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ABSTRACT

DETECTION OF AIRPORT RUNWAYS IN OPTICAL SATELLITE IMAGES

Zöngür, Uğur

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Uğur Halıcı

Co-Supervisor : Asst. Prof. Dr. İlkay Ulusoy

July 2009, 99 pages

Advances in hardware and pattern recognition techniques, along with the widespread

utilization of remote sensing satellites, have urged the development of automatic target

detection systems. Automatic detection of airports is particularly essential, due to the

strategic importance of these targets. In this thesis, a detection method is proposed

for airport runways, which is the most distinguishing element of an airport. This

method, which operates on large optical satellite images, is composed of a segmenta-

tion process based on textural properties, and a runway shape detection stage. In the

segmentation process, several local textural features are extracted including not only

low level features such as mean, standard deviation of image intensity and gradient,

but also Zernike Moments, Circular-Mellin Features, Haralick Features, as well as fea-

tures involving Gabor Filters, Wavelets and Fourier Power Spectrum Analysis. Since

the subset of the mentioned features, which have a role in the discrimination of airport

runways from other structures and landforms, cannot be predicted, Adaboost learning

algorithm is employed for both classification and determining the feature subset, due

to its feature selector nature. By means of the features chosen in this way, a coarse

representation of possible runway locations is obtained, as a result of the segmentation
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operation. Subsequently, the runway shape detection stage, based on a novel form of

Hough Transform, is performed over the possible runway locations, in order to obtain

final runway positions. The proposed algorithm is examined with experimental work

using a comprehensive data set consisting of large and high resolution satellite images

and successful results are achieved.

Keywords: Airport runway detection, Textural features, Segmentation, Adaboost,

Hough transform

v



ÖZ

OPTİK UYDU GÖRÜNTÜLERİNDE HAVAALANI PİSTLERİNİN TESPİT
EDİLMESİ

Zöngür, Uğur

Yüksek Lisans, Elektrik ve Elektronik Mühendisligi Bölümü

Tez Yöneticisi : Prof. Dr. Uğur Halıcı

Ortak Tez Yöneticisi : Asst. Prof. Dr. İlkay Ulusoy

Temmuz 2009, 99 sayfa

Donanım ve örüntü tanıma tekniklerindeki gelişmeler, uzaktan algılama uydularının

yaygın kullanımı ile beraber, otomatik hedef tespit sistemlerinin geliştirilmesini teşvik

etmiştir. Havaalanlarının otomatik olarak tespiti, bu hedeflerin stratejik önemlerinden

ötürü, özellikle gereklidir. Bu tezde, bir havaalanının en ayırt edici öğesi olan havaalanı

pistleri için bir tespit yöntemi önerilmiştir. Büyük optik uydu görüntüleri üzerinde

çalışan bu yöntem, dokusal özelliklere dayanan bir bölütleme sürecinden ve bir pist

şekli tespit etme safhasından oluşmaktadır. Bölütleme sürecinde, sadece görüntü

yoğunluğunun ve gradyanının ortalaması ve standart sapması gibi düşük seviyeli özni-

telikler değil, Zernike Momentleri, Dairesel-Mellin Öznitelikleri, Haralick Öznitelikleri,

bunlara ek olarak, Gabor Süzgeçleri, Dalgacıklar ve Fourier Güç Tayfı Çözümlemesi

gerektiren öznitelikleri de içeren, bir takım yerel doku öznitelikleri çıkarılmıştır. Bah-

sedilen özniteliklerin, havaalanı pistinin, diğer yapılardan ve yer şekillerinden ayırt

edilmesinde rol oynayan alt kümesi öngörülemediğinden, Adaboost öğrenme algorit-

ması, öznitelik seçici doğasından dolayı, hem sınıflama, hem de öznitelik alt kümesinin

bulunmasında kullanılmıştır. Bu yolla seçilen öznitelikler vasıtasıyla, bölütleme işlemi-
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nin bir sonucu olarak, muhtemel pist konumlarının kaba bir gösterimi elde edilmiştir.

Ardından, nihai pist pozisyonlarını elde etmek amacıyla, yeni bir Hough Dönüşüm

biçimine dayanan, pist şekil tespiti aşaması yürütülmüştür. Önerilen algoritma, büyük

ve yüksek çözünürlüklü görüntülerden oluşan, kapsamlı bir veri kümesi kullanılarak,

deneysel çalışma ile incelenmiş ve başarılı sonuçlar elde edilmiştir.

Anahtar Kelimeler: Havaalanı pist tespiti, Dokusal Öznitelikler, Bölütleme, Adaboost,

Hough dönüşümü
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CHAPTER 1

INTRODUCTION

Airports are important structures from both economical and military perspective.

Economically, as fundamental cargo and passenger transportation stations, airports

serve to attract and retain businesses with national and global ties. Therefore, air-

ports are a major force in the local, regional, national and global economy, becoming

increasingly significant in terms of financial reasons.

The military airports, i.e. airbases, are also critical strategic targets considering the

importance of the aviation branch of a nation’s defense forces. Airbases are used

for not only take-off and landing of crucial bomber and fighter units, but also conse-

quential support operations such as strategic and tactical airlift, combat airdrop and

medical evacuation, promoting the worth of airports. From this point of view, auto-

matic detection of airports can provide vital intelligence to take well-timed military

measures in a state of war.

The technological improvements on both computational hardware and pattern recog-

nition techniques made identification of airports an attainable objective. Besides,

increasing number of countries that have their own satellites renders the problem

even more attractive, by the supplied unbiased data to investigate. These reasons

form the motivation of this thesis.

1.1 Previous Work

There exists a number of prior studies on the problem of airport detection. In addition

to the fact that the quantity of these works is not satisfying, the qualities of some are
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also disputable. However, several ideas in (Liu, 2004) and (Han, 2002) are found

convenient, and applied in this thesis.

In (Liu, 2004), a method, which is established on a texture based pre-screening step

to obtain Regions of Interests (ROIs), and subseqeuently an elongated rectangle de-

tection on those ROIs for finding runways is proposed. Kernel Matching Pursuits

is used for the classification process in the first step. For the second step a Hough

Transform based shape detection is employed. The proposed method is intended to

find airport runways in large optical imagery (approximately 6500× 7500 pixels) in a

computationally efficient way. Example results are given using a dozen high resolution

aerial images from Southern California.

In (Han, 2002), a method is proposed for finding airports in a hypothesis formation

and verification manner. Hypotheses are formed by acquiring parallel lines in opposite

orientation using edge tracking procedures on the edge detected image. Hypothesis

verification is done by judging gray homogeneity, average gray value and contrast

with background. Experiments are performed using more than a hundred but small

(256 × 200) and low resolution images.

In (Qu, 2005), first a search for the elongated rectangles pertaining to runways is car-

ried out, generating runway hypotheses. Contrary to (Liu, 2004), textural properties

are utilized for hypothesis verication instead of obtaining ROIs, using Support Vector

Machine classifier.

In (Gupta, 2007), a primitive segmentation is carried out before utilizing Hough Trans-

form based potential runway selection. Hough Transform is also employed in (Wang,

2007) and (Pi, 2003) for the detection of airports, however both of these papers lack

of an experimental work.

Due to the fact that the runways can be considered as road segments, runway detec-

tion has some relevancy to road detection. The encountered road detection algorithms

in the literature are either semi-automatic (Niu, 2006)(Udomhunsakul, 2004), which

needs a seed provided with human interaction (i.e. a part of a road and generally

the initial direction), or automatic (Mena, 2005)(Mokhtarzade, 2008), which operates

without such an interaction. Since runways are lack of a complex network structure
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unlike roads, application of semi-automatic algorithms to runway detection would ob-

viously be infeasable. Similar to automaticity, there are many concepts that are not

suitable or unnecessary for runway detection like road tracking methods or snake (ac-

tive contour) applications. However, concepts involving textures and segmentation

can be utilized. There are studies that uses Haralick features (Mena, 2005), (Fer-

nandez, 1992), (Popescu, 2008), which are textural features and also employed in this

study. (Mena, 2003) and (Mayer, 2006) provides a good bibliography of previous work

about road detection.

1.2 Structure of an Airport

Airport is a structure, built for the take-off and landing of aircrafts. Airports can be

classified as civil and military, in terms of utilization purpose.

Civil airports generally have a runway or multiple runways, taxiways, passenger and

freight terminals, a control tower, and other minor buildings such as passenger walk-

ways or parking areas. There can be small civil airports constructed specifically for

gliders or flying boats, which have a grass or no permanent runways at all.

Military airports generally consist of a runway or multiple runways, taxiways, hangars,

barracks, control tower, defensive structures such as SAM (Surface to Air Missile)

sites, and other minor buildings such as shelters, administration building, fire-fighting

station and ammunition storage. Military airports built for jet aircrafts tend to have

long runways while the airfields constructed for transport aircrafts generally have large

hangars.

Some airports can be combined airports used for both civil and military purposes.

There can also be temporary airfields or emergency airfields, which are primarily long

straight highway segments used as runways.

Runway, as a fundamental airport component, is a long strip that provides the nec-

essary distance for aircrafts to reach the required speed for take-off, and to safely land.

An airport may have single runway or many runways placed in various configurations,

such as parallel, crossing, non-crossing (non-parallel at the same time) or any combi-

nation of these. The landing surface, may be a natural surface such as grass or gravel,
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or more commonly a man-made surface. These man-made surfaces can be asphalt

(e.g. Helicopter Airfields), concrete, concrete with antiskid (e.g. Jet Airfields) or even

pierced planking in case of temporary runways.

1.3 Scope of Thesis

This thesis refers to an airport detection algorithm, which is intended to work on

large and high resolution optical images. The concerned optical satellite images that

carry chromatic information that lies on the visible spectrum by the human eye and

contain neither infrared nor any other remote sensed data channels except RGB (Red,

Green, Blue). These images are approximately 13626 × 10862 in size, having 1 meter

resolution.

On an aerial image, the most prominent part of an airport is absolutely the runway.

Runways have a more distinguishable form, share more characteristics with other

runways and cover the most area when compared to other airport structures. Therefore

it can be concluded that airport detection problem can be reduced and interpreted

as airport runway detection problem. For the rest of the thesis, airport and runway

detection is used alternately.

1.4 Contribution of Thesis

In this thesis, a runway detection algorithm is proposed. This algorithm, in a coarse

manner, involves a classification process preceded by extraction of various features,

and runway shape detection by means of a Modified Hough Transform operation. In

the classification part, the regions of interests, which is a rough guess of areas where

runways might be, are determined based on textural properties. Afterwards runways,

which has a thin, long rectangle shaped structure, are searched in those Regions of

Interest. The contributions of this thesis, apart from the proposed algorithm itself

that is explained in Chapter 3, are mentioned below.

4



1.4.1 Features Novel to Runway Detection Problem

In (Liu, 2004), Basic Statistical Features, Zernike Moments and Circular-Mellin fea-

tures are utilized. It is also stated that Haralick features are used in various studies

on road detection. In addition to these features, as one of the contributions of this

thesis, a set of features is employed for segmentation, which has not been utilized

for airport detection in previous studies. Particularly, these are features extracted

from HSV (Hue, Saturation, Value) color space, and features involving Fourier Power

Spectrum, Gabor Filters and Wavelet Decomposition. These features are explained

in Section 2.1 and 3.1.1 in detail.

1.4.2 Use of Adaboost Algorithm for Segmentation

Another contribution of this thesis is the application of Adaboost algorithm on run-

way detection problem. Adaboost is a boosting algorithm, which aims to improve

the performance of any other learning algorithm. When used together with a set of

weak learners, it selects the desired number of most beneficial ones. Since finding

features that can represent the genuine characteristics of the runway texture is not

a straightforward task, a strategy that exploits the aforementioned property of Ad-

aboost is utilized. This strategy is established upon finding as many features that

could probably serve for discriminating runway textures, and let Adaboost algorithm

to judge and decide which features to use based on the effectiveness of them.

1.4.3 Modified Hough Transform

The third contribution of this study is an improvement for the Hough Transform

for runway detection. The improvement is achieved by an approach, which takes

advantage of the relationship of a runway and its background. Runways generally

have same background on either long side of their elongated rectangle shape. This

phenomenon results in opposite mean gradient directions on those lines, which is called

antiparallel lines. While there exist methods that make use of gradient information

with hough transform (O’Gorman, 1976)(Ballard, 1987), or using antiparallel lines

without hough transform (Scher, 1982)(Lin, 1998), the employed form in this study
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is original. This proposed form leads to an opposite peak-pair pattern on Hough

parameter space, which is an effective, elegant and descriptive representation of line

pairs, i.e. runway side lines. The details of this contibution are given in Section 3.2.2.

1.5 Organization of Thesis

This thesis is organized as follows. In Chapter 2, the fundamental concepts, which

are essential for the proposed algorithm, are covered. In Chapter 3, the details of

the proposed airport runway detection algorithm are described. Experimental results,

concerning the parameter selection and performance evaluation of the proposed algo-

rithm, are given in Chapter 4. Finally, the discussion of the obtained results, future

work and concluding remarks are given in Chapter 5.
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CHAPTER 2

BACKGROUND

In this chapter, the fundamental subjects, used in this study, are explained. In Section

2.1, features, utilized in this study, are covered. The Adaboost algorithm, employed

with these features is described in Section 2.2. The Hough transform, on which the

proposed Modified Hough Transform is based, is explained in Section 2.3. In Section

2.4, Morphological Image Operations, like opening and dilation, are covered. Finally,

in Section 2.5, the computation of Canny Edge Operator is given.

2.1 Features

The features used in this study are explained below. Throughout this section, the

concerned image is represented as

f(x, y)

which is assumed to be N ×N in size.

2.1.1 Basic Features

Utilized basic statistical texture features, which are also used in detection of airports

by (Liu, 2004), are explained below.

Mean of intensity image which represents how bright the pixels are in a block on

average is given in Equation 2.1.
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meanf =
1
N2

∑
x

∑
y

f(x, y) (2.1)

Standard deviation of intensity image which indicates how dispersed the gray values

are, i.e. contrast, is given in Equation 2.2

varf =
√

1
N2

∑
x

∑
y

(f(x, y) −meanf )2 (2.2)

Gradient magnitude estimate for the calculation of basic features is defined in the

Equation 2.3

∥∇f(x, y)∥ = |f(x, y) − f(x− 1, y) + j(f(x, y) − f(x, y − 1))| (2.3)

Mean of gradient magnitude, which provides information about average rate of

gray level change between neighboring pixels, is given in Equation 2.4

mean∥∇f∥ =
1
N2

∑
x

∑
y

∥∇f(x, y)∥ (2.4)

Standard deviation of gradient magnitude, which shows how variable this rate

of change is, is given in equation 2.5

var∥∇f∥ =
√

1
N2

∑
x

∑
y

(∥∇f(x, y)∥ −mean∥∇f∥)2 (2.5)

2.1.2 Zernike Moments

Zernike moments are image moments, which are used in rotation invariant recogni-

tion of images (Khotanzad, 1990). Unlike regular image moments, they use a set of

orthogonal basis functions, introduced by Zernike, which form a complete orthogo-

nal set inside the unit circle. Mapping of image function, onto Zernike polynomials,

results in no redundancy between different Zernike moments, as opposed to regular

image moments. The basis functions are in the form of Equation 2.6, i.e. Zernike

Polynomials.

Vn,m(x, y) = Vn,m(r, θ) = Rn,m(r)ejmθ (2.6)
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Table 2.1: Zernike Moments and their corresponding orders

Order Moments Number of Moments

0 Z0,0 1
1 Z1,1 1
2 Z2,0, Z2,2 2
3 Z3,1, Z3,3 2
4 Z4,0, Z4,2, Z4,4 3

In this equation j denotes the imaginary unit,
√
−1, n is a non-negative integer, m is

an integer, n − |m| is even, |m| ≤ n and finally r and θ are the magnitude and the

angle of the vector from origin to (x, y) point respectively where x2 + y2 ≤ 1. In the

same equation, Rn,m(r) denotes the radial polynomial, which is defined as

Rn,m(r) =

n−|m|
2∑

s=0

(−1)s (n− s)!

s!(n+|m|
2 − s)!(n−|m|

2 − s)!
rn−2s (2.7)

Given these polynomials, Zernike Moments are defined as in Equation 2.8.

Zn,m(f) =
n+ 1
π

∫ 2π

0

∫ 1

0
f(r, θ)V ∗

n,m(r, θ)rdrdθ (2.8)

Here, ∗ denotes complex conjugate. Since f(x, y) is a real signal and Rn,m(r) =

Rn,−m(r), complex conjugate of Zn,m,f , (i.e. Z∗
n,m(f)), is equal to Zn,−m(f), .

For a digital image, the expression above becomes

Zn,m(f) =
n+ 1
π

∑
x

∑
y

f(x, y)V ∗
n,m(r, θ) (2.9)

For the computation, the origin is taken to be the center of the image f , and pixel

coordinates are mapped into the range of unit circle. The pixels outside this range

are omitted.

In Table 2.1, Zernike Moments and their corresponding orders are given.

Zernike Moments are complex numbers, where rotation of the image f , results in a
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shift in the phase of these numbers, while their magnitude remains same as shown

by (Khotanzad, 1990). Therefore obtaining rotation invariant features is possible by

utilizing the magnitudes of Zernike Moments. It is also shown in the same study that

under moderate noise, Zernike Features perform well for various classification tasks.

2.1.3 Circular-Mellin Features

Circular-Mellin Features are orthogonal texture features, which are orientation and

scale invariant (Ravichandran, 1995). Rotation and scale invariance is obtained by

the polar-log coordinate transformation. Cartesian to Polar-log coordinate conversion

is as follows, where (x, y) is the coordinates of a point in Cartesian coordinate system

and (λ, θ) in polar-log coordinate system,

eλ = r =
√
x2 + y2 (2.10)

and

θ = arctan(y, x) (2.11)

Correlation response of an image, f(λ, θ) with a filter h(λ, θ) is given as

∫
λ

∫
θ
f(λ, θ)h∗(λ, θ)e2λdλdθ (2.12)

If the filter h is in the form given in Equation 2.13, the magnitude of correlator output

is shown to be rotation invariant in (Ravichandran, 1995) using Circular Harmonic

Functions (CHF) where q is defined as the order of CHF or annular frequency.

h(λ, θ) = hq(λ)ejqθ (2.13)

Likewise scale invariance can be obtained by using a filter in the form given in Equa-

tion 2.14 using Mellin Harmonic Functions (MHF) where p is defined as the order

of MHF or radial frequency. However unlike rotation invariance, scale invariance is
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achieved indirectly. For various scales of f(x, y), the correlator function generates

different magnitude values, but the ratio between these values remains same. Thus

scale invariance is obtained by comparing the ratios of outputs for distinct p values.

h(λ, θ) = e−λhp(θ)ej2πpλ (2.14)

A filter function is written in Equation 2.15, which is consistent with the constraints

of both Equations 2.13 and 2.14.

hp,q(λ, θ) = e−λej2πpλejqθ (2.15)

With this equation the correlator function output becomes

Cp,q(f) =
∫

λ

∫
θ
f(λ, θ)h∗p,q(λ, θ)e

2λdλdθ (2.16)

The magnitude of this correlator function, |Cp,q(f)|, is used as a feature.

2.1.4 Fourier Power Spectrum

Fourier analysis provides mathematical background for analysis of signals based on

frequency. Let f(x, y) be the signal representation of an image. Fourier transform of

f(x, y) is defined by

F (u, v) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πj(ux+vy)dxdy (2.17)

In Equation 2.17, j denotes imaginary unit,
√
−1. The Fourier power spectrum is

calculated as |F |2 = FF ∗ where ∗ denotes complex conjugate. In (Augusteijn, 1995)

and (Newsam, 2004) power spectrum is analyzed by ring or wedge shaped regions and

four additional statistical features of the entire spectrum is defined. Ring and wedge

shaped regions are given in Equations 2.18 and 2.19 respectively. Illustration of these

regions are given in 2.1.
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Figure 2.1: Ring and Wedge shaped regions on Frequency domain. Different shades
of gray denote different regions.

ϕr1,r2(f) =
∫ r2

r1

∫ 2π

0
|F (r, θ)|2dθdr (2.18)

ϕθ1,θ2(f) =
∫ θ2

θ1

∫ ∞

0
|F (r, θ)|2drdθ (2.19)

Since coarse textures have high values of power spectrum near the origin and finer

textures have a more spread out power spectrum (Weszka, 1976), ring shaped regions

are associated with coarsness of the texture while wedge shape regions are associated

with directionality. In the light of this information, it can be inferred that ring shaped

regions are rotationally invariant and wedge shaped regions are not.

Since discrete images are our concern, Discrete Fourier Transform of the N by N

image must be utilized, which is given in Equation 2.20.

F (u, v) =
1

NxNy

N−1∑
x=0

N−1∑
y=0

f(x, y)e−2πj(ux
N

+ vy
N ) (2.20)

Ring shaped regions are approximated with their discrete counterparts and the afore-

mentioned four additional statistical features are calculated as in equations 2.21, 2.22,

2.23 and 2.24 where NF is the number of frequency components.
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Maximum Magnitude(F ) = max {|F (u, v)| : (u, v) ̸= (0, 0)} (2.21)

Average Magnitude(F ) = µF =
1
NF

∑
u

∑
v

|F (u, v)| (2.22)

Energy of Magnitude(F ) =
√∑

u

∑
v

(|F (u, v)|)2 (2.23)

Variance of Magnitude(F ) =
1
NF

∑
u

∑
v

(|F (u, v)| − µF )2 (2.24)

2.1.5 Gabor Filters

Gabor filters are linear filters composed of one harmonic and one Gaussian func-

tion. These filters have optimal localization in both spatial and frequency domain

by minimizing the joint uncertainty in both domains which is an attractive property

(Manjunath, 1996). An interesting fact about the relationship of Gabor filters and

human perception is that the characteristics of cortical cells in the mammalian visual

cortex can be approximated by Gabor filters (Rangayyan,2000). A two dimensional

Gabor function is given in equation 2.25.

g(x, y) =
1

2πσxσy
e

»

− 1
2

„

x2

σ2
x

+ y2

σ2
y

+2πjWx

«–

(2.25)

The Fourier transform of the same function is

G(u, v) = e
− 1

2

»

(u−W )2

σ2
u

+ v2

σ2
v

–

(2.26)

In these equations, W controls the modulation and the variances have the relationship

given in 2.27 and 2.28.

σx =
1

2πσu
(2.27)

σy =
1

2πσv
(2.28)

Gabor functions form a complete but nonorthogonal set of basis functions. In order

to get rid of the redundancy caused by nonorthogonality, these basis functions must
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Figure 2.2: Comparison of complex and real Gabor filters. Complex Gabor filters are
not symmetric over frequency domain while their real counterparts are.

be scaled and rotated through a generating function given in Equation 2.29 in order

to obtain a Gabor filter dictionary.

gk,s(x, y) = a−sg(x′, y′) (2.29)

where

x′ = a−s(x cos θ + y sin θ) (2.30)

y′ = a−s(−x sin θ + y cos θ) (2.31)

θ =
kπ

K
(2.32)

In these equations 0 ≤ s ≤ (S−1) and 0 ≤ k ≤ (K−1) where S andK are total number

of scales and orientations respectively. Since the real part of the generating function,

i.e. ℜ{gk,s(x, y)}, is used as filter, a symmetric frequency response is obtained for each

orientation-scale pair. Half magnitudes of frequency responses of generating function

and real part of the generating function is given in Figure 2.2 for an arbitrary (k, s)

pair. The design of the employed gabor filter dictionary is given in detail in Section

3.1.
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Figure 2.3: Example calculation of GLCM matrix

2.1.6 Haralick Features

The features explained in this section are proposed by Haralick (Haralick,1973). These

features are very popular for the textural analysis of remote sensed images and derived

from a matrix called Gray-Level Co-occurrence Matrix (GLCM) which indicates the

distribution of co-occurring values for a given offset. GLCM is Ng ×Ng in size, where

Ng is the number of gray levels and is calculated as follows.

GLCM∆x,∆y(α, β) =
∑

x

∑
y

 1 if f(x, y) = α and f(x+ ∆x, y + ∆y) = β

0 otherwise
(2.33)

In this equation, f(x, y) is the image function, (∆x,∆y) is the offset vector, and finally,

since GLCM matrices are symmetric in (Haralick,1973), α and β are interchangeably

row or column indices.

Illustration of an example calculation of GLCM matrix is given in Figure 2.3.

After calculation of GLCM, which is not so useful in its raw format, additional opera-

tions is required to extract useful information that is contained in this matrix. These
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operations are called Haralick features. Typically, a subset of Haralick features is em-

ployed after obtaining GLCM matrices. In this study, energy, contrast, homogeneity

and correlation are used among the Haralick features.

Energy (Angular Second Moment) gives higher values for images having recurring

gray levels thus having co-occurrences accumulated in a few gray level pairs and smaller

values for noisy images which have a evenly distributed GLCM.

ζenergy,∆x,∆y =
∑
α

∑
β

{GLCM∆x,∆y(α, β)}2 (2.34)

Contrast has larger values if co-occurrences are piled up in gray-level pairs that are

distant from each other, e.g. elements far from diagonal, and vice-versa. Contrast is

defined as follows.

ζcontrast,∆x,∆y =
∑
α

∑
β

|α− β|2GLCM∆x,∆y(α, β) (2.35)

Homogeneity (Inverse Difference Moment) is opposite of contrast in a way, since

it has the difference of gray levels term in denominator, on the contrary of contrast

which has it in its numerator.

ζhomogeneity,∆x,∆y =
∑
α

∑
β

GLCM∆x,∆y(α, β)
1 + |α− β|

(2.36)

Correlation has higher values if both α and β larger or smaller than their means,

and lower values vice versa (Bevk, 2002).

ζcorrelation,∆x,∆y =
∑
α

∑
β

(α− µα)(β − µβ)GLCM∆x,∆y(α, β)
σασβ

(2.37)

where µα, µβ and σα, σβ are means and standard deviations of marginal-probability

matrices,

MPM∆x,∆y,α(α) =
1
Ng

∑
β

GLCM∆x,∆y(α, β)

and

MPM∆x,∆y,β(β) =
1
Ng

∑
α

GLCM∆x,∆y(α, β)

respectively.

GLCM features’ performances are demonstrated to be noteworthy, considering their

relative simlicity, low extraction costs and compact feature vectors (Newsam,2004).
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Figure 2.4: Single-level wavelet decomposition

2.1.7 Wavelet Features

Wavelet features are extracted using Discrete Wavelet Transform (DWT). DWT in-

volves filtering and downsampling as shown in Figure 2.4. A multiresolution decom-

position is obtained by applying the single-level wavelet decomposition recursively

to low-frequency component (Figure 2.5). Multiresolution decomposition provides a

basic hierarchical system in order to interpret both frequency and location based in-

formation contained within the image. Since utilized wavelet functions are orthogonal,

each stage of decomposition finds out different periodical aspects of the image.

2.1.8 HSV Color Space

Features obtained from HSV color space are used in this thesis. The main idea of using

features obtained from HSV color space, which is one of the contributions of this study,

is to take advantage of the success of this color space in representing perceptual color

relationships. These features are explained in Section 3.1 in detail. In order to define

these features, images that are inherently in the RGB color space must be converted to
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Figure 2.5: Multi-level wavelet decomposition

HSV color space. This is performed with the equations given in Equations 2.38 – 2.40

where max = max{r(x, y), g(x, y), b(x, y)}, min = min{r(x, y), g(x, y), b(x, y)}, and

finally r(x, y), g(x, y), b(x, y) and h(x, y), s(x, y), v(x, y) functions denote channels of

RGB and HSV respectively.

h(x, y) =



0◦, if max = min(
g(x,y)−b(x,y)

max−min 60◦ + 360◦
)

mod 360◦, if max = r(x, y)
b(x,y)−r(x,y)

max−min 60◦ + 120◦, if max = g(x, y)
r(x,y)−g(x,y)

max−min 60◦ + 240◦, if max = b(x, y)

(2.38)

s(x, y) =

 0, if max = 0

1 − min
max , otherwise

(2.39)

v(x, y) = max (2.40)
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2.2 Adaboost Learning Algorithm

Boosting is a general method to improve the performance of a learning algorithm

(Freund, 1999). Adaboost (short for Adaptive Boosting) is a boosting algorithm,

which takes a set of weak learners and constitutes a linear combination of them, in a

number of iterations, to produce a strong classifier. A weak learner is a classifier, which

gives weak hypotheses that are insufficient to solve the whole problem alone. These

weak learners are often selected as threshold classifiers (Viola, 2001) which decide the

output by judging the result of a comparison between input and a threshold. Such a

threshold classifier, hj(x), is given in Equation 2.41.

hj(xj) =

 +1 if pjxj < pjθj

−1 otherwise
(2.41)

In this equation xj is the feature, θj is the threshold, pj is the parity which decides

the direction of inequality and 1 ≤ j ≤ K where K is the number of features. Every

weak learner makes its decision by examining only one feature, so every classifier

corresponds to a feature. Training of a weak learner, j, is given in Equation 2.42, and

it means determining θj and pj values that minimizes the classification error on the

iteration t.

(θj , pj) = arg min
(θj ,pj)

{ϵt,j} (2.42)

This operation can be achieved simply by searching in intervals min(x) ≤ θj ≤ max(x)

and pj = {+1,−1}. The definition of ϵt,j is given in Equation 2.43 where yi is the

desired output label.

ϵt,j =
∑

i:hj(xi )̸=yi

Dt(i) (2.43)

In this equation, Dt(i) is the distribution function over training samples on the tth

iteration. As it can be observed in the complete algorithm of the Adaboost, given in

Figure 2.6, this distribution is utilized to emphasize the misclassified samples, forcing

the algorithm to focus on the hard examples in the training set. Dt(i) is initialized
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Input: Training data are (x1, y1), (x2, y2), ..., (xm, ym) where

• input feature vectors are xi ∈ X1 ×X2 × ...×XK

• the jth element of xi is represented as xi,j ∈ Xj

• the training data labels are yi ∈ Y = {−1,+1}

Initialize: D1(i) = 1
m , for 1 ≤ i ≤ m

Algorithm:
For t = 1, ..., T :

• Train weak classifiers finding (θj , pj) pairs for i = 1, ...,K

• Get weak hypotheses hj(xi,j) : Xj → {−1,+1}, for j = 1, ...,K

• Select the classifier with minimum error

– j∗(t) = arg min
(θj ,pj)

{ϵt,j} = arg min
j

∑
i:hj(xi,j )̸=yi

Dt(i)

– Set h∗t = hξ(t)

– Set ϵt = ϵt,j∗(t) =
∑

i:h∗
t (xi,j∗(t) )̸=yi

Dt(i)

• Choose αt = 1
2 ln

(
1−ϵt

ϵt

)
• Update

Dt+1(i) =
Dt(i)
Zt

×
{
e−αt if h∗t (xi,j∗(t)) = yi

eαt if h′∗t (xi,j∗(t)) ̸= yi
=
Dt(i)e−αtyij

∗(xi,ξ(t))

Zt

where

Zt =

[∑
i

Dt(i)e−αtyih
∗
t (xi,j∗(t))

]−1

Output:

H(x) = sign

(
T∑

t=1

αth
∗
t (x)

)

Figure 2.6: Adaboost Algorithm
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to be uniform, and on every ireration it is updated in a way that the true classified

samples’ values are reduced and false classified samples’ values are increased.

Adaboost has many advantages including that it is fast, simple and easy to program.

It is also a nice property that it requires no parameters to be tuned, except the

iteration count T . Adaboost provides a general and provably effective method for

producing an accurate prediction rule by combining rough and moderately inaccurate

weak learners. On the other hand, it should be noted that with overly complex or too

weak hypotheses, boosting can fail, which is consistent with theory.

2.3 Hough Transform

Hough Transform is a technique which is used to extract arbitrary shapes, such as

lines, circles, ellipses, out of an image. It is originally aimed to find lines and invented

by Hough. However its most popular form is proposed in (Duda, 1972) using an angle-

radius scheme, rather than a slope-intercept one, which is originally used by Hough.

Computation principles of Hough transform, intended to find lines, is given below.

All straight lines on an image can be described using two parameters as shown in

Figure 2.7, where θ is the angle of the normal of the straight line and ρ is the distance

of the line from origin. Equation of this line, in the form y = mx+ n, is

y =
(
−cos θ

sin θ

)
x+

ρ

sin θ
(2.44)

The same equation can be written for ρ, in terms of x, y and θ, as

ρ = x cos θ + y sin θ (2.45)

For a specified (xi, yi) point, this equation becomes the sinusoid given in Equation

2.46, which represents the set of all possible (ρ, θ) that correspond to the specified

point.

ρ = xi cos θ + yi sin θ (2.46)
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θ

ρ

Figure 2.7: Line description for Hough Transform

Hough transform is based upon a voting mechanism, where every point (xi, yi) votes

for a set of (ρ, θ) pairs, which is described by equation 2.46. If there is a collinear set

of points, these votes intercept on a point on ρ−θ plane, where every (ρ, θ) represents

a unique line if θ is given in the interval [−π/2, π/2). The illustration of this process is

provided in Figure 2.8. The Hough Transforms of the points (represented as crosses)

in 2.8(a) and 2.8(c), are given respectively in 2.8(b) and 2.8(d). The Hough Transform

of the image that has these two points combined, is given in 2.8(f). The intersection

point of the sinusoids (i.e. peak point) is marked with a circle. The line corresponding

to this peak (ρ, θ) pair is drawn with a dotted line in 2.8(e). It should be noted that

every sinusoid belonging to a point on that line, intersects on the same marked peak,

assuring that if there is a significant set of collinear points, i.e. lines, there will be a

significant peak on the ρ− θ plane.

The computation of Hough Transform involves an accumulator matrix. The size of

this matrix depends on the ρ and θ resolutions. For instance, a θ resolution of 1◦

results in 180 θ values that are −90◦,−89◦, ..., 88◦, 89◦. The ρ interval is dependent
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Figure 2.8: Hough Transform
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to image size and is in the range
[
−
√
N2

y +N2
x ,
√
N2

y +N2
x

]
for a Nx × Ny image.

Computation cost is related to θ resolution, due to the fact that ρ is obtained by

rounding up the term in Equation 2.46 for every possible θ on point (xi, yi). The

elements of the matrix having coordinates θ’s and such ρ’s are increased by one.

Hough transform provides an efficient and effective method for finding straight lines

on an image. Since it does not rely on the local continuity of the collinear pixels, it

also achieves a good detection in the case of disconnected lines due to noise or other

undesired effects.

2.4 Morphological Operations

Morphological image operations are used for the analysis and processing of geometrical

structures on an image (Gonzalez, 2002). These operations are heavily based on set

theory and applied on binary images. Two fundamental morphological operations

Dilation and Erosion are as follows.

A digital binary image is defined as f(x, y), where (x, y) ∈ Z2, Z is the set of integers,

and since f(x, y) is a binary image, f(x, y) → {0, 1}. Let A ⊆ Z2, α ∈ A and z ∈ Z2.

The translation of set A can be defined as

(A)z = {w|w = α+ z, α ∈ A}

Dilation operation thickens “the non-zero elements on the binary image”, i.e. A, by

means of the structuring element, B. Dilation of A with B, yields the origin locations

of all possible translations of reflected Bs that has at least one common element with

A. This operation can be expressed as

A⊕B = {z|(B̂)z ∩A ̸= ∅} (2.47)

where B ⊆ Z2 and

B̂ = {w|w = −β, β ∈ B}
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(a) Original Image (b) (c) Dilated Image

Figure 2.9: Morphological dilation operation where (b) is the structuring element.
Gray pixels in (c) are the added pixels after dilation operation.

B̂ is the reflection (symmetric) of B. Since dilation does a similar job to convolution

(Young, 1995), reflection serves as the reversal of one of the functions that takes place

in convolution. Although dilation is a commutative operation, thus A⊕ B = B ⊕ A,

as a convention, first parameter is generally given the image and the second is given

a structuring element. Dilation operation is visually explained in Figure 2.9.

Erosion operation, contrary to dilation, thins the non-zero elements on the binary

image, A, by means of a structuring element, B. Erosion of A with B, yields the origin

locations of all possible translations of Bs that has at least one common element with

the background of A. This can be expressed, quite similar to dilation, as

A⊖B = {z|(B)z ∩Ac ̸= ∅} (2.48)

where Ac, the complement (background) of A is

Ac = {w|w /∈ A}

Erosion operation is visually explained in Figure 2.10.

Utilization of dilation and erosion operations in combination, results in two additional

operations, which are Opening and Closing.

Opening is the erosion operation followed by a dilation operation as given in Equation

2.49.
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(a) Original Image (b) (c) Eroded Image

Figure 2.10: Morphological erosion operation where (b) is the structuring element.
Gray pixels in (c) are the deleted pixels after erosion operation.

(a) Original Image (b) (c) Opened Image

Figure 2.11: Morphological opening operation where (b) is the structuring element.
Gray pixels in (c) are the deleted pixels after opening operation.

A ◦B = (A⊖B) ⊕B (2.49)

An alternate and more descriptive expression of this operation is

A ◦B =
∪

{(B)z|(B)z ⊆ A} (2.50)

where
∪

means the union of all sets. The meaning of this formula is the union of

all possible translations of B, which can fit inside A. Opening operation is visually

explained in Figure 2.11.

Closing is the dilation operation followed by a erosion operation as given in Equation

2.51.

A •B = (A⊕B) ⊖B (2.51)
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(a) Original Image (b) (c) Closed Image

Figure 2.12: Morphological closing operation where (b) is the structuring element.
Gray pixels in (c) are the added pixels after closing operation.

Closing operation is visually explained in Figure 2.12.

2.5 Canny Edge Operator

In general, edge detection provides a way to reduce redundant information of an

image, keeping its vital structural properties. Although there are many edge detection

algorithms, Canny is a very popular one, because of its optimized nature. In (Canny,

1986), three performance criteria are defined, which are

• Good detection: A high rate of true edges and a low rate of false edges must

be obtained.

• Good localization: Edges must be detected where they actually are.

• Only one response to a single edge: An actual edge must produce no more

than one edge.

According to these criteria, an optimal function is obtained and approximated by the

first derivative of Gaussian in the same study. Canny edge operator is applied to an

image in following steps.

• Noise reduction: Image smoothing operation is done with a 9 × 9 Gaussian

filter having σ = 1

• Gradient Estimation: 9× 9 directional derivatives of 2D Gaussian functions,
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which are in x and y directions, are convolved with the image to obtain direc-

tional gradient approximations ∂f(x,y)
∂x and ∂f(x,y)

∂y . Gradient magnitude is

|∇f(x, y)| =

√(
∂f(x, y)
∂x

)2

+
(
∂f(x, y)
∂y

)2

and gradient direction is defined as

∠∇f(x, y) = arctan

 ∂f(x,y)
∂y

∂f(x,y)
∂x


Gradient direction is quantized into 4 directions, which are “North–South”,

“East–West”, “North East–South West” and “North West–South East”.

• Non-maximum suppression: If a pixel is not the local maximum in its gra-

dient direction, among the neighboring pixels, it is set to ‘0’, yielding thin edge

lines.

• Edge Tracing and Thresholding: Every edge pixel is traced and thresholding

is applied on those edges, with a hysteresis mechanism having two thresholds.

Since, in this study, all the edge detecting operations are performed with Canny,

figures showing both original and edge detected images can be found in Chapters 3

and 4 (for instance Figures 3.7(a) and 3.7(b)).
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CHAPTER 3

PROPOSED RUNWAY DETECTION ALGORITHM

The proposed runway detection method basically consists of two main stages, which

are binary classification of regions based on textural properties, and analysis of these

regions based on shape. In the first stage a coarse segmentation is done on the satellite

image, in order to find candidate regions for airport runway, based on the textural

properties. This segmentation is a binary segmentation, where regions are labeled as

either “probably belongs to a runway” or “probably does not belong to a runway”.

After this segmentation, only regions that possibly belong to a runway are considered

and proceed to the second stage. In the second stage, a shape detection algorithm,

which discovers long parallel line segments, is carried out on the “possibly runway”

regions. These long parallel lines are considered as the identification marks of the two

long sides of the elongated rectangle shape of the runway. The block diagram of the

general structure of the proposed algorithm is shown in Figure 3.1.

3.1 Determining Runway Candidates Based on Textural Properties

In this study, texture segmentation is the process used for determining runway can-

didates, where image is partitioned into a possible runway (positive) and not runway

(negative) segments. This part is composed of two sections: Feature Extraction and

Classification. The block diagram of texture segmentation is given in Figure 3.2.

In order to perform the segmentation, first, satellite images, Nx pixels by Ny pixels in

size, are divided into non-overlapping image blocks which are N pixels by N pixels in

size. Throughout the segmentation process, these blocks are considered as the basic
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Figure 3.1: Block diagram of the general structure of the proposed algorithm

Figure 3.2: Block diagram of Texture Segmentation
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elements to be classified and all the feature extraction and classification operations

are executed over these blocks. In this thesis, signal representation of the image block

in the bth column and ath row is given in Equation 3.1, where f(x, y) is the gray-level

intensity satellite image signal, a and b are Natural numbers that conforms a < Nx
N

and b < Ny

N . In this study, the block size, N , is set to be 32.

γa,b(x, y) = f(aN + x, bN + y) (3.1)

After the division, these blocks are sent to the feature extractor where feature vectors

are obtained. Feature vectors, which are extracted from the satellite images that

belong to the training set, are training vectors. These vectors, along with the ground

truth data, are utilized to teach the classification algorithm (Adaboost) the desired

outputs. After acquisition of a trained classifier, runway candidates can be obtained

by using solely the test vectors.

3.1.1 Feature Extraction

Each feature vector of a block consists of 137 features. Since superiority of a feature

in distinguishing a runway is not trivial, this vector is chosen to be a large vector

to exploit the feature selector property of the employed Adaboost learning algorithm.

The calculation details of utilized features were stated before, in Section 2.1. However,

how the feature vectors are formed and which features are used with which parameters,

as well as their utilization reasons are covered in this section.

Basic Features

A subset of the utilized features, the basic features set, consists of means and variances

of intensity and gradient of intensity of the concerned image block. These features

are aligned as given in Equation 3.2. Since runways are generally brighter than the

background, mean of intensity image is reasonable to include. Likewise, runways

are generally uniform in terms of gray level; therefore variance is a valid feature for

distinguishing runways from other landforms. In the same manner, since mean and

variance of the gradient magnitude of gray level of image block denote how fast gray

level changes and how much this speed varies between neighboring pixels respectively,
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it also makes sense to add these to the feature vector.

Fbasic =


F1

F2

F3

F4

 =


meanγ

varγ

mean∥∇γ∥

var∥∇γ∥

 (3.2)

Zernike Moments

Zernike moments are also used as features in this study. As stated before these mo-

ments are rotation invariant image moments. Since the orientation of airport runway

is unknown and can be at any angle, the rotation invariance is indispensable. These

moments are primarily used and very effective in the field of letter recognition. Due

to the fact that these moments can provide adequate information to recognize the

letters, they can be useful to recognize runway markings as well.

Calculation of Zernike moments involves two parameters, which are n and m. The

order of a Zernike moment is determined by the number n, and this number can take

any integer from 0 to +∞. This number must have an upper boundary because it is

obviously infeasible to compute infinite number of moments. A method is proposed in

(Khotanzad, 1990), which involves gray level thresholding over the original image and

reconstructed image acquired from the real image’s Zernike moments to obtain two

binary images. Then, the Hamming distance between these two images is calculated.

The order is selected to be the minimum order number where the Hamming distance

is below a desired threshold. In the same paper, selection of this threshold is left

uncertain. Because of this ambiguity, in this thesis, maximum order of moments is

selected according to the restrictions in memory and computational time. The feature

vector that contains Zernike moments used in this thesis is given in Equation 3.3.
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Fzernike =



F5

F6

F7

F8

F9

F10

F11

F12

F13



=



Z0,0(γ)

Z1,1(γ)

Z2,0(γ)

Z2,2(γ)

Z3,1(γ)

Z3,3(γ)

Z4,0(γ)

Z4,2(γ)

Z4,4(γ)



(3.3)

Circular-Mellin features

Another set of utilized features is Circular-Mellin features, which are also orientation

and scale invariant. These features take advantage of two parameters: radial frequency

(p) and annular frequency (q). Some experimental results are given in (Ravichandran,

1995) about the selection of these variables by a search algorithm. This search algo-

rithm works as a feature selector and determines the best p and q combination. One

of the experiments is based on an aerial image of pentagon, and the ability of a single

Circular-Mellin feature (p = 1 and q = 5) to identify different wings of the structure

is shown. The set of employed Circular-Mellin features is given in Equation 3.4 which

includes the aforementioned p = 1, q = 5.

Fcircular−mellin =



F14

F15

F16

F17

F18

F19

F20

F21

F22

F23



=



C1,1(γ)

C1,2(γ)

C1,3(γ)

C1,4(γ)

C1,5(γ)

C2,1(γ)

C2,2(γ)

C2,3(γ)

C2,4(γ)

C2,5(γ)



(3.4)
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Fourier Power Spectrum

Fourier Power Spectrum is analyzed in order to extract features related with periodic

image patterns. The power spectrum of the image block can be examined in ring

shaped or wedge shaped regions as mentioned previously. Wedge shaped regions are

orientation dependent and so they are irrational to use for runway detection. On

the other hand, analysis over ring shaped regions can provide logical information

based on recurring forms. In this thesis, power spectrum is divided into six equal

ring shaped regions and the total powers comprised by each region are included as

features. In addition to these features, maximum value, average value and variance

of Discrete Fourier Transform magnitude of image block, as well as overall power

spectrum energy are added to the feature vector. These features are formed as given

in Equation 3.5 where Γ(u, v) = DFT {γ(x, y)} and rn’s are equally spaced radii over

frequency domain, r6 being the maximum frequency.

Ffourier =



F24

F25

F26

F27

F28

F29

F30

F31

F32

F33



=



ϕ0,r1(Γ)

ϕr1,r2(Γ)

ϕr2,r3(Γ)

ϕr3,r4(Γ)

ϕr4,r5(Γ)

ϕr5,r6(Γ)

Maximum Magnitude(Γ)

Average Magnitude(Γ)

Energy of Magnitude(Γ)

Variance of Magnitude(Γ)



(3.5)

Gabor filters

A dictionary of Gabor Filters is designed in order to reduce redundancy with typical

parameters: K = 6 orientations and S = 4 scales. Other parameters are chosen

according to (Rangayyan, 2000) and given in Equations 3.6 – 3.9 where lower and

upper center frequencies selected as Ul = 0.06 and Uh = 0.5.

W = Uh (3.6)
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Figure 3.3: Half magnitude contours of designed Gabor filter dictionary. (a) Frequency
responses of the generating function outputs (Complex), (b) Frequency responses of
the real parts of the generating function outputs used as filters

a =
(
Uh

Ul

) 1
S−1

(3.7)

σu =
(a− 1)Uh

(a+ 1)
√

2 ln(2)
(3.8)

σv =
tan( π

2K )
[
Uh − ( σ2

u
Uh

)2 ln(2)
]

√
2 ln(2) − (2 ln(2))2σ2

u

U2
h

(3.9)

Half magnitude contours of frequency responses of the designed Gabor filters are given

in Figure 3.3. By examining the frequency coverage of the filters in the figure, it can

be observed that Gabor filters which are shaped by given parameters have minimal

redundancy of information.

Means and variances of the Gabor filtered output images are used as features, as

shown in Equation 3.10 where Gk,s(γ) denotes the γ signal, filtered with the Gabor

filter, gk,s.
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Fgabor =



F34

F35

F36

F37

...

F40

F41

...

F80

F81



= Circular Shift





meanG1,1(γ)

varG1,1(γ)

meanG1,2(γ)

varG1,2(γ)

...

meanG1,4(γ)

varG1,4(γ)

...

meanG6,4(γ)

varG6,4(γ)





(3.10)

Gabor filters characteristically possess directionality which is not a desired property for

runway detection problem. To overcome this difficulty and make Gabor filter outputs

approximately rotation invariant, a simple method is proposed in (Newsam, 2005).

According to this method, the vector given in Equation 3.10 is circularly shifted so

that the scale-orientation pair having the maximum mean is located at the beginning

of the vector. This method is shown to be effective by the experimental results in the

same study.

Haralick Features

For the calculation of Haralick features, GLCM matrices are obtained. When no a

priori information is available, it is common to use offsets (1, 0), (1,−1), (0,−1) and

(−1,−1), which correspond to adjacent pixels at 0◦, 45◦, 90◦ and 135◦ respectively.

Therefore these offsets are utilized in thesis. As mentioned before, four Haralick fea-

tures (energy, contrast, homogeneity and correlation) for four offsets (sixteen features

in total) are employed. The feature vector is given in Equation 3.11 where ζh,∆x,∆y is

the Haralick feature, h, calculated at the offset (∆x,∆y)

36



Fharalick =



F82

F83

F84

F85

...

F94

F95

F96

F97



=



ζenergy,1,0

ζcontrast,1,0

ζhomogeneity,1,0

ζcorrelation,1,0

...

ζenergy,−1,−1

ζcontrast,−1,−1

ζhomogeneity,−1,−1

ζcorrelation,−1,−1



(3.11)

Wavelet Analysis

Wavelet features are acquired using a multi resolution analysis and daubechies-4

wavelet. These features are expected to provide quantative description of textural

properties related with frequency like Fourier Power Spectrum. Contrarily, Wavelet

Analysis has localization in spatial domain too. A three level decomposition structure

is employed and energies and standard deviations of four components (Low-Low, Low-

High, High-Low, High-High) for three levels are used as features, making 24 features

in total. The resulting feature vector is given in Equation 3.12 where energyc,s and

varc,s are the energy and variance of the wavelet filtered signals of component, c at

stage, s.

Fwavelet =



F98

F99

F100

F101

F102

F103

...

F120

F121



=



energyLL,1

varLL,1

energyLH,1

varLH,1

energyHL,1

varHL,1

...

energyHH,3

varHH,3



(3.12)
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Features in HSV color space

This color space represents the color value in a very parallel way with human per-

ception. Since human is considered to be successful at discriminating elements like

runway textures, and by all means, the color is an evaluated aspect by humans, using

HSV is advantageous for the problem for certain. For instance, saturation will surely

provide very valuable information about a runway, bearing in mind that the runways

tend to be in gray tones and colorfulness is a synonym for saturation. Likewise hue

is closely related to dominant wavelength and although it is not so evident, dominant

wavelength of the color of a runway might be useful in discrimination from other land-

forms. For these reasons, mean, variance, mean of gradient magnitude and variance

of gradient magnitude as well as Zernike moment of order one and Circular-Mellin

feature (p = 1, q = 1) for both Saturation and Value components are employed. Since

these two components are linear data, common mean and variance formulas, given in

Section 2.1.1 still apply. On the other side, Hue is an angular data and directional

statistics is involved in mean and variance calculations which are given in Equations

3.13 – 3.16 where h(x, y), s(x, y) and v(x, y) functions denote channels of HSV image

and ∠ denotes the angle of complex number. Since Zernike and Circular-Mellin fea-

tures inherently require magnitudes, rather than angles, Hue component is not utilized

for these features. The resulting feature vector is given in Equation 3.17.

meanh = ∠
[∑

x

∑
y

(
e2πj h(x,y)

)]
(3.13)

varh = 1 − 1
N2

∣∣∣∣∣∑
x

∑
y

(
e2πj h(x,y)

)∣∣∣∣∣ (3.14)

dh,1(x, y) = (h(x, y) − h(x− 1, y) + 360◦) mod 360◦

dh,2(x, y) = (h(x, y) − h(x, y − 1) + 360◦) mod 360◦

∥∇h(x, y)∥ =
√
d2

h,1(x, y) + d2
h,2(x, y)

mean∥∇h∥ =
1
N2

∑
x

∑
y

∥∇h(x, y)∥ (3.15)

var∥∇h∥ =
√

1
N2

∑
x

∑
y

(∥∇h(x, y)∥ −mean∥∇h∥)2 (3.16)
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Fhsv =



F122

F123

F124

F125

F126

F127

F128

F129

F130

F131

F132

F133

F134

F135

F136

F137



=



meanh

varh

mean∥∇h∥

var∥∇h∥

means

vars

mean∥∇s∥

var∥∇s∥

Z1,1(s)

C1,1(s)

meanv

varv

mean∥∇v∥

var∥∇v∥

Z1,1(v)

C1,1(v)



(3.17)

Employing features from HSV color space for runway detection is a novel practice and

it is shown to be very effective for the solution of the problem on Section 4.2.

3.1.2 Classification

The second step of the segmentation is the classification. In order to perform the

classification, subsequent to obtaining features, large feature vectors are formed for

each image block as shown in Equation 3.18.
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F =



Fbasic

Fzernike

Fcircular−mellin

Ffourier

Fgabor

Fharalick

Fwavelet

Fhsv



(3.18)

In order to clarify which feature is better than which one for the classification task

of runway and other landforms, a considerable amount of features are selected in the

previous section and Adaboost is employed because of its feature selector property. A

weak classifier is utilized for every feature and Adaboost, as a meta-classifier, is asked

to find the most helpful weighted combination of T weak classifiers. As mentioned

before, Adaboost follows an iterative method and on every iteration, Adaboost selects

a new weak classifier that minimizes the error for the training dataset, until the number

of selected weak classifiers reaches the desired number, T . Experimental results are

given in Chapter 4, for up to T = 40. Runway candidates, i.e. the image blocks which

are probably belong to a runway, can be determined after training of Adaboost. The

blocks labeled in this way are represented as

Λ(a, b) =

 1, if block represented by γa,b is probably a runway

0, otherwise
(3.19)

In Figure 3.4, an example outcome of this segmentation process given.

3.1.2.1 Expansion of Regions of Interest

Image blocks, which are on the boundary of runways and have mostly “non-runway”

pixels, might be classified as negative despite they also have pixels which belong to a

runway. Since they have edges which are very important for the rest of the algorithm,

a countermeasure is needed. For this purpose, Λ(a, b) function given in Equation 3.19

is considered as a binary image and a morphological dilation operation is performed

with the structuring element consisting of all ones and 3 × 3 in size. This operation

40



(a) Original Image (b) Segmentation Result

Figure 3.4: Result of a Segmentation Process. (a) is the original image and the red
areas in (b) represents the blocks that are labeled as possible runway.

helps to include blocks containing runway edges, if they have not been labeled positive.

The function of this operation is illustrated in Figure 3.5. Preservation of the runway

side line edges can be observed in the figure.

Let this dilation operation produces the function Λ′(a, b). Then the regions of interest

can be expressed by the set, given in Equation 3.20.

{
(x, y)|(aN ≤ x < (a+ 1)N) ∧ (bN ≤ y < (b+ 1)N ∧ (Λ′(a, b) = 1))

}
(3.20)

3.2 Runway Shape Detection

After discovering runway candidates, further processing is carried out in order to

eliminate false positives, based on the shape analysis of the runway. This shape

detection operation is shown in Figure 3.6 as block diagram.

Runway shape detection is composed of four main processes: Edge Detection, Modified

Hough Transform, Peak Pair Detection and Line Segment Pair Detection.
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(a) Runway blocks before dilation (b) Runway blocks after dilation

(c) Edges before dilation (d) Edges after dilation

Figure 3.5: Function of dilation operations

Prior to the shape detection, the satellite images are diminished by a ratio R for faster

calculation and smaller memory footprint. The resizing operation is done by bicubic

interpolation, where output pixel is weighted average of the pixels in the nearest 4×4

neighborhood. The images are shrinked to their half sizes in this thesis. Resized

image f ′(x, y) is N ′
x × N ′

y in size, where N ′
x = Nx

R and N ′
y = Ny

R . The block size for

the resized image is N ′ = N
R .

3.2.1 Edge Detection

Airport runways are generally easily distinguished from background, yielding edges

after Edge Detection. Therefore an Edge Detection operation is done for the regions of

interest found on the previous step. Canny edge operator is selected for this operation

because of its optimal solution for low defective edge rate, localization of edges and

giving one response for a single edge (Canny, 1986).
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Figure 3.6: Block diagram of the runway shape detection operation
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(a) Original runway image (b) Runway edges

(c) Disjointed edges

Figure 3.7: Disjointed lines on airport edge image. (c) shows where discontinuity
occurs.

3.2.2 Modified Hough Transform

Hough transform is a powerful tool used in finding lines in its most basic form. As

previously mentioned, a nice property of Hough transform is that it still works even the

edge is disconnected contrary to edge tracking algorithms. This is a desired attribute

for the runway detection problem, considering cases like disjointed edges due to the

junctions connecting main runway to taxiways which can be observed in Figure 3.7.

The proposed modified hough transform, which is one of the contributions of this

thesis, is applied on the edge detected image. Regular hough transform is changed

in order to be specialized in finding runway side lines. Runways generally have the

same background on either side, which results in inverse mean gradient directions on

opposing runway sides as shown in Figure 3.8. The modification is done to exploit

this property.

Each edge point’s contribution to the accumulator matrix is changed to be the term

given in equation 3.21, which is the inner product of unit vector in the direction of θ,

and unit vector in the gradient direction on that edge point instead of a constant.

⟨
r⃗θ, r⃗∠∇f(x,y)

⟩
= cos(θ − ∠∇f(x, y)) (3.21)
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Figure 3.8: Gradient vectors in the vicinity of runway. Runway background is same
on either side resulting in opposite gradient directions

In the equation 3.21, r⃗θ and r⃗∠∇f(x,y) denotes unit vectors in the direction of θ, and in

the gradient direction on the edge point respectively. Since local gradient of the image

intensity is orthogonal to the edge, irrelevant edge points, i.e. points that belong to

another line or just noise and thus having gradient direction far from θ and θ+π, are

eliminated by this formula. Edge points belonging to a runway side having orientation

θ will do the maximum contribution (approximately ∓1).

3.2.3 Peak Pair Detection

Since opposing long side lines of runways have inverse mean gradient directions, if

points on one side contribute as 1, the contribution on the other side will necessarily

be −1. Thus we expect to see one positive and one negative peak on accumulator array

that are ∆ρ away from each other. Interval of possible ∆ρ’s is related with minimum

and maximum widths of airport runways desired to be detected and obviously the

satellite image resolution. Likewise, the peak magnitude threshold, which determines

the minimum magnitude of a peak to be counted as runway side line, is expected to be

proportional with minimum runway length desired to be detected. However, due to

the effects like gradient estimation error, it cannot be decided easily. For this purpose,
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an experiment is performed in Section 4.3, and the parameter is selected accordingly.

Accumulator matrix is searched for such opposite peak pairs representing a runway.

Each opposite peak pair, corresponds to a line pair, and these line pairs are saved for

a further local analysis, which is line segment detection.

3.2.4 Line Segment Pair Detection

Lines are obtained previously by peak detection, and runway sides should be over

those lines. Since the runway sides must inherently be represented as line segments

instead of lines, an algorithm is designed for this purpose, as follows.

First, in order to get rid of the edge points that are in the unwanted directions, mor-

phological image opening operation is performed as a preprocessor with an appropriate

structuring element, which is consistent with θ. These structuring elements are given

in Table 3.1. The decision of which structuring element will be used for opening op-

eration, is made by judging the distances between the structuring element angle and

θ, i.e. the ith structuring element is utilized, given in the Equation 3.22.

arg min
i

{(θ − ψi + 360◦) mod 360◦} (3.22)

The function of this opening operation is given and explained visually in Figure 3.9,

through an example.

After the opening operation, line is sequentially searched for “facing pixels”. A facing

pixel can be defined as follows. Let line A and line B be a line pair, and let point α

and point β be points on these lines respectively. If point α is the closest point to

point β on the line A, then these points are facing pixels. If both of these facing pixels

have non-zero value, these pixels are marked.

For the runway detection, longest continuous series of the marked pixels are consid-

ered. This longest continuous facing pixel set is merged with other continuous facing

pixel sets that are at most “Maximum Tolerated Gap” away, until the distance be-

tween closest facing pixel set is greater than this threshold. After merge operation,

if the resulting set is long enough, that is it has “Minimum Runway Length”, the
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Table 3.1: Structuring elements used to eliminate false lines

Angle (◦) Structuring Element

0

18.4

45

56.3

90

-90

-56.3

-45

-33.7
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(a) Original image (b) Edge image

(c) Detected Line Pair (d) Opened edge image

Figure 3.9: Image opening operation. (a) is the original image, (b) is the edge image,
(c) is the line pair detected by hough transform and (d) is the image obtained by
image opening operation with the 1st structuring element in Table 3.1. One should
notice the removal of the considerable amount of noise and the other runway present
in (b) since their lines are in irrelative direction.
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area between these line segment pairs is marked as runway. The selection of these

“Maximum Tolerated Gap” and “Minimum Runway Length” parameters are given in

Section 4.3.

The determining the longest facing pixel set and merging process is shown in Figure

3.10 on the same runway shown in Figure fig:imageOpeningOperation.

As a last remark, one may think that the selection of the longest facing pixel set may

jeopardize the detection of another runway on the image. Since the length comparison

is performed on just one (θ, ρ) pair, this proposition is not true. The only case this

doubt may occur is when the two runway side lines fall into the same and only one

(θ, ρ) bin on the Hough accumulator matrix. This has an extremely low probability,

considering that even one runway generates more than one line pairs frequently. In

other words, this case requires the odd case of second airport runway to be in the exact

same orientation, have the exact same distance from origin and possess the exact same

width with the first one.
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(a) Facing pixels marked (b) Longest sequence determined

(c) Merging performed (d) Runway rectangle

Figure 3.10: Final phase of runway detection
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, the experimental results obtained by running the proposed algorithm

are given. These experimental results are carried out with a dataset, consisting of

78, large satellite images having sizes of 13626× 10862 on average and resolution of 1

meter that are obtained using Google Earth software. 30 of these images are randomly

selected for training of Adaboost and 48 of them are reserved for testing. Each image

is divided into blocks of size 32 × 32 and in this way 4422711 blocks are obtained for

training. Each block of the training images is labeled as runway (positive) if more

than half of its pixels belongs to main runway of an airport and labeled as non-runway

(negative) if not. Such a labeling, in training images resulted in 5950 runway blocks

and 4416761 non-runway blocks. For composition of the training set, 10% of the non-

runway blocks are randomly selected for use because of memory constraints, while full

set of the runway blocks are utilized. Ground truth data are constituted manually, by

marking “only” the main runways.

4.1 The Performance Criteria

The performance evaluation is done on two types of results, where one of them is for

the outcome of segmentation stage and the other is for the final result.

The performance evaluation for segmentation is carried out over the image blocks

mentioned previously. In order to define performance equations, the ground truth

data must be represented in a compatible way with Equation 3.19, which is
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Ω(a, b) =

 1, if block represented by γa,b is truly a runway

0, otherwise
(4.1)

where “truly a runway” implies that “at least half of the pixels contained within the

image block, belong to a runway”.

The True Positive Rate (Sensitivity), which is the ratio of correctly classified

positive labeled samples to truly positive samples (indicates how much the algorithm

fails to find an existing airport), can be expressed as

True Positive Rate =

∑
(a,b):Λ(a,b)=Ω(a,b) Ω(a, b)∑

(a,b) Ω(a, b)
(4.2)

Likewise True Negative Rate (Specificity), which is the ratio of correctly classified

negative labeled samples to truly negative samples (indicates how much the algorithm

fails to label a truly non-airport block as a non-airport block), can be written as

True Negative Rate =

∑
(a,b):Λ(a,b)=Ω(a,b) 1 − Ω(a, b)∑

(a,b) 1 − Ω(a, b)
(4.3)

The Positive Hit Rate (Positive Predictive Power), which is the ratio of cor-

rectly classified positive samples to all positive labeled samples (indicates how rare

false alarms occur), can be expressed as

Positive Hit Rate =

∑
(a,b):Λ(a,b)=Ω(a,b) Ω(a, b)∑

(a,b) Λ(a, b)
(4.4)

Finally, KHAT (or K̂) (Wilkinson,2005)(Congalton,1999), which is an approxima-

tion to a coefficient called Kappa that takes the correct classifications by chance into

account and is defined as

KHATseg =
N
∑2

i=1Xii −
∑2

i=1(Xi+X+i)
N2 −

∑2
i=1(Xi+X+i)

(4.5)

where
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• N is the total number of samples in error matrix,

• Xii is the number of observations for ith row and ith column in error matrix,

• Xi+ is the marginal total of row i in error matrix (
∑2

j=1Xij),

• X+i is the marginal total of column i in error matrix (
∑2

j=1Xji),

and Segmentation Error Matrix is

SEM =

 ∑(a,b):Λ(a,b)=Ω(a,b) 1 − Ω(a, b)
∑

(a,b):Λ(a,b)̸=Ω(a,b) Ω(a, b)∑
(a,b):Λ(a,b)̸=Ω(a,b) 1 − Ω(a, b)

∑
(a,b):Λ(a,b)=Ω(a,b) Ω(a, b)

 (4.6)

The final performance, i.e. the performance after Shape Detection stage, is measured

in a similar manner. The only difference between the two is that in the first one, the

samples are image blocks, on the other hand, in the latter one samples are pixels. The

Equations 4.7 – 4.10 defines the final performance expressions where ν(x, y) denotes

the classification results and τ(x, y) denotes the ground truth on pixel (x, y). Both

ν(x, y) and τ(x, y) gives 1 for positive (pixel that belongs to a runway) and 0 for

negative (pixel that does not belong to a runway) samples.

True Positive Rate =

∑
(x,y):ν(a,b)=τ(x,y) τ(x, y)∑

(x,y) τ(x, y)
(4.7)

True Negative Rate =

∑
(x,y):ν(x,y)=τ(x,y) 1 − τ(x, y)∑

(x,y) 1 − τ(x, y)
(4.8)

Positive Hit Rate =

∑
(x,y):ν(x,y)=τ(x,y) τ(x, y)∑

(x,y) ν(x, y)
(4.9)

KHATfin =
N
∑2

i=1Xii −
∑2

i=1(Xi+X+i)
N2 −

∑2
i=1(Xi+X+i)

(4.10)

where Final Error Matrix is

FEM =

 ∑(x,y):ν(x,y)=τ(x,y) 1 − τ(x, y)
∑

(x,y):ν(x,y)̸=τ(x,y) τ(x, y)∑
(x,y):ν(x,y)̸=τ(x,y) 1 − τ(x, y)

∑
(x,y):ν(x,y)=τ(x,y) τ(x, y)

 (4.11)
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4.2 Feature Selection

This section is about the feature selection of the employed Adaboost algorithm. As

mentioned before, there are no parameters required to tune for Adaboost except the

iteration count. Since the calculations on an iteration does not effect the computation

results obtained on the previous iterations, this parameter just determines how many

classifiers to be taken into account and it is always possible to perform the classification

with less weak learners if the results for such a number of classifiers are satisfactory.

This implies that the tuning of this parameter does not cause critical consequences and

can be selected due to computational constraints. In this study, training of Adaboost

is done for 40 iterations, which is shown to be an iteration count less than 40 is enough

for the solution of this problem.

Figure 4.1 shows the performance results on every iteration for the training set men-

tioned in the beginning of this chapter. As one may notice, the x-axis values of these

results indicate the number of features (weak learners) utilized, while y-axis values

show the corresponding performances (True Positive and True Negative rates) for

that number. The “Number of Features” does not bear adequate information about

which features are used. Therefore, features chosen by Adaboost algorithm for this

run, are given in Table 4.1. In the table, names and parameters of the selected fea-

tures are given with selection orders, indices in feature vector, Adaboost weights and

classifier rules. The threshold values of classifier rules are normalized according to the

minimum and maximum values of the corresponding feature in the training feature

set in order to provide a more explanatory expression.

While it is not easy to state the possible selection reasonings for every selected feature,

some of them are explicit. For instance the first feature in the table, the mean of

Saturation, denotes how colorful the image block is, in average. Observing the classifier

rule, the weak learner output is positive, if input is less colorful than the 16% of the

saturation range. Since airport runways are not colorful structures and they tend to

be in grayscale, this outcome is consistent with common sense. Likewise the second

selected feature, variance of intensity gradient magnitude, which is selected multiple

times, denotes how variable the rate of intensity level change is, in an image block.

Higher values means the block must have abruptly changing neighboring pixels, as
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Figure 4.1: Performance vs Number of Features (Training Set)

well as uniform areas at the same time. This is the case when there is a runway sign

or runway edge on a block (Figure A.1(a)).

Selection of duplicate features are possible in Adaboost. In the first glance this may

seem to be causing a redundancy since there is no new information provided. How-

ever, in this way, more sophisticated classification rules can be established, because

the thresholds and/or parities change on every iteration due to the training of weak

classifiers.

For the computation of the performance of the test set, the same procedures applied on

the training set are performed. Each one of the 48 test images is divided into blocks of

size 32×32 and in this way 6869023 blocks are obtained for testing. The ground truth

data, utilized for evaluation of classification results, contains 10403 runway blocks

and 6858620 non-runway blocks. For composition of the test set, 7% of the negative

blocks are randomly selected for use because of memory constraints, while full set of

the positive blocks are utilized. Obtained classification results are compared to the
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Table 4.1: Features selected by Adaboost and their selection orders

Order Index Name and Parameter Weight Classifier Rule

1 126 Mean of Saturation 1.13 < 0.16
2 4 Var. of Intensity Grad. Mag. 0.77 > 0.16
3 93 Haralick - Correlation (at 90◦) 0.65 > 0.92
4 88 Haralick - Homogeneity (at 45◦) 0.77 > 0.77
5 4 Var. of Intensity Grad. Mag. 0.51 > 0.22
6 129 Var. of Saturation Grad. Mag. 0.56 < 0.08
7 1 Mean of Intensity 0.49 > 0.58
8 131 Circ.-Mellin of Sat. (p=1, q=1) 0.33 > 0.09
9 86 Haralick - Energy (at 45◦) 0.37 > 0.16
10 135 Var. of Value Grad. Mag. 0.43 > 0.33
11 59 Var. of Gabor Filt. Output (13th) 0.36 < 0.07
12 4 Var. of Intensity Grad. Mag. 0.4 > 0.11
13 35 Var. of Gabor Filt. Output (1st) 0.4 < 0.05
14 4 Var. of Intensity Grad. Mag. 0.37 > 0.26
15 128 Mean of Saturation Grad. Mag. 0.32 < 0.03
16 4 Var. of Intensity Grad. Mag. 0.35 > 0.09
17 77 Var. of Gabor Filt. Output (22th) 0.32 < 0.06
18 89 Haralick - Correlation (at 45◦) 0.33 > 0.93
19 31 Average of DFT magnitude 0.27 > 0.18
20 53 Var. of Gabor Filt. Output (10th) 0.3 < 0.05
21 4 Var. of Intensity Grad. Mag. 0.29 > 0.42
22 115 Var. of Wavelet Output (St.3, LL) 0.31 > 0.06
23 124 Mean of Hue Grad. Mag. 0.28 < 0.11
24 126 Mean of Saturation 0.29 < 0.05
25 4 Var. of Intensity Grad. Mag. 0.27 > 0.14
26 59 Var. of Gabor Filt. Output (13th) 0.29 < 0.05
27 125 Var. of Hue Grad. Mag. 0.22 > 0.03
28 113 Var. of Wavelet Output (St.2, HH) 0.25 > 0.24
29 129 Var. of Saturation Grad. Mag. 0.27 < 0.1
30 131 Circ.-Mellin of Sat. (p=1, q=1) 0.27 > 0.19
31 31 Average of DFT magnitude 0.25 < 0.46
32 4 Var. of Intensity Grad. Mag. 0.23 > 0.48
33 122 Mean of Hue 0.23 > 0.11
34 108 Mean of Wavelet Output (St.2, LH) 0.18 < 0.01
35 4 Var. of Intensity Grad. Mag. 0.24 > 0.2
36 103 Var. of Wavelet Output (St.1, HL) 0.25 < 0.07
37 105 Var. of Wavelet Output (St.1, HH) 0.21 > 0.09
38 75 Var. of Gabor Filt. Output (21th) 0.2 < 0.08
39 115 Var. of Wavelet Output (St.3, LL) 0.17 > 0.13
40 123 Variance of Hue 0.19 < 0.03
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Figure 4.2: Performance vs Number of Features (Testing Set)

ground truth data to get performance results.

The performance results for the testing set are given in Figure 4.2. While the True

Negative Rates are very close to the ones achieved for the training set, the True

Positive Rate is slightly lower.

The outcomes of both sets show that a value of number of iterations around 16–20

gives comparable results with the value of 40. That is to say, after approximately

16–20 features, adding more features to the feature vector does not provide signifi-

cant performance improvement. It is a question of computation capacity, whether to

include remaining features after stated number or not. In this study, the subsequent

stages are performed with data, generated by a classification process employing all of

the features included.
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4.3 Parameter Selection for Shape Detection

As mentioned previously, there exists a number of parameters utilized at the shape

detection phase of the proposed algorithm. An analytic optimization of these param-

eters is quite difficult, because of the complexity of the proposed system. Therefore

a set of experiments are carried out on a dozen of randomly selected satellite images

to examine the consequences of the various selection of these parameters. The experi-

mented parameters are Hough Peak Threshold, which determines the minimum peak

magnitude for line pair detection in the Hough parameter space, Maximum Tolerated

Gap, which determines the maximum gap permitted between two line segments for

joining, and Minimum Runway Length, which determines the minimum length of a

line pair to be counted as a runway.

Two criteria are considered for the evaluation of the experiments: True Positive Rate

and Positive Hit Rate. True Negative Rate is excluded because of its insensitiveness

due to the excessive amount of negative samples.

For the selection of Hough Peak Threshold parameter, three values are experimented:

100, 150 and 200. Maximum Tolerated Gap and Minimum Runway Length are kept

constant between the experiments, which are chosen to be 100 and 400 respectively.

The resulting performance graph is given in Figure 4.3. By examining the figure it can

be observed that with the increasing values of Hough Peak Threshold, True Positive

Rate decreases while Positive Hit Rate increases. Since both criteria are desired to

be maximized, there is a trade off and a decision must be made. The value, where

True Positive Rate is above 90% and Positive Hit Rate is above 10%, is chosen, which

corresponds to a Hough Peak Threshold value of 150.

A similar procedure is followed for the Selection of Maximum Tolerated Gap param-

eter. Three values of Maximum Tolerated Gap are experimented: 50, 100 and 150.

Hough Peak Threshold and Minimum Runway Length are kept constant between the

experiments, which are chosen to be 150 and 400 respectively. The results are given

in Figure 4.4. Examining the figure, yields that with the increasing values of Maxi-

mum Tolerated Gap, Positive Hit Rate decreases and True Positive Rate increases. A

decision is made in a similar fashion with Hough Peak Threshold, which corresponds
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Figure 4.3: Performance vs Hough Peak Threshold

to a Maximum Tolerated Gap value of 100.

Selection of Minimum Runway Length parameter is made like the previous two ex-

periments. Three values of Minimum Runway Length are experimented: 250, 400 and

550. Hough Peak Threshold and Maximum Tolerated Gap are kept constant between

the experiments, which are chosen to be 150 and 100 respectively. In Figure 4.5, it

can be observed that with the increasing values of Minimum Runway Length, True

Positive Rate decreases and Positive Hit Rate increases. The decision of the value of

Minimum Runway Length is made to be 400 according to the same reasonings given

in the previous experiments.

4.4 Overall Performance

After determining the algorithm parameters, the proposed method is executed over

the entire data set with these values and the results are obtained. Performances are

calculated by using the formulae given in Section 4.1. The True Positive Rates, for

both the results obtained after Segmentation and Shape Detection, are given in Table
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Figure 4.4: Performance vs Maximum Tolerated Gap
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Figure 4.5: Performance vs Minimum Runway Length
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Table 4.2: True Positive Rate

Data Set Segmentation Final

Training .91899 .85759
Testing .83601 .82613

Overall .8662 .83754

Table 4.3: True Negative Rate

Data Set Segmentation Final

Training .90378 .99632
Testing .90002 .98996

Overall .9015 .99245

4.2. The performances over the training and testing sets are also available in the table

individually.

True Negative, Positive Hit Rate and KHAT are also given in Tables 4.3, 4.4 and 4.5

respectively.

In Tables 4.6 and 4.7 the results of segmentation stage is given in terms of number of

image blocks for the first 40 and 20 features selected by Adaboost respectively.

In Table 4.8 the result of the final stage is given in terms of pixel numbers. It should

be noted that the pixels belong to resized images as explained in Section 3.2. For

comparison purposes with Table 4.8, the segmentation result is given in terms pixels,

in Table 4.9.

Table 4.4: Positive Hit Rate

Data Set Segmentation Final

Training .012703 .23856
Testing .012525 .11131

Overall .012593 .13881
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Table 4.5: KHAT

Data Set Segmentation Final

Training .0225 .3720
Testing .0218 .1940

Overall .0220 .2362

Table 4.6: Segmentation Results with the first 40 features (In terms of image blocks)

Training Set Truly Positive Truly Negative

Classified as Positive 5468 424968
Classified as Negative 482 3991793

Test Set Truly Positive Truly Negative

Classified as Positive 8697 685693
Classified as Negative 1706 6172927

Table 4.7: Segmentation Results with the first 20 features (In terms of image blocks)

Training Set Truly Positive Truly Negative

Classified as Positive 5338 539921
Classified as Negative 612 3876840

Test Set Truly Positive Truly Negative

Classified as Positive 8709 885979
Classified as Negative 1694 5972641

Table 4.8: Final results (after shape detection) with the first 40 features in terms of
pixels)

Training Set Truly Positive Truly Negative

Classified as Positive 1303979 4162158
Classified as Negative 216544 1126531335

Test Set Truly Positive Truly Negative

Classified as Positive 2207062 17621540
Classified as Negative 464513 1738176773

Overall Truly Positive Truly Negative

Classified as Positive 3511041 21783698
Classified as Negative 681057 2864708108
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Table 4.9: Segmentation Results with the first 40 features (In terms of pixels)

Training Set Truly Positive Truly Negative

Classified as Positive 1399808 108791808
Classified as Negative 123392 1021899008

Test Set Truly Positive Truly Negative

Classified as Positive 2226432 175537408
Classified as Negative 436736 1580269312

4.5 Example Results

Apart from the performance evaluation, three example results are given with step by

step images to provide a better comprehension about the internals of the algorithm.

The images are selected so that one of them is a good example, one of them has a

poor positive hit rate (has numerous false alarms), and the other has a deficient true

positive rate (detection of runway failed). These examples are Charlottetown Airport

(CYYG) in Canada, Bagotville Airport (CYBR) in Canada and Coleman Aaf Airport

(ETOR) in Germany. The four letter codes given in parantheses are International

Civil Aviation Organization (ICAO) codes, representing the airports uniquely. Since

the images are considerably large, these are given in Appendix A with the comments.

The complete list of airports used in the data set are given in Appendix B, with ICAO

code, IATA (International Air Transportation Association) code, name, city, country,

coordinate and image size informations.
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CHAPTER 5

CONCLUSION

A method for the detection of airport runways is proposed in this study. This method

is based on an approach, which involves a segmentation process and a subsequent

geometric analysis on the aerial image. In the segmentation phase, textural properties

are considered, and mostly prevalent textural features that are used for segmentation

in the literature are employed. Geometric examination stage is established upon a

modified hough transform analysis which is a novel technique. In addition to that,

employing Adaboost learning algorithm and utilization of features obtained by using

HSV color space, Gabor Filters, Fourier Power Spectrum Analysis and Wavelets, are

also original works for the airport runway detection problem.

It is observed that in the Ababoost training process, the majority of selected features

(24 out of 40) are the mentioned new features (Table 4.1), demonstrating that they

are convinient features for runway detection. Haralick features that are previously

used for automatic road detection applications are also selected by Adaboost (4 out

of 40), which is an expected result due to the similarity of textural properties of roads

and runways. In Table 4.1, one may notice there are 26 different features, and repe-

titions exist. The repeated occurances of some features, at first, may be interpreted

as redundant selections. However, the utilized weak classifiers are threshold classi-

fiers explained in Section 2.2, which decides by judging whether the value of input is

“above” or “below” a threshold. Since the weak classifiers are redetermined on every

iteration, multiple selection allows the definition of more complex rules.

The experiments are carried out on a 64-bit MATLAB environment, on a dual Xeon

2.0 GHz workstation with 4 GBs of memory, running Linux x64 operating system.
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Extracting all of the 137 features from a 14400 × 11247 image, takes approximately

115 minutes, where extracting the selected 26 unique features, which is the case for all

of the images after training, takes 78 minutes by using this system. Keeping the size

of the data and the platform in mind, algorithm performs fairly well. A performance

improvement alternative is given in Section 5.1. It is also always possible to decide the

number of features to be used with a trade off between performance and computation

time, due to the scalability provided by Adaboost. After the training, all blocks of an

image takes approximately 5 seconds to be classified.

Hough transform, which the proposed modified hough transform is based upon, is

a relatively a cost-effective method for line detection. Together with the convenient

techniques employed succeeding to hough transform, running times of approximately

7 minutes (including edge detection) is measured. It can be inferred that the proposed

algorithm is computationally efficient, again considering the amount of data processed.

Unlike the previous studies in the literature, the proposed method is experimented

with a large dataset consisting of heavily negative samples. Promising True Positive

Rate and True Negative Rates are obtained and given in Section 4.4 in terms of train-

ing, test and combined sets that are used in Adaboost. However, the Positive Hit

Rate mentioned in the same section indicates that only one runway out of approxi-

mately seven detected runways is a true runway. Although this result may seem poor,

when the dominance of negative samples are taken into account, such an outcome is

tolerable and it can be concluded that the proposed method is successful.

5.1 Future Work

As future work, further shape analysis can be carried out in order to eliminate false

positives. Since it is observed that the algorithm occasionally misinterprets the high-

ways or other wide roads as runways, these structures’ interconnected network may be

detected and eliminated by such an analysis. For another instance, fundamental air-

port buildings, such as control towers, terminal buildings or hangars, may be searched

to conclude whether the detected structure is truly an airport or not.

Since stereographic image pairs, or remote sensed data like infrared, LIDAR (Light
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Detection and Ranging) or SAR (Synthetic Aperture Radar) significantly helps by

providing informations such as elevation, presence of vegetation or material properties,

inclusion of such channels in the feature extraction process would surely contribute the

accuracy of the outcomes of the segmentation stage. The importance of this concept

can be observed in the example given by Figures A.10 – A.17.

The proposed system is suitable for parallel processing in terms of feature extraction

process. Since the non-overlapping image blocks, used for segmentation, are indepen-

dent from each other, the feature extraction can be carried out by different processing

units for faster calculation.

Segmentation process can also be modified with a multi-class Adaboost learning al-

gorithm, so that it can serve as a general purpose region of interest detector, for a

multipurpose automatic target detection system. This improvement provides an effi-

ciency enhancement due to the unification of the detection of the regions of interest

operations for various targets.
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APPENDIX A

IMAGES OF EXAMPLE RESULTS

(a) Correctly Classified Positive Blocks (b) Wrongly classified Positive Blocks

(c) Wrongly Classified Negative Blocks (d) Correctly classified Negative Blocks

Figure A.1: Example classified blocks.
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Figure A.2: CYYG – Original Image. ( c⃝2007 Google TM – Imagery c⃝2009 Digital-
Globe, GeoEye)
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Figure A.3: CYYG – Ground truth data
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Figure A.4: CYYG – Segmentation result
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Figure A.5: CYYG – Expansion of regions of interest
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Figure A.6: CYYG – Edge detection result
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Figure A.7: CYYG – Detected line pairs (overlaid on original image)
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Figure A.8: CYYG – Final result (Red: True Positive, Green: False Positive, Blue:
False Negative, White: True Negative)
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Figure A.9: CYYG – Final result (overlaid on original image). A quite satisfying
result containing almost no false positives or false negatives.
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Figure A.10: CYBR – Original Image. ( c⃝2007 Google TM – Imagery c⃝2009 Digital-
Globe)

79



Figure A.11: CYBR – Ground truth data
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Figure A.12: CYBR – Segmentation result. A considerable amount of false positive
blocks, are on vegetation areas and other roads.

81



Figure A.13: CYBR – Expansion of regions of interest
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Figure A.14: CYBR – Edge detection result.
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Figure A.15: CYBR – Detected line pairs (overlaid on original image). The long
straight roads and systematically plowed fields in the area generate numerous sets of
collinear edge points, which results in excessive number of lines.
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Figure A.16: CYBR – Final result (Red: True Positive, Green: False Positive, Blue:
False Negative, White: True Negative)
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Figure A.17: CYBR – Final result (overlaid on original image). Large number of lines,
results in large number of line segments and thus false positives.
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Figure A.18: ETOR – Original Image. ( c⃝2007 Google TM – Imagery c⃝2009 Geo-
Content, AeroWest)
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Figure A.19: ETOR – Ground truth data
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Figure A.20: ETOR – Segmentation result
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Figure A.21: ETOR – Expansion of regions of interest. The runway is successfully
included in the Region of Interest.
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(a) Edge image (the region of the close-up below is marked with a rectangle)

(b) Airport region close-up

Figure A.22: ETOR – Edge detection result. In this example, Canny edge detector
fails to generate edges around the runway.
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Figure A.23: ETOR – Detected line pairs (overlaid on original image). Since line
detection relies on the edge data, the runway line cannot be detected.
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Figure A.24: ETOR – Final result (Red: True Positive, Green: False Positive, Blue:
False Negative, White: True Negative)
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Figure A.25: ETOR – Final result (overlaid on original image). Instead of the runway
a series of long straight road segments are detected.
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