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ABSTRACT  
 

  
A SIMULATION STUDY ON THE COMPARISON OF METHODS  

FOR THE ANALYSIS OF LONGITUDINAL COUNT DATA 
 
 

İnan, Gül  

M.Sc., Department of Statistics 

Supervisor: Dr. Özlem İlk 

 
 

July 2009, 76 pages 
 
 

The longitudinal feature of measurements and counting process of responses 

motivate the regression models for longitudinal count data (LCD) to take into 

account the phenomenons such as within-subject association and overdispersion. 

One common problem in longitudinal studies is the missing data problem, which 

adds additional difficulties into the analysis. The missingness can be handled with 

missing data techniques. However, the amount of missingness in the data and the 

missingness mechanism that the data have affect the performance of missing data 

techniques. In this thesis, among the regression models for LCD, the Log-Log-

Gamma marginalized multilevel model (Log-Log-Gamma MMM) and the random-

intercept model are focused on. The performance of the models is compared via a 

simulation study under three missing data mechanisms (missing completely at 

random, missing at random conditional on observed data, and missing not random), 

two types of missingness percentage (10% and 20%), and four missing data 

techniques (complete case analysis, subject, occasion and conditional mean 

imputation). The simulation study shows that while the mean absolute error and 

mean square error values of Log-Log-Gamma MMM are larger in amount compared 

to the random-intercept model, both regression models yield parallel results. The 



 

 v 

simulation study results justify that the amount of missingness in the data and that 

the missingness mechanism that the data have, strictly influence the performance 

of missing data techniques under both regression models. Furthermore, while 

generally occasion mean imputation displays the worst performance, conditional 

mean imputation shows a superior performance over occasion and subject mean 

imputation and gives parallel results with complete case analysis.  

  

Key words: Longitudinal count data, gamma distributed random effects, drop-out 

or intermittent missing data, missing data mechanisms, missing data techniques. 
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ÖZ 

 

UZUNLAMASINA KESİKLİ VERİ ANALİZİ İÇİN YÖNTEMLERİN 
KARŞILAŞTIRILMASI ÜZERİNE BİR BENZETİM ÇALIŞMASI 

 
 

İnan, Gül  

Yüksek Lisans, İstatistik Bölümü 

Tez Yöneticisi: Dr. Özlem İlk 

 
Temmuz 2009, 76 sayfa 

 

 

Ölçümlerin, uzunlamasına özelliği ve bağımlı değişkenin sayım süreci, uzunlamasına 

kesikli veri analizi için geliştirilen regresyon modellerin birey içi ölçümler arası 

bağımlılık ve aşırı yayılım gibi olguları dikkate almasını sağlamaktadır. Uzunlamasına 

çalışmalarda, analizlere fazladan zorluk katan, ortak bir sorun, kayıp veri 

problemidir. Bu problem kayıp veri çözüm teknikleri vasıtasıyla üstesinden 

gelinebilir. Fakat verideki kayıp değer miktarı ve de verinin sahip olduğu kayıp veri 

mekanizması, çözüm tekniklerinin başarısını etkilemektedir. Bu tez çalışmasında, 

uzunlamasına kesikli veri için geliştirilmiş olan regresyon modelleri arasından, Log-

Log-Gama marjinalleştirilmiş çok düzeyli model ile rasgele sabit terimli model 

üzerinde durulmuştur. Modellerin başarıları bir benzetim çalışması üzerinden, üç 

kayıp veri mekanizması (tamamıyla rasgele kayıp, gözlenmiş veriye bağlı rasgele 

kayıp, rasgele olmayan kayıp), iki tür kayıp yüzdesi (% 10 ve % 20), ve dört farklı 

kayıp veri çözüm tekniği (tüm durum analizi, yerine zaman ortalaması yükleme, 

yerine grup ortalaması yükleme, yerine regresyon yöntemiyle yükleme) altında 

karşılaştırılmıştır. Benzetim çalışması, Log-Log-Gama marjinalleştirilmiş çok düzeyli 

modelinin rasgele sabit terimli modelinden daha büyük ortalama mutlak hata ve 

ortalama karesel hata ürettiğini gösterirken, her iki regresyon modelinde paralel 

sonuçlar gözlenmektedir. Benzetim çalışması sonuçları, her iki regresyon 
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modelinde de veri içindeki kayıp değer miktarı ve kayıp veri mekanizmasının, kayıp 

veri çözüm tekniğinin başarısını ciddi bir şekilde etkilediğini doğrulamaktadır. Ayrıca, 

genellikle yerine zaman ortalaması yükleme tekniği en kötü başarıyı gösterirken, 

yerine regresyon yöntemiyle yükleme tekniği, yerine zaman ortalaması yükleme ve 

yerine grup ortalaması yükleme tekniklerine nazaran üstün bir başarı 

sergilemektedir ve tüm durum analiziyle benzer sonuçlar doğurmaktadır. 

 

Anahtar Kelimeler: Uzunlamasına kesikli veri, gama dağılımlı rasgele etkiler, drop-

out veya kesintili kayıp veri, kayıp veri mekanizmaları, kayıp veri çözüm teknikleri. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

In longitudinal studies, measurements from the same subjects over a sequence of 

time periods are taken so that changes in measurements over time periods can be 

observed. When the response variable of a longitudinal dataset represents the 

counts of a total number of a defined event occurring in a given time interval, this 

type of longitudinal data is known as the longitudinal count data (LCD). Many 

longitudinal count data examples can be considered from different disciplines. 

Examples from econometrics can be the annual number of tourist arrivals in each of 

the Mediterranean countries over several years, the total number of patents 

acquired yearly by each firm over many years, and the total number of medals won 

by nations in the Olympic Games over several periods. An example from political 

science can be the total number of homeless protests across cities of a country over 

several years. Examples from clinical research include the number of epileptic 

seizures of each patient per two-weeks over an eight-week treatment period, and 

the number of panic attacks for each patient in a week over a one-month 

psychological intervention program. 

 

Like longitudinal data analysis for continuous response variables and for binary 

response variables, the starting point for the statistical analysis of longitudinal 

count data is the generalized linear models (GLMs) (Nelder and Wedderburn, 1972). 

Specifically, similar to cross-sectional count data, longitudinal one is modeled by 

Poisson regression as well (Cameron and Trivedi, 1998, Chapter 9). However, the 

analysis of longitudinal count data and the estimation of regression parameters 

require more special methods due to the longitudinal feature of measurements and 

counting process of responses. The most important feature of longitudinal data 
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that motivates the statistical analysis is the association of measurements within a 

subject. Since repeated measurements on the same subject are taken over several 

time periods, the observations obtained from the same subject are expected to be 

correlated. The statistical distribution of the counts is traditionally assumed to be 

Poisson distribution (Diggle et al., 2002, Chapter 8). It is well-known that mean 

equals to the variance (equi-dispersion) for the Poisson distribution. When the 

variability of counts is greater than its expected value under the Poisson model, 

then this phenomenon is called overdispersion. More specifically, extra-Poisson 

variation occurs (Barron, 1992). As an alternative, the negative-binomial distribution 

is the most commonly used model for overdispersed count data (Diggle et al., 2002, 

Chapter 8). Apart from these, other characteristics of longitudinal data causing 

additional difficulties to the statistical analysis are that the subjects may not have 

the same number of repeated measurements, that subjects may be measured at 

uncommon set of time intervals, and/or that measurements within a subject may 

be taken at non-equidistant time intervals. These irregularly or unequally spaced 

longitudinal data will result in an unbalanced longitudinal data design. More 

information on longitudinal data design is available in Ilk (2008, Chapter 2). Last but 

not least, when one or more measurements from subjects are missing, the problem 

which is named incomplete longitudinal data occurs. In order to accommodate the 

longitudinal features of measurements and counting process of responses, methods 

accommodating these problems should be developed. 

 
In this thesis, a simulation study is carried out to assess the performance of the 

regression estimates produced from a Log-Log-Gamma marginalized multilevel 

model developed (Log-Log-Gamma MMM) by Griswold and Zeger (2004) for 

longitudinal count data. This model is an expansion of the marginalized latent 

variable models, proposed by Heagerty and Zeger (2000). Marginalized latent 

variable models are likelihood-based methods that combine a marginal regression 

model for the mean response with making use of the flexible dependence 

specifications of GLMMs to model the within-subject association. A comparison of 
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this model is made with a random-intercept model which is the simplest case of 

GLMMs where the model includes only one random effect in the linear predictor, in 

addition to fixed effects.  

 
For the present study, longitudinal count datasets on 100 subjects are generated for 

each model and the simulation study is repeated 120 times. First of all, statistical 

analysis of each dataset is performed according to its own statistical model and 

results are recorded. Afterwards, observations in the generated datasets for each 

model are deleted according to scenarios of three different missing data 

mechanism (MCAR, MAR conditional on observed data, and NMAR). Deletion is 

limited to only observations from response variable and percentage of missingness 

in the samples is adjusted as 10% or 20%. A complete-case analysis is applied and 

results are recorded. That is, subjects having missing observations are discarded 

from the study and the subjects having complete observations are retained in the 

study. Later, the so-called missing observations are filled in by three different single 

imputation techniques. Specifically, subject mean imputation, occasion mean 

imputation and conditional mean imputation are carried out. In conditional mean 

imputation, a Markov model of order 1, that’s first-order autoregressive, AR(1), 

model is preferred.  Finally, the statistical evaluation of 120 samples for each model, 

under each 24 conditions (3 missing data mechanisms ×  2 types of missingness 

percentage  4 missing data techniques) is compared via mean absolute error 

(MAE) and mean square error (MSE) values.  

 

The development of subsequent chapters of this thesis is organized as follows: 

Chapter 2 gives background information on regression model classes for 

longitudinal count data and missing data problem. Chapter 3 introduces the 

marginalized latent variable models and then focuses on the Log-Log-Gamma 

marginalized multilevel model, and its competitor regression model, random-

intercept model for longitudinal count data. Later sections of this chapter provide 

detailed information on the three missing data mechanisms, and missing data 
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techniques i.e. complete case analysis and single imputation methods. Chapter 4 is 

devoted to simulation studies and put emphasis on the data generation scenarios, 

true values, missing data generation scenarios and estimation of the models. Based 

on simulation results, the evaluation of the performance of the models are 

discussed in Chapter 5. Finally, concluding remarks and suggestions for future work 

are presented in Chapter 6. 
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CHAPTER 2 
 
 

HISTORICAL BACKGROUND 

 
 
This Chapter aims to give brief information about historical background of 

regression models for longitudinal count data and missing data problem through 

examples from literature. 

 
2.1   Literature Review of Regression Models for Longitudinal Count Data 

 
Diggle et al. (2002, Chapter 7) classify the extension of GLMs for longitudinal data 

into three different regression model classes, which is also valid for longitudinal 

count data. These are: 

 
i) Marginal or Population-Average models,  

ii) Random-Effects or Subject-Specific models, 

iii) Transition or Response Conditional models. 

 
In general these three regression model classes view the association problem 

between the repeated measurements of a subject from different perspectives and 

this leads the models to differ in the interpretation of the regression parameters.  

 
Firstly, marginal models directly specify a regression model for the mean response, 

using a known link function. The mean responses are related to the covariates as 

follows:  

 

                                                    (2.1) 
 

 
where g is a common link function. The within-subject association, the association 

between the repeated measurements of a subject, is modeled separately, possibly 

ij ij ij

ij ij

E(Y  | X ) = μ   and

g( μ ) = X β,    
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using additional association parameters. Here, the main interest is on the mean 

response and the regression model for the mean response depends only on 

covariates, for that reason it is named as marginal. The regression parameters, β ’s, 

in (2.1) interpreted as the averages of population as in cross-sectional analysis.   

 

When the responses are discrete, i.e., binary or count, the complete joint 

distribution of longitudinal responses requires the specification of two-way 

associations between the responses (Fitzmaurice and Molenberghs, 2008, Chapter 

1). However, building models for these associations that are consistent in an 

interpretable manner with the model for the mean response is difficult, in the 

context of marginal models (Lipsitz and Fitzmaurice, 2008, Chapter 3). 

Consequently, it is hard to estimate regression parameters of the marginal models 

by likelihood-based methods (Fitzmaurice and Molenberghs, 2008, Chapter 1). 

When the assumption on the distribution of repeated responses is avoided, an 

estimation method that is called the generalized estimating equation (GEE) is 

considered. It is developed by Liang and Zeger (1986) and it is the multivariate 

extension of the quasi-likelihood estimation method (Wedderburn, 1974) by 

including additional nuisance parameters in the formulation of covariance matrix of 

responses. GEE provides as efficient estimates as maximum likelihood estimation 

(MLE) and consistent and asymptotically normal estimates provided that the mean 

response model is correctly specified. However, since GEE deprive us of using 

likelihood-based methods; this method is not used in this thesis. Further 

information on GEE is available in Liang and Zeger (1986), Molenberghs and 

Verbeke (2005, Chapter 8) and Lipsitz and Fitzmaurice (2008, Chapter 3). In the 

framework of marginal analysis with GEE, it is possible to find several examples in 

the literature. For instance, Diggle et al. (2002, Chapter 7) and Molenberghs and 

Verbeke (2005, Chapter 19) fit a Poisson model to the data from a clinical trial of 59 

epileptics which was first introduced by Leppik et al. (1985). While Diggle et al. 

propose a parametric model for the correlation coefficient, Molenberghs and 

Verbeke propose first-order autoregressive, AR(1) correlation   

http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_2?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Verbeke
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structure for the within-subject association using SAS GENMOD procedure.  

 
The second method considering the extension of GLMs to longitudinal data setting 

is the random-effects models. The random-effects models assume that there is a 

natural heterogeneity between the subjects due to unmeasured covariates (Diggle 

et al., 2002, Chapter 7). In this sense, regression parameters randomly varying from 

one subject to other subject are included into the regression modeling of the mean 

response.  

 
There are several ways of introducing randomness into the regression parameters 

of the mean response model. Thall and Vail (1990) suggest a family of covariance 

models that take within-subject association and overdispersion into account by 

introducing an interaction effect of subject-specific and time-specific random 

coefficients into the mean response model. While regression parameters are 

estimated by GEE, estimation of additional parameters is carried out by the method 

of moments. However, their approach cannot be used to model special type of 

autocorrelation structures such as first-order autoregressive, AR(1) and first-order  

moving average, MA(1). Following this, Jowaheer and Sutradhar (2002) propose a 

random-effects model for overdispersed longitudinal count data, which follow a 

Gaussian-type autocorrelation structure. Estimation of regression parameters, 

association and overdispersion is done via GEE. Although GEE is dominant in 

marginal models, it is obvious that random-effects models can be fitted by GEE as 

well.  

 
However, among the random-effects models, generalized linear mixed effects 

models is the most frequently used one for discrete repeated measurements 

(Molenberghs and Verbeke, 2005, Chapter 14). Generalized linear mixed effects 

models are also called as generalized linear mixed models (GLMMs) after highly 

cited paper of Breslow and Clayton (1993). In social sciences, these models are 

known as hierarchical, multilevel, or random-coefficient models as well. 

 

http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_1?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Molenberghs
http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_2?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Verbeke
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In GLMMs, the model for the mean response depends both on covariates and 

random effects which enter linearly into the linear predictor via a known link 

function. Similarly, mean responses are related to covariates and vector of random 

effects as follows: 

                                       
ij ij i ij

ij ij ij i

E(Y  | X , b ) = μ   and

g( μ ) = X β + Z b ,  
                                                          (2.2) 

 

where ib  is a vector of random effects for subject i, 0 i 1 i q-1 i(b , b  ,..., b ) , and g is a 

common link function. Within-subject association is assumed to be resulted from 

unobservable variables which are common to each repeated measurement from 

the same subject. GLMMs assume the subject-specific random effects, ib , to have a 

multivariate normal distribution with zero mean and a covariance matrix, V . 

 

In GLMMs, the aim is to make inference on individual subjects rather than the 

population average; for that reason the fixed effects regression parameters, β ’s, in 

(2.2) are influenced by the subject-specific interpretations whereas in marginal 

models target inference is the population. 

 
In GLMMs, maximum likelihood estimation of regression parameters, β ’s, in (2.2) 

requires the maximization of the likelihood of the data. Maximization is achieved by 

integration over the distribution of random effects, ib ’s. However, distribution 

specification of random effects and high-dimensional integration of them together 

with a possibly nonlinear link function may cause computational difficulties in the 

evaluation of the likelihood and analytic solutions cannot be provided.  

Molenberghs and Verbeke (2005, Chapter 14) divide the approaches toward 

maximum likelihood estimation in GLMMs into three categories according to the 

frequency of usage and to the availability in statistical software. These are the 

approaches based on the approximation of i) the integrand, ii) data, and iii) integral 

itself. 

 
While Laplace–type approximations fall in the first category, penalized quasi-
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likelihood (PQL) and marginal quasi-likelihood (MQL) fall in the second category. 

The numerical integration methods such as Gaussian quadrature and adaptive 

Gaussian quadrature fall in the latter category. Molenberghs and Verbeke (2005, 

Chapter 5) suggests that serious attention should be paid to statistical software 

available and to the approximations, which these statistical software are based on, 

since different methods produce considerably different parameter estimates. 

Detailed information on approximation techniques in GLMMs is available in 

Molenberghs and Verbeke (2005, Chapter 14). Furthermore, the implementation of 

GLMMs for longitudinal count data can be done via glmm function under the 

repeated library in R, glmmPQL function under the MASS library in R, SAS GLIMMIX 

procedure, and SAS NLMIXED procedure. In this thesis, SAS NLMIXED procedure 

with the numerical integration method Gaussian quadrature, and SAS GLIMMIX 

procedure with PQL are used for the regression models discussed in Chapter 3. The 

reasons and detailed information on the SAS procedures and approximation and 

numerical integration techniques are presented in Section 4.4. 

 
The last method considering the extension of GLMs to longitudinal data setting is 

the transition models. In transition models, the mean response is regressed on the 

covariates and a subset of past responses of the same subject via a known link 

function. These past responses can be considered as additional explanatory 

variables. Mean responses are related to the covariates and past responses as 

follows: 

 

                                   
ij ij ij ij

p

ij ij r r ij
r = 1

E(Y  | X , H ) = μ   and

g( μ ) = X β + α f (H ),    
                                             (2.3) 

 

where g is a common link function with ij i1 ij-1H = (Y ,...,Y ) and r ijf (H ) is a function of past 

responses. The association between the repeated measurements of a subject is 

considered to be as a result of the effect of past responses on the present response. 

A specific class of (2.3) is the Markov models of order p (Feller, 1968). The order of 

http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_2?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Verbeke
http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_2?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Verbeke
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the Markov models, p, is considered to be the number of past responses influencing 

the current response. Application of Markov models to longitudinal data is difficult 

in the event of unequally spaced time intervals between repeated measurements of 

a subject, and any missing measurement in the data. The interpretation of the fixed 

effects regression parameters, β ’s, in (2.3) depends on other responses for the 

same subject and the order p. 

 

2.2    Literature Review of Missing Data 

 

Since longitudinal studies obtain measurements from all subjects over a sequence 

of time periods, it is highly possible to encounter missing values, i.e., the intended 

measurements on some subjects cannot be obtained, or are not available for some 

reasons. For example, in clinical trials, subjects are followed over a number of 

scheduled visits, and incomplete longitudinal data can occur due to missed visits, 

withdrawal from the study, loss to follow-up, or death. 

 
In longitudinal studies, two kinds of missing data pattern exist: drop-out and 

intermittent missingness. When the subject is withdrawn from the longitudinal 

study before its intended completion, no data can be provided thereafter, and this 

process is defined as drop-out. Drop-out truncates the longitudinal process and 

leads to a monotone missing data pattern for the measurements (Daniels and 

Hogan, 2008, Chapter 5). In other words, monotone missing data pattern occur, for 

example, when a measurement for a subject is missing at a scheduled visit, and data 

for subsequent measurements are also missing thereafter. On the other hand, in 

intermittent missing data pattern, a measurement for a subject is missing at one or 

more scheduled visits, but after that, data for subsequent measurements are 

provided. Intermittent missingness creates gaps in the longitudinal process and 

leads to a non-monotone missing data pattern for the measurements. Tables 2.1 

and 2.2 below contain some possible monotone and non-monotone missing data 

patterns in measurements where O = Observed and M = Missing. In longitudinal 
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studies, it is common to encounter a mixture of drop-outs and intermittent missing 

data patterns.  

 

     Table 2.1 Monotone Missing Data Patterns       Table 2.2  Non-Monotone Missing Data Patterns 

 
 
In the event of missing data, it is important to reveal the relationship between the 

response variable and the reasons causing missingness (Fitzmaurice and Verbeke, 

2008, Chapter 2).  

 
According to terminology by Rubin (1976) and Little and Rubin (2002, Chapter 1) 

there are three types of reasons, often referred to as missing data mechanisms, 

which cause data to be missing. If the missingness is independent of both observed 

and unobserved measurements, this mechanism is said to be missing completely at 

random (MCAR). If the missingness is independent of unobserved measurements, 

this mechanism is said to be missing at random (MAR) conditional on observed 

data. Both of these types of missing data mechanisms are also called ignorable since 

it does not affect the inference on the population parameters of interest in the 

statistical model (Bennett, 2001). When the missingness is neither MCAR nor MAR 

conditional on observed data, it is said to be missing not at random (MNAR). In a 

similar fashion, this type of missing data mechanism is also called non-ignorable 

since it affects the inference on the population parameters of interest in the 

statistical model (Bennett, 2001). 

 
Molenberghs and Fitzmaurice (2008, Chapter 17) state when the missingness is 

unrelated to the response variable of interest, loss of information in the data 

Subject Y1 Y2 Y3 . . . Yni 
ni 1 O O O . . . O 

2 O O O . . . M 

. . . . . . . . 

. . . . . . . . 

. O O O O M . M 

. O O O M M . M 

. O O M M M . M 

N O M M M M . M 

Subject Y1 Y2 Y3 . . . Yni 

1 O O O . . . O 

2 O M O . . . O 

. . . . . . . . 

. . . . . . . . 

. O M M . . . O 

. O O O M M . O 

. O O M M M . O 

N O M M M M . O 

http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_4?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Molenberghs
http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_4?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Molenberghs
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would not complicate the statistical analysis. However, when it is related to the 

response variable of interest, loss of information in the data would address more 

serious questions and require more attention during the statistical analysis. For that 

reason, in order to yield valid statistical inferences from incomplete longitudinal 

data, the statistical analysis should be performed according to the type of 

missingness mechanism that the data have.  

 
Bennett (2001) classifies general methods dealing with missing data into five main 

categories, which is also applicable to incomplete longitudinal data. These are: i) 

methods that ignore missing values, ii) single imputation methods, iii) other 

imputation methods (multiple imputation and markov-chain imputation), iv) 

likelihood-based methods, and v) indicator methods. He compares and contrasts 

these methods in terms of producing bias in the estimates under the three missing 

data mechanisms (MCAR, MAR conditional on observed data, and NMAR), handling 

with variability, and availability in statistical software.  

 
In addition to missing data mechanism, the amount of missingness in the data is 

also an important determinant in the event of selecting a statistical method to 

analyze the missing data (Roth, 1994).  

 
Joseph and Molenberghs (2009) give a comprehensive review of missing data 

patterns, mechanisms, models specifying the joint distribution of the data and 

missingness mechanism (shared-parameter, pattern-mixture, and selection models) 

inferential paradigms, ignorability, and response types in longitudinal studies. The 

statistical literature on missing data problem in longitudinal studies with continuous 

response or with discrete response is mostly on dropouts and there is much less 

attention to intermittent missing data. Correspondingly, in the framework of 

incomplete longitudinal count data, Li et al. (2007) propose a random-effects 

Markov transition model for Poisson-distributed repeated measures when the data 

contain non-ignorable missing values, by making use of shared-parameter models. 

Kaciroti et al. (2008) suggest a Bayesian pattern-mixture model to model 
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longitudinal data from Poisson responses with potential non-ignorable drop-outs. 

An ignorability index is developed to capture the effect of a non-ignorable missing 

data mechanism on the statistical analysis and, in turn, it can be used for sensitivity 

analyses.  
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CHAPTER 3 
 
 

METHODOLOGY 
 

 
In this chapter, we firstly introduce features of the regression models for 

longitudinal count data used in this thesis, that’s Log-Log-Gamma marginalized 

multilevel model, and random-intercept model. In oncoming part of the chapter, 

the detailed descriptions of missing data mechanisms, MCAR, MAR conditional on 

observed data, and NMAR, which an incomplete data may have, are illustrated with 

notations and examples. We conclude the chapter with missing data techniques to 

handle the incomplete data.    

 

3.1    Regression Models  
 

In longitudinal studies, main interest is to model the relationship between the 

covariates and the response, as well as the change of response over time.  In 

Chapter 2, several approaches are introduced which account for the within-subject 

association for longitudinal data in order to properly assess the regression 

parameter estimates in the model. Marginal models construct two separate 

regression models for the mean response, and association between repeated 

measurements of a subject. The regression parameters describe the effects of 

covariates on the population averaged mean response and their interpretation is 

independent of specification of within-subject association model (Fitzmaurice and 

Molenberghs, 2008, Chapter 1). Regression parameters of marginal models can be 

estimated without specifying joint distribution of responses which leads to GEE to 

be developed. However, avoiding defining the complete joint distributions deprive 

us of using likelihood-based methods. In this sense, GLMMs are developed such 

that a regression model is built for the mean response conditional on both   

http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_1?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Garrett%20Fitzmaurice
http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_4?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Molenberghs


 

 

 
15 

 

covariates and random effects. Random effects, which are shared by the 

measurements within a subject, are introduced into the regression model to 

represent within-subject association. Contrary to marginal models, GLMMs model 

the mean response and the within-subject association through a single equation 

and random effects are viewed as the potential source of within-subject 

association. The regression parameters of GLMMs describe the effects of covariates 

on an individual’s mean response by controlling for the random-effects. However, 

interpretations being dependent on random effects and sensitive to within-subject 

association specifications and robustness of estimates being dependent on the 

distribution of the random effects reflect the disadvantages of GLMMs (Heagerty 

and Zeger, 2000). 

 

3.1.1     Marginalized Latent Variable Models and Log-Log-Gamma Marginalized  
 
Multilevel Model 

 
Marginalized latent variable models are proposed by Heagerty and Zeger (2000). 

These marginalized multilevel models combine the features of GLMMs and marginal 

models, with an aim to compensate the distinctions of these two models. While 

marginalized latent variable models take likelihood-based inference capabilities and 

flexible within-subject association specifications from GLMMs, they take the 

interpretation and robustness of regression parameters from marginal models 

(Griswold and Zeger, 2004).   

 
The formulation of marginalized latent variable models  define a GLM for the model 

of the mean response, and a nonlinear mixed model (NLMM), which is assumed to 

be nonlinear in the random effects, for the dependence between measurements  of 

a subject (within-subject association) and specify a statistical distribution for the 

random effects as follows: 

 

i) Marginal Mean Model: M M
ij ijg(μ ) = X β  
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ii) Association Model: C
ij ij ij ijg(μ ) = Δ + Z b  

iii) Random Effects Distribution: i bb F (0, D)  

iv) Conditional Response Distribution:  C

C C
ij ij ij ijY

Y  = (Y  | b ) F (μ ,ψ)  

 

where ijY  represents the jth measurement of the ith subject, ( j=1,2,…,ni, i= 1,2,...,N), 

g is a common link function for both  marginal mean model and association model, 

M
ij ij ijμ  = E(Y  | X )  and C

ij ij ij ijμ  = E(Y  | X ,b ) , M M M M
0 1 p-1β = (β , β ,..., β ) refers to the p 1  vector 

of marginal regression parameters, i 0i 1i q-1 ib = (b ,b ,...,b )  refers to the q 1  vector of 

subject-specific random effects with a q q covariance matrix D and a distribution 

bF (.) . While 0ib  stands for the random intercept, 1i 2i q-1 ib ,b ,..., and b  represent the 

random slopes in the linear predictor of the association model. Given ijb , C
ijY  's  

independently come from a distribution, which is a member of exponential family, 

with mean C
ijμ  and a dispersion parameter ψ . ijX  is a N p matrix of fixed effects 

covariates, and ijZ  is a N q matrix of random effects covariates. ijZ  is usually taken 

as a subset of ijX . 

 
In probability theory, any conditional expectation can be written in terms of 

marginal expectation, such that C M
b ij b ij ij ij ij ij ijE {μ } = E {E(Y  | X ,b )} = E(Y  | X ) = μ . This 

implies that the integration of conditional mean, C
ijμ , over the distribution of 

random effects results in marginal mean, M
ijμ .  

 

                                    M C -1
ij ij ij ij ij

b b

μ  = μ  dF(b) = g (Δ + Z b ) dF(b),                          (3. 1) 

                                   

where -1g  is the inverse-link function. Thus, the parameter ijΔ  in (3.1) makes a 

connection between marginal mean model and association model. The parameter 

ijΔ  depends on both M
ijX β marginal linear predictor and the distribution of ib . 

 
Different choices for i – iv result in different models. Griswold and Zeger (2004) 
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expand the marginalized latent variable models of Heagerty and Zeger (2000) for 

count data.  In practice, count data do not hold the equi-dispersion (equality of 

mean and variance) assumption of Poisson distribution, and it exhibits most often 

overdispersion rather than underdispersion (Cameron and Trivedi, 1998, Chapter 3). 

Overdispersion generally arises from omitted covariates in the regression model. 

Neglecting overdispersion in the data causes misestimation of the regression 

parameters and related estimates such as standard errors and, in turn, misleads 

inferences regarding the regression parameters (Yang et al., 2007). To handle 

overdispersed count data, a number of approaches are proposed. Among these, 

one standard approach is to assign a gamma distribution for random effects and a 

Poisson distribution for the conditional response. Since the gamma distribution is 

conjugate of the Poisson distribution, this Poisson-gamma mixture leads to 

negative-binomial distribution which accommodates overdispersion well 

(Greenwood and Yule, 1920; Barron, 1992; Cameron and Trivedi, 1998; Jowaheer 

and Sutradhar, 2002; Yang et al., 2007). Griswold and Zeger (2004) follow the same 

logic and assume a gamma distribution for random effects and a Poisson 

distribution for the conditional response distribution, so that the marginal 

distribution of responses becomes negative-binomial distribution.  

 
Like in cross-sectional Poisson and negative binomial regression, a log link function 

is commonly assumed for marginal mean and association models. Afterwards, the 

marginalized multilevel model of Griswold and Zeger (2004) for count data is named 

as Log-Log-Gamma MMM where log stands for common link function of marginal 

mean and association models, and Gamma refers to the distribution of random 

effects. The formulation of the Log-Log-Gamma MMM is as follows: 

 

i) Marginal Mean Model: M M
ij ijlog(μ ) = X β  

ii) Association Model: C
ij ij ijlog(μ ) = Δ + log(b )  

iii) Random Effects Distribution: ij 1 2b Gamma(θ ,θ )  

iv) Conditional Response Distribution: C C
ij ij ij ijY = (Y  | b ) Poisson(μ )  

 
By the relationship between marginal and conditional mean, we have: 
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M C
ij ij

b

μ  = μ  dF(b),  

M
ij ij ij

b

exp(X β ) = exp{Δ + log(b )} dF(b),  

M
ij ij ij

b

X β  = log( exp{Δ + log(b )} dF(b)),                                                                         (3. 2) 

M
ij ij ij ij ij

b

(X X )β  = X  log( exp{Δ + log(b )} dF(b)),  

M -1
ij ij ij ij ij

b

β  = (X X ) X  log( exp{Δ + log(b )} dF(b)).    

                                          

The parameter ijΔ  in (3.2) can be solved analytically. The log-link function and 

Poisson-gamma mixing distribution, together with the connection between 

marginal mean and conditional mean model, lead to M
ij ij ijΔ = X β - log(ν )  

ij 1 2 ijwhere  E(b ) = θ θ = ν  (Griswold and Zeger, 2004). Hence, the conditional mean, 

C
ijμ , can be written in terms of the marginal regression parameters, Mβ , such that  

 

                   C
ijμ  = ij ijexp{Δ + log(b )} = M

ij ij ijexp{X β - log(ν ) + log(b )}.                 (3. 3) 

 

Since (3.3) includes the marginal regression parameters, Mβ , the estimation of Mβ  

can be performed by fitting the conditional model, C
ijμ , via standard NLMM 

techniques. The regression parameters, Mβ , describe the effects of covariates on 

the population averaged mean response, averaging over the random effects. 

Contrary to GLMMs, random effects in Log-Log-Gamma MMM follow a non-

Gaussian distribution, that’s Gamma distribution, and are allowed to enter the 

model nonlinearly. 

 

In addition to fixed effects, we will allow only an intercept coefficient, 0ib , to 

randomly vary from subject to subject in the model. For that reason, to compare 

the efficiency of the regression estimates produced from this model, we will use the 

random-intercept model from GLMMs as a competitor regression model. 
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3.1.2     Random-Intercept Model  
 

As stated in Chapter 2, generalized linear mixed models are the extension of 

generalized linear models for longitudinal data. They include multivariate normally 

distributed random effects, in addition to fixed effects, in the linear predictor (Rabe-

Hesketh, and Skrondal, 2008). The basic aim of GLMMs is to introduce subject-

specific random effects into the linear predictor to represent the natural 

heterogeneity between subjects. In the context of GLMMs, in the linear predictor of 

the conditional mean model, in addition to fixed effects, it is possible to assume 

either a random intercept, 0ib , together with random slope(s), 1i q-1i(b ,..., b ) , or only 

a random intercept, 0ib . But, the simplest case of GLMMs is naturally a model with 

just a random intercept.  

 
The formulation of a random-intercept model for longitudinal count data can be as 

follows: 

 

i) Conditional Mean Model: C
ij ij ij 0ijlog( μ ) = X β + Z b  

ii) Random Intercept Distribution: 0ib MVN(0, V)  

iii) Conditional Response Distribution: C C
ij ij 0ij ijY = (Y  | b ) Poisson(μ )  

 

The ijY ’s are assumed to be conditionally independent given subject-specific 

random intercepts, 
i0i 0i1 0i2 0inb = (b , b , ..., b )  and ijY ’s are assumed to have Poisson 

distribution with conditional mean, C
ijμ , depending on both fixed and random 

effects. The subject-specific random intercepts, 
i0i 0i1 0i2 0inb = (b , b , ..., b )  are assumed 

to be independent of the covariates, Xij, and to have a multivariate normal 

distribution with zero mean and covariance matrix, V. In practice, the normality 

assumption for random effects may be unrealistic or invalid (Liu and Yu, 2008). 

Essentially, any multivariate distribution can be assumed for the random effects 

(Fitzmaurice and Molenberghs, 2008, Chapter 1), but multivariate normality 

assumption is made for mathematical convenience rather than a strong scientific 

http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_4?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Molenberghs
http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_4?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Molenberghs
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ground (Fitzmaurice and Verbeke, 2008, Chapter 2; Liu and Yu, 2008). 

 
When the interest is on the fixed effects regression parameters for GLMMs rather 

than random effects; as mentioned in Chapter 2, the model fitting and inference 

requires the maximization of the likelihood of the data. This maximization is 

obtained by treating random effects, ib ’s, as if they were nuisance parameters and 

by integrating over their distribution (Diggle et al., 2002, Chapter 9). In other words, 

if the ith subject’s contribution to the likelihood of the data is defined as  

 

                               
i

i

n

i ij ij i i i
j = 1b

L (β,V) = f (y  | b , β) f(b  | V) db ,                           (3.4)  

                       
and, then, the expression in (3.5) is expected to be maximized 

 

           
i

i

nN N

i i ij ij i i i
i = 1 i = 1 j = 1b

L(β,V) = f (y  | β, V) = f (y  | b , β) f(b  | V) db .               (3.5) 

                        
However, in GLMMs, the integral in (3.5) cannot be solved analytically since normal 

distribution is not conjugate to Poisson distribution. Approximation methods such 

as PQL and MQL and numerical integration methods such as Gaussian quadrature 

and adaptive Gaussian quadrature are proposed for the evaluation of the likelihood. 

The dimension of the integration is the dimension of the random effects, and the 

dimension affects the maximization of the integration. Having only one random 

coefficient, that’s intercept, in the model ease the implementation of proposed 

approximation and numerical integration methods (Diggle et al., 2002, Chapter 9). 

 

Although the normal distribution is not conjugate to Poisson distribution, Cameron 

and Trivedi (1998, Chapter 9) remark that multivariate normality assumption takes 

considerable attention in the statistical literature because if results can be obtained 

for random-intercept GLMMs, then it will be extended to random intercept and 

random slope GLMMs. 

 

http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_4?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Molenberghs
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One of the most important characteristics of GLMMs is that they have the ability to 

accommodate complex within-subject association structures for subject-specific 

random intercepts. Weiss (2005, Chapter 8) lists a large number of covariance 

structures and detailed information on these covariance structure specifications, 

but among them, most commonly used ones are first order autoregressive (AR(1)), 

compound symmetry (CS), and unstructured (UN). The covariance structure choice 

can influence the results of analysis as well as the conclusion. The number of 

parameters, the interpretation of the covariance structure, and effects on fixed 

effects are some of the considerations, when selecting the covariance structure 

(Kincaid, 2008).  

 
The glmmPQL function under the MASS library in R, and SAS GLIMMIX procedure, 

which are used to implement GLMMs for longitudinal count data offer a 

straightforward fitting of a wide variety of covariance structures including AR(1), CS, 

and UN. The SAS NLMIXED procedure does not allow a straightforward fitting of 

these special covariance structures, however after a considerable work, it does. 

Kincaid (2008) states that there is not a certain method for determining the best 

covariance structure. However, with the help of the computational techniques 

mentioned above, it is possible to specify different covariance structures for the 

model, and, then, to determine the appropriate covariance structure for the model 

by comparing the output of fit-statistics. 

 
3.2   Missing Data Mechanisms 

 
For a longitudinal study, missingness can occur in some measurements of the 

response variable Yi, and/or of the covariates Xi. However, in this thesis, we will 

assume that missingness occurs only in the values of measurements for the 

response variable Yi except the measurements in the first time point and that all 

values of measurements for the covariates Xi are fully observed. 

 
The question of interest in incomplete longitudinal data is whether the missingness 
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affects the validity of statistical inference on regression parameters. The effect of 

missing data on inference depends on the underlying missingness mechanism it has 

(Carpenter, 2005). 

 

Let the set of responses intended to be collected be 
ii i1 inY  = (Y ,...,Y ) , which denote 

the repeated measurements for subject i where i = 1,2,…,N. If there are some 

missing values for iY , then we can partition iY  into two parts as o m
i i iY  = (Y , Y ) where 

o
iY  refers to observed responses and m

iY  refers to missing responses. Let 

ii i1 inX = (X ,..., X ) refer to the vector of covariates for subject i. The missing values of 

iY  can be denoted by the indicators 
ii i1 inR = (R ,..., R )  where iR  takes the value of 1 if 

iY  is observed, and takes 0 otherwise (Carpenter, 2005; Schafer, 2005; Yucel, 2009).  

 

i

i

i

1, Y  is observed
R

0, Y  is missing
 

 
Then it turns out that missing data mechanisms introduced by Rubin (1976) and 

Little and Rubin (2002) can now be denoted mathematically as the conditional 

distribution of iR  given the response iY  and covariates Xi.  

 
The missing completely at random (MCAR) is defined such that the probability of a 

response being missing is independent of both observed values and unobserved 

values. 

o m
i i i i if(R  | Y , Y , X ) = f(R )  

 
In other words, reasons yielding missingness are not related to the observed or 

unobserved responses. For example, in a double-blinded randomized clinical trial 

designed to compare the effectiveness in controlling epileptic seizures in a 

treatment group with that in a control group, a patient may not attend a scheduled 

visit due to work related reasons, not because of the reasons related to the study. 

 
Molenberghs and Fitzmaurice (2008, Chapter 17) states that if the data follow a 

http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_4?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Molenberghs
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MCAR type of missingness mechanism, the observed data can be considered as a 

random sub-sample of the complete data, which is consisted of observed and 

unobserved data. As a consequence, moments such as sample means, variances, 

and covariances and the joint distribution of the observed data do not differ from 

those of the complete data. One of the implications of this is that the completers, 

the subjects with no missing values, are considered as a random sample of the 

population. The other implication is that the missing component of subjects who 

have missing values does not differ from the corresponding components of the 

completers. For that reason, most statistical methods for longitudinal data analysis 

which are based on observed data or completers will yield valid inferences under 

MCAR mechanism. 

 
Second related terminology is missing at random (MAR) conditional on observed 

data. It is defined such that the probability of a response being missing depends on 

the observed values, but not on the unobserved values.   

 
o m o

i i i i i i if(R  | Y , Y , X ) = f(R  | Y , X )  

 
This means that reasons yielding missingness are related to the observed values but 

not related to the unobserved values. For instance, in the epileptic seizure example 

above, patients in the treatment group may drop out of the study because the 

treatment is causing an allergic reaction or a slight side-effect such as weight gain.  

 
In contrast to MCAR, when the data follow a MAR conditional on observed data 

type of missingness mechanism, the observed data cannot be considered now as a 

random sub-sample of the complete data. In fact, the observed data are now a 

biased sample of the complete data. Therefore, sample means, variances, and 

covariances of the observed data are now biased estimates of those of the 

complete data. One of the implications of this is that the completers now cannot be 

considered as a random sample of the population. The other implication is that 

missing component of subjects that have missing values does differ from the 

corresponding components of the completers. As a consequence, certain 
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statistical methods for longitudinal data analysis which are based on observed data 

or completers will no further yield valid inferences under MAR conditional on 

observed data mechanism. 

 
Bennett (2001) states that the missing values can be predicted from the observed 

data under MAR conditional on observed data mechanism and that the inference 

on the population parameter of interest does not depend on missing data 

mechanism, if the data is MAR conditional on observed data. For that reason, this 

type of missing data mechanism is also named as “ignorable”. Since MCAR is a 

special case of MAR conditional on observed data, MCAR can also be defined as an 

ignorable mechanism. 

 
The last mechanism is not missing at random (NMAR). It is defined such that the 

probability of a response being missing depends on the unseen observations 

themselves even after accounting for all the available observed information.  

                  
o m o m

i i i i i i i if(R  | Y , Y , X ) = f(R  | Y , Y , X )  

 
In the example of epileptic seizure study, missingness is considered not at random, 

if a patient cannot go to hospital to report the number of seizures he had during 

that week, because he is too sick due to experiencing epileptic seizures in large 

numbers. 

 
Missing values cannot be predicted from the observed data under NMAR 

mechanism. Inference on the population parameters of interest depends not only 

on a model for the data, but also on a model for the process that cause missing 

values in the data. For that reason, this type of missing data mechanism is referred 

to as “non-ignorable” in the likelihood setting, which means it cannot be ignored 

from the analysis. Therefore, most statistical methods for longitudinal data analysis 

which are based on the observed data will yield invalid inferences under MNAR 

mechanism. It is crucial that the effect of missing data mechanism should be 

considered in statistical analysis, otherwise results will be biased, and 
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amount of variability in the data cannot be estimated precisely. 

 
3.3   Missing Data Techniques 

 
3.3.1 Methods that ignore missing values 

 
Before 1980’s, missing data was considered as something to be gotten rid of (Yucel, 

2009). For that reason, firstly, methods ignoring missing values in the data are 

developed. In the context of methods ignoring missing values, we will deal with 

complete case analysis.  

 
Complete case analysis: In this method, all the subjects with missing values are 

extracted from the study, and statistical analysis is limited to only completers. If the 

underlying mechanism in the data is MCAR, the results of the statistical analysis will 

produce valid estimates since reduced data, namely the completers, would 

represent a randomly drawn sub-sample of the complete data. One disadvantage of 

complete case analysis is loss of power due to using smaller dataset. 

 
3.3.2    Single imputation methods 

 
Imputation, one of the most commonly used methods in handling missing data, 

refers to substituting or filling in missing values with imputed values. Single 

imputation methods estimate the values of missing data rather than ignoring it. This 

method prefers to “fill-in” or “impute new values” for the missing data and then 

treats the data as if it is complete. Thereby, it turns out to be possible to perform 

any statistical methods on this complete data. One disadvantage of single 

imputation is that it lacks of sampling variability since it imputes only one constant 

value for each missing value under one model.   

       
      There are many single imputation techniques which are appropriate for incomplete 

longitudinal data. To impute the missing value of a subject, some methods use only 

the information of that subject with missing data, while others use the information 



 

 

 
26 

 

of other subjects.  

 
      Let’s assume an imaginary longitudinal dataset such that each row of the dataset 

corresponds to subjects (i = 1,2,…,N) and that each column corresponds to the 

repeated measures of the response, namely occasions, (j = 1,2,…,ni). Let yij be 

response for subject i at occasion j and rij = 1 if yij is observed, 0 if missing.  

 

      When yij is missing, “before data” method uses the mean of all of the previously 

observed values, yi1, yi2,…, yij-1 prior to the missing value, yij (Engels and Diehr, 2003) 

to impute the yij. 

j-1

il il
l = 1

ij j-1

il
l = 1

r y

ŷ = 

r
 

 
      A special case of “before data” method is last observation carried forward (LOCF) 

method, which is a commonly used imputation technique in longitudinal data. It 

replaces yij+1, yij+2,…,yini by yij  assuming that there is no change from occasion j+1 to 

occasion ni.  This method can be used when a subject drops out of the study after 

occasion j and there are no data thereafter. Another method which uses “after 

data” information is next observation carried backward (NOCB). It replaces the 

missing value, yij, with the subject’s first next known value, yij+1, after the missing 

value, yij. This method is used when a subject fails to complete baseline information 

(McKnight et al., 2007). LOCF and NOCB both use subject’s own information to 

impute the missing value. For both methods, the distance between the missing 

value and the recent observation that will be used to impute that missing value is a 

common problem. 

  
      However, in this thesis, we will allow a variety of patterns of missingness to occur in 

data. For that reason, we will focus on two mean imputation techniques: subject 

mean and occasion mean imputation, and one conditional mean imputation. 
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      Subject mean imputation: This method uses the information specific to the subject. 

The mean of known values in row i, yi1, yi2,…,yij-1, yij+1,yij+2,…,yini is used to replace 

the missing value, yij (Schafer, 2005).  

 

 
                                               (3.6) 

                                                      

                                                                                  
 
Occasion mean imputation: This method does not use the information specific to 

the subject. Engels and Diehr (2003) also name this method as “no person data”. 

The mean of known values in column j of that occasion, y1j,y2j,….,yi-1j, yi+1j,yi+2 j,…..,yNj  

is used to replace the missing value, yij  (Schafer, 2005).  

 

                                                    

N

ij ij
i = 1

ij .j N

ij
i = 1

r y

ŷ  = y  = 

r

                                                          (3.7) 

 
      If data is available for a particular occasion for some subjects, but not available for 

other subjects, then this method can be preferred. This method is reasonable when 

the data is MCAR but it is found that this method underestimates the variance 

(Bennett, 2001). Molenberghs and Verbeke (2005, Chapter 27) states that occasion 

mean imputation is developed mainly for continuous responses. This is also true for 

subject mean imputation. However, we will use rounding to convert continuous 

values to count values (See Appendix E).     

 
      Unlike the single imputation techniques mentioned above, there are single 

imputation techniques which take into account the subject’s covariate information. 

Well-knowns are hot-deck imputation and cold-deck imputation techniques which 

take their origins from survey research. Hot-deck imputation groups subjects which 

are similar with respect to covariates. Then, the method replaces the missing values 

with the values of subjects whose covariates are matched, or similar. But, 

i

i

n

ij ij
j = 1

ij i. n

ij
j = 1

r y

ŷ = y  = 

r

http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_1?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Molenberghs
http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_2?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Verbeke
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complex matching algorithms are needed to be employed to match respondents. 

Cold-deck imputation is very similar to hot-deck imputation method. It decides 

subject similarity with respect to external information or knowledge of previous 

studies, not with respect to the information available in the dataset. It raises doubts 

if this external information is of good quality (Bennett, 2001).  

 
      The covariate based single imputation method, which we will also use in this thesis, 

is conditional mean imputation, in other words, regression imputation.  

 
      Conditional mean imputation: This method firstly requires removing all subjects 

with missing values in the dataset, that’s complete case analysis. Afterwards, in the 

reduced dataset, this method regresses the responses at each occasion on the 

corresponding covariates. The resulting fitted regression equations for each 

occasion are then used to estimate the missing values in that occasion in the 

dataset. For this thesis, we use an AR(1) model as stated in Chapter 2. Since our 

response variable represents counts, we will use the log-link function to relate the 

responses to the covariates and the previous response. The conditional mean 

model for the response at the jth occasion depends on the response at the (j-1)th 

occasion, as well as the covariates, such that 

                                            
                                                        

                                                (3.8)                                                    

 
      The missing values at the jth occasion in the dataset can be estimated through the 

fitted regression equation of (3.8) for the jth occasion. Contrary to other single 

imputation methods, this method yields less biased estimators under MAR 

conditional on observed data.  

     
Implementation of subject mean, occasion mean and conditional mean imputations 

is easy in any statistical software. However, common disadvantage of all these 

single imputation methods is that it inserts a constant value for each missing value, 

which leads to the underestimation of the variance.  

ij ij i j-1 ij

ij ij i j-1

E(Y |X ,Y ) = μ  and

log(μ ) = X β + Y .
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       CHAPTER 4 
 
 

SIMULATION STUDY 
 

 

In this chapter, we consider the details of the simulation study. First, we mention 

about dataset characteristics such as sample size, within-subject size, and response 

variable, covariates, with their statistical distributions. Data generation processes 

under each model and true values of the parameters for each model, which are 

required to simulate the data, are stated in detail. Afterwards, to create missingness 

in the data, missing data generation scenarios are determined for each missing data 

mechanisms (MCAR, MAR conditional on observed data, and NMAR). Lastly, 

parameter estimation techniques under each model are covered. 

  

4.1   Data Generation Scenarios 
 

The examples in the introduction of Chapter 1 reveal that subjects of interest in 

longitudinal studies may be countries, cities, firms, nations, patients and so on. In 

this thesis, we will create a longitudinal count dataset similar to the popular 

epileptic seizure data (Leppik et al., 1985), which assume that subjects of interest 

are patients who suffer from epileptic seizures. Assuming that data collection is 

based on periodic scheduled visits in a hypothetical clinical trial, the total number of 

subjects is taken as N = 100, indexed by i = 1,2,…,100. The number of repeated 

measurements per subject, ni, is assumed to be constant for all subjects and ni = n is 

equal to 4, indexed by j = 1, 2, 3, 4. The time interval between two consecutive 

repeated measurements, tij, is assumed to be same for both within subjects and 

between subjects, and tij = t is equal to one year. Thereby, we can define the 

response variable of interest, Yij, as the total number of seizures that each patient 

experienced within  one year over four successive years. Since measurements 
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are reported by subjects at visits, we can say that the longitudinal data are collected 

from all subjects every t = 1 year for n = 4 visits, see Figure 4.1. Since all subjects 

have equal number of repeated measurements, n = 4, and all subjects have 

measurements taken at the same time interval, t = 1 year for all j, we will have a 

balanced longitudinal study design (Weiss, 2005, Chapter 1). Thus, we prevent the 

complexities, which an unbalanced study design may cause. 

                  

                        

                        Figure 4.1  Data collection of repeated measurements for a subject 

 

The data structure of the longitudinal response is shown in Table 4.1. 
 
 
                                   Table 4.1 Data structure of the longitudinal response 

 

 Measurement Occasions 

Patient Visit 1 Visit 2 Visit 3 Visit 4 

1 Y11 Y12 Y13 Y14 

2 Y21 Y22 Y23 Y24 

… ………. ………. ………. ………. 

99 Y99,1 Y99,2 Y99,3 Y99,4 

100  Y100,1   Y100,2   Y100,3   Y100,4 

            
 

Along with the longitudinal response variable, two time-independent covariates, 

and a time-dependent covariate, totally three covariates, are determined to relate 

the changes in mean response.  

 

The first time-independent covariate, X1i, is assumed to be a continuous variable 

1 year  1 year 

 
 1 year 

 
 1 year 

 

             Visit  1          Visit  2          Visit  3         Visit  4 

  0                    1                   2                    3                   4      years 
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and it is generated from uniform distribution within the range of -1 and 1, for each 

subject.  

 

1iX Unif(-1, 1)  

 
The second time-independent covariate, X2i, is assumed to be a discrete variable 

and is generated for each subject from binomial distribution, taking value of 0 or 1 

with probability 0.5.  

 

2iX Bin(1, 0.5)  

Contrary to the time-independent covariates, whose values are fixed over time 

periods, the values of the time-dependent covariate change over time points. Since 

the data are collected over four time points, the measurements of 3iX  can be 

expressed as 

 

                        3i 3i1 3i2 3i3 3i4X = ( X , X , X , X ) ,  for each i.                                        (4.1) 

 

For that reason, for each subject, the time-dependent covariate, 3iX , is generated 

from a multivariate normal distribution with zero mean and a common AR(1) 

within-subject covariance structure.  

 
In an AR(1) within-subject covariance matrix, the measurements which are closer in 

time are expected to be more correlated than measurements which are farther in 

time. An AR(1) covariance structure has two parameters, 2  and ρ . Here, 2  is the 

common variance of   X3ij for all i and j. The correlation between two measurements 

of a subject i, X3ij and X3im, is a function of the absolute value of the distance 

between the time points of them, so that  

 
ij im|t -t |

3ij 3imCorr(X , X ) = ρ  , 

 
where 0 < ρ < 1 . In practice, correlation between the two measurements of  a 

longitudinal study subject is rarely found to be negative, for that reason, in 
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longitudinal studies, ρ is expected to range from 0 to 1 (Weiss, 2002, Chapter 8). 

 
The within-subject covariance matrix of  (4.1) is given by 

 

                                   

2 3

2

2
3i 2

3 2

1     ρ     ρ    ρ

ρ     1     ρ     ρ
Cov(X ) =  

ρ    ρ     1     ρ

ρ    ρ    ρ     1 

, for each i,                     (4.2)   

                     

and hence the statistical distribution of  (3.1) becomes 

 

                  

2 3

2

2
3i 4 2

3 2

1     ρ     ρ    ρ0

0 ρ     1     ρ     ρ
X MVN , 

0 ρ    ρ     1     ρ

0 ρ    ρ    ρ     1 

, for each i.                         (4.3) 

 

Since we do not allow missingness in the covariates, the measurements of the time-

invariant covariates, X1i and X2i, are assumed to be observed at study entry.  

Kalbfleisch and Prentice (1978) classify time-variant covariates into two categories 

as internal and external covariates.  If the changes in the values of the time-variant 

covariate over time periods are affected by the subject’s development over time 

periods, then the time-variant covariate is called as internal covariate. For example, 

medical sources such as the dosage of the antiepileptic drug that subject is using, 

and the number of antiepileptic drugs that subject is using, or metabolic sources 

such as lead level in blood and fever level can be considered as internal covariates. 

However, if the changes are not related to the subject’s development over time 

periods, then it is called as external covariates. For instance, environmental factors 

such as the carbon monoxide level in the air, and toxins. Our time-variant covariate, 

X3i, is assumed to be an external one and measurement process on the time-variant 

covariate, X3i, can continue even if subject drops out of the study (Daniels and 

Hogan, 2008, Chapter 5). 

http://www.thirdage.com/health-wellness/carbon-monoxide-poisoning
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The data structure of these longitudinal covariates may be illustrated as in Table 

4.2.  

 

Table 4.2 Data structure of longitudinal covariates for each subject 

 

 
The data generation of the response variable, Yij, is based on the corresponding 

regression model, where the matrix of covariates and the vector of fixed effects are 

assumed to be same for both models. For simulation studies, R programming 

language (version 2.8.1) is used. The R codes for data generation procedures are 

available in Appendix A-C. 

 

4.1.1    The Log-Log-Gamma MMM 

 

For the Log-Log-Gamma MMM, random variables, Yij, are generated for each 

subject from Poisson distribution with conditional mean, C
ijμ , given by  

 
C

ij 0ij ij 0 0i 1 1i 2 2i 3 3ij ij 0ijE(Y  | b ) = μ  = exp(β X + β X + β X + β X - log(ν ) + log(b ) ) , 

0ij 1 2b Gamma(θ , θ )  and ij 0ijν = E(b ) , 

 

where ijY  is the response variable of the jth measurement for the ith subject, 

0 1 2 3β , β , β ,and β  are the fixed effects regression coefficients, which are common 

for all subjects, X0i is constant, and equal to 1, 1i 2i X , and X  are the time-independent 

covariates for subject i, 3ijX  is the time-dependent covariate of jth measurement for 

the ith subject, 0ijb  is the gamma distributed random intercept coefficient for the ith 

Measurement Occasions 

Patient Visit 1 Visit 2 Visit 3 Visit 4 

1 X11   X21   X3,1,1 X11   X21  X3,1, 2 X11   X2,1  X3,1,3 X11   X21  X3,1,4 

2 X12   X22   X3,2,1 X12   X22  X3,2,2 X12   X22  X3,2,3 X12   X22  X3,2,4 

… ………. ……… ……… ……… 

99 X1,99  X2,99 X3,99,1 X1,99  X2,99 X3,99,2 X1,99  X2,99 X3,99,3 X11  X2,99  X3,99,4 

100 X1,100  X2,100  X3,100,1 X1,100  X2,100 X3,100,2 X1,100 X2,100 X3,100, 3 X1,100  X2,100X3,100,4 
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subject, 0ijlog(b )  is the natural logarithm of 0ijb , ijν  is the expected value of 0ijb , and 

ijlog(ν )  is the natural logarithm of ijν . 

 
4.1.2    The Random-Intercept Model 

 
For the random-intercept model, random variables, Yij, are generated for each 

subject from Poisson distribution with conditional mean, C
ijμ , given by  

 
C

ij 0ij ij 0 0i 1 1i 2 2i 3 3ij 0ijE(Y  | b ) = μ = exp( β X + β X + β X + β X + b )  and  0i 4b MVN (0, V) , 

 

where ijY  is the response variable for the jth visit of  the ith subject, 

0 1 2 3β , β , β , and β are the fixed-effect regression coefficients, which are common for 

all subjects, X0i is constant, and equal to 1, 1i 2iX , and X  are the time-independent 

covariates for subject i, 3ijX  is the time-dependent covariate for jth of n 

measurements in the ith subject, and 0i 0i1 0i2 0i3 0i4b = (b , b , b , b )  are the random 

intercept coefficients for the ith subject, assumed to be multivariate normally 

distributed with zero mean and AR(1) within-subject covariance structure, V, which 

is common for all  subjects. 

 
4.2   True Parameter 

 
Section 4.1 mentions about the scenarios on the generation of the covariates. While 

two time-fixed covariates can be easily generated from uniform and binomial 

distribution, the generation of the time-varying covariate requires firstly assuming 

true values for the within-subject covariance parameters. After setting 2 = 1 and 

ρ = 0.9,  (4.2) turns out to be  

 

3i

1.000   0.900  0.810  0.729

0.900  1.000   0.900  0.810
Cov(X ) = 

0.810  0.900   1.000  0.900

0.729  0.810   0.900  1.000

, for each i,  
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 and, in turn, the statistical distribution of  (4.1)  becomes 

 

3i 4

0 1.000   0.900  0.810  0.729

0 0.900  1.000   0.900  0.810
X MVN ,  

0 0.810  0.900   1.000  0.900

0 0.729  0.810   0.900  1.000

, for each i.   

 

The fixed effects regression parameters, 0i 1i 2i 3iβ = (β  , β  , β  , β  )  in both regression 

models are set equal to (2, -1.3, 1.5, 1.2) . 

 
4.2.1    The Log-Log-Gamma MMM 

 
For the Log-Log-Gamma MMM, the subject-specific random intercepts, 

0i 0i1 0i2 0i3 0i4b  (b ,b ,b ,b )  are generated from Gamma distribution assuming 

1 2θ = 1 and  θ = 1 . In other words,   

   
0ijb Gamma(1, 1) , for each i and j.  

 
The model based generation of the response variable, Yij, at the jth visit can be 

illustrated as follows  

 

1j 11 21 3,1,j

2j 12 22 3,2,j

99,j 1,99 2,99 3,99,j

100,j 1,100 2,100 3,100,j

Y 1,  X ,  X ,  X
   2

Y 1,  X ,  X ,  X
1.3

.....  = exp ...............................
  1.

Y 1, X ,  X ,  X

Y 1, X , X , X

1j 0,1,j

2j 0,2,j

99,j 0,99,j

100,j 0,100,j

log(ν )  log(b )

log(ν )  log(b )

- ............  + ...............   
5

log(ν )  log(b )
  1.2

log(ν )  log(b )

 

 
 
4.2.2    The Random-Intercept Model 

 
For the random-intercept model, firstly, the within-subject covariance matrix of 

subject-specific random intercepts, 0i 0i1 0i2 0i3 0i4b  (b ,b ,b ,b )  are generated by setting 

the parameter 2 = 0.1 and ρ = 0.5, such that  
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0i

0.1000  0.050  0.025  0.0125

0.0500  0.100  0.050  0.0250
V = Var(b ) = 

0.0250  0.050  0.100  0.0500

0.0125  0.025  0.050  0.1000

, for each i,  

 

and, in turn, the statistical distribution of 0ib  becomes  

 

0i 4

0 0.1000  0.050  0.025  0.0125

0 0.0500  0.100  0.050  0.0250
b MVN ,  

0 0.0250  0.050  0.100  0.0500

0 0.0125  0.025  0.050  0.1000

, for each i. 

 

The model based generation of the response variable, Yij, at the jth visit can be 

illustrated as follows  

 

1j 11 21 3,1,j

1j 12 22 3,2,j

99,j 1,99 2,99 3,99,j

100,j 1,100 2,100 3,100,j

Y 1,  X ,   X ,   X
   2

Y 1,  X ,   X ,   X
1

......  = exp ................................

Y 1,  X , X ,  X

Y 1, X , X , X

0,1,j

0,2,j

0,99,j

0,100,j

 b

 b
.3

 +  .......   
  1.5

 b
  1.2

 b

 

 

So that, based on the true values mentioned above, under each regression model, 

120 longitudinal count datasets are generated with the same data structure (each 

with 100 subjects and 4 repeated measurements for response variable, two time-

independent covariates, and a time-dependent covariate) and saved. 

 
4.3   Missing Data Generation Scenarios 

 
As noted in Section 3.2, in this thesis we assume that missingness occurs only in 2nd, 

3rd, or 4th measurements of the response variable, i i1 i2 i3 i4Y  = (Y , Y , Y ,Y )  for all i and 

that no missingness occurs in the measurements of the matrix of covariates, Xi and 

in the 1st measurement of the response variable. We allow any drop-out and 

intermittent missing data patterns in the measurements of the response variable, 
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i i1 i2 i3 i4Y  = (Y , Y , Y ,Y ) . Hence, we may have 8 different missing data patterns in the 

measurements of the response variable of a subject. For convenience, the patterns 

are classified as completers, intermittent missingness (non-monotone missingness), 

and drop-outs (monotone missingness) and are depicted in Table 4.3, where O = 

Observed and M = Missing. 

                              

                Table 4.3 Conventional classification of missing data patterns 

 
 

 

 
 

 

 

 
 
 
As stated at the end of the Chapter 1, and reviewed in Section 3.2, we aim to create 

missingness in measurements of a dataset like Table 4.1, according to three missing 

data mechanisms, i.e. MCAR, MAR conditional on observed data, and NMAR. 

Scheffer (2002), Shieh (2003), Fong and Lam (2005), and Yucel (2009) provide 

interesting simulation scenarios about these mechanisms.  

 
Similar to them, three missing data mechanisms are applied on the saved original 

datasets with generating 10% and 20% missingness in the dataset. Since, there are 

400 total observations for 100 subjects with measurements taken over four periods; 

for 10% missingness, 40 observations are deleted, and for 20% missingness, 80 

observations are deleted. No observations are deleted from the measurements of 

the first visit, since all subjects are assumed to have an observation in the first year. 

 
The scenarios developed for three missing data mechanisms are: 

 
i) In MCAR case, missing data is obtained with random deletion, so that any 

 Measurement Occasions 

Missing Data Patterns Visit 1 Visit 2 Visit 3 Visit 4 

 Yi 1 Yi 2 Yi 3 Yi 4 

Completers O O O O 

 O M O O 
Intermittent missingness O O M O 
 O M O M 

 O M M O 

 O O O M 
Drop-out O O M M 

 O M M M 
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observation is missing independently from other variables. 

ii) In MAR conditional on observed data case, missingness is limited to 

observations of subjects whose X2i value is 1. 

iii) In NMAR case, i) an observation at the second visit is more likely to be 

missing if the observed response at the first visit is greater than 20, ii) an 

observation at the third visit was more likely made missing if the observed value at 

the second visit is greater than 25, and iii) an observation at the fourth visit was 

more likely to be missing if the observed value at the third visit is greater than 30. 

 

For the NMAR case, we create a scenario similar to the NMAR example in Section 

3.2.  We expect that subjects, experiencing seizures larger than 20 after the first 

visit, do not return for the second visit since they are too sick. If they return for the 

second visit, then, again we suppose that subjects, experiencing seizures larger than 

25 after the second visit, do not come back for the third visit due to sickness. 

However, if they come back for the third visit, lastly, once again, we assume that 

subjects, experiencing seizures larger than 30 after the third visit, do not return for 

the fourth visit due to extensive seizures. 

       

This yields 3 missing data mechanisms ×  2 types of missingness percentage = 6 

different conditions for each regression model. Then, complete case analysis in 

Section 3.3.1, single imputation methods: occasion mean imputation, subject mean 

imputation, and conditional mean imputation in Section 3.3.2 are applied, in order, 

onto the so-called incomplete datasets which are saved safely. To impute the values 

of missing observations, the equations (3.6), (3.7), and (3.8) are used.  

 

This also yields 3 missing data mechanisms ×  2 types of missingness percentage  4 

missing data techniques = 24 different conditions for each regression model as seen 

in Figure 4.2. 

 
The R codes for missing data generation scenarios, missing data techniques and 
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longitudinal data format are available in Appendix D, E and F, respectively. Now, 

under each regression model, the statistical evaluation of 120 datasets in each 24 

conditions can be carried out. 

 

 

    Figure 4.2 Schematic display of the simulation process 

 

 

4.4   Parameter Estimation 

 

As stated throughout the thesis, the aim is to compare the performance of the 

regression parameters of both regression models in 24 different conditions. Due to 

the special features of the Log-Log-Gamma MMM and the random-intercept model 

which were reviewed in detail in Sections 3.1.1 and 3.1.2, the implementation of 

these models, unfortunately, lacks computational tools. For that reason, for 

parameter estimation of the regression models, we used SAS version 9.1.3, which 

was the recent version available in Turkey as of the date this thesis was written. 

While SAS NLMIXED procedure is used for the Log-Log-Gamma MMM like 
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Griswold and Zeger (2004), SAS GLIMMIX procedure is preferred for the random-

intercept model.  

 
The NLMIXED procedure is a built-in SAS procedure, whereas the GLIMMIX 

procedure is an add-on procedure in SAS 9.1.3 which requires to be downloaded 

from the web site of SAS.  

 

The NLMIXED procedure is an appropriate choice for nonlinear mixed models, in 

which random effects are allowed to enter the linear predictor of the model 

nonlinearly. It specifies the conditional distribution for the response variable given 

the random effects, either by standard distributions such as normal, binomial, and 

Poisson or by general distributions that can be coded using SAS programming 

statements. The only distribution available for random effects is normal 

distribution. The way of model specification in the NLMIXED procedure has a high 

degree of flexibility, compared to other SAS procedures (Molenberghs and Verbeke, 

2005, Chapter 15). This advantage enables any non-normal distribution of interest 

for random effects to be implemented within the numerical integration techniques 

available in the NLMIXED procedure via the probability integral transformation 

(Nelson et al., 2006). As stated at the end of the Section 3.1.2, when the random 

effects are normally distributed, the NLMIXED procedure does not offer a 

straightforward option for the specification of any within-subject covariance 

structure. But, by the help of the its flexibility, it is possible to allow the within-

subject covariance matrix of the random effects to be an AR(1)  and the like,  when 

specifying the mean and covariance components of the normal distribution 

(Molenberghs and Verbeke, 2005, Chapter 1; Xu et al., 2007). Xu et al. (2007) states 

that the NLMIXED procedure in SAS 9.1.3 allows only up to three random effects per 

subject, which is a significant disadvantage of the NLMIXED procedure in SAS 9.1.3. 

 
On the other hand, the GLIMMIX procedure is an appropriate choice for generalized 

linear mixed models, in which random effects are restricted to enter linear 

predictor linearly. It specifies the conditional distribution for the response 
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variable given the random effects to have any distribution in the exponential family, 

and only normal distribution for random effects. As stated at the end of Section 

3.1.2, any within-subject covariance structure for normally distributed random 

effects can be modeled directly in the GLIMMIX procedure. This procedure is 

especially recommended for models when the number of random effects per 

subject is large (Flom et al., 2006). The reason why we have used two different SAS 

procedures for these models is that while the NLMIXED procedure accommodates 

the Log-Log-Gamma MMM, it could not handle the random-intercept model, since 

the number of random intercept coefficients per subject in our model is four, which 

is beyond the NLMIXED procedure capacity. In a similar fashion, while the GLIMMIX 

procedure perfectly accommodates the random-intercept model, it cannot handle 

the Log-Log-Gamma MMM, since it does not allow random effects to have a 

distribution other than normal distribution. 

 
However, the most essential difference between the two SAS procedures is the 

estimation techniques that they use (Flom et al., 2006). The likelihood of the data 

can be written as  

                      

(4.4) 

 

where (4.4) is the general version of (3.5) for any random-effects model and θ  is 

the vector of parameters for the distribution of ib . The estimation in the NLMIXED 

procedure is based on maximizing the likelihood in (4.4). The maximization requires 

the computation of the integrals in (4.4) over the distribution of random effects. 

However, generally it does not provide an analytical solution for the maximization 

in (4.4). The NLMIXED procedure computes the integrals in (4.4) by numerical 

integration methods such as Gaussian quadrature or adaptive Gaussian quadrature. 

  
Within the framework of NLMIXED procedure, to fit the Log-Log-Gamma MMM we 

make the model specification parallel to Griswold and Zeger (2004) and to 

accommodate gamma distributed random effects, we use probability 

i

i

nN N

ij ij i i i ij ij ij i i
i = 1 i = 1 j = 1b

L(β | y , b ) = f (y  | β, b ) = f (y  | b , β) f(b  | θ) db  ,
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integral transformation (PIT) like Nelson et al. (2006). Similar to them, ia  is assumed 

to be a random effect from standard normal distribution, such that ia N(0,1) , and 

then by the use of PIT, it can be shown that i i(a ) u Unif(0,1)  where (.) is the 

cumulative distribution function (CDF) of the standard normal distribution. Again by 

the help of PIT, it can also be shown that θ i iF (b ) = u Unif(0,1)  where θF (.)  is the 

cumulative distribution function (CDF) of the gamma distribution of ib , with 

1 2θ = (θ , θ ) . Then it turns out that 1 1
i θ i θ ib  F (u ) = F ( (a ))  has the gamma 

distribution of interest, where 1
θF (.) is the inverse CDF of gamma distribution. The 

equation (4.4) can now be rewritten in terms of random effects,  ai, such that  

             

 
where (.)  is the standard normal distribution density function. Nelson et al. (2006) 

suggest that the likelihood in (4.5) can be approximated by the Gaussian quadrature 

numerical integration technique well. The approximation with Gaussian quadrature 

to integrals in (4.5) is achieved such that ith subject’s likelihood is approximated by a 

weighted sum  

 

 

 

 

 

 

and, thus, the likelihood which is expected to be maximized turns out that 

 

 
 
 

where zq is quadrature point and indexed by q = 1,...,Q, Q is the order of 

i

i

nN N
1

ij i i i i ij ij θ i i i
i = 1 i = 1 j = 1b

L(β | y , a ) = f (y  | β, a ) = f (y  | F ( (a )),β) (a ) da  ,            (4.5)

inN Q
-1

ij ij ij θ q q q
q = 1i = 1 j = 1

L(β | y ) =  f (y  | F (Φ(z )),β) (z ) w  ,

i

i

i

n
1

i ij i ij ij θ i i i
j = 1a

nQ
-1

ij ij θ q q q
q = 1 j = 1

L (β | y , a ) = f (y  | F ( (a )),β) (a ) da

               f (y  | F (Φ(z )),β) (z ) w  ,
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approximation, qw  is the standard Gauss-Hermite weight. Since the approximations 

will be more accurate as the Q increases, we use Gaussian quadrature with 30 

points like Griswold and Zeger (2004) and Nelson et al. (2006). The values of zq and 

qw  can be obtained from tables (Abramowitz and Stegun, 1972, Table 25.10). 

 
Gaussian quadrature with 40 and 50 points are also tried, but no significant 

difference are observed, compared to Gaussian quadrature with 30 points. 

 

The NLMIXED procedure requires specification of initial values for all parameters in 

the model. However, one limitation of the NLMIXED procedure occurs when 

specifying gamma distributed random effects. This procedure only allows 2θ  being 

equal to 1 (Nelson et al., 2006).  This limitation causes us to assume 1θ  is equal to 

2θ  and to assign only the value of 1 to 1θ  so that we provide the value of 1 to 2θ . 

For detail, we refer the reader to the SAS codes which are given in Appendix G. 

 

On the other side, the GLIMMIX procedure is based on the linearization of the 

general linear mixed models, that’s it transforms the GLMM into a linear mixed 

model such that,                     

 

ij ij ij ij ij ij ij ijY  = exp( X β + Z b )  Y ( X β + Z b  )  

                                       

Linearization of ijY  is achieved by expanding ij ij ij exp( X β + Z b  )  with some order of 

the Taylor series around some point. The order of the Taylor approximation, with 

the point around the approximation is carried out, yield different linearization 

methods such as PQL and MQL (Molenberghs and Verbeke, 2005, Chapter 14). 

While both methods are based on a linear Taylor series expansion, MQL differs from 

PQL in that it completely disregards the random effects in the linearization. The 

resulting linear mixed model, then, can be fitted by either maximum likelihood 

estimation or restricted maximum likelihood (REML) (Harville, 1977) estimation. 
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Within the framework of the GLIMMIX procedure, the random-intercept model is 

fitted by using PQL, based on REML for the linear mixed models. The option in the 

GLIMMIX procedure is the “method=RSPL”, which is the default method. For detail, 

we refer the reader to the SAS codes which are given in Appendix H. 

 
Further information on the description of the NLMIXED and GLIMMIX procedures 

and their options can be obtained from SAS Institute Inc. (2000) and SAS Institute 

Inc. (2004). 
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CHAPTER 5 

 

FINDINGS and DISCUSSION  
 

 

In this chapter, we draw conclusions from the simulation study, and make several 

comparisons such as different amount of missing data, missing data mechanisms, 

and missing data techniques under both Log-Log-Gamma MMM and random-

intercept model and mention the general performance of both regression models.  

 
Figures 5.1 and 5.2 show the profile plots, which draw response patterns for each 

subject, of one of the 120 epileptic seizure counts data generated from the Log-Log-

Gamma model, and the random-intercept model, respectively.  

 

For the data of the Log-Log-Gamma model, most of the subject profiles change 

within the range of 0 and 50, while for the data of the random-intercept model, 

most change within the range of 0 and 100. Although there are a few exceptions at 

the top subject profiles in both figures, the bottom subject profiles cross another in 

both figures.  
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  Figure 5.1 An Epileptic seizure count data which is generated under the Log-Log-Gamma model 
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id 1 2 3 4 5 6 7 8
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 Figure 5.2 An Epileptic seizure count data which is generated under the random-intercept model 
 
 
                      Table 5.1 Summary statistics for each visit at each model 

  
 

 

 

 

 

 
 
 

Table 5.1 shows that the variance to the mean ratio is pretty larger than 1 at each 

visit for each regression model. This means that the epileptic seizure counts data for 

each regression model exhibit a high degree of overdispersion. Furthermore, the 

magnitude of the overdispersion changes across the visits as well. 

 

The evaluation of regression parameters estimates obtained from of 120 simulated 

datasets under each 24 conditions (3 missing data mechanisms ×  2 types of 

missingness percentage ×  4 missing data techniques) for each regression model is 

performed by the quantities: Mean absolute error (MAE) and mean square error 

(MSE). MAE is the average absolute difference between the true value of a 

parameter and its estimates. MSE is the average squared difference between the 

 Log-Log-Gamma MMM 

Statistic Visit 1 Visit 2 Visit 3 Visit 4 

Mean 15.39 16.19 14.04 12.38 

 Variance/ Mean 97.304 88.072 99.105 33.301 

     

      Random-Intercept Model 

Statistic Visit 1 Visit 2 Visit 3 Visit 4 

Mean 34.76 35.09 32.64 34.90 

Variance/ Mean 78.507 104.572 92.442 67.558 
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true value of a parameter and its estimates. 

 

We firstly sort the 120 estimates of each regression parameter under each 24 

conditions for each model and, then, trim 5% of the smallest estimates from the 

lower end and 5% of the largest estimates from the upper end. Discarding 6 largest 

estimates from the upper end and 6 smallest estimates from the lower end results 

in 108 regression parameters estimates, but this disregards potential outliers, and 

consequently provides more robust results. Hence, for each regression parameter 

across the 24 conditions, MAE and MSE values are computed by 

 

108 108
2

p pr p pr
r = 1 r = 1

ˆ ˆ|β - β | (β - β )

MAE =     and    MSE = 
108 108

, 

 

where pβ  is the true value of the regression parameter of interest indexed by p = 

0,1,2,3; r is the  simulation index taking values between 1 and 108, and prβ̂  is the 

estimate of the pth  regression parameter of interest in the rth simulation. The MAE 

results are tabulated in Tables 5.2 and 5.4, and the MSE results are summarized in 

Tables 5.3 and 5.5. In addition to rows reserved for missing data techniques, the 

values in row labeled “complete data” in Tables 5.2 - 5.5 refer to the MAE and MSE 

values of parameter estimates after the corresponding model is fitted on the 

complete data which have no missing values. The results are discussed in the 

following sections in detail. 
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       Table 5.2 Mean Absolute Error of parameters under the Log-Log-Gamma MMM 

 
 
 

                Log-Log-Gamma MMM 

  0β  2   1β  1.3  

  10% 20%  10% 20% 

MCAR       

Complete Data 0.6029   0.2114   

Complete Case  0.4880 0.5046  0.2284 0.2062 

Subject Mean Imputation  0.5204 0.4442  0.2208 0.2336 

Occasion Mean Imputation  0.1815 0.2173  0.2566 0.3540 

Conditional  Mean Imputation  0.2103 0.5786  0.2103 0.2192 

MAR  conditional on observed data       

Complete Data 0.5883   0.2080   

Complete Case  0.6059 0.6098  0.1914 0.1802 

Subject Mean Imputation  0.4771 0.3625  0.2401 0.2624 

Occasion Mean Imputation  0.4693 0.3991  0.2645 0.2645 

Conditional  Mean Imputation  0.6142 0.5663  0.2188 0.2024 

NMAR       

Complete Data 0.5586   0.2089   

Complete Case  0.6631 0.7770  0.2031 0.1902 

Subject Mean Imputation  0.3619 0.2530  0.2392 0.2724 

Occasion Mean Imputation  0.5710 0.6532  0.1982 0.2754 

Conditional  Mean Imputation  0.5973 0.6429  0.2237 0.2033 

       

  2β  1.5   3β  1.2  

  10% 20%  10% 20% 

MCAR       

Complete Data 0.1813   0.1688   

Complete Case  0.2023 0.2246  0.1830 0.2487 

Subject Mean Imputation  0.2296 0.2360  0.1916 0.2962 

Occasion Mean Imputation  0.3075 0.3931  0.2129 0.3152 

Conditional  Mean Imputation  0.2104 0.1926  0.1944 0.1634 

MAR  conditional on observed data       

Complete Data 0.2362   0.1579   

Complete Case  0.2303 0.2848  0.1745 0.1882 

Subject Mean Imputation  0.2538 0.2673  0.2382 0.4175 

Occasion Mean Imputation  0.2417 0.2207  0.1780 0.2934 

Conditional  Mean Imputation  0.2404 0.2341  0.1593 0.1796 

NMAR       

Complete Data 0.1954   0.1687   

Complete Case  0.1988 0.2065  0.1942 0.1880 

Subject Mean Imputation  0.2161 0.2653  0.3816 0.7348 

Occasion Mean Imputation  0.2104 0.2576  0.2256 0.2640 

Conditional  Mean Imputation  0.2003 0.2673  0.2133 0.2621 
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       Table 5.3 Mean Square Error of parameters under the Log-Log-Gamma MMM 

     
         
 

                Log-Log-Gamma MMM 

  0β  2   1β  1.3  

  10% 20%  10% 20% 

MCAR       

Complete Data 0.3968   0.0656   

Complete Case  0.2967 0.3292  0.0836 0.0722 

Subject Mean Imputation  0.3159 0.2363  0.0671 0.0850 

Occasion Mean Imputation  0.0469 0.0724  0.0968 0.1857 

Conditional  Mean Imputation  0.4074 0.3682  0.0677 0.0722 

MAR  conditional on observed data       

Complete Data 0.3940   0.0667   

Complete Case  0.4107 0.4119  0.0582 0.0530 

Subject Mean Imputation  0.2587 0.1799  0.0818 0.0973 

Occasion Mean Imputation  0.2736 0.1992  0.1032 0.1160 

Conditional  Mean Imputation  0.4230 0.3584  0.0741 0.0606 

NMAR       

Complete Data 0.3463   0.0581   

Complete Case  0.4663 0.6117  0.0600 0.0518 

Subject Mean Imputation  0.1700 0.0937  0.0894 0.1170 

Occasion Mean Imputation  0.3782 0.4551  0.0567 0.1062 

Conditional  Mean Imputation  0.4027 0.4598  0.0813 0.0636 

       

  2β  1.5   3β  1.2  

  10% 20%  10% 20% 

MCAR       

Complete Data 0.0515   0.0440   

Complete Case  0.0601 0.0722  0.0533 0.1023 

Subject Mean Imputation  0.0804 0.0775  0.0569 0.1248 

Occasion Mean Imputation  0.1377 0.2226  0.0695 0.1329 

Conditional  Mean Imputation  0.0678 0.0574  0.0524 0.0412 

MAR  conditional on observed data       

Complete Data 0.0789   0.0355   

Complete Case  0.0789 0.1151  0.0441 0.0555 

Subject Mean Imputation  0.0985 0.1126  0.0779 0.2140 

Occasion Mean Imputation  0.0813 0.0705  0.0502 0.1171 

Conditional  Mean Imputation  0.0801 0.0835  0.0386 0.0465 

NMAR       

Complete Data 0.0571   0.0434   

Complete Case  0.0561 0.0616  0.0565 0.0512 

Subject Mean Imputation  0.0701 0.1193  0.1756 0.5666 

Occasion Mean Imputation  0.0649 0.0926  0.0736 0.1040 

Conditional  Mean Imputation  0.0613 0.0957  0.0627 0.1014 
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       Table 5.4 Mean Absolute Error of parameters under the Random-Intercept Model 

          
 
 

                 Random-Intercept Model 

  0β  2   1β  1.3  

  10% 20%  10% 20% 

MCAR       

Complete Data 0.0442   0.0343   

Complete Case  0.0541 0.0579  0.0436 0.0570 

Subject Mean Imputation  0.0667 0.0945  0.0390 0.0536 

Occasion Mean Imputation  0.4425 0.7708  0.2708 0.4678 

Conditional  Mean Imputation  0.0477 0.0577  0.0354 0.0429 

MAR  conditional on observed data       

Complete Data 0.0481   0.0346   

Complete Case  0.0458 0.0478  0.0387 0.0470 

Subject Mean Imputation  0.0888 0.1189  0.0439 0.0656 

Occasion Mean Imputation  0.0759 0.1003  0.1940 0.3211 

Conditional  Mean Imputation  0.0550 0.0576  0.0400 0.0446 

NMAR       

Complete Data 0.0411   0.0350   

Complete Case  0.0349 0.0352  0.0430 0.0614 

Subject Mean Imputation  0.1008 0.1325  0.0489 0.0818 

Occasion Mean Imputation  0.0911 0.1017  0.0666 0.1448 

Conditional  Mean Imputation  0.0446 0.0510  0.0349 0.0499 

       

  2β  1.5   3β  1.2  

  10% 20%  10% 20% 

MCAR       

Complete Data 0.0457   0.0415   

Complete Case  0.0544 0.0650  0.0508 0.0513 

Subject Mean Imputation  0.0552 0.0718  0.1305 0.2705 

Occasion Mean Imputation  0.3014 0.5297  0.1511 0.2714 

Conditional  Mean Imputation  0.0479 0.0508  0.0436 0.0483 

MAR  conditional on observed data       

Complete Data 0.0475   0.0412   

Complete Case  0.0574 0.1049  0.0458 0.0510 

Subject Mean Imputation  0.0562 0.0966  0.1893 0.4318 

Occasion Mean Imputation  0.1324 0.1532  0.1252 0.2229 

Conditional  Mean Imputation  0.0522 0.0739  0.0476 0.0548 

NMAR       

Complete Data 0.0379   0.0390   

Complete Case  0.0522 0.0707  0.0494 0.0609 

Subject Mean Imputation  0.0635 0.0926  0.2271 0.5346 

Occasion Mean Imputation  0.0887 0.1741  0.1112 0.1888 

Conditional  Mean Imputation  0.0450 0.0588  0.0531 0.0882 
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       Table 5.5 Mean Square Error of parameters under the Random-Intercept Model 

 

 

                 Random-Intercept Model 

  0β  2   1β  1.3  

  10% 20%  10% 20% 

MCAR       

Complete Data 0.0027   0.0016   

Complete Case  0.0043 0.0047  0.0028 0.0050 

Subject Mean Imputation  0.0062 0.0121  0.0023 0.0043 

Occasion Mean Imputation  0.2023 0.6063  0.0803 0.2289 

Conditional  Mean Imputation  0.0034 0.0048  0.0017 0.0026 

MAR  conditional on observed data       

Complete Data 0.0033   0.0018   

Complete Case  0.0032 0.0033  0.0023 0.0033 

Subject Mean Imputation  0.0100 0.0168  0.0029 0.0065 

Occasion Mean Imputation  0.0074 0.0128  0.0411 0.1076 

Conditional  Mean Imputation  0.0042 0.0044  0.0024 0.0029 

NMAR       

Complete Data 0.0025   0.0017   

Complete Case  0.0018 0.0017  0.0026 0.0054 

Subject Mean Imputation  0.0123 0.0208  0.0038 0.0098 

Occasion Mean Imputation  0.0111 0.0146  0.0061 0.0246 

Conditional  Mean Imputation  0.0028 0.0041  0.0018 0.0035 

       

  2β  1.5   3β  1.2  

  10% 20%  10% 20% 

MCAR       

Complete Data 0.0030   0.0027   

Complete Case  0.0045 0.0060  0.0040 0.0041 

Subject Mean Imputation  0.0043 0.0077  0.0215 0.0824 

Occasion Mean Imputation  0.0999 0.2923  0.0288 0.0876 

Conditional  Mean Imputation  0.0035 0.0038  0.0029 0.0035 

MAR  conditional on observed data       

Complete Data 0.0031   0.0025   

Complete Case  0.0048 0.0160  0.0031 0.0037 

Subject Mean Imputation  0.0051 0.0147  0.0421 0.1996 

Occasion Mean Imputation  0.0247 0.0336  0.0229 0.0674 

Conditional  Mean Imputation  0.0038 0.0074  0.0035 0.0045 

NMAR       

Complete Data 0.0021   0.0023   

Complete Case  0.0039 0.0071  0.0036 0.0053 

Subject Mean Imputation  0.0057 0.0138  0.0588 0.3019 

Occasion Mean Imputation  0.0112 0.0371  0.0187 0.0478 

Conditional  Mean Imputation  0.0030 0.0053  0.0048 0.0208 
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5.1   Comparison of different amount of Missing Data 

 
In this section, the effect of the amount of missing data on missing data techniques 

is analyzed under each model. 

 
5.1.1    The Log-Log-Gamma MMM 
 

The results obtained under the Log-Log-Gamma MMM are shown in Tables 5.2 and 

5.3. MAE and MSE values at 20% missingness are larger than those at 10% 

missingness across regression parameters, 1β , 2β  and 3β , in most of the 12 

conditions (3 missing data mechanisms ×  4 missing data techniques). In others, the 

difference in the values is too small. This means that, as expected, as the 

missingness in the data increases, the regression parameters are less accurately and 

precisely estimated. 

 
Tables 5.2 and 5.3 illustrate interesting findings. While estimating the regression 

parameters of the time-independent covariates, 1β  and 2β , the missingness in the 

data influences occasion mean imputation mostly; consequently it displays the 

worst performance in estimates. It has the largest MAE and MSE values both at 10% 

and 20% missingness, compared to the MAE and MSE values of other techniques. It 

is also worthy to mention that when the missingness percentage in the data 

increases from 10% to 20%, the MAE and MSE values of occasion mean imputation 

grows at a higher rate compared to other techniques. For example, in Table 5.2, for 

2β , under MCAR, there exists approximately 28% increase in the MAE values of 

occasion mean imputation, when the missingness percentage in the data is changed 

from 10% to 20%. However, slight increases appear for other techniques, under the 

same condition. 

 

On the other hand, while estimating the regression parameter of the time-

dependent covariate, 3β , firstly subject mean imputation, afterwards, occasion 

mean imputation are mostly affected by the missingness in the data. As Tables 
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5.2 and 5.3, for 3β , reveal, subject mean imputation has the largest MAE and MSE 

values both at 10% and 20% missingness. Changing missingness percentage from 

10% to 20% in the data causes subject mean imputation to exhibit a subversive 

effect both on MAE and MSE values. To illustrate, in Table 5.2, under MAR 

conditional on observed data, for 3β , subject mean imputation at 20% missingness 

yield nearly twice as large MAE values as that at 10% missingness. However, 

complete case analysis, or conditional mean imputation appears to be more robust 

to missingness percentage changes under the same condition. 

 
5.1.2    The Random-Intercept Model 

 
The results obtained under the random-intercept model are reported in Tables 5.4 

and 4.5.  Across regression parameters, 1β , 2β  and 3β , MAE and MSE values at 20% 

missingness are larger than those at 10% missingness, in all of the 12 conditions (3 

missing data mechanisms ×  4 missing data techniques). 

 

The random-intercept model yields identical results with the Log-Log-Gamma MMM 

in the context of missingness percentage in the data. As illustrated in the columns 

labeled 1β  and 2β  in Tables 5.4 and 5.5, while estimating 1β  and 2β , the 

missingness percentage in the data affects occasion mean imputation mostly. 

Accordingly, it produces the largest MAE and MSE values both at 10% and 20% 

missingness, and displays the highest rate of change in MAE and MSE values, when 

the missingness percentage in the data changes from 10% to 20%. 

 

Similar to the case in the Log-Log-Gamma MMM, while estimating 3β , subject mean 

imputation, afterwards, occasion mean imputation are mostly affected by the 

missingness percentage in the data. Naturally, as in Tables 5.4 and 5.5, for 3β   

reveal, subject mean imputation has the largest MAE and MSE values both at 10% 

and 20% missingness, compared to the MAE and MSE values of other techniques.  
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5.2   Comparison of Missing Data Mechanisms 
 

This section discusses the comparison of the missing data mechanisms under each 

model. To aid in the interpretation of results in terms of the missing data 

mechanisms, we follow the procedure of Newman (2003). That’s we combine the 

MAE values and MSE values across all regression parameters, o 1 2 3β , β , β  and β  and 

tabulate the results in Tables 5.6 and 5.7. 

 

5.2.1    The Log-Log-Gamma MMM 
 

For the Log-Log-Gamma MMM, Table 5.6 shows that all missing data techniques 

exhibit larger average MAE and MSE values under NMAR compared to the values 

under MAR conditional on observed data and MCAR, both at 10% and 20% 

missingness. Not surprisingly, this is the expected case in the framework of missing 

data theory, since parameter estimates which are estimated under MCAR or MAR 

conditional on observed data are expected to be less biased than those of under 

NMAR. Moreover, larger average MAE and MSE values are observed under MAR 

conditional on observed data than under MCAR. One exception is occasion mean 

imputation which gives slightly lower average MAE and MSE values under MAR 

conditional on observed data than MCAR at 20% missingness in the data, as seen in 

the bold digits in Table 5.6.  

 
                          Table 5.6 Average MAE and MSE values of missing data techniques  
                          across all regression parameters including the intercept 

 

 Log-Log-Gamma MMM 

 Average MAE Average MSE 

 10% 20% 10% 20% 

MCAR     
Complete Case 0.275 0.296 0.123 0.144 

Subject Mean Imputation 0.291 0.303 0.130 0.131 

Occasion Mean Imputation 0.240 0.320 0.088 0.153 

Conditional  Mean Imputation 0.206 0.288 0.149 0.135 
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5.2.2    The Random-Intercept Model 
 

For the random-intercept model, Table 5.7 illustrates that only the use of subject 

mean yields larger average MAE and MSE values under NMAR compared to the 

values under MAR conditional on observed data and MCAR.  While no significant 

differences are observed in average MAE and MSE values of complete case analysis 

and conditional mean imputation under three missing data mechanisms, the 

average MAE and MSE values of occasion mean imputation are contrary to  the 

expected pattern in the context of missing data theory. When the missingness 

mechanism changes from MCAR to MAR conditional on observed data, then, to 

NMAR, there appear a sharp decrease in average MAE and MSE values of occasion 

mean imputation both at 10% and at 20% missingness in the data, as seen in the 

bold digits in Table 5.7. 

 

                          Table 5.7 Average MAE and MSE values of missing data techniques  
                           across all regression parameters including the intercept 

 

 

 

 

 

 

 

Table 5.6  (Cont’d)   

MAR   conditional on observed data     
Complete Case 0.301 0.316 0.148 0.159 

Subject Mean Imputation 0.302 0.327 0.129 0.151 

Occasion Mean Imputation 0.288 0.294 0.127 0.126 

Conditional  Mean Imputation 0.308 0.296 0.154 0.137 

NMAR     
Complete Case 0.315 0.340 0.160 0.194 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Subject Mean Imputation 0.300 0.381 0.126 0.224 

Occasion Mean Imputation 0.301 0.363 0.143 0.189 

Conditional  Mean Imputation 0.309 0.344 0.152 0.180 

 Random-Intercept Model 

 Average MAE Average MSE 

 10% 20% 10% 20% 

MCAR     
Complete Case 0.051 0.058 0.004 0.005 

Subject Mean Imputation 0.073 0.123 0.009 0.027 

Occasion Mean Imputation 0.291 0.510 0.103 0.304 

Conditional  Mean Imputation 0.044 0.050 0.003 0.004 
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5.3   Comparison of Missing Data Techniques 

 
In this section, the performance of the missing data techniques is discussed 

generally. 

 
5.3.1    The Log-Log-Gamma MMM 

 
Under the Log-Log-Gamma MMM, occasion mean imputation performs poorly 

among other missing data techniques, and incompetence of occasion mean 

imputation is stressed especially when estimating the regression parameters, 1β  

and 2β , since it results in the largest average MAE and MSE values (see Tables 5.2 

and 5.3). Furthermore, this missing data technique is the most sensitive to the 

missingness percentage in the data. Under MCAR, for 3β , occasion mean continues 

to perform poorly. However, when it is MAR conditional on observed data or 

NMAR, occasion mean imputation is no longer the worst technique for estimating 

the regression parameter, 3β , and performs better than subject mean  imputation.  

 
In general, the failure of occasion mean imputation may be due to the fact that it 

does not use information related to subject while imputing missing values. 

Consequently, it may not capture the trend within the values of a subject. 

 
Subject mean imputation performs better than occasion mean imputation, in 

Table 5.7  (Cont’d)   

MAR   conditional on observed data     
Complete Case 0.047 0.063 0.003 0.007 

Subject Mean Imputation 0.095 0.178 0.015 0.059 

Occasion Mean Imputation 0.132 0.199 0.024 0.055 

Conditional  Mean Imputation 0.049 0.058 0.003 0.005 

NMAR     
Complete Case 0.045 0.057 0.003 0.005 

Subject Mean Imputation 0.110 0.210 0.020 0.087 

Occasion Mean Imputation 0.089 0.152 0.012 0.031 

Conditional  Mean Imputation 0.044 0.062 0.003 0.008 



 

 

 
57 

 

estimating the regression parameters, 1β  and 2β . Interestingly, however, for 3β  

regression parameter, subject mean imputation displays worse results than 

occasion mean imputation under MAR conditional on observed data and NMAR. As 

Tables 5.2 and 5.3 show that, when the missing data mechanism is NMAR, subject 

mean imputation gives the worst estimate for 3β  compared to other missing data 

techniques.  

 
General performance of subject mean imputation over occasion mean imputation 

can be explained as its use of information related to subject while imputing missing 

values. 

 

Complete case analysis does not deal with imputation task, and uses less 

information, unlike occasion and subject mean imputation which use all available 

information. Our simulation study shows that across regression parameters, 1β , 2β  

and 3β , and under all conditions, complete case analysis performs at least as good 

as occasion and subject mean imputation in terms of producing smaller or similar 

average MAE and MSE values.  

 

Conditional mean imputation outperforms subject and occasion mean imputation in 

producing accurate and precise parameter estimates for regression parameters, 1β , 

2β  and 3β  and gives similar results with complete case analysis. Conditional mean 

imputation gives the smallest MAE and MSE values, for 3β , under MAR conditional 

on observed data (0.1593 and 0.0386, respectively: see Tables 5.2 and 5.3). 

 
5.3.2    The Random-Intercept Model 

 
The random-intercept model provides substantially similar results with the Log-Log-

Gamma MMM. Like mentioned above for the Log-Log-Gamma MMM, occasion 

mean imputation also turns out to be the ineffective method in terms of accuracy 

and precision under the random intercept model. It displays the same 
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behaviors across the regression parameters, 1 2 3β , β , and β , and under all conditions 

under the Log-Log-Gamma MMM.  

 

The behaviors of subject mean imputation and complete case analysis under the 

random-intercept model give parallel results to the cases under the Log-Log-

Gamma MMM. Conditional mean imputation turns out be superior to the 

unconditional mean imputations, for the regression parameters, 1β , 2β  and 3β , 

regardless of any missing data mechanism, and give similar results with complete 

case analysis.  The only exception is for 3β  under NMAR, for which complete case 

analysis performs better than conditional mean imputation. 

 

5.4   Comparison of Regression Models 

 
Inspection of the values in row labeled “complete data” in Tables 5.2 - 5.5 points 

out that the Log-Log-Gamma MMM yields larger MAE and MSE values than the 

random-intercept model. This shows that the regression parameters under the Log-

Log-Gamma MMM are less accurately and precisely estimated compared to those 

under the random-intercept model. However, this does not directly mean the Log-

Log-Gamma MMM should be abandoned in favour of the random-intercept model. 

The difference between the MAE and MSE values of the Log-Log-Gamma MMM and 

the random-intercept model can be due to the dissimilarity of estimation methods 

in SAS NLMIXED and SAS GLIMMIX procedures. An updated release of SAS NLMIXED 

procedure which allows more than three random effects per subject will 

accommodate the random-intercept model described in this thesis. Then, it will be 

possible to make more fair comparisons between these two regression models and 

to tell which one is the best.  Although regression model selection is subject to the 

question of research interest, it is worthy to remind that one shortcoming of the 

random-intercept model is that the results of the model are subject to the within-

subject covariance structure choice in the multivariate distribution. However, the 

Log-Log-Gamma MMM is free of this assumption and, besides; it handles the 
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overdispersion problem wisely. The features of the Log-Log-Gamma MMM and the 

random-intercept model are discussed in detail in Sections 3.1.1 and 3.1.2. 
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CHAPTER 6 

 

CONCLUSION 

 
 

Among regression models dealing with longitudinal count data in the literature, this 

thesis focuses on the Log-Log-Gamma marginalized multilevel model, which was 

developed by Griswold and Zeger (2004), and the random-intercept model. Log-Log-

Gamma MMM is a likelihood-based model and offers a GLM for the mean response 

model, and a nonlinear mixed model for the within-subject association model. 

Separation of the model for mean response from that for within-subject association 

eases the interpretation of regression parameters of interest. Moreover, the Log-

Log-Gamma MMM specifies a gamma distribution for the random effects which is 

conjugate to the Poisson distribution of conditional mean model. This is a great 

advantage over normally distributed random effects model since the Poisson-

gamma mixture is able to remedy the overdispersion problem.  

 
One of the most frequently encountered problems in longitudinal studies is the 

missing values in the data due to data collection process over a sequence of time 

periods. This leads the longitudinal data to be incomplete. To facilitate the work of 

the regression models against missingness, missing data techniques can be utilized. 

For instance, the missing values in the data can be either ignored by the use of 

complete case analysis, or filled in by the imputation methods such as subject, 

occasion, and conditional mean imputation. However, the missingness percentage 

in the data and the missingness mechanism that the data have, whether it is MCAR, 

MAR conditional on observed data, or NMAR, affect the performance of missing 

data techniques. For that reason, these concepts should be taken into account as 

well. 
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To make an effective assessment, for the Log-Log-Gamma MMM, only a random 

intercept is assumed as a random coefficient in the linear predictor. As a competitor 

regression model, the random-intercept model from generalized linear mixed 

models is preferred. 

 

For the simulation study, 100 subjects with four repeated measurements, three 

covariates, where two are time-independent, and one is time-dependent, are 

determined. After generating and saving original longitudinal count datasets, under 

each model, 24 different conditions are created by multiplying three missing data 

mechanisms, two types of missingness percentage and four 4 missing data 

techniques. Missingness is limited to 2nd, 3rd, or 4th measurements of the response 

variable and not allowed in the measurements of the matrix of covariates, and in 

the 1st measurement of the response variable. Any drop-out or intermittent missing 

data patterns in the measurements of the response variable are welcomed. 

 
While data generation process is achieved by R version 2.8.1, the statistical 

evaluation of the models is achieved by SAS version 9.1.3. Due to the lack of 

computational advances, while SAS NLMIXED procedure is preferred for the Log-

Log-Gamma MMM, SAS GLIMMIX procedure is used for the random-intercept 

model. 

 
Based on the statistical evaluation quantities, mean absolute error and mean 

square error, the simulation study supports the missing data theory and proves that 

missingness percentage in the data, and the missingness mechanism that the data 

have, influence the performance of missing data techniques under both regression 

model. 

 
Under both regression models, while generally occasion mean imputation displays 

the worst performance in the estimates, conditional mean imputation shows a 

superior performance, over occasion and subject mean imputation, regardless of 

missing data amount and missing data mechanisms, and gives parallel results with 
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complete case analysis. Although, behaviors are similar under the models, the Log-

Log-Gamma MMM yields larger MAE and MSE values than the random-intercept 

model. 

 

Longitudinal count data lack availability in different statistical software. Model 

fitting of longitudinal count data in different statistical software with different 

estimation techniques will enable improvement in usage frequency, inference 

capabilities and comparison. Furthermore, as Nelson et al. (2006) stresses, non-

normal random effects are taking progressive attention not only from longitudinal 

data analysis field, but also from different areas in statistics, and are more realistic 

than normally distributed random effects. However, non-normal random effects 

suffer from the lack of computational implementation as well.  

 

As a future work, missingness in the data can be admitted to the matrix of 

covariates, in addition to the measurements of response variable. However, 

although the implementation of incomplete longitudinal continuous data by 

multiple imputation technique is offered by the pan function under the PAN library 

in R, or SAS MI procedure, the implementation of incomplete longitudinal count 

data by multiple imputation technique is still suffering from computational 

availability in statistical software. Filling in missing values in an incomplete 

longitudinal count data by multiple imputation technique can be a good extension 

of this thesis. Sensitivity analysis on model fit under the normality assumption is 

currently under investigation when random effects come from a nonnormal 

distribution. 
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APPENDIX A 
 
 

R CODES FOR THE GENERATION OF COVARIATES MATRIX 
 

#  Generating the elements of matrix of time-independent covariates, Xf.  
#  Each row of the matrix, Xf, corresponds to value of jth visit (j = 1,2,3,4) for the ith  
#  subject (i = 1,2,…,100). 
 
 
Xf<-matrix(0,100,3) 
for(i in 1:dim(Xf)[1])Xf[i,]=cbind(1,runif(1, min=-1, max=1), rbinom(1,1,0.5) ) 
 
 
#  Defining a common AR(1) within-subject covariance matrix, Vx3,  for the time- 
#  dependent covariate of all subjects (i = 1,2,…,100). 
 
rho <- 0.9 
sigma2 <-1 
times<-1:4 
H <- abs(outer(times, times, "-")) 
Vx3<- sigma2* rho^H 
 
#  Generating the elements of matrix of time-dependent covariates, Xt.  
#  Each row of the matrix corresponds to value of jth visit (j = 1,2,3,4) for the ith  
#  subject (i = 1,2,…,100). 
#  Install package mvtnorm package 
 
library(mvtnorm) 
 
 
Xt<-matrix(0,100,4) 
for(i in 1:dim(Xt)[1]) Xt [i,]=rmvnorm(1,mean=c(0,0,0,0),sigma=Vx3) 
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APPENDIX B 
 
 

R CODES FOR THE GENERATION OF DATA UNDER   

LOG-LOG-GAMMA MMM 
 

#  Generating the elements of matrix of random intercepts, C. Each row of the  
#  matrix, C, corresponds to value of jth visit (j = 1,2,3,4) for the ith subject  
#  (i = 1,2,…,100). Each random intercept follow a gamma distribution with a shape  
#  and a scale parameter equal to 1. 
 
C<-matrix(0,100,4) 
for(i in 1:dim(C)[1]) { 
for(j in 1:dim(C)[2]) {               
C[i,j]=rgamma(1, shape=1, rate = 1, scale = 1) 
} 
} 
 
#  Defining the true parameter for the fixed effects regression coefficients 
 
 beta_m<-c(2,-1.3,1.5, 1.2) 
 
#  Generating the elements of matrix of delta, as stated in the Section 3.1.1, for  
#  each  subject (i = 1,2,…,100). 
 
delta<-((cbind((cbind(Xf,Xt[,1])%*%beta_m),(cbind(Xf,Xt[,2])%*%beta_m), 
(cbind(Xf,Xt[,3])%*% beta_m), (cbind(Xf,Xt[,4])%*% beta_m)))- log(1)) 
 
#  Defining the elements of matrix of mu_c for each subject (i = 1,2,…,100) 
 
mu_c <-cbind((exp(delta[,1]+log(C[,1]))),(exp(delta[,2]+ log(C[,2]))) , (exp(delta[,3] + 
log(C[,3]))) , (exp(delta[,4] + log(C[,4])))) 
 
#  Generating the elements of matrix of response, Y. Each row of the response  
#  matrix, # Y, corresponds to value of jth visit (j = 1,2,3,4) in the ith subject  
#  (i = 1,2,…,100). 
 
Y<-matrix(0,100,4) 
for(j in 1:dim(Y)[2]){   
for(i in 1:dim(Y)[1]){   
Y[i,j]= rpois(1, mu_c[i,j]) 
}  
} 
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APPENDIX C 
 
 

R CODES FOR THE GENERATION OF DATA UNDER RANDOM-INTERCEPT MODEL 
 

#  Defining a common AR(1) within-subject covariance matrix, V of random-  
#  intercepts for all subjects (i = 1,2,…,100). 
 
rho <- 0.5 
sigma2 <-0.1 
times<-1:4 
H <- abs(outer(times, times, "-")) 
V<-(sigma2*rho^H) 
 
#  Generating the elements of matrix of random intercepts, A. Each row of the  
#  matrix, # A corresponds to value of jth visit (j = 1,2,3,4) in the ith subject  
#  (i = 1,2,…,100). The random-intercepts within a subject has zero mean vector, and 
#  AR(1)   covariance matrix, V.  
 
A<-matrix(0,100,4) 
i=dim(A)[1] 
for(i in 1:dim(A)[1])A[i,]=rmvnorm(1,mean=c(0,0,0,0),sigma=V) 
 
#  Defining the true parameter for the fixed effects regression coefficients 
   
 beta<-c(2,-1.3,1.5, 1.2) 
 
#  Defining the elements of matrix of mu_c for each subject (i = 1,2,…,100) 
 
mu_c <-cbind(  (exp((cbind(Xf,Xt[,1]) %*% beta)+ A[,1])), (exp((cbind(Xf,Xt[,2]) %*% 
beta)+ A[,2])), (exp((cbind(Xf,Xt[,3]) %*% beta)+ A[,3])), exp((cbind(Xf,Xt[,4]) %*% 
beta)+A[,4])) )  
 
#  Generating the elements of matrix of response, Y. Each row of the response  
#  matrix, # Y corresponds to value of jth visit (j = 1,2,3,4) for the ith subject  
#  (i = 1,2,…,100). 
 
Y<-matrix(0,100,4)  
for(j in 1:dim(Y)[2]) {  
for(i in 1:dim(Y)[1]) { 
Y[i,j]= rpois(1, mu_c[i,j])   
} 
} 
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APPENDIX D 
 
 

R CODES FOR MISSING DATA GENERATION SCENARIOS 
 

#  For MCAR type missing data mechanism 
#  generating 10% missingness in the response matrix, Y. 
 
while(sum(is.na(Y))<40)  { 
id<-sample(1:100, 1,replace=T) 
ocassion<-sample(2:4,1, replace=T) 
Y[id, ocassion]<-NA 
} 
Ymis<-Y 
sum(is.na(Ymis)) 
 
#  For MAR conditional on observed data type missing data mechanism 
#  generating 10% missingness in the response matrix, Y. 
 
a<-data.frame(Y,Xf) 
while(sum(is.na(Y))<40)  { 
row.sample<-((1:nrow(a))[a$X3.1=="1"]) 
id<-sample(row.sample, 1,replace=T) 
ocassion<-sample(2:4,1, replace=T) 
Y[id, ocassion]<-NA 
} 
Ymis<-Y 
sum(is.na(Ymis)) 
 
#  For NMAR type missing data mechanism 
#  Generating 10% missingness in the response matrix, Y. 
 
while(sum(is.na(Y))<40)  { 
row.sample<-((1:nrow(Y))[Y[,1]>20 |Y[,2]>25 |Y[,3]>30 ]) 
id<-sample(row.sample, 1,replace=T) 
ocassion<-sample(2:4,1, replace=T) 
Y[id, ocassion]<-NA 
} 
Ymis<-Y 
sum(is.na(Ymis)) 
 
#  For 20% missingness in the response matrix, Y, replace 40 with 80 in the R codes 
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APPENDIX E 
 
 

R CODES FOR MISSING DATA TECHNIQUES 
 

#  Complete case  
 
b<-data.frame(Ymis,Xf,Xt) 
br<-na.exclude(b) 
 
 
#  Subject mean imputation  
 
for( i in 1:dim(Ymis)[1]) { 
Ymis[i,][is.na(Ymis[i,])]<-round(mean(Ymis[i,],na.rm=T)) 
} 
Ymeanr<-Ymis 
 
#  Occasion mean imputation  
 
for(j in 2:dim(Ymis)[2]) { 
Ymis[,j][is.na(Ymis[,j])]<-round(mean(Ymis[,j],na.rm=T)) 
} 
Ymeanc<-Ymis 
 
 
#  Conditional mean imputation 
 
#  Columns 1,2,3,and 4 refer to response matrix, Y, column 5 refers to vector of 
#  ones, column 5, 6 and 7 refer to time-independent covariates, and lastly columns 
#  8,9, 10, and 11 refer to time-independent covariates. 
#  Coef matrix is composed of coefficients of the fitted equations. 
 
Coef <-rbind(coef (glm( br[,2]~ br[,1]+ br[,6]+ br[,7]+ br[,9], family=poisson, 
data=br)),  
coef(glm( br[,3]~ br[,2]+ br[,6]+ br[,7]+ br[,10], family=poisson, data=br) ),  
coef(glm( br[,4]~ br[,3]+ br[,6]+ br[,7]+ br[,11], family=poisson, data=br) )) 
 
for(j in 2:dim(Ymis)[2] ) {  for(i in 1:dim(Ymis)[1] )  
Ymis[i,j][is.na(Ymis[i,j])]<-round(exp(Coef[j-1,1]+(Coef[j-1,2]*Y[i,j-1])+(Coef[j-1,3] 
*Xf[i,][2])+(Coef[j-1,4] *Xf[i,][3]) + (Coef[j-1,5] *Xt[i,j] ))) 
} 
Ycon<-Ymis 
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APPENDIX F 
 
 

R CODES FOR LONGITUDINAL DATA FORMAT 
 

#  In any data frame, the id column refers to the subject id number, occasion  
#  column refers to occasion number for that subject. The column Ynew refers to  
#  the response for the jth of 4 occasions for the ith subject (i = 1,2,…,100). 
#  The first column of the matrix Xnew corresponds to the time-independent  
#  covariate, X1, the second column refers to the time-independent covariate  
#  X2, and lastly, the third column refers to the time-dependent covariate X3. 

 
#  Longitudinal data format for the complete dataset 
 
Ynew<-as.vector(t(Y))   
id <- c(rep(1:100,each=4)) 
occasion <-c(rep(1:4,100)) 
Xtt<- as.vector(t(Xt))    
Xnew<-cbind( rep(Xf[,2], each=4), rep(Xf[,3], each=4),Xtt )   
data1<-data.frame(id,occasion,Ynew, Xnew) 
 
 
#  Longitudinal data format for complete dataset after complete case analysis 
 
Ynew<- br[,c(1,2,3,4)] 
d<- nrow(Ynew) 
Ynew<-as.vector(t(Ynew))   
id <- c(rep(1:d,each=4)) 
occasion <-c(rep(1:4, d)) 
Xfr<- br[,c(5,6,7)] 
Xtr<- br[,c(8,9,10,11)] 
Xtr<- as.vector(t(Xtr))    
Xnew<-cbind( rep(Xfr[,2], each=4), rep(Xfr[,3], each=4),Xtr )   
data2<-data.frame(id, occasion,Ynew, Xnew) 
 
 
#   Longitudinal data format for the complete dataset after subject mean imputation 
 
Ynew<-as.vector(t(Ymeanr))   
id <- c(rep(1:100,each=4)) 
occasion <-c(rep(1:4,100)) 
Xtt<- as.vector(t(Xt))    
Xnew<-cbind( rep(Xf[,2], each=4), rep(Xf[,3], each=4),Xtt )   
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data3<-data.frame(id, occasion,Ynew, Xnew) 
 
#  Longitudinal data format for the complete dataset after occasion mean 
#  imputation 
 
Ynew<-as.vector(t(Ymeanc))   
id <- c(rep(1:100,each=4)) 
ocassion <-c(rep(1:4,100)) 
Xtt<- as.vector(t(Xt))    
Xnew<-cbind( rep(Xf[,2], each=4), rep(Xf[,3], each=4),Xtt )   
data4<-data.frame(id, ocassion,Ynew, Xnew) 
 
 
#  Longitudinal data format for the complete dataset after conditional mean  
#  imputation 
 
Ynew<-as.vector(t(Ycon))   
id <- c(rep(1:100,each=4)) 
occasion <-c(rep(1:4,100)) 
Xtt<- as.vector(t(Xt))    
Xnew<-cbind( rep(Xf[,2], each=4), rep(Xf[,3], each=4),Xtt)   
data5<-data.frame(id, occasion,Ynew, Xnew) 
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APPENDIX G 
 
 

SAS CODES FOR LOG-LOG-GAMMA MMM 
(Adapted from Griswold and Zeger (2004) and Nelson et al. (2006))  

 

data data1; 
infile "C:\Documents and Settings\GulINAN\Desktop\data1.txt" DELIMITER='09'x; 
input no id occasion y x1 x2 xt; 
run; 
 
proc sort data=data1; 
by id; 
run; 
 
proc nlmixed data=data1 noad fd qpoints=30; 
PARMS theta1=1 beta0_m=2  beta1_m=-1.3 beta2_m=1.5 beta3_m=1.2; 
eta_m= beta0_m + beta1_m*x1+ beta2_m*x2+ beta3_m*xt ; 
mu_m=exp(eta_m); 
ui= CDF('Normal',ai); 
if (ui > 0.9999 ) then ui=0.9999; 
bi2=quantile('GAMMA',ui, theta1);  
bi1=theta1*bi2; 
v=theta1*theta1; 
delta=eta_m-log(v); 
eta_c = delta + log(bi1); 
mu_c=exp(eta_c); 
Model y ~ Poisson(mu_c); 
Random ai ~ Normal(0,1) subject=id;  
run; 
 
/*   noad = refers to nonadaptive Gaussian quadrature */ 
/* fd = specifies that all derivatives be computed using finite difference 
approximations. FD is equivalent to FD=100 */ 
/*    qpoints = refers to the number of quadrature points to be used during 
evaluation of integrals */ 
/*   subject = refers to subjects in the model */ 
/*   eta_m = specifies the linear predictor of the mean model */ 
/*   eta_c = specifies the linear predictor of the association model */ 
/*  mu_c = relates the linear predictor to the association model through the link 
function */ 
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APPENDIX H 
 
 

SAS CODES FOR RANDOM-INTERCEPT MODEL 

 
data data1; 
infile "C:\Documents and Settings\GulINAN\Desktop\data1.txt" DELIMITER='09'x; 
input no id occasion y x1 x2 xt; 
run; 
 
proc glimmix data=data1 MAXOPT=500; 
class id ; 
model y = x1 x2 xt / dist=p link=log s; 
random intercept / subject=id type=ar(1); 
run; 

 
 
/*  dist = refers to conditional distribution of the data  */ 
/*  link = refers to the link function in the model  */ 
/*  random intercept = specifies a random intercept in the model  */ 
/*  subject = refers to subjects in the model  */ 
/*  type = refers to within-subject covariance structure in the model  */ 


