
 
 
 

HUMAN TIBIAL BONE STRENGTH PREDICTION BY VIBRATION 
ANALYSIS FOR DIAGNOSING PROGRESSING OSTEOPOROSIS 

 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 

BY 
 
 
 

BEKİR BEDİZ 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR  

THE DEGREE OF MASTER OF SCIENCE 
IN 

MECHANICAL ENGINEERING 
 
 
 
 
 

JULY 2009 



 
Approval of the thesis: 

 
HUMAN TIBIAL BONE STRENGTH PREDICTION BY VIBRATION 
ANALYSIS FOR DIAGNOSING PROGRESSING OSTEOPOROSIS 

 
 
submitted by BEKİR BEDİZ in partial fulfillment of the requirements for 
the degree of Master of Science in Mechanical Engineering Department, 
Middle East Technical University by, 
 
Prof. Dr. Canan Özgen        ____________ 
Dean, Graduate School of Natural and Applied Sciences 
 
Prof. Dr. Suha Oral        ____________ 
Head of Department, Mechanical Engineering 
 
Prof. Dr. H. Nevzat Özgüven        ____________ 
Supervisor, Mechanical Engineering Dept., METU       
 
Prof. Dr. Feza Korkusuz        ____________ 
Co-Supervisor, Physical Education and Sports Dept., METU 
 
Examining Committee Members: 
 
Asst. Prof. Dr. Ergin Tönük _____________________ 
Mechanical Engineering Dept., METU 
 
Prof. Dr. H. Nevzat Özgüven _____________________ 
Mechanical Engineering Dept., METU 
 
Prof. Dr. Feza Korkusuz _____________________ 
Physical Education and Sports Dept., METU 
 
Asst. Prof. Dr. Yiğit Yazıcıoğlu _____________________ 
Mechanical Engineering Dept., METU 
 
Asst. Prof. Dr. Senih Gürses _____________________ 
Engineering Sciences Dept., METU 
 

       Date:                                 08 – 07 – 2009 



iii

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained 
and presented in accordance with academic rules and ethical conduct. I 
also declare that, as required by these rules and conduct, I have fully 
cited and referenced all material and results that are not original to this 
work. 
 

Name, Last name :    Bekir BEDİZ 
 
Signature : 

  
  



iv

 

ABSTRACT 

 
 

HUMAN TIBIAL BONE STRENGTH PREDICTION BY VIBRATION 
ANALYSIS FOR DIAGNOSING PROGRESSING OSTEOPOROSIS 

 
 

Bediz, Bekir 
M.S., Department of Mechanical Engineering 
Supervisor: Prof. Dr. H. Nevzat Özgüven 
Co-Supervisor: Prof. Dr. Feza Korkusuz 

 
July 2009, 105 pages 

 

 

Osteoporosis is a metabolic bone disease that needs to be properly 

diagnosed. The current diagnosing procedure of osteoporosis is based on 

the mineral density of bones measured by common methods such as dual 

energy X-ray absorptiometry (DXA). However, due to the deficiencies and 

limitations of these common methods, investigations on the utilization of 

other non-invasive diagnosing methods have been executed. For instance, 

using vibration measurements seems to be a promising technique in 

diagnosing metabolic bone diseases such as osteoporosis and also in 

monitoring fracture healing. Throughout this study, bone structural modal 

parameters obtained from vibrations experiments with decreasing mineral 

density are examined and therefore, it is aimed to find a new approach to 

detect osteoporosis or progressing osteoporosis by investigating a relation 

between structural dynamic properties and mineral density of bone. The 

main advantage of this study is that loss factor, which is an inherit property 
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of bone, is investigated since in the previous studies mainly the changes in 

natural frequency of bones with the state of osteoporosis is examined.   

 

In this thesis, both in vitro and in vivo experiments are carried out on 

human tibia specimens. The measured frequency response functions (FRFs) 

are analyzed using modal identification techniques to extract the modal 

parameters of the human tibia. The results obtained from in vitro 

experiments show that loss factor may be a powerful tool in diagnosing 

osteoporosis, however due to the difficulties encountered in the case of in 

vivo experiments makes the use of this parameter as a diagnosing tool 

difficult. It is also seen from in vivo experiments that there is a weak 

correlation between the natural frequencies of tibia and BMD 

measurements of patients. Therefore, in order to investigate the parameters 

affecting the natural frequencies of tibia, finite element (FE) model of 

human tibial bone is constructed. Using this FE model tibia, the effect of 

boundary conditions of experiments and geometry of the bone on natural 

frequencies of bone is examined. These analyses show that the effect of both 

boundary conditions and geometry of tibia is very high. Therefore, it is 

concluded that if the necessary conditions are satisfied, the using natural 

frequency information of tibia seems to be a possible and practical method 

that can be used to detect progressing osteoporosis. Also, using the FE 

model of tibia, the changes of natural frequencies of tibia with the variation 

in elastic modulus are investigated. 

 

Keywords: Biomechanics, Diagnosing Osteoporosis, Tibia, Experimental 

Modal Analysis of Tibia. 
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ÖZ 

 
 

İNSAN KEMİK MUKAVEMETİNİN İLERLEYEN OSTEOPOROZ TEŞHİSİ 
AMACIYLA TİTREŞİM ANALİZİ KULLANARAK TAHMİN EDİLMESİ 

 
 

Bediz, Bekir 
Yüksek Lisans, Makine Mühendisliği Bölümü 
Tez yöneticisi: Prof. Dr. H. Nevzat Özgüven 
Yardımcı tez yöneticisi: Prof. Dr. Feza Korkusuz 

 
Temmuz 2009, 105 sayfa 

 

 

Osteoporoz zamanında teşhis edilmesi gereken metabolik bir kemik 

hastalığıdır. Günümüzde osteoporozun teşhisinde kemik mineral 

yoğunluğunu saptayacak yöntemler kullanılmaktadır. Fakat bu 

yöntemlerin yetersizliğinden dolayı, invazif olmayan yeni yöntemler 

geliştirilmesi için araştırmalar yürütülmektedir. Örneğin, titreşim 

testlerinin osteoporozun teşhisi ya da kırık iyileşme sürecinin izlenmesi 

amacıyla kullanılmasının umut vaat eden bir yöntem olduğu 

görünmektedir. Bu çalışma süresince titreşim testlerinden elde edilen 

verilerden yararlanarak çıkarılan kemiğin yapısal dinamik özellikleri 

incelenmiş ve bu nedenle osteoporozun ya da ilerlemekte olan 

osteoporozun teşhisinde kullanılması amacıyla kemiğin yapısal dinamik 

özellikleri ve kemiğin mineral yoğunluğu arasında bir karşılaştırma 

yaparak yeni bir yaklaşım geliştirilmiştir. Bu çalışmanın en büyük 

üstünlüğü, kemiğin karakteristik bir özelliği olan sönüm faktörünün 

incelenmesidir. Çünkü daha önceki çalışmalarda genel olarak sadece 
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osteoporozun durumuna bağlı olarak doğal frekansın değişimi 

incelenmiştir. 

 

Bu çalışma kapsamında, insan tibiası üzerinde hem in vivo hem de in vitro 

koşullarda titreşim deneyleri yapılmıştır. Bu deneylerden elde edilen 

frekans tepki fonksiyonları (FTP) incelenmiş ve modal analiz yöntemleri ile 

kemiğin yapısal dinamik özellikleri çıkarılmıştır. In vitro koşullarda 

yapılan deney sonuçları, sönüm faktörünün osteoporozun teşhisinde 

kullanılabilecek güçlü bir yöntem olabileceğini göstermiştir; fakat in vivo 

koşullarda yapılan deneyler bu belirteçlerin teşhis amacıyla kullanılmasını 

zorlaştırdığı gözlemlenmiştir. In vivo çalışmalar sonucunda ayrıca kemiğin 

doğal frekansı ile hastaların ölçülen kemik mineral yoğunlukları arasında 

zayıf bir ilişki olduğu saptanmıştır. Bu sebeple, kemiğin doğal frekanslarını 

etkileyen faktörleri incelemek üzere, insan tibiasının bir sonlu eleman 

modeli oluşturulmuştur. Bu model yardımıyla titreşim deneylerindeki sınır 

koşullarının ve kemiğin geometrisinin doğal frekans değerleri üzerindeki 

etkisi araştırılmıştır. Bu analizler sonucunda, hem sınır koşullarının hem de 

kemiğin geometrisinin doğal frekans değerlerini çok fazla etkilediği 

görülmüştür. Bundan dolayı, gerekli koşullar sağlandığında kemiğin doğal 

frekans bilgisinin osteoporoz teşhisinde kullanılabilecek mümkün ve pratik 

bir metot olabileceği sonucuna varılmıştır. Ayrıca, tibianın sonlu eleman 

modelini kullanarak kemiğin elastisite modülü değişimiyle doğal 

frekansının nasıl değiştiği incelenmiştir 

 

Anahtar kelimeler: Biyomekanik, Osteoporoz Teşhisi, Tibia, Tibianın 

Modal Titreşim Analizi. 
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CHAPTER 1  

 

INTRODUCTION 

The aim of this thesis is to obtain in vivo frequency response functions 

(FRFs) of human tibia and attempt to find a new approach to detect 

osteoporosis or progressing osteoporosis by making an analogy between 

structural dynamic properties and bone mineral density (BMD). Thus, an 

introduction to human bone structure for terminology purposes and 

osteoporosis will be given in the following sections. 

 

1.1 On Human Bones  

 

The skeletal system of human consists of various types of bones and 

connective tissues such as cartilage, ligaments …etc. It supports the weight 

and forms the shape of the body. Besides these tasks, the skeletal system 

has other vital functions; 

 

i. Protection 

ii. Movement 

iii. Blood cell formation 

iv. Mineral and growth factor storage 

 

Every bone in the skeletal system has two main components. The first one 

is the hard and dense outer shell which is called as the compact or cortical 

bone. The other one is the internal honeycomb of small needle-like part 
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called as the spongy (cancellous) bone. Figure 1.1 simply shows the basic 

structure of a long bone. The structure of long bones is nearly the same 

with each other. The diaphysis, the epiphyses, the metaphysis and the 

membranes are the basic elements. Diaphysis is the main (mid) section of a 

long bone and it is constructed mainly by a thick layer of compact bone. 

Epiphyses are the two ends of a long bone and membranes are the external 

surface covering the entire bone. The transition regions between the 

diaphysis and the epiphyses are called as metaphysis. The metaphysis is 

the location of higher metabolic activity in the bone[1].  

 

 

 

 

Figure 1.1. The structure of a long bone [1] 
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In this thesis, the study is focused on human tibial bone which is the larger 

of two bones below the knee connecting the ankle to the knee. In this study, 

selecting tibia as the bone of interest is due to several factors. However, 

being one of the most superficial bones in human body is the most 

important factor. Figure 1.2 shows the anterior views of the right tibia and 

fibula.  

 

 

 

 

Figure 1.2. Anterior views of the right tibia and fibula [2] 

 

 

1.2 On Osteoporosis 

 

Osteoporosis is a silent disease characterized by low bone mass and a 

micro-architectural deterioration of bone tissue as can be seen in Figure 1.3, 

leading to enhanced bone fragility and consequent increase in fracture risk 

(World Health Organization, 1994) with high socio-economical impact on 

fibula 

tibia 
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the society [3]. According to the previous studies carried out, osteoporosis 

and associated fractures are a major public health concern and it is needed 

to diagnose this bone disease appropriately in order to prevent the 

outcomes of this illness such as decreased quality of life and mortality [3-5]. 

 

 

 

 

Figure 1.3 - Effect of osteoporosis on micro-architecture of bone  

Left: Normal bone, Right: Osteoporotic bone 

(International Osteoporosis Foundation - IFO) 

 

 

An investigation performed by the International Osteoporosis Foundation 

(IFO) shows that every 30 seconds, a person in the European Union has an 

osteoporosis related fracture. Furthermore, according to a research 

performed in 2002 by National Osteoporosis Foundation, it was diagnosed 

that approximately 22 million women have low bone mass and 8 million 

postmenopausal women faces with osteoporosis in the United States. 
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Beside the health aspect, it is also inevitable that this bone disease has a 

brutal financial burden on economies of countries through work day losses 

as well as direct health care costs for medical services. For instance, in a 

study of Max et al. [6] about the burden of osteoporosis in California, it is 

stated that annual United States Government expenditure that is attributed 

to osteoporosis includes $2.4 billion for direct health costs and over $4 

million for productivity losses during 1998. These investigations show the 

importance of this bone illness and how it affects the society in both health 

and economic aspects.  

 

There are quite a few numbers of specialized tests for detecting 

osteoporosis such as dual energy X-ray absorptiometry (DXA), peripheral 

dual energy X-ray absorptiometry (pDXA), single energy X-ray 

absorptiometry (SXA), dual photon absorptiometry (DPA), single photon 

absorptiometry (SPA), quantitative computed tomography (QCT), and 

Quantitative Ultrasound (QUS), which are used to measure bone mineral 

density (BMD) of bone [6]. Among these measurements, DXA and QCT are 

the most common types that are used for diagnosis purposes. These 

numerical measurements can also be interpreted as Z or T scores which are 

the number of standard deviations (SD) of the individual's BMD scores that 

is away from the age-matched mean and young adult normal mean, 

respectively. According to World Health Organization, T scores above -1.0 

SD are called normal, T scores between -1.0 SD and -2.5 SD are called 

osteopenia, and T scores lower than -2.5 SD are called osteoporosis, which 

are the degrees of the same bone disease. 
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Bone mineral density measured by DXA and/or QCT is a predictor of 

mechanical bone strength that has its limitations [4, 7-9]. For instance, as far 

as the strength of the bone is concerned, the organic part (collagen) and the 

micro-architecture of bone have as much importance as its mineral content 

that is not measured by these methods. Also, fragility fractures in normal 

and osteopenic but sometimes not in osteoporotic patients are seen in 

medical practice. As a result, the need for a non-invasive better diagnosing 

of bone strength increases gradually [5]. 

 

1.3 Literature Review 

 

In recent years, due to the deficiencies of the common methods described in 

the previous section, there is a growing aim for implementing non-invasive 

diagnosing tools in the use of medical applications such as the diagnosing 

osteoporosis or detecting fracture healing. For instance, using the geometry 

of the bone in such a way that measuring the hip axis or width of femoral 

length [10] is a sample non-invasive method for detecting osteoporosis or 

monitoring the fracture healing period. Another method examined for these 

purposes is using ultrasonic guided waves [11-13]. However the most 

promising one is vibration analysis, mainly due to the ease of its 

application. Therefore, in the upcoming sections, a literature review on the 

use of vibration tests for both diagnosing osteoporosis or monitoring the 

fracture healing period will be given. The studies in the literature (e.g. see 

[4, 5, 14]) so far mainly focused on the natural frequency of the interested 

bone and the relationship of this parameter with mineral density of the 

bone. These can be grouped as experimental (e.g. see [14-16]) and 

computational/analytical studies (e.g. see [17-19]), although some of them 
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include both clusters. On the other hand, among the myriad of studies 

about diagnosing osteoporosis or monitoring the fracture healing period, 

the ones on tibia and only the most important ones of the rest will be 

discussed here since this research is centered on tibia. 

 

1.3.1 Experimental Studies 

 

The studies in literature related to diagnosing osteoporosis with alternative 

methods do not have too much history. Early investigations about this area 

started only a few decades ago. Jurist [14, 20], one of the pioneer 

researchers in this field, stated that mineral content of bone is not an 

adequate method of determining bone strength because even if there is a 

weak region in the bone, there is no certainty that its mineral should be 

low. In his research, he investigated the relationship between the fragility of 

bone and its modulus of elasticity. In the experiments carried out, he 

measured the resonant frequency of ulna using a two point impedance 

technique and calculated a parameter ‘FL’, where F is the resonant 

frequency and L is the bone length, in order to compare it with the state of 

osteoporosis. He stated that this parameter has a potential value in 

diagnosing purposes. On the other hand, in a preliminary study of 

Christensen et al. [21], the resonance frequency of tibia was found by point 

impedance technique to minimize errors mentioned in Jurist’s work. 

During that research, it was also observed that muscle tension and edema 

(abnormal accumulation of fluid beneath the skin), as well as the soft 

tissues, have considerable effect on the experimental data obtained.   

 



8

In another study of Christensen et al. [15], different techniques (bone 

resonance analysis -BRA- and impulse frequency response -IFR-) for the 

assessment of stiffness of tibia were investigated with various boundary 

conditions. The IFR technique was found to be more appropriate since it is 

easier to perform and gives more accurate results for the bending modes. 

Later, in order to test the applicability and feasibility of the method, they 

performed a clinical study consisted of 51 persons [22]. From the in vivo 

experiments, they found frequency ranges for rigid and bending modes of 

tibia. However, no information was given about the BMD values of the 

participants and thus no comparison was made between the natural 

frequencies found and the BMD values.  

 

In recent years, more clinical studies have been carried out with the 

conclusion that vibration analysis is a promising diagnosing tool in 

diagnosing osteoporosis or progressing osteoporosis and fracture healing 

period. For instance, Arpinar et al. [5] studied the correlation between 

natural frequency and BMD values of human tibial bone. In their study, 

they made the vibration measurements while the subjects were standing 

and compared the first natural frequency of bone with BMD measured by 

DXA. They stated that there is a correlation between these two parameters. 

One year later, a similar study was done by Özdurak et al. [4] on human 

radius of elderly man. Again, in this work, it is noted that there is a 

discrepancy between the first natural frequency and BMD values of the 

radius.  

 

On the other hand, fracture healing process is also an important clinical 

phenomenon as diagnosing osteoporosis. The major dilemma in this 
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process is the healing time because the motion range of joints decreases if 

the patient is excessively immobilized whereas in early resumption, clinical 

healing does not occur and this leads to delayed union or even in re-

fractures. Since time needed for radiological healing of bone is much more 

than the time for clinical healing, the common methods (X-ray methods) are 

insufficient. In 1991, in a study of Nowak et al. [23], one of the early 

investigations in this area, five dowel specimens with cuts having depths of 

¼, ½, and ¾ inches have been tested and considerable changes were noted 

in the first and second natural frequencies. Later, Akkus et al. [9, 24] 

performed an experimental study on rabbit tibia (in vitro) in order to see 

the effect of changes in mechanical stiffness of the callus (tissue that forms 

at fracture area) on the data obtained from vibration experiment during the 

fracture healing period. In their study, they found the mode shapes of 

fractured and intact rabbit tibiae and measured the BMD values 

correspondingly on specific days of healing process. They have observed 

that first mode shape of tibia seems to be very effective in tracking fracture 

healing. However they also noted that BMD measurements were not 

correlated with vibration transmission characteristics and mechanical 

stiffness obtained from three point bending measurements. 

 

According to the previous research, one of the foremost difficulties 

encountered in in vivo experiments as mentioned earlier, arises due to the 

soft tissues (skin, muscles…) both overlying and underlying the bone. 

Studies in literature show that soft tissues have a considerable effect on the 

measured data. For example, in 1977 Saha and Lakes [25], investigated the 

effect of soft tissue on wave propagation and vibration tests and reported 

that significantly large errors were introduced due to the soft tissues. Also 
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based on the experiments he performed with different thickness of rubber 

layers to simulate the soft tissue, he concludes that as the thickness of the 

soft tissue increases, a broadening in input force spectrum occurs so that 

higher modes are not excited. Later, Cornelissen et al. [16] also investigated 

the structural dynamic properties of bones under the effect of soft tissues 

individually. In their study, they stated that the influence of muscle tissue is 

much higher than both the effect of the skin and the joints. However, as in 

previous studies, the deficiency of this research is that only the natural 

frequency is considered.  

 

In later research about the influence of soft tissues, a set of solution 

methods were proposed in order to eliminate or minimize the influence of 

soft tissue on vibration measurements. For example, an attempt that was 

done by Soethoudt et al. [26] revealed that the preload that is applied by 

holding a small cylinder metal element manually pressed at the excitation 

point while holding the accelerometer during the excitation of the bone via 

impact hammer helps to decrease the damping effect of the skin and the 

underlying soft tissues.  

 

1.3.2 Computational/Analytical Studies 

 

Modeling human tibia is one of the important goals in order to better 

understand the dynamics and structure of the bone. Unlike experimental 

modal analysis, FE models analyses are not limited only to superficial 

bones. However, due to having a highly complex structure, it is quite 

difficult to develop a proper model of bone. Early models were based on 

dynamic analysis of continuous systems of beams and shafts. Hight et al. 
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[27] presented a model representing tibia as a beam element and for 

different boundary conditions and varying geometries, he predicted the 

natural frequencies of human tibia. On the other hand, the model suggested 

by Dhoerty et al. [17] and Jurist and Kianian [28] was formed by only 

circular solid shafts and hollow tube, respectively. However, these models 

were not sufficient to explain different transverse modes of bones since 

they are symmetrical about the diaphysis axis. Later, Collier et al. [29] came 

up with a model composed of a homogenous hollow triangular cross-

section beam which is more suitable to simulate bone characteristics. Thus, 

in this model he was able to predict different transverse modes. In 1990 

Thomsen [18] constructed a mathematical model of human tibia composed 

of non-uniform Timoshenko beam elements. In his model, he used isotropic 

materials both for the compact and cancellous parts of the bone, and he also 

included the bone marrow as a perfectly flexible material. On the other 

hand, some models presented used the wave propagation characteristics of 

bone as a diagnosing tool such that the bone was modeled as a thick walled 

cylindrical tube filled with fluid [30].  

 

With the developments in finite element (FE) methods, more complex 

models of human bones have been analyzed. Especially for modeling 

computer tomography (CT) scan data have been used. For instance, 

Hobatho et al. [19, 31] developed a three dimensional finite element model 

of human tibia with isotropic material properties and investigated the effect 

on natural frequency due to changes in elastic modulus of bone parts 

(compact and cancellous). Later, they also prepared a model of human 

femur with the same procedure [32]. In 2002, Taylor et al. [33] constructed a 

finite element model of human femur with orthotropic bone elastic 
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constants. In their study, they stated that using FE models and modal 

testing together, it seems possible to obtain the orthotropic material 

properties of bone. In addition, in some studies FE analysis has been used 

to simulate the fracture healing period in human bones [34].  

 

1.4 Objective 

 

The main goal of this thesis is to find the applicability of a new approach to 

detect osteoporosis or progressing osteoporosis by looking for a relation 

between structural dynamic properties and bone mineral density, using the 

in vivo FRF data of human tibia obtained from vibration experiments. The 

motivation behind this study is that solely the change of natural frequency 

with progressing osteoporosis is investigated which is the most deficient 

part of the previous studies. However, natural frequencies of a structure 

depend on both boundary conditions and geometry. Therefore, this modal 

parameter may only be employed as an effective approach in the 

assessment of progressing osteoporosis, if these drawbacks mentioned are 

resolved, i.e. if an experimental set-up that prevents the change of 

boundary conditions of bone (i.e. all the tests are done with the same 

boundary conditions), is utilized and the measured natural frequencies are 

compared for a specific patient or patients having similar bone geometry. 

Therefore, it is more logical to investigate the change in 'loss factor', which 

is an inherit property of bone. 

 

In this thesis, it is aimed to extract the loss factor of human tibial bone from 

in vivo and in vitro measurements and investigate the relation between this 

structural modal parameter and the osteoporosis, i.e. BMD values obtained 
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from DXA measurements. Moreover, the natural frequency of tibia is 

investigated through experimental methods and finite element (FE) model. 

Thus, in the view of natural frequency information of tibia, the change in its 

elastic modulus, which is another inherit property of bone, is investigated 

by using FE model. Also, the effect of boundary conditions on natural 

frequency of tibia is studied, again by using FE model. Thus, it is also 

intended to examine the applicability of the natural frequency approach in 

the diagnosis of osteoporosis or progressing osteoporosis.  

 

1.5 Outline of the dissertation 

 

The outline of the thesis is given below: 

 

In Chapter 2, the background knowledge on modal analysis is given and 

modal identification methods are briefly discussed. 

 

In Chapter 3, a preliminary experimental study in in vitro condition on 

human tibia obtained from fresh-frozen cadavers will be given. The 

structural modal parameters will be extracted by the modal identification 

methods and will be compared with respect to BMD values measured by 

DXA. Also, in this chapter, the effects of soft tissues are investigated.  

 

In Chapter 4, in vivo experimentation of human tibia is discussed in detail. 

Firstly, the difficulties of in vivo experiments will be mentioned. Then FRFs 

obtained from these experiments will be identified and modal parameters 

of tibia will be extracted and compared among the osteoporotic, osteopenic 

and normal people.  
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In Chapter 5, finite element (FE) modeling of tibia is given and results 

obtained from the experiments discussed in Chapter 4 will be compared 

with the results of the FE model. Then, the effect of elastic modulus on 

natural frequency of tibia is investigated. 

 

In the last chapter of the thesis, conclusions on this study will be made. 

Also suggestions on future work will be given.  
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CHAPTER 2  

 

EXPERIMENTAL MODAL ANALYSIS 

2.1 Introduction 

In order to better understand the nature of a structure, there is always a 

need for experimental study. Therefore, modal analysis plays an important 

role as an engineering tool, especially for determining system’s dynamic 

properties such as natural frequency, damping and mode shapes. In other 

words, modal analysis, or more accurately experimental modal analysis, is 

the field of measuring and analyzing the dynamic response of structures 

when excited by an input. On the other hand, this method is also used for 

optimizing and improving the dynamic characteristic of structures. 

Although, in many cases, computer modeling can be used as a powerful 

tool that serves for the purposes mentioned above, it is insufficient to 

identify specific dynamic characteristics of a structure such as non-linearity 

and damping [35].  

 

Modal analysis is first used in 1940s, in aircraft industry to better 

understand these complex engineering structures. Until the last two 

decades ago, it had not shown much progress. However, with the 

development in computer technologies, especially in digital analyzers, the 

usage of this method gradually increased. Today, it has a diverse 

application area. For instance, besides mechanical and aeronautical 
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engineering applications, this method is also used in the areas of civil 

engineering, biomechanical, and transportation applications as well [36].   

 

Modal analysis includes both theoretical and experimental methods. 

Theoretical modal analysis is a process to describe a system in terms of its 

modal parameters: natural frequency, loss factor and modal constant. On 

the other hand, experimental modal analysis also referred to as modal 

testing, focuses on obtaining modal model of a vibrating structure. In modal 

testing, the primary aim is to obtain frequency response functions (FRFs) 

which contain input – output relation of the measured system. These 

functions are calculated simply by taking the ratio of the output signal to 

the given input (force) signal.  The second stage of the modal testing is 

constructing the modal model from measured experimental data through 

modal identification (modal extraction) techniques. These identification 

techniques are mainly based on curve fitting methods to the obtained data. 

Therefore, the measured FRF can be represented by a theoretical expression 

[37].   

 

There are various methods and procedures employed for modal 

identification. Each of them has their own proper use. In other words, every 

method has advantages amongst others and has its specific limitations. 

However, the goal of all identification methods is to find appropriate 

coefficients of the theoretical expression that is constructed to represent the 

experimentally obtained FRF data.  

 

Modal identification methods can be grouped in various ways: according to 

the domain (frequency or time domain) in which the identification 



17

procedures are done, according to the frequency range considered, i.e. 

either only one mode or more modes will be extracted at each attempt 

(single degree of freedom methods -SDOF- or multi degree of freedom 

methods -MDOF-), or according to the number of FRFs included in the 

identification analysis (single FRF methods or multi FRF methods – Global 

or Polyreference methods). The selection of the appropriate method is 

extremely important. Although any method can be applied to a measured 

FRF data, it is highly recommended that a proper method should be 

utilized considering time and accuracy aspects.  

 

Unfortunately, in practice, unexpected problems may arise inevitably; for 

instance, due to the modeling the damping effect or determining the model 

order of the investigated structure. In the former case, if the assumed 

damping characteristic does not match the real one, there occur significant 

errors in the extracted modal parameters of the vibrating structure. On the 

other hand, in the latter case, if the model order is not known in the 

frequency range of interest, besides the real modes it is possible to see some 

fictitious modes as well.  

 

Furthermore, it is quite useful to check the measured FRF data before 

modal identification procedures. There are several visual checks that 

should be done whether the measured data is reliable or not [35].   

 

In the upcoming sections, the modal identification methods employed in 

this thesis will be described in detail. 
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2.2 Modal Analysis Methods 

In this study, in order to identify the modal parameters of the investigated 

structure, several different methods are used on measured FRF data. These 

can be grouped as SDOF and MDOF methods.  SDOF methods are 

composed of circle and line fit methods. Also, rational fraction polynomial 

method is utilized as a MDOF method.  

2.2.1 Single Degree of Freedom (SDOF) Methods 

SDOF methods are the first type of modal analysis methods developed in 

the modal testing area. The basic philosophy underlying in the single 

degree of freedom modal analysis methods is that each mode in the 

frequency range of interest is examined separately and therefore, it is aimed 

to extract the modal parameters of the individual modes. For this reason, in 

the existence of close modes, it is not appropriate to use these methods.  

 

The initial assumption, as in all the theories of SDOF methods, is quite 

simple.  It is known that receptance of a structure can be expressed as, 

 

2 2 2
1

( )
N

s jk

jk

s s s s

A

i
α ω

ω ω η ω=

=
− +∑  (2.1) 

 

where sAjk is the modal constant, ωs is the sth mode natural frequency, ω is 

the excitation frequency, ηs is the modal loss factor, j and k  are the indices 

of the elements of the receptance matrix.  
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Equation (2.1) can also be expressed in the form [35]; 

 

2 2 2 2 2 2
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The first part of the equation represents the mode of interest, ‘r’, and the 

second part represents the other modes. Therefore, if the modes of the 

structure are sufficiently distinct from each other, the first part becomes 

dominant in the vicinity of the mode ‘r’ and it can be said that the second 

part becomes independent of frequency, ω. Hence, equation (2.1) can be 

rewritten as, 
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jk r jk
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i
α ω

ω ω η ω
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− +
 (2.3) 

 

where rBjk is a complex constant term representing the effect of remaining 

modes.  

 

After introducing the basic theory of SDOF methods, in the following 

sections, the theory behind circle and line fit methods will be discussed 

briefly. 

2.2.1.1 Circle Fit (O-Fit) Method  

Circle fit method is the most widely used SDOF method. The analysis is 

performed using the Nyquist plot of the measured FRF data. Nyquist plot of 

SDOF systems is generally a circle-like curve. With the appropriate 
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parameter selection for the damping model (i.e. using structural damping 

model with receptance form of FRF data), these plots will be exact circles. 

This constitutes the basis of this method.  

 

Considering equation (2.3), the modal constant term rAjk can be treated as a 

shifting term and therefore, the fundamental equation of interest in this 

method can be expressed in the following form [35], 
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ω η
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 (2.4) 

 

The nyquist plot of equation (2.4) can be seen in Figure 2.1, 

 

 

 

 

Figure 2.1 – Nyquist plot of modal circle (Properties of modal circle) [35] 
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Using Figure 2.1, the natural frequency, ωr, can easily be found or it can be 

extracted by using the fact that ωr is located at the maximum arc change 

point [35]. For any point on the Nyquist plot, the following relations can be 

written, 
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The loss factor can be found by using Figure 2.1, and equations (2.5) and 

(2.6) as follows, 
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Lastly, after extracting natural frequency and loss factor, modal constant as 

the hindmost modal parameter needs to be identified. The diameter of the 

circle in the Nyquist plot can be expressed for the rth mode as, 

 

2

r jk

r ij

r r

A
D

ω η
=  (2.10) 

 

It is obvious that once the Nyquist plot of the selected mode is drawn, 

using SDOF circle fit method the modal parameters can be extracted quite 

easily.  

2.2.1.2 Line Fit (L - Fit) Method 

Line fit method can be treated as a derivative of the circle fit method. In this 

case, instead of drawing the receptance of the measured FRF, the inverse of 

it is drawn so that for a SDOF system, a straight line is obtained for both 

imaginary and real parts. Therefore, rather than fitting a circle, by using 

this method, modal parameters are extracted by simply fitting straight lines 

to real and imaginary parts of measured FRFs.  

 

Recall equation (2.3), since the last term, rBjk in this equation contains the 

effect of the other modes on the mode of interest, a new FRF term, α’’jk(ω), 

is defined such that [35], 

 

'' ( ) ( ) ( )jk jk jkα ω α ω α= − Ω  (2.11) 
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where αjk(Ω) and Ω are called as the fixing frequency term and fixing 

frequency, respectively. In this method, using equation (2.11), an inverse 

parameter ∆(ω) is derived [35]. 
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Substituting equation (2.11) into the inverse parameter equation,  
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After some manipulations, equation (2.13) can be written in the following 

form, 
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The modal constant can be written as, 

 

r jk m mA a ib= +  (2.15) 

 

If the real and imaginary parts in equation (2.14) are explicitly written, the 

following linear functions of variable ω2 are obtained.  

 

( ) ( )( ) ( )( )Re Imiω ω ω∆ = ∆ + ∆  (2.16) 

( )( ) 2Re R Ra bω ω∆ = +  (2.17) 



24

( )( ) 2Im I Ia bω ω∆ = +  (2.18) 

 

where, Ra  and Ia  are the slopes, Rb  and Ib  are the intercepts of equations 

(2.17) and (2.18). If these functions are drawn with respect to ω2, straight 

lines are obtained, both for the real and imaginary parts of the inverse 

parameter, ∆(ω), whose slopes and intercepts are, 
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Therefore, a series of straight lines are obtained by selecting frequencies, Ω, 

around the resonance (natural) frequency of the mode of interest. Figure 2.2 

shows an example of the real and imaginary parts of the inverse parameter, 

∆(ω), obtained by selecting different frequencies around the natural 

frequency.  

 



25

 

 

Figure 2.2 – Plots of the real and imaginary parts of ∆(ω)[37] 

 

 

Figure 2.3 shows the slopes of the straight lines plotted in Figure 2.2. As can 

be seen from equation (2.19) and equation (2.21), straight lines are obtained 

if these slopes are plotted against Ω2.  

 

 

 

 

Figure 2.3 – Slopes of the lines in Figure 2.2 [37] 
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Using equations (2.19) – (2.22), the four unknown variables ma , mb , ωr and 

ηr can be found. Therefore, the modal parameters of the system, Ar, ωr and 

ηr, are extracted using the line fit method  

2.2.2 Multi Degree of Freedom Methods 

Although SDOF modal analysis methods are more commonly used, it is not 

possible to identify every system with these methods. In other words, there 

are some limitations for the utilization of SDOF methods. For instance, in 

the case of closely spaced modes where generally the modes of the system 

are not sufficiently separated or highly damped, the methods described in 

the previous section would be inappropriate to use. Therefore, for these 

cases some alternative methods were developed and they can be grouped 

as multi degree of freedom methods. In these methods, general philosophy 

is the extraction of the modal parameters of several modes simultaneously, 

instead of dealing with only one mode at each time as in the SDOF 

methods.    

 

In this study, rational fraction polynomial method is used and therefore 

only the theory of this method will be given in the preceding section.   

2.2.2.1 Rational Fraction Polynomial Method 

In this approach, instead of using partial fraction form of the FRF, rational 

fraction form is used.  
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In curve fitting, the general aim is to minimize the difference between the 

analytical expression and the obtained data. Therefore, for a selected point, 

error between theoretically found data and analytically obtained data can 

be written as, 

 

( )p p pe hα ω= −  (2.24) 

 

where hp is a data point of the measured FRF. The error function can also be 

expressed in a more suitable form by substituting equation (2.23) into 

equation (2.24), 

 

( ) ( ) ( )
1

0 0

'
m n

k k n

p k p k

k k

e a i h b i iω ω ω
−

= =

 
= − + 

 
∑ ∑  (2.25) 

 

Therefore, for all the data points (assuming there are P individual 

frequency values measured), an error function of the following form can be 

obtained.  
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Using equations (2.25) and (2.26), the error vector can be written as, 
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where, 
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In order to minimize the error, squared error criterion, which is expressed 

as,  
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is used. This error equation is a function of both coefficients ‘a’ and ‘b’. In 

order to minimize the error, its derivative with respect to coefficients ‘a’ 

and ‘b’ should be zero.   

 

Taking the derivatives of the equation (2.33) with respect to the coefficients 

‘a’ and ‘b’, and by rearranging them in a matrix form, the following 

equation can be obtained.  
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 (2.34) 

 

Solving for the unknown coefficients, {A} and {B}, the rational fraction form 

of the FRF is obtained. Unlike the partial fraction form, these coefficients do 

not directly give the modal parameters of the system. Therefore, in order to 

identify the modal parameter information, poles and residues of the 

obtained rational fraction form are calculated as a further analysis. From 

these poles and residues information; natural frequency, damping ratio and 

modal constant information can be extracted easily. Detailed information 

about finding the modal parameters from the poles and residues 

information can be found in reference [38]. However, these equations are 

found to be ill-conditioned and thus they are not appropriate for digital 

computing. Therefore, equation (2.34) is re-formulated by the help of 

orthogonal functions. Since FRFs show Hermitian type of symmetry, 

orthogonal functions with the same characteristics should be used in the 

formulation. Hence, Forsythe Method is utilized for generating the 

orthogonal polynomials. Detailed information about these procedures can 
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be found in references [38, 39]. Then, ‘Ψi,k’ be the generated orthogonal 

polynomials and following the same procedure described above, a 

modified and simple version of equation (2.34) can be obtained as [38],  
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where, 

 

[ ]

1,0 1,1 1,

2,0 2,1 2,

,0 ,1 ,

m

m

P P P m

U

Ψ Ψ Ψ 
 Ψ Ψ Ψ =
 
 
Ψ Ψ Ψ 

⋯

⋯

⋮ ⋮ ⋮

⋯

 (2.36) 

 

[ ]

1 1,0 1 1,1 1 1, 1

2 2,0 2 2,1 2 2, 1

,0 ,1 , 1

n

n

P P P P P P n

h h h

h h h
V

h h h

−

−

−

Ψ Ψ Ψ 
 Ψ Ψ Ψ =
 
 

Ψ Ψ Ψ 

⋯

⋯

⋮ ⋮ ⋮

⋯

  (2.37) 

 

[ ]

1 1,

2 2,

,

n

n

P P n

h

h
W

h

Ψ 
 Ψ =
 
 

Ψ 

⋮
 (2.38) 

 

{ } { }0 1, ,...,
T

mC c c c=
 (2.39) 

 

{ } { }0 1 1, ,...,
T

nD d d d −=
 (2.40) 



31

Therefore, solving for the unknown coefficients, {C} and {D}, of the 

orthogonal polynomials, the modal properties of the structure can be 

obtained by digital computing as described earlier.  
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CHAPTER 3  

 

IN VITRO EXPERIMENTS 

3.1  Extracting Modal Parameters of Human Tibia 

For a detailed and immense analysis of human tibia, first it is required to 

acquire a basic idea about the dynamics of it. Therefore, before performing 

a large scale medical survey among patients, in this preliminary stage of the 

study, it is aimed to obtain modal parameters of human tibia via ex vivo (in 

vitro) modal tests and also analyze the effect of the soft tissues. For this 

purpose, a set of experiments were carried out on two fresh-frozen and one 

dry tibia. The specimens were obtained from and the measurements were 

made at Ankara University Faculty of Medicine, Department of Anatomy, 

Ankara. 

3.1.1 Specimens 

Two fresh tibia specimens obtained from above knee amputations of two 

different cadavers were used in order to extract structural modal 

parameters of human tibial bone in ex vivo condition. Both specimens were 

selected such that they show no history of bone diseases related to tibia. In 

order to prevent deterioration of the tissues and the tibia, both fresh tibia 

specimens were preserved at -20 oC after the amputation process.  
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3.1.2 Vibration Analysis 

Analyzing the effect of the soft tissues on the overall (tibia-muscle-skin) 

system is an important goal in identifying the dynamics of the human tibia. 

Therefore, in order to analyze how the soft tissues affect the measurement 

data, a set of experiments under different conditions were carried out on 

these two fresh-frozen tibia specimens. These set of experiments are done in 

four different conditions and these conditions can be classified as,  

 

i. Intact (Case I) 

ii. After removal of the skin tissue around the excitation and 

response points (Case II)  

iii. After removal of the muscle tissue (Case III) 

iv. After exarticulation of the joints and detaching the fibula (Case IV) 

 

Modal tests were carried out with a free-free boundary condition by placing 

the tibia on a soft rubber. Figure 3.1 and Figure 3.2, show exemplarily the 

experimental set–up for the Cases II and IV, respectively. 

 

Excitation of each tibia specimen was performed at a specific point near to 

the middle section of the tibia (diaphysis) along the length of the bone by 

an impact hammer (Dytran Instruments, type 5800B3, S/N 4354, 

sensitivity=48.5 mV/lbf) and the response was recorded using a manually 

pressed accelerometer (Dytran Instruments, type 3035B, S/N 2436, 

sensitivity = 104 mV/g). Both signals were measured simultaneously with 

an instrument of Data Physics, “QUATTRO”, to obtain the FRF data. The 

measurements were triggered by the input of the impact hammer’s channel 
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and recorded only after at least five successive hits. Also, measurements 

were recorded in order to observe the first two modes (modes of interest) of 

the tibia in all cases described earlier. For this purpose the frequency range 

is taken as 0-800 Hz with a resolution of 1 Hz.  

 

 

 

 

Figure 3.1 – Experimental set – up (Case II) 

 

 

 

 

Figure 3.2 - Experimental set – up (Case IV) 
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The FRFs obtained through modal tests were analyzed by using the modal 

identification software MODENT® (Imperial College of Science, Technology 

and Medicine, London, UK, 1988). Circle and line fit methods were used for 

the identification of the modal parameters.  

3.1.2.1 Effect of Soft Tissues 

As indicated in the previous section, a four-stage experimental procedure 

was executed on the amputated fresh-frozen human tibia specimens. These 

experimental stages were extremely helpful in understanding the dynamics 

of the soft tissues and their effect of the overall FRF data obtained in in vivo 

condition. In Figure 3.3, the FRF plots of these experiments are given for the 

first tibia specimen. 

 

 

 

 

Figure 3.3 – Effect of the soft tissues on FRF of human tibia (tibia 1) 
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The effect of the soft tissues (skin, muscle, fibula and joints) can be 

examined individually. Unfortunately, due to the highly damped nature of 

the measured FRFs in the Cases I and II, it is not possible to perform modal 

identification procedures and obtain reliable and accurate modal 

parameters. More detailed information about in vivo modal parameter 

extraction will be given in Chapter IV. However, by examining Figure 3.3 

only a general idea about the effects of skin and muscle tissues can be 

obtained.  

 

As expected, after removal of the skin tissue, no significant changes occur 

in the FRF data obtained as shown in Figure 3.3 (Case I and Case II). It is 

due to the low mass and stiffness contribution to the overall system by the 

skin tissue. Therefore, its effect can be neglected.  

 

From Figure 3.3, it can be easily deducted that muscle tissue has the highest 

effect on the measured FRF data. At first glance, it is seen that in Case III, 

the natural frequency values for the first two modes were highly shifted 

with respect to the values in Case II. Also from the shape of the plot around 

the resonance regions, it can be said that removing the muscle tissue 

decreases the overall damping values considerably. These findings can be 

explained by not only the additional heavy mass inserted to the system by 

the muscle group, but also the heavy damping introduced by the muscles.  

 

In the case of the fibula and the joints, their effects can be interpreted more 

clearly after the modal identification procedure. After detaching the fibula, 

it is observed that the natural frequencies increase about 5-10 %. Also, the 

loss factors extracted decrease 60% for the first mode and 30% for the 
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second mode. One of the main reasons of these changes is the joints 

between the fibula and the tibia as well as the fibula itself.    

 

As a conclusion, the existence of the soft tissues in the system makes the 

modal parameter extraction procedure difficult. In other words, even if 

there occurs a considerable change in the damping properties of the tibia 

itself, the soft tissues may suppress the effect of these changes to depict 

themselves in the modal loss factor of the overall (tibia-muscle-skin) system 

that are obtained from in vivo tests.  

3.1.2.2 Modal Parameters of the Tibia 

In this section, measurements that are done on two fresh-frozen tibiae (tibia 

1 and tibia 2), after exarticulation of the joints and detaching the fibula, and 

one dry tibia (tibia 3) specimen are investigated. Before vibration tests, 

BMD values of all tibiae were found from DXA measurements and it is seen 

that both fresh-frozen tibiae have similar BMD values. For tibia 1 and 2, the 

FRFs obtained from the vibration experiments are given in Figure 3.4. 

Figure 3.5 shows the coherence plots of the measurements, indicating that 

experimental data obtained are reliable.  

 

As mentioned earlier, the FRFs obtained were analyzed by using the modal 

identification software MODENT® (Imperial College of Science, Technology 

and Medicine, London, UK, 1988). Since it is seen in Figure 3.4 that the 

modes are sufficiently separated, in the modal identification procedure, 

circle and line fit methods are used.  
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Figure 3.4 – FRF plots of the two fresh-frozen tibiae 

 

 

 

 

Figure 3.5 - Coherence plots of the FRF measurements of the two fresh-

frozen tibiae 
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In a sample mode identification procedure, the screen is divided into four 

windows in which there are three plots and one table. Figure 3.6 shows the 

first plot which is on the upper left part of the modal identification screen. 

In this plot the inertance FRF measurements are shown since MODENT® 

uses this form of FRF measurement for all the modal identification 

procedure. MODENT® is a user interactive program; the modes to be 

identified must be selected by the user on this graph. After all the modes 

are identified, a regenerated FRF is drawn on the same plot as seen in 

Figure 3.6. The differences in the low and high frequency ranges are due to 

the out of range modes. 

 

 

 

Figure 3.6 – Window (a): Inertance plot of the measurement 

Experimental FRF: green curve 

Regenerated FRF: red curve 

 

 

Figure 3.7 shows the second plot on the screen which gives the Nyquist plot 

of the selected mode. In the Nyquist plot, MODENT® displays 21 FRF data 

points; one is the point that represents the selected resonance point and ten 

data points on each side of this selected point. At this step, user selects the 
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start and end points for an appropriate circle that fits best to this 21 FRF 

data points. Once the start and end points are selected, a regenerated 

Nyquist plot is drawn. As shown in Figure 3.7, the regenerated circle 

perfectly fits the data points, which is a good indication about the quality of 

the modal analysis. 

 

 

 

 

Figure 3.7 – Window (b): Nyquist plot of the selected mode 

 

 

Figure 3.8 shows the third plot on the screen in which damping values are 

plotted as a three dimensional surface. This damping plot shows the 

variation of the damping values with respect to various frequency values. 

Having a flat surface, i.e. having almost the same damping value for any 

combination of frequencies implies that the system shows linear dynamic 

behavior.  

 

Lastly, in the right lower corner of the screen, modal parameter information 

is given as a table. Apart from the identified modes, MODENT® does not 

give the information about the mass and stiffness residuals, i.e. the 
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contribution of the out of range modes. Instead of these residuals, two other 

modes are given; the lower one representing the lower out of range modes 

and the upper one representing the higher out of range modes. 

 

 

   

 

Figure 3.8 – Window (c): 3D damping plot of the selected mode 

 

 

The modes of the measured FRFs are identified using an appropriate 

method: circle and line fit methods. The natural frequencies, the modal loss 

factors and the modal constants of the modes identified for the two fresh-

frozen tibiae specimens are shown in Table 3.1 and Table 3.2, respectively. 

The rigid body modes due to free boundary conditions and the flexibility of 

soft rubber are not identified individually; instead, the modes representing 

the mass and the stiffness residuals are obtained as shown in Table 3.1 and 

Table 3.2.  
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Table 3.1 - Modal parameters of human fresh-frozen tibia (1st tibia 

specimen) 

 

Mode Frequency (Hz) Loss Factor Modal Constant Phase Method 

0 0.0 0.001 0.879 21 Residual 

1 321.3 0.040 1.320 -2 O-Fit 

2 438.3 0.054 0.118 -44 L-Fit 

3 1200 0.001 2.893 -5 Residual 

 

 

Table 3.2 - Modal parameters of human fresh-frozen tibia (2nd tibia 

specimen) 

 

Mode Frequency (Hz) Loss Factor Modal Constant Phase Method 

0 0.00 0.001 1.162 11 Residual 

1 389.3 0.094 1.686 8 O-Fit 

2 496.6 0.082 0.322 -75 L-Fit 

3 1200 0.001 0.830 -63 Residual 

 

 

By examining Figure 3.4 or Table 3.1 and Table 3.2, it can be said that there 

are some differences both in the natural frequencies and the loss factors of 

the two fresh-frozen tibiae specimens. The differences in the natural 

frequency values are expected since as mentioned in the previous chapters, 

the natural frequency is not a very suitable parameter for detecting 

osteoporosis or progressing osteoporosis since it is a susceptible modal 

parameter that can be affected by both the geometrical differences of the 
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systems and the boundary conditions in which the experiments are carried 

out. However, the modal loss factors were expected to be closer to each 

other since DXA measurements of these specimens showed that there is no 

considerable difference between the mineral contents of both fresh frozen 

tibiae (0.945 g/cm2 and 0.917 g/cm2 for the first tibia and second specimens). 

Therefore, these measurements may imply that not the only mineral 

content but also the collagen structure of bone affects the modal loss factors 

of the tibia. Yet, more specimens need to be tested to be able to generalize 

this conclusion. 

 

On the other hand, in order to investigate and make a comparison of the 

modal parameters measured between the fresh-frozen and the dry tibiae, 

an identical experiment was carried out on a dry tibia. The modal 

parameters given in Table 3.3 are obtained. 

 

Comparing the extracted modal parameters of the fresh-frozen and the dry 

tibiae specimens, two expected observations can be made about the natural 

frequencies and the loss factors. Firstly, it is seen that the natural 

frequencies of the dry tibia are higher than those of the fresh-frozen tibiae. 

Secondly, the modal loss factor of dry tibia is considerably smaller than 

those of the fresh-frozen ones. As mentioned, both results are expected 

since they are primarily related to the loss in mineral content and the 

collagen of the bone. However, the percentage change is much higher in the 

loss factor values of the tibia compared to the natural frequency values. 

Therefore, it can be concluded that loss factor of bones can be a strong 

indicator of the mineral content and the collagen of the bone.  
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Table 3.3 - Modal parameters of human dry tibia (3rd tibia specimen) 

 

Mode Frequency (Hz) Loss Factor Modal Constant Phase Method 

0 0.00 0.001 45.276 0 Residual 

1 526.1 0.011 18.328 -1 O-Fit 

2 683.1 0.010 2.159 -173 O-Fit 

3 1449.6 0.013 207.06 -178 O-Fit 

4 3750.0 0.001 495.10 -5 Residual 

 

 

Furthermore, having much larger percentage changes in the loss factors, 

compared to those in the natural frequencies when mineral content is 

reduced, is an encouraging result to believe that the damping 

measurements may be a promising technique in diagnosing osteoporosis or 

detecting progressing osteoporosis and monitoring the fracture healing 

period. 

3.2 Modal Model of Human Tibia 

After finding the modal parameters of the tibia both for the fresh-frozen 

and the dry conditions, mathematical models for human tibia can be 

obtained by using the extracted parameters presented in Table 3.1, Table 3.2 

and Table 3.3. These mathematical (analytical) models, which may be 

referred as regenerated FRFs of tibia, can be formed by modal superposition 

of the modes identified and the modes representing the mass and stiffness 

residuals as follows, 
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In order to compare the results, the regenerated FRFs and the 

experimentally measured FRFs are plotted in Figure 3.9, Figure 3.10 and 

Figure 3.11, for the fresh-frozen tibia 1 and 2, and for the dry tibia, 

respectively.  

 

From the regenerated FRF figures, it is clearly seen that the regenerated 

ones perfectly fit the experimental FRFs. Furthermore, similar 

measurements were made under different loading conditions and almost 

the same experimental FRFs were found. Therefore, it is concluded that 

human tibia shows linear dynamic behavior, at least in the range of forcing 

levels used in the experiments.   

  

 

 

Figure 3.9 – Regenerated FRF of the first tibia specimen (tibia 1) 

Experimental FRF: green curve 

Regenerated FRF: red curve 
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Figure 3.10 – Regenerated FRF of the second tibia specimen (tibia 2) 

Experimental FRF: green curve 

Regenerated FRF: red curve 

 

 

 

Figure 3.11 – Regenerated FRF of the first tibia specimen (tibia 3) 

Experimental FRF: green curve 

Regenerated FRF: red curve 
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CHAPTER 4  

 

IN VIVO EXPERIMENTS 

In the in vitro experiments section, it is shown that with decreasing mineral 

density of human tibia, which is known as the main indicator of 

osteoporosis, considerable changes occur in the modal parameters of tibia, 

especially in loss factor. Since the ultimate goal in this study is to perform 

in vivo test in order to diagnose osteoporosis or progressing osteoporosis, a 

large scale medical survey among patients was performed in this part of the 

study. The aim in these tests was to observe the change in the modal 

properties of tibia, as in the in vitro case, with BMD values, in other words 

the state of osteoporosis obtained from DXA measurements. 

4.1 Materials and Methods 

4.1.1 Subjects 

This medical survey was performed at ’70. Yıl Dinlenme ve Bakımevi’ and 

42 occupants of this facility volunteered to participate in this study. 

Information about the study was given and the possible side effects were 

explained to the participants, and a written consent was obtained from each 

participant. Since osteoporosis related diseases are seen mostly in females 

and one in three women aged over 50 years has this kind of disease [3], all 

of the subjects of this medical survey were chosen to be female and older 

than 50 years of age.  
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4.1.2 Bone Mineral Density Measurements 

BMD measurements of all participants were performed at Middle East 

Technical University, Medical Center, Radio Diagnostic Unit using Lunar 

DPX densitometer (Lunar, Madison, WI). Both the measurements and the 

analysis were made by the same operator to prevent inter-operator 

technical errors. Patient positioning was carried out according to the 

instructions provided by the manufacturer and analyses of the 

measurements were conducted with manufacturer’s software (Lunar 

version 4.6d software). BMD measurements of femur and spine were 

performed on 42 and 38 patients, respectively.  

4.1.3 Modal Test Using Impact Hammer 

Vibration measurements were made both on the left and right tibiae of the 

participants. Excitation of each tibia was performed at a specific point near 

to the middle section of the tibia (diaphysis) along the length of the bone by 

an impact hammer (Dytran Instruments, type 5800B3, S/N 4354, sensitivity 

= 48.5 mV/lbf) and the response was recorded using a manually pressed 

accelerometer (Dytran Instruments, type 3035B, S/N 2436, sensitivity = 104 

mV/g). Both signals were measured simultaneously with an instrument of 

Data Physics, “QUATTRO”, to obtain the FRF data.  

 

The measurements were made at ’70. Yıl Dinlenme ve Bakımevi’, Ankara 

and the experiments were performed with free-free boundary conditions by 

placing the leg on a soft rubber in order to minimize the physical effects 
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coming from participants. Figure 4.1 shows the in vivo experimental 

arrangement used during the measurements.  

 

 

 

Figure 4.1 – In vivo experimental set - up 

 

 

The measurements were carried out for a frequency range of 0-80 Hz with a 

resolution of 1 Hz, since from previous research it is known that modes of 

interest lie in this frequency range. The measurements were recorded only 

after at least five successive hits. Also, since the measurements were 

recorded for a finite length of time history, in the signal processing 

operations exponential windowing was used in order to minimize the effect 

of leakage. Also, in order to check the reliability of the experiments, all 

participants were tested three times montly. 

 

In this part of the study, SDOF modal identification methods are found to 

be inappropriate since the modes of interest are close to each other and 
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show highly damped behavior. Therefore, in order to extract modal 

parameters from the obtained FRF data for in vivo case, rational fraction 

polynomial (RFP) method, which was described in section 2.2.2.1, is 

utilized.  

4.2 Extracting In Vivo Modal Parameters 

A sample FRF plot obtained from the performed vibration tests and the 

corresponding coherence plot of this sample measurement, which indicates 

that experimental data obtained are reliable, are given in Figure 4.2 and 

Figure 4.3, respectively. As seen from these figures that the measured 

system is highly damped compared to most of the engineering cases 

encountered. 

 

 

 

Figure 4.2 - A sample in vivo FRF plot of the tibia 
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Figure 4.3 - Coherence plot of in vivo FRF measurement of the tibia 

 

 

For this sample measurement, modal parameters were extracted using the 

RFP method. However, due to the high damping introduced to the system 

by the soft tissues, the results obtained from the modal identification 

procedures are not so unreliable. Therefore, for reliability purposes, the 

modal identification procedure were performed not only for a single 

frequency range but also for different frequency ranges and the changes in 

the modal parameters were investigated. Table 4.1 lists the modal 

parameters extracted by using various frequency ranges.  
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Table 4.1 - In vivo modal parameters of tibia for different frequency 

ranges 

 

Frequency Range 
(Hz) 

Mode 
Natural Frequency 

(Hz) 
Loss Factor 

5-80 
1 8.9 0.6876 
2 27.9 0.3980 

5-90 
1 9.7 0.6791 
2 27.6 0.3633 

5-100 
1 9.5 0.6603 
2 27.4 0.3409 

 

 

The first mode identified is due to the skin tissue; therefore it is not 

appropriate to make conclusions using the modal data of this mode. 

However, investigating the second mode, it is seen that although the 

natural frequency values do not change significantly, the changes in loss 

factor cannot be disregarded.  

 

As can be seen from Table 4.1, the percentage changes in the loss factor of 

the second mode are around 15% which implies that the systems shows a 

non linear damping behavior. However, in order to diagnose the 

osteoporosis or progressing osteoporosis by in vivo experiments, the modal 

parameters are needed to be identified with much more accuracy. In other 

words, due to the high damping introduced by the soft tissues, accurate 

and repeatable results are required in order to detect the contribution of the 

damping of the tibia to the overall damping measured. As discussed in the 

previous chapter, the loss factor of the tibia is found to be much less than 

the values obtained in in vivo case for overall system (tibia-muscle-skin). 

Hence, in order to observe a change in the damping of tibia that depicts 
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itself on the overall measured data, it is required to have a very high 

accuracy in parameters extracted from in vivo measurements. 

 

Therefore, in this part of the study, only the natural frequencies extracted 

using RFP method are considered and compared with DXA measurement 

results. Table 4.2 shows the DXA measurement and natural frequency data 

for all the participants. For the intra observer reliability, results of two 

measurements that are carried out monthly for several patients are given in 

Table 4.3. 

 

In order to better annotate the results, a statistical analysis was also 

performed using the Statistical Package for the Social Sciences (SPSS) 15.0 

Software. Mean value and standard deviations of the experimental data 

were calculated. Parametric and non-parametric correlations (Pearson’s 

correlation, Kendal’s Tau, and Spearman’s Rho - detailed information about 

these statistical analyses can be found in Appendix A) were calculated 

between the mechanical vibration analysis of the right and left tibiae and 

BMD measured by DXA of femur and spine. Furthermore, descriptive 

statistics of the participants, in other words the vibration analysis results of 

right and left tibiae, minimum and maximum BMD values and T scores of 

femur and spine and their mean values are presented in Table 4.3.  
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Table 4.2 – Result of DXA and vibration measurements of participants  

 

 
DXA Measurement Vibration Measurement 

 
Spine Femur Natural Frequency (Hz) 

Participant BMD T scores BMD T scores Right Tibia Left Tibia 
1 0.669 -4.4 0.582 -3.5 28 31 

2 0.929 -2.3 0.631 -2.9 22.5 28.3 

3 0.877 -1.7 0.674 -2.6 26 27.5 

4 0.92 -2.3 0.707 -2.4 22.5 26.5 

5     0.707 -2.4 28.1 26.2 

6 1.143 -0.1 0.704 -2.4 23.5 25.5 

7 0.918 -2.4 0.742 -2.2 31.5 31.5 

8 0.936 -2.2 0.742 -2.2 30 25 

9 0.944 -2.1 0.738 -2.2 25.5 26 

10 0.79 -3.4 0.763 -2 25.3 25.5 

11 1.215 0.1 0.764 -2 21 28 

12 1.259 0.5 0.754 -2 26.1 29 

13 0.934 -2.2 0.727 -1.9 27.2 28.6 

14 0.807 -3.3 0.781 -1.8 24 26.5 

15     0.792 -1.7 25.5 25.3 

16 0.967 -1.9 0.833 -1.4 28 29.5 

17 1.012 -1.6 0.837 -1.4 38.5 27.3 

18 1.099 -0.8 0.834 -1.4 30 34 

19 1.182 -0.2 0.84 -1.3 27.4 23.3 

20 1.196 0 0.852 -1.2 29.1 31.3 

21 1.286 0.7 0.853 -1.2 29.5 29.5 

22 0.761 -2.6 0.801 -1.2 23.2 22.5 

23 0.946 -2.1 0.866 -1.1 30.5 31.5 

24 1.131 -0.6 0.87 -1.1 27.9 28.7 

25 1.059 -0.7 0.865 -1.1 28 29.5 

26 1.524 2.7 0.879 -1 29.2 27 

27 1.414 1.8 0.896 -0.9 27.8 33.5 

28 1.287 0.7 0.902 -0.8 26.6 25.6 

29     0.911 -0.7 27.5 28 

30 1.246 0.4 0.933 -0.6 32.5 27.2 

31 1.432 1.9 0.931 -0.6 28 29.9 

32 0.991 -1.7 0.955 -0.4 34 27.5 

33 1.117 -0.7 0.953 -0.4 34.5 29 

34     0.952 -0.4 26.2 29.6 

35 1.114 -0.7 0.966 -0.3 25.5 24 

36 0.847 -2.9 0.979 -0.2 33.5 29 

37 1.136 -0.32 0.973 -0.2 28 28.5 

38 1.24 0.3 1.015 0.1 32 37 

39 1 -1.7 0.962 0.3 35 28 

40 1.313 0.9 1.042 0.3 30.5 30 

41 1.279 0.7 1.117 1 31 33 

42 1.109 -0.8 1.145 1.2 27 30.5 
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Table 4.3 - Result of DXA and vibration measurements of several 

participants for intra observer reliability 

 

 Vibration Measurements (Hz) 

 Measurement 1 Measurement 2 

Participant Right Tibia Left Tibia Right Tibia Left Tibia 

6 23.5 25.5 24.7 24.5 

27 27.8 33.5 28.6 33.5 

28 26.6 25.6 24.8 25.0 

34 26.2 29.6 25.2 28.7 

 

 

Table 4.4 - Descriptive statistics of participants (Ntotal = 42 participants) 

 

 Min. Values Max. Values Mean Values 

BMD values of Spine (g/cm2) 0.669 1.524 1.080 

T values of Spine -4.400 2.700 -0.922 

BMD values of Femur (g/cm2) 0.582 1.145 0.852 

T values of Femur -3.500 2.000 -1.100 

Natural Frequency of Right Tibia (Hz) 21.0 38.5 28.3 

Natural Frequency of Left Tibia (Hz) 22.5 37.0 28.4 

 

 

The participants in this medical survey were categorized into two groups 

according to their T scores, which show the state of the osteoporosis 

obtained from their BMD values. One of the groups consists of participants 

with osteopenia and osteoporosis whereas the other group includes only 
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normal (healthy) people. Figure 4.4 and Figure 4.5 shows the change of 

natural frequency with the health status of the participants according to the 

measurements obtained from each participant’s femur. 

In order to assess the extracted and measured data, both parametric and 

non-parametric statistical analysis were performed between the BMD and 

natural frequency values of tibia measured.  

 

For linear dependence of variables, Pearson’s correlation was applied and 

Pearson product-moment coefficient was found as 0.455 with a significance 

value of 0.01, and 0.327 with a significance value of 0.05 for the BMD values 

of femur and natural frequency values of right and left tibia, respectively. 

 

 

 

 

Figure 4.4 - Natural frequency (right tibia) vs. state of osteoporosis 

(femur) 
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Figure 4.5 - Natural frequency (left tibia) vs. state of osteoporosis (femur) 

 

 

For non-parametric analysis, in order to investigate the correspondence 

degree of the measured data Kendal’s Tau, and in order to describe the 

relation of two variables by an arbitrary monotonic function Spearman’s 

Rho correlations are used. Kendall’s Tau rank correlation coefficient is 

obtained as 0.332 with a significance value of 0.01, and 0.222 with a 

significance value of 0.05 for the BMD values of femur and natural 

frequency values of right and left tibiae, respectively. Similarly, Spearman’s 

rank correlation coefficient is found as 0.498 with a significance value of 

0.01 and 0.331 with a significance value of 0.05 for the BMD values of femur 

and natural frequency of right and left tibiae, respectively.  

 

Statistical analysis reveals that although there exists no correlation between 

the BMD values of spine and natural frequency values of tibiae, there is 
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both parametrical and non-parametrical correlation between the BMD 

values of femur and natural frequency values of right and left tibiae.  

 

Figure 4.6 to Figure 4.9 show the change in natural frequency of the right 

and the left tibia with BMD measurements obtained from the femur and the 

spine. 

 

As a conclusion, although the statistical analysis performed in this section 

suggests that there are both parametric and non-parametric correlations 

between the natural frequency values of tibia (both for the left and right 

tibiae) and BMD values of femur, these correlations are not very strong 

considering the correlation coefficients. In other words, the linear 

relationship of the variables is not so good. Furthermore, the box plots in 

Figure 4.4 and Figure 4.5 show that there is no definite discrimination 

between the values to diagnose the osteoporosis or progressing 

osteoporosis.  

 

In a large portion of the studies in the literature, the main aim is to find a 

valid and an effective correlation between the natural frequencies and the 

BMD values of bone. Therefore, they mainly focus on the change of natural 

frequency with respect to the BMD values [5, 13, 17, 21, 27]. However, this 

study shows that natural frequency is not an appropriate parameter to 

diagnose osteoporosis, but it may be used to diagnose progressing 

osteoporosis by using an appropriate test set-up that provides the 

boundary conditions to be same for all experiments. Furthermore, these 

findings are in agreement with the results found in the study of Cornelissen 

et al [16]. In that study, the correlation between the natural frequencies of 



59

the ulna and the degree of osteoporosis was also investigated and it was 

concluded that in the diagnosis of osteoporosis, the use of natural 

frequency alone has a limited value. 

 

 

 

Figure 4.6 - Natural frequency (right tibia) vs. BMD values of the femur 

 

 

 

Figure 4.7 - Natural frequency (right tibia) vs. BMD values of the spine 
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Figure 4.8 - Natural frequency (left tibia) vs. BMD values of the femur 

 

 

 

Figure 4.9 - Natural frequency (left tibia) vs. BMD values of the spine 
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However, since the natural frequencies of tibia depend on the geometry 

(thus the size) of the bone, more accurate results are expected if the 

extracted natural frequencies are normalized according to the length of tibia 

of each participant. Unfortunately, only the height information of the 

patients is available. Using this information approximate tibia lengths are 

obtained and the cluster plots given in Figure 4.6 to Figure 4.9 are plotted 

again. Since the formulations about the relation between body height and 

tibia length given in literature are not so accurate, again no definite 

discrimination between the natural frequencies corresponding to the state 

of osteoporosis exists. On the other hand, more realistic results are expected 

if the tibia length information is known.  

 

On the other hand, it is seen in Chapter 3 that there is a considerable 

difference in the loss factors of fresh-frozen and dry tibiae which seems a 

strong parameters that can be used for diagnosing purposes. However, 

from the in vivo experiments it is seen that, its contribution to the overall 

damping of the system (tibia, fibula, muscles, skin and joints) is very little. 

Therefore, with the in vivo experimental methods used in this study, it does 

not seem practical to detect the changes in the loss factor of tibia from the 

extracted modal loss factor of the overall system. As a result, it can be 

concluded that due to the highly damped nature of the FRFs obtained from 

in vivo experiments, the extracted loss factors are not so reliable in 

diagnosing osteoporosis or progressing osteoporosis.     
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CHAPTER 5  

 

THREE DIMENSIONAL MODEL OF HUMAN TIBIA 

In Chapter 3, it is observed that loss factor which is an inherit property of 

bone can be used in identifying the condition of bone from the work carried 

out on fresh frozen tibiae. However, there are several difficulties in 

extracting the structural dynamic properties by in vivo modal analysis. For 

example, the damping introduced by the soft (skin and muscles) tissues 

makes the modal identification procedure highly difficult. Furthermore, 

this method can only be applied to superficial bones such as tibia and 

radius. 

 

Finite element models (FEM) of bones have been widely used as a method 

to understand the dynamics of bones, since it can also be used for deep 

bones as well as the superficial ones. This method is widely used to 

investigate the stress and strain distributions of bone under different 

loading conditions or around the implants. Also, over the last two decades, 

as described in Chapter 1, these FEM of bones are used to determine the 

vibration behavior of bones. 

 

In this study, the main objective is to construct a proper FEM of human 

tibial bone using the Computer Tomography (CT) scan data, that matches 

the experimental results obtained from modal analysis in Chapter 3. 

Furthermore, differences between using isotropic parameters and 

orthotropic parameters are investigated. Then, the influence of elastic 
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modulus, the size of the bone and the boundary conditions on the natural 

frequency of tibial bone are investigated. 

5.1 Finite Element Modeling of Human Tibia 

In order to construct FEM of human tibial bone, first of all CT scan images 

of tibia were taken. The CT scan images of a tibia specimen were taken with 

slice intervals of 0.6 millimeters. ‘3D-Doctor Modeling and Measuring 

Software’ was used in order to obtain 3D model of the tibial bone from the 

slice images. A sample slice image that belongs to the middle section of the 

diaphysis of tibia is shown in Figure 5.1. From this image, boundaries for 

both cortical (hard outer layer of bones) and cancellous (spongy part of 

bones) sections were drawn. Therefore, a 3D model of a tibia specimen was 

developed by joining the boundary lines drawn for each slice image.  

 

 

 

 

Figure 5.1 – A sample of slice image of CT scan of a tibia specimen 
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However, the constructed model using ‘3D-Doctor Modeling and Measuring 

Software’ consisted of only the surfaces and was highly detailed and 

complex such that the complete system consists of 331116 triangles and 

165564 nodes. Therefore, the developed 3D model should be simplified and 

smoothed for further analysis. For this purpose, ‘Autodesk® 3Ds Max®’ 

software was employed. By using this software, the surface properties of 

the model were decreased by 99 % of its original properties. Figure 5.2 

shows the complex and simplified model obtained from ‘3D-Doctor 

Modeling and Measuring Software’ and ‘Autodesk® 3Ds Max®’, respectively.  

 

 

 

  

(a) Complex model  (b) Simplified model 

 

Figure 5.2 – Complex and simplified models of human tibia 
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The main advantage of this simplification process is that the roughness of 

the obtained surfaces was resolved so that the analyses could be carried out 

more easily and in a short of time.  The result of this process can also be 

seen clearly in Figure 5.2.  

 

However, in order to obtain a proper FEM of human tibia, a solid model 

should be obtained from the simplified model formed of only surfaces. 

Therefore, following this simplification procedure, solid model was 

obtained using ‘Mechanical Desktop 2005 Software®’ through surface 

stitching. As a result of these procedures, a FEM of human tibia was created 

from the raw CT scan images.  

 

In the FE analysis ‘MSC Patran®’ and ‘MSC Nastran®’ software were 

employed. Figure 5.3 shows the meshed structure of tibia (composed of 10 

node tetrahedral elements) used in this study. In the first step of this study, 

the analyses were conducted in two parts. The first one is carried out with 

isotropic bone parameters which imply that the material properties of bone 

are uniform in all directions. On the other hand, in the second part of the 

analyses orthotropic bone properties are used in which the material 

properties of bone depend on directions. Thereby, it is aimed to constitute a 

suitable model of human tibia and investigate how elastic modulus, size 

and boundary condition of bone affects the resonance frequencies. 
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Figure 5.3 – 3D meshed model of human tibia 

 

 

5.1.1 Isotropic Parameter Analysis 

Although material properties of bone vary both in longitudinal, radial and 

circumferential directions, for simplicity isotropic material properties are 

used for the compact and spongy parts of the bone in this analysis. The 

elastic modulus values of tibia are selected within the limits specified in 

literature [33, 40, 41].  The density of bone is obtained from the CT scan 

data. Following relation is used for this purpose, 

 

3(0.748 10 ) 1.136bone x CTρ −= +  (5.1) 
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where CT is the average of data obtained from the CT scan of tibia and the 

constants in the given equation are related with the calibration of the 

computed tomography machine.  

 

In Table 5.1, material properties used in the FE analysis are given. The 

elastic modules of compact and spongy parts of the tibia were selected such 

that the first two natural frequencies obtained from the experimental study 

(for tibia specimen 1) and from the FE analysis are identical.  

 

 

Table 5.1 – Isotropic material properties of tibia used in the FEM analysis 

 

Bone Properties  

Elastic Modulus of Compact Bone (GPa) 15 

Elastic Modulus of Spongy Bone (GPa) 6 

Density of Compact Bone (kg/m3) 2.41E+03 

Density of Spongy Bone (kg/m3) 1.10E+03 

Poisson’s Ratio of Compact Bone 0.3 

Poisson’s Ratio of Spongy Bone 0.3 

 

 

Figure 5.5 and Figure 5.6 show the mode shapes and natural frequencies for 

the first two modes obtained through ‘MSC Patran and MSC Nastran’ 

software. As seen from these figures both modes are bending modes and 

the natural frequencies of the first and second modes are 320 Hz and 413 

Hz, respectively.  
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To verify the accuracy of the FEM of tibia, natural frequencies for the third 

mode obtained from in vitro experiments and FE analyses are compared. 

Therefore, in order to extract third natural frequency of tibia, FRFs 

measured for a frequency range of 0-1000 Hz was used. Figure 5.4 shows 

the FRF measurement of tibia specimen 1 for the frequency range specified. 

From the in vitro experiments and FE analysis, it was found that the natural 

frequencies for the third mode are 942 Hz and 921 Hz, respectively. As 

seen, the results found by FE analysis are in good agreement with those 

obtained from in vitro experiments.  

 

 

 

 

Figure 5.4 – FRF plot of tibia specimen 1  
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Figure 5.5 – First mode shape and natural frequency of tibia (isotropic 

case) 

 

 

 

 

Figure 5.6 – Second mode shapes and natural frequency of tibia (isotropic 

case) 
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5.1.2 Orthotropic Parameter Analysis 

As mentioned in the previous part, the material properties of bone change 

in radial, circumferential and longitudinal directions. Therefore, more 

realistic results are expected by using orthotropic material properties. Table 

5.2 shows the properties used in the FE analysis. Axial, radial and 

circumferential directions are represented by subscripts ‘33’, ‘11’, and ‘22’ 

respectively. As in the previous section, the density of the compact and 

spongy parts of the bone are found using equation (5.1).  

 

 

Table 5.2 - Orthotropic material properties of tibia used in the FE analysis 

 

Bone Properties  

E11 (GPa) 9 

E22 (GPa) 10 

E33 (GPa) 15.7 

G12 (GPa) 2.2 

G13 (GPa) 3.3 

G23 (GPa) 4.1 

υ12 0.45 

υ13 0.17 

υ23 0.21 

Density of Compact Bone (kg/m3) 2.41E+03 

Density of Spongy Bone (kg/m3) 1.10E+03 
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Figure 5.7 and Figure 5.8 show the mode shapes and natural frequencies for 

the first two modes obtained through ‘MSC Patran and MSC Nastran’ 

software. As seen from these figures both modes are bending bones and the 

natural frequencies of the first and second mode are 321 Hz and 409 Hz, 

respectively.   

 

As in the isotropic materials case, natural frequencies for the third mode 

obtained from in vitro experiments and FE analyses are compared in order 

to verify the accuracy of the FEM model. It was extracted from in vitro 

experiments that the natural frequency for the third mode of tibia is 942 Hz. 

From the FE model using orthotropic materials properties, the natural 

frequency for the third mode of tibia was found as 944 Hz. As seen, the 

results found by FE analysis are in good agreement with those obtained 

from in vitro experiments. Therefore, it can be said that considering the 

scope of our analysis both methods give very close results to each other and 

are in good agreement with the experimentally obtained data.  

 

However, if the analysis is carried out for a frequency range that is much 

higher (above 1 kHz) or if the purpose of the model is different (i.e. for 

calculating stress), since the stiffness matrix of the system is more realistic, 

the model using orthotropic properties is expected to give more accurate 

results and will be needed to be used. For example, some mode shifts are 

observed in the FE analysis in the isotropic case. Hence, considering both 

simplicity and accuracy aspects for the scope of this study, the model using 

isotropic material parameters, is found to be sufficiently satisfactory for 

further studies. 
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Figure 5.7 - First mode shape and natural frequency of tibia (orthotropic 

case) 

 

 

 

 

Figure 5.8 - Second mode shape and natural frequency of tibia 

(orthotropic case) 
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5.2 Effect of Elastic Modulus on Natural Frequency 

In this stage of the study, it is aimed to observe the changes in natural 

frequency of tibial bone with the change in the elastic modulus of compact 

and spongy parts of the bone. For this purpose, firstly the effect in the 

change of the elastic modulus of the spongy part of the tibia on the natural 

frequency is investigated. The analyses are performed for 15 different cases. 

The unchanged material properties (elastic modulus of compact part of 

bone, density and Poisson’s ratio of compact and spongy parts) are taken as 

given in Table 5.1. Table 5.3 shows the various cases considered and the 

corresponding natural frequencies found from the FE analysis.   

 

 

Table 5.3  - Effect of elastic modulus of spongy part of tibia on natural 

frequencies of tibia 

 

Cases 
Elastic Modulus of Spongy 

Part of Tibia (MPa) 
First Natural 

Frequency (Hz) 
Second Natural 
Frequency (Hz) 

1 300 319.6 411.5 

2 350 319.7 411.8 

3 400 319.9 412.0 

4 450 320.0 412.2 

5 500 320.2 412.3 

6 550 320.3 412.5 

7 600 320.5 412.7 

8 650 320.6 412.9 

9 700 320.7 413.1 

10 750 320.9 413.2 

11 800 321.0 413.4 

12 850 321.1 413.6 

13 900 321.3 413.7 

14 950 321.4 413.9 

15 1000 321.5 414.0 
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Figure 5.9 – Effect of elastic modulus of spongy part of tibia on natural 

frequencies of tibia 

 

 

Secondly, the effect of changes in the elastic modulus of the compact part of 

the tibia on natural frequency is investigated. The analyses are performed 

for 31 different cases. The unchanged material properties (elastic modulus 

of compact part of bone, density and Poisson’s ratio of compact and spongy 

parts) are taken as given in Table 5.1. Table 5.4 shows the various cases 

considered and the corresponding natural frequencies found from the FE 

analysis.   
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Table 5.4 - Effect of elastic modulus of compact part of tibia on natural 

frequencies of tibia 

 

Cases 
Elastic Modulus of 

Compact Part of Tibia 
(MPa) 

First Natural 
Frequency (Hz) 

Second Natural 
Frequency (Hz) 

1 10000 262.3 337.8 

2 10500 268.7 346.0 

3 11000 274.9 354.1 

4 11500 281.0 361.9 

5 12000 287.0 369.6 

6 12500 292.8 377.1 

7 13000 298.6 384.5 

8 13500 304.2 391.8 

9 14000 309.7 398.9 

10 14500 315.1 405.8 

11 15000 320.5 412.7 

12 15500 325.7 419.5 

13 16000 330.9 426.1 

14 16500 336.0 432.6 

15 17000 341.0 439.1 

16 17500 345.9 445.4 

17 18000 350.7 451.7 

18 18500 355.5 457.9 

19 19000 360.3 464.0 

20 19500 364.9 470.0 

21 20000 369.5 475.9 

22 20500 374.1 481.8 

23 21000 378.6 487.6 

24 21500 383.0 493.3 

25 22000 387.4 498.9 

26 22500 391.8 504.5 

27 23000 396.1 510.1 

28 23500 400.3 515.5 

29 24000 404.5 521.0 

30 24500 408.7 526.3 

31 25000 412.8 531.6 
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Figure 5.10 shows the effect of elastic modulus of compact part of tibia on 

natural frequencies of tibia. For the given set of elastic modulus values, the 

total percentage change in elastic modulus of compact part of tibia is 100 %. 

This change corresponds to a change of 47 % both in the first and second 

natural frequencies of tibia. If the tibia is considered as a beam element 

composed of only compact part of tibia, i.e. if the spongy part of tibia is 

neglected, its natural frequency will be proportional with the square root of 

its elastic modulus since the length, mass and moment of inertia of tibia are 

constant in this analysis. Results found using this approximation for a few 

selected cases are listed in Table 5.5.  

 

 

Table 5.5 - Effect of elastic modulus of compact part of tibia on natural 

frequencies of tibia (by approximation) 

 

Cases 
Elastic Modulus of 

Compact Part of Tibia 
(MPa) 

First Natural 
Frequency (Hz) 

Second Natural 
Frequency (Hz) 

1 10000 261.7 337.0 

5 12000 286.7 369.1 

20 19500 365.4 470.6 

31 25000 413.8 532.8 

 

 

Therefore, two inferences can be made from these results. Firstly, the major 

changes in natural frequencies occur due to the changes in elastic modulus 

of compact (cortical) part of the tibia. Secondly, it can be said that the first 

two modes of tibia are affected in the same manner. Moreover, these 

changes can be represented by straight lines shown in Figure 5.10. 
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Figure 5.10 - Effect of elastic modulus of compact part of tibia on natural 

frequencies of tibia 

 

 

5.3 Effect of Bone Size on Natural Frequency 

In order to develop a new method to diagnose osteoporosis or progressing 

osteoporosis, it is needed that this new method must be applicable to all 

patients. However, there are a lot of diversities among people. For example, 

the bone size is one of the important factors to be kept in mind. Therefore, 

the next step of this study is to observe the effect of size of tibia on its 

natural frequencies.  

 

The analyses were performed for 9 different cases with acceptable bone 

sizes. Material properties given in Table 5.1 were employed. Table 5.6 
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shows the various cases considered in the analyses and the corresponding 

natural frequencies found from the FE analyses. 

 

 

Table 5.6 – Effect of size of tibia on natural frequencies of tibia 

 

Size                

(Scale Factor) 

Length 

(mm) 

1st Natural 

Frequency (Hz) 

2nd Natural 

Frequency (Hz) 

1.20 414 267 344 

1.15 397 279 359 

1.10 380 291 375 

1.05 362 305 393 

1.00 345 320 413 

0.95 328 337 434 

0.90 311 356 459 

0.85 293 397 511 

0.80 276 401 516 

 

 

The results show that the size of the tibia is an important parameter that 

affects its natural frequencies. As seen from Table 5.6, the size of tibia 

changes from 414 mm to 276 mm which corresponds to a change of 40 % in 

size and both the first and second natural frequencies of tibia are affected 

linearly. Figure 5.11 shows the effect of the size of tibia on natural 

frequencies of tibia more clearly.  
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Figure 5.11 - Effect of size of tibia on natural frequencies of tibia 

 

 

Therefore, it can be concluded that in the assessment of natural frequencies 

of tibia, it is not appropriate to make a comparison considering all patients. 

In fact, the analogy must be carried out for the patients having the same 

bone lengths. However, the change in natural frequencies of tibia can be an 

indicator for progressing osteoporosis for a specific patient. In other words, 

every patient must be evaluated individually if the natural frequency 

information of bones is used for diagnosis purposes.  

5.4 Effect of Boundary Condition on Natural Frequency 

In the previous part, it is denoted that diagnosis of progressing 

osteoporosis can be detected using the natural frequency information of 

bones only for a specific patient due to the size effect of bones. However, 
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boundary condition in which the experiments are carried out, is another 

important factor that needs to be considered as well, since the natural 

frequencies of a structure are highly sensitive to the boundary conditions. 

Therefore, in this last part of this FE study, the effect of boundary 

conditions on natural frequencies of tibia is investigated.  

 

Up to this point, all the FE analyses performed are done with a free-free 

boundary condition. In order to see the effect of boundary condition, a 

sample analysis is performed where displacement of the proximal and 

distal epiphysis of tibia are fixed whereas the rotation of these parts are not 

restricted.  

 

Figure 5.12 and Figure 5.13 show the first two the mode shapes and natural 

frequencies of the simply supported tibia obtained through ‘MSC Patran 

and MSC Nastran’ software. As seen from these figures both modes are 

bending bones and the natural frequencies of the first and second modes 

are 681 Hz and 845 Hz, respectively. Table 5.7 shows the two cases 

considered in the analyses and the corresponding natural frequencies for 

the first two modes found from the FE analyses. 
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Figure 5.12 - First mode shape and natural frequency of tibia (simply 

supported case) 

 

 

 

 

Figure 5.13 - Second mode shape and natural frequency of tibia (simply 

supported case) 
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Table 5.7 - Effect of boundary condition of tibia on natural frequencies of 

tibia 

 

Boundary Condition 
Natural Frequency (Hz) 

1st Mode 2nd Mode 

Free-Free 320 413 

Simply Supported 681 845 

 

 

It is obvious that the boundary condition, in which the experiments are 

carried out, has a significant effect on natural frequencies of tibia. 

Therefore, it can be concluded that the change in natural frequencies of tibia 

can be used as an indicator for progressing osteoporosis for a specific 

patient only if the experiments are carried out exactly with the same 

boundary conditions.  
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CHAPTER 6  

 

DISCUSSION AND CONCLUSION 

In this thesis, an alternative method for diagnosing osteoporosis or 

progressing osteoporosis is investigated by looking for a relation between 

the BMD values measured by DXA and the extracted structural modal 

parameters obtained from vibration experiments. For this purpose, firstly a 

preliminary in vitro study on human tibia obtained from fresh cadavers 

and then an in vivo study, a large scale medical survey among patients are 

performed. Also, as an alternative method, in order to see the effect of 

various parameters, such as elastic modulus of tibia, size of tibia and 

boundary condition in which the experiments are carried out, on structural 

modal parameters of tibia, FE analyses are employed.   

6.1 Extracting Modal Parameters of Tibia 

As mentioned in Chapter 1, previous researches in literature generally 

focus on the change of natural frequency alone in the diagnosis of 

osteoporosis [e.g. 4, 5, 21]. However, using natural frequency is not a 

convenient and easy approach for diagnosing purposes since there are 

various factors affecting this parameter such as the size and the geometry of 

the bone or the boundary conditions of the experiments. Therefore, it is 

aimed at the beginning of this research to find a new approach for 

diagnosing this bone disease by examining a more stable parameter such as 

loss factor. Since it is an inherit property of a bone, it is believed that 
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extracting loss factor of tibia, and studying the changes in this parameter 

may yield an alternative method to diagnose osteoporosis or progressing 

osteoporosis.  

 

From the in vitro experiments, two important inferences can be derived. 

Firstly, although both fresh-frozen tibiae specimens have similar mineral 

content, the vibration experiments performed on them show that there is a 

considerable difference both in the extracted loss factors and natural 

frequencies of tibia. The difference in the natural frequency values between 

the specimens is expected due to the reasons mentioned. However, the 

difference between the loss factor values leads to the conclusions that bone 

mineral density measured by DXA is not the only parameter that affects 

structural modal parameters of tibia. Consequently, these measurements 

may imply that the collagen structure of bone also has a significant effect on 

modal loss factors of tibia. In other words, it can be said that bone mineral 

density measured by DXA seems to be an indefinite method to predict 

mechanical bone strength, as also stated in references [4, 7-9]. Secondly, 

comparing the results between the fresh frozen and dry tibiae, considerable 

differences are observed both in the natural frequencies and loss factors 

extracted. The dissimilarities both in BMD values and collagen structure of 

tibiae specimens constitute the differences in modal parameters of tibia. 

Furthermore, observing considerable low loss factor values for dry tibia 

specimen with respect to the fresh-frozen ones leads to the conclusion that 

loss factor of bones can be a strong indicator of the mineral content and the 

collagen of the bone. Yet, in order to generalize this conclusion, more tests 

should be performed on fresh-frozen tibiae.  
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In the second part of the study, a large scale medical survey is performed. 

From these in vivo experiments, several important inferences can be made. 

First of all, due to the effect of the soft tissues (skin and muscle tissues) 

surrounding the tibia, highly damped FRFs are measured. Consequently, 

even if a change occurs in the loss factor of tibia, it does not seem it is easy 

to detect this change; because the contribution of the loss factor of tibia to 

the overall damping of the system (skin, muscle, fibula and joints) is very 

little and the overall damping of the system cannot be identified very 

accurately. As a result, it can be said that the extracted loss factors from in 

vivo measurements are not so reliable in diagnosing osteoporosis and 

progressing osteoporosis due to the highly damped nature of the system.   

 

Also, from the in vivo experiments, it is found that both parametric and 

non-parametric correlations exist between the BMD values of femur and 

natural frequencies of tibia. However, these correlations are weak and 

therefore have a limited value in generalized diagnosis of osteoporosis and 

progressing osteoporosis. Yet, the results obtained in Chapter 5 imply that 

if the boundary conditions of the experiments are held in the same way in 

each test, and the natural frequencies measured are compared for a specific 

patient or patients having similar bone geometry, natural frequency 

approach can be employed as an indicator for progressing osteoporosis. 

6.2 The FE Model of Tibia 

A three dimensional human tibial bone is modeled using isotropic and 

orthotropic bone material properties. Results obtained from both of the 
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approaches are in good agreement with the results obtained from 

experimental studies. The model using isotropic material properties is 

preferred for further analysis since it is easier to use.  

 

In the first part of the FE analysis, the effects of elastic modulus of compact 

and spongy parts of tibia on its natural frequencies are investigated. It is 

observed that the major effect comes from the compact part of the bone 

whereas the changes in spongy part of tibia have negligible effect on the 

natural frequencies found. Also, results show that the tibia can be 

represented as a beam element consists of only compact part of tibia. In 

other words, it seems that from the natural frequency information obtained 

from vibration experiments, the elastic modulus of compact part of tibia can 

be predicted. Yet, more experiments should be carried out in order to 

generalize this conclusion.  

 

In the second and third parts of the FE analysis, the factors (size and 

boundary condition) affecting the natural frequencies of tibia are examined. 

It is seen that both factors have high influence on the measured natural 

frequencies. Therefore, it is concluded that in the natural frequency 

approach, it is not logical to make general inferences about the state of 

osteoporosis of a patient as in the case of T and Z scores obtained from 

BMD information of bones. However, if the experiments are carried out 

exactly with the same boundary conditions and the results of patients are 

examined individually, the change in natural frequencies of tibia seems to 

be a possible and practical method that can be used to detect progressing 

osteoporosis 
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6.3 Suggestions on Future Work 

In this thesis, it is aimed to perform experiments as much as possible in 

order to generalize the conclusions arrived in study. However, due to the 

difficulties in acquiring fresh tibia specimens and also the difficulties 

encountered in in vivo experiments (such as taking ethical permissions and 

voluntary participation form), the number of experiments performed is 

lower than that it is aimed. Hence, more experiments should be carried out 

for generalization of the same conclusions. Also, other experimental 

techniques should be employed.  

 

Also, for the case of in vivo experiments, DXA measurements are made 

according to the common procedures (i.e. measurements are performed 

only for the spine and femur). Since the BMD of tibia is not measured, it is 

assumed that the mineral loss in tibia is similar to the loss in femur. 

However, more realistic results can be obtained by performing a large 

medical survey in which both DXA and vibration measurements are done 

on tibia. Also, since the FRFs obtained from in vivo experiments show 

nonlinear behavior, nonlinear modal identification procedures should be 

employed.  

 

Lastly, in FE analysis, the geometrical differences of tibia are investigated 

only for different scales of the tibia modeled. However, constituting 

different FE models of tibia from several CT scan images obtained from 

different patients will improve the accuracy of the results.  

  



88

 

REFERENCES 

 

 

[1] Marieb, E.N., Hoehn, K.," Human Anatomy & Physiology", Seventh 

Edition, Pearson International Edition, 2007. 

[2] Netter, F.H.," Interactive Atlas of Human Anatomy", Version 3.0, 

Netter Basic Science, 2003. 

[3] Atik, O.S., Günal, I., Korkusuz, F.," Burden of Osteoporosis", Clinical 

Orthopaedics & Related Research, v. 443, pp. 19-24, 2006. 

[4] Özdurak, R.H., Sezgin, Ö. C., Akın, S., Korkusuz, F.," Vibration 

Analysis of Human Radius of Elderly Men", Clinical Orthopaedics & 

Related Research, v. 443, pp. 94-100, 2006. 

[5] Arpınar, P., Şimşek, B., Sezgin, Ö. C., Birlik, G., Korkusuz, F.," 

Correlation Between Mechanical Vibration and Dual Energy X-ray 

Absorptiometry (DXA) in the Measurement of in-vivo Human Tibial 

Bone Strength", Technology and Health Care, pp. 107-113, 2005. 

[6] Max W., S.P., Kao C., Sung H. Y., Rice D. P.," The Burden of 

Osteoporosis in California,1998", Osteoporosis International, 13 (6), 

pp. 493 - 500, 2002. 

[7] Kanis, J.A., Black, D., Cooper, C., Dargent, P., Dawson-Hughes, B., 

De Laet, C., Delmas, P., Eisman, J., Johnell, O., Jonsson, B., Melton, 

L., Oden, A., Papapoulos, S., Pols, H., Rizzoli, R., Silman, A., 

Tenenhouse, A.," A New Approach to the Development of 

Assessment Guidelines for Osteoporosis", Osteoporos Int, v. 13, pp. 

527-536, 2002. 



89

[8] Özdurak, R.H.," Vibration Analysis In The Diagnosis Of Bone 

Mineral Density In Healthy And Osteopenic Radius Bone And Its 

Correlation To Muscle Stregnth", Physical Education And Sports, 

Middle East Technical University, M.Sc. Thesis, 2004. 

[9] Akkus, O., Korkusuz, F., Akin, S., Akkas, N.," Relation Between 

Mechanical Stiffness and Vibration Transmission of Fracture Callus: 

An Experimental Study on Rabbit Tibia", Proc. Inst. Mech. Eng., v. 

212, pp. 327-336, 1998. 

[10] Taştan, M., Çelik, Ö., Weber, G. W., Karasözen, B., Korkusuz, F.," 

Mathematical Modeling of Proximal Femur Geometry And Bone 

Mineral Density ", Joint Diseases and Related Surgery, v. 17, pp. 128-

136, 2006. 

[11] Njeh, C.F., Boivin, C. M., Langton, C. M.," The Role of Ultrasound In 

The Assessment of Osteoporosis: A Review", Osteoporos Int, v. 7, 

pp. 7-22, 1997. 

[12] Moilanen, P., Nicholson, P. H. F., Karkkainen, T., Wang, Q., 

Timonen, J., Cheng, S.," Assessment of The Tibia Using Ultrasonic 

Guided Waves In Pubertal Girls", Osteoporos Int, v. 14, pp. 1020-

1027, 2003. 

[13] Alizad, A., Walch, M., Greenleaf, J. F., Fatemi, M.," Vibrational 

Characteristics of Bone Fracture and Fracture Repair: An Application 

to Excised Rat Tibia", Journal of Biomechanical Engineering, v. 128, 

pp. 300-308, 2006. 

[14] John, M., Jurist," In Vivo Determination of the Elastic Response of 

Bone I. Method of Ulnar Resonant Frequency Determination", 

Physics in Medicine and Biology, v. 15, no. 3, pp. 417-426, 1970. 



90

[15] Christensen, A.B., Ammitzboll, F., Dyrbye, C., Cornelissen, M., 

Cornelissen, P., Van der Perre, G.," Assessment of Tibial Stiffness by 

Vibration Testing in Situ – I. Identification of Mode Shapes in 

Different Supporting Conditions", Journal of Biomechanics, v. 20, pp. 

333-342, 1986. 

[16] Cornelissen, M., Cornelissen, P. Van der Perre, G., Christensen, A. B. 

Ammitzboll, F., Dyrbye, C.," Assessment of Tibial Stiffness by 

Vibration Testing in Situ – II. Influence of Soft Tissues, Joints and 

Fibula", Journal of Biomechanics, v. 19, pp. 551-561, 1987. 

[17] Dhoerty, W.P., Bovill, E. G., Wilson, E. L. ," Evaluation of the Use of 

Resonant Frequencies to Characterize Physical Properties of Human 

Long Bones", Journal of Biomechanics, v. 7, pp. 559-561, 1974. 

[18] Thomsen, J.J.," Modeling Human Tibia Structural Vibrations", 

Journal of Biomechanics, v. 23, n. 3, pp. 215-228, 1990. 

[19] Hobatho, M.C., Darmana, Pastor, P., R., Barrau, J. J., Laroze, S., 

Morucci, J. P.," Development of a Three Dimensional Finite Element 

Model of a Human Tibia Using Experimental Modal Analysis", 

Journal of Biomechanics, v. 24, pp. 371-383, 1991. 

[20] John, M., Jurist," In Vivo Determination of the Elastic Response of 

Bone II. Ulnar Resonant Frequency in Osteoporotic, Diabetic and 

Normal Subjects", Physics in Medicine and Biology, v. 15, no. 3, pp. 

427-434, 1970. 

[21] Christensen, A.B., Tougaard, L., Dyrbye, C., Vibe-Hansen, H.," 

Resonance of Human Tibia: Method, Reproducibility and Effect of 

Transection", Acta Orthop. Scand., v. 53, pp. 867-874, 1982. 

[22] Hobatho, M.C., Lowet, G., Cornelissen, M., Cunningham, J., Van der 

Perre, G., Morucci, J. P.," Determination of Resonant Frequencies and 



91

Mode Shapes of Human Tibiae in Vivo", Proceedings of the Annual 

International Conference of the IEEE, v.14, pp. 18-19, 1992. 

[23] Nowak, M.D., Selamet, M. N., Baharin, N. A., Rahman, W. L. A.," 

Multiple Modal Frequency Analysis for Monitoring of Bone 

Healing", Bioengineering Conference, Proceedings of the IEEE 

Seventeenth Annual Northeast, pp. 225-226, 1991. 

[24] Akkus, O.," Biomechanical Evaluation of Fracture Healing In Long 

Bones: An Experimental Study on Intermedullarly Stabilized Rabbit 

Tibia", Department of Engineering Sciences, Middle East Technical 

University, M.Sc. Thesis, 1995. 

[25] Saha, S., Lakes, R. S.," The Effect of Soft Tissue on Wave Propagation 

and Vibration Tests for Determining the In Vivo Properties of Bone", 

Journal of Biomechanics, v.10, pp. 393-401, 1977. 

[26] Soethoudt, A.A., Conza, N. E., Rixen, D. J. First Steps to Measure the 

Dynamical Properties of Human Pelvis in Vivo. Proceedings of the 

25th International Modal Analysis Conference, Orlando, Florida, 

February 19-22, 2007. 

[27] Hight, T.K., Pizialit, R. L., Nagel, D. A.," Natural Frequecny Analysis 

of a Human Tibia", Journal of Biomechanics, v. 13, pp. 139-147, 1980. 

[28] Jurist, J.M., Kianian, K.," Three Models of the Vibrating Ulna", 

Journal of Biomechanics, v. 6, pp. 331-342, 1973. 

[29] Collier, R.J., Nadav, O., Thomas, T. G.," The Mechanical Resonances 

of Human Tibia: Part I - In Vitro", Journal of Biomechanics, v. 15, pp. 

545-553, 1982. 

[30] Chen, I.I., Saha, S.," Wave Propagation Characteristics In Long Bones 

To Diagnose Osteoporosis", Journal of Biomechanics, v. 20, pp. 523-

527, 1986. 



92

[31] Hobatho, M.C., Darmana, R., Barrau, J. J., Laroze, S., Morucci, J. P.," 

Natural Frequency Analysis of a Human Tibia", Engineering in 

Medicine and Biology Society, Proceedings of the Annual 

International Conference of the IEEE, v. 2, pp. 690-691, 1988. 

[32] Couteau, B., Hobatho, M. C., Darmana, R., Brignola, J. C., Arlaud, J. 

Y.," Finite Element Modelling of The Vibrational Behaviour of the 

Human Femur Using CT-Based Individualized Geometrical and 

Material Properties", Journal of Biomechanics, v. 31, pp. 383-386, 

1998. 

[33] Taylor, W.R., Roland, E., Ploeg, H., Hertig, D., Klabunde, R., Warner, 

W. D., Hobatho, M. C., Rakotomanana, L., Clift, S. E.," Determination 

of Orthotropic Bone Elastic Constants Using FEA and Modal 

Analysis", Journal of Biomechanics, v. 35, pp. 767-773, 2002. 

[34] Lacroix, D., Prendergast, P. J.," Three Dimensional Simulation of 

Fracture Repair in Human Tibia", Computer Methods in 

Biomechanics and Biomedical Engineering, v. 5, pp. 369-376, 2002. 

[35] Ewins, D.J.," Modal Testing: Theory, Practice and Application", 2. 

Edition, Research Studies Press Ltd., 2000. 

[36] Silva, J.M.M., Maia N. M. M.," Modal Analysis and Testing", Kluwer 

Academic Publishers, 1998. 

[37] He, J., Fu, Z.," Modal Analysis", Butterworth-Heinemann, 2001. 

[38] Richardson, M.H., Formenti, D. L. Parameter Estimation From 

Frequency Response Measurements Using Rational Fraction 

Polynomials. Proceedings of the 1st International Modal Analysis 

Conference, Orlando, Florida, November, 1982. 

[39] Kelly, L.G.," Handbook of Numerical Methods and Applications", 

Addison-Wesley Publishing Company, 1967. 



93

[40] Whitty, M.A., Akhras, G., Comparison of Two Finite Element Models of a 

Human Tibia, in 2006 Annual General Conference of the Canadian Society 

for Civil Engineering. 2006: Calgary, Alberta, Canada. 

[41] Fung, Y.C.," Biomechanics: Mechanical Properties of Living Tissues", 

2. Edition, Springer, 1993. 

 

  



94

APPENDIX A 

 

STATISTICAL ANALYSIS 

 

A.1. Pearson Product Moment Correlation Coefficient 

 

In statistics, Pearson correlation (sample correlation coefficient) is used to 

obtain the linear dependence between two variables. The Pearson 

correlation coefficient can be calculated using the following formula, 
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where  ,  ,  ,  ,  x yN x y σ σ are number of data points, mean value of sample x, 

mean value of sample y, standard deviation of sample x and standard 

deviation of sample y, respectively. 

 

The Pearson correlation coefficient ranges from -1 to 1. The value of ‘-1’ 

means that two variable are inversely linear whereas the value of ‘1’ means 

that there is a perfect linear relationship between two variables. On the 

other hand, the value of ‘0’ implies that there is no relationship between the 

selected two variables.    

 

A.2. Kendall Tau Rank Correlation Coefficient  

 

Kendall tau rank correlation coefficient is a non-parametric statistical 

analysis used in order to measure the degree of correspondence between 
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two rankings, i.e. two set of data xi and yi expressed as (xi, yi). It can be 

calculated by the following equation,  

 

1
( 1)

2

c dn n

N N
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 (A.2. 1) 

 

where nc, nd and N are concordant pairs, discordant pairs and total number 

of pairs. Concordant pairs are pairs of data sets where, 

 

( )1 2 1 2sgn sgn( )x x y y− = −  (A.2. 2) 

 

Similarly, discordant pairs are pairs of data sets where, 

 

( )1 2 1 2sgn sgn( )x x y y− = − −  (A.2. 3) 

 

Again, Kendall tau rank correlation coefficient’s value ranges from -1 to 1. 

The value of ‘-1’ means that the two sets of data selected are completely in 

disagreement whereas the value ‘1’ means that the selected two sets of data 

are perfectly in agreement with each other. On the other hand, the value of 

‘0’ implies that the two sets of data selected are completely unrelated. 

 

A.3. Spearman’s Rank Correlation Coefficient 

 

Spearman’s rank correlation coefficient is also a non-parametric correlation 

used in order to see how well an arbitrary function can be fitted between 

two variables. It can be calculated by the following formula, 
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where N is the total number of data points. Again, Spearman’s rank 

correlation coefficient’s value obtained from equation (A.3.1) ranges from -1 

to 1. The value of ‘-1’ means that a perfect negative correlation exists 

whereas the value ‘1’ means that a perfect positive correlation exists 

between the selected data sets. On the other hand, the value of ‘0’ implies 

that the two sets of data selected are completely unrelated and thus no 

correlation exists between them. 
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