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ABSTRACT

LINEAR STATIC ANALYSIS
OF

LARGE STRUCTURAL MODELS ON PC CLUSTERS

Özmen, Semih

M.S, Department of Civil Engineering

Supervisor: Asst. Prof. Dr. Özgür Kurç

July 2009, 106 pages

This research focuses on implementing and improving a parallel solution framework for

the linear static analysis of large structural models on PC clusters. The framework

consists of two separate programs where the �rst one is responsible from preparing data

for the parallel solution that involves partitioning, workload balancing, and equation

numbering. The second program is a fully parallel �nite element program that utilizes

substructure based solution approach with direct solvers.

The �rst step of data preparation is partitioning the structure into substructures.

After creating the initial substructures, the estimated imbalance of the substructures

is adjusted by iteratively transferring nodes from the slower substructures to the faster

ones. Once the �nal substructures are created, the solution phase is initiated. Each

processor assembles its substructure's sti�ness matrix and condenses it to the inter-

faces. The interface equations are then solved in parallel with a block-cyclic dense

matrix solver. After computing the interface unknowns, each processor calculates the

internal displacements and element stresses or forces. Comparative tests were done to

demonstrate the performance of the solution framework.

Keywords: Linear Static Analysis, High Performance Computing, Substructuring, Work-

load Balancing, Direct Solvers
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ÖZ

B�LG�SAYAR KÜMELER� KULLANILARAK BÜYÜK YAPI MODELLER�N�N
DO�RUSAL STAT�K OLARAK ÇÖZÜMLENMES�

Özmen, Semih

Yüksek Lisans, �n³aat Mühendisli§i Bölümü

Tez Yöneticisi: Yard. Doç. Dr. Özgür Kurç

Temmuz 2009, 106 sayfa

Bu çal�³ma, bilgisayar kümeleri kullan�larak büyük yap� modellerinin do§rusal statik

çözümlemesini yapabilen bir yaz�l�m�n geli³tirilmesini hede�emektedir. Çözümleme

yaz�l�m� iki ayr� yaz�l�mdan olu³maktad�r. �lk yaz�l�m, paralel çözümleme yaz�l�m�na

veri haz�rlamaktad�r. �kinci yaz�l�m ise alt-yap�lar üzerinde direk çözümleme tekni§i

kullarak bütünüyle paralel çözümleme yapabilen bir sonlu elemanlar program�d�r.

Veri haz�rlama yaz�l�m� alt-yap�lar� çözüm için olabilecek en uygun ³ekilde olu³tur-

maya çal�³�r. Alt-yap�lar�n ilk sefer parçalanmas�n�n ard�ndan, alt-yap�lar�n çözümlen-

mesi için gerekecek i³lem adedi, her bir bilgisayar�n i³lem gücü ve o alt-yap�y� olu³turan

elemanlar�n adedi kullan�larak alt-yap�lar aras� i³ yükü fark� hesaplan�r ve bu fark yava³

çözümlenen alt-yap�lardan h�zl� çözümlenenlere do§ru dü§üm noktas� aktar�larak denge-

lenmeye çal�³�l�r. Alt-yap�lar�n olu³turulmas�ndan sonra direngenlik matrisi denklemleri

en uygun ³ekilde s�ralan�r ve paralel çözümlemeye ba³lan�r. Öncelikle, alt-yap� direngen-

lik matrisleri olu³turulur ve bu matrisler s�n�r dü§ümlerine indirgenir. Sonras�nda, s�n�r

denklemlerinin çözümü paralel olarak blok-çevrimsel yo§un matris çözücü ile gerçek-

le³tirilir ve her bilgisayar bu çözümün sonuçlar�n� kullanarak dü§üm deplasmanlar�n�

ve eleman kuvvetlerini hesaplar. Çözüm yaz�l�m�n�n bütününün ba³ar�m�n� irdelemek

amac�yla örnek problemler çözülmü³ ve sonuçlar� de§erlendirilmi³tir.

Anahtar Kelimeler: Do§rusal Statik Çözümleme, Yüksek Ba³ar�ml� Hesaplama, Alt-

yap�lara Bölme, �³ Yükü Bölü³türme, Direk Çözümleme
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CHAPTER 1

INTRODUCTION

1.1 Problem De�nition

A few decades ago, like any other discipline, structural engineers and companies started

to use computers for structural analyses as computers and related software became more

available. At that time, considerable amount of time was spent to input the mathe-

matical model to the computer and the computation could last hours or even nights

for medium size structural models, having 100-1000 nodes. In time, computers got

faster in clock time speeds and had larger memory capacities. Such technological de-

velopments improved the computational experiences of engineers. Initially, increasing

computational capabilities of computers allowed software developers to build graphi-

cal user interfaces which were not only allowed inputting very complex structures with

many elements but also capable of rendering objects in 3D. In addition, increase in the

speed of processors shortened overnight analysis to seconds for medium size models. In

this case, however, structural engineers felt more comfortable to create larger models by

using advanced graphical user interfaces and also they tended to utilize more advanced

and complex �nite elements, more load combinations, and even more detailed analysis

methods. Today, it is very common to see structural models having hundreds of thou-

sands of nodes created for analysis and design of structures. Moreover, for very special

projects, structural engineers could create models that required the solution of billion

equations [4]. Thus, the computation demand of engineers keeps increasing together

with the improvement in the computer technology.

Just a few years ago, the increase in the clock speeds of processors almost stopped

due to the space limitations, power, and cooling requirements for processors. As Herb

Sutter says � light isn't getting any faster, free lunch is over.� [5]. These physical limi-

1



tations forced the processor manufacturers to change their direction. They started to

produce processors having more than one processing unit rather than trying to increase

the clock speed of a single one. Therefore, to balance the expectations of the structural

engineers, new solution strategies that can utilize the available multi-processor systems

more e�ciently are necessary. Thus, although it appears for more than two decades,

parallel computing techniques are one of the remedy to this problem. These techniques

are mainly composed of using the power of more than one processor to solve a single

problem.

The necessity for new solution strategies become more apparent when the design of

a structure is investigated in detail. The design of a structure is an iterative process of

analysis and design stages. This process can be subjected to more repetitions due to the

possible modi�cations in architectural, economical, and manufacturing requirements.

For each of these modi�cations, the structural model may need to be updated, re-

analyzed and re-designed. Analysis step is the one that consumes considerable amount

of computational resource. When the size and the details of the model become larger,

the �nite element procedure requires more time to solve the system. Depending on

the problem, di�erent kinds of solution techniques are implemented with �nite element

methods. Most of the analysis methods, have the similar solution procedure that can

be grouped into three major steps [6]. First one is the generation of element sti�ness

matrices, and equivalent nodal loads and assembling them into structural sti�ness and

force matrices. Besides, if dynamic analysis is performed, mass and damping matrices

must also be computed. Second step is the solution of the following linear system of

equations;

[K] . {u} = {F} (1.1)

for u. In this linear system of equations, K is the nÖn positive-de�nite symmetric

sti�ness matrix, F is a vector of size n, alternatively right hand side (RHS) vector,

representing the loading at each DOF, and u is a vector of size n, respresenting the un-

known displacements corresponding to each loading. The �nal step is the computation

of element forces and stresses using the calculated displacements.

In order to decrease the time spent during analysis step, readily available systems can

be utilized. When the structural engineering design o�ces are considered, the readily

available systems are usually the network of PC's running Windows OS. A parallel

solution system that can use this system can be considerably useful for them. This way,

2



not only the time required for the analysis will decrease but also existing computational

power in these o�ces will be utilized more e�ciently, without purchasing any additional

hardware [6].

As a result, the structural engineering industry will bene�t signi�cantly from a

solution algorithm that utilizes the existing computational power of the design o�ces,

which is optimized for linear static solutions with multiple loading conditions and which

is able to decrease the analysis time notably. Because of that, this study will focus on

a parallel linear static solution of large structures on PC clusters.

1.2 Related Work

Linear system of equations can be represented by matrices and corresponding load

vectors. These matrices and load vectors are stored in the computer's memory with

di�erent storage schemes. The storage scheme is an important factor for the memory

utilization and speed of the computation. Another factor that mainly a�ects the per-

formance of the computation is the method that is utilized for the solution of system

of equations. Di�erent solution methods, their advantages, and disadvantages will be

discussed in detail. Besides, parallel implementations of these methods and parallel

solution environments proposed as a remedy for increasing the computational e�ciency

will also be presented.

1.2.1 Matrices and Matrix Storage Schemes

Matrices can be classi�ed according to the occurrence of their non-zero terms. Fre-

quently encountered matrix types are dense, band, and sparse matrices. Dense matrices

has few number of non-zero terms or even not at all. On the contrary, �a sparse matrix

is a matrix populated primarily with zeros� [7]. As a special form of sparse matrix, band

matrix is the one whose non-zero entries are con�ned to a diagonal band, comprising

the main diagonal and zero or more diagonals on either side.

Depending on the matrix type, matrix storage schemes, namely how the matrices

are stored in computer memory, di�er. The conventional way of storing a matrix is

utilizing a two-dimensional array. This storage may be reasonable when the matrix is

dense. However, if the matrix is sparse, such storage is consumptive as the majority

of the elements of the matrix are zero and need not to be stored explicitly. For sparse

matrices, the common practice is to store only the non-zero entries and to keep track
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of their locations in the matrix through an indexing scheme. There are a variety of

specialized indexing schemes utilized to store sparse matrices. These specialized schemes

not only reduce memory consumption but also yield computational savings [8]. Since

the locations of the non-zero elements in the matrix are known explicitly, unnecessary

computations involving zeros can be avoided. However, the indexing based storage

schemes increase the number of non-contiguous memory accesses and this may increase

the application execution time [9]. Like these storage schemes, by using symmetry of

the matrix or any pattern of the non-zero terms, further minimization of the memory

required for storage can be achieved.

In literature, there are di�erent types of sparse matrix storage schemes. Frequently

used ones are Coordinate Storage (CS), Compressed Row Storage (CRS), Compressed

Column Storage (CCS), Blocked Compressed Row Storage (BCRS), Compressed Diag-

onal Storage (CDS), Jagged Diagonal Scheme (JDS) and Skyline Storage (SS).

A =


a11 a12 0 0

a21 a22 0 0

0 0 a33 a34

0 0 a43 a44

 (1.2)

Table 1.1: Matrix Storage Schemes

Coordinate Storage (CS) Compressed Row Storage (CRS)

V alue =
(

a11 a12 a21 a22 a33 a34 a43 a44

)
V alue =

(
a11 a12 a21 a22 a33 a34 a43 a44

)
RowIndeces =

(
0 0 1 1 2 2 3 3

)
ColumnIndeces =

(
0 1 0 1 2 3 2 3

)
ColumnIndeces =

(
0 1 0 1 2 3 2 3

)
RowStartingIndeces =

(
0 2 4 6

)
Compressed Column Storage (CCS) Blocked CRS (BCRS)

V alue =
(

a11 a12 a21 a22 a33 a34 a43 a44

)
V alue =

(
a11 a12 a21 a22 a33 a34 a43 a44

)
RowIndeces =

(
0 1 0 1 2 3 2 3

)
ColumnIndeces =

(
0 2

)
ColumnIndeces =

(
0 2 4 6

)
RowIndeces =

(
0 2

)
Compressed Diagonal Storage (CDS) Jagged Diagonal Storage (JDS)

V alue =


0 a12 0 a34

a11 a22 a33 a44

a21 0 a43 0

 V alue =


a11 a12

a21 a22

a33 a34

a43 a44

ColumnIndeces =


0 1

0 1

2 3

2 3


Skyline Storage (SS)

UpperV alues =
(

a11 a22 a12 a33 a44 a34

)
UpperStartIndeces =

(
0 1 3 4

)
LowerV alues =

(
a∗11 a∗22 a21 a∗33 a∗44 a43

)
LowerStartIndeces =

(
0 1 3 4

)
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In all of the above sparse matrix storage schemes, with the exception of the CDS

scheme which is also known as packed banded matrix storage [10], the indexing is

handled by additional data structures like arrays or matrices that stores indices of

values. These di�erent data structures typically necessitate non-contiguous multiple

memory system accesses which hinders performance. In order to access aij , �rst the

place of the value in value list should be calculated by accessing and using index lists.

Therefore, these multiple indirect accesses are di�cult for the compiler to optimize

for fast memory accesses and resulting in poor performance [11]. If it is possible to

implement such a specialized algorithm that can utilize CDS, no additional accesses are

required. In contrast, two index list accesses are required to obtain aij in CS. Although

implementation of this scheme is easier than CRS or CCS, it requires more memory

space. Also, skyline storage is generally advantageous because after an initial access to

index list, no accesses is required through that active column or row.

1.2.2 Solution Methods for System of Linear Equations

The system of linear equations arising from a linear solution of a structural model with

n degree of freedoms (DOF) is represented by Equation 1.1 as

[K] . {u} = {F}

In case of multiple loading conditions, there are multiple right hand sides, and the

solution is performed for each right hand side. Therefore, for each right hand side,

corresponding displacements are obtained.

The sti�ness matrices resulted from the linear �nite element method are symmetric

and positive de�nite. Besides, the sti�ness matrices are generally sparse. In literature,

there are mainly two kinds of methods for the solution of linear system of equations:

� Direct Methods: These methods give the exact solution of a linear system of

equations by performing known number of operations. There are mainly two dif-

ferent approaches in direct methods: �rst is �nding the inverse of sti�ness matrix

K and just multiplying it with F vector, second is the transforming the coe�cient

matrix into triangular or diagonal form in order to eliminate the coupling between

equations. First method requires a lot of operations so it is seldom used. The most

commonly used transformation based direct methods are Gauss elimination and

LU decomposition in general, LLT decomposition for symmetric, positive-de�nite

coe�cient matrices and LDLT decomposition for symmetric coe�cient matrices.
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� Iterative Methods: These methods are similar to trial and error. They start

with an initial guess and try to converge to the result by re�ning the solution at

each iteration step. Due to their iterative behaviour, preconditioning techniques

are utilized to reduce the number of iterations and to guarantee the convergence

of solution. Mostly used examples are Jacobi Method, Gauss-Seidel Method and

Conjugate Gradient Method.

For parallel solution, iterative methods are scalable and require less memory compared

to direct methods, allowing the solution of very large problems with limited computa-

tional resources. However, the convergence of iterative methods depend on the precon-

ditioner used for a problem, and the runtime of iterative methods is unpredictable due

to their iterative nature. Additionally, iterative methods can be ine�cient for analyzing

structures for multiple load cases since the entire solution start from scratch for each

right hand side vector.

The direct methods, on the other hand, factorize sti�ness matrix for only once,

then, the system of equations can be solved e�ciently for multiple right hand side vec-

tors without the need of any additional factorization. The sparsity of a system is used

to minimize the arithmetic operation and data storage required for the solution. These

methods have high numerical precision and guarantee the solution within a predictable

amount of time if computational resources are adequate. Direct methods are often the

method of choice because �nding and computing a good preconditioner for an iterative

method can be computationally more expensive than using a direct method [12]. Be-

cause of these advantages, direct methods are preferred in most commercial structural

analysis software.

1.2.3 Direct Solution Methods

1.2.3.1 Background

Direct methods are based on the factorization of the sti�ness matrix. They can be

classi�ed according to the way of the factorization is performed, for example in LU

decomposition, the sti�ness matrix is factorized as
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A = LU =


1 0 · · · 0

L2,1
. . . 0

...
... .

. . . 0

Ln,1 · · · Ln,n−1 1




U1,1 U1,2 · · · U1,n

0
. . . .

...
... 0

. . . Un−1,n

0 · · · 0 Un,n

 (1.3)

where U is upper triangular coe�cient matrix obtained at the end of forward elimina-

tion, and L is lower triangular matrix formed by multipliers that is used during forward

elimination. For a symmetric sti�ness matrix A, this decomposition becomes

A = LLT =


L1,1 0 · · · 0

L2,1
. . . 0

...
... .

. . . 0

Ln,1 · · · Ln,n−1 Ln,n




L1,1 L1,2 · · · L1,n

0
. . . .

...
... 0

. . . Ln−1,n

0 · · · 0 Ln,n

 (1.4)

which is known as Cholesky's decomposition. Following formulas apply for the entries

of L;

Li,j =
1
Lj,j

(Ai,j −
j−1∑
k=1

Li.kLj.k), for i<j (1.5)

and

Li,i =

√√√√Ai,i −
i−1∑
k=1

L2
i,k (1.6)

where indices for entries of L, i = 1...n , and j = 1...n.

Here, computation of square root hinders the performance of the procedure. To

avoid taking square roots, following alternative can be utilized;

A = LDLT =


1 0 · · · 0

L2,1
. . . 0

...
... .

. . . 0

Ln,1 · · · Ln,n−1 1




D1,1 0 · · · 0

0
. . . 0

...
... 0

. . . 0

0 · · · 0 Dn,n




1 L1,2 · · · L1,n

0
. . . .

...
... 0

. . . Ln−1,n

0 · · · 0 1


(1.7)

where D is a diagonal matrix. So, formulations for the entries of D and L are;
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Li,j =
1
Dj

(Ai,j −
j−1∑
k=1

Li.kLj.kDk), for i<j (1.8)

and

Di = Ai,i −
i−1∑
k=1

L2
i,kDk (1.9)

where indices for entries of L, i = 1...n , and j = 1...n.

For all decomposition methods mentioned above, forward elimination followed by

backward substitution completes the solution process for each given right hand side

vector.

Figure 1.1: Memory access patterns for variants of Cholesky Decomposition

According to the way a matrix is factorized , direct solution methods can be ex-

amined into two groups as left-looking and right-looking (Figure 1.1). Both of these

computations can be typically expressed in terms of two primitives. First, cmod(j,k) to

add into column j a multiple of column k and second cdiv(j) : divide column j by a

scalar.

� Left-looking (or fan-in) algorithms; where updates are performed on each column

in turn by all the previous columns that contribute to it, then the pivot is chosen

in that column and the multipliers calculated. In other words, the general struc-

ture of the left-looking approach is as follows, with the kth term iterating over

columns to the left of column j in the matrix.
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Algorithm 1.1 Left-Looking Algorithm
for j = 1 to n do

cdiv(j)

for each k that modi�es j do

cmod(j, k)

� Right-looking (or fan-out) algorithm; where, after the calculation of pivot and

multipliers, that column is immediately used to update all future columns that it

modi�es. Namely, the general structure of the right-looking approach is as follows,

with the j term iterating over column to the right of column k.

Algorithm 1.2 Right-Looking Algorithm
for k = l to n do

cdiv (k)

for each j modi�ed by k do

cmod(j, k)

In both cases, j iterates over destination columns and k iterates over source columns.

Note also that the cmod() operation is performed a number of times per column while

the cdiv() operation is performed only once. Therefore , the cmod() operation dominates

the computation time.

The tests over the e�ciency of both of the algorithms reveal that left-looking al-

gorithm is more e�cient because it enables the usage of contiguous data in memory.

However, this di�erence in performance is negligible when the improvement achieved

by the use of blocked algorithms considered [13].

During factorization step, various linear algebra routines like matrix-vector or matrix-

matrix operations are executed numerous times [2, 13, 14]. To handle such common

operations, BLAS (Basic Linear Algebra Subprograms) are developed and distributed

in public domain. BLAS are subdivided into three levels, each of which o�ers increased

scope for exploiting performance. This subdivision corresponds to three di�erent types

of basic linear algebra operations:

� Level 1 BLAS : for vector operations, such as y ← αx+ y,

� Level 2 BLAS : for matrix-vector operations, such as y ← αAx+ βy,
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� Level 3 BLAS : for matrix-matrix operations, such as C ← αAB + βC.

Here, A, B, and C are matrices, x and y are vectors, and α and β are scalars [10].

The main obstacle to obtaining high performance is the bottleneck in getting data

from the main memory to the functional units. Many machines have multiple caches

usually organized hierarchically from fastest-smallest to slowest-largest. Therefore, to

obtain high performance relative to the peak of the machine, it is necessary to reuse

data in the cache as much as possible to amortize the cost of getting it to the cache from

main memory. In this context, performance of the routines in BLAS increases with the

increase in its level because more contiguous data will be transferred to cache and used

repetitively [11]. Therefore, the most suitable and widely used kernels are Level 3 BLAS

for O(n3) operations involving matrices of order n [1, 10, 15, 16]. Likewise, instead of

factorizing a single column, factorizing a blocked column is more e�cient. For example,

Level 2.5 BLAS is designed as the multiplication of a set of vectors by a matrix where

the vectors cannot be stored in two-dimensional arrays. In other words, source data can

be held in cache and applied to the target columns or blocks of columns of the target

data, thus getting a high degree of reuse of data and a performance similar to the Level

3 BLAS [17].

Currently, various solvers, not only utilize methods discussed here but also by slightly

modifying these methods, try to enhance computational e�ciency on di�erent compu-

tational environments like parallel solution environments.

1.2.3.2 Direct Solvers for Dense Matrices

With the great achievement of BLAS to become a de facto standard for linear alge-

bra computations, an upper level library, LAPACK, or Linear Algebra PACKage, is

built over BLAS routines [11]. This library is a collection of routines for linear sys-

tem solution, linear least squares problems, and eigenproblems. The associated matrix

factorizations (LU, Cholesky, QR, SVD, etc..) are also provided. Dense and banded ma-

trices are handled. High performance is attained by using algorithms that perform most

of their work in calls to the BLAS, with an emphasis on matrix-matrix multiplication

[18].

Because of their high performance, dense matrix kernels also have a widespread

usage in parallel linear algebra. Besides, native parallel dense solver packages such

as ScaLAPACK are also provided in public domain. To have a parallel dense solver
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library, communication libraries are required in addition to the kernels. BLACS, or

Basic Linear Algebra Communication Subroutines provides point-to-point or collective

communication subroutines.

ScaLAPACK is a library of high performance linear algebra routines for PC clusters

(refer Section 1.2.5). It is based on LAPACK and PBLAS (a set of parallel version of

BLAS) which uses BLACS for communication and calls the BLAS. Like LAPACK, the

ScaLAPACK routines are based on block partitioned algorithms in order to minimize

the frequency of data movement between di�erent levels of the memory hierarchy. In

the ScaLAPACK routines, all inter-processor communication occurs within the PBLAS

and the BLACS. As it can be seen from Figure 1.2, libraries below the dashed line

are serial, in other words, sequential libraries that does not require any communication

among computers.

Figure 1.2: ScaLAPACK Software Hierarchy [1]

The goals of ScaLAPACK project are e�ciency, so that the computationally in-

tensive routines execute as fast as possible; scalability as the problem size and number

of processors grow; reliability, including the return of error bounds; portability across

machines; �exibility so that users may construct new routines from well-designed com-

ponents; and ease of use [1].

Scalability demands that a program be reasonably e�ective (refer to Appendix A)

over a wide range of numbers of processors. The scalability of parallel algorithms

over a range of architectures and numbers of processors requires that the granularity

of computation be adjustable. To accomplish this, block partitioned algorithms are
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provided with adjustable block sizes [19].

The performance of the ScaLAPACK drivers, are dependent to the performance of

each computer in the cluster, computational workload assigned to each computer, data

distribution type and block size. The ScaLAPACK software assumes that the user's

input data has been distributed on a two-dimensional grid of processors according to

the block cyclic data distribution (4.4.1.1.1). For a given number of processors, the

parameters of this family of data distributions are the shape of the processor grid and

the size of the block used to partition and distribute the matrix entries over the processor

grid. These parameters a�ect the number of messages exchanged during the operation,

the aggregated volume of data communicated, and the computational load balance [1].

1.2.3.2.1 Cholesky Factorization in LAPACK

Cholesky factorization factors an NÖN, symmetric, positive-de�nite matrix A into the

product of a lower triangular matrix L and its transpose, i.e., A = LLT (or A = UTU ,

where U is upper triangular). It is assumed that the lower triangular portion of A is

stored in the lower triangle of a two-dimensional array and that the computed elements

of L overwrite the given elements of A. At the kth step, the nÖn matrices A(k), L(k),

and LT (k) are partitioned, and the system is written as

 A11 AT21

A21 A22

 =

 L11 0

L21 L22

 LT11 LT21

0 LT22

 =

 L11L
T
11 L11L

T
21

L21L
T
11 L21L

T
21 + L22L

T
22


(1.10)

where the block A11 is nbÖnb, A21 is (n - nb)Önb, and A22 is (n - nb)Ö(n - nb). L11

and L22 are lower triangular.

The block-partitioned form of Cholesky factorization may be inferred inductively as

follows. If it is assumed that L11, the lower triangular Cholesky factor of A11, is known,

the block equations can be rearranged as;

L21 ← A21(LT11)−1 (1.11)

and

Ã22 ← A22 − L21L
T
21 = L22L

T
22 (1.12)

A snapshot of the block Cholesky factorization algorithm in Figure 1.3 shows how

the column panel L(k) (L11 and L21) is computed and how the trailing submatrix A22
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is updated. The factorization can be done by recursively applying the steps outlined

above to the (n - nb)Ö(n - nb) matrix Ã22.

Figure 1.3: A snapshot of block Cholesky factorization[2]

In the right-looking version of the LAPACK routine, the computation of the above

steps involves the following operations:

1. DPOTF2: Compute the Cholesky factorization of the diagonal block A11.

A11 → L11L
T
11 (1.13)

2. DTRSM: Compute the column panel L21,

L21 ← A21(LT11)−1 (1.14)

3. DSYRK: Update the rest of the matrix,

Ã22 ← A22 − L21L
T
21 = L22L

T
22 (1.15)

1.2.3.2.2 Cholesky Factorization in ScaLAPACK

The parallel implementation of the Cholesky factorization in ScaLAPACK proceeds

as follows:

1. PDPOTF2: The processor Pi, which has the nbÖnb diagonal block A11, performs

the Cholesky factorization of A11.

� Pi performs A11 → L11L
T
11, and sets a �ag if A11 is not positive de�nite.

� Pi broadcasts the �ag to all other processors so that the computation can be

stopped if A11 is not positive de�nite.

2. PDTRSM: L11 is broadcast columnwise by Pi down all rows in the current

column of processors, which computes the column of blocks of L21.
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3. PDSYRK: the column of blocks L21 is broadcast rowwise across all columns of

processors and then transposed. Now, processors have their own portions of L21

and LT21. They update their local portions of the matrix A22.

1.2.3.3 Direct Solvers for Sparse Matrices

The resulting system of equations produced by the �nite element method are generally

sparse and in literature there is plenty of research on direct solution of sparse matrices.

One of the fundamental concepts in sparse matrix factorization is the elimination

tree. The elimination tree is de�ned for any sparse matrix whose sparsity pattern is

symmetric. For a sparse matrix of order n, the elimination tree is a tree on n nodes

such that node j is the father (or parent) of node i if entry(i, j), j > i is the �rst entry

below the diagonal in column i of the lower triangular factor. Similarly, node i is called

as leaf (or descendant) of node j. Each node is connected with an edge.

For example, Sparse Cholesky factorization by columns can be represented by an

elimination tree. This can either be a left-looking or a right-looking algorithm. Either

way, the dependency between columns which will be updated and columns will be used

for update, is determined by the elimination tree. If each node of the tree is associated

with a column, a column can only be modi�ed by columns corresponding to nodes that

are descendants of the corresponding node in the elimination tree.

Even though they have di�erent solution procedures and approaches in global, most

of the popular sparse equation solvers are using dense matrix kernels for the core of

computation. This is because of avoiding indirect addressing and trying to manipulate

blocked algorithms for high performance purposes [11,15,16,20].

One approach to using higher level BLAS in sparse direct solvers is a generalization

of a sparse column factorization. Higher level BLAS can be used if columns with a

common sparsity pattern are considered together as a single block or supernode and

algorithms are termed column-supernode, supernode-column, and supernode-supernode

depending on whether target, source, or both are supernodes. This approach is named

as supernodal approach.

Sparse direct methods solve systems of linear equations by factorizing (described

in Section 1.2.3) the coe�cient matrix A. An ordering method which is interchanging

the rows and/or the columns of sparse matrix and can be utilized with an elimination

tree in order to minimize both the storage requirement and amount of computations

performed. Sparse direct solvers usually have numerous distinct phases [12] that are
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summarized below:

1. An ordering phase that determines a factorization order which reduces both stor-

age requirements and the number of �oating-point operations required.

2. An analysis phase (which is sometimes referred to as the symbolic factorization

step [15]) that the matrix structure is examined in order to determine the amount

of storage for factorization and solution phases. Furthermore, elimination tree

which governs the calculations during the factorization and subsequent solution

phase is created. The tree is also used to schedule the parallel tasks, since the

nodes of the tree can be viewed as representing computations and the edges rep-

resenting transfer of data.

3. A numerical factorization phase that uses the elimination tree to factorize the

matrix.

4. A triangular solution phase that performs forward elimination followed by back

substitution using the computed factors at previous stages.

According to Dongarra et al. [11], three levels parallelism can be achieved in direct

sparse solvers;

� System Level Parallelism; can be exploited by dividing the problem into sub-

problems that can be solved independently. Then the contributions of each prob-

lem form an interconnecting system problem which is quite smaller than the orig-

inal problem.

� Matrix Level Parallelism; can be achieved by using the sparsity pattern of the coef-

�cient matrix. Usually elimination trees are used for determining the independent

computations.

� Sub-matrix Level Parallelism; can be achieved by performing series of dense matrix

operations over sub-matrices. PBLAS and ScaLAPACK (refer to Section 1.2.3.2)

can be used for this purpose.

In literature, there are numerous research on parallel direct solvers for sparse systems

because of their robustness and guaranteed success over di�erent types of sparse ma-

trices resulting from di�erent types of problems. Although they have slightly di�erent

strategies and performances, all of the modern sparse solvers are trying to take the ad-

vantage of dependency among the sparse data to be processed and utilize blocked dense
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solvers in lower levels of computation, allowing the exploitation of higher-level BLAS.

Some state-of-art parallel sparse direct solvers will be discussed next.

SuperLU DIST, as the name implies, the distributed (parallel) version of SuperLU

algorithm which uses supernodal approach for factorization. SuperLU DIST, utilizes a

directed acyclic graph (elimination tree) to reduce the memory requirement and a static

task scheduling according to the elimination tree. Right-looking formulation (described

in 1.2.3) is used to carry out the elimination updates. Immediately after factorization

of a block of columns (namely, supernode) corresponding to a node in the tree, data are

sent to update blocks corresponding to ancestors in the tree [15, 21,22].

MUMPS utilizes a multifrontal approach where the Gaussian eliminations are carried

out on dense frontal matrices corresponding to children nodes in the elimination tree.

The resulting Schur complements (condensed matrices) are thereupon sent for assembly

to the parent nodes. Thus, the elimination structure utilized by MUMPS is called as

assembly tree. MUMPS exploits parallelism arising from the sparsity in the matrix

and parallelism available for dense matrices. Additionally, large computational tasks

are divided into smaller subtasks to enhance parallelism. MUMPS uses a distributed

dynamic scheduling technique that allows numerical pivoting and the migration of com-

putational tasks to lightly loaded processors. Asynchronous communication is used to

overlap communication with computation. By default, MUMPS automatically chooses

the ordering algorithm depending on the packages installed, the size of the matrix, and

the number of processors available [15,20].

These two solvers, MUMPS and SuperLU Dist are compared by various studies

[15, 22]. According to the results of these studies, the block sizes occurring during

factorization within SuperLU Dist were smaller than those utilized within MUMPS,

giving less e�cient use of the Level 3 BLAS kernels and hence generally produced slower

factorization and solution speeds. On the other hand, it was also observed that e�ciency

of MUMPS dropped because of the memory problems and increasing communication

overhead when the number of processors increased.

In the study conducted by Guermouche et al. [23] problems of multifrontal methods

were discussed. They compared the e�ect of �ve di�erent reordering algorithms, AMD

[24], AMF [25], PORD [26], METIS [3], and SCOTCH [27], on the shape of the corre-

sponding assembly trees, hence, their e�ects on the memory usage. The METIS [3] and

SCOTCH [27] libraries produced wide, well balanced trees where the others produced

very deep unbalanced trees with a large number of nodes. In terms of memory usage,
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deep unbalanced trees were found to be better than the wide ones. They concluded that,

however, for parallel cases, the computational scheduling had to be considered since it

also had a signi�cant e�ect on the memory requirement. In conclusion, there are two

main problems in multifrontal methods; they may require large memory space for in-

core storage which is not always possible. Secondly, their parallel e�ciency depends on

how the elimination trees are constructed.

TAUCS is another state-of-art parallel direct solver which is based on multifrontal

supernodal sparse Cholesky factorization. The multifrontal supernodal method factors

the matrix using recursion on the assembly tree. Each node in the tree is associated with

a set of columns of the Cholesky factor L (unknowns in the linear system). The method

works by factorizing the columns associated with all the columns associated with proper

descendants of a parent node, then updating the coe�cients of the unknowns associated

with this node, and factorizing the columns of it. The updates and the factorization

are performed using calls to the dense Level 3 BLAS kernels. TAUCS is currently used

in Mathematica [14].

1.2.4 Substructuring

Popular parallel direct sparse solvers like MUMPS and SuperLU are not explicitly per-

forming a parallelization on system level [15, 22]. Their main concern is solving a

linear system of equations as fast as possible. However, in �nite element analysis, pre-

processing and post-processing stages may take considerable amount of time especially

with the enhanced speed of sparse solvers. Pre-processing stage involves the formation

of element sti�ness matrices and assembly of the structural sti�ness matrix and load vec-

tors. Similarly, after the solution of the system, results are used in post-processing stage

in which element forces and stresses are computed. Within this framework, substruc-

turing can be used to extend the parallelism to cover pre-processing and post-processing

computations of a direct solution of �nite element analysis problem.

Another advantage of substructuring is that it can reduce the number of equations

to manageable size by dividing a structure into non-overlapping substructures. The

element sti�ness matrices of each element that lies on each substructure is assembled to

generate the substructure equations. By treating each substructure as a super-element

with many internal and external (interface) nodes, and using static condensation (refer

to Section 2.3.2), the equations of substructure are reduced to a form involving only the

interface nodes of that particular substructure. The reduced substructure equations can
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then be assembled to obtain the overall system equations involving only the interface

unknowns of the various substructures. The number of these system equations is much

less compared to the total number of unknowns. The solution of the system equations

gives values of the interface unknowns of each substructure. The known interface nodal

values can then be used as prescribed interface conditions for each substructure to solve

for the respective internal nodal unknowns.

In substructure based parallel solution methods (explained in Section 1.2.4.3), the

performance of the solution is very sensitive to the way the structure is partitioned into

substructures. The optimum substructuring [6] for a particular structure should;

� guarantee that the parallel solution time is less than the serial solution time

� balance the workloads for each processor

� minimize the communication among the processors

1.2.4.1 Partitioning

All the requirements mentioned in Section 1.2.4, for an optimum substructuring to

analyze a structure, increase the complexity of the substructuring problem. Hence,

several partitioning approaches are developed. These methods can be examined in two

groups; static partitioning and dynamic partitioning.

Static partitioning methods are preferred when the workload and communication

requirements are known before the actual computation initiates. Kurç [6] classi�ed these

methods in four groups as geometric, topological, graph based, and hybrid methods.

Geometric based methods divide the domain by using the geometric properties of each

object, i.e. nodal coordinates, elements etc. Recursive Coordinate Bisection Method

[28], Unbalanced Recursive Bisection Method [29], and Recursive Inertial Bisection [30]

can be given as examples for this group. Second group is topological based methods in

which the connectivity information among the objects are used for partitioning. Greedy

Algorithm [31], Bandwidth Reduction Approach [32], and Octree Partitioning [33] are

examples to this group. Third group is graph based algorithms. In such methods,

graph models of a computation are prepared and all the partitioning computations are

performed on these models. Examples for this group are Recursive Spectral Bisection

Method [34] and Multilevel Approaches [35].

Dynamic partitioning methods can be used in cases that arise where it is either im-

possible to calculate the computational loads initially or the computational requirement
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varies during solution in an unpredictable way. One way to handle this problem is using

the new information about the computational loads to repartition the mesh (Scratch-

Remap Algorithms [36, 37]). However, it should be guaranteed that the new partition

is similar to the previous one, otherwise, huge amounts of data should be transferred

among processors. The other option is transferring nodes among the processors in or-

der to balance the load by shifting the interfaces (Di�usion Algorithms [38]). In this

case, interface shifting might cause considerable increase in the interface size which will

increase the communication volume. Therefore, having a transfer algorithm that will

balance the workload while keeping the edge-cut as small as possible is very important

for such methods [6].

1.2.4.2 Workload Balancing

Workload imbalance is one of the most important phenomenon that reduces the e�-

ciency of any parallel solution algorithm. When direct solution methods are utilized,

the number of operations required to solve a linear system of equations can be pre-

dicted before the solution initiates. Hence, in literature there are various methods that

attempts to balance the computational loads of processors that participated in solution.

Yang and Hsieh [39] proposed an iterative partition optimization method for direct

substructuring. After �nding the initial partitions, the number of arithmetic operations

required for condensation is computed using the symbolic factorization. The weights

of the elements within a substructure are adjusted according to the operation counts

found for each substructure. Later the partitions are modi�ed by using the partitioning

packages JOSTLE [40] and METIS [3]. While METIS [3] restarts the partitioning from

the scratch, JOSTLE [40] has the feature to adjust the partitions from the previous

iterations. Iteratively re�ning the partitions using JOSTLE [40] generally provides

balanced partitions with less iteration. Re�ning the partitions by moving small number

of elements between the partitions shows similarities to the dynamic partitioning that

tries to minimize the number of objects moved between partitions.

Kurç and Will [41] proposed a workload balancing scheme for the condensation of

the substructures. METIS [3] partitioning library is utilized for the initial partitioning

of the nodal graph representation of a structure. Later the node weights of partitions

are adjusted according to the estimated operation counts. The PARMETIS [42] library

is used for repartitioning according to the adjusted node weights. The di�usion and

scratch-remap repartitioning algorithms are investigated. It was concluded that scratch-
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remap produced computationally more balanced substructures. Moreover, the number

of interface equations was smaller with scratch-remap algorithm compared to di�usion

algorithm. They also stated that time spent during workload balancing iterations was

insigni�cant compared to the improvements obtained in the condensation times. Test

results indicated that workload balancing iterations reduce the total solution timings

considerably.

1.2.4.3 Substructure based Solution Methods

Substructuring o�ers several advantages such as enabling the parallelization of every

step of the solution, from formation of element sti�ness matrices to the computation

of element forces and stresses and minimizing the communication by requiring data

transfer only during the solution of interface equations. These features make them very

suitable for PC Clusters that have relatively low communication speed with respect to

their computation power. Besides, with the use of direct solvers, they may enhance the

solution of systems that have multiple loading conditions.

Du� and Scott [43] applied substructuring methods to multi-fronts scheme. In such a

case, instead of creating elimination trees, the underlying domain was partitioned into

subdomains and frontal decompositions were performed on each domain separately.

In conclusion, they stated that domain partitioning could reduce operation counts,

factorization and solution times. Besides, they observed that costs of communication

and interface problem solution did not dominate the overall solution time and they

obtained reasonable speed-ups.

Farhat et al. [44] implemented substructuring for parallel �nite element solution.

Their method initiated by partitioning the structure into subdomains. For each subdo-

main, the sti�ness matrix and force vectors were formed by �rst numbering the internal

degrees of freedom and then the interface degrees of freedom. The internal equations

were transferred to the interfaces by static condensation. For the solution of interface

problem, the row-wise LDLT decomposition was utilized. They observed that e�ciency

of the method is dropping with the increase in the number of processors. They, however,

stated that with the increase in problem size the e�ciency drop could be compensated.

Bjørstad et al. [45] implemented a direct solution algorithm, based on processing

substructures in parallel. Proposed algorithm was to divide substructures into smaller

substructures in a multilevel fashion. At any given level in this procedure, the unknowns

were divided into two disjoint sets, the internal variables and the external (interface)
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variables. Before the algorithm proceeds to the next level, all internal variables were

eliminated by static condensation. At the next level the retained variables from the

previous level were again split into two sets and this process repeated until one reached

the highest level where all remaining variables in the problem would be in the internal

set. An elimination tree was constructed before the computation and according to this

tree, pool of tasks where information about all the tasks including execution schedule

and time estimates were formed. With this approach they ensured a symmetric and

well load balanced substructures.

In another study, Baugh and Sharma [46] implemented the domain decomposition

method to solve linear equations on a network of workstations. They compared �ve

di�erent algorithms based on direct, iterative, and hybrid methods. In the direct ap-

proach, the partitions were �rst condensed with a direct static condensation method and

a direct solution was performed at the interface. In the iterative approach, they solved

the system globally by using two di�erent versions of the conjugate gradient method.

The hybrid approach used direct condensation and parallel and sequential versions of

conjugate gradient method for the interface problem. The test results showed that the

iterative solution methods were outperformed by the direct solution methods for the

solution of a rectangular membrane problem on a workstation environment that was

connected with an ordinary LAN.

Fulton and Su [47] implemented the substructuring method on a shared memory

parallel computer. They used active column storage scheme to store the substructure

level sti�ness matrix. During the condensation, the internal equations were �rst num-

bered and then the interface equations. The interface sti�ness matrix was kept in the

shared memory and the contribution of each substructure was assembled to the interface

sti�ness matrix according to the correct location determined during the renumbering

phase. In order to balance the various computational loads for the condensation phase

of each substructure, more processors were assigned to the substructures which were es-

timated to require more computation. The proposed approach performed much better

than the parallel global solution algorithm.

The other paper by Synn and Fulton [48] searched the answers for the following

issues: direct versus iterative solution, the optimum number of processors for the parallel

matrix decomposition, workload balancing, and which solution type to be utilized for

a particular problem. They recommended the direct solution methods even though

iterative methods were more scalable. The load balancing during condensation step
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was provided by assigning more processors to the subdomains estimated to have larger

number of equations and bandwidths. Moreover, they derived operation count equations

to estimate the optimum number of processors and to choose whether to use the global

solution instead of substructure based solution.

An object-oriented database structure was proposed by Hsieh et al. [49] that could

be used in parallel �nite element codes for structural engineering applications. They

preferred substructuring approach with direct solvers in their code which utilized the

parallel matrix library developed by Modak et al. [50]. In this library, the linear solution

algorithm was based on active column matrices that utilized Cholesky decomposition

method. Within the view of test cases, small speed-ups were obtained for the factoriza-

tion phase during the interface solution. Moreover, the forward and back substitution

times remained constant as the number of processors increased.

Escaig et al. [51] presented a multilevel domain decomposition method with a direct

solver for the interface problem. They �rst partitioned the structure in such a way that

the number of subdomains was larger than the number of processors. During the parallel

solution, the subdomains were condensed by the �rst available processor. This way it

was possible to balance the workload among the processors. However, as the number

of subdomains increased, the size of the interface problem also increased. They tested

their algorithm both in shared and distributed memory architectures. Although they

obtained reasonable results for shared memory architectures, the performance dropped

as the number of processors increased for distributed architectures.

An analytical study performed by Nikishkov et al. [52] examined the parallel perfor-

mance of the domain decomposition method with LDU based condensation and solution

algorithms. They �rst calculated the number of operations and the communication vol-

umes and estimated the solution times of each algorithm for a square domain problem.

Then, they compared the time estimations with the actual values. The predicted val-

ues mostly agreed with the actual ones (<5%) and good parallel e�ciency 95% with 6

processors, 85% with 8 processors, was obtained.

Kurç [6] proposed a substructure based parallel solution framework for solving lin-

ear systems with multiple loading conditions. To overcome the work balancing problem

and enhance the performance of the parallel solution, he suggested a framework that

consists of two steps where the �rst step was preparing data for the parallel solution

that involves partitioning, workload balancing, and equation numbering. The second

step was fully parallel solution of substructured �nite element model with direct solvers.
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During the data preparation step, best possible partitioning for parallel solution was

obtained by iteratively transferring nodes from the substructures having slower conden-

sation time estimations to the faster ones. After data preparation step, each processor

assembles its substructure's sti�ness matrix and condenses it to the interfaces by using

a pro�le solver. The interface equations were then solved by a variable band solver. In

conclusion, he stated that workload balancing was able to decrease not only the local

factorization time but also the local forward and back substitution times. Comparative

tests were presented for various numbers of computers to demonstrate the performance

and e�ciency of the overall solution framework on PC clusters that were connected with

ordinary ethernet.

Kurç and Will [53] extended the framework to a heterogeneous PC cluster environ-

ment. At the beginning of the data preparation step, a cluster recognition step was

added to obtain processor speeds compared to each other. This tuning was tested on

example problems and it was observed that balancing the substructures according to

obtained solution time-operation count ratios reduced the solution time considerably.

Besides, they enhanced the condensation step that consumes the most of solution time

by utilizing a sparse solver rather than an active column one. This enhancement re-

vealed that interface system solution and communication at that phase was a governing

factor over the solution time as the number of processors increased.

1.2.5 PC Clusters and Communication Interfaces

PC Clusters are groups of computers which have their own processors and memories and

are simply connected to each other with routers, hubs, or switches. Data is transferred

among the computer by this network. This is one of the cheapest ways to obtain a

parallel computation environment and they can be upgraded and extended for a very

low price. However, it is di�cult to obtain a su�cient performance on clusters since

the communication speed among the computers are relatively slow [6].

PC Clusters can be classi�ed as homogeneous and heterogeneous clusters. Homo-

geneous clusters are the ones that are composed of computers which have exactly the

same hardware and con�guration. Thus, they have similar computation characteristics.

However, in heterogeneous clusters, computers may have di�erent hardware. Parallel

solution algorithms vary depending on the PC cluster type on which they are running.

Communication interfaces are the tools for forming a similar language ground among

the computers with di�erent structures and operating systems. Walker proposed that
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MPI [54] as the de facto standard for communication among processors. It is portable

and easy to use. MPI includes point-to-point and collective communication routines

like MPI_Send or MPI_Receive either in blocking or non-blocking forms [55]. Blocking

means participating applications are halted until the job requested by MPI command

is �nalized. Thus, non-blocking means a possible overlap of message transmittal with

computation or the overlap of multiple message transmittals with one another [56].

Di�erent implementations of MPI like MPICH [57], LAM [58] and Open MPI [59] are

available in public domain. Among these MPI implementations, MPICH was found to

be performed slightly better than others [60].

1.3 Objectives and Scope

The main purpose of this study is to develop an e�cient parallel solution algorithm

for the linear solution of large structures on PC Clusters. This study is based on the

concepts suggested by Kurç [6, 53, 61, 62]. The ultimate goal is to show that parallel

algorithms can be used as practical tools in design o�ces by utilizing the existing system

without the need for buying any additional hardware.

Hence, the research objectives are as follows;

� Inserting the sti�ness assembly time parameter into workload balancing step, to

enhance workload balancing,

� Improving the solution of interface system by using dense solvers,

� Coding a mapping and communication scheme for the e�cient assembly of inter-

face system,

� Testing the performance of the framework on actual civil engineering problems,

The target environment is the homogeneous PC Clusters connected with ordinary hubs.

For the communications among the computers, MPICH2 [63] is used. BLAS and ScaLA-

PACK [2] is the main interest area for the numerical computations.

1.4 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 presents the main topics of

solution framework [6,53,61,62] with the improvements implemented by this study and
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the mathematical background of the solution method. Then, in Chapter 3, preparation

of substructures by partitioning and workload balancing are discussed in detail and some

test results are presented. Chapter 4 is devoted to the parallel solution. In this chapter,

condensation and interface system solution is discussed in detail and performance of

these solution algorithms is investigated. Chapter 5, is composed of the case studies

by using the framework presented. Chapter 6, is the �nal chapter which summarizes

the e�ciency and future plans of this study. Two appendices follows the �nal chapter.

The �rst one presents a general idea about how to assess the performance of a parallel

algorithm and the second one introduces the structural models utilized for the case

studies.
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CHAPTER 2

AN OVERVIEW OF THE PARALLEL

SOLUTION FRAMEWORK

2.1 Introduction

This study focuses on improving the performance of a substructure based parallel so-

lution framework that utilizes direct solvers for the linear solution of large structural

models on PC Clusters. The cluster can be composed of identical computers. In this

chapter, general algorithm and mathematical background for this method is presented.

2.2 Algorithm

One of the main challenges of substructure based parallel solution methods is to �nd

a partitioning where the substructures have balanced condensation times. Otherwise,

the parallel solution is governed by the substructure having the slowest condensation

time. In order to overcome such problems and thus enhance performance of the parallel

solution, a data preparation step is added to the solution framework that is responsi-

ble from preparing data for the parallel solution which involves partitioning, workload

balancing, and equation numbering.

The �rst step of data preparation is partitioning the structure into substructures

where the number of substructures is equal to the number of processors. After creating

the initial substructures, the workload balancing step is initiated where the estimated

imbalance of the substructures is adjusted by iteratively transferring nodes from the

slower substructures to the faster ones. The imbalance was computed by using the total

time estimation for the assembly and the condensation of each substructure. All the

iterations were performed in parallel to speed-up the workload balancing step.
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Parallel SolutionParallel Solution
1-) Formation of substructure stiffness matrix & 

force vector according to partitioning 
2-) Condensation to interface nodes 

3-) Interface matrix solution 
4-) Recovering nodal displacements & 

element stresses

Figure 2.1: Parallel Solution Flow Chart Demonstration

Once the �nal substructures are created, the solution phase is initiated (Figure 2.1).

Each processor assembles its substructure's sti�ness matrix and condenses it to the

interfaces by using a sparse matrix solver. Then, contributions of each substructure is

assembled on the interface system. The interface equations are then solved by parallel

dense and banded solver routines of ScaLAPACK library [2]. After computing the

interface unknowns, each processor calculates the internal displacements and element

stresses or forces of the substructures assigned to them.

2.3 Mathematical Background

The solution approach utilized throughout this study can be summarized as the solution

of the condensed structural system of each substructure. After the structure is parti-

tioned into substructures, sti�ness e�ects of each substructure is condensed to interface

nodes. Sti�ness contributions from all substructures, are gathered into interface nodes

and form an interface system. Solution of this interface system results in displacements

of the interface nodes. Therefore, by using the results of the interface system solution,

the results for the whole system can be obtained.

The condensation part is one of the main steps of the parallel solution. Thus, a gen-

eral de�nition for condensation and then the mathematical background for substructure

based parallel solution method will be presented.

27



2.3.1 Condensation

The term condensation refers to the contraction in size of a system of equations by

re�ecting the contributions or e�ects of some preselected degrees of freedoms to the

rest of the degrees of freedom [64]. Suppose that the degrees of freedom of an arbitrary

substructure is numbered starting from the internal dofs and then number the interface

nodes. Expected sti�ness matrix pattern with skyline storage scheme will be similar to

Figure 2.2.

Figure 2.2: An Example Pro�le of a Sti�ness Matrix Assembled for Condensation

The sti�ness matrix of a substructure can be represented by a partitioned form of

a linear system as follows;

 Kcc Kci

Kic Kii

 ∆c

∆i

 =

 Pc

Pi

 (2.1)

where c index represents internal dofs and i index represents interface dofs. In Equation

2.1 and the following equations, K designates the sti�ness, P designates load applied

and ∆ designates the displacement of nodes.

After the condensation, this system is reduced to

[
K̂ii

]
{∆i} =

{
P̂i

}
(2.2)

To reduce Equation 2.1 into Equation 2.2, �rst row of Equation 2.1 is expanded and
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solved for {∆c}. Thus

{∆c} = − [Kcc]
−1 [Kci] {∆i}+ [Kcc]

−1 {Pc} (2.3)

Substituting this value of {∆c}in the expanded second row of Equation 2.1 yields

− [Kic] [Kcc]
−1 [Kci] {∆i}+ [Kii] {∆i} = {Pi} − [Kic] [Kcc]

−1 {Pc} (2.4)

Letting

[Kii]− [Kic] [Kcc]
−1 [Kci] =

[
K̂ii

]
(2.5)

and

{Pi} − [Kic] [Kcc]
−1 {Pc} =

{
P̂i

}
(2.6)

Equation 2.4 becomes identical to Equation 2.2. Therefore the sti�ness e�ects of

internal dofs of the substructure is re�ected on the interface dofs and internal dofs

are eliminated. Also, it should be clear that the �eliminated� dofs are not discarded.

They are expressed as functions of the corresponding forces, the remaining dofs and the

coe�cients of the equations, with the result substituted in the original equations.

The concepts of condensation have already been used although they were not iden-

ti�ed by that term. In literature, the disciplines other than structural engineering use

this method with the name of Schur Complement Matrix [65]. Suppose A, B, C, D are

respectively pÖp, pÖq, qÖp and qÖq matrices, and D is invertible. Let

M =

 A B

C D

 (2.7)

so that M is a (p+q)Ö(p+q) matrix. Then the Schur complement of the block D of the

matrix M is the pÖp matrix A−BD−1C [66] which is equivalent to K̂ii of Equation2.5.

2.3.2 Substructure based solution

Consider a structural model that is partitioned into two, Substructure A and Substruc-

ture B as shown in Figure 2.3. Degrees of freedom of the whole structure can be divided

into three sets as [64];

� a: internal dofs of Substructure A

� b: internal dofs of Substructure B

29



� i : interface dofs between Substructure A and B

Figure 2.3: Internal and Interface dofs of Substructures

Therefore, sti�ness matrices of each substructure can be written as follows;

KA =

 Kaa Kai

Kia KA
ii

 KB =

 KB
ii Kib

Kbi Kbb

 (2.8)

and similarly load vectors can be written as follows;

FA =

 Fa

FAi

 FB =

 FBi

Fb

 (2.9)

When the sti�ness matrices of each substructure is assembled, the structural sti�ness

matrix will become:


Kaa Kai 0

Kia Kii Kib

0 Kbi Kbb




∆a

∆i

∆b

 =


Fa

Fi

Fb

 (2.10)

where

Kii = KA
ii +KB

ii (2.11)

and

Fi = FAi + FBi (2.12)

and 4 represents corresponding displacement and F represents the corresponding load

vector.
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When static condensation is applied to internal dofs of substructure B, that means

they will be eliminated. On the other hand, rest of the dofs which can be demonstrated

by a+i will remain. So, sti�ness matrix and load vector are partitioned in the following

way:


Kaa Kai 0

Kia Kii Kib

0 Kbi Kbb

 =

 Kαα Kαβ

Kβα Kββ




Fa

Fi

Fb

 =

 Fα

Fβ

 (2.13)

where remaining dofs and eliminated dofs are indicated by α and β, respectively. Ap-

plying the expressions 2.5 and 2.6 to partitioned Equation 2.13 :

[
K̂(a+i)

]
=

 Kaa Kai

Kia Kii

−
 0

Kib

 [Kbb]
−1
[

0 Kbi

]
(2.14)

{
F̂(a+i)

}
=

 Fa

Fi

−
 0

Kib

 [Kbb]
−1 {Fb} (2.15)

that result in:

[
K̂(a+i)

]
=

 Kaa Kai

Kia Kii −KibK
−1
bb Kbi

 (2.16)

{
F̂(a+i)

}
=

 Fa

Fi −KibK
−1
bb Fb

 (2.17)

where K̂(a+i) and F̂(a+i) respectively represent the sti�ness matrix and load vector of

equivalent condensed system after the condensation of internal dofs of substructure B.

Decomposing each matrix as sum of two terms:

[
K̂(a+i)

]
=

 Kaa Kai

Kia KA
ii

+

 0 0

0 KB
ii −KibK

−1
bb Kbi

 = KA + K̂ii (2.18)

{
F̂(a+i)

}
=

 Fa

0

+

 0

Fi −KibK
−1
bb Fb

 =

 Fa

0

+
{
F̂i

}
(2.19)
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The reduced system of equations to dofs set (a+i) has the following form:

(
KA + K̂ii

) ∆a

∆i

 =

 Fa

0

+ F̂i (2.20)

[
K̂(a+i)

] ∆a

∆i

 =
{
F̂(a+i)

}
(2.21)

Equivalent sti�ness matrix is composed of the sti�ness matrix of substructure A

and the condensed sti�ness matrix of substructure B to the interface dof (set i) ex-

panded (completed with zeros) to (a+i) size. In the same way, equivalent load vector

is the applied load to internal dofs of substructure A plus the condensed load vector

of substructure B to set i, and expanded again to (a+i) size. Similarly, by applying

condensation to internal dofs of substructure A, whole system can be reduced to an

equivalent interface system of K̂ii. Hence, results of this interface system solution can

be used to recover the whole system solution.

As a summary, condensation of a substructure re�ects the static behaviour of a

substructure at its interface dofs. During condensation, the information about other

substructures are not required, thus, there is no need for data transfer among processors

if each substructure is assigned to a particular processor for condensation. This attribute

of substructure based solution reduces the amount of communication by requiring data

transfer during interface solution only.
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CHAPTER 3

DATA PREPARATION

3.1 Introduction

In the substructure based solution approach, structure is partitioned into substructures

and each computer assembles its substructure's sti�ness matrix and force vectors and

then condenses internal nodes to the interface nodes. The condensation step is followed

by the interface solution. The interface solution, however, can not initiate until the

condensation of all substructures are �nalized. In other words, the time spent during

condensation is governed by the substructure that requires the most computation. Thus,

any imbalance among the condensation times of each substructure reduces the e�ciency

of the parallel solution because of having idle processors. Hence, the partitioning of the

structure into substructures is vital for such methods.

This chapter is dedicated to data preparation step of a substructure based parallel so-

lution framework that can be used for solving large linear systems on PC clusters. Data

preparation step mainly aims to balance the workload for assembly and condensation

of each substructure. The method iteratively searches for more balanced substructure

workloads by modifying them according to their estimated sti�ness matrix assembly

and condensation times (workload balancing). Moreover, all the computations during

the workload balancing iterations are performed in parallel. This way, the time con-

sumed during the workload balancing step is decreased and the algorithm becomes more

suitable for large linear static problems.

3.2 Overview

The �rst step of a substructure based parallel solution method is partitioning the struc-

ture into a number of substructures. Automatic partitioning algorithms are generally

33



utilized for this purpose. The goal of such partitioning algorithms is to balance the

computational workloads of each processor while keeping the size of the substructure

interfaces as low as possible. When the workloads of processors are balanced, the pro-

cessors would be more e�ciently utilized. In other words, none of the processors will

stay idle while waiting for other processors to �nalize their computations. When the

size of the substructure interfaces is low, less time will be spent for data transfers among

substructures. Thus, the ultimate goal of partitioning is actually to decrease the overall

computation time.

Currently, there are mainly two di�erent partitioning approaches, static and dy-

namic. Static partitioning algorithms are mostly utilized in problems where the work-

load is computable before the solution and remains unchanged during the solution. For

such problems, the computational workload is usually represented as a single integer

value assigned to the nodes or the elements of a structure. Hence, once the sum of

the weight values of each partition is balanced, it is assumed that the computational

workloads for each processor are also balanced.

The dynamic partitioning algorithms, on the other hand, are developed for prob-

lems in which the computational loads can not be known prior to partitioning or the

computational loads of processors change during the solution. Dynamic partitioning

algorithms mainly modify the substructures according to the new computational loads

in such a way that the loads are balanced, the di�erences between the previous and

newly formed substructures are minimized, and the interface size of the new partitions

has not signi�cantly increased when compared with the interface size of the previous

substructures.

In the literature, various partitioning approaches exist [67]. The basic goal of many

of the partitioning approaches is to minimize the communication among processors while

keeping a balanced number of elements or nodes in each partition. This goal can be

achieved if the computational cost can be represented by a single weight value assigned

to a node or an element. However, when a direct condensation method is used, such

weight de�nitions are insu�cient to provide a balanced distribution of the computa-

tional load [68]. There are other variables that a�ect the condensation time such as

equation numbering, the non-zero term pattern of the sti�ness matrix, and the number

of the internal and interface equations. Moreover, the variables that a�ect the conden-

sation time depend on the way in which the structure is partitioned. In other words,

the computational load of each substructure can only be estimated after partitioning.
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Secondly, the non-zero term pattern of the sti�ness matrix depends on how the equa-

tions are numbered. Such algorithms are based on heuristic approaches. Therefore, it

is very di�cult to predict the e�ect of any partition changes on the equation number-

ing and hence on the condensation time. Thus, it is rather complicated to partition a

structure while balancing the workload for direct condensation. In conclusion, utilizing

only static partitioning algorithms are not enough for this study. Therefore, static and

dynamic algorithms are used together.

3.2.1 Partitioning Libraries

In this study, METIS library [3] is utilized for the initial partitioning of substructures

prior to the parallel solution. PARMETIS library [42] is employed as dynamic partition-

ing utility to repartition the structure in order to balance the total times of assembly

and condensation of each substructure.

Both of these libraries; METIS [3] and PARMETIS [42], are graph partitioning

methods. In other words, they work with the graph representation of a structure which

describes the structure in terms of vertices and edges as shown in Figure 3.1b. Each

vertex is actually a solution point and its weight shows the computational weight of that

point. An edge is used to de�ne interactions between the vertices. Therefore, a graph

partitioning algorithm attempts to keep the vertex weights balanced in each partition

while keeping the edges at the domain interfaces as small as possible. One approach to

accomplish this is to create a mathematical de�nition of the partitioning problem and

attempt to solve it. In the literature, this mathematical de�nition is an NP-complete

problem which has a computable solution. The exact solution, however, could be very

expensive for some types of the analysis methods since the exact solution requires the

computation of the second smallest eigenvalue and corresponding eigenvector of the

system [69].

The other approach is to target a reasonably good solution instead of the best one

with the application of various heuristic methods. The multilevel scheme is a commonly

used approach where the size of the graph is reduced and partitioning is performed on

a relatively smaller graph. Although the partition quality decreases due to coarsening,

the partitioning time drops considerably. Both METIS [3] and PARMETIS [42] libraries

utilizes multilevel graph partitioning approaches.
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3.2.1.1 METIS

METIS [3] is a software package developed for partitioning large irregular graphs. It

utilizes a multilevel approach to speed-up the partitioning process and allows single or

multiple vertex and edge weight de�nitions. METIS [3] works with the graph repre-

sentation of a structure and accepts any kind of graph, like nodal or dual graph. An

example of a nodal graph for an arbitrary structure (Figure 3.1) is given in Figure 3.1b.

In the nodal graph, each node corresponds to a vertex in the graph. The vertices are

joined with an edge if the corresponding nodes are connected by an element. Because

of its easy generation, nodal graph representation is used in this study.
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(a) An Arbitrary Structure
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(b) Nodal Graph

Figure 3.1: Graph Representation of an arbitrary structure

METIS [3] partitioning algorithms are based on the multilevel approach. As il-

lustrated in Figure 3.2, multilevel approaches are composed of three phases: graph

coarsening, initial partitioning, and uncoarsening/re�nement. In the graph coarsening

phase, a series of graphs is constructed by collapsing together adjacent vertices of the

input graph in order to form a coarser graph that resembles the properties of the origi-

nal graph. The collapsed vertices are described by a multinode that contains the vertex

weight of the contributing vertices. Computation of the initial partitioning is performed

on the coarsest (and hence smallest) of these graphs, and thus is faster. Then, partition

re�nement is performed on each level graph, where the partitions of the coarser graph

are projected back to the original graph by going through �ner and �ner graphs.
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Figure 3.2: Multilevel Approach [3]

3.2.1.2 PARMETIS

Dynamic partitioning or in other words repartitioning approaches are required if the

computational load changes as the solution proceeds or it is not possible to compute

the computational load of partitions before partitioning. There are several types of

repartitioning algorithms but they can be classi�ed into two groups according to their

use of the original partition. The �rst group of algorithms, e.g. scratch-remap, �rst

partition the graph from scratch according to the new vertex weights and use the ex-

isting partitioning information to minimize the di�erence between the original and the

new partitions. The other group of algorithms �rst calculates the imbalance of the

original partitions and then attempts to balance them by migrating vertices from the

overweight partitions to the under-weight ones. This type of algorithms are called dif-

fusion algorithms because they consider the formentioned problem analogous to the

di�usion process where an initial uneven temperature in space drives the movement of

heat, and eventually reaches equilibrium [69].

PARMETIS [42] is a parallel multilevel graph partitioning and repartitioning library

that implements both scratch-remap and di�usion based repartitioning algorithms. It

also uses a multilevel scheme to speed-up the partitioning process. Moreover, it performs

all the computations in parallel that enables it to partition and repartition very large

sized graphs in a very short amount of time.

3.3 Workload Balancing Algorithm

The �ow chart of the workload balancing algorithm is presented in Figure 3.4. The

algorithm initiates by converting the structural information into the nodal graph rep-

resentation. Then, the nodal graph is partitioned into `n' parts by using METIS [3]
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where `n' is equal to the number of available processors. After assigning a single sub-

structure to each processor, the nodal graph and the initial partitioning information

are distributed to every processor. The processors �rst extract their assigned substruc-

ture's subgraphs from the nodal graph using the partitioning information. A subgraph

is actually the nodal graph of a substructure with links to adjacent substructures as

shown in Figure 3.3.

Then, each processor optimizes the equation numbering of their substructure and

calculates the operation counts for condensation. During these computations, it is

assumed that there is a single degree of freedom per node.
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Figure 3.3: Nodal Graph and Subgraphs during iterations

Next, the master computer, which performed the initial partitioning, collects the op-

eration count values and calculates the condensation time estimation of each substruc-

ture by dividing the operation count with the condensation speed of the corresponding

computer. Then, by approximately estimating the number of elements in each sub-

structure, master computer also computes the amount of time required to generate

and assemble the local sti�ness matrix for each computer. Then, the master processor

checks whether the workload from assembly and condensation of each substructure is

balanced or the maximum number of iterations has been reached. If so, the iterations

are �nalized and the structural data for the solution is prepared. Otherwise, the master

processor calculates the imbalance factor according to Equation 3.1 for each substruc-

ture and distributes it to other processors.

Rt(j) =
Lst(j)∑p
i=1 Lst(i)

(3.1)

where p is the number of computers, Lst(j) is the local solution time estimation for jth
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Figure 3.4: The Flow Chart of the Workload Balancing Algorithm

substructure, and Rt(j) is the relative local solution time ratio of the jth substructure.

Then, each processor calculates new vertex weights of their substructures by utilizing

Equation 3.2 and updates the weights of its vertices.

Wv(j) =
Rt(j) / n(j)∑p
i=1Rt(i) / n(i)

(3.2)

In the above equation, n(j) represents the number of vertices in the jth substructure

and Wv(j) represents the new vertex weight for the jth substructure. Equation 3.2
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calculates the vertex weights in such a way that the relative ratios of the sum of the

vertex weights of substructures are equal to the relative ratios of the local solution time

estimations.

Then, the current partitioning information is stored and repartitioning is initiated.

The substructures are repartitioned by using the scratch-remap type repartitioning al-

gorithms of the PARMETIS [42] library. Once the new partitioning information is

obtained, it is distributed to all other computers and the next iteration starts.

When the iterations are �nalized, the master processor scans all partitioning results

created during the iterations and chooses the one that provides the best estimate of

the solution time. The solution time estimation can consider the estimation of either

assembly plus condensation times only or the total solution time including the interface

solution time.

The �nal step is the preparation of the structural data where the subgraphs are con-

verted into nodes and element de�nitions. During that process, the interface elements,

whose nodes are on two or more substructures, are assigned to one of their adjacent

substructures.

3.4 Test Results

Implemented algorithm is tested on two di�erent PC Clusters. First one, HPCE, is

composed of eight identical computers which have Intel P4 3.2 GHz processors and 1

GB RAMs. On the otherhand, second cluster, HPCE2, is composed of eight identical

computers which have Intel Core2Quad Q9300@2.5 GHz processors and 3.23 GB RAMs.

Intel Core2Quad family processors involve four processors that are theoretically working

at 2.5 GHz and are able to share the memory. However, this feature of this cluster is

not utilized during these tests. Both of these clusters are connected with ordinary 1

GBit network switches and all computers at both clusters are running Windows XP

Professional.

The test results are presented in terms of three di�erent parameters; imbalance ratio,

improvement and local solution time. Imbalance ratio can be computed as;

ImbalanceRatio =
Slowest Local Solution T ime

Fastest Local Solution T ime
(3.3)

where local solution time is composed of assembly and condensation times. To obtain

the improvement at each workload balancing iteration, initial and ith local solution
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times are compared as follows;

Improvement(i) =
Lst(i)
Lst(0)

(3.4)

where Lst(i) denotes the local solution timing for ith workload balancing iteration and

Lst(0) denotes the local solution timing for initial partitioning. Improvement(i) > 1.0,

indicates that initial partitioning is faster than partitioning at ith step.

3.4.1 Illustrative Example

Figure 3.5 and Figure 3.6 illustrate the substructures created during the workload bal-

ancing iterations. Scratch-remap is utilized as repartitioning method. For this example

problem, a 2D square mesh having 25,600 quadrilateral elements was partitioned into

8 substructures.

Initially, imbalance ratio between the fastest and slowest local solution of substruc-

tures was 1.13 and after ten iterations, workload balancing algorithm terminated. 6th

iteration was chosen as the best partitioning since it was estimated that this iteration

has the fastest local solution timing (refer to Table 3.1). The �nal imbalance ratio value

was 0.33 and the decrease in the governing local solution time (assembly and conden-

sation times) improved around 27%. Thus, balancing the local solution times of the

substructures decreases the governing local solution time, but having more balanced lo-

cal solution times does not always mean that the governing local solution time is faster.

There may be another partitioning which the substructures are less balanced but the

governing local solution time is faster.

Table 3.1: Workload Balancing Iteration Results for 2DMesh Model

Initial 1.13 1.00 2.35

1 0.58 0.90 2.12

2 0.55 0.79 1.86

3 0.77 0.96 2.26

4 0.80 0.87 2.05

5 0.48 0.79 1.87

6 0.59 0.71 1.66

7 0.39 0.72 1.71

8 0.32 0.81 1.90

9 0.19 0.76 1.78

10 0.33 0.73 1.72

Initial 1.63 1.00 539.79

1 0.03 0.66 358.44

2 0.04 0.61 330.82

3 0.27 0.87 470.79

4 1.37 1.09 596.15

5 0.18 0.67 364.46

6 0.18 0.67 364.46

Initial 1.19 1.00 486.40

1 0.43 0.68 360.32

2 0.35 0.75 383.11

3 0.43 0.64 371.83

4 0.36 0.76 398.69

5 0.14 0.61 335.94

6 0.40 0.73 376.92

7 1.80 1.29 624.46

8 2.18 0.95 490.01

9 1.08 0.98 473.35

10 0.71 0.77 412.69

HPCE Stregis2

HPCE Grom 4

2DMesh

Iteration #
Imbalance 

Ratio
Improvement

Local Solution 

Time (s)

Iteration #
Imbalance 

Ratio
Improvement

Local Solution 

Time (s)

Iteration # Improvement
Local Solution 

Time (s)

Imbalance 

Ratio

When the substructures of chosen iteration (6th) is investigated (refer to Figure 3.6),
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there were four similar substructures at the corners having larger number of internal

nodes. On the other hand, the smallest substructure was located at the center of the

mesh. It had the least number of nodes because all its edges are at the interfaces. The

rest of the substructures which were midsize substructures, have interface nodes at their

three sides. As a result, the iterations resulted in a decrease in the number of nodes of

the substructures which contained more interface nodes.

3.4.2 Actual Testing Models

Table 3.2 presents workload balancing iteration results of StRegis Model on two comput-

ers of HPCE cluster. Imbalance ratio at initial partitioning was 1.63 and local solution

time was ∼540 seconds. After six iterations, workload balancing algorithm terminates

because of no improvement in consecutive iterations. Best partitioning was chosen as

the second iteration since it was reduced local solution time to 330 seconds which means

210 seconds of short execution of condensation and assembly steps. Although �rst iter-

ation was more balanced (Imbalance ratios: 0.03 < 0.04) than second iteration, latter

produced shorter local solution time (Table 3.2). Workload balancing for this special

case was completed in 7 seconds which is insigni�cant when the improvement obtained

is considered.

Table 3.2: Workload Balancing Iteration Results for StRegis Model

Initial 1.13 1.00 2.35

1 0.58 0.90 2.12

2 0.55 0.79 1.86

3 0.77 0.96 2.26

4 0.80 0.87 2.05

5 0.48 0.79 1.87

6 0.59 0.71 1.66

7 0.39 0.72 1.71

8 0.32 0.81 1.90

9 0.19 0.76 1.78

10 0.33 0.73 1.72

Initial 1.63 1.00 539.79

1 0.03 0.66 358.44

2 0.04 0.61 330.82

3 0.27 0.87 470.79

4 1.37 1.09 596.15

5 0.18 0.67 364.46

6 0.18 0.67 364.46

Initial 1.19 1.00 486.40

1 0.43 0.68 360.32

2 0.35 0.75 383.11

3 0.43 0.64 371.83

4 0.36 0.76 398.69

5 0.14 0.61 335.94

6 0.40 0.73 376.92

7 1.80 1.29 624.46

8 2.18 0.95 490.01

9 1.08 0.98 473.35

10 0.71 0.77 412.69

HPCE Stregis2

HPCE Grom 4

2DMesh

Iteration #
Imbalance 

Ratio
Improvement

Local Solution 

Time (s)

Iteration #
Imbalance 

Ratio
Improvement

Local Solution 

Time (s)

Iteration # Improvement
Local Solution 

Time (s)

Imbalance 

Ratio

Workload balancing iteration results of GroM Model on four computers of HPCE

cluster are given in Table 3.3. Imbalance ratio at initial partitioning was 1.19 and local

solution time was ∼486 seconds. Workload balancing procedure spent 16 seconds to

�nd a better partitioning. Procedure terminated since it reached the maximum number

of iterations and then had chosen the �fth iteration as the best partitioning and it was

the most balanced partitioning, too. With this partitioning, local solution time reduced

to ∼336 seconds.
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Initial Partitioning

Imbalance Ratio : 1.13

Improvement : 1.00

Iteration #1

Imbalance Ratio : 0.58

Improvement : 0.90

Iteration #2

Imbalance Ratio : 0.55

Improvement : 0.79

Iteration #3

Imbalance Ratio : 0.77

Improvement: 0.96

Iteration #4

Imbalance Ratio : 0.80

Improvement : 0.87

Iteration #5

Imbalance Ratio : 0.48

Improvement : 0.79

Figure 3.5: Substructures of 2DMesh Model at each workload balancing step
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Iteration #6

Imbalance Ratio : 0.59

Improvement : 0.71

Iteration #7

Imbalance Ratio : 0.39

Improvement : 0.72

Iteration #8

Imbalance Ratio : 0.32

Improvement : 0.81

Iteration #9

Imbalance Ratio : 0.19

Improvement : 0.76

Iteration #10

Imbalance Ratio : 0.33

Improvement : 0.73

Figure 3.6: Substructures of 2DMesh Model at each workload balancing step (cont.)
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Table 3.3: Workload Balancing Iteration Results for GroM Model

Initial 1.13 1.00 2.35

1 0.58 0.90 2.12

2 0.55 0.79 1.86

3 0.77 0.96 2.26

4 0.80 0.87 2.05

5 0.48 0.79 1.87

6 0.59 0.71 1.66

7 0.39 0.72 1.71

8 0.32 0.81 1.90

9 0.19 0.76 1.78

10 0.33 0.73 1.72

Initial 1.63 1.00 539.79

1 0.03 0.66 358.44

2 0.04 0.61 330.82

3 0.27 0.87 470.79

4 1.37 1.09 596.15

5 0.18 0.67 364.46

6 0.18 0.67 364.46

Initial 1.19 1.00 486.40

1 0.43 0.68 360.32

2 0.35 0.75 383.11

3 0.43 0.64 371.83

4 0.36 0.76 398.69

5 0.14 0.61 335.94

6 0.40 0.73 376.92

7 1.80 1.29 624.46

8 2.18 0.95 490.01

9 1.08 0.98 473.35

10 0.71 0.77 412.69

HPCE Stregis2

HPCE Grom 4

2DMesh

Iteration #
Imbalance 

Ratio
Improvement

Local Solution 

Time (s)

Iteration #
Imbalance 

Ratio
Improvement

Local Solution 

Time (s)

Iteration # Improvement
Local Solution 

Time (s)

Imbalance 

Ratio

Workload balancing algorithm, could not suggest better partitioning for Cube30

models on both clusters except from a few runs with two and four computers on HPCE

cluster. Since Cube30 model is a symmetric and uniform model with same elements,

initial partitioning is most of time the best partitioning. In case of GroM model, with

the introduction of di�erent type of elements, uniformity of the model is disturbed.

Therefore, workload balancing iteration could yield better partitioning. For example,

similarly, StRegis Model is highly non-uniform and non-symmetric. Therefore, the

improvement obtained in StRegis Model by workload balancing algorithm is generally

larger than the one obtained in GroM model.

Three di�erent structural models (Cube30, GroM, and StRegis) which are intro-

duced in Appendix B were partitioned into four substructures for demonstration pur-

poses. Views from di�erent points are demonstrated for Cube30, GroM, and StRegis in

Figure 3.7, Figure 3.8, and Figure 3.9, respectively.

(a) 3D View (b) Perspective View

Figure 3.7: Final Partitioning of Cube30 Model
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(a) Plan View

(b) Perspective View

Figure 3.8: Final Partitioning of GroM Model
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(a) Elevation View

(b) Perspective View

Figure 3.9: Final Partitioning of StRegis Model
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CHAPTER 4

PARALLEL SOLUTION

4.1 Introduction

This chapter focuses on the parallel solution of the structural model which was parti-

tioned into substructures in data preparation step. Initially, general algorithm which is

composed of two main stages is presented. This chapter is devoted to these two main

topics. First stage is condensation. Condensation algorithm is presented and then test

results for this algorithm is discussed. After the condensation, second stage initiates

with assembling the contributions of each substructure on interface system. Three im-

portant steps in interface system assembly are introduced; data mapping for reducing

the amount of data transfer, communication scheme for optimizing the communication

order of processors, and runtime data compression for reducing the size of transferred

data. Then interface system solution in parallel is presented. Optimization and run-

time estimations are discussed. Finally, test results for interface system assembly and

solution is presented and discussed in detail.

4.2 Parallel Solution Algorithm

In Figure 4.1, the �ow chart for parallel solution is presented. The parallel solution initi-

ates by creating separate structural data at each computer. First, the master computer

reads the input �le prepared by the data preparation program and sends the nodal, ele-

ment connectivity, and loading information of each substructure to their corresponding

computer. Then, the local solution initiates. Each computer assigns degrees of freedom

to its nodes. The nodes of each substructure were written into the input �le according

to their optimized order and they were placed into the arrays in the same order. Hence,

during the assignment process, each node is visited one by one and the nodes' active
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degrees of freedom are numbered consecutively. After that, sti�ness matrices and force

vectors are assembled.

The next step is condensation. The condensations are performed by using a sparse

solver which performs LDLT factorization of symmetric matrices in row-wise fashion.

Only the non-zero elements of the lower-triangular part of the sti�ness matrix are stored

in the compressed column format to minimize the memory usage. Up to this point,

neither communication nor synchronization among computers are required.

Then, the interface sti�ness matrix is assembled where each computer sends and re-

ceives some portion of the interface sti�ness matrix. The interface matrix is distributed

as 2D rectangular blocks in cyclic manner (block cyclic distribution) to utilize the par-

allel dense matrix solver of ScaLAPACK [10] library. In this assembly approach, �rst

each computer prepares a data distribution scheme and data bu�ers that involves the

part of the matrix that will be sent to a particular computer. Then, the data transfer

initiates in such a way that none of the computers stay idle. As the distribution of the

interface sti�ness matrix is �nalized, it is solved and the displacements are obtained.

Once the interface displacements are obtained, they are distributed in such a way

that each computer receives the displacements belonging to their interface nodes. In

the �nal step, the local solution is �nalized by recovering the internal displacements

and computing the stresses for each element in the substructure.

In the parallel solution method presented in Figure 4.1, all the steps other than in-

terface solution are fully parallel. Each computer run the algorithms over its owned sub-

structure without requiring any information from other substructures, in other words,

these procedures are local. However, during the interface solution, due to high data de-

pendency, resulting interface problem is solved by using parallel dense solvers in global.

To sum up, all of the steps in solution are parallelized.

After the completion of assembly, system of equations at the substructure interfaces,

which are composed of the interface sti�ness matrix and load vectors, are distributed

over the cluster according to block cyclic distribution. The interface sti�ness matrix

can vary from a full matrix to a variable band matrix depending on the number of

substructures. Thus, two di�erent parallel solvers of ScaLAPACK [10] are utilized for

the solution of parallel full matrix solver and band solver. Details of these parallel

solvers will be discussed in Section 4.4.2.
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Figure 4.1: Parallel Solution Flow Chart

50



4.3 Condensation

In substructure based methods, after the assembly of sti�ness matrices and force vectors,

internal nodes are condensed to interface nodes. The algorithm and test results for

condensation, will be discussed in following sections.

4.3.1 Algorithm

In the current version of the substructure based parallel solution method, the conden-

sations are performed by using a sparse solver which performs LDLT factorization of

symmetric matrices in row-wise fashion. This condensation algorithm is the adjusted

version of the sparse Cholesky solver supplied by Timothy A. Davis [70]. In this algo-

rithm, only the non-zero elements of the lower-triangular part of the sti�ness matrix

are stored in the compressed column format to minimize the memory usage. Condensa-

tion algorithm that is implemented is as follows and explanations about how does the

algorithm proceeds is commented inside the code;

int ld l_condense ( // re turns n i f s u c c e s s f u l , k i f D ( k , k ) i s zero

unsigned int n , //A and L are n−by−n , where n >= 0

unsigned int gdof ,

unsigned int Ap [ ] , // input o f s i z e n+1, not modi f ied

unsigned int Ai [ ] , // input o f s i z e nz=Ap[ n ] , not modi f ied

double Ax [ ] , // input o f s i z e nz=Ap[ n ] , not modi f ied

int Lp [ ] , // input o f s i z e n+1, not modi f ied

int Parent [ ] , // input o f s i z e n , not modi f ied

int Lnz [ ] , // output o f s i z e n , not defn . on input

int Li [ ] , // output o f s i z e l n z=Lp [ n ] , not de f ined on input

double Lx [ ] , // output o f s i z e l n z=Lp [ n ] , not de f ined on input

double D[ ] , // output o f s i z e n , not de f ined on input

double Y[ ] , //workspace o f s i z e n , not defn . on input or output

int Pattern [ ] , //workspace o f s i z e n , not defn . on input or output

int Flag [ ] , //workspace o f s i z e n , not defn . on input or output

int P [ ] , // op t i ona l input o f s i z e n

int Pinv [ ] ) // op t i ona l input o f s i z e n

{

double y i = 0 . , l_ki = 0 . ;

int p = 0 , kk = 0 , p2 = 0 , l en = 0 ;
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for (unsigned int k = 0 ; k < n ; k++) {

//compute nonzero Pattern o f k th row o f L , in t o p o l o g i c a l order

Y [ k ] = 0 . 0 ; //Y(0 : k ) i s now a l l zero

unsigned int top = n ; // s t a c k f o r pa t t e rn i s empty

Flag [ k ] = k ; //mark node k as v i s i t e d

Lnz [ k ] = 0 ; // count o f nonzeros in column k o f L

kk = (P) ? (P [ k ] ) : ( k ) ; // k th o r i g i na l , or permuted , column

p2 = Ap [ kk+1] ;

for (p = Ap [ kk ] ; p < p2 ; p++) {

unsigned int i = ( Pinv ) ? ( Pinv [ Ai [ p ] ] ) : (Ai [ p ] ) ;

i f ( i <= k) {

Y [ i ] += Ax [ p ] ; // s c a t t e r A( i , k ) in t o Y (sum dup l i c a t e s )

for ( l en = 0 ; Flag [ i ] != k ; i = Parent [ i ] ) {

Pattern [ l en++] = i ; //L(k , i ) i s nonzero

Flag [ i ] = k ; //mark i as v i s i t e d

}

while ( l en > 0) Pattern [−−top ] = Pattern [−− l en ] ;

}

}

//compute numerical va l u e s k th row o f L (a sparse t r i a n g u l a r s o l v e )

D [ k ] = Y [ k ] ; Y [ k ] = 0 . 0 ; // ge t D(k , k ) and c l e a r Y( k )

for ( ; top < n ; top++) {

int i = Pattern [ top ] ; //Pattern [ top : n−1] i s pa t t e rn o f L ( : , k )

y i = Y [ i ] ; Y [ i ] = 0 . 0 ; // ge t and c l e a r Y( i )

p2 = Lp [ i ] + Lnz [ i ] ;

i f ( i<gdof ) {

for (p = Lp [ i ] ; p < p2 ; p++)

Y [ Li [ p ] ] −= Lx [ p ] * y i ;

l_ki = y i / D [ i ] ; // the nonzero entry L( k , i )

D [ k ] −= l_ki * y i ;

} else { p = p2 ; l_ki = y i ; }

Li [ p ] = k ; // s t o r e L( k , i ) in column form of L

Lx [ p ] = l_ki ; Lnz [ i ]++; // increment count o f nonzeros in co l i

}

i f (D [ k ] == 0 . 0 ) return ( k ) ; // f a i l u r e , D( k , k ) i s zero

}

return (n ) ; // success , d iagona l o f D i s a l l nonzero

}
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Mathematical background about condensation indicates an important feature of

condensation which is that condensation is a local process. In other words, during con-

densation neither communication nor synchronization among computers are required.

Therefore, performance of this process is only depends on the computational speed of

the computer, performance of the algorithm and the type of problem.

4.3.2 Test Results

Implemented condensation algorithm was tested on two di�erent PC Clusters. First one,

HPCE, is composed of eight identical computers which have identical Intel P4 3.2 GHz

processors and 1 GB RAMs. On the otherhand, second cluster, HPCE2, is composed

of eight identical computers which have Intel Core2Quad Q9300@2.5 GHz processors

and 3.23 GB RAMs. Intel Core2Quad family processors involve four processors that

are theoretically working at 2.5 GHz and are able to share a single memory. Both of

these clusters are connected with ordinary 1 GBit network switches and all computers

at both clusters are running Windows XP Professional. Besides, communication, coor-

dination and computation parameters measured for them are presented in Appendix A.

Structural models analyzed by implemented algorithms are introduced in Appendix B.

Table 4.1: Condensation Timings

(a) For HPCE

Cube30 GroM StRegis

2 901.0 522.0 283.0

4 226.7 260.8 130.0

6 119.0 160.5 80.0

8 74.0 98.5 55.0

Cube30 GroM StRegis

2 459.6 314.8 165.0

4 149.0 172.7 87.8

6 78.5 74.8 60.9

8 55.0 53.2 38.9

# of 

Computers

Condensation Time (s)

# of 

Computers

Condensation Time (s)

Cube30 GroM StRegis

2 901.0 522.0 283.0

4 226.7 260.8 130.0

6 119.0 160.5 80.0

8 74.0 98.5 55.0

Cube30 GroM StRegis

2 459.6 314.8 165.0

4 149.0 172.7 87.8

6 78.5 74.8 60.9

8 55.0 53.2 38.9

# of 

Computers

Condensation Time (s)

# of 

Computers

Condensation Time (s)

(b) For HPCE2

Table 4.1 presents the time spent during the condensation of all substructures on

HPCE and HPCE2 clusters. All results are given in seconds. For GroM and StRegis
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models, condensation timings are reduced more or less in scale with the increasing

number of computers. For example, condensation of GroM model by 2 computers

of HPCE cluster requires almost two times of the time spent during condensation of

same model by 4 computers. Similarly, the time spent during condensation of StRegis

model by 6 computers of HCPE2 cluster is approximately 2/3 of the time spent for

condensation of same model by 4 computers.

When the test results for Cube30 model is investigated, it is obvious that conden-

sation timings are reduced more than the ratio of the number of computers utilized.

This is reasonable when the properties of Cube30 model are considered. Since Cube30

model is generated by dividing an imaginary solid cube by 30 equal distances at each

dimension, it is composed of brick elements that are connected each other on almost all

edges. Therefore, resultant mathematical model is symmetric and has signi�cantly large

bandwidth. Utilizing substructuring on this model results in a signi�cant reduction in

bandwidth of each substructure and super speed-up values can be reasonably occurred.

Table 4.2: Condensation Speeds for HPCE Computers

Cube30 GroM StRegis

CEC1 433.0 441.5 410.4

CEC2 417.2 417.0 405.0

CEC3 413.2 423.1 417.0

CEC4 437.7 434.4 409.5

CEC5 415.2 422.9 410.5

CEC6 435.3 439.2 423.7

CEC7 432.5 434.4 427.2

CEC8 416.3 427.4 394.8

Cube30 GroM StRegis

CEC14 764.6 751.0 735.1

CEC15 733.6 771.3 733.7

CEC16 764.6 769.3 738.2

CEC17 756.0 767.0 747.3

CEC18 763.9 768.9 761.5

CEC19 760.2 749.9 728.5

CEC20 754.3 763.9 735.7

CEC21 759.5 760.9 741.9

Condensation Speed (MFlops)
HPCE

HPCE2
Condensation Speed (MFlops)Table 4.2 and Table 4.3, demonstrates the measured condensation speeds for com-

puters at HPCE cluster and HPCE2 cluster, respectively. These speeds are calculated

by dividing the �oating-point operation count during condensation algorithm by the

measured time spent for condensation on each computer. As it can be noticed, al-

though the computers in each cluster are identical, condensation times are not identical

but fairly lies between 410∼430 MFlops for computers at HPCE cluster and 730∼760

MFlops for computers at HPCE2 cluster. This reasonable, when the di�erences of the

substructures and �ll-in occurrence during computation are considered.
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Table 4.3: Condensation Speeds for HPCE2 Computers

Cube30 GroM StRegis

CEC1 433.0 441.5 410.4

CEC2 417.2 417.0 405.0

CEC3 413.2 423.1 417.0

CEC4 437.7 434.4 409.5

CEC5 415.2 422.9 410.5

CEC6 435.3 439.2 423.7

CEC7 432.5 434.4 427.2

CEC8 416.3 427.4 394.8

Cube30 GroM StRegis

CEC14 764.6 751.0 735.1

CEC15 733.6 771.3 733.7

CEC16 764.6 769.3 738.2

CEC17 756.0 767.0 747.3

CEC18 763.9 768.9 761.5

CEC19 760.2 749.9 728.5

CEC20 754.3 763.9 735.7

CEC21 759.5 760.9 741.9

Condensation Speed (MFlops)
HPCE

HPCE2
Condensation Speed (MFlops)

To sum up, obtained computational speeds for condensation algorithm are consider-

ably slower than the theoretical computational speeds of computers. This situation can

be originated from two problems explained in previous sections. First one is indirect ad-

dressing. As it is presented in condensation algorithm implemented, there are numerous

attempts to access List[index] through the algorithm and each of these indices are kept

in additional lists such as index arrays (refer to Section 1.2.1). Therefore, access time

for variables of any computation is reducing the overall algorithm speed. Second reason

for degraded computational speed is not having the data as a whole in cache memory

(computational unit). In contrast to dense block solvers, sparse solvers are accessing

the di�erent location of the matrix so computer is spending more time for transferring

data to the computational unit than computing the operation. However, dense block

solvers, brings a supernode or a subblock of a matrix into computational unit once and

operates on it as much as required.

4.4 Interface System

In substructure based methods, �rst the contributions of each substructure to the in-

terface system are obtained by static condensation. Then, the condensed substructure

sti�ness matrices are assembled and equilibrium equations are solved for the displace-

ments at the interface nodes. Therefore, the interface system solution can be divided

into two main sections as assembly and solution.
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• Direct Cholesky Decomposition by ScaLAPACK* 
for full and banded matrices

• 2D Block Cyclic Distribution
• Symmetric dense storage

Parallel Solution –

Interface Matrix SolutionInterface Matrix Solution

*ScaLAPACK is a library of high-performance linear algebra routines for distributed-memory message-passing MIMD  
computers and networks of workstations supporting PVM and/or MPI 

Full Matrix

Nonzero elements of the interface stiffness matrix

Variable Band Matrix

with the increasing number of 

substructures

Figure 4.2: Non-zero element pattern for interface sti�ness matrix

Interface sti�ness matrix varies from variable band matrix to full matrix (Figure 4.2),

depending on the number of substructures. For example, in case of two substructures,

the interface sti�ness matrix is a full matrix since both of the substructures has contribu-

tions to all of the interface nodes. However, with the increasing number of substructures,

the density of the interface sti�ness matrix decreases. Although, the bandwidth of the

interface sti�ness matrix is reduced for the fastest solution time during the data prepa-

ration step, a parallel interface solver that is capable of e�ciently solving both banded

matrices and dense matrices will improve the performance of the solution framework

signi�cantly.

4.4.1 Interface System Assembly

As demonstrated with an illustrative example in Figure 4.3, after the condensation,

each computer has some portion of the interface sti�ness matrix and load vectors.

PC1 PC2

PC3 PC4

Assembly Assembly –– Interface EquationsInterface Equations

After Condensation

2

1

3

4

Nonzero elements 

Figure 4.3: The contributions of each substructure to interface sti�ness matrix

As shown in Figure 4.4, the contributions of each substructure are irregularly oc-

curring. Besides, more than one substructure have contributions on a single interface

node. Therefore, before the solution initiates, it is necessary to assemble all the contri-

butions and then distribute the assembled system over the cluster according to a valid

distribution scheme utilized by the interface solution algorithm.

One way of assembling the interface sti�ness matrix is to gather all the contributions
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and then distribute them to other computers. Such an approach requires considerable

amount of data transfer that highly reduce the performance of the solution framework

(more detailed explanation is presented in Appendix A). Because of this reason, an

improved procedure named as �On the Fly Assembly� was developed.

Assembly Assembly –– Interface EquationsInterface Equations

for Dense Matrix Solverfor Dense Matrix Solver

Should be assembled 

&

redistributed over cluster

PC1 PC2 

PC3 PC4 

Global Block Cyclic 

Distribution of 

Interface Matrix
PC1 PC2

PC3 PC4

Nonzero elements 

Figure 4.4: Redistribution over cluster

A short summary of this procedure is presented in Figure 4.5. First, each processor

allocates su�cient memory to store the resultant local matrix at the end of this pro-

cedure. Resultant local matrix is the part of the interface system which will be stored

before interface system solution initiates. Dimensions of this local matrix can be com-

puted by using data mapping equations which will be discussed in following sections.

After allocating memory for the local matrix, each processor creates data bu�ers for all

other processors. Then, for each contribution of current substructure, data is mapped

over cluster by using 2D block cyclic mapping. If that contribution lies on local matrix

of another processor according to mapping scheme, that data which should be sent to

that processor is added to corresponding data bu�er. On the other hand, if that contri-

bution lies on the territory of the current processor, it is appended to a particular place

of the local matrix. After the completion of this loop, data bu�ers are interchanged

among the processors according to the prepared communication scheme. During the

communication, data bu�ers are compressed before the data is sent and decompressed

after the data is received.
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Figure 4.5: On the Fly Assembly

Basically, the �On the Fly Assembly� procedure is mainly composed of three stages;

data mapping for reducing the amount of data transfer, communication scheme for

optimizing the communication order of processors, and runtime data compression for

reducing the size of transferred data.

4.4.1.1 Data Mapping

The ScaLAPACK software [10] assumes that the user's input data has been distributed

on a two-dimensional grid of processors according to the block cyclic scheme. This means

that subblocks (rather than single elements) of the matrix are distributed to processors

in a wraparound fashion along the processor grid. For a given number of processors,

the parameters of this family of data distributions are the shape of the processor grid

and the size of the block used to partition and distribute the matrix entries over the

processor grid. These parameters a�ect the number of messages exchanged during the

operation, the aggregated volume of data communicated, and the computational load

balance [1].
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4.4.1.1.1 Block Cyclic Data Distribution

The way a matrix is distributed over the processors has a major impact on the

load balance and communication characteristics of the concurrent algorithm, and hence

largely determines its performance and scalability. The block cyclic distribution pro-

vides a simple, yet general-purpose way of distributing a block-partitioned matrix on

distributed memory concurrent computers [2]. In block cyclic data distribution, blocks

separated by a �xed stride in the column and row directions are assigned to the same

processor.

Suppose that, in a 1D matrix, there areM values indexed by the integers 0, 1, . . . , M−

1. In the block cyclic data distribution, the mapping of the global index, m, can be

expressed as m 7→ 〈p, b, i〉, where p is the logical processor number, b is the block

number in processor p, and i is the index within block b to which m is mapped. Thus,

if the number of data objects in a block is mb, the block cyclic data distribution may

be written as follows:

m 7→
〈
smodP,

⌊ s
P

⌋
, mmodmb

〉
(4.1)

where s = bm/mbc and P is the number of processors. The distribution of a block-

partitioned matrix can be regarded as the tensor product of two such mappings: one

that distributes the rows of the matrix over NPROW processors, and another that

distributes the columns over NPCOL processors. That is, the matrix element indexed

globally by (m; n) can be written as

(m, n) 7→ 〈(p, q), (b, d), (i, j)〉 (4.2)

where n, 〈q, d, j〉 are the corresponding parameters of the column mapping over for

m, 〈p, b, i〉 parameters of the row mapping.

Figure 4.6 (a) presents an example of the block cyclic data distribution, where

a matrix with 12Ö12 blocks is distributed over a 2Ö3 grid. The numbered squares

represent blocks of elements, and the number indicates at which location in the processor

grid the block is stored. Thus, all blocks labeled with the same number are stored in

the same processor. The slanted numbers, on the left and on the top of the matrix,

represent indices of a row of blocks and of a column of blocks, respectively. Figure 4.6

(b) re�ects the distribution from a processor point-of-view. Each processor has 6Ö4

blocks.
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Figure 4.6: Example of a block cyclic data distribution [2]

The block cyclic data distribution can reproduce most data distributions used in

linear algebra computations. For example, one-dimensional distributions over rows or

columns are obtained by choosing NPROW or NPCOL to be equal to 1.

The non-scattered decomposition (or pure block distribution) is just a special case

of the cyclic distribution in which the block size is given by MB = dM/NPROW e and

NB = dN/NPCOLe. That is,

(m, n) 7→
〈

(
⌊
M

MB

⌋
,

⌊
N

NB

⌋
), (0, 0), (M mod MB, N mod NB)

〉
(4.3)

Similarly a purely scattered decomposition (or two dimensional wrapped distribu-

tion) is another special case in which the block size is given by mb = nb = 1,

(m, n) 7→
〈

(M mod NPROW, N mod NPCOL), (
⌊

M

NPROW

⌋
,

⌊
N

NPCOL

⌋
), (0, 0)

〉
(4.4)

However, in literature it is experimentally tested and theoretically proved that for

blocked algorithms, a 2D block-cyclic distribution is superior to a 1D block-cyclic dis-

tribution [1, 2, 19, 71].

4.4.1.1.2 Data Mapping for Block Cyclic Distribution

By using the fundamentals of the block cyclic distribution described in the previous

section, a mapping can be obtained as follows [72]. Suppose that matrix A, which

has dimensions of MÖN, will be mapped on a processor grid of NPROW number of

processor rows and NPCOL number of processor columns (NPROWÖNPCOL = NP

number of processors totally) with subblocks that has dimensions of MBÖNB where

(1 ≤MB ≤M), (1 ≤ NB ≤ N).
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Figure 4.7: 2D Block Cyclic Mapping Parameters

These parameters which are demonstrated in Figure 4.7 de�ne the 2D block cyclic map-

ping. Processor grid may be a logical grid that is formed virtually. Matrix dimensions

are �xed, however the remaining parameters should be chosen carefully based upon an

analysis of the cluster and a knowledge of the blocked algorithm that will be used. Once

the number of processors, logical processor grid dimensions, and the block sizes for the

decomposition are decided, the local memory per allocated processor is determined. The

number of rows from the global MÖN matrix A that processors in logical process row,

prow (0 ≤ prow < nprow) own is de�ned by mprow. The number of columns from the

global MÖN matrix A that processors in logical processor column pcol own is de�ned

by npcol. For processor (prow, pcol) from the logical processor grid, the local matrix

Aprow,pcol has dimensions mprow × npcol andM =
NPROW−1∑
prow=0

mprow, N =
NPCOL−1∑
pcol=0

npcol

where mprow,npcol are calculated as follows:

mprow =



(
⌊
b M

MB c
NPROW

⌋
+ 1) ∗MB , if prow < (

⌊
M
MB

⌋
mod NPROW ),⌊

b M
MB c

NPROW

⌋
∗MB +M mod MB , if prow = (

⌊
M
MB

⌋
mod NPROW ),⌊

b M
MB c

NPROW

⌋
∗MB , if prow > (

⌊
M
MB

⌋
mod NPROW ).

(4.5)
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npcol =



(
⌊
b N

NB c
NPCOL

⌋
+ 1) ∗NB , if pcol < (

⌊
N
NB

⌋
mod NPCOL),⌊

b N
NB c

NPCOL

⌋
∗NB +N mod NB , if pcol = (

⌊
N
NB

⌋
mod NPCOL),⌊

b N
NB c

NPCOL

⌋
NB , if pcol > (

⌊
N
NB

⌋
mod NPCOL).

(4.6)

In global to local 2D block cyclic index mappings in which a given (i,j ) index for the

global matrix A is transformed into 2D block cyclically mapped indexes (iprow,pcol, jprow,pcol)

for local matrix Aprow,pcol. First, the processor (prow, pcol) that owns the speci�c global

element (i,j ) is determined by

prow =
⌊

i

MB

⌋
mod NPROW (4.7)

pcol =
⌊

j

NB

⌋
mod NPCOL (4.8)

Then, the indices of the local matrix on processor (prow, pcol) can be labeled as

(iprow,pcol, jprow,pcol) where 0 ≤ iprow < mprow, 0 ≤ ipcol < npcol. The assignment is

iprow =

⌊ ⌊
i

MB

⌋
NPROW

⌋
∗MB + (i mod MB) (4.9)

jpcol =


⌊

j
NB

⌋
NPCOL

 ∗NB + (j mod NB) (4.10)

The opposite is local to global 2D block cyclic index mapping. In this mapping, a

speci�c element (iprow,pcol, jprow,pcol) where 0 ≤ iprow < mprow, 0 ≤ ipcol < npcol in

local matrix Aprow,pcol on a particular processor (prow, pcol) can be located by (i, j )

indices in global matrix A that distributed over the processor grid dimensions (NPROW,

NPCOL) by the block dimensions (MB, NB). The assignment for (i, j ) is as follows;

i = iprow ∗MB +
⌊
iprow
MB

⌋
∗NPROW ∗MB + (iprow mod MB) (4.11)

j = jpcol ∗NB +
⌊
jpcol
NB

⌋
∗NPCOL ∗NB + (ipcol mod NB) (4.12)
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By using the fundamentals above the global matrix A is mapped into local matrices

Anprow,npcol at each computer with minimum overhead as shown in Figure 4.8.

Assembly Assembly –– Interface EquationsInterface Equations

for Dense Matrix Solverfor Dense Matrix Solver

PC1 PC2 

PC3 PC4 

Contributions of each 

substructure mapped according 

to 2D Block Cyclic Distribution

mapped according to 

2D Block Cyclic 

Distribution

PC1 PC2

PC3 PC4

Contributions of each 

substructure to global 

interface stiffness matrix

Nonzero elements 

Figure 4.8: 2D Block Cyclic Mapping

After the condensation, the data exist in each processor is not in an order required by

the solution algorithm. Thus, by using the 2D block cyclic mapping, each processor in-

vestigate all the data exist in its memory and decide the owner of each data (Figure 4.8)

and forms a bu�er for each neighbour processor (Figure 4.9). If the investigated contri-

bution data from ith substructure belongs to processor Pi according to 2D block cyclic

mapping, that data is assembled into the local matrix Ai as soon as possible. Otherwise,

it is appended to the corresponding data bu�er. Besides, if the value of data is equal

to zero, such data is omitted and not transferred to other processor.

Assembly Assembly –– Interface EquationsInterface Equations

for Dense Matrix Solverfor Dense Matrix Solver

PC1 PC2 PC3 PC4 

Data buffers are created to be sent to relevant computer

Assembly by using global mapping information of contributions

Figure 4.9: Data bu�ers to be sent to relevant computers
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4.4.1.2 Communication Scheme

For NP number of processors, each processor forms (NP-1) data bu�ers. At this point,

a communication scheme is required to speed-up the data transfers among computers

by avoiding processors from staying idle. For example, if processor i tries to sent Ci,j

(the contribution of substructure i to the matrix territory of processor j ) to processor j

when processor j communicating with another processor, processor i should wait until

processor j becomes idle. This situation increases the time spent during the interface

sti�ness matrix assembly. Therefore, a communication scheme that organize the order

of data communication among computers would increase the speed of assembly step.

Table 4.4: Forming Communication Scheme

Job List Communication Scheme

P0 ↔ P1 P1 ↔ P5

P0 ↔ P2 P2 ↔ P3

P0 ↔ P3 P2 ↔ P4

P0 ↔ P4 P2 ↔ P5

P0 ↔ P5 P3 ↔ P4

P1 ↔ P2 P3 ↔ P5

P1 ↔ P3 P4 ↔ P5

P1 ↔ P4

STEP

1 P0 ↔ P1 P2 ↔ P3 P4 ↔ P5

2 P0 ↔ P4 P1 ↔ P3 P2 ↔ P5

3 P0 ↔ P2 P1 ↔ P5 P3 ↔ P4

4 P0 ↔ P3 P1 ↔ P4

5 P0 ↔ P5 P1 ↔ P2

6 P2 ↔ P4 P3 ↔ P5

As a �rst step, the communication requirements from each processor is gathered in

a job list and step by step these jobs are grouped by eliminating the busy processors

at each step (Table 4.4). For example, suppose that there are six processors in the

processor grid and each processor requires communication with all other processors in

the grid. This is similar to hand shaking of six individuals in a meeting. At the �rst

step, an arbitrary communication (for example P0 ↔ P1) is chosen and then another

communication that does not require any communication with P0 and P1 is searched

from the job list. While adding an entry to the communication scheme, that entry is

also removed from the job list. Searching for the independent communications from job

list continues until only dependent communications left in job list for that step. Then,

algorithm moves to the next step and forms communication steps as many as required

to clear up the whole job list.
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4.4.1.3 Data Compression

Assembly of the interface system requires considerable amount of data to be transferred

within the processor grid. Because of this reason, communication time may govern

the overall interface solution time. Ke et al. [73] indicates that for many MPI [54]

applications large messages dominate the overall message makeup and they proposed a

framework that compresses the data before sent and decompresses it after received to

reduce the communication overhead. With this understanding, the procedure presented

in Figure 4.10 is implemented in the framework. First of all, to avoid from any memory

insu�ciency, sender and receiver computers check whether there are enough memory for

compressing and decompressing of data to be transferred. If there are enough memory

at both computers, sender computer compresses the data and sends it to the receiver

computer with a checksum value. Checksum is a �xed-size datum computed from an

arbitrary block of digital data for the purpose of detecting accidental errors that may

have been introduced during its transmission or storage. The integrity of the data can be

checked at any later time by recomputing the checksum and comparing it with the stored

one. If the checksums do not match, the data was certainly altered. After receiving

the data, receiver computer uncompresses the data and compares its checksum with

the received checksum value. If data integrity is satis�ed, data transfer with runtime

compression is completed successfully. If not, uncompressed data is requested from

sender computer.
DDataata BBufferuffer CCompressompressionion

* By QuickLZ algorithm of Lasse Reinhold.

Compress*

If compressed, 
Uncompress

Is data 
corrupted 

(checksum)?

No

No
Is there enough 

memory to 
compress/uncompress 

this buffer?

Yes

Send

Receive

Success !

Sender

Receiver

Figure 4.10: Runtime Data Compression

According to Ke et al. [73], the only way of achieving an improvement with this

approach is to use a compression algorithm that satisfy the following inequality;
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R

Sdecompress
+

1
Scompress

<
1−R
Stransfer

(4.13)

where R is the data compression rate and Sdecompress is decompression speed inMByte/s,

Scompress is compression speed in MByte/s and Stranfer is data transfer speed in

MByte/s. During this computation, it is assumed that runtime data compression is

used for large data bu�ers (> 100 KByte) such that any start-up latency for compres-

sion, decompression and data transfer routines can be omitted.

4.4.2 Interface System Solution

Static condensation of each substructure to its interface nodes and assembly of these

contributions, a new system of equations that is highly dependent to the contribution

of each substructure to the interface system is formed. Depending on the number of

substructures and partitioning, interface sti�ness matrix can vary from a full matrix

to a variable band matrix. Because of the varying nature of interface sti�ness matrix

two parallel solvers of ScaLAPACK [10] are implemented at this stage. Besides, both

of these routines utilizes Cholesky decomposition to solve the system.

4.4.2.1 Implementation

ScaLAPACK [10] requires that coe�cient matrix and load vectors must be distributed

on the processor grid prior to the invocation of a ScaLAPACK routine. With On-The-

Fly assembly, interface system is distributed on the processor grid. In order to notify,

ScaLAPACK routines about the distribution layout of the coe�cient matrix and load

vectors across the processor grid, they must be assigned to an array descriptor. This

array descriptor is most easily initialized with a call to a ScaLAPACK TOOLS routine

called DESCINIT and must be set prior to the invocation of a ScaLAPACK routine.

Two calls with the array descriptors DESCA for coe�cient matrix and DESCB for load

vectors as follows;

DESCINIT (DESCA, M, N, MB, NB, RSRC, CSRC, ICTXT, MXLLDA, INFO)

where MÖN coe�cient matrix with a leading dimension of MXLLDA is distributed by

MBÖNB subblocks starting from processor row RSRC and processor column CSRC.

DESCINIT (DESCB, N, NRHS, NB, NBRHS, RSRC, CSRC, ICTXT, MXLLDB,

INFO)
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where NÖNRHS load vectors with a leading dimension of MXLLDB is distributed

by NBÖNBRHS subblocks starting from processor row RSRC and processor column

CSRC.

After the assignment of array descriptors, algorithm executes one of two parallel

solvers that are used to solve the interface system of equations depending on the nature

of the coe�cient matrix A. It is recommended that banded solver should be used for the

systems that has BW = 0.1N to achieve an optimum performance. Interface system

solver use this condition to prefer the solver to be used [10]. Main features of the block

solvers that is implemented in the framework is as follows;

� PDPOSV; computes the solution to a real system of linear equations

Ax = B (4.14)

where A is an NÖN symmetric distributed positive de�nite matrix and x and

B are NÖNRHS distributed matrices. NRHS denotes the number of right hand

sides. The Cholesky decomposition is used to factor sub( A ) as

A = UTU or A = LLT (4.15)

The factored form of A is then used to solve the system of equations. Besides,

this routine requires square block decomposition ( MB = NB ).

� PDPBSV; solves a system of linear equations

Ax = B (4.16)

where A is an NÖN real, banded symmetric positive de�nite distributed matrix

with bandwidth BW. Cholesky factorization is used to factor a reordering of the

matrix into LLT . This routine has three restrictions; distribution can not be cyclic

manner, block size can not be too small and has an proper alignment between

coe�cient matrix and load vectors to prevent poor performance of routine.

4.4.2.2 Improvements for Speed-up

As the parallel dense solver library ScaLAPACK [10] is implemented upon various li-

braries therefore its e�ciency mainly depends on the e�ciency of the low-level libraries

like BLAS etc. Since the BLAS and the BLACS form a low-level interface between

ScaLAPACK software and di�erent computer architectures, their performance highly
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a�ects the performance of ScaLAPACK. The e�cient implementations of the BLAS

and the BLACS are provided by computer vendors (or others) for their own computer

hardwares. By using libraries supplied by vendors for existing hardware, e�ciency of

ScaLAPACK from this aspect can be enhanced.

In addition to the low-level library e�ciencies, runtime parameters such as block

size for block cyclic distribution and the con�guration of the processor grid etc. can

be considerably e�ective on the performance of a ScaLAPACK routine. Suppose that

there are P processors available. It is recommended to use one dimensional processor

grid (Prow = 1 and Pcol = P ) if P < 9 in [10]. Block size for block cyclic distribution is

another important parameter in e�ciency of a ScaLAPACK routine. ScaLAPACK uses

algorithmic block size equal to distribution block size, which means it executes subma-

trices with the same size which they are distributed over a PC cluster. Smaller block

sizes will cause an increase in number of data transfers among processors. Therefore,

communication overhead increases due to message start-up latencies (refer to Appendix

A). On the otherhand, larger block sizes may require larger memory during submatrix

computations like matrix-matrix multiplications and this requirement may exceed the

cache memory of CPU. This situation may result in considerable e�ciency reduction

for submatrix computations. Therefore, recommended block size range for ScaLAPACK

routines is between 32 and 128 [1].

4.4.2.3 Execution Time and Communication Volume Estimations

In large dense linear algebra computations, the computation cost generally dominates

the communication cost. To notice such observations and any bottlenecks, time spent

at every step of a parallel algorithm should be investigated carefully. The time to

execute one �oating-point operation by one processor is denoted by tf . The time to

communicate a message between two processors is approximated by a linear function

of the number of items communicated. The function is the sum of the time to prepare

the message for transmission (tm) and the time taken by the message to traverse the

network to its destination, that is, the product of its length by the time to transfer one

data item (tv). Alternatively, tm is also called the start-up latency, since it is the time

to communicate a message of zero length. Detailed information about these parameters

and obtained results for them are presented in Appendix A.

The total execution time of a parallel algorithm is sum of the time required for

computation, communication and coordination (refer to Appendix A). The total number
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of �oating-point operations of a ScaLAPACK [10] routine is computed by CfN3where

N is matrix size and Cf is a characteristic constant depending on routine. Thus, time

spent for computation can be computed as

tcomp =
CfN

3

P
tf (4.17)

where P is the number of available computers.

Similarly, the total number of data items communicated is expressed asCvN2
√
P

where

Cv = 4 + log2P (4.18)

Therefore, the time spent for the communication of data can be computed as

tcomm =
CvN

2

√
P

tv (4.19)

Finally, the total number of messages during the execution of a ScaLAPACK routine

is given by CmN
NB where NB is block size for block cyclic distribution and

Cm = 2 +
log2P

2
(4.20)

Thus, time required for the coordination of messages is

tcoor =
CmN

NB
tm (4.21)

Thus, total parallel execution time is given as the summation of tcomp, tcomm, and

tcoor;

TP =
CfN

3

P
tf +

CvN
2

√
P

tv +
CmN

NB
tm (4.22)

where TP designates the total parallel execution time of the algorithm by utilizing P

processors.

4.4.3 Test Results

Implemented interface system solution algorithm is tested on two di�erent PC Clusters.

First one, HPCE, is composed of eight identical computers which have Intel P4 3.2 GHz

processors and 1 GB RAMs. On the otherhand, second cluster, HPCE2, is composed

of eight identical computers which have Intel Core2Quad Q9300@2.5 GHz processors

and 3.23 GB RAMs. Intel Core2Quad family processors involve four processors that

are theoretically working at 2.5 GHz and are able to share the memory. However, this
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feature of this cluster is not utilized during these tests. Both of these clusters are con-

nected with ordinary 1 GBit network switches and all computers at both clusters are

running Windows XP Professional. Besides, communication, coordination and compu-

tation parameters measured for them are presented in Appendix A. Structural models

analyzed by the implemented algorithms are introduced in Appendix B.

In substructure based methods, after the substructuring, the contributions of each

substructure to the interface system are condensed. Then, the condensed substructure

sti�ness matrices are assembled and equilibrium equations are solved for the displace-

ments at the interface nodes. Therefore, to inspect the performance of the interface

system solution timings for assembly and solution are measured separately.

4.4.3.1 Performance of The Interface System Assembly

Table 4.5 presents the interface matrix sizes for three di�erent test models and assem-

bly timings of these interface systems on HPCE2 cluster. As mentioned previously,

increasing number of computers generally increase the number of interface nodes so the

number of interface system of equations. Table 4.5 veri�es this situation.

Table 4.5: Interface System Assembly Timings for HPCE2

Matrix 

Size

Assembly 

(s)

Matrix 

Size

Assembly 

(s)

Matrix 

Size

Assembly 

(s)

2 3258 7.9 2370 34.6 1704 5.2

4 6528 5.1 9036 51.5 6276 23.0

6 8616 4.4 11076 17.8 9588 37.6

8 9555 2.9 14220 22.0 11886 12.7

Matrix 

Size

Assembly 

(s)

Matrix 

Size

Assembly 

(s)

Matrix 

Size

Assembly 

(s)

2 3738 2.7 2748 1.2 2772 2.5

4 5598 2.2 8472 5.4 5598 2.4

6 7407 3.4 8796 4.3 10716 2.3

8 9726 3.9 11676 4.6 14544 3.0

2 3738 1.19

4 5598 1.28

6 7407 1.41

8 9726 1.37

# of 

Computers

Interface System Assembly

Cube30 GroM StRegis

# of 

Computers

Speed-up 

Assembly Times (s)

Without 

Compression

Cube30

# of 

Computers

Matrix 

Size

Interface System Assembly

GroM StRegis

2.8

4.8

5.3

With Compression

2.2

3.4

3.9

3.2 2.7

When the assembly timings are considered, they are �uctuating irregularly, although

matrix sizes are increasing regularly (Table 4.5). This may be reasonable if interaction

between assembly algorithm and test models are considered in detail. As mentioned

before, assembly algorithm is omitting the zero terms because they designate that no

contribution exists for a selected dof from this substructure. Therefore, structural for-

mation of test model can a�ect the e�ciency of the algorithm. For example, if a test

model is composed of substructures which form more zero contributions after conden-

sation step, assembly of the interface system for this model may not require excessive

time for data communication. Therefore, assembly is completed faster.
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Another reason for �uctuating assembly timings is that data compression is an

unpredictable procedure because it depends on the overall similarity of data compressed.

Since, data compression rate and speed is open to �uctuation, most time consuming

step, communication, of interface system assembly is completed in an unpredictable

time.

4.4.3.1.1 Performance Improvement by Runtime Data Compression

Table 4.6 presents the speed-up obtained by runtime data compression during inter-

face system assembly of Cube30 model on HPCE2 cluster. As it can be seen, runtime

data compression reduces the assembly times approximately 30 %.

Table 4.6: Speed-up obtained by Runtime Data Compression

Matrix 

Size

Assembly 

(s)

Matrix 

Size

Assembly 

(s)

Matrix 

Size

Assembly 

(s)

2 3258 7.9 2370 34.6 1704 5.2

4 6528 5.1 9036 51.5 6276 23.0

6 8616 4.4 11076 17.8 9588 37.6

8 9555 2.9 14220 22.0 11886 12.7

Matrix 

Size

Assembly 

(s)

Matrix 

Size

Assembly 

(s)

Matrix 

Size

Assembly 

(s)

2 3738 2.7 2748 1.2 2772 2.5

4 5598 2.2 8472 5.4 5598 2.4

6 7407 3.4 8796 4.3 10716 2.3

8 9726 3.9 11676 4.6 14544 3.0

2 3738 1.19

4 5598 1.28

6 7407 1.41

8 9726 1.37

# of 

Computers

Interface System Assembly

Cube30 GroM StRegis

# of 

Computers

Speed-up 

Assembly Times (s)

Without 

Compression

Cube30

# of 

Computers

Matrix 

Size

Interface System Assembly

GroM StRegis

2.8

4.8

5.3

With Compression

2.2

3.4

3.9

3.2 2.7

4.4.3.2 Performance of The Interface System Solution

This section presents a discussion on results about the interface system solution algo-

rithm (PDPOSV routine of ScaLAPACK [10]) obtained by utilizing test models de-

scribed in Appendix B. In �rst subsection, execution time and communication volume

estimations of solution algorithm are presented and compared with the actual results.

On the otherhand, in second subsection, speed-up and e�ciency values obtained as a

result of test are presented and discussed in detail.

4.4.3.2.1 Execution Time Estimation and Comparison with Actual Timings

Execution time and communication volume estimation results of PDPOSV routine of

ScaLAPACK [10] for three di�erent structural models, GroM, Cube30, StRegis are

obtained on HPCE and HPCE2 clusters.

To illustrate the procedure, results on four computers of HPCE is given in Table 4.7.

Block size used for block cyclic distribution is 32. Measured parameters like communi-

cation speed, time per data item communicated tv, time per �oating-point operation tf

and time per message tm are presented in the �rst row of parameters section (refer to
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Appendix A). Cf is given as 1
3 for PDPOSV routine of ScaLAPACK [10]. Rest of the

parameters like Cv and Cm are computed by using Equation 4.18 and Equation 4.20

respectively.

Table 4.7: Execution time and communication volume estimations on 4 computers of

HPCE

Size

Total 

Operation 

Count

Time 

for 

Comp.

Comm. 

Data 

Count

Time 

for 

Comm.

Message 

Count

Time 

for 

Coor.

Prediction 

(s)

Actual     

(s)
Error 

Cube30 7407 1.4E+11 10.58 1.6E+08 13.05 694 0.00 23.64 20.34 16%

GroM 8472 2.0E+11 15.84 2.2E+08 17.07 794 0.00 32.91 23.49 40%

StRegis 5598 5.8E+10 4.57 9.4E+07 7.45 525 0.00 12.02 8.57 40%

Size

Total 

Operation 

Count

Time 

for 

Comp.

Comm. 

Data 

Count

Time 

for 

Comm.

Message 

Count

Time 

for 

Coor.

Prediction 

(s)

Actual     

(s)
Error

Cube30 6528 9.27E+10 9.27 1.3E+08 14.73 612 0.01 24.01 23.38 3%

GroM 9036 2.46E+11 24.59 2.4E+08 28.22 847 0.02 52.83 52.33 1%

StRegis 6276 8.24E+10 8.24 1.2E+08 13.61 588 0.01 21.86 24.07 9%

Results

32 0.33 6.00 3

Block Size Cf Cv Cm

Models

Parameters

Comm (Mbit/s) tf tv tm (s)

5.556E+08 4E-10 1.15E-07 0.00002

Models

Parameters

Comm (Mbit/s) tf tv tm (s)

8.073E+08 3.125E-10 7.93E-08 0.000006

Block Size Cf Cv Cm

Results

32 0.33 6.00 3

Similarly, results on four computers of HPCE2 is given in Table 4.8. Note that

interface matrix sizes are di�erent because the data preparation step partitions the

structure according to cluster properties.

Table 4.8: Execution time and communication volume estimations on 4 computers of

HPCE2

Size

Total 

Operation 

Count

Time 

for 

Comp.

Comm. 

Data 

Count

Time 

for 

Comm.

Message 

Count

Time 

for 

Coor.

Prediction 

(s)

Actual     

(s)
Error 

Cube30 7407 1.4E+11 10.58 1.6E+08 13.05 694 0.00 23.64 20.34 16%

GroM 8472 2.0E+11 15.84 2.2E+08 17.07 794 0.00 32.91 23.49 40%

StRegis 5598 5.8E+10 4.57 9.4E+07 7.45 525 0.00 12.02 8.57 40%

Size

Total 

Operation 

Count

Time 

for 

Comp.

Comm. 

Data 

Count

Time 

for 

Comm.

Message 

Count

Time 

for 

Coor.

Prediction 

(s)

Actual     

(s)
Error

Cube30 6528 9.27E+10 9.27 1.3E+08 14.73 612 0.01 24.01 23.38 3%

GroM 9036 2.46E+11 24.59 2.4E+08 28.22 847 0.02 52.83 52.33 1%

StRegis 6276 8.24E+10 8.24 1.2E+08 13.61 588 0.01 21.86 24.07 9%

Results

32 0.33 6.00 3

Block Size Cf Cv Cm

Models

Parameters

Comm (Mbit/s) tf tv tm (s)

5.556E+08 4E-10 1.15E-07 0.00002

Models

Parameters

Comm (Mbit/s) tf tv tm (s)

8.073E+08 3.125E-10 7.93E-08 0.000006

Block Size Cf Cv Cm

Results

32 0.33 6.00 3

Parallel execution timing estimation is sum of the tcomp, tcomm, and tcoor. Therefore,

it is calculated by using Equation 4.22. Similarly, execution time and communication

volume estimation results are obtained from the solution of structural models on 2, 4, 6,

and 8 computers. Then, interface solution prediction and actual timings in Figure 4.11

are obtained for both HPCE and HPCE2 clusters.

For HPCE cluster, interface solution predictions are fairly consistent with the actual
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timings (Figure 4.11a). However, for HPCE2 actual timings are considerably less than

expected (Figure 4.11b). This situation can be expected when it is considered that

HPCE2 cluster is composed of computers with 4 processors. Therefore, communica-

tion and computation can be overlapped because of the non-blocking communication

structure of ScaLAPACK library [10].
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Figure 4.11: Interface Solution Prediction vs Actual Timings

4.4.3.2.2 Speed-up and E�ciency

For interface system solution, block cyclic full matrix solver (PDPOSV) of ScaLA-

PACK [10] is utilized. To measure the performance of this algorithm speed-up and

e�ciency are investigated. With the assumption of sequential execution time equals

to the time required for the execution of the total �oating-point operations on a single

computer, following formula can be derived from Equation 4.17 as

Tseq = CfN
3tf (4.23)

Thus, the speed-up obtained with this parallel algorithm can be estimated as

SP =
Tseq
TP

(4.24)

By utilizing the above expression, speed-up graphs for HPCE and HPCE2 are ob-

tained (Figure 4.12). Both graphs shows that obtained speed-up ratios are increasing

with the increasing number of computers. Another important note can be the speed-up

ratios obtained for solutions by 2 computers. As it can be noticed, instead of obtaining

a speed-up, execution time is increased when 2 computers were utilized. For example,

for StRegis model, the interface system has 1704 equations. Since the time required

for the coordination and communication of data transfers (refer to Appendix A) were
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larger than time required for the solution of whole interface system, parallel solution

was slower than solution on a single computer.

As presented in Figure 4.12b, for the solution of interface system of StRegis model

on eight computers of HPCE2 cluster, the theoretical speed-up ratio, 8 is almost ob-

tained and similarly, speed-up ratios for HPCE2 cluster is slightly greater than the ones

for HPCE cluster. Since HPCE2 cluster is composed of multi-processor computers,

communication and computation can be overlapped, high speed-up ratios are observed.
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Figure 4.12: Interface Solution Speed-Up Graphs

The e�ciency of the interface solution by utilizing PDPOSV routine of ScaLAPACK

[10] can be computed by

EP =
1
P

Tseq
Tp

(4.25)

E�ciency graphs for HPCE and HPCE2 are presented in Figure 4.13. As it can

be noticed, generally e�ciency of the interface system solution algorithm (PDPOSV

routine of ScaLAPACK [10]) was increasing up to the point where 8 computers were

utilized. In all cases, the number of equations in interface system increase as the number

of computers increase. Because of the increased number of equations, the solution of

interface system was dominated by the data communications. Thus, computers stayed

idle instead of solving the equations.

Similar to speed up graphs, HPCE2 produced more e�ciency over HPCE cluster. As

mentioned, HPCE2 cluster is composed of multi-processor computers that overlapped

the communication and computation. Thus, e�ciency values obtained on HPCE2 clus-

ter is greater than HPCE cluster which is composed of single processor computers.
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Figure 4.13: Interface Solution E�ciency Graphs
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CHAPTER 5

OVERALL PERFORMANCE OF

PARALLEL SOLUTION FRAMEWORK

The performance of the presented solution strategy were investigated by solving di�er-

ent structural models on di�erent numbers of computers of two di�erent homogeneous

clusters. First one, HPCE, is composed of eight identical computers which have Intel

P4 3.2 GHz processors and 1 GB RAMs. On the otherhand, second cluster, HPCE2,

is composed of eight identical computers which have Intel Core2Quad Q9300@2.5 GHz

processors and 3.23 GB RAMs. Intel Core2Quad family processors involve four pro-

cessors that are theoretically working at 2.5 GHz and are able to share the memory.

However, this feature of this cluster is not utilized during these tests. Both of these

clusters are connected with ordinary 1 GBit network switches and all computers at both

clusters are running Windows XP Professional. Besides, communication, coordination

and computation parameters measured for them are presented in Appendix A.

5.1 Method

Three di�erent structural models (Cube30, GroM, and StRegis) which are introduced

in Appendix B are analyzed by solution framework implemented. Two, four, six, and

eight computers of clusters are utilized. All timings for parallel algorithms are measured

by using MPI [54] timing tools and all timings for sequential algorithms are measured

by using frequency performance tools of WinAPI [74].

Data preparation timings, local solution timings and total solution timings were

measured during the test runs. Data preparation timings include the initial partitioning,

workload balancing iterations and the preparation of input data for the parallel solution.

Local solution time is composed of assembly and condensation timings. Total parallel
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solution time involves data preparation or equation ordering, sti�ness matrix generation

and assembly, equation solution, and nodal displacement calculations. The time spent

during reading the structural database from the input �le and initial distribution of

nodes and elements among computers were excluded in the total solution time. Speed-

up and e�ciency graphs are based on the estimated serial solution times computed by

dividing the total operation count to computational speed of computer.

5.2 Test Results

This section presents the overall test results for solution framework on three di�erent

models and two di�erent cluster. Each model will be discussed in a separate subsection

and �nally a simulation test result will be given to discuss the e�ects of communication

on this solution framework.

5.2.1 Cube30

Cube30 is the mathematical model of an imaginary cube (Figure B.1) that has 27,000

8-node brick elements with 29,791 nodes and 89,364 equations. This model represents

a symmetric and uniform model composed of same type of elements with signi�cantly

large bandwidth.

Figure 5.1 presents the local solution (assembly and condensation) timings and to-

tal solution times of Cube30 model obtained by HPCE cluster. The parallel solution

with balanced substructures was faster than the parallel solution with the initial sub-

structures up to six processors. Improvement obtained by the workload balancing is

decreasing when the number of substructures increase. For example, for the solution

with two substructures, the workload balancing steps decreased the local solution time

by 213 seconds (∼18%) and for the solution with four substructures reduction was equal

to 34 seconds (∼12%). As more than four computers utilized for solution, no improve-

ment was obtained by workload balancing. Since this model represents a symmetric and

uniform model composed of same type of elements, initial partitioning mostly produced

the best partitioning and workload balancing iterations were terminated after a few

iterations. Moreover, as the size of the substructures decreases the assembly time starts

to govern the local solution time where initial balancing algorithms can successfully bal-

ance the workloads for such cases. Because of this reason workload balancing iterations

did not improve the timings for HPCE2 cluster at all as demonstrated in Figure 5.2.
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During the tests, the number of interface system equations almost remained same

for Cube30 model, so, the decrease in local solution time was equal to the decrease in

total solution time for solutions for two and four computers.
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Figure 5.1: Test Results for Cube30 Model on HPCE cluster
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Figure 5.2: Test Results for Cube30 Model on HPCE2 cluster

The serial solution time for this model was estimated as 2943 and 1639 seconds for

HPCE and HPCE2 clusters, respectively. By using the estimated serial solution time

of this model speed-up graphs which are presented in Figure 5.3 were obtained. Ide-

ally, speed-up values can not exceed the number of computers utilized. However, for

all solutions of this model, super speed-ups were observed. This is mainly because the

substructuring not only decreased the size but also the bandwidth of the local prob-

lem. Although the interface problem size also increases as the number of substructures

increases, the solution time was mostly governed by the local solution.
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Figure 5.3: Speed-ups for Cube30 Model

5.2.2 GroM

GroM is an actual structural model generated for modelling a nuclear waste plant

(Figure B.2) that has 2,811 frames and 43,776 quadrilateral shell elements with 46,587

nodes and 233,616 equations. This model is composed of both 1D and 2D elements but

the connectivity among 1D and 2D elements is limited. The structure is geometrically

symmetric in two horizontal directions. The bottom box consists of many small size

rooms whose walls are also modelled with �nite elements. This situation signi�cantly

increases the bandwidth of the structural sti�ness matrix of this model.

Figure 5.4 and Figure 5.5 present the local solution (assembly and condensation)

timings and total solution timings of GroM model obtained by HPCE and HPCE2 clus-

ters, respectively. For HPCE cluster, the parallel solution with balanced substructures

was always faster than parallel solution with the initial substructures. For example,

∼16%, ∼27%, ∼13%, and ∼14% improvements in local solution timings were obtained

for the tests with two, four, six, and eight computers. These improvements on local

solution timings were re�ected to the total solution timings as ∼15%, ∼20%, ∼9%, and

∼9%. On the otherhand, for HPCE2 cluster, workload balancing did not produce a

better partitioning result only in one case which is the solution with eight computers.

Because, in this test, the number of interface nodes increased considerably (∼15000

nodes) so any improvement for local solution could not improve the total solution tim-

ing.

For both clusters improvement obtained by workload balancing is decreasing when

the number of substructures increases because of the increase in the number of interface
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nodes. Improvement obtained for local solution was reduced because of the increase in

interface system solution timings.
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Figure 5.4: Test Results for GroM Model on HPCE cluster
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Figure 5.5: Test Results for GroM Model on HPCE2 cluster

The serial solution time for this model was estimated as 1383 and 701 seconds

for HPCE and HPCE2 cluster computers, respectively. By using the estimated serial

solution time of this model, speed-up graphs which are presented in Figure 5.6 were

obtained. 1.95, 3.24, 5.51, and 6.51 speed-up values obtained for the solutions by two,

four, six, and eight computers of HPCE2. For HPCE cluster, similar speed-up values

were obtained. In only one case, which is the solution with two computers, super speed-

up of 2.2 was observed. This is mainly because the substructuring not only decreased

the size but also the bandwidth of the local problem.
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Figure 5.6: Speed-up Graphs for GroM Model

5.2.3 StRegis

StRegis is another actual model of a 30 storey high rise building (Figure B.3) that was

prepared by a structural engineer for designing a mixed use hotel and residential building

composed of �at plate slab systems with shear walls and columns. The model was

composed of 6,641 frames and 86,509 both quadrilateral and triangular shell elements

with 87,075 nodes and 518,580 equations. The model is highly irregular, the �oor plan

of lower levels are di�erent at each level with large openings at various locations. The

slabs are modelled with both triangular and quadrilateral elements with no uniformity

at storey levels except for 15 middle residential levels. The slabs are connected with 1D

elements that represent columns. This model is a very representative model for such

reinforced concrete buildings, thus the performance of the parallel solution approaches

will be a good indicator for the solution of actual civil engineering models where no

symmetry and uniformity exists.

Figure 5.7 and Figure 5.8 present the local solution (assembly and condensation)

timings and total solution timings of GroM model obtained by HPCE and HPCE2

clusters, respectively. For both clusters, the parallel solution with the balanced sub-

structures was always faster than parallel solution with the initial substructures.

For HPCE cluster, total solution timings for the tests with two and four computers,

are decreased by 210 seconds and 34 seconds, respectively. Similarly, for HPCE2 cluster,

the total solution timings for the tests with two and four computers, are decreased by 99

seconds and 14 seconds, respectively. For the rest of the test runs workload balancing

did not improve the solution times considerably.
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Figure 5.7: Test Results for StRegis Model on HPCE cluster
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Figure 5.8: Test Results for StRegis Model on HPCE2 cluster

The serial solution time for this model was estimated as 706 and 435 seconds for

HPCE and HPCE2 cluster computers, respectively. By using the estimated serial so-

lution time of this model, speed-up graphs which are presented in Figure 5.9 were

obtained. 1.16, 2.61, 3.42, and 5.08 speed-up values obtained for the solutions by two,

four, six, and eight computers of HPCE. For HPCE2 cluster, similar speed-up values

were obtained.

82



0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

Number of Computers

Sp
ee

d-
up

Initial

Balanced

(a) on HPCE cluster

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

Number of Computers

Sp
ee

d-
up

Initial

Balanced

(b) on HPCE2 cluster

Figure 5.9: Speed-up Graphs for StRegis Model

5.2.4 Shared Memory Simulation

This subsection presents a shared memory simulation of implemented solution frame-

work. Testing method can be summarized as using all processors of multi-processor

computers. HPCE2 cluster is composed of 4 processor computers. Each testing model

was partitioned as if they would have been solved in cluster. Then, these substruc-

tured models were solved by utilizing multiple processors of eight, four, two, and one

computers.

More than one copy of application can be executed in a computer by using MPICH2

[63] for simulation purposes. In previous results, only one application was executed on

each computer. Each computer executes the request of this application and application

handles the communications and computations. During communication, local area net-

work was used. However, when more than one copy of application executed at the same

computer, local area network was not required to transfer data between these copies

because all the data required existed in the same computer. Therefore, communication

overhead could be ignored between application copies.

During this simulation tests, all test models were substructured as if they would

have been solved by eight computers and then eight, four, two, and one computers were

utilized. In case of utilization of eight computers, which is standard cluster run, one

copy of solution framework is executed on each computer. Although each computer

has four processors, one processor is responsible from execution of solution framework.

Ideally, the rest of the processors stay idle. However, operation system may use them

for communication and coordination purposes.
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In case of utilization of four computers, two copies of solution framework is executed

on each computer. Therefore, rest of the processors on each computer, ideally, stays

idle.

Similarly, in case of utilization of two computers, four copies of solution framework is

executed on each computer. So, all of the processors of each computer will be responsible

from execution of one solution framework application.

If only one computer is used for the solution of a model that is substructured into

eight parts, operating system handles the execution of all requests coming from eight

copies of application by utilizing all processors exists. Brie�y, it can be assumed that

each processor will be responsible from execution of two copies of solution framework.
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Figure 5.10: Total Solution Times on a Multi-processor Computer in HPCE2 Cluster

Figure 5.10 demonstrates the test results for shared memory simulation mentioned

above. Results reveals two behaviors about the solution system. Except from the run
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with single computer, during rest of the runs, each application copy was assigned to

a processor. Therefore computational power of these systems were same. Since com-

munication overhead would be ignored between the copies of the application executed

in the same computers, it was expected to observe a decrease in total solution time as

the number of computers utilized decreases. In contrast, absolutely in all tests total

solution time increased as the number of computers utilized decreased.

First behaviour can be observed in tests with four and two computers by choosing

eight computer utilization case as a benchmark. For these tests, total solution times

were slightly larger than the solution by eight computers because network bandwidth

was shared by the copies of application that are running on the same computer. In other

words, although the communication among copies of application that were running in

the same computer became faster, the communication among copies of application that

were not running in the same computer was becoming slower.

In addition to the �rst one, a second behaviour can be observed for the test run

with single computers. As Figure 5.10 demonstrates, total solution time for this case

was signi�cantly larger than the other test runs. For this special case, communication

overhead can be assumed as non-existing. On the other hand, computational capability

was lower half of it was before. Because, during rest of the tests, one processor was

responsible from one copy of application. In this special case, one processor was respon-

sible from roughly two copies of application. Thus, this fact explains the signi�cant

di�erence mostly. Although, it was not e�ective as the previous one, there was another

e�ect that caused system to be slowed down. Since all processors used the same mem-

ory, e�ciency of computation reduced. Either processors waited for available memory

space or forced to use virtual memory supplied by operation system which is a virtual

memory physically lies on harddisk but behave as Random Access Memory (RAM).

5.3 Discussion of Overall Results

Test runs which illustrated the applicability and e�ciency of this solution framework

were presented. In these tests, the number of processors was varied from two to eight

to demonstrate the performance of the overall solution framework. Balancing the local

solution times of substructures decreased the total parallel solution time for most of

the testing models. There were some cases where although the local solution times

was decreased by the workload balancing step, the interface problem size was increased
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so much that there was not any gain in the total solution time. This situation most

frequently occurred for solutions with six and eight processors.

The improvement obtained by workload balancing step on total solution time in-

creases when the uniformity and the symmetry of the testing model reduces. Because,

for the uniform and symmetric testing model initial substructuring produced the best

partitioning.

The initial substructures had the smallest interface problem size for almost every

case but the di�erence between the interface solution time of the initial substructures

and the substructures balanced was not high. Since the total solution time was governed

by the local solution time, the balanced substructures performed faster.

Data mapping on 2D block cyclic manner, communication scheme and runtime data

compression is utilized to increase the e�ciency of the interface system assembly and

signi�cant improvement obtained against the previous algorithm presented in [6].

Shared memory simulation test results demonstrated that this method can be uti-

lized even on the shared memory computers or on the hybrid systems (distributed

memory with shared memory) by supplying su�cient memory to the system.

The total solution time decreased as the number of processors increased. The so-

lution produced larger speed-up as the size of the problem increased. This is mainly

because the solution time of the large problems tested in this study was primarily gov-

erned by the local solution time. Thus, substructuring not only decreased the number

of equations but also the pro�le of the sti�ness matrix of the local problem. As a result,

some of the speed-up values were larger than the number of processors.

The presented method is very e�cient for the linear solution of large structural

models on PC clusters. When the computing systems available in structural engineering

o�ces are considered, overall, this framework is very suitable and can be utilized to solve

large linear static problems in parallel without purchasing any additional hardware.
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CHAPTER 6

CONCLUSION AND FUTURE PLANS

6.1 Conclusion

This study presented a substructure based parallel solution framework for the linear

solution of large structural models on PC clusters. It is based on the framework pro-

posed by Kurç [6] and mainly focuses on the improvements suggested. Every step of

this solution framework, from partitioning of the structures into substructures to the

computation of the internal displacements in the substructures was performed in par-

allel.

PC clusters were chosen to be the target parallel environment due to their avail-

ability in civil engineering design o�ces and their cost despite their relatively low com-

munication speed between processors when compared with other parallel architectures.

Similarly, among many existing parallel solution approaches, a substructure based so-

lution method was chosen to be the most suitable method for this study since such

methods not only decreased the communication cost but also allowed performing the

sti�ness and force matrix generation, assembly, and computation of element results in

parallel.

One of the main challenges of substructure based parallel solution methods is to �nd

a partitioning where the computers have balanced workloads. Otherwise, the parallel

solution can be governed by the computer having the highest workload. In order to

overcome such problems and thus enhance performance of the parallel solution, a data

preparation step was added to the solution framework. Data preparation step is com-

posed of preparing data for the parallel solution which involves partitioning, workload

balancing, and equation numbering.

The workload balancing step decreased the local solution times in most cases. More-
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over, the time spent during the iterations was insigni�cant when compared with the

improvement in the local solution times. Thus, workload balancing method proposed

by Kurç for direct condensation was fast enough to be utilized prior to the actual linear

static analysis and robust enough to work with mixed structural models (1D mem-

bers mixed with 2D shell elements). With this study, the e�ciency of this method to

decrease the total parallel solution time was increased by taking assembly times into

consideration in addition to condensation times during workload balancing iterations.

The solution was transferred to the substructure interfaces after the substructure

level sti�ness matrices had been condensed. The condensation algorithm is a variant

of a sparse solver. Condensation is the most time consuming step of the overall solu-

tion. After condensation, the interface equations were assembled. Due to the high data

dependency, assembly of interface equations dominated by the data communication.

Because of this reason, during this study, three improvements are utilized at this step.

First one is mapping the data on 2D block cyclic scheme, so requirement for any assem-

bly on a single computer is avoided and bandwidth is used more e�ciently. Second one

is forming a communication scheme so that computers do not wait busy computers and

directed to idle ones for communication. Third one is the runtime data compression to

reduce the communication volume so enhance the speed of the assembly step. After the

interface system assembly, interface system is solved in parallel to complete the solution.

The interface solution was performed by parallel dense and banded solver routines of

ScaLAPACK library [2]. By utilizing the improvements to the interface assembly step

and parallel block solver for the interface system solution, the time spent during the

overall solution of interface system is signi�cantly improved when the timings obtained

in the prior study [6] are considered.

To investigate the performance of the solution framework, various structural models

were solved on two di�erent PC clusters. The results demonstrated that balancing

the condensation times of substructures also decreased the total solution time in most

cases. For most of the problems, the total solution time decreased as the number

of processors increased. Moreover, substructuring not only decreased the number of

equations but also the pro�le of the substructures' sti�ness matrices resulting in speed-

up values greater than the number of processors.

As a conclusion, this study presented the development of a parallel substructure

based solution framework designed for the e�cient linear static analysis of large struc-

tures. The framework can be applied e�ciently to models which contain a mixture of
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element types and which are having any symmetry.

6.2 Future Plans

There are many extensions and improvements which can be made to the presented

framework that would increase its e�ciency and functionality. Some of these are dis-

cussed below:

� New condensation algorithm: Since, existing condensation algorithm is not

an optimized algorithm, it can be replaced by a new condensation algorithm that

is optimized for e�cient memory usage and computation by CPU. In literature,

multifrontal condensation algorithms that can utilize dense block solvers exists.

� Shared Memory Support: Today, almost all of the computers in the market

have multi-processors so shared memory support at any level of the algorithm may

increase the performance of the solution framework. For example, sti�ness matrix

generation and assembly, condensation, interface system assembly and solution

and also stress, strain recoveries after solution can be enhanced by utilizing shared

memory usage.

� Solution with multiple right hand sides: This framework can also be utilized

to solve problems having multiple right hand sides. In the structural models of

buildings which will be built in earthquake regions, many loading conditions may

arise. In this case, the substructure level and the interface sti�ness matrices are

factorized once, and the load factorizations are performed for each right hand side

vector.

� Support for heterogeneous computing environment: Civil engineering de-

sign o�ces may have computers that have varying computational speeds. Cur-

rently, data preparation step is supporting heterogeneous computing environ-

ments. During the workload balancing iterations, a scaling variable added to

imbalance factor calculation, to represent the relative computational speeds of

computers. This way, the resulting substructures will have the condensation time

ratios closer to their processor's computational speed ratios. Additional study

is required to support heterogeneous computing environments during interface

system assembly and solution. For example, the subblocks of the interface sti�-
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ness matrix can be distributed to the processors according to their computational

speeds. In other words, faster processors would store more columns and rows.

� Support for GPU computing: Graphical cards placed in computers have spe-

cialized computing units for linear algebraic computations because rendering and

visualization are based on matrix transformations and multiplications. This read-

ily available computational power can be utilized to increase the performance of

the solution framework.
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APPENDIX A

PERFORMANCE ASSESSMENT OF

PARALLEL ALGORITHMS

Performance analysis of parallel algorithms is based on the study of various tests. The

aim of the performance analysis is to get tools for predicting and estimating how the

parallel algorithm would behave as the number of processors increases. During these

tests, elapsed, CPU and communication times can be measured; speedup and e�ciency

can be computed; and features of parallel processing, like the reduction in processing

time for a given problem or the size of a problem to solve on a given time, can be

addressed.

A.1 General features of parallel processing

PC Cluster is composed of a group of computers where each computer has at least one

processor and one local memory. They are connected through a network. Thus, the nat-

ural way of programming is message passing. In this kind of computing environments,

programming e�cient codes rely on factors such as

� the number of processors and the capacity of their local memories;

� the communication speed among processors;

� the ratio of the computation and communication speeds.

Besides, performance of the distributed memory architectures depends greatly on the

network features:

� Topology: how the nodes are connected;
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� Latency: time required to initiate the communication;

� Bandwidth: maximum speed for data transfer.

A.2 Time measures

Elapsed times have been measured by means of the MPI [54] function MPI_Wtime().

In general, the time for a message transfer between two processors may be given by [75]

tcomm = α+ βn (A.1)

α is the latency or start-up time; β is the time needed to transmit 1 byte, and n is the

message length (in bytes). θ = 1/β is the bandwidth. Both of the clusters exists in

laboratory are tested by transferring di�erent size of data among computers to obtain

communication time measures (Figure A.1).
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Figure A.1: Data Transfer vs Time Graphs

By approximating the results by a trendline, communication time measures for;

� HPCE Cluster, α = 200µs and θ = 66.22MB/s = 556Mbit/s

� HPCE2 Cluster α = 60µs and θ = 96.21MB/s = 807Mbit/s

are obtained.

The bandwidth measures for clusters are lower than the theoretical values because

rest of the bandwidth is used by the communication protocols for headers, routing

information etc. [76] The communication time may be estimated for HPCE and HPCE2

clusters as respectively;

tcomm = 2.00× 10−4 + 0.0146n (A.2)
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tcomm = 6.00× 10−5 + 0.0091n (A.3)

Another measure of interest is

n1/2 =
α

β
= αθ (A.4)

that is the length of a message for which both terms of the tcomm equation are equal.

Results for this measure are n1/2 = 13.56KBytes for HPCE Cluster and n1/2 =

5.91KBytes for HPCE2 Cluster. Messages of length much shorter than n1/2 would

be dominated by latency, whereas messages of length much longer than n1/2 would be

dominated by bandwidth [76].

A.3 Computational speed

The performance of a processor is measured in mega�ops: millions of �oating point

operations (�ops) per second. Frequency performance tools of WinAPI [74] is used

to estimate the speed of the processors in the cluster. When the size of the problem

grows, the speed of the processors decreases, because the matrix can no longer be fully

contained in the cache, and parts must be reloaded from main memory.

Frequency performance tools of WinAPI [74] is composed of QueryPerformance-

Frequency and QueryPerformanceCounter functions. QueryPerformanceFrequency re-

trieves the frequency (f ) of the high-resolution performance counter in CPU and this

frequency can not change while the system is running. On the other hand, QueryPerfor-

manceCounter retrieves the current value of the high-resolution performance counter.

Therefore the elapse high-resolution performance count (L) can be calculated by sub-

tracting the values of two di�erent calls to this function [77].

Therefore, the elapsed time between two successive calls to high-resolution perfor-

mance counter function in seconds can be calculated as follows;

tcomp =
L

f
(A.5)

Various computational speeds for di�erent stages of the solution framework is dis-

cussed in related sections.

A.4 Parallel measurement

Performance of parallel programs can be computed by the calculation of the following

measures. Let t1 be the time to execute a given problem with one processor, and tp the
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time needed to execute the same problem with p processors. Then the speed-up (Sp) is

the relationship among the elapsed times using 1 and p processors:

Sp =
t1
tp

(A.6)

This measure is a function of the number of processors, although it also turns out

to be a function of the problem size. If p processors are utilized, it is expected that

the parallel time would be nearly 1/p of that corresponding to only one processor. This

yields an upper bound equal p for Sp:

The e�ciency is de�ned as the speed-up but relative to the number of processors,

Ep =
Sp
p

=
t1
p.tp

(A.7)

In an ideal situation, an e�ciency equal 1 would be expected. Another way to express

the e�ciency is the following:

Ep =
1

1 + ω
(A.8)

where ω represents the `generalized' overhead; that is, the communication to computa-

tion ratio. The most important sources of parallel overheads are [78]

� Communications and coordinations. The parallel execution time tp with p pro-

cessors, may be represented in the following manner:

tp = tcoor + tcomm + tcomp (A.9)

where tcomp = t1/p; tcoor is the coordination overhead and tcomm the commu-

nication overhead. Thus, the speed-up and the e�ciency may be expressed as

follows:

Sp = 1
1
p
+ tcoor+tcomm

t1

and Ep = 1
1+ tcoor+tcomm

tcomp

therefore, from A.8 it results as

ω =
tcoor + tcomm

tcomp
(A.10)

� Redundancy. This type of overhead takes place when a parallel algorithm performs

the same computations on many processors.
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� Load unbalance. This overhead measures the extra time spent by the slowest pro-

cessor to do the assigned tasks relative to the time needed by the other processors.

So, the elapsed time is dictated by the slowest processor.

� Extra work. They are parallel computations that does not take place in a sequen-

tial implementation.

In particular, that the communication versus computation performance ratio of a distributed-

memory computer signi�cantly a�ects parallel e�ciency. The ratio of the latency to the

time per �op ( tmtf ) greatly a�ects the parallel e�ciency of small problems. The ratio of

the network throughput to the �op rate ( tftv ) signi�cantly a�ects the parallel e�ciency

of medium-sized problems. For large problems, the node �op rate ( 1
tf
) is the dominant

factor contributing to the parallel e�ciency of the parallel algorithms for dense systems

[10].
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APPENDIX B

STRUCTURAL MODELS USED FOR

PERFORMANCE TESTS

Three di�erent structural models involving generated and actual models were tested

in this study. First one, which is named as Cube30, is the mathematical model of an

imaginary cube. Second one, which is named as GroM, is an actual structural model

generated for modelling a nuclear waste plant. These two models are uniform and

symmetric models. The third model, on the other hand, is another actual model of a 30

storey high rise building. This model is a very representative model for such reinforced

concrete buildings, thus the performance of the parallel solution approaches will be a

good indicator for the solution of actual civil engineering models where no symmetry

and uniformity exists. Structural and computational characteristics of these models will

be discussed in detail.

B.1 Cube30

Cube30 is the mathematical model of an imaginary cube (Figure B.1) that has 27,000

(30x30x30) 8-node brick elements with 29,791 nodes and 89,364 equations. This model

represents a symmetric and uniform model composed of same type of elements with

signi�cantly large bandwidth.
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Figure B.1: Cube30 Model

B.2 GroM

GroM is an actual structural model generated for modelling a nuclear waste plant

(Figure B.2) that has 2,811 frames and 43,776 quadrilateral shell elements with 46,587

nodes and 233,616 equations. This model is composed of both 1D and 2D elements but

the connectivity among 1D and 2D elements is limited. The structure is geometrically

symmetric in two horizontal directions. The bottom box consists of many small size

rooms whose walls are also modelled with �nite elements. This situation signi�cantly

increases the bandwidth of the structural sti�ness matrix of this model.

Figure B.2: GroM Model
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B.3 StRegis

StRegis is another actual model of a 30 storey high rise building (Figure B.3) that was

prepared by a structural engineer for designing a mixed use hotel and residential building

composed of �at plate slab systems with shear walls and columns. The model was

composed of 6,641 frames and 86,509 both quadrilateral and triangular shell elements

with 87,075 nodes and 518,580 equations. The model is highly irregular, the plan of

lower levels are di�erent at each level with large openings at various locations. The

slabs are modelled with both triangular and quadrilateral elements with no uniformity

at levels except than 15 middle residential levels. The slabs are connected with 1D

elements that represent columns. This model is a very representative model for such

reinforced concrete buildings, thus the performance of the parallel solution approaches

will be a good indicator for the solution of actual civil engineering models where no

symmetry and uniformity exists.

Figure B.3: StRegis Model
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