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ABSTRACT

DEVELOPMENT OF A MULTIGRID ACCELERATED EULER SOLVER ON
ADAPTIVELY REFINED TWO- AND THREE-DIMENSIONAL CARTESIAN
GRIDS

Cakmak, Mehtap
M.S., Department of Mechanical Engineering
Supervisor: Prof. Dr. M. Haluk Aksel
Co-Supervisor: Asst. Prof. Dr. Ciineyt Sert

July 2009, 166 pages

Cartesian grids offer a valuable option to simulate aerodynamic flows around
complex geometries such as multi-element airfoils, aircrafts, and rockets. Therefore,
an adaptively-refined Cartesian grid generator and Euler solver are developed. For
the mesh generation part of the algorithm, dynamic data structures are used to
determine connectivity information between cells and uniform mesh is created in the
domain. Marching squares and cubes algorithms are used to form interfaces of cut
and split cells. Geometry-based cell adaptation is applied in the mesh generation.
After obtaining appropriate mesh around input geometry, the solution is obtained
using either flux vector splitting method or Roe’s approximate Riemann solver with
cell-centered approach. Least squares reconstruction of flow variables within the cell
is used to determine high gradient regions of flow. Solution based adaptation method
is then applied to current mesh in order to refine these regions and also coarsened
regions where unnecessary small cells exist. Multistage time stepping is used with
local time steps to increase the convergence rate. Also FAS multigrid technique is

used in order to increase the convergence rate. It is obvious that implementation of

v



geometry and solution based adaptations are easier for Cartesian meshes than other
types of meshes. Besides, presented numerical results show the accuracy and
efficiency of the algorithm by especially using geometry and solution based
adaptation. Finally, Euler solutions of Cartesian grids around airfoils, projectiles and
wings are compared with the experimental and numerical data available in the

literature and accuracy and efficiency of the solver are verified.

Keywords: Cartesian Grid Generation, Ray-Casting Method, Marching Squares and
Cubes Algorithm, Euler Equations, Least Square Reconstruction Algorithm,

Multigrid Method



0z

IKI VE UC BOYUTLU UYARLAMALI KARTEZYEN HESAPLAMA AGLARI
ICIN COKLU AG YONTEMI iLE HIZLANDIRILMIS EULER COZUCUSU
GELISTIRILMESI

Cakmak, Mehtap
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. M. Haluk Aksel
Ortak Tez Yoneticisi: Yard. Dog. Dr. Ciineyt Sert

Temmuz 2009, 166 sayfa

Kartezyen yontemi, ucaklar, roketler ve helikopterler gibi karmasik geometriler
cevresindeki hava akisim1 modellemek i¢in dogru yaklasimi sundu. Bu dogru
modellemeyi gerceklestirebilmek icin kartezyen ag {ireticisi ve iic boyutlu Euler
coziiciisii gelistirildi. Coziicii kismi igin, zamana bagl olmayan iki veya ii¢ boyutlu
Euler denklemleri kullanildi, aki formiilasyonlar1 ise aki vektdr ayristirmasi
yontemleri ve aki fark ayristirmasi yontemi kullanilarak gerceklestirildi. Hiicre
merkezli sonlu hacim yontemi kullanildi. Ag iiretme kisminda ise, hiicreler
arasindaki baglant1 bilgisini belirlemek i¢in dinamik veri yapilart kullanildi ve
geometriye bagl hiicre adaptasyonu, ag iiretme isleminde uygulandi. Coziim elde
edildikten sonra da, ¢ozlime bagl gradyan bilgisi géz Oniine alinarak ¢oziime bagh
adaptasyon giincel aga uygulandi. Yakinsamanin hizlandirilabilmesi i¢in yerel zaman
adimlariyla birlikte ¢cok kademeli zaman uygulamasi kullanild1 ve yine yakinsamanin
hizlandirilmasi i¢in ¢oklu ag yontemi de kullanildi. Son olarak, bu c¢oziici
kullanilarak elde edilen wveriler literatiirde mevcut deneysel sonuclarla

karsilastirildilar.
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Anahtar Kelimeler: Kartezyen Ag Yaratilmasi, Isin Atma Yontemi, Kenar ve Yiizey
Yeniden Yapilandirma Algoritmasi, Euler Denklemleri, Ufak Kareler Yeniden

Yapilandirmasi, Coklu Ag Yontemi
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CHAPTER 1

INTRODUCTION

Fluid-flow problems generally have complex governing equations. Therefore, most
of the fluid-flow problems cannot be solved by analytical methods due to the
nonlinear terms in their governing equations. However, analytical solutions are
sometimes possible when nonlinear terms are negligibly small. But generally,
nonlinear terms are not as small as to be neglected. If the nonlinearities are important
for the fluid-flow problems, then numerical methods and algorithms are used to solve

and analyze these problems.

Computational Fluid Dynamics (CFD) is an important field of fluid dynamics which
enables one to obtain numerical solutions of complex fluid-flow problems including
nonlinear terms and also simulate fluid-flows that cannot be observed in laboratory
situations due to the some flight regimes that cannot be simulated in wind tunnels;
such as higher Mach numbers and higher flow field temperatures. Numerical
solutions of many complex problems; such as compressible or incompressible,

laminar or turbulent, single or multiphase flows are possible with CFD.

CFD techniques today are very powerful due to the high speed and large memory
computers; however, turbulence modeling, selection of the accurate numerical
techniques, algorithmic efficiency, surface modeling and grid generation around
complicated and multi-component geometries are still barriers to CFD maturation,
especially in three dimensions. Therefore, various new approaches to deal with these
problems are being developed. For example, in order to handle grid generation
problems and reduce the user intervention to generate grid, the grid generation and

adaptation processes are tried to be automated. In addition, more accurate and



efficient solutions are tried to be obtained by means of the advances in numerical

methodologies.

Steps of finding approximate solutions of complex flow problems can be
summarized as follows. Firstly, fundamental physical principles of any fluid flow are
expressed in the form of conservative or nonconservative governing equations. These
can be either integral equations or partial differential equations. Then, flow domain
must be split into sub-domains called elements or cells. The collection of all cells is
called a mesh or grid. Then, the equations governing the motion of fluid are replaced
with discretized algebraic forms and solved to obtain approximate solutions for the
flow field values at each of the sub-domains [1]. Since one of the most difficult steps
is grid generation, Cartesian Grid is an attractive approach to CFD. It enables to
create grids around complex geometries easily. Furthermore, grid and solution
adaptations are possible without user interventions, i.e. automatically with Cartesian

Grids.
1.1 Grid Generation and Adaptation

As it was mentioned, grid generation is an important and time-consuming problem of
CFD. It requires considerable expertise, since not only understanding of
mathematical formulation and numerical algorithms 1is necessary, but also
understanding of physical principles of flow problems is very important for obtaining
satisfactory resolution in flow domain. Therefore, in order to solve discretized
algebraic equations of any fluid flow, an efficient grid, which resolves the physical
properties of flow, minimizes the errors and uses as fewer grid points as possible to
save the memory usage must be generated [2]. This is a hard task. Therefore, fully
automatic grid generation techniques are necessary in order to handle these

difficulties.

Grid adaptation is to put more grid points in the regions where the large gradients in

the flow field properties exist and remove grid points from the regions where these



gradients are insignificant in order to decrease the local resolution of the grid. In
other words, the aim of grid adaptation is to capture the physics of the flow
effectively without using excessive grid points. There are two types of grid
adaptation and their combination is also possible. The first one is r-refinement (grid
point redistribution) and the other is h-refinement (grid point embedding). R-
refinement is applied to the current grid by moving the grid points to the regions that
need more resolution due to the high flow field gradients without changing the actual
number of grid points. In this way, connectivity information does not change. H-
refinement is the modification of current grid by changing connectivity information.
This change is either adding extra grid points where the higher resolution of current
grid is necessary or removing redundant grid points. For example, h-refinement is
performed for Cartesian grid method by dividing parent cells in order to obtain child
cells for refinement or removing children of a parent cell to obtain parent cell instead

of'its children for coarsening.

Grid generation methods can be classified into two groups: structured and
unstructured. Both of these have advantageous and disadvantageous properties.

Examples of these grids are given in Figure 1.1.
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Figure 1.1 Examples of (a) structured and (b) unstructured grids



1.1.1 Structured Grid

A structured grid is composed of quadrilaterals in two-dimensions and hexahedra in
three-dimensions. It is one that grid points (vertex, node) are transferred from
physical space (Cartesian coordinates for two-dimensional problems: x, y) to
computational space ({, #) and they are represented by the indices i, j. Hence,
connectivity information of the grid is implicitly known by the indices of grid points.
For example, neighbors of a grid point are found by adding or subtracting an integer
value to or from its indices [3]. This simplification in data structure has an important
effect on creating efficient and simpler codes owing to the fact that the calculation of
fluxes and gradients is simpler compared to unstructured grids. Besides,
implementation of implicit scheme to structured grids is easier than that to
unstructured grids. In addition, computer memory usage is less than unstructured
grid. Since incrementing grid points near the boundary of the geometry is achieved
easily by decreasing the spacing between them, viscous solutions of flow problems
are obtained more effectively and accurately than that in unstructured grids. Finally,
for a structured grid, each cell has only one neighboring cell on each of its faces. A
smooth grid is obtained by means of this rule. These are the advantages of structured
grid. However, structured grid generation around complex geometries is a very big
problem. Therefore, although it has a lot of advantages, in general it is not a
preferred grid generation technique. In order to generate structured grid around
complex, multi-component geometries, some approaches such as multi-block and
Chimera technique are used but these methods are very complicated and also
decrease the advantages of structured grid. Furthermore, generating structured grid
around complex geometry by using any one of these methods takes man-months.
Detailed information can be found in reference [3]. In addition, transformation of
governing equations from physical space to computational space is a very difficult
task. The final disadvantage of structured grids is that an implementation of h-
refinement causes the huge increase of grid points since adding a point to a
structured grid requires adding a line on which the points lie [4]. Therefore, r-

refinement is more suitable for structured grids than h-refinement.



1.1.2 Unstructured Grid

An unstructured grid is composed of mostly triangular and rarely quadrilateral cells
in two-dimensions and of hexahedral, prismoidal, pyramidal and mostly tetrahedral
cells in three-dimensions. There is no need for transformation between physical and
computational space. In addition, for an unstructured grid, there is no ordering for
grid points and neighboring cells. In other words, grid points in unstructured grids
cannot be identified by their indices. As a result, complicated data structure is

mandatory to construct the connectivity information between cells.

Memory requirement of unstructured grids is higher and computational efficiency of
unstructured grids is lower than those of structured girds because of the necessity of
complex data structure. But, in spite of these disadvantages, nowadays unstructured
grid methods become increasingly popular since it is capable of handling
geometrically complex problems. Furthermore, grid adaptation especially h-
refinement technique is easier to accomplish on unstructured grids than on structured
grids. The final and the most attractive advantage of unstructured grids is that an

unstructured grid is very suitable to automatic grid generation and adaptation.

By the way, Advancing Front Method and Delaunay Triangulation Method are the
most widely used techniques to generate two-dimensional unstructured grids.

Detailed information can be found in references [5] and [6].

1.1.3 Cartesian Grid

Cartesian grids are a special type of unstructured grids. In fact, this method is one of
the earliest and simplest methods used for mesh generation. However, in the past, it
was almost impossible to deal with curved boundaries accurately due to limited
memory and simplicity of data structures so it was not a popular method. Contrary to

the past, Cartesian grids are now very attractive and popular method due to their



inherent simplicity and the ability to generate automatic meshes especially around

complex and multi-component geometries.

It consists of squares in two-dimensions and cubes in three-dimensions which are
placed parallel to the coordinate axes. It requires complicated data structures such as
quadtree and octree data structures for two-dimensional and three-dimensional
problems, respectively. However, it has many advantages which make it popular.
One of its advantages is that the generation of Cartesian grid is easy even for
complex geometries. In addition, automatic mesh generation with a minor user
intervention is possible and geometric and surface adaptations are easy to implement.
For example, denser mesh around shock waves can be generated easily by means of
solution adaptation applied to Cartesian grid method. Hence, effective results are

obtained in a short time without huge number of grids.

Another important advantage is that implementation of higher order schemes and
multigrid method can be accomplished easily due to the permission of data structure.
Finally, since the edges of square and the faces of cubic elements are aligned with
the coordinate axes, there is no need for any complex formulation of velocity vectors
in order to get normal and tangential components of them with respect to edges and
faces. Consequently, flux formulation is simpler than other grid generation methods.
Non-adapted and geometrically adapted Cartesian grids about the geometry are given
in Figure 1.2.

The most difficult aspect of Cartesian grid is the complexity associated with the
computational cells that have intersections with boundaries. These cells are called cut
or split cells according to their total number of separate computational volumes.
Samples of cut and split cells are shown in Figures 1.3 and 1.4, respectively. These
are irregular cells and violate all the simplicity of Cartesian grids. However, these
cells are very important for the Cartesian grid method since they play a key role in
dealing with curved boundaries and obtaining accurate computational results. But

sometimes small cut or split cells can cause time stepping problems. They may put



severe restrictions on convergence rate and lead to inaccuracies, i.e. damage the
stability criteria. In this work, this problem is solved by coarsening of small cells
which will be explained in the next chapters. Another difficulty of this grid is that

traditional Cartesian grid is insufficient to model viscous flows [7].
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(a) (b)
Figure 1.2 Examples of (a) non-adapted and (b) geometrically adapted Cartesian
grids

_

Figure 1.3 Example of a cut cell

]
|

Figure 1.4 Example of a split cell




In 1993, De Zeeuw [4] wrote a computer code to solve two-dimensional Euler
equations using a Cartesian grid. He used quadtree data structure and multigrid

scheme to increase the convergence rate of the solution.

In 1994, Coirier [8] wrote a code to solve two-dimensional Euler and Navier Stokes
equations using Cartesian grids. He used binary tree data structure and he refined and

coarsened the cells according to the solution.

In 1995 and 1996 Melton, Aftosmis and Berger [9] developed techniques for
handling complex surface geometries and their code CART3D solved three

dimensional Euler equations using Cartesian grid accurately.

In 2004, Hunt [10] developed a code to solve the three-dimensional Euler equations
by using parallel block adaptive Cartesian method. Data structure and handling the
geometry were very similar to studies of Aftosmis. These references are the

milestones of this study.

1.2 Scope of the Thesis

The purpose of this thesis is to develop an automatic, adaptive Cartesian grid for
solving inviscid, compressible flows around simple and complex geometries. In this
chapter, brief information regarding CFD and mesh generation techniques is given.
Besides, past works about Cartesian method are summarized in the review of
literature section. In Chapter 2, quadtree data structure and two dimensional grid
generation are discussed. A number of topics like terminology for Cartesian grids,
determination of neighbor cells, information about special computational cells,
inside-outside testing methods, marching squares technique and adaptation types are
explained as well. In Chapter 3, octree data structure and different aspects of three
dimensional grid generation from two dimensional grid generation are discussed.
Two and three dimensional flow solvers, including flux formulation, temporal

discretization, reconstruction and multigrid method are discussed in Chapter 4.



Chapter 5 gives the results of various test cases to validate the code accuracy.

Finally, in Chapter 6, summary of the present work and conclusions are presented.



CHAPTER 2

TWO DIMENSIONAL DATA STRUCTURE AND GRID
GENERATION

2.1 Quadtree Data Structure

As it is mentioned in the introduction chapter, Cartesian grid is a special type of
unstructured grid and for an unstructured grid, ordering information of grid points
and neighboring cells is not apparent like structured grid. Therefore, connectivity
(i.e. ordering) information has to be constructed since it is mandatory for flux
calculations, reconstruction, multigrid method, refinement and coarsening etc.
Namely, data structure is necessary to store connectivity and flow information for

each cell.

For the Cartesian method, data structure is complicated since the number of cells
cannot be predetermined. Hence, dynamic data structure is used. By this way, the

number of cells can vary during the execution of the program.

In the literature, there are various methods used for two dimensional fluid flow
problems to identify connectivity information such as two dimensional arrays, linked
list, binary tree and quadtree data structures. In this work, the most appropriate

method is chosen as quadtree data structure due to its advantages.

First and the foremost, the data structure conversion of the developed code from two

dimensional to three dimensional grid generation is easy. In other words, the logic
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behind the quadtree and octree data structure is very similar; therefore, developed
two dimensional grid generation code is easily converted to a three dimensional grid
generation code. Furthermore, a local change in the grid such as cell refinement and
coarsening and the implementation of multigrid method are very easy for the
quadtree data structure due to its flexibility when compared to this change and
implementation in two dimensional arrays or linked list. Since each element has a
fixed index in the two dimensional arrays or has a fixed another element that follows
it in the linked list, the implementation of multigrid and local changes in the grid

require the generation of multiple grids [4].

Quadtree data structure can be thought as a family tree which demonstrates the
relationships beginning from the oldest individual and then covering its children and
grandchildren. The oldest individual of the family tree becomes the root of the
quadtree data structure. Since each cell in the quadtree data structure has parent and
four children, connectivity information is extracted from relationship between
parent-children information. Figure 2.1 illustrates the quadtree data structure, root

and children cells.

In the developed code, all cells are identified with nine pointers which are its parent,
four children and four neighbors. These pointers and others stored for all cells can be

seen below as:

e 1 word: Its parent

e 4 words: Its four children

e 4 words: Its four edge neighbors

e 2 words: Its x and y coordinates of the centroid

e | word: Its level

e [ word: The definer for computational cells which is called “compcell”

in the developed code and this will be explained in the multigrid section
e [ word: The definer of parent cell which can be coarsened while the
application of multigrid. This pointer is called “perform” in the developed

code and this will also explained in the multigrid section.
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Figure 2.1 Illustration of the quadtree data structure

Pointer indicating the parent states that it is also a cell and this cell is the parent of its

children. Each cell has a parent and four children whether it is assigned to another

cell or to zero. The cell whose parent is assigned to zero is the root cell and the cells

whose children are assigned to zero are the computational or leaf cells. Four pointers

indicating children state that they are also cells and they are the children of their

parent. Finally, instead of determining neighboring cells when they are needed, they

are stored for each cell. If a cell has no neighbor, i.e. its neighbor is the far-field, it is

set as zero. Determination of neighboring cells is given in the next chapter for three

dimensional cells since the process for three-dimensions is more complicated than

that for two-dimensions. Only an example figure (Figure 2.2) is given to illustrate the

process for two-dimensions roughly and show the numbering of children cells.

12




Horth neighbor

East West
Cell Meighbor

East (Child 2) (Child 1)

mouth

(Child %)

Figure 2.2 An example of neighboring cells and numbering of children cells

Moreover, coordinates of the centroid and level of each cell are important parameters
for the developed code. Calculation of coordinates of the centroid of a cell is
discussed in the next chapter for a three dimensional grid instead of a two
dimensional one. The level of a cell is used for many reasons. Level of a cell is
necessary for the calculation of coordinates of the centroid and length of an edge of a
cell. Besides, coordinates of four corners are calculated with the use of level. There is
a restriction called one level rule in the developed code. This rule enables grid
smoothness and facilitates the flux calculation and application of reconstruction
schemes. In addition, neighbor cells through the vertices of a cell can easily
determined by means of this restriction. One level rule simply states that the level
differences between two edge or vertex neighbors cannot exceed one. If this rule
removed from the developed code, the solution accuracy would be harmed. Besides,

one level rule prevents the data structure to become much more complicated.
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By the way, as it is seen from Figure 2.1, the level of root cell is zero and level of its
children is 1. In other words, level of a child cell is one level higher than its parent

level.

There are two types of neighbors for two dimensional problems. One is edge
neighbor which is stored for each cell and the other is vertex neighbor which is
determined when it is required. Since vertex neighbors are not used as many times as
edge neighbors and also they easily determined by the edge neighboring information,

storage of them would be inefficient usage of memory.

Effective memory usage is very important for computer codes. Therefore, the
programmer must balance the memory usage and computational time. In order to
balance them, the necessity of stored information is explored. If the information is
used repetitively in the developed code and calculation of it takes a long time,
storage of this information is more logical. Coordinates of four cell corners can be
given as an example to this case. On the other hand, if the information is used rarely
and determination of it takes a short time, it is logical not to store this information.

Determination of vertex neighbors can be given as an example to the second case.

As it is mentioned before, there are special cells which have no children cells. These
are called computational or leaf cells and the all calculations are performed on these
cells. They are divided into four groups according to their types. These are inside,
outside, cut and split cells. In fact, inside cells cannot be thought as computational
cells due to the fact that flux calculations are not performed on these cells. Therefore,
in the developed code, the variables that are stored for computational cells except
inside cells can be given below as:

e 4 words: Conservatives variables for continuity, x-momentum, y-

momentum and energy equations
e 4 words: Its four corners

e 1 word: Its type
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e 1 word: Its total square index. This will be discussed in the Marching

Squares Algorithm section.

e 2 words: Its refinement or coarsening criteria

e 2 words: Divergence and curl of velocity vector

e 2 words: Lengths of edge projections in x and y directions

e 4 words: For forcing function which will be discussed in multigrid
section

Each of the four pointers for corner structures defines one corner of a cell and this
corner structure stores the x and y coordinates of the cell corner and a variable ¢.
This ¢ variable of one corner is used to determine whether this corner is inside or
outside the given geometry. Detailed information regarding ¢ value and
determination of cell type will be given in the next section. Numbering of corners

can be seen in Figure 2.3.

edge 1
comer 2 I comer
edge 2 «— Cell —» edge 0
comer 3 l comer0
edge 3

Figure 2.3 Identification of corners
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Since the centroid and area of a cut or split cell is not directly calculated like outside
cells, these types of computational cells require additional information to be stored.
Calculation of centroid and area of these special cells are discussed later. In the

developed code, the variables stored for cut cells can be seen below as:

e 3 words: x and y coordinates of centroid and area of a cell
e 4 words: x and y coordinates of cut locations (px[0], px[1], py[0] and
py[1])

Some of the stored variables for split cells are twice as much as those for cut or
outside cells because some of the split cells are composed of two separate
computational control volumes. Flux, divergence and curl calculations are performed
twice for a split cell since it has two separate control volumes. These doubled
variables are conservative variables, divergence and curl of velocity vectors, edge
projections, centroids, areas and cut point locations. On the other hand, split cells

have single refinement criterion like outside and cut cells.

A demonstration of numbering of the intersection points of cell edges and the

geometry for a cut cell is seen in Figure 2.4.

px(0] & py{0]

/

Cell

pE[1] & py[1]

Figure 2.4 Demonstration of cut locations

Finally, calculation of centroid and area of cut cells can be summarized in this
section because cell centroid and area are used in the formulation of least square

reconstruction scheme and the calculation of the divergence and the curl of the
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velocity vector. It is clearly seen that the numbering of corners and also cut locations

are given in the counter-clockwise sense. This facilitates the calculation procedure.

Firstly, outside part of cut cells are triangulated beginning from the first cut point
(px[0] and py[0]), traversing the outside corners in the counter-clockwise sense and
ending with the second cut point (px[1] and py[1]). Then the cross-product of vectors
along faces of each of the triangles is evaluated. This product gives the area of each
triangle. Summation of areas of all triangles which constitutes the outside area of cut
cells is calculated. As a result, the area of the cut cell is obtained. The procedure is
the same for split cells. The centroid of cut cell is calculated by using the following

equation:

nTriangles

>.(AC),
C=—-t_ (2.1)

nTriangles

i=1
where C; and 4; in the formula refer to the centroid and area of each triangle.
An example of triangulation process is given in Figure 2.5. Outside corners of any

cut cell are known automatically by means of a formed table. This table is called

corner-table and given in the next section.
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Figure 2.5 An example of triangulation process
2.2 Initial Grid Generation and Geometry Adaptation

Grid generation for two-dimensional Cartesian grids can be achieved in three steps.
Initial step is the creation of the domain and uniform mesh generation. The
determination of cell types by inside-outside test is the second step. Afterwards,
geometric adaptation, which consists of three parts: box, cut & split cell and
curvature adaptation, is applied to the uniform mesh. By the way, there are additional
important intermediate steps between box adaptation and cut & split cell adaptation.
These are marching squares method and the determination and classification of the

split cells.
2.2.1 Creating the Domain and Uniform Mesh Generation

Initially, the geometry around which the external flow is solved is specified to the
developed code as line segments. It is important that these line segments have to
follow a sequence starting from a point and ending up with this point. In other words,
line segments have to form a closed loop whose rotation direction is counter-

clockwise.
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Afterwards, since the geometry is not nondimensionalized to prevent computation
errors due to the division such as machine zero effect, the maximum length of the
given geometry is important to create the appropriate domain for solving the problem
accurately and robustly. The multiplication of the maximum length by the size factor
gives the domain size. This domain size is the length of the edges of the root cell.
Then since the developed solver is external flow solver, the given geometry is placed
to either the mid point of the created domain or the desired location of the user near

the center of root.

Finally, uniform mesh for the two dimensional Cartesian method is obtained by
dividing squares successively starting from the root until the level of computational
cells reaches the desired level. This step is very important to obtain sufficiently small
cells before geometry and solution adaptation steps. The given geometries (three-
element airfoil and NACAO0012) and uniform meshes around them are given in

Figure 2.6 and 2.7.

/,5..#'

Figure 2.6 Three-element airfoil and uniform mesh around it
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Figure 2.7 NACAO0012 airfoil and uniform mesh around it

When sufficient resolution around the geometry is not obtained during the uniform
mesh generation, sometimes small parts of multi-component geometries are not
realized; therefore, adaptation steps do not notice these parts due to the insufficient
resolution. As a result, incorrect mesh generations are obtained. In order to prevent
this failure, some determination techniques are implemented into the developed code.
But this does not mean that these implementations prevent all of these failures. In
other words, the user of the program is always aware of the possibilities of these
errors. For example, before these techniques, slat of the three-element airfoil in
Figure 2.6 was not detected without sufficient resolution, i.e. with uniform mesh

which has low desired level. But, it is possible now.

It is beneficial to indicate that there is no need to check the one level rule in the
uniform mesh step. After creation of new cells with the division of their parent cells,
centroidal coordinates and their neighbors have to be set. These procedures are
discussed for three dimensional problems instead of two dimensional ones due to the

complexity.

The increase of total number of cells during the uniform mesh is exponential.

Therefore, it is stated in references [11] and [12] that desired level may be kept
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within the limit of two or three to avoid this increase. However, in the developed
code, there is no restriction on the number of desired level for uniform mesh because
coarsening of cells is applicable in this code. Therefore, although exponential
increase occurs at the beginning of the mesh generation, this number decreases by
means of coarsening process during the solution adaptation. Besides, exponential
increase does not harm the convergence rate in a detectable manner on account of
multigrid method. As it was mentioned before, higher desired level is necessary in
some cases where small geometry components exist. Moreover, solution refinement
is sometimes much more efficient with higher initial resolution. This can be
exemplified in Figures 2.8 and 2.9 by comparison of pressure coefficients with

AGARD data [13].

na — agard
unidiv 2, refcycle 3
o unidir 6, refcycle 3

o

Figure 2.8 Pressure coefficients of upper part of NACA0012 airfoil
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Figure 2.9 Pressure coefficients of lower part of NACAO0012 airfoil

For example, green points indicate a mesh whose uniform division number (unidiv)
is 2 and solution refinement cycle (refcycle) is 3 in Figures 2.8 and 2.9. When the
pressure coefficients of two cases with uniform division 2 and 6, which have the
same number of solution refinement cycles, are compared, it is clearly seen that
locations of the shock on the upper and lower parts of NACAO0012 airfoil are
determined more accurately for the case with higher desired level. Besides, pressure
coefficients of this case are nearer to the AGARD data. This validates the statement
that initial resolution is important for accurate results. The reason of inaccurate
results of the case whose uniform division is 2 is that the interaction between far-
field boundary conditions and geometry is really effective due to the huge cells near
the far-field. Although these huge cells are refined during the application of solution
refinement, they harm the result because the solutions of initial iterations are without
solution adaptation. Figure 2.10 shows two grids. First one is the mesh obtained after

the geometric adaptation. The uniform division number of this case is 2. Second one
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is the mesh which is obtained after the solution refinement. This mesh is obtained

after three refinement cycle.

Figure 2.10 Geometric- adapted and solution-adapted meshes, respectively

2.2.2 Inside-Outside Determination

After uniform mesh generation, corners of sufficiently small cells are tested whether
they are inside of the given geometry or not. This is called inside-outside testing.
This step is obligatory for Cartesian grids because the cells that are cut by the given

geometry are determined by this test.

There are various methods for the determination of a point whether it is located at the
inside or outside part of a closed polygon. The most popular ones are Ray Casting

and Winding Number methods.
In this thesis, Ray-Casting method is used due to its numerous advantages over

Winding Number method. However, there is a restriction in order to apply both of

these methods. This restriction is that the given geometry must be a closed loop
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although it consists of holes in it. Information regarding Winding Number method

can be found in references [10] and [12].

2.2.2.1  Ray Casting Method

In this approach, a ray (line) which can be x = constant, y = constant or another line
is cast from a point in two dimensional problems and the number of interactions
between this ray and the line segments of the geometry is counted. If this number is

odd then the point is inside the geometry, else it lies outside the geometry.

Figure 2.11 An example for Ray Casting Method
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For example, three different cases are shown in Figure 2.11. In the first case, a ray is
cast from point P1 in the positive x-direction (y = constant line) and it intersects four
times with the simple-closed geometry. This means according to ray casting method
that this point lies outside the geometry. In the second case, ray of point P2 in the
positive x-direction intersects with the geometry once; therefore, it is inside the
geometry. These two cases do not violate the rule of ray casting method. However, a
ray in the positive x-direction which is cast from point P3 intersects with the
geometry three times. In other words, three line segments of the geometry are cut by
this ray. Therefore, ray casting method allocates point P3 as an inside point. The
reason of this problem is that the end points of line segments have to be counted
once. But instead of counting end points once, changing the direction of ray is much
more logical when it intersects with an end point of any line segment. As a result,
probable mistakes due to this intersection are eliminated. That is to say, when the
ray, which is cast from point P3, changes to a x = constant line (ray in the positive y
direction), the number of intersection becomes zero and this means point lies outside
the geometry. Consequently, in the developed program, rays are cast along
alternating directions until the ray does not intersect with endpoints of line segments.
There is one more special case where the rule of ray casting method is violated. If the
point is coincident with any line segment of the geometry, the number of intersection
can be either odd or even although it must be odd. Therefore, firstly, the coincidence
must be checked and if there is no coincidence, the testing method is applied to the
point. If it is coincident with any one of the line segments, the point is on the

geometry and it is immediately allocated as an inside point.

As it is mentioned before, ray casting method has various advantages when it is
compared to winding number method. The first advantage is that unlike winding
number method, ray casting method does not require to visit all of the line segments
of the geometry. For example, if the ray is in the positive x direction, the line
segments whose y coordinates of both end points are larger or smaller than the y
coordinate of the point from which the ray is cast are not tested since their

intersection is impossible. Another advantage is that ray casting method does not
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suffer from floating point round off errors [10]. The final advantage is that
implementation of ray casting method into the three dimensional problems is easier

and more accurate than that of other methods.

After the testing of each of four corners of a cell, type of this cell has to be
determined according to the test results since this step is obligatory step for Cartesian
grids. Then, ¢ value of each corner which was mentioned before is allocated. ¢ value
of inside corner is set to -1, while ¢ value of outside corner is set to 1. This value is
necessary in the marching squares method which is discussed later. As it is
mentioned before, there are four types of computational cells. If all corners of a cell
are outside of the geometry, the cell type is set as outside and if all corners are inside
then the cell type is set as inside. Types of other remaining cells are set as cut cells.
By this way, cut cells are determined. Figure 2.12 gives examples of these types of
cells. However, there are some exceptions which violate rules of this determination.
Two cases given in Figure 2.13 illustrate some of these exceptions. Although four
corners of two sample cells in Figure 2.13 are outside, they are cut by the given
geometry. These cells are set as split cells because classifying these cells as outside
cells causes error during the flux calculations and they are discussed later in the next

section.
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\
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Figure 2.12 Examples of types of cells

26



Figure 2.13 Sample two exceptions

After determining types of cells, cells around the body except inside cells are refined
by three different ways until fine meshes are obtained around the body. The general

name of these processes is geometric adaptation.

2.2.3 Geometric Adaptation

The adaptation process can easily be applied to a Cartesian grid; therefore, high
resolution around the geometry as a result of adaptation enables more accurate
results when compared to other types of grids. Geometric adaptation is applied to the
uniform mesh after determination of cell types in three steps: box adaptation, cut &
split cell adaptation and curvature adaptation. The amount of application of these
adaptations is determined by the user. Suitable grid for solver part is obtained after

all of these adaptations.

2.2.3.1  Box Adaptation

The first step of geometric adaptation is the box adaptation. By means of this
adaptation, uniform mesh around the given geometry is refined and fine meshes are
obtained in an imaginary rectangular box. The imaginary rectangular box includes
cells which are inside the box or in contact with the box and these cells are flagged

for refinement. After determining of these flagged cells, they are refined until a
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desired resolution is obtained inside the box. But it is important that one level rule is
considered while the refinement of flagged cells. If the levels of the edge or vertex
neighbors of flagged cell are one level lower than its level, firstly they are refined
and then the cell is refined. After the application of box adaptation to the uniform

mesh in Figure 2.6, Figure 2.14 is obtained.

Figure 2.14 Application of box adaptation to three-element airfoil

As it was mentioned before, there are some intermediate steps between box

adaptation and cut cell adaptation. These are discussed now.

28



2.2.3.1.1 Determination and Classification of Split Cells

After the types of cells are determined according to the rule given in the inside-
outside testing section, it is seen that there are some exceptions and these exceptions
necessitate some modifications in type determination. Therefore, additional type is
added to the developed code called split cell. These cells have one or more separate
control volumes. Flux calculation of split cells which have only one control volume
is the same as cut cells. On the other hand, flux calculation of split cells which have
two or more control volumes is different. Separate flux calculations are performed
for each of separate control volumes of a split cell. Although split cells make the data
structure more complicated, it is obligatory for the implementation of multigrid
method. This will be exemplified with an example in the multigrid method section.
Besides its complexity, split cells increase the computational time and decrease the
usage of memory effectively. In the literature, some works assume split cells as one
control volume in order to escape from more complexity in the data structure like

references [4] and [12].

In this work, split cells are handled to ease the implementation of multigrid method.
As it is mentioned before, classification of cells according to their types are
performed after inside-outside testing. In this step, cells are divided into three
groups: inside, outside and cut cells. Afterwards, all cells are tested again to
determine how many cut points each of cells has. This test is called the determination
of split cells. In fact, outside and inside cells should not have cut points and cut cells
should have only two cut points. However, some cells violate this rule. For example,
although types of two cells in Figure 2.13 are set as outside after inside-outside
testing, they have two and four cut points, respectively. In addition, first two cells in
Figure 2.15 are set as cut cell but they have four cut points instead of two. The last

cell in Figure 2.15 is set as inside, but it is cut by the geometry.
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Figure 2.15 Three examples of split cells

As it is mentioned before, there is a pointer called total square index for all
computational cells. This pointer makes easier the flux calculation process. Finding
the value of this pointer for outside, inside and cut cells is discussed in the next

section.

After all of computational cells are tested to find exceptions and set them as split
cells, classification of these split cells are done. Split cells are classified in respect of
their total square index values. Therefore, finding these values for split cells can be
summarized here. If a cell is cut cell according to the inside-outside testing but it has
four cut points, it is set as split cell and its total square index remains the same. If a
cell is outside cell according to the test but it has two or four cut points, it is set as
split cell and its total square index is assigned to -15 or -25, respectively. If a cell is
inside cell according to the test but it has two or four cut points, it is set as a split cell
and its total square index is assigned to -20 or -30, respectively. Finally, if a cell is
cut cell according to the inside-outside test but it has more than four cut points, it is
set as split cell and its total square index is assigned to -40. Split cells whose total
square index is -40 are recursively refined until other types of split cells are obtained
since the flux formulation for this case is very difficult to handle when compared to
other types. This type of split cell is rarely found and after one or two refinement

they are eliminated.
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After classification of split cells, their cut point locations have to be determined. But
it is important to note that numbering of cut points is not done randomly. Cut points
for each cell follow a sequence. Hence, calculation of cut or split cell area, centroid
and calculation of fluxes are very easy because of this sequence. Furthermore, each
control volume of split cells can be considered as a cut cell and its flux calculations
are performed like cut cells by means of total square indexes indicated in Appendix
A. These indicated total square indexes are different from the actual classification
total square index. For example, total square index of the cell given in Figure 2.16 is
-25 in order to classify it. It is an outside cell as to inside-outside testing. After
determination test, it is set as a split cell because it has four cut points. First control
volume of split cells is the part which possesses cut locations pO and pl. Second
control volume is the part which has cut points p2 and p3. Flux calculation of the
first control volume in Figure 2.16 is done assuming this part as a cut cell whose total
square index is three. As seen in Figure 2.16, if the first control volume is assumed a
cut cell, its total square index is directly calculated as three. Flux calculation of the
second control volume is done assuming this part as a cut cell whose total square
index is twelve. As seen in Figure 2.16, if the second control volume is assumed a
cut cell, its total square index is directly calculated as twelve. In other words, total
square index of split cell is -25 in order to classify it and total square indexes of each
control volume of this split cell can be seen from the Figure 2.16 inside of the control

volumes.
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Total square index=23 Total square index=12

Figure 2.16 Numbering of cut points of a split cell and assuming it like a cut cell for

flux calculations

2.2.3.1.2 Marching Squares Method

After box adaptation and determination of split cells, locations of cut points of cut
cells are tried to be found by using marching squares algorithm for two-dimensional
problems since its implementation is easy. Besides, memory usage is lower than
other methods. Generally, in the literature, line or polygon clipping algorithms were
used for two-dimensional flow problems to determine the cut locations and the part
of cell that resides in the geometry. These algorithms are performed by testing each
of four edges whether they are cut or uncut. Then as a result of clipping, cut and

uncut edges and cut locations are stored separately and portion of cut edges that
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resides outside of the geometry is stored in the memory. This brings about excessive
memory usage. For example, minimum additional eight pointers have to be stored for
these values. On the other hand, in marching squares algorithm, cut edges are
automatically known by a table; hence, cut locations are found and stored easily. In
other words, there is no need to check all edges whether they are cut by the
geometry. This is not a big problem for two dimensional problems but for three
dimensional problems, there are twelve edges and testing of each of them will be
time consuming. In this work, by means of one pointer, cut and uncut edges and
portion of cut edges that resides outside of the geometry are found easily. Finally,
marching squares algorithm is used in three-dimensional problems in order to find
the area of cut surfaces and portions of those surfaces that are used for flux

calculations.

Marching squares algorithm starts by indexing each corners and edges of a cell from
0 to 3. This can be seen from Figure 2.3. Then total square index value depending on
number of corners which have negative ¢ value is determined. Square indexes of
each corners according to their phi values and the loop used in the developed code in
order to calculate total square index are given below.

e If gofcorner 0 =-1 then square index = 1

* If gofcorner 1 =-1 then square index =2

* If gofcorner2=-1 then square index =4

* If gofcorner 3 =-1 then square index = 8

if (eell->type==outside)

cell->square index=0;
else if(*neu->type==inside)

cell-raquare index=15;
elzse if(*neu->tLype==cutcell]
1 for (int i=0; i<4; i++)

{ ificell->corner[i] —>phi==-1)

cell->square index=cell-»square index+pow (2, i):

Figure 2.17 Loop for calculating total square index value of a computational cell

33



For example in Figure 2.18, corner 0 and corner 3 of the cell are inside the body.
Hence, if total square index of this cell is calculated with the given algorithm, the
result becomes 9. This value is obtained by adding 1 and 8, since ¢ values of corner 0
and 3 are both -1, respectively. Then by means of a table called line table given in
Figure 2.19, cut edges are determined. For example, cut edges of the cell given in
Figure 2.18 are edge 0 and edge 2 respectively according to the line table in Figure
2.19 since its square index is nine. By the way, green numbers in Figure 2.19 are
comments and they indicate the total square index. Since the cut edges are known
automatically by the table, intersection points of cut edges and line segments of the
geometry are calculated. For this case, x coordinates of intersection points are known
automatically since they are equal to x coordinates of corner 0 and corner 2,
respectively. The only problem is to determine y coordinates of intersections. They
can be found easily by using the line segment which cuts the cell. By the way,

calculating the locations of cut points of split cells is very similar to cut cells.

phi of corner 2= 1 phi of corner 1= 1
Fluid
Po
Pl
Body
phi of corner 3= -1 phi of corner 0= -1

Figure 2.18 An example for explaining the calculation of total square index of a cell
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Moreover, flux calculations of cut cells with the aid of this algorithm can be
summarized here because it is mentioned that cut, uncut edges and outer portions of
cut cells are not stored in the developed code. Instead, the table called corner table in
Figure 2.19 includes almost the whole data that is necessary for flux calculations.
Cut, uncut edges and outside portions of cut edges for the case in Figure 2.18 will be
explained by means of the corner table in Figure 2.19. Since total square index of this
case is nine, the corresponding row to this square index is 1, 2, -1, -1. These numbers
(from 0 to 3) point out the number of outside corners of a cell. First and second
outside corners for this case are corners 1 and 2, respectively. It is extremely
important to note that rotation direction beginning from first cut point (p0) by
passing the outside corners and ending with second cut point (p1) is always counter-
clockwise. The first cut edge is the edge which possesses first cut point (p0) and first
outside corner (corner 1) according to corner table. Namely, the first cut edge is edge
0 which is the edge located before corner 1 in the counter-clockwise sense. Instead of
storing the neighbor for flux calculation, after the determination of first cut edge, it is
automatically known that the first flux calculation for this case is done between the
cell and east neighbor of this cell. Then it is time to determine other neighbors for
flux calculations by means of this table. After the first cut edge, there are two
possibilities. Second edge can be an uncut edge or cut edge. If the subsequent
number is -1 in the corner table, this means that the next edge is a cut edge. If the
subsequent number is a number from 0 to 3, this means that the next edge is an uncut
edge. For this case, subsequent number is 2; therefore, next edge is an uncut edge
which possesses corner 1 (the first index of row) and corner 2 (subsequent number).
Namely, the second edge for flux calculation is edge 1 which is the edge located
before corner 2 in the counter-clockwise sense. Neighbor of this cell on edge 1 is the
north neighbor of the cell. After the determination of second neighbor for flux
calculation, third neighbor is tried to find by means of corner 2. The number coming
after corner 2 is -1; hence, the third edge is a cut edge which possesses corner 2 and
the second cut point (pl) according to corner table. Namely, the third cut edge is

edge 2, which is the edge located after corner 2 in the counter-clockwise sense and of
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course, this edge is the last edge for flux calculation since the next number is -1. The

same procedure is followed for other cut cells whose square index is different from 9.

int lineTable[16] [6] = int cornerTable[1l6] [4] =
{{-1, -1, -1, -1, -1, -1}, /F/0 fi-1, -1, -1, -1y, //0O
{0, 3, -1, -1, -1, -1, /71 {1, 2, 3, -1}, //1
i1, 0, -1, -1, -1, -1, //2 {2 , 3, 0, -1y, //z2
{1, 3, -1, -1, -1, -1}, //3 2, 3, -1, -1y, /73
{2, 1, -1, -1, -1, -1}, f/fa {3, 0, 1, -1y, //4
i ., 1, 0O, 3, -1, -1}, //5 i-1, -1, -1, -1y, //5
(¢, 0, -1, -1, -1, -1}, fie {3, 0, -1, -1y, //6
12, 3, -1, -1, -1, -1y, FAS7 {3, -1, -1, -1y, /77
13, 2, -1, -1, -1, -1y, f/f8 {0, 1, 2, -1y, f/8
i, 2, -1, -1, -1, -1}, f/9 i1, 2, -1, -1y, //8
i3, 2, 1, 0, -1, -1, /SS10 {-1, -1, -1, -1y, /710
i1, 2, -1, -1, -1, -1y, S711 12, -1, -1, -1}, /11
i3, 1, -1, -1, -1, -1, JSJj1z2 i, 1, -1, -1, FS1zZ
o, 1, -1, -1, -1, -1, fi13 i1, -1, -1, =1}, F/13
i3, 0, -1, -1, -1, -1y, S/14 {0, -1, -1, -1}, //14
{-1, -1, -1, -1, -1, -1% i -1, -1, -1, -1} Y

Figure 2.19 The tables for marching squares algorithm

2.2.3.2  Cutand Split Cell Adaptation

In order to obtain higher resolution around the geometry, split and cut cells are
flagged for refinement. The difference between box adaptation and cut and split cell
adaptation is that neighbors of cells that are flagged for refinement are also flagged
for refinement in order to obtain smooth grid around the geometry. As a result,
transition between cells near the geometry and cells far from the geometry becomes
smooth and degradation of solution due to level differences in the critical regions is
prevented. After the application of cut and split cell adaptation to the box adapted-
grid in Figure 2.14, Figure 2.20 is obtained.
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Figure 2.20 Application of cut and split cell adaptation to three-element airfoil

2.2.3.3 Curvature Adaptation

All cut and split cells have interfaces and if the curvature between two interfaces is
high, this means that this region necessitates more resolution since regions like that
cause high gradients. Therefore, cut or split cells which have neighbor interfaces
(this can be edge or vertex neighbors only) are tested whether the curvature between
their interfaces are higher. The curvature between two neighboring interfaces is the
angle between the normal vectors of these interfaces. If the angle is higher than the

threshold angle and then these cells are flagged for refinement and this process is
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called curvature adaptation. Detailed information can be found in reference [11].

After the application of curvature adaptation, Figure 2.21 is obtained.

Tl

Figure 2.21 Application of curvature adaptation to three-element airfoil
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CHAPTER 3

THREE DIMENSIONAL DATA STRUCTURE AND GRID
GENERATION

3.1 Octree Data Structure

The octree data structure is chosen in order to build connectivity information for
three-dimensional grid because of the simplicity of conversion of the code from two-

dimensional grid generation to three-dimensional grid generation.

Like the quadtree data structure, the octree data structure starts with the root cell and
other members of the data structure become its children, grandchildren and etc. Any
cell in the data structure is identified with fifteen pointers. One is for its parent; eight
of them are for its children and the rest of them (six of them) are for its surface
neighbors. Although the maximum possible number of neighbors is twenty six, only
eight of them are stored. Others are determined when they are necessary. As a result,

memory is used effectively. The pointers stored for all cells are given below:

e 1 word: Its parent

e 8§ words: Its children

e 6 words: Its surface neighbors

e 1 word: Its level

e 3 words: Its x, y, and z coordinates of the centroid

e 2 words: Parameters for multigrid method which are called perform and

compcell in the developed code. These will be explained in the section of

multigrid method.
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Similar to the quadtree data structure, level of a cell is a very important parameter
and it is always one higher than the level of its parent. Centroidal coordinates of a
cell are the function of the level of the cell, domain size and centroidal coordinates of
its parent and they are calculated by the equations given below. Equations (3.1) to
(3.8) are for the calculation of centroidal coordinates of children of a parent starting
from first child to eighth child, respectively. L, n and ¢ indexes in these equations are

the domain size, level of the cell and center of the cell, respectively.

L L L

xc = (xc)parent +W yc = (yc)parent +W Zc = (Zc)parent +W (31)
L L L

xc = (xc)parent _W yc = (yc)parent +W Zc = (Zc)parent +W (32)
L L L

Xe = (%) parent “om Ve (Ve) parent “oem e T (2.) parent S (3.3)
L L L

Xe = (%) parent e Ve (Ve) parent “oem e S (2.) parent S (3.4)
L L L

Xe = (%) parent e Ve (Ve) parent towm e = (2.) parent pYery (3.5)
L L L

xc = (xc)parent _W yc = (yc)parent +W Zc = (Zc)parem _W (36)
L L L

xc = (xc)parent _W yc = (yc)parent _W Zc = (Zc)parem _W (37)
L L L

Xe = (%) parent e Ve T (Vo) parent “owm Ze T (2. parent ~ S (3.8)

One level rule is applied to the developed code like two-dimensional one. Hence, the
data structure does not become much more complicated. A cell in three-dimensional
grid has six surface neighbors which are called east, west, north, south, top and

bottom neighbors. It is mentioned that since the determination of these neighbors for
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three-dimensional grids is more complicated than that for two-dimensional grids, this
procedure for the first child is summarized in this section. Determination of
neighbors of other children is similar to the first one. Therefore, others are not

explained here. Numbering of children of a parent is shown in Figure 3.1.

(Top)
£

Srdd Child

{East) (Morth)

fﬁﬂ

dth Child

= 2nd Child

= fith Child

[/
AV

_
SN

15t Child

Sth Child

Figure 3.1 Numbering of children

Three surface neighbors of the first child in Figure 3.1 are automatically known
because they are the children of its parent. Namely, west, south and bottom

neighbors of the first child are second, fourth and fifth children of its parent,



respectively. There are three possibilities for other neighbors according to the one
level rule. The first possibility is that the neighbor of a cell is one level lower than
the cell’s level. Other possibility is that both the cell and its neighbor are at the same
level and finally, neighbor’s level is one higher than the level of the cell. There is
only one neighbor if the level of neighbor is the same or one lower. However, if the
level of neighbor is one higher than the level of the cell, this means that this cell has
four neighbors along the same surface. Instead of storing all of these four neighbors,
only the parent of these neighboring cells is stored in order to prevent the excessive

usage of memory.

East, north and top neighbors of the first child are determined by means of the
neighboring information of its parent. For example, if the east neighbor of its parent
is assigned to null (i.e. it is not the far-field), the east neighbor of the first child is
also assigned to null. Otherwise, if the east neighbor of its parent is not assigned to
null, it is checked whether it has children or not. If it has no child, then east neighbor
of the first child is set as the east neighbor of its parent. In this case, level difference
between the first child and its east neighbor becomes one and neighbor’s level is one
level lower than the first child’s level. If the east neighbor of first child’s parent has
children then the second child of the east neighbor of the parent is set as the east
neighbor of the first child. This neighbor is at the same level as the cell. In fact, this
cell might have children. Even this cell have children, it is set as the east neighbor to
prevent complexity. But it is checked during the flux calculation and reconstruction
schemes whether the neighboring cell, whose level is the same with the considered
cell, has children. If yes, then its neighboring children are used in the calculations.
Namely, the east neighbor of the first child is set as the second child of the east
neighbor of the parent although this east neighbor has children. But in the
calculations, four children of this neighbor are used. These children are the second,
third, sixth and seventh children of the second child of the east neighbor of the first

child’s parent.
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If the north neighbor of the parent of the first child is not set as null and it has no
children, it is set as the north neighbor of the first child. However, if it has children,
fourth child of the north neighbor of first child’s parent is set as the north neighbor of
the first child. If this cell has also children, third, fourth, seventh and eighth children

of this cell are used in flux calculations as the surface neighbors.

Finally, if the top neighbor of the parent of the first child is not set as null and it has
no children, the top neighbor of the parent of the first child is set as the top neighbor
of the first child. However, if it has children, fifth child of the top neighbor of first
child’s parent is set as the top neighbor of the first child. If this cell has also children,

fifth, sixth, seventh and eighth children of this cell are used in flux calculations.

As it is mentioned before, a cell has maximum twenty six neighbors. Six of them are
surface neighbors and they are stored. Determination of these neighbors was
explained here for the first child of a parent cell. Other twelve neighbors are edge
neighbors. These are determined by means of surface neighbors of a cell. But
sometimes a cell has no edge neighbor along one of its edges. The reason of this case
is that the level of the surface neighbor is one lower than the level of the cell. The
rest of eight neighbors are the corner neighbors. Like edge neighbors, they are also

determined by means of surface neighbors of the cell.

Finally, in three-dimensional grid generation, there are three types of computational
cell: inside, outside and cut cells. Since the three-dimensional grid generation is very
difficult when compared to two-dimensional one, split cells are not handled. Instead,
these irregular cells which are not inside, outside or cut cells are recursively refined
until these three types are obtained. Consequently, the data structure is not as

complicated as in two-dimensional grid generation code.

It is beneficial to state that there are additional stored variables for computational and

cut cells. The pointers stored for computational cells are given below:
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e 5 words: Conservatives variables for continuity, x-momentum, y-

momentum, z-momentum and energy equations

e 8 words: Its eight corners

e 1 word: Its type

e 1 word: Its total cube index

e 2 words: Its refinement criteria

e 3 words: Divergence and curl of velocity vector and strength of the

entropy wave

e 5 words: For forcing functions

The pointers stored for cut cells are given below:

e 3 words: x, y and z centroidal coordinates of a cut cell
e 9 words: x, y and z corner coordinates of a triangle which forms the cut
surfaces

In two-dimensional grid generation, centroid and area of cut cells are calculated by
triangulation of the outside part of cut cells. In three-dimensional grid, centroid and
volume of cut cells are calculated by means of division of the outside part into
tetrahedrons. As a result, volumes and centroids of each tetrahedron are calculated
and summation of them gives the total volume. If four vertex coordinates of a
tetrahedron are known as shown in Figure 3.2, calculation of its volume is the

absolute value of scalar triple product. It is given in Equation 3.9.
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Figure 3.2 Coordinates of four vertex of a tetrahedron

Volume = ‘;1 ° (E X é)| (3.9
where

A=(a,—d)i +(a,—d,)]+(a, —dy)k

B=(b,—d)i +(b,—d,)]j+(b,—d,)k

C= (¢, _dl);“‘(cz _dz)]+(c3 _d3)l€
3.2 Initial Grid Generation and Geometry Adaptation

Three-dimensional grid generation is very similar to two-dimensional grid
generation. In order to generate three-dimensional grid, first of all, geometry is
introduced to the code and then uniform mesh is generated around the geometry. The
last step of grid generation is geometric adaptation and this is achieved in two steps:

box and cut cell adaptation.
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3.2.1 Creating Domain and Uniform Mesh Generation

As it is mentioned, introduction of the geometry around which the external flow will
be analyzed is the initial step of three-dimensional grid generation. Surface or
volume mesh of the geometry is used for the introduction according to the inside-
outside testing method. There are two different methods used for inside-outside
testing. One is ray casting which is explained in the previous chapter and the other is
a method which is associated with cross product and will be explained later. In order
to use both of these methods, both surface and volume meshes of the geometry are
required. Surface and volume meshes are composed of triangles and tetrahedrons,
respectively. After the generation of a mesh by means of GAMBIT software, it is
exported as a file whose extension is “.neu”. Examples of generated surface mesh
around a sphere and its output file from GAMBIT are shown in Figure 3.3 and
Appendix B, respectively.

Figure 3.3 Example surface mesh on a sphere

After the introduction of the geometry, uniform mesh is generated around the given
geometry. For example, if the uniform division number for the uniform mesh is set as
three, the root cell is divided three times successively. As a result, Figure 3.4d is

obtained.
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(a) Foot Cell (h) Desired Lesel=1

(o) Desived Lewrel=2 (d) Desired Lewel=3

Figure 3.4 Root cell and different uniform meshes with different uniform division

numbers

3.2.2 Inside-Outside Determination

As it is mentioned before, there are two different types of inside-outside testing
method. Cross product of a corner with volume mesh is the first method which is
used in the developed code. But the execution time of this testing method is very
long when it is compared to the ray casting method and, therefore, it is not preferred.
In spite of its ineffectiveness, this method is explained here because it is sometimes

used due to its reliability.
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In the first method, each of the tetrahedron meshes (volume meshes) of the given
geometry is tested whether a corner of a cell is inside of this tetrahedron or not.
Namely, if the volume mesh of the given geometry is composed of n-tetrahedrons,
each corner of a cell is tested n-times. Therefore, it takes long time. In addition, for
each tetrahedron, four terms are calculated. Figure 3.5 is an example of this method.
Point P can be considered one of the corners of a cell and vertices of any tetrahedron
are demonstrated as 1, 2, 3 and 4 in Figure 3.5. If all of the four terms, which are
computed by using Equations 3.10, 3.11, 3.12 and 3.13, are positive or all are
negative or all are zero, then the point P is inside of the tetrahedron. Otherwise, it is
outside of the tetrahedron [14]. In other words, if the signs of all terms are the same

then it means that this corner is inside of the tested tetrahedron.

1
Figure 3.5 Inside-outside determination of point P in 3D
Term 1= [|21]x|32[]®|P2| (3.10)
Term 2= [|31|x|43|]®|P3| (3.11)
Term 3= [|34(x|23|]®|P3| (3.12)
Term 4= [|41|x|24|]®|P4| (3.13)
where
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lab| = (a, —b,)i +(a, —b,)j+(a, ~b.)-k

Ray casting method was discussed in Chapter 2 for two-dimensional case. In this
case, a ray intersects with the line segments of the given geometry (line-line
intersection in two-dimensions). In three-dimensions, how many times a ray, which
is cast from one of the eight corners of a cell, is intersected with the triangular
surface meshes of a given geometry are counted. This type of intersection is line-
triangle intersection in three-dimensions and the determination of this type of

intersection is discussed in detail in reference [15].

After the inside-outside test of all corners of a cell, cell type is determined. If all of
the eight corners are inside the geometry then it is an inside cell. Otherwise, if all of
the eight corners are outside the geometry then it is an outside cell. Other cells which
have both inside and outside corners are set as cut cell. After the cell type

determination, geometric adaptation starts.
3.2.3 Geometric Adaptation

The purpose of the geometric adaptation in three-dimensions is the same as in the
two-dimensional case. However, in this part, curvature adaptation is not applied to
the geometry since the only application of box and cut cell adaptations is found to be
satisfactory. In addition, it is more complicated than box and cut cell adaptations for

three-dimensional case. This will be identified as a future work.

3.23.1 Box Adaptation

In order to obtain high resolution around the given geometry, box adaptation is an
important step of geometric adaptation. After the box adaptation around a sphere,
slice of Cartesian volume mesh in xy plane can be seen from Figure 3.6. Like two-

dimensional grid generation, one level rule is applied to the surface, edge and corner
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neighbors during geometric adaptation. Therefore, smooth grid is obtained as seen

Figure 3.6.

After the box adaptation, cut surfaces of cut cells are tried to be determined by
marching cubes algorithm. Marching squares algorithm was discussed in Chapter 2
and marching cubes is similar to the marching squares. In two-dimensions, cut edges
are tried to be found by means of total square index of a cell and a given table. In
three-dimensions, cut surfaces are determined by means of total cube index of a cell

and a table which is given in Appendix C.
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Figure 3.6 Application of box adaptation to sphere surface mesh exported from
GAMBIT



Numbering of edges and corners of a cell is shown in Figure 3.7. Like marching
squares algorithm, total cube index is calculated by examining the ¢ values of each
corner of a cell. Total cube indexes of outside and inside cell are 0 and 255,
respectively. Cube indexes of each corner according to their ¢ value used in the
developed code are given below:
e If ¢ of corner 0 =-1 then cube index = 1
« If gofcorner 1 =-1 then cube index =2
» If ¢ of corner 2 =-1 then cube index = 4
* If gofcorner 3 =-1 then cube index =8
* If gof corner 4 =-1 then cube index =16
* If ¢ of corner 5 =-1 then cube index = 32
* If ¢ of corner 6 = -1 then cube index = 64
* If ¢ of corner 7 =-1 then cube index = 128
Red: Edge Index
Black: Vertex Index

#

Figure 3.7 Numbering of edges and vertexes of a three dimensional cell
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For example, total cube index of a cell whose zeroth, first and second corners are
only inside of the geometry is 7. Cut edges of this cell and triangular cut surfaces are
found by means of the table in Appendix C. The row corresponds to this total cube

index in the triangle table is given below:

“{|z, 8, 3,||z, 1o, &,||10, 9, &, | -1, -1, -1, -1, -1, -1, -1}~

I

1# Triangle 2% Triangle 3" Triangle

According to this information, cut edges are 2, 8, 3, 10 and 9. When cut edges are
known, cut locations on cut edges are found the method given in reference [15]
which is called line-triangle intersection. After finding cut locations on these edges,
three triangles which pass along these cut locations can be drawn by means of
following the given sequence in the triangle table in Appendix C. Inside and outside
portions of the cell whose cube index is 7 are seen from the Figure 3.8a. According
to the table, this cell has three triangular cut surfaces as seen in Figure 3.8b. Corners
of the first triangle are on the second, eighth and third edges, respectively. Corners of
the second triangle are on the second, tenth and eighth edges, respectively. Corners

of the third triangle are on the tenth, ninth and eighth edges, respectively.
It is important to note that normal vectors of each triangular surface are pointing to

the outside part of the cell. This feature of triangles facilitates the flux, volume and

centroid calculations.
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(a) (b)
Figure 3.8 Marching Cube Algorithm

3.2.3.2  Cut Cell Adaptation

Cut cell adaptation is also very important part of geometric adaptation since both the
cut cells and their outside surface, edge and corner neighbors are refined. As a result,
critical regions such as shocks, expansion waves are easily detected and solution
refinement is applied to the grid in a more reliable manner. After the application of

cut cell adaptation to the Figure 3.6, Figure 3.9 is obtained.
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Figure 3.9 Cut cell adaptation
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CHAPTER 4

FLOW SOLVER

A Cartesian grid generation method for the solution of the steady-state Euler
equations was discussed in Chapters 2 and 3. In this chapter, first of all, integral form
of three-dimensional inviscid and compressible governing equations (Euler
Equations) is introduced. Then, spatial and temporal discretizations of these integral
forms of equations are discussed. Numerical flux construction schemes are explained
for three dimensional cases in order to calculate fluxes through the surfaces of the
cells. These schemes are the Approximate Riemann Solver of Roe and Liou’s
Advection Upstream Splitting method (AUSM). For most of the test cases, first-order
spatial accuracy is used for the conserved variables in the flux calculations in order
to use multigrid application. The developed solver couldn’t perform second order

flux calculations with multigrid applications.

The finite volume formulation of the three-dimensional conservative Euler equations
is achieved by using a cell-centered approach. Solution adaptation is used for
resolving more critical regions in the solution domain because the Cartesian grid is
very suitable for automatic grid generation. As a result of solution adaptation,
sufficient resolution around critical regions is obtained without increasing the total
grid number considerably. Primitive variables are reconstructed using the least
squares methods to achieve solution adaptation. In order to ensure accurate and
bounded values, limiters are employed in the reconstruction process. Divergence and
curl of velocity vector and the strength of the entropy wave are used for resolving the
critical regions. The combination of these three criteria is expected to give better

results than a single one.
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Multigrid convergence acceleration technique (Full Approximation scheme) is used
in order to increase the convergence rate. Firstly, the problem under consideration is
solved on a fine mesh. Then the grid are coarsened and refined successively in order

to obtain the improved solution in a short time.
4.1 Three Dimensional Euler Equations

In the developed code, discretized forms of the integral equations are used; therefore,

firstly, it is beneficial to introduce integral conservative form of Euler Equations.

%jng +§(Fon)dA=0 (4.1)

Here, q is a vector of conserved variables and (Fen) is a vector of fluxes

perpendicular to the surface of a cell where the flux through this surface is

calculated. 4 and Q are the area of this surface and the volume of this cell,

respectively. n = (nx,ny,nz)T is the normal vector which is pointing the outside of

the cell and F is defined as F=F,i +F j+F.k .

P
pu
q=|pv (4.2)
Yo %
pE
pu ol ow
pu’ +p puv puw
F.=| puv , F, = pl+pl, F=|pw (4.3)
puw pvw pw’ +p
puH pvH owH
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Dot product of the flux and normal vectors gives the fluxes perpendicular to the

surface and it is defined as @ and given in Equation (4.4).

PV,
puV, + pn,
Q= pvlV, +pn, (4.4)
pwV, + pn.
pV H

where V, =un_+vn, +wn_ is the normal velocity to the surface pointing the outside

of the cell, p is the density of the fluid, Vv =ui +vj + wk is the fluid velocity vector.
E is the specific total energy, H is the specific total enthalpy and p is the fluid
static pressure. Thermodynamic relations regarding £, H and p are given in the

following equations.

2 2 2
u +v +w

E= e+—2 (4.5)
H:E+% (4.6)
p = pe(y—1) = p(y = 1)(E —%) (4.7)

where e i1s the specific internal energy and y = c,/c, is the ratio of specific heats. In
the developed code, initial values of some variables are chosen close to unity in order
to decrease the computational load. For example, far-field density and static pressure
are chosen as 1 and 1/y, respectively. Far-field speed of sound is calculated as 1 by

using the following equation.

[Py
¢, = 4.8
w (4.8)
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As a result, magnitude of the far-field velocity vector, |Vv|[, is obtained directly as the

input Mach number.
4.1.1 Spatial Discretization of Euler Equations

Integral form of Euler Equations is solved easily by using finite volume method.
Firstly, physical domain is divided into cells whose control volumes do not change in
time. Therefore, flow variables can be stored at the centroids of cells and it can be
assumed that they do not vary inside of the control volume. As a result, it is possible

to write

0 aq
—[gdQ == 4.9
ot iq ot (49

Moreover, the surface integral in Equation (4.1) can be approximated by the sum of
the fluxes through each face of a control volume. Consequently, spatial discretized

form of the Equation (4.1) becomes

8q nFaces
S Nouy (4.10)
R

Residuals of a cell are nonlinear functions of the conservative variables and they may

be defined as

nFaces

Res(q)= Y @ 4, (4.11)

i=1

As aresult, Equation (4.10) may be written as
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99 __Res(q)
ot Q

Finally, it is important to note that choosing the appropriate numerical flux

(4.12)

construction scheme is very important to obtain the accurate results from spatial

discretization.
4.1.2 Temporal Discretization of Euler Equations

A separate discretization in time is required for the solver part of the developed code.
Although the steady-state Euler Equations are solved, temporal discretization is
necessary for obtaining zero residuals quickly by means of multistage time stepping.

Left hand side of Equation (4.12) is discretized in time as the equation given below.

n+l __ yn
a_9v -a (4.13)
ot At

It is important to note that residuals of a cell is a function of flow variables as seen in
Equation 4.11; therefore, time step at which the residuals are calculated determines
the temporal discretization scheme. In other words, if the residuals are calculated by
using flow variables obtained at time steps n and (n + 1), this scheme is called

implicit scheme and can be given by

q"' -q" 1 ntl
A 1 __ R 4.14
~ Q[ es(q )] (4.14)

Otherwise, if the residuals are calculated by using flow variables obtained at the n

time step, this scheme is called explicit scheme and can be given by

qn+l _qn 1 ,
-——=-—|R 4.1
" Q[ es(@")] (4.15)

59



O(R
where Res(q"*') is equal to Res(q""") = Res(q") +%(q"“ —Qq") according to

the Taylor Series when the higher orders are neglected.
4.1.2.1 Multistage Time Stepping (Runge-Kutta Method)
The discretized Euler equations are solved by starting from a known initial solution

in the explicit multistage time stepping method. Three-stage time stepping scheme is

given by

q"=q"
L0 UalAtRes(qO)
q =q o)
1
q’=q’— UazAtges(q ) “.16)

R va,AtRes(q*)
Q

Residuals are found by using this initial solution. Then the improved solutions are
obtained by means of some iteration. In Equation (4.16), «, denotes the stage
coefficients and At is the time step. CFL numbers and stage coefficients for 3, 4 and
5 stages time stepping are presented in Table 4.1 which is taken from reference [3].

For the results in the developed code, three-stage time stepping scheme is used with

the first order accuracy.
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Table 4.1 Stage coefficients and CFL numbers for the first order multistage scheme
for two dimensional problems

3 4 5
v 1.5 2.0 2.5
a, 0.1481 0.0833 0.0533
a, 0.4 0.2069 0.1263
a, 1.0 0.4265 0.2375
a, 1.0 0.4414
a, 1.0

Table 4.2 Stage coefficients and CFL number for the first order two-stage scheme
for three dimensional problems

2
v 1.0
a, 0.4361
a, 1.0

4.1.2.2 Local Time Step

The main disadvantage of explicit multistage scheme is the limitation on the time
step. It cannot be chosen arbitrarily because of the stability problems. Therefore,
computation of local time step of each cell is an important issue. It depends on the
cell size and the flow properties. It is important to note that there are large size

differences between outside and cut cells in Cartesian method.

For an unsteady flow, the minimum local time step is chosen among the all
calculated local time steps for each cell and it is used for all cells and this is a big
disadvantage for convergence rate. On the other hand, for steady problems, every cell
has its own local time step and these values are used for each cell during the

calculations of discretized governing equations. Hence, local time stepping for steady
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problems is a valuable option to increase the convergence rate. Namely, steady
problems are not restricted to use only the minimum local time step during the

calculation.

In two-dimensional problems, local time step of each cell is calculated by using the

following equation

At 1

= 4.17
A Y +¥ +17)

cell x y

where W, and ¥ are the convective spectral radii and they are calculated by using

the absolute values of the projections of edges (S, and S,) in x and y directions as

follows:

1 nEdges
W= (e 28, (4.18)
i=1
1 nEdges
¥, = (e 208, (4.19)
i=1

where c..y 1s the local speed of sound which is calculated by using the flow variables

stored at the cell centroid.

In three-dimensional problems, local time step of each cell is calculated by means of

the following equation

At 1

Q nFaces (420)
el Z(ccell + Vn )i Ai
i=1
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where V, is the normal velocity to a face and 4, is the area of this face. As it is seen

from Equation (4.20), local time step of a cell have to be calculated at every iteration

since normal velocity and local speed of sound are changing continuously.

4.2 Flux Computation

One of the most important part of three-dimensional flow solver is the calculation of
fluxes, @;, through each face. In this study, two different methods are used for the
calculation of fluxes. These are approximate Riemann solver of Roe [10], [16] and
[17] and Liou’s Advection Upstream Splitting Method (AUSM) [16], [18] and [11].
In the two-dimensional code, the former one is used for most of the cases, while the

latter one is used for the most of the cases in the three-dimensional code.
4.2.1 Approximate Riemann Solver of Roe

Fluxes for each face are calculated at the mid-point of the face by using the flow
variables of two neighboring cells. The flow variables of the cell whose flux value
will be calculated are denoted as the left side and the neighboring cell is represented

as right side.

1 1<
Py, 0r) = [@) + @(@)] -2 XA [AV, R, (4.21)
k=1
where
oV, PV,
puV, + pn, puvV, + pn,
@ )=|pvV,+pn, |, @Qg)=|pvV, +pn, (4.22)
pwV, + pn, pwV, + pn,
pV,H ] PV, H R
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It is important to note that third term at the right hand side of Equation (4.21) is

calculated by using Roe-averaged quantities. These quantities are given below.

PrL = PLPR (4.23)

Ug+/ Pr TULAPL
Ug, = 424
RL VPR TA AL 429

VR Pr T VLA PL
Vg = 425
RL VPR TA AL 429

WAl Pr T WA AL
WrL = 4.26
“T Ja e

H. = Hgpr +Hi AP

2 2 2
u +V +w,
Cre =\/(71)(H LT j (4.28)

2

The normal velocity calculated by using Roe-averaged values is presented in the

following equation
(V )RL SUR Ny T Vg Ny, +We N1, (4.29)

n

Eigen values can be calculated by using the calculated normal velocity as

_(I/n )RL ~ CrL |
Ve
A= (Ve (4.30)
Ve
_(Vn )RL *+ Cre |
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while the wave strengths are computed by

AV =

where Ap=pg—p., Ap=pg—p, Au=ug—u , Av=vg
and &7, = (1, ~(

Ap — pg Cr AV,

2
2cq,

2
CrL
n,Aw—n_Av

2 2
n, +n,

n.n,Av+n.n Aw B

2 2
n, +n,

Ap + pg cr AV,

2

2cq,

Vn )L :

Au

Finally, right characteristic vectors are given below:

1
UpL = CrL,
VeL —CrL",

WaL ~CrLM.

Hg —cre (Vn )RL

1 0
Ug, 0
VRL = PR
WaL PrLA,

o
2

2 2 2
where O =up + vy +Wq -
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4.31)

-V, Aw=wy —w

0 1
2 2 +
PrL (”y n;) UpL T CrN,
PrL N, Ve T CrL1,
PrLi N, WrL T CrL,

Pr. (Wt n,— Vall.) Pre [(Vn )RL n,

—UgL ] Hg +cg (Vn )RL

(4.32)



4.2.2 Liou’s Advection Upstream Splitting Method (AUSM)

This method is chosen for the developed code since it is less complicated and
expensive than Van Leer and Steger-Warming flux splitting methods. In this method,

Mach number and pressure appearing in the convection flux terms are split.

CD(qL’qR) Z%[M/(F’(qL)"‘FI(qR))_‘M%

1
2

(F’(qR)—F'(qL))}p% 433)

Flux values may be written as

P 0 Jolé 0
pu ny puc ny
©=V,|pv |+p n, |=M| pvc |+pn, |=M-F+p (4.34)
pw n, pwe n,
pPH 0 pHc 0
where
pPe Pe
puc puc
F'(@,)=| pve and  F(qg) =| pve (4.35)
pwe pwce
pHc pHc

Split Mach number M Y and split pressure p y are the average of left and right
2 2

sides.

M, :%(ME +MI;) P/ =%(pl +p§) (4.36)

where
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L, +1p M | <1
M} = 14 (4.37)
E(ML +M ) M |>1

1
—Z(MR —1) [Mg|<1

Mg =1, (4.38)
E(MR—|MR|) |MR|>1

2-M_ |[M_|<1
M, :

—2-My |Mg|<1
Pr =PrMg L
MR

My >1 (4.40)

4.3 Initial Guess and Boundary Conditions

As it is mentioned before, the discretized Euler equations are solved by starting from
a known initial solution in the explicit multistage time stepping method. Therefore,

the far-field boundary conditions are set as the initial guess for all cells.

For external fluid flows, there are two types of boundary conditions. These are far-
field and solid wall boundary conditions. The first boundary condition is necessary
for a cell whose neighbor is the far-field. In this case, ghost cell whose size is the
same as the size of the cell is used and flow variables for this ghost cell are equated
to the far-field conditions. Flow variables of the ghost cell and the cell, which
neighbors the far-field, are assigned to the right and left states, respectively, for the

flux calculations.
The second boundary condition is necessary for cut or split cells. The flux through

the interface between a cut cell and the given geometry is also calculated by means

of a ghost cell whose size, density, pressure and specific total enthalpy are the same
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as this cut cell. The velocity components of the ghost cell in normal and tangential
directions are the same as the magnitudes of the cell. The only difference is the
direction of the normal component of the velocity vector. These properties are

depicted for two-dimensions in Figure 4.1.

| | V; IR ......................... GhOSt Ce]].

> | Pr=FL

P P Hy

Figure 4.1 Example of a ghost cell in 2D

4.4 Multigrid Method

Fedorenko [19] and [20] developed the first multigrid scheme to solve Poisson
equations. This scheme was then modified in order to use it for elliptic boundary
value problems by mathematicians. But the effective multigrid method was
developed by Brandt [21]. In addition, multigrid method for nonlinear problems was
developed by Brandt and this method is called Full Approximation Storage (FAS)
scheme. Another achievement regarding multigrid method is Full Multigrid (FMG)
scheme. This scheme is based on the nested iteration and multigrid method [22]. The
last improved multigrid method is Algebraic Multigrid (AMG) method. Multigrid
method is mostly applied to linear and nonlinear boundary value problems. Other

applications are hyperbolic, elliptic and Eigen value problems.
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The purpose of the multigrid method is to accelerate the convergence rate of a
problem. Multigrid method is based on two principles. The first one is error
smoothing. High frequency errors are tried to be eliminated effectively in this
principle by starting with an initial guess and using some iterative methods such as
Jacobi or Gauss Seidel. Although high frequency errors are smoothed after some
iterations in this step, low frequency errors improved slightly. The other principle is
coarse grid principle and this principle tries to eliminate low frequency errors by
using coarse level of grids. This is achieved by transforming the solutions from the
present grid to the coarsened grids and performing iterations on these grids.
Transforming the solutions from the present grid to the coarsened grids is called
restriction. As a result, low frequency errors on the present grid act as high frequency
errors on the coarsened grids. Hence, they can be eliminated iteratively on the
coarsened grids. Finally, solutions which are obtained by using coarsened grids are
interpolated to the fine grid and this process is called prolongation. In other words,
low and high frequency errors are tried to be eliminated by using different levels of

grids [23].

4.4.1 Multigrid Method for Linear Problems

The matrix notation in the following equation denotes the system of linear equations
[24].
Ax =b (4.41)

where X is the exact solution of this system and Yy is the approximation to the exact
solution. Bold symbols are used to indicate the vectors. x" and y" notations are used
to indicate that vectors are belong to the € level of mesh. Error vector is found by
using

X—-y=e (4.42)

Residual vector is calculated easily for linear problems as follows
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r=b- Ay (4.43)

where r denotes the residual vector. Residual vector becomes zero if and only if the

error vector becomes zero since the system is linear. Therefore

Ae =r (4.44)

Finally, the improved approximate solutions are obtained by using error vector.

y*“=y+e (4.45)

Multigrid method is generally composed of four steps: (i) fine grid iterations, (ii)

restriction, (iii) prolongation and (iv) correction and final iterations [25].

(i) Fine Grid Iterations: Initially, some iteration is performed on the finest mesh
with mesh spacing % in order to reduce high frequency errors. After these iterations,
approximate solutions, which are denoted y”, are obtained. After the implementation
of these solutions into Equation (4.43), residual vector r” on this mesh level is found

as

(= - Aty (4.46)

(ii) Restriction: In this step, mesh spacing is increased from 4 to ch. This new mesh
is coarser than the finest mesh. Iterations are performed on this new mesh in order to
eliminate low frequency errors. Generally, ¢ index is chosen as 2. This facilitates the
coarsening algorithm in Cartesian grids since transforming the mesh spacing from 4

to 24 is to delete children of a parent and to set this parent as a computational cell.

. . . . 2 .
In order to perform iterations on this coarse mesh, residual vector, r " and coefficient

matrix, A" on the coarse level mesh are required. Transfer of residual vector on the
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fine grid with mesh spacing / to mesh spacing 2/ is called restriction process and the

operator used for this transfer is called restriction operator and denoted by 7"

It =r (4.47)

This transfer is achieved by averaging the residual vectors of children in Cartesian
grids. Figure 4.2 depicts the transfer of residual vectors of children to their parent for

two dimensional heat problems.

Figure 4.2 Restriction of residual vector in 2D

r2 = C%(r "), (4.48)

i=1

After the transfer of residual vector, it is time to find coefficient matrix on the grid
whose mesh spacing is 24. The error vector on 2/ level mesh is set as zero and then
iterations are performed to find the improved solution for error vector. Gauss Seidel
method is chosen for the iterations in the developed code. This process is given in the

following equation
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Ae =r* (4.49)

The improved error vector, which is found by using Equation 4.49, can be thought to

hnew) \whose low and

be the low frequency errors. Improved approximate solution y
high frequency errors are decreased effectively and rapidly, are obtained by

interpolating and adding these errors to the approximate solution y”.

(iii) Prolongation: Error vectors which are found on the mesh with mesh spacing 2/
are interpolated to the mesh whose spacing is 4. In a coarse grid, there are fewer
points than the fine grid. Namely, interpolated information number on the coarse grid
is lower. Therefore, interpolation operator is used. As a result, prolonged error
vectors are obtained and these are denoted by e ”. In the code, which is developed for

solution of two dimensional heat transfer problem, linear interpolation operator, 13, ,

is used. For this code, linear interpolation process is given in the following equation

for the third child of the parent whose error vector is denoted by e;” .

Il e’ =e” (4.50)

or

2h 2h 2h 2h
e,,,:9e1 +3ey" +3e)" +e;”

16

(4.51)
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Figure 4.3 Prolongation of error vector in 2D

(iv) Correction and Final Iterations: After the calculation of error vectors for the
fine grid in the third step, approximate solutions, which are calculated in the first
step, are corrected by these error vectors and as a result, improved approximate

solutions are obtained.

h

y' e =yt pet (4.52)
Both low frequency errors and the difference between the approximate solution and
the exact solution are decreased by this correction. Finally, since the approximations
are used during the restriction and prolongation processes, a few iterations are

required in order to decrease the effect of these approximations on the solution.

Initially, multigrid method was tested for two dimensional heat transfer problems
since it is a linear problem. Afterwards, multigrid application is implemented to
Euler solver. Examples of multigrid cycles are given in Figure 4.4 and an example of

mesh levels which was used for heat transfer problem is given in Figure 4.5.
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(a) W-cycle

(b) V-cycle
Figure 4.4 Multigrid cycles

The coarsestmesh
{4k level)

Coarse mesh
(2k level)

RESTRICTION
PROLONGATION

The Finest mesh
{f level)

Figure 4.5 Different levels of meshes used in multigrid method
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4.4.2 Multigrid Method for Nonlinear Problems

Studies of Jameson [26] and De Zeeuw [4] are very helpful for the implementation of
multigrid method to Euler solvers. There are two possible methods for solving
nonlinear problems with using multigrid method. These are Newton method and Full
Approximation Storage (FAS) scheme. FAS method, which is developed for solving
Euler Equations, is used in the code since the governing equations are nonlinear.

Nonlinear systems of equations can be given as follows in matrix notation.
A(x)=b (4.53)

where X and y are the exact and approximate solutions, respectively. The notation
A(.), rather than A, indicates the nonlinear coefficient matrix. Error and residual

vector are given by in Equations 4.54 and 4.55, respectively.

e=Xx-y (4.54)
and

r=b—A(y) (4.55)

respectively. The following equation is obtained by subtracting Equation (4.55) from
Equation (4.53).

A(x)—A(y)=r (4.56)

Although, error vector is the difference between the exact and approximate solution
(Equation 4.54), it is not concluded that €= A(x)—A(y). The reason of this
condition is that matrix coefficient is nonlinear. The term (y + €) can be written in

Equation (4.56) instead of using the exact solution X. As a result, the following

equation is obtained.
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Aly +e)-A(y)=r (4.57)

After some iteration is performed on the finest grid, approximate solution y” on the
mesh with mesh spacing / is obtained and this solution is improved by using error
vector on this level of mesh. This process is summarized below:

e Error vector on the grid with mesh spacing 24 is found by using the following

equation.
A2h(y2h +e2h)_A2h(y2h):r2h (4.58)

e The unknowns in Equation 4.58 are the approximate solution and residual

vector. These are found by using

y* =1"y" (4.59)
and

=12t =1 o - 4" (y")] (4.60)

respectively.

e As aresult, improved approximate solution is obtained as
yh(new) =yh +12hhe2h (4,61)
The effects of the multigrid method to the residuals and the convergence rate for the
two and three dimensional Euler problems will be examined in Chapter 5 on
discussion of results. Now, the implementation of multigrid method to the developed
code is summarized. Like linear problems, implementation of multigrid method to
nonlinear problems is achieved in four steps. These steps are (i) fine grid iterations,

(i1) restriction, (ii1) prolongation, and (iv) correction and final iterations.
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(i) Fine grid iterations: Initially, some iterations are performed on the finest mesh
with mesh spacing % by using explicit multistage time stepping scheme in order to

solve discretized Euler equations as follows:

q, = initial _guess
q = -0 [Res(a) + FF]

............... (4.62)

g =q —u“;ft [Res(q”, ) +FF']

where FF" term is the forcing function and this term is initially set as zero for the
computational cells which form the finest grid. After the iterations on the finest
mesh, high frequency errors are effectively reduced but low frequency errors are
slightly reduced. Therefore, residual vectors on coarser grids are utilized to decrease
these errors on the finest mesh. The last process in this step is the calculation of the

residual vector on the finest mesh, which is denoted by Res(q”), at the end of the

iterations.

(i) Restriction: In this step, the finest mesh with mesh spacing / is coarsened to 24,

4h and 8h levels of meshes. The levels of meshes are depicted in Figure 4.6.

| ILI [I J—-_!:_LI:!I. I] _h._l_,Jl_._ ] ].._I] l i_
= 1} 1
ﬁ?“?’.l'i‘::l.?irﬂﬁ PR
(&1 Alevel of grid [k 28 level of arid
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Figure 4.6 Multigrid level settings

Transfer of the grid from 4 level to 24 level is summarized in order to explain
coarsening process. First of all, parents, whose children are all computational cells,
are flagged [27]. For example, blue cell in the two-dimensional grid of Figure 4.7a, is
a parent cell. All of its four children are computational cells. Namely, any one of its
children has children. On the other hand, green cell in Figure 4.7b is also a parent
cell but its first child is not a computational cell. Hence, the green cell is not flagged.

Parents are flagged by using a pointer which is called perform.
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(a) h and 24 levels of multigrids
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Figure 4.7 Examples of coarsening process

When the flagging process is completed, testing of one level rule is applied to the
flagged parent. In other words, if the flagged parent cells do not violate the one level
rule when they are coarsened, they are set as computational cells. This setting is
performed by using another pointer which is called compcell. Instead of deleting
children of a parent, which will be coarsened and set as a computational cell, it is

assumed that it has no children by using this pointer.

There are two flagged parents in Figure 4.8a. These are pink and green cells. These
cells are flagged since all of their children are computational cells. After the testing
of one level rule, green cell is coarsened and it becomes a computational cell in the
grid with mesh spacing 2/ since it does not violate the one level rule when it is
coarsened. This is seen from Figure 4.8b. On the other hand, if the pink cell was
coarsened, it would violate the one level rule as seen from Figure 4.8c. Therefore,
although it was flagged in the flagging process, it is not coarsened in the grid with 24

spacing not to violate one level rule as seen from Figure 4.8b.
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(a) & level of multigrid

(b) 24 level of multigrid which is formed with testing one level rule
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(c) 2h level of multigrid which is formed without testing one level rule

Figure 4.8 Examples of one level rule testing process

When a coarsened grid is obtained, restriction of approximate solutions and forcing
functions of the computational cells, which form the grid with 24 mesh spacing, are

required. These are calculated by using

nChildren |
i=1 . o

—o—— For parent cellsin h level of multigrid

2h 2h ~h Z (Q)l
q, =1,'9, = i1 (4.63)
q., For leaf cellsin h level of multigrid
and
A2h
FF>" =1, [Res(q") +FF" |- Res(q2") (4.64)

respectively, where
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nChildren

z (B"),  For parent cellsin h level of multigrid
i=1

1 [p']= (4.65)

B For leaf cellsin h level of multigrid

A2
I} and I, are volume weighted collection and residual collection operators,

respectively.

After the determination of approximate solutions and forcing function for
computational cells for the 24 level of multigrid, new approximate solutions are

found as

............... (4.66)

Finally, new residual vectors, Res(q>"), are calculated by using the solutions of

Equation (4.66) if higher levels of multigrid are used in the multigrid method such as
4h and 8h.

(iii) Prolongation: The purpose of this step is to interpolate the approximate
solutions, which are calculated in the restriction process. The following equation

exemplifies this process with the interpolation of approximate solutions which are

calculated for 44 level of multigrid to the finer multigrid with mesh spacing 2.

@ a3+ 1o 1) (467
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where I} is the prolongation operator and there are two different prolongation

operators. These are gradient and injection operators which are given as

2 (g*)=v(g* )edr (4.68)

and

g*)=q* (4.69)

, respectively. Injection operator is used in this work due to its simplicity. V-cycle
and saw-tooth cycle are tested for the solution of Euler Equations in Chapter 5 during
the discussion of results. The only difference between these cycles is that multistage
time stepping scheme is also applied to the prolongation step in V-cycle. For this

time stepping scheme, initial guess is taken as the improved approximate solutions,

2h(new)

d, , and forcing functions are taken as the same values in the restriction step. In
order to use the same forcing function values in restriction and prolongation steps,
forcing function, which is calculated in the restriction step, must be stored. This
causes storage of excessive number of variables. When the convergence rates of V-
cycle and saw-tooth cycle are compared, a slight difference is observed. This will be
verified in Chapter 5 during the discussion of results. Therefore, saw-tooth cycle is
mostly used in this work due to its less memory requirement.

(iv) Correction and final iterations: In the prolongation step, improved

h(new)

approximation solutions of the finest mesh, q are calculated. Then, these values

are substituted into the following equations and some iteration is performed.

qg — q h(new)

q' =q —u“ﬁt [Res(q!) + FF"]

............... (4.69)

A
al, = —v 22 [Res(a )+ FF]
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As a result, approximate solutions, whose low and high frequency errors are reduced,

are obtained.

4.4.3 Importance of Split Cells in Multigrid Application

In literature, previous suggestions for eliminating irregular cells in the mesh
generation are the recursive refinement until these cells vanish with refinement
application. However, the fundamental principle of multigrid method is to eliminate
the low frequency errors by using coarser meshes. Therefore, split cells are mostly
required for multigrid applications as mentioned before since irregular cells form at
the coarser multigrid levels. In other words, recursive refinement is not a solution for

irregular cell in multigrid application.

Especially, grids around multi-element airfoils require recursive refinements in order
to eliminate irregular cells. For example, the grid in Figure 4.9 is generated around
NLR7301 airfoil and a flap. Only five split cells remain in the grid after recursive
refinements and they are located at the trailing edges of the main airfoil and the flap.
Split cells are colored red in Figures 4.9 to 4.14. But they cannot be seen in Figure
4.9 since they are very small cells. Therefore, their types can be transferred from split
to outside cells by modifying the geometry. Irregular cells are vanished by erasing
the sharp trailing edges slightly where split cells are found. As a result of this erasing
process, split cells become outside cells. Moreover, this modification affects the
solution very slightly. By this method, complexities due to split cells are removed.
However, if the grid in Figure 4.9 is taken as the first level of multigrid, / level, one
coarser level becomes Figure 4.10. As it is seen in Figure 4.10, numbers of split cells
increase and this time, the elimination of these split cells by modifying the geometry
causes a little more solution errors. This can be also negligible. But as it is seen from
Figures 4.11 to 4.14, numbers of split cells are continuously increasing at each
coarser level. Finally, all the cells around the flap become split cells at the coarsest
level, 324 level and modifying the geometry means erasing the flap part wholly. But

this has a great effect on the solution and it can be said that the contributions of
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multigrid method in convergence rate go away. Six multigrid levels are used for the
tests in Section 5.1.4 and the coarsest grid which has 32/ mesh spacing is depicted in
Figure 4.15. The grids in Figures 4.14 and 4.15 are the same. Generated grid around
the geometry in Figure 4.15 is colored green and it is clearly seen that the leading
edge part of the flap is only eliminated by using split cells instead of eliminating the
whole flap.

Figure 4.9 4 multigrid level around NLR 7301 airfoil and flap
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Figure 4.11 4k multigrid level around NLR 7301 airfoil and flap
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Figure 4.12 84 multigrid level around NLR 7301 airfoil and flap
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Figure 4.13 164 multigrid level around NLR 7301 airfoil and flap
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Figure 4.14 32/ multigrid level around NLR 7301 airfoil and flap

Figure 4.15 The coarsest mesh for six level multigrids in Section 5.1.4
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4.5 Reconstruction

As it is mentioned before, flow variables are stored at the centroids of the cells and
first order schemes are used to calculate flux calculations through the faces.
Reconstruction is required for second order schemes and the determination of cells to
be refined and coarsened. Therefore, least squares reconstruction method is used in
the developed code to calculate gradients of flow variables in a cell and estimate the

value of these variables at a certain point inside the cell.
4.5.1 Least Squares (Minimum Energy) Reconstruction

The following equation is presented the linear reconstruction.

W=WC+ﬂ(x—xc)+ﬂ(y—yc)+ﬂ(z—26) (4.70)
dx dy dz

where W is the vector of primitive variables at a certain point in a cell and w, is the

vector of primitive variables at the centroid of this cell. x., y. and z. are the

coordinates of the centroid.

4.71)

In Equation (4.70), the only unknown is the gradient of primitive flow variables. In
order to find the unknown variables, the following equation is used. The derivation
and detailed information regarding this equation can be found in references [28],
[29], [11] and [8].

Lij (VW j ) =B,

(4.72)
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where VW, L and B are given below, respectively and this equation can be solved
by using Cramer’s rule. The subscript, n,c, together in the following equations

denotes the variables of the neighboring cells.

. Ax_
vw = d\%y (4.73)

Wz

nNeighboys nNeighboys _ _
S E [P N s BRI D X 2

=1 i=1

nNeighbors nNeighbors nNeighbors

Z(xn,c_xc)i(zn,c_zc)i Z(Zn,c_zc)j(yn,c_yc)i Zl(zn,c_zc)i(zn,c_zc)i

[~ nNeighbors

2w, -w,) e, —x)

i=1

nNeighbors

5| 2 w,.-w, ) (v, -».) 475)

nNeighbors

Z‘(W e =W ) (2, —2.)
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4.5.2 Gradient Limiting

The purpose of limiting procedure is to prevent obtaining variables at a certain point
in a cell, which exceeds the flow variables of this cell and its neighbors. When a

limiter is applied to Equation (4.70), it takes the following form

w=w, +¢B—Vj(x—xc)+%(y—yc)+%(z—zc)} (4.76)

Limiter value, ¢, must be between 0 and 1. The limiter value presented here is taken

from the paper written by Barth and Jespersen [29].

Q= min((ol,g02,¢)3,....,(pm,...) (4.77)
where
1
‘W j’c _ W ?ax
¢j — min ‘W e W ?ax,cell (478)
‘W e W Tin
‘W e —W ?in,cell
and
w™ = max(w_,w, ) (4.79)
w™ = min(W W, ) i=1,...,nNeighbors (4.80)
The values in Equation (4.78), WT“X’W” and w Tin’w” , are the maximum and

minimum values calculated in a cell by using Equation (4.70), respectively.
Generally, maximum and minimum primitive variables are obtained at the vertices of

the cell.
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4.5.3 Solution Refinement and Coarsening

As it is mentioned before, one of the most valuable properties of Cartesian grids is
that it enables solution refinement and coarsening. Hence, satisfactory resolution is
provided to critical regions such as shock locations and stagnation points by solution
refinement. Large gradients at these locations minimizes by refining cells. Moreover,

some regions where unnecessary high resolution exists are coarsened.

The criteria used in the developed code are the divergence and curl of the velocity

vectors and the strength of the entropy wave [10]. These criteria for each cell are

calculated by
7, =[Vev|Q® (4.81)
7o =|[Vxv|Q* (4.82)
Tew = |V -’V Q" (4.83)

Then, the standard deviations of these three criteria are calculated for the whole mesh

by the following equation

(4.81)

After the calculations of standard deviations of three criteria, it is time to determine

cells to be refined and coarsened. A cell is selected for refinement if (z, ). > o, for

any a and selected for coarsening if (ra )i <0.10, for all a.
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CHAPTER 5

RESULTS AND DISCUSSIONS

Inviscid Euler flow around single & multi-element airfoils, wing and projectile will
be analyzed in this chapter by using the codes which are developed for two and three
dimensional problems. Test cases are divided into three groups. The first group is
two-dimensional test cases, the second group is for the convergence history
investigations with multigrid application and the final group is three-dimensional test
cases. The results of these cases are compared with experimental and other numerical

results, depending upon availability.

5.1 Two Dimensional Test Problems

In this section, both single and multi-element airfoils are examined. Test problems
are tabulated below.

Table 5.2 Two dimensional test problems

Test Problem | Airfoil Profile M., a Reference
5.1.1 NACAO0012 0.85 1° [13]
5.1.2 NACAO0012 1.2 7° [13]
5.1.3 RAE2822 0.75 3° [13]
5.14 NLR7301+flap 0.185 6° [30]
5.1.5 30p30n 0.2 8° [31]
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5.1.1 Problem 1: Transonic Flow about NACA0012 Airfoil

The first problem is the inviscid flow around a NACAO0012 airfoil at a Mach number
of 0.85 and an angle of attack of 1°. NACAO0012 profile is widely used in order to
validate developed solvers since the experimental data for many Mach numbers and
angle of attacks are found easily in literature. Transonic flow is selected in order to
demonstrate that shock locations and surface pressure coefficients can be obtained
accurately and effectively by using Cartesian mesh. Importance of solution
adaptation is depicted by comparing solutions with and without solution adaptation.
As it is mentioned, solution adaptation enables to resolve high gradient regions by
automatic meshing without increasing total number of cells extremely. The far-field
boundary is approximately located 25 chords ahead of the airfoil similar to the
reference case. The developed flow solver is iterated until the average density
residual reaches 10, For the computed solutions, six levels of meshes are used in
the multigrid method. Table 5.2 gives the lift, drag coefficients, total number of cells
and convergence histories for the results which are computed by the developed
solver and extracted from reference [13]. The numerical solutions which are

extracted from reference [13] are obtained by using Euler equations.

Table 5.2 Comparison of results for transonic flow around NACAO0012 airfoil at M.,

=0.85anda=1
CL Cp # of cells Time (s)
Results from reference [13] 0.3584 0.058 20480 -
Results with solution 0.3219 0.0611 18641 1012
adaptation
Results without solution 0.2361 0.0763 3538 68
adaptation

As seen from the table 5.2, computed lift and drag coefficients of the solution-
adapted case are in agreement with the results in reference [13]. Solution-adapted

case underestimates the lift coefficient by 10 % and overestimates the drag
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coefficient by 5 %. In order to visualize the benefit of automatic solution adaptation
in Cartesian grid, geometric adapted-grid and both geometric and solution-adapted
grid are shown in Figures 5.1 and 5.2, respectively. Three refinement cycles are

applied to the grid in Figure 5.1 to obtain the grid in Figure 5.2.

Figure 5.1 Geometric-adapted grids around NACA 0012
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Figure 5.2 Both geometric and solution-adapted grids around NACA 0012

Pressure coefficient distribution is shown in Figure 5.3. Pressure contours of
solutions with and without solution adaptation are depicted in Figures 5.4 and 5.5,
respectively. Mach contours of solution-adapted case and extracted case from
reference [13] are shown in Figures 5.6 and 5.7, respectively. It is clearly seen in
Figure 5.3 that both upper and lower shock locations are captured well for the
solution-refined case. Approximately 1 % chord length error is seen for both upper
and lower shocks according to the reference solution. As seen in Figures 5.3 and 5.5,
lower shock cannot be captured for the geometric-adapted grid. Maximum pressure
loss occurs at the downstream of the shocks. As seen in Figures 5.6 and 5.7, Mach
contours are alike. Besides, Mach number reaches to 1.35 just before the upper shock

wave.
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Figure 5.3 Pressure coefficient distribution on NACA0012 airfoil at M= 0.85 and o
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Figure 5.5 Pressure contours of the grid without solution adaptation on NACA0012
airfoil at M,=0.85and o = 1
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Figure 5.6 Mach contours of the solution-adapted grid on NACAO0012 airfoil at M, =

0.85anda =1
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Figure 5.7 Mach contours in reference [13] on NACAO0012 airfoil at M= 0.85 and a

5.1.2 Problem 2: Supersonic Flow about NACA0012 Airfoil

The second problem is the flow around NACAO0012 airfoil at a Mach number of 1.2
and angle of attack of 7°. The purpose of this test case is to analyze whether the
developed solver captures bow and oblique shocks accurately. First and second order

schemes are used to calculate fluxes.

For all test cases in this section, the far-field boundary is approximately located 15
chords ahead of the airfoil. The developed flow solver is iterated until the average

density residual reaches 102, Multigrid method is not used due to some problems
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regarding second order scheme in the developed solver. Two refinement cycles are
applied to the grids. Table 5.3 gives the lift, drag coefficients, total number of cells
and convergence history for results which are computed by the developed solver and

extracted from reference [13].

Table 5.3 Comparison of results for supersonic flow around NACA0012 M= 1.2

and a =7°
Case # Descriptions of Test Cases C Cp # of Time
cells (s)
Case-1 First Order Scheme with 0.5236 0.162 11761 887
AUSM
Case-2 | Second Order Scheme with | 0.5216 0.156 13784 23241
AUSM without limiter
Case-3 | Second Order Scheme with | 0.5217 0.1556 14081 16515
AUSM with limiter

Case-4 First Order Scheme with 0.5201 0.1614 11717 1335
Roe’s flux differencing

method

Case-5 Second Order Scheme with 0.5219 0.156 13561 32211
Roe’s flux differencing

method without limiter

Case-6 Second Order Scheme with 0.5227 0.1555 13796 18733
Roe’s flux differencing

method with limiter

Case-7 Results from reference [13] | 0.5196 0.1543 10209 -

As seen from Table 5.3, computed lift and drag coefficients of the test cases are in
agreement with the results in reference [13]. For example, the third case
overestimates the lift coefficient by 0.4 % and overestimates the drag coefficient by
0.8 %. Pressure coefficient distributions of these cases are shown in Figures 5.8 and

5.9. Although pressure coefficient distributions are slightly different from each other,
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there are visible differences in pressure contours of the computed solutions, as seen

in Figure 5.10.
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Figure 5.8 Pressure coefficient distributions for 1%, 2" and 3™ test cases on

NACAO0012 airfoil at M,=1.2 and o = 7°
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Figure 5.9 Pressure coefficient distributions for 4™, 5™ and 6™ test cases on

NACAO0012 airfoil at M,=1.2 and o = 7°
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Figure 5.10 Pressure contours around NACA0012 at M,,= 1.2 and o = 7°
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Figure 5.11 Mach contours of test case-1 around NACA0012 at M,,= 1.2 and a = 7°

The reason of the differences in pressure contours is that there is pollution in second
order schemes, especially ones without limiter. As seen in Figures 5.10 and 5.11, a
strong bow shock exists before the leading edge of the airfoil and strength of this
shock becomes weaker near the far-field region of the domain. Although bow shock
is captured in second order schemes, pollution which is called carbuncle instability
exists in the computed solutions [32]. This instability affects the region in front of the
bow shock and the most visible pollution exists in the second order schemes without
limiters (case-2 and case-5). Since the limiters damp the oscillations in the solution,
absence of limiter causes more pollution. The bow shock is approximately located at

a 55 % chord length distance away from the leading edge.

5.1.3 Problem 3: Transonic Flow about RAE2822 Airfoil

The third problem is the flow around RAE2822 airfoil at a Mach number of 0.75 and
angle of attack of 3°. The purpose of this test case is to analyze flow around a non-

symmetric airfoil and to stress the importance of number of refinement cycles. For
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all test cases in this section, the far-field boundary is approximately located 10
chords ahead of the airfoil. The developed flow solver is iterated until the average
density residual reaches 10™'%. For the computed solutions, six levels of meshes are
used in the multigrid method. Table 5.4 gives the lift, drag coefficients, total number
of cells and convergence history for results which are computed by the developed

solver and extracted from reference [13].

Table 5.4 Comparison of results for transonic flow around RAE 2822 airfoil at M., =

0.75 and o = 3°

Case # | Descriptions of Test Cases C; Cp # of Time

cells (s)
Case-1 No Solution Refinement 0.7446 0.0705 2308 36
Case-2 One Refinement Cycle 0.8573 0.0546 4848 52
Case-3 Two Refinement Cycles 0.9214 0.0476 10029 163
Case-4 Three Refinement Cycles 0.9538 0.046 18492 428
Case-5 Four Refinement Cycles 0.9731 0.0446 32268 1477
Case-6 Five Refinement Cycles 0.9881 0.0444 54254 3478
Case-7 | Results from reference [13] | 1.1044 0.0448 20480 -

As seen from Table 5.4, computed lift and drag coefficients of the test cases are
directly proportional to the number of refinement cycles. For example, the sixth case
underestimates the lift coefficient by 10.5 % and underestimates the drag coefficient
by 0.9 %.As the number of refinement cycle increases, the differences between the
computed and reference coefficients decreases. Pressure coefficient distributions of

these cases are shown in Figure 5.12.
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Figure 5.12 Pressure coefficient distributions on RAE 2822 airfoil at M,,= 0.75 and

o=3°

As seen in Table 5.4 and Figure 5.12, the best results are the 5™ and 6™ cases where
numbers of refinement cycles are four and five, respectively. It is important to note
that when the number of refinement cycle exceeds five, very slight difference is
observed for the drag and lift coefficients although the convergence time increases
extremely. In other words, finer grids do not improve the solution accuracy but they
result in longer computations. Therefore, the optimum refinement cycle number for
this flow is five. Pressure and Mach contours of the 6™ case are given in Figures 5.13

and 5.14, respectively.
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Figure 5.13 Pressure contours of case-6 on RAE 2822 airfoil at M,,= 0.75 and o = 3°

Figure 5.14 Mach contours of case-6 on RAE 2822 airfoil at M,,= 0.75 and a = 3°
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As seen in Figure 5.14, Mach number just before the upper shock reaches to 1.4. In
addition, shock wave on the upper surface of the airfoil is accurately captured for the
6™ case since capturing the shock accurately depends on using finer mesh around the
shock. The grid, which is used for 6™ case, is shown in Figure 5.15. Finer meshes
around the shock are easily seen in this figure. As it is seen in Figure 5.12, results for
the lower surface pressure coefficient distributions are quite successful. However, the
upper surface pressure coefficient distributions around the leading edge region for

the 6™ case are slightly underestimated.

Figure 5.15 Grid used in the 6" case around RAE 2822 airfoil

5.1.4 Problem 4: Subsonic Flow about a Two-element Airfoil

The fourth problem is the flow around NLR7301 airfoil and flap at a Mach number
of 0.185 and angle of attack of 6°. The purpose of this test case is to analyze flow
around a multi-element airfoil. The far-field boundary is approximately located 15
chords ahead of the airfoil. The developed flow solver is iterated until the average

density residual reaches 102, For the computed solution, six levels of meshes are
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used in the multigrid method. The computed lift and drag coefficients are 1.49 and
0.1481, respectively. The comparison between the calculated and experimental [30]

pressure coefficient distributions are given in Figure 5.16.
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Figure 5.16 Pressure coefficient distribution on two-element airfoil at M., = 0.185

and a = 6°

It is clearly seen in Figure 5.16 that the peak on the upper surface is not captured in
this case. Hence, the underestimation of pressure coefficient results in lower lift
coefficient. One of the reason is the flow regime is not suitable for the code since this
flow is not compressible, it is an incompressible flow. Both the computed solution

and other numerical solution [33] cannot capture the peak although the other
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numerical results are obtained from the laminar flow solver. Finally, Mach contours

are depicted in Figure 5.17.
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Figure 5.17 Mach contours of two-element airfoil at M,,= 0.185 and a = 6°

5.1.5 Problem 5: Subsonic Flow about a Three-element Airfoil

The fifth problem is the flow around three-element airfoil at a Mach number of 0.2
and angle of attack of 8°. The far-field boundary is approximately located 15 chords
ahead of the airfoil. The developed flow solver is iterated until the average density
residual reaches 102 For the computed solution, four levels of meshes are used in
the multigrid method. The computed lift and drag coefficients are 1.28 and 0.1954,
respectively. The comparison between the calculated and experimental pressure
coefficient distributions are given in Figure 5.18. The Reynolds number for the
experimental case is 9x10°. As it is seen in this figure, pressure coefficient
distribution of the first element of the geometry cannot be captured due to the very

low far-field Mach number. In addition, upper surface pressures are underestimated.

111



Solution-adapted meshes around the geometry and the computed Mach contours are

depicted in Figures 5.19 and 5.20, respectively.

T
N o Experiment [31]
BF : Computed
-3 : ? IE|:|
-4 : @ o
- i 4
_3 : =] !:IDD
B H L & o
& I 1gs = S
2 b8 M R o »
N gﬁjﬂmg% %.‘ B o g g nnnjnnn;‘t |:|I:I
_'] : n"“" n mmnu__‘ﬁ m“ EE E =
C - ; i o
I:I __DE:HEF ; d # : o Huﬁ
- = ,% ,Wsn“w-m--ﬂk-.", s G .
- F‘n&‘ H fq‘%ﬂ o O 0 OOgooPpOpgno n":'ff"uuauf‘i*"
L o
—QD.E a 0z 04 . 08 1 1.2

06
chord

Figure 5.18 Pressure coefficient distributions on three-element airfoil at M,,= 0.2

and a = 8°
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Figure 5.19 Mach contours of three-eclement airfoil at M, = 0.2 and a = 8°
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Figure 5.20 Solution-adapted meshes around the three-element airfoil
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5.2 Convergence History with Multigrid Applications

All test cases in this section are performed for a flow around NACAO0012 airfoil at a
Mach number of 0.85 and angle of attack of 1° which is examined in the previous
section. Since the developed solver for this flow condition is already validated, it is
time to examine convergence histories for different aspects of multigrid application
such as using different multigrid cycles, levels of meshes or different prolongation
operators. First of all, performance of saw-tooth and V-cycles are examined. Then,
the performances of the injection and gradient prolongation operators are discussed.
Afterwards, the optimum number of steps, i.e. total number of mesh levels, is
determined. Finally, optimum iteration numbers on each step are found. Table 5.5

summarizes all the test cases.

Table 5.5 Test cases for multigrid application

Case-1 Determination of multigrid cycle for no solution refinement
Case-2 Determination of multigrid cycle for solution refinement
Case-3 Determination of prolongation operator for solution refinement
Case-4 Determination of the optimum number of multigrid levels
Case-5 Determination of iteration numbers for each multigrid level

Geometric-adapted and both geometric and solution-adapted grids, which are used in
this section, are given in Figures 5.21 and 5.22, respectively. Effects of multigrid
method on the 1 and 2™ test cases can be seen in Figures 5.23 and 5.24, respectively
and also in Tables 5.6 and 5.7, respectively. It is clearly seen that multigrid method
enables better convergence for the 1* test case, which is without solution refinement,
than the 2™ test case. According to the values in Tables 5.6 and 5.7, the ratio
between the convergence rates of the solutions with and without multigrid method is
about 7 % for the 1*' test case. On the other hand, the ratio between the convergence
rates of the solutions with and without multigrid method is about 10 % for the 2™ test
case. As a result of these ratios, the noticeable effect of multigrid method to the

convergence acceleration is verified. In Figures 5.23 and 5.24, there is a slight
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convergence rate difference between saw-tooth and V-cycles. But it is important to
note that forcing functions have to be stored for V-cycles and this causes higher
memory usage than the saw-tooth cycle. Since the convergence difference between
these cycles is low and saw-tooth cycle uses the memory more effectively, most of

the test cases in this study are performed by using saw-tooth cycle.

Figure 5.21 Geometric-adapted grid
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Figure 5.23 Convergence histories of the 1 test case
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Figure 5.24 Convergence histories of the 2" test case
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Table 5.6 Convergence histories of the 1% test case

Cycle Iteration Number Time (s)
No Multigrid 16405 16405 7907
Saw-tooth Cycle 49 3430 579
V-cycle 32 3840 535

Table 5.7 Convergence histories of the 2™ test case

Cycle Iteration Number Time(s)
No Multigrid 19660 19660 2894
Saw-tooth Cycle 80 5600 253
V-cycle 65 7800 284

As it was mentioned in the previous chapter, there are two different prolongation
operators, which are called injection and gradient operators. Results of the 3™ test
case, which can be seen in Figure 5.25 and Table 5.8 demonstrates that the
convergence rates of the solutions with injection and gradient operator are nearly
identical. Therefore, the simplest operator, which is injection, is used for most of the

test cases in this study.
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Figure 5.25 Convergence histories of the 3" test case
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Table 5.8 Convergence histories of the 3™ test case

Cycle Iteration # Time(s)
Saw-tooth cycle with injection operator 80 5600 253
Saw-tooth cycle with gradient operator 84 5880 257
V-cycle with injection operator 65 7800 284
V-cycle with gradient operator 63 7560 276

One of the factors, which has an important effect on the convergence rate in
multigrid method, is the number of multigrid levels. Since the performances of lower
number of levels are very low, convergence accelerations of 4 and more multigrid
levels are compared in the 4™ test case. As seen in Figure 5.26 and Table 5.9, six and
seven multigrid levels give the best results for denser meshes because denser meshes
require more coarse levels to eliminate low frequency errors effectively. But it is
important to note that six and seven multigrid levels may be too much for coarser
meshes. Therefore, it can be suggested that six and seven multigrid levels are
appropriate for denser meshes and three and four multigrid levels are suitable for

coarser meshes.
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Figure 5.26 Convergence histories of the 4™ test case
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Table 5.9 Convergence histories of the 4™ test case

Cycle Iteration # Time(s)
4 multigrid levels 187 9350 641
5 multigrid levels 112 6720 350
6 multigrid levels 80 5600 253
7 multigrid levels 72 5760 230
8 multigrid levels 74 6660 250

Finally, numbers of iterations on each multigrid level have to be determined in order
to get the maximum efficiency from the multigrid method. Convergence rate for
different number of iterations using six multigrid levels are analyzed and the results
of these tests are given in Figure 5.27 and Table 5.10. Iteration numbers between 10
and 20 give the best results for this condition. Therefore, the number of iterations is

chosen as 10 for the most test cases in this study.

123



30 iterations
29 iterations
- 20 terations
2 15 iterations
10 iterations
i A iterations
g i
o -4
W |
L
-B
B - o
2000 . 4000 G000
Iteration_number
1]
»
o
=
E -
m
=

™,

=

0 a0 100 140
Time(s)

200

Figure 5.27 Convergence histories of the 5" test case
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Table 5.10 Convergence histories of the 5™ test case

Cycle Iteration # Time(s)
30 iterations on each multigrid level 31 6510 302
25 iterations on each multigrid level 37 6475 296
20 iterations on each multigrid level 45 6300 289
15 iterations on each multigrid level 54 5670 272
10 iterations on each multigrid level 80 5600 253
5 iterations on each multigrid level 170 5950 297

5.3 Three Dimensional Test Cases

5.3.1 Transonic Flow about a Wing

The inviscid flow around a constant cross-section wing whose profile is NACA0012
airfoil is tested at a Mach number of 0.799 and an angle of attack of 2.26°. Aspect
ratio of this wing is chosen as 20 in order to diminish vortex effects at the wing tips
and obtain solutions as if the test is two dimensional. Hence, the solution can be
compared with the results of two dimensional experiments in reference [34]. In
addition, the computed results are compared with the inviscid results in reference

[35].

The far-field boundary is approximately located 5 times the maximum length of the
wing ahead of the wing. In other words, the domain size of the generated grid is 100
chords. For that reason, since the domain is too large when compared to the chord of
the wing section, obtaining finer grid near the input geometry is really difficult. The

developed flow solver is iterated until the average density residual reaches 10”. For
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the computed solutions, six levels of meshes used in the multigrid application. One
refinement cycle is applied to the geometric-adapted grid and it is given in Figure
5.28. Pressure coefficient distributions are shown in Figure 5.29 and Mach contours
of this case is shown in Figure 5.30. It is clearly seen in Figure 5.29 that both the
shock wave location and its peak point cannot be captured accurately due to coarse
grid although solution refinement is applied. But the number of refinement cycle is
not satisfactory. Moreover, the surface mesh of the wing exported from GAMBIT is

not very good due to large aspect ratio.

Figure 5.28 Slices of the solution-adapted grid
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Figure 5.29 Pressure coefficient distributions around the wing at M= 0.799 and a =
2.26°
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Figure 5.30 Mach contours in xz plane at y=0 at M,,= 0.799 and o = 2.26°

5.3.1 Transonic Flow about a Projectile

The inviscid flow around a secant-ogive-cylinder-boat tail projectile (SOCBT) with a
boat tail angle 7° is tested at a Mach number of 0.95 and an angle of attack of 0°. The
pressure coefficient distributions are compared with the experimental results
extracted from [36] and Mach contours are compared with the computed results in
reference [36]. The configuration of SOCBT can be found in both [37] and [38]. The
far-field boundary is located 10 times the maximum length of the projectile ahead of
the tail. The developed flow solver is iterated until the average density residual
reaches 10”7, One refinement cycle is applied to the geometric-adapted grid and a
slice, which is taken in xz plane at y=0, and the created surface mesh around the

projectile are given in Figures 5.31 and 5.32, respectively.
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Figure 5.31 A slice of the mesh in xz plane at y=0
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Figure 5.32 A created surface mesh around SOCBT

Pressure coefficient distributions are shown in Figure 5.33 and Mach contours of this
case and the reference are given in Figures 5.34 and 5.35, respectively. As it is seen
in Figures 5.33 and 5.34, there are two shock waves, one is at the midpoint of the
chord and the other is at the boat tail. The computed and experimental results are in
agreement. Finally, in order to eliminate oscillations in the solution, more solution

refinements are required.
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Figure 5.33 Pressure coefficient distributions at M= 0.95, a = 0° and f=7°
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CHAPTER 6

CONCLUSION

Five different test cases have been analyzed in order to verify the two dimensional
Euler solver. In the first case, the ability of capturing shock waves accurately is
investigated for transonic flow over NACAO0012 airfoil. The performance of the test
case with solution refinement is really satisfactory. Both the locations of shocks and
the peak point of pressure coefficients are captured very well. In other words, the

importance of refinement to the solutions is proved by this test case.

Moreover, first and second order flux calculation schemes are applied to the second
test case which is the supersonic flow with an angle of attack of 7° over NACA0012
airfoil. In second order schemes, instabilities have occurred just before the bow
shock wave. Although limiters damp these instabilities by arranging gradients
effectively, they are not eliminated completely. On the other hand, first order
schemes are in agreement with the reference solution. In addition, there is a problem
regarding second order schemes and multigrid methods. The code could not perform
second order scheme and multigrid method together. One of them gives meaningful
results apart from the other. The implementation of second order scheme and

multigrid method to the developed solver together can be given as a future work.

Another test case for RAE2822 airfoil is performed to find the optimum number of
refinement cycles. Increasing refinement cycles extremely does not give superior
results since this means to slow down the convergence rate. When the number of
refinement cycle is five or six for this test case, the most accurate results and the

satisfactory convergence rate are obtained.
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In the fourth and fifth test cases, the capability of Cartesian grids, which is automatic
mesh generation, is demonstrated. There are detectable differences between reference
and computed solutions for these test cases. Moreover, solutions on the airfoil
surface are not smooth. There are oscillations especially near the slat and the leading
edge of three-element airfoil. They can be easily seen in the figures of pressure
coefficient distributions. One of the reasons of these oscillations can be the large
variations in the cell size on the body. For example, it is possible to find cut cells
whose size is 10™* smaller than its neighboring outside cell. There is no agreement
between the reference and computed pressure coefficient distributions of the slat in
Figure 5.18. One of the reason can be the flow regime. In fact, the flow is an
incompressible flow but the solver tries to solve this problem by using Euler

equations.

Implementation of multigrid method has a valuable effect on the convergence rate.
All test cases in Section 5.2 validate the increase of convergence rate. But solutions
with second order schemes and multigrid application converge up to a value which is
not enough then they oscillate around this value. Being frozen the limiter values after
a certain point in the convergence is suggested in reference [9]. This method has

been implemented the solver but this hasn’t solved the convergence problem.
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APPENDIX A

SPLIT CELLS

There are six types of split cells. First of all, examples are given to demonstrate each
of these split cells. Classification of these cells depends on the former type and

number of cut points as it will be explained below.

1- ) Square index of this type of split cell is assigned to -15 since its former type is
outside cell according to the inside-outside testing and it has two cut points on the

edges of a cell.

2-) Square index of this type of split cell is assigned to -20 since its former type is
inside cell according to the inside-outside testing and it has two cut points on the

edges of a cell.

3-) Square index of this type of split cell is assigned to -25 since its former type is
outside cell according to the inside-outside testing and it has four cut points on the

edges of a cell.
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4- ) Square index of this type of split cell is assigned to -30 since its former type is
inside cell according to the inside-outside testing and it has four cut points on the

edges of a cell.

5-) This type of split cells are converted from cut cells. According to the inside-
outside testing, they are set as cut cells and their total square indexes are calculated.
Regular cut cells must have only two cut points but these cells have more than two
cut points. Therefore, these cells may be called as split-cut cells. Square indexes of
these cells were calculated when they were cut cells. These cells are converted from
cut cells to split cells. As a result, their types are changed but their square indexes

remain the same.

6- ) Split cell whose square index is assigned to -40 since these cells have more than

four cut points.
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1-) Split cell whose square index is equal to -15

There are four sub-cases.

p1,p2
p1.p2
(1) (2)
p1,p2 e
(3 (4)
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2-) Split cell whose square index is equal to -20

There are four sub-cases.

p3 PO

pO p3

(3) (4)

3-) Split cell whose square index is equal to -25

There are six sub-cases.

I-) Cutedges 3 & 2....ovviiniiiiiiiiiiiann. Split index=0
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3-)Cutedges3&0...ccvviiiiiiiiiiinn.. Split index=2
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5-) Cutedges2& 0.....coovviviiiiiiiinnnnn, Split index=4
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sq_index=9
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p3
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sq_index=6

6-) Cutedges 1& 0.......ccvvvviiiiiiinnnn. Split index=5

p0 p3 sq_index=13
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\
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sq_index=2

4-) Split cell whose square index is equal to -30

There are six sub-cases.

1-) Cutedges3 & 2...ccovviiiiiiiiiininn.n Split index=0
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2-)Cutedges3 & 1.covvviiiiiiiiiiiiian. Split index=1

p3 po

3-) Cutedges3&0...oovvvviniiiiiiiiiinnn... Split index=2

4-)Cutedges 2& 1....covviiiiiiiiiiiiinninn Split index=3
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5-) Cutedges2& 0....oovvvniiiiiiiiniinnn.. Split index=4

6-) Cutedges 1& 0.......ooviiiiiiiiiiinnn. Split index=5

p1 p2

5-) Split cell which is converted from cut cell

There are fourteen sub-cases.
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a) Split index=1

sq_index=11 sq_index=13

155

p0 p3

p1

b) Split index=2

sq_index=13

p1 P
I

p0

p3

p2

sq_index=14
b) Split index=3



-~ 8q_index=13

p0

/

Ed

sq_index=7 p1, p2

OR

PO, p3

sq_index=13

sq_index=7 p1

OR
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sg_index=13

PO

sq_index=T p1

b) Split index=2
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14-) Square index =10

a) Split index=1

sg_index=11

p0

p1

™ sq_index=14

p2

OR
sq_index=11

p0

p3

— sq_Iindex=14

p1, p2

OR
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sq_index=11

PO, p3

p1

+—— s5q_index=14

p2

b) Split index=2
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APPENDIX B

EXAMPLE OUTPUT FILE OF SURFACE MESH GENERATED
BY GAMBIT

CONTROL INFO 2.4.6 g
wx GAVBIT NEUTRAL FILE Total number of triangles formed surface mesh
sphere
PROGRAM: Gambit VERSION: 2.4.6
Jun 2009
NUMNP NELEM NGRPS  NBSETS NDFCD NDFVL
25 46 1 0 2 3
———N
ENDOFSECTION Total node number around sphere
NODAL COORDINATES 2.4.6
1 -1.98288972275e+000 2.61052384440e-001 0.00000000000e+000
2 -1.45577697798e+000 1.26273488645e-001 1.36556522965e+000
3 -1.22755301316e+000 1.51559232680e+000 4.42824455988e-001
4 1.66467887690e+000 -7.90424948610e-001 -7.77221099450e-001
5 -1.51263359096e-001 1.22057996444e+000 1.57711887523e+000
6 8.33244842460e-002 -3.52562841708e-001 1.96691547174e+000
7 -8.31638007524e-001 -1.26804513721e+000 1.30400910826e+000
8 -1.63860008609e+000 -1.14545623316e+000 5.40349496504e-002
9 -1.39349606421e+000 1.12940622517e+000 -8.84652642326e-001
10 -1.45570883917e+000 -2.15792594965e-001 -1.35438005431e+000
11 1.39315797478e-001 1.96367326596e+000 3.52956673159e-001
12 -3.82949059967e-001 1.83415696214e+000 -6.99441388313e-001
13 1.19730956832e+000 4.97101249450e-001 1.52293799788e+000
14 1.17281148967e+000 1.45628681471e+000 7.09747788310e-001
15 4.09300059745e-001 -1.51163265674e+000 1.24396148340e+000
16 1.36943001094e+000 -6.86750019647e-001 1.28570442001e+000
17 -2.05031944964e-001 -1.98846808698e+000 6.29012609109e-002
18 -7.44205012438e-001 -1.46075315461e+000 -1.14558243735e+000
19 1.98870882714e+000 2.01972285618e-001 6.51490344266€-002
20 1.02712841749e+000 1.52787645233e+000 -7.81409470374e-001
21 -2.39687456491e-001 8.96476377967e-001 -1.77168846780e+000
22 1.33810796503e+000 -1.48025166283e+000 1.35359109823e-001
23 7.18107022266e-001 -1.44912995140e+000 -1.17658178148e+000
24 -7.38694124748e-002 -5.51126718628e-001 -1.92114618130e+000
25 1.23662915548e+000 6.40886642735e-002 -1.57055435275e+000

ENDOFSECT 10N
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ELEMENTS/CELLS 2.4.6

N

N
WWWWWWWWWWwWwWwWwWwWwWwWwWwWwWwWwWwWwWwWwWwwWwwWwWwWwWwWwWwwWwwWwwWwwwwWwwWwwWwwWwwwww
WWWWWWWWWWwWwWwwWwWwWwWwWwWwWwWwWwWwwWwWwWwWwwWwWwWwWwWwWwWwwWwwWwwWwwwwWwwWwwWwwWwwwww

46
ENDOFSECTION

ELEMENT GROUP 2.4.6

WONNOOOUIUUNWWWRRPPFPONO U WE

fluid

46

GROUP: 1 ELEMENTS:
0
1 2 3
11 12 13
21 22 23
31 32 33
41 42 43 44 45
ENDOFSECTION

4
14
24
34

2 3

2 5

2 6

2 7

2 8

2 1

3 9

9 10
10 8

5 11
11 12
12 9

6 13
13 14
14 11

7 15
15 16
16 13

8 17
17 15
10 18
18 17
16 19
19 14
11 20
11 14
12 21
21 10
15 22
15 17
19 20
22 19
12 20
17 23
17 18
10 24
10 21
18 24
21 25
21 20
19 25
22 4

4 25
23 4
23 25
24 25
46 MATERIAL:

15
25
35
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7
17
27
37

Node numbers
constitute each of
triangles

2 NFLAGS:
8 9
18 19
28 29
38 39



APPENDIX C

TABLE FOR MARCHING CUBES ALGORITHM

A table (triangle table) is used to look up triangular facets (cut surfaces). There are at
most five triangular facets in this table [39]. The table given here is a modified table
in order to find centroids in the same manner for the developed method. Original

table can be found in reference [39].

int triangleTable[256][16] =

{1 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9,0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 8,3,9,8,1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2,100, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1},

3, 1,2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 11, 2, 8, 11, O, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9,0, 2, 3, 12, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1},

{3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 10, 21, O, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{3, 9, o0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1%,
{9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 8, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},

{4, 3,0,7,3,4,-1,-1,-1,-1,-1, -1, -1, -1, -1, -1},
{0, 1, 9, 8, 4,7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4,1,9,4,7,1,7,3,1, -1, -1, -1, -1, -1, -1, -1},

{1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},

{3, 4,7,3,0, 4,12, 10, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 9,0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
{2, 10,9, 2,9,7,2,7,8,7,9, 4, -1, -1, -1, -1},

{8, 4,7,3, 11,2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 4, 7, 11, 2, 4, 2, O, 4, -1, -1, -1, -1, -1, -1, -1},
{9, 0,1,8,4,7,2,3,11, -1, -1, -1, -1, -1, -1, -1},
{4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1},

{3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1},
{4, 7, 8, 9, 0, 11, 9, 11, 10, 11, O, 3, -1, -1, -1, -1},
{4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{4, 9,5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 5,4,0,8,3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
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] _l, _l, _l, _l, _l, _l, _l, _l, _l},

’ 3! 11 51 _11 _11 _11 _11 _11 _11 _1}1
’ 5! 4! _11 _11 _11 _11 _11 _11 _11 _11 _11 _1}1

{3.0,38,1,2 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},

{5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1%,

{2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4,8, -1, -1, -1, -1},

{9, 5, 4, 2,3, 12, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}%},

{0, 11, 2, o0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},

, 2, 3,11, -1, -1, -1, -1, -1, -1, -1},

8, 11, 4, 8, 5, -1, -1, -1, -1%,

21
31
85

" e r O

91 5! 4! _1! _1, _1, _l, _l, _l, _l},
10, 1, 8, 11, 10, -1, -1, -1, -1%,
5, 11, 10, 11, O, 3, -1, -1, -1, -1},

10, 8, 11, -1, -1, -1, -1, -1, -1, -1%,
_11 _11 _11 _11 _11 _11 _11 _11 _11 _1}1

51 71 31 _11 _11 _11 _1! _1! _1, _1},

1! 5! 75 _1! _1! _1! _11 _11 _11 _1}1
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1},

10, 1, 2, -1, -1, -1, -1, -1, -1, -1%,

58111193777

15080875155

4, 0

{0, 5,

5, 2

{2 1

—
i

)
o
—
-

05559039

508000838

94473757

{10, 1, 2, 9, 5, 0, 5, 3, 0.5, 7, 3, -1, -1, -1, -1},

{8, 0, 2,8, 2,5,8,5, 7, 10, 5, 2, -1, -1, -1, -1},

{2, 10, 5, 2, 5, 3, 3,5, 7, -1, -1, -1, -1, -1, -1, -1},

. ~
= I
— I
1 noon
Mam e
ned
— 1 | |
I
ned o
— 1 | |
|
ned o
— 1 | |
|
ned o
— 1 | |
|
e I~ o
—
1 »
T )
A~ o
- "l
I o
[N n
n n LD
N~ 00
o n
n ]
o n~
N "
n
N oreH
Mo .
" I~
n n00
o« "
"
N orneH
0 ~ "
"
n rOH
~ o
"o o
0~
Yo\
ownwm
n n n
~O N
e o e

o, 1, 3, 10, 3, 11, -1, -1, -1, -1},
{%, 7, 0,5,0,9,7, 11, 0, 1, O, 10, 11, 10, O, -1},

1

{9. 5, 8, 8,

{11, 110, O, 11, O, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1},

{11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},

_15 _1! _1! _11 _11 _11 _11 _11 _11 _11 _11 _11 _1}1

{0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},

{5, 10, 6,

? _1’ _1’ _1’ _1’ _1’ _1’ _1’ _1’ _1’ _1}1

5, 10, 6, -1, -1, -1, -1, -1, -1, -1}%,

10,

_11 _11 _1! _1! _1! _1, _1, _l, _l, _l},
3,0,8, -1, -1, -1, -1, -1, -1, -1},
’ 01 21 61 _11 _11 _11 _11 _11 _11 _1}1

21 51 21 61 31 21 81 _11 _11 _11 _1}1
01 61 51 _11 _11 _11 _11 _11 _11 _11 _11 _11 _1}1

{11, o, 8, 11, 2, O, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},

1

{0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},

5,9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1},

10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1},
3, 11, 6,5, 3,5,1,3, -1, -1, -1, -1, -1, -1, -1},
8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1},
11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1},
{5, 10, 6, 4, 7,8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},

{5
{6
{0
{3
{6

3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1},

] 8, 4, 7, _l, _l, _l, _l, _l, _l, _l},

’ 1! 71 31 71 91 41 _11 _11 _11 _1}1

, -1, -1, -1, -1, -1},
3 71 _11 _11 _11 _1}1
’ 6, _l, _l, _l, _l},

’ 6, 2, 6, 9, _l},
s ~ L, _11 _11 _11 _11 _11 _1}1

{5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1},

4
2
9
1

{1
{8
{7
{3,

{0, 1, 9, 4, 7,8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1},
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{0, 8, 7,0,7,1,1,7,5, -1, -1, -1, -1, -1, -1, -1},
{9. 0, 3,9,3,5,5,38,7, -1, -1, -1, -1, -1, -1, -1},
{°. 8,7,5,9,7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{5, 0, 4, 5, 11, O, 5, 10, 11, 11, 3, O, -1, -1, -1, -1},
{0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1},
{10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1},

{2, 5,1, 2,8,5, 2,11, 8, 4,5, 8, -1, -1, -1, -1},

{0, 4, 11, o, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1},

{0, 2, 5,0, 5,9, 2,11, 5, 4, 5, 8, 11, 8, 5, -1},

{9, 4, 5,2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},

{2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1},
{5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1},
{3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1},

{5, 10, 2, 5, 2, 4,1, 9, 2, 9, 4, 2, -1, -1, -1, -1},
{8, 4, 3,5,1, -1, -1, -1, -1, -1, -1, -1},

5, 8,5, 3, 3,
{0, 4, 5,1,0,5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
5,8,5,3,9,0,5,0,3,5, -1, -1, -1, -1},
{9, 4,5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 4,9, 7,9, 11, 7, 9, 10, 11, -1, -1, -1, -1},
{1, 10, 22, 2, 11, 4, 1, 4, O, 7, 4, 11, -1, -1, -1, -1},
{3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1},
{4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1},
{9, 7, 4,9, 11, 7, 9, 1, 11, 2, 11, 1, O, 8, 3, -1},
{11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1},
{11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1},
{2, 9,10, 2,7,9,2,3,7,7,4,9, -1, -1, -1, -1},
{9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1},
{3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, O, 4, O, 10, -1},

{1, 10, 2, 8,7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4,9,1,4,1,7,7,1,3, -1, -1, -1, -1, -1, -1, -1},
{4,9,1,4,1,7,0,8,1,8,7,1, -1, -1, -1, -1},
{4,0,3,7,4,3,-1,-1,-1,-1, -1, -1, -1, -1, -1, -1},

{4, 8,7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1%,
{9, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1},

{o, 1, 10, O, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{3,0,9,3,09, 11, 1, 2,9, 2, 11, 9, -1, -1, -1, -1},

{o, 2, 11, 8, o, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3,2,11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1},

{9, 10, 2, 0,9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3,8, 2,8, 10,0, 1, 8, 1, 10, 8, -1, -1, -1, -1},

{1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 3,8,9,1,8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},

{0, 9,1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{o, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}};

-1,
-1,
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