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ABSTRACT 

 

 

A SURVEY ON QUATERNARY CODES AND THEIR BINARY IMAGES 

 

Özkaya, Derya 

M.S., Department of Cryptography 

Supervisor:    Assoc. Prof. Dr. Melek Diker Yücel 

 

August 2009, 97 pages 

 

Certain nonlinear binary codes having at least twice as many codewords as any 

known linear binary code can be regarded as the binary images of linear codes over 

4Z . This vision leads to a new concept in coding theory, called the 4Z -linearity of 

binary codes. This thesis is a survey on the linear quaternary codes and their binary 

images under the Gray map. The conditions for the binary image of a linear 

quaternary code to be linear are thoroughly investigated and the 4Z -linearity of the 

Reed-Muller and Hamming codes is discussed. The contribution of this study is a 

simplification on the testing method of linearity conditions via a few new lemmas 

and propositions. Moreover, binary images (of length 8) of all linear quaternary 

codes of length 4 are analyzed and it is shown that all 184 binary codes in the 

nonlinear subset of these images are worse than the (8, 4) Hamming code. 

 

This thesis also includes the Hensel lift and Galois ring which are important tools for 

the study of quaternary cyclic codes. Accordingly, the quaternary cyclic versions of 

the well-known nonlinear binary codes such as the Kerdock and Preparata codes and 

their 4Z -linearity are studied in detail.  

 

Keywords: quaternary code, binary image, Gray map, 4Z -linearity. 
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ÖZ 

 

DÖRTLÜ KODLAR VE İKİLİ GÖRÜNTÜLERİ ÜZERİNE BİR ARAŞTIRMA  

 

Özkaya, Derya 

Yüksek Lisans, Kriptografi Bölümü 

Tez Yöneticisi:    Doçent Dr. Melek Diker Yücel 

 

Ağustos 2009, 97 sayfa 

 

Bilinen doğrusal ikili kodların en az iki katı kod sözcüğüne sahip bazı doğrusal 

olmayan ikili kodlar, 4Z  üzerindeki doğrusal kodların ikili görüntüleri olarak 

görülebilir. Bu bakış, kodlama teorisinde ikili kodların 4Z -doğrusallığı diye 

adlandırılan yeni bir kavrama yol açmıştır. Bu tez, dörtlü kodlar ve onlardan Gray 

eşlemesiyle elde edilen ikili görüntüleri üzerine bir araştırmadır. İkili görüntülerin 

doğrusal olması için gereken şartlar ayrıntılı olarak incelenmiş; ayrıca Reed-Muller 

ve Hamming kodlarının 4Z -doğrusallığı ele alınmıştır. Bu çalışmanın katkısı, 

doğrusallık koşullarını sınama yönteminin birkaç yeni ön sav ve önermeyle 

basitleştirilmesidir. Ayrıca, 4 uzunluğundaki bütün doğrusal dörtlü kodların (8 

uzunluğundaki) ikili görüntüleri incelenmiş ve bu görüntülerin doğrusal olmayan 

altkümesindeki toplam 184 kodun, (8, 4) Hamming koddan daha kötü olduğu 

gösterilmiştir. 

 

Bu tez dörtlü çevrimsel kodların çalışılması için önemli araçlar olan Hensel lift ve 

Galois halkasını da içermektedir. Bu araçların yardımıyla, tanınmış doğrusal 

olmayan ikili kodlardan Kerdock, Preparata ve bunların 4Z -doğrusallığı, ayrıntılı 

olarak çalışılmıştır.  

 

Anahtar Kelimeler: dörtlü kod, ikili görüntü, Gray eşlemesi, 4Z -doğrusallık. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

1.1 BACKGROUND 

 

The history of error control coding began in 1948 with the publication of a famous 

paper by Claude Shannon [45]. The first block codes were introduced by Hamming 

[24] in 1950. Block codes for error control is a set of n-tuples, called codewords, in 

some finite alphabet, usually the finite field ( )GF q . In applications, the most popular 

block codes are binary, which are subsets of the vector space over (2)GF , especially 

the linear ones. Linear codes are defined as subspaces of a vector space; hence, the 

sum of the two codewords is a codeword and any scalar multiple of a codeword is 

also a codeword. So that the large number of errors can be corrected, it is desirable 

that codewords be very dissimilar from each other. This dissimilarity is measured by 

the Hamming distance. The minimal Hamming distance of the code, which is defined 

as the minimum of the distances between any two different codewords, is a measure 

of the efficiency of the code. Another measure is the code rate that is equal to the 

number of information symbols in the codeword divided by the codeword symbol 

length. One of the fundamental problems in coding theory is to construct and study 

codes with large rate subject to the constraint that the minimal distance of the code is 

some given integer. 

 

Historically, linear codes have been the most important codes since they have a clean 

structure that makes them simpler to discover, to understand, to encode and decode. 

However, in order to get the largest possible number of codewords with a fixed block 

size and correction capability, it is sometimes necessary to consider more general 

codes, without this special linear structure. Around 1970, several nonlinear binary 
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codes having at least twice as many codewords as any known linear code with the 

same length and minimal distance have been constructed. Some of the best known 

are the Nordstrom-Robinson codes [41] found in 1967, the Preparata codes [43] in 

1968, the Kerdock codes [32] in 1972, the Goethals codes [21], [22] in 1974, the 

Delsarte-Goethals codes [19] in 1975 and the Goethals-Delsarte codes [27] in 1990. 

Although these nonlinear binary codes are not so easy to describe, to encode and 

decode as the linear codes, they have great error correcting capabilities as well as 

remarkable structure. For instance, the Kerdock and Preparata codes are formal duals 

as named by Calderbank, Hammons, Kumar, Sloane and Solé in 1993 in [25]. 

Actually, algebraic duality is defined only for linear codes, whenever they span 

orthogonal subspaces. Kerdock and Preparata code sets are not orthogonal; however, 

the weight distribution of one is the MacWilliams transform of the weight 

distribution of the other, which is a property known to hold for dual linear codes as 

well [39]. It is also shown that these nonlinear binary codes (except for the 

Nordstrom-Robinson code) are not unique and large numbers of codes exist with the 

same weight distribution [1], [13], [29], [30], [31], [50].  

 

In 1989, Solé discovered a family of nearly optimal four-phase sequences of period 
2 12 1r+ − , with alphabet {1,  ,  1,  }i i− − , 1i = −  [48]. This family may be viewed as 

a linear code over the ring 4Z  after replacing each element ai  by its exponent 

{0,  1,  2,  3}a∈ . These sequences have low correlation values and possess a large 

minimal Euclidean distance. Thus, the family has potential for excellent error 

correcting capability [26]. 

 

After this discovery, the study of linear codes over finite rings has gained 

prominence and several researchers have shown that the well-known nonlinear 

binary codes are actually equivalent to linear codes over the ring of integers modulo 

4, so they were called 4Z -linear. In 1989, Nechaev showed that in fact Kerdock 

codes can be viewed as cyclic codes over 4Z  [40]. Hammons, Kumar, Calderbank, 
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Sloane and Solé [26] noticed the striking resemblance between the 2-adic expansions 

of the quaternary codewords and the standard construction of the Kerdock codes. 

Although the Preparata code is not a 4Z -linear code, a binary code with the same 

parameters that is called Preparata-like is 4Z -linear. Furthermore, Calderbank, 

Hammons, Kumar, Sloane and Solé explained the fascinating relationship between 

the weight distributions of Kerdock and Preparata-like codes when they showed in 

1993 that these well-known codes are the Gray mapped binary images of the linear 

quaternary codes that are dual to one another [8], [25], [26]. 4Z -dual of any 

Preparata-like code is called a Kerdock-like code. The Gray map translates a 

quaternary code with high minimal Lee or Euclidean distance into a binary code of 

twice the length with high minimal Hamming distance.  

 

The Kerdock and Preparata codes exist for all lengths 4 16kn = ≥ . At length 16, they 

coincide, giving the Nordstrom-Robinson code, which is the unique binary code of 

length 16, consisting 256 codewords and minimum distance 6 [41], [47], [23]. 

Moreover, it is equivalent to a self-dual quaternary code of length 8, called the 

‘octacode’ [14], [15], [20]. It is discovered that the Goethals codes of minimal 

distance 8 and the high minimal distance codes of Delsarte and Goethals have simple 

descriptions as extended cyclic codes over 4Z  [26]. The existence of quaternary 

versions of Reed-Muller and Hamming codes is also shown [26]. These discoveries 

lead to a new direction in coding theory, the study of 4Z -cyclic codes that uses the 

important tools of Galois rings and the Hensel Lift.  

  

 

1.2  SCOPE OF THE THESIS 

 

This thesis work is a survey on the quaternary codes; using mainly the seminal paper 

written by Hammons, Kumar, Calderbank, Sloane and Solé [26] and the book by 
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Wan [52], which is an extended form of lecture notes basically depending on [26]. 

Our modest contributions appear in Section 3.4, in the second part of Section 3.5 and 

in some of the examples.  

 

The thesis is arranged as follows. The second chapter gives the basic properties of 

quaternary codes. The structure of the generator matrices of the linear quaternary 

codes and their dual codes is discussed. Several kinds of weights and weight 

enumerators of the quaternary and binary codes are summarized. The relationship 

between the weight enumerators of the codes and their duals by using the strongest 

tool, MacWilliams equations, is discussed. Finally, basic definitions of distance 

enumerators of binary codes that will be used in the following chapters are given. 

 

In the third chapter, the Gray map, and the relations between quaternary codes and 

their binary images are recalled. The properties of the binary images of the linear 

quaternary codes and their duals under the Gray map are explained. Moreover, the 

conditions for the binary image of a linear quaternary code to be linear and for a 

binary code to be 4Z -linear are given. The construction of linear quaternary codes by 

using linear binary codes is discussed following the related literature. In Section 3.4, 

we present some conditions that we derive to simplify the linearity check for the 

binary image of a linear quaternary code. Finally, in Section 3.5, after discussing the 

4Z -linearity of the Reed-Muller and Hamming codes, we analyze all linear 

quaternary codes of length 4 to answer the question whether or not there is a 

nonlinear but 4Z -linear code better than the extended Hamming code of length 8. 

 

In the fourth chapter, we study the cyclic codes over 4Z  by means of Galois rings 

(4 )mGR . The basic facts about the polynomials of the polynomial ring 4[ ]XZ , and 

then the properties of the Galois ring and the automorphisms, the generalized 

Frobenius and trace maps of (4 )mGR  are given. Finally, the quaternary cyclic codes 

are defined and the properties of their generator matrices are stated. 
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In the fifth chapter, we study the well-known nonlinear binary codes. It is firstly 

shown that Kerdock codes are extended cyclic codes over 4Z  and are simply 4Z -

analogues of the first-order Reed-Muller codes. In the second section, it is shown that 

the binary images of the quaternary duals of the Kerdock codes are the binary images 

of the quaternary Preparata codes, which are called the Preparata-like codes. The 

third section defines a family of quaternary Reed-Muller codes, which generalizes 

the quaternary Kerdock and Preparata-like codes. In the final section, another 

generalization of Preparata-like codes, the quaternary Goethals codes are explained. 

Moreover, it is shown that the nonlinear binary Delsarte-Goethals codes are also 

extended cyclic codes over 4Z , and that their 4Z -duals have essentially the same 

properties as the Goethals codes and the “Goethals-Delsarte” codes. 

 

The final chapter summarizes the thesis. 

 



 6

CHAPTER 2 
 
 

QUATERNARY CODES AND WEIGHT ENUMERATORS 
 

 

An error correcting code is called a block code if the coded information can be 

divided into blocks of n symbols. A binary error correcting code of length n is just a 

subset of the vector space 2
nF , the most standard ones being linear codes which are 

subspaces of 2
nF . They are easier to construct, encode and decode than nonlinear 

codes. However, there are well-known families of nonlinear codes with high error 

correcting capability that are equivalent to linear codes over 4Z , the ring of integers 

modulo 4. 

 

In this chapter, we discuss codes over 4Z , the so-called quaternary codes. Linear 

codes over 4Z , the structure of their generator matrices, their weight enumerators 

and their dual codes are studied. Furthermore, the weight and distance enumerators 

for binary codes are defined for use in later chapters. Examples without any given 

reference are those that we generate.  

 

 

2.1 QUATERNARY CODES 

 

Let 4
nZ  be the set of n-tuples over 4Z , the ring of integers modulo 4, i.e., 

                    

4 1 4{( ,..., ) |  for 1,..., }n
n ix x x i n= ∈ =Z Z . 

 

For all 1 1 4x ( ,..., ) and y ( ,..., ) n
n nx x y y= = ∈Z , component-wise addition is defined by 
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1 1 1 1x y ( ,..., ) ( ,..., ) ( ,..., )n n n nx x y y x y x y+ = + = + + . 

 

Then 4
nZ  is an additive abelian group of order 4n  with respect to component-wise 

addition.  

 

Definition 2.1.1. [48] Any nonempty subset C of 4
nZ  is called a quaternary code or a 

code over 4Z , and n is called the length of the code C. Each element of the set is a 

codeword. 

 

Definition 2.1.2. [48] If C is an additive subgroup of 4
nZ  then it is called a linear 

quaternary code, or a linear code over 4Z .  

 

The standard inner product of any two words 1 1x ( ,..., ) and y ( ,..., )n nx x y y= =  in 4
nZ  

is defined by 

   

1 1x y ... n nx y x y• = + + . 

 

If x y 0• = , then x and y are said to be orthogonal.  

 

Definition 2.1.3. [48] Let C be a linear quaternary code of length n, its dual ⊥C  is 

the set of words over 4
nZ  that are orthogonal to all codewords of C, i.e.,    

 

4{x | x y 0  for all y }n⊥
•= ∈ = ∈C CZ . 

 

Since ⊥C  is a subgroup of 4
nZ , it is also a linear quaternary code, called the dual 

code of C. C is called a self-orthogonal code if ⊥⊂C C , and it is called a self-dual 

code if ⊥=C C .  
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Two quaternary codes both of length n are said to be equivalent, if one can be 

obtained from the other by permuting the coordinates and changing the signs of 

certain coordinates. If only coordinate permutations are used, then the codes are 

called permutation-equivalent.   

 

Let C be a linear quaternary code of length n. A k n×  matrix G over 4Z  is called a 

generator matrix of C if the rows of G generate C and no proper subset of the rows 

of G generates C.  

 

Proposition 2.1.4. [26] Any linear quaternary code C containing some nonzero 

codewords is permutation-equivalent to the linear quaternary code with generator 

matrix of the form 

 

                                                  
1

2

    

0  2 2

k

k

I A B
G

I D

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

,    (2.1) 

 

where 
1kI  and 

2kI  denote the 1 1k k×  and 2 2k k×  identity matrices, respectively, A and 

D are 2Z -matrices, and B is a 4Z -matrix. Then C is an abelian group of type 1 24 2k k , 

containing 1 222 k k+  codewords and C is a free 4Z -modulo if and only if 2 0k = .  

 

Proposition 2.1.4 can be proved by using induction on length n. 

 

The type of a linear quaternary code can be found when vectors in the generator 

matrix have some specific properties as given in the following lemma. The proof can 

be found in [17]. 
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Lemma 2.1.5. [17] Let 
1 21 1v , ..., v , u , ..., uk k  be 1 2k k+  linearly independent binary 

vectors. Then, the linear quaternary code generated by the matrix (2.1) with row 

vectors 
1 21 1v , ..., v , 2u , ..., 2uk k  is of type 1 24 2k k .         

 

Let 
1 1 1 21 4 1 2,...,  and  ,...,k k k km m m m+ +∈ ∈Z Z , encoding is carried out by writing the 

information symbols in the form 
1 1 1 21 1m ... ...k k k km m m m+ += , and matrix multiplication 

mG .  

 

The following proposition provides the generator matrix of the dual code of a linear 

quaternary code, where trA  denotes the transpose of the matrix A.  

 

Proposition 2.1.6. [26] The dual code ⊥C  of the linear quaternary code C of length 

n with generator matrix (2.1) has the generator matrix 

 

                              
1 2

2

tr   D     

        2        2      0

tr tr tr
n k k

tr
k

B D A I
G

A I

− −⎛ ⎞− −
⎜ ⎟=
⎜ ⎟
⎝ ⎠

. (2.2) 

 
⊥C  is an abelian group of type 1 2 24 2n k k k− −  and contains 1 22 22 n k k− −  codewords. 

 

The matrix (2.2) is called a parity check matrix of the linear quaternary code C 

generated by the rows of the matrix (2.1). A word 1c ( ,..., )nc c=  belongs to C if and 

only if c is orthogonal to every row of (2.2).  

 

Example 2.1.7. [52] Let 4K  denote the linear quaternary code with generator matrix  
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1 1  1 1
0 2 0 2
0 0 2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (2.3) 

 

By Proposition 2.1.4, 4K  is of type 1 24 2  where 1 1k =  and 2 2k = , and hence 

4| | 16=K . By Proposition 2.1.6, 4
⊥K  is also of type 1 24 2  and since any two rows of 

(2.3), distinct or not, are orthogonal, 4 4
⊥=K K , i.e., 4K  is a self-dual code.  

 

Example 2.1.8. The linear quaternary code 1C  with generator matrix  

 

                                              
1 0 0 3 1
0 1 0 2 1
0 0 1 1 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.4)  

 

is of type 34 , where 1 3k =  and 2 0k = , and hence 12
1| | 2 64k= =C . By Proposition 

2.1.6, 1
⊥C  is of type 24  and hence 1| | 16⊥ =C . 1

⊥C  has generator matrices 

 

                                
1 2 3 1 0
3 3 2 0 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

    or     
1 0 1 2 3
0 1 3 3 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2.5) 

   

Example 2.1.9. [52] The linear quaternary code 8O  with generator matrix 

                                    

                                      

1 0 0 0 3 1 2 1
0 1 0 0 1 2 3 1
0 0 1 0 3 3 3 2
0 0 0 1 2 3 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.6) 
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is of type 44  where 1 4k =  and 2 0k = , and hence 8| | 256=O . By Proposition 2.1.6, 

8
⊥O  is also of type 44  and since any two rows of the generator matrix are orthogonal, 

8 8
⊥=O O , i.e., 8O  is self-dual. This special code 8O  having the generator matrix (2.6) 

is called octacode. 

 

 

2.2 WEIGHT ENUMERATORS  

 

The minimum distance of a linear code tells us how many errors a received word 

may contain and still be decoded correctly. Often, it is necessary to have more 

detailed information about the distances in the code. For an arbitrary code, one wants 

to know the number codewords at any given distance i  from the chosen codeword. 

For linear codes this number is independent of the codeword chosen, and hence 

depends only on how many codewords there are of each given weight i . This 

information is provided by the weight enumerator.  

 

In this section, we study the weight and distance properties of binary and quaternary 

codes, and then discuss the relationship between the weight enumerators of dual 

codes. Most definitions and properties described here can be found in [26], [33], [39] 

and [52].  

    

Let C be a binary code of length n over 2F , which is not necessarily linear. The 

Hamming weight of 1 2c ( ,  ,..., )nc c c C= ∈  is the number of nonzero components of 

c , i.e., 

(c) |{ | 0} | .H jw j c= ≠  

 

This weight function defines also a distance function, which is called the Hamming 

distance. The Hamming distance between two vectors of the same length 
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1 2c ( ,  ,..., )nc c c=  and 1 2c ( ,  ,..., )nc c c C′ ′ ′ ′= ∈  is defined as the number of components 

at which the two vectors are different, i.e., 

 

(c,  c ) |{ |1 ,  } | .H j jd j j n c c′ ′= ≤ ≤ ≠  

 

Let iA  be the number of codewords of Hamming weight i  in C, i.e., 

   

|{c | (c) } |,  0,  1,..., .i HA C w i i n= ∈ = =  

 

It is easily verified that 0 1A =  when C∈0 , and 
0

| |i
n
i A C= =∑ . The set 

0 1{ , ,..., }nA A A  is called the weight distribution of code C. 

 

Definition 2.2.1. [39] The weight enumerator of the binary code C is defined by 

 

                                               
0

( , ) .
n

n i i
C i

i
W X Y A X Y−

=

= ∑  (2.7) 

 

Weight enumerators are not at all easy to determine. However, the weight 

enumerator of a given code determines the weight enumerator of its dual in a quite 

simple manner. Let C be a linear binary code of length n, and C⊥  be its dual code, 

then their weight enumerators ( , )CW X Y  and ( , )
C

W X Y⊥  are connected by the 

MacWilliams identity 

 

1( , ) ( , )
| | CC

W X Y W X Y X Y
C⊥ = + −  . 

 

For studying the MacWilliams identity, the Krawtchouk polynomial is a good tool 

which is described in the following definition.  
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Definition 2.2.2. [49] Let n be a fixed positive integer, q a prime power, and x an 

indeterminate. The polynomials  

 

0
( ) ( ,  ) ( 1) ( 1) ,    0,  1,  2,...,

k
j k j

k k
j

x n x
K x K x n q k

j k j
−

=

−⎛ ⎞⎛ ⎞
= = − − =⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

∑  (2.8) 

 

are called the Krawtchouk polynomials, where 

 

( 1) ( 1) ,     if  is a positive integer,
!

              
               1,                      if  0,
               0,                      otherwise.

x x x j j
j

x
j

j

− − +⎧
⎪
⎪⎛ ⎞ ⎪= ⎨⎜ ⎟

⎝ ⎠ ⎪ =
⎪
⎪⎩

L

  

 

The Krawtchouk polynomial gives a relation between weight distributions of two 

codes that satisfy the MacWilliams identity. 

 

Proposition 2.2.3. [49] Let C and C′  be two codes of length n over qZ  where 2q≥ , 

and iA  and iA′  be the number of codewords of weight i in C and C′ , respectively. If  

 

                                   1( , ) ( , )
| |C CW X Y W X Y X Y
C′ = + −  , (2.9)   

then                     

                                    
0

1 ( ), 0, 1,...,
| |

n

k i k
i

A A K i k n
C =

′ = =∑     , (2.10) 

 

and conversely. 
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By Proposition 2.2.3, weight distribution of any two codes which satisfy 

MacWilliams identity are also related by (2.10) even if they are not dual to each 

other or not linear.   

 

Thus by Proposition 2.2.3 the weight distribution 0 1{ , ,..., }nA A A  of a binary code C 

and the weight distribution 0 1{ , ,..., }nA A A′ ′ ′  of C⊥  are connected by (2.10). 

 

Now we study the weight enumerators of quaternary codes. Several weight 

enumerators are associated with quaternary codes; as will be seen in the following 

four definitions.   

 

Definition 2.2.4. [33] The complete weight enumerator (or cwe) of the quaternary 

code C is defined to be the homogeneous polynomial of degree n in four 

indeterminates 0 1 2 3,  ,   and X X X X  as 

 

                 0 31 2(c) (c)(c) (c)
0 1 2 3 0 1 2 3

c
( , , , ) n nn ncwe X X X X X X X X

∈

= ∑C
C

, (2.11) 

 

where (c)jn  is the number of components of c that are congruent to j (mod 4).  

 

Example 2.2.5. [52] Let 4K  be the linear quaternary code introduced in Example 

2.1.7 with generator matrix  

 

1 1  1 1
0 2 0 2
0 0 2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 

4K  has 16 codewords and the numbers (c)jn , where 4j∈Z  and 4c∈K , are shown 

in the following table. 
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Table 2. 1 The numbers jn  for 4K .  

 
 0n  1n  2n  3n  

0000 4 0 0 0 
1111 0 4 0 0 
2222 0 0 4 0 
3333 0 0 0 4 
0202 2 0 2 0 
1313 0 2 0 2 
2020 2 0 2 0 
3131 0 2 0 2 
0022 2 0 2 0 
1133 0 2 0 2 
2200 2 0 2 0 
3311 0 2 0 2 
0220 2 0 2 0 
1331 0 2 0 2 
 2002 2 0 2 0 
3113 0 2 0 2 

 

Therefore the complete weight enumerator of 4K  can be found as 

 

4

4 4 4 4 2 2 2 2
0 1 2 3 0 1 2 3 0 2 1 3( , , , ) 6 6cwe X X X X X X X X X X X X= + + + + +K . (2.12) 

 

Example 2.2.6. Let 1
⊥C  be the linear quaternary code introduced in Example 2.1.8 

with generator matrix  

 

1 2 3 1 0
3 3 2 0 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

as in (2.5). 1
⊥C  has 16 codewords and the numbers (c)jn  for 4c∈K  are shown in the 

following table. 
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Table 2. 2 The numbers jn  for 1
⊥C . 

 
 0n  1n  2n  3n  

00000 5 0 0 0 
01111 1 4 0 0 
02222 1 0 4 0 
03333 1 0 0 4 
22002 2 0 3 0 
20220 2 0 3 0 
33201 1 1 1 2 
30312 1 1 1 2 
31023 1 1 1 2 
32130 1 1 1 2 
11203 1 2 1 1 
12310 1 2 1 1 
13021 1 2 1 1 
10132 1 2 1 1 
23113 0 2 1 2 
21331 0 2 1 2 

 

Therefore we have the complete weight enumerator of 1
⊥C  

 

1

5 4 4 4 2 3 2 2
0 1 2 3 0 0 1 0 2 0 3 0 2 1 2 3

2 2
0 1 2 3 0 1 2 3

( , , , ) 2 2

                                   4 4 .

cwe X X X X X X X X X X X X X X X X

X X X X X X X X

⊥ = + + + + +

+ +

C
 (2.13) 

 

Example 2.2.7. [52] The linear quaternary code 8O  introduced in Example 2.1.9 with 

generator matrix (2.6) has 256 codewords. The complete weight enumerator of the 

octacode 8O  can be found as  

 

8 0 1 2 3

8 8 8 8 4 4 4 4 3 3
0 1 2 3 0 2 1 3 0 1 2 3

3 3 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3

( , , , )

               14 14 56

                  56 56 56 .

cwe X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X

= + + + + + +

+ + +

O

 (2.14) 
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Permutation-equivalent quaternary codes have the same complete weight 

enumerator, but equivalent codes may have distinct cwe’s because of the sign 

changing. The appropriate weight enumerator for an equivalence class of codes is the 

symmetrized weight enumerator (or swe), obtained by combining 1 3 and X X  in 

(2.11). 

 

Definition 2.2.8. [15] The symmetrized weight enumerator (or swe) of the quaternary 

code C is given by  

 
0 1 3 2(c) (c) (c) (c)

0 1 2 0 1 2 1 0 1 2
c

( , , ) ( , , , ) n n n nswe X X X cwe X X X X X X X+

∈

= = ∑C C
C

. (2.15) 

 

Example 2.2.9. The symmetrized weight enumerators of 4K , 1
⊥C  and 8O  are 

 

4

4 4 4 2 2
0 1 2 0 1 2 0 2( , , ) 8 6swe X X X X X X X X= + + +K ,   (2.16) 

 

1

5 4 2 3 4 4 3
0 1 2 0 0 1 0 2 0 2 1 2 0 1 2( , , ) 2 2 2 8swe X X X X X X X X X X X X X X X⊥ = + + + + +

C
, (2.17) 

 

8

8 8 8 4 4 4 2 2
0 1 2 0 1 2 0 2 0 1 2 0 2( , , ) 16 14 112 ( )swe X X X X X X X X X X X X X= + + + + +O . (2.18) 

 

Now, we define other notion of weight and distance for quaternary codes and the 

appropriate weight enumerators. 

 

In communication schemes that use quaternary modulation, one can model the 

alphabet as a set of points regularly spaced on a circle. Usually, the four alphabet 

letters 0, 1, 2, 3 are represented by the signal points 0 1 2 31,  ,  1,  i i i i i i= = = − = − , 

where 1i = − , in the complex plane. 
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The effect of additive, zero-mean Gaussian noise is such that a transmitted symbol is 

more likely received as a symbol close to it. So, Hamming distance is not a natural 

metric for measuring errors for quaternary codes. Instead, Lee weight and Lee 

distance is used for this purpose.  

 

The Lee weight of an element x of 4Z , with the elements {0, 1, 2, 3}, is defined as 

 

                                            

  0    if    0

( )   1    if    1 or 3

 2    if    2.

L

x

w x x

x

=⎧
⎪⎪= =⎨
⎪

=⎪⎩

 (2.19) 

 

 and the Lee weight of a sequence 1 4x ( ,..., ) n
nx x= ∈Z  is defined to be the integral 

sum of its n components, i.e. 
1

(x) ( )
n

L L i
i

w w x
=

= ∑ . 

 

This weight function defines a distance ( ,  )Ld  on 4Z , which is called the Lee 

distance. The Lee distance between two elements x and y of  4Z  is the Lee weight of 

their difference magnitude, i.e., ( , ) ( )L Ld x y w x y= − . The Lee distance between two 

sequences 1x ( ,..., )nx x=  and 1y ( ,..., )ny y=  of 4
nZ  is defined as the sum of the Lee 

weights of the component-wise difference magnitudes, i.e., 

 

1
(x, y) ( )

n

L L i i
i

d w x y
=

= −∑ . 

 

Calling 2 ( , )a b
Ed i i , the square of the Euclidean distance between ai  and bi  in the 

complex plane, where 4,  a b∈Z ,  one can show that [52]  

                                   



 19

21( , ) ( , ).
2

a b
L Ed a b d i i=  

 

More generally, to any 1 4x ( ,..., ) n
nx x= ∈Z  there corresponds a complex vector 

1x ( ,..., ).nxxi i i=  For any 4x, y n∈Z , the square of the Euclidean distance between xi  

and yi  is given by  

2 x y 2

1
( , ) ( , ).i i

n
x y

E E
i

d i i d i i
=

=∑  

 

Then the Lee distance in terms of the Euclidean distance is given by  

   

                                                   2 x y1(x, y) ( , ).
2L Ed d i i=  (2.20) 

  

Definition 2.2.10. [26] The Lee weight enumerator of a quaternary code C  

 

                                          2 (c) (c)

c
( , ) ,L Ln w wLee X Y X Y−

∈

= ∑C
C

 (2.21) 

 

is a homogeneous polynomial of degree 2n. 

 

Since, for all 4c n∈Z , 1 2 3(c) (c) 2 (c) (c)Lw n n n= + + , from (2.15) and (2.21) it is 

deduced that 

                              

                                         2 2( , ) ( , , )Lee X Y swe X XY Y=C C . (2.22) 

 

Definition 2.2.11. [15] The Hamming weight enumerator of the quaternary code C, 

less useful than the others, is    
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                                         (c) (c)

c
( , ) H Hn w wHam X Y X Y−

∈

= ∑C
C

, (2.23) 

 

where (c)Hw is the Hamming weight of c∈C . It is related to other weight 

enumerators by  

 

                          ( , ) ( , , , ) ( , , ).Ham X Y cwe X Y Y Y swe X Y Y= =C C C  (2.24) 

 

Example 2.2.12. The Lee weight enumerators of 4K , 1
⊥C  and 8O  are 

 

4

8 4 4 8( , ) 14Lee X Y X X Y Y= + +K ,  (2.25) 

 

1

10 6 4 5 5 4 6 2 8( , ) 2 8 4Lee X Y X X Y X Y X Y X Y⊥ = + + + +
C

, (2.26) 

 

8

16 10 6 8 8 6 10 16( , ) 112 30 112Lee X Y X X Y X Y X Y Y= + + + +O . (2.27) 

 

The Hamming weight enumerators of 4K , 1
⊥C  and 8O  are 

 

4

4 2 2 4( , ) 6 9Ham X Y X X Y Y= + +K ,  (2.28) 

 

1

5 2 3 4 5( , ) 2 11 2Ham X Y X X Y XY Y⊥ = + + +
C

,  (2.29) 

 

8

8 4 4 3 5 7 8( , ) 14 112 112 17Ham X Y X X Y X Y XY Y= + + + +O . (2.30) 

 

At this point it may be instructive to compare all weight enumerators of the same 

code, say 4K :  

 

4

4 4 4 2 2 2 2 4
0 1 2 3 0 1 3 1 3 0 2 2( , , , ) 6 6cwe X X X X X X X X X X X X= + + + + +K ,   
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4

4 4 2 2 4
0 1 2 0 1 0 2 2( , , ) 8 6swe X X X X X X X X= + + +K ,    

4

8 4 4 8( , ) 14Lee X Y X X Y Y= + +K , 

4

4 2 2 4( , ) 6 9Ham X Y X X Y Y= + +K . 

 

As in the binary case, the strongest tool we have is an expression of the relationship 

between the weight enumerators of a linear quaternary code and its dual code, the 

MacWilliams equation.  

 

Theorem 2.2.13. (MacWilliams equation) [33] Let C be a linear quaternary code, 

then  

 

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

1( , , , ) ( ,  ,
| |

                                       ,  )

cwe X X X X cwe X X X X X iX X iX

X X X X X iX X iX

⊥ = + + + + − −

− + − − − +

CC C  (2.31) 

 

0 1 2 0 1 2 0 2 0 1 2
1( , , ) ( 2 ,  ,  2 )

| |
swe X X X swe X X X X X X X X⊥ = + + − − +CC C

, (2.32) 

 

1( , ) ( ,  )
| |

Lee X Y Lee X Y X Y⊥ = + −CC C
,  (2.33) 

 

1( , ) ( 3 ,  )
| |

Ham X Y Ham X Y X Y⊥ = + −CC C
.  (2.34) 

 

 

Theorem 2.2.13 can be proved by using Hadamard transform which is described in 

[52]. 
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Example 2.2.14. The linear quaternary code 1C  in Example 2.1.7 has 64 codewords. 

It is not easy to compute the weight enumerators of 1C  directly; but they can be 

computed by using Theorem 2.2.13. We have previously computed the weight 

enumerators of 1
⊥C  in (2.13), (2.17), (2.26) and (2.29). Then the weight enumerators 

of 1C  are found as  

 

1

1

0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

5 4
0 1 2 3 0 1 2 3 0 1 2 3

4
0 1 2 3 0 1 2 3 0 1 2

( , , , )

1   ( , ,
16

                     , )

1  ( ) ( )( )
16

    ( )( ) (

[

cwe X X X X

cwe X X X X X iX X iX

X X X X X iX X iX

X X X X X X X X X iX X iX

X X X X X X X X X X X

⊥= + + + + − −

− + − − − +

= + + + + + + + + − −

+ + + + − + − + + +

C

C

4
3 0 1 2 3

2 3
0 1 2 3 0 1 2 3

2 2
0 1 2 3 0 1 2 3 0 1 2 3

2
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2

)( )

    2( ) ( )

    2( ) ( )( )

    4( )( ) ( )( )

    4( )(

X X iX X iX

X X X X X X X X

X iX X iX X X X X X iX X iX

X X X X X iX X iX X X X X X iX X iX

X X X X X iX X iX

+ − − +

+ + + + − + −

+ + − − − + − − − +

+ + + + + − − − + − − − +

+ + + + + − − 2
3 0 1 2 3 0 1 2 3)( )( ) ]X X X X X iX X iX− + − − − +

 

 

 

1

1

0 1 2

0 1 2 0 2 0 1 2

5 4
0 1 2 0 1 2 0 2

2 3 4
0 1 2 0 1 2 0 1 2 0 1 2

4
0 2 0 1 2 0 1 2 0

( , , )

1   ( 2 ,  ,  2 )
|16 |

1   ( 2 ) 2( 2 )( )
|16 |

     2( 2 ) ( 2 ) ( 2 )( 2 )

     2( ) ( 2 ) 8( 2 )(

[

swe X X X

swe X X X X X X X X

X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X X

⊥= + + − − +

= + + + + + −

+ + + − + + + + − +

+ − − + + + + −

C

C

3
2 0 1 2) ( 2 )]X X X X− +
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1 1

10 6 4 5 5

4 6 2 8

1( , ) ( ,  )
|16 |

1                  ( ) 2( ) ( ) 8( ) ( )
|16 |

                     4( ) ( ) ( ) ( )

[

]

Lee X Y Lee X Y X Y

X Y X Y X Y X Y X Y

X Y X Y X Y X Y

⊥= + −

= + + + − + + −

+ + − + + −

C C

 

 

1 1

5 2 3

4 5

1( , ) ( 3 ,  )
|16 |

1                    ( 3 ) 2( 3 ) ( )
|16 |

                      11( 3 )( ) 2( )

[

]

Ham X Y Ham X Y X Y

X Y X Y X Y

X Y X Y X Y

⊥= + −

= + + + −

+ + − + −

C C

 

 

 

2.3 DISTANCE ENUMERATORS OF BINARY CODES 

 

The distance distributions and distance enumerators play an important role for the 

understanding of nonlinear binary codes to be studied in the last chapter. All 

definitions and properties described in this section can be found in [18].  

 

Let iA  be the number of codewords of Hamming weight i in C. It is easily verified 

that 0 1A =  when C∈0 , and 
0 | |i

n
i A C= =∑ . The set 0 1{ , ,..., }nA A A  is called the 

weight distribution of code C. 

 

Let C be a binary code of length n, which is not necessarily linear. Define 

 

1 |{(c,c ) | c,c C, (c,c ) } |,    0,  1,...,
| |i HB d i i n
C

′ ′ ′= ∈ = = . 
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Clearly 0 1B =  and 
0

| |i
n
i B C= =∑ . The set 0 1{ ,  ,..., }nB B B  is called the distance 

distribution of binary code C. 

 

Definition 2.3.1. [18] The distance enumerator of the binary code C is defined as  

 

0
( , )

n
n i i

C i
i

D X Y B X Y−

=

= ∑ . 

 

Let C be a binary code of length n and any c C′∈ , define  

 

c {c c |c }C C′ ′− = − ∈ , 

and  

(c ) |{c | (c c ) }|,   0, 1,.. . , .i HA C w i i n′ ′= ∈ − = =  

 

Then 0 1{ (c ), (c ),.. . , (c )}nA A A′ ′ ′  is the weight distribution of cC ′− , and the weight 

enumerator can be defined as follows  

    

c
0

( , ) (c )
n

n i i
C i

i
W X Y A X Y−

′−
=

′= ∑ . 

 

As the original weight distribution, this weight distribution also satisfies the 

properties 0 (c ) 1A ′ =  and 
0

(c ) | |n
ii

A C
=

′ =∑ .  

 

Definition 2.3.2. [39] Let C be a binary code of length n. If, for all c C∈ , 

(c)i iA A= , 0,  1,...,i n= , or equivalently, c( , ) ( , )C CW X Y W X Y−= , then C is called 

distance invariant.  
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For such a code, we also have i iB A= , 0,1,...,i n=  and ( , ) ( , )C CD X Y W X Y= . Since 

for linear binary codes, (c)i i iB A A= = , 0,1,...,i n=  and ( , )CD X Y = ( , )CW X Y =  

c ( , )CW X Y−  for all c C∈ ; linear codes are distance invariant. 

 

Similar to MacWilliams transform of weight distribution iA  and weight enumerator 

( , )CW X Y , in the following, the MacWilliams transforms of distance distribution iB  

and distance enumerator ( , )CD X Y  are defined.     

 

Definition 2.3.3. [18] Let 0 1{ ,  ,..., }nB B B  be the distance distribution of a binary 

code C of length n. Define  

 

                                       1

0
| | ( ),   0, 1, , ,

n

k i k
i

B C B K i k n−

=

′ = =∑ K  (2.35) 

  
 where ( )kK i  is the value the Krawtchouk polynomial ( )kK x  when 2q=  at the point 

x i= . 0 1{ ,  ,..., }nB B B′ ′ ′  is called the MacWilliams transform of 0 1{ ,  ,..., }nB B B . 

Moreover, the MacWilliams transform of ( , )CD X Y  is defined as in (2.9)  

 
1( , ) | | ( , )C CD X Y C D X Y X Y−′ = + − . 

 

After the definition of MacWilliams transform of distance distribution, it is expected 

that 0 1B′ =  just as 0 1B = . By using the following lemma, we can generalize this 

expectation. 

 

Lemma 2.3.4. [18] For any 2x n∈Z  with (x)Hw i= , 

 

2

x y

y
(y)

( 1) ( )
n

H

k

w k

K i⋅

∈
=

− =∑
Z

. 
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Proposition 2.3.5. [18] Let C be a binary code with distance distribution 

0 1{ ,  ,..., }nB B B  and let 0 1{ ,  ,..., }nB B B′ ′ ′  be its MacWilliams transformation. Then 

0 1B′ =  and 0kB′ ≥  for 1, 2,..., .k n=  

 

From the proof of Proposition 2.3.5, which can be found in [18] and [52], the 

following corollary describes a new relation between kA′  and kB′  for some special k. 

 

Corollary 2.3.6. [18] Let C be a binary code of length n with weight distribution 

0 1{ , ,..., }nA A A  and distance distribution 0 1{ ,  ,..., }nB B B , and let 0 1{ , ,..., }nA A A′ ′ ′  and 

0 1{ ,  ,..., }nB B B′ ′ ′  be their MacWilliams transforms, respectively. Assume that 0kB′ =  

for some k where 0 k n≤ ≤ , then  

 
x z

x
( 1) 0

C

⋅

∈

− =∑ , 

 

for every 2z n∈Z  with ( )Hw z k=  and 0kA′ = . 

 

Now, we can finish this section with the following definitions. 

 

Definition 2.3.7. [18] Let C be a binary code of length n with distance distribution 

0 1{ ,  ,..., }nB B B , and 0 1{ ,  ,..., }nB B B′ ′ ′  be its MacWilliams transforms. Then define four 

parameters as follows. 

 

i. min{ | 0, 0}id i i B= > > , 

ii. |{ | 0, 0}|is i i B= > > , 

iii. min{ | 0, 0}id i i B′ ′= > > , 

iv. |{ | 0, 0}|is i i B′ ′= > > . 
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d  is said to be the minimum distance of C, and s  is the number of distinct nonzero 

distances. Additionally, d ′  is called the dual distance, and s′  is said to be the 

external distance of a code C. These four parameters are called the four fundamental 

parameters of the code by Delsarte [18]. Moreover, it is clear that, if C is linear, d ′  

is the minimum distance of the dual code C⊥ . 
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CHAPTER 3 
 
 

BINARY IMAGES OF QUATERNARY CODES 
 

 

Although there are several nonlinear binary codes having more codewords than 

linear codes with the same length and minimal distance, to describe them are not so 

easy. Around 1990, it is shown that the well-known nonlinear binary codes can be 

constructed by converting linear codes over 4Z  into nonlinear codes over 2Z , using 

a map known as the Gray map [40], [8], [25], [26]. 

 

In this chapter, we study the properties of the binary images of the linear quaternary 

codes under the Gray map. The conditions for the binary image of a linear quaternary 

code to be a linear code and for a binary code to be 4Z -linear are discussed and a 

construction of linear quaternary codes by using linear binary codes is given. Most 

definitions and properties described in the first, second and third sections can be 

found in [26] and [52].  

 

The last two sections include our contributions. In Section 3.4, we present some 

conditions for simplifying the linearity check of the binary image of a linear 

quaternary code, in lemmas and propositions 3.4.1 to 3.4.6. Finally, in Section 3.5, 

we discuss the 4Z -linearity of the Reed-Muller and Hamming codes and analyze all 

linear quaternary codes of length 4 to show that there is no nonlinear and 4Z -linear 

binary code better than the extended Hamming code of length 8. Examples without 

any given reference are those that we generate. 

 

 

 

 



 29

3.1 THE GRAY MAP 

 

In communication systems employing quadrature phase-shift keying (QPSK), the 

preferred assignment of two information bits to the four possible phases is the one 

shown in Figure 3.1, in which adjacent phases differ by only one binary digit. This 

mapping is called the Gray map and has the advantage that, when a quaternary 

codeword is transmitted across an additive white Gaussian noise channel, the errors 

most likely to occur are those causing a single erroneously decoded information bit. 

 

 

( )i

(1)

( )i−

( 1)−

1 01→

0 00→

3 10→

2 11→

 
Figure 3. 1 Gray encoding of quaternary symbols and QPSK phases. 

 

 

The Gray map is a bijection from 2
4 2to Z Z  and usually denoted by φ , i.e., 

 
2

4 2:    

       0  00

       1  01

       2  11

       3  10

φ →

a

a

a

a

Z Z

 

 

Clearly,  
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4

4

( ) ( ( ))    for all ,

( , ) ( ( ), ( ))    for all ,  .

L H

L H

w x w x x

d x y d x y x y

φ

φ φ

= ∈

= ∈

Z

Z
  (3.1)  

 

Formally, three maps   α, β, γ  from 4 2to Z Z  are defined by Table 3.1, which can 

also be expressed as a mapping ( )( )xα β γ  from 3
4 2to x∈Z Z  as follows 

 

                                                  

( )(0) (0 0 0),  

( )(1) (1 0 1),  

( )(2) (0 1 1),  

( )(3) (1 1 0)

=

=

=

=

α β γ

α β γ

α β γ

α β γ

                                        (3.2) 

                                          

Table 3.1 The maps  α, β, γ . 
 
 

 

 

 

 

                                                

 

Clearly, α  is a group homomorphism from 4 2to Z Z , but and β γ  are not. The 2-

adic expansion of 4x∈Z  is  

 

                                                         ( ) 2 ( )x x x= +α β . (3.3) 

 

For all 4x∈Z , it is obvious that 

  

                                             ( ) ( ) ( ) 0 (mod 2). x x x+ + ≡α β γ   

4Z  α  β  γ

0 0 0 0 

1 1 0 1 

2 0 1 1 

3 1 1 0 
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The Gray map φ  defined above can be expressed in terms of and β γ  as follows: 

      

                                        4( ) ( ( ),  ( ))   for all .x x x xφ = ∈β γ Z  (3.4)                       

 

For 1 4x ( ,..., ) n
nx x= ∈Z , the maps  α, β, γ  are extended to maps from 4

nZ  to 2
nZ  by 

               

1

1

1

(x) ( ( ),..., ( )),

(x) ( ( ),..., ( )),

(x) ( ( ),..., ( )).

n

n

n

x x

x x

x xγ

=

=

=

α α α

β β β

γ γ

 

 

Then φ  is extended to 4
nZ  in an obvious way. Clearly, the extended φ  is a bijection 

from 4
nZ  to 2

2
nZ . For any 4x n∈Z , (x)φ  is called the binary image of x under φ .  

 

The crucial property of the Gray map is that it preserves distances as stated in the 

following theorem. 

 

Theorem 3.1.1. [26] φ  is a distance preserving mapping from 

 
2

4 2( , ) to ( , )n n Lee distance        Hamming distanceZ Z . 

 

It is easy to see from the definitions of Chapter 2, and (3.1) that 

  

4(x) ( (x))    for all x ,n
L Hw w φ= ∈Z   (3.5) 

  

4(x, y) ( (x), (y))    for all x,  y n
L Hd d φ φ= ∈Z .  (3.6) 
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From (2.20), 2 x y1(x, y) ( , )
2L Ed d i i= , and (3.6), the Hamming distance between the 

binary images (x) and (y)φ φ  is proportional to the squared Euclidean distance 

between the complex sequences x yand i i , i.e., 

 

2 x y1( (x), (y)) ( , )
2H Ed d i iφ φ =   4for all x,  y n∈Z . 

 
 

3.2 BINARY IMAGES OF QUATERNARY CODES 
 

The Gray map gives a relation between quaternary codes and binary codes. In this 

section, it is discussed the properties of this relation and the duality of the binary 

images under the Gray map. 

 

Let C be a quaternary code. The binary image of C under the Gray map is defined 

by 

( ) { (c) | c }C φ φ= = ∈C C . 

 

If C is of length n, then C is a binary code of length 2n, i.e. 2
2

nC ⊆ Z .  

 

We recall that the minimum Hamming weight and distance of a binary code C are 

 

min{ ( (c)) | c ,  c }Hw Cφ ∈ ≠ 0 , 

  

min{ ( (c), (c ')) | c,c ' ,  c c '}Hd Cφ φ ∈ ≠ . 

 

Similarly, the minimum Lee weight and distance of a quaternary code C  is defined 

by 
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min{ (c) | c ,  c }Lw ∈ ≠ 0C , 

  

min{ (c,c ') | c,c ' ,  c c '}Ld ∈ ≠C . 

 

From Theorem 3.1.1 we have   

 

Proposition 3.2.1. [26] Let C  be a quaternary code and ( )C φ= C . Then the 

minimum Lee weight and distance of C  are equal to the minimum Hamming weight 

and distance of ( )C φ= C , respectively.   

 
Example 3.2.2. The linear quaternary code 4K  introduced in Example 2.1.7 with 

generator matrix (2.3)  

     

1 1  1 1
0 2 0 2
0 0 2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

consists of 16 codewords. Using (3.2) that defines the mapping ( )( )xβ γ  as 

( )(0) (0 0),  ( )(1) (0 1),  ( )(2) (1 1),  ( )(3) (1 0)= = = =β γ β γ β γ β γ , and (3.4) that 

defines 4( ) ( ( ),  ( ))  for all x x x xφ = ∈β γ Z , we find 

 

(0000) ( (0000), (0000)) (00000000)φ = =β γ  

(1111) ( (1111), (1111)) (00001111)φ = =β γ  

(2222) ( (2222), (2222)) (11111111)φ = =β γ  

(3333) ( (3333), (3333)) (11110000)φ = =β γ  

(0022) ( (0022), (0022)) (00110011)φ = =β γ  

(0202) ( (0202), (0202)) (01010101)φ = =β γ  

(0220) ( (0220), (0220)) (01100110)φ = =β γ  
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(1133) ( (1133), (1133)) (00111100)φ = =β γ  

(1313) ( (1313), (1313)) (01011010)φ = =β γ  

(1331) ( (1331), (1331)) (01101001)φ = =β γ  

(2002) ( (2002), (2002)) (10011001)φ = =β γ  

(2020) ( (2020), (2020)) (10101010)φ = =β γ  

(2200) ( (2200), (2200)) (11001100)φ = =β γ  

(3113) ( (3113), (3113)) (10010110)φ = =β γ  

(3131) ( (3131), (3131)) (10100101)φ = =β γ  

(3311) ( (3311), (3311)) (11000011)φ = =β γ . 

 

Therefore the binary image 4( )φ K  of the linear quaternary code 4K  consists of these 

16 codewords. It is easy to see that 4( )φ K  is a linear binary code with minimum 

distance 4. Actually, 4( )φ K  is the extended binary Hamming code of length 8, which 

has the following generator matrix  

                        

                                             

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (3.7) 

 

In general, the binary image of a linear quaternary code is not necessarily linear. If it 

is linear, its generator matrix can be deduced from the generator matrix of the linear 

quaternary code. 

 

Proposition 3.2.3. [26] Let ( )C φ= C  be the binary image of a linear quaternary 

code C  with generator matrix 
1

2

    

0  2 2

k

k

I A B
G

I D

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, given by (2.1). If C is linear, 

then C has generator matrix 
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1 1

2 2

1

( ) ( )

0 0

0 0 ( ) ( )

k k

k k

k

I A B I A B

I D I D

B I A B

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

α α

β γ

,  (3.8) 

 

where the mapping ( )( )xα β γ  from 3
4 2to x∈Z Z  is defined by (3.2) as ( )(0) =α β γ   

(0 0 0),  ( )(1) (1 0 1),  ( )(2) (0 1 1),  ( )(3) (1 1 0)= = =α β γ α β γ α β γ . 

 

Note that the generator matrix (3.7) of 4( )φ K  in Example 3.2.2 can be obtained from 

the generator matrix (2.1) of 4K  of the same example, using Proposition 3.2.3.  

 

We recall that a binary code C is said to be distance invariant if the Hamming weight 

distributions of its translators u C+  are the same for all u C∈  [39]. Clearly, all 

linear codes are distance invariant, including the linear binary and linear quaternary 

codes. Although the binary image of a linear quaternary code is not necessarily 

linear, by Theorem 3.1.1, it has the following property. 

 

Theorem 3.2.4. [26] The binary image ( )C φ= C  of a linear quaternary code C  is 

distance invariant. 

 

The binary image of a linear quaternary code is, in general, not linear because φ  is 

not a linear map, and so it need not have a dual code. In [26], it is defined the 4Z -

dual of ( )C φ= C  to be ( )C φ ⊥
⊥ = C , as in the figure 

 

    ( )

   ( ).

C

C

φ

φ⊥ ⊥
⊥

⎯⎯→ =

⎯⎯→ =

↓
C C

C C

 

Figure 3. 2 The relation between ( )C φ= C  and ( )C φ ⊥
⊥ = C . 
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Although we cannot always add an arrow marked ‘dual’ on the right side to produce 

a commuting diagram, the following theorem provides a strong relation between 

( )C φ= C  and ( )C φ ⊥
⊥ = C . By Theorem 3.1.1 and (2.33), we have 

   

Theorem 3.2.5. [26] Let C and ⊥C  be dual linear quaternary codes, and ( )C φ= C  

and ( )C φ ⊥
⊥ = C  be their binary images. Then the weight enumerators ( , )CW X Y  and 

( , )CW X Y
⊥

 of C and C⊥ , respectively, are related by the binary MacWilliams identity 

 

                                          1( , ) ( , ).
| |C CW X Y W X Y X Y
C⊥

= + −  (3.9) 

 

Thus, by Proposition 2.2.3, their weight distributions 0 1 2{ , ,..., }nA A A  of ( )C φ= C  

and 0 1 2{ , ,..., }nA A A′ ′ ′  of ( )C φ ⊥
⊥ = C  are the MacWilliams transform of each other. 

 

From Theorem 3.2.5, a new notion of a dual code can be defined as follows. 

 

Definition 3.2.6. [26] If C is a linear quaternary code and ⊥C  is its dual code, then 

( )C φ= C  and ( )C φ ⊥
⊥ = C  are called formally dual. If C is self dual (i.e. ⊥ =C C ), 

then C C⊥=  and C is called formally self-dual.  

 

 

3.3 LINEARITY CONDITIONS  

 

In this section, 4Z -linearity of a binary code is defined; then, necessary and 

sufficient conditions for a binary code to be 4Z -linear and for the binary image of a 

linear quaternary code to be a linear code are given. Finally, a construction of linear 

quaternary codes by using linear binary codes is explained. 
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Definition 3.3.1. [26] A binary code C is called 4Z -linear if after a permutation of 

its coordinates, it is the binary image of a linear quaternary code C.  

 

There is a trivial necessary condition for a binary code to be 4Z -linear. 

 

Proposition 3.3.2. [52] If a binary code is 4 - linearZ , then its length is even. 

 

Define the “swap” map σ , that interchanges the left and right halves of each 

2 - dimensionaln  vector 1 2( ,..., )nx x , as follows: 

 

                           1 1 2 1 2 1 ,   : ( ,..., ,  ,..., )  ( ,..., ,..., )n n n n n nx x x x x x x xσ + +→ . (3.10) 

 

In other words σ  applies the permutation  2(1,  1)(2, ) ( ,  2 )n n n n+ + ⋅⋅⋅  to the 

coordinates.   

 

Then for any 4x n∈Z , 

 

                              ( (x)) ( (x) (x)) ( (x) (x)) ( x)σ σφ φ= = = −β γ γ β , (3.11) 

 

as can be verified using (3.2), which defines the three maps   α, β, γ  as ( )(0) =α β γ   

(0 0 0),  ( )(1) (1 0 1),  ( )(2) (0 1 1),  ( )(3) (1 1 0)= = =α β γ α β γ α β γ . 

 

Proposition 3.3.3. [26] If a binary code C is 4 - linearZ , then after a permutation of 

its coordinates, )(C Cσ = . 

 

Now, we need the following two lemmas to show the way to the necessary condition 

for a binary code to be 4Z -linear.   
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Lemma 3.3.4. [26] For all 4x,  y n∈Z , 

 

( ( ( (( (x) (x)) (y) (y)) (2 (x) y))σ σφ φ φ φ φ∗ ∗+ + = αα , 

 

where ∗  denotes the component-wise multiplication of two vectors; ( )(0) =α β γ   

(0 0 0),  ( )(1) (1 0 1),  ( )(2) (0 1 1),  ( )(3) (1 1 0)= = =α β γ α β γ α β γ , as defined by 

(3.2), and 4( ) ( ( ),  ( ))   for all .x x x xφ = ∈Zβ γ  

 

Lemma 3.3.5. [26] For all 4x,  y n∈Z ,  

 

(

(

(x y) (x) (y) ( (x) ( (x))) (y) ( (y)))

             (x) (y) (2 (x) y)).

σ σφ φ φ φ φ φ φ

φ φ φ

∗

∗

+ = + + + +

= + + αα
 (3.12) 

   

Proposition 3.3.6. [26] A binary, not necessarily linear, code C of even length is 4Z -

linear if and only if after a permutation of its coordinates, 

 

                            u,  v   u v (u (u)) (v (v))C Cσ σ⇒ ∗∈ + + + + ∈ . (3.13) 

 

The proof of Proposition 3.3.6 that can be found in [26] and [52] is done by using 

Lemma 3.3.4 and 3.3.5.    

 

Corollary 3.3.7. [26] A linear binary code C of even length is 4Z -linear if and only 

if after a permutation of its coordinates, 

 

u,  v   (u (u)) (v (v))C Cσ σ⇒ ∗∈ + + ∈ . 

 

The following proposition that can be proved using (3.12) shows when the binary 

image of a linear quaternary code is linear. 
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Proposition 3.3.8. [26] The binary image ( )C φ= C  of a linear quaternary code C  

is linear if and only if 

 

                                       x, y  2 (x) (y)∗∈ ⇒ ∈α α .C    C  (3.14) 

 

Corollary 3.3.9. [26] Let C be a linear quaternary code, 1{x ,...,x }m  be the set of 

generators of C, and ( )C φ= C . Then, C is linear if and only if 2 (x ) (x )i j∗ ∈α α C  

for all i, j satisfying 1 .i j m≤ ≤ ≤  

 

The proofs of Lemmas 3.3.4 and 3.3.5 can be found in [52], those of Propositions 

3.3.6 and 3.3.8 are in [26]. 

 

Example 3.3.10. [52] Consider the linear quaternary code 4K  introduced in Example 

2.1.7 with generator matrix  

 

1 1  1 1
0 2 0 2
0 0 2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 

It can be easily checked that for any two rows x and y of this generator matrix, 

42 (x) ( )y∗ ∈α α K . By Corollary 3.3.9, 4( )φ K  is linear binary code. Since 4K  is a 

self-dual code, 4( )φ K  is formally self-dual. 

 

Example 3.3.11. Consider the linear quaternary code 1C  introduced in Example 2.1.8 

with generator matrix  

1 0 0 3 1
0 1 0 2 1
0 0 1 1 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 
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If we denote the first and second rows of this matrix by 1x  and 2x , respectively, i.e., 

1x (1 0 0 3 1)= , 2x (0 1 0 2 1)=  we have 

 

1 2 12 (x ) (x ) 2(1 0 0 1 1) (0 1 0 0 1) (0 0 0 0 2)∗ ∗= = ∉α α .C  

 

So, the binary code 1( )φ C of length 10 is nonlinear by Corollary 3.3.9. By checking 

the weights of all the 64 codewords of 1( )φ C , we find that 1( )φ C  has minimum 

weight 3. Since the zero word is in 1( )φ C , and by Theorem 3.2.4 1( )φ C  is distance 

invariant, we deduce that 1( )φ C  has minimum distance 3.  

 

Example 3.3.12. [52] Consider the octacode 8O  introduced in Example 2.1.9 with 

generator matrix (2.6). If we denote the first and second rows of (2.6) by 1x  and 2x , 

respectively, i.e., 1x (1 0 0 0 3 1 2 1)= , 2x (0 1 0 0 1 2 3 1)=  we have 

 

1 2 82 (x ) (x ) 2(1 0 0 0 1 1 0 1) (0 1 0 0 1 0 1 1) (0 0 0 0 2 0 0 2)∗ ∗= = ∉α α .O  

 

So, by Corollary 3.3.9, the binary code 8( )φ O  is nonlinear. It is of length 16 and has 

256 codewords. Since 8O  is a self-dual linear quaternary code, 8( )φ O  is formally 

self-dual. 8( )φ O  is called Nordstrom-Robinson code. It is easy to check that the 

minimum weight of 8( )φ O  is 6. Since the zero word is in 8( )φ O  and by Theorem 

3.2.4 8( )φ O  is distance invariant, 8( )φ O  has minimum distance 6. Puncturing the 

coordinates of the codewords of 8( )φ O  at a fixed position, a nonlinear binary code of 

length 15, with 256 codewords and minimum distance 5 is obtained. This code has 

higher rate (8/15) than the 2-error-correcting BCH code of length 15 and minimum 

distance 5 that contains only 128 codewords (so having the rate 7/15). 
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Linear quaternary codes, if not constructed directly in 4Z , can be alternatively 

constructed by using two linear binary codes as described in Proposition 3.3.15. Let 

C be a linear quaternary code. There are two binary codes (1)C  and (2)C , which are 

canonically associated with C, defined by 

                     

                                              (1) { (c) | c }C = ∈ Cα ,  (3.15) 

 

                                      (2) { (c) | c  (c) }C = ∈ = 0C,β α . (3.16) 

 

Proposition 3.3.13. [15] Let C be a linear quaternary code of length n with generator 

matrix (2.1), and (1)C  and (2)C  be the binary codes defined by (3.15) and (3.16), 

respectively. Then (1)C  is a linear binary 1[ ,  ]n k  code with generator matrix  

 

                                                ( )1
( )k A BΙ α , (3.17) 

 

while  (2) (1)C C⊇  is a linear binary 1 2[ ,  ]n k k+  code with generator matrix 

 

                                                1

2

( )

0
k

k

A B

D
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

Ι α
  Ι

, (3.18) 

 

Proposition 3.3.14. [15] Given two linear binary codes C′  and C′′ , both of length n, 

with C C′ ′′⊆ , there is a linear quaternary code C with (1)C C′=  and (2)C C′′= . If, 

in addition, the Hamming weight of all codewords of C′  is divisible by 4 (i.e., C′  is 

doubly even), and C C ⊥′′ ′⊆ , then there is a self-orthogonal linear quaternary code 

C with (1)C C′=  and (2)C C′′= . Furthermore, if C C ⊥′′ ′= , then C is self-dual.        
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Now, the construction of a linear quaternary code from two linear binary codes can 

be given as follows. 

 

Proposition 3.3.15. [5] Let C′  and C′′  be two linear binary codes of length n and 

C C′ ′′⊆ . Define 

 

                               2 {a 2b | a ,  b }.C C C C′ ′′ ′ ′′= + = + ∈ ∈C  (3.19) 

 

Then C  is a linear quaternary code if and only if  

                                 

                                          a, a a aC C∗′ ′ ′ ′′∈ ⇒ ∈ .    (3.20) 

 

In this case, 

 

 (i)  (1)C C′=  and (2)C C′′= . 

 

(ii)  ( ) {(u, u v) | u ,  v }.C Cφ ′ ′′= + ∈ ∈C  

 

(iii)  If C′  is doubly even, and C C ⊥′′ ′⊆ , then C  is a self-orthogonal linear 

quaternary code if and only if  

                    

                                 a, a (a a ) 0 (mod 4)HC w ∗′ ′ ′∈ ⇒ ≡  (3.21) 

  

In this case, if C C ⊥′′ ′= , then C  is a self-dual linear quaternary code. 

   

Example 3.3.16. [52] Consider the linear quaternary code 4K  studied in Example 

2.1.7 with generator matrix (2.3). By Proposition 3.3.13, the generator matrices of 

the linear binary codes (1)C  and (2)C  are  
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( )1 1 1 1          and         
1 1  1 1
0 1 0 1
0 0 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

 

respectively. 

 

It is clear that condition (3.21) is satisfied for (1)C C′=  and (2)C C′′= , so 
(1) (2)

42C C+ = K  is a linear quaternary code. Since (1)C  is doubly even, (3.21) is 

also fulfilled; additionally (2) (1)C C ⊥= , so 4K  is self-dual. 

 

 

3.4 LINEARITY ANALYSIS 

 

In the previous section, the condition for the binary image of a linear quaternary code 

to be linear, which requires the check of (3.14) for all codewords of the code, was 

given. We now show that a check over all codewords is not necessary. Through 

Lemmas 3.4.1, 3.4.2 and 3.4.3; we arrive at Proposition 3.4.4 and Corollary 3.4.5 

that reduce the number of codewords to be checked considerably, which in turn 

diminishes the computational load. Finally, in Proposition 3.4.6, we find some binary 

codes for which the necessity of such a check is completely eliminated.  

 

Let C be a linear quaternary code of length n  with generator matrix (2.1)                

 

1

2

    

0  2 2
k

k

I A B
G

I D
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

, 

 

and C= ( )φ C  be the binary image of C. 
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Let 
1 1 1 21 1{x ,...,x , x ,...,x }k k k k+ +  be the set of row vectors of the generator matrix (2.1). 

By Corollary 3.3.9, C = ( )φ C  is linear if and only if 2 (x ) (x )i j∗ ∈α α C  for all for 

all i, j satisfying 1 i j m≤ ≤ ≤ . 

 

It should be noticed that it is not necessary to check all the row pairs in G. Because 

the last 2k  rows that contain solely zeros and two’s will produce the all zero vector 

after applying the " "α  map (which sends each 4Z  element to the least significant bit 

in its binary representation). Hence, 

 

Lemma 3.4.1. Let C be a linear quaternary code of length n  with generator matrix 

(2.1) and let 
1 1 1 21 1{x ,...,x , x ,...,x }k k k k+ +  be the set of row vectors of the generator 

matrix. Then, 1 2for all ,  satisfying ,i j k i j k< ≤ , 

 

                                       2 (x ) (x ) 2( )i j∗ ∗= = ∈0 0 0α α C , (3.22) 

 

and 1 1 2for all ,  satisfying 1  and i t i k k t k≤ ≤ < ≤ , 

  

                                     2 (x ) (x ) 2( (x ) ) .i t t∗ ∗= = ∈0 0α α α C  (3.23) 

 

Therefore, in order to check the linearity of the binary image of any linear quaternary 

code, the last 2k  rows in G need not to be considered. 

 

Lemma 3.4.2. Let C be a linear quaternary code of length n  with generator matrix 

(2.1) and let 
1 1 1 21 1{x ,...,x , x ,...,x }k k k k+ +  be the set of row vectors of the generator 

matrix. Then, 1for all  satisfying 1i i k≤ ≤ , 2 (x ) (x )i i∗ ∈α α C . 
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Proof.   Let 
1 1 1 21 1{x ,...,x , x ,...,x }k k k k+ +  be the set of row vectors of the generator 

matrix (2.1). Since the ith row of the generator matrix is of the form  

 

1 1 1x (0 ,...,0 ,  1 ,  0 ,...,i i i i− +=  
1 1 2 21 10 ,  ,..., ,  ..., )k k k k nx x x x+ + ∈C ,  

 

we have 

 

2 (x ) (x ) 2 (x x )i i i i∗ ∗=α α α             

   =
1 1 1 2 2 2 21 1 1 1 1 1 12(0 , ..., 0 ,1 , 0 , ..., 0 , ( ), ..., ( ), ( ), ..., ( ))i i i k k k k k k k n nx x x x x x x x− + + + + +α α    (3.24) 

 
since for all 4 ,  2 ( ) 2i i i ix x x x∈ =αZ , because )(0.0 0=α , )(1.1 1=α , )(2.2 0=α , 

)(3.3 1=α , equation (3.24) is equal to  

 

2 (x ) (x ) 2 (x x )i i i i∗ ∗=α α α  

                        
1 1 2 21 1 1 1 1    (0 ,...,0 , 2 , 0 ,...,0 , 2 ,..., 2 , 2 ,..., 2 )i i i k k k k nx x x x− + + +=  

                         2xi= ∈C .  

 

Finally, the only pairs we should check for the linearity of the binary image of any 

linear quaternary code are the pairs ( , )i jx x , i j≠ , chosen from the first 1k  rows of 

G.  

 

Lemma 3.4.3. Let C be a linear quaternary code of length n  with generator matrix 

(2.1) and let 
1 1 1 21 1{x ,...,x , x ,...,x }k k k k+ +  be the set of row vectors of the generator 

matrix. Then, for all i, j satisfying 11 i j k≤ < ≤ , 2 (x ) (x )i j∗α α  is of the form 

1 11 1(0 , ..., 0 , 2 , ..., 2 )k k nv v+ , where 
1 1 4, ...,k nv v+ ∈ Z , i.e., contains only zeros and twos. 
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Proof.   Let 
1 1 1 21 1{x ,...,x , x ,...,x }k k k k+ +  be the set of row vectors of the generator 

matrix. The rows x i  and x j  of the generator matrix are of the form 

 

    
1 1 2 21 1 1 1 1x (0 ,...,0 , 1 , 0 ,...,0 , ,..., , ..., )i i i i k k k k nx x x x− + + +=  

and  

    
1 1 2 21 1 1 1 1x (0 ,...,0 , 1 , 0 ,...,0 , ,..., , ..., )j j j j k k k k ny y y y− + + += . 

 

Hence, we have 

 

2 (x ) (x ) 2 (x x )i j i j∗ ∗=α α α         

       =
1 1 1 2 21 1 12 (0 , ..., 0 , ..., 0 , ..., 0 , ( ), ..., ( ),i j k k k k kyx y x+ +α

2 21 1( ),k kyx + + ..., ( ))n nx y  

       
1 1 1 2 21 1 1(0 , ..., 0 , 2 ( ), ..., 2 ( ),k k k k kyx y x+ += α α

2 21 12 ( ),k kyx + +α ..., 2 ( ))n nx yα .  

 

Proposition 3.4.4. The binary image of any linear quaternary code with generator 

matrix 1

2

G
G

G
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, where ( )11 kG I A B=  and ( )22 0 2 2kG I D= , is linear if and 

only if for all row pairs j 1x , xi G∈  such that i j≠ , 2 (x ) (x ) 2 (x x )i j i j∗ ∗=α α α   is 

in the row space of 2G .  

 

Proof.   Follows from the proofs of the previous three lemmas. Since the vectors to 

be tested contain all zeros and two’s, the condition 2 (x ) (x )i j∗ ∈α α C  of Corollary 

3.3.9 needs not to be tested for the row space of G1. 

 

Corollary 3.4.5. The binary image of any linear quaternary code with generator 

matrix 1G G= , where ( )11 kG I B= , i.e., 2 0k = , is linear if and only if for all row 

pairs j 1x , xi G G∈ =  such that i j≠ , 2 (x ) (x ) 2 (x x )i j i j∗ ∗= = 0α α α . 
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Now, by using these properties we can generalize the following facts.      

 

Proposition 3.4.6. Let C be a linear quaternary code of length n  with generator 

matrix (2.1). The binary image, ( )φ C , is linear if one of the three conditions given 

below is satisfied: 

  

(i) 1 0k = ,  (ii) 1 1k = ,  (iii) 1 2n k k= + . 

 

Proof.  

 

(i) For 1 0k = , the last 2k  rows of G considered in Lemma 3.4.1 become all rows 

of G, hence they all pass the linearity test. 

 

(ii) If 1 1k = , the generator matrix is of the form 

 

                                            
2

3

1        
0  2 2k

A B
G

I D
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, (3.25) 

 

where  and A B  are 21 k×  matrices. Hence, we have to check only the first row for 

linearity and this single row passes the linearity test by Lemma 3.4.2. 

 

(iii) If 1 2n k k= + , the generator matrix is of the form 

 

                                                    1

2
0 2
k

k

I A

I
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

.    (3.26) 
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From Lemma 3.4.1 and 3.4.2, we need to check only the pairs ( , )i jx x , i j≠ , chosen 

from the first 1k  rows of (3.26), and by Lemma 3.4.3 we know that 2 (x ) (x )i j∗α α  

is of the form 
1 1 1 21 1(0 , ..., 0 , 2 , ..., 2 )k k k kv v+ + , where 

1 1 21 4, ...,k k kv v+ + ∈ Z . Since, the last 

2k  rows of (3.26) generate all codewords of the form 
1 1 1 21 1(0 , ..., 0 , 2 , ..., 2 )k k k kv v+ + , 

the binary image, ( )φ C , of the linear quaternary code C  is linear. 

 

Hence, the binary images of linear quaternary codes with 1 1 20 or 1 or k n k k= = +  are 

linear codes.   

 

Example 3.4.7. Consider the linear quaternary code 4K  introduced in Example 2.1.7 

with generator matrix (2.3) 

 

1 1  1 1
0 2 0 2
0 0 2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 

Since 1 1k = , the binary image of 4K  can be said to be linear without checking any 

row pairs of the generator matrix (2.6).  

 

As a final word on the reduction in computational load, the linearity test in 

Proposition 3.4.4 is applied to only 1 1( ( 1)) 2k k −  distinct pairs j 1x , xi G∈ ; and if the 

search in the row space of 2G  is performed employing the parity check matrix of 2G , 

it requires computation of 2n k−  inner products per pair, since the parity check 

matrix of 2G  has 2n k−  rows. Each inner product takes at most n multiplications in 

4Z , so the upper bound of required computations is 2( )n k n−  4Z -multiplications per 

pair j 1x , xi G∈ ; therefore, 2 1 1( ) ( ( 1)) 2n k n k k− −  4Z -multiplications in total.  
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It is interesting to note that using the parity check matrix of G instead would result in 

a number of 4Z -multiplications, with an upper bound 1 1 1( ) ( ( 1)) 2n k n k k− − . To 

make use of the advantage of searching in the row space of 2G  instead of G, it may 

be wiser to use the generator matrices rather than the parity check matrices. 

 

Nevertheless, the ratio of the computational load of the test described in Proposition 

3.4.4 over the load of the test in Corollary 3.3.9, seems to be proportional to 

1 1( ( 1)) 2k k −  divided by the number of all possible row pairs of G, which is equal to 

1 2 1 2 1 2( ) [( )( 1) 2]k k k k k k+ + + + − , independent of the chosen test method.  

 

 

3.5 ANALYSIS OF SOME BINARY CODES 

 

In 1993, Calderbank, Sloane, Solé discovered the existence of quaternary versions of 

Reed-Muller and Hamming codes [8] and then Hammons, Kumar, Calderbank, 

Sloane, Solé proved that binary first- and second-order Reed-Muller codes are 4Z - 

linear, but the extended Hamming codes of length 32n ≥  are not [26]. 

 

In this section, it is first explained which of the Reed-Muller and Hamming codes are 

4Z -linear. We then analyze all linear quaternary codes of length 4 to answer the 

question whether or not there is a nonlinear and 4Z -linear binary code better than the 

extended Hamming code of length 8. 

 

Firstly, we recall the binary Reed-Muller codes. 
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Let 1 1(v , ..., v )m−  range over 1
2
m−Z . The binary Reed-Muller code ( , 1)RM r m−  is 

generated by the vectors corresponding to monomials in the Boolean functions vi  of 

degree r≤  [39], i.e., the generator matrix of ( , 1)RM r m−  is of the form  

 
1

2

3

2 2

2

1

21
1

1 2 2
2

2 1 2 2
1

1 2

1 2 1

1
v

v  v       (01) ,
v v

 v       (0011) ,( , 1)               where 
           

v v
  v     0 1

v v v

v v v

m

m

m

m m

m

m m

m

r

m r m r m

G r m

−

−

−

− −

−

− −

−

− + − + −

∗

∗

∗ ∗ ∗

∗ ∗ ∗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ =⎜ ⎟
⎜ ⎟ =

− =⎜ ⎟
⎜ ⎟
⎜ ⎟

=⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

L

L

M

M
M

M

M

,

⎧
⎪
⎪
⎨
⎪
⎪
⎩

, 

 

and ∗  denotes the component-wise multiplication.   

 

Definition 3.5.1. [8] Let m be an integer and 0 r m≤ ≤ . The linear quaternary code 

of length 12m−  generated by ( 1,  1)RM r m− −  and 2 ( ,  1)RM r m−  over 4Z  is the 

quaternary version of Reed-Muller code and denoted by ( ,  1)ZRM r m − . The matrix  

 

( 1,  1)
2 ( ,  1)

G r m
G r m
− −⎛ ⎞

⎜ ⎟−⎝ ⎠
 

 

generates the linear quaternary code ( , 1)ZRM r m − .  

 

Example 3.5.2. [52] The linear quaternary code (2,  3)ZRM  of length 4 12 8− =  is 

generated by  
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(1,  3)
2 (2,  3)
G
G

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

and, hence, has generator matrix  

 

                          

32

1

2

3

1 2

1 3

2 3

1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 v
0 0 1 1 0 0 1 1 v

  0 0 0 0 1 1 1 1 v
0 0 0 2 0 0 0 2 2v v
0 0 0 0 0 2 0 2 2v v
0 0 0 0 0 0 2 2 2v v

∗

∗

∗

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

. (3.27) 

 

Theorem 3.5.3. [26] The rth order binary Reed-Muller code ( ,  )RM r m  of length 

2mn = , 1m ≥ , is 4Z -linear for 0,  1,  2,  1r m= −  and m. More precisely, it is the 

binary image of the linear quaternary code ( ,  1)ZRM r m −  of length 12m−  for 

0,  1,  2,  1r m= −  and m. 

 

For example, let 1 1(v , ..., v )m−  range over 2
mZ . (2,  )RM m  is the binary image of the 

linear quaternary code (2,  1)ZRM m−  generated by the vectors corresponding to 

1 1 1 2 1 3 2 11, v , ..., v , 2v v , 2v v , ..., 2v vm m m− − − . If we take 4m= , the (16, 11, 4)  code 

(2,  4)RM  is the binary image of the linear quaternary code (2,  3)ZRM  with 

generator matrix (3.27) in Example 3.5.2.  

 

It is known that the ( 2)m − nd-order Reed-Muller code of length 2m , ( 2,  )RM m m− , 

is the extended binary Hamming code 
2mH  when 3m ≥ . In the following theorem it 

is proved that when 5m ≥ , ( 2)m − nd-order Reed-Muller code is not 4Z -linear. 
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Theorem 3.5.4. [26] The extended binary Hamming code 
2

( 2,  ) mRM m m H− =  of 

length 2m  is not 4Z -linear for 5m ≥ . 

 

Theorem 3.5.5. [28] The Reed-Muller code ( ,  )RM r m  is not 4Z -linear when 5m >  

and 2 2r m< < − . 

 

Theorem 3.5.3 and 3.5.4 are proved in [26], and Theorem 3.5.5 is in [28].   

 

It is worthwhile to remark that a binary code can be 4Z -linear, even though its dual 

is not. For example, (1,  )RM m  and ( 2,  )RM m m−  are dual to each other and 

(1,  )RM m  is 4Z -linear, but ( 2,  )RM m m−  is not. 

 

By Theorem 3.5.3, 42
(4 2,  4) (2,  4)H RM RM= − =  is 4Z -linear. The linear 

quaternary code 4K  introduced in Example 2.1.7 with generator matrix (2.3) is of 

type 1 24 2 , 1 21 and 2k k= = , and consists of 16 codewords with minimal distance 4. 

Therefore, its binary image is equivalent to the extended Hamming code of length 8.  

 

In order to answer the question whether or not there is a nonlinear and 4Z -linear 

binary code better than the extended Hamming code of length 8; we check all linear 

quaternary codes of length 4 whose binary images are nonlinear.  The comparison 

can be done on the basis of number of codewords and the minimal distance. Since 

the blocklength is fixed, higher number of codewords indicates higher information 

rate and greater minimal distance yields more error correction capability.  

 

By Proposition 3.4.1, binary images of linear quaternary codes of type 1 24 2k k  are 

linear when 1 0, 1k =  or 1 2n k k= + . We have exhaustively searched all the remaining 

linear quaternary codes of type 2 2 1 34 ,  4 2 ,  4 , whose binary images are nonlinear.  
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There are 112 distinct nonlinear codes, which are the binary images of the linear 

quaternary codes of type 24 . These nonlinear binary codes have the same number of 

codewords, i.e., 16 codewords, with the extended Hamming code; but their minimum 

distance can be at most 3, whereas that of the extended Hamming code is 4. The 

codes with the following generator matrices  

 

1 0 1 1
0 1 1 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
1 0 1 2
0 1 3 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
1 0 1 3
0 1 1 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
1 0 2 3
0 1 1 3
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
1 0 3 2
0 1 3 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

             

are the examples of the linear quaternary codes of type 24 , whose binary images are 

nonlinear with minimal distance 3. Notice that in the above matrices, the constraints 

of 1 2k =  and 2 0k =  reduce the general form of the generator matrix given by (2.1) as    

 

1

2

    

0  2 2

k

k

I A B

I D

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

       to      ( )1kI B . 

 

As for the linear quaternary codes of type 2 14 2 , the  binary images result in 40 

distinct  nonlinear codes. These nonlinear binary codes have 32 codewords, more 

than that of the extended Hamming code; but their minimum distance can be at most 

2. The codes with the following generator matrices 

 

1 0  1 2
0 1  1 3
0 0 2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
1 0  1 3
0 1  1 1
0 0 2 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
1 0  0 3
0 1  1 1
0 0 2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
1 0  0 1
0 1  1 3
0 0 2 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
1 0  1 3
0 1  0 1
0 0 2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

are the examples of the linear quaternary codes of type 2 14 2 , whose binary images 

are nonlinear codes with minimal distance 2. Again, as a result of the constraints 
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1 2k =  and 2 1k = , the general form of the generator matrix is reduced to 

1
     

0    2   2

kI A B

D

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

.  

 

Finally, there are 32 distinct nonlinear codes that are the binary images of the linear 

quaternary codes of type 34 . These codes have 64 codewords but their minimum 

distance can be at most 2. The codes with the following generator matrices 

 

1 0  0 3
0 1  0 3
0 0 1  3

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
1 0  0 3
0 1  0 2
0 0 1  3

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
1 0  0 3
0 1  0 2
0 0 1  1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
1 0  0 3
0 1  0 1
0 0  1 3

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
1 0  0 0
0 1  0 1
0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

are the examples of the linear quaternary codes of type 34 , whose binary images are 

nonlinear codes with minimal distance 2. Notice that in the above matrices, the 

constraint of 1 3k =  and 2 0k =  reduces the general form of the generator matrix given 

by (2.1) to ( )1kI B .  

 

Hence, for the blocklength of 8 we understand that none of the nonlinear binary 

images of linear quaternary codes can approach to the minimum distance of the 

extended Hamming code, which is equal to 4.                
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CHAPTER 4 
 
 

CYCLIC CODES 
 

 

For cyclic codes of length n over an alphabet of size q, it is customary to work in a 

Galois field ( )mGF q , an extension of degree m of a ground field ( )GF q . The 

ground field ( )GF q  is identified with the alphabet, and the extension field is chosen 

so that it contains an nth root of unity [39]. 

 

A similar approach is used for cyclic codes of length n over the ring 4Z , only now 

one constructs a Galois ring (4 )mGR , that is an extension of 4Z  of degree m 

containing an nth root of unity [26]. 

 

Galois rings have been studied by many authors, MacDonald [38], Liebler and Mena 

[37], Shankar [44], Solé [48], Yamada [54], Boztaş, Hammons and Kumar [7], 

Zariski and Samuel [55] and Wan [51]. In this chapter, it is firstly given the basic 

facts about the polynomials of the ring 4[ ]XZ ; and then the properties of Galois ring 

(4 )mGR  and the automorphisms of (4 )mGR , generalized Frobenius and trace maps. 

The proofs can be found in the above references. After these preparations, it is 

defined the quaternary cyclic codes and their generator matrices. 

 

 

4.1 BASIC IRREDUCIBLE POLYNOMIALS AND HENSEL LIFT 
 

A cyclic code over 4Z  can be studied entirely in terms of the polynomials of the ring 

4[ ]XZ . However, just as it is productive to study codes over the field ( )GF q  in the 
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larger algebraic field ( )mGF q ; it is more fruitful to study codes over 4Z  in a larger 

algebraic system called a Galois ring. We need some preparation on irreducible 

polynomials in 4[ ]XZ  to define Galois rings. 

    

Definition 4.1.1. [54] Let ( )f X  be a monic polynomial of degree 1m ≥  in 4[ ]XZ . 

If 2 ( ) ( ) (mod  2)f X f X≡  is irreducible (or primitive) over 2Z , then ( )f X  is called 

a basic irreducible (or basic primitive) polynomial of degree m in 4[ ]XZ .  

 

Proposition 4.1.2. [54] Let 2 ( )f X  be a monic irreducible (or primitive) polynomial 

of degree m in 2[ ]XZ . Then there exists a unique monic basic irreducible (or monic 

basic primitive) polynomial 4( ) [ ]f X X∈Z  of degree m such that ( )f X  divides 

1nX −  in 4[ ]XZ , where 2 1mn = −  and that 2 ( ) ( ) (mod  2)f X f X≡ .     

 

The monic basic irreducible (or monic basic primitive) polynomial ( )f X  over 4Z  in 

Proposition 4.1.2 satisfies not only the condition that 2 ( )f X  is a monic irreducible 

(or primitive) over 2Z , but also the condition that 2 1( ) | ( 1) 
m

f X X − −  in 4[ ]XZ . This 

polynomial ( )f X  in 4[ ]XZ  is called the Hensel lift of 2 ( )f X  and by Proposition 

4.1.2, it exists and is unique.  

 

The Hensel lift ( )f X  in 4[ ]XZ  of a monic irreducible (or primitive) polynomial 

2 ( )f X  in 2[ ]XZ  can be calculated using Graeffe’s method [48], [51], [53] for 

finding a polynomial whose roots are squares of the roots of 2 ( )f X , as the following 

proposition shows.       

 

Proposition 4.1.3. [40] Let 2 ( )f X  be a monic irreducible (or primitive) polynomial 

over 2Z . Write 2 ( ) ( ) ( )f X e X d X= − , where ( )e X  contains only even power terms 
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and ( )d X  only odd power terms. Then 2 2( ) ( )e X d X− , computed in 4[ ]XZ , is a 

polynomial having only even power terms and of degree 22deg ( )f X . Let 

2 2 2( ) ( ( ) ( ) )f X e X d X= ± − , where + or −  sign is taken, if deg ( ) deg ( )e X d X>  or 

deg ( ) deg ( )d X e X>  respectively; then ( )f X  is the Hensel lift of 2 ( )f X . 

 

This method is the inverse of the operation 2 ( ) ( ) (mod  2)f X f X≡  and lifts an 

irreducible (or primitive) polynomial in 2[ ]XZ  to a basic irreducible (or basic 

primitive) polynomial in 4[ ]XZ . It is a special case of a result known as Hensel’s 

Lemma. 

 

The following two examples can be useful to understand this method.     

 

Example 4.1.4. [52] For 3m=  and 7n= ; 3
2 ( ) 1f X X X= + +  is a monic primitive 

polynomial over 2Z . Then ( ) 1e X =  and 3( )d X X X=− − . So, we have 

 
2 2 2 6 4 2( ) ( ) ( ) 2 1f X e X d X X X X=− + = + + − . 

 

Hence, 3 2( ) 2 1f X X X X= + + −  is the Hensel lift of 3 1X X+ +  and so it is a monic 

basic primitive polynomial of degree 3m=  in 4[ ]XZ .  

 

Example 4.1.5. For 4m=  and 15n= , 4 3
2 ( ) 1f X X X= + +  is a monic primitive 

polynomial over 2Z . Then 4( ) 1e X X= +  and 3( )d X X=− . So, we have  

 
2 2 2 8 6 4( ) ( ) ( ) 2 1f X e X d X X X X= − = − + + . 

 

Hence, 4 3 2( ) 2 1f X X X X= − + +  is the Hensel lift of 4 3 1X X+ +  and so it is a 

monic basic primitive polynomial of degree 4m=  in 4[ ]XZ .   



 58

Moreover, it is clear that 2 ( ) ( ) (mod  2)f X f X≡  for Examples 4.1.4 and 4.1.5. 

  

All primitive basic irreducible polynomials of degree 10≤  over 4Z , which are 

Hensel lifts of binary primitive polynomials are given in [7]. 

 

 

4.2 GALOIS RINGS 
 

The theory of Galois rings is an important tool to study cyclic codes over 4Z , which 

was developed by W. Krull [34]. In this section, we specifically consider the Galois 

ring (4 )mGR  with 4m  elements.  

 

Definition 4.2.1. [40] Let ( )h X  be a basic primitive polynomial of degree m over 

4Z . 4[ ] ( ( ))X h XZ , the ring of polynomials modulo ( )h X , is called the Galois ring 

with 4m  elements and is denoted by (4 )mGR . 

 

In general, the elements of Galois ring (4 )mGR  may be represented in a variety of 

ways. One is the definition by 4,  i
i ii

a X a ∈∑ Z , as a polynomial in X of degree at 

most 1m − .      

 

Although some properties of Galois fields are carried over the Galois rings, other 

properties do not. In particular, the Galois ring (4 )mGR  cannot be generated by a 

single element. However, there will always be an element with order 2 1m −  which is 

a zero of a basic primitive polynomial over 4Z . It may be called a primitive element 

though it does not generate the Galois ring in the manner that a primitive element of 

a Galois field does [2]. 
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The second kind of representation is the 2-adic representation. 

 

Theorem 4.2.2. [10] 

(i) In the Galois ring (4 )mGR , there exists a nonzero element ξ  of order 2 1m − , 

which is a root of a basic primitive polynomial ( )h X  of  degree m over 4Z . 

Moreover, ( )h X  is the unique polynomial of degree m≤  over 4Z  having ξ  as a 

root. 

 

(ii) Let 2 20,1,{ }m−= ξ,...,ξT , then any element (4 )mc GR∈  can be written uniquely 

as  

  
                                                       2c a b= + ,  (4.1) 

 
where ,a b∈T . 

 

The representation (4.1), called 2-adic representation, accounts for all 4m  elements of 

the ring (4 )mGR . With the convention that 0∞ =−ξ , every element of (4 )mGR  can 

be written in the 2-adic representation as 2i j+ξ ξ . 

 

The following proposition tells how to calculate the representation 2i j+ξ ξ  from any 

other representation of (4 )mc GR∈ . 

 

Proposition 4.2.3. [10] Let 2c a b= +  denote the 2-adic representation of 

(4 )mc GR∈ . Then 2m

a c= .   

 

For adding elements of T  by using 2-adic representation the following formulas are 

useful which are found in [35]. 
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Corollary 4.2.4. [35] Let 1 2,  c c ∈T , and express 

 

                                          1 2 2 ,    ,c c a b a b+ = + ∈T , (4.2) 

then 

                                              1/ 2
1 2 1 22( )a c c c c= + + , (4.3) 

                                                    
                                                    1/ 2

1 2( )b c c= ,  (4.4) 

 

where 1/ 2
1 2( )c c  denotes the unique element in T such that 1/ 2 2

1 2 1 2(( ) )c c c c= . 

 

The formulas will now be extended to the generalization, in which there are k terms 

in the sum. 

 

Corollary 4.2.5. [35] Let 1 2,  ,..., kc c c ∈T , and express 

 

                                             
1

2 ,    ,
k

i
i

c a b a b
=

= + ∈∑ T , (4.5) 

 
then 

                        

                                            1/ 2

1 1
2 ( )

k

i i j
i i j k

a c c c
= ≤ < ≤

= +∑ ∑ , (4.6) 

  

                                                     1/ 2

1
( )i j

i j k
b c c

≤ < ≤
= ∑ . (4.7) 

   

Moreover, each element (4 )mc GR∈  has a unique ‘additive’ representation  

 
1

4
0

,  
m

i
i i

i
c a a

−

=

= ∈∑ ξ Z , 



 61

where ξ  is a root of a basic primitive polynomial ( )h X  of  degree m over 4Z , of 

order 2 1m − . 

 

The following example gives the additive representation of every element of 

(4 )mGR  by using (4.1). 

  

Example 4.2.6. [26] Let 3m=  and 3 2( ) 2 1h X X X X= + + −  be a basic primitive 

polynomial from Example 4.1.4, and X=ξ  is a root of ( )h X  of order 32 1 7− = . The 

additive representations for the elements T  and 2T  are 

 

element 0 1 2 b b b 0 1 22  2  2b b b
0 0   0   0 0     0     0 

0ξ  1   0   0 2     0     0 
1ξ  0   1   0 0     2     0 
2ξ  0   0   1 0     0     2 
3ξ  1   3   2 2     2     0 
4ξ  2   3   3 0     2     2 
5ξ  3   3   1 2     2     2 
6ξ  1   2   1 2     0     2 

 

Therefore 

 
2 2 2 2 2{0,  1,   ,  2 3 1,  3 3 2,  3 3,  2 1}= + + + + + + + +T ξ, ξ ξ ξ ξ ξ ξ ξ ξ ξ . 

 
2 2 2 22 {0,  2,  2  2 ,  2 2,  2 2 ,  2 2 2,  2 2}= + + + + +ξ, ξ ξ ξ ξ ξ ξ ξT . 

 

By using the elements of T  and 2T , the additive representation of every elements 

of (4 )mGR  is obtained.   
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Another difference between (4 )mGR and a Galois field is that (4 )mGR  contains zero 

divisors. The following proposition gives the properties of the elements of (4 )mGR .  

 

Proposition 4.2.7. [52] Express any element (4 )mc GR∈  in 2-adic form 2c a b= + , 

where ,a b∈T . Then  

 

(i) all the elements c with 0a≠  are invertible and form a multiplicative group of 

order (2 1)2m m− , which is a direct product 〈 〉 ×ξ E  where 〈 〉ξ  is a cyclic group 

of order (2 1)m −  generated by ξ  and {1 2 | }b b= + ∈E T  has the structure of 

an abelian group of type 2m  and is isomorphic to the additive group of 
2mF . 

 

(ii) all the nonzero elements c with 0a=  are zero divisors and with the zero 

element they form the ideal (2)  of (4 )mGR . 

 

(iii) The order of c is a divisor of (2 1)m −  if and only if 0a≠  and 0b= . 

 

(iv) Any element (4 )mGRη∈  of order 2 1m −  is of the form iξ , where 

gcd( , 2 1) 1mi − =  and is a root of a basic primitive polynomial of degree m 

over 4�  and 2 2 2{0,  1,  ,  ,..., }
m

η η η −=T .      

  

 

4.3 FROBENIUS AND TRACE MAPS 

 

In (4 )mGR , the square of the ring element 2c a b= +  is always 2 2c a= , independent 

of b because 4 0=  in this ring. In this sense, squaring is a lossy operation. A useful 

variant of the squaring function is the Frobenius function. 
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Recall that the Frobenius map of the Galois field 2mF  is defined by 

 

2 2 2
2

:   
           

m mf
a a
→

→

F F
 

 

Definition 4.3.1. [26] The generalized Frobenius map f  is the ring automorphism 

and defined by 

 

2 2

 :    (4 )      (4 )
        2     2 .

m m

f

f GR GR
c a b c a b

→

= + → = +
 

 

f  generates the Galois group of (4 )mGR  and mf  is the identity map.  

 

Recall that the trace map Tr  from 2mF  to 2F  is defined by 

 
2 1

2 2 2
2( )    for all  

m

m
f ffTr a a a a a a

−

= + + + ⋅⋅⋅ + ∈F . 

 

Definition 4.3.2. [26] Define the generalized trace map T from (4 )mGR  to 4Z  by 

 
2 1

( )    for all  (4 )
mf f f mT c c c c c c GR
−

= + + + ⋅⋅⋅ + ∈ . 

 

The following properties of these maps are easily verified: 

 

Proposition 4.3.3. [26] Let f  be the generalized Frobenius map of (4 )mGR  and T 

be the generalized trace map from (4 )mGR  to 4Z . Then 

   

(i) ( ) ( ) ( )   for all  , (4 )mT c c T c T c c c GR′ ′ ′+ = + ∈ , 
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(ii) 4( ) ( )   for all    and  (4 )mT ac aT c a c GR= ∈ ∈Z , 

 

(iii) The following commutativity relationship satisfied, i.e., 2f f=o o , 

 

(iv) The following commutativity relationship satisfied, i.e., T Tr=o o . 

 

In particular, since Tr is not identically zero, it follows that the generalized trace T  is 

nontrivial. In fact, T  is an onto map from (4 )mGR  to 4Z . The set of elements of 

(4 )mGR  invariant under f  is identical with 4Z . 

 

We must be careful when working with Galois ring (4 )mGR . Since it is not a unique 

factorization domain, a polynomial in (4 )mGR  may have more than one factorization 

into irreducible polynomials in (4 )[ ]mGR X . For this reason, the following 

proposition is useful.   

 

Proposition 4.3.5. [52] Let ( )h X  be a basic irreducible polynomial of degree m over 

4Z  and η  be a root of ( )h X  in (4 )mGR  then ( )h X  has the following unique 

factorization into linear factors in (4 )[ ]mGR X : 

  

                                      
1

( ) ( )( ) ( )
mf fh X X X X
−

= − − ⋅⋅⋅ −η η η . (4.8) 

 

In particular, if ( )h X  is a basic primitive polynomial of degree m, 2 1( ) | ( 1)
m

h X X − −  

in 4[ ]XZ , and ξ  is a root of ( )h X  in (4 )mGR , then 
2 12 2 2m−

ξ, ξ , ξ ,..., ξ  are all the 

distinct roots of ( )h X  in (4 )mGR  and ( )h X  has the following unique factorization: 

  

                                        
12 2( ) ( )( ) ( )

m

h X X X X
−

= − − ⋅⋅⋅ −ξ ξ ξ .       (4.9) 
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Example 4.3.6. By Example 4.1.4, 3 2( ) 2 1h X X X X= + + −  is a basic primitive 

polynomial of degree 3m= , and ξ  is a root of ( )h X . Then all distinct roots of  

( )h X  are 2 4 23 3 2= + +ξ,  ξ ,  ξ ξ ξ . Hence, the unique factorization of ( )h X  is  

 
2 2( ) ( )( )( 3 3 2)h X X X X= − − − − −ξ ξ ξ ξ . 

 

 

4.4 QUATERNARY CYCLIC CODES 

 

As in the binary case, a cyclic code over the ring 4Z  is a linear code over 4Z  with 

the property that the cyclic shift of any codeword is another codeword. 

 

Definition 4.4.1. [40] A linear quaternary code C  of length n is called a quaternary 

cyclic code (or cyclic code over 4Z ) if 

                   

                                 0 1 1 1 0 1 2( ,  ,..., )   ( ,  ,  ,..., )n n nc c c c c c c− − −∈ ⇒ ∈C C . (4.10) 

 

As in the binary case, when studying quaternary cyclic codes of length n in general, 

it is convenient to represent codewords of the quaternary cyclic codes by 

polynomials modulo 1nX − . The codeword 0 1 1c ( ,  ,..., )nc c c −= ∈C  is identified with 

the polynomial 1
0 1 1c( ) n

nX c c X c X −
−= + + ⋅⋅⋅+  in the ring 4[ ] ( 1)nX X= −R Z , 

which will also be called a codeword of C . The property (4.10) is equivalent to  

 

            1 1
0 1 1 0 1 1  ( )n n

n nc c X c X X c c X c X− −
− −+ + ⋅⋅⋅+ ∈ ⇒ + + ⋅⋅⋅+ ∈C C . (4.11) 

 

As in the binary case there is a relationship between the ring 4[ ] ( 1)nX X= −R Z  

and quaternary cyclic code. 
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Proposition 4.4.2. [20] A nonempty set of 4
nZ  is a quaternary cyclic code if and only 

if after identified its elements with the polynomials it is an ideal in the ring 

4[ ] ( 1)nX X= −R Z . 

 

One way to form a quaternary cyclic code is as the set of polynomial multiples of a 

polynomial. Let ( )g X  be a monic polynomial over 4Z  dividing 1nX −  and let 

( ( ))g X=C  consist of all multiples of ( )g X  of degree at most 1n − . Then C  is 

called the quaternary cyclic code with generator polynomial ( )g X . Hence every 

codeword has the form ( ) ( ) ( )c X a X g X= , where 4( ) [ ]a X X∈Z .  

 

Let ( ) ( 1) ( )nh X X g X= − , then ( ) ( ) 0 (mod 1)nh X g X X≡ − . Let deg ( )g X m= ,  

then deg ( )h X n m= − . Write 

 

0 1( ) m
mg X g g X g X= + + ⋅⋅⋅+  

 
and  

 
0 1( ) n m

n mh X h h X h X −
−= + + ⋅⋅⋅+ , 

 

then 1m n mg h −= =  and 0 0 1g h= = ± . Since ( ) ( ) 0 (mod 1)nh X g X X≡ − , ( )n mX g X−  

can be expressed as a linear combination of 1( ),  ( ),...,  ( )n mg X Xg X X g X− − . 

Therefore the codewords 1( ),  ( ),...,  ( )n mg X Xg X X g X− −  of C  form a basis of the 

code C . That is, the ( )n m n− ×  matrix  

 

                                

0 1

0 1

0 1

m

m

m

g g g
g g g

G

g g g

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L

O O

L

 (4.12)     
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is a generator matrix of C  and C  is of type 4n m− .  

 

Clearly, a word 1
0 1 1c( ) n

nX c c X c X −
−= + + ⋅⋅⋅+  is a codeword of C  if and only if 

c( ) ( )X h X 0= . In particular, ( )h X  is called the check polynomial of C . Define an 

m n×  matrix H by 

 

                                   

1 0

1 0

1 0

n m

n m

n m

h h h
h h h

H

h h h

−

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L

O O

L

 (4.13) 

 

It is easy to verify that the codewords 1( ),  ( ),...,  ( )n mg X Xg X X g X− −  of C  are 

orthogonal to every row of H. Clearly, the system of linear equations 

 

0 1 1( ,  ,..., )T
nH X X X 0− =  

 

has 4m  solutions. Therefore, a word is orthogonal to each row of H if and only if it is 

a codeword of C . Thus H is the parity check matrix of the quaternary cyclic code 

C . 

      

Define the reciprocal polynomial ( )h X  to ( )h X  to be 

  
1

1 0( ) n m n m
n mh X h h X h XL − − −
−= + + + . 

 

Then the quaternary cyclic code with ( )h X  as its generator polynomial is the dual 

code of C . 
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Proposition 4.4.3. [20] Let ( )g X  be a monic polynomial over 4Z  dividing 1nX −  

and ( ) ( 1) ( )nh X X g X= − . Let ( ( ))g X=C  be the quaternary cyclic code, whose 

generator polynomial is ( )g X . Then C ⊥  is a quaternary cyclic code whose 

generator polynomial ( )h X  is the reciprocal polynomial to ( )h X . 

 

 

4.5 GENERATOR POLYNOMIALS 

 

The subject of cyclic codes over 4Z  has many similarities to the subject of cyclic 

codes over a field, but there are also considerable differences. Various properties that 

hold for cyclic codes over a field do not hold for cyclic codes over a ring. One 

difference is that there is no unique factorization theorem in the ring of polynomials 

over a ring. Many polynomials over 4Z  have multiple distinct factorizations. It 

should also be noticed that the number of distinct roots of a polynomial of degree m 

over 4Z  in an extension ring of 4Z  may be greater than m. Therefore we must be 

careful when working with the residue class ring 4[ ] ( 1)nX X= −R Z .    

 

Not every polynomial over 4Z  is suitable as a generator polynomial for a cyclic code 

over 4Z . For the code to be a proper quaternary cyclic code, one must respect the 

algebraic structure of 4[ ]XZ . Just as one can form cyclic codes of length n over 

(2)GF  by using the irreducible factors of 1nX −  over (2)GF  and their products, 

one can also form quaternary cyclic codes of length n over 4Z  by using the basic 

irreducible factors of 1nX −  and their products. However, the possibilities are more 

extensive. Let ( )g X  be any basic irreducible factor of 1nX −  over 4Z . Then ( )g X  

can be used as the generator polynomial of a cyclic code over 4Z  of length n. 

Moreover, 2 ( )g X  can also be used as the generator polynomial of a different 
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quaternary cyclic code of length n. Besides these, there are other possibilities. The 

following proposition generalizes these possibilities. 

 

Proposition 4.5.1. [42] Let n be an odd positive integer, 1nX − =  

1 2( ) ( ) ( )rf X f X f XL  be the unique factorization of 1nX −  into basic irreducible 

polynomials, and ˆ ( )if X  be the product of all ( )jf X  except ( )if X . Then any ideal 

of the ring 4[ ] ( 1)nX X= −R Z  is a sum ˆ ( )if X  and ˆ2 ( )if X . 

 

By Proposition 4.4.2, quaternary cyclic codes of length n are precisely the ideals in 

the residue class ring 4[ ] ( 1)nX X= −R Z . Hence, we have 

 

Corollary 4.5.2. [42] The number of quaternary cyclic codes of odd length n is 3r , 

where r is the number of basic irreducible polynomial factors in 1nX − .  

 

Proposition 4.5.3. [42] Let 2 | n/  and I  be an ideal of R . Then these are the unique 

monic polynomials ( )f X , ( )g X  and ( )h X  over 4Z  such that ( ( ) ( ),I f X h X=  

2 ( ) ( ))f X g X , where  ( ) ( ) ( ) 1nf X g X h X X= −  and deg ( ) deg ( )4 2g X h XI = . 

 

The proof of Proposition 4.5.3 can be found in [42].  

 

Corollary 4.5.4. [42] Let C  be a quaternary cyclic code of odd length n and assume 

that ( ( ) ( ),  2 ( ) ( ))f X h X f X g X=C , where ( )f X , ( )g X , ( )h X  are monic 

polynomials over 4Z  such that ( ) ( ) ( ) 1nf X g X h X X= − . Then ⊥C  is also a 

quaternary cyclic code, ( ( ) ( ),  2 ( ) ( ))g X h X g X f X⊥ =C , where ( )f X , ( )g X , 

( )h X  are reciprocal polynomials to ( )f X , ( )g X , ( )h X , respectively, and 

deg ( ) deg ( )4 2f X h X⊥ =C . 
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CHAPTER 5 
 
 

4Z -LINEARITY OF SOME BINARY NONLINEAR CODES 

 

 

Around 1970, several nonlinear binary codes have been constructed. Although these 

nonlinear binary codes are not so easy to describe, to encode and decode as the linear 

codes, they contain more codewords than any known linear codes. The well-known 

of these are the codes constructed by Nordstrom-Robinson, Kerdock, Preparata, 

Goethals and Delsarte-Goethals ([41], [32], [43], [21], [22], [19] and [27]). Since 

these codes have great error correcting capability, several researchers have 

investigated them and showed that they can be constructed as binary images under 

the Gray map of linear codes over 4Z  and are actually extended cyclic codes over 

4Z . 

    

In this chapter, we study these well-known nonlinear binary codes and the quaternary 

version of the linear binary Reed-Muller code. Firstly, the quaternary Kerdock code, 

its generator matrix and trace description are given. It is then shown that the Kerdock 

codes are extended cyclic codes over 4Z  and are simply 4Z -analogues of the first-

order Reed-Muller codes. By using these results, the weight distribution of the 

Kerdock codes is given. Secondly, the quaternary Preparata codes are defined and 

the binary images of the quaternary duals of the Kerdock codes are shown to be the 

binary images of the quaternary Preparata codes, which are called the Preparata-like 

codes. The third section defines a family of quaternary Reed-Muller codes, which 

generalizes the quaternary Kerdock and Preparata-like or “Preparata” codes. In the 

final section, the quaternary Goethals codes, i.e., another generalization of 

“Preparata” codes are reviewed. It is shown that the nonlinear binary Delsarte-

Goethals codes are also extended cyclic codes over 4Z , and their 4Z -duals have 
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essentially the same properties as the Goethals codes and the “Goethals-Delsarte” 

codes. 

 

Most of the definitions and propositions of this chapter are taken from [26] and [52] 

by inserting some explanations whenever needed.    

 

 

5.1 KERDOCK CODES 

 

In 1972, Kerdock introduced the nonlinear binary Kerdock codes 1mK +  where m  is 

odd integer 3≥  [32]. These codes contain at least twice as many codewords as the 

best linear binary code with the same length and minimum distance. In 1989, 

Nechaev studied the Kerdock codes [40] by using Galois rings and trace descriptions 

of some 4Z -sequences and proved that this code has the cyclic form. 

 

Now, we firstly give the quaternary construction of Kerdock codes.      

 

Let ( )h X  be a basic primitive polynomial of degree 2m ≥  over 4Z  such that 

2 1( ) | ( 1)
m

h X X − − . From Proposition 4.1.2, the existence of the polynomial ( )h X  is 

guaranteed and it is the Hensel lift of the binary primitive polynomial 

2 ( ) ( ) ( mod 2)h X h X≡  of degree m.  

 

Let ( )g X  be the reciprocal polynomial to the polynomial 2 1( 1) (( 1) ( ))
m

X X h X− − − . 

 

Definition 5.1.1 [25] The quaternary Kerdock code ( )mK  is obtained from the 

quaternary cyclic code ( )m −K  of length 2 1m −  with generator polynomial ( )g X  by 

adjoining a zero-sum check symbol to each codeword of ( )m −K  at position ∞ , 

which is situated in front of the position 0. 
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Note that the polynomial ( 1) ( )X h X−  is the parity check polynomial of ( )m −K . 

There are two equivalent generator matrices for ( )mK . The first one can be given as 

follows. 

 

Proposition 5.1.2. [25] Let ξ  be a root of ( )h X  over 4Z . Then the ( 1) 2mm+ ×  

matrix  

 

                                           2 1

1 1 1 1 1
0 1 n−

⎛ ⎞
⎜ ⎟
⎝ ⎠

L

Lξ ξ ξ
 (5.1) 

   

is a generator matrix of ( )mK , where the entries jξ  for 0 1j n≤ ≤ − , in the second 

row are to be replaced by the corresponding m tuples 1 2( , ,..., )t
j j mjb b b  obtained from 

1
1 2

j m
j j mjb b b −= + + +Lξ ξ ξ . 

 

By Proposition 5.1.2 and Theorem 4.2.2 (ii) different basic primitive polynomials of 

the same degree m over 4Z  define permutation-equivalent quaternary Kerdock 

codes. 

 

The second form of the generator matrix is given in the following proposition. 

 

Proposition 5.1.3. [25] Let 
0

( ) j
j

j

g X g X
δ

=

= ∑ , where deg ( ) 2 2mg X mδ= = − −  and 

4jg ∈Z  and 0 1( )g g g g∞ ∞=− + + +L . Then the ( 1) 2mm+ ×  matrix 

 

                              

0 1

0 1

0 1

0 0
0 0

0 0

g g g g
g g g g

g g g g

δ

δ δ

δ

∞

∞ −

∞

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L L

L L

M M M M M M

L L

 (5.2)   
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is also a generator matrix of ( )mK . 

 

The following example gives the two forms of the generator matrix of (3)K . 

 

Example 5.1.4. [26] Let 3 2( ) 2 1h X X X X= + + −  be the basic primitive polynomial 

of degree 3, then 3 2( ) 2 1 ( )g X X X X h X= + + − = . So (3)K  is self dual. By 

Proposition 5.1.2 and 5.1.3, the generator matrices of (3)K  are 

 

1 3 1 2 1 0 0 0 1 1 1 1 1 1 1 1
1 0 3 1 2 1 0 0 0 1 0 0 1 2 3 1

    and    
1 0 0 3 1 2 1 0 0 0 1 0 3 3 3 2
1 0 0 0 3 1 2 1 0 0 0 1 2 3 1 1

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 

It is easy to prove that the above two matrices and the matrix (2.6) generate the same 

code. Therefore (3)K  is the octacode 8O . 

  

From the definitions of ( )mK  and ( )m −K  the following two facts are clear.     

 

Corollary 5.1.5. [25] The codes ( )m −K  and ( )mK  are linear quaternary codes of 

type 14m+ . 

 

Corollary 5.1.6. [25] The linear binary code (1)K , associated with ( )mK ,with 

generator matrix 

 

                                            2 1

1 1 1 1 1
0 1 nη η η −

⎛ ⎞
⎜ ⎟
⎝ ⎠

L

L
 (5.3) 

  

where (mod 2),  1,..., 1i i i nη = = −ξ , is equivalent to (1, )RM m . 
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In [26], Hammons et al. verified the codewords of quaternary Kerdock code by using 

its trace description over (4 )mGR .     

 

Proposition 5.1.7. [26] The codes ( )m −K  and ( )mK  have the following trace 

description over the ring 4(4 ) [ ]mGR = ξZ , where ξ  is a root of the basic primitive 

polynomial ( )h X  in (4 )mGR . 

 

(i)  ( )
4( ) { v | ,  (4 )}mm GRλε ε λ− = + ∈ ∈1K Z  where 

  

                              ( ) 0 1 1v ( ( ), ( ), ( ),..., ( ))nT T T Tλ λ λ λ λ −= 2ξ ξ ξ ξ . (5.4) 

      

Thus 0 1 1c ( , ,..., )nc c c −=  is a codeword in ( )m −K  if and only if ( )t
tc T λ ε= + ,ξ  

{0, 1,... 1}t n∈ − . 

 

(ii)  ( )
4( ) { u | ,  (4 )}mm GRλε ε λ= + ∈ ∈1K Z  where 

  

                             ( ) 0 1u ( ( ), ( ), ( ),..., ( ))nT T T Tλ λ λ λ λ∞ −= 1ξ ξ ξ ξ    (5.5) 

   

with the convention that 0∞ =ξ . 

 

Thus 0 1 1c ( , , ,..., )nc c c c∞ −=  is a codeword in ( )mK  if and only if ( )t
tc T λ ε= + ,ξ  

{ , 0, 1,..., 1}t n∈ ∞ − . 

 

From Proposition 5.1.7, the following proposition can be verified. 

   

Proposition 5.1.8. [26] Let 0 1 1c ( , , ,..., )n mc c c c∞ −= ∈K  and 2m≥  be an integer. Then 

tc  has 2-adic expansion 
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                                      2 ,      { , 0, 1,..., 1}t t tc a b t n= + ∈ ∞ −  (5.6) 

 

given by 

                                               ( )t
ta Tr Aπθ= + ,   (5.7) 

 

                                  2 2

0 1

( ) ( )
j kt t

t
j k m

b Tr Bηθ πθ +

≤ ≤ ≤ −

= + +∑ , (5.8) 

 

where the elements (mod 2)θ = ξ , , (2 )mGFπ η∈  and 2, A B∈Z  are arbitrary and the 

convention that 0θ ∞ = . When m  is odd, let 

 

                              
( 1)/2

1 2

1
( ) ( )     for all  (2 ),

j
m

m

j
Q x Tr x x GF

−
+

=

= ∈∑  (5.9) 

 

Then tb  can be written as 

 

                                          ( ) (( ))t t
tb Tr Q Bηθ πθ= + + . (5.10) 

 

Now, we can give the properties of the binary image of the quaternary Kerdock code. 

We denote the binary image of the quaternary Kerdock code ( )mK  by ( )K m , i.e., 

( ) ( ( ))K m mφ= K , where m is an integer 2≥ . 

 

Theorem 5.1.9. [26] Let m be an integer 2≥ . Then ( )K m  is a nonlinear binary code 

of length 12m+  and with 14m+  codewords. This code is distance invariant and all its 

codewords are of even weight. 
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Proposition 5.1.10. [26] Let m be an integer 2≥ . The codewords c for which 

2 (4 )mGRλ∈  in the trace description (5.5) and for which 0π =  in the 2-adic 

representation (5.6)-(5.8) form a linear subcode of ( )mK  with generator matrix 

 

                                           1

1 1 1 1 1
0 2 2 2 2 n−

⎛ ⎞
⎜ ⎟
⎝ ⎠

L

L2ξ ξ ξ
, (5.11) 

 

whose binary image is the first-order Reed-Muller code (1, 1)RM m+  contained in 

the Kerdock code ( )K m . 

 

Our new aim is to give the relation between the Kerdock code ( )K m  and the 

nonlinear binary Kerdock code 1mK + . Recall that, for 3m≥  odd, the nonlinear binary 

Kerdock code 1mK +  of length 12m+  is the union of 2 1m −  cosets of (1, 1)RM  m+  in 

(2, 1)RM  m+ .  

 

Now, we have 

 

Theorem 5.1.11. [26] Let m be an odd integer 3≥ . Then 1( ) mK m K += . 

 

The weight distribution of the Kerdock code 1mK + , where m is an odd integer 3≥  

was computed by Kerdock in [32]. Moreover, in [26] Hammons et al. determined the 

weight distribution of any Kerdock code by using the quaternary description.  

 

Theorem 5.1.12. [26] Let m be odd and 3≥ . The nonlinear binary Kerdock code 

1 ( )mK K m+ =  of length 12m+  with 14m+  codewords, minimal distance ( 1)/22 2m m−− ,  has 

the weight distribution given in Table 5.1. 
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Table 5. 1 Weight distribution of ( )K m  (m odd) 
 

Weight(i) No. of codewords( iA ) 

0 1 
( 1)/22 2m m−−  12 (2 1)m m+ −  

2m  22 2m+ −  
( 1)/22 2m m−+  12 (2 1)m m+ −  
12m+  1 

 
 

When m is even, 2m≥ , a similar argument shows that ( ) ( ( ))K m mφ= K  is a 

nonlinear code of length 12m+ , with 14m+  codewords, minimal distance /22 2m m− , and 

the weight distribution given in Table 5.2.  

 

Table 5. 2 Weight distribution of ( )K m  (m even) 

 
Weight(i) No. of codewords( iA ) 

0 1 
/22 2m m−  2 (2 1)m m −  

2m  12 (2 1) 2m m+ + −  

/22 2m m+  2 (2 1)m m −  
12m+  1 

 

Note that this code is not as good as a double-error-correcting BCH code. The double 

error correcting BCH code has parameters 2 1 and 2mn k n m= − ≥ −  and the code 

rate 2 1 2
2 1

m

m

m− −
≥

−
 which is greater than the code rate 1

1
2m

m
+

+  of the ( )K m , where m is 

even.  
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5.2 PREPARATA CODES 

 

In 1968, the nonlinear binary Preparata codes were introduced by Preparata in [43] 

and their weight distribution were obtained by Semankov and Zinovév in 1969, 

which can be found in [39]. After the Kerdock codes were introduced by Kerdock in 

1972, it was proved that the weight enumerator of the Preparata code is the 

MacWilliams transform of the weight enumerator of the Kerdock code. Although, 

the Preparata code is not a 4Z -linear code; in 1993, Calderbank, Hammons, Kumar, 

Sloane and Solé proved that a code with the same parameters, which is called 

Preparata-like code, is 4Z -linear. Furthermore, they explained the mystery in coding 

theory by showing that these well known codes are the binary images of the linear 

codes over the ring 4Z  under the Gray map that are dual to one another. Moreover, 

at length 16, Kerdock and Preparata codes coincide and give the unique code with 

the interesting property, the Nordstrom-Robinson code [41]. This code has strictly 

larger minimum distance than any linear code with the same length and size. In 1993, 

Forney, Sloane and Trott showed that the Nordstrom-Robinson code is the binary 

image of the octacode, the linear quaternary code presented in Example 2.1.9 [20].  

 

As in the previous section, we firstly give the quaternary construction of Preparata 

codes following [26]. Let ( )h X  be a basic primitive polynomial of degree 2m ≥ , 

dividing 2 1( 1)
m

X − −  in 4[ ]XZ , ξ  be a root of ( )h X  over 4Z , and ( )g X  be the 

reciprocal polynomial to the polynomial 2 1( 1) /(( 1) ( ))
m

X X h X− − − . 

 

Definition 5.2.1 [26] Let ( )m −P  be the quaternary cyclic code of length 2 1mn = −  

with generator polynomial ( )h X . The linear quaternary code ( )mP  is obtained from 

the quaternary cyclic code ( )m −P  by adding a zero-sum check symbol to each 

codeword of ( )m −P  is called the quaternary Preparata code. 

 



 79

Since ( )m −P  has parity check polynomial ( )g X , we have 

 

Proposition 5.2.2. [26] Let ξ  be a root of ( )h X  over 4Z . Then ( )m −P  has parity 

check matrix  

 

                                                ( )2 11 n−Lξ ξ ξ  (5.12) 

 

( )mP  is the dual code of ( )mK  and hence the matrices (5.1) and (5.2) are the parity 

check matrices of ( )mP . 

 

From Definition 5.2.1 and Proposition 5.2.2, we have  

 

Corollary 5.2.3. [26] Both the codes ( )m −P  and ( )mP  are linear quaternary codes 

of type 2 14
m m− − . 

 

Corollary 5.2.4. [26] The linear binary code (1)P  associated with ( )mP , with 

generator matrix 

 

                                          2 1

1 1 1 1 1
0 1 nη η η −

⎛ ⎞
⎜ ⎟
⎝ ⎠

L

L
 (5.13) 

  

where (mod 2),  1,..., 1i i i nη = = −ξ , is equivalent to ( 2, )RM m m− . 

 

Proposition 5.2.5. [26] Let m be an integer 2≥ , then all codewords of ( )mP  are of 

even Lee weight. Moreover, when m is even and 2≥ , ( )mP  has minimum Lee 

distance 4 and when m is odd and 3≥ , ( )mP  has minimum Lee distance 6. 
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Now, we can give the properties of the binary image of the quaternary Preparata 

code. We denote the binary image of the quaternary Preparata code ( )mP  by ( )P m , 

i.e., ( ) ( ( ))P m mφ= P . 

 

Theorem 5.2.6. [26] Let m be an integer 2≥ . Then ( )P m  is a binary code of length 

12m+ , with 
12 2 22

m m+ − −  codewords and minimal distance 6. This code is distance 

invariant, all its codewords are of even weight and it is the formal dual of ( )K m . 

Moreover, its weight enumerator is the MacWilliams transform of the weight 

enumerator of the Kerdock code of the same length, i.e.,  

 

                                   ( ) ( )1

1( , ) ( , ).
4P m K mmW X Y W X Y  X Y+= + −  (5.14) 

 

By Proposition 5.2.5, when 3m≥ , ( )P m  is nonlinear. When m is even and 2≥ , 

( )P m  has minimum Lee distance 4 and when m is odd and 3≥ , ( )P m  has minimum 

Lee distance 6.  

 

Since ( )P m  is not the same code as the original version of the Preparata code , it is 

called the Preparata-like code or the “Preparata” code, when m is an odd integer 3≥ . 

In [26], the quotation mark is used to distinguish it from the Preparata’s original code 

1mP + . Although ( )P m  and 1mP +  have the same code length, the same number of 

codewords, the same minimum distance, and the same weight enumerator, there is an 

essential difference between them.  

 

To give the relation between the “Preparata” code ( )P m  and the original Preparata 

code 1mP + , we will review Preparata’s original work in 1968. 
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Let m be an odd integer 3≥  and 2 1mn= −  and (x,y)  be the vectors in 
12

2

m+

F , where 

2
2x, y

m

∈F , and for 
2mα∈F , and x yα α  denote the components at the thα  positions in 

x and y, respectively. 

 

Definition 5.2.7. [43] The Preparata code 1mP +  of length 12m+  consists of all 

codewords (x, y)  where 2
2x, y

m

∈F , satisfying  

 

(i) Both (x)Hw  and (y)Hw  are even. 

 

(ii)  
1 1x yα α
α α

= =
=∑ ∑ . 

 

(iii) 3 3 3
1 1 1

( )
x x yα α α
α α α

= = =
+ =∑ ∑ ∑ . 

 

The code obtained by deleting the first coordinates is denoted by ( )P m − . 

 

Proposition 5.2.8. [26] The binary code 1mP +  is distance invariant, has minimum 

distance 6, and 
12 2 22

m m+ − −  codewords.     

 

Corollary 5.2.9. [26] The code ( )P m −  is a binary code of length 2 1m −  and has 

minimum distance 5. 

 

Since the weight enumerator of the Preparata code 1mP +  is the MacWilliams 

transform of the weight enumerator of the Kerdock code 1mK +  and by Theorem 5.2.6, 

( )P m  is the formal dual of 1( ) mK m K += , we have the following proposition. 
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Proposition 5.2.10. [26] Let m be an odd integer 3≥ . The Preparata code 1mP +  and 

the “Preparata” code ( )P m  have the same length, the same number of codewords, 

the same minimum distance, and the same weight enumerator. 

 

The following two propositions give one essential difference between ( )P m  and 1mP +  

as asserted in [26].   

 

Proposition 5.2.11. [26] For odd 5m≥ , ( )P m  is contained in a nonlinear code with 

the same weight distribution as the extended binary Hamming code of the same 

length, and the linear code spanned by the codewords of ( )P m  has minimum weight 

2. 

 

Proposition 5.2.12. [26] The Preparata code 1mP +  of length 12m+  is a subcode of the 

extended binary Hamming code of the same length. 

 

Moreover, there is an interesting relationship between Kerdock, Preparata and 

“Preparata” codes. When 3m= , these three codes coincide and give the Nordstrom-

Robinson code. This is the unique binary code of length 16, minimal distance 6, 

containing 256 codewords. In this case (3)K  is the “octacode”, whose generator 

matrix is given in Example 5.1.4. The octacode may also be characterized as the 

unique self-dual linear quaternary code of length 8 and minimal Lee weight 6 as in 

Example 2.1.9. Thus we have the following proposition.  

 

Proposition 5.2.13. [20] The Nordstrom-Robinson code is the binary image of the 

octacode under the Gray map. 

 

Theorem 5.2.14. [26] When 3m= , the “Preparata” code ( )P m  coincides with 

Preparata’s original code 1mP + .        
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Finally, both ( )P m  and 1mP +  have the same length and minimum distance as the 

1 1[2 , 2 2 3, 6]m m m+ + − −  extended BCH code, but contain twice as many codewords. 

Moreover, in [39], it is shown that 1mP +  has the greatest possible number of 

codewords for this minimum distance [39].  

 

 

5.3 QUATERNARY REED-MULLER CODES 

 

In Section 3.5, it is defined a quaternary code ( , 1)ZRM r m−  whose image under the 

Gray map φ  is the binary Reed-Muller code ( , )RM r m  for {0, 1, 2, 1, }r m m∈ − . 

From the previous sections, we see that the quaternary codes ( )mK  and ( )mP  can 

be regarded as the 4Z -analogs of the binary first-order Reed-Muller code (1, )RM m  

and the ( 2)m− th-order Reed-Muller code ( 2, )RM m m− , respectively. In [26], 

Hammons et al. define another quaternary Reed-Muller code ( , )QRM r m , whose 

image under the map α  is ( , )RM r m  for all r , 0 r m≤ ≤ , and which includes the 

codes ( )mK  and ( )mP  as special cases. 

 

Definition 5.3.1. [52] Let m be an integer 2≥ , 2 1mn= − , and r be an integer such 

that 0 r m≤ ≤ . Let ( )h X  be a basic primitive polynomial of degree m dividing 1nX −  

and ξ  be one of its root of order 2 1m − . Consider the ( 1) 2mm+ ×  matrix 

 

                                               2 1

1 1 1 1 1
0 1 n−

⎛ ⎞
⎜ ⎟
⎝ ⎠ξ ξ ξ

L

L
 (5.15) 

 

Denote the ith row of the matrix (5.15) by vi . The quaternary rth-order Reed-Muller 

code ( , )QRM r m  is the code generated by all 2m -tuples of the form  
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1 2 1 2v v v ,        1 ,    0
si i i si i i m s r≤ < < < ≤ ≤ ≤L L . 

 

Now, we recall the cyclotomic coset to give an equivalent definition of the 

quaternary Reed-Muller code ( , )QRM r m , 0 r m≤ ≤ . 

 

Let m be a fixed positive integer and r, s be integers such that 0 , 2 2mr s≤ ≤ − . It is 

defined r and s to be equivalent, if there is a non-negative integer i such that 

2  (mod 2 1)i mr s≡ − . So, this defines an equivalence relation in the set of integers 

{0, 1, 2, , 2 2}m −K . The equivalence classes are called the cyclotomic cosets 

mod 2 1m − . A number in a cyclotomic coset is called a representative of the 

cyclotomic coset.  

 

Definition 5.3.2. [26] Let m be an integer 2≥ . Then (0, )QRM m  is the quaternary 

repetition code 4{ | }ε ε∈1 �  of length 2m , and for 1 r m≤ ≤  ( , )QRM r m  is generated 

by (0, )QRM m  together with all vectors of the form 

 

                  0 2 ( 1)( ( ),  ( ),  ( ),  ( ), ,  ( ))j j n j
j j j j jT T T T Tλ λ λ λ λ∞ −Kξ ξ ξ ξ ξ  (5.16) 

 

where j  ranges over all representatives of cyclotomic cosets mod 2 1m −  for which 

( )wt j r≤ , and jλ  runs through (4 )mGR . Moreover, ( , )QRM r m  is of type 4k , 

where  

 

1
1 2
m m m

k
r

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
L . 

 

The following proposition is clear from Definition 5.3.1 and Proposition 5.1.2.   

 

Proposition 5.3.3. [26] Let m be an integer 2≥ . Then  
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(1,  )  ( )QRM m m= K . 

( 2,  )  ( )QRM m m m− = P  

( ( ,  ))  ( ,  )QRM r m RM r mα = . 

( ,  )   ( 1,  )QRM r m QRM m r m⊥ = − − . 

 

 

5.4  QUATERNARY GOETHALS, DELSARTE-GOETHALS AND 
GOETHALS-DELSARTE CODES 

 

In the previous section, we have seen one generalization of constructions of ( )mK  

and ( )mP . As another generalization of quaternary Preparata codes, Hammons et al. 

introduced the quaternary Goethals codes in [26] as follows.  

 

Definition 5.4.1. [26] Let m be an odd integer 3≥  and ξ  be an element of order 

2 1mn= −  in the Galois ring (4 )mGR . The quaternary Goethals code ( )mG  of length 

2m  is defined to be the linear quaternary code with parity check matrix 

  

                                         2 1

3 6 3( 1)

1 1 1 1 1
0 1

2 2 2 2

n

n

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

ξ ξ ξ
0 ξ ξ ξ

L

L

L

. (5.17)   

 

If the first components of the codewords of ( )mG  are deleted, the obtained code, 

( )m −G , has parity check matrix 

 

                                             
2 1

3 6 3( 1)

1
2 2 2 2

n

n

−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

ξ ξ ξ
ξ ξ ξ

L

L
 (5.18) 
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and is a quaternary cyclic code of length 2 1m − . 

 

Proposition 5.4.2. [26] Let m be an odd integer 3≥ . The quaternary Goethals code 

( )mG  of length 2m  is of type 2 2 14 2
m m m− −  and of minimal Lee distance 8. Moreover, 

the quaternary cyclic code ( )m −G  of length 2 1m −  is of type 2 2 14 2
m m m− −  and of 

minimal Lee distance 7. 

 

The original Goethals code 1mG + , where m is any odd integer 5≥ , was introduced by 

Goethals [21], [22]. It is a distance invariant nonlinear binary code of length 12m+ , 

contains 
12 3 22

m m+ − −  codewords and has minimum distance 8. The binary image, 

( ( ))mφ G , of ( )mG  is a nonlinear binary code and it has the same length, the same 

number of codewords, the same minimum distance, and the same weight and 

distance enumerators as the original Goethals code. Now, let us study the code 

( ( ))mφ G , which is called the “Goethals” code. 

 

Proposition 5.4.3. [26] Let m be an odd integer 3≥ . The “Goethals” code ( ( ))mφ G  

is a binary code of length 12m+ . It is distance invariant, has  
12 3 22

m m+ − −  codewords and 

minimal Hamming distance 8. When 5m≥ , it is nonlinear, but, for 3m= , is linear. 

 

Goethals ([21], [22]) also introduced the formal dual  ( ( ) )mφ ⊥G  of ( ( ))mφ G , 

computed the weight distributions of both 1mG +  and ( ( ) )mφ ⊥G  and observed that the 

weight enumerator of 1mG +  is the MacWilliams transform of that of ( ( ) )mφ ⊥G . Since 

the weight enumerator of ( ( ))mφ G  is the MacWilliams transform of that of 

( ( ) )mφ ⊥G , 1mG +  and ( ( ))mφ G  also have the same weight enumerator. 
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Table 5. 3  Weight distribution of ( ( ) )mφ ⊥G , 2 1m t= +  
 

Weight(i) No. of codewords( iA ) 

0 or 2 22 t+  1 
2 1 12 2t t+ +±  2 2 1 2 22 (2 1)(2 1)/3t t t+ +− −  

2 12 2t t+ ±  2 2 2 1 2 12 (2 1)(2 4)/3t t t+ + +− +  

2 12 t+  2 2 4 1 22(2 1)(2 2 1)t t t+ +− − +  

 

Note that both 1mG +  and ( ( ))mφ G  contain four times as many codewords as the 

extended triple-error correcting BCH code of the same length.   

 

The binary Delsarte-Goethals and Goethals-Delsarte codes were introduced and 

studied by Delsarte and Goethals in [19] and Hergert in [27] respectively.  

 

Finally, we study the quaternary Delsarte-Goethals and Goethals-Delsarte codes 

which are the generalization of the quaternary Goethals and its 4Z duals. 

 

Definition 5.4.4. [26] Let m be an odd integer 3≥ , 2 1m t= + , 1 r t≤ ≤ , and ξ  be an 

element of order 2 1mn= −  in the Galois ring (4 )mGR . The quaternary Delsarte-

Goethals code ( ,  )m δDG , where ( 1)/2m rδ = + −  is the linear quaternary code with 

generator matrix 

 

                               

2 1

3 6 3( 1)

1 2 2(1 2 ) (1 2 )( 1)

(1 2 ) 2(1 2 ) (1 2 )( 1)

1 1 1 1 1
0 1
0 2 2 2 2

0 2 2 2 2

0 2 2 2 2

j j j

r r r

n

n

n

n

−

−

+ + + −

+ + + −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

ξ ξ ξ
ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

L

L

L

M M M M M

L

M M M M M

L

 (5.19) 
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The quaternary Goethals-Delsarte code ( ,  )m δGD  is the linear quaternary code with 

the matrix (5.19) as its parity check matrix. 

 

It is clear that, when 1r = , ( ,  )m δGD  is the quaternary Goethals code ( )mG . 

 

If we denote the binary images of ( ,  )m δDG  and ( ,  )m δGD  by ( ( ,  ))mφ δDG  and 

( ( ,  ))mφ δGD , respectively, we have  

 

Proposition 5.4.5. [26] Let m be an odd integer 3≥ , 2 1m t= + , 1 r t≤ ≤ , and 

( 1)/2m rδ = + − .  

 

i. The quaternary Delsarte-Goethals code ( ,  )m δDG  is of length 2m  and has 

type 14 2m rm+  and minimal Lee weight 2 2m m δ−− . Its binary image 

( ( ,  ))mφ δDG  is the Delsarte-Goethals code ( 1, )DG m δ+ , which is a binary 

code of length 12m+ , is distance invariant, and has  2( 1)2 m rm+ +  codewords and 

minimal Hamming distance 2 2m m δ−− . When 5m≥ , ( 1, )DG m δ+  is 

nonlinear. 

 

ii. The quaternary Goethals- Delsarte code ( ,  )m δGD  is of length 2m , and has 

type 2 ( 1) 14 2
m r m rm− + −  and minimal Lee weight 8. Its binary image ( ( ,  ))mφ δGD  

is a binary code of length 12m+ , is distance invariant, and has  
12 ( 2) 22

m r m+ − + −  

codewords. It has the same weight distribution as the binary Goethals-

Delsarte code ( 1, )GD m δ+ . When 5m≥ , ( ( ,  ))mφ δGD  is nonlinear.  
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CHAPTER 6 
 
 

CONCLUSIONS 
 

 

Historically, linear codes have been the most important codes since they have a clean 

structure that makes them simpler to discover, to understand, to encode and decode. 

However, in order to get the largest possible number of codewords with a fixed block 

size and correction capability, it is necessary to consider the nonlinear codes as well.  

 

Around 1970, several nonlinear binary codes having at least twice as many 

codewords as any known linear code with the same length and minimal distance have 

been constructed. Several researchers have studied these codes and shown in early 

1990’s that the well-known nonlinear binary codes can be constructed as binary 

images under the Gray map of linear codes over 4Z . This has led to a new direction 

in coding theory, the study of linear quaternary codes and their binary images. 

 

This thesis is dedicated to the analysis of linear quaternary codes and their binary 

images, which can be either linear, or nonlinear but 4Z -linear. We have mainly made 

use of the seminal paper written by Hammons, Kumar, Calderbank, Sloane and Solé 

[26] and the book by Wan [52], which is an extended form of lecture notes basically 

depending on [26]. Basic properties of quaternary codes are discussed, relationships 

between the weight enumerators of algebraic and formal dual codes are investigated 

by using the MacWilliams equations. Properties of the binary images of the linear 

quaternary codes and their duals under the Gray map are studied.  

 

Conditions for the binary image of a linear quaternary code to be linear and for a 

binary code to be 4Z -linear are thoroughly investigated. The first contribution of our 

thesis involves the simplification of the linearity test for the binary image of a linear 
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quaternary code, via new lemmas and propositions. Through Lemmas 3.4.1, 3.4.2 

and 3.4.3, we arrive at Proposition 3.4.4 that reduces the number of codewords to be 

checked considerably, which in turn diminishes the computations. For a linear 

quaternary code C  of type 1 24 2k k , containing 1 222 k k+  codewords and having the 

generator matrix 
1

2

    

0  2 2

k

k

I A B
G

I D

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, where 
1k

I  and 
2kI denote the identity 

matrices, A and D are 2Z -matrices, and B is a 4Z -matrix; the ratio of the 

computational load of the test described in Proposition 3.4.4 over the computational 

load of the usual test, is proportional to 1 1( ( 1)) 2k k −  divided by the number of all 

possible row pairs of G, which is equal to 1 2 1 2 1 2( ) [( )( 1) 2]k k k k k k+ + + + − . Finally, 

in Proposition 3.4.6, we find the values of 1k  and 2k  for which the binary image is 

already linear, so that the necessity of linearity check is eliminated. 

 

After a discussion on the 4Z -linearity of the Reed-Muller and Hamming codes, our 

second contribution is the analysis of all linear quaternary codes of length 4 to find 

out whether there is any nonlinear and 4Z -linear binary code better than the 

extended Hamming code of length 8, rate ½ and minimal distance 4. The answer is 

negative, since none of the 184 nonlinear and 4Z -linear binary code can achieve a 

minimal distance of 4. 

 

Hensel lift and Galois ring, which are the important tools for the study of quaternary 

cyclic codes, are also discussed. Accordingly, the quaternary cyclic versions of 

nonlinear binary Kerdock and Preparata codes and their binary images are studied in 

detail. The generalizations of the quaternary Kerdock and Preparata-like codes, the 

quaternary Reed-Muller codes and the quaternary Goethals codes are explained. 

Moreover, it is shown that the nonlinear binary Delsarte-Goethals codes are extended 

cyclic codes over 4Z , and that their 4Z -duals have essentially the same properties as 

the Goethals codes and the “Goethals-Delsarte” codes. 
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