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ABSTRACT 

 
 

A PROBABILISTIC APPROACH TO MULTI CRITERIA 

SORTING PROBLEM 

 
 

 
Buğdacı, Aslı Gül 

M.S., Department of Industrial Engineering 

Supervisor : Prof. Dr. Murat Köksalan 

Co-supervisor : Assist. Prof. Dr. Selin Bilgin Özpeynirci 

 

August 2009, 109 pages 

 

 

We aim to classify alternatives evaluated in multiple criteria among preference 

ordered classes assuming an underlying additive utility function. We develop a 

probabilistic classification method by calculating the probability of an alternative 

being in each class. We assign alternatives to classes based on threshold 

probabilities. We require the decision maker to place an alternative to a class 

when no alternatives satisfy the required thresholds. We find new probabilities for 

unassigned alternatives in the light of new information and repeat the procedure 

until all alternatives are classified. 

 

We implemented our algorithm to classify MBA programs among preference 

ordered groups. We evaluate our algorithm based on the number of misclassified 

alternatives and the number of alternatives placed by the decision maker. 

 

Keywords: multi criteria sorting, additive utility function, interactive approach. 
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ÖZ 
 
 

ÇOK AMAÇLI GRUPLANDIRMA PROBLEMİ İÇİN BİR 

OLASILIKSAL YAKLAŞIM 

 
 
 

Buğdacı, Aslı Gül 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Murat Köksalan 

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Selin Bilgin Özpeynirci 

 

 

Ağustos 2009, 109 Sayfa 

 

Çok amaç altında değerlendirilen seçenekleri tercih sıraları olan sınıflara atamayı 

hedefliyoruz. Bunu yapmak için karar vericinin parçalı doğrusal bir fayda 

fonksiyonuna sahip olduğunu varsayıyoruz. Her seçeneğin her sınıfta olma 

olasılığını hesaplayan olasılıksal bir gruplandırma metodu geliştiriyoruz. 

Hesaplanan olasılıkları, olasılık eşiğiyle kıyaslayarak seçenekleri gruplara 

atıyoruz. Yerleştirme yapılamadığı durumlarda karar vericinin bir seçeneği 

sınıfına yerleştirmesini istiyoruz.  Yeni bilgi ışığında, yerleştirilmemiş seçenekler 

için yeni olasılıklar hesaplıyoruz. Tüm seçenekler sınıflandırılana kadar bu 

yöntemi tekrar ediyoruz. 

 

Yöntemimizi MBA programlarını aralarında tercih sırası bulunan sınıflara 

yerleştirmek için uyguladık. Yöntemimizin değerlendirilmesini, yanlış 

sınıflandırılan seçenek sayısını ve karar verici tarafından yerleştirilen seçenek 

sayısını temel alarak yapıyoruz. 
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Anahtar Kelimeler: çok amaçlı gruplandırma, toplamsal fayda fonksiyonu, 

etkileşimli yaklaşım. 

 

 

 

 

 

 

 

 

 



  

vii 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents and  

my dear brother 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



  

viii 

 
 
 

ACKNOWLEDGEMENTS 
 

 
 
I am grateful to my supervisor Prof. Dr. Murat Köksalan for his guidance and 

support. I am indebted to him for his valuable advises and encouragements 

throughout this study. I am thankful to Assist. Prof. Dr. Selin Bilgin Özpeynirci 

for her support in this study. I am also thankful to Assoc. Prof. Dr. Yasemin Serin 

for her contribution to this study.  

 

I would like to thank my mother Nida Buğdacı for her gentle love, endless 

support and guidance throughout my life. I thank my father Ali Buğdacı for his 

love and his faith in me. I also thank my brother Okan Can for filling my life with 

laughter.   

 

I am thankful to my dear friend Gülçin Haktanır for being with me whenever I 

need. I thank Gülşah Karakaya, Burcu Özsayın and Diclehan Tezcaner for their 

kind friendships. They helped me and encouraged me both in this study and in my 

life. I thank Melih Çelik for helping me with kindness whenever I need. I also 

thank Zehra Atlı for her warm friendship. 

 

I would like to thank TÜBİTAK (The Scientific and Technological Research 

Council of Turkey) for supporting this study through a graduate study 

scholarship.  

 

 

 

 

 

 



  

ix 

 
 

 
TABLE OF CONTENTS 

 
 
 
ABSTRACT ...................................................................................................... iv 

ÖZ ...................................................................................................................... v 

ACKNOWLEDGMENTS................................................................................ viii 

TABLE OF CONTENTS................................................................................... ix 

LIST OF TABLES............................................................................................. xi 

LIST OF FIGURES ......................................................................................... xiv 

CHAPTER 

1. INTRODUCTION AND LITERATURE REVIEW ..................................... 1 

1.1 Introduction..............................................................................................1 

1.2 Literature Review .....................................................................................3 

2. BACKGROUND ....................................................................................... 13 

2.1 UTADIS.................................................................................................13 

2.2 An Interactive Sorting Method for Additive Utility Functions.................16 

2.3 A Method of Multiattribute Decision Making .........................................20 

2.3.1 HOPE Method .............................................................................. 20 

2.3.2.HOPIE Method............................................................................. 22 

3. AN INTERACTIVE PROBABILISTIC MULTI CRITERIA SORTING 

ALGORITHM ................................................................................................25 

3.1. Overview of the Algorithm....................................................................25 

3.2. The Algorithm with Pairwise Comparison of Alternatives .....................26 

3.2.1. Linear Programs for Utility Ranges.............................................. 26 

3.2.2. Probability Calculation ................................................................ 30 

3.2.3. The Classification of Alternatives ................................................ 41 

3.2.4. Selection of the Alternative to Ask the DM.................................. 43 

3.2.5. The Algorithm ............................................................................. 44 

3.3. The Algorithm Comparing Alternatives with Utility Thresholds ............47 

3.3.1. Linear Programs for Utility Ranges.............................................. 47 



  

x 

3.3.2. Probability Calculation ................................................................ 49 

3.3.3. The Classification of Alternatives ................................................ 55 

3.3.4. Selection of the Alternative to Ask the DM.................................. 57 

3.3.5. The Algorithm ............................................................................. 58 

3.4. Discussions on two Different Approaches..............................................60 

3.5. Discussions on two Different Implementations ......................................62 

3.6. Infeasible Cases.....................................................................................64 

4. IMPLEMENTATION AND RESULTS ......................................................67 

4.1 Comparison of two Different Approaches...............................................69 

4.2 Comparison of two Different Implementations .......................................72 

4.3 Comparison with the Interactive Approach .............................................74 

4.4 Taking Orthogonal Alternatives as Reference Set ...................................75 

4.5 Comparison of Different Distributions....................................................83 

5. CONCLUSIONS.........................................................................................89 

REFERENCES ..................................................................................................92 

APPENDICES 

A. UNDERLYING MODEL OF THE MBA DATA .......................................96 

B. UNDERLYING MODEL OF THE DATA SET 1 ......................................98 

C. UNDERLYING MODEL OF THE DATA SET 2.....................................100 

D. RESULTS................................................................................................102 

 
 



  

xi 

 
 
 

LIST OF TABLES 
 
 

 

TABLES 

Table  4.1 Utility Thresholds and the Number of Alternatives in Each Class.…...69 

Table  4.2 Number of Misclassifications and Questions of Pairwise Model on 

Different Samples………............................................................. ……………..70 

Table  4.3 Number of Misclassifications and Questions of the Model Comparing 

with Utility Threshold …… ..................................................................……….70 

Table  4.4 CPU Times for Two Approaches. ................................................…...71 

Table  4.5 Number of Misclassifications and Questions of the Model Using 

Information of Assigned Alternatives................................................................ 73 

Table  4.6 Number of Misclassifications and Questions of the Model Using 

Correct Information........................................................................................... 73 

Table  4.7 Orthogonal Array with 3 Factors and 2 Levels ................................... 75 

Table  4.8 Criterion Values and Utility Ranges for Orthogonal Alternatives....... 76 

Table  4.9 Criterion Values and Utility Ranges for the First Set.......................... 78 

Table  4.10 Criterion Values and Utility Ranges for the Second Set ................... 79 

Table  4.11 Number of Misclassifications and Questions on the Data Set 

Orthogonal Alternatives Included...................................................................... 82 

Table  4.12 Number of Misclassifications and Questions on the Data Set 

Orthogonal Alternatives Asked First ................................................................. 82 

Table  4.13 Number of Misclassifications and Questions for the MBA Data under 

Uniform Distribution Assumption ..................................................................... 86 

Table  4.14 Number of Misclassifications and Questions for the MBA Data under 

Triangular Distribution Assumption .................................................................. 86 

Table  4.15 Number of Misclassifications and Questions for the MBA Data under 

Normal Distribution Assumption....................................................................... 87 

Table  A.1 Limits of Subintervals for the MBA Data.......................................... 96 



  

xii 

Table  A.2 *
ipw  of the Underlying Model for the MBA Data.............................. 96 

Table  A.3 Orthogonal Alternatives Created for the MBA Data.......................... 97 

Table  B.1 Limits of Subintervals for the Data Set 1........................................... 98 

Table  B.2 *
ipw  of the Underlying Model for the Data Set 1 ............................... 98 

Table  B.3 Orthogonal Alternatives for the Data Set 1........................................ 99 

Table  C.1 Limits of Subintervals for the Data Set 2......................................... 100 

Table  C.2 *
ipw  of the Underlying Model for the Data Set 2 ............................. 100 

Table  C.3 Orthogonal Alternatives for the Data Set 2...................................... 101 

Table  D.1 Number of Misclassifications and Questions for the MBA Data under 

Uniform Distribution Assumption and Orthogonal Alternatives Included........ 102 

Table  D.2 Number of Misclassifications and Questions for the MBA Data under 

Triangular Distribution Assumption and Orthogonal Alternatives Included ..... 103 

Table  D.3 Number of Misclassifications and Questions for the MBA Data under 

Normal Distribution Assumption and Orthogonal Alternatives Included ......... 103 

Table  D.4 Number of Misclassifications and Questions for the Data Set 1 under 

Uniform Distribution Assumption ................................................................... 104 

Table  D.5 Number of Misclassifications and Questions for the Data Set 1 under 

Triangular Distribution Assumption ................................................................ 104 

Table  D.6 Number of Misclassifications and Questions for the Data Set 1 under 

Normal Distribution Assumption .................................................................... 105 

Table  D.7 Number of Misclassifications and Questions for the Data Set 1 under 

Uniform Distribution Assumption and Orthogonal Alternatives Included........ 105 

Table  D.8 Number of Misclassifications and Questions for the Data Set 1 under 

Triangular Distribution Assumption and Orthogonal Alternatives Included ..... 106 

Table  D.9 Number of Misclassifications and Questions for the Data Set 1 under 

Normal Distribution Assumption and Orthogonal Alternatives Included ......... 106 

Table  D.10 Number of Misclassifications and Questions for the Data Set 2 under 

Uniform Distribution Assumption ................................................................... 107 

Table  D.11 Number of Misclassifications and Questions for the Data Set 2 under 

Triangular Distribution Assumption ................................................................ 107 



  

xiii 

Table  D.12 Number of Misclassifications and Questions for the Data Set 2 under 

Normal Distribution Assumption..................................................................... 108 

Table  D.13 Number of Misclassifications and Questions for the Data Set 2 under 

Uniform Distribution Assumption and Orthogonal Alternatives Included........ 108 

Table  D.14 Number of Misclassifications and Questions for the Data Set 2 under 

Triangular Distribution Assumption and Orthogonal Alternatives Included ..... 109 

Table  D.15 Number of Misclassifications and Questions for the Data Set 2 under 

Normal Distribution Assumption and Orthogonal Alternatives Included ......... 109 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 
 
 



  

xiv 

 
 
 

LIST OF FIGURES 
 
 

 

FIGURES 

Figure 4.1 The Marginal Utility Functions on Each Criterion ............................ 68 

Figure 4.2 Feasible Weight Space of the Orthogonal Alternatives ..................... 67 

Figure  4.3 Feasible Weight Space of the First Set of Alternatives...................... 79 

Figure  4.4 Feasible Weight Space of the Second Set of Alternatives ................. 80 

Figure  4.5 The Marginal Utility Functions on Each Criterion for the Data Set 1 ....

......................................................................................................................... 84 

Figure  4.6 The Marginal Utility Functions on Each Criterion for the Data Set 2 ....

......................................................................................................................... 85 



  

 1 

 
 

 
CHAPTER 1 

 
 

1 INTRODUCTION AND LITERATURE REVIEW 
 
 
 

1.1. INTRODUCTION 
 

Multi-criteria problems dealing with discrete set of alternatives can be considered 

in different groups such as selecting the best alternative, ranking the alternatives, 

classifying the alternatives and sorting the alternatives into preference ordered 

classes. Multi-criteria sorting problems assign a discrete set of alternatives to 

predefined classes which are preference ordered. Each alternative has an 

evaluation on each criterion and an alternative can be defined as a vector 

composed of the scores on criteria. The decision maker (DM) has preferences 

regarding these criteria such as more is better or less is better. Formally there are 

m discrete alternatives defined by n  criteria. The scores of the alternatives on 

each of the n  criteria are known. The problem is how to assign these alternatives 

to q  preference ordered classes. 

 

There are two main approaches to multi-criteria sorting problems. One uses 

outranking relations to classify alternatives and the other assumes an underlying 

utility function for the DM. Outranking is a binary relation between two 

alternatives. Alternative i  outranks alternative j  if there are enough arguments to 

confirm that alternative i  is at least as good as alternative j  and there is no 

strong opposition to this argument. The assignment of the alternatives is done 

based on the outranking relations between the alternatives and reference profiles 

that separate each of the consecutive classes. They are used to derive preference 

and incomparability relationships with the given criteria weights and threshold 

levels. In the utility function method, a utility function is estimated which assigns 
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a utility value to each alternative. The utility threshold levels between consecutive 

classes are determined. The alternatives are assigned to the classes by comparing 

the estimated utility of alternatives with utility threshold levels.  

 

In both approaches, the estimation of the parameters is a major issue. The 

reference profiles, weights and threshold levels should be estimated while using 

outranking relations. The utility thresholds and weights should be estimated while 

using the utility function method. These parameters can be estimated by directly 

asking to the DM. If the DM finds it hard to give exact values of the parameters, 

then they can be inferred from an exemplary set given by the DM which is 

capable of reflecting the preferences of the DM. Jacquet-Lagzere and Siskos 

(2001) state that this exemplary set can consist of past data, a subset of the 

available data or a representative fictitious data. Decision support systems (DSS) 

have been developed to find the parameters which can regenerate a set of example 

assignments made by the DM. Then the estimated model can be used to classify 

unassigned alternatives. Some of the DSSs developed let the interaction of the 

DM. As the DM sees the results, he/she can add or remove constraints or modify 

the assignment.   

 

The DM can give information at the beginning of the process and the assignment 

of alternatives is done based on this preference information. However, there are 

also algorithms which assign alternatives interactively with the DM. They take 

information from the DM during the assignment when needed.     

 

There are many real life multi-criteria sorting applications. Especially in financial 

area, multi-criteria sorting methods are applied to many different cases such as 

credit risk assessment for firms, stock evaluation, and country risk assessment. 

There are also other applications in areas such as energy management. 

 

 

 



  

 3 

1.2. LITERATURE REVIEW 

 

Zopounidis and Doumpos (2002) have written a literature review on multi-criteria 

sorting and classification methods. They first define what sorting is and mention 

the applications from different areas. Then they mention 4 criteria aggregation 

models: Outranking relations, estimating a utility function, rough set approach 

and neural networks. They mention model development techniques used and 

explain which ways are used to estimate the parameters. They discuss 

mathematical models which have been used while testing the models. After this, 

they mention decision support systems developed and their applications to real 

world problems. 

 

One main approach is using outranking relations to solve multi-criteria sorting 

problems. Mousseau et al. (2000) describe the ELECTRE TRI method by 

referring to the studies of Yu and Roy & Bouyssou. ELECTRE TRI uses 

outranking relations to assign alternatives to classes. In ELECTRE TRI method, 

first the comparison of each alternative with each reference profile is done on 

each criterion. Partial concordance indices on each criterion are calculated by 

using indifference and preference thresholds. Then they are multiplied with the 

weights of each criterion to find comprehensive concordance index. Discordance 

indices are calculated by using preference and veto thresholds. Then by using 

concordance index and discordance indices, a credibility index is calculated for 

estimation of the strength of the argument alternative j  is at least as good as 

reference profile kb . The credibility index for the reverse argument is also 

calculated. Two credibility indices are compared with a cutting level to derive 

preference and incomparability relationships between alternatives and reference 

profiles. After deriving the relationships, the assignment of the alternatives to the 

classes can be done in two procedures. In pessimistic procedure, an alternative is 

assigned to the highest class which it outranks its upper profile. In optimistic 

procedure, an alternative is assigned to the lowest class whose upper profile is 

preferred to the alternative.  
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They propose software called ELECTRE TRI Assistant and they explain how to 

use it. The software estimates the parameters from some assignment examples 

given by the DM. ELECTRE TRI Assistant estimates the parameters by nonlinear 

programming which is formed for pessimistic procedure without veto. The 

objective of the program is to find parameters which can result in credibility 

indices as far as from the cutting level. It is to maximize the minimum distance. 

While using software, the user can give preference information about the weights 

and cutting level by giving bounds or comparisons. Lastly they work on an 

example data by taking reference profiles and thresholds as given to show how 

the software helps the user to deal with inconsistencies.   

 

Mousseau et al. (2001) argue that the nonlinear program in ELECTRE TRI can be 

written as a linear program if reference profiles and thresholds are considered as 

given. The objective of LP is same as the NLP. Based on a real world data, they 

discuss some sensitivity issues. They say that as the objective function value of 

LP increases, the model becomes more stable. If a larger set of assignment 

examples is used, then the model incorporates more preference information but it 

becomes less stable. To see if the model is able to detect inconsistencies, they 

make a check by assigning an example alternative into a wrong class. Regarding 

this check, they conclude that the model shows good ability. Lastly they try 

different objectives but conclude that this does not bring any significant 

improvement.   

 

Dias and Mousseau (2003) present a software called IRIS (Interactive Robustness 

Analyses and Parameters’ Inference for Multi-criteria Sorting Problems) which 

infers the combination of the weights and cutting level from an example set. They 

assume that the reference profiles and threshold levels are given as input. 

Combinations are able to regenerate the given assignment. Again with the 

objective of maximizing the minimum slack, IRIS chooses one combination of 

parameters. The proportion of the combinations of the parameters is considered as 

an indicator of the precision of the input. Geometric average of the number of 
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classes to which each action can be assigned is considered as an indicator of 

precision of the output. IRIS gives user also the ability to insert constraints on the 

parameter values. In an interactive manner, the user can insert new examples or 

new constraints. If the added constraints cause an inconsistency, IRIS presents 

ways to get rid of this inconsistency.  

 

Damart et al. (2007) make an application using IRIS to sort loan applications to a 

hypothetical bank when there are 5 criteria and 4 categories. There are 4 experts 

to assign 15 past loan applications to classes. To get rid of inconsistencies, there 

can be discussions between the experts. To reach a consensus, they propose some 

measures such as proportion of the experts that agree with the current assignment 

and how many shifts it will cost to a particular expert to agree. If they cannot 

agree in anyway, the process stops. The aim is to incorporate multiple expert 

views. Here IRIS is used if there is a possible solution which can take into 

account the opinions of all the experts.  

 

Köksalan et al. (2009a) use outranking relations to assign alternatives into classes. 

They take an initial assignment from the DM. They assume preference and 

indifference thresholds are known but criteria weights are unknown. Alternatives 

to be placed are compared with the reference alternatives and assigned to 

categories. 

  

Doumpos and Zopounidis (2004a) propose a sorting method based on the 

pairwise comparisons of alternatives. They suggest an algorithm for two class 

case but state that the algorithm can be generalized to multiple class case. They 

compare the criterion values of unassigned alternatives and already assigned 

alternatives. For each unassigned alternative, they find a preference index over 

each alternative in class 2 and take average of these indices. They name it as 

positive flow. They also find a preference index for each alternative in class 1 

over each unassigned alternative. For each unassigned alternative, they take 

average of these indices over the alternatives in class 1 and name it as negative 
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flow. They find the net flow for each unassigned alternative. They make 

classification by comparing the net flow with a cut off level. The cut off level can 

be given by the DM or can be estimated by solving an LP that minimizes the 

weighted sum of violations of classification rule for assigned alternatives.  

 

The other main approach is to assume the DM has an underlying utility function. 

If the criteria are preferentially independent, then an additive utility function can 

be used. Criteria weights indicate the relative importance of an improvement in 

one criterion from its worst level to its best level compared with the changes in 

other criteria. Pöyhönen and Hamalainen (2001) explain some of these methods. 

One is direct point allocation which requires the DM to distribute 100 points 

among the criteria and weights of each criterion are calculated as ratios of number 

of points distributed to 100 points. Another method is SMART that is first 

described by Edwards (1977). It requires the DM to rank the criteria starting from 

least important one. 10 points are given to the least important criterion. Then the 

DM gives points to each criterion by comparing them with the least important 

criterion. The numbers of points given by the DM are normalized to find the 

weights. SMARTER has been developed by Edwards and Barron (1994). 

SMARTER requires the DM to rank criteria starting from the least important one 

and calculates the weights from this ranking. SWING described by von 

Winterfeld and Edwards (1986) assumes that the DM has lowest scores in all 

criteria and asks the DM in which criterion he/she wants the highest score first. 

100 points are assigned to that criterion. Then the DM chooses the criteria in the 

order he/she wants to improve to the highest score and assigns number of points.  

The weights are found by normalizing the number of points given by the DM. 

 

Larichev and Moshkovich (1994) suggest a sorting method using dominance 

relations. They look at the dominance relations between the unassigned 

alternatives and already assigned ones. The values on each criterion scale are in 

verbal form and the DM orders each criterion scale according to his/her 

preferences.  
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UTADIS (Utilites Additives Discriminantes) method is developed by Jacquet-

Lagreze (see for example Doumpos and Zopounidis, 2004b). UTADIS assumes 

an underlying piecewise additive utility function. Each criterion range is divided 

into subintervals. It is needed to estimate the utility values of each subinterval on 

each criterion. UTADIS estimates the model parameters from a reference set in a 

way that gives the minimum amount of misclassification for the alternatives in the 

reference set. Then it uses the estimated parameters to assign alternatives into 

classes. 

 

Diakoulaki et al. (1999) use UTADIS to sort 14 countries into 3 classes according 

to energy intensities. Energy intensity is the ratio of energy consumption per unit 

output. 13 factors are determined which have effect on reaching a desired level of 

energy efficiency. The aim of the study is to see the relative importance of the 

criteria and how it is changed through the years. They want to find the most 

important factors affecting energy efficiency. 

 

Zopounidis and Doumpos (2000) propose a DSS called PREFDIS (Preference 

Discrimination) which uses UTADIS and its 3 variants to sort the alternatives into 

classes. They propose a method to cope with non-monotone utility functions. If 

the utility function is non-monotone, the article suggests dividing criteria into 

subintervals in which the DM has monotone preferences. Each subinterval is 

divided to subintervals inside and the model is modified considering this issue. 

There are variants of UTADIS used to increase the accuracy of classification. 

After UTADIS is solved, the first variant UTADIS 1 maximizes the distances of 

the correctly classified alternatives from the threshold levels. UTADIS 2 

minimizes the number of misclassified alternatives. UTADIS 3 combines the first 

and second variants. They present two applications in which PREFDIS is used. 

The first one is to make a country risk assessment and assign the countries to 

classes according to the income level. In this study, 66 countries are evaluated on 

12 criteria. The countries are assigned to 4 classes according to income level such 

as high, upper-middle, lower-middle and low. On the second application 60 Greek 
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firms are classified into two classes: acquired and non-acquired. The 

classification is done according to the 10 financial ratios. 

  

Doumpos and Zopounidis (2004b) make an experimental design to see the effects 

of the parameters involved in UTADIS. They want to see the effects of the way 

the additive utility functions are formed on the performance of the developed 

model and the stability of the significance of the evaluation criteria of the model. 

The performance of the model is measured with classification accuracy which is 

the consistency of the recommendations of the model with the actual decisions. 

The stability of the model is measured as the variance of the significance of the 

evaluation criteria over all the solutions obtained during the post optimality stage. 

 

Zopounidis and Doumpos (2001) propose a hierarchical multi-criteria sorting 

method called M.H.DIS (Multi-Group Hierarchical Discrimination). This method 

works iteratively and each time assigns alternatives to two classes. M.H.DIS first 

assigns the alternatives to the best class. Then it takes the unassigned alternatives 

in the other class and applies the same procedure. If there are q  classes, this 

procedure should be applied for 1−q  times. At each step, the model estimates 

two utility functions from alternatives whose classes are given by the DM. One is 

an increasing function with respect to criterion values and gives the utility of 

placing alternatives to class k . The other one is a decreasing function and it gives 

the utility of assigning alternatives to a lower class than k . At each step, the 

utility values for alternatives are compared. An alternative is assigned to class k  

if first utility function has a larger value and to a lower class if second utility 

function has a larger value. At each step, after the assignment 3 mathematical 

models are solved to improve the classification accuracy. First model is a linear 

program and minimizes the overall misclassification error. If there are 

misclassified alternatives according to the result of the first model, the second 

model which is a mixed integer model wants to minimize the number of 

misclassification. Correctly classified alternatives according to model 1 are taken 

as given. After this, a third model which is a linear program is solved to maximize 
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the minimum distance (the difference between two utility values) of correctly 

classified alternatives while misclassified alternatives remain as misclassified. 

They apply this model to country risk assessment case.  

 

Pasiouras et al. (2007) makes a multi-criteria application to UK firms. After an 

audit, the firms are classified to two groups. First group consists of the firms that 

are able to meet the requirements and the second group consists of the firms that 

are not able to meet the requirements. They apply both UTADIS and M. H. DIS 

to the company sorting problem for 4 different years each time using all the past 

data set as the reference set. They also use two statistical techniques which are 

debit analyses and logit analyses. Here M.H.DIS is applied in one step. Both 

UTADIS and M.H.DIS gives better results than statistical techniques but they get 

a classification accuracy of around 70%. They conclude that UTADIS and 

M.H.DIS have a similar performance for this problem. 

 

Zopounidis (1999) discusses how multi-criteria decision aids should apply to the 

financial problems and list the benefits of them. He mentions the suitability of 

multi-criteria approaches to the financial problems by giving application 

examples briefly.  

 

Doumpos and Zopounidis (2001) develop a system called FINCLASS that uses 

UTADIS and its 3 variants in the classification problems at financial area. They 

take the data of past years as reference set in UTADIS and estimate the 

parameters of the underlying model. They use these parameters to classify the 

alternatives in current year. They say that FINCLASS can be used for bankruptcy 

risk evaluation, credit granting and assessment of corporate performance.  

 

Weber (1985) proposes a method for ranking a set of alternatives. In the method, 

he assumes an underlying piecewise additive utility function. He requires the DM 

to give information on the utility values of hypothetical alternatives. These 

hypothetical alternatives come from an orthogonal design. Each subinterval limit 
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of the marginal utility function of each criterion is thought as a level in the 

orthogonal design concept. Criterion values of orthogonal alternatives are on the 

limits of subintervals. Weber (1985) mentions two methods. First one requires the 

DM to give utility values of orthogonal alternatives which results in getting the 

utility function of the DM completely by solving mathematical equations. The 

other one requires the DM to give utility ranges for orthogonal alternatives. 

Linear programs are solved to get information from the given ranges. He uses this 

information to rank alternatives. If a complete ranking cannot be obtained, he 

suggests to calculate the probability of each alternative being better than the other 

alternatives. He uses these probabilities to rank the alternatives. Although he 

proposes an approach to rank the alternatives, the ideas can be used in the sorting 

problem as well.  

 

Greco et. al. (2008) propose a multi-criteria ranking method. The preference 

information is taken from the DM as pairwise comparison of alternatives. They 

find necessary ranking on two alternatives if all utility functions compatible with 

the preferences of the DM results a larger utility value for one of them. They find 

a possible ranking if there exists at least one utility function compatible with the 

preferences of the DM resulting a larger utility value for one of them. They 

suggest an interactive procedure for ranking by using necessary and possible 

ranking relations. 

 

Köksalan and Ulu (2003) propose an interactive approach by assuming an 

underlying additive utility function. There are already classified alternatives and 

some preference information coming from the DM. The algorithm is proposed for 

a linear utility function. For an alternative, dominance relations are checked first. 

The class range the alternative can be placed is found. Then the convex 

dominance relations between the alternative and already assigned alternatives are 

checked to tighten the class range the alternative can be placed. After this, 

weights space reduction method is applied and it is checked if there are feasible 

weights which make the alternative better or worse than the alternatives in a class. 



  

 11 

If no feasible weights are found, a tighter class range is obtained. The found range 

is presented to the DM and asked to select the class to place the alternative. It is 

said that if there are not too many criteria, it is an effective procedure when there 

is a large number of alternatives.  

 

Ulu and Köksalan (2001) propose another interactive approach to place the 

alternatives to acceptable and unacceptable sets. The DM is asked to place some 

alternatives to acceptable, barely acceptable and unacceptable classes. Two other 

classes are defined for the alternatives not in acceptable class and not in 

unacceptable class. For linear utility function case, dominance relations, convex 

domination and weights space reduction techniques are applied. For quasiconcave 

function cases, they first suggest to use dominance relations. Then they use the 

idea that convex combination of acceptable alternatives are acceptable and 

suggest to check if alternatives can be written as convex combinations of 

acceptable alternatives. Then they use cone generating techniques. Alternatives 

that are inefficient with respect to a cone generated by acceptable alternatives and 

an unacceptable alternative are unacceptable. They check if alternatives are 

inefficient with respect to cones generated. For the general monotone case, they 

suggest to use dominance relations.   

 

Köksalan and Özpeynirci (2009) propose an interactive method that assumes an 

underlying piecewise additive utility function. They find the best and the worst 

class an alternative can be placed by checking if it is feasible to place the 

alternative to particular classes. They narrow down the number of classes the 

alternative can be placed. They place the alternatives whose classes are narrowed 

down to one. If it is not narrowed down to one, they ask the DM to place the 

alternative to one of the classes from the narrowed set. 

 

In this study, we propose an interactive approach. We suggest a probabilistic 

classification method. The algorithm we suggest is a generalization of the 

algorithm Köksalan and Özpeynirci (2009) propose. We assume that the DM has 
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an underlying additive piecewise utility function. We calculate the probabilities of 

each alternative being in each class with the available class information given by 

the DM. We make classification by comparing the probabilities with a given 

threshold value. If we are not able to make a classification, we will ask the DM 

class of an alternative and continue with the new information. We evaluate our 

model by number of alternatives misclassified and number of alternatives placed 

by the DM. We implement our algorithm to assign MBA programs to 3 

preference ordered classes. 

 

We suggest a probabilistic algorithm and the probabilistic approaches are not very 

common. The DM can choose the probability threshold by considering the 

amount of information s/he wants to give and the amount of misclassification s/he 

accepts. In our algorithm, we use linear programs to calculate probabilities. Using 

linear programs instead of integer programs brings computational benefits. 

 

In Chapter 1, we make a brief introduction and present the literature review. In 

Chapter 2, we mention some methods. We use some ideas from those methods in 

our study. In Chapter 3, we present the algorithm we developed. We give the 

results of the implementation of our algorithm on example problems in Chapter 4. 

Lastly, we give some conclusions and present a further study area in Chapter 5.  
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CHAPTER 2 
 
 

2 BACKGROUND 
 
 
 

We will briefly explain 3 different methods used for multi-criteria sorting and 

ranking problems. We will use some of the ideas mentioned in these methods in 

developing our algorithm. First how sorting problems can be handled by using 

UTADIS method will be explained and the notation we use in our algorithm will 

be presented. Then an interactive sorting approach developed by using the ideas 

of UTADIS will be mentioned. Lastly, a method for solving the ranking problem 

will be discussed. We will utilize some of the ideas developed for the ranking 

problem in our algorithm for the sorting problem. 

 

2.1. UTADIS  

 

UTADIS method is developed by Jacquet-Lagreze (see for example Doumpos 

and Zopounidis, 2004b). There is a set A of m  alternatives maaa ,...,, 21  evaluated 

using n  criteria. UTADIS assigns these m  alternatives to one of the q  categories 

qCCC ,...,, 21  where 1C  is the most and qC  is the least preferred one. Each 

criterion range is divided into ib  subintervals and the marginal utility on each 

criterion is thought to be piecewise linear on the criterion range. The utility of 

each alternative is the sum of the marginal utility of alternatives on each criterion. 

The assignment of alternatives to the classes is done according to the comparison 

of utility thresholds with the utility values of alternatives.  
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Let j  be the index for alternatives where mj ,...,2,1= , i  be the index for criteria 

where ni ,...,2,1= , k  be the index for classes where qk ,...,2,1=  and p  be the 

index for subintervals where ibp ,...,2,1= . 

 

Let ( )ji ag  be the score of alternative j on criterion i . Then ( )[ ]jagU  is the global 

utility of alternative j  where ( ) ( ) ( ) ( )[ ]jnjjj agagagag ,...,, 21=  . Let ( )[ ]jii agu  be 

the marginal utility of alternative j on criterion i . Since individual utility function 

of each criterion is piecewise linear, each criterion range is divided into ib  

subintervals [ ]1, +p
i

p
i gg , ibp ,...,2,1= . 

 

Let subinterval p  have an unknown utility value of ipw  on criterion i  where 

[ ] [ ]1+−= p
ii

p
iiip guguw . If ( ) 1+≤≤ jiji r

iji
r

i gagg for some iji br ≤≤1 , then 

( )[ ]jii agu  is found by linear interpolation between [ ]p
ii gu  and [ ]1+p

ii gu . Since 

this is an additive utility function, ( )[ ] ( )[ ]ji

n

i
ij aguagU ∑

=

=
1

. We can also write 

( )[ ] ( )
∑ ∑

=
+

−

= 
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n

i
irr

i
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i

r
iji

r
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ipj jijiji
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 .       

 

Classification is done by comparing the overall utility of each alternative with the 

utility thresholds. Let ku  be the utility threshold that separates the classes.  

( )[ ] 1uagU j ≥ , then ja  is in class 1. 

( )[ ] 1−<≤ kjk uagUu , then ja  is in class k  for 1,...,2 −= qk  

( )[ ] 1−< qj uagU , then ja  is in class q . 
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There is a set of reference alternatives whose classes are known and UTADIS 

aims to estimate the parameters of the underlying model in a way to minimize the 

misclassification errors. Misclassification errors are defined as follows: 

( )[ ]{ }jkj agUu −=+ ,0maxσ , for every kj Ca ∈  

( )[ ]{ }1,0max −
− −= kjj uagUσ , for every kj Ca ∈  

Let kk Cm =  and ∑
=

=

=
qk

k
kr mm

1
. 

The linear program used in UTADIS is as follows: 
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where δ  and s  are user-defined constants. 

 

Constraint ( )1.2  expresses each ( )[ ]jagU  in terms of ipw  values. If an alternative 

is assigned to kC , then the utility of it should be greater than or equal to the utility 

threshold ku  that is the lower limit of class k . Constraint ( )2.2  indicates this 
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condition but it allows violation by an amount of +
jσ . Utility of an alternative 

assigned to kC  should be smaller than the utility threshold 1−ku  that is the upper 

limit of class k .  Constraint ( )3.2  satisfies this condition by allowing violation by 

an amount of −
jσ . Constraint ( )4.2  expresses that sum of utility values of all 

subintervals should be equal to 1. This means utility of an alternative having the 

maximum scores in all criteria is 1. Constraint ( )5.2  provides that the upper limit 

of a class is greater than its lower limit. Constraint ( )6.2  indicates that the utility 

values of subintervals should be nonnegative. Constraint ( )7.2  ensures that the 

amount of misclassification for each alternative is nonnegative. 

 

UTADIS estimates the parameters of the model with the class information of the 

alternatives in the reference set. The objective is to minimize the sum of 

misclassification errors of the alternatives. It aims to find the model parameters 

that can give the original classification of the DM for the reference set with the 

minimum amount of misclassification. After estimating the parameters that 

minimize the sum of misclassification errors, the other alternatives are classified 

by calculating their utility values and comparing the utility values with the 

estimated utility thresholds.  

 

2.2. AN INTERACTIVE SORTING METHOD FOR ADDITIVE UTILITY 

FUNCTIONS 

 

Köksalan and Özpeynirci (2009) demonstrate that UTADIS can misclassify many 

alternatives even when there is considerable preference information on hand. 

UTADIS assumes that there is an underlying piecewise additive utility function. 

UTADIS estimates the parameters of the underlying model and assigns 

alternatives to classes using these parameters. Köksalan and Özpeynirci (2009) 

argue that there are many parameters to be estimated which result in many 

alternative optimal solutions for the linear program used in UTADIS. This means 

there are many different combinations of parameters that can give the original 
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classification of the DM for the reference set. The classification of alternatives is 

done by the estimated parameters. Therefore, classification of alternatives 

depends on which alternative optimal solution is selected.     

 

They make experiments with UTADIS and show that various numbers of 

alternative solutions can be obtained with UTADIS. They solve an example 

problem with 3 classes and get a solution with no misclassification. Then by 

setting misclassification to 0 and solving the model with different objectives, they 

end up with many different solutions and different classifications depending on 

these solutions. With different solutions, each of the nonreference alternatives can 

be in all 3 classes. They look at the deviations of the estimated parameters 

obtained from the different solutions and underlying parameters. They say that the 

deviations are very large. With these results, they make an observation that 

UTADIS and its variations are not successful for the particular problem they 

solved. 

  

They propose an interactive method for classifying the alternatives and the 

approach guarantees to classify all the alternatives correctly. They use similar 

ideas used by Köksalan and Ulu (2003) for linear utility function cases. They 

select an alternative and solve integer programs to find the possible classes the 

alternative can be placed in. If the worst and best class of the alternative is same, 

they place the alternative to that class. If the number of classes the alternative can 

be placed is greater than 1, then they present the DM the possible classes of this 

alternative and ask the DM to place. After placing this alternative, they select 

another alternative. Each time the alternative is placed either by finding the class 

of it or asking the DM. This procedure repeats until all alternatives are classified. 

 

Let A  be the set of all alternatives and S  be the set of alternatives whose classes 

are not known. Let kC  be the set of alternatives known to be in class k , 

qk ,...,2,1= .  Let Sat ∈ . Let w
tC  denote the worst class ta  can be assigned to 

and b
tC  denote the best class ta  can be assigned to. 
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Here the notation presented in UTADIS is used. One difference is that jv  is used 

instead of ( )[ ]jagU  to denote utility of alternative j . They also define another 

decision variable as follows. 
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They propose the theorem that if hat
IP ,1  is infeasible, then w

tC  is h . 
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If constraint ( )17.2  is changed with 1−≥ ht uv , this IP is named as hat
IP ,2  and 

checks if the best class of ta  is class h .  They propose the second theorem if 

hat
IP ,2  is infeasible, then b

tC  is h.  

 

They suggest that LP relaxations of both  hat
IP ,1  and hat

IP ,2  should be solved 

before solving IPs. Constraint ( )9.2 , ( )10.2  and ( )13.2  are for the unassigned 

alternatives to be assigned to one of the classes while finding the worst or the best 

class for ta . In the LP relaxation, these constraints are not written. If LP 

relaxation is infeasible, then IP is infeasible. It is easier and less time consuming 

to solve LP. If LP is feasible for a case, then IP which is thought to be more 

restrictive should be solved.  

 

They propose an algorithm that finds the worst and the best classes of each 

alternative to be placed. They select an alternative. They solve hat
IP ,1  starting 

from class 1 until it is infeasible for a class and find the worst class of the 

alternative. If hat
IP ,1  is feasible for every h , then they decide that the worst class 

of alternative is class q . Then they solve hat
IP ,2  starting from the worst class of 

the alternative until it is infeasible and find the best class of the alternative. If  

hat
IP ,2  is feasible for every h , they decide that the best class of alternative is 

class 1. If best class and worst class of the alternative are same, then the 

alternative is assigned to this class. If they are different, it is asked to the DM to 

place the alternative to one of the classes between the worst and best class of the 

alternative. The algorithm continues until all alternatives are placed.  

 

They tried the algorithm on the example problem they solved using UTADIS and 

they give the results based on the number of classes the alternatives are narrowed 

down to. In that problem, for 38% of alternatives the precise class is determined. 

40% of the alternatives are narrowed down to 2 classes and 12% of the 

alternatives are asked to the DM for 3 classes.  



  

 20 

2.3. A METHOD OF MULTIATTRIBUTE DECISION MAKING  

 

Weber (1985) proposes a method for ranking a set of alternatives. In the method, 

he assumes an underlying piecewise additive utility function. To rank alternatives, 

he suggests a way to find ranges for utility differences of alternatives. After 

finding ranges, he calculates probability of an alternative being better than 

another alternative. He uses these probabilities to rank the alternatives. The 

methods used in Weber’s article, HOPE and HOPIE, will be mentioned next. 

 

2.3.1. HOPE Method 

 

HOPE method ranks a set of alternatives that are evaluated in multiple criteria. To 

do this, it is suggested to ask the DM the utility value of a set of hypothetical 

alternatives. The method assumes an underlying additive utility model and 

piecewise linear marginal utility functions. These hypothetical alternatives come 

from an orthogonal design in which the interaction between factors is not 

considered. Each subinterval limit of the marginal utility function of each 

criterion is thought as a level in the orthogonal design concept. Each criterion 

value of each orthogonal alternative is on one of the limits of subintervals. Under 

the assumption that there is no interaction between criteria, an orthogonal array is 

constructed such that rows correspond to levels of an alternative. Number of 

orthogonal alternatives asked depends on the number of criteria and number of 

subintervals each criterion is divided. Let r  correspond to the number of levels 

on each factor. Addelman and Kempthorne (1962) state that if an orthogonal 

array is constructed with no interaction between factors, the maximum number of 

factors that can be handled with nr  treatment combinations is 
1
1

−
−

r
r n

. In our case, 

factors can be thought as criteria, number of levels as number of subinterval limits 

and treatment combinations as alternatives. If there are 3 subinterval limits, 

4
13
132

=
−
−  criteria can be handled at maximum with 23  alternatives and 13 

criteria can be handled at maximum with 33  alternatives. Hedayat et. al. (1992) 
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explain how asymmetric orthogonal arrays where each factor has different 

number of levels are constructed.  

  

Mathematical equations can be written on the utility of levels. Since it is an 

additive utility function, utility of each orthogonal alternative can be written as 

the sum of the utility of levels. The utility of each level is an unknown. Let there 

be n  criteria and r  levels on each criterion. Let ipu  be the utility of level p  on 

criterion i  and ja  denote the alternatives. jh  is the utility of alternative j . ipz  is 

the value corresponding to level p  on criterion i . ijy  is the value of alternative 

j  on criterion i . Since alternatives are defined by an orthogonal design, each ijy  

value of orthogonal alternatives is equal to one of the ipz  values for each i . Then, 

the value of ipu  can be found by solving the following equation:  

 

( ) ( ) 1.... 1 ≠∀∀=−==⋅ ∑∑ pandizytshzytshur iijjipijjip  

 

Since it is assumed that the DM is able to give jh  values for orthogonal 

alternatives, then the value of each ipu  can be found. This equation can be written 

because of the orthogonality concept. When jijij zytsh ''.. =  are summed, we 

have piur '⋅  and the sum of ipu  for ii ≠  and p∀ .  The second summation is done 

for the 1=p  on criterion 'i . When we take the difference, we end up with 

( )1'' ipi uur −⋅ . 

 

Since we work on utility values, it can be scaled between 0 and 1. Then it is 

assumed that 01 =iu  for i∀  because they are the minimum values on each 

criterion i . Similarly ∑
=

=

=
ni

i
iru

1
1  because iru  corresponds to the maximum value 

on each criterion i . Therefore we can get the ipu  values for each i  and p . 
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By solving the linear equations, one can get the utility values of the levels. This 

means the underlying utility model is completely found. Then the utility values of 

the actual alternatives are found by making linear interpolation on the utility 

values of the subinterval limits. Then ranking is done according to the calculated 

utility values for each alternative.  

 

2.3.2. HOPIE Method 

 

HOPE method asks the DM the utility values of a set of alternatives. Weber 

(1985) discusses that it is not an easy task for the DM to give the exact utility 

values of the alternatives and he suggests HOPIE method to get rid of this. The 

orthogonal design concept is again used. The utility ranges of the hypothetical 

orthogonal alternatives are asked to the DM. A linear program is written using the 

range of orthogonal alternatives. The constraints of LP are orthogonal to each 

other. Let the interval coming from the DM be [ ]+−
jj hh , .  The set of constraints 

used in HOPIE method is as follows: 
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The utility of each level and utility of orthogonal alternatives are decision 

variables and constraint ( )21.2  provides mathematical equations on the decision 

variables with the same idea of HOPE. Constraint ( )22.2  and ( )23.2  set bounds 

on the utility of orthogonal alternatives. The utility range given by the DM for 
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each alternative is written as constraint. Constraint ( )24.2  is written if the DM has 

given any preference information on the alternatives. 

 

Two LPs are solved for each pair of alternatives which are to be ranked subject to 

constraints ( ) ( )27.221.2 − . The objective of the first LP is to minimize the 

difference of the utility values of two alternatives and the objective of the second 

LP is to maximize the difference of the utility values of two alternatives. If the 

number of alternatives to be ranked is m , then ( )1−⋅ mm  LPs should be solved. 

 

By solving these LPs, preference information can be obtained. For two 

alternatives ta  and la , if ( ) 0min ≥− lt hh , then ta  is a better alternative than la . 

If ( ) 0max <− lt hh , then ta  is a worse alternative than la . 

 

If the calculated range for utility difference of two alternatives does not include 0, 

information about which alternative is better is obtained. If it includes 0, then the 

information of which alternative is better cannot be obtained. For the situations 

which an exact result cannot be obtained, Weber (1985) suggests calculating 

probability of an alternative being better than another alternative. It is assumed 

that the distribution of the difference of utility values can be approximated by 

symmetric triangular distribution within the range calculated. 

 

Weber (1985) states that this approximation is based on the assumption that the 

individual utility values of alternatives follow a uniform distribution between the 

interval [ ]+−
jj hh , . The distribution of the difference of utility of two alternatives 

can be approximated by the convolution of distributions on the intervals [ ]+−
jj hh , . 

 

According to Weber (1985), probability of ta  being better than la  can be 

approximated by symmetric triangular distribution. Let ( )lt hha −= min , 
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( )lt hhb −= max  and ( )[ ]0≥−= lt hhPp . It can be found from the following 

formula: 
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The calculated probabilities are thought as a measure of strength of preferences. 

Weber (1985) suggests a ranking in accordance with the calculated probabilities 

and tries to obtain “a most similar” ranking. 
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CHAPTER 3 

 
 

AN INTERACTIVE PROBABILISTIC MULTI-CRITERIA 

SORTING ALGORITHM 
 
 
 
3.1. OVERVIEW OF THE ALGORITHM 
 

We aim to classify a set A  of m  alternatives maaa ,...,, 21  evaluated using n  

criteria into one of the q  classes qCCC ,...,, 21  where 1C  is the most and qC  is the 

least preferred class. We assume an underlying additive utility function. Additive 

utility functions can represent a quite general behavior. The marginal utility of 

alternatives on each criterion is thought to be piecewise linear. A  is the set of all 

alternatives. Let 0C  be the set of alternatives whose classes are not known and rC  

be the set of alternatives whose classes are known. 0CCA r ∪= . Using the class 

information of alternatives in rC , we make inferences about the classes of 

alternatives in 0C . We classify alternatives in an iterative way. We start using 

class information given to us. For each alternative, we calculate probability of 

belonging each class using available class information. After calculating 

probabilities, we try to assign alternatives to classes either exactly or 

probabilistically. Probabilistic classification is done by comparing probabilities 

with a given threshold value. If we cannot classify any alternatives with the 

available information, we ask the DM to place an alternative. With this new 

information, we calculate new probabilities and try to assign alternatives in 0C  to 

classes. This procedure continues until all the alternatives in 0C  are assigned to 

one of the classes. 
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We propose two different approaches. One is to compare the unassigned 

alternatives with readily assigned alternatives. We find probabilities for each 

unassigned alternative being better than readily assigned ones. The other is to 

compare unassigned alternatives with utility thresholds and calculate probabilities 

for each unassigned alternative being better than each utility threshold. 

 

3.2. THE ALGORITHM WITH PAIRWISE COMPARISON OF 

ALTERNATIVES 

 

A probabilistic classification is suggested by using the probability of an 

alternative being better than an alternative whose class is known. This algorithm 

compares the utility of each alternative to be classified with the utility values of 

already assigned alternatives. We find the minimum and the maximum values of 

utility differences of each unassigned alternative and each assigned one. We find 

ranges for the differences and calculate the probability of each alternative being 

better than an assigned alternative. Alternatives are classified by comparing 

probabilities with a given probability threshold according to some conditions 

which will be defined later. Alternatives that satisfy the conditions will be 

assigned to classes. If no new alternative can be classified with the available 

information, the DM is asked to place a chosen alternative to its correct class. In 

the light of the new information, we will find ranges, calculate probabilities and 

try to assign the remaining alternatives to classes. Same procedure will be applied 

until all the alternatives are classified.   

 

3.2.1. Linear Programs for Utility Ranges 

 

In our algorithm, we assume an underlying additive utility function similar to 

UTADIS. UTADIS estimates the parameters of the underlying utility function. 

However, our algorithm does not require making such estimations. We work with 

different objectives instead of minimizing the sum of misclassification errors. 
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Any misclassification of the alternatives in rC  is not allowed in the models we 

used. We do not let violation of any class constraints. 

 

For each alternative in 0C , we want to find the minimum and the maximum 

values of its utility difference with each alternative in rC  using available class 

information. We use the notation presented in UTADIS.  

 

Let j  be the index for alternatives where mj ,...,2,1= , i  be the index for criteria 

where ni ,...,2,1= , k  be the index for classes where qk ,...,2,1=  and p  be the 

index for subintervals where ibp ,...,2,1= . 

 

Let ( )ji ag  be the score of alternative j on criterion i . Then ( )[ ]jagU  is the global 

utility of alternative j  where ( ) ( ) ( ) ( )[ ]jnjjj agagagag ,...,, 21=  . Let ( )[ ]jii agu  be 

the marginal utility of alternative j on criterion i . Each criterion range is divided 

into ib  subintervals [ ]1, +p
i

p
i gg , ibp ,...,2,1= . 

 

Let subinterval p  have an unknown utility value of ipw  on criterion i  where 

[ ] [ ]1+−= p
ii

p
iiip guguw . If ( ) 1+≤≤ jiji r

iji
r

i gagg for some iji br ≤≤1 , then 

( )[ ] ( )( )
( )∑ ∑

=
+

−

= 
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Let rl Ca ∈ . Let the following constraints define the constraint set S :  
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δ  and s  are user defined constants. In our calculations, we take δ  as 6101 −x  and  

s  as 3101 −x . Constraint ( )1.3  expresses utility of alternatives that are members of 

rC  in terms of ipw  values. Constraint ( )2.3  indicates that if an alternative is 

assigned to kC , then the utility of it should be greater than or equal to the utility 

threshold ku  that is the lower limit of class k . Constraint ( )3.3  indicates that 

utility of an alternative assigned to kC  should be smaller than the utility threshold 

1−ku  that is the upper limit of class k . Constraint ( )4.3  expresses that sum of 

utility values of all subintervals should be equal to 1. Constraint ( )5.3  provides 

that the upper limit of a class is greater than the lower limit of that class. 

Constraint ( )6.3  indicates that utility values of subintervals should be 

nonnegative. 

 

Let 0Cat ∈ . To compare ta  with la , we solve the following models: 

 

( )[ ] ( )[ ]

( ) ( )6.31.3
.

,
1.3

−

−
tos

agUagUMin
LP

lt

lt
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( )[ ] ( )[ ]

( ) ( )6.31.3
.

,
2.3

−

−
tos

agUagUMax
LP

lt

lt

 

 

These models should be solved for each alternative 0Cat ∈  and for each rl Ca ∈ . 

Let the optimal objective function value of ltLP ,
1.3  for ta  and la  be ( )ltobj ,*

1.3  

and the optimal objective function value of ltLP ,
2.3  for ta  and la  be ( )ltobj ,*

2.3 .  

 

If ( ) 0,*
1.3 ≥ltobj  for 'kl Ca ∈ , then ( ) 0,*

1.3 ≥ltobj  for kl Ca ∈  where 

qkkk ,...,2',1' ++= . 

If ( ) 0,*
1.3 ≥ltobj , then ( ) 0,*

2.3 ≥ltobj .  

 

Obtaining ( ) 0,*
1.3 ≥ltobj  for any rl Ca ∈ , we know that ta  is a better alternative 

than la  so the worst class of ta  is the class of la . Then there is no need to solve 

ltLP ,
1.3  for the remaining alternatives in rC  which are in the same class with la  

and which are in a worse class than the class of la . There is also no need to solve 

ltLP ,
2.3  for the alternatives which are in the same class with la  and which are in a 

worse class than the class of la .  

 

 

If ( ) 0,*
2.3 <ltobj  for 'kl Ca ∈ , then ( ) 0,*

2.3 <ltobj  for kl Ca ∈  where 

1',...,2,1 −= kk . 

If ( ) 0,*
2.3 <ltobj , then ( ) 0,*

1.3 <ltobj .  

 

Obtaining ( ) 0,*
2.3 <ltobj  for any rl Ca ∈  means that ta  is a worse alternative than 

la  so the best class of ta  is the class of la . Therefore, there is no need solve 
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ltLP ,
2.3  for remaining alternatives in rC  which are in the same class with la  and 

which are in a better class than the class of la . There is also no need to solve 

ltLP ,
1.3  for the alternatives which are in the same class with la  and which are in a 

better class than the class of la .  

 

Let omC =0  and rr mC = . Then the maximum number of linear programs to be 

solved is ro mm ⋅⋅2 . 

 

3.2.2. Probability Calculation 

 

In our study, we assume that the DM has an underlying additive utility function 

and utility thresholds that separate the classes. The DM classifies the alternatives 

by using this utility function and utility thresholds. We do not know the actual 

parameters of the DM. If we make an exact classification by using our algorithm, 

we are able to present the DM the original classification. When we make 

probabilistic classification, we want to make a classification close to original 

classification of the DM. We do not know the actual difference found by using 

the parameters of the underlying model of the DM but we have the information of 

the minimum and maximum value the difference can take. We try to fit 

appropriate probability distributions to the difference. We first assume that the 

difference of the utility values of alternatives follows uniform distribution within 

the range ( ) ( )[ ]ltobjltobj ,,, *
2.3

*
1.3 . Assuming uniform distribution implies that actual 

difference can be each of the possible values in the found range with equal 

probability. We wonder if actual values are more likely to be some of the values 

in the range. We look if we can work with different probability distributions. We 

try to fit a symmetric triangular distribution to the difference. After this, we work 

on the distribution of utility values of subintervals to find a distribution to the 

difference. We assume that the utility values of subintervals follow uniform 
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distribution within their possible range. Under this assumption, we fit a normal 

distribution to the difference. 

 

We use symmetric distributions because the only information we know about the 

difference is the range. We do not have any information about the difference 

being more likely on the right or left side of the range.  

 

Uniform Distribution 

 

We assume that the difference of utility of alternatives has a uniform distribution 

between the calculated the minimum and maximum value. Utility difference 

follows ( ) ( )[ ]ltobjltobjU ,,, *
2.3

*
1.3  for 0Cat ∈  and rl Ca ∈ . 

What we need in our model is ( )[ ] ( )[ ][ ]0≥− lt agUagUP . Let ( )ltobja ,*
1.3=  and 

( )ltobjb ,*
2.3= . 

Let ( ) ( )[ ] ( )[ ][ ]0, ≥−= lt agUagUPltp  and then ( )ltp ,  is found as follows: 

( ) ( )
( )
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b
aif

ltp  

 

Symmetric Triangular Distribution 

 

We can think that the utility value of each alternative follows a uniform 

distribution. We can find the minimum and the maximum values of them subject 

to constraint set S. Then we can work on the distribution of the difference of two 

uniform random variables. We know that the difference of two independent 

uniform random variables either follow a symmetrical triangular distribution or a 

trapezoid distribution. Let random variable 1X  follow [ ]11 max,minU  and 2X  

follow [ ]22 max,minU . If the widths of the ranges of uniform random variables 
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are same, then the difference 21 XX −  follows a symmetric triangular distribution 

within the range [ ]2121 minmax,maxmin −− . If they are not same, the difference 

follows a symmetrical trapezoid distribution within the range 

[ ]2121 minmax,maxmin −− . 

 

We can use these distributions for the differences if the uniform random variables 

are independent. In our case, the utility of alternatives are not independent from 

each other. Weber (1985) approximates the utility difference of alternatives with 

symmetrical triangular distribution within the range. Since they are not 

independent of each other, assuming the difference follows a symmetrical 

triangular distribution will be only an approximation. This implies that actual 

value of difference is more likely to be close to the middle of the interval. 

 

If we assume that the difference of the utility values of alternatives follow a 

symmetric triangular distribution, probabilities will be calculated in the following 

way: 

Let ( )ltobja ,*
1.3= , ( )ltobjb ,*

2.3=  and ( ) ( )[ ] ( )[ ][ ]0, ≥−= lt agUagUPltp . Then 

( )ltp ,  is found as follows: 

 

( ) ( )
( )

( )
( )
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Normal Distribution 

 

We try to fit a normal distribution to the differences of utility values of 

alternatives. To justify this, we worked on the distribution of the utility values of 

subintervals and used them to find the distribution of utility values of alternatives.  
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Recall that ( )[ ] ( )( )
( )∑ ∑

=
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From the above equation, it is understood that the marginal utility of each 

alternative can be written as the sum of ipw  values for the first ( )1−jir  

subintervals and 
jiirw  multiplied by the coefficient found by the linear 

interpolation of ( )ji ag  between iir
ig and 1+iir

ig . Let  ( )jip az  denote the coefficient 

of ipw  for alternative j  while expressing ( )[ ]jagU . Then we can write the 

following equation: 

( )[ ] ( )∑∑
= =

⋅=
n

i
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p
ipjipj

i

wazagU
1 1

 

where 
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Distribution of Utility Values of Subintervals  

 

We work with the probability distributions of the utility values of subintervals. 

Using the distribution of each ipw , we will find a probability distribution for each 

( )[ ]jagU . We can find the minimum and maximum value each ipw  can take 

subject to constraint set S . For this aim, we need to solve the following models 

for ni ,...,2,1=  and ibp ,...,2,1= . 
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( ) ( )6.31.3
.

,
3.3

−
tos

wMin

LP

ip

pi

 

 

( ) ( )6.31.3
.

,
4.3

−
tos

wMax

LP

ip

pi

 

 

Let ( )piobj ,*
3.3  be the optimal objective value of piLP ,

3.3  and ( )piobj ,*
4.3  be the 

optimal objective value of piLP ,
4.3 . We need to solve ∑

=

⋅
n

i
ib

1
2  LPs to find the 

range of all ipw  values. Each ipw  can take any value between ( )piobj ,*
3.3  and 

( )piobj ,*
4.3 . The only information we have for each ipw  is its range and we will 

assume that each ipw  follows uniform distribution within ( )piobj ,*
3.3  and 

( )piobj ,*
4.3 . Let ( )ipwµ  be the expected value of ipw  and ( )ipwσ  be the standard 

deviation of ipw . Then; 

[ ] ( ) ( ) ( )( )
2

,, *
4.3

*
3.3 piobjpiobjwwE ipip

+
== µ   

[ ] ( ) ( ) ( )( )
12

,,
2*

3.3
*

4.32 piobjpiobjwwV ipip
−

== σ . 

 

Distribution of Utility Values of Alternatives   

 

We need the distribution of utility values of alternatives. We assume each ipw  is a 

random variable. Then each ( )[ ]jagU  will be a random variable since it is a linear 

combination of random variables. We assume that ipw  values are independent of 
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each other. This means that the utility of each subinterval is independent from the 

others. 

 

Each ( )[ ]jagU  will be the sum of at most ∑
=

n

i
ib

1
 uniform random variables. We 

use Central Limit Theorem and approximate the distribution of sum of m  

independent uniform variables by a normal distribution even for small values of 

m . By using this information, we assume that ( )[ ]jagU  will follow a normal 

distribution. Let ( )jaµ  be the expected value of ( )[ ]jagU  and ( )jaσ  be the 

standard deviation of ( )[ ]jagU .  ( )jaµ  and ( )ja2σ  can be calculated as follows: 
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Since we assume ipw  values are independent of each other, 

( )[ ] ( ) ( ) ( )( ) [ ]
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Distribution of the Difference of the Utility of  Alternatives 

 

We need the distribution of the difference of each ( )[ ]tagU , 0Cat ∈  from each 

( )[ ]lagU , rl Ca ∈ . We found that both ( )[ ]tagU  and ( )[ ]lagU  follow a normal 

distribution. Let ( )[ ] ( )[ ]lttl agUagUd −= . 
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Let ( )tldµ  be the expected value of tld  and ( )tldσ  be the standard deviation of 

tld . ( )tldµ   and ( )tld2σ  can be calculated as follows:: 
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We found that tld  follows ( ) ( )[ ]tltl ddN 2,σµ . We have a constraint on the sum of 

ipw  values. For our problem, 1
1 1

=∑∑
= =

n

i

b

p
ip

i

w . We need to find the distribution of the 

difference under this condition. Let ∑∑
= =

=
n

i

b

p
ip

i

wY
1 1

, then Y  is the sum of 

∑
=

n

i
ib

1
uniform random variables. We need to find the joint distribution of tld  and  

Y to find the conditional distribution of the difference. Let ( )Yµ  be the expected 

value of Y  and ( )Yσ  be standard deviation of Y . ( )Yµ  and ( )Y2σ  are calculated 

in a similar way. 
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We found that tld  follows ( ) ( )[ ]tltl ddN 2,σµ  and Y follows ( ) ( )[ ]YYN 2,σµ  

approximately. tld  and Y  are not independent from each other since they are 
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different linear combinations of the same random variables. The joint distribution 

of the two dependent normally distributed random variables tld  and Y  can be 

defined as a bivariate normal distribution (Hines et. al. p. 160). We know the 

means and the variances of tld  and Y  but we need to find the correlation 

coefficient ρ  to define the bivariate normal distribution. Let us denote tld  as D , 

( )tldµ  as )(Dµ  and ( )tldσ  as ( )Dσ . Let ( )YDCov ,  denote the covariance 

between D  and Y . ρ  can be found from the following equation. 

( )
( ) ( )YD

YDCov
σσ

ρ
,

=  

We know ( )Dσ  and ( )Yσ . We need to find ( )YDCov , . 

( ) ( )( )[ ]
( ) [ ] [ ] [ ]
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)()()()(,
)()(,
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We need to find [ ]DYE  to find ( )YDCov , . 
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Since we assume ipw  values are independent of others, [ ]'' piip wwE ⋅  can be 

written as [ ] [ ]'' piip wEwE ⋅ . 
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After finding [ ]DYE , we can write ( )YDCov ,  and ρ . 

( ) [ ] )()(, YDDYEYDCov µµ ⋅−=  

 

( )
( ) ( )YD

YDCov
σσ

ρ
,

=  

 

The joint distribution of D  and Y  follows a bivariate normal distribution with 

parameters ( )Dµ , ( )D2σ , ( )Yµ , ( )Y2σ , ρ . 

 

We scale the utility of alternatives between 0 and 1. Y can be thought as the 

utility of an alternative that has the maximum scores in all the criteria.  In our 

case, Y  is equal to 1. Therefore, we need the distribution of utility of each 

alternative given that Y is equal to 1. 

 

Conditional distribution of bivariate normally distributed random variables 

follows normal distribution (Hines et. al. p. 162). For a particular value of Y , D  

will follow normal distribution with parameters [ ]yYDE =  and [ ]yYDV = .  

[ ] ( ) ( )
( ) ( )( )Yy
Y
DDyYDE µ

σ
σ

ρµ −−==  
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[ ] ( ) ( )YyYDV 221 σρ−==  

As it is seen, [ ]yYDV =  does not depend on the value of y . For our case, 1=y .  

Let 'tld  denote 1=YD . Let ( )'tldµ  be the expected value of 1=YD  and ( )'tldσ  

be standard deviation of 1=YD . 

( ) [ ] ( ) ( )
( ) ( )( )Y
Y
DDYDEd tl µ

σ
σ

ρµµ −−=== 11'  

( ) [ ] ( ) ( )YYDVd tl
222 11' σρσ −===  

 

Probability Calculation 

 

We need the probabilities of 0Cat ∈  being better than each rl Ca ∈ . We found 

the parameters of the distribution and we can calculate the probabilities. 

However, we have more information about the difference. We have found the 

minimum and maximum value the difference can take. Outside the found range, 

the value of the difference is not feasible subject to constraint set S. We will work 

on the part of the assumed distribution which is feasible subject to constraint set 

S.  

 

Let ( ) ( ) ( )[ ]ltobjdltobjdPltp tltl ,',0', *
2.3

*
1.3 ≤≤≥= , ( )ltp ,  is found as follows: 

( ) ( ) ( ) ( )( )[ ]
( ) ( )[ ]ltobjdltobjP

ltobjdltobjdPltp

tl

tltl

,',

,',0'
,

*
2.3

*
1.3

*
2.3

*
1.3

≤≤

≤≤∩≥
=  

If ( ) 0,*
1.3 ≥ltobj , the intersection is the universal set and all possible values of 'tld  

are greater than 0 and ( ) 1, =ltp . 

 

If ( ) 0,*
1.3 <ltobj  and ( ) 0,*

2.3 ≥ltobj ,  
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( ) ( ) ( ) ( )( )[ ]
( ) ( )[ ]

( )[ ]
( ) ( )[ ]ltobjdltobjP

ltobjdP

ltobjdltobjP

ltobjdltobjdPltp

tl

tl

tl

tltl

,',

,'0

,',

,',0'
,

*
2.3

*
1.3

*
2.3

*
2.3

*
1.3

*
2.3

*
1.3

≤≤

≤≤
=

≤≤

≤≤∩≥
=

 

( )

( ) ( )
( )

( )
( )

( ) ( )
( )

( ) ( )
( ) 
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 −








 −
−







 −
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*
2.3
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d
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d
dltobj

d
d

d
dltobj

ltp

σ
µ

φ
σ

µ
φ

σ
µ

φ
σ

µ
φ

 

 

If ( ) 0,*
2.3 <ltobj , the intersection is an empty set and there does not exist any  

possible value of tld  that is greater than 0 and ( ) 0, =ltp . In summary, 

( )

( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( ) ( )

( )

( ) ( )

( )















<

≥<








 −
−







 −








 −
−







 −

≥

=

0,0

0,,0,

'
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'
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'
'0

'
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0,1

,

*
2.3

*
2.3

*
1.3*

1.3
*

2.3

*
2.3

*
1.3

ltobjif

ltobjltobjif

d
dltobj

d
dltobj

d
d

d
dltobj

ltobjif

ltp

tl

tl

tl

tl

tl

tl

tl
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σ
µ

φ
σ

µ
φ

σ
µ

φ
σ

µ
φ

 

 

Grouping Probabilities 

 

Probabilities are calculated for each alternative in 0C  against each alternative in 

rC . The calculated probabilities are grouped according to the classes of 

alternatives in rC . For each alternative in 0C , probabilities of being better than 

the alternatives in rC  which are in class k  are grouped together and the minimum 

and maximum of them are selected. 

 

Let ( )tkmax  denote the maximum probability of ta  being better than any 

alternative in class k  and  ( )tkmin  denote the minimum probability of ta  being 

better than any alternative in class k . 



  

 41 

( ) ( )ltpt
kl Cak ,maxmax

∈
=  

( ) ( )ltpt
kl Cak ,minmin

∈
=  

 

3.2.3. The Classification of Alternatives 

 

We make the classification by comparing ( )tkmin  and ( )tkmax  with a given 

threshold on probabilities for each ta . Let th  denote the threshold on 

probabilities. 

 

Exact Classification  

 

If we set th  as 0, then we will make an exact classification. Since all the 

alternatives are either correctly classified or asked to the DM, the algorithm 

works with exact information. 

 

If ( ) 1max =tk , then ta  is better than an alternative in class k  and there does not 

exist any set of parameters that makes ta  worse than that alternative in class k , 

Therefore, the worst class of ta  is k . 

 

If ( ) 0min =tk , then ta  is worse than an alternative in class k  and there does not 

exist any set of parameters that makes ta  better than that alternative in class k , 

Therefore the best class of ta  is k . 

 

With these probabilities we can make an exact classification if the following 

conditions are satisfied: 

 

If ( ) 1max1 =t , then ta  is in 1C . 

If ( ) 1max =tk  and ( ) 0min =tk , then ta  is in kC . 
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If ( ) 0min =tq , then ta  is in qC . 

 

Probabilistic Classification 

 

If 0>th , then we make a probabilistic classification. We assign alternatives to 

classes even though we do not have exact information about their classes. The 

assignment of alternatives to the classes is done in the following way:   

 

If ( ) ( )thtk −≥ 1max , then ta  is better than an alternative in class k  with at least 

( )th−1  probability.  

If ( ) thtk ≤min , then ta  is worse than an alternative in class k  with at least 

( )th−1  probability.  

 

With these probabilities we can make a probabilistic classification if the 

following conditions are satisfied: 

 

If ( ) ( )tht −≥ 1max1 , then ta  is assigned to 1C . 

If ( ) ( )thtk −≥ 1max  and ( ) thtk ≤min , then ta  is assigned to kC . 

If ( ) thtq ≤min , then ta  is assigned to qC . 

 

With the calculated probabilities, the alternatives in set 0C  which satisfy one of 

the above conditions are classified. If no assignments are done with the available 

information, then the DM is asked to place an alternative to a class. With the new 

class information taken from the DM, new ranges and probabilities are calculated 

and assignments are done accordingly. Each time, narrower ranges are calculated 

for each alternative because linear programs are solved for the same objectives 

with more constraints. This procedure will repeat until all the alternatives are 

assigned to a class. Each time after the probabilities are calculated, either one of 

the mentioned conditions is satisfied and at least one alternative is classified or 

the DM is asked to place an alternative. 
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3.2.4. Selection of the Alternative to Ask the DM 

 

To select the alternative to be asked to the DM, the following procedure is 

applied. Let s
ta  denote the selected alternative to be asked to the DM. For each 

0Ca t ∈ ,  

( ) ( ) ( )( )tttd kkk 11 maxminmin −−=  

( )
0

1minarg
Ca

s
t

t

tda
∈

=  is selected to be asked to the DM. 

This aims to ask the alternatives which are thought to be close to utility thresholds 

that separate the classes. It is known that ( ) ( )tt kk 1maxmin −>  since the worst 

alternative of 1−kC  has a greater utility than the best alternative of kC . We think 

that class information of such alternatives will give us more restrictive constraints 

than the other alternatives and give us narrower utility ranges.  

 

When we select the alternative to present to the DM for placement, we have some 

information about the class of the alternative. Although the algorithm is not able 

to classify s
ta  exactly, it can narrow down the number of classes it can be placed. 

According to the available information, it will be infeasible for s
ta  to be placed in 

some classes. Therefore, while asking the DM, we can provide fewer classes to 

select from.   

 

If ( ) 1max ' =s
k t , then s

ta  cannot be placed to a worse class than 'k . If  

( ) 1max ' =s
k t  and ( ) 1max 1' <−

s
k t , then 'k  will be the worst class s

ta  can be 

placed. If ( ) 0min '' =s
k t , then s

ta cannot be placed to a better class than ''k . If  

( )s
k t1''min0 +< , then ''k  will be the best class s

ta  can be placed. This means s
ta  

can be placed to classes '',...,1',' kkk + . The DM can decide between  1''' +−kk  

classes instead of q  classes to place s
ta .  
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3.2.5. The Algorithm  

 

We suggest two different ways to implement the approach we proposed. One is 

using the class information of assigned alternatives by the model to classify 

alternatives. The class information of the assigned alternatives will be taken as 

given even though they may be incorrectly classified. If there are alternatives 

assigned by the model, then linear programs should be solved again and new 

probabilities should be calculated by considering the information coming from the 

recently assigned alternatives.  

 

The second one is using only the class information given by the DM. Here, we 

will use the class constraints of alternatives whose classes are given to us by the 

DM. The class constraints of the assigned alternatives by the algorithm are not 

added to linear programs. If there are alternatives assigned by the model, then 

linear programs need not be solved again because we will not use the information 

coming from the assigned alternatives. In this way, after assignments are done 

with the available information, class of an alternative should be asked to the DM 

to get new information. Here, we use class information of alternatives given to us 

at the beginning or asked to the DM during the classification process.  

 

Step 0: Separate the alternatives into two sets 0C  and rC . Put the alternatives to 

be classified to 0C  and put the alternatives whose classes are known to rC . Group 

the alternatives in rC  according to their classes and put them into sets 

qCCC ,...,, 21 .  Let h  be used to count the alternatives assigned in an iteration. Let 

k  denote the class index.  

Step 1: Set 1=k  and 0=h .  Go to step 2.   

Step 2:  

For each 0Cat ∈ ; 

Step 2.1: 

Solve ltLP ,
1.3 for ta  and each kl Ca ∈ . 
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If ( ) 0,*
1.3 ≥ltobj  for one of kl Ca ∈ , go to Step 2.2. 

If qk ≠  and ( ) 0,*
1.3 <ltobj  for all kl Ca ∈ ,  set 1+= kk  and  go to Step 2.1. 

If qk =  and ( ) 0,*
1.3 <ltobj  for ql Ca ∈ ,  go to Step 2.2. 

Step 2.2: 

Solve ltLP ,
2.3  for ta  and each kl Ca ∈ . 

If ( ) 0,*
2.3 <ltobj  for one kl Ca ∈ ,  go to Step 2.3. 

If 1≠k  and ( ) 0,*
2.3 ≥ltobj  for all kl Ca ∈ , set 1−= kk  and go to Step 2.2. 

If 1=k  and ( ) 0,*
2.3 ≥ltobj  for all 1Cal ∈ , go to Step 2.3. 

Step 2.3: 

Find ( )ltp ,  for each la  for which both ( )ltobj ,*
1.3  and ( )ltobj ,*

2.3  is found. 

Find ( )tkmax  and ( )tkmin . Go to Step 2.4. 

Step 2.4 : 

If ( ) ( )tht −≥ 1max1 , take ta  from 0C  and assign to 1C . Set 1+= hh . 

If ( ) ( )thtk −≥ 1max  and ( ) thtk ≤min , take ta  from 0C  and assign to kC . Set 

1+= hh . 

If ( ) thtq ≤min , take ta  from 0C  and assign to qC . Set 1+= hh . 

Step 3:  

If 00 =C , go to Step 4. 

If 00 >C  and 0>h , go to step 1. 

If 00 >C  and 0=h , find ( )
0

1minarg
Ca

s
t

t

tda
∈

=  and present the DM the possible 

classes of ta . Ask the DM to place ta  to one of the presented classes. Take this 

alternative from 0C  and assign it to the class, *kC , chosen by the DM. If 00 >C , 

go to step 1. If 00 =C , go to Step 4. 

Step 4:  Present alternatives in kC  as in class k  to the DM for qk ,...,2,1= . 
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This algorithm uses both correct and potentially incorrect information. If we want 

to work with only guaranteed correct information, the algorithm will be modified 

as follows: 

 

Let 'kC  denote the set of alternatives assigned by the model to class k . 

 

Step 2.4: 

If ( ) ( )tht −≥ 1max1 , take ta  from 0C  and put ta  to '1C  and 1+= hh . 

If ( ) ( )thtk −≥ 1max  and ( ) thtk ≤min , take ta  from 0C  and put ta  to 'kC  and 

1+= hh . 

If ( ) thtq ≤min , take ta  from 0C  and put ta  to 'qC  and 1+= hh . 

Step 3:  

If 00 =C , go to Step 4. 

If  00 >C , find ( )
0

1minarg
Ca

s
t

t

tda
∈

=  and present the DM the possible classes of 

ta . Ask the DM to place ta  to one of the presented classes. Take this alternative 

from 0C  and assign it to the class, *kC , chosen by the DM. If 00 >C , go to step 

1. If 00 =C , go to Step 4. 

Step 4: Present alternatives in kC  and 'kC  as in class k  to the DM for 

qk ,...,2,1= . 

 

This algorithm uses only guaranteed correct information which constitute of the 

classes of alternatives given to us by the DM at the beginning or during the 

solution process.  
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3.3. THE ALGORITHM COMPARING ALTERNATIVES WITH UTILITY 

THRESHOLDS 

 

We suggest a probabilistic classification by calculating the probability of each 

alternative being in each class. We calculate probabilities in a different way. We 

find the probability of alternatives to be classified being better than utility 

thresholds that separate the classes. We look at the minimum and maximum 

values of the difference of utility of each unassigned alternative and each utility 

threshold. We find ranges for the difference and calculate probabilities under 

assumptions on the distribution of the differences. After calculating probabilities, 

alternatives are classified by comparing probabilities with a given threshold. If 

none of the alternatives are classified with the available information, the class of 

an alternative is asked to the DM. Same procedure will be applied until all the 

alternatives are classified.   

  

3.3.1. Linear Programs for Utility Ranges 

 

In this case, we work with the same constraint set but different objective functions 

compared to the previous case. We compare unassigned alternatives with the 

utility thresholds. We find the minimum and maximum values of the difference of 

utility of each alternative from each utility threshold. To find the ranges, two 

linear programs should be solved for each 0Cat ∈  and each ku . The objective of 

the first model is to minimize the difference of utility of ta  from ku  and the 

objective of the second model is to maximize the difference of utility of ta  from 

ku . The linear programs used in the model are as follows: 

 

( )[ ]

( ) ( )6.31.3
.

,
5.3

−

−
tos

uagUMin
LP

kt

kt
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( )[ ]

( ) ( )6.31.3
.

,
6.3

−

−
tos

uagUMax
LP

kt

kt

 

 

These models should be solved for each 0Cat ∈  and for each ku  for 

1,...,2,1 −= qk .  Let the optimal objective function value of ktLP ,
5.3  for ta  and 

ku  be ( )ktobj ,*
5.3  and the optimal objective function value of ktLP ,

6.3 for ta  and 

ku  be  ( )ktobj ,*
6.3 . 

 

If ( ) 0',*
5.3 ≥ktobj  for 'ku , then ( ) 0,*

5.3 ≥ktobj  for ku  for 1,...,2',1' −++= qkkk . 

If ( ) 0,*
5.3 ≥ktobj , then ( ) 0,*

6.3 ≥ktobj .  

 

Obtaining a positive value in the minimization problem, we know that ta  is better 

than ku  so the worst class of ta  is k . If we find ( ) 0',*
5.3 ≥ktobj , then there is no 

need to solve ktLP ,
5.3  for ta  and ku  for 1,...,2',1' −++= qkkk . There is also no 

need to solve ktLP ,
6.3 for ta  and  ku  for 1,...,1',' −+= qkkk . 

 

If ( ) 0',*
6.3 <ktobj  for 'ku , then ( ) 0,*

6.3 <ktobj  for ku  for 1',...,2,1 −= kk . 

If ( ) 0,*
6.3 <ktobj , then ( ) 0,*

5.3 <ktobj .  

 

Obtaining a negative value in the minimization problem, we know that ta  is a 

worse alternative than ku  so the best class of ta  is 1+k . If we find 

( ) 0',*
6.3 <ktobj , then there is no need to solve ktLP ,

6.3  for  ta  and ku  for 

1',...,2,1 −= kk . There is also no need to solve ktLP ,
5.3 for ta  and  ku  for 

',...,2,1 kk = . 
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Let omC =0  and number of classes be q . Then the maximum number of linear 

programs to be solved is ( )12 −⋅⋅ qmo . 

 

3.3.2. Probability Calculation 

 

Uniform Distribution 

 

We calculate the probabilities in a similar way as in the previous case. It is 

assumed that the difference of the utility of each alternative and each utility 

threshold has a uniform distribution between the calculated minimum and 

maximum values. Each utility difference follows ( ) ( )[ ]ktobjktobjU ,,, *
6.3

*
5.3 . 

 

What we need in our model is ( )[ ][ ]0≥− kt uagUP . Let ( )ktobja ,*
5.3=  and 

( )ktobjb ,*
6.3= . 

Let ( ) ( )[ ][ ]0≥−= ktk uagUPtp . Then ( )tpk  is found as follows: 

( ) ( )
( )











≤

>≤
−
−

>

=

00

0,00
01

bif

baif
ab

b
aif

tpk  

 

Symmetric Triangular Distribution 

 

We work with the difference of utility of alternatives and utility thresholds. The 

values of utility thresholds depend on the utility values of alternatives. They 

constitute the borders of the classes and they can be minimized and maximized up 

to the worst and best alternatives of classes. Since they are not independent, 

assuming the difference will follow a symmetrical triangular distribution will only 

be an approximation. 

 



  

 50 

Let ( )ktobja ,*
5.3=  and ( )ktobjb ,*

6.3= . Let ( ) ( )[ ][ ]0≥−= ktk uagUPtp and then 

( )tpk  is found as follows: 

( ) ( )
( )

( )
( )
















≤

>≤
+

−

>
+

≤
−

−

>

=

00

0,0
2

2

0
2

,021

01

2

2

2

2

bif

bbaif
ab

b

baaif
ab

a
aif

tpk  

 

Normal Distribution 

 

We found that under the assumption that the utility values of subintervals follow 

uniform distribution within their calculated ranges; the difference of utility values 

of two alternatives will follow normal distribution if the sum of the utility values 

of subintervals is conditioned to be 1 in Section 3.2.2. We use the difference of 

utility of alternatives from utility thresholds. We need the conditional distribution 

of utility of alternatives and the distribution of utility thresholds. Then, we can 

find the distribution of the difference. 

 

Distribution of Utility Values of Alternatives   

 

The conditional distribution of the utility values of alternatives can be calculated 

in a similar way. . Let ( )jaµ  be the expected value of ( )[ ]jagU  and ( )jaσ  be the 

standard deviation of ( )[ ]jagU .  ( )jaµ  and ( )ja2σ  can be calculated as follows: 

( )[ ] ( )∑∑
= =

⋅=
n

i

b

p
ipjipj

i

wazagU
1 1

 

( )[ ] ( ) ( ) ( )∑∑
= =

⋅==



 n

i

b

p
ipjipjj

i

wazaagUE
1 1

µµ  
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( )[ ] ( ) ( )( ) ( )∑∑
= =

⋅==



 n

i

b

p
ipjipjj

i

wazaagUV
1 1

222 σσ  

We need the distribution given that ∑∑
= =

==
n

i

b

p
ip

i

wY
1 1

1 . We need to find the joint 

distribution of ( )[ ]jagU  and Y . Let us denote ( )[ ]jagU  as U , ( )jaµ  as )(Uµ  

and ( )jaσ  as ( )Uσ . The joint distribution of U  and Y follows a bivariate normal 

distribution with parameters ( )Uµ , ( )U2σ , ( )Yµ , ( )Y2σ , ρ . ρ can be found as 

follows: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) [ ]∑∑

∑∑∑∑∑∑

= =

= = = == =

⋅−⋅−

⋅⋅++⋅=

n

i

b

p
ipjip

n

i

b

p

n

i

b

p
piipjip

n

i

b

p
ipipjip

i

i ii

YUwaz

wwazwwazYUCov

1 1

2

1 1 1' 1'
''

1 1

22

)()(

,
'

µµµ

µµµσ

 

( )
( ) ( )YU

YUCov
σσ

ρ
,

=  

 

Conditional distribution of bivariate normally distributed random variables 

follows normal distribution. U  will follow normal distribution with parameters  

[ ]1=YUE  and [ ]1=YUV . 

 

[ ] ( ) ( )
( ) ( )( )Y
Y
UUYUE µ

σ
σ

ρµ −−== 11  

[ ] ( ) ( )2211 YYUV σρ−==  

 

Distribution of Utility Thresholds 

 

We will treat each ku  as a random variable. We do not know the actual value and 

we try to find the probability of possible values being the actual value. We can 

find the minimum and maximum values each ku  by solving the constraint set S 
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with objectives the of minimizing and maximizing each ku . To do this, we need 

to solve the following models for 1,...,2,1 −= qk  . 

 

 

 

( ) ( )6.31.3
.

8.3

−
tos

uMin

LP

k

k

 

 

Let ( )kobj*
7.3  be the optimal objective value of kLP 7.3 and ( )kobj*

8.3  be the optimal 

objective value of kLP 8.3 . We need to solve ( )12 −⋅ q  LPs to find the ranges of 

utility thresholds. We fit a normal distribution to each ku . We assume that ku  has 

a higher probability of being around the mean. We know the minimum and 

maximum values. Let ( )kuµ  be the expected value of ku  and ( )kuσ  be the 

standard deviation of ku . We assume ( )kuµ  is at the middle of the range.  

[ ] ( ) ( ) ( )( )
2

*
8.3

*
7.3 kobjkobjuuE kk

+
== µ  

 

When we assume a normal distribution, there is a positive probability that ku  is 

smaller than ( )kobj*
7.3  or greater than ( )kobj*

8.3 . In order to have a small chance of 

being out of the range, we assume that standard deviation of ku  is 6/1  times the 

length of the range. By assuming this, we make our fitted distribution cover the 

range with more than 99% probability. Let X be any normally distributed random 

variable with mean µ  and standard deviation σ , then  

( ) ( ) ( ) 9974.00013.09987.03333 =−=−−=+≤≤− φφσµσµ XP .  

( ) ( )6.31.3
.

7.3

−
tos

uMin

LP

k

k
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Therefore [ ]kuV  is calculated as following. 

[ ] ( ) ( ) ( )( ) 2*
7.3

*
8.32

6 






 −
==

kobjkobjuuV kk σ  

 

Distribution of the Differences 

 

We showed that each ( )[ ] 1=YagU t  follows ( ) ( )( )tt aaN 2',' σµ . We assumed 

that each ku  follows ( ) ( )( )kk uuN 2,σµ . We need the distribution of the difference 

of each ( )[ ] 1=YagU t  from each ku . Let ( )td k  be the difference of 

( )[ ] 1=YagU t  from ku  and ( ) ( )[ ] ktk uYagUtd −





 == 1 . Let the expected 

value of ( )tdk  be ( )( )td kµ  and the standard deviation be ( )( )td kσ . 

( )( )td kµ  can be found by taking the difference of means. 

( )[ ] ( )( ) ( )[ ] [ ] ( ) ( )ktktkk uauEYagUEtdtdE µµµ −=−













 === '1  

To find the variance of the difference, we treat ( )[ ] 1=YagU t  and ku  as 

independent random variables. The alternatives that are assigned to the classes 

affect the values the utility thresholds can take.  Assuming that they are 

independent is an approximation.   

( )[ ] ( )( ) ( )[ ] [ ] ( ) ( )ktktkk uauVYagUVtdtdV 222 '1 σσσ +=+













 ===  

We assume that the difference will follow a normal distribution with 

mean ( )( )tdkµ  and variance ( )( )tdk
2σ . 
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Probability Calculation 

 

We need ( )[ ] 







≥−






 = 01 kt uYagUP . We found the parameters of the 

distribution and we can calculate the probabilities. However, we have more 

information about the difference. We have found the minimum and the maximum 

values the difference can take. We work on the conditional distribution which is 

feasible subject to constraint set S.  

 

We will calculate the conditional probability of ( )tdk  being greater than 0 given 

that ( )td k  is between the minimum and the maximum value of difference. 

Let ( ) ( ) ( ) ( ) ( )[ ]ktobjtdktobjtdPtp kkk ,,0 *
6.3

*
5.3 ≤≤≥=  and then ( )tpk  is found as 

follows: 

( ) ( )( ) ( ) ( ) ( )( )[ ]
( ) ( ) ( )[ ]ktobjtdktobjP

ktobjtdktobjtdPtp

k

kk
k

,,

,,0

*
6.3

*
5.3

*
6.3

*
5.3

≤≤

≤≤∩≥
=  

 

If ( ) 0,*
5.3 ≥ktobj , the intersection is the universal set and all possible values of 

( )tdk  is greater than 0 and ( ) 1=tpk . 

 

If ( ) 0,*
5.3 <ktobj  and ( ) 0,*

6.3 ≥ktobj ,  

( ) ( )( ) ( ) ( ) ( )( )[ ]
( ) ( ) ( )[ ]
( ) ( )[ ]

( ) ( ) ( )[ ]ktobjtdktobjP

ktobjtdP
ktobjtdktobjP

ktobjtdktobjtdPtp

k

k

k

kk
k

,,

,0

,,

,,0

*
6.3

*
5.3

*
6.3

*
6.3

*
5.3

*
6.3

*
5.3

≤≤

≤≤
=

≤≤

≤≤∩≥
=

 

( )

( ) ( )( )
( )( )

( )( )
( )( )

( ) ( )( )
( )( )

( ) ( )( )
( )( ) 
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 −
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k
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σ
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σ
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*
6.3

*
6.3
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If ( ) 0,*
6.3 <ktobj , the intersection is an empty set and there does not exist any  

possible value of ( )tdk  that is greater than 0 and ( ) 0=tpk . In summary, 

( )

( )
( ) ( )( )

( )( )
( )( )
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We can try to find ( )[ ] 1=− YuagU kt . It is difficult to find the covariance 

between ( )[ ]tagU  and ku  since ku  cannot be expressed in terms of ipw  values. 

One thing we can try is to fit a normal distribution for ( )[ ]( ) 1=− YuagU kt  on 

the range found for the difference. By this way, we do not need assume 

independence for ( )[ ] 1=YagU t  and ku . Normal distribution for 

( )[ ]( ) 1=− YuagU kt  will be found in the same way we find a normal 

distribution to ku . Expected value will be the middle of the range and standard 

deviation will be 
6
1  times of the width of the range to have the probability of 

being in the range more than 99%. 

 

3.3.3. The Classification of Alternatives   

 

We calculate probabilities for each alternative in 0C  to be better than each ku  and 

denote ( )tpk  as the probability of ta  being better than ku . The alternatives are 

classified according to the comparison of probabilities to a predefined threshold 

value. Let th  denote the threshold value. 
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Exact Classification  

 

If we set th  as 0, then we will make an exact classification. If ( ) 1=tpk , then ta  

is guaranteed to be better than ku . This means that there does not exist any set of 

parameters making utility of ta  smaller than ku . If ( ) 0=tpk , then ta  is 

guaranteed to be worse than ku . This means that there does not exist any set of 

parameters making utility of ta  greater than ku . 

 

With these probabilities we can make an exact classification if the following 

conditions are satisfied: 

If ( ) 11 =tp , then ta  is in 1C . 

If ( ) 1=tpk  and ( ) 01 =− tpk , then ta  is in kC . 

If ( ) 01 =− tpq , then ta  is in qC . 

 

Probabilistic Classification 

 

If 0>th , we make a probabilistic classification. The assignment of alternatives to 

the classes is done in the following way:   

If ( ) ( )thtp −≥ 11 , then ta  is better than 1u  with at least ( )th−1  probability.. 

Therefore ta  is assigned to 1C . 

 

If ( ) ( )thtpk −≥ 1  and ( ) thtpk ≤−1 , then ta  is better than ku  with at least ( )th−1  

probability and worse than 1−ku with at least ( )th−1  probability.. Therefore ta  is 

assigned to kC . 

 

If ( ) thtpq ≤−1 , then ta  is worse than 1−qu  with at least ( )th−1  probability. 

Therefore ta  is assigned to qC .  
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With the calculated probabilities, the alternatives in set C0 which satisfy one of 

the above conditions are classified. If no assignments are done, then the class of 

one alternative is asked to the DM. With the class information taken from the 

DM, new probabilities are calculated. This procedure will repeat until all the 

alternatives are assigned to classes. 

  

3.3.4. Selection of the Alternative to Ask the DM 

 

To select the alternative to be asked to the DM, the following procedure is 

followed. For each 0Cat ∈ ; 

( ) ( )( )5.0min2 −= tptd kk
 for 1,...,2,1 −= qk  

( )
0

2minarg
Ca

s
t

t

tda
∈

=  is selected to be asked to the DM. 

 

We select the alternative that has the closest probability of being better than any 

of the utility thresholds to 0.5. Probability of 0.5 means the alternative can be 

better or worse than a utility threshold with equal probability. It is equally likely 

that the alternative can be better or worse than a utility threshold. This means we 

are not able to obtain any information about the position of the alternative 

according to that threshold. We aim to ask the alternatives that we do not obtain 

much information about. We think that knowing the classes of such alternatives 

will give more restrictive constraints and give us narrower utility ranges.     

 

Let s
ta  denote the selected alternative to be asked to DM. We can narrow down 

the number of classes s
ta can be placed as in the previous case. If ( ) 1' =tpk  and 

( ) 10 1' << − tpk , then 'k  will be the worst class s
ta can be placed. If ( ) 0'' =tpk  and 

( ) 10 1'' << + tpk , then ''k  will be the best class s
ta can be placed. s

ta  can be placed 

to classes '',...,1',' kkk + . 
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3.3.5. The Algorithm 

 

As in the previous case, we suggest two different ways to implement the 

algorithm. One is taking the class information of assigned alternatives as given 

and the other one is using only the class information coming from the DM. 

 

Step 0: Separate the alternatives into two sets 0C  and rC . Put the alternatives to 

be classified to 0C  and put the alternatives whose classes are known to rC . Let h  

be used to count the alternatives assigned in an iteration. Let k  denote the index 

for utility thresholds.  

Step 1: Set 1=k  and  0=h .  Go to step 2.  

Step 2:  

For each alternative in 0C ; 

Step 2.1: 

Solve ktLP ,
5.3 for ta  and ku . 

If ( ) 0,*
5.3 ≥ktobj , go to Step 2.2. 

If 1−≠ qk  and ( ) 0,*
5.3 <ktobj ,  set 1+= kk  and  go to Step 2.1 

If 1−= qk  and ( ) 0,*
5.3 <ktobj ,  go to Step 2.2. 

Step 2.2: 

Solve ktLP ,
6.3 for ta  and ku . 

If ( ) 0,*
6.3 <ktobj ,  go to Step 2.3. 

If 1≠k  and ( ) 0,*
6.3 ≥ktobj , set 1−= kk  and go to Step 2.2. 

If 1=k  and ( ) 0,*
6.3 ≥ktobj , go to Step 2.3. 

Step 2.3: 

Find ( )tpk  for each ta  and ku  for which both ( )ktobj ,*
5.3  and ( )ktobj ,*

6.3  is found. 

Go to Step 2.4. 
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Step 2.4 : 

If ( ) ( )thtp −≥ 11 , take ta  from 0C  and assign to 1C . Set 1+= hh . 

If ( ) ( )thtpk −≥ 1  and ( ) thtpk ≤−1 , take ta  from 0C  and assign to kC . Set 

1+= hh . 

If ( ) thtpq ≤−1 , take ta  from 0C  and assign to qC . Set 1+= hh . 

Step 3:  

If 00 =C , go to Step 4. 

If 00 >C  and 0>h , go to step 1. 

If 00 >C  and 0=h , find ( )
0

2minarg
Ca

s
t

t

tda
∈

=  and present the DM the possible 

classes of s
ta . Ask the DM to place s

ta  to one of the presented classes. If the DM 

assigns this alternative to class *k , take it from 0C  and place in *kC . If 00 >C , 

go to step 1. If 00 =C , go to Step 4. 

Step 4:  Present alternatives in kC  as in class k  to the DM for qk ,...,2,1= . 

 

If only the guaranteed correct information is to be considered, the following 

modifications will be done to the algorithm. 

 

Let 'kC  denote the set of alternatives assigned by the model to class k . 

 

Step 2.4 : 

If ( ) ( )thtp −≥ 11 , take ta   from 0C  and put ta  to '1C  and 1+= hh . 

If ( ) ( )thtpk −≥ 1  and ( ) thtpk ≤−1 , take ta   from 0C  and put ta  to 'kC  and 

1+= hh . 

If ( ) thtpq ≤−1 , take ta   from 0C  and put ta  to 'qC   and 1+= hh . 
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Step 3:  

If 00 =C , go to Step 4. 

If 00 >C , find ( )
0

2minarg
Ca

s
t

t

tda
∈

=  and present the DM the possible classes of 

s
ta . Ask the DM to place s

ta  to one of the presented classes. If the DM assigns 

this alternative to class *k , take it from 0C  and place in *kC . If 00 >C , go to 

step 1. If 00 =C , go to Step 4. 

Step 4:  Present alternatives in kC  and 'kC  as in class k  to the DM for 

qk ,...,2,1= . 

 

3.4. DISCUSSIONS ON TWO DIFFERENT APPROACHES 

 

We propose two approaches. One is to compare the unassigned alternatives with 

already assigned alternatives. The other is to compare unassigned alternatives 

with utility thresholds. In LPs we used, the utility of alternatives are restricted by 

utility thresholds. We observed that two approaches do not give the same results.  

( ) ( )6.31.3
.
1

−

=
tos

uMinz k

    
( ) ( )[ ]

( ) ( )6.31.3
.
2

−

=
tos

agUMinlz l

                                         

( ) ( )6.31.3
.
3

−

=
tos

uMaxz k

   
( ) ( )[ ]

( ) ( )6.31.3
.
4

−

=
tos

agUMaxlz l

    

 

ku  can be decreased more than utility values of kl Ca ∈  up to the utility values of 

1+∈ kl Ca  and this results in ( )lzMinz
kl Ca 21 ∈

≤ . 

 

ku  can be increased more than utility values of 1+∈ kl Ca  up to the utility values 

of kl Ca ∈  and this results in ( )lzMaxz
kl Ca 43

1+∈
≥ . 
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In the approach we compare alternatives with already assigned ones, we use the 

objectives of ( )[ ] ( )[ ]lt agUagUMin −  and ( )[ ] ( )[ ]lt agUagUMax −  for every 

kl Ca ∈  and for each k . In the approach we compare with utility thresholds, we 

use the objectives of ( )[ ] kt uagUMin −  and ( )[ ] kt uagUMax − . Since ku  can 

be increased more than the utility values of 1+∈ kl Ca , we obtain smaller values 

for the minimum of difference in the pairwise comparison approach. Since ku  can 

be decreased more than the utility values of kl Ca ∈ , we obtain greater values for 

the maximum of difference in the pairwise approach. Subject to same constraints, 

the range we obtained in the approach that compares alternatives with utility 

thresholds is a subset of the range obtained in the pairwise approach. This means 

we work with larger ranges for difference in the pairwise approach. Larger ranges 

means we have less information about the differences and it is harder to place 

alternatives than the approach we compare alternatives with utility thresholds. 

 

In the pairwise approach, the maximum number of linear programs to be solved is 

rCC ⋅⋅ 02  at one iteration. Assume that there are mA =  alternatives and we 

start with one alternative assigned. At the worst case, we assume that we are not 

able to assign any alternatives and each time we ask the DM to place one 

alternative. Then, the total number of LPs needed to be solved throughout the 

algorithm can be found as follows.  

( ) ( ) ( )

33
4

3

6
1212

2
2222

23

2

1

2

11

mmm

mmmmmmiimiim
m

i

m

i

m

i

++=

+⋅−⋅
⋅−

+
⋅⋅=⋅−⋅⋅=⋅−⋅ ∑∑∑

=== .  

There are a polynomial number of LPs ( )( )3mO . The algorithm will end in 

polynomial time since each LP is solvable in polynomial time. This will be a 

worst case behavior and when the algorithm assigns alternatives, we will solve 

fewer LPs. When we compare the utility of alternatives with utility thresholds, the 

maximum number of linear programs to be solved is ( ) 012 Cq ⋅−⋅  at one 
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iteration. At the worst case, the total number of LPs needed to be solved 

throughout the algorithm is ( ) ( ) ( ) ( )mmqmmqiq
m

i
+⋅−=

+
⋅−⋅=⋅−⋅ ∑

=

2
2

1
1

2
1212 . 

There are a polynomial number of LPs ( )( )2mqO ⋅  and the second algorithm will 

also end in polynomial time. The numbers of LPs are calculated for worst case 

behaviors. When the algorithm assigns alternatives, we will solve fewer LPs. As 

m  increases, number of LPs needed to solve for the pairwise algorithm increases 

more than the algorithm we compare alternatives with utility thresholds. 

 

3.5. DISCUSSIONS ON TWO DIFFERENT IMPLEMENTATIONS 

 

We suggest two different ways to implement the two different approaches we 

proposed. One way is using the class information of assigned alternatives by the 

algorithm to classify alternatives. When alternatives are assigned by the model, 

the class information of newly assigned alternatives is used even though they may 

be classified incorrectly. The probabilities calculated in this model are with 

respect to both correct and incorrect information. Therefore, the probabilities 

cannot be interpreted as the probability of being in class k . For instance, if an 

alternative has a 0 probability of being in class k  that does not necessarily mean 

that it cannot be in class k , because the information used in the calculation of this 

probability may be incorrect.   

 

The other way is using the class information given by the DM only. Here, we use 

the class constraints of alternatives whose classes are given to us by the DM. The 

class constraints of the assigned alternatives are not added to LPs. Probabilities 

are calculated using only correct information. If an alternative has 0 probability of 

being in class k , then this means that it cannot be in class k  for sure.  
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Theorem: If alternative j  is placed to class k  by using only correct information 

at 0 probability threshold, then the class constraints of this alternative 

( )[ ] δ−≤− −1kj uagU  and ( )[ ] 0≥− kj uagU  are redundant. 

 

Proof: In order to place alternative j , we solve LPs with objectives 

( )[ ] kj uagUMin −  and ( )[ ] kj uagUMax − for each class k . If we obtain 

( )[ ]( ) 0≥− kj uagUMin  and ( )[ ]( ) 01 <− −kj uagUMax , then alternative j  is 

placed in class k . This implies that ( )[ ] 1−<≤ kjk uagUu . According to the results 

of the solved LPs, when all constraints are satisfied, ( )[ ] 1−<≤ kjk uagUu  will be 

automatically satisfied. This means  ( )[ ] δ−≤− −1kj uagU  and ( )[ ] 0≥− kj uagU  

do not restrict the current feasible region. Therefore, class constraints of 

alternative j are redundant.       

 

When probability threshold we used in our model is 0, then that does not make 

any difference to add class constraints of the alternatives assigned by the model. 

Therefore, there is no need to solve LPs and calculate probabilities when 

alternatives are classified by the model. The classification of these alternatives 

does not give any new information to us. The LPs should be solved and 

probabilities should be calculated again when the class of an alternative is asked 

to the DM.     

 

When we work with probability thresholds greater than 0, adding the class 

constraints of assigned alternatives makes a difference. If an alternative is 

classified probabilistically by using only the correct information, then the class 

constraints of this alternative are not redundant. If an alternative is classified 

probabilistically to class k , we write constraints ( )[ ] δ−≤− −1kj uagU  and 

( )[ ] 0≥− kj uagU  to the model; although we obtained ( )[ ]( ) 0<− kj uagUMin  
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or ( )[ ]( ) 01 ≥− −kj uagUMax . This means there are points in the current feasible 

region that do not satisfy these constraints. By writing these class constraints, we 

eliminate some points in the feasible region. Therefore, LPs should be solved and 

probabilities should be calculated again because their results have been changed 

with the assignments of new alternatives.  

 

3.6. INFEASIBLE CASES 

 

In the algorithm using the class information of assigned alternatives, 

infeasibilities may occur. When we ask the DM the class of a selected alternative, 

we present the DM the possible classes it can be placed to. When we ask the DM 

among the possible classes the alternative can be placed according to the available 

information, this information includes the class information of the misclassified 

alternatives. So we can face a situation such that the DM places an alternative to a 

class which is not a member of the narrowed set. It becomes infeasible to place 

the alternative to its correct class because of using the class constraints of the 

misclassified alternatives. In such a case, we suggest the following procedure. 

 

We can detect infeasibility after we ask the DM to place an alternative. If we 

detect infeasibility, the alternative is assigned to the class the DM placed but we 

let violation of the class constraints for that alternative. We solve an LP to 

minimize the violation of the class constraints. We use the results of this LP as 

given in the next iteration. The constraints for that alternative are added to the 

constraint set with the minimum violation value used as a parameter.  

Let ga  denote the alternatives which we detected infeasibility while placing to 

the class given by the DM. Let 'kC  denote the set of alternatives which are 

originally in kC  but it is infeasible to place them to kC after assignments. If the 

DM places ga  to class k , we put ga  to set 'kC  instead of kC . For a particular 

alternative 'ga , let 'gε  be the minimum amount of violation of class constraints of 
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'ga .  If the DM places 'ga  to class *k , then the  minimum amount of violation is 

found by solving the following LP.  

 

( ) ( )6.31.3
.

'

'
9

−
tos

Min
LP

g

g

ε
 

( )[ ]
( )[ ]
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( )
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Constraints ( )7.3  and ( )8.3  are written for the alternatives which are previously 

placed to 'kC . gV  denotes the minimum amount of violation previously found for 

ga  and it is used as a parameter in '
9

gLP . After solving '
9

gLP , 'ga  is assigned to 

'kC . The objective value of '
9

gLP  is taken and it is used as parameter 'gV  to 

modify the constraint set S  we used to solve all the mentioned LPs.  All the 

mentioned LPs will be solved subject to constraints ( ) ( )8.31.3 − . 

 

Another way to deal with the infeasibilities is not to use the class information of 

the alternatives that we detect infeasibility while placing them to their original 

classes. If it is infeasible to place ga  to the class the DM placed, we do not add 

the class constraints of ga  to constraint set S . We put ga  to set 'kC  and do not 

write any constraints on 'kg Ca ∈ . We select another alternative to ask to the DM 

and continue with information coming from that alternative. In the end, we 

present the DM the alternatives both in kC  and 'kC  as in class k.  

 

We worked on ways to deal with infeasibilities. We looked for a way to find the 

misclassified alternatives causing infeasibility. The class constraints of some of 

the misclassified alternatives conflict with the class constraints of the alternatives 
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assigned by the DM. We tried to solve an LP to eliminate the misclassified 

alternatives causing infeasibility. We relaxed class constraints of each alternative 

except for the ones that are placed by the DM. We added decision variables 

corresponding to violation of each class constraint. We solved this model with 

objective of minimizing total violation. We discarded the class constraints of the 

alternatives that have a positive violation value. After discarding them, the LPs 

used become feasible again. We treated them as unassigned alternatives and put 

into classification procedure again. By this way, we aim to eliminate some of the 

misclassified alternatives. However, correctly classified alternatives can have 

positive violation values. It is not guaranteed that only misclassified alternatives 

will be discarded because LP solved to minimize the violation can find a feasible 

combination of decision variables by relaxing the correctly classified alternatives. 

When we use the objective of minimizing the number of constraints to be violated 

instead of minimizing total violation, we end up with similar results. With that 

approach, we handle infeasibility but we lose information of some of the correctly 

classified alternatives. Therefore, these two approaches are not guaranteed to 

improve the results of the model.  

 

Infeasible cases can occur when we use the class information of the assigned 

alternatives. If we work with only correct information, we do not face with an 

infeasible case. While working with the correct information, it can happen that 

there does not exist a utility function that can generate the classification we 

suggest to the DM. However, this situation does not cause any difficulty to us and 

does not cause any problems while the algorithm is working. 
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CHAPTER 4 
Equation Section (Next) 

 
4 IMPLEMENTATION AND RESULTS 

 
 
 

We proposed an interactive multi-criteria sorting algorithm. We proposed two 

different approaches and two different ways of implementation. We showed how 

probabilities can be calculated when the difference follows uniform distribution, 

symmetric triangular distribution and normal distribution. 

 

We implement our algorithm on a data set used by Köksalan and Özpeynirci 

(2009). Financial times publishes its ranking of top 100 global MBA programs 

every year. The programs are ranked based on three main criteria which are 

alumni career progress, diversity and idea generation. Köksalan et. al. (2009b) 

study the MBA ranking problem for 81 MBA programs using 2005 data and 

generate numerical scores based on the ranking provided by Financial Times. 

Köksalan and Özpeynirci (2009) experiments with this data to sort 81 MBA 

programs using 2005 data into 3 groups. We implement our algorithm with the 

same data set.  

 

The alternatives are grouped into 3 classes. Each criterion range is divided into 3 

subintervals. The limits of the subintervals can be seen in Table A.1. Köksalan 

and Özpeynirci (2009) assume the DM has an underlying model with parameter 

values *
ku  and *

ipw , 2,1=k , 3,2,1=i  and 3,2,1=p . They use 65.0*
1 =u , 

40.0*
2 =u  and the *

ipw  values in Table A.2. The marginal utility function of the 

DM on each criterion can be seen in Figure 4.1. 



  

 68 

Criterion 1

Criterion 2

Criterion 3

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

g i (a )

u i [g i (a )]

 
Figure 4.1: The Marginal Utility Functions on Each Criterion 

 

 

The utility of the alternatives are calculated and the classes are assigned according 

to this underlying preference structure. 15 of the alternatives are in class 1, 47 of 

the alternatives are in class 2 and 19 of the alternatives are in class 3. We will use 

the same data and the same underlying model they assumed for the DM. 

 

We evaluate our algorithm based on the number of misclassified alternatives and 

the number of alternatives whose classes are asked to the DM. We will try our 

algorithm for different probability threshold values. Probability threshold in the 

algorithm can be seen as a measure of the confidence level of the DM. When 

probability threshold is 0, we make an exact classification and we do not 

misclassify any of the alternatives. When probability threshold is small, the DM is 

expected to give more information but most of the alternatives will be correctly 

classified. When probability threshold is large, the DM does not give much 

information but accepts a relatively high number of misclassified alternatives. As 

probability threshold increases, we expect our algorithm to ask fewer questions 

and misclassify more alternatives. However, we can get unexpected results as 

well. Since there is randomness in the process, we can end up with fewer 

questions asked and fewer alternatives misclassified or with more questions asked 
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and more alternatives misclassified as probability threshold increases just by 

chance.    

 

Sometimes, even if we cannot specify the class of an alternative, we may be able 

to reduce the possible number of classes it may belong to. To account for such 

situations, we also look at the number of classes presented to the DM to place the 

alternatives. We present the DM the possible classes the alternative can be placed 

and the DM can select the class from a narrowed set.     

 

4.1. COMPARISON OF TWO DIFFERENT APPROACHES 

 

We proposed two different approaches. One suggests the pairwise comparison of 

the utility of alternatives and the other suggests comparison of the utility of 

alternatives with utility thresholds. We see that it is harder to place the 

alternatives in the pairwise approach. We made experiments to compare two 

different approaches under the assumption that the differences will a follow 

uniform distribution. We used the mentioned data set and we used 4 more 

samples by changing the assumed underlying utility thresholds. Changing utility 

thresholds caused the change of the class of alternatives. We tested our data on 

these 5 samples. The utility thresholds and the number of alternatives in each 

class can be seen from Table 4.1. 

 

 

Table 4.1: Utility Thresholds and the Number of Alternatives in Each Class 

 
 u1 u2 Class 1 Class 2 Class 3 

Sample 1 0.40 0.65 15 47 19 
Sample 2 0.45 0.60 25 25 31 
Sample 3 0.43 0.58 27 27 27 
Sample 4 0.52 0.65 15 24 42 
Sample 5 0.40 0.55 35 27 19 
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The detailed results of the two approaches on 5 different samples can be seen in 

Tables 4.2 and 4.3.  

 

 

Table 4.2: Number of Misclassifications and Questions of Pairwise Model on 
Different Samples 

 
  PAIRWISE COMPARISON 

 Threshold 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 
Misclassification 0 0 0 0 0 0 3 3 3 22 14 Sample 

1 Question 47 43 39 36 31 30 27 26 18 10 0 
Misclassification 0 0 0 0 0 2 4 4 4 6 16 Sample 

2 Question 57 56 53 48 43 42 27 35 22 11 0 
Misclassification 0 0 0 0 0 0 0 1 6 8 24 Sample 

3 Question 58 57 54 48 38 49 35 24 14 4 0 
Misclassification 0 0 0 0 0 0 0 0 1 3 10 Sample 

4 Question 64 60 54 48 37 34 31 26 17 8 0 
Misclassification 0 0 0 0 0 1 0 4 4 8 27 Sample 

5 Question 57 54 50 45 39 44 31 35 15 7 0 

 
 

 
 

Table 4.3: Number of Misclassifications and Questions of the Model Comparing 
with Utility Threshold 

 
  COMPARING WITH UTILITY THRESHOLDS 

 Threshold 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 
Misclassification 0 0 0 0 0 0 5 8 12 15 29 Sample 

1 Question 33 32 32 31 27 21 15 9 6 4 0 
Misclassification 0 0 0 0 2 4 6 10 12 18 22 Sample 

2 Question 32 32 30 26 23 21 16 12 10 6 0 
Misclassification 0 0 0 0 1 6 8 13 17 22 28 Sample 

3 Question 34 33 30 27 24 19 15 12 7 3 0 
Misclassification 0 0 0 0 0 0 2 5 9 9 13 Sample 

4 Question 32 29 26 21 19 18 14 11 5 3 0 
Misclassification 0 0 0 1 2 5 12 15 17 19 21 Sample 

5 Question 34 32 29 28 21 16 10 8 5 3 0 
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When we make an exact classification, comparing with utility thresholds 

performs better. It is able to classify asking fewer questions to the DM. This is an 

expected result because it is harder to place the alternatives in the pairwise 

approach. When probability threshold is small, both approaches make few 

misclassifications. Since comparing with utility thresholds asks fewer questions, 

it is preferred over the pairwise approach when the probability threshold is small. 

As probability threshold increases, the pairwise approach seems to make fewer 

misclassifications and ask more questions in our problems.  

 

We compare CPU times for two approaches for different values of probability 

threshold. We give the results for 81 alternative MBA data for the original 

underlying model 65.0*
1 =u , 40.0*

2 =u  and the *
ipw  values in Table A.2. We 

implement our algorithm in C++ programming language. We use Microsoft 

Visual C++ 6.0 to implement our algorithm and use Cplex 10.1 solver to find the 

optimal solutions of the linear programs. Computational tests are made on a Intel 

Pentium D 3.00 GHz, 512 MB RAM computer running Microsoft Windows XP. 

The results can be seen in Table 4.4.  

 

 

Table 4.4: CPU Times for Two Approaches  
 

Threshold Pairwise comparison Comparing with utility thresholds 
0.00 1702.66 105.44 
0.05 1624.73 106.80 
0.10 1482.05 85.98 
0.15 1380.61 86.03 
0.20 1177.30 62.72 
0.25 1325.84 43.25 
0.30 1185.28 23.67 
0.35 537.67 13.97 
0.40 525.14 9.02 
0.45 343.14 5.63 
0.50 198.78 3.58 
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We see that the implementations take much more CPU times at the pairwise 

approach compared to the one we compared the alternatives with utility 

thresholds. This is because the number of LPs solved at pairwise approach is 

much greater. As the probability threshold decreases, the CPU times decreases for 

both approaches. Since more alternatives are assigned in one iteration, fewer LPs 

are solved. We see that the pairwise approach is computationaly disadventageous 

compared to the other algorithm at all probability threshold values. We will 

compare the utility of the alternatives with utility thresholds in our next 

experiments. 

 

4.2. COMPARISON OF DIFFERENT IMPLEMENTATIONS 

 

We mentioned two different implementations. First one is using the information 

coming from the assigned alternatives. In this implementation, the information 

coming from misclassified alternatives are also used. The other one is using only 

the information coming from the DM. This implementation uses only correct 

information. We made an experiment on the data set mentioned for two different 

implementations.  

 

When we ask the DM to place an alternative, we sometimes have information 

about the alternative and we are able to narrow down the number of classes the 

alternative can be placed in. For this three class problem, we present the number 

of alternatives that the classes they can be placed in are narrowed down to two 

and are not narrowed down. The number of questions asked to the DM will be 

sum of these numbers. We give detailed information for the alternatives that are 

placed by the DM. In general, the number of questions asked to the DM will be 

sum of the number of alternatives whose classes are narrowed down to 

1,...,3,2 −q  classes and the number of alternatives not narrowed down. The 

detailed results can be seen in Tables 4.5 and 4.6.  
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Table 4.5: Number of Misclassifications and Questions of the Model Using 

Information of Assigned Alternatives 
 

Threshold Misclassification Questions 
asked 

Narrowed 
down to 
1 class 

Narrowed 
down to 2 
classes 

Not 
narrowed 

down 
0.00 0 33 48 31 2 
0.05 0 32 49 30 2 
0.10 0 30 51 29 1 
0.15 3 24 57 22 5 
0.20 24 14 67 11 3 
0.25 17 14 67 12 2 
0.30 23 9 72 9 0 
0.35 23 6 75 6 0 
0.40 29 2 79 2 0 
0.45 33 0 81 0 0 
0.50 29 0 81 0 0 

 

 

 

Table 4.6: Number of Misclassifications and Questions of the Model Using 
Correct Information 

 

Threshold Misclassification Questions 
asked 

Narrowed 
down to 
1 class 

Narrowed 
down to 2 
classes 

Not 
narrowed 

down 
0.00 0 33 48 31 2 
0.05 0 32 49 30 2 
0.10 0 32 49 30 2 
0.15 0 31 50 29 2 
0.20 0 27 54 25 2 
0.25 0 21 60 19 2 
0.30 5 15 66 13 2 
0.35 8 9 72 7 2 
0.40 12 6 75 3 3 
0.45 15 4 77 2 2 
0.50 29 0 81 0 0 

 

 

 

Both implementations have the same results when we make an exact 

classification. As the probability threshold increases, the first implementation 

asks fewer questions to the DM and results in more misclassified alternatives 
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since it can use incorrect information. The second implementation has better 

results in terms of number of misclassified alternatives and the number of 

questions asked to the DM is not considerably higher than the first 

implementation. We will make our experiments with the second implementation 

that uses only correct information.  

 

4.3. COMPARISON WITH THE INTERACTIVE APPROACH 

 

We obtain the same results with the interactive algorithm proposed by Köksalan 

and Özpeynirci (2009) when we make an exact classification. They check if it is 

feasible for an alternative to have a larger or smaller utility value than a utility 

threshold. In our algorithm when we make an exact classification, we look at the 

probability of an alternative being better than a utility threshold. If we get 0 as 

probability, it means that the utility of alternative is smaller than the utility 

threshold and there is no feasible solution that makes the utility of the alternative 

larger than that threshold. If we get 1 as probability, then the utility of alternative 

is larger than the utility threshold and there is no feasible solution to make it 

smaller. Therefore, two algorithms do the same job when our algorithm use 0 

probability threshold. 

 

Köksalan and Özpeynirci (2009) suggest to solve integer programs to check the 

feasibility of assigning an alternative to classes. Integer variables are needed to 

find a class to each unassigned alternative. Integer constraints are written to place 

unassigned alternatives. We observe that these constraints are redundant and there 

is no need to solve integer programs in this problem. If there is a feasible solution, 

utility of each alternative can be calculated with the estimated parameters. Then 

the alternatives can be assigned to any of the classes by comparing with the 

estimated utility thresholds. Trying to find a class to each of the unassigned 

alternatives does not restrict the feasible region and does not help to find a more 

restricted solution. For a particular case, solving LP always gives the same results 
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with solving IP. Since it is harder and more time consuming to solve IPs, LPs 

should be solved to get the results.  

 

4.4. TAKING ORTHOGONAL ALTERNATIVES AS THE REFERENCE 

SET 

 

Weber (1985) suggests creating hypothetical alternatives coming from an 

orthogonal design. He suggests to ask the utility ranges of the hypothetical 

alternatives to the DM. We worked on how orthogonal design concept can be 

applied to our case. We check if we can benefit from using orthogonal 

alternatives in our algorithm. 

 

We observed that if we are given same length utility ranges for a set of 

alternatives, the constraints coming from orthogonal alternatives restrict the 

feasible region more than the constraints of other alternatives. We tried to show 

this on an example. Assume that we have 3 criteria and the marginal utility of 

each criterion is linear. This means we have 2 levels on each criterion where the 

first level, denoted by 0, corresponds to the minimum value of each criterion and 

the second, level denoted by 1, corresponds to the maximum value of each 

criterion. The orthogonal array with 3 factors and 2 levels in each factor can be 

seen in Table 4.7. 

 

 

Table 4.7: Orthogonal Array with 3 Factors and 2 Levels 
 

 Criterion 1 Criterion 2 Criterion 3 

Alternative 1 0 0 0 

Alternative 2 0 1 1 

Alternative 3 1 0 1 

Alternative 4 1 1 0 
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We ask the DM utility ranges for the last three orthogonal alternatives since 

alternative 1 has the lowest scores in all criteria and it is known that it has a 0 

utility value. Let iw  denote the marginal utility of the maximum value of criterion 

i . In the example, assume that 4.01 =w , 3.02 =w  and 3.03 =w . Assume that the 

highest score in all criteria is 10 and the lowest score in all criteria is 0. 

 

Assume that the DM has given us the utility ranges for each alternative as in 

Table 4.8.  

 

 

Table 4.8: Criterion Values and Utility Ranges for Orthogonal Alternatives 
 

 Criterion 1 Criterion 2 Criterion 3 
Actual Utility 

Value 
Utility 
Range  

Alternative 1 0 10 10 0.6 (0.5 - 0.7) 
Alternative 2 10 0 10 0.7 (0.6 - 0.8) 
Alternative 3 10 10 0 0.7 (0.6 - 0.8) 
 

 

 

The constraints we can write according to orthogonal alternatives are as follows. 
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Since it is known that 1321 =++ www , we can write 211 ww −−  instead of 3w . 

The constraint set can be written as follows. 
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The feasible weight space can be seen in Figure 4.2. 
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Figure 4.2: Feasible Weight Space of the Orthogonal Alternatives 

 

 

To compare how weight space is restricted by constraints coming from 

alternatives, we created 2 different set of alternatives. In each case, we asked the 

DM the utility ranges of 3 alternatives that have the same utility value with 

orthogonal alternatives and assume that the DM has given us the same utility 

ranges with the range of orthogonal alternatives. 

 

Criterion values of the first set of alternatives are given in Table 4.9. 
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Table 4.9: Criterion Values and Utility Ranges for the First Set  
 

 Criterion 1 Criterion 2 Criterion 3 
Actual Utility 

Value 
Utility 
Range  

Alternative 1 6 8 4 0.6 (0.5 - 0.7) 
Alternative 2 5.5 8 8 0.7 (0.6 - 0.8) 
Alternative 3 7 8 6 0.7 (0.6 - 0.8) 
 

 

The constraint set defined by the alternatives in Table 4.8 is as follows. 
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When we write 211 ww −−  instead of 3w , the constraint set becomes 

2.02.01.0
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The feasible weight space can be seen in Figure 4.3. 
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Figure 4.3: Feasible Weight Space of the First Set of Alternatives 

 

 

Criterion values of the second set of alternatives are given in Table 4.10. 

 

 

Table 4.10: Criterion Values and Utility Ranges for the Second Set 

 Criterion 1 Criterion 2 Criterion 3 
Actual Utility 

Value 
Utility 
Range  

Alternative 1 9 4 4 0.6 (0.5 - 0.7) 
Alternative 2 7 4 10 0.7 (0.6 - 0.8) 
Alternative 3 4 10 8 0.7 (0.6 - 0.8) 
 

 

The constraint set defined by the alternatives in Table 4.9 is as follows. 

 

8.08.04.06.0
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When we write 211 ww −−  instead of 3w , the constraint set becomes 

02.04.0
02.04.0

4.06.03.0
2.06.03.0

4.0
2.0
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The feasible weight space can be seen in Figure 4.4. 

 

 
Figure 4.4: Feasible Weight Space of the Second Set of Alternatives 

 

 

We obtained the most restricted region in the orthogonal design case. We 

observed that if we are given same length utility ranges, then the constraints 

coming from orthogonal alternatives are more restrictive compared to the ones 
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coming from other alternatives. We obtain the smallest area when the constraints 

are orthogonal to each other. 

 

We tried to use the concept of orthogonality and tried to take hypothetical 

alternatives as reference set of our algorithm. We tried to see if starting with 

orthogonal alternatives will result asking fewer questions to the DM. In our data 

set, we have 3 criteria and 4 levels in each of the criterion. We will use 16 

orthogonal alternatives. The created orthogonal alternatives are given in 

Appendix A.3. The first alternative is discarded because it has the minimum 

scores in all criteria and we know that it has a utility value of 0. We added the 

remaining 15 orthogonal alternatives to our data set. 

 

We made an experiment to see the effect of orthogonality. In the experiment, we 

compared the utility of alternatives with utility thresholds and we assumed 

uniform distribution to calculate the probabilities. We tried our algorithm in two 

different ways on the data set including orthogonal alternatives. In the first one, 

the algorithm selects the alternative to ask the DM in the way we proposed at the 

previous chapter. We find the probability of each alternative being better than 

each utility threshold and the alternative that has the closest probability of being 

better than any of the utility thresholds to 0.5 is selected to ask the DM. In the 

second one, when we ask the class of an alternative to the DM, orthogonal 

alternatives have priority over the other alternatives. After all orthogonal 

alternatives are assigned, we select the alternatives that has closest probability to 

0.5. The results of the experiment can be seen in Tables 4.11. and 4.12. 
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Table 4.11: Number of Misclassifications and Questions on the Data Set 
Orthogonal Alternatives Included 

 

Threshold Misclassification Questions 
asked 

Narrowed 
down to 
1 class 

Narrowed 
down to 2 
classes 

Not 
narrowed 

down 
0.00 0 48 48 36 12 
0.05 0 46 50 31 15 
0.10 0 45 51 30 15 
0.15 0 45 51 30 15 
0.20 0 38 58 23 15 
0.25 3 31 65 17 14 
0.30 8 25 71 11 14 
0.35 20 20 76 4 16 
0.40 26 13 83 1 12 
0.45 39 10 86 0 10 
0.50 31 3 93 0 3 

 

 

Table 4.12 Number of Misclassifications and Questions on the Data Set 
Orthogonal Alternatives Asked First  

 

Threshold Misclassification Questions 
asked 

Narrowed 
down to 
1 class 

Narrowed 
down to 2 
classes 

Not 
narrowed 

down 
0.00 0 48 48 36 12 
0.05 0 47 49 35 12 
0.10 0 47 49 35 12 
0.15 0 42 54 30 12 
0.20 2 37 59 25 12 
0.25 16 27 69 14 13 
0.30 20 22 74 9 13 
0.35 38 15 81 4 11 
0.40 53 13 83 2 11 
0.45 57 9 87 2 7 
0.50 31 3 93 0 3 

 

 

The two experiments result in the same number of questions asked to the DM 

when the probability threshold is 0. When probability threshold is equal to 0.05 

and 0.10, the one started with orthogonal alternatives have asked more questions 

to the DM.  
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We see that under the constraints of our model, we do not obtain improved results 

when we first asked orthogonal alternatives to the DM. We have observed that 

using orthogonal alternatives restricts the weight space more than other 

alternatives if the same length utility ranges are given. In our algorithm, utility 

values of the alternatives are restricted by utility thresholds which are also our 

decision variables. The distribution of orthogonal alternatives to the classes is also 

important in the sorting problem. According to the utility function of the DM, if 

none of utility values of the orthogonal alternatives falls in a class, then we are 

not able to obtain information about this class. This can make classification 

harder. In our case, 7 orthogonal alternatives are in class 1, 4 are in class 2 and 4 

are in class 3.  

 

4.5. COMPARISON OF DIFFERENT DISTRIBUTIONS 

 

We made experiments to observe how fitting different distributions to the 

difference of utility of alternatives from utility thresholds affects our results. We 

implemented our algorithm under the assumption that the difference follows 

uniform distribution, symmetric triangular distribution and normal distribution. 

We implemented our algorithm by using only the information coming from the 

DM.  

 

We implemented our algorithm on the data set mentioned for different probability 

threshold values and we implemented on 2 randomly generated data sets used by 

Köksalan and Özpeynirci (2009).  The first randomly generated data set have 100 

alternatives evaluated in 3 criteria. The alternatives will be assigned to 5 classes. 

Each criterion range is divided into 3 subintervals. It is assumed that the DM has 

an underlying model with parameter values *
ku  and *

ipw , 4,3,2,1=k , 3,2,1=i  

and 3,2,1=p . The limits of subintervals can be seen in Table B.1. They use 

70.0*
1 =u , 60.0*

2 =u , 50.0*
3 =u , 35.0*

4 =u  and the *
ipw  values in Table B.2.  

The marginal utility function of the DM on each criteria can be seen from Figure 

4.5.  
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Figure 4.5: The Marginal Utility Functions on Each Criterion for the Data Set 1  

 

 

The second randomly generated data set has 100 alternatives evaluated in 5 

criteria. The alternatives will be assigned to 5 classes. Each criterion range is 

divided into 3 subintervals. The limits of subintervals can be seen in Table C.1. It 

is assumed that the DM has an underlying model with parameter values *
ku  and 

*
ipw , 4,3,2,1=k , 5,4,3,2,1=i  and 3,2,1=p . They use 70.0*

1 =u , 60.0*
2 =u , 

50.0*
3 =u , 40.0*

4 =u  and the *
ipw  values in Table C.2. The marginal utility 

function of the DM on each criteria can be seen from Figure 4.6. 
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Figure 4.6: The Marginal Utility Functions on Each Criterion for the Data Set 2  

 

 

We have created 15 orthogonal alternatives for both of the data sets. The 

orthogonal alternatives created for each of the randomly generated data set can be 

seen in Tables B.3 and C.3. We did the same experiments by assuming that the 

DM has given the class of orthogonal alternatives.  

 

The results of the algorithm applied for the MBA data for uniform, symmetric 

triangular and normal distribution can be seen in Tables 4.13, 4.14 and 4.15, 

respectively. 
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Table 4.13: Number of Misclassifications and Questions for the MBA Data under 
Uniform Distribution Assumption  

 

Threshold Misclassification Questions 
asked 

Narrowed 
down to 
1 class 

Narrowed 
down to 2 
classes 

Not 
narrowed 

down 
0.00 0 42 39 31 11 
0.05 0 39 42 28 11 
0.10 0 38 43 27 11 
0.15 0 36 45 25 11 
0.20 5 32 49 21 11 
0.25 11 23 58 12 11 
0.30 21 17 64 6 11 
0.35 26 13 68 2 11 
0.40 31 11 70 1 10 
0.45 37 5 76 0 5 
0.50 20 3 78 0 3 

 
 

 
 

Table 4.14: Number of Misclassifications and Questions for the MBA Data under 
Triangular Distribution Assumption  

 

Threshold Misclassification Questions 
asked 

Narrowed 
down to 
1 class 

Narrowed 
down to 2 
classes 

Not 
narrowed 

down 
0.00 0 42 39 31 11 
0.05 1 35 46 24 11 
0.10 8 28 53 16 12 
0.15 12 21 60 10 11 
0.20 22 14 67 4 10 
0.25 27 13 68 2 11 
0.30 30 11 70 1 10 
0.35 34 8 73 0 8 
0.40 37 6 75 0 6 
0.45 38 4 77 0 4 
0.50 20 3 78 0 3 
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Table 4.15: Number of Misclassifications and Questions for the MBA Data under 
Normal Distribution Assumption  

 

Threshold Misclassification Questions 
asked 

Narrowed 
down to 
1 class 

Narrowed 
down to 2 
classes 

Not 
narrowed 

down 
0.00 0 37 44 29 8 
0.05 0 36 45 28 8 
0.10 0 33 48 25 8 
0.15 0 32 49 24 8 
0.20 0 31 50 23 8 
0.25 1 26 55 18 8 
0.30 4 20 61 12 8 
0.35 11 15 66 8 7 
0.40 16 11 70 2 9 
0.45 22 8 73 0 8 
0.50 39 3 78 0 3 

 

 

The results for the data set with orthogonal alternatives included and randomly 

generated data sets can be seen in Appendix D. 

 

When we make an exact classification, we obtain almost the same results in all 3 

distributions. The differences in the results come from the difference in the 

selection of the alternatives placed by the DM. We find the probability of each 

alternative being better than each utility threshold. We ask the DM the alternative 

that has the closest probability to 0.5. Since different probabilities are calculated 

under different distributions, the alternatives asked the DM can be different. 

When probability threshold increases, the distribution used makes a difference. 

According to the results, none of the distributions perform significantly better 

than the other ones. In the above tables, in symmetric triangular distribution 

misclassification begins at smaller thresholds than the other ones. In uniform and 

normal distribution, there is no misclassification while threshold have increased 

up to 0.15. We see that most of the alternatives placed by the DM have been 

narrowed down to 2 classes. Even when the algorithm is not able to place the 

alternatives, it is able to narrow down the classes the alternative can be placed. 
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When we start with orthogonal alternatives to exact classification, we obtain 

improved results in terms of the number of questions asked to the DM. However, 

we ask 15 more questions to the DM at the beginning and this should be taken 

into consideration while evaluating the results. As probability threshold increases, 

orthogonal alternatives result in fewer misclassified alternatives and fewer 

questions to the DM. But again the extra number of questions asked to the DM 

should be taken into consideration. In normal distribution, the results have 

improved more by starting with orthogonal alternatives.  

 

As the number of criteria increases, it becomes harder to place the alternatives 

and the number of alternatives placed by the DM increases. In the results of 

randomly generated data set 2, most of the alternatives are placed by the DM. We 

see that most of the alternatives placed by the DM have been narrowed down to 

two classes. The DM places most of the alternatives but we considerably reduce 

the number of classes the alternatives can be placed in.  
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CHAPTER 5 
 

 
5CONCLUSIONS 

 
 
 
In this study, we proposed algorithms to multi-criteria sorting problem. We 

assumed an underlying additive utility function for the DM. Marginal utility 

function on each criterion is thought to be piecewise linear. Using the available 

information, we calculated probabilities for each unassigned alternative being in 

each class. We suggested a classification method by comparing the calculated 

probabilities with a given probability threshold value.   

 

We implemented our algorithm on a data set used by Köksalan and Özpeynirci 

(2009) to assign 81 MBA programs to preference ordered groups. We also used 

two randomly generated data sets used by Köksalan and Özpeynirci (2009). 

 

We evaluated our algorithm based on the number of alternatives placed by the 

DM and the number of misclassified alternatives. The algorithm can result in 

exact classification or probabilistic classification depending on the given 

probability threshold. When probability threshold is small, the DM is required to 

place many alternatives but most of the alternatives will be correctly classified. 

When probability threshold is large, we classify alternatives with less information 

but many alternatives can be misclassified. As probability threshold increases, the 

general trend is to ask fewer questions and misclassify more alternatives.  

 

In our algorithm, we see that it is harder to place the alternatives in pairwise 

comparison of alternatives. When we make an exact classification, comparing 

with utility thresholds performs better and is able to classify with asking fewer 
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questions to the DM. When we make probabilistic classification, the pairwise 

approach asks more questions to the DM but misclassifies fewer alternatives.  

 

We proposed two different implementations of the algorithm. We suggest to work 

with the one using the correct information given by the DM. It is expected that it 

will misclassify fewer alternatives compared to one using the class information of 

assigned alternatives by the algorithm.  

 

In our study, we have thought of creating hypothetical orthogonal alternatives and 

asking the DM to place them at the beginning of the algorithm. We made 

experiments on our algorithm starting with the class information of orthogonal 

alternatives. This requires asking questions to the DM at the beginning. The 

number of questions asked depends on the number of criteria and the number of 

subintervals each criterion range has divided. We observed that constraints of 

orthogonal alternatives are more restrictive than the constraints of the other 

alternatives if the same length utility ranges are given for the alternatives. 

According to our results, although constraints written on them are more 

restrictive, they did not show a significant improvement in our results when we 

consider the additional questions asked to place these hypothetical alternatives. 

 

We found the range for the difference of utility of alternatives from utility 

thresholds. We fit different distributions to the difference and tried to find the 

probability of difference being greater than 0. We tried uniform distribution, 

symmetric triangular distribution and normal distribution. In the experiments, we 

obtained nearly similar results for all distributions. We cannot say that fitting one 

distribution performs better than the other.   

 

Different procedures can be used while selecting the alternatives to ask to the 

DM. The alternative placed by the DM affects the feasible region and we aim to 

ask the alternatives that will lead us to write more restrictive constraints. In the 

algorithm, we selected the alternative to ask the DM by looking at the 
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probabilities of being better than utility thresholds. We asked the alternative that 

has the closest probability of being better than any of the thresholds to 0.5. We 

aimed to ask the alternative that we do not have much information about. As a 

future research, a different procedure using orthogonality can be tried. 

Alternatives that can give the constraints closest to the orthogonal constraints of 

previously asked alternative can be selected to ask to the DM. If we search for the 

constraints orthogonal to the previously assigned one, we hope to have a reduced 

feasible region. However, the alternative set may not include an alternative that 

can give orthogonal constraints to the previously assigned alternative. Therefore, 

we suggest to select the alternative that can give closest constraints to the ones we 

search. By searching for orthogonal constraints, it is aimed to reduce feasible 

region more than the constraints derived from other alternatives.  
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APPENDIX A 
 
 

UNDERLYING MODEL OF THE MBA DATA 
 

 
 

Table A.1: Limits of Subintervals for the MBA Data 
 

 
1

ig  2
ig  3

ig  4
ig  

Criterion 1 21.18 40.00 54.00 83.44 
Criterion 2 14.31 26.00 41.00 70.74 
Criterion 3 0.71 42.00 75.00 93.91 

 
 

 

 

Table A.2: *
ipw  of the Underlying Model for the MBA Data 

 
1 2 3 

1 0.06 0.18 0.06 

2 0.24 0.12 0.04 

3 0.06 0.09 0.15 

 
 
 
 
 
 
 
 
 
 
 
 
 

p 
i 
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Table A.3: Orthogonal Alternatives Created for the MBA Data 
 

Alumni Carrer 
Progress Diversity Idea 

Generation 
21.18 14.31 0.71 
21.18 26.00 42.00 
21.18 41.00 75.00 
21.18 70.74 93.91 
40.00 14.31 42.00 
40.00 26.00 0.71 
40.00 41.00 93.91 
40.00 70.74 75.00 
54.00 14.31 75.00 
54.00 26.00 93.91 
54.00 41.00 0.71 
54.00 70.74 42.00 
83.44 14.31 93.91 
83.44 26.00 75.00 
83.44 41.00 42.00 
83.44 70.74 0.71 
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APPENDIX B 
 
 

UNDERLYING MODEL OF THE DATA SET 1 
 
 
 

Table B.1: Limits of Subintervals for the Data Set 1 
 

 
1

ig  2
ig  3

ig  4
ig  

Criterion 1 0.19 3.40 6.00 9.95 
Criterion 2 0.19 4.20 7.00 9.87 
Criterion 3 0.10 3.60 7.40 9.98 

 

 

 

 

Table B.2. *
ipw  of the Underlying Model for the Data Set 1 

 
 

1 2 3 

1 0.05 0.20 0.05 

2 0.24 0.12 0.04 

3 0.06 0.09 0.15 

 
 
 
 
 
 
 
 
 
 

p 
i 
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Table B.3 Orthogonal Alternatives for the Data Set 1 
 

Criterion 1 Criterion 2 Criterion 3 
0.19 4.20 3.60 
0.19 7.00 7.40 
0.19 9.87 9.98 
3.40 0.19 3.60 
3.40 4.20 0.10 
3.40 7.00 9.98 
3.40 9.87 7.40 
6.00 0.19 7.40 
6.00 4.20 9.98 
6.00 7.00 0.10 
6.00 9.87 3.60 
9.95 0.19 9.98 
9.95 4.20 7.40 
9.95 7.00 3.60 
9.95 9.87 0.10 
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APPENDIX C 
 
 

UNDERLYING MODEL OF THE DATA SET 2 
 
 
 

Table C.1: Limits of Subintervals for the Data Set 2 
 

 
1

ig  2
ig  3

ig  4
ig  

Criterion 1 0.19 3.40 6.00 9.95 
Criterion 2 0.19 4.20 7.00 9.87 
Criterion 3 0.10 3.60 7.40 9.98 
Criterion 4 0.05 3.10 7.00 9.91 
Criterion 5 0.07 3.50 6.20 9.91 

 

 

 

Table C.2: *
ipw  of the Underlying Model for the Data Set 2 

 
1 2 3 

1 0.05 0.10 0.03 

2 0.10 0.04 0.01 

3 0.04 0.07 0.09 

4 0.04 0.08 0.11 

5 0.15 0.06 0.03 

 
 
 
 
 
 
 

p 
i 
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Table C.3: Orthogonal Alternatives for the Data Set 2 
 

Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5 

0.19 4.20 3.60 3.10 3.50 
0.19 7.00 7.40 7.00 6.20 
0.19 9.87 9.98 9.91 9.91 
3.40 0.19 3.60 7.00 9.91 
3.40 4.20 0.10 9.91 6.20 
3.40 7.00 9.98 0.05 3.50 
3.40 9.87 7.40 3.10 0.07 
6.00 0.19 7.40 9.91 3.50 
6.00 4.20 9.98 7.00 0.07 
6.00 7.00 0.10 3.10 9.91 
6.00 9.87 3.60 0.05 6.20 
9.95 0.19 9.98 3.10 6.20 
9.95 4.20 7.40 0.05 9.91 
9.95 7.00 3.60 9.91 0.07 
9.95 9.87 0.10 7.00 3.50 
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APPENDIX D 
 
 

RESULTS 
 
 
 
Table D.1: Number of Misclassifications and Questions for the MBA Data under 

Uniform Distribution Assumption and Orthogonal Alternatives Included 
 

Threshold Misclassification Questions 
asked 

Narrowed 
down to 
1 class 

Narrowed 
down to 2 
classes 

Not 
narrowed 

down 

0.00 0 33 48 31 2 
0.05 0 32 49 30 2 
0.10 0 32 49 30 2 
0.15 0 31 50 29 2 
0.20 0 27 54 25 2 
0.25 0 21 60 19 2 
0.30 5 15 66 13 2 
0.35 8 9 72 7 2 
0.40 12 6 75 3 3 
0.45 15 4 77 2 2 
0.50 29 0 81 0 0 
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Table D.2: Number of Misclassifications and Questions for the MBA Data under 
Triangular Distribution Assumption and Orthogonal Alternatives Included 

 

Threshold Misclassification Questions 
asked 

Narrowed 
down to 
1 class 

Narrowed 
down to 2 
classes 

Not 
narrowed 

down 
0.00 0 33 48 31 2 
0.05 0 31 50 29 2 
0.10 0 23 58 21 2 
0.15 3 20 61 18 2 
0.20 6 14 67 12 2 
0.25 9 9 72 7 2 
0.30 12 6 75 3 3 
0.35 12 5 76 2 3 
0.40 13 4 77 2 2 
0.45 23 4 77 2 2 
0.50 29 0 81 0 0 

 
 
 
 

 
 
Table D.3: Number of Misclassifications and Questions for the MBA Data under 

Normal Distribution Assumption and Orthogonal Alternatives Included 
 

Threshold Misclassification Questions 
asked 

Narrowed 
down to 
1 class 

Narrowed 
down to 2 
classes 

Not 
narrowed 

down 
0.00 0 29 52 27 2 
0.05 0 27 54 25 2 
0.10 0 26 55 24 2 
0.15 0 24 57 22 2 
0.20 0 18 63 16 2 
0.25 0 12 69 10 2 
0.30 6 12 69 10 2 
0.35 9 8 73 6 2 
0.40 12 6 75 4 2 
0.45 16 3 78 1 2 
0.50 18 0 81 0 0 

 
 
 
 
 
 
 

 



  

 104 

Table D.4: Number of Misclassifications and Questions for the Data Set 1 under 
Uniform Distribution Assumption  

 

Thres
hold 

Misclass
ification 

Questions 
asked 

Narrowed 
down to 1 

class 

Narrowed 
down to 2 
classes 

Narrowed 
down to 3 
classes 

Narrowed 
down to 4 
classes 

Not 
narro
wed 

down 
0.00 0 63 37 37 11 5 10 
0.05 0 60 40 34 11 5 10 
0.10 0 57 43 31 11 5 10 
0.15 1 51 49 27 9 5 10 
0.20 2 44 56 21 7 6 10 
0.25 5 42 58 15 6 11 10 
0.30 11 35 65 10 9 7 9 
0.35 19 21 79 3 1 5 12 
0.40 30 16 84 2 0 3 11 
0.45 40 9 91 1 0 0 9 
0.50 43 5 95 0 0 0 5 

 
 
 
 
 

 
Table D.5: Number of Misclassifications and Questions for the Data Set 1 under 

Triangular Distribution Assumption  
 

Thres
hold 

Misclass
ification 

Questions 
asked 

Narrowed 
down to 1 

class 

Narrowed 
down to 2 
classes 

Narrowed 
down to 3 
classes 

Narrowed 
down to 4 
classes 

Not 
narro
wed 

down 
0.00 0 63 37 37 11 5 10 
0.05 1 50 50 27 9 5 10 
0.10 3 45 55 18 8 9 10 
0.15 8 38 62 11 6 11 10 
0.20 13 30 70 8 5 8 9 
0.25 19 23 77 4 2 4 13 
0.30 27 17 83 2 1 1 13 
0.35 32 14 86 1 0 2 11 
0.40 39 9 91 1 0 0 8 
0.45 41 8 92 0 0 0 8 
0.50 43 5 95 0 0 0 5 
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Table D.6: Number of Misclassifications and Questions for the Data Set 1 under 
Normal Distribution Assumption  

 

Thres
hold 

Misclass
ification 

Questions 
asked 

Narrowed 
down to 1 

class 

Narrowed 
down to 2 
classes 

Narrowed 
down to 3 
classes 

Narrowed 
down to 4 
classes 

Not 
narro
wed 

down 
0.00 0 63 37 38 7 7 11 
0.05 0 60 40 35 7 7 11 
0.10 2 53 47 28 7 7 11 
0.15 4 51 49 24 8 9 10 
0.20 9 52 48 18 10 7 7 
0.25 13 38 62 13 12 6 7 
0.30 20 32 68 8 8 9 7 
0.35 32 23 77 4 7 3 9 
0.40 39 16 84 2 3 3 8 
0.45 44 11 89 2 0 1 8 
0.50 50 5 95 0 0 0 5 

 
 
 
 

 
 
Table D.7: Number of Misclassifications and Questions for the Data Set 1 under 

Uniform Distribution Assumption and Orthogonal Alternatives Included 
 

Thres
hold 

Misclass
ification 

Questions 
asked 

Narrowed 
down to 1 

class 

Narrowed 
down to 2 
classes 

Narrowed 
down to 3 
classes 

Narrowed 
down to 4 
classes 

Not 
narro
wed 

down 
0.00 0 46 54 35 10 1 0 
0.05 0 43 57 32 10 1 0 
0.10 0 40 60 29 10 1 0 
0.15 1 37 63 26 10 1 0 
0.20 1 34 66 23 10 1 0 
0.25 2 26 74 15 10 1 0 
0.30 10 18 82 9 6 3 0 
0.35 18 12 88 3 6 3 0 
0.40 21 10 90 1 8 1 0 
0.45 26 5 95 0 3 1 1 
0.50 26 0 100 0 0 0 0 
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Table D.8: Number of Misclassifications and Questions for the Data Set 1 under 
Triangular Distribution Assumption and Orthogonal Alternatives Included 

 

Thres
hold 

Misclass
ification 

Questions 
asked 

Narrowed 
down to 1 

class 

Narrowed 
down to 2 
classes 

Narrowed 
down to 3 
classes 

Narrowed 
down to 4 
classes 

Not 
narro
wed 

down 
0.00 0 46 54 35 10 1 0 
0.05 1 36 64 25 10 1 0 
0.10 1 32 68 21 10 1 0 
0.15 6 24 76 13 10 1 0 
0.20 14 14 86 6 5 3 0 
0.25 19 11 89 2 6 3 0 
0.30 18 10 90 2 5 3 0 
0.35 25 7 93 0 4 3 0 
0.40 26 5 95 0 3 1 1 
0.45 33 3 97 0 2 1 0 
0.50 26 0 100 0 0 0 0 

 
 
 
 
 
 
Table D.9: Number of Misclassifications and Questions for the Data Set 1 under 

Normal Distribution Assumption and Orthogonal Alternatives Included 
 

Thres
hold 

Misclass
ification 

Questions 
asked 

Narrowed 
down to 1 

class 

Narrowed 
down to 2 
classes 

Narrowed 
down to 3 
classes 

Narrowed 
down to 4 
classes 

Not 
narro
wed 

down 
0.00 0 55 45 45 10 0 0 
0.05 6 46 54 36 10 0 0 
0.10 10 41 59 30 11 0 0 
0.15 12 38 63 28 10 0 0 
0.20 20 28 72 19 9 0 0 
0.25 23 24 76 15 8 1 0 
0.30 27 20 80 11 8 1 0 
0.35 30 13 87 4 8 1 0 
0.40 38 8 92 3 4 1 0 
0.45 40 3 97 0 2 1 0 
0.50 45 0 100 0 0 0 0 
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Table D.10: Number of Misclassifications and Questions for the Data Set 2 under 
Uniform Distribution Assumption  

 

Thres
hold 

Misclass
ification 

Questions 
asked 

Narrowed 
down to 1 

class 

Narrowed 
down to 2 
classes 

Narrowed 
down to 3 
classes 

Narrowed 
down to 4 
classes 

Not 
narro
wed 

down 
0.00 0 86 14 41 11 18 16 
0.05 0 82 18 37 11 18 16 
0.10 0 77 23 34 9 18 16 
0.15 0 73 27 30 9 18 16 
0.20 0 68 32 26 8 18 16 
0.25 0 64 36 22 8 18 16 
0.30 2 54 46 12 8 18 16 
0.35 9 47 53 6 10 15 16 
0.40 26 28 72 1 2 7 18 
0.45 43 16 84 0 0 1 15 
0.50 53 5 95 0 0 0 5 

 
 
 
 
 
 

 
Table D.11: Number of Misclassifications and Questions for the Data Set 2 under 

Triangular Distribution Assumption  
 

Thres
hold 

Misclass
ification 

Questions 
asked 

Narrowed 
down to 1 

class 

Narrowed 
down to 2 
classes 

Narrowed 
down to 3 
classes 

Narrowed 
down to 4 
classes 

Not 
narro
wed 

down 
0.00 0 86 14 41 11 18 16 
0.05 0 73 27 30 9 18 16 
0.10 0 67 33 25 8 18 16 
0.15 0 59 41 18 7 18 16 
0.20 3 54 46 11 9 18 16 
0.25 9 47 53 6 10 15 16 
0.30 21 33 67 0 3 12 18 
0.35 32 20 80 0 1 3 16 
0.40 42 16 84 0 0 1 15 
0.45 50 10 90 0 0 0 10 
0.50 53 5 95 0 0 0 5 
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Table D.12: Number of Misclassifications and Questions for the Data Set 2 under 
Normal Distribution Assumption  

 

Thres
hold 

Misclass
ification 

Questions 
asked 

Narrowed 
down to 1 

class 

Narrowed 
down to 2 
classes 

Narrowed 
down to 3 
classes 

Narrowed 
down to 4 
classes 

Not 
narro
wed 

down 
0.00 0 86 14 38 12 15 21 
0.05 0 83 17 35 12 15 21 
0.10 0 77 22 31 10 15 21 
0.15 1 72 28 22 13 16 21 
0.20 5 66 34 18 10 17 21 
0.25 12 60 40 9 20 13 18 
0.30 23 45 55 1 13 13 19 
0.35 30 35 65 0 7 9 19 
0.40 35 27 73 0 3 4 20 
0.45 50 12 88 0 0 0 12 
0.50 56 5 95 0 0 0 5 

 
 
 
 
 
 

 
Table D.13: Number of Misclassifications and Questions for the Data Set 2 under 

Uniform Distribution Assumption and Orthogonal Alternatives Included 
 

Thres
hold 

Misclass
ification 

Questions 
asked 

Narrowed 
down to 1 

class 

Narrowed 
down to 2 
classes 

Narrowed 
down to 3 
classes 

Narrowed 
down to 4 
classes 

Not 
narro
wed 

down 
0.00 0 80 20 51 18 8 3 
0.05 0 75 25 46 18 8 3 
0.10 0 69 31 40 18 8 3 
0.15 0 60 40 31 18 8 3 
0.20 0 54 46 26 17 8 3 
0.25 1 46 54 20 15 8 3 
0.30 5 38 62 12 15 8 3 
0.35 16 29 71 2 15 9 3 
0.40 21 17 83 1 5 7 4 
0.45 30 8 92 1 2 4 1 
0.50 44 0 100 0 0 0 0 
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Table D.14: Number of Misclassifications and Questions for the Data Set 2 under 
Triangular Distribution Assumption and Orthogonal Alternatives Included 

 

Thres
hold 

Misclass
ification 

Questions 
asked 

Narrowed 
down to 1 

class 

Narrowed 
down to 2 
classes 

Narrowed 
down to 3 
classes 

Narrowed 
down to 4 
classes 

Not 
narro
wed 

down 
0.00 0 80 20 51 18 8 3 
0.05 0 58 42 29 18 8 3 
0.10 1 51 49 25 15 8 3 
0.15 3 46 54 19 16 8 3 
0.20 6 34 66 9 13 9 3 
0.25 16 28 72 2 14 9 3 
0.30 19 19 81 1 6 9 3 
0.35 22 15 85 1 6 7 1 
0.40 29 9 91 1 2 3 3 
0.45 36 4 96 0 1 2 1 
0.50 44 0 100 0 0 0 0 

 
 
 
 
 
 
 

Table D.15: Number of Misclassifications and Questions for the Data Set 2 under 
Normal Distribution Assumption and Orthogonal Alternatives Included 

 

Thres
hold 

Misclass
ification 

Questions 
asked 

Narrowed 
down to 1 

class 

Narrowed 
down to 2 
classes 

Narrowed 
down to 3 
classes 

Narrowed 
down to 4 
classes 

Not 
narro
wed 

down 
0.00 0 78 22 48 19 6 5 
0.05 0 73 27 43 19 6 5 
0.10 0 63 37 34 18 6 5 
0.15 1 53 47 24 18 6 5 
0.20 5 46 54 19 16 6 5 
0.25 6 41 59 17 15 4 5 
0.30 17 35 65 4 16 10 5 
0.35 31 21 79 1 10 5 5 
0.40 39 13 87 0 2 6 5 
0.45 46 8 92 0 3 2 3 
0.50 52 0 100 0 0 0 0 

 


