

DEVELOPMENT OF A MULTIGRID ACCELERATED EULER SOLVER ON
ADAPTIVELY REFINED TWO- AND THREE-DIMENSIONAL CARTESIAN

GRIDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHTAP ÇAKMAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

JULY 2009

Approval of the thesis:

DEVELOPMENT OF A MULTIGRID ACCELERATED EULER SOLVER
ON ADAPTIVELY REFINED TWO- AND THREE-DIMENSIONAL

CARTESIAN GRIDS

submitted by MEHTAP ÇAKMAK in partial fulfillment of the requirements for the
degree of Master of Science in Mechanical Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen _______________
Dean, Graduate School of Natural and Applied Science

Prof. Dr. Suha Oral _______________
Head of Department, Mechanical Engineering

Prof. Dr. M. Haluk Aksel _______________
Supervisor, Mechanical Engineering Dept., METU

Asst. Prof. Dr. Cüneyt Sert _______________
Co-Supervisor, Mechanical Engineering Dept., METU

Examining Committee Members:

Instructor Dr. Tahsin A. Çetinkaya _______________
Mechanical Engineering Dept., METU

Prof. Dr. M. Haluk Aksel _______________
Mechanical Engineering Dept., METU

Asst. Prof. Dr. Cüneyt Sert _______________
Mechanical Engineering Dept., METU

Asst. Prof. Dr. Almıla Güvenç Yazıcıoğlu _______________
Mechanical Engineering Dept., METU

Prof. Dr. İsmail Hakkı Tuncer _______________
Aerospace Engineering Dept., METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
and results that are not original to this work.

 Name, Last Name: Mehtap ÇAKMAK

Signature:

 iii

ABSTRACT

DEVELOPMENT OF A MULTIGRID ACCELERATED EULER SOLVER ON
ADAPTIVELY REFINED TWO- AND THREE-DIMENSIONAL CARTESIAN

GRIDS

Çakmak, Mehtap

M.S., Department of Mechanical Engineering

Supervisor: Prof. Dr. M. Haluk Aksel

Co-Supervisor: Asst. Prof. Dr. Cüneyt Sert

July 2009, 166 pages

Cartesian grids offer a valuable option to simulate aerodynamic flows around

complex geometries such as multi-element airfoils, aircrafts, and rockets. Therefore,

an adaptively-refined Cartesian grid generator and Euler solver are developed. For

the mesh generation part of the algorithm, dynamic data structures are used to

determine connectivity information between cells and uniform mesh is created in the

domain. Marching squares and cubes algorithms are used to form interfaces of cut

and split cells. Geometry-based cell adaptation is applied in the mesh generation.

After obtaining appropriate mesh around input geometry, the solution is obtained

using either flux vector splitting method or Roe’s approximate Riemann solver with

cell-centered approach. Least squares reconstruction of flow variables within the cell

is used to determine high gradient regions of flow. Solution based adaptation method

is then applied to current mesh in order to refine these regions and also coarsened

regions where unnecessary small cells exist. Multistage time stepping is used with

local time steps to increase the convergence rate. Also FAS multigrid technique is

used in order to increase the convergence rate. It is obvious that implementation of

 iv

geometry and solution based adaptations are easier for Cartesian meshes than other

types of meshes. Besides, presented numerical results show the accuracy and

efficiency of the algorithm by especially using geometry and solution based

adaptation. Finally, Euler solutions of Cartesian grids around airfoils, projectiles and

wings are compared with the experimental and numerical data available in the

literature and accuracy and efficiency of the solver are verified.

Keywords: Cartesian Grid Generation, Ray-Casting Method, Marching Squares and

Cubes Algorithm, Euler Equations, Least Square Reconstruction Algorithm,

Multigrid Method

 v

ÖZ

İKİ VE ÜÇ BOYUTLU UYARLAMALI KARTEZYEN HESAPLAMA AĞLARI
İÇİN ÇOKLU AĞ YÖNTEMİ İLE HIZLANDIRILMIŞ EULER ÇÖZÜCÜSÜ

GELİŞTİRİLMESİ

Çakmak, Mehtap

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. M. Haluk Aksel

Ortak Tez Yöneticisi: Yard. Doç. Dr. Cüneyt Sert

Temmuz 2009, 166 sayfa

Kartezyen yöntemi, uçaklar, roketler ve helikopterler gibi karmaşık geometriler

çevresindeki hava akışını modellemek için doğru yaklaşımı sundu. Bu doğru

modellemeyi gerçekleştirebilmek için kartezyen ağ üreticisi ve üç boyutlu Euler

çözücüsü geliştirildi. Çözücü kısmı için, zamana bağlı olmayan iki veya üç boyutlu

Euler denklemleri kullanıldı, akı formülasyonları ise akı vektör ayrıştırması

yöntemleri ve akı fark ayrıştırması yöntemi kullanılarak gerçekleştirildi. Hücre

merkezli sonlu hacim yöntemi kullanıldı. Ağ üretme kısmında ise, hücreler

arasındaki bağlantı bilgisini belirlemek için dinamik veri yapıları kullanıldı ve

geometriye bağlı hücre adaptasyonu, ağ üretme işleminde uygulandı. Çözüm elde

edildikten sonra da, çözüme bağlı gradyan bilgisi göz önüne alınarak çözüme bağlı

adaptasyon güncel ağa uygulandı. Yakınsamanın hızlandırılabilmesi için yerel zaman

adımlarıyla birlikte çok kademeli zaman uygulaması kullanıldı ve yine yakınsamanın

hızlandırılması için çoklu ağ yöntemi de kullanıldı. Son olarak, bu çözücü

kullanılarak elde edilen veriler literatürde mevcut deneysel sonuçlarla

karşılaştırıldılar.

 vi

Anahtar Kelimeler: Kartezyen Ağ Yaratılması, Işın Atma Yöntemi, Kenar ve Yüzey

Yeniden Yapılandırma Algoritması, Euler Denklemleri, Ufak Kareler Yeniden

Yapılandırması, Çoklu Ağ Yöntemi

 vii

Dedicated to my family, Cemil, Tülay, Melih Çakmak

and Necmettin Cevheri…

 viii

ACKNOWLEDGEMENTS

I would like to thank my supervisor and co-supervisor, Prof. Dr. Haluk Aksel and

Asst. Prof. Dr. Cüneyt Sert, for their guidance and supports throughout my research.

I am also grateful to TUBITAK for their financial support. Besides, I would like to

give my appreciations to Bercan Siyahhan and Alp Emre Öngüt. Finally, I would

like to express my gratitude to my family and my friends (especially Pınar Kural and

Necmettin Cevheri) who supported and encouraged me throughout my education life.

 ix

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ ... vi

ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS... x

LIST OF TABLES ..xiii

LIST OF FIGURES .. xiv

LIST OF SYMBOLS ..xviii

CHAPTERS

1. INTRODUCTION.. 1

1.1. Grid Generation and Adaptation ... 2

1.1.1. Structured Grid .. 4

1.1.2. Unstructured Grid.. 5

1.1.3. Cartesian Grid.. 5

1.2. Scope of the Thesis.. 8

2. TWO DIMENSIONAL DATA STRUCTURE & GRID GENERATION............ 10

2.1 Quadtree Data Structure.. 10

2.2 Initial Grid Generation and Geometry Adaptation ... 18

2.2.1 Creating the Domain and Uniform Grid Generation 18

2.2.2 Inside-Outside Determination .. 23

 2.2.2.1 Ray Casting Method... 24

2.2.3 Geometric Adaptation .. 27

 2.2.3.1 Box Adaptation... 27

 2.2.3.1.1.Determination & Classification of Split Cells................. 29

 2.2.3.1.2.Marching Squares Method .. 32

 2.2.3.2 Cut and Split Cell Adaptation... 36

 2.2.3.3 Curvature Adaptation ... 37

3. THREE DIMENSIONAL DATA STRUCTURE & GRID GENERATION........ 39

3.1 Octree Data Structure.. 39

 x

3.2 Initial Grid Generation and Geometry Adaptation ... 45

3.2.1 Creating the Domain and Uniform Grid Generation 46

3.2.2 Inside-Outside Determination .. 47

3.2.3 Geometric Adaptation .. 49

 3.2.3.1 Box Adaptation... 49

 3.2.3.2 Cut Cell Adaptation.. 53

4. FLOW SOLVER.. 55

4.1 Three Dimensional Euler Equations ... 56

4.1.1 Spatial Discretization of Euler Equations .. 58

4.1.2 Temporal Discretization of Euler Equations .. 59

 4.1.2.1 Multistage Time Stepping .. 60

 4.1.2.2 Local Time Step ... 61

4.2 Flux Computation ... 63

4.2.1 Approximate Riemann Solver of Roe ... 63

4.2.2 Liou's Advection Upstream Splitting Method.. 66

4.3 Initial Guess and Boundary Conditions.. 67

4.4 Multigrid Method.. 68

4.4.1 Multigrid Method for Linear Problems .. 69

4.4.2 Multigrid Method for Nonlinear Problems... 75

4.4.3 Importance of Split Cells in Multigrid Application 84

4.5 Reconstruction .. 89

4.5.1 Least Squares Reconstruction... 89

4.5.2 Gradient Limiting ... 91

4.5.3 Solution Refinement and Coarsening... 92

5. RESULTS AND DISCUSSIONS.. 93

5.1 Two Dimensional Test Cases ... 93

5.1.1 Transonic Flow about NACA0012 Airfoil .. 94

5.1.2 Supersonic Flow about NACA0012 Airfoil ... 100

5.1.3 Transonic Flow about RAE2822 Airfoil .. 105

5.1.4 Subsonic Flow about a Two-element Airfoil ... 109

5.1.5 Subsonic Flow about a Three-element Airfoil ... 111

 xi

5.2 Convergence History with Multigrid Applications .. 114

5.3 Three Dimensional Test Cases ... 125

5.3.1 Transonic Flow about a Wing ... 125

5.3.2 Transonic Flow about a Projectile.. 128

6. CONCLUSION.. 134

REFERENCES... 136

APPENDICES

A. Split Cells... 141

B. Example Output File of Surface Mesh Generated by GAMBIT...................... 160

C. Table for Marching Cubes Algorithm.. 162

 xii

LIST OF TABLES

TABLES

Table 4.1 Stage coefficients and CFL numbers for the first order multistage scheme

for two dimensional problems.. 61

Table 4.2 Stage coefficients and CFL number for the first order two-stage scheme for

three dimensional problems ... 61

Table 5.1 Two dimensional test problems ... 93

Table 5.2 Comparison of results for transonic flow around NACA0012 airfoil at

M∞=0.85 and α=1°.. 94

Table 5.3 Comparison of results for supersonic flow around NACA0012 airfoil at

M∞=1.2 and α=7°.. 101

Table 5.4 Comparison of results for transonic flow around RAE2822 airfoil at

M∞=0.75 and α=3°.. 106

Table 5.5 Test cases for multigrid application... 114

Table 5.6 Convergence histories for the 1st test case ... 119

Table 5.7 Convergence histories for the 2nd test case .. 119

Table 5.8 Convergence histories for the 3rd test case... 121

Table 5.9 Convergence histories for the 4th test case... 123

Table 5.10 Convergence histories for the 5th test case... 125

 xiii

LIST OF FIGURES

FIGURES

Figure 1.1 Examples of structured and unstructured grids .. 3

Figure 1.2 Examples of Non-Adapted and Geometrically Adapted Cartesian Grids .. 7

Figure 1.3 Example of a cut cell .. 7

Figure 1.4 Example of a split cell .. 7

Figure 2.1 Illustration of quadtree data structure ... 12

Figure 2.2 An example of neighboring cells and numbering of children cells 13

Figure 2.3 Identification of corners.. 15

Figure 2.4 Demonstration of cut points.. 16

Figure 2.5 An example of triangulation process .. 18

Figure 2.6 Three-element airfoil and uniform mesh around it................................... 19

Figure 2.7 NACA0012 airfoil and uniform mesh around it....................................... 20

Figure 2.8 Pressure coefficients of upper part of NACA0012 airfoil 21

Figure 2.9 Pressure coefficients of lower part of NACA0012 airfoil 22

Figure 2.10 From initial to solution-adapted meshes whose desired level is 2.......... 23

Figure 2.11 An example for Ray Casting Method ... 24

Figure 2.12 Examples of types of cells .. 26

Figure 2.13 Sample two exceptions ... 27

Figure 2.14 Application of box adaptation to three-element airfoil........................... 28

Figure 2.15 Three examples of split cells .. 30

Figure 2.16 Numbering of cut points of a split cell and assuming it like a cut cell for

flux calculations ... 32

Figure 2.17 Loop for calculating total square index value of a computational cell... 33

Figure 2.18 An example for explaining the calculation of total square index of cell 34

Figure 2.19 The tables for marching squares algorithm .. 36

Figure 2.20 Application of cut and split cell adaptation to three-element airfoil 37

Figure 2.21 Application of curvature adaptation to three-element airfoil 38

 xiv

Figure 3.1 Numbering of children.. 41

Figure 3.2 Coordinates of four vertexes of a tetrahedron .. 45

Figure 3.3 Example surface mesh on a sphere... 46

Figure 3.4 Root cell and different uniform meshes with different uniform division

numbers .. 47

Figure 3.5 Inside-outside determination of point P in 3D.. 48

Figure 3.6 Application of box adaptation to sphere surface mesh exported from

GAMBIT .. 50

Figure 3.7 Numbering of edges and vertexes of a three dimensional cell 51

Figure 3.8 Marching cube algorithm.. 53

Figure 3.9 Cut cell adaptation .. 54

Figure 4.1 Example of a ghost cell in 2D... 68

Figure 4.2 Restriction of residual vector in 2D.. 71

Figure 4.3 Prolongation of error vector in 2D.. 73

Figure 4.4 Multigrid cycles .. 74

Figure 4.5 Different levels of meshes used in multigrid method............................... 74

Figure 4.6 Multigrid level settings ... 78

Figure 4.7 Examples of coarsening process... 79

Figure 4.8 Examples of one level rule testing process... 81

Figure 4.9 h multigrid level around NLR 7301 airfoil and flap................................. 85

Figure 4.10 2h multigrid level around NLR 7301 airfoil and flap............................. 86

Figure 4.11 4h multigrid level around NLR 7301 airfoil and flap............................. 86

Figure 4.12 8h multigrid level around NLR 7301 airfoil and flap............................. 87

Figure 4.13 16h multigrid level around NLR 7301 airfoil and flap........................... 87

Figure 4.14 32h multigrid level around NLR 7301 airfoil and flap........................... 88

Figure 4.15 The coarsest mesh for six level multigrids in Section 5.1.4 88

Figure 5.1 Geometric-adapted grid around NACA0012.. 95

Figure 5.2 Both geometric and solution-adapted grids around NACA0012.............. 96

Figure 5.3 Pressure coefficient distribution on NACA0012 airfoil at M∞=0.85 and

α=1°.. 97

 xv

Figure 5.4 Pressure contours of the solution-adapted grid on NACA0012 airfoil at

M∞=0.85 and α=1°.. 98

Figure 5.5 Pressure contours of the grid without solution adaptation on NACA0012

airfoil at M∞=0.85 and α=1°... 98

Figure 5.6 Mach contours of the solution-adapted grid on NACA0012 airfoil at

M∞=0.85 and α=1°.. 99

Figure 5.7 Mach contours in reference [9] on NACA0012 airfoil at M∞=0.85 and

α=1°.. 100

Figure 5.8 Pressure coefficient distributions for 1st, 2nd and 3rd test cases on

NACA0012 airfoil at M∞=1.2 and α=7°... 102

Figure 5.9 Pressure coefficient distributions for 4th, 5th and 6th test cases on

NACA0012 airfoil at M∞=1.2 and α=7°... 103

Figure 5.10 Pressure contours around NACA0012 airfoil at M∞=1.2 and α=7°...... 104

Figure 5.11 Mach contours of the test case-1 around NACA0012 airfoil at M∞=1.2

and α=7° ... 105

Figure 5.12 Pressure coefficient distributions on RAE2822 airfoil at M∞=0.75 and

α=3°.. 107

Figure 5.13 Pressure contours of case-6 on RAE2822 airfoil at M∞=0.75 and α=3 108

Figure 5.14 Mach contours of case-6 on RAE2822 airfoil at M∞=0.75 and α=3° ... 108

Figure 5.15 Grid used in the 6th case around RAE2822 airfoil................................ 109

Figure 5.16 Pressure coefficient distribution on two-element airfoil at M∞=0.185 and

α=6°.. 110

Figure 5.17 Mach contours of two-element airfoil at M∞=0.185 and α=6° 111

Figure 5.18 Pressure coefficient distributions on three-element airfoil at M∞=0.2 and

α=8°.. 112

Figure 5.19 Mach contours of three-element airfoil at M∞=0.2 and α=8° 113

Figure 5.20 Solution-adapted meshes around the three-element airfoil 113

Figure 5.21 Geometric-adapted grid .. 115

Figure 5.22 Geometric and solution-adapted grid.. 116

Figure 5.23 Convergence histories of the 1st test case ... 117

Figure 5.24 Convergence histories of the 2nd test case .. 118

 xvi

Figure 5.25 Convergence histories of the 3rd test case... 120

Figure 5.26 Convergence histories of the 4th test case... 122

Figure 5.27 Convergence histories of the 5th test case... 124

Figure 5.28 Slices of the solution-adapted grid ... 126

Figure 5.29 Pressure coefficient distributios around the wing at M∞=0.799 and

α=2.26°... 127

Figure 5.30 Mach contours in xz plane at y=0 at M∞=0.799 and α=2.26° 128

Figure 5.31 A slice of the mesh in xz plane at y=0 .. 129

Figure 5.32 A created surface mesh around SOCBT... 130

Figure 5.33 Pressure coefficient distributions at M∞=0.95, α=0° and β=7°............. 131

Figure 5.34 Mach contours in xz plane at y=0 at M∞=0.95, α=0° and β=7° 132

Figure 5.35 Mach contours in reference [36] at M∞=0.95, α=0° and β=7°.............. 133

 xvii

LIST OF SYMBOLS

A, A() coefficient matrix

c speed of sound

c∞ far-field speed of sound

dA surface area element

e error vector

e specific internal energy

E specific total energy

F flux vector

H specific total enthalpy

L domain size

M Mach number

n level of a cell

n normal vector

p static pressure

p∞ far-field pressure

Res, r residual vector

R right characteristic vector

Sx , Sy projections of edges

t time

u velocity in the x-direction

v velocity in the y-direction

w velocity in the z-direction

v velocity vector

Vn normal velocity

ΔV wave strengths

x exact solution

y approximate solution

 xviii

 xix

Greek Letters

α angle of attack

αk stage coefficients

γ ratio of specific heats

λ Eigen values

ρ density

ρ∞ far-field density

Ф flux vector perpendicular to surface

Ψx , Ψy convective spectral radii

dΩ volume element

CHAPTER 1

INTRODUCTION

Fluid-flow problems generally have complex governing equations. Therefore, most

of the fluid-flow problems cannot be solved by analytical methods due to the

nonlinear terms in their governing equations. However, analytical solutions are

sometimes possible when nonlinear terms are negligibly small. But generally,

nonlinear terms are not as small as to be neglected. If the nonlinearities are important

for the fluid-flow problems, then numerical methods and algorithms are used to solve

and analyze these problems.

Computational Fluid Dynamics (CFD) is an important field of fluid dynamics which

enables one to obtain numerical solutions of complex fluid-flow problems including

nonlinear terms and also simulate fluid-flows that cannot be observed in laboratory

situations due to the some flight regimes that cannot be simulated in wind tunnels;

such as higher Mach numbers and higher flow field temperatures. Numerical

solutions of many complex problems; such as compressible or incompressible,

laminar or turbulent, single or multiphase flows are possible with CFD.

CFD techniques today are very powerful due to the high speed and large memory

computers; however, turbulence modeling, selection of the accurate numerical

techniques, algorithmic efficiency, surface modeling and grid generation around

complicated and multi-component geometries are still barriers to CFD maturation,

especially in three dimensions. Therefore, various new approaches to deal with these

problems are being developed. For example, in order to handle grid generation

problems and reduce the user intervention to generate grid, the grid generation and

adaptation processes are tried to be automated. In addition, more accurate and

 1

efficient solutions are tried to be obtained by means of the advances in numerical

methodologies.

Steps of finding approximate solutions of complex flow problems can be

summarized as follows. Firstly, fundamental physical principles of any fluid flow are

expressed in the form of conservative or nonconservative governing equations. These

can be either integral equations or partial differential equations. Then, flow domain

must be split into sub-domains called elements or cells. The collection of all cells is

called a mesh or grid. Then, the equations governing the motion of fluid are replaced

with discretized algebraic forms and solved to obtain approximate solutions for the

flow field values at each of the sub-domains [1]. Since one of the most difficult steps

is grid generation, Cartesian Grid is an attractive approach to CFD. It enables to

create grids around complex geometries easily. Furthermore, grid and solution

adaptations are possible without user interventions, i.e. automatically with Cartesian

Grids.

1.1 Grid Generation and Adaptation

As it was mentioned, grid generation is an important and time-consuming problem of

CFD. It requires considerable expertise, since not only understanding of

mathematical formulation and numerical algorithms is necessary, but also

understanding of physical principles of flow problems is very important for obtaining

satisfactory resolution in flow domain. Therefore, in order to solve discretized

algebraic equations of any fluid flow, an efficient grid, which resolves the physical

properties of flow, minimizes the errors and uses as fewer grid points as possible to

save the memory usage must be generated [2]. This is a hard task. Therefore, fully

automatic grid generation techniques are necessary in order to handle these

difficulties.

Grid adaptation is to put more grid points in the regions where the large gradients in

the flow field properties exist and remove grid points from the regions where these

 2

gradients are insignificant in order to decrease the local resolution of the grid. In

other words, the aim of grid adaptation is to capture the physics of the flow

effectively without using excessive grid points. There are two types of grid

adaptation and their combination is also possible. The first one is r-refinement (grid

point redistribution) and the other is h-refinement (grid point embedding). R-

refinement is applied to the current grid by moving the grid points to the regions that

need more resolution due to the high flow field gradients without changing the actual

number of grid points. In this way, connectivity information does not change. H-

refinement is the modification of current grid by changing connectivity information.

This change is either adding extra grid points where the higher resolution of current

grid is necessary or removing redundant grid points. For example, h-refinement is

performed for Cartesian grid method by dividing parent cells in order to obtain child

cells for refinement or removing children of a parent cell to obtain parent cell instead

of its children for coarsening.

Grid generation methods can be classified into two groups: structured and

unstructured. Both of these have advantageous and disadvantageous properties.

Examples of these grids are given in Figure 1.1.

 (a) (b)

Figure 1.1 Examples of (a) structured and (b) unstructured grids

 3

1.1.1 Structured Grid

A structured grid is composed of quadrilaterals in two-dimensions and hexahedra in

three-dimensions. It is one that grid points (vertex, node) are transferred from

physical space (Cartesian coordinates for two-dimensional problems: x, y) to

computational space (ζ, η) and they are represented by the indices i, j. Hence,

connectivity information of the grid is implicitly known by the indices of grid points.

For example, neighbors of a grid point are found by adding or subtracting an integer

value to or from its indices [3]. This simplification in data structure has an important

effect on creating efficient and simpler codes owing to the fact that the calculation of

fluxes and gradients is simpler compared to unstructured grids. Besides,

implementation of implicit scheme to structured grids is easier than that to

unstructured grids. In addition, computer memory usage is less than unstructured

grid. Since incrementing grid points near the boundary of the geometry is achieved

easily by decreasing the spacing between them, viscous solutions of flow problems

are obtained more effectively and accurately than that in unstructured grids. Finally,

for a structured grid, each cell has only one neighboring cell on each of its faces. A

smooth grid is obtained by means of this rule. These are the advantages of structured

grid. However, structured grid generation around complex geometries is a very big

problem. Therefore, although it has a lot of advantages, in general it is not a

preferred grid generation technique. In order to generate structured grid around

complex, multi-component geometries, some approaches such as multi-block and

Chimera technique are used but these methods are very complicated and also

decrease the advantages of structured grid. Furthermore, generating structured grid

around complex geometry by using any one of these methods takes man-months.

Detailed information can be found in reference [3]. In addition, transformation of

governing equations from physical space to computational space is a very difficult

task. The final disadvantage of structured grids is that an implementation of h-

refinement causes the huge increase of grid points since adding a point to a

structured grid requires adding a line on which the points lie [4]. Therefore, r-

refinement is more suitable for structured grids than h-refinement.

 4

1.1.2 Unstructured Grid

An unstructured grid is composed of mostly triangular and rarely quadrilateral cells

in two-dimensions and of hexahedral, prismoidal, pyramidal and mostly tetrahedral

cells in three-dimensions. There is no need for transformation between physical and

computational space. In addition, for an unstructured grid, there is no ordering for

grid points and neighboring cells. In other words, grid points in unstructured grids

cannot be identified by their indices. As a result, complicated data structure is

mandatory to construct the connectivity information between cells.

Memory requirement of unstructured grids is higher and computational efficiency of

unstructured grids is lower than those of structured girds because of the necessity of

complex data structure. But, in spite of these disadvantages, nowadays unstructured

grid methods become increasingly popular since it is capable of handling

geometrically complex problems. Furthermore, grid adaptation especially h-

refinement technique is easier to accomplish on unstructured grids than on structured

grids. The final and the most attractive advantage of unstructured grids is that an

unstructured grid is very suitable to automatic grid generation and adaptation.

By the way, Advancing Front Method and Delaunay Triangulation Method are the

most widely used techniques to generate two-dimensional unstructured grids.

Detailed information can be found in references [5] and [6].

1.1.3 Cartesian Grid

Cartesian grids are a special type of unstructured grids. In fact, this method is one of

the earliest and simplest methods used for mesh generation. However, in the past, it

was almost impossible to deal with curved boundaries accurately due to limited

memory and simplicity of data structures so it was not a popular method. Contrary to

the past, Cartesian grids are now very attractive and popular method due to their

 5

inherent simplicity and the ability to generate automatic meshes especially around

complex and multi-component geometries.

It consists of squares in two-dimensions and cubes in three-dimensions which are

placed parallel to the coordinate axes. It requires complicated data structures such as

quadtree and octree data structures for two-dimensional and three-dimensional

problems, respectively. However, it has many advantages which make it popular.

One of its advantages is that the generation of Cartesian grid is easy even for

complex geometries. In addition, automatic mesh generation with a minor user

intervention is possible and geometric and surface adaptations are easy to implement.

For example, denser mesh around shock waves can be generated easily by means of

solution adaptation applied to Cartesian grid method. Hence, effective results are

obtained in a short time without huge number of grids.

Another important advantage is that implementation of higher order schemes and

multigrid method can be accomplished easily due to the permission of data structure.

Finally, since the edges of square and the faces of cubic elements are aligned with

the coordinate axes, there is no need for any complex formulation of velocity vectors

in order to get normal and tangential components of them with respect to edges and

faces. Consequently, flux formulation is simpler than other grid generation methods.

Non-adapted and geometrically adapted Cartesian grids about the geometry are given

in Figure 1.2.

The most difficult aspect of Cartesian grid is the complexity associated with the

computational cells that have intersections with boundaries. These cells are called cut

or split cells according to their total number of separate computational volumes.

Samples of cut and split cells are shown in Figures 1.3 and 1.4, respectively. These

are irregular cells and violate all the simplicity of Cartesian grids. However, these

cells are very important for the Cartesian grid method since they play a key role in

dealing with curved boundaries and obtaining accurate computational results. But

sometimes small cut or split cells can cause time stepping problems. They may put

 6

severe restrictions on convergence rate and lead to inaccuracies, i.e. damage the

stability criteria. In this work, this problem is solved by coarsening of small cells

which will be explained in the next chapters. Another difficulty of this grid is that

traditional Cartesian grid is insufficient to model viscous flows [7].

Figure 1.2 Examples of (a) non-adapted and (b) geometrically adapted Cartesian

grids

Figure 1.3 Example of a cut cell

Figure 1.4 Example of a split cell

 7

In 1993, De Zeeuw [4] wrote a computer code to solve two-dimensional Euler

equations using a Cartesian grid. He used quadtree data structure and multigrid

scheme to increase the convergence rate of the solution.

In 1994, Coirier [8] wrote a code to solve two-dimensional Euler and Navier Stokes

equations using Cartesian grids. He used binary tree data structure and he refined and

coarsened the cells according to the solution.

In 1995 and 1996 Melton, Aftosmis and Berger [9] developed techniques for

handling complex surface geometries and their code CART3D solved three

dimensional Euler equations using Cartesian grid accurately.

In 2004, Hunt [10] developed a code to solve the three-dimensional Euler equations

by using parallel block adaptive Cartesian method. Data structure and handling the

geometry were very similar to studies of Aftosmis. These references are the

milestones of this study.

1.2 Scope of the Thesis

The purpose of this thesis is to develop an automatic, adaptive Cartesian grid for

solving inviscid, compressible flows around simple and complex geometries. In this

chapter, brief information regarding CFD and mesh generation techniques is given.

Besides, past works about Cartesian method are summarized in the review of

literature section. In Chapter 2, quadtree data structure and two dimensional grid

generation are discussed. A number of topics like terminology for Cartesian grids,

determination of neighbor cells, information about special computational cells,

inside-outside testing methods, marching squares technique and adaptation types are

explained as well. In Chapter 3, octree data structure and different aspects of three

dimensional grid generation from two dimensional grid generation are discussed.

Two and three dimensional flow solvers, including flux formulation, temporal

discretization, reconstruction and multigrid method are discussed in Chapter 4.

 8

Chapter 5 gives the results of various test cases to validate the code accuracy.

Finally, in Chapter 6, summary of the present work and conclusions are presented.

 9

CHAPTER 2

TWO DIMENSIONAL DATA STRUCTURE AND GRID

GENERATION

2.1 Quadtree Data Structure

As it is mentioned in the introduction chapter, Cartesian grid is a special type of

unstructured grid and for an unstructured grid, ordering information of grid points

and neighboring cells is not apparent like structured grid. Therefore, connectivity

(i.e. ordering) information has to be constructed since it is mandatory for flux

calculations, reconstruction, multigrid method, refinement and coarsening etc.

Namely, data structure is necessary to store connectivity and flow information for

each cell.

For the Cartesian method, data structure is complicated since the number of cells

cannot be predetermined. Hence, dynamic data structure is used. By this way, the

number of cells can vary during the execution of the program.

In the literature, there are various methods used for two dimensional fluid flow

problems to identify connectivity information such as two dimensional arrays, linked

list, binary tree and quadtree data structures. In this work, the most appropriate

method is chosen as quadtree data structure due to its advantages.

First and the foremost, the data structure conversion of the developed code from two

dimensional to three dimensional grid generation is easy. In other words, the logic

 10

behind the quadtree and octree data structure is very similar; therefore, developed

two dimensional grid generation code is easily converted to a three dimensional grid

generation code. Furthermore, a local change in the grid such as cell refinement and

coarsening and the implementation of multigrid method are very easy for the

quadtree data structure due to its flexibility when compared to this change and

implementation in two dimensional arrays or linked list. Since each element has a

fixed index in the two dimensional arrays or has a fixed another element that follows

it in the linked list, the implementation of multigrid and local changes in the grid

require the generation of multiple grids [4].

Quadtree data structure can be thought as a family tree which demonstrates the

relationships beginning from the oldest individual and then covering its children and

grandchildren. The oldest individual of the family tree becomes the root of the

quadtree data structure. Since each cell in the quadtree data structure has parent and

four children, connectivity information is extracted from relationship between

parent-children information. Figure 2.1 illustrates the quadtree data structure, root

and children cells.

In the developed code, all cells are identified with nine pointers which are its parent,

four children and four neighbors. These pointers and others stored for all cells can be

seen below as:

• 1 word: Its parent

• 4 words: Its four children

• 4 words: Its four edge neighbors

• 2 words: Its x and y coordinates of the centroid

• 1 word: Its level

• 1 word: The definer for computational cells which is called “compcell”

in the developed code and this will be explained in the multigrid section

• 1 word: The definer of parent cell which can be coarsened while the

application of multigrid. This pointer is called “perform” in the developed

code and this will also explained in the multigrid section.

 11

Figure 2.1 Illustration of the quadtree data structure

Pointer indicating the parent states that it is also a cell and this cell is the parent of its

children. Each cell has a parent and four children whether it is assigned to another

cell or to zero. The cell whose parent is assigned to zero is the root cell and the cells

whose children are assigned to zero are the computational or leaf cells. Four pointers

indicating children state that they are also cells and they are the children of their

parent. Finally, instead of determining neighboring cells when they are needed, they

are stored for each cell. If a cell has no neighbor, i.e. its neighbor is the far-field, it is

set as zero. Determination of neighboring cells is given in the next chapter for three

dimensional cells since the process for three-dimensions is more complicated than

that for two-dimensions. Only an example figure (Figure 2.2) is given to illustrate the

process for two-dimensions roughly and show the numbering of children cells.

 12

Figure 2.2 An example of neighboring cells and numbering of children cells

Moreover, coordinates of the centroid and level of each cell are important parameters

for the developed code. Calculation of coordinates of the centroid of a cell is

discussed in the next chapter for a three dimensional grid instead of a two

dimensional one. The level of a cell is used for many reasons. Level of a cell is

necessary for the calculation of coordinates of the centroid and length of an edge of a

cell. Besides, coordinates of four corners are calculated with the use of level. There is

a restriction called one level rule in the developed code. This rule enables grid

smoothness and facilitates the flux calculation and application of reconstruction

schemes. In addition, neighbor cells through the vertices of a cell can easily

determined by means of this restriction. One level rule simply states that the level

differences between two edge or vertex neighbors cannot exceed one. If this rule

removed from the developed code, the solution accuracy would be harmed. Besides,

one level rule prevents the data structure to become much more complicated.

 13

By the way, as it is seen from Figure 2.1, the level of root cell is zero and level of its

children is 1. In other words, level of a child cell is one level higher than its parent

level.

There are two types of neighbors for two dimensional problems. One is edge

neighbor which is stored for each cell and the other is vertex neighbor which is

determined when it is required. Since vertex neighbors are not used as many times as

edge neighbors and also they easily determined by the edge neighboring information,

storage of them would be inefficient usage of memory.

Effective memory usage is very important for computer codes. Therefore, the

programmer must balance the memory usage and computational time. In order to

balance them, the necessity of stored information is explored. If the information is

used repetitively in the developed code and calculation of it takes a long time,

storage of this information is more logical. Coordinates of four cell corners can be

given as an example to this case. On the other hand, if the information is used rarely

and determination of it takes a short time, it is logical not to store this information.

Determination of vertex neighbors can be given as an example to the second case.

As it is mentioned before, there are special cells which have no children cells. These

are called computational or leaf cells and the all calculations are performed on these

cells. They are divided into four groups according to their types. These are inside,

outside, cut and split cells. In fact, inside cells cannot be thought as computational

cells due to the fact that flux calculations are not performed on these cells. Therefore,

in the developed code, the variables that are stored for computational cells except

inside cells can be given below as:

• 4 words: Conservatives variables for continuity, x-momentum, y-

momentum and energy equations

• 4 words: Its four corners

• 1 word: Its type

 14

• 1 word: Its total square index. This will be discussed in the Marching

Squares Algorithm section.

• 2 words: Its refinement or coarsening criteria

• 2 words: Divergence and curl of velocity vector

• 2 words: Lengths of edge projections in x and y directions

• 4 words: For forcing function which will be discussed in multigrid

section

Each of the four pointers for corner structures defines one corner of a cell and this

corner structure stores the x and y coordinates of the cell corner and a variable φ.

This φ variable of one corner is used to determine whether this corner is inside or

outside the given geometry. Detailed information regarding φ value and

determination of cell type will be given in the next section. Numbering of corners

can be seen in Figure 2.3.

Figure 2.3 Identification of corners

 15

Since the centroid and area of a cut or split cell is not directly calculated like outside

cells, these types of computational cells require additional information to be stored.

Calculation of centroid and area of these special cells are discussed later. In the

developed code, the variables stored for cut cells can be seen below as:

• 3 words: x and y coordinates of centroid and area of a cell

• 4 words: x and y coordinates of cut locations (px[0], px[1], py[0] and

py[1])

Some of the stored variables for split cells are twice as much as those for cut or

outside cells because some of the split cells are composed of two separate

computational control volumes. Flux, divergence and curl calculations are performed

twice for a split cell since it has two separate control volumes. These doubled

variables are conservative variables, divergence and curl of velocity vectors, edge

projections, centroids, areas and cut point locations. On the other hand, split cells

have single refinement criterion like outside and cut cells.

A demonstration of numbering of the intersection points of cell edges and the

geometry for a cut cell is seen in Figure 2.4.

Figure 2.4 Demonstration of cut locations

Finally, calculation of centroid and area of cut cells can be summarized in this

section because cell centroid and area are used in the formulation of least square

reconstruction scheme and the calculation of the divergence and the curl of the

 16

velocity vector. It is clearly seen that the numbering of corners and also cut locations

are given in the counter-clockwise sense. This facilitates the calculation procedure.

Firstly, outside part of cut cells are triangulated beginning from the first cut point

(px[0] and py[0]), traversing the outside corners in the counter-clockwise sense and

ending with the second cut point (px[1] and py[1]). Then the cross-product of vectors

along faces of each of the triangles is evaluated. This product gives the area of each

triangle. Summation of areas of all triangles which constitutes the outside area of cut

cells is calculated. As a result, the area of the cut cell is obtained. The procedure is

the same for split cells. The centroid of cut cell is calculated by using the following

equation:

()

∑

∑

=

== nTriangles

i

nTriangles

i
iC

C

1
i

1

A

A
 (2.1)

where Ci and Ai in the formula refer to the centroid and area of each triangle.

An example of triangulation process is given in Figure 2.5. Outside corners of any

cut cell are known automatically by means of a formed table. This table is called

corner-table and given in the next section.

 17

Figure 2.5 An example of triangulation process

2.2 Initial Grid Generation and Geometry Adaptation

Grid generation for two-dimensional Cartesian grids can be achieved in three steps.

Initial step is the creation of the domain and uniform mesh generation. The

determination of cell types by inside-outside test is the second step. Afterwards,

geometric adaptation, which consists of three parts: box, cut & split cell and

curvature adaptation, is applied to the uniform mesh. By the way, there are additional

important intermediate steps between box adaptation and cut & split cell adaptation.

These are marching squares method and the determination and classification of the

split cells.

2.2.1 Creating the Domain and Uniform Mesh Generation

Initially, the geometry around which the external flow is solved is specified to the

developed code as line segments. It is important that these line segments have to

follow a sequence starting from a point and ending up with this point. In other words,

line segments have to form a closed loop whose rotation direction is counter-

clockwise.

 18

Afterwards, since the geometry is not nondimensionalized to prevent computation

errors due to the division such as machine zero effect, the maximum length of the

given geometry is important to create the appropriate domain for solving the problem

accurately and robustly. The multiplication of the maximum length by the size factor

gives the domain size. This domain size is the length of the edges of the root cell.

Then since the developed solver is external flow solver, the given geometry is placed

to either the mid point of the created domain or the desired location of the user near

the center of root.

Finally, uniform mesh for the two dimensional Cartesian method is obtained by

dividing squares successively starting from the root until the level of computational

cells reaches the desired level. This step is very important to obtain sufficiently small

cells before geometry and solution adaptation steps. The given geometries (three-

element airfoil and NACA0012) and uniform meshes around them are given in

Figure 2.6 and 2.7.

Figure 2.6 Three-element airfoil and uniform mesh around it

 19

Figure 2.7 NACA0012 airfoil and uniform mesh around it

When sufficient resolution around the geometry is not obtained during the uniform

mesh generation, sometimes small parts of multi-component geometries are not

realized; therefore, adaptation steps do not notice these parts due to the insufficient

resolution. As a result, incorrect mesh generations are obtained. In order to prevent

this failure, some determination techniques are implemented into the developed code.

But this does not mean that these implementations prevent all of these failures. In

other words, the user of the program is always aware of the possibilities of these

errors. For example, before these techniques, slat of the three-element airfoil in

Figure 2.6 was not detected without sufficient resolution, i.e. with uniform mesh

which has low desired level. But, it is possible now.

It is beneficial to indicate that there is no need to check the one level rule in the

uniform mesh step. After creation of new cells with the division of their parent cells,

centroidal coordinates and their neighbors have to be set. These procedures are

discussed for three dimensional problems instead of two dimensional ones due to the

complexity.

The increase of total number of cells during the uniform mesh is exponential.

Therefore, it is stated in references [11] and [12] that desired level may be kept

 20

within the limit of two or three to avoid this increase. However, in the developed

code, there is no restriction on the number of desired level for uniform mesh because

coarsening of cells is applicable in this code. Therefore, although exponential

increase occurs at the beginning of the mesh generation, this number decreases by

means of coarsening process during the solution adaptation. Besides, exponential

increase does not harm the convergence rate in a detectable manner on account of

multigrid method. As it was mentioned before, higher desired level is necessary in

some cases where small geometry components exist. Moreover, solution refinement

is sometimes much more efficient with higher initial resolution. This can be

exemplified in Figures 2.8 and 2.9 by comparison of pressure coefficients with

AGARD data [13].

Figure 2.8 Pressure coefficients of upper part of NACA0012 airfoil

 21

Figure 2.9 Pressure coefficients of lower part of NACA0012 airfoil

For example, green points indicate a mesh whose uniform division number (unidiv)

is 2 and solution refinement cycle (refcycle) is 3 in Figures 2.8 and 2.9. When the

pressure coefficients of two cases with uniform division 2 and 6, which have the

same number of solution refinement cycles, are compared, it is clearly seen that

locations of the shock on the upper and lower parts of NACA0012 airfoil are

determined more accurately for the case with higher desired level. Besides, pressure

coefficients of this case are nearer to the AGARD data. This validates the statement

that initial resolution is important for accurate results. The reason of inaccurate

results of the case whose uniform division is 2 is that the interaction between far-

field boundary conditions and geometry is really effective due to the huge cells near

the far-field. Although these huge cells are refined during the application of solution

refinement, they harm the result because the solutions of initial iterations are without

solution adaptation. Figure 2.10 shows two grids. First one is the mesh obtained after

the geometric adaptation. The uniform division number of this case is 2. Second one

 22

is the mesh which is obtained after the solution refinement. This mesh is obtained

after three refinement cycle.

Figure 2.10 Geometric- adapted and solution-adapted meshes, respectively

2.2.2 Inside-Outside Determination

After uniform mesh generation, corners of sufficiently small cells are tested whether

they are inside of the given geometry or not. This is called inside-outside testing.

This step is obligatory for Cartesian grids because the cells that are cut by the given

geometry are determined by this test.

There are various methods for the determination of a point whether it is located at the

inside or outside part of a closed polygon. The most popular ones are Ray Casting

and Winding Number methods.

In this thesis, Ray-Casting method is used due to its numerous advantages over

Winding Number method. However, there is a restriction in order to apply both of

these methods. This restriction is that the given geometry must be a closed loop

 23

although it consists of holes in it. Information regarding Winding Number method

can be found in references [10] and [12].

2.2.2.1 Ray Casting Method

In this approach, a ray (line) which can be x = constant, y = constant or another line

is cast from a point in two dimensional problems and the number of interactions

between this ray and the line segments of the geometry is counted. If this number is

odd then the point is inside the geometry, else it lies outside the geometry.

Figure 2.11 An example for Ray Casting Method

 24

For example, three different cases are shown in Figure 2.11. In the first case, a ray is

cast from point P1 in the positive x-direction (y = constant line) and it intersects four

times with the simple-closed geometry. This means according to ray casting method

that this point lies outside the geometry. In the second case, ray of point P2 in the

positive x-direction intersects with the geometry once; therefore, it is inside the

geometry. These two cases do not violate the rule of ray casting method. However, a

ray in the positive x-direction which is cast from point P3 intersects with the

geometry three times. In other words, three line segments of the geometry are cut by

this ray. Therefore, ray casting method allocates point P3 as an inside point. The

reason of this problem is that the end points of line segments have to be counted

once. But instead of counting end points once, changing the direction of ray is much

more logical when it intersects with an end point of any line segment. As a result,

probable mistakes due to this intersection are eliminated. That is to say, when the

ray, which is cast from point P3, changes to a x = constant line (ray in the positive y

direction), the number of intersection becomes zero and this means point lies outside

the geometry. Consequently, in the developed program, rays are cast along

alternating directions until the ray does not intersect with endpoints of line segments.

There is one more special case where the rule of ray casting method is violated. If the

point is coincident with any line segment of the geometry, the number of intersection

can be either odd or even although it must be odd. Therefore, firstly, the coincidence

must be checked and if there is no coincidence, the testing method is applied to the

point. If it is coincident with any one of the line segments, the point is on the

geometry and it is immediately allocated as an inside point.

As it is mentioned before, ray casting method has various advantages when it is

compared to winding number method. The first advantage is that unlike winding

number method, ray casting method does not require to visit all of the line segments

of the geometry. For example, if the ray is in the positive x direction, the line

segments whose y coordinates of both end points are larger or smaller than the y

coordinate of the point from which the ray is cast are not tested since their

intersection is impossible. Another advantage is that ray casting method does not

 25

suffer from floating point round off errors [10]. The final advantage is that

implementation of ray casting method into the three dimensional problems is easier

and more accurate than that of other methods.

After the testing of each of four corners of a cell, type of this cell has to be

determined according to the test results since this step is obligatory step for Cartesian

grids. Then, φ value of each corner which was mentioned before is allocated. φ value

of inside corner is set to -1, while φ value of outside corner is set to 1. This value is

necessary in the marching squares method which is discussed later. As it is

mentioned before, there are four types of computational cells. If all corners of a cell

are outside of the geometry, the cell type is set as outside and if all corners are inside

then the cell type is set as inside. Types of other remaining cells are set as cut cells.

By this way, cut cells are determined. Figure 2.12 gives examples of these types of

cells. However, there are some exceptions which violate rules of this determination.

Two cases given in Figure 2.13 illustrate some of these exceptions. Although four

corners of two sample cells in Figure 2.13 are outside, they are cut by the given

geometry. These cells are set as split cells because classifying these cells as outside

cells causes error during the flux calculations and they are discussed later in the next

section.

Figure 2.12 Examples of types of cells

 26

Figure 2.13 Sample two exceptions

After determining types of cells, cells around the body except inside cells are refined

by three different ways until fine meshes are obtained around the body. The general

name of these processes is geometric adaptation.

2.2.3 Geometric Adaptation

The adaptation process can easily be applied to a Cartesian grid; therefore, high

resolution around the geometry as a result of adaptation enables more accurate

results when compared to other types of grids. Geometric adaptation is applied to the

uniform mesh after determination of cell types in three steps: box adaptation, cut &

split cell adaptation and curvature adaptation. The amount of application of these

adaptations is determined by the user. Suitable grid for solver part is obtained after

all of these adaptations.

2.2.3.1 Box Adaptation

The first step of geometric adaptation is the box adaptation. By means of this

adaptation, uniform mesh around the given geometry is refined and fine meshes are

obtained in an imaginary rectangular box. The imaginary rectangular box includes

cells which are inside the box or in contact with the box and these cells are flagged

for refinement. After determining of these flagged cells, they are refined until a

 27

desired resolution is obtained inside the box. But it is important that one level rule is

considered while the refinement of flagged cells. If the levels of the edge or vertex

neighbors of flagged cell are one level lower than its level, firstly they are refined

and then the cell is refined. After the application of box adaptation to the uniform

mesh in Figure 2.6, Figure 2.14 is obtained.

Figure 2.14 Application of box adaptation to three-element airfoil

As it was mentioned before, there are some intermediate steps between box

adaptation and cut cell adaptation. These are discussed now.

 28

2.2.3.1.1 Determination and Classification of Split Cells

After the types of cells are determined according to the rule given in the inside-

outside testing section, it is seen that there are some exceptions and these exceptions

necessitate some modifications in type determination. Therefore, additional type is

added to the developed code called split cell. These cells have one or more separate

control volumes. Flux calculation of split cells which have only one control volume

is the same as cut cells. On the other hand, flux calculation of split cells which have

two or more control volumes is different. Separate flux calculations are performed

for each of separate control volumes of a split cell. Although split cells make the data

structure more complicated, it is obligatory for the implementation of multigrid

method. This will be exemplified with an example in the multigrid method section.

Besides its complexity, split cells increase the computational time and decrease the

usage of memory effectively. In the literature, some works assume split cells as one

control volume in order to escape from more complexity in the data structure like

references [4] and [12].

In this work, split cells are handled to ease the implementation of multigrid method.

As it is mentioned before, classification of cells according to their types are

performed after inside-outside testing. In this step, cells are divided into three

groups: inside, outside and cut cells. Afterwards, all cells are tested again to

determine how many cut points each of cells has. This test is called the determination

of split cells. In fact, outside and inside cells should not have cut points and cut cells

should have only two cut points. However, some cells violate this rule. For example,

although types of two cells in Figure 2.13 are set as outside after inside-outside

testing, they have two and four cut points, respectively. In addition, first two cells in

Figure 2.15 are set as cut cell but they have four cut points instead of two. The last

cell in Figure 2.15 is set as inside, but it is cut by the geometry.

 29

Figure 2.15 Three examples of split cells

As it is mentioned before, there is a pointer called total square index for all

computational cells. This pointer makes easier the flux calculation process. Finding

the value of this pointer for outside, inside and cut cells is discussed in the next

section.

After all of computational cells are tested to find exceptions and set them as split

cells, classification of these split cells are done. Split cells are classified in respect of

their total square index values. Therefore, finding these values for split cells can be

summarized here. If a cell is cut cell according to the inside-outside testing but it has

four cut points, it is set as split cell and its total square index remains the same. If a

cell is outside cell according to the test but it has two or four cut points, it is set as

split cell and its total square index is assigned to -15 or -25, respectively. If a cell is

inside cell according to the test but it has two or four cut points, it is set as a split cell

and its total square index is assigned to -20 or -30, respectively. Finally, if a cell is

cut cell according to the inside-outside test but it has more than four cut points, it is

set as split cell and its total square index is assigned to -40. Split cells whose total

square index is -40 are recursively refined until other types of split cells are obtained

since the flux formulation for this case is very difficult to handle when compared to

other types. This type of split cell is rarely found and after one or two refinement

they are eliminated.

 30

After classification of split cells, their cut point locations have to be determined. But

it is important to note that numbering of cut points is not done randomly. Cut points

for each cell follow a sequence. Hence, calculation of cut or split cell area, centroid

and calculation of fluxes are very easy because of this sequence. Furthermore, each

control volume of split cells can be considered as a cut cell and its flux calculations

are performed like cut cells by means of total square indexes indicated in Appendix

A. These indicated total square indexes are different from the actual classification

total square index. For example, total square index of the cell given in Figure 2.16 is

-25 in order to classify it. It is an outside cell as to inside-outside testing. After

determination test, it is set as a split cell because it has four cut points. First control

volume of split cells is the part which possesses cut locations p0 and p1. Second

control volume is the part which has cut points p2 and p3. Flux calculation of the

first control volume in Figure 2.16 is done assuming this part as a cut cell whose total

square index is three. As seen in Figure 2.16, if the first control volume is assumed a

cut cell, its total square index is directly calculated as three. Flux calculation of the

second control volume is done assuming this part as a cut cell whose total square

index is twelve. As seen in Figure 2.16, if the second control volume is assumed a

cut cell, its total square index is directly calculated as twelve. In other words, total

square index of split cell is -25 in order to classify it and total square indexes of each

control volume of this split cell can be seen from the Figure 2.16 inside of the control

volumes.

 31

Figure 2.16 Numbering of cut points of a split cell and assuming it like a cut cell for

flux calculations

2.2.3.1.2 Marching Squares Method

After box adaptation and determination of split cells, locations of cut points of cut

cells are tried to be found by using marching squares algorithm for two-dimensional

problems since its implementation is easy. Besides, memory usage is lower than

other methods. Generally, in the literature, line or polygon clipping algorithms were

used for two-dimensional flow problems to determine the cut locations and the part

of cell that resides in the geometry. These algorithms are performed by testing each

of four edges whether they are cut or uncut. Then as a result of clipping, cut and

uncut edges and cut locations are stored separately and portion of cut edges that

 32

resides outside of the geometry is stored in the memory. This brings about excessive

memory usage. For example, minimum additional eight pointers have to be stored for

these values. On the other hand, in marching squares algorithm, cut edges are

automatically known by a table; hence, cut locations are found and stored easily. In

other words, there is no need to check all edges whether they are cut by the

geometry. This is not a big problem for two dimensional problems but for three

dimensional problems, there are twelve edges and testing of each of them will be

time consuming. In this work, by means of one pointer, cut and uncut edges and

portion of cut edges that resides outside of the geometry are found easily. Finally,

marching squares algorithm is used in three-dimensional problems in order to find

the area of cut surfaces and portions of those surfaces that are used for flux

calculations.

Marching squares algorithm starts by indexing each corners and edges of a cell from

0 to 3. This can be seen from Figure 2.3. Then total square index value depending on

number of corners which have negative φ value is determined. Square indexes of

each corners according to their phi values and the loop used in the developed code in

order to calculate total square index are given below.

• If φ of corner 0 = -1 then square index = 1

• If φ of corner 1 = -1 then square index = 2

• If φ of corner 2 = -1 then square index = 4

• If φ of corner 3 = -1 then square index = 8

Figure 2.17 Loop for calculating total square index value of a computational cell

 33

For example in Figure 2.18, corner 0 and corner 3 of the cell are inside the body.

Hence, if total square index of this cell is calculated with the given algorithm, the

result becomes 9. This value is obtained by adding 1 and 8, since φ values of corner 0

and 3 are both -1, respectively. Then by means of a table called line table given in

Figure 2.19, cut edges are determined. For example, cut edges of the cell given in

Figure 2.18 are edge 0 and edge 2 respectively according to the line table in Figure

2.19 since its square index is nine. By the way, green numbers in Figure 2.19 are

comments and they indicate the total square index. Since the cut edges are known

automatically by the table, intersection points of cut edges and line segments of the

geometry are calculated. For this case, x coordinates of intersection points are known

automatically since they are equal to x coordinates of corner 0 and corner 2,

respectively. The only problem is to determine y coordinates of intersections. They

can be found easily by using the line segment which cuts the cell. By the way,

calculating the locations of cut points of split cells is very similar to cut cells.

Figure 2.18 An example for explaining the calculation of total square index of a cell

 34

Moreover, flux calculations of cut cells with the aid of this algorithm can be

summarized here because it is mentioned that cut, uncut edges and outer portions of

cut cells are not stored in the developed code. Instead, the table called corner table in

Figure 2.19 includes almost the whole data that is necessary for flux calculations.

Cut, uncut edges and outside portions of cut edges for the case in Figure 2.18 will be

explained by means of the corner table in Figure 2.19. Since total square index of this

case is nine, the corresponding row to this square index is 1, 2, -1, -1. These numbers

(from 0 to 3) point out the number of outside corners of a cell. First and second

outside corners for this case are corners 1 and 2, respectively. It is extremely

important to note that rotation direction beginning from first cut point (p0) by

passing the outside corners and ending with second cut point (p1) is always counter-

clockwise. The first cut edge is the edge which possesses first cut point (p0) and first

outside corner (corner 1) according to corner table. Namely, the first cut edge is edge

0 which is the edge located before corner 1 in the counter-clockwise sense. Instead of

storing the neighbor for flux calculation, after the determination of first cut edge, it is

automatically known that the first flux calculation for this case is done between the

cell and east neighbor of this cell. Then it is time to determine other neighbors for

flux calculations by means of this table. After the first cut edge, there are two

possibilities. Second edge can be an uncut edge or cut edge. If the subsequent

number is -1 in the corner table, this means that the next edge is a cut edge. If the

subsequent number is a number from 0 to 3, this means that the next edge is an uncut

edge. For this case, subsequent number is 2; therefore, next edge is an uncut edge

which possesses corner 1 (the first index of row) and corner 2 (subsequent number).

Namely, the second edge for flux calculation is edge 1 which is the edge located

before corner 2 in the counter-clockwise sense. Neighbor of this cell on edge 1 is the

north neighbor of the cell. After the determination of second neighbor for flux

calculation, third neighbor is tried to find by means of corner 2. The number coming

after corner 2 is -1; hence, the third edge is a cut edge which possesses corner 2 and

the second cut point (p1) according to corner table. Namely, the third cut edge is

edge 2, which is the edge located after corner 2 in the counter-clockwise sense and of

 35

course, this edge is the last edge for flux calculation since the next number is -1. The

same procedure is followed for other cut cells whose square index is different from 9.

Figure 2.19 The tables for marching squares algorithm

2.2.3.2 Cut and Split Cell Adaptation

In order to obtain higher resolution around the geometry, split and cut cells are

flagged for refinement. The difference between box adaptation and cut and split cell

adaptation is that neighbors of cells that are flagged for refinement are also flagged

for refinement in order to obtain smooth grid around the geometry. As a result,

transition between cells near the geometry and cells far from the geometry becomes

smooth and degradation of solution due to level differences in the critical regions is

prevented. After the application of cut and split cell adaptation to the box adapted-

grid in Figure 2.14, Figure 2.20 is obtained.

 36

Figure 2.20 Application of cut and split cell adaptation to three-element airfoil

2.2.3.3 Curvature Adaptation

All cut and split cells have interfaces and if the curvature between two interfaces is

high, this means that this region necessitates more resolution since regions like that

cause high gradients. Therefore, cut or split cells which have neighbor interfaces

(this can be edge or vertex neighbors only) are tested whether the curvature between

their interfaces are higher. The curvature between two neighboring interfaces is the

angle between the normal vectors of these interfaces. If the angle is higher than the

threshold angle and then these cells are flagged for refinement and this process is

 37

called curvature adaptation. Detailed information can be found in reference [11].

After the application of curvature adaptation, Figure 2.21 is obtained.

Figure 2.21 Application of curvature adaptation to three-element airfoil

 38

CHAPTER 3

THREE DIMENSIONAL DATA STRUCTURE AND GRID
GENERATION

3.1 Octree Data Structure

The octree data structure is chosen in order to build connectivity information for

three-dimensional grid because of the simplicity of conversion of the code from two-

dimensional grid generation to three-dimensional grid generation.

Like the quadtree data structure, the octree data structure starts with the root cell and

other members of the data structure become its children, grandchildren and etc. Any

cell in the data structure is identified with fifteen pointers. One is for its parent; eight

of them are for its children and the rest of them (six of them) are for its surface

neighbors. Although the maximum possible number of neighbors is twenty six, only

eight of them are stored. Others are determined when they are necessary. As a result,

memory is used effectively. The pointers stored for all cells are given below:

• 1 word: Its parent

• 8 words: Its children

• 6 words: Its surface neighbors

• 1 word: Its level

• 3 words: Its x, y, and z coordinates of the centroid

• 2 words: Parameters for multigrid method which are called perform and

compcell in the developed code. These will be explained in the section of

multigrid method.

 39

Similar to the quadtree data structure, level of a cell is a very important parameter

and it is always one higher than the level of its parent. Centroidal coordinates of a

cell are the function of the level of the cell, domain size and centroidal coordinates of

its parent and they are calculated by the equations given below. Equations (3.1) to

(3.8) are for the calculation of centroidal coordinates of children of a parent starting

from first child to eighth child, respectively. L, n and c indexes in these equations are

the domain size, level of the cell and center of the cell, respectively.

)1(2
)(++= nparentcc

Lxx)1(2
)(++= nparentcc

Lyy)1(2
)(++= nparentcc

Lzz (3.1)

)1(2
)(+−= nparentcc

Lxx)1(2
)(++= nparentcc

Lyy)1(2
)(++= nparentcc

Lzz (3.2)

)1(2
)(+− nparentc

Lx)1(2
)(+−= nparentcc

Lyy)1(2
)(++= nparentcc

Lzz=cx (3.3)

)1(2
)(++= nparentcc

Lxx)1(2
)(+−= nparentcc

Lyy)1(2
)(++= nparentcc

Lzz (3.4)

)1(2
)(++= nparentcc

Lxx)1(2
)(++= nparentcc

Lyy)1(2
)(+−= nparentcc

Lzz (3.5)

)1(2
)(+−= nparentcc

Lxx)1(2
)(++= nparentcc

Lyy)1(2
)(+−= nparentcc

Lzz (3.6)

)1(2
)(+−= nparentcc

Lxx)1(2
)(+−= nparentcc

Lyy)1(2
)(+−= nparentcc

Lzz (3.7)

)1(2
)(++= nparentcc

Lxx)1(2
)(+−= nparentcc

Lyy)1(2
)(+−= nparentcc

Lzz (3.8)

One level rule is applied to the developed code like two-dimensional ne.

data structure does not become much more complicated. A cell in three-dimensional

rid has six surface neighbors which are called east, west, north, south, top and

bottom neighbors. It is mentioned that since the determination of these neighbors for

o Hence, the

g

 40

three-dimensional grids is more complicated than that for two-dimensional grids, this

procedure for the first child is summarized in this section. Determination of

neighbors of other children is similar to the first one. Therefore, others are not

explained here. Numbering of children of a parent is shown in Figure 3.1.

Figure 3.1 Numbering of children

Three surface neighbors of the first child in Figure 3.1 are automatically known

ecause they are the children of its parent. Namely, west, south and bottom

neighbors of the first child are second, fourth and fifth children of its parent,

b

 41

respectively. There are three possibilitie rs according to the one

(i.e. it is not the far-field), the east neighbor of the first child is

lso assigned to null. Otherwise, if the east neighbor of its parent is not assigned to

s for other neighbo

level rule. The first possibility is that the neighbor of a cell is one level lower than

the cell’s level. Other possibility is that both the cell and its neighbor are at the same

level and finally, neighbor’s level is one higher than the level of the cell. There is

only one neighbor if the level of neighbor is the same or one lower. However, if the

level of neighbor is one higher than the level of the cell, this means that this cell has

four neighbors along the same surface. Instead of storing all of these four neighbors,

only the parent of these neighboring cells is stored in order to prevent the excessive

usage of memory.

East, north and top neighbors of the first child are determined by means of the

neighboring information of its parent. For example, if the east neighbor of its parent

is assigned to null

a

null, it is checked whether it has children or not. If it has no child, then east neighbor

of the first child is set as the east neighbor of its parent. In this case, level difference

between the first child and its east neighbor becomes one and neighbor’s level is one

level lower than the first child’s level. If the east neighbor of first child’s parent has

children then the second child of the east neighbor of the parent is set as the east

neighbor of the first child. This neighbor is at the same level as the cell. In fact, this

cell might have children. Even this cell have children, it is set as the east neighbor to

prevent complexity. But it is checked during the flux calculation and reconstruction

schemes whether the neighboring cell, whose level is the same with the considered

cell, has children. If yes, then its neighboring children are used in the calculations.

Namely, the east neighbor of the first child is set as the second child of the east

neighbor of the parent although this east neighbor has children. But in the

calculations, four children of this neighbor are used. These children are the second,

third, sixth and seventh children of the second child of the east neighbor of the first

child’s parent.

 42

If the north neighbor of the parent of the first child is not set as null and it has no

children, it is set as the north neighbor of the first child. However, if it has children,

urth child of the north neighbor of first child’s parent is set as the north neighbor of

as the top neighbor

f the first child. However, if it has children, fifth child of the top neighbor of first

was

plained here for the first child of a parent cell. Other twelve neighbors are edge

nsional grid generation is very

ifficult when compared to two-dimensional one, split cells are not handled. Instead,

iven below:

fo

the first child. If this cell has also children, third, fourth, seventh and eighth children

of this cell are used in flux calculations as the surface neighbors.

Finally, if the top neighbor of the parent of the first child is not set as null and it has

no children, the top neighbor of the parent of the first child is set

o

child’s parent is set as the top neighbor of the first child. If this cell has also children,

fifth, sixth, seventh and eighth children of this cell are used in flux calculations.

As it is mentioned before, a cell has maximum twenty six neighbors. Six of them are

surface neighbors and they are stored. Determination of these neighbors

ex

neighbors. These are determined by means of surface neighbors of a cell. But

sometimes a cell has no edge neighbor along one of its edges. The reason of this case

is that the level of the surface neighbor is one lower than the level of the cell. The

rest of eight neighbors are the corner neighbors. Like edge neighbors, they are also

determined by means of surface neighbors of the cell.

Finally, in three-dimensional grid generation, there are three types of computational

cell: inside, outside and cut cells. Since the three-dime

d

these irregular cells which are not inside, outside or cut cells are recursively refined

until these three types are obtained. Consequently, the data structure is not as

complicated as in two-dimensional grid generation code.

It is beneficial to state that there are additional stored variables for computational and

cut cells. The pointers stored for computational cells are g

 43

• 5 words: Conservatives variables for continuity, x-momentum, y-

momentum, z-momentum and energy equations

• 8 words: Its eight corners

• 1 word: Its type

• 1 word: Its total cube index

ent criteria

l of velocity vector and strength of the

ow:

 3 words: x, y and z centroidal coordinates of a cut cell

s of a triangle which forms the cut

nal grid generation, centroid and area of cut cells are calculated by

iangulation of the outside part of cut cells. In three-dimensional grid, centroid and

• 2 words: Its refinem

• 3 words: Divergence and cur

entropy wave

• 5 words: For forcing functions

The pointers stored for cut cells are given bel

•

• 9 words: x, y and z corner coordinate

surfaces

In two-dimensio

tr

volume of cut cells are calculated by means of division of the outside part into

tetrahedrons. As a result, volumes and centroids of each tetrahedron are calculated

and summation of them gives the total volume. If four vertex coordinates of a

tetrahedron are known as shown in Figure 3.2, calculation of its volume is the

absolute value of scalar triple product. It is given in Equation 3.9.

 44

Figure 3.2 Coordinates of four vertex of a tetrahedron

)(CBAVolume
rrr

×•= (3.9)

where

kdajdaida
rrr

)()()(A 332211 −+−+−=

kdbjdbidbB
rrrr

)()()(332211 −+−+−=

kdcjdcidcC

rrrr

)()()(332211 −+−+−=

3.2 Initial Grid Generation and Geometry Adaptation

Three-dimensional grid generation is very similar to two-dimensional grid

generation. In order to generate three-dimensional grid, first of all, geometry is

introduced to the code and then uniform mesh is generated around the geometry. The

last step of grid generation is geometric adaptation and this is achieved in two steps:

box and cut cell adaptation.

 45

3.2.1 Creating Domain and Uniform Mesh Generation

As it is mentioned, introduction of the geometry around which the external flow will

be analyzed is the initial step of three-dimensional grid generation. Surface or

volume mesh of the geometry is used for the introduction according to the inside-

outside testing method. There are two different methods used for inside-outside

testing. One is ray casting which is explained in the previous chapter and the other is

a method which is associated with cross product and will be explained later. In order

to use both of these methods, both surface and volume meshes of the geometry are

required. Surface and volume meshes are composed of triangles and tetrahedrons,

respectively. After the generation of a mesh by means of GAMBIT software, it is

exported as a file whose extension is “.neu”. Examples of generated surface mesh

around a sphere and its output file from GAMBIT are shown in Figure 3.3 and

Appendix B, respectively.

Figure 3.3 Example surface mesh on a sphere

After the introduction of the geometry, uniform mesh is generated around the given

geometry. For example, if the uniform division number for the uniform mesh is set as

three, the root cell is divided three times successively. As a result, Figure 3.4d is

obtained.

 46

Figure 3.4 Root cell and different uniform meshes with different uniform division

numbers

3.2.2 Inside-Outside Determination

As it is mentioned before, there are two different types of inside-outside testing

method. Cross product of a corner with volume mesh is the first method which is

used in the developed code. But the execution time of this testing method is very

long when it is compared to the ray casting method and, therefore, it is not preferred.

In spite of its ineffectiveness, this method is explained here because it is sometimes

used due to its reliability.

 47

In the first method, each of the tetrahedron meshes (volume meshes) of the given

geometry is tested whether a corner of a cell is inside of this tetrahedron or not.

Namely, if the volume mesh of the given geometry is composed of n-tetrahedrons,

each corner of a cell is tested n-times. Therefore, it takes long time. In addition, for

each tetrahedron, four terms are calculated. Figure 3.5 is an example of this method.

Point P can be considered one of the corners of a cell and vertices of any tetrahedron

are demonstrated as 1, 2, 3 and 4 in Figure 3.5. If all of the four terms, which are

computed by using Equations 3.10, 3.11, 3.12 and 3.13, are positive or all are

negative or all are zero, then the point P is inside of the tetrahedron. Otherwise, it is

outside of the tetrahedron [14]. In other words, if the signs of all terms are the same

then it means that this corner is inside of the tested tetrahedron.

Figure 3.5 Inside-outside determination of point P in 3D

 Term 1= [|21|x|32|]●|P2| (3.10)

 Term 2= [|31|x|43|]●|P3| (3.11)

 Term 3= [|34|x|23|]●|P3| (3.12)

 Term 4= [|41|x|24|]●|P4| (3.13)

where

 48

 kbajbaibaab zzyyxx

rrr
⋅−+⋅−+⋅−=)()()(

Ray casting method was discussed in Chapter 2 for two-dimensional case. In this

case, a ray intersects with the line segments of the given geometry (line-line

intersection in two-dimensions). In three-dimensions, how many times a ray, which

is cast from one of the eight corners of a cell, is intersected with the triangular

surface meshes of a given geometry are counted. This type of intersection is line-

triangle intersection in three-dimensions and the determination of this type of

intersection is discussed in detail in reference [15].

After the inside-outside test of all corners of a cell, cell type is determined. If all of

the eight corners are inside the geometry then it is an inside cell. Otherwise, if all of

the eight corners are outside the geometry then it is an outside cell. Other cells which

have both inside and outside corners are set as cut cell. After the cell type

determination, geometric adaptation starts.

3.2.3 Geometric Adaptation

The purpose of the geometric adaptation in three-dimensions is the same as in the

two-dimensional case. However, in this part, curvature adaptation is not applied to

the geometry since the only application of box and cut cell adaptations is found to be

satisfactory. In addition, it is more complicated than box and cut cell adaptations for

three-dimensional case. This will be identified as a future work.

3.2.3.1 Box Adaptation

In order to obtain high resolution around the given geometry, box adaptation is an

important step of geometric adaptation. After the box adaptation around a sphere,

slice of Cartesian volume mesh in xy plane can be seen from Figure 3.6. Like two-

dimensional grid generation, one level rule is applied to the surface, edge and corner

 49

neighbors during geometric adaptation. Therefore, smooth grid is obtained as seen

Figure 3.6.

After the box adaptation, cut surfaces of cut cells are tried to be determined by

marching cubes algorithm. Marching squares algorithm was discussed in Chapter 2

and marching cubes is similar to the marching squares. In two-dimensions, cut edges

are tried to be found by means of total square index of a cell and a given table. In

three-dimensions, cut surfaces are determined by means of total cube index of a cell

and a table which is given in Appendix C.

Figure 3.6 Application of box adaptation to sphere surface mesh exported from

GAMBIT

 50

Numbering of edges and corners of a cell is shown in Figure 3.7. Like marching

squares algorithm, total cube index is calculated by examining the φ values of each

corner of a cell. Total cube indexes of outside and inside cell are 0 and 255,

respectively. Cube indexes of each corner according to their φ value used in the

developed code are given below:

• If φ of corner 0 = -1 then cube index = 1

• If φ of corner 1 = -1 then cube index = 2

• If φ of corner 2 = -1 then cube index = 4

• If φ of corner 3 = -1 then cube index = 8

• If φ of corner 4 = -1 then cube index = 16

• If φ of corner 5 = -1 then cube index = 32

• If φ of corner 6 = -1 then cube index = 64

• If φ of corner 7 = -1 then cube index = 128

Figure 3.7 Numbering of edges and vertexes of a three dimensional cell

 51

For example, total cube index of a cell whose zeroth, first and second corners are

only inside of the geometry is 7. Cut edges of this cell and triangular cut surfaces are

found by means of the table in Appendix C. The row corresponds to this total cube

index in the triangle table is given below:

According to this information, cut edges are 2, 8, 3, 10 and 9. When cut edges are

known, cut locations on cut edges are found the method given in reference [15]

which is called line-triangle intersection. After finding cut locations on these edges,

three triangles which pass along these cut locations can be drawn by means of

following the given sequence in the triangle table in Appendix C. Inside and outside

portions of the cell whose cube index is 7 are seen from the Figure 3.8a. According

to the table, this cell has three triangular cut surfaces as seen in Figure 3.8b. Corners

of the first triangle are on the second, eighth and third edges, respectively. Corners of

the second triangle are on the second, tenth and eighth edges, respectively. Corners

of the third triangle are on the tenth, ninth and eighth edges, respectively.

It is important to note that normal vectors of each triangular surface are pointing to

the outside part of the cell. This feature of triangles facilitates the flux, volume and

centroid calculations.

 52

 (a) (b)

Figure 3.8 Marching Cube Algorithm

3.2.3.2 Cut Cell Adaptation

Cut cell adaptation is also very important part of geometric adaptation since both the

cut cells and their outside surface, edge and corner neighbors are refined. As a result,

critical regions such as shocks, expansion waves are easily detected and solution

refinement is applied to the grid in a more reliable manner. After the application of

cut cell adaptation to the Figure 3.6, Figure 3.9 is obtained.

 53

Figure 3.9 Cut cell adaptation

 54

CHAPTER 4

FLOW SOLVER

A Cartesian grid generation method for the solution of the steady-state Euler

equations was discussed in Chapters 2 and 3. In this chapter, first of all, integral form

of three-dimensional inviscid and compressible governing equations (Euler

Equations) is introduced. Then, spatial and temporal discretizations of these integral

forms of equations are discussed. Numerical flux construction schemes are explained

for three dimensional cases in order to calculate fluxes through the surfaces of the

cells. These schemes are the Approximate Riemann Solver of Roe and Liou’s

Advection Upstream Splitting method (AUSM). For most of the test cases, first-order

spatial accuracy is used for the conserved variables in the flux calculations in order

to use multigrid application. The developed solver couldn’t perform second order

flux calculations with multigrid applications.

The finite volume formulation of the three-dimensional conservative Euler equations

is achieved by using a cell-centered approach. Solution adaptation is used for

resolving more critical regions in the solution domain because the Cartesian grid is

very suitable for automatic grid generation. As a result of solution adaptation,

sufficient resolution around critical regions is obtained without increasing the total

grid number considerably. Primitive variables are reconstructed using the least

squares methods to achieve solution adaptation. In order to ensure accurate and

bounded values, limiters are employed in the reconstruction process. Divergence and

curl of velocity vector and the strength of the entropy wave are used for resolving the

critical regions. The combination of these three criteria is expected to give better

results than a single one.

 55

Multigrid convergence acceleration technique (Full Approximation scheme) is used

in order to increase the convergence rate. Firstly, the problem under consideration is

solved on a fine mesh. Then the grid are coarsened and refined successively in order

to obtain the improved solution in a short time.

4.1 Three Dimensional Euler Equations

In the developed code, discretized forms of the integral equations are used; therefore,

firstly, it is beneficial to introduce integral conservative form of Euler Equations.

 0d)(d =•+Ω
∂
∂

∫∫
Ω

A
t A

nF q (4.1)

Here, is a vector of conserved variables and q)(nF • is a vector of fluxes

perpendicular to the surface of a cell where the flux through this surface is

calculated. A and Ω are the area of this surface and the volume of this cell,

respectively. is the normal vector which is pointing the outside of

the cell and F is defined as

T
zyx nnn),,(=n

kji zyx

rrr
FFF ++=F .

 (4.2)

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

E
w
v
u

ρ
ρ
ρ
ρ
ρ

q

 (4.3) ,

2

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
=

uH
uw
uv

pu
u

x

ρ
ρ
ρ
ρ

ρ

F ,2

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+=

vH
vw

pv
uv
v

y

ρ
ρ
ρ

ρ
ρ

F

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

=

wH
pw

vw
uw
w

z

ρ
ρ

ρ
ρ
ρ

2

F

 56

Dot product of the flux and normal vectors gives the fluxes perpendicular to the

surface and it is defined as Ф and given in Equation (4.4).

 (4.4)

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+
+

=Φ

HV
pnwV

pnvV
pnuV

V

n

zn

yn

xn

n

ρ
ρ

ρ
ρ
ρ

where is the normal velocity to the surface pointing the outside

of the cell,

zyxn wnvnunV ++=

ρ is the density of the fluid, kwjviu
rrr

++=v is the fluid velocity vector.

E is the specific total energy, H is the specific total enthalpy and p is the fluid

static pressure. Thermodynamic relations regarding E , H and p are given in the

following equations.

2

222 wvueE ++
+= (4.5)

ρ
pEH += (4.6)

)
2

)(1()1(
222 wvuEep ++

−−=−= γργρ (4.7)

where is the specific internal energy and γ = cp/cv is the ratio of specific heats. In

the developed code, initial values of some variables are chosen close to unity in order

to decrease the computational load. For example, far-field density and static pressure

are chosen as 1 and 1/γ, respectively. Far-field speed of sound is calculated as 1 by

using the following equation.

e

∞

∞
∞ = ρ

γpc (4.8)

 57

As a result, ma nitude of the r-field velocity vector, vg fa , is obtained directly as

input Mach nu

tegral form of Euler Equations is solved easily by using finite volume method.

volumes do not change in

e. Therefore, flow variables can be stored at the centroids of cells and it can be

 the

mber.

4.1.1 Spatial Discretization of Euler Equations

In

Firstly, physical domain is divided into cells whose control

tim

assumed that they do not vary inside of the control volume. As a result, it is possible

to write

tt ∂

∂
Ω=Ω

∂
∂
∫

q qd (4.9)
Ω

Moreover, the surface integral in Equation (4.1) can be approximated by the sum of

e fluxes through each face of a control volume. Consequently, spatial discre

rm of the Equation (4.1) becomes

th tized

fo

 ∑
=

Φ
Ω

−=
∂
∂ nFaces

i
ii At 1

1q
 (4.10)

Residuals of a cell are nonlinear functions of the conservative variables and they may

e defined as

As a result, Equation (4.10) may be written as

b

 ∑Φ=
nFaces

ii ARes)(q (4.11)
=i 1

 58

Ω∂

−=
∂)(qq Res

t
 (4.12)

inally, it is important to note that choosing the appropriate numerical flux

construction scheme is very important to obtain the accurate results from spatial

tization.

 separate discretization in time is required for the solver part of the developed code.

oral discretization is

necessary for obtaining zero residuals quickly by means of multistage time stepping.

F

discre

4.1.2 Temporal Discretization of Euler Equations

A

Although the steady-state Euler Equations are solved, temp

Left hand side of Equation (4.12) is discretized in time as the equation given below.

tt

nn

Δ
−

=
∂
∂ + qqq 1

 (4.13)

It is important to note that residuals of a cell is a function of flow variables as seen in

e determ

e temporal discretization scheme. In other words, if the residuals are calculated by

Equation 4.11; therefore, tim step at which the residuals are calculated ines

th

using flow variables obtained at time steps n and (n + 1), this scheme is called

implicit scheme and can be given by

 [](1 1
1

+
+

)
Ω

−=
Δ
− n

nn

Res
t

q (4.14)

Otherwise, if the residuals are calculated by using flow variables obtained at the n

me step, this scheme is called explicit scheme and can be given by

qq

ti

 [])(11
n

nn

Res
t

qqq
Ω

−=
Δ
−+

 (4.15)

 59

where is equal to)(1+nRes q)()()()(11 nnnn ResResRes qq
q

qq −
∂

∂
+= ++ accord

e Taylor Series when the higher orders are neglected.

4.1.2.1 Multistage Time Stepping (Runge-Kutta Method)

he discretized Euler equations are solved by starting from a known initial solution

time stepping scheme is

iven by

ing to

th

T

in the explicit multistage time stepping method. Three-stage

g

nqq =0

Ω
Δ

−=
)(0

101 qqq Restυα

Ω
Δ

−=
)(1

202 qqq Restυα
 (4.16)

Ω
Δ

−=
)(2

303 qqq Restυα

31 qq =+n

Residuals are found by using this initial solution. Then the improved solutions are

obtained by means of some iteration. In Equation (4.16), kα denotes the stage

efficients and Δt is the time step. CFL numbers and stage coefficients for 3, 4 and co

5 stages time stepping are presented in Table 4.1 which is taken from reference [3].

For the results in the developed code, three-stage time stepping scheme is used with

the first order accuracy.

 60

Table 4.1 Stage coefficients and CFL numbers for the first order multistage scheme
for two dimensional problems

 3 4 5

υ 1.5 2.0 2.5

1α 0.1481 0.0833 0.0533

2α 0.4 0.2069 0.1263

3α 1.0 0.4265 0.2375

4α 1.0 0.4414

5α 1.0

 Table 4.2 Stage coefficients and CFL number for the first order two-stage scheme
for three dimensional problems

 2

υ 1.0

1α 0.4361

2α 1.0

.1.2.2 Local Time Step

he main disadvantage of explicit multistage scheme is the limitation on the time

or an unsteady flow, the minimum local time step is chosen among the all

calculations of discretized governing equations. Hence, local time stepping for steady

4

T

step. It cannot be chosen arbitrarily because of the stability problems. Therefore,

computation of local time step of each cell is an important issue. It depends on the

cell size and the flow properties. It is important to note that there are large size

differences between outside and cut cells in Cartesian method.

F

calculated local time steps for each cell and it is used for all cells and this is a big

disadvantage for convergence rate. On the other hand, for steady problems, every cell

has its own local time step and these values are used for each cell during the

 61

problems is a valuable option to increase the convergence rate. Namely, steady

problems are not restricted to use only the minimum local time step during the

calculation.

In two-dimensional problems, local time step of each cell is calculated by using the

llowing equation fo

yxcellA

tΔ
Ψ+Ψ

=
1

 (4.17)

where and are the convective spectral radii and they are calculated by using

e absolute values of the projections of edges (Sx and Sy) in x and y directions as

:

xΨ yΨ

th

follows

∑
=

+=Ψ
nEdges

i
ixcellx Scu

1
)(

2
1

 (4.18)

 ∑
=

+=Ψ
nEdges

i
iycelly Scv

1
)(

2
1

 (4.19)

where ccell is the local speed of sound which is calculated by using the flow variables

tored at the cell centroid.

ms, local time step of each cell is calculated by means of

e following equation

s

In three-dimensional proble

th

ii

nFaces

i
ncell

cell AVc

t
=

Δ

)(

1

1
∑
=

+Ω (4.20)

 62

where is the normal velocity to a face and is the area of this face. As it is seen

from Equation (4.20), local time step of a cell have to be calculated at every iteration

since normal velocity and local speed of sound are changing continuously.

nV iA

4.2 Flux Computation

One of the most important part of three-dimensional flow solver is the calculation of

fluxes, Фi, through each face. In this study, two different methods are used for the

calculation of fluxes. These are approximate Riemann solver of Roe [10], [16] and

[17] and Liou’s Advection Upstream Splitting Method (AUSM) [16], [18] and [11].

In the two-dimensional code, the former one is used for most of the cases, while the

latter one is used for the most of the cases in the three-dimensional code.

4.2.1 Approximate Riemann Solver of Roe

Fluxes for each face are calculated at the mid-point of the face by using the flow

variables of two neighboring cells. The flow variables of the cell whose flux value

will be calculated are denoted as the left side and the neighboring cell is represented

as right side.

 [] kkRLRL R Vqqqq ∑
=

Δ−Φ+Φ=Φ
5

12
1)()(

2
1),(

k
kλ (4.21)

where

 , (4.22)

L

Lq

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+
+

=Φ

HV
pnwV

pnvV
pnuV

V

n

zn

yn

xn

n

ρ
ρ

ρ
ρ
ρ

)(

R

Rq

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+
+

=Φ

HV
pnwV

pnvV
pnuV

V

n

zn

yn

xn

n

ρ
ρ

ρ
ρ
ρ

)(

 63

It is important to note that third term at the right hand side of Equation (4.21) is

calculated by using Roe-averaged quantities. These quantities are given below.

 RLRL ρρρ = (4.23)

LR

LLRR
RL ρρ

ρρ
+

+
=

uu
u (4.24)

LR

LLRR
RL ρρ

ρρ
+

+
=

vv
v (4.25)

LR

LLRR
RL ρρ

ρρ
+

+
=

ww
w (4.26)

LR

LLRR
RL ρρ

ρρ
+

+
=

HH
H (4.27)

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
−−=

2
)1(

222
RLRLRL

RLRL
wvuHc γ (4.28)

The normal velocity calculated by using Roe-averaged values is presented in the

following equation

 () zyxn nwnvnuV RLRLRLRL ++= (4.29)

Eigen values can be calculated by using the calculated normal velocity as

 (4.30)

()
()
()
()
() ⎥

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−

=

RLRL

RL

RL

RL

RLRL

cV
V
V
V

cV

n

n

n

n

n

λ

 64

while the wave strengths are computed by

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ+Δ

Δ−
+

Δ+Δ

+

Δ−Δ

Δ−Δ

Δ−Δ

=Δ

2

22

22

2

2

2

2

2

RL

RLRL

RL

RL

RL

RLRL

V

c
Vcp

u
nn

wnnvnn

nn

vnwn
c

pc

c
Vcp

n

zy

zxyx

zy

zy

n

ρ

ρ

ρ

 (4.31)

where LR ρρρ −=Δ , LR ppp −=Δ , LR uuu −=Δ , LR vvv −=Δ , LR www −=Δ

and . () (R nnn VVV −=)LΔ

Finally, right characteristic vectors are given below:

() ()[] () ⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−−−

+−
+−−
++−

=

RLRLRLRLRLRLRLRLRLRLRLRL

RLRLRLRLRLRLRL

RLRLRLRLRLRLRL

RLRLRLRLRLRL

R

nxnzyn

zzxyz

yyxzy

xzyx

VcHunVnvnwVcH

ncwnnnwncw
ncvnnnvncv
ncunnuncu

ρρδ
ρρ
ρρ

ρ

)(
2

)(0
10011

22

 (4.32)

where . 2
RL

2
RL

2
RL wvu ++=δ

 65

4.2.2 Liou’s Advection Upstream Splitting Method (AUSM)

This method is chosen for the developed code since it is less complicated and

expensive than Van Leer and Steger-Warming flux splitting methods. In this method,

Mach number and pressure appearing in the convection flux terms are split.

 () ()
22

1
2

1)()()()(
2
1),(1LRRLRL pqFqFqFqFqq +⎥⎦

⎤
⎢⎣
⎡ ′−′−′+′=Φ MM (4.33)

Flux values may be written as

 (4.34) pF +′⋅=

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=Φ M

n

n
n

p

Hc
wc
vc
uc
c

M

n

n
n

p

H
w
v
u

V

z

y

x

z

y

x

n

0

0

0

0

ρ
ρ
ρ
ρ
ρ

ρ
ρ
ρ
ρ
ρ

where

L

LqF

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=′

Hc
wc
vc
uc
c

ρ
ρ
ρ
ρ
ρ

)(and (4.35)

R

RqF

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=′

Hc
wc
vc
uc
c

ρ
ρ
ρ
ρ
ρ

)(

Split Mach number
2

1M and split pressure
2

1p are the average of left and right

sides.

 ()−+ += RL MMM
2
1

2/1 ()−+ += RL ppp
2
1

21/ (4.36)

where

 66

()

⎪
⎩

⎪
⎨

⎧

>+

≤+
=+

1)(
2
1

11
4
1 2

LLL

LL

L
MMM

MM
M (4.37)

()

⎪
⎩

⎪
⎨

⎧

>−

≤−−
=−

1)(
2
1

11
4
1 2

RRR

RR

R
MMM

MM
M (4.38)

⎪⎩

⎪
⎨
⎧

>

≤−
= ++

11
12

L
L

LL

LLL pp M
M

MM
M (4.39)

⎪⎩

⎪
⎨
⎧

>

≤−−
= −−

11
12

R
R

RR

RRR pp M
M

MM
M (4.40)

4.3 Initial Guess and Boundary Conditions

As it is mentioned before, the discretized Euler equations are solved by starting from

a known initial solution in the explicit multistage time stepping method. Therefore,

the far-field boundary conditions are set as the initial guess for all cells.

For external fluid flows, there are two types of boundary conditions. These are far-

field and solid wall boundary conditions. The first boundary condition is necessary

for a cell whose neighbor is the far-field. In this case, ghost cell whose size is the

same as the size of the cell is used and flow variables for this ghost cell are equated

to the far-field conditions. Flow variables of the ghost cell and the cell, which

neighbors the far-field, are assigned to the right and left states, respectively, for the

flux calculations.

The second boundary condition is necessary for cut or split cells. The flux through

the interface between a cut cell and the given geometry is also calculated by means

of a ghost cell whose size, density, pressure and specific total enthalpy are the same

 67

as this cut cell. The velocity components of the ghost cell in normal and tangential

directions are the same as the magnitudes of the cell. The only difference is the

direction of the normal component of the velocity vector. These properties are

depicted for two-dimensions in Figure 4.1.

Figure 4.1 Example of a ghost cell in 2D

4.4 Multigrid Method

Fedorenko [19] and [20] developed the first multigrid scheme to solve Poisson

equations. This scheme was then modified in order to use it for elliptic boundary

value problems by mathematicians. But the effective multigrid method was

developed by Brandt [21]. In addition, multigrid method for nonlinear problems was

developed by Brandt and this method is called Full Approximation Storage (FAS)

scheme. Another achievement regarding multigrid method is Full Multigrid (FMG)

scheme. This scheme is based on the nested iteration and multigrid method [22]. The

last improved multigrid method is Algebraic Multigrid (AMG) method. Multigrid

method is mostly applied to linear and nonlinear boundary value problems. Other

applications are hyperbolic, elliptic and Eigen value problems.

 68

The purpose of the multigrid method is to accelerate the convergence rate of a

problem. Multigrid method is based on two principles. The first one is error

smoothing. High frequency errors are tried to be eliminated effectively in this

principle by starting with an initial guess and using some iterative methods such as

Jacobi or Gauss Seidel. Although high frequency errors are smoothed after some

iterations in this step, low frequency errors improved slightly. The other principle is

coarse grid principle and this principle tries to eliminate low frequency errors by

using coarse level of grids. This is achieved by transforming the solutions from the

present grid to the coarsened grids and performing iterations on these grids.

Transforming the solutions from the present grid to the coarsened grids is called

restriction. As a result, low frequency errors on the present grid act as high frequency

errors on the coarsened grids. Hence, they can be eliminated iteratively on the

coarsened grids. Finally, solutions which are obtained by using coarsened grids are

interpolated to the fine grid and this process is called prolongation. In other words,

low and high frequency errors are tried to be eliminated by using different levels of

grids [23].

4.4.1 Multigrid Method for Linear Problems

The matrix notation in the following equation denotes the system of linear equations

[24].

 (4.41) bx =A

where x is the exact solution of this system and y is the approximation to the exact

solution. Bold symbols are used to indicate the vectors. xh and yh notations are used

to indicate that vectors are belong to the Ωh level of mesh. Error vector is found by

using

 (4.42) eyx =−

Residual vector is calculated easily for linear problems as follows

 69

 (4.43) ybr A−=

where r denotes the residual vector. Residual vector becomes zero if and only if the

error vector becomes zero since the system is linear. Therefore

 (4.44) re =A

Finally, the improved approximate solutions are obtained by using error vector.

 (4.45) eyy +=new

Multigrid method is generally composed of four steps: (i) fine grid iterations, (ii)

restriction, (iii) prolongation and (iv) correction and final iterations [25].

(i) Fine Grid Iterations: Initially, some iteration is performed on the finest mesh

with mesh spacing h in order to reduce high frequency errors. After these iterations,

approximate solutions, which are denoted yh, are obtained. After the implementation

of these solutions into Equation (4.43), residual vector rh on this mesh level is found

as

 (4.46) hhhh A ybr −=

(ii) Restriction: In this step, mesh spacing is increased from h to ch. This new mesh

is coarser than the finest mesh. Iterations are performed on this new mesh in order to

eliminate low frequency errors. Generally, c index is chosen as 2. This facilitates the

coarsening algorithm in Cartesian grids since transforming the mesh spacing from h

to 2h is to delete children of a parent and to set this parent as a computational cell.

In order to perform iterations on this coarse mesh, residual vector, r2h and coefficient

matrix, A2h on the coarse level mesh are required. Transfer of residual vector on the

 70

fine grid with mesh spacing h to mesh spacing 2h is called restriction process and the

operator used for this transfer is called restriction operator and denoted by . h
hI 2

 (4.47) hhh
hI 22 rr =

This transfer is achieved by averaging the residual vectors of children in Cartesian

grids. Figure 4.2 depicts the transfer of residual vectors of children to their parent for

two dimensional heat problems.

Figure 4.2 Restriction of residual vector in 2D

 (4.48) ()∑
=

=
nChildren

i
i

hh

1

2 rr

After the transfer of residual vector, it is time to find coefficient matrix on the grid

whose mesh spacing is 2h. The error vector on 2h level mesh is set as zero and then

iterations are performed to find the improved solution for error vector. Gauss Seidel

method is chosen for the iterations in the developed code. This process is given in the

following equation

 71

 (4.49) hhhA 222 re =

The improved error vector, which is found by using Equation 4.49, can be thought to

be the low frequency errors. Improved approximate solution yh(new), whose low and

high frequency errors are decreased effectively and rapidly, are obtained by

interpolating and adding these errors to the approximate solution yh.

(iii) Prolongation: Error vectors which are found on the mesh with mesh spacing 2h

are interpolated to the mesh whose spacing is h. In a coarse grid, there are fewer

points than the fine grid. Namely, interpolated information number on the coarse grid

is lower. Therefore, interpolation operator is used. As a result, prolonged error

vectors are obtained and these are denoted by e’h. In the code, which is developed for

solution of two dimensional heat transfer problem, linear interpolation operator, ,

is used. For this code, linear interpolation process is given in the following equation

for the third child of the parent whose error vector is denoted by .

h
hI 2

h2
1e

 (4.50) hhh
hI '2

2 ee =

or

16

339 2
3

2
4

2
2

2
1'

hhhh
h eeeee +++
= (4.51)

 72

Figure 4.3 Prolongation of error vector in 2D

(iv) Correction and Final Iterations: After the calculation of error vectors for the

fine grid in the third step, approximate solutions, which are calculated in the first

step, are corrected by these error vectors and as a result, improved approximate

solutions are obtained.

 (4.52) hhnewh ')(eyy +=

Both low frequency errors and the difference between the approximate solution and

the exact solution are decreased by this correction. Finally, since the approximations

are used during the restriction and prolongation processes, a few iterations are

required in order to decrease the effect of these approximations on the solution.

Initially, multigrid method was tested for two dimensional heat transfer problems

since it is a linear problem. Afterwards, multigrid application is implemented to

Euler solver. Examples of multigrid cycles are given in Figure 4.4 and an example of

mesh levels which was used for heat transfer problem is given in Figure 4.5.

 73

(a) W-cycle

(b) V-cycle

Figure 4.4 Multigrid cycles

Figure 4.5 Different levels of meshes used in multigrid method

 74

4.4.2 Multigrid Method for Nonlinear Problems

Studies of Jameson [26] and De Zeeuw [4] are very helpful for the implementation of

multigrid method to Euler solvers. There are two possible methods for solving

nonlinear problems with using multigrid method. These are Newton method and Full

Approximation Storage (FAS) scheme. FAS method, which is developed for solving

Euler Equations, is used in the code since the governing equations are nonlinear.

Nonlinear systems of equations can be given as follows in matrix notation.

 (4.53) () bx =A

where x and y are the exact and approximate solutions, respectively. The notation

A(.), rather than A, indicates the nonlinear coefficient matrix. Error and residual

vector are given by in Equations 4.54 and 4.55, respectively.

 (4.54) yxe −=

and

 (4.55) ()ybr A−=

respectively. The following equation is obtained by subtracting Equation (4.55) from

Equation (4.53).

 () () ryx =− AA (4.56)

Although, error vector is the difference between the exact and approximate solution

(Equation 4.54), it is not concluded that () ()yxe AA −= . The reason of this

condition is that matrix coefficient is nonlinear. The term (y + e) can be written in

Equation (4.56) instead of using the exact solution x. As a result, the following

equation is obtained.

 75

 () () ryey =−+ AA (4.57)

After some iteration is performed on the finest grid, approximate solution yh on the

mesh with mesh spacing h is obtained and this solution is improved by using error

vector on this level of mesh. This process is summarized below:

• Error vector on the grid with mesh spacing 2h is found by using the following

equation.

 () () hhhhhh AA 222222 ryey =−+ (4.58)

• The unknowns in Equation 4.58 are the approximate solution and residual

vector. These are found by using

 (4.59) hh
h

h I yy 22 =

and

 ()[]hhhh
h

hh
h

h AII ybrr −== 222 (4.60)

respectively.

• As a result, improved approximate solution is obtained as

 (4.61) hh
h

hnewh I 2
2

)(eyy +=

The effects of the multigrid method to the residuals and the convergence rate for the

two and three dimensional Euler problems will be examined in Chapter 5 on

discussion of results. Now, the implementation of multigrid method to the developed

code is summarized. Like linear problems, implementation of multigrid method to

nonlinear problems is achieved in four steps. These steps are (i) fine grid iterations,

(ii) restriction, (iii) prolongation, and (iv) correction and final iterations.

 76

(i) Fine grid iterations: Initially, some iterations are performed on the finest mesh

with mesh spacing h by using explicit multistage time stepping scheme in order to

solve discretized Euler equations as follows:

 guessinitialh _0 =q

 []hhhh Rest FFqqq +
Ω
Δ

−=)(0
1

01
αυ

 …………… (4.62)

 []hh
m

mhh
m Res

t FFqqq +
Ω
Δ

−= −)(10
α

υ

where FFh term is the forcing function and this term is initially set as zero for the

computational cells which form the finest grid. After the iterations on the finest

mesh, high frequency errors are effectively reduced but low frequency errors are

slightly reduced. Therefore, residual vectors on coarser grids are utilized to decrease

these errors on the finest mesh. The last process in this step is the calculation of the

residual vector on the finest mesh, which is denoted by , at the end of the

iterations.

)(h
mRes q

(ii) Restriction: In this step, the finest mesh with mesh spacing h is coarsened to 2h,

4h and 8h levels of meshes. The levels of meshes are depicted in Figure 4.6.

 77

Figure 4.6 Multigrid level settings

Transfer of the grid from h level to 2h level is summarized in order to explain

coarsening process. First of all, parents, whose children are all computational cells,

are flagged [27]. For example, blue cell in the two-dimensional grid of Figure 4.7a, is

a parent cell. All of its four children are computational cells. Namely, any one of its

children has children. On the other hand, green cell in Figure 4.7b is also a parent

cell but its first child is not a computational cell. Hence, the green cell is not flagged.

Parents are flagged by using a pointer which is called perform.

(a) h and 2h levels of multigrids

 78

(b) h and 2h levels of multigrids

Figure 4.7 Examples of coarsening process

When the flagging process is completed, testing of one level rule is applied to the

flagged parent. In other words, if the flagged parent cells do not violate the one level

rule when they are coarsened, they are set as computational cells. This setting is

performed by using another pointer which is called compcell. Instead of deleting

children of a parent, which will be coarsened and set as a computational cell, it is

assumed that it has no children by using this pointer.

There are two flagged parents in Figure 4.8a. These are pink and green cells. These

cells are flagged since all of their children are computational cells. After the testing

of one level rule, green cell is coarsened and it becomes a computational cell in the

grid with mesh spacing 2h since it does not violate the one level rule when it is

coarsened. This is seen from Figure 4.8b. On the other hand, if the pink cell was

coarsened, it would violate the one level rule as seen from Figure 4.8c. Therefore,

although it was flagged in the flagging process, it is not coarsened in the grid with 2h

spacing not to violate one level rule as seen from Figure 4.8b.

 79

(a) h level of multigrid

(b) 2h level of multigrid which is formed with testing one level rule

 80

(c) 2h level of multigrid which is formed without testing one level rule

Figure 4.8 Examples of one level rule testing process

When a coarsened grid is obtained, restriction of approximate solutions and forcing

functions of the computational cells, which form the grid with 2h mesh spacing, are

required. These are calculated by using

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

Ω

Ω

==
∑

∑

=

=

multigrid of levelh in cells leafFor

multigrid of levelh in cellsparent For
)(

)(

1

1

22
0

h
m

nChildren

i
i

nChildren

i
i

h
m

h
m

h
h

h I

q

q

qq (4.63)

and

 (4.64) [])(-)(2
0

2
2 hhh

m

h

h
h ResResI qFFqFF +=

∧

respectively, where

 81

 (4.65) []

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

∑
=

∧

multigrid of levelh in cells leafFor

multigrid of levelh in cellsparent For)(
12

h

nChildren

i
i

h

h
h

hI

β

β

β

h
hI 2 and are volume weighted collection and residual collection operators,

respectively.

h

hI
2∧

After the determination of approximate solutions and forcing function for

computational cells for the 2h level of multigrid, new approximate solutions are

found as

 []hhhh Rest 22
0

12
0

2
1)(FFqqq +

Ω
Δ

−=
αυ

 …………… (4.66)

 []hh
m

mhh
m Rest 22

1
2
0

2)(FFqqq +
Ω
Δ

−= −
αυ

Finally, new residual vectors, , are calculated by using the solutions of

Equation (4.66) if higher levels of multigrid are used in the multigrid method such as

4h and 8h.

)(Re 2h
ms q

(iii) Prolongation: The purpose of this step is to interpolate the approximate

solutions, which are calculated in the restriction process. The following equation

exemplifies this process with the interpolation of approximate solutions which are

calculated for 4h level of multigrid to the finer multigrid with mesh spacing 2h.

 ()h
m

h
h

newhh
h

h
m

newh II 24
2

)(42
4

2)(2 qqqq −+= (4.67)

 82

where is the prolongation operator and there are two different prolongation

operators. These are gradient and injection operators which are given as

h
hI 2

4

 () () rqq d442
4 •∇= hhh

hI (4.68)

and

 () hhh
hI 442

4 qq = (4.69)

, respectively. Injection operator is used in this work due to its simplicity. V-cycle

and saw-tooth cycle are tested for the solution of Euler Equations in Chapter 5 during

the discussion of results. The only difference between these cycles is that multistage

time stepping scheme is also applied to the prolongation step in V-cycle. For this

time stepping scheme, initial guess is taken as the improved approximate solutions,

, and forcing functions are taken as the same values in the restriction step. In

order to use the same forcing function values in restriction and prolongation steps,

forcing function, which is calculated in the restriction step, must be stored. This

causes storage of excessive number of variables. When the convergence rates of V-

cycle and saw-tooth cycle are compared, a slight difference is observed. This will be

verified in Chapter 5 during the discussion of results. Therefore, saw-tooth cycle is

mostly used in this work due to its less memory requirement.

)(2
0

newhq

(iv) Correction and final iterations: In the prolongation step, improved

approximation solutions of the finest mesh, qh(new) are calculated. Then, these values

are substituted into the following equations and some iteration is performed.

)(
0

newhh qq =

 []hhhh Rest FFqqq +
Ω
Δ

−=)(0
1

01
α

υ

 …………… (4.69)

 []hh
m

mhh
m Rest FFqqq +

Ω
Δ

−= −)(10
α

υ

 83

As a result, approximate solutions, whose low and high frequency errors are reduced,

are obtained.

4.4.3 Importance of Split Cells in Multigrid Application

In literature, previous suggestions for eliminating irregular cells in the mesh

generation are the recursive refinement until these cells vanish with refinement

application. However, the fundamental principle of multigrid method is to eliminate

the low frequency errors by using coarser meshes. Therefore, split cells are mostly

required for multigrid applications as mentioned before since irregular cells form at

the coarser multigrid levels. In other words, recursive refinement is not a solution for

irregular cell in multigrid application.

Especially, grids around multi-element airfoils require recursive refinements in order

to eliminate irregular cells. For example, the grid in Figure 4.9 is generated around

NLR7301 airfoil and a flap. Only five split cells remain in the grid after recursive

refinements and they are located at the trailing edges of the main airfoil and the flap.

Split cells are colored red in Figures 4.9 to 4.14. But they cannot be seen in Figure

4.9 since they are very small cells. Therefore, their types can be transferred from split

to outside cells by modifying the geometry. Irregular cells are vanished by erasing

the sharp trailing edges slightly where split cells are found. As a result of this erasing

process, split cells become outside cells. Moreover, this modification affects the

solution very slightly. By this method, complexities due to split cells are removed.

However, if the grid in Figure 4.9 is taken as the first level of multigrid, h level, one

coarser level becomes Figure 4.10. As it is seen in Figure 4.10, numbers of split cells

increase and this time, the elimination of these split cells by modifying the geometry

causes a little more solution errors. This can be also negligible. But as it is seen from

Figures 4.11 to 4.14, numbers of split cells are continuously increasing at each

coarser level. Finally, all the cells around the flap become split cells at the coarsest

level, 32h level and modifying the geometry means erasing the flap part wholly. But

this has a great effect on the solution and it can be said that the contributions of

 84

multigrid method in convergence rate go away. Six multigrid levels are used for the

tests in Section 5.1.4 and the coarsest grid which has 32h mesh spacing is depicted in

Figure 4.15. The grids in Figures 4.14 and 4.15 are the same. Generated grid around

the geometry in Figure 4.15 is colored green and it is clearly seen that the leading

edge part of the flap is only eliminated by using split cells instead of eliminating the

whole flap.

Figure 4.9 h multigrid level around NLR 7301 airfoil and flap

 85

Figure 4.10 2h multigrid level around NLR 7301 airfoil and flap

Figure 4.11 4h multigrid level around NLR 7301 airfoil and flap

 86

Figure 4.12 8h multigrid level around NLR 7301 airfoil and flap

Figure 4.13 16h multigrid level around NLR 7301 airfoil and flap

 87

Figure 4.14 32h multigrid level around NLR 7301 airfoil and flap

Figure 4.15 The coarsest mesh for six level multigrids in Section 5.1.4

 88

4.5 Reconstruction

As it is mentioned before, flow variables are stored at the centroids of the cells and

first order schemes are used to calculate flux calculations through the faces.

Reconstruction is required for second order schemes and the determination of cells to

be refined and coarsened. Therefore, least squares reconstruction method is used in

the developed code to calculate gradients of flow variables in a cell and estimate the

value of these variables at a certain point inside the cell.

4.5.1 Least Squares (Minimum Energy) Reconstruction

The following equation is presented the linear reconstruction.

 () () ()cccc zz
dz
dyy

dy
dxx

dx
d

−+−+−+=
wwwww (4.70)

where is the vector of primitive variables at a certain point in a cell and is the

vector of primitive variables at the centroid of this cell. xc, yc and zc are the

coordinates of the centroid.

w cw

 (4.71)

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

p
w
v
u
ρ

w

In Equation (4.70), the only unknown is the gradient of primitive flow variables. In

order to find the unknown variables, the following equation is used. The derivation

and detailed information regarding this equation can be found in references [28],

[29], [11] and [8].

 () ijij BwL =∇ (4.72)

 89

where , L and are given below, respectively and this equation can be solved

by using Cramer’s rule. The subscript, n,c, together in the following equations

denotes the variables of the neighboring cells.

w∇ B

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∇

dz
d

dy
d

dx
d

w

w

w

w (4.73)

 (4.74)

() () () () () (

() () () () () (

() () () () () ()
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−

−−
−−−−

−−
−−−−

=

∑∑∑

∑∑∑

∑∑∑

===

=
==

=
==

nNeighbors

i
iccniccn

nNeighbors

i
iccniccn

nNeighbors

i
iccniccn

nNeighbors

i
iccniccn

nNeighbors

i
iccniccn

nNeighbors

i
iccniccn

nNeighbors

i
iccniccn

nNeighbors

i
iccniccn

nNeighbors

i
iccniccn

zzzzyyzzzzxx

zzyy
yyyyyyxx

zzxx
yyxxxxxx

1
,,

1
,,

1
,,

1
,,

1
,,

1
,,

1
,,

1
,,

1
,,

L

)

)

)

)

)

 (4.75)

() (

() (

() (
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

=

∑

∑

∑

=

=

=

nNeighbors

i
iccniccn

nNeighbors

i
iccniccn

nNeighbors

i
iccniccn

zz

yy

xx

1
,,

1
,,

1
,,

ww

ww

ww

B

 90

4.5.2 Gradient Limiting

The purpose of limiting procedure is to prevent obtaining variables at a certain point

in a cell, which exceeds the flow variables of this cell and its neighbors. When a

limiter is applied to Equation (4.70), it takes the following form

 () () ()⎥
⎦

⎤
⎢
⎣

⎡
−+−+−+= cccc zz

dz
dyy

dy
dxx

dx
d wwwww ϕ (4.76)

Limiter value, ϕ , must be between 0 and 1. The limiter value presented here is taken

from the paper written by Barth and Jespersen [29].

 (),...,....,,,min 321 mϕϕϕϕϕ = (4.77)

where

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−

−

−

−

=

cell
jcj

jcj

cell
jcj

jcj

j

min,
,

min
,

max,
,

max
,

1

min

ww

ww

ww

ww
ϕ (4.78)

and

 (4.79) (icc www ,maxmax =)

)

 i=1,…,nNeighbors (4.80) (icc www ,minmin =

 The values in Equation (4.78), and , are the maximum and

minimum values calculated in a cell by using Equation (4.70), respectively.

Generally, maximum and minimum primitive variables are obtained at the vertices of

the cell.

cell
j
max,w cell

j
min,w

 91

4.5.3 Solution Refinement and Coarsening

As it is mentioned before, one of the most valuable properties of Cartesian grids is

that it enables solution refinement and coarsening. Hence, satisfactory resolution is

provided to critical regions such as shock locations and stagnation points by solution

refinement. Large gradients at these locations minimizes by refining cells. Moreover,

some regions where unnecessary high resolution exists are coarsened.

The criteria used in the developed code are the divergence and curl of the velocity

vectors and the strength of the entropy wave [10]. These criteria for each cell are

calculated by

 5.0Ω•∇= vDτ (4.81)

 5.0Ω×∇= vCτ (4.82)

 5.02 Ω∇−∇= ρτ cpEW (4.83)

Then, the standard deviations of these three criteria are calculated for the whole mesh

by the following equation

()

nCells

nCells

i
i∑

== 1

2
α

α

τ
σ (4.81)

After the calculations of standard deviations of three criteria, it is time to determine

cells to be refined and coarsened. A cell is selected for refinement if () αα στ >i for

any α and selected for coarsening if () αα στ 1.0<i for all α.

 92

CHAPTER 5

RESULTS AND DISCUSSIONS

Inviscid Euler flow around single & multi-element airfoils, wing and projectile will

be analyzed in this chapter by using the codes which are developed for two and three

dimensional problems. Test cases are divided into three groups. The first group is

two-dimensional test cases, the second group is for the convergence history

investigations with multigrid application and the final group is three-dimensional test

cases. The results of these cases are compared with experimental and other numerical

results, depending upon availability.

5.1 Two Dimensional Test Problems

In this section, both single and multi-element airfoils are examined. Test problems

are tabulated below.

Table 5.2 Two dimensional test problems

Test Problem Airfoil Profile M∞ α Reference

5.1.1 NACA0012 0.85 1° [13]

5.1.2 NACA0012 1.2 7° [13]

5.1.3 RAE2822 0.75 3° [13]

5.1.4 NLR7301+flap 0.185 6° [30]

5.1.5 30p30n 0.2 8° [31]

 93

5.1.1 Problem 1: Transonic Flow about NACA0012 Airfoil

The first problem is the inviscid flow around a NACA0012 airfoil at a Mach number

of 0.85 and an angle of attack of 1°. NACA0012 profile is widely used in order to

validate developed solvers since the experimental data for many Mach numbers and

angle of attacks are found easily in literature. Transonic flow is selected in order to

demonstrate that shock locations and surface pressure coefficients can be obtained

accurately and effectively by using Cartesian mesh. Importance of solution

adaptation is depicted by comparing solutions with and without solution adaptation.

As it is mentioned, solution adaptation enables to resolve high gradient regions by

automatic meshing without increasing total number of cells extremely. The far-field

boundary is approximately located 25 chords ahead of the airfoil similar to the

reference case. The developed flow solver is iterated until the average density

residual reaches 10-12. For the computed solutions, six levels of meshes are used in

the multigrid method. Table 5.2 gives the lift, drag coefficients, total number of cells

and convergence histories for the results which are computed by the developed

solver and extracted from reference [13]. The numerical solutions which are

extracted from reference [13] are obtained by using Euler equations.

Table 5.2 Comparison of results for transonic flow around NACA0012 airfoil at M∞

= 0.85 and α = 1

 CL CD # of cells Time (s)

Results from reference [13] 0.3584 0.058 20480 -

Results with solution

adaptation

0.3219 0.0611 18641 1012

Results without solution

adaptation

0.2361 0.0763 3538 68

As seen from the table 5.2, computed lift and drag coefficients of the solution-

adapted case are in agreement with the results in reference [13]. Solution-adapted

case underestimates the lift coefficient by 10 % and overestimates the drag

 94

coefficient by 5 %. In order to visualize the benefit of automatic solution adaptation

in Cartesian grid, geometric adapted-grid and both geometric and solution-adapted

grid are shown in Figures 5.1 and 5.2, respectively. Three refinement cycles are

applied to the grid in Figure 5.1 to obtain the grid in Figure 5.2.

Figure 5.1 Geometric-adapted grids around NACA 0012

 95

Figure 5.2 Both geometric and solution-adapted grids around NACA 0012

Pressure coefficient distribution is shown in Figure 5.3. Pressure contours of

solutions with and without solution adaptation are depicted in Figures 5.4 and 5.5,

respectively. Mach contours of solution-adapted case and extracted case from

reference [13] are shown in Figures 5.6 and 5.7, respectively. It is clearly seen in

Figure 5.3 that both upper and lower shock locations are captured well for the

solution-refined case. Approximately 1 % chord length error is seen for both upper

and lower shocks according to the reference solution. As seen in Figures 5.3 and 5.5,

lower shock cannot be captured for the geometric-adapted grid. Maximum pressure

loss occurs at the downstream of the shocks. As seen in Figures 5.6 and 5.7, Mach

contours are alike. Besides, Mach number reaches to 1.35 just before the upper shock

wave.

 96

Figure 5.3 Pressure coefficient distribution on NACA0012 airfoil at M∞ = 0.85 and α

= 1

 97

Figure 5.4 Pressure contours of the solution-adapted grid on NACA0012 airfoil at

M∞ = 0.85 and α = 1

Figure 5.5 Pressure contours of the grid without solution adaptation on NACA0012

airfoil at M∞ = 0.85 and α = 1

 98

Figure 5.6 Mach contours of the solution-adapted grid on NACA0012 airfoil at M∞ =

0.85 and α = 1

 99

Figure 5.7 Mach contours in reference [13] on NACA0012 airfoil at M∞ = 0.85 and α

= 1

5.1.2 Problem 2: Supersonic Flow about NACA0012 Airfoil

The second problem is the flow around NACA0012 airfoil at a Mach number of 1.2

and angle of attack of 7°. The purpose of this test case is to analyze whether the

developed solver captures bow and oblique shocks accurately. First and second order

schemes are used to calculate fluxes.

For all test cases in this section, the far-field boundary is approximately located 15

chords ahead of the airfoil. The developed flow solver is iterated until the average

density residual reaches 10-12. Multigrid method is not used due to some problems

 100

regarding second order scheme in the developed solver. Two refinement cycles are

applied to the grids. Table 5.3 gives the lift, drag coefficients, total number of cells

and convergence history for results which are computed by the developed solver and

extracted from reference [13].

Table 5.3 Comparison of results for supersonic flow around NACA0012 M∞ = 1.2

and α = 7°

Case # Descriptions of Test Cases CL CD # of

cells

Time

(s)

Case-1 First Order Scheme with

AUSM

0.5236 0.162 11761 887

Case-2 Second Order Scheme with

AUSM without limiter

0.5216 0.156 13784 23241

Case-3 Second Order Scheme with

AUSM with limiter

0.5217 0.1556 14081 16515

Case-4 First Order Scheme with

Roe’s flux differencing

method

0.5201 0.1614 11717 1335

Case-5 Second Order Scheme with

Roe’s flux differencing

method without limiter

0.5219 0.156 13561 32211

Case-6 Second Order Scheme with

Roe’s flux differencing

method with limiter

0.5227 0.1555 13796 18733

Case-7 Results from reference [13] 0.5196 0.1543 10209 -

As seen from Table 5.3, computed lift and drag coefficients of the test cases are in

agreement with the results in reference [13]. For example, the third case

overestimates the lift coefficient by 0.4 % and overestimates the drag coefficient by

0.8 %. Pressure coefficient distributions of these cases are shown in Figures 5.8 and

5.9. Although pressure coefficient distributions are slightly different from each other,

 101

there are visible differences in pressure contours of the computed solutions, as seen

in Figure 5.10.

Figure 5.8 Pressure coefficient distributions for 1st, 2nd and 3rd test cases on

NACA0012 airfoil at M∞ = 1.2 and α = 7°

 102

Figure 5.9 Pressure coefficient distributions for 4th, 5th and 6th test cases on

NACA0012 airfoil at M∞ = 1.2 and α = 7°

 103

Figure 5.10 Pressure contours around NACA0012 at M∞ = 1.2 and α = 7°

 104

Figure 5.11 Mach contours of test case-1 around NACA0012 at M∞ = 1.2 and α = 7°

The reason of the differences in pressure contours is that there is pollution in second

order schemes, especially ones without limiter. As seen in Figures 5.10 and 5.11, a

strong bow shock exists before the leading edge of the airfoil and strength of this

shock becomes weaker near the far-field region of the domain. Although bow shock

is captured in second order schemes, pollution which is called carbuncle instability

exists in the computed solutions [32]. This instability affects the region in front of the

bow shock and the most visible pollution exists in the second order schemes without

limiters (case-2 and case-5). Since the limiters damp the oscillations in the solution,

absence of limiter causes more pollution. The bow shock is approximately located at

a 55 % chord length distance away from the leading edge.

5.1.3 Problem 3: Transonic Flow about RAE2822 Airfoil

The third problem is the flow around RAE2822 airfoil at a Mach number of 0.75 and

angle of attack of 3°. The purpose of this test case is to analyze flow around a non-

symmetric airfoil and to stress the importance of number of refinement cycles. For

 105

all test cases in this section, the far-field boundary is approximately located 10

chords ahead of the airfoil. The developed flow solver is iterated until the average

density residual reaches 10-12. For the computed solutions, six levels of meshes are

used in the multigrid method. Table 5.4 gives the lift, drag coefficients, total number

of cells and convergence history for results which are computed by the developed

solver and extracted from reference [13].

Table 5.4 Comparison of results for transonic flow around RAE 2822 airfoil at M∞ =

0.75 and α = 3°

Case # Descriptions of Test Cases CL CD # of

cells

Time

(s)

Case-1 No Solution Refinement 0.7446 0.0705 2308 36

Case-2 One Refinement Cycle 0.8573 0.0546 4848 52

Case-3 Two Refinement Cycles 0.9214 0.0476 10029 163

Case-4 Three Refinement Cycles 0.9538 0.046 18492 428

Case-5 Four Refinement Cycles 0.9731 0.0446 32268 1477

Case-6 Five Refinement Cycles 0.9881 0.0444 54254 3478

Case-7 Results from reference [13] 1.1044 0.0448 20480 -

As seen from Table 5.4, computed lift and drag coefficients of the test cases are

directly proportional to the number of refinement cycles. For example, the sixth case

underestimates the lift coefficient by 10.5 % and underestimates the drag coefficient

by 0.9 %.As the number of refinement cycle increases, the differences between the

computed and reference coefficients decreases. Pressure coefficient distributions of

these cases are shown in Figure 5.12.

 106

Figure 5.12 Pressure coefficient distributions on RAE 2822 airfoil at M∞ = 0.75 and

α = 3°

As seen in Table 5.4 and Figure 5.12, the best results are the 5th and 6th cases where

numbers of refinement cycles are four and five, respectively. It is important to note

that when the number of refinement cycle exceeds five, very slight difference is

observed for the drag and lift coefficients although the convergence time increases

extremely. In other words, finer grids do not improve the solution accuracy but they

result in longer computations. Therefore, the optimum refinement cycle number for

this flow is five. Pressure and Mach contours of the 6th case are given in Figures 5.13

and 5.14, respectively.

 107

Figure 5.13 Pressure contours of case-6 on RAE 2822 airfoil at M∞ = 0.75 and α = 3°

Figure 5.14 Mach contours of case-6 on RAE 2822 airfoil at M∞ = 0.75 and α = 3°

 108

As seen in Figure 5.14, Mach number just before the upper shock reaches to 1.4. In

addition, shock wave on the upper surface of the airfoil is accurately captured for the

6th case since capturing the shock accurately depends on using finer mesh around the

shock. The grid, which is used for 6th case, is shown in Figure 5.15. Finer meshes

around the shock are easily seen in this figure. As it is seen in Figure 5.12, results for

the lower surface pressure coefficient distributions are quite successful. However, the

upper surface pressure coefficient distributions around the leading edge region for

the 6th case are slightly underestimated.

Figure 5.15 Grid used in the 6th case around RAE 2822 airfoil

5.1.4 Problem 4: Subsonic Flow about a Two-element Airfoil

The fourth problem is the flow around NLR7301 airfoil and flap at a Mach number

of 0.185 and angle of attack of 6°. The purpose of this test case is to analyze flow

around a multi-element airfoil. The far-field boundary is approximately located 15

chords ahead of the airfoil. The developed flow solver is iterated until the average

density residual reaches 10-12. For the computed solution, six levels of meshes are

 109

used in the multigrid method. The computed lift and drag coefficients are 1.49 and

0.1481, respectively. The comparison between the calculated and experimental [30]

pressure coefficient distributions are given in Figure 5.16.

Figure 5.16 Pressure coefficient distribution on two-element airfoil at M∞ = 0.185

and α = 6°

It is clearly seen in Figure 5.16 that the peak on the upper surface is not captured in

this case. Hence, the underestimation of pressure coefficient results in lower lift

coefficient. One of the reason is the flow regime is not suitable for the code since this

flow is not compressible, it is an incompressible flow. Both the computed solution

and other numerical solution [33] cannot capture the peak although the other

 110

numerical results are obtained from the laminar flow solver. Finally, Mach contours

are depicted in Figure 5.17.

Figure 5.17 Mach contours of two-element airfoil at M∞ = 0.185 and α = 6°

5.1.5 Problem 5: Subsonic Flow about a Three-element Airfoil

The fifth problem is the flow around three-element airfoil at a Mach number of 0.2

and angle of attack of 8°. The far-field boundary is approximately located 15 chords

ahead of the airfoil. The developed flow solver is iterated until the average density

residual reaches 10-12. For the computed solution, four levels of meshes are used in

the multigrid method. The computed lift and drag coefficients are 1.28 and 0.1954,

respectively. The comparison between the calculated and experimental pressure

coefficient distributions are given in Figure 5.18. The Reynolds number for the

experimental case is 9x10-6. As it is seen in this figure, pressure coefficient

distribution of the first element of the geometry cannot be captured due to the very

low far-field Mach number. In addition, upper surface pressures are underestimated.

 111

Solution-adapted meshes around the geometry and the computed Mach contours are

depicted in Figures 5.19 and 5.20, respectively.

Figure 5.18 Pressure coefficient distributions on three-element airfoil at M∞ = 0.2

and α = 8°

 112

Figure 5.19 Mach contours of three-element airfoil at M∞ = 0.2 and α = 8°

(a) Meshes around the slat (b) Meshes around the flap

Figure 5.20 Solution-adapted meshes around the three-element airfoil

 113

5.2 Convergence History with Multigrid Applications

All test cases in this section are performed for a flow around NACA0012 airfoil at a

Mach number of 0.85 and angle of attack of 1° which is examined in the previous

section. Since the developed solver for this flow condition is already validated, it is

time to examine convergence histories for different aspects of multigrid application

such as using different multigrid cycles, levels of meshes or different prolongation

operators. First of all, performance of saw-tooth and V-cycles are examined. Then,

the performances of the injection and gradient prolongation operators are discussed.

Afterwards, the optimum number of steps, i.e. total number of mesh levels, is

determined. Finally, optimum iteration numbers on each step are found. Table 5.5

summarizes all the test cases.

Table 5.5 Test cases for multigrid application

Case-1 Determination of multigrid cycle for no solution refinement

Case-2 Determination of multigrid cycle for solution refinement

Case-3 Determination of prolongation operator for solution refinement

Case-4 Determination of the optimum number of multigrid levels

Case-5 Determination of iteration numbers for each multigrid level

Geometric-adapted and both geometric and solution-adapted grids, which are used in

this section, are given in Figures 5.21 and 5.22, respectively. Effects of multigrid

method on the 1st and 2nd test cases can be seen in Figures 5.23 and 5.24, respectively

and also in Tables 5.6 and 5.7, respectively. It is clearly seen that multigrid method

enables better convergence for the 1st test case, which is without solution refinement,

than the 2nd test case. According to the values in Tables 5.6 and 5.7, the ratio

between the convergence rates of the solutions with and without multigrid method is

about 7 % for the 1st test case. On the other hand, the ratio between the convergence

rates of the solutions with and without multigrid method is about 10 % for the 2nd test

case. As a result of these ratios, the noticeable effect of multigrid method to the

convergence acceleration is verified. In Figures 5.23 and 5.24, there is a slight

 114

convergence rate difference between saw-tooth and V-cycles. But it is important to

note that forcing functions have to be stored for V-cycles and this causes higher

memory usage than the saw-tooth cycle. Since the convergence difference between

these cycles is low and saw-tooth cycle uses the memory more effectively, most of

the test cases in this study are performed by using saw-tooth cycle.

Figure 5.21 Geometric-adapted grid

 115

Figure 5.22 Geometric and solution-adapted grid

 116

Figure 5.23 Convergence histories of the 1st test case

 117

Figure 5.24 Convergence histories of the 2nd test case

 118

Table 5.6 Convergence histories of the 1st test case

 Cycle Iteration Number Time (s)

No Multigrid 16405 16405 7907

Saw-tooth Cycle 49 3430 579

V-cycle 32 3840 535

Table 5.7 Convergence histories of the 2nd test case

 Cycle Iteration Number Time(s)

No Multigrid 19660 19660 2894

Saw-tooth Cycle 80 5600 253

V-cycle 65 7800 284

As it was mentioned in the previous chapter, there are two different prolongation

operators, which are called injection and gradient operators. Results of the 3rd test

case, which can be seen in Figure 5.25 and Table 5.8 demonstrates that the

convergence rates of the solutions with injection and gradient operator are nearly

identical. Therefore, the simplest operator, which is injection, is used for most of the

test cases in this study.

 119

Figure 5.25 Convergence histories of the 3rd test case

 120

Table 5.8 Convergence histories of the 3rd test case

 Cycle Iteration # Time(s)

Saw-tooth cycle with injection operator 80 5600 253

Saw-tooth cycle with gradient operator 84 5880 257

V-cycle with injection operator 65 7800 284

V-cycle with gradient operator 63 7560 276

One of the factors, which has an important effect on the convergence rate in

multigrid method, is the number of multigrid levels. Since the performances of lower

number of levels are very low, convergence accelerations of 4 and more multigrid

levels are compared in the 4th test case. As seen in Figure 5.26 and Table 5.9, six and

seven multigrid levels give the best results for denser meshes because denser meshes

require more coarse levels to eliminate low frequency errors effectively. But it is

important to note that six and seven multigrid levels may be too much for coarser

meshes. Therefore, it can be suggested that six and seven multigrid levels are

appropriate for denser meshes and three and four multigrid levels are suitable for

coarser meshes.

 121

Figure 5.26 Convergence histories of the 4th test case

 122

Table 5.9 Convergence histories of the 4th test case

 Cycle Iteration # Time(s)

4 multigrid levels 187 9350 641

5 multigrid levels 112 6720 350

6 multigrid levels 80 5600 253

7 multigrid levels 72 5760 230

8 multigrid levels 74 6660 250

Finally, numbers of iterations on each multigrid level have to be determined in order

to get the maximum efficiency from the multigrid method. Convergence rate for

different number of iterations using six multigrid levels are analyzed and the results

of these tests are given in Figure 5.27 and Table 5.10. Iteration numbers between 10

and 20 give the best results for this condition. Therefore, the number of iterations is

chosen as 10 for the most test cases in this study.

 123

Figure 5.27 Convergence histories of the 5th test case

 124

Table 5.10 Convergence histories of the 5th test case

 Cycle Iteration # Time(s)

30 iterations on each multigrid level 31 6510 302

25 iterations on each multigrid level 37 6475 296

20 iterations on each multigrid level 45 6300 289

15 iterations on each multigrid level 54 5670 272

10 iterations on each multigrid level 80 5600 253

5 iterations on each multigrid level 170 5950 297

5.3 Three Dimensional Test Cases

5.3.1 Transonic Flow about a Wing

The inviscid flow around a constant cross-section wing whose profile is NACA0012

airfoil is tested at a Mach number of 0.799 and an angle of attack of 2.26°. Aspect

ratio of this wing is chosen as 20 in order to diminish vortex effects at the wing tips

and obtain solutions as if the test is two dimensional. Hence, the solution can be

compared with the results of two dimensional experiments in reference [34]. In

addition, the computed results are compared with the inviscid results in reference

[35].

The far-field boundary is approximately located 5 times the maximum length of the

wing ahead of the wing. In other words, the domain size of the generated grid is 100

chords. For that reason, since the domain is too large when compared to the chord of

the wing section, obtaining finer grid near the input geometry is really difficult. The

developed flow solver is iterated until the average density residual reaches 10-7. For

 125

the computed solutions, six levels of meshes used in the multigrid application. One

refinement cycle is applied to the geometric-adapted grid and it is given in Figure

5.28. Pressure coefficient distributions are shown in Figure 5.29 and Mach contours

of this case is shown in Figure 5.30. It is clearly seen in Figure 5.29 that both the

shock wave location and its peak point cannot be captured accurately due to coarse

grid although solution refinement is applied. But the number of refinement cycle is

not satisfactory. Moreover, the surface mesh of the wing exported from GAMBIT is

not very good due to large aspect ratio.

Figure 5.28 Slices of the solution-adapted grid

 126

Figure 5.29 Pressure coefficient distributions around the wing at M∞ = 0.799 and α =

2.26°

 127

Figure 5.30 Mach contours in xz plane at y=0 at M∞ = 0.799 and α = 2.26°

5.3.1 Transonic Flow about a Projectile

The inviscid flow around a secant-ogive-cylinder-boat tail projectile (SOCBT) with a

boat tail angle 7° is tested at a Mach number of 0.95 and an angle of attack of 0°. The

pressure coefficient distributions are compared with the experimental results

extracted from [36] and Mach contours are compared with the computed results in

reference [36]. The configuration of SOCBT can be found in both [37] and [38]. The

far-field boundary is located 10 times the maximum length of the projectile ahead of

the tail. The developed flow solver is iterated until the average density residual

reaches 10-7. One refinement cycle is applied to the geometric-adapted grid and a

slice, which is taken in xz plane at y=0, and the created surface mesh around the

projectile are given in Figures 5.31 and 5.32, respectively.

 128

Figure 5.31 A slice of the mesh in xz plane at y=0

 129

Figure 5.32 A created surface mesh around SOCBT

Pressure coefficient distributions are shown in Figure 5.33 and Mach contours of this

case and the reference are given in Figures 5.34 and 5.35, respectively. As it is seen

in Figures 5.33 and 5.34, there are two shock waves, one is at the midpoint of the

chord and the other is at the boat tail. The computed and experimental results are in

agreement. Finally, in order to eliminate oscillations in the solution, more solution

refinements are required.

 130

Figure 5.33 Pressure coefficient distributions at M∞ = 0.95, α = 0° and β=7°

 131

Figure 5.34 Mach contours in xz plane at y=0 at M∞ = 0.95, α = 0° and β=7°

 132

Figure 5.35 Mach contours in reference [36] at M∞ = 0.95, α = 0° and β=7°

 133

CHAPTER 6

CONCLUSION

Five different test cases have been analyzed in order to verify the two dimensional

Euler solver. In the first case, the ability of capturing shock waves accurately is

investigated for transonic flow over NACA0012 airfoil. The performance of the test

case with solution refinement is really satisfactory. Both the locations of shocks and

the peak point of pressure coefficients are captured very well. In other words, the

importance of refinement to the solutions is proved by this test case.

Moreover, first and second order flux calculation schemes are applied to the second

test case which is the supersonic flow with an angle of attack of 7° over NACA0012

airfoil. In second order schemes, instabilities have occurred just before the bow

shock wave. Although limiters damp these instabilities by arranging gradients

effectively, they are not eliminated completely. On the other hand, first order

schemes are in agreement with the reference solution. In addition, there is a problem

regarding second order schemes and multigrid methods. The code could not perform

second order scheme and multigrid method together. One of them gives meaningful

results apart from the other. The implementation of second order scheme and

multigrid method to the developed solver together can be given as a future work.

Another test case for RAE2822 airfoil is performed to find the optimum number of

refinement cycles. Increasing refinement cycles extremely does not give superior

results since this means to slow down the convergence rate. When the number of

refinement cycle is five or six for this test case, the most accurate results and the

satisfactory convergence rate are obtained.

 134

In the fourth and fifth test cases, the capability of Cartesian grids, which is automatic

mesh generation, is demonstrated. There are detectable differences between reference

and computed solutions for these test cases. Moreover, solutions on the airfoil

surface are not smooth. There are oscillations especially near the slat and the leading

edge of three-element airfoil. They can be easily seen in the figures of pressure

coefficient distributions. One of the reasons of these oscillations can be the large

variations in the cell size on the body. For example, it is possible to find cut cells

whose size is 10-4 smaller than its neighboring outside cell. There is no agreement

between the reference and computed pressure coefficient distributions of the slat in

Figure 5.18. One of the reason can be the flow regime. In fact, the flow is an

incompressible flow but the solver tries to solve this problem by using Euler

equations.

Implementation of multigrid method has a valuable effect on the convergence rate.

All test cases in Section 5.2 validate the increase of convergence rate. But solutions

with second order schemes and multigrid application converge up to a value which is

not enough then they oscillate around this value. Being frozen the limiter values after

a certain point in the convergence is suggested in reference [9]. This method has

been implemented the solver but this hasn’t solved the convergence problem.

 135

REFERENCES

[1] Anderson J. D. Jr., Computational Fluid Dynamics: The Basics with

Applications, McGraw-Hill, 1995.

[2] Potter M. C., Wiggert D. C., Hondzo M., and Shih T. I-P. Mechanics of

Fluids, Brooks/Cole, 2002.

[3] Blazek J., Computational Fluid Dynamics: Principles and Applications,

Elsevier, 2005.

[4] De Zeeuw Darren L., A Quad-Tree Based Adaptively-Refined Cartesian-Grid

Algorithm for the Solution of the Euler Equations, PhD Thesis in the University of

Michigan, 1993.

[5] Carey G., Computational Grids: Generation, Adaptation and Solution

Strategies, CRC Press, 1997.

[6] Thompson J. F., Soni B. K., and Weatherill N. P., Handbook of Grid

Generation, CRC Press, 1998.

[7] Marshall David D., Extending the Functionalities of Cartesian Grid Solvers:

Viscous Effects Modeling and MPI Parallelization, PhD Thesis in the Georgia

Institute of Technology, 2002.

[8] Coirier William J., An Adaptively Refined, Cartesian, Cell-Based Scheme for

the Euler and Navier Stokes Equations, PhD Thesis in the University of Michigan,

1994.

 136

[9] Aftosmis M. J., Solution Adaptive Cartesian Grid Methods for Aerodynamic

Flows with Complex Geometries, Von Karman Institute for Fluid Dynamics Lecture

Series 28th Computational Fluid Dynamics, March 1997.

[10] Hunt J., An Adaptive 3D Cartesian Approach for the Parallel Computation of

Inviscid Flow about Static and Dynamic Configurations, PhD Thesis in the

University of Michigan, 2004.

[11] Siyahhan Bercan, A Two Dimensional Euler Flow Solver on Adaptive

Cartesian Grids, MS Thesis in the Middle East Technical University, 2008.

[12] Bulgök Murat, A Quadtree-based Adaptively-Refined Cartesian-Grid

Algorithm for Solution of the Euler Equations, MS Thesis in the Middle East

Technical University, 2005.

[13] AGARD Subcommittee C., Test Cases for Inviscid Flow Field Methods,

AGARD Advisory Report 211, 1986.

[14] Yıldırım Cengizhan, Analysis of Grain Burnback and Internal Flow in Solid

Propellant Rocket Motors in Three-Dimensions, Ph.D. Thesis in the Middle East

Technical University, 2007.

[15] Möller T. and Trumbore B., Fast, Minimum Storage Ray/Triangle

Intersection, Journal of Graphics, gpu and Game Tools, Vol. 2, pp. 21-28, 1997.

[16] Laney Culbert B., Computational Gas Dynamics, Cambridge University

Press, 1998.

[17] Hirsch Charles, Numerical Computation of Internal and External Flows

Volume 1 & 2, John Wiley & Sons, 1990.

 137

[18] Liou M. S., and Steffen C. J., A New Flux Splitting Scheme, Journal of

Computational Physics, Vol. 107, pp. 23-39, 1993.

[19] Fedorenko R. P., A Relaxation Method for Solving Elliptic Difference

Equations, USSR Computational Math. and Math. Phys., Vol. 1, 1962.

[20] Fedorenko R. P., The Rate of Convergence of An Iterative Process, USSR

Computational Math. and Math. Phys., Vol. 4, 1964.

[21] Brandt Achi, Multi-Level Adaptive Solutions to Boundary-Value Problems,

Mathematics for Computation, Vol. 31, pp. 333-390, 1977.

[22] Borzi A., Introduction to Multigrid Methods,

http://www.ing.unisannio.it/borzi/mgintro.pdf, last access on; 28.07.2009

[23] Trottenberg U., Oosterlee C. W., Schüller A., Multigrid, Academic Press,

2001.

[24] Briggs William L., and McCormick, Steve F., Multigrid Tutorial, Siam 2000.

[25] Versteeg H. K., Malalasekera W., An Introduction to Computational Fluid

Dynamics: The Finite Volume Method, Pearson/Prentice Hall, 2007.

[26] Jameson Antony, Solution of the Euler Equations for Two-Dimensional

Transonic Flow by a Multigrid Method, Applied Mathematics and Computation, Vol.

13 Issues 3-4, pp. 327-355, 1983.

[27] Aftosmis M. J., Berger M. J., and Adomavicius G., A Parallel Multilevel

Method for Adaptively Refined Cartesian Grids with Embedded Boundaries, AIAA

Paper AIAA 2000-0808 38th Aerospace Sciences Meeting and Exhibit, Jan. 2000.

 138

http://www.ing.unisannio.it/borzi/mgintro.pdf

[28] Barth Timothy J., and Frederickson, Paul O., Higher Order Solution of the

Euler Equations, AIAA Paper AIAA-90-0013, 1990.

[29] Barth Timothy J., and Jespersen Dennis C., The design and Application of

Upwind Schemes on Unstructured Meshes, AIAA Paper AIAA-89-0366, 1989.

[30] Van den Berg B., and Gooden J. H. M., Low-speed Pressure and Boundary

Layer Measurement Data for the NLR 7301 Airfoil Section with Trailing Edge Flap

[31] Sangho K., Alonso J. J., and Jameson A., Design Optimization of High-Lift

Configurations Using a Viscous Continuous Adjoint Method, AIAA Paper AIAA-

2002-0844, 2002.

[32] Eraslan Elvan, Implementation of Different Flux Evaluation Schemes into a

Two-Dimensional Euler Solver, M.S. Thesis in the Middle East Technical

University, 2006.

[33] Gönç Oktay L., Computation of External Flow Around Rotating Bodies,

Ph.D. Thesis in the Middle East Technical University, 2005.

[34] Harris C. D., Two-Dimensional Aerodynamic Characteristics of the NACA

0012 Airfoil in the Langley 8-Foot Pressure Tunnel, NASA-TM-81927, 1981.

[35] Şahin Pınar, Navier-Stokes Calculations over Swept Wings, M.S. Thesis in

the Middle East Technical University, 2006.

[36] Fu Jan-Kaung, and Liang Shen-Min, Drag Reduction for Turbulent Flow

over a Projectile:Part I, Journal of Spacecraft and Rockets, Vol. 31, pp. 85-92, 1994.

 139

[37] Sturek Walter B., Nietubicz Charles J., Sahu Jubaraj, and Weinacht Paul,

Applications of Computational Fluid Dynamics to the Aerodynamics of Army

Projectiles, Journal of Spacecraft and Rockets, Vol. 31, pp. 186-199, 1994.

[38] Sert Cüneyt, Development of a Three Dimensional Object-Oriented Euler

Solver using C++ Programming Language, M.S. Thesis in the Middle East

Technical University, 1998.

[39] Bourke Paul, Polygonising a Scalar Field,

http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/, last access on;

28.07.2009

 140

http://local.wasp.uwa.edu.au/%7Epbourke/geometry/polygonise/

APPENDIX A

SPLIT CELLS

There are six types of split cells. First of all, examples are given to demonstrate each

of these split cells. Classification of these cells depends on the former type and

number of cut points as it will be explained below.

1-) Square index of this type of split cell is assigned to -15 since its former type is

outside cell according to the inside-outside testing and it has two cut points on the

edges of a cell.

2-) Square index of this type of split cell is assigned to -20 since its former type is

inside cell according to the inside-outside testing and it has two cut points on the

edges of a cell.

3-) Square index of this type of split cell is assigned to -25 since its former type is

outside cell according to the inside-outside testing and it has four cut points on the

edges of a cell.

 141

4-) Square index of this type of split cell is assigned to -30 since its former type is

inside cell according to the inside-outside testing and it has four cut points on the

edges of a cell.

5-) This type of split cells are converted from cut cells. According to the inside-

outside testing, they are set as cut cells and their total square indexes are calculated.

Regular cut cells must have only two cut points but these cells have more than two

cut points. Therefore, these cells may be called as split-cut cells. Square indexes of

these cells were calculated when they were cut cells. These cells are converted from

cut cells to split cells. As a result, their types are changed but their square indexes

remain the same.

6-) Split cell whose square index is assigned to -40 since these cells have more than

four cut points.

 142

1-) Split cell whose square index is equal to -15
There are four sub-cases.

 143

2-) Split cell whose square index is equal to -20
There are four sub-cases.

3-) Split cell whose square index is equal to -25
There are six sub-cases.

1-) Cut edges 3 & 2………………………..Split index=0

 144

2-) Cut edges 3 & 1………………………..Split index=1

3-) Cut edges 3 & 0………………………..Split index=2

 145

4-) Cut edges 2& 1………………………..Split index=3

5-) Cut edges 2& 0………………………..Split index=4

 146

6-) Cut edges 1& 0………………………..Split index=5

4-) Split cell whose square index is equal to -30
There are six sub-cases.

1-) Cut edges 3 & 2………………………..Split index=0

 147

2-) Cut edges 3 & 1………………………..Split index=1

3-) Cut edges 3 & 0………………………..Split index=2

4-) Cut edges 2& 1………………………..Split index=3

 148

5-) Cut edges 2& 0………………………..Split index=4

6-) Cut edges 1& 0………………………..Split index=5

5-) Split cell which is converted from cut cell
There are fourteen sub-cases.

 149

1-) Square index=1

a) Split index=0 b) Split index=1

2-) Square index =2

a) Split index=2 b) Split index=3

3-) Square index =4

 150

a) Split index=4 b) Split index=5

4-) Square index =8

a) Split index=6 b) Split index=7

5-) Square index =7

 151

a) Split index=1 b) Split index=0

6-) Square index =11

 a) Split index=0 b) Split index=3

7-) Square index =13

 152

a) Split index=2 b) Split index=3

8-) Square index =14

 a) Split index=2 b) Split index=1

9-) Square index =3

 153

a) Split index= -1 b) Split index=0

10-) Square index =6

a) Split index= -1 b) Split index=1

11-) Square index =9

 154

a) Split index= -1 b) Split index=2

12-) Square index =12

a) Split index= -1 b) Split index=3

13-) Square index =5

a) Split index=1

 155

OR

OR

 156

b) Split index=2

 157

14-) Square index =10

a) Split index=1

OR

OR

 158

b) Split index=2

 159

APPENDIX B

EXAMPLE OUTPUT FILE OF SURFACE MESH GENERATED

BY GAMBIT

 CONTROL INFO 2.4.6 Total number of triangles formed surface mesh
** GAMBIT NEUTRAL FILE
sphere
PROGRAM: Gambit VERSION: 2.4.6
 Jun 2009
 NGRPS NBSETS NDFCD NDFVL
 1 0 2 3

NELEM NUMNP
 25 46

ENDOFSECTION
 NODAL COORDINATES 2.4.6
 1 -1.98288972275e+000 2.61052384440e-001 0.00000000000e+000

Total node number around sphere

 2 -1.45577697798e+000 1.26273488645e-001 1.36556522965e+000
 3 -1.22755301316e+000 1.51559232680e+000 4.42824455988e-001
 4 1.66467887690e+000 -7.90424948610e-001 -7.77221099450e-001
 5 -1.51263359096e-001 1.22057996444e+000 1.57711887523e+000
 6 8.33244842460e-002 -3.52562841708e-001 1.96691547174e+000
 7 -8.31638007524e-001 -1.26804513721e+000 1.30400910826e+000
 8 -1.63860008609e+000 -1.14545623316e+000 5.40349496504e-002
 9 -1.39349606421e+000 1.12940622517e+000 -8.84652642326e-001
 10 -1.45570883917e+000 -2.15792594965e-001 -1.35438005431e+000
 11 1.39315797478e-001 1.96367326596e+000 3.52956673159e-001
 12 -3.82949059967e-001 1.83415696214e+000 -6.99441388313e-001
 13 1.19730956832e+000 4.97101249450e-001 1.52293799788e+000
 14 1.17281148967e+000 1.45628681471e+000 7.09747788310e-001
 15 4.09300059745e-001 -1.51163265674e+000 1.24396148340e+000
 16 1.36943001094e+000 -6.86750019647e-001 1.28570442001e+000
 17 -2.05031944964e-001 -1.98846808698e+000 6.29012609109e-002
 18 -7.44205012438e-001 -1.46075315461e+000 -1.14558243735e+000
 19 1.98870882714e+000 2.01972285618e-001 6.51490344266e-002
 20 1.02712841749e+000 1.52787645233e+000 -7.81409470374e-001
 21 -2.39687456491e-001 8.96476377967e-001 -1.77168846780e+000
 22 1.33810796503e+000 -1.48025166283e+000 1.35359109823e-001
 23 7.18107022266e-001 -1.44912995140e+000 -1.17658178148e+000
 24 -7.38694124748e-002 -5.51126718628e-001 -1.92114618130e+000
 25 1.23662915548e+000 6.40886642735e-002 -1.57055435275e+000
ENDOFSECTION

 160

 ELEMENTS/CELLS 2.4.6
 1 3 3 1 2 3
 2 3 3 3 2 5
 3 3 3 5 2 6
 4 3 3 6 2 7
 5 3 3 7 2 8
 6 3 3 8 2 1
 7 3 3 1 3 9
 8 3 3 1 9 10
 9 3 3 1 10 8
 10 3 3 3 5 11
 11 3 3 3 11 12
 12 3 3 3 12 9
 13 3 3 5 6 13
 14 3 3 5 13 14
 15 3 3 5 14 11
 16 3 3 6 7 15
 17 3 3 6 15 16
 18 3 3 6 16 13
 19 3 3 7 8 17
 20 3 3 7 17 15
 21 3 3 8 10 18
 22 3 3 8 18 17
 23 3 3 13 16 19
 24 3 3 13 19 14
 25 3 3 12 11 20
 26 3 3 20 11 14
 27 3 3 9 12 21
 28 3 3 9 21 10
 29 3 3 16 15 22
 30 3 3 22 15 17
 31 3 3 14 19 20
 32 3 3 16 22 19
 33 3 3 21 12 20
 34 3 3 22 17 23
 35 3 3 23 17 18
 36 3 3 18 10 24
 37 3 3 24 10 21
 38 3 3 23 18 24
 39 3 3 24 21 25
 40 3 3 25 21 20
 41 3 3 20 19 25
 42 3 3 19 22 4
 43 3 3 19 4 25
 44 3 3 22 23 4
 45 3 3 4 23 25
 46 3 3 23 24 25

Node numbers
constitute each of
triangles

ENDOFSECTION
 ELEMENT GROUP 2.4.6
GROUP: 1 ELEMENTS: 46 MATERIAL: 2 NFLAGS: 1
 fluid
 0
 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46
ENDOFSECTION

 161

APPENDIX C

TABLE FOR MARCHING CUBES ALGORITHM

A table (triangle table) is used to look up triangular facets (cut surfaces). There are at

most five triangular facets in this table [39]. The table given here is a modified table

in order to find centroids in the same manner for the developed method. Original

table can be found in reference [39].

int triangleTable[256][16] =
{{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2,10, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1},
{3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1},
{3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 8, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
{2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1},
{8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
{4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1},
{3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1},
{4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1},
{4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},

 162

{0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
{5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1},
{2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1},
{9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
{0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
{2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1},
{10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1},
{5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1},
{5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1},
{9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1},
{1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1},
{10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1},
{8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1},
{2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1},
{7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1},
{2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1},
{11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1},
{5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1},
{11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1},
{11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{ 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1},
{9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1},
{2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1},
{6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1},
{3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1},
{6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
{10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1},
{6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1},
{8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1},
{7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1},
{3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1},
{0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1},

 163

{9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1},
{8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1},
{5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1},
{0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1},
{6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1},
{10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1},
{10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1},
{8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1},
{1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1},
{0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1},
{10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1},
{3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1},
{6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1},
{9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1},
{8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1},
{3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1},
{6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1},
{0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1},
{10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1},
{10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1},
{2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1},
{7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1},
{7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1},
{2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1},
{1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1},
{11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1},
{8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1},
{0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1},
{7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
{10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
{2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
{6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1},
{7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1},
{2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1},
{10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1},
{10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1},
{0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1},
{7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1},
{6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1},
{8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1},
{9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1},

 164

{6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1},
{4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1},
{10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1},
{8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1},
{0, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1},
{1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1},
{8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1},
{10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1},
{4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1},
{10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
{11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1},
{9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
{6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1},
{7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1},
{3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1},
{7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1},
{3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1},
{6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1},
{9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1},
{1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1},
{4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1},
{7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1},
{6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1},
{3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1},
{0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1},
{6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1},
{0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1},
{11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1},
{6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1},
{5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1},
{9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1},
{1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1},
{1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1},
{10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1},
{0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1},
{5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1},
{10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1},
{11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1},
{9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1},
{7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1},
{2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1},
{8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1},
{9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1},
{9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1},
{1, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},

 165

 166

{0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1},
{9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1},
{0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1},
{10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1},
{2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1},
{0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1},
{0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1},
{9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1},
{5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1},
{3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1},
{5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1},
{8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1},
{0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1},
{9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1},
{1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1},
{3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1},
{4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1},
{9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1},
{11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1},
{11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1},
{2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1},
{9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1},
{3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1},
{1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1},
{4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1},
{0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1},
{1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}};

	MS_Thesis1-1
	MS_Thesis1-2
	MS_Thesis2
	TWO DIMENSIONAL DATA STRUCTURE AND GRID GENERATION
	THREE DIMENSIONAL DATA STRUCTURE AND GRID GENERATION
	FLOW SOLVER
	RESULTS AND DISCUSSIONS

