figure 5.32 A created surface mesh around SOCBT 

 

Pressure coefficient distributions are shown in Figure 5.33 and Mach contours of this 

case and the reference are given in Figures 5.34 and 5.35, respectively. As it is seen 

in Figures 5.33 and 5.34, there are two shock waves, one is at the midpoint of the 

chord and the other is at the boat tail. The computed and experimental results are in 

agreement. Finally, in order to eliminate oscillations in the solution, more solution 

refinements are required.   
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Figure 5.33 Pressure coefficient distributions at M∞ = 0.95, α = 0° and β=7° 
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Figure 5.34 Mach contours in xz plane at y=0 at M∞ = 0.95, α = 0° and β=7° 
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Figure 5.35 Mach contours in reference [36] at M∞ = 0.95, α = 0° and β=7° 
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CHAPTER 6 
 
 
 

CONCLUSION 
 
 
 
 

Five different test cases have been analyzed in order to verify the two dimensional 

Euler solver. In the first case, the ability of capturing shock waves accurately is 

investigated for transonic flow over NACA0012 airfoil. The performance of the test 

case with solution refinement is really satisfactory. Both the locations of shocks and 

the peak point of pressure coefficients are captured very well. In other words, the 

importance of refinement to the solutions is proved by this test case. 

 

Moreover, first and second order flux calculation schemes are applied to the second 

test case which is the supersonic flow with an angle of attack of 7° over NACA0012 

airfoil. In second order schemes, instabilities have occurred just before the bow 

shock wave. Although limiters damp these instabilities by arranging gradients 

effectively, they are not eliminated completely. On the other hand, first order 

schemes are in agreement with the reference solution. In addition, there is a problem 

regarding second order schemes and multigrid methods. The code could not perform 

second order scheme and multigrid method together. One of them gives meaningful 

results apart from the other. The implementation of second order scheme and 

multigrid method to the developed solver together can be given as a future work. 

 

Another test case for RAE2822 airfoil is performed to find the optimum number of 

refinement cycles. Increasing refinement cycles extremely does not give superior 

results since this means to slow down the convergence rate. When the number of 

refinement cycle is five or six for this test case, the most accurate results and the 

satisfactory convergence rate are obtained.  
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In the fourth and fifth test cases, the capability of Cartesian grids, which is automatic 

mesh generation, is demonstrated. There are detectable differences between reference 

and computed solutions for these test cases. Moreover, solutions on the airfoil 

surface are not smooth. There are oscillations especially near the slat and the leading 

edge of three-element airfoil. They can be easily seen in the figures of pressure 

coefficient distributions. One of the reasons of these oscillations can be the large 

variations in the cell size on the body. For example, it is possible to find cut cells 

whose size is 10-4 smaller than its neighboring outside cell. There is no agreement 

between the reference and computed pressure coefficient distributions of the slat in 

Figure 5.18. One of the reason can be the flow regime. In fact, the flow is an 

incompressible flow but the solver tries to solve this problem by using Euler 

equations. 

 

Implementation of multigrid method has a valuable effect on the convergence rate. 

All test cases in Section 5.2 validate the increase of convergence rate. But solutions 

with second order schemes and multigrid application converge up to a value which is 

not enough then they oscillate around this value. Being frozen the limiter values after 

a certain point in the convergence is suggested in reference [9]. This method has 

been implemented the solver but this hasn’t solved the convergence problem.  
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APPENDIX A 

 
 

 
SPLIT CELLS 

 
 
 
 
There are six types of split cells. First of all, examples are given to demonstrate each 

of these split cells. Classification of these cells depends on the former type and 

number of cut points as it will be explained below.  

 

1- ) Square index of this type of split cell is assigned to -15 since its former type is 

outside cell according to the inside-outside testing and it has two cut points on the 

edges of a cell. 

 
2- ) Square index of this type of split cell is assigned to -20 since its former type is 

inside cell according to the inside-outside testing and it has two cut points on the 

edges of a cell. 

 
3- ) Square index of this type of split cell is assigned to -25 since its former type is 

outside cell according to the inside-outside testing and it has four cut points on the 

edges of a cell. 
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4- ) Square index of this type of split cell is assigned to -30 since its former type is 

inside cell according to the inside-outside testing and it has four cut points on the 

edges of a cell. 

 
5- ) This type of split cells are converted from cut cells. According to the inside-

outside testing, they are set as cut cells and their total square indexes are calculated. 

Regular cut cells must have only two cut points but these cells have more than two 

cut points. Therefore, these cells may be called as split-cut cells. Square indexes of 

these cells were calculated when they were cut cells. These cells are converted from 

cut cells to split cells. As a result, their types are changed but their square indexes 

remain the same.  

 
 
6- ) Split cell whose square index is assigned to -40 since these cells have more than 

four cut points.  
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1- ) Split cell whose square index is equal to -15 
There are four sub-cases. 
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2- ) Split cell whose square index is equal to -20 
There are four sub-cases. 

 

 
 

 
 

3- ) Split cell whose square index is equal to -25 
There are six sub-cases. 

 

1-)  Cut edges 3 & 2………………………..Split index=0 
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2- ) Cut edges 3 & 1………………………..Split index=1 

 

 
 

 

3- ) Cut edges 3 & 0………………………..Split index=2 
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4-)  Cut edges 2& 1………………………..Split index=3 

 

 
5-)  Cut edges 2& 0………………………..Split index=4 
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6-)  Cut edges 1& 0………………………..Split index=5 

 
 
4- ) Split cell whose square index is equal to -30 
There are six sub-cases. 

 

1-)  Cut edges 3 & 2………………………..Split index=0 
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2- ) Cut edges 3 & 1………………………..Split index=1 

 
 

3-)  Cut edges 3 & 0………………………..Split index=2 

 
4- ) Cut edges 2& 1………………………..Split index=3 
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5-)  Cut edges 2& 0………………………..Split index=4 

 
 

6-)  Cut edges 1& 0………………………..Split index=5 

 
 
 
5- ) Split cell which is converted from cut cell  
There are fourteen sub-cases. 
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1- ) Square index=1  

 
 

a) Split index=0      b) Split index=1 

 

 

 

2- ) Square index =2  

 
a) Split index=2            b) Split index=3 

 

3- ) Square index =4  
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a) Split index=4                   b) Split index=5 

 

4- ) Square index =8  

 

 
a) Split index=6    b) Split index=7 

 

5- ) Square index =7  
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a) Split index=1    b) Split index=0 

 

6- ) Square index =11 

 

 
    a) Split index=0    b) Split index=3 

 

7- ) Square index =13 
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a) Split index=2    b) Split index=3 

 

8- ) Square index =14 

    
    a) Split index=2     b) Split index=1 

 

9- ) Square index =3  
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a) Split index= -1     b) Split index=0 

 

10- ) Square index =6  

 

 
a) Split index= -1   b) Split index=1 

 

11- ) Square index =9 
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a) Split index= -1    b) Split index=2 

 

12- ) Square index =12 

 
a) Split index= -1    b) Split index=3 

 
13- ) Square index =5 

 

a)  Split index=1 
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OR 

 
OR 
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b)  Split index=2 
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14- ) Square index =10 

 

a)  Split index=1 

 
OR 

 
 

OR 
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b)  Split index=2 
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APPENDIX B 

 
 
 
EXAMPLE OUTPUT FILE OF SURFACE MESH GENERATED 

BY GAMBIT 
 
 
 
 

        CONTROL INFO 2.4.6 Total number of triangles formed surface mesh 
** GAMBIT NEUTRAL FILE 
sphere 
PROGRAM:                Gambit     VERSION:  2.4.6 
 Jun 2009      
                         NGRPS    NBSETS     NDFCD     NDFVL 
                             1         0         2         3 
 

NELEM NUMNP 
    25    46 

ENDOFSECTION 
   NODAL COORDINATES 2.4.6 
         1 -1.98288972275e+000  2.61052384440e-001  0.00000000000e+000 

Total node number around sphere 

         2 -1.45577697798e+000  1.26273488645e-001  1.36556522965e+000 
         3 -1.22755301316e+000  1.51559232680e+000  4.42824455988e-001 
         4  1.66467887690e+000 -7.90424948610e-001 -7.77221099450e-001 
         5 -1.51263359096e-001  1.22057996444e+000  1.57711887523e+000 
         6  8.33244842460e-002 -3.52562841708e-001  1.96691547174e+000 
         7 -8.31638007524e-001 -1.26804513721e+000  1.30400910826e+000 
         8 -1.63860008609e+000 -1.14545623316e+000  5.40349496504e-002 
         9 -1.39349606421e+000  1.12940622517e+000 -8.84652642326e-001 
        10 -1.45570883917e+000 -2.15792594965e-001 -1.35438005431e+000 
        11  1.39315797478e-001  1.96367326596e+000  3.52956673159e-001 
        12 -3.82949059967e-001  1.83415696214e+000 -6.99441388313e-001 
        13  1.19730956832e+000  4.97101249450e-001  1.52293799788e+000 
        14  1.17281148967e+000  1.45628681471e+000  7.09747788310e-001 
        15  4.09300059745e-001 -1.51163265674e+000  1.24396148340e+000 
        16  1.36943001094e+000 -6.86750019647e-001  1.28570442001e+000 
        17 -2.05031944964e-001 -1.98846808698e+000  6.29012609109e-002 
        18 -7.44205012438e-001 -1.46075315461e+000 -1.14558243735e+000 
        19  1.98870882714e+000  2.01972285618e-001  6.51490344266e-002 
        20  1.02712841749e+000  1.52787645233e+000 -7.81409470374e-001 
        21 -2.39687456491e-001  8.96476377967e-001 -1.77168846780e+000 
        22  1.33810796503e+000 -1.48025166283e+000  1.35359109823e-001 
        23  7.18107022266e-001 -1.44912995140e+000 -1.17658178148e+000 
        24 -7.38694124748e-002 -5.51126718628e-001 -1.92114618130e+000 
        25  1.23662915548e+000  6.40886642735e-002 -1.57055435275e+000 
ENDOFSECTION 
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      ELEMENTS/CELLS 2.4.6 
       1  3  3        1       2       3 
       2  3  3        3       2       5 
       3  3  3        5       2       6 
       4  3  3        6       2       7 
       5  3  3        7       2       8 
       6  3  3        8       2       1 
       7  3  3        1       3       9 
       8  3  3        1       9      10 
       9  3  3        1      10       8 
      10  3  3        3       5      11 
      11  3  3        3      11      12 
      12  3  3        3      12       9 
      13  3  3        5       6      13 
      14  3  3        5      13      14 
      15  3  3        5      14      11 
      16  3  3        6       7      15 
      17  3  3        6      15      16 
      18  3  3        6      16      13 
      19  3  3        7       8      17 
      20  3  3        7      17      15 
      21  3  3        8      10      18 
      22  3  3        8      18      17 
      23  3  3       13      16      19 
      24  3  3       13      19      14 
      25  3  3       12      11      20 
      26  3  3       20      11      14 
      27  3  3        9      12      21 
      28  3  3        9      21      10 
      29  3  3       16      15      22 
      30  3  3       22      15      17 
      31  3  3       14      19      20 
      32  3  3       16      22      19 
      33  3  3       21      12      20 
      34  3  3       22      17      23 
      35  3  3       23      17      18 
      36  3  3       18      10      24 
      37  3  3       24      10      21 
      38  3  3       23      18      24 
      39  3  3       24      21      25 
      40  3  3       25      21      20 
      41  3  3       20      19      25 
      42  3  3       19      22       4 
      43  3  3       19       4      25 
      44  3  3       22      23       4 
      45  3  3        4      23      25 
      46  3  3       23      24      25 

Node numbers 
constitute each of 
triangles 

ENDOFSECTION 
       ELEMENT GROUP 2.4.6 
GROUP:          1 ELEMENTS:         46 MATERIAL:          2 NFLAGS:          1 
                           fluid 
       0 
       1       2       3       4       5       6       7       8       9      10 
      11      12      13      14      15      16      17      18      19      20 
      21      22      23      24      25      26      27      28      29      30 
      31      32      33      34      35      36      37      38      39      40 
               41      42      43      44      45      46 
ENDOFSECTION 
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APPENDIX C 

 
 
 

TABLE FOR MARCHING CUBES ALGORITHM 
 
 
 
 

A table (triangle table) is used to look up triangular facets (cut surfaces). There are at 

most five triangular facets in this table [39]. The table given here is a modified table 

in order to find centroids in the same manner for the developed method. Original 

table can be found in reference [39].  

 
int triangleTable[256][16] = 
{{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{1, 9, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{2,10, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1}, 
{3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1}, 
{3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1}, 
{3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1}, 
{9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{7, 8, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},  
{4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1}, 
{1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1}, 
{9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, 
{2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1}, 
{8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1}, 
{9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, 
{4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1}, 
{3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1}, 
{1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1}, 
{4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1}, 
{4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1}, 
{4, 9, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
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{0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1}, 
{1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, 
{5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1}, 
{2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1}, 
{9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, 
{0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, 
{2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1}, 
{10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1}, 
{4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1}, 
{5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1}, 
{5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1}, 
{9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1}, 
{0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1}, 
{1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1}, 
{10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1}, 
{8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1}, 
{2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1}, 
{7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1}, 
{9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1}, 
{2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1}, 
{11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1}, 
{9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1}, 
{5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1}, 
{11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1}, 
{11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{ 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, 
{1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1}, 
{9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1}, 
{5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1}, 
{2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, 
{0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, 
{5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1}, 
{6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1}, 
{0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1}, 
{3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1}, 
{6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1}, 
{5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1}, 
{1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, 
{10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1}, 
{6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1}, 
{1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1}, 
{8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1}, 
{7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1}, 
{3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, 
{5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1}, 
{0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1}, 
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{9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1}, 
{8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1}, 
{5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1}, 
{0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1}, 
{6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1}, 
{10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1}, 
{10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1}, 
{8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1}, 
{1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1}, 
{3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1}, 
{0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1}, 
{10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1}, 
{0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1}, 
{3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1}, 
{6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1}, 
{9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1}, 
{8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1}, 
{3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1}, 
{6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1}, 
{0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1}, 
{10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1}, 
{10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1}, 
{1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1}, 
{2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1}, 
{7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1}, 
{7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1}, 
{2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1}, 
{1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1}, 
{11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1}, 
{8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1}, 
{0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1}, 
{7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},  
{3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, 
{10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, 
{2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, 
{6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1}, 
{7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1}, 
{2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1}, 
{1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1}, 
{10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1}, 
{10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1}, 
{0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1}, 
{7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1}, 
{6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1}, 
{8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1}, 
{9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1}, 
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{6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1}, 
{1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1}, 
{4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1}, 
{10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1}, 
{8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1}, 
{0, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},  
{1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1}, 
{1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1}, 
{8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1}, 
{10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1}, 
{4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1}, 
{10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, 
{5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, 
{11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1}, 
{9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, 
{6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1}, 
{7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1}, 
{3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1}, 
{7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1}, 
{9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1}, 
{3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1}, 
{6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1}, 
{9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1}, 
{1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1}, 
{4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1}, 
{7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1}, 
{6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1}, 
{3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1}, 
{0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1}, 
{6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1}, 
{1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1}, 
{0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1}, 
{11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1}, 
{6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1}, 
{5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1}, 
{9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1}, 
{1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1}, 
{1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1}, 
{10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1}, 
{0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1}, 
{5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1}, 
{10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1}, 
{11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1}, 
{0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1}, 
{9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1}, 
{7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1}, 
{2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1}, 
{8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1}, 
{9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1}, 
{9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1}, 
{1, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},  
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{0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1}, 
{9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1}, 
{9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1}, 
{5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1}, 
{0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1}, 
{10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1}, 
{2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1}, 
{0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1}, 
{0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1}, 
{9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1}, 
{5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1}, 
{3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1}, 
{5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1}, 
{8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1}, 
{0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1}, 
{9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1}, 
{0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1}, 
{1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1}, 
{3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1}, 
{4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1}, 
{9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1}, 
{11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1}, 
{11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1}, 
{2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1}, 
{9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1}, 
{3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1}, 
{1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1}, 
{4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1}, 
{4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{9, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},  
{3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1}, 
{0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1}, 
{3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1}, 
{3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1}, 
{0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1}, 
{9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1}, 
{1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, 
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}; 
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